


wxPython in Action



 



wxPython in Action

NOEL RAPPIN 
ROBIN DUNN

M A N N I N G
Greenwich 

(74° w. long.)



For online information and ordering of this and other Manning books, go to 
www.manning.com. The publisher offers discounts on this book when ordered in quantity.  
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2006 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,  
in any form or by means electronic, mechanical, photocopying, or otherwise, without  
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products  
are claimed as trademarks. Where those designations appear in the book, and Manning 
Publications was aware of a trademark claim, the designations have been printed in initial  
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy  
to have the books they publish printed on acid-free paper, and we exert our best efforts  
to that end.

Manning Publications Co. Copyeditor: Elizabeth Martin
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-62-1

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 10 09 08 07 06



 To every Jane and Joe Programmer, 
chained to their computer, burning the midnight oil, 

striving to make a dream come true



 



brief contents

PART 1  INTRODUCTION TO WXPYTHON   .............................. 1

1 ■ Welcome to wxPython 3

2  ■ Giving your wxPython program a solid foundation 29

3  ■ Working in an event-driven environment 56

4  ■ Making wxPython easier to handle with PyCrust 83

5  ■ Creating your blueprint 116

6  ■ Working with the basic building blocks 146

PART 2  ESSENTIAL WXPYTHON   .......................................  183

7  ■ Working with the basic controls 185

8  ■ Putting widgets in frames 224

9  ■ Giving users choices with dialogs 258

10  ■ Creating and using wxPython menus 293

11  ■ Placing widgets with sizers 323

12  ■ Manipulating basic graphical images 356
vii



viii BRIEF CONTENTS 
PART 3  ADVANCED WXPYTHON   .......................................  391

13  ■ Building list controls and managing items 393

14  ■ Coordinating the grid control 425

15  ■ Climbing the tree control 460

16  ■ Incorporating HTML into your application 485

17  ■ The wxPython printing framework 504

18  ■ Using other wxPython functionality 521



contents

preface xix
acknowledgments  xxii
about this book xxiv

PART 1 INTRODUCTION TO WXPYTHON ................................... 1

1  Welcome to wxPython 3
1.1 Getting started with wxPython  5

1.2 Creating the bare-minimum wxPython program 7
Importing wxPython 9 ■ Working with applications  
and frames 11

1.3 Extending the bare-minimum  
wxPython program 12

1.4 Creating the final hello.py program 15

1.5 What can wxPython do? 17

1.6 Why choose wxPython? 19
Python programmers 19 ■ wxWidget users 20 ■ New users 20
ix



x CONTENTS
1.7 How wxPython works 21
The Python language 21 ■ The wxWidgets toolkit 22
Putting it together: the wxPython toolkit 25

1.8 Summary 27

2  Giving your wxPython program a solid foundation 29
2.1 What do I need to know about the required objects? 30

2.2 How do I create and use an application object? 31
Creating a wx.App subclass 31 ■ Understanding the application 
object lifecycle 34

2.3 How do I direct output from a wxPython program? 35
Redirecting output 35 ■ Modifying the default redirect 
behavior 37

2.4 How do I shut down my wxPython application? 38
Managing a normal shutdown 38 ■ Managing an emergency 
shutdown 39

2.5 How do I create and use the top-level window object? 39
Working with wx.Frame 40 ■ Working with wxPython IDs 42
Working with wx.Size and wx.Point 43 ■ Working with  
wx.Frame styles 44

2.6 How do I add objects and subwindows to a frame? 47
Adding widgets to a frame 47 ■ Adding a menubar, toolbar,  
or status bar to a frame 49

2.7 How can I use common dialogs? 51

2.8 What are some common errors with application objects 
and frames? 53

2.9 Summary 54

3  Working in an event-driven environment 56
3.1 What terminology do I need to understand events? 57

3.2 What is event-driven programming? 58
Coding event handlers 60 ■ Designing for event-driven  
programs 61 ■ Event triggers 62

3.3 How do I bind an event to a handler? 63
Working with the wx.EvtHandler methods 65



CONTENTS xi
3.4 How are events processed by wxPython? 68
Understanding the event handling process 69 ■ Using the  
Skip() method 75

3.5 What other event properties are contained in the 
application object? 77

3.6 How can I create my own events? 77
Defining a custom event for a custom widget 78

3.7 Summary 81

4  Making wxPython easier to handle with PyCrust 83
4.1 How do I interact with a wxPython program? 84

4.2 What are the useful features of PyCrust? 86
Autocompletion 87 ■ Calltips and parameter defaults 88
Syntax highlighting 89 ■ Python help 90 ■ Command 
recall 91 ■ Cut and paste 92 ■ Standard shell 
environment 93 ■ Dynamic updating 94

4.3 What do the PyCrust notebook tabs do? 95
Namespace tab 95 ■ Display tab 97 ■ Calltip tab 97
Session tab 98 ■ Dispatcher tab 98

4.4 How can I wrap PyCrust around my wxPython 
application? 99

4.5 What else is in the Py package? 104
Working with the GUI programs 104 ■ Working with the  
support modules 105

4.6 How can I use modules from the Py package in my 
wxPython programs? 112

4.7 Summary 115

5  Creating your blueprint 116
5.1 How can refactoring help me improve my code? 117

A refactoring example 118 ■ Starting to refactor 121
More refactoring 122

5.2 How do I keep the Model and View separate  
in my program? 126
What is a Model-View-Controller system? 126 ■ A wxPython 
model: PyGridTableBase 128 ■ A custom model 136



xii CONTENTS
5.3 How do you unit-test a GUI program? 140
The unittest module 140 ■ A unittest sample 141
Testing user events 143

5.4 Summary 145

6  Working with the basic building blocks 146
6.1 Drawing to the screen 148

How do I draw on the screen? 148
6.2 Adding window decorations 155

How do I add and update a status bar? 155 ■ How do I include 
a submenu or checked menu? 158 ■ How do I include  
a toolbar? 161

6.3 Getting standard information 165
 How do I use standard file dialogs? 165 ■ How do I use a 
standard color picker? 169

6.4 Making the application look nice 170
How do I lay out widgets? 170 ■ How do I build an  
about box? 178 ■ How do I build a splash screen? 180

6.5 Summary 181

PART 2 ESSENTIAL WXPYTHON............................................. 183

7  Working with the basic controls 185
7.1 Displaying text 186

How do I display static text? 186 ■ How can I get the user to  
enter text? 189 ■ How do I change the text without  
user input? 192 ■ How do I create a multi-line or styled  
text control? 193 ■ How do I create a font? 196 ■ Can I have 
styled text if my platform doesn’t support rich text? 197 ■ What if 
my text control doesn’t match my string? 198 ■ How do I respond 
to text events? 199

7.2 Working with buttons 199
How do I make a button? 200 ■ How do I make a button with  
a bitmap? 201 ■ How do I create a toggle button? 202
What’s a generic button, and why should I use one? 203



CONTENTS xiii
7.3 Entering and displaying numbers 205
How do I make a slider? 205 ■ How can I get those  
neat up/down arrow buttons? 208 ■ How can I make  
a progress bar? 210

7.4 Giving the user choices 211
How do I create a checkbox? 211 ■ How can I create a group of 
radio buttons? 212 ■ How can I create a list box? 216 ■  
Can I combine a checkbox and a list box? 219 ■ What if I want 
a pull-down choice? 220 ■ Can I combine text entry  
and a list? 221

7.5 Summary 222

8  Putting widgets in frames 224
8.1 The life of a frame 225

How do I create a frame? 225 ■ What are some different  
frame styles? 227 ■ How do I create a frame with extra style 
information? 230 ■ What happens when I close a frame? 232

8.2 Using frames 234
What are the methods and properties of wx.Frame? 234
How do I find a subwidget of a frame? 237 ■ How do I create a 
frame with a scrollbar? 238

8.3 Alternative frame types 242
How do I create an MDI frame? 242 ■ What’s a mini-frame  
and why would I use it? 244 ■ How do I make a  
non-rectangular frame? 245 ■ How can I drag a frame  
without a title bar? 248

8.4 Using splitter windows 250
Creating a splitter window 250 ■ A splitter example 251
Changing the appearance of the splitter 253 ■ Manipulating  
the splitter programmatically 254 ■ Responding  
to splitter events 255

8.5 Summary 256

9  Giving users choices with dialogs 258
9.1 Working with modal dialogs 259

How do I create a modal dialog? 259 ■ How do I create an  
alert box? 261 ■ How do I get short text from the user? 264



xiv CONTENTS
How can I display a list of choices in a dialog? 266 ■ How can I 
display progress? 267

9.2 Using standard dialogs 269
How can I use a file picker? 269 ■ How can I use  
a font picker? 273 ■ How can I use a color picker? 275
Can I allow the user to browse images? 277

9.3 Creating a wizard 278

9.4 Showing startup tips 281

9.5 Using validators to manage data in a dialog 282
How do I use a validator to ensure correct data? 282 ■ How do 
I use a validator to transfer data? 286 ■ How do I validate data 
as it is entered? 288

9.6 Summary 291

10  Creating and using wxPython menus 293
10.1 Creating Menus 294

How do I create a menu bar and attach it to a frame? 295
How do I create a menu and attach it to the menu bar? 295
How do I add items to a pull-down menu? 297 ■ How do I 
respond to a menu event? 301

10.2 Working with menu items 303
How do I find a specific menu item in a menu? 303 ■ How do I 
enable or disable a menu item? 306 ■ How do I associate a menu 
item with a keyboard shortcut? 307 ■ How do I create a toggle 
menu item with a checkbox or radio button? 311

10.3 Sprucing up your menus 313
How do I create a submenu? 313 ■ How do I create a  
pop-up menu? 315 ■ How can I create fancier menus? 317

10.4 Usability guidelines for menus 319
Keeping menus uniform in length 319 ■ Creating logical  
item groups 319

10.5 Summary 321

11  Placing widgets with sizers 323
11.1 What’s a sizer? 324

11.2 Basic sizers with the grid sizer 326
What is a grid sizer? 327 ■ How do you add or remove children 
from a sizer? 329 ■ How do sizers manage the size and 



CONTENTS xv
alignment of their children? 331 ■ Can I specify a minimum size 
for my sizer or its children? 334 ■ How do sizers manage the 
border around each child? 336

11.3 Using the other sizer types 337
What’s a flex grid sizer? 337 ■ What’s a grid bag sizer? 341
What’s a box sizer? 345 ■ What’s a static box sizer? 349

11.4 Can I see a real-world example of sizers in action? 350

11.5 Summary 354

12  Manipulating basic graphical images 356
12.1 Working with images 357

How do I load images? 357 ■ What can I do with  
an image? 361 ■ How can I change cursors? 364

12.2 Dealing with device contexts 367
What is a device context, and how can I create one? 367
How do I draw to a device context? 371 ■ How do I draw images 
to the context? 376 ■ How can I draw text to the context? 379

12.3 Graphics manipulation 381
How do I manage the foreground drawing pen? 381
How do I manage the background drawing brush? 384
How can I manage logical and physical device coordinates? 385
What color names are predefined? 387

12.4 Summary 388

PART 3 ADVANCED WXPYTHON ............................................ 391

13  Building list controls and managing items 393
13.1 Building a list control 394

What is icon mode? 394 ■ What is small icon mode? 395
What is list mode? 396 ■ What is report mode? 397
How do I create a list control? 398

13.2 Managing items in a list 400
What is an image list and how do I add images to it? 400
How can I add and delete items from a list? 402

13.3 Responding to users 405
How can I respond to a user selection in a list? 405 ■ How can 
I respond to a user selection in a column header? 407



xvi CONTENTS
13.4 Editing and sorting list controls 411
How can I edit a label? 411 ■ How can I sort my list? 413
How can I learn more about list controls? 416

13.5 Creating a virtual list control 420

13.6 Summary 423

14  Coordinating the grid control 425
14.1 Creating your grid 426

How do I create a simple grid? 426 ■ How do I create a grid with 
a grid table? 429

14.2 Working with your grid 432
How do I add and delete rows, columns, and cells? 432
How do I manage the row and column headers of a grid? 433
How can I manage the size of grid elements? 436
How can I manage which cells are selected or visible? 440
How do I change the color or font of a grid cell? 442

14.3 Custom renderers and editors 445
How do I use a custom cell renderer? 445 ■ How do I edit  
a cell? 449 ■ How do I use a custom cell editor? 450

14.4 Capturing user events 455
How can I capture user mouse selections? 455 ■ How can I 
capture user keyboard navigation? 457

14.5 Summary 458

15  Climbing the tree control 460
15.1 Creating tree controls and adding items 461

How do I add a root? 463 ■ How do I add more items  
to the tree? 463 ■ How do I manage items?  464

15.2 What styles control the display of the tree control? 465

15.3 Sorting elements of a tree control 467

15.4 Controlling the image for each item 468

15.5 Navigating the tree programmatically 471

15.6 Managing the tree selection 472

15.7 Controlling which items are visible 473

15.8 Making a tree control user editable 477



CONTENTS xvii
15.9 Responding to other user events from a tree control 478
15.10 Using a tree list control 480
15.11 Summary 482

16  Incorporating HTML into your application 485
16.1 Displaying HTML 486

How can I display HTML in a wxPython window? 486
How can I display HTML from a file or URL? 488

16.2 Manipulating the HTML window 490
How can I respond to a user click on an active link? 490
How can I change an HTML window programmatically? 491
How can I display the page title in a frame’s title bar? 493
How can I print an HTML page? 495

16.3 Extending the HTML window 496
How does the HTML parser work? 496 ■ How can I add 
support for new tags? 498 ■ How can I support other  
file formats? 501 ■ How can I get a more fully featured  
HTML Widget? 502

16.4 Summary 503

17  The wxPython printing framework 504
17.1 How do I print in wxPython? 505

Understanding the printout lifecycle 506 ■ Print framework  
in action 507 ■ Working with wx.Printout methods 511

17.2 How do I display the print dialog? 512
Creating a print dialog 512

17.3 How do I display the page setup dialog? 515
Creating a page setup dialog 515 ■ Working with page  
setup properties 516

17.4 How do I print something? 518
17.5 How can I perform a print preview? 519
17.6 Summary 520

18  Using other wxPython functionality 521
18.1 Putting objects on the clipboard 522

Getting data in the clipboard 522 ■ Manipulating data  
in the clipboard 523 ■ Retrieving text data from the 



xviii CONTENTS
clipboard 524 ■ The clipboard in action 524 ■ Passing other 
data formats 526

18.2 Being the source of a drag and drop 527
Dragging in action 529

18.3 Being the target of a drag and drop 530
Using your drop target 531 ■ Dropping in action 533

18.4 Transferring custom objects 534
Transferring a custom data object 534 ■ Retrieving  
a custom object 535 ■ Transferring an object in  
multiple formats 535

18.5 Setting timed events using wx.Timer 536
Generating EVT_TIMER events 536 ■ Learning other  
timer uses 539

18.6 Creating a multithreaded wxPython application 539
Working with the global function wx.CallAfter() 540
Managing thread communication with the queue object 543
Developing your own solution 543

18.7 Summary 544

index 545



preface
The wxPython part of the story actually begins in 1995, with Harri Pasanen 
and Robin Dunn. Robin, who is one of the co-authors of the book, wrote the 
following about the history of wxPython, and we decided that it was a story 
better told in his own voice than paraphrased: 

In 1995 I was working on a project that needed a GUI to be deployed on 
HP-UX systems, but my boss also wanted to show something at a trade show 
on his Windows 3.1 laptop in a few weeks’ time. So I started searching for a 
cross platform C++ GUI toolkit to do a prototype with. In those days it 
wasn’t easy without Google, but I found that there were several commercial 
alternatives available (none of which is still available today) and lots of tool-
kits with freely available source. 

While evaluating each of the free toolkits for my immediate needs and 
deciding which of the commercial offerings would be best for our long-term 
needs, I ran into the term “Python bindings” on the wxWidgets website (in 
this case “binding” refers to the connection between the Python language 
and the wxWidgets toolkit). Full of curiosity at how one would “bind” a soft-
ware toolkit to a reptile (I had never heard of the Python language up to this 
point), I clicked on the link, and the next link, and the next, until I finally 
ended up at the Python 1.2 Tutorial document. Three hours later I was con-
verted from being the local C++ guru to a Python evangelist bugging all 
xix



xx PREFACE
the developers in the immediate vicinity and showing them the cool new thing 
I had discovered. 

Instead of working on my prototype, I started working with Harri Pasanen in 
Finland to advance the Python bindings for wxWidgets, otherwise known as 
wxPython 0.2, with some help from Edward Zimmerman. The mailing list 
announcement of that release is archived here: (http://www.google.com/
groups?selm=PA.95Jul27032244%40ok.tekla.fi&oe=UTF-8). We got it to be 
functional enough that I could build the prototype for my boss using Python, 
but wxPython was a nightmare to maintain and to enhance because everything 
(C++ extension module code, Python proxy modules, build system, etc.) was 
done by hand, and little changes or enhancements to wxWidgets would often 
require changes to several places in wxPython code to add the support for the 
enhancement or fix to wxPython. When it reached many tens of thousands of 
lines of code it became very awkward and fragile to continue working in that 
manner. Add to that the fact that there was no central source code repository 
(this was also before SourceForge’s time) so we were emailing code changes to 
each other—you can get an inkling of the difficulties involved. 

About that time, I had to start doing “real” work again as my main project was 
building up from a gleam in the eye to a full-force development project with 
several developers under my control with design meetings and deadlines, and 
I found myself fully back in the C++ world again, although I was able to use 
Python for some of the build and test scripts for the project. Harri wasn’t able 
to spend any time on it either, so wxPython development slowed to less than a 
crawl and eventually stopped. 

In 1997 I discovered SWIG (Simple Wrapper and Interface Generator), and 
realized that it could help with all the maintenance issues that had pained us 
in the wxPython project. In three or four weeks of spare time using SWIG, 
I almost completely reimplemented everything in wxPython that had taken 
several weeks of full-time work on my part and several months of part-time 
work for Harri doing it by hand. After getting sidetracked on another 
project for a while, I discovered that wxWidgets 2.0 was in active develop-
ment, but had a whole new architecture, so I had to do it all again. But this 
time the new architecture simplified things enough that it took only about a 
week’s worth of spare time! So in the summer of 1998 the first “modern ver-
sion” of wxPython was released and has been in active development ever 



PREFACE xxi
since. The first announcement is archived here: (http://groups.yahoo.com/
group/python-announce-list/message/95). 

The rest is, as they say, history. It’s important to note that SWIG is allowing me 
to easily create and maintain literally hundreds of thousands of lines of code, so 
much of the credit for the vastness of wxPython’s feature set deserves to go to 
David Beazley and the other developers contributing to that project. 

With this book, we hope to share with you our excitement about wxPython, a 
toolkit that is truly unique in the ease that it brings to GUI application develop-
ment. We wrote it with the goal of creating a useful resource for both the novice 
and the pro.



acknowledgments
Our work on this book has been aided by a number of people, in ways both 
obvious and subtle.

 Patrick O’Brien was instrumental in getting this project off the ground and 
Marjan Bace, our publisher at Manning Publications, gave us the chance to 
make it happen. Jackie Carter was our first editor at Manning and Lianna 
Wlasiuk came in at a crucial juncture, and, like a great bullpen pitcher, earned 
the save. We would like to thank our production team at Manning and every-
one who worked behind the scenes on the book, especially our copyeditor 
Elizabeth Martin and our typesetter Denis Dalinnik. Big thanks also to our 
agent Laura Lewin for her help and understanding.

 We’ve benefited a great deal from the generosity of programmers world-
wide in creating the technologies used in this book. First on that list is the crew 
who developed the wxWidgets foundation of wxPython: Julian Smart, Vadim 
Zeitlin, Robert Roebling, and the rest of the core wxWidgets team, as well as 
many contributors. Of course, without Guido van Rossum and other members 
of the Python language development team, there would be no “Python” in 
“wxPython.” A large part of this book was written using the jEdit text editor 
and the images were manipulated using the GIMP.

 Thanks also to the many reviewers who looked at the manuscript in its vari-
ous stages of development and added their valuable insight along the way. They 
helped make this a better book: Alex Martelli, Dave Brueck, Christopher Bailey, 
xxii



ACKNOWLEDGMENTS xxiii
Mike Stok, Jean Baltus, Thomas Palmer, Jack Herrington, Peter Damoc, Nick 
Coghlan, Pim Van Heuven, John Paulson, Ian Brown, Stefan Neis, Chris Mellon, 
Kevin Ollivier, and Doug Tillman. Special thanks to Clint Howarth who was our 
technical proofreader.

NOEL RAPPIN My wife, Erin, makes my life better every day. Thank you for your 
strength, your intelligence, and your love. I also want to thank my parents 
Donna and Donnie and my sister Michelle for supporting me fully and com-
pletely. Matt Cohen helped this effort by entertaining me via IM while I was try-
ing to write. Finally, I want to thank my daughter Emma, who is now old enough 
to be excited to see her name in a book, and my son Elliot, in anticipation of the 
day he will also be glad to see his name.

ROBIN DUNN I’d like to thank my wife, Malaura, and my children, Jordyn, 
Myka, Samuel, and Christian, for their patience, understanding, and love. You 
make it worth the effort to get past all the difficulties of life. I’d also like to thank 
the many wonderful members of the wxPython user community whose praise 
and excitement have helped me to stay motivated and have helped me to take 
wxPython from an interesting toy to a very useful tool that thousands of develop-
ers all around the world love and depend upon. And finally, many thanks go to 
Mitch Kapor, John Anderson, David Surovell, and others at the Open Source 
Applications Foundation for believing in the Open Source concept, the poten-
tials of wxPython, and especially for believing in my capabilities and funding my 
work on wxPython for several years.



about this book
Who should read this book?

Naturally, we’d love everybody to read this book. If you are reading this in the 
bookstore, trying to decide whether to purchase it, we say, go for it! Buy one 
for the people next to you too—they’ll thank you later. 

 That said, we did have certain assumptions about you, the reader, in mind 
as we wrote this book. We assume that you don’t need us to explain the basics 
of the Python programming language. We present a lot of Python code in this 
book. We think Python code is pretty easy to understand, but we want to let 
you know up front that we don’t have a tutorial on Python basics. If you’d like 
a Python tutorial, we recommend Manning’s The Quick Python Book, by Daryl 
Harms and Kenneth McDonald.

 We also assume that you are at least familiar with the basic terms describing 
graphical interface objects, and have at least some familiarity with graphical 
interfaces from a user’s perspective. More advanced user interface concepts, or 
less familiar user interface display elements, will be described as they come up.

 We do not assume that you have any prior knowledge of wxPython. If you 
do have prior experience with wxPython, we expect that you’ll still be able to 
find new information here, or, at the very least, you’ll find this book to be a 
more useful resource than the existing online documentation.
xxiv

http://www.manning.com/books/harms#author
http://www.manning.com/books/harms#author


ABOUT THIS BOOK xxv
How this book is organized

We’ve divided wxPython In Action into three parts. The first part is an introduc-
tion to wxPython concepts, a tutorial on how to get started with wxPython, and 
some information on wxPython best practices. The chapters in part 1 are:

Chapter 1, Welcome to wxPython
In this chapter, we introduce wxPython, explain to you why it’s the greatest 
thing since sliced bread, and give some background on the technologies used 
to create wxPython.

Chapter 2, Giving your wxPython program a solid foundation
The two most important objects in wxPython are discussed. Every application 
must have an application object and a top-level window. This chapter will 
show you how to start a wxPython program, and how to manage its lifecycle.

Chapter 3, Working in an event-driven environment
Like all GUI toolkits, control in wxPython is managed by events. This chapter 
discusses how events are handled, and how you can use them as hooks to drive 
your functionality.

Chapter 4, Making wxPython easier to handle with PyCrust
PyCrust is a Python shell written in wxPython that contains many advanced 
and useful features. Not only can you use PyCrust for your wxPython develop-
ment, you can wrap your program inside it for debugging purposes, and you 
can reuse the PyCrust components in your own applications.

Chapter 5, Creating your blueprint
This chapter discusses best practices in three areas that are often difficult for 
GUI programmers. We show how to use refactoring to improve the structure 
and maintainability of your code. The Model/View/Controller design pattern is 
explored, and we’ll show you how to unit test our GUI code to minimize errors.

Chapter 6, Working with the basic building blocks
This chapter is a bridge between parts one and two. Building on the basic 
ideas already shown, we give hints of some of the features discussed in parts 2 
and 3 as we build a sketchpad application.

Part 2 begins the more detailed portion of the book. The chapters in part 2 take 
a look at the most commonly used parts of wxPython. This includes a tour of the 
basic widget set, a look at standard frames and dialogs, and information on 
drawing and layout. The chapters in part 2 are:



xxvi ABOUT THIS BOOK
Chapter 7, Working with the basic controls
This chapter covers the API for the basic widget set, including text fields, but-
tons, list boxes, and the like.

Chapter 8, Putting widgets in frames
All your wxPython widgets will be inside a frame or a dialog. In this chapter 
we cover how frames work, what kind of frames there are, and how to manage 
widgets within a frame.

Chapter 9, Giving users choices with dialogs
Dialogs behave slightly differently than frames. We cover how modal dialog 
boxes work, as well as the standard predefined wxPython dialogs. We’ll also 
show you how to use wxPython validators to help mange the data in a dialog.

Chapter 10, Creating and using wxPython menus
Most windowed applications have a menu. We’ll show you how to add menus 
to the menu bar, and menu items to a menu. Specialized menus, such as 
checkboxes, and radio menus will also be covered. We’ll also discuss keyboard 
shortcuts and some usability guidelines for using menus effectively.

Chapter 11, Placing widgets with sizers
In wxPython, sizers are used to spare you the drudgery of placing your wid-
gets manually. There are several useful sizers that are part of wxPython, and 
we’ll show you how to use them, and what kind of layout is best suited to each.

Chapter 12, Manipulating basic graphical images
The most basic purpose of any UI toolkit is to draw lines and shapes to the 
screen. In wxPython, there is a rich set of drawing tools available for your use. 
There is also a powerful abstraction called a device context which allows you 
to draw to a target without caring whether the target is a window, a printer, or 
a file.

Part 3 contains a detailed look at more advanced portions of wxPython. It starts 
with a description of the three most complex wxPython widgets, and continues 
with a discussion of various print and display mechanisms, closing out with a 
tour of useful items that didn’t quite earn their own chapter. The chapters in 
part 3 are:

Chapter 13, Building list controls and managing items
The wxPython list control gives you the ability to display lists “explorer-style,” 
in icon mode, list mode, or multi-column report mode. You can also custom-
ize sort behavior, and allow users to edit list entries.



ABOUT THIS BOOK xxvii
Chapter 14, Coordinating the grid control
If you want something that looks like a spreadsheet, the wxPython grid control 
is a full-featured widget that will meet your needs. It allows full control over the 
display and behavior of the grid, and allows for complete customization. 

Chapter 15, Climbing the tree control
The wxPython tree control allows for compact display of hierarchical data, 
including, but not limited to a directory tree or class hierarchy. You can also 
allow the user to edit entries on the fly.

Chapter 16, Incorporating HTML into your application
Within wxPython, you can use HTML to simplify the display and printing of 
styled text. The HTML engine inside wxPython can also be customized to fit 
your special needs.

Chapter 17, The wxPython printing framework
Printing is managed from a wxPython application through several dedicated 
print, print data, and print preview objects. In this chapter, we explore how all 
of them work together.

Chapter 18, Using other wxPython functionality
In this chapter, we cover some important features that are not quite long 
enough to justify a chapter on their own, including cut and paste, drag and 
drop, and multithreading.

How to use this book
How you use this book will depend on your wxPython knowledge. We designed 
this book to be useful for both experts and novices, but we expect that different 
parts of the book will have more or less resonance for users at different levels. 

 If you are a wxPython beginner, you definitely want to start in part 1. Chap-
ters 1–3 will give you a solid grounding in wxPython concepts, and chapter 6 will 
give you a nice overview of the steps in building a reasonably sized program. 
Chapter 5 will introduce you to some methods for making your code easy to 
manage, and chapter 4 will have some tools to help you debug and write wxPy-
thon applications. As you start writing your own wxPython programs, you’ll also 
start using the API discussions in part 2—we tried to organize them by function-
ality to make it easy to find useful topics.

 If you are already familiar with wxPython, you’ll probably be spending most 
of your time in parts 2 and 3. However, we recommend you take a spin through 
part 1 as well. If you aren’t familiar with PyCrust, then chapter 4 will be new to 
you, and we think you might get something useful out of chapter 5 as well. You’ll 
find discussion of more complex widgets in part 3, and you’ll also see that the 



xxviii ABOUT THIS BOOK
code samples in that section tend to be longer and more integrated than in the 
other sections.

 The examples in this book were written against Python version 2.3.x—we don’t
think we included any of the new 2.4 language features—and wxPython 2.5.x. 
The 2.6.x release of wxPython came out too late for coverage in this book; how-
ever, it was largely a bug fix release, numbered for compliance with wxWidgets.

 There is one other point that we need to make before we begin. This book is 
not intended to be a complete reference to every nook and cranny of wxPython. 
We expect that it will be a useful reference to the features that you are most likely 
to need to know about, but it is not 100% feature-complete. In the interests of 
time and space, we had to choose some elements to focus on and others, well, not 
to. For instance, there are a number of wxPython features inherited from the C++
wxWidgets toolkit that are replicated in the standard Python library—we chose not 
to cover those features. Also, if you are working in a Windows operating system 
whose name includes a date in the 1990s, you’ll probably find that some features 
don’t work exactly as described in some cases and we didn’t have the space to 
enumerate all of those exceptions. Finally, there were some features of the core 
widgets set that we determined were either not often used or that we did not 
have the space to do justice. 

Typographical conventions
The following conventions are used throughout the book:

■ Courier typeface is used in all code listings.
■ Italics are used to introduce new terms.
■ Courier Bold is sometimes used to draw your attention to a section of code.
■ Code annotations are used when directing your attention to a particular 

line of code. Annotations are marked with bullets, such as b.
■ Courier typeface is used in text for code words, wxPython class and 

method names, or snippets of Python code.

Code downloads
Source code for all of the examples used in this book is available for download 
from the publisher’s website at www.manning.com/rappin.

Where to get more help
Although we tried to be as comprehensive as possible, we couldn’t possibly antic-
ipate all the uses and issues you might have using wxPython. The main wxPy-
thon website at http://www.wxpython.org has some resources that you might visit 

http://www.wxpython.org


ABOUT THIS BOOK xxix
for insight into your problem. The official online documentation is at http://www. 
wxpython.org/docs/api/. A collaborative wiki site is available at http://wiki.wxpy-
thon.org/, and there are mailing lists that you can subscribe to at http://www.wxpy-
thon.org/maillist.php.

Author Online

Help is also available from the Author Online forum, a private web discussion 
board run by Manning Publications. You are encouraged to use this forum to 
make comments about the book, ask technical questions, and receive help from 
the authors and other readers. Use your browser to navigate to www.man-
ning.com/rappin to take advantage of this free service. The forum’s welcome 
page gives you all the information you need to sign up and get going.

 The Author Online forum is one of the ways Manning remains committed to 
readers. The authors’ participation in the forum is voluntary and without a 
specified level of commitment. The forum is a great way to share ideas and 
learn from each other. The Author Online forum will remain accessible from 
the publisher’s website as long as the book is in print.

about the title

By combining introductions, overviews, and how-to examples, the In Action
books are designed to help learning and remembering. According to research in 
cognitive science, the things people remember are things they discover during 
self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for 
learning to become permanent it must pass through stages of exploration, play, 
and, interestingly, retelling of what is being learned. People understand and 
remember new things, which is to say they master them, only after actively 
exploring them. Humans learn in action. An essential part of an In Action guide 
is that it is example-driven. It encourages the reader to try things out, to play 
with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers 
are busy. They use books to do a job or to solve a problem. They need books that 
allow them to jump in and jump out easily and learn just what they want just 
when they want it. They need books that aid them “in action.” The books in this 
series are designed for such readers.

http://www.wxpython.org/docs/api/
http://www.wxpython.org/docs/api/
http://wiki.wxpython.org/
http://wiki.wxpython.org/
http://www.wxpython.org/maillist.php
http://www.wxpython.org/maillist.php
http://www.manning.com/
http://www.manning.com/


xxx ABOUT THIS BOOK
about the cover illustration

The figure on the cover of wxPython in Action is a “Soldat Japonais,” a Japanese 
soldier. The illustration is taken from a French travel book, Encyclopedie des Voy-
ages by J. G. St. Saveur, published in France in 1796. Travel for pleasure was a 
relatively new phenomenon at the time and travel guides such as this one were 
popular, introducing both the tourist as well as the armchair traveler to the 
inhabitants of other regions of France and abroad.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of 
the uniqueness and individuality of the world’s towns and provinces just 200 
years ago. This was a time when the dress codes of two regions separated by a few 
dozen miles identified people uniquely as belonging to one or the other. The 
travel guide brings to life a sense of isolation and distance of that period and of 
every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich 
at the time, has faded away. It is now often hard to tell the inhabitant of one 
continent from another. Perhaps, trying to view it optimistically, we have traded a 
cultural and visual diversity for a more varied personal life. Or a more varied 
and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the 
computer business with book covers based on the rich diversity of regional life 
two centuries ago, brought back to life by the pictures from this travel guide.



Part 1

Introduction to wxPython

W   e start right off by introducing you to wxPython in chapter 1, “Wel-
come to wxPython,” which explains how wxPython came to be, and what 
makes it so great that you should drop everything and start using it. We’ll 
show a little bit of sample code, some cool screenshots, and contrast wxPython 
with its wxWidgets parent project. In chapter 2, “Giving your wxPython pro-
gram a solid foundation,” we discuss the two objects required in all wxPython 
applications. The first, the application object, manages the event loop and 
oversees the application lifecycle. The second, the top-level window, is the 
focal point of user interaction with your program. We’ll show you how to use 
both, and offer troubleshooting tips.

 In chapter 3, “Working in an event-driven environment,” we’ll focus on the 
wxPython event cycle, covering what events are and how they are generated. 
We’ll take a detailed run through the process by which an event is associated 
with the code that should be generated in response. You’ll also see how to cre-
ate your own custom events. Chapter 4, “Making wxPython easier to handle 
with PyCrust,” is an introduction to the PyCrust interactive shell, as well as the 
related Py package of useful applications. We’ll show you how to wrap your 
own application in a PyCrust shell for easier debugging, and also how to use 
the Py objects as part of your applications.

 In chapter 5, “Creating your blueprint,” we’ll discuss important general 
issues with the creation of user interface code. We’ll show ideas about how to 
keep your code clean and easy to maintain. We’ll also show how wxPython can 
be used as part of the Model/View/Controller design pattern. The chapter fin-
ishes with a discussion of how to unit-test wxPython applications. In chapter 6, 



2 PART 1 
Introduction to wxPython
“Working with the basic building blocks,” we’ll put it all together to build a 
sketch application showing several useful pieces of wxPython functionality. By 
the end of this first part of the book, you should have a solid grounding in 
wxPython and be ready to face the more reference-oriented material in the 
rest of the book.



Welcome to wxPython
This chapter covers
■ Getting started with wxPython
■ Creating a minimum wxPython program
■ Importing wxPython
■ Learning the Python programming language
■ Putting it all together
3



4 CHAPTER 1 
Welcome to wxPython
Here’s a simple wxPython program. It creates a window with one text box that 
displays the position of the mouse pointer. Counting white space, it’s about 
20 lines long. 

#!/bin/env python 
import wx 
class MyFrame(wx.Frame): 

    def __init__(self): 
        wx.Frame.__init__(self, None, -1, "My Frame", size=(300, 300)) 
        panel = wx.Panel(self, -1) 
        panel.Bind(wx.EVT_MOTION,  self.OnMove) 
        wx.StaticText(panel, -1, "Pos:", pos=(10, 12)) 
        self.posCtrl = wx.TextCtrl(panel, -1, "", pos=(40, 10)) 

    def OnMove(self, event): 
        pos = event.GetPosition() 
        self.posCtrl.SetValue("%s, %s" % (pos.x, pos.y)) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = MyFrame() 
    frame.Show(True) 
    app.MainLoop() 

What can we say about the program in listing 1.1? 
It’s very short, for one thing. Admittedly, it doesn’t 
do a whole lot, but still, creating a window, populat-
ing it, getting it to respond to mouse events—that’s 
not bad for 20 lines. It’s not an exaggeration to say 
this example could easily be three or four times 
longer in some, more caffeinated, programming 
languages. Figure 1.1 shows the running program.

 The code sample is quite readable. Even if you 
don’t know the details of Python or wxPython, if 
you have any experience with interface program-
ming you likely have a sense of what words like 
Frame, __init__, EVT_MOTION, TextCtrl, and Main-
Loop mean. The indentation might seem a bit weird 
if you aren’t used to Python (where are all those closing braces, anyway?), and you 
probably don’t know what all the arguments mean (what’s with those -1s?), but 

Listing 1.1 A working wxPython program in a mere 20 lines

Figure 1.1 Our first wxPython 
program, showing the position of 
the mouse



Getting started with wxPython 5
you could quite easily come to some rough understanding of the code without 
much help. 

 In this book, we’ll show you why wxPython is one of the easiest, most powerful 
ways of building a real graphical user interface (GUI) program that there is. Most 
toolkits that make the building of the interface itself easier (such as a Visual Basic 
style tool) don’t have an implementation language with the clarity, flexibility, and 
power of Python. Most of the toolkits that have the functionality of wxPython 
force you to use a language that is ill-suited to rapid development. You’ll find 
wxPython right in the sweet spot, where you get the maximum bang for your 
development buck. Even better, wxPython is an open-source project, with both 
the source code and the binary installations distributed under a license that 
allows it to be freely used in both commercial and open source development. 

 By the time you’ve reached the end of this book, you’ll know how to build a 
state-of-the-art GUI using the wxPython toolkit. You’ll be able to create and 
manipulate common interface elements such as buttons and menus, as well as less 
common ones such as trees and HTML editors. So there’s quite a bit of ground for 
us to cover. In this chapter, we’ll get you started with wxPython, and discuss what 
wxPython does and why you might choose it for your programming needs. 

 A good interface allows the user to access the functionality of the application 
as simply and cleanly as possible, with a stylish look that is attractive to the users. 
A bad interface can keep users from finding the functionality in the program, and 
can even cause people to assume that a perfectly working program is malfunc-
tioning. In wxPython, you can create the interface you want with less effort than 
you’d expect. 

1.1 Getting started with wxPython 

We’re going to start by working on a real wxPython program, albeit a simple one. 
We won’t create anything complicated, yet. For now, we’re going to lead you step-
by-step through the process of creating your very first wxPython program. Let’s 
begin by making sure you’ve got everything installed. Table 1.1 shows everything 
you’ll need in order to run wxPython. 

 Once the installations are complete, get ready to type. We’re going to create a 
program that displays a single image file. This will happen in three steps: 

1 We’ll start with the bare minimum required for a working wxPython program.

2 We’ll make that code more structured and sophisticated.

3 We’ll end with a version that can display the wxPython logo. 



6 CHAPTER 1 
Welcome to wxPython
Figures 1.2, 1.3, and 1.4 illustrate what the final program will look like, depend-
ing on your platform.   

Table 1.1 Everything you’ll need to run wxPython on your own computer

Tool Notes

The right  
operating system

This is an easy one—you have a lot of options. Specifically, you must be running one 
of the following: 
• Any Microsoft Windows 32-bit operating system—meaning anything from 

Windows 98 onward (and you can get it going under Windows 95 if you must, but 
you’ll need to download some extras). 

• Any Unix or Linux system capable of running the Gnome Toolkit (GTK). 
• A Macintosh running Mac OS X 10.2.3 or higher.

The Python 
programming 
language

Available for download at www.python.org. Any version 2.3 or higher will work. Many 
Linux distributions include a version of Python, as does Mac OS X 10.3 or higher. 
Even so, you might still want to download the latest version.

The wxPython 
Toolkit

Available for download at www.wxpython.org. 

There are different versions, depending on your operating system and Python 
version. Be sure to download the runtime installer that matches your platform, 
Python version, and Unicode preference. Download the packages for the demos and 
documentation as well. 

If you’ve installed other software on your system, you should find that installing the 
wxPython packages works very similarly. Again, recent versions of Mac OS X and 
some Linux distributions already include wxPython, but you should download the 
latest version if you can.

A text editor We recommend an editor that recognizes Python syntax and can do things like 
colorize the code to make it more readable. Most of the popular editors have 
support for Python code, so use the editor you prefer. 

If you have no strong feelings for any particular editor, try IDLE, the integrated 
development environment included with Python, which includes a source code 
editor, interactive shell, debugger, and other tools. 

The Python web site has a list of Python-aware editors at www.python.org/editors.

Figure 1.2  
Running hello.py 
on Windows



Creating the bare minimum wxPython program 7
1.2 Creating the bare minimum wxPython program 

Let’s begin with the simplest possible wxPython program that will run success-
fully. Create a file named “bare.py” and type in the following code. Remember, in 
Python, the spacing at the start of each line is significant.

import wx 

class App(wx.App): 

    def OnInit(self): 
        frame = wx.Frame(parent=None, title='Bare') 
        frame.Show() 
        return True 

app = App() 
app.MainLoop() 

There’s not much to it, is there? Even at only eight lines of code (not counting 
blank lines) this program might seem like a waste of space, as it does little more 
than display an empty frame. But bear with us, as we’ll soon revise it, making it 
something more useful. 

 The real purpose of this program is to make sure you can create a Python 
source file, verify that wxPython is installed properly, and allow us to introduce 
more complex aspects of wxPython programming one step at a time. So humor 
us: create a file, type in the code, save the file with a name “bare.py,” run it, and 
make sure it works for you. 

 The mechanism for running the program depends on your operating system. 
You can usually run this program by sending it as a command line argument to 

Figure 1.3  
Running hello.py 
on Linux 

Figure 1.4  
Running hello.py 
on Mac OS X 



8 CHAPTER 1 
Welcome to wxPython
the Python interpreter from an operating system prompt, using one of the follow-
ing commands: 

python bare.py 

pythonw bare.py 

Figures 1.5, 1.6, and 1.7 show what the program looks like running on various 
operating systems.   

Figure 1.5  
Running bare.py on Windows. 

Figure 1.6  
Running bare.py on Linux.

Figure 1.7  
Running bare.py on Mac OS X.



Creating the bare minimum wxPython program 9
When most people look at this running program, they see something 
they would call a “window.” However, wxPython does not call this a win-
dow. It calls this a “frame.” In wxPython,“window” is the generic term 
for any object that displays on the screen (what other toolkits might call a 
“widget”). So, a wxPython programmer will often refer to objects such as 
buttons or text boxes as “windows.” This may seem confusing, but the 
usage dates to the earliest days of the original C++ toolkit, and it’s 
unlikely to change now. In this book, we’ll try to avoid the use of window 
as a generic term, because it’s confusing and also because it’s the name of 
a big product from a major corporation. We’ll use widget as the generic 
term. When we’re specifically referring to the operating system of similar 
name, we’ll do it with a capital “W.”

While this bare-minimum program does little more than create and display an 
empty frame, all of its code is essential; remove any line of code and the program 
will not work. This basic wxPython program illustrates the five basic steps you 
must complete for every wxPython program you develop: 

1 Import the necessary wxPython package 

2 Subclass the wxPython application class 

3 Define an application initialization method 

4 Create an application class instance 

5 Enter the application’s main event loop 

Let’s examine this bare minimum program step-by-step to see how each one 
was accomplished. 

1.2.1 Importing wxPython 

The first thing you need to do is import the main wxPython package, which is 
named wx: 

import wx 

Once that package is imported, you can refer to wxPython classes, functions, and 
constants using the wx package name as a prefix, like this: 

class App(wx.App): 

During the writing of this book the name of the wxPython package 
changed. Since the old naming convention is still supported, you will 
probably encounter wxPython code written in the old style. So, we’ll 
digress briefly to explain the older style and why it was changed. The old 

JARGON: 
IT LOOKS 

LIKE A 
WINDOW...

OLD STYLE 
IMPORTS 



10 CHAPTER 1 
Welcome to wxPython
package name was wxPython and it contained an internal module 
named wx. There were two common ways to import the needed code—
you could import the wx module from the wxPython package: 

from wxPython import wx #DEPRECATED—DON'T DO THIS ANY MORE 

Or, you could import everything from the wx module directly. 

from wxPython.wx import * #DEPRECATED—DON'T DO THIS ANY MORE 

Both import methods had serious drawbacks. Using the second method 
of import * is generally discouraged in Python because of the possibility 
of namespace conflicts. The old wx module avoided this problem by 
putting a wx prefix on nearly all of its attributes. Even with this safe-
guard, import * still had the potential to cause problems, but many 
wxPython programmers preferred this style, and you’ll see it used quite 
often in older code. One downside of this style was that class names 
began with a lowercase letter, while most of the wxPython methods 
begin with an uppercase letter—the exact opposite of the normal 
Python programming convention. 

However, if you tried to avoid the namespace bloat caused by import *
by doing from wxPython import wx, you now had to type “wx” twice for 
each class, function, or constant name—once as the package prefix and 
once as the “normal” prefix, such as wx.wxWindow. This got old fast. 
Many wxPython programmers saw this dilemma as a wart that should be 
removed, and eventually, it was. If you’re interested, you can search the 
wxPython mailing list archives to read more of the details surrounding 
this change. 

One more thing to know about importing wxPython: you must import wx before 
you import anything else from wxPython. In general, the order of imports in 
Python is irrelevant, meaning you can import modules in any order. However, 
wxPython, although it looks like a single module, is actually a complex set of 
modules (many of which are automatically generated by a tool called the Simpli-
fied Wrapper and Interface Generator, or SWIG) that wrap the functionality pro-
vided by the underlying wxWidgets C++ toolkit (we’ll discuss wxWidgets in more 
detail in section 1.7). When you import the wx module for the first time, wxPy-
thon performs some initialization that is vital to other wxPython modules. As a 
result, some of the wxPython subpackages, such as the xrc module, might not 
work properly unless the wx module has already been imported: 

import wx            # Always import wx before 
from wx import xrc   # any other wxPython packages, 
from wx import html  # just to be on the safe side. 



Creating the bare minimum wxPython program 11
This requirement applies only to the wxPython modules; you can still import 
other Python modules as you always have, and those modules can be imported 
before or after the wxPython modules. For instance, this example is valid: 

import sys 
import wx 
import os 
from wx import xrc 
import urllib 

1.2.2 Working with applications and frames 

Once you’ve imported the wx module, you can create your application and frame 
objects. Every wxPython program must have one application object and at least one 
frame object. These objects will be discussed in detail in chapter 2. For now, you just 
need to know that the application object must be an instance of wx.App or of a sub-
class you define where you declare an OnInit() method. The OnInit() method will 
be called by the wx.App parent class when your application starts. 

Subclass the wxPython application class 
Here is how we defined our wx.App subclass: 

class MyApp(wx.App): 

    def OnInit(self): 
        frame = wx.Frame(parent=None, id=-1, title="Bare") 
        frame.Show() 
        return True 

We named our class “MyApp,” which is a common convention, but any valid 
Python class name would do. 

 The OnInit() method is where you’ll most often create frame objects. But you 
won’t usually directly create instances of wx.Frame as we did here. Instead, you’ll 
define your own wx.Frame subclass the same way we defined our own wx.App sub-
class. (You’ll see an example in the next section.) We’ll explore frames in detail in 
the next chapter, so for now we’ll simply point out that the wx.Frame constructor 
accepts several parameters. Of the three we supplied, only the first is required, 
while the rest have default values. 

 Invoking the Show() method makes the frame visible. If we had left that out, 
the frame would have been created, but we wouldn’t be able to see it. We can tog-
gle the frame’s visibility by calling Show() with a Boolean parameter: 

frame.Show(False)  # Make the frame invisible. 
frame.Show(True)   # True is the default parameter value. 
frame.Hide()       # Equivalent to frame.Show(False). 



12 CHAPTER 1 
Welcome to wxPython
Define an application initialization method 
Notice that we didn’t define an __init__() method for our application class. In 
Python, this means that the parent method, wx.App.__init__(), is automatically 
invoked on object creation. This is a good thing. If you define an __init__()
method of your own, don’t forget to call the __init__() of the base class, like this: 

class App(wx.App): 

    def __init__(self): 
        # Call the base class constructor. 
        wx.App.__init__(self) 
        # Do something here... 

If you forget to do so, wxPython won’t be initialized and your OnInit() method 
won’t get called. 

Create an application class instance and enter its main event loop 
The final step is to create an instance of the wx.App subclass, and invoke its Main-
Loop() method: 

app = App() 
app.MainLoop() 

That’s it. Once the application’s main event loop processing takes over, control 
passes to wxPython. Unlike procedural programs, a wxPython GUI program pri-
marily responds to the events taking place around it, mostly determined by a 
human user clicking with a mouse and typing at the keyboard. When all the 
frames in an application have been closed, the app.MainLoop() method will 
return and the program will exit. 

1.3 Extending the bare-minimum wxPython program 

We showed you a bare-minimum wxPython program to give you a comfortable 
start, but something that small isn’t useful for anything but discussion. By over-
simplifying the code, we produced a Python program that was easy to under-
stand, but difficult to extend—which is not how we would encourage you to create 
serious wxPython programs. 

 So now we’re going to enhance this minimal program until it has a reasonable 
amount of functionality, incorporates common Python programming standards, 
and can serve as a proper foundation for your own programs. Listing 1.2 shows 
the next iteration, which we named spare.py. 

 



Extending the bare-minimum wxPython program 13
#!/usr/bin/env python   

"""Spare.py is a starting point for a wxPython program."""   

import wx 

class Frame(wx.Frame):   
    pass 

class App(wx.App):   

    def OnInit(self):   
        self.frame = Frame(parent=None, title='Spare')   
        self.frame.Show() 
        self.SetTopWindow(self.frame)   
        return True 

if __name__ == '__main__':   
    app = App() 
    app.MainLoop() 

This version is still quite small, only 14 lines of code, but we added several impor-
tant items that get us closer to what we would consider good, solid code. 
The first line in the file is now a shebang line. It looks like a Python comment, 
which it is, but on some operating systems, such as Linux and Unix, the shebang 
tells the operating system how to find the interpreter that will execute the pro-
gram file. If this program file was then given executable privileges (using the 
chmod command, for example) we could run the program from the operating sys-
tem command line by simply supplying the program name: 

% spare.py 

The shebang line is a convenience for Unix and Mac OS X users and is simply 
ignored on other platforms. Even if you aren’t using one of those systems, it’s 
polite to include it on a script that might be executed cross-platform. 
We added a module docstring  (documentation string). When the first statement in 
a module is a string, that string becomes the docstring for the module and is 
stored in the module’s __doc__ attribute. You can access the docstring in your 
code, some development environments, and even the Python interpreter run-
ning in interactive mode: 

>>> import spare 
>>> print spare.__doc__ 
Spare.py is a starting point for simple wxPython programs. 
>>> 

Listing 1.2 The spare version of our minimal program.

b

c

d

e

f

g

 b

 c



14 CHAPTER 1 
Welcome to wxPython
Docstrings are but one example of Python’s powerful introspection capabilities, 
and we will encourage you to provide them for modules, classes, methods, func-
tions, and any other place that Python supports. Python development tools, such 
as PyCrust, are able to use the docstring to provide useful information to a devel-
oper while you are coding. 
We changed the way we created the frame object. The “bare” version of this pro-
gram simply created an instance of the wx.Frame class. In the “spare” version we 
defined our own Frame class as a subclass of wx.Frame. At this point it hasn’t made 
any difference to the final results, but you’ll want your own Frame class if you want 
anything interesting, such as text, buttons, and menus, to appear in your frame. 
Introducing your own custom Frame class now sets the stage for future iterations. 
In fact, once your Frame class becomes complicated, you’ll probably want to move 
it into its own module and import it into your main program. 
We added a reference to the frame instance as an attribute of the application class 
instance. Again, we’re setting the stage for things to come, as well as demonstrat-
ing how easy it is to add attributes to Python classes. It makes no difference that 
the attribute is a reference to a complex, graphical object, such as a frame. To 
Python, an object is an object is an object. 
Inside the OnInit() method we called the App class’s own SetTopWindow()
method, passing it our newly created frame instance. We didn’t have to define the 
SetTopWindow() method because it was inherited from the wx.App parent class. It’s 
an optional method that lets wxPython know which frame or dialog should be 
considered the main one. A wxPython program can have several frames, with one 
designated as the top window for the application. In this case the choice was easy 
since we have but one frame.
The final addition to the program represents a common idiom in Python pro-
grams used to test whether the module is being run as a program or was imported 
by another module. We do that by examining the module’s __name__ attribute: 

if __name__ == '__main__': 
   app = App() 
   app.MainLoop() 

If the module was imported, its __name__ attribute will be the same as its filename 
(without the extension), like this: 

>>> import spare 
>>> spare.__name__ 
'spare' 
>>> 

But if the module is being executed, rather than imported, Python overrides 
the default naming convention and sets the module’s __name__ attribute to 

 d

 e

 f

 g



Creating the final hello.py program 15
'__main__', giving us the chance to have the module behave differently when 
executed directly. We take advantage of this feature by creating an application 
instance and entering its main event-loop only if the module is being executed as 
a program. 

 If we didn’t perform this test, and created an application instance even when 
this module was imported, it could conflict with code in the module doing the 
importing—especially if the importing module has already started the wxPython 
event loop. It would also be quite difficult to test (especially since there can only 
be one application instance active at one time in a wxPython program, and once 
we enter the event loop, control passes to wxPython.) By not starting our own 
application when the module is imported, we make our frame and app classes 
readily available to other Python programs, facilitating the reuse of existing code. 

1.4 Creating the final hello.py program 

Now that you’ve got the basics under your belt, let’s create the final version of the 
program we showed at the beginning of this chapter. Create a file named 
hello.py and enter in the code shown in listing 1.3.

#!/usr/bin/env python   

"""Hello, wxPython! program."""   

import wx   

class Frame(wx.Frame):   
    """Frame class that displays an image.""" 

    def __init__(self, image, parent=None, id=-1,   
                 pos=wx.DefaultPosition, 
                 title='Hello, wxPython!'): 
        """Create a Frame instance and display image.""" 
        temp = image.ConvertToBitmap()                          
        size = temp.GetWidth(), temp.GetHeight()                
        wx.Frame.__init__(self, parent, id, title, pos, size)   
        self.bmp = wx.StaticBitmap(parent=self, bitmap=temp)    

class App(wx.App):   
    """Application class.""" 

    def OnInit(self): 
        image = wx.Image('wxPython.jpg', wx.BITMAP_TYPE_JPEG)   
        self.frame = Frame(image)                               

Listing 1.3 The final hello.py

b Shebang

Docstring describes the code

Import the  wxPackage
wx.Frame subclass c

d Image parameter

Displaying 
the image

 e

wx.App subclass f

 gImage handling



16 CHAPTER 1 
Welcome to wxPython
        self.frame.Show() 
        self.SetTopWindow(self.frame) 
        return True 

def main():          
    app = App()      
    app.MainLoop()   

if __name__ == '__main__':   
    main()                   

The shebang line allows this program to be an executable script under Linux and 
other Unix-like operating systems. 
Defining a custom Frame class that subclasses wx.Frame lets us more easily control 
the Frame’s contents and appearance. 
We added an image parameter to our Frame’s constructor. This value is provided 
by our application class when it creates a Frame instance. As long as we can pass 
the required values to wx.Frame.__init__(), there’s no reason we can’t add more 
parameters to our subclass’s constructor. 
We’re going to display the image in a wx.StaticBitmap control, which requires a 
bitmap. So we convert the image to a bitmap. We also create a size tuple, using 
the width and height of the bitmap. The size tuple is supplied to the wx.Frame.__ 
init__() call, so that the frame size matches the bitmap size. 
Defining a wx.App subclass with an OnInit() method is a minimum requirement 
for any wxPython application. 
We create an image object, using a wxPython.jpg file stored in the same directory 
as hello.py. You can get this file from the Manning web site, or substitute one of 
your own. A more sophisticated version of this program would accept the name of 
a file from the command line. We pass our image object as a parameter when we 
create the frame. 
The main() function creates an application instance and starts the wxPython 
event loop. 
Checking if this module is the main module allows it to be used in two different 
ways: run from the command line or imported by another module. 

What happened when you ran your version of hello.py? Did you see a frame 
sized to match the graphic you provided? If not, brush yourself off and try again. 
If so, congratulations! You’re ready to move on to the next exciting steps. 

 But before you rush into the next chapter, we’re going to talk about wxPython 
a little more broadly, what it’s capable of, and how it came to be. If that doesn’t 

main() 
function

 h

Import vs. 
execute

 i

 b

 c

 d

 e

 f

 g

 h

 i



What can wxPython do? 17
interest you, feel free to jump to the next chapter and continue coding—the rest 
of the introduction will still be here. 

1.5 What can wxPython do?

Nearly all of your interface needs can be filled by wxPython. In this section, we’ll 
show you what some of the wxPython toolkit looks like, using pictures from ele-
ments of the wxPython demo application. Figure 1.8 is a composite image show-
ing all the basic widgets you’d expect: buttons, checkboxes, a combo box, menus, 
list box, a spinner control, text controls and radio buttons. 

 Figure 1.9 shows less common, but very useful widgets, including a slider con-
trol, an editable list box, a time selector, a toolbar, a notebook control, a tree list 
control, and an analog clock.  

 The grid control is one of wxPython’s most flexible widgets, allowing custom 
rendering and editing of cells. Figure 1.10 shows an example of many of the fea-
tures of the grid control. 

 And that’s not all—you also get a quite fully featured HTML-rendering widget 
that you can use for static styled text, as the base of a simple web browser, as a help 
system, or anything else you might want to display HTML for. An example is 
shown in figure 1.11. 

Figure 1.8  
A sampling of basic 
user interface 
controls, including 
menus, list boxes, 
and text controls.

http://www.manning.com/books/harms#author
http://www.manning.com/books/harms#author


18 CHAPTER 1 
Welcome to wxPython
Figure 1.9  
More advanced 
interface controls, 
including a tree list 
and an analog clock.

Figure 1.10  
The mega-grid 
example, showing 
custom grid cell 
rendering.



Why choose wxPython? 19
We’ve only just scratched the surface. The wxPython library also includes tools for 
image animation. You also get clipboard and drag-and-drop support, support 
for MIME types and audio, all the standard dialogs offered by your system, the 
ability to specify an interface definition in an XML file, full control over the layout 
of your windows, and more.

1.6 Why choose wxPython? 

The most powerful benefit of wxPython depends on your needs and expertise. 
While we think that all user interface (UI) programmers would benefit from using 
wxPython, the specific features that are most helpful will vary from case to case. 

1.6.1 Python programmers

If you are already a Python programmer, you’ve probably noticed that Tkinter, 
the interface toolkit distributed with Python, has some problems: 

Figure 1.11 The wx.HTMLWindow, showing some of the HTML rendering 
capability. 



20 CHAPTER 1 
Welcome to wxPython
■ Tkinter is based on the Tk toolkit, which is somewhat out-of-date in terms 
of the kinds of widgets it supports. By default, it doesn’t support more com-
plex widgets such as tree controls or tabbed windows. It also doesn’t have a 
particularly rich set of predefined dialogs.

■ The Tk toolkit does not use native widget support, resulting in an applica-
tion that looks foreign on all platforms. In wxPython, dialogs and widgets 
will look like those that are standard on the underlying operating system. 
Your Tk user will find that buttons, fonts, and menus all look slightly differ-
ent from what might be expected. 

■ Many programmers find Tkinter itself somewhat clunky to work with. In 
particular, the process by which events are translated to actions in wxPy-
thon is more flexible and powerful.

You’ll find that wxPython solves these problems. The toolkit in wxPython is vastly 
more complete and extensive than that of Tkinter and the native widget support 
means your application will look at home in your operating system. Additionally, 
the Python language support is more fluid in wxPython, making for a somewhat 
nicer programming experience. 

1.6.2 wxWidget users

If you are already using wxWidgets, then what wxPython has to offer you is the 
Python language itself. With its clear syntax, dynamic typing, and flexible object 
model, Python can improve your productivity dramatically. Python has a very 
extensive standard library that is easily incorporated into your application, and 
Python programs tend to be shorter and less error-prone than C++ programs. 
There are also a number of Python-only additions to the wxWidgets tool set. 

1.6.3 New users 

If you’re not currently using either Python or wxWidgets, you’re in for a real treat, 
since you’ll get the benefit of both the extensive toolkit and the Python language. 
If you are currently working in Java/Swing, you’ll probably find wxPython less 
complex and easier to use, and the Python language significantly less verbose 
than Java. If you are currently using a single-platform C++ toolkit like the 
Microsoft Foundation Classes (MFC), then you’ll appreciate the cross-platform 
nature of wxPython. In order to follow the examples in this book, however, some 
Python familiarity is helpful. If you need to get started on Python itself, try The 
Quick Python Book, by Daryl Harms and Kenneth McDonald, or the web site 
www.diveintopython.org.



How wxPython works 21
 In the next section, you’ll learn about the component pieces of wxPython: the 
Python language itself, and the wxWidgets toolkit. You’ll also learn about the ratio-
nale and implementation of wxPython itself. 

1.7 How wxPython works

In the previous section, we talked about what wxPython can do. In this section, 
we’ll take a closer look at how wxPython works. Internally, wxPython is a wrapper
or interface for a popular C++ interface toolkit called wxWidgets. The wxWid-
gets project has a long history and is the source of most of the functionality of 
wxPython. Using wxPython allows you to get the benefits of the wxWidgets tool-
kit, while being able to use Python rather than C++.

 The wxPython toolkit is the combination of two distinct pieces of software, 
which have over 25 years of development between them. In addition, the wxPython
toolkit itself was the result of a significant amount of work. To make wxPython go, 
a tool called SWIG is used to generate wrapper functions, or glue code, which allow a
Python program to use the C++ wxWidgets library just as if it were any old Python
library. Although SWIG does a lot of the work, there’s still some hand-tooling
needed to make the wxPython objects look and act like other Python objects. 
There have also been several additional widgets written directly in wxPython that 
are not available in the C++ version of the tool—you’ll encounter several of 
them along the way in this book.

 In this section we will provide a brief overview of the Python programming lan-
guage and the wxWidgets C++ toolkit. It is the combination of Python’s ease of 
use and wxWidgets’ range of functionality that gives wxPython its unique power.

1.7.1 The Python language
Python is a programming language which is easily able to handle both the script-
ing tasks normally associated with Perl and the full-scale application develop-
ment normally associated with C++ or Java. Using a simple, elegant, concise, 
syntax and a clean, consistent, semantic model, Python allows programmers to 
easily combine simple pieces to make a complex whole. 

 Throughout the rest of this book, it’s assumed that you have a good working 
knowledge of Python, and are familiar with basic concepts such as how Python 
implements objects and classes. You don’t need to be a Python expert to read this 
book, but ordinary Python language constructs are not explained in the discus-
sion of the wxPython examples. If you need more background information on 
Python, the Python web site contains an excellent tutorial and other documenta-
tion at www.python.org/doc. 



22 CHAPTER 1 
Welcome to wxPython
 One important Python feature is the interactive interpreter, which can be very 
helpful in exploring the language and in debugging programs. If Python is 
installed and on your path, you can access the interpreter by entering python at a 
command prompt. You’ll then see >>>, which is the Python command prompt. 
From there, you can enter any Python expression, and its value will be displayed 
on the screen. For example: 

$ python 
Python 2.3.3c1 (#50, Dec  4 2003, 21:27:34) [MSC v.1200 32 bit (Intel)] on 

win32 
Type "help", "copyright", "credits" or "license" for more information. 
>>> 2 + 2 
4 
>>> 10 / 3 
3 
>>> zip(['a', 'b', 'c'], [1, 2, 3]) 
[('a', 1), ('b', 2), ('c', 3)] 
>>> 

In this short session, I did a couple of simple arithmetic functions, then used the 
Python built-in function zip(), to combine two lists into an associated list. You 
can do anything from the interpreter that you can do in a standalone Python pro-
gram, including import modules, define functions, and define classes. 

1.7.2 The wxWidgets toolkit
The other base component of wxPython is the wxWidgets toolkit. At base, wxWid-
gets is a GUI framework implemented in C++, which means it is a set of C++ 
classes that encapsulate a wide range of features. Although the primary use of 
wxWidgets is for UI applications, it also contains useful features for C++ pro-
grammers including C++ implementations of data structures not supported in 
ANSI C++, such as strings and hashtables, as well as interfaces for system features 
like sockets and threads. Since these features and others are already available in 
the Python language or standard library, wrappers for these wxWidgets classes are 
not provided in wxPython and you should use the Python equivalents instead. For 
the most part wxPython only provides wrappers for the GUI classes in wxWidgets. 
The goal of wxWidgets is to allow a C++ program to compile and run on all sup-
ported platforms with only minor changes to the source from platform to plat-
form, and a reasonably consistent look and feel between the platforms. 

 Here’s a sample C++ wxWidgets program, taken from Robert Roebling’s 
tutorial on the wxWidgets site. This creates a blank window with a two-element 
menu, Quit and About. This is being shown primarily for comparison with the 
Python examples we’ll be seeing throughout the book. 



How wxPython works 23
#include "wx/wx.h" 

class MyApp: public wxApp { 
    virtual bool OnInit(); 
}; 

class MyFrame: public wxFrame { 
public: 
    MyFrame(const wxString& title, const wxPoint& pos, 
            const wxSize& size); 
    void OnQuit(wxCommandEvent& event); 
    void OnAbout(wxCommandEvent& event); 
    DECLARE_EVENT_TABLE() 
}; 

enum { 
    ID_Quit = 1, 
    ID_About, 
}; 

BEGIN_EVENT_TABLE(MyFrame, wxFrame) 
    EVT_MENU(ID_Quit, MyFrame::OnQuit) 
    EVT_MENU(ID_About, MyFrame::OnAbout) 
END_EVENT_TABLE() 

IMPLEMENT_APP(MyApp) 

bool MyApp::OnInit() { 
    MyFrame *frame = new MyFrame("Hello World", wxPoint(50,50), 
            wxSize(450,340)); 
    frame->Show(TRUE); 
    SetTopWindow(frame); 
    return TRUE; 
} 

MyFrame::MyFrame(const wxString& title, const wxPoint& pos, 
        const wxSize& size) 
: wxFrame((wxFrame *)NULL, -1, title, pos, size) { 
    wxMenu *menuFile = new wxMenu; 
    menuFile->Append( ID_About, "&About..." ); 
    menuFile->AppendSeparator(); 
    menuFile->Append( ID_Quit, "E&xit" ); 
    wxMenuBar *menuBar = new wxMenuBar; 
    menuBar->Append( menuFile, "&File" ); 
    SetMenuBar( menuBar ); 
    CreateStatusBar(); 
    SetStatusText( "Welcome to wxWidgets!" ); 
} 

Listing 1.4 A simple Hello World program in C++ wxWidgets



24 CHAPTER 1 
Welcome to wxPython
void MyFrame::OnQuit(wxCommandEvent& WXUNUSED(event)) { 
    Close(TRUE); 
} 

void MyFrame::OnAbout(wxCommandEvent& WXUNUSED(event)) { 
    wxMessageBox("This is a wxWidgets Hello world sample", 
        "About Hello World", wxOK | wxICON_INFORMATION, this); 
} 

If you’re familiar with C++, you probably noticed that something is missing. 
Usually, C++ programs have a function named main() which is the starting point 
for the program. In wxWidgets, the macro IMPLEMENT_APP(MyApp) automatically 
sets up a default main() which manages initialization of the wxWidget program. 

 As with most cross-platform interface kits, the classes and methods visible to 
the programmer are actually proxies for a set of subclasses. Typically there is a 
subclass for each platform that wxWidgets runs under, and the subclass specific to 
the current platform is automatically used. As of this writing, these are the most 
significant supported platforms: 

■ Microsoft Windows 
■ Mac OS 
■ Gnome Toolkit (GTK+), which is applicable on most modern Unix systems

For each platform, wxWidgets attempts to use native widgets and features where 
applicable, and generally tries to emulate the native look and feel. In this way, 
wxWidgets avoids the “least common denominator” problem that cross-platform 
toolkits frequently have. 

 If you are familiar with any other large-scale object-oriented interface toolkit, 
such as MFC or Java Swing, the basic structure of wxWidgets should feel largely 
similar. One difference from some toolkits is that wxWidgets does not make a 
class distinction between widgets that can contain other widgets and ones that 
can’t. (The way that, for example, Java Swing has a JComponent and JContainer
class). The mechanism for adding child widgets is built into the wxWindow base 
class so that it is potentially available to all widgets, whether or not they are typi-
cally thought of as containers. Typically, though, widgets that are not containers 
prevent you from using this behavior (you can’t put a dialog box inside a button, 
for example). 

 Development of wxWidgets goes back farther than you might think. The 
project was begun in 1992 by Julian Smart, at the University of Edinburgh’s Arti-
ficial Intelligence Applications Institute. Smart was trying to build an application 



How wxPython works 25
that could run on both Unix and Windows, and the existing commercial toolkits 
were prohibitively expensive, so he wrote his own. The name wxWidgets refers to 
the two original platforms—“w” for Microsoft Windows and “x” for Unix X 
server. The original version was written in terms of MFC, for the Windows version, 
and XView on Unix, but that quickly gave way to more general libraries for each 
platform as XView was replaced by the Motif toolkit, and MFC was replaced with 
direct calls to the Windows API. In 1997, the entire system was built with a more 
flexible API, and the GTK+ version became the standard Unix port soon after. 
The Macintosh port came on board the next year. More recent developments 
in the wxWidget side include a Unix library which is not dependent on a pre-
existing toolkit, and ports for handheld systems. 

 Python is not the only language which has a binding library for wxWidgets, 
although it has the largest user community of the group. The wxWidgets web 
site links to projects with support for Ada, Basic, C#, Eiffel, Euphoria, Haskell, 
Java, JavaScript, Lua, Perl, and Ruby, although we make no claims for the 
robustness or level of support of any of those ports. 

1.7.3 Putting it together: the wxPython toolkit

While both Python and wxWidgets are pretty great on their own, they combine 
to create an even greater whole, like peanut butter and chocolate. The flexibility 
of the Python language makes wxPython much easier to develop in than its 
C++ counterpart, while the native C++ code of wxWidgets gives the Python 
GUI both the speed and native look and feel it would otherwise lack. Table 1.2 
gives a sample of some issues that are difficult to manage in C++ but easy, if not 
trivial, in Python.

Table 1.2 Developing in C++ versus developing in wxPython

C++ environment wxPython environment

Memory management handled by programmer Memory management handled by Python

Static typing makes polymorphism difficult Dynamic typing makes polymorphism easy

Program reflection very limited Program reflection easy, allowing for powerful 
abstraction

Unable to use functions as arguments easily Functions can be passed around like any other variable

Compilation cycle needed before each run Program interpreted at runtime



26 CHAPTER 1 
Welcome to wxPython
Here is an example of how the two tools interact. In the previous section, we 
showed you a “hello world” example in C++ wxWidgets. Listing 1.5 shows the 
same example translated basically line-by-line into wxPython. 

import wx 

class MyApp(wx.App): 

    def OnInit(self): 
       frame = MyFrame("Hello World", (50, 60), (450, 340)) 
       frame.Show() 
       self.SetTopWindow(frame) 
       return True 

class MyFrame(wx.Frame): 

    def __init__(self, title, pos, size): 
        wx.Frame.__init__(self, None, -1, title, pos, size) 
        menuFile = wx.Menu() 
        menuFile.Append(1, "&About...") 
        menuFile.AppendSeparator() 
        menuFile.Append(2, "E&xit") 
        menuBar = wx.MenuBar() 
        menuBar.Append(menuFile, "&File") 
        self.SetMenuBar(menuBar) 
        self.CreateStatusBar() 
        self.SetStatusText("Welcome to wxPython!") 
        self.Bind(wx.EVT_MENU, self.OnAbout, id=1) 
        self.Bind(wx.EVT_MENU, self.OnQuit, id=2) 

    def OnQuit(self, event): 
        self.Close() 
         
    def OnAbout(self, event): 
        wx.MessageBox("This is a wxPython Hello world sample", 
                "About Hello World", wx.OK | wx.ICON_INFORMATION, self) 
                
if __name__ == '__main__': 
    app = MyApp(False) 
    app.MainLoop() 

There are two high-level things that we’d like to point out about the wxPython 
example compared to the wxWidgets C++ one (beyond merely the difference 
between the two languages). 

 First, notice that wxPython does not have the automatic macro for creating a 
main starting point, and must do so explicitly at the end of this module. 

Listing 1.5 A simple Hello World program in wxPython



Summary 27
 Second, the mechanism for associating events with the code to be executed is 
different between the two programs. Since Python allows functions to be passed 
easily around as objects, the wxPython program can use the relatively straightfor-
ward wx.Bind() methods to do the associating dynamically at runtime. The C++ 
program must use the DECLARE_EVENT_TABLE and BEGIN_EVENT_TABLE macros, 
which do the binding statically at compile time and are somewhat more awkward. 

 Beyond those changes, the two programs are quite similar line by line—we 
find the Python version more readable, though. As you’ll see, Python becomes 
more of an advantage in larger programs, due to its simpler syntax, automatic 
memory management, and so forth. At this point it’s worth mentioning that 
wxPython did not come about by accident. It was developed to fill a specific 
need for a cross-platform rapid development environment. It has prospered 
and advanced because of the continued efforts of programmers who need rapid 
GUI development. 

 Development of wxPython and wxWidgets continues. Ongoing projects 
include support for mobile devices and better multimedia support. The most cur-
rent version of wxPython is available at www.wxpython.org.

1.8 Summary 

■ You can create a minimal wxPython program in less than 10 lines of code. 
Most wxPython programs are much longer than 10 lines, and are typically 
divided into separate modules, each containing customized subclasses of 
wxPython classes, and, hopefully, plenty of docstrings. 

■ Most of the wxPython toolkit is accessed through the wx package which you 
access using the import wx statement. Every wxPython program must have 
an application object—an instance of a wx.App subclass that defines an 
OnInit() method. Most wxPython programs will have one or more 
frames—instances of subclasses of wx.Frame. A frame is the large, movable, 
resizeable window-like container that appears on screen, often with a menu, 
status bar, tool bars, and other widgets. Control of your program passes to 
wxPython when you call your application’s MainLoop() method. 

■ Within wxPython are all the basic widgets you would expect, plus common 
dialogs, a wide variety of more complex widgets, HTML rendering, spread-
sheet-style grids, and so forth. The wxWidgets toolkit that wxPython is 
based on is a C++ framework with a large list of features. It is a cross-
platform toolkit, with most support for Microsoft Windows, Unix GTK+, 



28 CHAPTER 1 
Welcome to wxPython
and the Mac OS. The basic unit of a wxWidgets application is the window, 
meaning any item that can be drawn to the screen. 

■ The wxPython toolkit is a combination of the Python programming 
language and the wxWidgets toolkit and can be downloaded at www. 
wxpython.org. It combines a very extensive interface toolkit with an easy-to-
use scripting language. It offers productivity gains and useful features for any 
programmer, including existing Python or wxWidgets programmers. 

■ The wxPython version of the toolkit is a wrapper around wxWidgets con-
taining bindings which allow Python language constructs to interact with 
the C++ framework. These bindings are largely created from the SWIG
tool, from a long list of descriptions of how Python objects and C++ 
objects relate to each other. 

Now it’s time to do some wxPython coding. The next chapter starts you off with 
writing some code, and the remainder of part 1 explores the most important con-
cepts of wxPython. Let’s go!



Giving your 
wxPython program 
a solid foundation
This chapter covers
■ Creating application objects
■ Directing output from a wxPython program
■ Shutting down a wxPython application
■ Creating and using top-level window objects
■ Adding objects and subwindows to a frame
29



30 CHAPTER 2 
Giving your wxPython program a solid foundation
The foundation of a house is a concrete structure that provides a strong base for 
the rest of the construction. Your wxPython program also has a foundation, made 
up of two required objects that support the rest of your application. These are the 
application object and the top-level window object. Using these objects properly will 
give your wxPython application a strong base to start with, and will make the job 
of constructing the rest of your application easier.

 In this chapter, you will work with the application object to customize global 
aspects of your program, including initialization, redirecting output, and shut-
down. You will use window objects in various styles, and put together basic widget 
combinations. You will also use simple default dialog boxes to get user informa-
tion. At the end of the chapter, we’ll help you diagnose and troubleshoot common 
problems with usage of application and top-level window objects.

2.1 What do I need to know  
about the required objects?

Let’s start with a description of the two foundation objects. The application object
manages the main event loop, which is the heartbeat of your wxPython program. 
The event loop will be covered in detail in chapter 3. For now, it is enough to say 
that it is the application object’s job to start the main event loop. In addition, the 
application object has the final chance to respond to any events which are other-
wise ignored by your application. Without the application object, your wxPython 
application cannot run.

 The top-level window object generally manages the most important data and 
controls and presents them to the user. For example, in a word-processing pro-
gram, the main window is the display of the document, and will likely manage at 
least some of the data for the document (depending, of course, on the exact 
architecture of your application). Similarly, the main window of your web browser 
both displays the page you are looking at and manages that page as a data object.

 Figure 2.1 gives a basic schematic of the relationship between the two founda-
tion objects and the rest of your application.

 As this diagram shows, the application object “owns” both the top-level win-
dow and the main event loop. The top-level window manages the components in 
that window, and any other data objects you assign to it. That window and its 
components trigger events based on user actions, and receive event notifications 
to make changes in the display. In the next sections, we’ll discuss the application 
and top-level window objects in more detail.



How do I create and use an application object? 31
2.2 How do I create and use an application object?

Every wxPython application needs exactly one application object. The applica-
tion object must be an instance of the class wx.App, or a custom subclass thereof. 
The primary purpose of the application object is to manage the main event loop 
behind the scenes. This event loop responds to windowing system events and dis-
patches them to the appropriate event handler. The application object is so 
important to the management of a wxPython process that you cannot create any 
wxPython graphical objects until after your program has instantiated an applica-
tion object.

 The parent wx.App class also defines a few properties which are global to the 
entire application. Much of the time, that’s all the functionality you’ll need from 
your application object. A custom application subclass can be used if you need to 
manage other global data or connections (such as a database connection). In 
some cases, you might also want to extend the main event loop for more special-
ized error or event handling. However, the default event loop will be suitable for 
nearly all wxPython applications that you will write.

2.2.1 Creating a wx.App subclass

Creating your own subclass of wx.App is so simple that it’s often a good idea to cre-
ate one when you start your application even if you don’t need any custom func-
tionality. That way, you’ll have the subclass if you need it later. To create and use a 
wx.App subclass, you need to perform four steps:

Figure 2.1 A schematic of the basic wxPython application 
structure, showing the relationship between the application 
object, the top-level window, and the main event loop



32 CHAPTER 2 
Giving your wxPython program a solid foundation
1 Define the subclass.

2 Write an OnInit() method within the subclass definition.

3 Create an instance of the class in the main section of your program.

4 Call the MainLoop() method of the application instance. This method 
transfers program control to wxPython.

We saw the OnInit() method in chapter 1. It’s called by the wxPython system 
when the application is started and before the main event loop begins. This 
method takes no parameters and returns a boolean value—if the return value is 
False, then the application will exit immediately. In most cases, you’ll want to 
hardwire True as the result of this method. Exiting might be the proper way to 
handle certain error conditions, such as the absence of a required resource.

 Because the OnInit() method exists, and is part of the wxPython framework, 
any initialization needed for your custom class is typically managed there, and 
not in the Python __init__ special method. If you decide that you need an 
__init__ method for some reason, you must call the __init__ method of the par-
ent class in that method, as in the following.

wx.App.__init__(self)

Typically, you’ll create at least one frame object within the OnInit() method, and 
you’ll also call the Show() method of that frame. You may optionally specify that 
the frame is the top window for the application by calling the method SetTopWin-
dow(). The top window is used as the default parent for dialogs that are created 
without a parent—it’s essentially the main window of your program. We’ll discuss 
the top-level window in section 2.5.

When to omit a wx.App subclass

You aren’t required to create your own wx.App subclass. You usually will want to do 
so to be able to create your top-level frame in the OnInit() method. But there is 
nothing stopping you from creating the frame outside of the application defini-
tion in some other part of calling script—the most common alternate place is the 
__main__ clause. The only restriction is that your wx.App instance has to have been 
created first. Generally, it is only a good idea to avoid creating a wx.App subclass if 
there’s just one frame in the system, and therefore the application setup is trivial. 
In such a case, wxPython provides the convenience class wx.PySimpleApp. The 
class provides a skeleton OnInit() method, and is defined as follows:



How do I create and use an application object? 33
class PySimpleApp(wx.App):

    def __init__(self, redirect=False, filename=None,
                 useBestVisual=False, clearSigInt=True):
        wx.App.__init__(self, redirect, filename, useBestVisual,
                clearSigInt)

    def OnInit(self):
        return True

It doesn’t get much simpler than that. A sample usage of wx.PySimpleApp might 
look like this:

if __name__ == '__main__':
    app = wx.PySimpleApp()
    frame = MyNewFrame(None)
    frame.Show(True)
    app.MainLoop()

In the first line of this snippet, you create the application object as an instance of 
wx.PySimpleApp(). Since we’re using the wx.PySimpleApp class, we don’t have a 
custom OnInit method, so we define a frame in the second line of the snippet—
since it has no parent specified, it’s a top-level frame. (Obviously, the MyNewFrame
class needs to be defined somewhere.) The third line of the code shows the frame, 
and the last line calls the application main loop, and we’re good to go.

 As you can see, using wx.PySimpleApp allows you to run your wxPython pro-
gram without creating your own custom application class. You should only use 
wx.PySimpleApp if the application is, well, simple, and doesn’t need any other glo-
bal parameters.

NOTE Naming Conventions—While wxPython does a fantastic job of simplifying 
a complex C++ toolkit, the C++ origins of the tool do leak through in 
spots. One of the most noticeable examples of the C++ heritage has to do 
with naming conventions. In Python, method names usually use the 
lower_case_ separated_by_underscores or the lowerCaseInterCap style. 
However, the C++ convention which wxWidgets uses for methods is the 
UpperCaseInterCap style. This can be jarring if you are used to the Python 
style. For consistency’s sake, it is recommended that you use the wxWidgets 
style in your wxPython classes. (Of course, you’ll need to use it if you 
want to override wxWidgets methods).

Also note that the wxPython classes use explicit Get and Set meth-
ods for properties. That’s more of a C++ style because most Python 
programs wouldn’t define special accessor methods for simple cases. 



34 CHAPTER 2 
Giving your wxPython program a solid foundation
The data members of the C++ classes are private—in most cases you 
must access the data of a wxPython class by using the access methods, 
you cannot use bare attribute names.

2.2.2 Understanding the application object lifecycle

The lifecycle of your wxPython application object begins when the application 
instance is created and ends just after the last application window is closed. 
This does not necessarily correspond to the beginning and ending of the 
Python script that surrounds your wxPython application. The script may choose 
to do some activity before creating the wxPython application, and may do fur-
ther cleanup after the application MainLoop() exits. All wxPython activity, how-
ever, must be performed during the life of the application object. As we’ve 
mentioned, this means that your main frame object cannot be created until 
after the wx.App object is created. (This is one reason why we recommend creat-
ing the top-level frame in the OnInit() method—doing so guarantees that the 
application already exists.)

 As figure 2.2 shows, creating the application object triggers the OnInit()
method and allows new window objects to be created. After OnInit(), the script 
calls MainLoop(), signifying that wxPython events are now being handled. The 
application continues on its merry way, handling events until the windows are 
closed. After all top-level windows are closed, the MainLoop() function returns to 
the calling scope and the application object is destroyed. After that, the script can 
close any other connections or threads that might exist.

Figure 2.2 Major events in the wxPython application lifecycle, including the beginning and ending of 
both the wxPython application and the script which surrounds it



How do I direct output from a wxPython program? 35
One reason to be aware of the main application life cycle is that, while active, a 
wxPython application will take control of certain system functions, such as the 
standard output streams. We’ll discuss how to direct output in the next section

2.3 How do I direct output from a wxPython program?

All Python programs can output text via two standard streams: the standard out-
put stream, sys.stdout, and the standard error stream sys.stderr. An ordinary 
Python script directs the standard output streams back to the console from which 
the script was launched. However, when your application object is created you can 
decide to have wxPython take control of the standard streams and redirect the out-
put to a window instead. This redirect behavior is the default behavior for wxPy-
thon under Windows. In Unix systems, however, where there is more likely to be 
an actual console window, wxPython does not control the standard streams by 
default. In all systems the redirection behavior can be explicitly specified when the 
application object is created. We recommend taking advantage of this feature and 
always specifying redirect behavior to avoid any problems from different behavior 
on different platforms.

2.3.1 Redirecting output

If wxPython is controlling the standard streams, then text sent to the streams via 
any mechanism—including a print statement or a system traceback—is redirected 
to a separate wxPython frame. Text sent to the streams before the wxPython appli-
cation begins or after it ends is, of course, processed normally. Listing 2.1, dem-
onstrates both the application lifecycle and the stdout/stderr redirection.

#!/usr/bin/env python

import wx
import sys

class Frame(wx.Frame):

    def __init__(self, parent, id, title):
        print "Frame __init__"
        wx.Frame.__init__(self, parent, id, title)

class App(wx.App):

Listing 2.1 A sample startup script showing output stream redirection



36 CHAPTER 2 
Giving your wxPython program a solid foundation
    def __init__(self, redirect=True, filename=None):
        print "App __init__"   
        wx.App.__init__(self, redirect, filename)

    def OnInit(self):
        print "OnInit"   
        self.frame = Frame(parent=None, id=-1, title='Startup') 
        self.frame.Show()
        self.SetTopWindow(self.frame)
        print >> sys.stderr, "A pretend error message"   
        return True

    def OnExit(self):
        print "OnExit"

if __name__ == '__main__':
    app = App(redirect=True)   
    print "before MainLoop"
    app.MainLoop()     
    print "after MainLoop"

This line creates the application object. After 
this line, all text sent to stderr or stdout can 
be redirected to a frame by wxPython. The 
arguments to the constructor determine 
whether this redirection takes place.
When run, this application creates a blank 
frame, and also generates a frame with the 
redirected output, as shown in figure 2.3. 
Notice also that both stdout and stderr messages get directed to the window.

After you run this program you’ll see that your console has the following output:

App __init__
after MainLoop

The first line is generated before the frames are opened, the second line is gen-
erated after they close.

 By looking at both the console and the output frame, we can trace the appli-
cation lifecycle.

The first bubble in figure 2.2—Start Script—corresponds to the first lines run 
from the script’s __main__ clause. The transition to the next bubble comes imme-
diately in the line marked b. The instantiation of the instance calls the method 

Writing to stdout
Creating 
the frame

Writing to stderr

b Text redirection starts here

c The main event loop is entered here

Figure 2.3 The stdout/stderr 
window created by Listing 2.1

 b

 c



How do I direct output from a wxPython program? 37
wx.App.__init__(). Then control goes to OnInit(), which is automatically called 
by wxPython. From there, the program jumps to the wx.Frame.__init__(), which 
is run when the wx.Frame instance is instantiated. Finally, control winds back to 
the __main__ clause, where MainLoop() is invoked, corresponding to the third 
bubble in figure 2.2. After the main loop ends, then wx.App.OnExit() is called by 
wxPython, transitioning to the fourth bubble, and then the rest of the script fin-
ishes out the process.

 “Wait a minute,” you say, “the message from OnExit() didn’t display in either 
the window or the console.” As we’ll see, the message does display in the wxPy-
thon frame, but it does so right before the window is closed, so that it’s nearly 
impossible to capture in a screen shot.

 The quickly vanishing OnExit() message is a symptom of a larger issue with 
the output frame. Although it’s a useful feature during development, you don’t 
necessarily want the error stream frame popping out in a user’s face at run time. 
Furthermore, if an error condition happens during the OnInit() method, it gets 
sent to the output frame, but the error causes the application to exit, since 
OnInit() will return a False value in case of an error condition. The result is that 
the line of text is displayed but disappears far too quickly to be seen.

2.3.2 Modifying the default redirect behavior

In order to modify this behavior, wxPython allows you to set two parameters 
when creating the application. The first parameter, redirect, causes output to be 
redirected to the frame if it is True. If the value is False, output stays at the con-
sole. If the redirect parameter is True, then the second parameter, filename, 
can also be set. If so, output is redirected to a file with that name, rather than to 
the wxPython frame. Therefore, changing the wx.App creation at annotation b
in listing 2.1 to:

app = App(False)

causes all of the following output to go to the console:

App __init__
OnInit
Frame __init__
A pretend error message
before MainLoop
OnExit
after MainLoop

Notice that the OnExit() message is displayed here. Changing the line to:

app = App(True, "output")



38 CHAPTER 2 
Giving your wxPython program a solid foundation
will cause all the redirected lines to be sent to a file named output. The App
__init_ and after MainLoop messages will still be sent to the console, however, 
because they occur outside of the time period where the wx.App object has control 
of the streams.

2.4 How do I shut down my wxPython application?

When the last top-level window in your application is closed by the user, the 
wxPython application exits. By top-level, we mean any frame without a parent, 
and not just the frame designated using the SetTopWindow() method. This 
includes any frames created by wxPython itself. For instance, in listing 2.1, the 
application does not exit until both the main frame and the output redirection 
frame are closed, even though only the main frame is registered using SetTop-
Window(), and even though the application doesn’t explicitly create the output 
redirect frame. To trigger a shutdown programatically, you can call Close() on all 
top-level windows.

2.4.1 Managing a normal shutdown

During the shutdown process, wxPython takes care of deleting all its windows and 
freeing their resources. You have one hook into the exit process to perform your 
own cleanup. If defined, the OnExit() method of your wx.App subclass is called 
after the last window closes but before wxPython’s internal cleanup. You can use 
this method to clean up any non-wxPython resources you’ve created (a database 
connection, for example). Even if the application is closed with wx.Exit(), the 
OnExit() method is still triggered.

 If for some reason you want the application to continue after the last window 
closes, you can change the default behavior using the wx.App method SetExitOn-
FrameDelete(flag). If the flag parameter is set to False, the program will con-
tinue to run even after the last window closes. This means that the wx.App
instance will continue to live, and the event loop will continue to process events. 
You could, for example, then create all new top-level windows. The application 
will remain alive until the global function wx.Exit() is explicitly called.

 A further subtlety is that wxPython will not trigger the shutdown process 
before the main loop is even entered. Specifically, if you open a dialog in your 
OnInit() method, you can close it without fear that wxPython will interpret that 
as closing your last top-level window and shut itself down.



How do I create and use the top-level window object? 39
2.4.2 Managing an emergency shutdown

You can’t always close your program in a controlled way. Sometimes, you need to 
end the application immediately and you don’t care that your program cleans up 
after itself fully. For example, a critical resource may have closed or become cor-
rupted. If the system is shutting down, you may not be able to do all the cleanup.

 There are two mechanisms for exiting your wxPython application in an emer-
gency situation. You can call the wx.App method ExitMainLoop(). This method 
explicitly causes the main message loop to break, causing the control to leave the 
MainLoop() function. This will generally end the application—it’s effectively 
equivalent to closing all the top-level windows.

 You can also call the global method wx.Exit(). Neither method is recom-
mended for normal use because it may cause some cleanup functions to be skipped.

 Sometimes, your application will need to shut down due to an event outside of 
its control. An example of this is when the underlying operating system is about 
to shut down or log the user off. In that case, your application gets one shot at 
cleanup to save documents or close connections or whatever. If your application 
binds an event handler for the wx.EVT_QUERY_END_SESSION event, then that event 
handler is called when wxPython is notified of the shutdown. (We’ll show how to 
bind events to handlers later in the chapter, and in more detail in chapter 3.) The 
event parameter is a wx.CloseEvent. The close event may allow the application to 
veto the shutdown. Use the event method CanVeto() to find out. The application 
can make its veto known by calling the event method Veto(). You might want to 
do this if you cannot successfully save or close all resources. The default handler 
for the wx.EVT_QUERY_END_SESSION event calls the Close() method of the top-level 
windows, which will in turn send the wx.EVT_CLOSE event to the top-level windows 
giving you another chance to control the shutdown process. If any of the Close()
methods returns False then the application attempts to veto the shutdown.

2.5 How do I create and use  
the top-level window object?

A top-level window object is a widget (usually a frame) that is not contained by 
another widget in your application—it’s what a typical user would point to and 
say, “That’s the program.” The top-level window object is usually the main 
window of your application and contains widgets and interface objects that the 
user interacts with. As we have seen, the application exits when all top-level 
windows are closed.



40 CHAPTER 2 
Giving your wxPython program a solid foundation
 Your application must have at least one top-level window object. The top-level 
window object is usually a subclass of the class wx.Frame, although it can also be a 
subclass of wx.Dialog. Most of the time, you will define custom subclasses of 
wx.Frame for use in your application. However, there are a number of pre-defined 
wx.Dialog subclasses that provide many of the typical dialogs that you might 
encounter in an application.

 There’s some naming confusion here, due to overloading of the word top. A 
generic “top-level” window is any widget in your application that doesn’t have a 
parent container. Your application must have at least one of these, but it can have 
as many as you’d like. Only one of these windows, however, can be explicitly 
blessed by wxPython as the main top window by using SetTopWindow(). If you do 
not specify a main window with SetTopWindow, then the first frame in the wx.App’s 
top-level window list is considered to be the top window. So, explicitly specifying 
the top window is not always necessary—you don’t need to if, for example, you 
only have one top window. Repeated calls to SetTopWindow() will replace the cur-
rent top window—an application can only have one top window at a time.

2.5.1 Working with wx.Frame
In wxPython parlance, a frame is the name given to what a GUI user normally 
calls a window. That is to say, a frame is a container that the user can generally 
move freely around on the screen, and which often includes such decorations as a 
title bar, menubar, and resize targets in the corners. The class wx.Frame is the par-
ent class of all frames in wxPython. There are also a few specialized subclasses of 
wx.Frame that you may use. This section will give an overview of the wx.Frame fam-
ily—enough for you to get started using them. A more complete description of 
the wx.Frame class will be presented in chapter 8.

 When you create subclasses of wx.Frame, the __init__() method of your class 
should call the parent constructor wx.Frame.__init__(). The signature of that 
constructor is as follows.

wx.Frame(parent, id=-1, title="", pos=wx.DefaultPosition,
        size=wx.DefaultSize, style=wx.DEFAULT_FRAME_STYLE,
        name="frame")

This constructor takes several parameters. In normal use, however, at least 
some of the defaults are reasonable options. We will see parameters similar to 
this constructor again and again in other widget constructors—it’s a very simi-
lar pattern in wxPython. Table 2.1 describes each of the parameters.

Remember, these are the parameters as passed to the parent constructor 
method, wx.Frame.__init__(). The argument signature of the constructor to your 



How do I create and use the top-level window object? 41
class can, and often will, be different. This allows you to conveniently ensure 
default values for your own frame by not allowing them to be modified by a call to 
your constructor. For example, you might want your frame class to always be a 300 
pixel square. In that case, you probably wouldn’t have a size argument in your 
class constructor, but would just explicitly pass (300, 300) to the wx.Frame.__
init__() method. Listing 2.2 shows a frame class that does not allow any of the 
attributes of the window to be passed as an argument.

class MyFrame(wx.Frame):

    def __init__(self):
        wx.Frame.__init__(self, None, -1, "My Friendly Window",
            (100, 100), (100, 100))

Table 2.1 Parameters of the wx.Frame constructor method

Parameter Description 

parent The parent window of the frame being created. For top-level windows, the value is None.  
If another window is used for the parent parameter then the new frame will be owned  
by that window and will be destroyed when the parent is. Depending on the platform, the 
new frame may be constrained to only appear on top of the parent window. In the case  
of a child MDI window, the new window is restricted and can only be moved and resized 
within the parent. 

id The wxPython ID number for the new window. You can pass one in explicitly, or pass -1 
which causes wxPython to automatically generate a new ID. See the section “Working with 
wxPython ID” for more information. 

title The window title—for most styles, it’s displayed in the window title bar. 

pos A wx.Point object specifying where on the screen the upper left-hand corner of the new 
window should be. As is typical in graphics applications, the (0, 0) point is the upper left 
corner of the monitor. The default is (-1, -1), which causes the underlying system to decide 
where the window goes. See the section “Working with wx.Size and wx.Point” for more 
information. 

size A wx.Size object specifying the starting size of the window. The default is (-1, -1), which 
causes the underlying system to determine the starting size. See the section “Working with 
wx.Size and wx.Point” for more information. 

style A bitmask of constants determining the style of the window. You may use the bitwise or 
operator (|) to combine them when you want more than one to be in effect. See the 
section “Working with wx.Frame styles” for usage guidelines. 

name An internal name given to the frame, used on Motif to set resource values. Can also be 
used to find the window by name later. 

Listing 2.2 A frame subclass which sets its own defaults



42 CHAPTER 2 
Giving your wxPython program a solid foundation
In listing 2.2, the __init__() method of MyFrame does not take any arguments. 
This means that MyFrame users cannot override the hardwired arguments that 
MyFrame.__init__() passes to the superclass wx.Frame.__init__(). Remember 
that a determined user of your class can always change the default values by call-
ing setter methods after the frame is instantiated.

2.5.2 Working with wxPython IDs

Table 2.1 lists the wxPython ID number of the new frame. ID numbers are a feature 
of all widgets in wxPython, and it’s worth a few paragraphs to explain how they 
work. Every widget in a wxPython application has a window identifier. The ID
numbers must be unique within each frame, but you can reuse ids between 
frames. We recommend, however, that you try to have your ID numbers be unique 
across your application, to prevent errors and confusion when processing events. 
However, there are few standard predefined ID numbers in wxPython, which have 
specific meanings within parts of the code (for example, wx.ID_OK and wx.ID_ 
CANCEL are assumed to be the ID numbers of the OK and Cancel buttons in a dia-
log box). It’s usually not a problem to reuse standard ID numbers in your appli-
cation as long as you use them in the manner expected. The ID number is usually 
the second parameter in the constructor of a wxPython widget object, after the 
parent widget. The most important use of ID numbers in wxPython is to create a 
unique relationship between an event that happens to a specific object and a 
function which is called in response to that event. Using a duplicate ID can cause 
the wrong function to be triggered in response to an event.

 There are three ways to create the ID numbers used by a widget:

1 Explicitly pass a positive integer into the constructor

2 Get wxPython to create IDs for you using the wx.NewId() function

3 Pass either the global constant wx.ID_ANY or -1 to a widget constructor

Explicitly choosing the ID

First and most straightforwardly, you can explicitly pass a positive integer into the 
constructor—that number becomes the widget’s ID. If you pass a specific number, 
it is your responsibility to make sure that you do not duplicate ID numbers within 
a frame or reuse one of the predefined constants. You can ensure that wxPython 
does not use your explicit ID elsewhere in the application by calling the global 
function wx.RegisterId(). To prevent your program from duplicating wxPython 



How do I create and use the top-level window object? 43
IDs, you should avoid using ID numbers between the global constants wx.ID_LOWEST
and wx.ID_HIGHEST.

Using the global NewID() function
However, ensuring the uniqueness of ID numbers can become burdensome 
quickly. You can instead get wxPython to create ids for you using the 
wx.NewId() function:

id = wx.NewId()
frame = wx.Frame.__init__(None, id)

Using a constant to say ‘I don’t care’
Alternately, you can pass either the global constant wx.ID_ANY or -1 to many wid-
get constructors, and then wxPython will generate the new ID for you. Then you 
can use the GetId() method if you need the ID later on:

frame = wx.Frame.__init__(None, -1)
id = frame.GetId()

There’s no particular functional difference between the styles.

2.5.3 Working with wx.Size and wx.Point
The list of wx.Frame constructor arguments (table 2.1) also referenced the classes 
wx.Size and wx.Point. These two classes will be used frequently in your wxPython 
programming. Because of that, some Python-specific shortcuts have been added 
to the classes.

 The wx.Size and wx.Point classes are quite similar both in their wxWidgets 
method list and in how they are represented in wxPython. The wx.Point class, 
surprisingly enough, represents a point or position. The constructor takes two 
arguments for the x and y values of the point. The values both default to zero if 
not set:

point = wx.Point(10, 12)

To set both dimensions in one line, use the function Set(x,y). To retrieve them 
both at once, use Get(), which returns the two values as a Python tuple. Unlike 
most wxWidgets classes, wx.Point has functionality defined to retrieve the x and y 
values as simple Python properties such that the x and y values are accessible like 
ordinary Python attributes:

x = point.x
y = point.y

In addition, wx.Point instances can be transparently added, subtracted, and com-
pared just like other Python objects. For example:



44 CHAPTER 2 
Giving your wxPython program a solid foundation
x = wx.Point(2, 3)
y = wx.Point(5, 7)
z = x + y
bigger = x > y

In a wx.Point instance, the attributes are expected to be integers. If you need 
floating-point coordinates, you can use the class wx.RealPoint, which works much 
the same way as wx.Point.

 The wx.Size class is almost identical to wx.Point, except that the instance vari-
ables are named width and height instead of x and y. Otherwise, it has the same 
attribute and operator features defined.

 When a wx.Point or wx.Size instance is needed anywhere in your wxPython 
program—for example, in the constructor for another object—you do not need 
to create the instance explicitly. Instead, you can pass a Python tuple to the con-
structor, and wxPython will implicitly create the wx.Point or wx.Size instance:

frame = wx.Frame(None, -1, pos=(10, 10), size=(100, 100))

This works not just in constructors for other objects, but also anyplace where a 
wx.Point or wx.Size is expected by a wrapped C++ method or function call. You 
can even write something like this, if you so desire:

frame.SetPosition((2, 3))

2.5.4 Working with wx.Frame styles

The wx.Frame constructor takes a bitmask as a style parameter. Every wxPython 
widget object takes a similar style parameter, although the exact values that are 
defined are different for each type of widget. This section will discuss the styles 
used for wx.Frame. At least some of this is applicable to other wxPython widgets. 
The widget definitions in part 2 will discuss styles applicable to each class.

A bitmask is a way of compactly storing information about system 
attributes that is especially useful when there are a limited number of 
attributes with boolean values and the values are more or less mutu-
ally independent. In wxPython, bitmasks are used to manage a num-
ber of different attributes throughout the framework, most notably 
style information.

In a bitmask, the individual attributes are assigned constant values 
corresponding to powers of two, and the value of the bitmask is the sum 
of all the attributes which are “turned on”. In binary notation, the power 
of two system guarantees that each attribute corresponds to a single bit 
in the total sum, allowing all of the attribute state to be compactly stored in 

WHAT’S A 
BITMASK?



How do I create and use the top-level window object? 45
a single integer or long value. For example, if attribute a=1, b=2, c=4, 
and d=8, then any combination of the group has a unique sum that can be 
stored in an integer. The pair a and c would be 5 (binary 0101), while b, c, 
and d would be 14 (binary 1110). In wxPython, the attributes have sym-
bolic constants, so you don’t need to worry about the individual bit values.

Styles are defined for all wxPython widgets by passing a bitmask to the style 
parameter of the constructor. Some widgets also define a SetStyle() method, 
allowing you to change the style after the widget is created. All the individual style 
elements that you might use have a predefined constant identifier (such as 
wx.MINIMIZE_BOX). To add multiple styles together, you use the Python bitwise OR
operator, |. For example, the constant wx.DEFAULT_FRAME_STYLE is defined as a 
combination of basic style elements:

wx.MAXIMIZE_BOX | wx.MINIMIZE_BOX | wx.RESIZE_BORDER |
wx.SYSTEM_MENU | wx.CAPTION | wx.CLOSE_BOX

To remove individual style bits from a composed style, you use the bitwise exclu-
sive or (XOR) operator, ^. For example, to create a window that is based on the 
default, but which is not resizable by the user, you could do this:

wx.DEFAULT_FRAME_STYLE ^ (wx.RESIZE_BORDER | wx.MINIMIZE_BOX |
wx.MAXIMIZE_BOX)

It is highly recommended that you use the default style on top-level frames so 
that the user can easily recognize them as being top level. At the very least, you 
need to ensure that there is some way for a top-level frame to be closed. This is 
most easily done by including the wx.SYSTEM_MENU style. Also be aware that by 
inadvertently using a bitwise AND (&) operation, instead of a bitwise OR, you can 
easily wind up with no styles chosen, resulting in an unbordered frame that you 
cannot move, resize, or close. This is, of course, not recommended.

 Table 2.2 has a listing of the most important styles for wx.Frame.

Table 2.2 Some of the most commonly used style parameters for wx.Frame 

Style Description 

wx.CAPTION Adds a title bar on the frame, which displays the frame’s Title 
property. 

wx.CLOSE_BOX Instructs the system to display a close box on the frame’s title bar, using 
the system defaults for placement and style. Also enables the close item 
on the system menu if applicable. 

continued on next page



46 CHAPTER 2 
Giving your wxPython program a solid foundation
The next four figures show a few common frame styles.
  Figure 2.4 was created with wx.DEFAULT_STYLE. Figure 2.5 is a frame created 

using the non-resizable style combination shown in the previous code snippet.

wx.DEFAULT_FRAME_STYLE As you might expect from the name, this is the default if no style is 
specified. It is defined as wx.MAXIMIZE_BOX | wx.MINIMIZE_BOX 
| wx.RESIZE_BORDER | wx.SYSTEM_MENU | wx.CAPTION | 
wx.CLOSE_BOX. 

wx.FRAME_SHAPED Frames created with this style can use the SetShape() method to 
create a window with a non-rectangular shape. 

wx.FRAME_TOOL_WINDOW Makes the frame look like a toolbox window by giving it a smaller titlebar 
than normal. Under Windows a frame created with this style does not 
show in the taskbar listing of all open windows. 

wx.MAXIMIZE_BOX Adds a maximize box on the frame, using the system parameters for the 
look and placement of the box. Also enables maximize functionality in 
the system menu if applicable. 

wx.MINIMIZE_BOX Adds a minimize box on the frame, using the system parameters for the 
look and placement of the box. Also enables minimize functionality in the 
system menu if applicable. 

wx.RESIZE_BORDER Adds a resizable border to the frame. 

wx.SIMPLE_BORDER A plain border without decoration. May not work on all platforms. 

wx.SYSTEM_MENU Adds the system menu (with close, move, resize, etc. functionality,  
using system look and feel) and the close box to the window. The 
availability of resize and close operations within this menu depends on 
the styles wx.MAXIMIZE_BOX, wx.MINIMIZE_BOX and 
wx.CLOSE_BOX being chosen. 

Table 2.2 Some of the most commonly used style parameters for wx.Frame (continued)

Style Description 

Figure 2.4 A frame created with 
the default style

Figure 2.5 A frame created to 
be non-resizable.  Notice the lack 
of minimize/maximize buttons.



How do I add objects and subwindows to a frame? 47
Figure 2.6 uses style=wx.DEFAULT_FRAME_STYLE | wx.FRAME_TOOL_WINDOW.

Figure 2.7 uses the extended style wx.help.FRAME_EX_CONTEXTHELP, which is descri-
bed in chapter 8.

 Now that we’ve seen how to create wx.Frame objects, we’ll start to show how to 
make them useful, by adding additional widgets inside the frame.

2.6 How do I add objects and subwindows  
to a frame? 

We’ve described how to create wx.Frame objects, but as yet the frames are not very 
interesting. For one thing, they are empty. In this section, we’ll show you the 
basics of inserting objects and subwindows inside your frame for the user to inter-
act with.

2.6.1 Adding widgets to a frame
Figure 2.8 shows a custom frame subclass called 
InsertFrame. When the close button is clicked, the 
window will close and the application will end.

 Listing 2.3 defines the wx.Frame subclass 
shown in figure 2.8. Not all of the concepts in this 
snippet have been covered yet, so don’t worry if 
some things are not clear.

#!/usr/bin/env python

import wx

class InsertFrame(wx.Frame):

    def __init__(self, parent, id):
        wx.Frame.__init__(self, parent, id, 'Frame With Button',
                size=(300, 100))
        panel = wx.Panel(self)   
        button = wx.Button(panel, label="Close", pos=(125, 10),   

Figure 2.6 A toolbar frame, with a smaller title 
bar and no system menu

Figure 2.7 A frame 
with a help button

Listing 2.3 The InsertFrame code

Figure 2.8 The InsertFrame 
window is an example demonstrating 
the basics of inserting items into  
a frame.

cAdding the button 
to the panel

b Creating the panel



48 CHAPTER 2 
Giving your wxPython program a solid foundation
                size=(50, 50))
        self.Bind(wx.EVT_BUTTON, self.OnCloseMe, button)   
        self.Bind(wx.EVT_CLOSE, self.OnCloseWindow)  

    def OnCloseMe(self, event):
        self.Close(True)

    def OnCloseWindow(self, event):
        self.Destroy()

if __name__ == '__main__':
    app = wx.PySimpleApp()
    frame = InsertFrame(parent=None, id=-1)
    frame.Show()
    app.MainLoop()

The __init__ method of the InsertFrame class creates two subwindows b, c. 
The first is a wx.Panel, which is essentially a plain container for other windows 
and has little functionality of its own. The second is a wx.Button, which is an 
ordinary button. Next, the button click event and the close window event are 
bound to the function that will be executed when the event takes place d, e.

 In most cases, you will create a single wx.Panel instance the same size as your 
wx.Frame to hold all of the contents of your frame. Doing so keeps the custom 
contents of the window separate from other elements such as the toolbar and sta-
tus bar. In addition, on Windows operating systems, the default background color 
of a wx.Frame is not standard (it’s gray, not white), while a wx.Panel will have a 
white background by default (assuming you haven’t changed your system’s color 
and theme settings). The wx.Panel class also enables traversal of the elements 
inside via the tab button, which wx.Frame does not.

 If you are familiar with other UI toolkits, it may seem strange that you do not 
need to explicitly call an add method to insert a subwindow into a parent. 
Instead, in wxPython you just specify the parent window when the subwindow is 
created, and the subwindow is implicitly added inside that parent object, as is 
done in listing 2.3 c.

 You might also wonder why the wx.Button in listing 2.5 is created with an 
explicit position and size, while the wx.Panel is not. In wxPython, if a frame is cre-
ated with just a single child window, then that child window (in this case, the 
wx.Panel) is automatically resized to fill the client area of the frame. This auto-
matic resizing will override any position or size information for the child—even if 
a position or size had been specified for the panel, it would have been ignored. 
This automatic resizing only happens for a single element if it is within frames or 

d Binding  
the button 
click event

eBinding the window 
close event



How do I add objects and subwindows to a frame? 49
dialogs. The button is a child of the panel, not the frame, so its specified size and 
position are used. If a size and position had not been specified for the button, it 
would have been placed in the default position, which is the upper left corner of 
the panel, with its size based on the length of the label.

 Explicitly specifying the size and position of every subwindow can get tedious 
quickly. More importantly, it doesn’t allow your application to reposition objects 
gracefully when the user resizes a window. To solve both of these problems, wxPy-
thon uses objects called sizers to manage complex placement of child windows. 
Sizers will be covered briefly in chapter 7 and in more detail in part 2.

2.6.2 Adding a menubar, toolbar, or status bar to a frame
Often, an application window will have one or more 
of three special subwindows—a menubar at the top, 
a toolbar below that, and a status bar at the bottom. 
This is so common that wxPython provides special 
shortcut methods for the creation of toolbars and 
status bars (and menus aren’t that hard either). Fig-
ure 2.9 shows a sample frame with a menubar, tool-
bar, and status bar.

Listing 2.4 shows the __init__ method which dec-
orates a plain window with all three subwindows. 
Again, this is just an overview, and the classes in question will be covered in more 
detail in chapter 7 and later in part 2.

#!/usr/bin/env python

import wx
import images

class ToolbarFrame(wx.Frame):

    def __init__(self, parent, id):
        wx.Frame.__init__(self, parent, id, 'Toolbars',   
                size=(300, 200))
        panel = wx.Panel(self)
        panel.SetBackgroundColour('White')   
        statusBar = self.CreateStatusBar()  
        toolbar = self.CreateToolBar()    
        toolbar.AddSimpleTool(wx.NewId(), images.getNewBitmap(),  
                "New", "Long help for 'New'")
        toolbar.Realize()   
        menuBar = wx.MenuBar()   

Listing 2.4 Creating toolbars

Figure 2.9 A sample frame with 
menubar, toolbar, and status bar

d Adding a 
tool to  
the bar

b Creating the  
status bar

Creating the 
toolbar

c

e
Preparing the  
toolbar for displayCreating a menubar



50 CHAPTER 2 
Giving your wxPython program a solid foundation
        menu1 = wx.Menu()                                      
        menuBar.Append(menu1, "&File")   
        menu2 = wx.Menu()                                          
        menu2.Append(wx.NewId(), "&Copy", "Copy in status bar")  
        menu2.Append(wx.NewId(), "C&ut", "")   
        menu2.Append(wx.NewId(), "Paste", "")                       
        menu2.AppendSeparator()                                    
        menu2.Append(wx.NewId(), "&Options...", "Display Options")  
        menuBar.Append(menu2, "&Edit")   
        self.SetMenuBar(menuBar)   

if __name__ == '__main__':
    app = wx.PySimpleApp()
    frame = ToolbarFrame(parent=None, id=-1)
    frame.Show()
    app.MainLoop()

This line creates a status bar, which is an instance of the class wx.StatusBar. As far 
as the frame is concerned, it’s a subwindow placed at the bottom of the frame 
whose width is the same as the width of the frame, and whose height is deter-
mined by the underlying operating system. The purpose of the status bar is to 
display text set by various events in the application. The text size and font of the 
status window are also set by the underlying system.

Creates an instance of wx.ToolBar, which is a container of command buttons auto-
matically positioned at the top of the frame.

There are two methods to add tools to your toolbar, this line shows the one with 
fewer arguments, AddSimpleTool(). The arguments are an ID, a bitmap, short 
help text to display as a tooltip for the item, and longer help text to be displayed 
in the status bar for the item. (Don’t worry about where the bitmap is coming 
from at the moment.) Although the tool as displayed on the toolbar will look like 
a button, in terms of the event system, it behaves more like a menu item, which 
makes it easy for a tool to act as an exact duplicate for an item in your menubar. 
Specifically, pressing the tool button triggers the same kind of wxPython event as 
the menu item, meaning that both can be responded to by the same method.
The Realize() method tells the toolbar to calculate where the buttons should be 
positioned, and is required if the toolbar has any tools added that depend on the 
toolbar’s dynamic positioning because they do not specify their own size or posi-
tion explictly.
Creates a wx.Menu object, which represents a single menu on the bar. (We created 
two of them, but only so that we could take a screen shot of the pull-down without 
covering the toolbar icon.)

f Creating two 
individual menus

gCreating individual 
menu items

Attaching the menu 
to the menubar

Attaching 
the menubar 
to the frame

 b

 c

 d

 e

 f



How can I use common dialogs? 51
Creates the individual menu items, with the arguments representing an ID, the 
text of the item, and the text displayed on the status bar when the menu is moused 
over. The “&” indicates the character to be chosen for a menu accelerator.

In addition to using widgets in your frames, you’ll also communicate with 
users via standard dialogs, which is made easy using wxPython’s predefined 
dialog functions.

2.7 How can I use common dialogs?

The wxPython library provides a rich set of predefined dialog boxes that you can 
use to give your application a consistent, familiar look and feel. In this section, 
we’ll discuss three basic ways to get information from a user in a dialog:

1 Message dialog

2 Text entry

3 Choosing from a list

There are many other standard dialogs in wxPython, including a file picker, a 
color picker, progress dialog, print setup, and a font picker. These will be dis-
cussed in chapter 9.

Sending a message without using Western Union
The most basic mechanism for communicating with the user is wx.MessageDialog, 
which is a simple alert box. The wx.MessageDialog can be used as both a simple 
OK box, or as a yes/no dialog. The following snippet shows the yes/no behavior:

dlg = wx.MessageDialog(None, 'Is this the coolest thing ever!',
                      'MessageDialog', wx.YES_NO | wx.ICON_QUESTION)
result = dlg.ShowModal()
dlg.Destroy()

The resulting dialog looks like figure 2.10, and the signature for the construc-
tor is:

 
wx.MessageDialog(parent, message, 
        caption="Message box",
        style=wx.OK | wx.CANCEL, 
        pos=wx.DefaultPosition)

where parent is a parent window, or None if the dialog 
should be top-level. The message is the string which 
appears in the dialog, and the caption is the string that 
appears in the dialog’s title bar. The style parameter is 

 g

Figure 2.10 A message 
dialog, configured for a 
yes/no response



52 CHAPTER 2 
Giving your wxPython program a solid foundation
a bitmask which covers the buttons and icons displayed in the dialog, The pos
parameter takes either a wx.Point or Python tuple, and allows you to specify the 
position of the dialog on the display, if you so desire.

 The ShowModal() method displays the dialog as a modal frame, meaning that 
no other window in the application will respond to user events until the dialog is 
closed. This method is common to all dialogs. The return value of ShowModal() is 
an integer, signifying the result of the dialog. In this case, the result corresponds 
to the button pressed by the user. For a wx.MessageDialog, it will be one of the fol-
lowing constants: wx.ID_YES, wx.ID_NO, wx.ID_CANCEL, or wx.ID_OK.

 The style bits can be combined to manage the buttons displayed, with the 
legal values being wx.OK, wx,CANCEL, or wx.YES_NO. Style bits can also be used 
to set the icon displayed on the window, which is one of wx.ICON_ERROR, 
wx.ICON_EXCLAMATION, wx.ICON_INFORMATION, and wx.ICON_QUESTION.

Just a single line of text, please
If you need to get a single line of text from the user, then you can use the class 
wx.TextEntryDialog, as follows. This snippet creates the dialog, and retrieves the 
entered value if the user exits with a click on the OK button:

dlg = wx.TextEntryDialog(None, "Who is buried in Grant's tomb?",
        'A Question', 'Cary Grant')
if dlg.ShowModal() == wx.ID_OK:
    response = dlg.GetValue()

Figure 2.11 shows what the dialog looks like in use.
 The parameters of the wx.TextEntryDialog constructor are, in order, a parent 

window, the text caption inside the window, the text caption for the outside of the 
window (which defaults to “Please enter text”), and a default value for the user 
entry field (which defaults to the empty string). There is also a style argument 
which defaults to wx.OK | wx.CANCEL. You can use the style attribute to display the 
dialog without a cancel box, by passing only the 
value wx.OK. As with the wx.MessageDialog, the 
ShowModal() method returns the ID of the button 
pressed. The GetValue() method contains the 
value the user entered into the text field (there’s 
a parallel SetValue() method that allows you to 
change the field programmatically). Figure 2.11 A text entry dialog



What are some common errors 53
with application objects and frames?
Choose from the following list
If, instead of all the freedom that comes with being able to enter any thing that 
enters his head, you want the user to only be able to select a choice from a 
provided list, you can use the wx.SingleChoiceDialog class. A simple usage is 
shown here:

dlg = wx.SingleChoiceDialog(None,
        'What version of Python are you using?', 
        'Single Choice',
        ['1.5.2', '2.0', '2.1.3', '2.2', '2.3.1'],
if dlg.ShowModal() == wx.ID_OK:
    response = dlg.GetStringSelection()

Figure 2.12 shows the resulting dialog box. The 
parameters are similar to the text entry dialog, except 
that instead of passing a string default text, you pass a 
list of strings that are displayed in the list. There are 
two ways that you can get the returned selection. The 
method GetSelection() returns the index of the user 
selection, while GetStringSelection() returns the actual 
string selected.

2.8 What are some common errors  
with application objects and frames?

There are a few errors that can happen in the creation of your wxPython applica-
tion object or initial top-level window that can be difficult to track down, espe-
cially if you are seeing the error for the first time. The errors listed here are the 
kind of thing where the error message is not necessarily completely descriptive of 
the actual problem, or where the error can be difficult to diagnose the first time 
you see it. These are all fairly common errors for new wxPython programmers.

 Here is a troubleshooting guide for some of the most common symptoms:

Symptom Error message at startup saying “unable to import module wx.”

Cause—The wxPython module is not in your PYTHONPATH. This 
means wx.Python may not have been correctly installed. Alter-
nately, if there is more than one version of Python on the system, 
wxPython may have been installed against a different one than the 
one you are using.

Figure 2.12 The 
SingleChoiceDialog 
window, allowing a user  
to choose from a  
predefined list



54 CHAPTER 2 
Giving your wxPython program a solid foundation
Solution—Determine which Python version or versions are 
installed on the machine you are using. On a Unix system, the 
command which python should tell you the default installation. On 
a Windows system, you may have to go into the folder options dia-
log and see what application .py files are assigned to. If wxPython 
is correctly installed for that Python version, it puts itself in the 
<python-home>/Lib/site-packages subdirectory. You will likely 
need to install or reinstall wxPython.

Symptom The application crashes immediately on startup, or a blank window is dis-
played, followed immediately by an application crash.
Cause—A wxPython object is created or used before the creation of 
the wx.App.
Solution—Create the wx.App object immediately on starting your 
script.

Symptom My top-level windows are created and immediately close. The application 
exits immediately.
Cause—The method wx.App.MainLoop() was not called.
Solution—Call the MainLoop() method after all your setup is 
complete.

Symptom My top-level windows are created and immediately close. The application 
exits immediately, and I did call MainLoop().
Cause—An error in your application’s OnInit() method, or some 
method called by it (such as a frame __init__() method).
Solution—An error before MainLoop() is called can trigger an 
exception that exits the program. If your application is set to redi-
rect stdout and stderr to windows, then those windows will not dis-
play long enough for you to see the error. Create your application 
object with the redirect=False option to allow you to see the error 
message. See the section “Redirecting Output” for more details.

2.9 Summary

■ The foundation of a wxPython program is based on two required objects: 
an application object and the top-level window. Every wxPython applica-
tion needs to instantiate one instance of wx.App, and have at least one top-
level window.



Summary 55
■ The application object contains the wx.App.OnInit() method, which is 
called on startup. This method is the preferred place to initialize frames 
and other global objects. A wxPython application normally shuts down 
when all of its top-level windows have closed, or when the main event loop 
is otherwise exited.

■ The application object also controls where wxPython directs textual output. 
By default, wxPython redirects stdout and stderr to a special window. This 
behavior can make it hard to troubleshoot startup errors. Luckily, it’s no 
trouble at all to change this behavior to allow wxPython to send error mes-
sages to a file or console window.

■ A wxPython application usually has at least one subclass of wx.Frame. A 
wx.Frame object can be created in multiple styles using the style parameter. 
Every wxWidgets object, including frames, has an ID, which can be explic-
itly assigned by the application or generated by wxPython. Subwindows are 
the meat of a frame, inserted into a frame by creating the subwindow with 
that frame as a parent. Usually, a frame contains a single wx.Panel and fur-
ther subwindows are placed in the panel. A frame’s single subwindow is 
automatically resized when the parent frame resizes. Frames have explicit 
mechanisms for managing a menubar, toolbar, and status bar.

■ Although you’ll use frames for anything complex, when you want to simply 
get quick information from a user, you can show the user a standard dialog
window. There are standard dialogs for many tasks, including an alert box, 
simple text entry, and entry from a list.

Now that we’ve talked about the foundation of a wxPython program in terms of 
the required data objects, we’ll start to talk about the basic blocks of a wxPython 
program as it manages the flow of control while running. In the next chapter, 
we’ll talk about events and the event loop.



Working in an 
event-driven environment
This chapter covers
■ Programming in an event-driven environment
■ Binding an event to a handler
■ Processing events using wxPython
■ Defining other application object  

event properties
■ Creating custom events
56



What terminology do I need to understand events? 57
Event handling is the fundamental mechanism that makes wxPython programs 
work. A program that works primarily via event handling is called event driven. In 
this chapter, we will discuss what an event-driven application is, and how it differs 
from a traditional application. We’ll provide an overview of the concepts and ter-
minology involved in GUI programming, covering the interaction between the 
user, the toolkit, and the program logic. We’ll also cover the lifecycle of a typical 
event-driven program.

 An event is something that happens in your system which your application can 
respond to by triggering functionality. The event can be a low-level user action, 
such as a mouse move or key press, or a higher level user action given a specific 
meaning by wxPython because it takes place inside a wxPython widget, such as a 
button click or a menu selection. The event can also be created by the underlying 
operating system, such as a request to shut down. You can even create your own 
objects to generate your own events. A wxPython application works by associat-
ing a specific kind of event with a specific piece of code, which should be exe-
cuted in response. The process by which events are mapped to code is called 
event handling.

 This chapter will show what an event is, how you write code to respond to an 
event, and how the wxPython system knows to invoke your code when the event is 
triggered. We’ll also show you how to add custom events to the wxPython library, 
which contains a listing of standard events for user and system activities. 

3.1 What terminology do I need  
to understand events?

This chapter contains a lot of terminology, much of which begins with the word 
event. Table 3.1 is a quick reference guide to the terms we’ll be using.

Table 3.1 Event terms 

Term Definition 

event Something that happens during your application that requires a response. 

event object The concrete representation of an event in wxPython including data attributes that 
encapsulate the specifics of the event. Events are represented as instances of the 
wx.Event class and its subclasses, such as wx.CommandEvent and 
wx.MouseEvent. 

continued on next page



58 CHAPTER 3 
Working in an event-driven environment
We hope this table will keep you from getting your event handlers mixed up with 
your event binders. Please refer to this table throughout the chapter as necessary. 
We’ll begin with a general overview of event-driving programming, and then we’ll 
discuss the specifics of how everything is managed in wxPython. 

3.2 What is event-driven programming? 

An event-driven program is mainly a control structure that receives events and 
responds to them. The structure of a wxPython program (or of any event-driven 
program) is fundamentally different from that of an ordinary Python script. A 
typical Python script has a specific starting point and a specific ending point, 
and the programmer controls the order of execution using conditionals, loops, 
and functions. The program is not linear, but its order is often independent of
user action. 

 From the users perspective, a wxPython program spends much of its time 
doing nothing. Typically, it is idle until the user or the system does something to 

event type An integer ID that wxPython adds to every event object. The event type gives further 
information about the nature of the event. For example, the event type of a 
wx.MouseEvent indicates whether the event is a mouse click or a mouse move. 

event source Any wxPython object that creates events. Examples are buttons, menu items, list 
boxes, or any other widget. 

event-driven A program structure where the bulk of time is spent waiting for, or responding  
to, events. 

event queue A continuously maintained list of events that have already occurred, but have not yet 
been processed. 

event handler A written function or method that is called in response to an event. Also called a 
handler function or handler method. 

event binder A wxPython object that encapsulates the relationship between a specific widget, a 
specific event type, and an event handler. In order to be invoked, all event handlers 
must be registered with an event binder. 

wx.EvtHandler A wxPython class that allows its instances to create a binding between an event 
binder of a specific type, an event source, and an event handler. Note that the class 
wx.EvtHandler is not the same thing as an event handler function or method 
defined previously. 

Table 3.1 Event terms (continued)

Term Definition 



What is event-driven programming? 59
trigger the wxPython program into action. The wxPython program structure is an 
example of an event-driven program architecture. Figure 3.1 shows a simple dia-
gram outlining the major parts of an event-driven program. 

 Think of the main loop of an event-driven system as analogous to an operator 
at a customer service call center. When no calls are coming in, the operator is, as 
they say, standing by. Eventually, an event occurs, such as the phone ringing. The 
operator initiates a response process, which involves talking to the customer until 
the operator has enough information to dispatch the customer to the proper 
respondent for her call. The operator then waits for the next event. 

 Although each event-driven system is somewhat different, there are many sim-
ilarities between them. The primary characteristics of an event-driven program 
structure are as follows: 

■ After the initial setup, the program spends most of its time in an idle loop,
where it does little or no information processing. Entering into this loop 
signifies the beginning of the user-interactive part of the program, and 
exiting the loop signifies its end. In wxPython, this loop is the method 
wx.App.MainLoop(), and is explicitly invoked in your script. The main loop 
is automatically exited when all top-level windows are closed. 

■ The program contains events that correspond to things that happen in the 
program environment. Events are typically triggered by user activity, but 
can also be the result of system activity, or arbitrary code elsewhere in the 
program. In wxPython, all events are instances of the class wx.Event or one 

Figure 3.1 A schematic of the event handling cycle, showing the life of the main 
program, a user event, and dispatch to handler functions.



60 CHAPTER 3 
Working in an event-driven environment
of its subclasses. Each event has an event type attribute (see table 3.1) that 
allows different kinds of events to be distinguished. For example, a mouse 
up and mouse down event are both delivered as instances of the same class, 
but have a different event type. 

■ As part of the idle loop, the program periodically checks to see whether 
anything requiring a response has happened. There are two mechanisms 
by which an event-driven system may be notified about events. The more 
popular method, used by wxPython, posts the events to a central queue, 
which triggers processing of that event. Other event-driven systems use a 
polling method, where possible raisers of events are periodically queried by 
the central process and asked if they have any events pending. 

■ When an event takes place, the event-based system processes the event in 
an attempt to determine what code, if any, should be executed. In wxPy-
thon, native system events are translated to wx.Event instances and then 
given to the method wx.EvtHandler.ProcessEvent() for dispatching out to 
the proper handler code. Figure 3.3 presents a basic overview of the pro-
cess. The component parts of the event mechanism are event binder 
objects and event handlers, both defined in table 3.1. An event binder is a 
predefined wxPython object. There is a separate event binder for each 
event type. An event handler is a function or method that takes a wxPython 
event instance as an argument. An event handler is invoked when the user 
triggers the appropriate event.

Next, we’ll discuss more details about wxPython, beginning with the basic unit of 
event response, the event handler. 

3.2.1 Coding event handlers

In your wxPython code, events and event handlers are managed on a widget-by-
widget basis. For example, a button click is dispatched to a particular handler 
based on the button that was clicked. In order to bind an event from a specific 
widget to a specific handler method, you use a binder object to manage the con-
nection. For example, 

self.Bind(wx.EVT_BUTTON, self.OnClick, aButton) 

uses the predefined event binder object wx.EVT_BUTTON to associate a button click 
event on the object aButton with the method self.OnClick. The Bind() method is 
a method of wx.EvtHandler, which is a parent class of all display objects. There-
fore, the example line of code can be placed in any display class. 



What is event-driven programming? 61
 Even as your wxPython program appears to be waiting passively for an event, 
it’s still doing something. Specifically, it’s running the method wx.App.Main-
Loop(), which is basically an infinite while loop. The MainLoop() can be translated 
into oversimplified Python pseudocode as: 

while True: 
    while not self.Pending(): 
        self.ProcessIdle() 
    self.DoMessage() 

In other words, if there is no message pending, do some idle processing until 
a message comes in, then dispatch the message to the appropriate event-
handling method. 

3.2.2 Designing for event-driven programs

The event-driven nature of a wxPython program has several implications for 
designing and coding. Since there is no longer an assumption about when events 
happen, the programmer cedes much of the control of the program to the user. 
Most of the code in your wxPython program is executed as the direct or indirect 
result of an action taken by the user or the system. For example, saving work in 
your program happens after the user selects a menu item, presses a toolbar but-
ton, or invokes a special key combination. Any of these events can trigger a han-
dler which saves the user’s work.

 Another consequence of an event-driven architecture is that the architecture is 
often somewhat spread out. The code that is called in response to an event is usu-
ally not defined by the widget that triggered the event. Or to clarify, there’s noth-
ing in the nature of the binding between an event and its handler that requires 
them to have any relationship at all. For instance, the code called in response to a 
button click doesn’t have to be part of the definition of the button, but can be in 
the button’s enclosing frame, or any other location. When combined with a solid 
object-oriented design, this architecture can lead to loosely coupled, highly reus-
able code. You’ll find that the flexible nature of Python makes it particularly easy 
to reuse common event handlers and structures between different wxPython 
applications. On the other hand, the uncoupled nature of an event-driven pro-
gram can make it difficult to follow and maintain. When an event click happens in 
a button tied to a binder listed in the frame code, and the event invokes a method 
in a model class, it can be difficult to track it down. (To some extent, this issue is 
true of all object-oriented programming). In chapter 5, we will discuss code struc-
turing guidelines for event-driven programs. 



62 CHAPTER 3 
Working in an event-driven environment
3.2.3 Event triggers

In wxPython, most widgets cause higher level events to be fired in response to 
lower level events. For example, a mouse click within the space of a wx.Button
causes the generation of an EVT_BUTTON event, which is a specific type of wx.Command-
Event. Similarly, a mouse drag in the corner of a window causes a wx.SizeEvent to 
be created automatically for you by wxPython. The advantage of these higher 
level events is that they make it easier for the rest of your system to focus on the 
most relevant events, rather than getting bogged down in tracking every mouse 
click. For example, saying that a mouse click is a button activation makes it clear 
that a particular click has contextual meaning in the system, whereas another 
mouse click may not contain contextual meaning. Higher level events can also 
encapsulate more useful information about the event. As you create your own 
custom widgets, you can define your own custom events to manage this process 
for you.

 Events are represented within wxPython by objects. Specifically, event objects
in wxPython are instances of the class wx.Event, or one of its subclasses. The par-
ent wx.Event class is a relatively small abstract class consisting of getters and set-
ters for a few properties common to all events, such as EventType, EventObject, 
and Timestamp. Different subclasses of wx.Event each add further information. 
For example, wx.MouseEvent contains information about the exact location of the 
mouse as the event happened, and information about which mouse button was 
clicked, if any. 

 There are several different subclasses of wx.Event in wxPython. Table 3.2 con-
tains a list of some of the event classes you will most often encounter. Remember, 
one event class can have multiple event types, each corresponding to a different 
user action. 

Table 3.2 Important subclasses of wx.Event 

Event Description 

wx.CloseEvent Triggered when a frame closes. The event type distinguishes between a normal 
frame closing and a system shutdown event. 

wx.CommandEvent Triggered by a wide variety of simple interactions with widgets, such as a button 
click, menu item selection, or radio button selection. Each of these separate 
actions has its own event type. Many more complex widgets, such as the list or 
grid controls, define subclasses of wx.CommandEvent. Command events are 
treated differently by the event handling system than by other events. 

continued on next page



How do I bind an event to a handler? 63
Typically, event objects do very little on their own, but instead, need to be passed 
to the relevant event handler method or methods using an event binder and an 
event processing system. 

3.3 How do I bind an event to a handler? 

Event binders consist of instances of the class wx.PyEventBinder. A predefined 
instance of wx.PyEventBinder is provided for all of the event types supported, and 
you can create your own event binders for your custom event types when needed. 
There is one event binder instance for each event type, which means that multi-
ple binders may correspond to any one wx.Event subclass. This is because event 
types are more detailed than wx.Event subclasses. For example, the wx.Mouse-
Event class has fourteen separate event types, each of which uses the same basic 
information about the state of the mouse when the event is triggered by a user 
action (i.e., left click, right click, double click).

 In wxPython, names of the event binder instances are global. In order to 
clearly associate event types with handlers, these names start with wx.EVT_ and 
correspond to the names of the macros used in the C++ wxWidgets code. When 
discussing wxPython code, the tendency is to use the wx.EVT_ binder name as a 
stand-in for the actual event type. As a result, it’s worth highlighting that the 
value of the wx.EVT binder name is not the actual integer code used for event typ-
ing that you’d receive by calling the GetEventType() method of a wx.Event
instance. Event-type integer codes have an entirely different set of global names, 
and are not often used in practice. 

wx.KeyEvent A key press event. The event types distinguish between key down, key up, and 
complete key press. 

wx.MouseEvent A mouse event. The event types distinguish between a mouse move and a mouse 
click. There are separate event types depending on which button is clicked and 
whether it’s a single or double click. 

wx.PaintEvent Triggered when a window’s contents need to be redrawn. 

wx.SizeEvent This event is triggered when a window is resized, and typically results in a change 
to the window layout. 

wx.TimerEvent Can be created by the wx.Timer class, which allows periodic events. 

Table 3.2 Important subclasses of wx.Event (continued)

Event Description 



64 CHAPTER 3 
Working in an event-driven environment
 As an example of the wx.EVT names, let’s look at the event types of wx.Mouse-
Event. As we just mentioned, there are fourteen of them, nine of which cover 
mouse down, mouse up, or double click events based on the button clicked. 
Those nine event types use the following names: 

wx.EVT_LEFT_DOWN
wx.EVT_LEFT_UP
wx.EVT_LEFT_DCLICK 
wx.EVT_MIDDLE_DOWN
wx.EVT_MIDDLE_UP
wx.EVT_MIDDLE_DCLICK 
wx.EVT_RIGHT_DOWN
wx.EVT_RIGHT_UP
wx.EVT_RIGHT_DCLICK 

Additionally, the type wx.EVT_MOTION is caused by the user moving the mouse. 
The types wx.ENTER_WINDOW and wx.LEAVE_WINDOW are caused when the mouse 
enters or leaves any widget. The wx.EVT_MOUSEWHEEL type is bound to the move-
ment of a mouse scroll wheel. Finally, you can bind all mouse events to a single 
function at one time using the wx.EVT_MOUSE_EVENTS type. 

 Similarly, the wx.CommandEvent class has 28 different event types associated 
with it; although several are only for older Windows operating systems. Most of 
these are specific to a single widget, such as wx.EVT_BUTTON for a button click, and 
wx.EVT_MENU for a menu item selection. Command events for specific widgets are 
described with that widget when it is discussed in part 2. 

 The advantage of this binding mechanism is that it allows wxPython to dis-
patch events on a very granular basis, while still allowing similar events to be 
instances of the same class, and to share data and functionality. This makes writ-
ing event handlers much cleaner in wxPython than in other interface toolkits. 

 Event binders are used to connect a wxPython widget with an event object and 
a handler function. This connection allows the wxPython system to respond to an 
event on that widget by executing the code in the handler function. In wxPython, 
any object which can respond to an event is a subclass of wx.EvtHandler. All window 
objects are a subclass of wx.EvtHandler, so every widget in a wxPython application 
can respond to events. The wx.EvtHandler class can also be used by non-widget 
objects, such as wx.App, so event handling functionality is not limited to display-
able widgets. To clarify the terminology, saying that a widget can respond to 
events means that the widget can create event bindings which wxPython recog-
nizes during dispatch. The actual code called by a binder in the event handler 
function is not necessarily located in a wx.EvtHandler class. 



How do I bind an event to a handler? 65
3.3.1 Working with the wx.EvtHandler methods

The wx.EvtHandler class defines a number of methods that are not called under 
normal circumstances. The method of wx.EvtHandler that you will use frequently 
is Bind(), which creates the event bindings that we’ve discussed so far. The 
method signature is: 

Bind(event, handler, source=None, id=wx.ID_ANY, id2=wx.ID_ANY) 

The Bind() function associates an event and an object with an event handler func-
tion. The event parameter is required, and is a wx.PyEventBinder instance as 
described in section 3.3. The handler argument, also required, is a Python call-
able object, usually a bound method or function. The handler must be callable 
with a single argument, the event object itself. The handler argument can also be 
None, in which case the event is disassociated from its current handler. The source 
parameter is the widget that is the source of the event. The parameter is used 
when the widget triggering the event is not the same as the widget being used as 
the event handler. Typically, this is done because you’re using a custom wx.Frame
class as the handler and are binding events from the widgets contained in the 
frame. The parent window’s __init__ is a convenient location for declaring the 
event bindings. However, if the parent window contains more than one source of 
button click events (i.e., the OK button and Cancel button), the source parameter 
is used to allow wxPython to differentiate between them. Following is a specific 
example of this method: 

self.Bind(wx.EVT_BUTTON, self.OnClick, button) 

The call binds a button event from the object named button (and only the object 
named button) to the OnClick() method of the instance being bound. Listing 3.1, 
adapted from code displayed in chapter 2, illustrates event binding both with and 
without a source parameter. You are not required to name your handler methods 
On<event>, but it is a common convention. 

def __init__(self, parent, id): 
    wx.Frame.__init__(self, parent, id, 'Frame With Button', 
            size=(300, 100)) 
    panel = wx.Panel(self, -1)                               
    button = wx.Button(panel, -1, "Close", pos=(130, 15),    
            size=(40, 40)) 
    self.Bind(wx.EVT_CLOSE, self.OnCloseWindow)   
    self.Bind(wx.EVT_BUTTON, self.OnCloseMe, button)   

Listing 3.1 Sample event binding both with and without source objects

Binding the 
frame close 
event

 b

Binding the 
button event c



66 CHAPTER 3 
Working in an event-driven environment
    def OnCloseMe(self, event): 
        self.Close(True) 

    def OnCloseWindow(self, event): 
        self.Destroy() 

This line binds the frame close event to the self.OnCloseWindow method. Since 
the event is both triggered by and bound by the frame, there is no need to pass a 
source argument. 
This line binds the button click event from the button object to the self.OnCloseMe
method. In this case, the button which generates the event is not the same as the 
frame which is binding it. Therefore, the button ID must be passed to the Bind
method to allow wxPython to distinguish between click events on this button and 
click events from other buttons in the frame. 

You can also use the source parameter to identify items even if the item is not 
the source of the event. For example, you can bind a menu event to the event 
handler even though the menu event is technically triggered by the frame. List-
ing 3.2 illustrates an example of binding a menu event. 

#!/usr/bin/env python 

import wx 

class MenuEventFrame(wx.Frame): 

    def __init__(self, parent, id): 
        wx.Frame.__init__(self, parent, id, 'Menus', 
             size=(300, 200)) 
        menuBar = wx.MenuBar() 
        menu1 = wx.Menu() 
        menuItem = menu1.Append(-1, "&Exit...") 
        menuBar.Append(menu1, "&File") 
        self.SetMenuBar(menuBar) 
        self.Bind(wx.EVT_MENU, self.OnCloseMe, menuItem) 

    def OnCloseMe(self, event): 
        self.Close(True) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = MenuEventFrame(parent=None, id=-1) 
    frame.Show() 
    app.MainLoop() 

 b

 c

Listing 3.2 Binding a menu event



How do I bind an event to a handler? 67
The id and id2 parameters of the Bind() method specify the source of the event 
using an ID number, rather than the widget itself. Typically, the id and id2 are not 
required, since the ID of the event source can be extracted from the source
parameter. However, at times using the ID directly does make sense. For example, 
if you are using predefined ID numbers for a dialog box, it’s easier to use the ID
number than to use the widget. If you use both the id and id2 numbers, you can 
bind an entire range of widgets to the event with numbers between the two IDs. 
This is only useful if the IDs of the widgets you want to bind are sequential. 

The Bind() method is new in wxPython 2.5. In previous versions of 
wxPython, the EVT_* name is used like a function object, so that a bind-
ing call would appear as follows: 

wx.EVT_BUTTON(self, self.button.GetId(), self.OnClick) 

The disadvantage of the older style is that it does not look or act like an 
object-oriented method call. However, the older style still works in 2.5 
(because the wx.EVT* objects are still callable), so you’ll still see it in 
wxPython code. 

Table 3.3 lists some of the most commonly used methods of wx.EvtHandler that 
you may call to manipulate the process of handling events. 

Table 3.3 Commonly used methods of wx.EvtHandler 

Method Description 

AddPendingEvent(event) Places the event argument into the event processing system. 
Similar to ProcessEvent(), but it does not actually trigger 
immediate processing of the event. Instead, the event is added  
to the event queue. Useful for event-based communication 
between threads. 

Bind(event, handler, source=None, 
id=wx.ID_ANY, id2=wx.ID_ANY) 

See full description in section 3.3.1. 

GetEvtHandlerEnabled()  
SetEvtHandlerEnabled( boolean) 

The property is True if the handler is currently processing events, 
False if otherwise. 

ProcessEvent(event) Puts the event object into the event processing system for 
immediate handling. 

OLDER 
EVENT

BINDING 



68 CHAPTER 3 
Working in an event-driven environment
3.4 How are events processed by wxPython? 

A key component of an event-based system is the pro-
cess by which an event that comes into the system is 
dispatched to the piece of code that is executed in 
response. In this section, we’ll walk through the pro-
cedure wxPython uses when processing an incoming 
event. We’ll use a small code snippet as an example 
to trace the steps in the process. Figure 3.2 displays a sample window with a 
single button, which will be used to generate the sample events. 

 Listing 3.3 contains the code that generated this window. In this code, wxPy-
thon events are generated both by clicking the button and by moving the mouse 
over the button. 

#!/usr/bin/env python 

import wx 

class MouseEventFrame(wx.Frame): 
    
    def __init__(self, parent, id): 
        wx.Frame.__init__(self, parent, id, 'Frame With Button', 
                size=(300, 100)) 
        self.panel = wx.Panel(self)                               
        self.button = wx.Button(self.panel,
            label="Not Over", pos=(100, 15)) 
        self.Bind(wx.EVT_BUTTON, self.OnButtonClick,   
            self.button)                     
        self.button.Bind(wx.EVT_ENTER_WINDOW,   
            self.OnEnterWindow)                
        self.button.Bind(wx.EVT_LEAVE_WINDOW, 
            self.OnLeaveWindow)     
        
    def OnButtonClick(self, event): 
        self.panel.SetBackgroundColour('Green') 
        self.panel.Refresh() 
        
    def OnEnterWindow(self, event): 
        self.button.SetLabel("Over Me!") 
        event.Skip() 
        
    def OnLeaveWindow(self, event): 
        self.button.SetLabel("Not Over") 
        event.Skip() 

Listing 3.3 Binding multiple kinds of mouse events

Figure 3.2 A simple window 
with mouse events

Binding the 
button event

 b

Binding the mouse 
enter event c

Binding the mouse 
leave event d



How are events processed by wxPython? 69
if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = MouseEventFrame(parent=None, id=-1) 
    frame.Show() 
    app.MainLoop() 

The MouseEventFrame contains one button in the middle. Clicking on the mouse 
changes the background color of the frame to green. The mouse click event is 
bound to the action in line b. When the mouse pointer enters the button, the but-
ton caption changes, as bound in line c. When the mouse pointer leaves the 
button, the caption changes back, as bound in line d. 

 Looking at the mouse event example raises some questions about event pro-
cessing in wxPython. In line b, the button event triggered by the button is bound 
by the frame. How does wxPython know to look for a binding in the frame object, 
rather than the button object? In lines c and d, the mouse enter and leave 
events are bound to the button object. Why can’t those events also be bound to 
the frame? Both of these questions are answered by examining the procedure 
wxPython uses to determine how to respond to an event. 

3.4.1 Understanding the event handling process

The wxPython event handling procedure was designed to make it simple for the 
programmer to create event bindings in what are generally the most obvious 
places, while ignoring unimportant events. As is often the case in simple design, 
the underlying mechanism is actually a bit complex. Next, we’ll trace the proce-
dure for a button click event and a mouse entering event. 

 Figure 3.3 displays a basic flow chart of event handling process. Rectangles 
indicate the start and end of the process, circles indicate various wxPython objects 
that are part of the process, diamonds indicate decision points, and rectangles 
with bars indicate actual event handler methods.

  The event process begins with the object that triggered the event. Typically, 
wxPython looks first at the triggering object for a bound handler function match-
ing the event type. If one is found, the method is executed. If not, wxPython 
checks to see if the event propagates up the container hierarchy. If so, the parent 
widget is checked, up the hirerarchy, until wxPython either finds a handler func-
tion or hits a top-level object. If the event doesn’t propagate, wxPython still 
checks the application object for a handler method before finishing. When an 
event handler is run, the process typically ends. However, the function can tell 
wxPython to continue searching for handlers. 



70 CHAPTER 3 
Working in an event-driven environment
Let’s take a closer look at each step of the process. Before discussing each step, 
we’ll display a thumbnail for each relevant part of Figure 3.3. 

Step 1  Creating the event
The process starts when the event is created. 

 Most pre-existing event types are created 
within the wxPython framework in response 
to specific user actions or system notifica-
tions. For example, the mouse entering event 
is triggered when wxPython notices a mouse 
move entering the bounds of a new widget 
object, and the button click event is created after a left mouse down and left 
mouse up in the same button. 

 The event is first handed to the object responsible for creating the event. For a 
button click, the object is the button, for a mouse enter event, the object is the 
widget entered. 

Figure 3.3 Event handling process, starting with the event being triggered, and moving through the 
steps of searching  for a handler 

Figure 3.4 Creation of the event that 
sends focus to the triggering object 



How are events processed by wxPython? 71
Step 2  Determining whether the object is allowed to process events
The next step of the event handling process checks to see if the responsible wid-
get (the wx.EvtHandler) is currently allowed to process events. 

 A window can be set to allow or disallow event processing by calling the 
wx.EvtHandler method SetEvtHandlerEnabled(boolean). The effect of disallow-
ing event processing is that the widget is completely bypassed in the event pro-
cess, binding objects associated with the object are not searched for, and the 
processing in this step goes down the no branch. 

 Enabling or disabling a widget at the event handler level is not the same as dis-
abling the widget at the UI level. Disabling a widget at the UI level is done using 
the wx.Window method Disable() and Enable(). Disabling a widget in the UI sense 
means that the user cannot interact with the disabled widget. Usually, the dis-
abled widget is grayed out on the screen to indicate its status. A window that has 
been disabled at the UI level won’t be able to generate any events; however, if it’s 
on the container hierarchy for other events, it still processes events it receives. For 
the remainder of this section, we’ll use enabled and disabled in the wx.EvtHandler
sense, referring to whether the widget is allowed to process events. 

 The check for the enabled/disabled state of the initiating object happens in 
the ProcessEvent() method which is called by the wxPython system to start and 
handle the event dispatch mechanism. We’ll see the ProcessEvent() method 
again and again during this process—it’s the method in the wx.EvtHandler class 
that actually implements much of the event process depicted in figure 3.3. The 
ProcessEvent() method returns True if event processing is complete at the end of 
the method. Processing is considered complete if a handler function is found for 
the instance and event combination being processed. The handler function can 
explicitly request further processing by calling the wx.Event method Skip(). In 
addition, if the initiating object is a subclass of wx.Window, it can filter the event 

Figure 3.5  
Tests whether the triggering object is enabled



72 CHAPTER 3 
Working in an event-driven environment
using a special object called a validator. Validators will be discussed in more detail 
in chapter 9. 

Step 3  Locating the binder object
The ProcessEvent() method then 
looks for a binder object that recog-
nizes a binding between the event type 
and the current object. 

 If a binder isn’t found for the object 
itself, the processing walks up the class 
hierarchy to find a binder defined in a 
superclass of the object—this is differ-
ent than the walk up in the container 
hierarchy that happens in the next 
step. If a binder object is found, wxPy-
thon calls the associated handler func-
tion. After the handler is called, event 
processing stops for that event, unless 
the handler function explicitly asks for 
more processing. 

 In listing 3.3, the mouse enter event is captured, and because there is a defined 
binding between the button object, the binder object wx.EVT_ENTER_WINDOW, and 
the associated method OnEnterWindow(), the method is called. Since we don’t bind 
the mouse button click event, wx.EVT_LEFT_DOWN, wxPython would keep searching 
in that case. 

Step 4  Determining whether to continue processing 

After calling the first event handler, wxPy-
thon checks to see if further processing is 
requested. The event handler asks for more 
processing by calling the wx.Event method 
Skip(). If the Skip() method is called, pro-
cessing continues and any handlers defined 
in the superclass are found and executed in 
this step. The Skip() method can be called 
at any point in the handler, or any code 
invoked by the handler. The Skip() method
sets a flag in the event instance, which wxPy-

Figure 3.6  
Verifies that the 
triggering object has 
an appropriate binder 

Figure 3.7 The event handler calls Skip(), 
and processing continues



How are events processed by wxPython? 73
thon checks after the handler method is complete. In listing 3.3 the OnButton-
Click() doesn’t call Skip(), so in that case the event process is complete at the 
end of the handler method. The other two event handlers do call Skip() so the sys-
tem will keep searching for a matching event binding, eventually invoking the 
default functionality for mouse enter and leave events for the native widget, such 
as mouse-over events.

Step 5  Determining whether to propagate
Eventually wxPython determines whether the event process should propagate up 
the container hierarchy to find an event handler. The container hierarchy is the 
path from a specific widget to the top-level frame, moving from each widget to its 
parent container, and upward. 

 If the current object doesn't have a handler for the event, or if the handler 
called Skip(), wxPython determines if the event should propogate up the con-
tainer hierarchy. If the answer is No, the process looks once more for a handler, in 
the wx.App instance, and then stops. If the answer is Yes, the event process starts 
over using the container of the window currently being searched. The process 
continues upward until wxPython either finds an appropriate binding, reaches a 

Figure 3.8  
The event handling process continues looking up the container hierarchy  
if the event is a command event, or is otherwise declared to propagate



74 CHAPTER 3 
Working in an event-driven environment
top-level frame object with no parent, or reaches a wx.Dialog object (even if the 
dialog is not top-level). The event is considered to have found an appropriate 
binding if ProcessEvent() for that object returns True, indicating that processing 
is complete. The rationale for stopping at a wx.Dialog is to prevent the parent 
frame from being hit by spurious events coming from dialog boxes that are unre-
lated and unexpected. 

 Whether an event should propagate up the container hierarchy is a dynamic 
property of each event instance, although in practice the default values are almost 
always the ones used. By default, only instances of wx.CommandEvent, or any sub-
class thereof, propagate up the container hierarchy. All other events do not. 

 In listing 3.3, this is where the button click gets handled. Clicking the mouse 
on the wx.Button generates a wx.EVT_BUTTON type of command event. Since the 
wx.EVT_ BUTTON is a wx.CommandEvent, after wxPython fails to find a binding in the 
button object, it looks to the parent, which in this case is the panel. Since there is 
no matching binding in the panel, the panel’s parent, the frame, is checked next. 
Since the frame does have a matching binding, ProcessEvent() calls the appro-
priate function, in this case OnButtonClick(). 

 Step 5 also explains why the mouse enter and mouse leave events need to be 
bound to the button and not to the frame. Since mouse events are not a subclass 
of wx.CommandEvent, the mouse enter and mouse leave events do not propagate 
upward to the parent, thus wxPython cannot find a binding from the button’s 
mouse enter event to the frame. If there is a mouse enter or leave event bound to 
the frame, the event is triggered by wxPython when the mouse enters or leaves 
the frame as a whole.

 Command events are privileged in this way because they are intended to be 
higher level events indicating that the user is doing something in the applica-
tion space, rather than in the window system. The assumption is that window 
system type events are only of interest to the widget that initially receives them, 
while application-level events may be of interest higher up in the containment 
hierarchy. This rule does not prevent us from declaring the binding an event 
anywhere, no matter what object is being bound or what object defines the event 
handler. For example, even though the mouse click event binding is to the but-
ton object, the binding itself is defined inside the frame class, and calls a 
method of the frame class. In other words, low-level non-command events are 
typically used for things that happen to the widget or for some system level noti-
fication, such as a mouse click, key press, paint request, size, or move. On the 
other hand, command events, such as a mouse click on a button or a list box 
selection, are typically generated and emitted by the widget itself. For example, 



How are events processed by wxPython? 75
button command events are generated after a mouse down and mouse up event 
on the appropriate widget. 

 Finally, if the event is not handled after walking through the containment hier-
archy, ProcessEvent() is called on the wx.App object for the application. By 
default, this does nothing, however, you can add event bindings to your wx.App to 
route events in some non-standard way. For example, if you were writing a GUI
builder, you may want events in your builder window to propagate to your code 
window, even though they are both top-level windows. One way of doing that is to 
capture the events in the application object and pass them on to the code window. 

3.4.2 Using the Skip() method

The first handler function found for an event halts processing on that event unless
the Skip() method of the event is called before the handler returns. Calling 
Skip() allows additional handler bindings to be searched for, following the rules 
described in step 4 of 3.4.1, so parent classes and parent windows are searched just 
as if the first handler didn’t exist. In some cases, you want the event to continue pro-
cessing to allow the default behavior in the native widget to be executed along 
with your custom handler. Listing 3.4 displays a Skip() example that allows the 
program to respond to both a left button down event and a button click in the 
same button. 

#!/usr/bin/env python 

import wx 

class DoubleEventFrame(wx.Frame): 
    
    def __init__(self, parent, id): 
        wx.Frame.__init__(self, parent, id, 'Frame With Button', 
                size=(300, 100)) 
        self.panel = wx.Panel(self, -1)                               
        self.button = wx.Button(self.panel, -1, "Click Me", pos=(100, 15)) 
        self.Bind(wx.EVT_BUTTON, self.OnButtonClick,   
            self.button)                              
        self.button.Bind(wx.EVT_LEFT_DOWN, self.OnMouseDown)   
                                     
    def OnButtonClick(self, event): 
        self.panel.SetBackgroundColour('Green') 
        self.panel.Refresh() 
        

Listing 3.4 Response to a mouse down and button click at the same time

Binding the button 
click event

 b

Binding the left button down event  c



76 CHAPTER 3 
Working in an event-driven environment
    def OnMouseDown(self, event): 
        self.button.SetLabel("Again!") 
        event.Skip()        
    
if __name__ == '__main__':   
    app = wx.PySimpleApp() 
    frame = DoubleEventFrame(parent=None, id=-1) 
    frame.Show() 
    app.MainLoop() 

This line binds the button click event to the OnButtonClick() handler, which 
changes the background color of the frame. 
This line binds the left mouse button down event to the OnMouseDown() handler, 
which changes the label text of the button. Since left button down is not a com-
mand event, this event must be bound to the button rather than the frame. 

 When the user clicks the mouse over the button, the left button down event is 
generated first, by direct interaction with the underlying operating system. 
Under normal circumstances, the left button down event changes the state of the 
button such that the subsequent left button up event creates a wx.EVT_BUTTON click 
event. The DoubleEventFrame preserves this processing but only because of the 
Skip() statement in line d. Without the Skip() statement, the event processing 
algorithm finds the binding created in line c, and stops before the button can 
generate the wx.EVT_BUTTON event. With the Skip() call, event processing contin-
ues normally and the button click is created. 

In this example, there is nothing particularly special about the choice of 
wx.EVT_LEFT_DOWN and wx.EVT_BUTTON. The same situation occurs whenever one 
handler is found in the same event process as another. For instance, changing 
the wx.EVT_LEFT_DOWN event to another wx.EVT_BUTTON event has the same effect. 
A Skip() call is still required for both handlers to be processed. 

 As far as event handling is concerned, the default behavior is first come, first 
served. To enable further event processing, you must call Skip(). Although this 
choice is made on a case by case basis, remember that when binding to lower level 
events like a mouse up/down, wxPython expects to catch those events in order to 
generate further events. If you don’t call Skip() in that case, you run the risk of 
blocking expected behavior; for example, losing the visual notification that a but-
ton has been clicked. 

Skip() ensures 
more processing d

 b

 c



How can I create my own events? 77
3.5 What other event properties are contained  
in the application object? 

To manage the main event loop more directly, you can modify it using some 
wx.App methods. For instance, you may want to start processing the next available 
event on your own schedule, rather than waiting for wxPython to begin process-
ing. This feature is necessary if you are starting a long procedure, and don’t want 
the GUI to appear to freeze. You won’t need to use the methods in this section 
often, but it’s occasionally important to have these capabilities.

 Table 3.4 lists the wx.App methods you can use to modify the main loop.

Another method for managing events in a custom way is to create your own event 
types that match the specifics of your application’s data and widgets. In the next 
section, we will discuss how to create your own custom events.

3.6 How can I create my own events? 

Although a more advanced topic, this is the most obvious place to discuss custom 
events. On a first reading, you can probably skip it and come back later. In addi-
tion to different event classes supplied by wxPython, you can create your own cus-
tom events. You can do this in response to data updates or other changes that are 

Table 3.4 Event main loop methods of wx.App

Method Name Method Description 

Dispatch() Programmatically forces the next event in the event queue to be sent. Used 
by MainLoop(), for example, or in customized event loops. 

Pending() Returns True if there are pending events in the wxPython application  
event queue. 

Yield(onlyIfNeeded=False) Allows pending wxWidgets events to be dispatched in the middle of a long 
process that might otherwise block the windowing system from displaying or 
updating. Returns True if there were pending events that were processed, 
False otherwise.  
If True, the onlyIfNeeded parameter forces the process to yield if there 
are actually pending events. If the argument is False, then it is an error to 
call Yield recursively.  
There is also a global function wx.SafeYield(), which prevents the user 
from inputting data during the yield (by temporarily disabling user-input 
widgets). This prevents the user from doing something that would violate the 
state needed by the yielding task. 



78 CHAPTER 3 
Working in an event-driven environment
specific to your application, where event instances are required to carry your cus-
tom data. Another reason to create a custom event class could be to support a cus-
tom widget with its own unique command event type. In the next section, we’ll 
walk through an example of a custom widget. 

3.6.1 Defining a custom event for a custom widget

Figure 3.9 displays the widget, a panel containing two 
buttons. The custom event, TwoButtonEvent, is trig-
gered only after the user has clicked both buttons. The 
event contains a count of how many times the user has 
clicked on the widget. The idea here is to show how a 
new command event can be created out of smaller 
events—in this case, the left button down events on 
each individual button. 

 To create a custom event: 

1 Define the new event class as a subclass of the wxPython class wx.PyEvent. 
If you want the event to be treated like a command event, create the event 
as a subclass of wx.PyCommandEvent. Like many override situations in 
wxPython, the Py version of a class allows the wxWidgets system to see that 
a method written in Python can override the C++ method. 

2 Create an event type and a binder object to bind the event to specific objects.

3 Add code that can build instances of the new event, and introduce the 
instances into the event processing system using the ProcessEvent()
method. Once the event is created, you can create bindings and handler 
methods as you would with any other wxPython event. Listing 3.5 dis-
plays the code that manages the widget.

import wx 

class TwoButtonEvent(wx.PyCommandEvent):                
    def __init__(self, evtType, id):                    
        wx.PyCommandEvent.__init__(self, evtType, id)   
        self.clickCount = 0 
        
    def GetClickCount(self): 
        return self.clickCount 

Listing 3.5 Building a custom two-button event widget

Figure 3.9 The custom two-
button widget. Clicking both 
buttons in succession 
triggers a change in the 
window title. 

Defining  
the event

 b



How can I create my own events? 79
    def SetClickCount(self, count): 
        self.clickCount = count 

myEVT_TWO_BUTTON = wx.NewEventType()   
EVT_TWO_BUTTON = wx.PyEventBinder(myEVT_TWO_BUTTON, 1)   

class TwoButtonPanel(wx.Panel): 
    def __init__(self, parent, id=-1, leftText="Left", 
            rightText="Right"): 
        wx.Panel.__init__(self, parent, id) 
        self.leftButton = wx.Button(self, label=leftText) 
        self.rightButton = wx.Button(self, label=rightText, 
                                     pos=(100,0)) 
        self.leftClick = False 
        self.rightClick = False 
        self.clickCount = 0 
        self.leftButton.Bind(wx.EVT_LEFT_DOWN, self.OnLeftClick)     
        self.rightButton.Bind(wx.EVT_LEFT_DOWN, self.OnRightClick)   

    def OnLeftClick(self, event): 
        self.leftClick = True 
        self.OnClick() 
        event.Skip()   
    
    def OnRightClick(self, event): 
        self.rightClick = True 
        self.OnClick() 
        event.Skip()   
        
    def OnClick(self): 
        self.clickCount += 1 
        if self.leftClick and self.rightClick: 
            self.leftClick = False 
            self.rightClick = False 
            evt = TwoButtonEvent(myEVT_TWO_BUTTON, self.GetId())   
            evt.SetClickCount(self.clickCount)   
            self.GetEventHandler().ProcessEvent(evt)   

class CustomEventFrame(wx.Frame): 
    def __init__(self, parent, id): 
        wx.Frame.__init__(self, parent, id, 'Click Count: 0', 
                          size=(300, 100)) 
        panel = TwoButtonPanel(self) 
        self.Bind(EVT_TWO_BUTTON, self.OnTwoClick, panel)   
        
    def OnTwoClick(self, event):                                 
        self.SetTitle("Click Count: %s" % event.GetClickCount())   
        
if __name__ == '__main__': 
    app = wx.PySimpleApp() 

Generating an event type c

Creating a 
binder object d

 eBinding the lower level events

f Skip for more processing

g Skip for more processing

Creating the custom event  h

Adding data to the event

Processing 
the event i

Binding the custom event  j

Define an event 
handler function

 1)



80 CHAPTER 3 
Working in an event-driven environment
    frame = CustomEventFrame(parent=None, id=-1) 
    frame.Show() 
    app.MainLoop() 

The constructor for the event class declares it a subclass of wx.PyCommandEvent. 
The wx.PyEvent and wx.PyCommandEvent are wxPython-specific constructs you can 
use to create new event classes and should be used to bridge the gap between the 
C++ classes and your Python code. If you try to use wx.Event directly, wxPython 
cannot see the new methods of your subclass during event processing, because 
the C++ event handlers do not know about the Python subclass. If you use 
wx.PyEvent, a reference to the Python instances are saved and later passed to the 
event handler directly, allowing the Python parts of the code to be used. 
The global function wx.NewEventType() is analogous to wx.NewId(); it returns an 
event type ID that is guaranteed to be unique. This value uniquely identifies an 
event type for the event processing system. 
The binder object is created using the new event type as a parameter. The second 
parameter is between 0 and 2, and represents the number of wxId identifiers 
expected by the wx.EvtHandler.Bind() method to determine which object is the 
source of the event. In this case, there is one ID representing the widget that gen-
erates the command event. 
To create the new higher level command event, the program must respond to 
specific user events, for instance, left mouse down on each button object. 
Depending on which display button is clicked, the events are bound to the 
OnLeftClick() and OnRightClick() methods. The handlers set a Boolean, indi-
cating that the button has been clicked. 
The Skip() call in this case allows for further processing after the event handler is 
complete. In this specific case, the new event does not require the skip call; it’s 
dispatched before the handler method completes. However, all left down events 
need to call Skip() so that the handler does not block the eventual button click 
event. The button click event is not being handled by this program, but wxPython 
uses it to draw the button properly during a click. If it’s blocked, the user does not 
get the expected feedback from a button push.

 We chose not to bind to the wx.EVT_BUTTON event to show you what happens if 
you don’t call Skip() in cases like this. To see the difference in behavior between 
these two buttons, comment out either line f or g. 
If both left and right buttons are clicked, the code creates an instance of the new 
event. The event type and the ID of the two-button widget are the parameters of 
the constructor. Typically, a single event class can have more than one event type, 
although that’s not the case in this example. 

 b

 c

 d

 e

 f g

 h



Summary 81
The ProcessEvent() call injects the new event into the event system for process-
ing, as described in section 3.4.1. The GetEventHandler() call returns an instance 
of wx.EvtHandler. In most cases, the returned instance is the widget object itself, 
but if other wx.EvtHandler() methods have been pushed on to the event handler 
stack, the top item in the stack is returned instead. 
The custom event is bound just like any other event, in this case using the binder 
object created in line d. 
The event handler function for this example changes the title of the window to 
display the new click count from the event. 

At this point, your custom event can do anything pre-existing wxPython events 
can do, such as creating different widgets that trigger the same event. Creating 
events is an important part of the customization of wxPython. 

3.7 Summary

■ A wxPython application uses an event-based flow of control. Most of the 
application’s time is spent in a main loop, waiting for events and dispatch-
ing them to the appropriate handler function. 

■ All wxPython events are subclasses of the class wx.Event. Lower level events, 
such as mouse clicks, are used to build up higher order events, such as but-
ton clicks or menu item selections. These higher order events that result 
from wxPython widgets are subclasses of the class wx.CommandEvent. Most 
event classes are further classified by an event type field which differenti-
ates between events that may all use the same data set. 

■ To capture the relationship between events and functions, wxPython uses 
instances of the class wx.PyEventBinder. There are many predefined 
instances of this class, each corresponding to a specific event type. Every 
wxPython widget is a subclass of wx.EvtHandler. The wx.EvtHandler class 
has a method Bind(), which is usually called at initialization with an event 
binder instance and a handler function as arguments. Depending on the 
type of event, other wxPython object IDs may also need to be passed to 
the Bind() call. 

■ Events are generally sent to the object that generated them to search for a 
binding object which binds it to a handler. If the event is a command event, 
the event propagates upward through the container hierarchy until a wid-
get is found that has a handler for the event type. Once an event handler is 
found, processing on that event stops, unless the handler calls the Skip()
method of the event. You can use the Skip() method to allow multiple 

 i

 j

 1)



82 CHAPTER 3 
Working in an event-driven environment
handlers to respond to a single event, or to verify that all the default behav-
ior for the event occurs. Certain aspects of the main loop can be controlled 
using methods of wx.App. 

■ Custom events can be created in wxPython, and emitted as part of the 
behavior of a custom widget. Custom events are subclasses of wx.PyEvent, 
custom command events are subclasses of wx.PyCommandEvent. To create a 
custom event, the new class must be defined, and a binder object must be 
created for each event type managed by the new class. Finally, the event 
must be generated somewhere in the system by passing a new instance to 
the event handler system via the ProcessEvent() method. 

In this chapter, we’ve covered the application objects that are most important to 
your wxPython application. In the next chapter, we’ll show you a useful tool, writ-
ten using wxPython, that will also assist you with wxPython development work.



Making wxPython easier 
to handle with PyCrust
This chapter covers
■ Interacting with a wxPython program
■ Reviewing the features of PyCrust
■ Wrapping PyCrust around a wxPython application
■ Working with PyCrust GUI and support modules
■ Interacting with modules from PyCrust in 

wxPython programs
83



84 CHAPTER 4 
Making wxPython easier to handle with PyCrust
PyCrust is a graphical shell program, written in wxPython, that you can use to 
help analyze your wxPython programs. 

 Why call it PyCrust? When Patrick O’Brien created an interactive Python shell
using wxPython, the most obvious name—PyShell—was already in use. PyCrust 
was chosen instead. 

 PyCrust is part of a larger Py package that includes additional programs with 
related functionality including PyFilling, PyAlaMode, PyAlaCarte, and PyShell. 
The common theme of these programs is the combination of a graphical, point-
and-click environment, and wxPython’s interactive and introspective runtime 
features. While each of the Py programs leverage this combination, PyCrust rep-
resents the most complete realization of this theme. 

 In this chapter, we’ll show you what PyCrust and its related programs do, and 
how you can use them to make your work with wxPython flow more smoothly. 
We’ll start by talking about ordinary Python shells, then PyCrust specifically, and 
finally, we’ll cover the remaining the programs in the Py package.

4.1 How do I interact with a wxPython program? 

A compelling feature of Python compared to other programming languages is 
that it can be used in two ways: you can use it to run existing programs written in 
the Python language, or you can run Python interactively from a command 
prompt. Running Python interactively is similar to having a conversation with 
the Python interpreter. You type in a line of code and hit Enter. Python exe-
cutes the code, responds, and prompts you for the next line. It is this interactive 
mode that sets Python apart from languages such as C++, Visual Basic, and 
Perl. Because of the Python interpreter, there is no need to write an entire pro-
gram in wxPython to do simple things. In fact, you can even use interactive 
Python as your desktop calculator.

 In listing 4.1 we’ve started Python from the command line and entered some 
mathematical calculations. Python begins by displaying a few lines of informa-
tion, followed by its primary prompt (>>>). When you enter something that 
requires additional lines of code, Python displays its secondary prompt (...).

$ Python 
Python 2.3.3 (#1, Jan 25 2004, 11:06:18) 
[GCC 3.2.2 (Mandrake Linux 9.1 3.2.2-3mdk)] on linux2 
Type "help", "copyright", "credits" or "license" for more information. 
>>> 2 + 2 

Listing 4.1 A sample Python interactive session



How do I interact with a wxPython program? 85
4 
>>> 7 * 6 
42 
>>> 5 ** 3 
125 
>>> for n in range(5): 
...     print n * 9 
... 
0 
9 
18 
27 
36 
>>> 

Interactive Python is not only a good desktop calculator, it is also a great learning 
tool, because it provides immediate feedback. When in doubt, you can simply 
launch Python, type in a few lines of throwaway code, see how Python reacts, and 
adjust your main code accordingly. One of the best ways to learn Python, or to 
learn how existing Python code works, is to try it interactively.

PyCrust sets the standard for a Python shell

When you work with Python interactively, you work in an environment that 
is called the Python shell which is similar to other shell environments, such as 
the DOS window on Microsoft platforms, or the bash command line on Unix-
based systems. 

 The most basic of all the Python shells is the one in listing 4.1, which you see 
when you launch Python from the command line. While it is a useful shell, it is 
strictly text-based, rather than graphical, and it doesn’t provide all the shortcuts or 
helpful hints that Python is capable of providing. Several graphical Python shells 
have been developed that provide this additional functionality. The most well-
known is IDLE, the Integrated DeveLopment Environment that is a standard part 
of the Python distribution. IDLE’s shell, as seen in figure 4.1, looks much like the 
command line Python shell, but has additional graphical features such as calltips. 

 Other Python development tools, such as PythonWin and Boa Constructor, 
include graphical Python shells similar to the one in IDLE. It was the existence of 
all these shells that prompted the creation of PyCrust. While each tool’s shell had 
some useful features, such as command recall, autocompletion, and calltips, no 
tool had a complete set of all the features. One of the goals of PyCrust was to sup-
port a complete set of all the existing Python shell features. 



86 CHAPTER 4 
Making wxPython easier to handle with PyCrust
The other motivation for creating PyCrust was that tools written using one GUI
toolkit often cannot work with code from a different GUI toolkit. For example, IDLE
is written using Tkinter, not wxPython. Until recently, if you tried to import and 
use a wxPython module from within IDLE’s Python shell, you would be caught in a 
conflict between the event loop for wxPython and the event loop for Tkinter, 
resulting in a frozen or crashed program. 

 In effect, the two toolkits fought to have control over the event loop. So if 
you want runtime introspection features that work with wxPython modules, 
your Python shell must be written using wxPython. Since there wasn’t an existing 
Python shell that supported a complete feature set, PyCrust was created to fill 
that need. 

4.2 What are the useful features of PyCrust? 

Now we will look at some of the shell features that PyCrust provides. The PyCrust 
shell looks familiar because it displays the same information lines and uses the 
same prompts as the command line Python shell. Figure 4.2 displays an opening 
PyCrust screen. 

 You’ll notice that the PyCrust frame, which contains a wx.SplitterWindow con-
trol, is divided into two sections: the top section looks like the regular Python 
shell, the bottom section contains a Notebook control that includes a variety of 
tabs with the default tab displaying information about the current namespace. 
The top section, the PyCrust shell, has several useful features, discussed in the 
next few sections. 

Figure 4.1 IDLE’s shell provides calltips for functions and methods



What are the useful features of PyCrust? 87
4.2.1 Autocompletion

Autocompletion occurs when you type in the name of an object followed by the 
dot operator. PyCrust displays an alphabetical listing of all known attributes for 
that particular object. As you enter additional letters, the highlighted selection in 
the list changes to match the letters you have entered. If the item you want is 
highlighted, press the Tab key and PyCrust fills in the rest of the attribute name 
for you. 

 In figure 4.3, PyCrust is displaying a list of attributes for a string object. This 
autocompletion list includes all the properties and methods of the object. 

Figure 4.2 Launching PyCrust reveals a shell and tabbed notebook interface. 



88 CHAPTER 4 
Making wxPython easier to handle with PyCrust
4.2.2 Calltips and parameter defaults 

When you enter a left parenthesis after the name of a callable object, PyCrust 
displays a calltip window (see figure 4.4) containing information about the argu-
ments that are supplied to the callable, as well as the docstrings for the callable, 
if defined. 

 A callable object can be a function, method, built-in, or class. All of these can be 
defined to accept arguments, and may have docstrings that provide information 
about what the item does, and what kind of value is returned. Displaying this 
information in a temporary window positioned directly above or below the caret 
eliminates the need to refer to the documentation. If you know how to use the 
callable object, ignore the calltip and continue typing.

 PyCrust fills in default parameters for the call when you enter the left paren-
thesis in the Python shell. As this is happening, PyCrust automatically selects the 

Figure 4.3 The autocompletion feature displays an object’s attributes. 



What are the useful features of PyCrust? 89
additional text that was created, and subsequent keystrokes are replaced. To 
retain these parameters, press any of the caret movement keys (such as the arrow 
keys), and the text is unselected and available for your modifications. 

4.2.3 Syntax highlighting 

As you enter code into the shell, PyCrust changes the color of the text depend-
ing on its significance. For example, Python keywords appear in one color, lit-
eral string values in another, and comments in yet another. This provides a 
visual confirmation that you haven’t missed any trailing quotes, or misspelled 
a Python keyword.

 Many of the features of PyCrust are made possible by a very powerful text con-
trol distributed with wxPython. The wx.stc.StyledTextCtrl is a wxPython wrapper 
of the Scintilla source code editing component developed by Neil Hodgson. Scin-
tilla (www.scintilla.org) is used by a variety of source code editing applications,

Figure 4.4 The calltip feature displays information about a callable object. 



90 CHAPTER 4 
Making wxPython easier to handle with PyCrust
including the demo program shipped with wxPython. Although it was a struggle 
to make a source code editor behave like a wxPython shell, it would have been 
nearly impossible to create PyCrust without Scintilla.

4.2.4 Python help 

PyCrust provides full support for Python’s help functionality. Python’s help func-
tion displays information about almost all aspects of Python, as displayed in fig-
ure 4.5. 

Figure 4.5 Using Python’s help function from within PyCrust



What are the useful features of PyCrust? 91
Python’s help function provides an additional prompt (help). After using help, 
you can exit the help mode by entering quit at the help prompt, and return to the 
regular Python prompt. 

4.2.5 Command recall 

There are many ways to avoid typing within the PyCrust shell. Most of them 
involve capturing something you have previously entered, modifying it if neces-
sary, and sending it to the Python interpreter. 

 For example, PyCrust maintains a history of all the commands you have 
entered in the current session. You can recall any previously entered Python com-
mands (single-line or multi-line) from the command history. Table 4.1 displays a 
list of keyboard shortcuts that relate to this functionality. 

As you can see, there are separate commands for retrieving and inserting old 
commands, distinguished by how PyCrust handles the text entered at the current 
wxPython prompt. To replace what you have entered, use one of the shortcuts 
that retrieves a history item. To insert an old command at the caret, use one of the 
shortcuts that inserts a history item. 

 Inserting a line into the middle of a multi-line command works differently 
than inserting into a single-line command. To insert a line into a multi-line com-
mand, you can’t simply press the Enter key, because that sends the current 
command to the Python interpreter. Instead, press Ctrl+Enter to insert a break 
in the current line. If you are at the end of the line, a blank line is inserted after 

Table 4.1 Keyboard shortcuts related to command recall in the PyCrust shell

Key Combination Result 

Ctrl+Up Arrow Retrieve previous history item 

Alt+P Retrieve previous history item 

Ctrl+Down Arrow Retrieve next history item.

Alt+N Retrieve next history item 

Shift+Up Arrow Insert previous history item

Shift+Down Arrow Insert next history item

F8 Command-completion of history item. (Type a few characters of a previous 
command and press F8) 

Ctrl+Enter Insert new line into multiline command 



92 CHAPTER 4 
Making wxPython easier to handle with PyCrust
the current line. This process is similar to the way you would cut and paste text in 
a regular text editor. 

 The final method of recalling a command is to simply move the caret to the com-
mand that you want to recall, and press Enter. PyCrust copies that command to the 
current Python prompt, and repositions the caret at the end. You can then modify 
the command, or press Enter again and submit the command to the interpreter.

 These shortcuts allow you to develop code incrementally, testing your creation 
every step of the way. For example, you can define a new Python class, create an 
instance of that class, and see how it behaves. Then you can go back to the class 
definition, add more methods or edit the existing methods, and create a new 
instance. By repeating this as often as you need, you can develop your class defi-
nition to the point that it is good enough to cut and paste into your program’s 
source code. Which brings us to our next feature. 

4.2.6 Cut and paste 

You may often want to reuse code developed within the shell without having to 
type it again. At other times, you may find sample code, perhaps from an online 
tutorial, and you’d like to apply it to a Python shell. PyCrust provides a couple of 
simple cutting and pasting options, listed in table 4.2. 

Another feature of pasting is that PyCrust recognizes and automatically strips out 
the standard Python prompts from any code that is pasted into the PyCrust shell. 
This makes it easy to copy example code from a tutorial or email message, paste it 
into PyCrust, and try it without having to do manual cleanup.

 At times, when you copy code you may want to remove the PyCrust prompts, 
such as when copying the code into your source files. Other times you’ll want to 
retain the prompts, such as when you are copying examples into a document, or 

Table 4.2 Keyboard shortcuts related to cutting and pasting in the PyCrust shell

Key Combination Result 

Ctrl+C Copy selected text, removing prompts 

Ctrl+Shift+C Copy selected text, retaining prompts 

Ctrl+X Cut selected text 

Ctrl+V Paste from clipboard 

Ctrl+Shift+V Paste and run multiple commands from clipboard 



What are the useful features of PyCrust? 93
posting to a newsgroup. PyCrust provides both options when copying text from 
the shell. 

4.2.7 Standard shell environment 

As much as possible within the wxPython environment, PyCrust behaves the same 
as the command line Python shell. This includes some unusual situations, such as 
pickling instances of classes that are defined within a shell session. One area 
where PyCrust falls short in its ability to duplicate the command line functional-
ity is keyboard interrupts. Once Python code has been entered into the PyCrust 
shell, there is no way to interrupt the execution of the code. For example, suppose 
you coded an infinite loop in PyCrust, as in the following: 

>>> while True: 
...     print "Hello" 
... 

After you press Enter, and the code is sent to the Python interpreter, PyCrust 
stops responding. To interrupt the infinite loop, shut down the PyCrust program. 
This shortcoming of PyCrust is in contrast to the command line Python shell, that 
retains the ability to handle a keyboard interrupt (Ctrl+C). From the command 
line Python shell, you would see the following behavior: 

>>> while True: 
...     print "Hello" 
... 
Hello 
Hello 
Hello 
Hello 
Hello 
Hello 
Hello 
Hello 
Hello 
Hello 
Hello 
Traceback (most recent call last): 
  File "<stdin>", line 2, in ? 
KeyboardInterrupt 
>>> 

The nature of event handling in a GUI environment has made it extremely diffi-
cult to devise a solution that allows PyCrust to break out of an infinite loop, or 
interrupt any long-running sequence of code entered at the shell prompt. A 
future version of PyCrust may provide a solution to this. In the meantime, keep 



94 CHAPTER 4 
Making wxPython easier to handle with PyCrust
this behavior in mind. Fortunately, this is the only known difference between 
PyCrust and the standard command shell. In all other regards, the PyCrust shell 
works exactly the same as the command line Python shell. 

4.2.8 Dynamic updating 

All of PyCrust’s shell features are updated dynamically as you run PyCrust, which 
means that features such as autocompletion and calltips are available even on 
objects defined at the shell prompt. For example, take a look at the sessions shown 
in figures 4.6 and 4.7 where we have defined and made use of a class. 

 In figure 4.6, PyCrust displays the autocompletion options available for this 
new class.

 In figure 4.7, PyCrust displays a calltip for the newly defined method of 
the class. 

Figure 4.6 PyCrust’s autocompletion information is dynamically generated. 



What do the PyCrust notebook tabs do? 95
This illustrates the way that PyCrust leverages the dynamic runtime capabilities 
of Python, which would be impossible in other programming languages that are 
statically typed and compiled. 

4.3 What do the PyCrust notebook tabs do? 

On the lower half of the PyCrust interface is a notebook control that includes sev-
eral tabs with useful information. The tab you see when PyCrust begins is the 
Namespace tab. 

4.3.1 Namespace tab 
The Namespace tab, displayed in figure 4.8, is split into two parts, again using 
the wx.SplitterWindow control. The left-hand side contains a tree control that 
displays the current namespace, while the right-hand side displays details about 
the object currently selected in the namespace tree. 

Figure 4.7 PyCrust’s calltip information is also dynamically generated 



96 CHAPTER 4 
Making wxPython easier to handle with PyCrust
The namespace tree presents a hierarchical view of all the objects in the current 
namespace. These are the items that would be returned if you ran the locals()
built-in Python function. In figure 4.8, we’ve imported the wx package and selected
it in the namespace tree. The right-hand side displays the name of the selected 
item, its type, and its current value. If the object has source code associated with it, 
PyCrust displays that also. In this case, wx is a wxPython package, so PyCrust dis-
plays the source code from the __init__.py file that resides in the wx directory. 

 The first line of the display provides a fully qualified object name that you can 
cut and paste into the PyCrust shell or into your application source code. For 
example, if you import the locale module and drill down into it you can reach 
the items stored within an encoding_alias dictionary attribute of the locale mod-
ule. Once you select one of these items, you can cut and paste its displayed name 
directly into the PyCrust shell, as in the following: 

Figure 4.8 PyCrust’s namespace tree allows one to drill down into objects and inspect  
their attributes 



What do the PyCrust notebook tabs do? 97
>>> import locale 
>>> locale.encoding_alias['en'] 
'ISO8859-1' 
>>> 

In this case, PyCrust provided us with a fully qualified name (locale. 
encoding_alias['en']) that used Python’s index notation (['en']) to reference 
the specified item in the encoding_alias dictionary. This mechanism also works 
for lists. If you find something in the namespace tree that you want to reference in 
your code, PyCrust gives you the exact syntax to fulfill the task.

4.3.2 Display tab 
The Display tab displays a pretty print view of an object. PyCrust has a built-in 
function, pp(), that uses Python’s pretty print module (pprint) to produce a 
nicely formatted view of any wxPython object. However, instead of requiring you 
to explicitly import and use pprint repeatedly, the information in the Display tab 
is updated every time the displayed object is updated. 

 For example, to see how the contents of a list change as you manipulate it in the 
shell, you can make the Display tab the current tab, use the pp() function within 
the shell to display your list object, then run the code that modifies your list. When-
ever the list changes, the changes are immediately visible in the Display tab. 

4.3.3 Calltip tab 
The Calltip tab displays the contents of the most recent calltip in the Python 
shell. If you are working with a callable that requires a large number of parame-
ters to be passed to it, select the Calltip tab. When using the wxPython package 
itself, there are a lot of classes that can have many methods, which may take many 
parameters. For example, to create a wx.Button, you can supply up to eight 
parameters, one of which is required, while the other seven have default values. 
The Calltip tab displays the following details about the wx.Button constructor: 

__init__(self, Window parent, int id=-1, String label=EmptyString, 
    Point pos=DefaultPosition, Size size=DefaultSize, 
    long style=0, Validator validator=DefaultValidator, 
    String name=ButtonNameStr) -> Button

Create and show a button. The preferred way to create standard buttons  
is to use a standard ID and an empty label. In this case wxWigets will 
automatically use a stock label that corresponds to the ID given. In 
addition, the button will be decorated with stock icons under GTK+2.

Because the wxPython classes are actually wrappers for C++ classes, the calltip 
information is based entirely on the docstrings for the class. These have been 



98 CHAPTER 4 
Making wxPython easier to handle with PyCrust
generated to show both the parameters that can be passed, and the type (int, 
string, point, etc.) required by the underlying C++ class. That’s why the wx.But-
ton constructor calltip appears the way it does. For objects defined completely in 
the Python language, PyCrust inspects the object to determine the nature of its 
arguments. 

4.3.4 Session tab 
The Session tab is a simple text control that lists all the commands that are 
entered in the current shell session. This makes it easy to cut and paste com-
mands for use elsewhere, without having to remove the responses that are 
returned from the wxPython interpreter.

4.3.5 Dispatcher tab 
PyCrust includes a module named dispatcher that provides a mechanism to 
loosely couple objects in an application. PyCrust uses this dispatcher to keep 
aspects of its interface updated, primarily when commands are sent from the 
shell to the Python interpreter. The Dispatcher tab (figure 4.9) lists information 
about signals routed through its dispatching mechanism. It’s primarily useful 
when working with PyCrust itself. 

 The Dispatcher tab also illustrates how to add another tab to a wx.Notebook
control. The source code for the text control that appears on the Dispatcher tab 
illustrates how the dispatcher module can be used, as in the following: 

class DispatcherListing(wx.TextCtrl): 
    """Text control containing all dispatches for session.""" 

    def __init__(self, parent=None, id=-1): 
        style = (wx.TE_MULTILINE | wx.TE_READONLY | 
                 wx.TE_RICH2 | wx.TE_DONTWRAP) 
        wx.TextCtrl.__init__(self, parent, id, style=style) 
        dispatcher.connect(receiver=self.spy) 

    def spy(self, signal, sender): 
        """Receiver for Any signal from Any sender.""" 
        text = '%r from %s' % (signal, sender) 
        self.SetInsertionPointEnd() 
        start, end = self.GetSelection() 
        if start != end: 
            self.SetSelection(0, 0) 
        self.AppendText(text + '\n') 

Now that we’ve seen what PyCrust can do as a standalone Python shell and 
namespace inspector, let’s take a look at some of the ways that you can use 
PyCrust in your own wxPython programs. 



How can I wrap PyCrust 99
around my wxPython application?
4.4 How can I wrap PyCrust  
around my wxPython application? 

Let’s assume that you’ve used wxPython to create a program, and your program is 
working, and now you’d like a better understanding of exactly how it works. 
You’ve seen the PyCrust features listed earlier in this chapter, and they look like 
they could be very useful in gaining insights into the functioning of your pro-
gram. But you’d rather not change your program just to be able to use PyCrust. 
What do you do? 

 By passing the name of your program to the PyWrap utility, you can start your 
program with a PyCrust shell wrapped around it, without changing any of your 
program. Listing 4.2 displays a program, spare.py, that we are preparing to 
wrap with PyCrust. 

 

Figure 4.9 Dispatcher keeps PyCrust updated as commands are sent to the Python interpreter. 



100 CHAPTER 4 
Making wxPython easier to handle with PyCrust
#!/usr/bin/env python 

"""Spare.py is a starting point for simple wxPython programs.""" 

import wx 

class Frame(wx.Frame): 
    pass 

class App(wx.App): 

    def OnInit(self): 
        self.frame = Frame(parent=None, id=-1, title='Spare') 
        self.frame.Show() 
        self.SetTopWindow(self.frame) 
        return True 

if __name__ == '__main__': 
    app = App() 
    app.MainLoop() 

To run this program with PyCrust wrapped around it, pass the name of the pro-
gram to PyWrap from the directory where spare.py resides. On Linux, the com-
mand line looks like this: 

$ pywrap spare.py 

When started, PyWrap attempts to import the module included in the com-
mand line. PyWrap then looks inside that module for a wx.App subclass, and 
creates an instance of that class. After that, PyWrap creates a wx.py.crust.Crust-
Frame window with a shell, exposes the application object to the PyCrust name-
space tree, and starts the wxPython event loop. 

 The complete source code for PyWrap is provided in listing 4.3. This is an 
example of how a great deal of functionality can be added to your program with 
just a small amount of additional code

"""PyWrap is a command line utility that runs a python 
program with additional runtime tools, such as PyCrust.""" 

__author__ = "Patrick K. O'Brien <pobrien@orbtech.com>" 
__cvsid__ = "$Id: PyCrust.txt,v 1.15 2005/03/29 23:39:27 robind Exp $" 

Listing 4.2 The spare.py program being prepared for a PyCrust wrapper

Listing 4.3 PyWrap.py source code



How can I wrap PyCrust 101
around my wxPython application?
__revision__ = "$Revision: 1.15 $"[11:-2] 

import os 
import sys 
import wx 
from wx.py.crust import CrustFrame 

def wrap(app): 
    wx.InitAllImageHandlers() 
    frame = CrustFrame() 
    frame.SetSize((750, 525)) 
    frame.Show(True) 
    frame.shell.interp.locals['app'] = app 
    app.MainLoop() 

def main(modulename=None): 
    sys.path.insert(0, os.curdir) 
    if not modulename: 
        if len(sys.argv) < 2: 
            print "Please specify a module name." 
            raise SystemExit 
        modulename = sys.argv[1] 
        if modulename.endswith('.py'): 
            modulename = modulename[:-3] 
    module = __import__(modulename) 
    # Find the App class. 
    App = None 
    d = module.__dict__ 
    for item in d.keys(): 
        try: 
            if issubclass(d[item], wx.App): 
                App = d[item] 
        except (NameError, TypeError): 
            pass 
    if App is None: 
        print "No App class was found." 
        raise SystemExit 
    app = App() 
    wrap(app) 

if __name__ == '__main__': 
    main() 

After running the PyWrap command, both the simple frame from spare.py and a 
PyCrust frame are displayed. 



102 CHAPTER 4 
Making wxPython easier to handle with PyCrust
PyCrust in action
Now let’s see what we can do with the spare.py application frame from within the 
PyCrust shell. Figure 4.10 displays the result. We’ll start by importing wx and add-
ing a panel to our frame: 

>>> import wx 
>>> app.frame.panel = wx.Panel(parent=app.frame) 
>>> app.frame.panel.SetBackgroundColour('White') 
True 
>>> 

Figure 4.10 Using PyWrap to enhance a wxPython program at runtime 



How can I wrap PyCrust 103
around my wxPython application?
The panel that was added to the frame began with a default silver color, then it was 
changed to white. However, setting the panel background color doesn’t immedi-
ately change its appearance. Instead, something needs to trigger an event that 
causes the panel to repaint itself, using its new background color property. One 
way to trigger such an event is to ask the panel to refresh itself: 

>>> app.frame.panel.Refresh() 

Now a white panel is displayed, and we’re one step closer to understanding the 
details of how wxPython actually works.

 Next, let’s add a status bar: 
>>> app.frame.statusbar = app.frame.CreateStatusBar(number=3) 
>>> app.frame.statusbar.SetStatusText("Left", 0) 
>>> app.frame.statusbar.SetStatusText("Center", 1) 
>>> app.frame.statusbar.SetStatusText("Right", 2) 

Notice how the status bar appears within the frame, without changing the outer-
most dimensions of the frame. Also notice that the text added to each of the three 
status bar sections appears immediately, and doesn’t require a refresh. Now let’s 
add a menu and a menubar: 

>>> app.frame.menubar = wx.MenuBar() 
>>> menu = wx.Menu() 
>>> app.frame.menubar.Append(menu, "Primary") 
True 
>>> app.frame.SetMenuBar(app.frame.menubar) 
>>> menu.Append(wx.NewId(), "One", "First menu item") 
<wx.core.MenuItem; proxy of C++ wxMenuItem instance at 

_d8043d08_p_wxMenuItem> 
>>> menu.Append(wx.NewId(), "Two", "Second menu item") 
<wx.core.MenuItem; proxy of C++ wxMenuItem instance at 

_40a83e08_p_wxMenuItem> 
>>> 

As you manipulate your own wxPython objects in the PyCrust shell, be aware of 
the impact that the changes have on your running program. Try to answer the 
following questions. When does the menu actually appear within the frame? What 
menu attributes can you change while the program is running? Can you add 
more menu items? Can you remove them? Can you disable them? Exploring all 
your options interactively should help you better understand wxPython, and pro-
vide you more confidence when it comes to writing your actual program code.

 Now that we’ve spent most of the chapter discussing PyCrust itself, we’re ready 
to take a walk through the rest of the Py package components.



104 CHAPTER 4 
Making wxPython easier to handle with PyCrust
4.5 What else is in the Py package? 

Under the covers, all of the PyCrust programs simply make use of the Python 
modules included in the Py package, such as shell.py, crust.py, introspect.py, 
and interpreter.py. These programs are the building blocks that are used to 
make PyCrust, which you can use separately or together.

 Think of PyCrust as representing one way of assembling the bits and pieces of 
functionality contained within the Py package. PyShell is another way, and PyAla-
Mode is a third. In each of these cases, the majority of the underlying code is 
common to all of them, with only the outermost containers varying. So think of 
the Py package as a library of modules that you can assemble as you like, wherever 
you want to display a wxPython shell, a code editor, or runtime introspection 
information within your program. 

 Within the Py package, there is a clear separation between modules that pro-
vide user interface functionality and those that do not. That separation makes it 
much easier to use these modules in your own programs. The modules that begin 
with Py are all end-user GUI programs, such as PyCrust, PyShell, PyAlaMode, and 
PyAlaCarte. You won’t want to import any of these in your programs. The next 
section describes the end-user modules. 

4.5.1 Working with the GUI programs

The user-level programs are packages that support modules in different ways. 
Table 4.3 displays a description of the user-level programs.

Table 4.3 End-user programs included in the Py package

Program Description 

PyAlaCarte Simple source code editor. Edits one file at a time. 

PyAlaMode Multi-file source code editor. Each file is displayed in a separate notebook tab. The first 
tab contains a PyCrust splitter window. 

PyCrust Combination of a wxPython shell with a notebook of tabs displaying a variety of runtime 
information, including a namespace tree viewer. 

PyFilling Simple namespace tree viewer. This program isn’t terribly useful on its own. It exists 
simply as another example of how to use the underlying library. 

PyShell Simple wxPython shell interface, without the additional notebook that appears in PyCrust. 
Functionally, the wxPython shells in PyShell and PyCrust are identical. 

PyWrap Command-line utility that runs an existing wxPython program alongside a PyCrust frame, 
allowing you to manipulate the application within the PyCrust shell. 



What else is in the Py package? 105
4.5.2 Working with the support modules

The support modules provide basic functionality for the end-user programs, 
and can also be imported into your own programs. These modules are essen-
tially the building blocks used to create the user-level Py programs. Table 4.4 
displays a listing of the support modules that are part of the Py package, along 
with a brief description. 

Table 4.4 The Py support modules 

Module Description

buffer Supports file editing

crust Contains GUI elements unique to the PyCrust application program

dispatcher Provides global signal dispatching services

document The document module contains a very simple Document class, which is a  
thin wrapper around a file. A document keeps track of various file attributes,  
such as its name and path, and provides read() and write() methods.  
The Buffer class delegates these low-level reading and writing operations to a 
Document instance.

editor Contains all of the GUI editing components that appear in the PyAlaCarte and 
PyAlaMode programs

editwindow The editwindow module contains a single EditWindow class. This class inherits 
from the wx.stc.StyledTextCtrl (STC) and provides all the features that are 
common between the three main uses of the STC within the Py package: as a  Python 
shell, as a source code editor, and as a read-only source code displayer. 

filling Contains all the GUI controls that allow the user to navigate the namespaces of objects 
and display runtime information about those objects

frame The frame module defines a Frame class that is the base class for all the other 
frames within the Py package. It has a status bar, icon, and menu that are used  
by all the other frame classes. The menu items continuously update themselves,  
based on the current status and context. That way, the menus can be the same  
across all the programs, and menu items that aren’t valid for the current situation are 
simply disabled. 

images The images module contains the pie icon used by the various Py programs

interpreter The Interpreter class is responsible for providing autocompletion lists, calltip 
information, and the keycodes that will trigger the autocompletion feature). 

introspect Provides a variety of introspective-type support functions for things like calltips and 
command autocompletion

continued on next page



106 CHAPTER 4 
Making wxPython easier to handle with PyCrust
In the sections that follow, we’ll discuss the more complex modules.

The buffer module 
The buffer module contains a Buffer class that supports the normal editing of a 
file. A buffer has methods such as new(), open(), hasChanged(), save(), and 
saveAs(). The file operated on by a buffer is represented by an instance of the Doc-
ument class defined in the document module. The actual editing of the file con-
tents takes place via one or more instances of the Editor class defined in the 
editor module. The buffer acts as a middleman between one or more editors and 
the actual physical file. 

 A unique twist to the Buffer class is that each buffer instance has assigned to it 
its own Python interpreter instance. This feature allows buffers to be used in 
applications that need to provide autocompletion, calltips, and other runtime 
help while editing Python source code files. Each buffer interpreter is completely 
independent, and is updated when the buffer’s updateNamespace() method is 
called. Listing 4.4 displays the source code for this method. 

def updateNamespace(self): 
    """Update the namespace for autocompletion and calltips. 

    Return True if updated, False if there was an error.""" 
    if not self.interp or not hasattr(self.editor, 'getText'): 
        return False 
    syspath = sys.path 
    sys.path = self.syspath 
    text = self.editor.getText() 
    text = text.replace('\r\n', '\n') 
    text = text.replace('\r', '\n') 
    name = self.modulename or self.name 
    module = imp.new_module(name) 

pseudo The pseudo module defines file-like classes that allow the Interpreter class to 
redirect stdin, stdout, and stderr

shell Contains GUI elements that define the Python shell interface that appears in PyCrust, 
PyShell, and PyAlaMode

version This final module is the simplest of them all. It contains a single string variable, named 
VERSION, that represents the current version or release of Py as a whole. 

Listing 4.4 The update namespace buffer method

Table 4.4 The Py support modules (continued)

Module Description



What else is in the Py package? 107
    newspace = module.__dict__.copy() 
    try: 
        try: 
            code = compile(text, name, 'exec') 
        except: 
            raise 
        try: 
            exec code in newspace 
        except: 
            raise 
        else: 
            # No problems, so update the namespace. 
            self.interp.locals.clear() 
            self.interp.locals.update(newspace) 
            return True 
    finally: 
        sys.path = syspath 
        for m in sys.modules.keys(): 
            if m not in self.modules: 
                del sys.modules[m] 

This method compiles the text in the editor using Python’s built-in compile
method, then executes it using the keyword exec. If the compilation is successful, 
the result places a number of variables into the newspace namespace. By reset-
ting the interpreter’s local namespace with the result of the execution, the inter-
preter is provided with access to any classes, methods, or variables defined in the 
editor’s buffer.

The crust module 
The crust module contains the six GUI elements that are unique to the PyCrust 
application program. The most general class is CrustFrame, which is a subclass of 
wx.Frame. If you review listing 4.1, you can see how the PyWrap program imports 
CrustFrame and creates an instance of it. That’s the simplest way to embed a 
PyCrust frame into your own program. If you want something smaller than an 
entire frame, you can use one or more of the other classes listed in table 4.5. 

Table 4.5 Classes defined in the crust module 

Class Description 

Crust Based on wx.SplitterWindow and containing both a shell and notebook tab with 
runtime information

Display Styled text control used to display an object using Pretty Print 

continued on next page



108 CHAPTER 4 
Making wxPython easier to handle with PyCrust
These GUI elements can be used in any wxPython program to provide useful 
introspective visualizations.

The dispatcher module 
The dispatcher provides global signal dispatching services. That means it acts as 
a middleman, allowing objects to send and receive messages without having to 
know anything about each other. All they need to know is the signal (typically a 
simple string) that is being sent. One or more objects can ask the dispatcher to 
notify them whenever that signal has been sent, and one or more objects can tell 
the dispatcher to send that particular signal.

 Listing 4.5 is an example of why the dispatcher is so useful. Because all Py pro-
grams are built upon the same underlying modules, both PyCrust and PyShell
use almost identical code. The only difference is that PyCrust includes a notebook 
with extra functions, like the namespace tree view, that are updated whenever 
commands are sent to the interpreter. The interpreter uses the dispatcher to send 
a signal whenever a command is pushed through it: 

def push(self, command): 
    """Send command to the interpreter to be executed. 
    
    Because this may be called recursively, we append a new list 
    onto the commandBuffer list and then append commands into 
    that. If the passed in command is part of a multi-line 
    command we keep appending the pieces to the last list in 
    commandBuffer until we have a complete command. If not, we 
    delete that last list.""" 
    command = str(command)  # In case the command is unicode. 
    if not self.more: 
        try: del self.commandBuffer[-1] 
        except IndexError: pass 
    if not self.more: self.commandBuffer.append([]) 
    self.commandBuffer[-1].append(command) 

Calltip Text control containing the most recent shell calltip 

SessionListing Text control containing all commands for a session 

DispatcherListing Text control containing all dispatches for a session 

CrustFrame A frame containing a Crust splitter window 

Listing 4.5 Code to send a command via the dispatcher module

Table 4.5 Classes defined in the crust module (continued)

Class Description 



What else is in the Py package? 109
    source = '\n'.join(self.commandBuffer[-1]) 
    more = self.more = self.runsource(source) 
    dispatcher.send(signal='Interpreter.push', sender=self, 
                    command=command, more=more, source=source) 
    return more 

Various interested parties in the crust and filling modules set themselves up as 
receivers of this signal by connecting to the dispatcher in their constructors. List-
ing 4.6 shows the complete source code for the SessionListing control appears in 
the Session tab in PyCrust: 

class SessionListing(wx.TextCtrl): 
    """Text control containing all commands for session.""" 

    def __init__(self, parent=None, id=-1): 
        style = (wx.TE_MULTILINE | wx.TE_READONLY | 
                 wx.TE_RICH2 | wx.TE_DONTWRAP) 
        wx.TextCtrl.__init__(self, parent, id, style=style) 
        dispatcher.connect(receiver=self.push, 
                           signal='Interpreter.push') 

    def push(self, command, more): 
        """Receiver for Interpreter.push signal.""" 
        if command and not more: 
            self.SetInsertionPointEnd() 
            start, end = self.GetSelection() 
            if start != end: 
                self.SetSelection(0, 0) 
            self.AppendText(command + '\n') 

Notice how SessionListing’s receiver (its push() method) ignores the sender and 
source parameters sent by the interpreter. The dispatcher is very flexible, and only
sends along parameters that the receivers are able to accept. 

The editor module 
The editor module contains all of the GUI editing components that appear in the 
PyAlaCarte and PyAlaMode programs. If you’d like to include a Python source 
code editor in your program, use the classes described in table 4.6. 

 These classes can be used in any program to provide useful code style edit-
ing functionality.

Listing 4.6 Code for the PyCrust session tab



110 CHAPTER 4 
Making wxPython easier to handle with PyCrust
The filling module 
The filling module contains all the GUI controls that allow the user to navigate 
the namespaces of objects, and displays runtime information about those objects. 
The four classes defined in the filling module are described in Table 4.7.

Using these classes in your own program allows you to easily create a hierarchical 
tree of a Python namespace. This can be used as a quick data browser if you set up 
your data as Python objects.

The interpreter module 
The interpreter module defines an Interpreter class, based on the Interactive-
Interpreter class of the code module from the Python standard library. Besides 

Table 4.6 Classes defined in the editor module

Class Description 

EditorFrame Used by PyAlaCarte to support the editing of one file at a time 
EditorFrame is a subclass of the more general Frame class from the 
frame module.

EditorNotebookFrame Subclass of EditorFrame that extends EditorFrame by adding a 
notebook interface and the ability to edit more than one file at the same 
time. This is the frame class used by PyAlaMode. 

EditorNotebook The control used by EditorNotebookFrame to display each file in a 
separate tab.

Editor Manages the relationship between a buffer and its associated EditWindow

EditWindow Text editing control based on StyledTextCtrl

Table 4.7 Classes defined in the filling module

Class Description 

FillingTree Based on wx.TreeCtrl, FillingTree provides a hierarchical tree of an objects 
namespace 

FillingText A subclass of editwindow.EditWindow, used to display details about the object 
currently selected in the FillingTree 

Filling A wx.SplitterWindow that includes a FillingTree in its left side and a 
FillingText on its right side 

FillingFrame A frame containing a Filling splitter window. Double-clicking on an item in the filling 
tree will open up a new FillingFrame, with the selected item as the root of the tree



What else is in the Py package? 111
being responsible for sending source code to Python, the Interpreter class is also 
responsible for providing autocompletion lists, calltip information, and even the 
keycodes that trigger the autocompletion feature (typically the dot "." keycode). 

 Because of this clean division of responsibility, you can create your own subclass 
of Interpreter and pass an instance of it to the PyCrust shell, instead of the default 
interpreter. This has been done in a few programs to support custom language 
variations, while still getting the benefit of the PyCrust environment. For example, 
one program of this sort allows users to control laboratory equipment from an 
embedded PyCrust shell. That program uses the forward slash (/) to trigger the 
autocompletion feature whenever the forward slash appears after a reference to 
one of the pieces of equipment. The autocompletion options that appear are spe-
cific to that piece of equipment, how it was configured, and its current state.

The introspect module 
The introspect module is used by the Interpreter and FillingTree classes. It 
provides a variety of introspective-type support functions for calltips and com-
mand autocompletion. The following presents the use of wx.py.introspect to get 
all of the attribute names for a list object, suppressing those attributes with lead-
ing double underscores: 

>>> import wx 
>>> L = [1, 2, 3] 
>>> wx.py.introspect.getAttributeNames(L, includeDouble=False) 
['append', 'count', 'extend', 'index', 'insert', 'pop', 
'remove', 'reverse', 'sort'] 
>>> 

The getAttributeNames() function is used by the FillingTree class to populate its
namespace hierarchy. One of the best ways to understand the introspect module 
is to look at the unit tests that it successfully passes. View the test_introspect.py 
file in the Lib/site-packages/wx/py/tests directory of your Python installation. 

The shell module 
The shell module contains GUI elements that define the Python shell interface 
appearing in PyCrust, PyShell, and PyAlaMode. Table 4.8 provides a description 
of each element. The most general class is ShellFrame, a subclass of frame.Frame. 
It contains an instance of the Shell class, which is the class that handles the bulk 
of the work involved in providing an interactive Python environment. 

 The ShellFacade class was created during the development of PyCrust as a way 
to simplify things when accessing the shell object itself from within the shell. 
When you start PyCrust or PyShell, the Shell class instance is made available in 



112 CHAPTER 4 
Making wxPython easier to handle with PyCrust
the Python shell. For example, you can call the shell’s about() method at the shell 
prompt, as in the following: 

>>> shell.about() 
Author: "Patrick K. O'Brien <pobrien@orbtech.com>" 
Py Version: 0.9.4 
Py Shell Revision: 1.7 
Py Interpreter Revision: 1.5 
Python Version: 2.3.3 
wxPython Version: 2.4.1.0p7 
Platform: linux2 
>>> 

Because the Shell inherits from StyledTextCtrl, it contains over 600 attributes. 
Most of the attributes aren’t useful from the shell prompt, so a ShellFacade was 
created to limit the number of attributes that appear in the autocompletion list 
when you enter shell. at the shell prompt. Now the shell object only displays 
about 25 of the most useful shell attributes. If you want to use one that isn’t 
included in the autocompletion list, you can enter it and it will get forwarded to 
the “real” shell, which is stored as an attribute of the facade. 

4.6 How can I use modules from the Py package  
in my wxPython programs? 

What do you do if you don’t want an entire PyCrust frame in your application? 
What if you just want the shell interface in one frame, and perhaps a namespace 
viewer in another? And what if you want them to be permanent additions to your 
program? These alternatives are not only possible, they’re also fairly easy. We’ll 
end this chapter with one example of how this can be done.

 We’re going to revisit the program we created in chapter 2, the one with a 
menubar, toolbar, and status bar. We’ll add another menu with one item that 

Table 4.8 Classes defined in the shell module

Class Description 

Shell Python shell based on the wx.stc.StyleTextCtrl. Shell subclasses 
editwindow.EditWindow, then jumps through many hoops to make the underlying 
text control behave like a Python shell, rather than a source code file editor 

ShellFacade Simplified interface to all shell-related functionality. This is a semi-transparent facade, 
in that all attributes of the real shell are still accessible, even though only some are 
visible to the user from the shell itself. 

ShellFrame A frame containing a Shell window 



How can I use modules from the Py package 113
in my wxPython programs?
displays a shell frame, and another item that displays a filling frame. Finally, we’ll 
set the root of the filling tree to the frame object from our main program. The 
results are displayed in figure 4.11. 

 Listing 4.7 shows the modified source code. (Refer to chapter 2 for an expla-
nation of the original program.) As you can see, only a couple of extra lines of 
code were used to add the ability to launch a shell frame and a filling frame, with 
each operating on the primary application frame. 

#!/usr/bin/env python 

import wx 
from wx.py.shell import ShellFrame       
from wx.py.filling import FillingFrame   

Listing 4.7 Foundation program with additional runtime tools

Figure 4.11 Foundation program with shell and filling frames 

Importing the 
frame classes

 b



114 CHAPTER 4 
Making wxPython easier to handle with PyCrust
import images     

class ToolbarFrame(wx.Frame): 
    
    def __init__(self, parent, id): 
        wx.Frame.__init__(self, parent, id, 'Toolbars', 
                size=(300, 200)) 
        panel = wx.Panel(self, -1)                               
        panel.SetBackgroundColour('White') 
        statusBar = self.CreateStatusBar() 
        toolbar = self.CreateToolBar() 
        toolbar.AddSimpleTool(wx.NewId(), images.getNewBitmap(), 
                "New", "Long help for 'New'") 
        toolbar.Realize() 
        menuBar = wx.MenuBar() 
        menu1 = wx.Menu() 
        menuBar.Append(menu1, "&File") 
        menu2 = wx.Menu() 
        menu2.Append(wx.NewId(), "&Copy", "Copy in status bar") 
        menu2.Append(wx.NewId(), "C&ut", "") 
        menu2.Append(wx.NewId(), "Paste", "") 
        menu2.AppendSeparator() 
        menu2.Append(wx.NewId(), "&Options...", "Display Options") 
        menuBar.Append(menu2, "&Edit") 
        
        menu3 = wx.Menu() 
        shell = menu3.Append(-1, "&wxPython shell",             
                             "Open wxPython shell frame")       
        filling = menu3.Append(-1, "&Namespace viewer",         
                               "Open namespace viewer frame")   
        menuBar.Append(menu3, "&Debug")                         
        self.Bind(wx.EVT_MENU, self.OnShell, shell)       
        self.Bind(wx.EVT_MENU, self.OnFilling, filling)   

        self.SetMenuBar(menuBar) 

    def OnCloseMe(self, event): 
        self.Close(True) 

    def OnCloseWindow(self, event): 
        self.Destroy() 

    def OnShell(self, event):             
        frame = ShellFrame(parent=self)   
        frame.Show()                      

    def OnFilling(self, event):             
        frame = FillingFrame(parent=self)   
        frame.Show()                        

if __name__ == '__main__': 
    app = wx.PySimpleApp() 

Creating 
the Debug 
menu and 
items

 c

Setting the menu 
event handlers

 d

The OnShell menu 
item handler

 e

The OnFilling menu 
item handler



Summary 115
    app.frame = ToolbarFrame(parent=None, id=-1) 
    app.frame.Show() 
    app.MainLoop() 

Here we import the ShellFrame and FillingFrame classes.
As with the previous two menus, we append items to our third menu, the Debug 
menu, and append it to the frame’s menubar. 
Binding a function to wx.EVT_MENU() allows us to associate a handler with a menu 
item, so that when the menu item is selected the handler is called. 
When the user selects Python shell from the Debug menu, a shell frame is created 
whose parent is the toolbar frame. When the toolbar frame is closed, any open 
shell or filling frames is also closed. 

4.7 Summary 

■ Toolkits like wxPython are by their very nature large and complex. Interac-
tions between GUI controls are not always intuitive, and the entire process is 
determined by events, and responses to events, rather than a linear sequence 
of execution. Using tools like the PyCrust shell can greatly enhance your 
understanding of this event-driven environment. 

■ PyCrust is just another Python shell, similar to the shells included with 
IDLE, Boa Constructor, PythonWin, and other development tools. How-
ever, PyCrust was created using wxPython, which is beneficial when you are 
developing programs with wxPython. In particular, you won’t have prob-
lems with conflicting event loops, and you can manipulate all aspects of 
your program at runtime within PyCrust’s shell and namespace viewer. 

■ Because PyCrust is part of the wxPython distribution, it is installed along 
with wxPython, including all the source code. That makes PyCrust easy to 
use, and eases the learning curve of figuring out how to provide introspec-
tive functionality in your own programs. 

■ In addition, the modular design of the Py package makes it very easy for 
you to pick and choose the modules that would benefit your program the 
most, such as source editing, namespace browsing, or shell functionality.

■ PyCrust reduces the learning curve associated with wxPython, and helps 
you grasp the finer points of your own program’s runtime behavior. 

In the next chapter, we’ll use the knowledge we’ve learned about wxPython, and 
provide some practical advice about how to structure your GUI programs without 
getting tangled in knots.

 b
 c

 d

 e



Creating your blueprint
This chapter covers
■ Refactoring and how it improves code
■ Separating the Model and View
■ Using a Model class
■ Unit testing a GUI program
■ Testing user events
116



How can refactoring help me improve my code? 117
GUI code has a reputation for being hard to read, hard to maintain, and always 
looking like spaghetti—long, stringy, and tangled. One prominent Python GUI
module (not written with wxPython) includes this note in its comments: “Why is it 
that GUI code always ends up looking a mess, despite all the best intentions to 
keep it tidy?” It doesn’t have to be that way. There’s no particular reason why UI
code has to be any harder to write or manage than any other part of your pro-
gram. In this chapter we’ll discuss three techniques for taming your UI code. 
Since layout code is particularly susceptible to poor structure, we’ll discuss refac-
toring the code to make it easier to read, manage, and maintain. Another area 
where a UI programmer can get tied into knots is the interaction between the dis-
play code and the underlying business objects. The Model/View/Controller (MVC) 
design pattern is a structure for keeping display and data separate to allow each 
to change without affecting the other. Finally, we’ll discuss techniques for unit 
testing your wxPython code. Although all the examples in this chapter will use 
wxPython, many of the principles are applicable to any UI toolkit—although the 
Python language and wxPython toolkit make some techniques particularly ele-
gant. The design and architecture of your code is the blueprint of your system. A 
well thought out blueprint will make your application simpler to build and easier 
to maintain. The suggestions in this chapter will help you design a solid blueprint 
for your program. 

5.1 How can refactoring help me improve my code? 

There are many reasons why bad interface or layout code happens to good pro-
grammers. Even a simple UI can require many lines to show all of its elements 
on the screen. Programmers often try to accomplish this using a single method, 
and the method quickly becomes long and hard to control. Furthermore, inter-
face code is susceptible to being tweaked and changed constantly, which can 
wreak havoc unless you are disciplined about managing the changes. Because 
writing all the layout code can be tedious, an interface programmer will often 
use a design toolkit that generates code. The machine-generated code is noto-
rious for being awkward and hard to make sense of without using the genera-
tion tool. 

 In principle, it’s not hard to keep UI code under control. The key is refactoring, 
or continually improving the design and structure of existing code. The goal in 
refactoring is to keep the code in a state where it can be easily read and main-
tained in the future. Table 5.1 contains a description of some of the principles to 
keep in mind when refactoring. The most basic goal is to remember that somebody 



118 CHAPTER 5 
Creating your blueprint
is going to have to read and understand your code in the future. Try to make that 
person’s life easier—after all, it might be you. 

Some of these principles are particularly important in Python code. Because of 
Python’s indentation-based syntax, small, compact methods are very easy to read. 
Longer methods, however, can be harder to decipher, especially if they are unable 
to fit on a single screen. Similarly, deep nesting in Python can make it tricky to 
trace the beginning and ending of code blocks. However, Python is a particularly 
good language for avoiding duplication, especially because of the ease with which 
functions and methods can be passed as arguments. 

5.1.1 A refactoring example 

To show you how these principles work in action, 
we’ll walk you through a refactoring example. 
Figure 5.1 shows a window that might be used as 
the front end to a Microsoft Access-like database.

 This layout is a little more complex than 
those we have seen so far, but by the standard of 
real-world applications, it is still quite simple. 
Listing 5.1 shows a poorly structured way to pro-
duce Figure 5.1. When people talk about UI
code being a mess, this is what they mean. Having several problems compressed 
into a few lines of code may be a bit of an exaggeration, but it’s representative of 

Table 5.1 A listing of some important principles of refactoring

Principle Description 

No duplication You should avoid having multiple segments of code with the same 
functionality. This can become a maintenance headache when the 
functionality needs to change. 

One thing at a time A method should do one thing, and one thing only. Separate things should be 
moved into separate methods. Methods should be kept short. 

Build shallow nests Try to keep from nesting code more than two or three levels deep. Deeply 
nested code is also a good candidate for a separate method. 

Avoid magic literals String and numeric literals should be kept to a minimum. A good way to 
manage this is to separate literal data from the main portion of your code, 
and store it in a list or dictionary. 

Figure 5.1 The sample window for 
the refactoring example



How can refactoring help me improve my code? 119
the trouble you can get into in layout code. Certainly, it’s representative of the 
trouble I get into when writing layout code.

#!/usr/bin/env python 

import wx 

class RefactorExample(wx.Frame): 
    
    def __init__(self, parent, id): 
        wx.Frame.__init__(self, parent, id, 'Refactor Example', 
                size=(340, 200)) 
        panel = wx.Panel(self, -1)    
        panel.SetBackgroundColour("White") 
        prevButton = wx.Button(panel, -1, "<< PREV", pos=(80, 0)) 
        self.Bind(wx.EVT_BUTTON, self.OnPrev, prevButton) 
        nextButton = wx.Button(panel, -1, "NEXT >>", pos=(160, 0)) 
        self.Bind(wx.EVT_BUTTON, self.OnNext, nextButton) 
        self.Bind(wx.EVT_CLOSE, self.OnCloseWindow)       
        
        menuBar = wx.MenuBar()                                       
        menu1 = wx.Menu() 
        openMenuItem = menu1.Append(-1, "&Open", "Copy in status bar") 
        self.Bind(wx.EVT_MENU, self.OnOpen, openMenuItem) 
        quitMenuItem = menu1.Append(-1, "&Quit", "Quit") 
        self.Bind(wx.EVT_MENU, self.OnCloseWindow, quitMenuItem) 
        menuBar.Append(menu1, "&File")                               
        menu2 = wx.Menu()                                            
        copyItem = menu2.Append(-1, "&Copy", "Copy")      
        self.Bind(wx.EVT_MENU, self.OnCopy, copyItem) 
        cutItem = menu2.Append(-1, "C&ut", "Cut") 
        self.Bind(wx.EVT_MENU, self.OnCut, cutItem) 
        pasteItem = menu2.Append(-1, "Paste", "Paste")   
        self.Bind(wx.EVT_MENU, self.OnPaste, pasteItem) 
        menuBar.Append(menu2, "&Edit")      
        self.SetMenuBar(menuBar)           
        
        static = wx.StaticText(panel, wx.NewId(), "First Name", 
                pos=(10, 50)) 
        static.SetBackgroundColour("White") 
        text = wx.TextCtrl(panel, wx.NewId(), "", size=(100, -1), 
                pos=(80, 50)) 
                
        static2 = wx.StaticText(panel, wx.NewId(), "Last Name", 
                pos=(10, 80)) 
        static2.SetBackgroundColour("White") 
        text2 = wx.TextCtrl(panel, wx.NewId(), "", size=(100, -1), 
                pos=(80, 80)) 

Listing 5.1 An un-refactored way to produce figure 5.1



120 CHAPTER 5 
Creating your blueprint
        firstButton = wx.Button(panel, -1, "FIRST") 
        self.Bind(wx.EVT_BUTTON, self.OnFirst, firstButton) 
                
        menu2.AppendSeparator()         
        optItem = menu2.Append(-1, "&Options...", "Display Options")   
        self.Bind(wx.EVT_MENU, self.OnOptions, optItem) 
        
        lastButton = wx.Button(panel, -1, "LAST", pos=(240, 0)) 
        self.Bind(wx.EVT_BUTTON, self.OnLast, lastButton) 
        
    # Just grouping the empty event handlers together 
    def OnPrev(self, event): pass 
    def OnNext(self, event): pass 
    def OnLast(self, event): pass 
    def OnFirst(self, event): pass     
    def OnOpen(self, event): pass    
    def OnCopy(self, event): pass 
    def OnCut(self, event): pass 
    def OnPaste(self, event): pass 
    def OnOptions(self, event): pass 
    
    def OnCloseWindow(self, event): 
        self.Destroy() 
            
if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = RefactorExample(parent=None, id=-1) 
    frame.Show() 
    app.MainLoop() 

Let’s categorize how this code example works against the principles in table 5.1. 
On the positive side, there’s no deep nesting. On the negative side, the other 
three ideas listed in table 5.1 aren’t followed at all. Table 5.2 summarizes the ways 
in which refactoring might improve this code. 

Table 5.2 Refactoring opportunities in listing 5.1

Principle Problem in code 

No duplication Several patterns are duplicated repeatedly, including “add a button, and give it an 
action,” “add a menu item and give it an action,” and “create a caption/text entry pair.” 

One thing  
at a time 

This code does several things. In addition to basic frame setup, it creates the menu 
bar, adds the buttons, and adds the text fields. Worse, the three functions are mixed 
up through the code, as if late changes were just added at the bottom of the method. 

Avoid magic 
literals 

Every button, menu item, and text box has a literal string and a literal point  
in the constructor. 



How can refactoring help me improve my code? 121
To give you a general idea of how to fix this code, we’ll pull all the button code 
into a separate method. 

5.1.2 Starting to refactor

Listing 5.2 contains the code used to create just the button bar in the previous 
listing. As a first step in refactoring, we’ve extracted the code to its own method.

    def createButtonBar(self):   
        firstButton = wx.Button(panel, -1, "FIRST") 
        self.Bind(wx.EVT_BUTTON, self.OnFirst, firstButton) 
        prevButton = wx.Button(panel, -1, "<< PREV", pos=(80, 0)) 
        self.Bind(wx.EVT_BUTTON, , self.OnPrev, prevButton) 
        nextButton = wx.Button(panel, -1, "NEXT >>", pos=(160, 0)) 
        self.Bind(wx.EVT_BUTTON, self.OnNext, nextButton) 
        lastButton = wx.Button(panel, -1, "LAST", pos=(240, 0)) 
        self.Bind(wx.EVT_BUTTON, self.OnLast, lastButton) 

With the code separated out like this, it’s easy to see what the commonality is 
between all the button additions. We can factor that portion out into a generic
method, and just call the method repeatedly, as shown in listing 5.3: 

    def createButtonBar(self, panel):   
        self.buildOneButton(panel, "First", self.OnFirst) 
        self.buildOneButton(panel, "<< PREV", self.OnPrev, (80, 0)) 
        self.buildOneButton(panel, "NEXT >>", self.OnNext, (160, 0)) 
        self.buildOneButton(panel, "Last", self.OnLast, (240, 0)) 
        
    def buildOneButton(self, parent, label, handler, pos=(0,0)): 
        button = wx.Button(parent, -1, label, pos) 
        self.Bind(wx.EVT_BUTTON, handler, button) 
        return button 

There are a couple of advantages in following the second example instead of the 
first. For one thing, the intent of the code is clearer just from reading it—having 
short methods with meaningful names goes a long way toward signaling intent. 
The second example also gets rid of all the local variables that are needed just to 
hold on to IDs (admittedly, you could also get rid of the local variables by hard-
wiring the IDs, but that can cause duplicate ID problems). This is helpful because 

Listing 5.2 The button bar as a separate method

Listing 5.3 A generic and improved button-bar method



122 CHAPTER 5 
Creating your blueprint
it makes the code less complicated, and also because it almost eliminates the com-
mon error of cutting and pasting a couple of lines of code and forgetting to 
change all the variable names. (In a real application, you might need to store the 
buttons as instance variables to be able to access them later, but for this example, 
you do not.) In addition, the buildOneButton() method is easily moved to a utility 
module and could be reused in other frames or other projects. A toolkit of com-
mon utilities is a useful thing to have. 

5.1.3 More refactoring

Having made a significant improvement, we could stop here. But there are still a 
lot of magic literals—hardcoded constants used in multiple locations—in the code. 
For one thing, the literal points used for positioning could make the code prone 
to errors when another button is being added to the bar, especially if the new but-
ton is placed in the middle of the bar. So let’s go one step farther and separate the 
literal data from the processing. Listing 5.4 shows a more data-driven mechanism 
for creating buttons. 

    def buttonData(self): 
        return (("First", self.OnFirst), 
                ("<< PREV", self.OnPrev), 
                ("NEXT >>", self.OnNext), 
                ("Last", self.OnLast)) 
        
    def createButtonBar(self, panel, yPos=0): 
        xPos = 0 
        for eachLabel, eachHandler in self.buttonData(): 
            pos = (xPos, yPos) 
            button = self.buildOneButton(panel, eachLabel, eachHandler, pos)
            xPos += button.GetSize().width 
        
    def buildOneButton(self, parent, label, handler, pos=(0,0)): 
        button = wx.Button(parent, -1, label, pos) 
        self.Bind(wx.EVT_BUTTON, handler, button) 
        return button 

In listing 5.4, the data for the individual buttons is stored in a nested tuple in the 
buttonData() method. The choice of data structure and use of a constant method 
is not inevitable. The data could be stored as a class-level or module-level vari-
able, rather than the result of a method, or it could be stored in an external file. 
One advantage to using a method is being able to make a relatively simple 

Listing 5.4 Creating buttons with data separated from code



How can refactoring help me improve my code? 123
transition if you wish to store the button data in another location—just change 
the method so that instead of returning a constant, it returns the external data. 

 The createButtonBar() method iterates over the list returned by button-
Data() and creates each button from that data. The method now calculates the 
x-axis position of the buttons automatically as it traverses the list. This is helpful 
because it ensures that the order of the buttons in the code will be identical to the 
order on the screen, making the code clearer and less error-prone. If you need to 
add a button in the middle of the bar now, you can just add the data to the middle 
of the list and the code guarantees that it will be placed correctly. 

 The separation of the data has other benefits. In a more elaborate example, 
the data could be stored externally in a resource or XML file. This would allow 
interface changes to be made without even looking at the code, and also makes 
internationalization easier, by making it easier to change text. We’re currently still 
hard-wiring the button width, but that could easily be added to the data method 
as well. (In reality, we’d probably use a wxPython Sizer object, which is covered in 
chapter 11). Also, with the specifics of the data removed, createButtonBar is now 
well on its way to being a utility method itself, and could easily be reused in 
another frame or project. 

 After performing the same steps of consolidating, factoring the common pro-
cess, and separating data for the menu and text field code, the result is shown in 
listing 5.5. 

#!/usr/bin/env python 

import wx 

class RefactorExample(wx.Frame): 
    
    def __init__(self, parent, id): 
        wx.Frame.__init__(self, parent, id, 'Refactor Example', 
                size=(340, 200)) 
        panel = wx.Panel(self, -1)    
        panel.SetBackgroundColour("White") 
        self.Bind(wx.EVT_CLOSE, self.OnCloseWindow)       
        self.createMenuBar()        
        self.createButtonBar(panel)   
        self.createTextFields(panel) 
    
    def menuData(self):   
        return (("&File", 

Listing 5.5 A refactored example

Simplified init method

Data for menus



124 CHAPTER 5 
Creating your blueprint
                    ("&Open", "Open in status bar", self.OnOpen), 
                    ("&Quit", "Quit", self.OnCloseWindow)), 
                ("&Edit", 
                    ("&Copy", "Copy", self.OnCopy), 
                    ("C&ut", "Cut", self.OnCut), 
                    ("&Paste", "Paste", self.OnPaste), 
                    ("", "", ""), 
                    ("&Options...", "DisplayOptions", self.OnOptions))) 
            
    def createMenuBar(self):                     
        menuBar = wx.MenuBar()     
        for eachMenuData in self.menuData(): 
            menuLabel = eachMenuData[0] 
            menuItems = eachMenuData[1:] 
            menuBar.Append(self.createMenu(menuItems), menuLabel)   
        self.SetMenuBar(menuBar) 
            
    def createMenu(self, menuData):                                 
        menu = wx.Menu() 
        for eachLabel, eachStatus, eachHandler in menuData: 
            if not eachLabel: 
                menu.AppendSeparator() 
                continue 
            menuItem = menu.Append(-1, eachLabel, eachStatus) 
            self.Bind(wx.EVT_MENU, eachHandler, menuItem) 
        return menu     
        
    def buttonData(self):   
        return (("First", self.OnFirst), 
                ("<< PREV", self.OnPrev), 
                ("NEXT >>", self.OnNext), 
                ("Last", self.OnLast)) 
        
    def createButtonBar(self, panel, yPos = 0): 
        xPos = 0  
        for eachLabel, eachHandler in self.buttonData(): 
            pos = (xPos, yPos) 
            button = self.buildOneButton(panel, eachLabel, 
            eachHandler, pos)
            xPos += button.GetSize().width 
        
    def buildOneButton(self, parent, label, handler, pos=(0,0)):   
        button = wx.Button(parent, -1, label, pos) 
        self.Bind(wx.EVT_BUTTON, handler, button) 
        return button 
    
    def textFieldData(self):   
        return (("First Name", (10, 50)), 
                ("Last Name", (10, 80))) 
        

Menu 
creation 
here

Button bar data

Create 
buttons

Text data



How can refactoring help me improve my code? 125
    def createTextFields(self, panel):          
        for eachLabel, eachPos in self.textFieldData(): 
            self.createCaptionedText(panel, eachLabel, eachPos)   
                
    def createCaptionedText(self, panel, label, pos):             
        static = wx.StaticText(panel, wx.NewId(), label, pos) 
        static.SetBackgroundColour("White") 
        textPos = (pos[0] + 75, pos[1]) 
        wx.TextCtrl(panel, wx.NewId(), "", size=(100, -1), pos=textPos) 
        
    # Just grouping the empty event handlers together 
    def OnPrev(self, event): pass 
    def OnNext(self, event): pass 
    def OnLast(self, event): pass 
    def OnFirst(self, event): pass     
    def OnOpen(self, event): pass    
    def OnCopy(self, event): pass 
    def OnCut(self, event): pass 
    def OnPaste(self, event): pass 
    def OnOptions(self, event): pass 
    def OnCloseWindow(self, event): 
        self.Destroy() 
            
if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = RefactorExample(parent=None, id=-1) 
    frame.Show() 
    app.MainLoop() 

The amount of effort involved in moving from listing 5.1 to listing 5.5 was mini-
mal, but the reward is tremendous—a code base that is much clearer and less 
error-prone. The layout of the code logically matches the layout of the data. Sev-
eral common ways that poorly structured code can lead to errors—such as requir-
ing a lot of copying and pasting to create new objects—have been removed. Much 
of the functionality can now be easily moved to a superclass or utility module, 
making the code savings continue to pay off in the future. As an added bonus, the 
data separation makes it easy to use the layout as a template with different data, 
including international data. 

 The key to successfully refactoring is to keep doing it in small increments as 
you write your code. Like dirty dishes, poor code can pile up to an overwhelming 
mess quickly unless you make an effort to clean it up regularly. If you can acquire 
the mindset that working code is only an intermediate step toward the final goal 
of well-factored working code, then you can make refactoring part of your regular 
developing process. 

Create 
text



126 CHAPTER 5 
Creating your blueprint
 However, even with the refactoring that has been done, the code in listing 5.5 
is still missing something important: the actual user data. Most of what your 
application will do depends on manipulating data in response to user requests. 
The structure of your program can go a long way toward making your program 
flexible and stable. The MVC pattern is the accepted standard for managing the 
interaction between interface and data.

5.2 How do I keep the Model and View  
separate in my program? 

Dating back to the late 1970s and the seminal language Smalltalk-80, the MVC pat-
tern is probably the oldest explicitly identified object-oriented design pattern 
around. It’s also one of the most prevalent, having been adopted in one way or 
another by nearly every GUI toolkit written since then (not to mention a good num-
ber of other systems, such as web application frameworks). The MVC pattern is the 
standard for structuring programs that both manipulate and display information. 

5.2.1 What is a Model-View-Controller system?

An MVC system has three subsystems. The Model contains what is often called 
business logic, or all the data and information manipulated by your system. The 
View contains the objects that display the data, and the Controller manages the 
interaction with the user and mediates between the Model and the View. Table 5.3 
summarizes the components.

In many modern UI toolkits, the View and Controller components are somewhat 
intertangled. This is because the Controller components themselves need to be 

Table 5.3 The components of standard MVC architecture

Component Description 

Model Business logic. Contains all the data manipulated by the system. This can include an 
interface to an external store, such as a database. Typically the model exposes only a 
public API to the other components. 

View Display code. The widgets that actually place the information in the user’s view.  
In wxPython, pretty much anything in the wx.Window hierarchy is part of the  
view subsystem. 

Controller Interaction logic. The code that receives user events and ensures that they are  
handled by the system. In wxPython, this subsystem is represented by the 
wx.EvtHandler hierarchy. 



How do I keep the Model and View 127
separate in my program?
displayed on the screen, and because often you want widgets that display data to 
also respond to user events. In wxPython, this relationship is enshrined by the 
fact that all wx.Window objects are also subclasses of wx.EvtHandler, meaning they 
function as both View elements and Controller elements. In contrast, most web-
application frameworks have a stricter separation between View and Controller, 
since the interaction logic happens behind the scenes on the server. 

 Figure 5.2 shows one rendering of how data and information is passed in an 
MVC architecture. 

 An event notification is handled by the Controller system, which dispatches it 
to the appropriate place. As we saw in chapter 3, wxPython manages this mecha-
nism using the wx.EvtHandler method ProcessEvent(). In a strict MVC design, 
your handler functions might actually be declared in a separate controller object, 
rather than in the frame class itself. 

 In response to the event, the model objects can do some processing on the 
application data. When that processing is done, the model sends an update noti-
fication. If there is a controller object, the notification is usually sent back to the 
controller and the controller notifies the appropriate view objects to update 
themselves. In a smaller system or a simpler architecture, the notification is 
often directly received by the view objects. In wxPython, the exact nature of the 
update from the model is up to you. Options include explicitly raising custom 
wxPython events from the model or controller, having the model maintain a list 
of objects that receive update notifications, or having views register themselves 
with the model. 

Figure 5.2 The data flow of an MVC request



128 CHAPTER 5 
Creating your blueprint
The key to a successful MVC design is not in making sure that every object knows 
about every other object. Instead, a successful MVC program explicitly hides 
knowledge about one part of the program from the other parts. The goal is for 
the systems to interact minimally, and over a well-defined set of methods. In par-
ticular, the Model component should be completely isolated from the View and 
Controller. You should be able to make arbitrary changes to either of those sys-
tems without changing your Model classes. Ideally, you’d even be able to use the 
same Model classes to drive non-wxPython interfaces, but that would preclude, 
say, using wxPython events for update notification. 

 From the View side, you should be able to make arbitrary changes in the 
implementation of the Model objects without changing the View or the Control-
ler. While the View will depend on the existence of certain public methods, it 
should never get to see the private internals of the Model. Admittedly, this is dif-
ficult to enforce in Python, but one way to help enforcement it is to create an 
abstract Model class that defines the API that the View can see. Subclasses of the 
Model can either act as proxies for an internal class that can be changed, or can 
simply contain the internal workings themselves. The first option is more struc-
tured, the second is easier to implement. 

 In the next section, we’ll take a look at one of the Model classes built into 
wxPython, wx.grid.PyGridTableBase. This class makes it possible to use a grid 
control within an MVC design framework. After that, we’ll take a look at building 
and using a custom model class for a custom widget. 

5.2.2 A wxPython model: PyGridTableBase 

The class wx.grid.Grid is the wxPython control for a 
spreadsheet-style layout of rows and columns. You’re 
probably familiar with the basic concept, but figure 5.3 
shows how the wxPython version looks.

 The grid control has a lot of interesting features, 
including the ability to create custom renderers and 
editors on a cell-by-cell basis, as well as dragable rows 
and columns. Those features will be discussed in 
greater detail in chapter 13. In this chapter, we’ll stick 
to the basics and show how to use a model to populate a 
grid. Listing 5.6 shows the simple non-model way of 
setting the cell values in a grid. In this case, the grid val-
ues are the lineup for the 1984 Chicago Cubs. 

 

Figure 5.3 A sample of the 
wxPython grid control



How do I keep the Model and View 129
separate in my program?
import wx 
import wx.grid 

class SimpleGrid(wx.grid.Grid): 
    def __init__(self, parent): 
        wx.grid.Grid.__init__(self, parent, -1) 
        self.CreateGrid(9, 2) 
        self.SetColLabelValue(0, "First") 
        self.SetColLabelValue(1, "Last") 
        self.SetRowLabelValue(0, "CF") 
        self.SetCellValue(0, 0, "Bob") 
        self.SetCellValue(0, 1, "Dernier") 
        self.SetRowLabelValue(1, "2B") 
        self.SetCellValue(1, 0, "Ryne") 
        self.SetCellValue(1, 1, "Sandberg") 
        self.SetRowLabelValue(2, "LF") 
        self.SetCellValue(2, 0, "Gary") 
        self.SetCellValue(2, 1, "Matthews") 
        self.SetRowLabelValue(3, "1B") 
        self.SetCellValue(3, 0, "Leon") 
        self.SetCellValue(3, 1, "Durham") 
        self.SetRowLabelValue(4, "RF") 
        self.SetCellValue(4, 0, "Keith") 
        self.SetCellValue(4, 1, "Moreland") 
        self.SetRowLabelValue(5, "3B") 
        self.SetCellValue(5, 0, "Ron") 
        self.SetCellValue(5, 1, "Cey") 
        self.SetRowLabelValue(6, "C") 
        self.SetCellValue(6, 0, "Jody") 
        self.SetCellValue(6, 1, "Davis") 
        self.SetRowLabelValue(7, "SS") 
        self.SetCellValue(7, 0, "Larry") 
        self.SetCellValue(7, 1, "Bowa") 
        self.SetRowLabelValue(8, "P") 
        self.SetCellValue(8, 0, "Rick") 
        self.SetCellValue(8, 1, "Sutcliffe") 

class TestFrame(wx.Frame): 
    def __init__(self, parent): 
        wx.Frame.__init__(self, parent, -1, "A Grid", 
                size=(275, 275)) 
        grid = SimpleGrid(self) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = TestFrame(None) 
    frame.Show(True) 
    app.MainLoop() 

Listing 5.6 Populating a grid without models



130 CHAPTER 5 
Creating your blueprint
In listing 5.6, we have the class SimpleGrid, a subclass of the wxPython class 
wx.grid.Grid. As mentioned earlier, wx.grid.Grid has oodles of methods that 
we’re going to discuss later. For now, we’ll focus on the SetRowLabelValue(), Set-
ColLabelValue(), and SetCellValue() methods which are actually setting the val-
ues displayed in the grid. As you can see by comparing figure 5.3 and listing 5.6, 
the SetCellValue() method takes a row index, a column index, and a value, while 
the other two methods take an index and a value. The row and column labels are 
not considered part of the grid for the purposes of assigning indexes to the cells. 

 This code directly assigns values to the grid using the setter methods. While 
this method has an admirable directness, it can become tedious and error-prone 
on larger grids. And even if we were to create utility methods to ease the burden, 
the code would still have the problem we saw in the refactoring section of this 
chapter. The data would be intertwined with the display in a way that would make 
future modifications to the code—such as adding a column or swapping the data 
out completely—difficult. 

 The answer is wx.grid.PyGridTableBase. As with other classes we’ve seen thus 
far, the Py prefix indicates that this is a Python-specific wrapper around a C++ 
class. Like the PyEvent class we saw in chapter 3, the PyGridTableBase class is 
implemented as a simple Python wrapper around a wxWidgets C++ class specif-
ically for the purpose of allowing Python subclasses to be declared. A PyGrid-
TableBase is a model class for a grid. That is, it contains methods that the grid 
object can use to draw itself, without having to know about the internal structure 
of that data. 

Methods of PyGridTableBase
The wx.grid.PyGridTableBase has several methods, many of which you will not 
have to deal with. The class is abstract and cannot be instantiated directly. You will 
have to provide an implementation of five required methods every time you cre-
ate a PyGridTableBase. Table 5.4 describes the methods. 

Table 5.4 Required methods of wx.grid.PyGridTableBase 

Method Description 

GetNumberRows() Returns an integer indicating the number of rows in the grid. 

GetNumberCols() Returns an integer indicating the number of columns in the grid. 

IsEmptyCell(row, col) Returns True if the cell at index (row, col) is empty. 

continued on next page



How do I keep the Model and View 131
separate in my program?
The table is attached to the grid by using the SetTable() method of the grid. 
After that property is set, the grid object will call the methods of the table to get 
the information it needs to draw the grid. The grid will no longer expect to have 
the values explicitly set with grid methods. 

Using a PyGridTableBase
In general, there are two ways to use a PyGridTableBase. You can explicitly have 
your model class be a subclass of PyGridTableBase, or you can create a separate 
PyGridTableBase subclass that connects to your actual model class. The first 
option is easier and makes sense when your data is not very complex. The second 
option enforces a stronger separation between the Model and the View, which is 
preferable if your data is complex. The second option is also preferred if you have 
a pre-existing data class that you want to adapt into wxPython, because you can 
create a table without changing the existing code. We’ll show an example of both 
options in this section. 

Using a PyGridTableBase: application-specific subclass
Our first example will use an application-specific subclass of PyGridTableBase as 
our model. This works because our lineup example is relatively straightforward, 
so we can directly incorporate the data into a class derived from PyGridTableBase. 
We’ll set up the actual data in a two-dimensional Python list, and set up the other 
methods to read from that list. Listing 5.7 shows the Cubs lineup generated from 
a Model class. 

import wx 
import wx.grid 

class LineupTable(wx.grid.PyGridTableBase): 
    
    data = (("CF", "Bob", "Dernier"), ("2B", "Ryne", "Sandberg"), 
            ("LF", "Gary", "Matthews"), ("1B", "Leon", "Durham"), 
            ("RF", "Keith", "Moreland"), ("3B", "Ron", "Cey"), 

GetValue(row, col) Returns the value that should be displayed at the cell (row, col). 

SetValue(row, col, 
value) 

Sets the value associated with (row, col). If you want a read-only model, you still 
must include this method, but you can have it pass. 

Listing 5.7 A table generated from a PyGridTableBase model

Table 5.4 Required methods of wx.grid.PyGridTableBase (continued)

Method Description 



132 CHAPTER 5 
Creating your blueprint
            ("C", "Jody", "Davis"), ("SS", "Larry", "Bowa"), 
            ("P", "Rick", "Sutcliffe")) 
            
    colLabels = ("Last", "First") 
            
    def __init__(self): 
        wx.grid.PyGridTableBase.__init__(self) 
        
    def GetNumberRows(self): 
        return len(self.data) 

    def GetNumberCols(self): 
        return len(self.data[0]) - 1 

    def GetColLabelValue(self, col): 
        return self.colLabels[col] 
        
    def GetRowLabelValue(self, row): 
        return self.data[row][0] 
        
    def IsEmptyCell(self, row, col): 
        return False 

    def GetValue(self, row, col): 
        return self.data[row][col + 1] 

    def SetValue(self, row, col, value): 
        pass          

class SimpleGrid(wx.grid.Grid): 
    def __init__(self, parent): 
        wx.grid.Grid.__init__(self, parent, -1) 
        self.SetTable(LineupTable())   

class TestFrame(wx.Frame): 
    def __init__(self, parent): 
        wx.Frame.__init__(self, parent, -1, "A Grid", 
                size=(275, 275)) 
        grid = SimpleGrid(self) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = TestFrame(None) 
    frame.Show(True) 
    app.MainLoop() 

In listing 5.7, we’ve defined all the required PyGridTableBase methods, plus the 
additional methods GetColLabelValue() and GetRowLabelValue(). Hopefully you 
will not be too surprised to learn that these methods allow the table to specify the 

Table set here



How do I keep the Model and View 133
separate in my program?
column and row labels, respectively. As in the refactoring section, the effect of 
using the model class is to separate the data from the display. In this case, we’ve 
also moved the data into a more structured format, which could easily be separated 
to an external file or resource (a database would be particularly easy to add here). 

Using a PyGridTableBase: a generic example
In fact, we’re very close to having a generic table that can read any two-dimensional 
Python list. Listing 5.8 shows what the generic model would look like. 

import wx 
import wx.grid 

class GenericTable(wx.grid.PyGridTableBase): 
            
    def __init__(self, data, rowLabels=None, colLabels=None): 
        wx.grid.PyGridTableBase.__init__(self) 
        self.data = data 
        self.rowLabels = rowLabels 
        self.colLabels = colLabels 
        
    def GetNumberRows(self): 
        return len(self.data) 

    def GetNumberCols(self): 
        return len(self.data[0]) 

    def GetColLabelValue(self, col): 
        if self.colLabels: 
            return self.colLabels[col] 
        
    def GetRowLabelValue(self, row): 
        if self.rowLabels: 
            return self.rowLabels[row] 
        
    def IsEmptyCell(self, row, col): 
        return False 

    def GetValue(self, row, col): 
        return self.data[row][col] 

    def SetValue(self, row, col, value): 
        pass          

Listing 5.8 A generic table for two-dimensional lists



134 CHAPTER 5 
Creating your blueprint
The GenericTable class takes a two-dimensional list of data and an optional list of 
row and/or column headers. It’s suitable to be imported into any wxPython pro-
gram. With a slight change in the data format, we can now use the generic table to 
display the lineup, as in listing 5.9.

import wx 
import wx.grid 
import generictable 

data = (("Bob", "Dernier"), ("Ryne", "Sandberg"), 
        ("Gary", "Matthews"), ("Leon", "Durham"), 
        ("Keith", "Moreland"), ("Ron", "Cey"), 
        ("Jody", "Davis"), ("Larry", "Bowa"), 
        ("Rick", "Sutcliffe")) 
            
colLabels = ("Last", "First") 
rowLabels = ("CF", "2B", "LF", "1B", "RF", "3B", "C", "SS", "P") 
                   
class SimpleGrid(wx.grid.Grid): 
    def __init__(self, parent): 
        wx.grid.Grid.__init__(self, parent, -1) 
        tableBase = generictable.GenericTable(data, rowLabels, 
                colLabels) 
        self.SetTable(tableBase)                    

class TestFrame(wx.Frame): 
    def __init__(self, parent): 
        wx.Frame.__init__(self, parent, -1, "A Grid", 
                size=(275, 275)) 
        grid = SimpleGrid(self) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = TestFrame(None) 
    frame.Show(True) 
    app.MainLoop() 

Using a PyGridTableBase: a standalone Model class
At the risk of being repetitive, there is one more way to use the PyGridTable-
Base that is worth showing here. This is the second option alluded to earlier, 
where the data is kept in a separate model class which is accessed by the PyGrid-
TableBase. Python’s self-inspection capabilities are very useful here, allowing you 
to make a list of the attributes that are displayed in each column and then use the 

Listing 5.9 The lineup display using the generic table



How do I keep the Model and View 135
separate in my program?
built-in function getattr() to retrieve the actual value. In this case, the model 
takes a list of elements. Structuring your program with separate model objects has 
one big advantage in wxPython. Under normal circumstances, you can only call 
SetTable() once for a grid—if you want to change the table, you need to create a 
new grid, and that can be annoying. However, if, as in the next example, your 
PyGridTableBase only stores references to instances of your real data class, then 
you can update the table to new data by just changing the underlying data object 
in the table. 

 Listing 5.10 shows the PyGridTableBase using a separate data class for the 
lineup entries we’ve been displaying—we’ll spare you another listing of the frame 
and data creation itself, as it’s quite similar to the previous ones. 

import wx 
import wx.grid 

class LineupEntry: 
    
    def __init__(self, pos, first, last): 
        self.pos = pos 
        self.first = first 
        self.last = last 
        
class LineupTable(wx.grid.PyGridTableBase):   
         
    colLabels = ("First", "Last")  
    colAttrs = ("first", "last")   
    
    def __init__(self, entries):               
        wx.grid.PyGridTableBase.__init__(self)   
        self.entries = entries 
        
    def GetNumberRows(self): 
        return len(self.entries) 

    def GetNumberCols(self): 
        return 2 

    def GetColLabelValue(self, col): 
        return self.colLabels[col]   
        
    def GetRowLabelValue(self, row): 
        return self.entries[row].pos   
        
    def IsEmptyCell(self, row, col): 
        return False 

Listing 5.10 The lineup display table using a custom data class

The column 
headers

b The attribute names

Initializing 
the model c

Reading the value of the header

d Reading the row header



136 CHAPTER 5 
Creating your blueprint
    def GetValue(self, row, col): 
        entry = self.entries[row] 
        return getattr(entry, self.colAttrs[col])   

    def SetValue(self, row, col, value): 
        pass          

This list contains the attributes that need to be referenced to display the values 
column by column. 
The model takes a list of entries where each entry is an instance of the Lineup-
Entry class. (We’re not doing any error checking or validation here). 
To get the row header, we look up the pos attribute of the entry in the proper row. 
The first step here is getting the correct entry based on the row. The attribute is 
taken from the list in line b, and then the getattr() built-in is used to reference 
the actual value. This mechanism is extensible even in the case where you don’t 
know if the name refers to an attribute or a method by checking to see if 
<object>.<attribute> is callable(). If it is, then call it using normal Python 
function syntax, and return that value. 

The grid class is an example where wxPython already has a valuable model com-
ponent to help you structure your application. The next section will discuss how 
to create model components for other wxPython objects.

5.2.3 A custom model 

The basic idea behind creating your model objects is simple. Construct your data 
classes without worrying about how they will be displayed. Then document a pub-
lic interface for that class which will be accessible to the display objects. Obviously, 
the size and complexity of the project will determine how formal this public dec-
laration needs to be. In a small project, with simple objects, it’s probably enough 
to do the simple thing and allow the View objects direct access to the attributes of 
the model. In a more complex object, you may want to define specific methods 
for this use, or create a separate model class that is the only thing that the view 
sees (as we did in listing 5.10). 

 You also need some kind of mechanism for allowing the view to be notified of 
changes in the model. Listing 5.11 shows a simple one—an abstract base class 
that you can use as the parent for any of your model classes. You can think of this 
as an analogue to PyGridTableBase for use when the display is not a grid.

 

Reading the 
attribute value

 e

 b

 c

 d
 e



How do I keep the Model and View 137
separate in my program?
class AbstractModel(object): 

    def __init__(self): 
        self.listeners = [] 
        
    def addListener(self, listenerFunc): 
        self.listeners.append(listenerFunc) 
        
    def removeListener(self, listenerFunc): 
        self.listeners.remove(listenerFunc) 
        
    def update(self): 
        for eachFunc in self.listeners: 
            eachFunc(self) 

The listeners in this case are expected to be callable objects which can take self as 
an argument—obviously the actual class of self can vary, so your listener might 
have to flexible. Also, we’ve set up AbstractModel as a Python new-style class, as 
evidenced by the fact that it is a subclass of object. Therefore, this example 
requires Python 2.2 or higher to run. 

 How can we use the abstract model class? Fig-
ure 5.4 shows a new window, similar to the win-
dow we used for the refactoring earlier in this 
chapter. The window is simple. The text boxes 
are read-only. Clicking one of the buttons sets 
the text boxes to display the name of the rele-
vant character. 

 The program that runs this window uses a 
simple MVC structure. The button-handler 
methods change the model, and the model-
update structure causes the text fields to change. Listing 5.12 shows this in detail. 

#!/usr/bin/env python 

import wx 
import abstractmodel 

class SimpleName(abstractmodel.AbstractModel): 

    def __init__(self, first="", last=""): 

Listing 5.11 A custom model for updating a view

Listing 5.12 The MVC program to “Flintstonize” your window

Figure 5.4 A simple window 
showing how models work



138 CHAPTER 5 
Creating your blueprint
        abstractmodel.AbstractModel.__init__(self) 
        self.set(first, last) 
        
    def set(self, first, last): 
        self.first = first 
        self.last = last 
        self.update()   

class ModelExample(wx.Frame): 
    
    def __init__(self, parent, id): 
        wx.Frame.__init__(self, parent, id, 'Flintstones', 
                size=(340, 200)) 
        panel = wx.Panel(self)    
        panel.SetBackgroundColour("White") 
        self.Bind(wx.EVT_CLOSE, self.OnCloseWindow) 
        self.textFields = {} 
        self.createTextFields(panel)      
        self.model = SimpleName()               
        self.model.addListener(self.OnUpdate)   
        self.createButtonBar(panel) 
        
    def buttonData(self): 
        return (("Fredify", self.OnFred), 
                ("Wilmafy", self.OnWilma), 
                ("Barnify", self.OnBarney), 
                ("Bettify", self.OnBetty)) 
        
    def createButtonBar(self, panel, yPos = 0): 
        xPos = 0 
        for eachLabel, eachHandler in self.buttonData(): 
            pos = (xPos, yPos) 
            button = self.buildOneButton(panel, eachLabel, eachHandler, pos)
            xPos += button.GetSize().width 
        
    def buildOneButton(self, parent, label, handler, pos=(0,0)): 
        button = wx.Button(parent, -1, label, pos) 
        self.Bind(wx.EVT_BUTTON, handler, button) 
        return button 
       
    def textFieldData(self): 
        return (("First Name", (10, 50)), 
                ("Last Name", (10, 80))) 
        
    def createTextFields(self, panel): 
        for eachLabel, eachPos in self.textFieldData(): 
            self.createCaptionedText(panel, eachLabel, eachPos) 
                
    def createCaptionedText(self, panel, label, pos): 
        static = wx.StaticText(panel, wx.NewId(), label, pos) 
        static.SetBackgroundColour("White") 

b Updating

Creating 
the model

 c



How do I keep the Model and View 139
separate in my program?
        textPos = (pos[0] + 75, pos[1]) 
        self.textFields[label] = wx.TextCtrl(panel, wx.NewId(), 
                "", size=(100, -1), pos=textPos, 
                style=wx.TE_READONLY) 

    def OnUpdate(self, model): 
        self.textFields["First Name"].SetValue(model.first)   
        self.textFields["Last Name"].SetValue(model.last)     

    def OnFred(self, event):                    
        self.model.set("Fred", "Flintstone")    
                                                
    def OnBarney(self, event):                  
        self.model.set("Barney", "Rubble")      
                                                
    def OnWilma(self, event):                   
        self.model.set("Wilma", "Flintstone")   
                                                
    def OnBetty(self, event):                   
        self.model.set("Betty", "Rubble")       

    def OnCloseWindow(self, event): 
        self.Destroy() 
            
if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = ModelExample(parent=None, id=-1) 
    frame.Show() 
    app.MainLoop() 

This line performs the update. 
These two lines create the model object, and register the OnUpdate() method as a 
listener. Now that method will be called whenever the update is invoked. 
The OnUpdate() method itself simply sets the value of the text fields using the 
model passed around as part of the update. The code could use the self.model
instance instead (they should be the same object). Using the method argument is 
more robust in the case where the same code is listening on multiple objects. 
The button-click handlers change the value of the model object, which triggers 
the update. 

In an example this small, the model update mechanism may seem overly 
baroque. There’s no reason why the button handlers couldn’t directly set the text 
field values. The model mechanism becomes more valuable, however, when the 
model class has a more complex internal state and processing. You would be 
able, for example, to change the internal representation from a Python dictio-
nary to an external database without making any changes in the view. 

Setting 
text fields

 d

Button click 
handlers

 e

 b
 c

 d

 e



140 CHAPTER 5 
Creating your blueprint
 If you are dealing with an existing class that you cannot or do not want to 
change, then AbstractModel can be used as a proxy for the existing class in much 
the same way as the LineupTable is in listing 5.10. 

 In addition, wxPython contains two separate implementations of similar MVC
update mechanisms that have more features than the one described here. The 
first is the module wx.lib.pubsub, which is quite similar in structure to the 
AbstractModel class given previously. The model class, called Publisher, allows 
objects to listen for only specific kinds of messages. The other update system, 
wx.lib.evtmgr.eventManager, is built on top of pubsub, and has some additional 
features, including a more elaborate object-oriented design and easy connection 
and removal of event relationships. 

5.3 How do you unit-test a GUI program? 

A key advantage of good refactoring and the MVC design pattern is that it makes 
it easier to validate the performance of your program using unit tests. A unit test is 
a test of a single, specific function of your program. Because both refactoring and 
the use of an MVC design pattern tend to break your program into smaller pieces, 
it is easier for you to write specific unit tests targeting individual parts of your pro-
gram. Unit testing is a particularly useful tool when combined with refactoring, 
because a complete suite of unit tests allows you to verify that you are not intro-
ducing any errors as you move your code around. 

 A continual challenge in unit testing is how to test UI code. Testing a model is 
relatively straightforward, as most of the model functionality will not depend on 
user input. Testing the functionality of the interface itself can be more difficult 
because the behavior of the interface depends on user behavior that can be hard 
to encapsulate. In this section we’ll show you how to use unit testing in wxPython, 
particularly the use of manually generated events to trigger behavior during a 
unit test. 

5.3.1 The unittest module

When writing user tests, it’s helpful to use a pre-existing test engine to spare you 
the repetitive task of writing code to run your tests. Since version 2.1, Python has 
been distributed with the unittest module. The unittest module implements a 
test framework called PyUnit (a Tkinter based user interface for unittest and 
some other goodies are available at http://pyunit.sourceforge.net/). A PyUnit mod-
ule is made up of tests, test cases, and test suites. Table 5.5 defines the three groups. 



How do you unit-test a GUI program? 141
A single PyUnit test can have one of three results: success, failure, or error. Suc-
cess indicates that the test method ran to completion, all assertions were true, and 
no errors were triggered. That is, of course, the desirable outcome. Failure and 
error indicate different problems with the code. A failure result means that one of 
your assertions returned false, indicating that the code runs successfully, but is 
not doing what you expect. An error result means that a Python exception was 
triggered somewhere in the execution of the test, showing that your code is not 
running successfully. The first failure or error in a single test will end the execu-
tion of that test, even if there are more assertions to test in the code, and the test 
runner will move on to the next test. 

5.3.2 A unittest sample

Listing 5.13 shows a sample unittest module, in this case, tests for the model 
example in Listing 5.12. 

import unittest 
import modelExample 
import wx 

class TestExample(unittest.TestCase):   

    def setUp(self):   
        self.app = wx.PySimpleApp() 
        self.frame = modelExample.ModelExample(parent=None, id=-1) 
        
    def tearDown(self):   

Table 5.5 The three levels of abstraction in the unittest module

Item Definition 

Test An individual method called by the PyUnit engine. By convention, the name of a test 
method begins with test. A test method typically executes some code, then performs one 
or more assert statements to test whether the results are as expected. 

TestCase A class defining one or more individual tests that share a common setup. The class is 
defined in PyUnit to manage a group of such tests. The TestCase class has support for 
doing common setup before and tear down after each test, ensuring that each test runs 
separately from the others. The TestCase class also defines some special assert 
methods, such as assertEqual. 

TestSuite One or more test methods or TestCase objects grouped together for the purpose of being 
run at the same time. When you actually tell PyUnit to run tests, you pass it a TestSuite 
object to run. 

Listing 5.13 A sample unit test for the model example

Declaring  
a test case

 b

Set up for each test c

d Tear down after each test



142 CHAPTER 5 
Creating your blueprint
        self.frame.Destroy()   
        
    def testModel(self):     
        self.frame.OnBarney(None) 
        self.assertEqual("Barney", self.frame.model.first, 
                msg="First is wrong")                     
        self.assertEqual("Rubble", self.frame.model.last)   
        
def suite():   
    suite = unittest.makeSuite(TestExample, 'test') 
    return suite 

if __name__ == '__main__': 
    unittest.main(defaultTest='suite')   

The test case is a subclass of unittest.TestCase. The test runner creates an 
instance of the class for each test, in order to best allow the tests to be indepen-
dent of each other. 
The setUp() method is called before each test is run. This allows you to guarantee 
that each test starts with your application in the same state. In this case, we create 
an instance of the frame that we are testing. 
The tearDown() method is called after each test is run. This allows you to do any 
clean-up necessary to ensure that the system state remains consistent from test to 
test. Generally this includes resetting global data, closing database connections 
and the like. In this case we call Destroy() on the frame, which forces wxWidgets 
to exit, and keeps the system in a good state for the next test. 
The test method usually begins with the prefix test, although that is under your 
control (see line g). Test methods take no arguments. This method starts by 
explicitly calling the OnBarney event handler method to test behavior. 
This line uses the assertEqual() method to test that the model object has been 
correctly changed. The assertEqual() method takes two arguments, and the test 
fails if they are not equal. All PyUnit assertion methods take an optional msg argu-
ment which is displayed if the assertion fails (the default for assertEqual() is 
almost always useful enough). 
This method creates a test suite through the easiest mechanism available, the 
makeSuite() method. The method takes a Python class object and a string prefix 
as arguments, and returns a test suite containing all the test methods in that class 
whose names begin with the prefix. There are other mechanisms that allow for 
more explicit setting of a test suite’s contents, but this method is generally all you 
need. The suite() method as written here is a boilerplate template that can be 
used in all of your test modules. 

Declaring  
a test

 e

An assertion 
that could fail f

Creating a test suite g

h Starting the test

 b

 c

 d

 e

 f

 g



How do you unit-test a GUI program? 143
This line invokes the PyUnit text-based runner. The argument is the name of a 
method that returns a test suite. The suite is then run, and the results are output 
to the console. If you wanted to use the GUI test runner, you would change this 
line to call the main method of that module. 

The results of this PyUnit test, run from a console window, are as follows: 

. 
---------------------------------------------------------------------- 
Ran 1 test in 0.190s 

OK 

This is a successful test. The top line, with the dot, indicates that the one test ran 
successfully. Each test gets one character in the display, . indicates success, F indi-
cates failure, and E indicates error. Then comes the simple listing of the number 
of tests and the total time elapsed, and an OK indicating that all tests passed. 

 On a failure or error, you receive a stack trace showing how Python got to the 
point of the error. If we were to change the last name test to Fife, for instance, 
we’d receive the following result: 

F 
====================================================================== 
FAIL: testModel (__main__.TestExample) 
---------------------------------------------------------------------- 
Traceback (most recent call last): 
  File "C:\wxPyBook\book\1\Blueprint\testExample.py", line 18, in testModel
    self.assertEqual("Fife", self.frame.model.last) 
  File "c:\python23\lib\unittest.py", line 302, in failUnlessEqual 
    raise self.failureException, \ 
AssertionError: 'Fife' != 'Rubble' 

---------------------------------------------------------------------- 
Ran 1 test in 0.070s 

FAILED (failures=1) 

This indicates the failure in the first line, gives the name of the method that 
failed, and a traceback showing that the assertion on line 18 failed, and how it 
failed. You generally need to go a few levels deep in the stack trace to show where 
the actual failure was; the last line or two of the stack trace is likely to be in the 
unittest module itself. 

5.3.3 Testing user events

This test is not a complete test of the system, of course. We could also test that the 
TextField instances in the frame were updated with the values after the model 

 h



144 CHAPTER 5 
Creating your blueprint
was updated. That test would be reasonably straightforward. Another test you 
might want to run would be to automatically generate the button-click event 
itself, and ensure that the proper handler is called. That test is a little less 
straightforward. Listing 5.14 shows an example: 

def testEvent(self): 
    panel = self.frame.GetChildren()[0] 
    for each in panel.GetChildren(): 
        if each.GetLabel() == "Wilmafy": 
            wilma = each 
            break 
    event = wx.CommandEvent(wx.wxEVT_COMMAND_BUTTON_CLICKED, wilma.GetId())
    wilma.GetEventHandler().ProcessEvent(event) 
    self.assertEqual("Wilma", self.frame.model.first) 
    self.assertEqual("Flintstone", self.frame.model.last) 

The first few lines of this example find the appropriate button (in this case, the 
“Wilmafy” button). Since we did not explicitly store the buttons as Python 
instance variables, we just need to walk through the panel’s children list until we 
find the right button. (You could also do this as a Python list comprehension if 
you wanted). The next two lines create the wx.CommandEvent to be sent from the 
button. The single parameter to the creator is wx.wxEVT_COMMAND_BUTTON_ 

CLICKED, a constant for the actual integer event type that is bound to the EVT_ 
BUTTON binder object. (You can find the integer constants in the wxPython source 
file wx.py). After that, we set the ID of the event to the ID of the Wilmafy button. 
At this point, the event has all the relevant features of the actual event as it would 
be created by wxPython. So, we call ProcessEvent() to send it into the system. If 
the code works as planned, then the model first and last names will be changed to 
“Wilma” and “Flintstone.” 

 By generating events, you can test the responsiveness of your system from 
beginning to end. In theory, you could generate a mouse-down and mouse-up 
event within your button to ensure that the button-click event is created as a 
response. In practice, this won’t work with native widgets because the low level 
wx.Events aren’t translated back into native system events and sent to the native 
widget. However, a similar process could be useful when testing custom widgets 
(such as the two-button control in chapter 3). This kind of unit testing can give 
you confidence in the responsiveness of your application. 

Listing 5.14 A sample test by generating a user event



Summary 145
5.4 Summary 

■ GUI code has a bad reputation for being messy and hard to maintain. This 
can be overcome with a little extra effort, which will pay off when it’s time to 
make changes to your code. 

■ Refactoring is the improvement of existing code. Some goals of refactoring 
are to remove duplication, remove magic literals, and create short methods 
that do only one thing. Continually striving for those goals will make your 
code easier to read and understand. In addition, good refactoring also 
make certain types of errors (such as cut-and-paste errors) much less likely. 

■ Separating your data from your layout code makes both data and layout 
easier to work with. The standard mechanism for managing this separation 
is the MVC mechanism. In wxPython terms, the View is the wx.Window
objects that display your data, the Controller is the wx.EvtHandler objects 
that dispatch events, and the Model is your own code that contains the 
information to be displayed. 

■ Perhaps the clearest example of an MVC structure in the core wxPython 
classes is the wx.grid.PyGridTableBase, which is used to model data for dis-
play in a wx.grid.Grid control. The data in the table can either come from 
the class itself, or the class can reference another object containing the rel-
evant data. 

■ You can create your own MVC setup with a simple mechanism for notifying 
the view when the model has been updated. There are also existing mod-
ules within wxPython that will help you do this. 

■ Unit testing is a useful way to verify the validity of your program. In Python, 
the unittest module is one of the standard ways of executing unit tests. In 
some packages, unit testing of a GUI is difficult, but wxPython makes it rel-
atively easy to programmatically create events. This allows you to test the 
event handling behavior of your application from beginning to end. 

In the next chapter, we’ll show you how to build a small application and how to do 
several things that will be common to many of the wxPython applications that you 
will build.



Working with 
the basic building blocks
This chapter covers
■ Using a device context to draw to the screen
■ Adding window decorations to a frame
■ Working with standard file dialogs and  

color pickers
■ Laying out widgets and creating a sizer
■ Building about boxes and splash screens
146



Working with the basic building blocks 147
Even a simple wxPython program needs to use standard elements such as menus 
and dialogs. These are the basic building blocks of any GUI application. Using 
these building blocks, along with fancier widgets like a splash screen, status bar, 
or about box, provides a more user-friendly environment, and gives your appli-
cation a professional look and feel. To conclude the first part of the book, we’ll 
guide you through the creation of a program using all of these components. We’ll 
build a simple draw program, then add these building block elements and 
explain some of the issues in using them. We’ll reinforce the fundamental con-
cepts covered in the previous chapters, and at the end you’ll have a simple but 
professional application. This chapter is a middle ground between the basic con-
cepts discussed in the previous chapters and the more detailed discussion of 
wxPython functionality in parts 2 and 3. 

 The application we’ll build in this chapter is loosely based on the Doodle and 
Super Doodle samples that are distributed with wxPython in the wxPython/samples
directory. It’s a very simple draw program that tracks the mouse pointer when the 
left mouse button is down, and draws a line. Figure 6.1 displays a simple initial 
sketch window. 

Figure 6.1 A simple sketch window, with no further decorations 



148 CHAPTER 6 
Working with the basic building blocks
We chose a sketch sample because it’s a fairly simple program that illustrates 
many of the issues involved in creating more complex applications. Within this 
chapter, we’ll show you how to draw lines on the screen, and add a status bar, a 
toolbar, and menubar. You’ll see how to use common dialogs, such as a file 
chooser and a color picker. We’ll use sizers to lay out complicated widget sets, and 
we’ll add an about box and a splash screen. At the end of the chapter, you’ll have 
created a nice looking sketch program. 

6.1 Drawing to the screen

The first job of your sketch program is to draw the sketch lines to the display. Like 
many other GUI tools, wxPython provides a device-independent set of tools for 
drawing to various kinds of displays. In the following section we’ll discuss how to 
draw on the screen.

6.1.1 How do I draw on the screen? 
To draw on the screen, we use a wxPython object called a device context. A device con-
text abstracts a display device, giving each device a common set of draw methods, so 
that your draw code is the same no matter what kind of device you are targeting. A 
device context is represented by the abstract wxPython class wx.DC and its subclasses. 
Since wx.DC is abstract, you’ll need to use one of its subclasses for your application. 

Using a device context
Table 6.1 displays a field guide to the subclasses of wx.DC and their usage. Device 
contexts, which are used to draw to a wxPython widget, should always be locally cre-
ated, temporary objects, and should not be kept between method calls in an instance 
variable, global variable, or other manner. On some platforms device contexts are a 
limited resource and so holding references to a wx.DC could cause your program to 
be unstable. Because of the way wxPython uses device contexts internally, there are 
several subtly different wx.DC subclasses used for drawing in a widget. Chapter 12 
will explain these differences in more detail.

Table 6.1 A brief guide to the device context subclasses of wx.DC 

Device Context Usage 

wx.BufferedDC Used to buffer a set of drawing commands until they are complete and ready 
to draw to screen. This prevents unwanted flicker in the display.

wx.BufferedPaintDC As wx.BufferedDC but only used within the processing of a 
wx.PaintEvent. Only create instances of this class temporarily.

continued on next page



Drawing to the screen 149
Listing 6.1 contains the code for the initial pass of the sketch window displayed in 
figure 6.1. Because this code shows tricks of drawing to device contexts, we’ll 
annotate it in detail. 

import wx 

class SketchWindow(wx.Window): 
    def __init__(self, parent, ID): 
        wx.Window.__init__(self, parent, ID) 
        self.SetBackgroundColour("White") 
        self.color = "Black" 
        self.thickness = 1 
        self.pen = wx.Pen(self.color, self.thickness, wx.SOLID)   
        self.lines = [] 
        self.curLine = [] 
        self.pos = (0, 0) 
        self.InitBuffer() 

wx.ClientDC Used to draw on a window object. Use this when you want to draw on the 
main area of the widget—not the border or any other decoration. The main 
area is sometimes called the client area, hence the name of this DC. The 
wx.ClientDC class should only be created temporarily. This class is only 
used outside of the processing of a wx.PaintEvent. 

wx.MemoryDC Used to draw graphics to a bitmap stored in memory, not being displayed. 
You can then select the bitmap, and use the wx.DC.Blit() method to 
draw the bitmap to a window. 

wx.MetafileDC On Windows operating systems, this device context allows you to create 
standard windows metafile data. 

wx.PaintDC Identical to wx.ClientDC except that it is only used within the processing 
of a wx.PaintEvent. Only create instances of this class temporarily. 

wx.PostScriptDC Used to write encapsulated PostScript files 

wx.PrinterDC Used on Windows operating systems to write to a printer. 

wx.ScreenDC Used to draw directly to the screen itself, on top and outside of any windows 
being displayed. This class should only be created temporarily. 

wx.WindowDC Used to draw on the entire area of a window object, including the border, and 
any other decorations not included in the client area. Non-Windows operating 
systems might not support this class. 

Listing 6.1 The initial SketchWindow code

Table 6.1 A brief guide to the device context subclasses of wx.DC (continued)

Device Context Usage 

 bCreating a 
wx.Pen object



150 CHAPTER 6 
Working with the basic building blocks
        self.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown)   
        self.Bind(wx.EVT_LEFT_UP, self.OnLeftUp)       
        self.Bind(wx.EVT_MOTION, self.OnMotion)        
        self.Bind(wx.EVT_SIZE, self.OnSize)            
        self.Bind(wx.EVT_IDLE, self.OnIdle)            
        self.Bind(wx.EVT_PAINT, self.OnPaint)          

    def InitBuffer(self): 
        size = self.GetClientSize() 
        self.buffer = wx.EmptyBitmap(size.width, size.height)   
        dc = wx.BufferedDC(None, self.buffer)                   
        dc.SetBackground(wx.Brush(self.GetBackgroundColour()))   
        dc.Clear()                                               
        self.DrawLines(dc) 
        self.reInitBuffer = False 

    def GetLinesData(self): 
        return self.lines[:] 

    def SetLinesData(self, lines): 
        self.lines = lines[:] 
        self.InitBuffer() 
        self.Refresh() 

    def OnLeftDown(self, event): 
        self.curLine = [] 
        self.pos = event.GetPositionTuple()   
        self.CaptureMouse()   

    def OnLeftUp(self, event): 
        if self.HasCapture(): 
            self.lines.append((self.color, 
                               self.thickness, 
                               self.curLine)) 
            self.curLine = [] 
            self.ReleaseMouse()   
            
    def OnMotion(self, event): 
        if event.Dragging() and event.LeftIsDown():   
            dc = wx.BufferedDC(wx.ClientDC(self), self.buffer)   
            self.drawMotion(dc, event)
        event.Skip() 
           
    def drawMotion(self, dc, event): 
        dc.SetPen(self.pen)                 
        newPos = event.GetPositionTuple()   
        coords = self.pos + newPos          
        self.curLine.append(coords)   
        dc.DrawLine(*coords)          
        self.pos = newPos                  

Linking the 
events

 c

Creating a buffered 
device context  d

Using the device context  e

f Getting the mouse position

Capturing 
the mouse g

h Releasing the mouse

Determining if a 
drag is ongoing

 i

Creating another buffered context  j

 1) Drawing to 
device context



Drawing to the screen 151
    def OnSize(self, event): 
        self.reInitBuffer = True   

    def OnIdle(self, event):   
        if self.reInitBuffer: 
            self.InitBuffer() 
            self.Refresh(False) 

    def OnPaint(self, event): 
        dc = wx.BufferedPaintDC(self, self.buffer)   

    def DrawLines(self, dc):                            
        for colour, thickness, line in self.lines:      
            pen = wx.Pen(colour, thickness, wx.SOLID)   
            dc.SetPen(pen)                              
            for coords in line:                         
                dc.DrawLine(*coords)                    
                
    def SetColor(self, color): 
        self.color = color 
        self.pen = wx.Pen(self.color, self.thickness, wx.SOLID) 

    def SetThickness(self, num): 
        self.thickness = num 
        self.pen = wx.Pen(self.color, self.thickness, wx.SOLID) 

class SketchFrame(wx.Frame): 
    def __init__(self, parent): 
        wx.Frame.__init__(self, parent, -1, "Sketch Frame", 
                size=(800,600)) 
        self.sketch = SketchWindow(self, -1) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = SketchFrame(None) 
    frame.Show(True) 
    app.MainLoop() 

The wx.Pen instance determines the color, thickness, and style of lines drawn to 
the device context. Styles other than wx.SOLID include wx.DOT, wx.LONGDASH, and 
wx.SHORTDASH. 
This window needs to respond to several different mouse event types in order to draw 
the sketch. It responds to left mouse button up and down, mouse motion, window 
resize, and window repaint. It also specifies processing to take place during idle times.
The buffered device context is created in two steps: (1) Create the empty bitmap 
that serves as the offscreen buffer and (2) Create a buffered device context using 
the offscreen buffer. The buffered context is used to prevent the redrawing of the 

1! Handling a resize event

1@ Idle processing

1# Handling a paint request

 1$ Drawing 
all lines

 b

 c

 d



152 CHAPTER 6 
Working with the basic building blocks
sketched lines from causing screen flicker. Later in this section, we’ll discuss the 
buffered device contexts in more detail. 
These lines issue drawing commands to the device context; specifically, setting 
the background drawing brush and clearing the device. The wx.Brush object 
determines the color and style of the background for fill commands. 
The event method GetPositionTuple() returns a Python tuple containing the 
exact position of the mouse click being processed. 
The CaptureMouse() method directs all mouse input to the window, even if you 
drag the mouse outside the border of the window. This call must be negated by 
calling ReleaseMouse() later in the program. 
The ReleaseMouse() call returns the system to the state before the previous Cap-
tureMouse() call. The wxPython application uses a stack to keep track of windows 
that have captured the mouse, and calling ReleaseMouse() is equivalent to pop-
ping that stack. This implies that you need the same number of CaptureMouse()
and ReleaseMouse() calls.   
This line determines if the motion event is part of a line draw, defined by whether 
the motion event occurs while the left mouse button is down. Both Dragging()
and LeftIsDown() are methods of wx.MouseEvent that return True if the associated 
condition is true when the motion event occurs. 
Since wx.BufferedDC is one of the device contexts that is created temporarily, we 
need to create another one before we draw the lines. In this case we create a new 
wx.ClientDC as the main device context, and reuse our instance variable bitmap 
as the buffer. 
These lines actually use the device context to draw the newly sketched line to the 
screen. First, we create the coords tuple, which is a combination of the self.pos
and the newPos tuples. In this case, the new point comes from the event Get-
PositionTuple(), and the old point is stored from the last call to OnMotion(). We 
save that tuple to the self.curLine list, and then use the function call unpack 
syntax to call DrawLine(), with the elements of the tuple as the arguments. The 
DrawLine() method takes as parameters (x1, y1, x2, y2), and draws a line from 
the point (x1, y1) to the point (x2, y2). The frequency with which the motion 
event occurs and gives the sketch pad a new data point, is dependent on the 
underlying system speed. 
If the window is resized, we make a note of it by storing a True value in the 
self.reInitBuffer instance attribute. We don’t actually do anything until the 
next idle event. 
When an idle event comes along, the application takes that opportunity to 
respond to a resize event, if one (or more) has occurred. The reason we respond 

 e

 f

 g

 h

 i

 j

 1)

 1!

 1@



Drawing to the screen 153
in the idle event, rather than the resize event itself, is to allow multiple resize 
events to occur in quick succession without having to redraw for each one. 
Handling the request for redraw is surprisingly simple: create a buffered paint 
device context. The real wx.PaintDC is created (since we are inside a paint request, 
we need wx.PaintDC and not a wx.ClientDC instance), and then the bitmap is blit-
ted to it after the dc instance is deleted. More detailed information about buffer-
ing is provided in the following paragraphs. 
This is used when the application needs to redraw the lines from the instance 
data due to a resize (and later due to a load from file). Again, we use the Draw-
Func() wrapper. In this case, we walk the list of lines stored in the instance vari-
able, recreate the pen for each line (currently all the same—support for changing 
pen characteristics will be added shortly), and then draw all the coordinate tuples 
added for that line. 

The sketch example uses two special subclasses of wx.DC to allow the use of a 
buffer for drawing. A drawing buffer is an undisplayed area where all your prim-
itive drawing commands can be performed one at a time, and then copied to the 
screen in one step. The advantage of a buffer is that the user does not see indi-
vidual drawing commands happening, and thus, the screen refreshes with less 
flicker. For this reason, buffering is commonly used in animation or in cases 
where the drawing is made up of several smaller parts. 

 In wxPython, there are two classes used for buffering: wx.BufferDC, usually used
to buffer a wx.ClientDC; and wx.BufferPaintDC, used to buffer a wx.PaintDC. Each 
works essentially the same way. The buffer device context is created with two argu-
ments. The first is a target device context of the appropriate type (for example, in 
line j of listing 6.1, it’s a new wx.ClientDC instance). The second is a wx.Bitmap
object. In listing 6.1, we create a bitmap using the wx.EmptyBitmap function. 
When draw commands are made to the buffered device context, an internal 
wx.MemoryDC is used to draw to the bitmap. When the buffer object is destroyed, 
the C++ destructor uses the Blit() method to automatically copy the bitmap to 
the target. In wxPython, the destruction typically occurs when the object drops 
out of scope. The implication of this is that buffered device contexts are only use-
ful when created temporarily, so that they can be destroyed and do the blit.

 For example, in the OnPaint() method of listing 6.1, the self.buffer bitmap 
has already been written during the events that built the sketch. The buffered 
object simply needs to be created, thereby establishing a connection between the 
existing bitmap and the temporary wx.PaintDC() for the window. The method 
ends, and the buffered DC immediately drops out of scope, triggering its destruc-
tor, and copying the bitmap to the screen. 

 1#

 1$



154 CHAPTER 6 
Working with the basic building blocks
Functions of the device context
When using device contexts, remember to use the correct context for the kind of 
drawing you are trying to do (specifically, remember the distinction between 
wx.PaintDC and wx.ClientDC). Once you have the correct device context, then 
you can do something with it. Table 6.2 lists some of the more interesting meth-
ods of wx.DC. 

Table 6.2 Commonly used methods of wx.DC 

Function Description 

Blit(xdest, ydest, width, 
height, source, xsrc, 
ysrc) 

Copies bits directly from a source device context to the device context  
making the call. The xdest and ydest parameters are the starting point  
for the copy on the destination context. The next two parameters specify the 
width and height of the copy area. The source is the source device context, 
and xsrc and ysrc are the starting point of the copy in the source context. 
There are further optional parameters to specify a logical overlay function  
and a mask. 

Clear() Clears the device context by painting the whole thing with the current  
background brush. 

DrawArc(x1, y1, x2, y2, 
xc, yc) 

Draws a circular arc with a start point of (x1, y1) and an end point of (x2, y2). 
The point (xc, yc) is the center of the circle whose arc is drawn. The resulting 
arc is filled using the current brush. The function assumes that it will draw a 
counterclockwise arc from the start point to the end point. There is a related 
method, DrawEllipticalArc(). 

DrawBitmap(bitmap, x, 
y, transparent) 

Copies a wx.Bitmap object starting at the point (x, y). If transparent is 
True, then the bitmap will be drawn transparently. 

DrawCircle(x, y, radius)  
DrawCircle(point, radius) 

Draws a circle centered at the given point with the given radius. There is a 
related method, DrawEllipse. 

DrawIcon(icon, x, y) Draws a wx.Icon object to the context, starting at the point (x, y). 

DrawLine(x1, y1, x2, y2) Draws a line from the point (x1, y1) to the point (x2, y2). There is a related 
method DrawLines() which takes a Python list of wx.Point objects and 
connects them. 

DrawPolygon(points) Draws a polygon, given a Python list of wx.Point objects. Differs from 
DrawLines() in that the end point is connected to the first point, and that 
the resulting shape is filled using the current brush. There are optional 
parameters to set an x and y offset and a fill style. 

DrawRectangle(x, y, 
width, height) 

Draws a rectangle whose upper left corner is (x, y) and which has the given 
width and height. The rectangle is filled. 

continued on next page



Adding window decorations 155
This is not an exhaustive list. In the interest of simplicity, several of the more 
obscure drawing methods were left out, as were text processing and pixel map-
ping functions. Those methods will be described in chapter 12. 

6.2 Adding window decorations

While drawing to the screen is an indispensable part of a sketch program, it’s far 
from the only thing necessary to make your application look polished. In this sec-
tion, we’ll talk about common window decorations: the status bar, the menubar, 
and the toolbar. We’ll also discuss these features in more detail in chapter 10. 

6.2.1 How do I add and update a status bar? 

In wxPython, you can add and place a status bar in the bottom of a frame by calling 
the frame’s CreateStatusBar() method. The status bar automatically resizes itself 
when the parent frame resizes. By default, the status bar is an instance of the class 

DrawText(text, x, y) Draws the given string starting at the point (x, y), using the current font. 
Related functions include DrawRotatedText() and GetTextExtent(). 
Text items have separate text foreground and background color properties. 

FloodFill(x, y, color, 
style) 

Performs a flood fill starting at (x, y) and using the color of the current brush. 
The style parameter is optional. The default, wx.FLOOD_SURFACE, assumes 
the color parameter is the surface to flood—it stops when any other color is 
found. The other value, wx.FLOOD_BORDER, assumes the color is the border 
of the shape to flood, and flooding stops when that color is found. 

GetBackground()  
SetBackground(brush) 

The background brush is a wx.Brush object, and is used when the  
Clear() method is called. 

GetBrush() 
SetBrush(brush)

The Brush is a wx.Brush object and is used to fill any shapes that are drawn 
on the device context.

GetFont()  
SetFont(font) 

The font is a wx.Font object and is used for all text draw operations. 

GetPen()  
SetPen(pen) 

The pen is a wx.Pen object and is used for all drawing operations that draw  
a line. 

GetPixel(x, y) Returns a wx.Colour object for the pixel at (x, y). 

GetSize()  
GetSizeTuple() 

Returns the pixel size of the device context as either a wx.Size object or a 
Python tuple. 

Table 6.2 Commonly used methods of wx.DC (continued)

Function Description 



156 CHAPTER 6 
Working with the basic building blocks
wx.StatusBar. To create a custom status bar subclass, attach it to your frame using 
the SetStatusBar() method, with an instance of your new class as the argument. 

 To display a single piece of text in your status bar, you can use the SetStatus-
Text() method of wx.StatusBar. Listing 6.2 extends the SketchFrame class illus-
trated in listing 6.1 to display the current mouse pointer position in the status bar. 

import wx 
from example1 import SketchWindow 

class SketchFrame(wx.Frame): 
    def __init__(self, parent): 
        wx.Frame.__init__(self, parent, -1, "Sketch Frame", 
                size=(800,600)) 
        self.sketch = SketchWindow(self, -1) 
        self.sketch.Bind(wx.EVT_MOTION, self.OnSketchMotion) 
        self.statusbar = self.CreateStatusBar() 

    def OnSketchMotion(self, event): 
        self.statusbar.SetStatusText(str(event.GetPositionTuple())) 
        event.Skip() 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = SketchFrame(None) 
    frame.Show(True) 
    app.MainLoop() 

We’ve hooked up the status bar by having the frame also capture the 
wx.EVT_MOTION event of the sketch window. The event handler sets the status text 
using the data provided by the event. Then it calls Skip() to ensure that the other 
OnMotion() method is called, otherwise the line won’t be drawn. 

 You can treat the status bar like any other widget by adding objects to it. As a 
shortcut, if you want to display more than one text element, you can create mul-
tiple status text fields in the status bar. To use this functionality, call the method 
SetFieldsCount() with the number of fields you want; the default, as we’ve seen, 
is one. After that, use SetStatusText() as before, but with a second argument 
specifying the field being set by the method. The field numbers start at zero. If 
you don’t specify a field, the zero field is set by default, which is why the previous 
example works even though we didn’t specify the field.

 By default, each of the fields have the same width. However that’s not always 
what you want. To adjust the sizes of the text fields, wxPython provides the method 

Listing 6.2 Adding a simple status bar to the frame



Adding window decorations 157
SetStatusWidth(). The method takes a Python list of integers, which must be the 
same length as the number of fields in the status bar. The integer list is used to cal-
culate the width of the fields in order. If the integer is positive, it is the absolute 
fixed width of the field. If you want the field width to change with the frame, indi-
cate that by using a negative integer. The absolute value of the negative integer 
indicates the relative size of the field; think of it as the number of shares of the 
total width that field gets. For example, the call statusbar.SetStatusWidth([-1, -2,
-3]) results in the rightmost field getting half the width (3 parts out of 6), the cen-
ter field getting a third of the width (2 parts out of 6), and the leftmost field getting 
a sixth of the width (1 part out of 6). Figure 6.2 displays the results. 

Listing 6.3 adds support for two more status fields, one which shows the number 
of points in the current line being drawn, the other shows the number of lines in 
the current sketch. This listing produces the status bar displayed in figure 6.2.

import wx 
from example1 import SketchWindow 

class SketchFrame(wx.Frame): 
    def __init__(self, parent): 
        wx.Frame.__init__(self, parent, -1, "Sketch Frame", 
                size=(800,600)) 
        self.sketch = SketchWindow(self, -1) 
        self.sketch.Bind(wx.EVT_MOTION, self.OnSketchMotion) 
        self.statusbar = self.CreateStatusBar() 
        self.statusbar.SetFieldsCount(3) 
        self.statusbar.SetStatusWidths([-1, -2, -3]) 
        
    def OnSketchMotion(self, event): 
        self.statusbar.SetStatusText("Pos: %s" % 
                str(event.GetPositionTuple()), 0) 
        self.statusbar.SetStatusText("Current Pts: %s" % 
                len(self.sketch.curLine), 1) 
        self.statusbar.SetStatusText("Line Count: %s" % 
                len(self.sketch.lines), 2) 
        event.Skip() 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 

Listing 6.3 Support for multiple status fields

Figure 6.2 A sample status bar with the fields getting 1/6, 2/3, and 1/2 of the total width



158 CHAPTER 6 
Working with the basic building blocks
    frame = SketchFrame(None) 
    frame.Show(True) 
    app.MainLoop() 

The StatusBar class allows you to treat the status fields as a last in/first out stack. 
Although not useful for the demo application in this chapter, the PushStatus-
Text() and PopStatusText() methods allow you to return to the previous status 
text after temporarily displaying new text. Both of these methods take an optional 
field number, so they can be used in the case of multiple status fields. 

 Table 6.3 summarizes the most commonly used methods of wx.StatusBar. 

In chapter 10, we’ll provide more details about status bars. In the meantime, we’ll 
discuss menus.

6.2.2 How do I include a submenu or checked menu? 
In this section, we’ll present two common menu tricks, the sub-
menu and the checked or radio menu. A submenu is a menu 
which is accessible inside one of the top menus. A checkbox or 
radio menu is a group of menu items that behaves like a group 
of checkboxes or radio buttons. Figure 6.3 displays a menubar, 
including a submenu with radio menu items. 

 To create a submenu, build it just as you would any other menu, 
and append it to the parent menu using wx.Menu.AppendMenu().

Table 6.3 Methods of wx.StatusBar 

Function Description 

GetFieldsCount()  
SetFieldsCount(count) 

Property for the number of fields in the status bar

GetStatusText(field=0)  
SetStatusText(text, field=0) 

Property for the text displayed in the specified status field. The index of 
0 is the default and represents the leftmost field 

PopStatusText(field=0) Pops the text statck of the specified status field, changing the text of 
that field to the popped value 

PushStatusText(text, field=0) Changes the display of the specified status field to the given text, and 
pushes that value to the top of the stack for that field

SetStatusWidths(widths) Takes a Python list of integers and specifies the width of the status 
fields. A positive number indicates a fixed width in pixels, and a negative 
number indicates a dynamic share of the width proportional to the 
absolute value of the number. 

Figure 6.3  
A menu that uses 
a submenu with 
radio menu items 



Adding window decorations 159
 Menu items with checkbox or radio button decorations can be created either 
by using the wx.Menu methods AppendCheckItem() and AppendRadioItem(), or by 
passing the kind attribute to the creator for wx.MenuItem one of the following val-
ues: wx.ITEM_NORMAL, wx.ITEM_CHECKBOX, or wx.ITEM_RADIO. A checkbox menu 
item displays a check that automatically toggles on and off as the item is selected; 
you do not have to manually manage that process. The start value of a checked 
menu item is off. Radio menu items are implicitly grouped. Consecutive radio 
items are considered to be part of the same group (a menu separator will break up 
the group). By default, the topmost member of the group is checked, after which 
selecting any member of the group automatically transfers the check to that item. 
To programmatically check a menu item, use the wx.Menu method Check(id,
bool), where id is the wxPython ID of the item to be changed, and the Boolean 
specifies the checked state of the item. 

 Listing 6.4 adds menu support to the sketch application frame. The menu 
functionality here is an evolutionary descendent of the refactored utility code dis-
played in listing 5.5. In this case, the data format is tweaked to provide submenus, 
and the creation code recursively creates a submenu when necessary. Support is 
also added for radio and checkbox menus. 

import wx
from example1 import SketchWindow

class SketchFrame(wx.Frame):
    def __init__(self, parent):
        wx.Frame.__init__(self, parent, -1, "Sketch Frame", 
                size=(800,600))
        self.sketch = SketchWindow(self, -1)
        self.sketch.Bind(wx.EVT_MOTION, self.OnSketchMotion)
        self.initStatusBar()   
        self.createMenuBar()

    def initStatusBar(self):
        self.statusbar = self.CreateStatusBar() 
        self.statusbar.SetFieldsCount(3)
        self.statusbar.SetStatusWidths([-1, -2, -3])

    def OnSketchMotion(self, event):
        self.statusbar.SetStatusText("Pos: %s" % 
                str(event.GetPositionTuple()), 0)
        self.statusbar.SetStatusText("Current Pts: %s" % 
                len(self.sketch.curLine), 1)
        self.statusbar.SetStatusText("Line Count: %s" %
                len(self.sketch.lines), 2)
        event.Skip()

Listing 6.4 Menu support for the sketch application

Note slight 
refactoring b



160 CHAPTER 6 
Working with the basic building blocks
    def menuData(self):                                           
        return [("&File", (                                       
                    ("&New", "New Sketch file", self.OnNew),      
                    ("&Open", "Open sketch file", self.OnOpen),   
                    ("&Save", "Save sketch file", self.OnSave),   
                    ("", "", ""),                                 
                    ("&Color", (                                  
                        ("&Black", "", self.OnColor,              
                           wx.ITEM_RADIO),                        
                        ("&Red", "", self.OnColor,                
                           wx.ITEM_RADIO),                        
                        ("&Green", "", self.OnColor,              
                           wx.ITEM_RADIO),                        
                        ("&Blue", "", self.OnColor,               
                           wx.ITEM_RADIO))),                      
                    ("", "", ""),                                 
                    ("&Quit", "Quit", self.OnCloseWindow)))]      

    def createMenuBar(self):
        menuBar = wx.MenuBar()    
        for eachMenuData in self.menuData():
            menuLabel = eachMenuData[0]
            menuItems = eachMenuData[1]
            menuBar.Append(self.createMenu(menuItems), menuLabel)
        self.SetMenuBar(menuBar)
            

    def createMenu(self, menuData):
        menu = wx.Menu()
        for eachItem in menuData:
            if len(eachItem) == 2:                            
                label = eachItem[0]                           
                subMenu = self.createMenu(eachItem[1])        
                menu.AppendMenu(wx.NewId(), label, subMenu)   
            else:
                self.createMenuItem(menu, *eachItem)
        return menu 
        

    def createMenuItem(self, menu, label, status, handler,
                       kind=wx.ITEM_NORMAL):  
        if not label:
            menu.AppendSeparator()
            return 
        menuItem = menu.Append(-1, label, status, kind)   
        self.Bind(wx.EVT_MENU, handler, menuItem)
        

    def OnNew(self, event): pass    
    def OnOpen(self, event): pass
    def OnSave(self, event): pass

Identifying 
menu data

 c

Creating 
submenus

 d

Creating 
menu items 
with kind e



Adding window decorations 161
    def OnColor(self, event):                 
        menubar = self.GetMenuBar()           
        itemId = event.GetId()                
        item = menubar.FindItemById(itemId)   
        color = item.GetLabel()               
        self.sketch.SetColor(color)           
    
    def OnCloseWindow(self, event):
        self.Destroy()

if __name__ == '__main__':
    app = wx.PySimpleApp()
    frame = SketchFrame(None)
    frame.Show(True)
    app.MainLoop()

Now that the __init__ method contains more functionality, we’ve encapsulated 
the status bar stuff into its own method. 
The format of the menu data is now (label, (items)), where each item is either a list 
(label, status text, handler, optional kind) or a menu with a label and items. To 
determine whether a subitem of data is a menu or a menu item, remember, menus 
are length 2, and items are length 3 or 4. In a production system, where the data 
is more complex, I recommend using XML or some other external format. 
If the data piece is of length 2, it’s meant to be a submenu, so break it up the same 
way the top-level was broken up, and recursively call createMenu and append it. 
Given the implementation of the menus here, it was easier to add the kind param-
eter to the wx.MenuItem constructor than to use the special methods of wx.Menu. 
The OnColor method is set up to handle the color changes of all the menu items, 
rather than setting up separate handlers for each item. In this case, the code gets 
the item id from the event, and uses the FindItemById() method to get the 
appropriate menu item (notice that this does not require us to maintain a sepa-
rate hash table of item ids—we’re using the menubar as that data structure). This 
method assumes that the label of the menu item is a wxPython color name, and 
passes that label to the sketch window, which updates its pen. 

6.2.3 How do I include a toolbar? 

Menu bars and toolbars are often tightly linked, making most or all of the func-
tionality of the toolbar available via a menu item. In wxPython, this similarity is 
enhanced by the toolbar buttons emitting wx.EVT_MENU events when clicked, mak-
ing it easy to use the same methods to handle both the menu item selection, and 
the toolbar click. A wxPython toolbar is an instance of the class wx.ToolBar, and as

Handling 
color change

 f

 b

 c

 d

 e

 f



162 CHAPTER 6 
Working with the basic building blocks
we saw in chapter 2, can be created using the Frame method 
CreateToolBar(). Like a status bar, a toolbar automatically 
resizes along with the parent frame. The toolbar is similar to 
other wxPython windows in that it can have arbitrary subwin-
dows. Toolbars also contain methods for creating tool but-
tons. Figure 6.4 displays a portion of the sketch window with a 
toolbar replicating the menu functionality we just created. 

 As in the menu code, the color bitmaps are radio buttons, and switching one 
causes it to appear selected. Rather than duplicate the menu code in listing 6.5, 
we’ll include new and changed methods of SketchFrame. 

def __init__(self, parent): 
    wx.Frame.__init__(self, parent, -1, "Sketch Frame", 
            size=(800,600)) 
    self.sketch = SketchWindow(self, -1) 
    self.sketch.Bind(wx.EVT_MOTION, self.OnSketchMotion) 
    self.initStatusBar() 
    self.createMenuBar() 
    self.createToolBar() 

def createToolBar(self):   
    toolbar = self.CreateToolBar()                           
    for each in self.toolbarData():                          
        self.createSimpleTool(toolbar, *each)                
    toolbar.AddSeparator()                           
    for each in self.toolbarColorData():                     
        self.createColorTool(toolbar, each)                  
    toolbar.Realize()   

def createSimpleTool(self, toolbar, label, filename,     
        help, handler):                                  
    if not label:                                        
        toolbar.AddSeparator()                           
        return                                           
    bmp = wx.Image(filename,                             
            wx.BITMAP_TYPE_BMP).ConvertToBitmap()        
    tool = toolbar.AddSimpleTool(-1, bmp, label, help)   
    self.Bind(wx.EVT_MENU, handler, tool)                

def toolbarData(self): 
    return (("New", "new.bmp", "Create new sketch", 
                self.OnNew), 
            ("", "", "", ""), 
            ("Open", "open.bmp", "Open existing sketch", 
                self.OnOpen), 

Listing 6.5 Adding a toolbar to the sketch application

Figure 6.4 A typical 
toolbar showing both 
regular and toggle 
buttons

Creating 
the toolbar

 b

c Realizing the toolbar

Creating the 
simple tools

 d



Adding window decorations 163
            ("Save", "save.bmp", "Save existing sketch", 
                self.OnSave)) 

def createColorTool(self, toolbar, color):                  
    bmp = self.MakeBitmap(color)                            
    newId = wx.NewId()                                      
    tool = toolbar.AddRadioTool(-1, bmp, shortHelp=color)   
    self.Bind(wx.EVT_MENU, self.OnColor, tool)              

def MakeBitmap(self, color):            
    bmp = wx.EmptyBitmap(16, 15)        
    dc = wx.MemoryDC()                  
    dc.SelectObject(bmp)                
    dc.SetBackground(wx.Brush(color))   
    dc.Clear()                          
    dc.SelectObject(wx.NullBitmap)      
    return bmp                          

def toolbarColorData(self): 
    return ("Black", "Red", "Green", "Blue") 

def OnColor(self, event): 
    menubar = self.GetMenuBar() 
    itemId = event.GetId() 
    item = menubar.FindItemById(itemId) 
    if not item:                          
        toolbar = self.GetToolBar()       
        item = toolbar.FindById(itemId)   
        color = item.GetShortHelp()       
    else: 
        color = item.GetLabel() 
    self.sketch.SetColor(color) 

The toolbar code is similar in setup to the menu code in that it is data-driven. 
However, in this case, we set up different loops for the typical buttons and for the 
radio toggle buttons, since they are not nested in the toolbar. 
The Realize() method actually lays out the toolbar objects within the bar. It must 
be called before the toolbar is displayed, and it must be recalled if any tools are 
added or removed from the bar. 
This method is similar to the creation of menu items. The main difference is that 
simple toolbar tools require bitmaps. In this case, we’ve placed three basic bit-
maps in the same directory as the sample code. At the end of the method, we 
hook up the same wx.EVT_MENU event that is used for menu items. For a signature 
of the AddTool method, providing more specification of tools, see table 6.4. 
The color tools are created similarly to the simple tools, with just a different 
method to tell the toolbar they are radio tools. The solid bitmaps are created by 
the MakeBitmap() method. 

Creating 
color tools

 e

Creating a 
solid bitmap

 f

Changing color 
in response to 
toolbar click

 g

 b

 c

 d

 e



164 CHAPTER 6 
Working with the basic building blocks
This method creates a solid bitmap of the proper size by creating a bitmap, 
attaching a wx.MemoryDC to it, and clearing the bitmap with the desired color used 
in the background brush. 
A slight addition to the OnColor() method searches the toolbar for the proper 
tool, and sets the color accordingly. However, one problem with the code as writ-
ten is that changing the color via the menu item doesn’t change the toolbar radio 
state, and vice versa. 

Toolbars do have one piece of event flexibility that menu items don’t have. They 
can generate the event type wx.EVT_TOOL_RCLICKED when the tool is clicked with 
the right mouse button. Toolbars also have a few different styles that are passed 
as bitmaps as an argument to CreateToolBar(). Table 6.4 lists some of the tool-
bar styles. 

Toolbars are more complicated than status bars. Table 6.5 displays some of the 
more commonly used methods. 

 f

 g

Table 6.4 Styles of the wx.ToolBar class

Style Description 

wx.TB_3DBUTTONS Makes the tools display with a 3D look 

wx.TB_HORIZONTAL Default style, lays out the toolbar horizontally 

wx.TB_NOICONS Do not display the bitmaps for each tool 

wx.TB_TEXT The toolbar will show the short help text along with the default bitmaps 

wx.TB_VERTICAL Lays the toolbar out vertically 

Table 6.5 Commonly used methods of wx.ToolBar 

Function Description 

AddControl(control) Adds an arbitrary wxPython control widget to the toolbar. Also see the 
related method InsertControl(). 

AddSeparator() Places empty space between tools. 

AddSimpleTool(id, bitmap, 
shortHelpString="", 
kind=wx.ITEM_NORMAL) 

Adds a simple tool button to the toolbar, with the given bitmap. The 
shortHelpString is displayed as a tooltip. The kind can be 
wx.ITEM_NORMAL, wx.ITEM_CHECKBOX, or wx.ITEM_RADIO. 

continued on next page



Getting standard information 165
In the next section, we’ll show you how to use common dialogs to get informa-
tion from the user. On most operating systems, you can leverage standard dia-
logs to provide your user with a familiar interface for common tasks, such as 
choosing a file.

6.3 Getting standard information 

Your application often needs basic information from the user, typically through 
dialog boxes. In this section, we’ll talk about using the standard file and color dia-
logs for standard user information. 

6.3.1  How do I use standard file dialogs? 

Most GUI applications must save and load data of some kind or another. For the 
sanity of both you and your users, having a single, consistent mechanism for 
choosing files is desirable. Happily, wxPython provides the standard dialog 
wx.FileDialog to insert into your applications for this purpose. Under MS Win-
dows, this class is a wrapper around the standard Windows file dialog. Under an 
X Window system, this is a similar looking custom dialog. Figure 6.5 displays the 
file dialog for the sketch application. 

AddTool(id, bitmap, 
bitmap2=wx.NullBitmap, 
kind=wx.ITEM_NORMAL, 
shortHelpString="", 
longHelpString="", 
clientData=None) 

Additional parameters for simple tools. The bitmap2 is displayed  
when the tool is pressed. The longHelpString is displayed in the 
status bar when the pointer is in the tool, and clientData can be 
used to associate an arbitrary piece of data with the tool. There is a 
related InsertTool() method. 

AddCheckTool(...) Adds a checkbox toggle tool, with the same parameters as AddTool(). 

AddRadioTool(...) Adds a radio toggle tool, with the same parameters as AddTool(). A 
consecutive, unbroken sequence of radio tools is considered a group  
for toggling. 

DeleteTool(toolId)  
DeleteToolByPosition(x, y) 

Deletes the tool with the given id, or which is displayed at the  
given point. 

FindControl(toolId)  
FindToolForPosition(x, y) 

Finds and returns the tool with the given id, or displayed at the  
given point. 

ToggleTool(toolId, toggle) If the tool with the specified id is a radio or checkbox, sets the toggle of 
that tool based on the Boolean toggle argument. 

Table 6.5 Commonly used methods of wx.ToolBar (continued)

Function Description 



166 CHAPTER 6 
Working with the basic building blocks
The most important method for using the wx.FileDialog is the constructor, 
which has the following signature.

wx.FileDialog(parent, message="Choose a file", defaultDir="", 
        defaultFile="", wildcard="*.*", style=0) 

Table 6.6 describes the parameters of the constructor. 

Table 6.7 lists the style options for the style bitmask.

Table 6.6 The parameters of the wx.FileDialog constructor

Parameter Description 

parent The parent window for the dialog, or None if there is no parent window. 

message The message is displayed in the title bar of the dialog. 

defaultDir The directory that the dialog should start with. If empty, the dialog starts in the current 
working directory. 

defaultFile The file selected when the dialog opens. If empty, no file is selected. 

wildcard The options for the wildcard filter which allows the user to limit the display to selected file 
types. The format is <display>|<wildcard>, which may be repeated multiple times to 
give the user multiple options; for example, “Sketch files (*.sketch)|*.sketch|All files 
(*.*)|*.*” 

style A bitmask style. Styles are listed in table 6.6. 

Figure 6.5  
A standard file 
dialog for Windows 



Getting standard information 167
To use the file dialog, call the ShowModal() method on a dialog instance. The 
method returns either wx.ID_OK or wx.ID_CANCEL, depending on the button the 
user clicks to dismiss the dialog. After the selection, use the GetFilename(), Get-
Directory(), or GetPath() methods to retrieve the data. Afterwards, it’s a good 
idea to destroy the dialog with the Destroy() method. 

 Listing 6.6 displays the modifications necessary to the SketchFrame to support 
saving and loading. These changes also require the import of the cPickle and os
standard modules. We’ll use cPickle to convert the list of data from the sketch 
window to a format that can be written to, and read from, the file. 

def __init__(self, parent): 
    self.title = "Sketch Frame" 
    wx.Frame.__init__(self, parent, -1, self.title, 
            size=(800,600)) 
    self.filename = "" 
    self.sketch = SketchWindow(self, -1) 
    self.sketch.Bind(wx.EVT_MOTION, self.OnSketchMotion) 
    self.initStatusBar() 
    self.createMenuBar() 
    self.createToolBar() 
    
def SaveFile(self):                         
    if self.filename:                       
        data = self.sketch.GetLinesData()   
        f = open(self.filename, 'w')        
        cPickle.dump(data, f)               
        f.close()                           

Table 6.7 Style options for wx.FileDialog

Style Description 

wx.CHANGE_DIR After the user selects a file, the current working directory is changed  
to that directory. 

wx.MULTIPLE Only applicable for an open dialog, this style allows the user to select 
multiple files. 

wx.OPEN The style is used for opening a file. 

wx.OVERWRITE_PROMPT Only applicable for a save dialog, this style gives a prompt to confirm the 
choice if an existing file is selected to be overwritten. 

wx.SAVE The style is used for saving a file. 

Listing 6.6 Saving and loading methods of SketchFrame

Saving 
the file

 b



168 CHAPTER 6 
Working with the basic building blocks
def ReadFile(self):   
    if self.filename: 
        try: 
            f = open(self.filename, 'r') 
            data = cPickle.load(f) 
            f.close() 
            self.sketch.SetLinesData(data) 
        except cPickle.UnpicklingError: 
            wx.MessageBox("%s is not a sketch file." 
                    % self.filename, "oops!", 
                    style=wx.OK|wx.ICON_EXCLAMATION) 

                         
wildcard = "Sketch files (*.sketch)|*.sketch|All files (*.*)|*.*" 

def OnOpen(self, event): 
    dlg = wx.FileDialog(self, "Open sketch file...",   
            os.getcwd(), style=wx.OPEN, 
            wildcard=self.wildcard) 
    if dlg.ShowModal() == wx.ID_OK: 
        self.filename = dlg.GetPath() 
        self.ReadFile() 
        self.SetTitle(self.title + ' -- ' + self.filename) 
    dlg.Destroy() 

def OnSave(self, event):   
    if not self.filename: 
        self.OnSaveAs(event) 
    else: 
        self.SaveFile() 

def OnSaveAs(self, event): 
    dlg = wx.FileDialog(self, "Save sketch as...",   
           os.getcwd(), 
           style=wx.SAVE | wx.OVERWRITE_PROMPT, 
           wildcard=self.wildcard) 
    if dlg.ShowModal() == wx.ID_OK: 
        filename = dlg.GetPath() 
        if not os.path.splitext(filename)[1]:   
            filename = filename + '.sketch' 
        self.filename = filename 
        self.SaveFile() 
        self.SetTitle(self.title + ' -- ' + 
                self.filename) 
    dlg.Destroy() 

This method writes the file data to disk, given the filename, and uses the 
cPickle module. 

c Reading the file

Popping up the 
open dialog d

e Saving the file

f Popping up the save dialog

g Ensuring filename extensions

 b



Getting standard information 169
This method reads the file using cPickle. If the file is not of the expected type, it 
pops up a message box alert to that effect.
The OnOpen() method creates a dialog with the wx.OPEN style, in the current direc-
tory. The wildcard string on the previous line allows the user to limit the selection 
to .sketch files. If the user clicks OK, this method calls the ReadFile() method 
with the selected path. 
If a filename has already been selected for the current data, we save the file, oth-
erwise, we treat it as a save as, and open the save dialog. 
The OnSave() method creates a wx.SAVE file dialog. 
This line ensures that filenames typed without an extension get the .sketch
extension. 

In the next section, we’ll describe how to use the color picker.

6.3.2 How do I use a standard color picker? 

It would be useful if the user was allowed to select an arbitrary color in the sketch 
dialog. For that purpose, we can use the standard wx.ColourDialog provided by 
wxPython. Use of this dialog is similar to the file dialog. The constructor takes 
only a parent and an optional data attribute. The data attribute is an instance of 
wx.ColourData, storing some data associated with the dialog such as the user-chosen 
color, and the list of custom colors. Using the data attribute allows you to keep the 
custom colors consistent from one usage to the next. 

 Using the color dialog in the sketch application requires the addition of a 
menu item, and a pretty straightforward handler method. Listing 6.7 shows the 
additions to the code. 

def menuData(self): 
    return [("&File", ( 
                ("&New", "New Sketch file", self.OnNew), 
                ("&Open", "Open sketch file", self.OnOpen), 
                ("&Save", "Save sketch file", self.OnSave), 
                ("", "", ""), 
                ("&Color", ( 
                    ("&Black", "", self.OnColor, 
                            wx.ITEM_RADIO), 
                    ("&Red", "", self.OnColor, 
                            wx.ITEM_RADIO), 
                    ("&Green", "", self.OnColor, 
                            wx.ITEM_RADIO), 
                    ("&Blue", "", self.OnColor, 

 c

 d

 e

 f

 g

Listing 6.7 Changes to the SketchFrame to display the color dialog



170 CHAPTER 6 
Working with the basic building blocks
                            wx.ITEM_RADIO), 
                    ("&Other...", "", self.OnOtherColor, 
                            wx.ITEM_RADIO))), 
                ("", "", ""), 
                ("&Quit", "Quit", self.OnCloseWindow)))] 

def OnOtherColor(self, event): 
    dlg = wx.ColourDialog(self) 
    dlg.GetColourData().SetChooseFull(True)   
    if dlg.ShowModal() == wx.ID_OK: 
        self.sketch.SetColor(dlg.GetColourData().GetColour())   
    dlg.Destroy() 

We’ve done two things with the color dialog that may not be immediately obvi-
ous. The SetChooseFull() method of the color data instance tells the dialog to 
display with the full palette, including the custom color information. After the 
dialog is closed, we grab the color data again to get the color. The color data is 
returned as a wx.Color instance and is suitable for passing back to the sketch to 
set the color. 

6.4 Making the application look nice

In this section, we’ll discuss issues related to how you give your application that 
final coat of polish. These range from the serious, such as how you arrange things 
so that the user can resize the window, to the more trivial, such as how you can dis-
play an about box. These topics are covered in more detail in part 2.

6.4.1 How do I lay out widgets? 

One way to lay out your widgets in your wxPython application is to explicitly spec-
ify the position and size of every widget when it is created. Although this method 
is reasonably simple, over time it has a few flaws. For one thing, because widget 
sizes and default font sizes differ, it can be very difficult to get the positioning 
exactly right on all systems. In addition, you must explicitly change the position 
of each widget every time the user resizes the parent window. This can be a real 
pain to implement properly.

 Fortunately, there’s a better way. The layout mechanism in wxPython is called 
a sizer, and the idea is similar to layout managers in Java AWT and other interface 
toolkits. Each different sizer manages the size and position of its windows based 
on a set of rules. The sizer belongs to a container window (typically a wx.Panel). 

Creating color data object

Setting color from user input



Making the application look nice 171
Subwindows created inside the parent must be added to the sizer, and the sizer 
manages the size and position of each widget. 

Creating a sizer
To create a sizer:

1 Create the panel or container that you want to be automatically sized. 

2 Create the sizer. 

3 Create your subwindows as you would normally. 

4 Add each subwindow to the sizer using the sizer’s Add() method. This is in 
addition to adding the subwindow to the parent container. When you add 
the window, give the sizer additional information, including the amount 
of space to surround the window, how to align the window within the 
allotted space managed by the sizer, and how to extend the window when 
the container window resizes. 

5 Sizers can nest, meaning that you can add other sizers to the parent sizer 
as well as window objects. You can also set aside a certain amount of 
empty space as a separator. 

6 Call the method SetSizer(sizer) of the container. 

Table 6.8 lists the most commonly used sizers available in wxPython. For a more 
complete description of each particular sizer, see chapter 11. 

Table 6.8 The most commonly used wxPython sizers 

Sizer Description 

wx.BoxSizer Lays children out in a line. A wx.BoxSizer can be either horizontally or vertically 
oriented, and can contain subsizers in any orientation to create complex layouts. 
Parameters passed to the sizer when items are added govern how children react 
when resized along either the main or perpendicular axis of the box. 

wx.FlexGridSizer A fixed two-dimensional grid, which differs from wx.GridSizer in that the size  
of each row and column is set separately based on the largest element in that row  
or column. 

wx.GridSizer A fixed two-dimensional grid, where each element is the same size—the size needed 
by the largest element in the sizer. When creating a grid sizer, you fix either the 
number of columns or the number of rows. Items are added left to right until a row is 
filled, and then the next row is started. 

continued on next page



172 CHAPTER 6 
Working with the basic building blocks
Using a sizer

To demonstrate the use of a sizer, we’ll add a control panel to the Sketch applica-
tion. The control panel contains buttons for setting the color and thickness of the 
line. This example uses instances of both wx.GridSizer (for the buttons) and 
wx.BoxSizer (for the rest of the layout). Figure 6.6 displays the Sketch application 
with the panel, illustrating how the grid and box layouts appear in practice.

wx.GridBagSizer A two-dimensional grid, based on wx.FlexGridSizer. Allows for items to  
be placed in a specfic spot on the grid, and also allows items to span multiple  
grid locations. 

wx.StaticBoxSizer Identical to a wx.BoxSizer, with the one addition of a border (and optional 
caption) around the box. 

Table 6.8 The most commonly used wxPython sizers (continued)

Sizer Description 

Figure 6.6 The Sketch application with an automatically laid out control panel 



Making the application look nice 173
Listing 6.8 displays the changes to the Sketch application required to imple-
ment the control panel. The discussion in this section will focus on the sizer 
implementation. 

def __init__(self, parent): 
    self.title = "Sketch Frame" 
    wx.Frame.__init__(self, parent, -1, self.title, 
            size=(800,600)) 
    self.filename = "" 
    self.sketch = SketchWindow(self, -1) 
    self.sketch.Bind(wx.EVT_MOTION, self.OnSketchMotion) 
    self.initStatusBar() 
    self.createMenuBar() 
    self.createToolBar() 
    self.createPanel() 
    
def createPanel(self): 
    controlPanel = ControlPanel(self, -1, self.sketch) 
    box = wx.BoxSizer(wx.HORIZONTAL) 
    box.Add(controlPanel, 0, wx.EXPAND) 
    box.Add(self.sketch, 1, wx.EXPAND) 
    self.SetSizer(box) 

In listing 6.8, the createPanel() method creates the instance of ControlPanel
(described in the next listing), and puts together the box sizer. The only parameter 
to the constructor for wx.BoxSizer is the orientation, which can be either wx.
HORIZONTAL or wx.VERTICAL. Next, the new control panel and the previously created 
SketchWindow are each added to the sizer using the Add() method. The first argu-
ment is the object that should be added to the sizer. The second argument is used 
by wx.BoxSizer as a stretch factor to determine how the sizer should resize its chil-
dren when its own size changes. In the case of a horizontal sizer, the stretch factor 
determines how the horizontal size of each child changes (the vertical stretching is 
performed by the box sizer based on the flags in the third argument). 

 If the stretch factor is zero, the object shouldn’t change size no matter what 
happens to the sizer. If the factor is greater than zero, that is interpreted as a 
share of the total size relative to the shares of the other children in the sizer (sim-
ilar to how wx.StatusBar manages text field widths). If all children in the sizer 
have the same factor, they all resize at the same rate and equally share in the 
space that is left after positioning the fixed size elements. In this case, the 0 for 
the control panel indicates that the panel should not change horizontal size if the 

Listing 6.8 Sketch sizer changes in the Sketch Frame



174 CHAPTER 6 
Working with the basic building blocks
user stretches the frame, while the 1 for the sketch window means that all the size 
changes are absorbed there.

 The third argument to Add() is another bitmask flag. Full details on expected 
flag values will be given later in the chapter. The wx.EXPAND value is one of several 
values that govern how the item changes size across the axis perpendicular to the 
main axis for a box sizer; in this case, what happens when the frame changes size 
vertically. Using the wx.EXPAND flag directs the sizer to resize the child to com-
pletely fill the available space. Other possible options allow the child to be resized 
proportionally or aligned to a particular part of the sizer. Figure 6.7 should help 
clarify which parameter governs which resize direction. 

 The result of these settings is that when you run the frame with this box sizer, 
any size change in a horizontal direction causes the sketch window to change size, 
and the control panel remains the same. A size change in the vertical direction 
causes both subwindows to expand or contract vertically. 

 The ControlPanel class referenced in listing 6.8 uses a combination of grid 
and box sizers. Listing 6.9 contains the code for that class. 

 
 

Figure 6.7 A drawing showing which argument determines resize behavior in each direction. 



Making the application look nice 175
class ControlPanel(wx.Panel): 

    BMP_SIZE = 16 
    BMP_BORDER = 3 
    NUM_COLS = 4 
    SPACING = 4 
     
    colorList = ('Black', 'Yellow', 'Red', 'Green', 'Blue', 'Purple', 
              'Brown', 'Aquamarine', 'Forest Green', 'Light Blue', 
              'Goldenrod', 'Cyan', 'Orange', 'Navy', 'Dark Grey', 
              'Light Grey') 
    maxThickness = 16 

    def __init__(self, parent, ID, sketch): 
        wx.Panel.__init__(self, parent, ID, 
                          style=wx.RAISED_BORDER) 
        self.sketch = sketch 
        buttonSize = (self.BMP_SIZE + 2 * self.BMP_BORDER, 
                      self.BMP_SIZE + 2 * self.BMP_BORDER) 
        colorGrid = self.createColorGrid(parent, buttonSize) 
        thicknessGrid = self.createThicknessGrid(buttonSize) 
        self.layout(colorGrid, thicknessGrid) 
        
    def createColorGrid(self, parent, buttonSize):   
        self.colorMap = {} 
        self.colorButtons = {} 
        colorGrid = wx.GridSizer(cols=self.NUM_COLS, hgap=2, 
            vgap=2) 
        for eachColor in self.colorList: 
            bmp = parent.MakeBitmap(eachColor) 
            b = buttons.GenBitmapToggleButton(self, -1, bmp, 
                  size=buttonSize) 
            b.SetBezelWidth(1) 
            b.SetUseFocusIndicator(False) 
            self.Bind(wx.EVT_BUTTON, self.OnSetColour, b) 
            colorGrid.Add(b, 0) 
            self.colorMap[b.GetId()] = eachColor 
            self.colorButtons[eachColor] = b 
        self.colorButtons[self.colorList[0]].SetToggle(True) 
        return colorGrid 

    def createThicknessGrid(self, buttonSize):   
        self.thicknessIdMap = {} 
        self.thicknessButtons = {} 
        thicknessGrid = wx.GridSizer(cols=self.NUM_COLS, hgap=2, 
            vgap=2) 
        for x in range(1, self.maxThickness + 1): 
            b = buttons.GenToggleButton(self, -1, str(x), 
                  size=buttonSize) 

Listing 6.9 The control panel class, using grid and box sizers

Creating the 
color grid b

Creating the 
thickness grid c



176 CHAPTER 6 
Working with the basic building blocks
            b.SetBezelWidth(1) 
            b.SetUseFocusIndicator(False) 
            self.Bind(wx.EVT_BUTTON, self.OnSetThickness, b) 
            thicknessGrid.Add(b, 0) 
            self.thicknessIdMap[b.GetId()] = x 
            self.thicknessButtons[x] = b 
        self.thicknessButtons[1].SetToggle(True) 
        return thicknessGrid 
        
    def layout(self, colorGrid, thicknessGrid):   
        box = wx.BoxSizer(wx.VERTICAL) 
        box.Add(colorGrid, 0, wx.ALL, self.SPACING) 
        box.Add(thicknessGrid, 0, wx.ALL, self.SPACING) 
        self.SetSizer(box) 
        box.Fit(self) 

    def OnSetColour(self, event): 
        color = self.colorMap[event.GetId()] 
        if color != self.sketch.color: 
            self.colorButtons[self.sketch.color].SetToggle(False) 
        self.sketch.SetColor(color) 

    def OnSetThickness(self, event): 
        thickness = self.thicknessIdMap[event.GetId()] 
        if thickness != self.sketch.thickness: 
            self.thicknessButtons[self.sketch.thickness].SetToggle(False) 
        self.sketch.SetThickness(thickness) 

The createColorGrid() method builds the grid sizer that contains the color but-
tons. First, we create the sizer itself, specifying the number of columns as four. 
Since the column count is set, the buttons will be laid out from left to right, and 
then down. Then, we take the list of colors, and create a button for each color. 
Inside the for loop, we create a square bitmap of the proper color, and create a 
toggle button with that bitmap using one set of generic button widget classes 
defined in the wxPython library. Then we hook the button up to an event, and 
add it to the grid. After that, we add it to a few dictionaries to make it easier to 
relate color, ID, and button in later code. We don’t have to specify the button’s 
placement within the grid; the sizer takes care of that for us. 
The createThicknessGrid() method is almost identical to the color grid method. 
In fact, an enterprising programmer might be able to merge them into a com-
mon utility function. The grid sizer is created, and the sixteen buttons are added 
one at a time, with the sizer making sure they line up nicely on the screen. 
We use a vertical box sizer to place the grids one on top of the other. The second 
argument for each grid is 0, indicating that the grid sizers should not change size 
when the control panel stretches vertically. (Since we already know that the control 

Combining 
the grids

 d

 b

 c

 d



Making the application look nice 177
panel doesn’t change size horizontally, we don’t need to specify the horizontal 
behavior.) This example shows the fourth argument to Add(), which is the width of 
the border to place around the item, in this case specified by the self.SPACING vari-
able. The wx.ALL as the third argument is one of a set of flags that governs which 
sides to apply the border. Not surprisingly, wx.ALL says that the border should be 
applied on all four sides of the object. At the end, we call the Fit() method of the 
box sizer, with the control panel as an argument. The method tells the control 
panel to resize itself to match the minimum size that the sizer thinks it needs. Typ-
ically, you’ll call this method as part of the creation of a window that uses sizers, to 
ensure that the enclosing window is large enough to encompass the sizer. 

The wx.Sizer base class contains several methods common to all sizers. Table 6.9 
lists the most commonly used methods. 

Table 6.9 Methods of wx.Sizer 

Function Description 

Add(window, proportion=0, 
flag=0, border=0, 
userData=None) 

Add(sizer, proportion=0, 
flag=0, border=0, 
userData=None) 

Add(size, proportion=0, 
flag=0, border=0, 
userData=None) 

Adds an item to the sizer. The first version adds a wxWindow, the second a 
nested sizer. The third version adds empty space which is used as a 
separator and is subject to the same rules for positioning as a window 
would be. The proportion argument manages the size amount that the 
window changes relative to other windows—it’s only meaningful for a 
wx.BoxSizer. The flag argument is a bitmap with many different flags 
for alignment, border position, and growth. A full list is in chapter 11. The 
border argument is the amount of space in pixels to place around the 
window or sizer. userData allows you to associate data with the object, 
for example in a subclass that might need more information for sizing. 

Fit(window)  
FitInside(window) 

Causes the window argument to resize to the sizer’s minimum size. The 
argument is usually the window using the sizer. The FitInside() 
method is similar, but instead of changing the screen display of the 
window, only changes its internal representation. This is used for a window 
inside a scroll panel to trigger scroll bar display. 

GetSize() Returns the size of the sizer as a wx.Size object. 

GetPosition() Returns the position of the sizer as a wx.Point object. 

GetMinSize() Returns the minimum size needed to fully lay out the sizer as  
a wx.Size object.

Layout() Programatically forces the sizer to recalculate the size and position of its 
children. Call after dynamically adding or removing a child. 

Prepend(...) Identical to Add() (all three versions, but the new object is placed at the 
beginning of the sizer list for layout purposes). 

continued on next page



178 CHAPTER 6 
Working with the basic building blocks
For more detailed information about sizers and nesting sizers, refer to chapter 11.

6.4.2 How do I build an about box? 

An about box is a good example of a display dialog that displays more complex 
information than is possible in a plain message box, but doesn’t require other 
functionality. In this case, you can use wx.html.HtmlWindow as a straightforward 
mechanism to display styled text. Actually, wx.html.HtmlWindow is much more 
powerful than we show here, and includes methods to manage user interaction 
and rendering in detail. Chapter 16 covers the features of wx.html.HtmlWindow. 
Listing 6.10 displays a class that creates an about box using the HTML renderer. 

class SketchAbout(wx.Dialog): 
    text = ''' 
<html> 
<body bgcolor="#ACAA60"> 
<center><table bgcolor="#455481" width="100%" cellspacing="0" 
cellpadding="0" border="1"> 
<tr> 
    <td align="center"><h1>Sketch!</h1></td> 
</tr> 
</table> 
</center> 
<p><b>Sketch</b> is a demonstration program for 
<b>wxPython In Action</b> 
Chapter 6. It is based on the SuperDoodle demo included 
with wxPython, available at http://www.wxpython.org/ 
</p> 

<p><b>SuperDoodle</b> and <b>wxPython</b> are brought to you by 
<b>Robin Dunn</b> and <b>Total Control Software</b>, Copyright 
&copy; 1997-2006.</p> 
</body> 
</html> 
''' 

Remove(window)  
Remove(sizer)  
Remove(nth) 

Removes an object from the sizer. Depending on the version, either a 
specific object or the nth in the sizer list is removed. If this is done after 
startup, call Layout() after. 

SetDimension(x, y, width, 
height) 

Programatically forces the sizer to take the given size, and causes all 
children to reposition themselves 

Table 6.9 Methods of wx.Sizer (continued)

Function Description 

Listing 6.10 Using wx.html.HtmlWindow as an about box



Making the application look nice 179
    def __init__(self, parent): 
        wx.Dialog.__init__(self, parent, -1, 'About Sketch', 
                          size=(440, 400) ) 

        html = wx.html.HtmlWindow(self) 
        html.SetPage(self.text) 
        button = wx.Button(self, wx.ID_OK, "Okay") 

        sizer = wx.BoxSizer(wx.VERTICAL) 
        sizer.Add(html, 1, wx.EXPAND|wx.ALL, 5) 
        sizer.Add(button, 0, wx.ALIGN_CENTER|wx.ALL, 5) 

        self.SetSizer(sizer) 
        self.Layout() 

Most of this listing is taken up with the HTML string itself, which has some layout 
and font tags. The dialog is a combination of wx.html.HtmlWindow, and a button 
with the wx.ID_OK ID. Clicking the button automatically closes the window, as with 
any other dialog. A vertical box sizer is used to manage the layout. 

 Figure 6.8 displays the resulting dialog.

To use this, wire up a menu item and a handler as in the following:

def OnAbout(self, event): 
    dlg = SketchAbout(self) 
    dlg.ShowModal() 
    dlg.Destroy() 

Figure 6.8  
The HTML about box 



180 CHAPTER 6 
Working with the basic building blocks
6.4.3 How do I build a splash screen? 

Displaying a great splash screen with your application provides a professional 
look for your users. It can also distract the user while your application completes 
a time-consuming setup. In wxPython, it is easy to build a splash screen from any 
bitmap using the wx.SplashScreen class. The splash screen can be displayed for a 
specific length of time, and whether or not the time has been set, the screen 
always closes when the user clicks on it. The class consists almost entirely of its 
constructor as follows: 

wx.SplashScreen(bitmap, splashStyle, milliseconds, parent, id, 
    pos=wx.DefaultPosition, size=wx.DefaultSize, 
    style=wx.SIMPLE_BORDER|wx.FRAME_NO_TASKBAR|wx.STAY_ON_TOP) 

Table 6.10 defines the parameters for the wx.SplashScreen constructor. 

Listing 6.11 displays the code for a splash screen. In this case, we’ve replaced 
wx.PySimpleApp with a custom wx.App subclass. 

class SketchApp(wx.App): 
    
    def OnInit(self): 
        image = wx.Image("splash.bmp", wx.BITMAP_TYPE_BMP) 

Table 6.10 The parameters for the wx.SplashScreen constructor

Parameter description 

bitmap A wx.Bitmap, this is exactly what is displayed on screen. 

splashStyle Another bitmap style, this can be any combination of the following: 
wx.SPLASH_CENTRE_ON_PARENT, wx.SPLASH_CENTRE_ON_SCREEN, 
wx.SPLASH_NO_CENTRE, wx.SPLASH_TIMEOUT, wx.SPLASH_NO_TIMEOUT, all of 
which are pretty descriptively named. 

milliseconds If wx.SPLASH_TIMEOUT is specified as the splashStyle, this is the number of 
milliseconds before it times out. 

parent Parent window. Generally None. 

id The window id, -1 is usually fine. 

pos Position on screen if wx.SPLASH_NO_CENTER is the splashStyle 

size Size. Generally you don’t need to specify this, since the size of the bitmap is used. 

style Ordinary wxPython frame style, the default is generally what you want 

Listing 6.11 The code for a splash screen



Summary 181
        bmp = image.ConvertToBitmap() 
        wx.SplashScreen(bmp, wx.SPLASH_CENTRE_ON_SCREEN | 
                wx.SPLASH_TIMEOUT, 1000, None, -1) 
        wx.Yield() 

        frame = SketchFrame(None) 
        frame.Show(True) 
        self.SetTopWindow(frame) 
        return True 

Typically, the splash screen is declared in the OnInit method during application 
startup. The splash screen displays itself on construction and displays until it is 
clicked on, or until it times out. In this case, the splash screen displays in the cen-
ter of the screen, and times out after one second. The Yield() call is important 
because it allows any pending events to be processed before continuing. In this 
case, it ensures that the splash screen receives and processes its initial paint event 
before the application continues startup. 

6.5 Summary 

■ Most wxPython programs use common elements such as menus, toolbars, 
and splash screens. Using them helps the usability of your program and 
makes it look more professional. In this chapter we used a simple sketch 
application and enhanced it with a toolbar, status bar, menu bar, common 
dialogs, a complex layout, and an about and splash box. 

■ You can draw directly to the wxPython display by using a device context. 
Different kinds of displays require different device context classes, how-
ever, they all share a common API. Device contexts can be buffered for 
smoother display. 

■ A status bar can be automatically created at the bottom of a frame. It can 
contain one or more text fields, that can be sized and set independently. 

■ Menus can contain nested submenus, and menu items can have toggle 
states. Toolbars emit the same kinds of events as menu bars, and are 
designed to be easy to lay out groups of tool buttons. 

■ Opening and saving your data can be managed with the standard wx.File-
Dialog. Colors can be chosen using wx.ColourDialog. 

■ Complex layouts are created without explicitly placing each widget using siz-
ers. A sizer automatically places its child objects according to a set of rules. 
Sizers include wx.GridSizer, which lays objects out in a two-dimensional grid, 



182 CHAPTER 6 
Working with the basic building blocks
and wx.BoxSizer, which lays items out in a single line. Sizers can be nested, 
and can also control the behavior of their children when the sizer is stretched.

■ An about box, or other simple dialog, can be created using wx.html.Html-
Window. Splash screens are created using wx.SplashScreen. 

In part 1, we’ve covered the basic concepts behind wxPython, and we’ve also 
covered some of the most common tasks. In part 2, we’ll use the now familiar 
question-and-answer format, but we’ll ask more detailed questions about the 
makeup and functionality of the wxPython toolkit. 



Part 2

Essential wxPython

I     n this part of the book, we will explore the essential widgets that make up 
the core of the wxPython toolkit. These basics will be a critical part of any 
wxPython program you write. For each element, we’ll show you the most 
important parts of the API for dealing with that element, as well as sample 
code and tips on how to use the element in actual programs.

 Chapter 7, “Working with the basic controls,” starts us off with the basic wid-
get set. We’ll cover text labels, text entry, buttons, and numerical and list choice 
widgets. We’ll show you how to use each element, how to customize its look to 
match your application, and how to respond to user interaction. In chapter 8, 
“Putting widgets in frames,” we’ll move up the container hierarchy and talk 
about frames. We’ll show you how to add widgets into a frame, and describe the 
available frame styles. We’ll also cover the frame lifecycle from creation to 
destruction. In chapter 9, “Giving users choices with dialogs,” we’ll focus on dia-
logs, starting with the ways in which dialog containers differ from frames. We’ll 
also show the range of predefined dialogs available in wxPython, as well as 
shortcuts for using them easily.

 The focus of chapter 10, “Creating and using wxPython menus,” is on 
menus. We’ll discuss how to create menu items, which can be attached to 
menus, which can be placed on a menu bar. We’ll also cover toggle menus, 
pop-up menus, and various ways to customize your menu display. In chapter 11,
“Placing widgets with sizers,” we demystify the art of the sizer. Sizers are used 
to simplify widget layout inside wxPython frames and dialogs. We’ll cover 
the six kinds of predefined sizers, show you how they behave, and give some 
hints on when they are best used. Finally, in chapter 12, “Manipulating basic 



184 PART 2 
Essential wxPython
graphical images,” we discuss the raw basics of drawing to the screen via a device 
context. This section lists the primitive drawing methods that you can use to 
draw your own widgets, or to support user drawing, or just for decoration.



Working with 
the basic controls
This chapter covers
■ Displaying text
■ Working with buttons
■ Entering and displaying numbers
■ Providing the user with choices
185



186 CHAPTER 7 
Working with the basic controls
The wxPython toolkit provides many different widgets, including the basic con-
trols that are the topic of this chapter. We’ll describe the wxPython starter kit, 
including static text, editable text, buttons, spinners, sliders, checkboxes, radio 
buttons, choosers, list boxes, combo boxes, and gauges. For each widget, we’ll 
provide a brief example of how to use it, followed by a description of the relevant 
parts of the wxPython API. 

7.1 Displaying text 

This section begins with examples of displaying text on the screen, including 
static text fields that you use for labels, which come in both styled and unstyled 
varieties. You can also create text fields for single-line and multi-line user entry. 
In addition, we’ll discuss how to choose a text font.

7.1.1 How do I display static text? 

Perhaps the most basic task for any UI tool-
kit is drawing plain text on the screen. In 
wxPython, this is accomplished with the 
wx.StaticText class. Figure 7.1 displays 
the static text control. 

 In a wx.StaticText, you can change 
the alignment, font, and color of the text. 
A single static text widget can contain 
multiple lines of text, however, it cannot 
handle multiple fonts or styles. For multi-
ple fonts or styles, use a more elaborate 
text control, such as wx.html.HTMLWindow, 
described in chapter 16. To display multi-
ple lines within a static text control, include a string with newline characters 
inside it, and make the control big enough to display all the text. One feature that 
you cannot see from just the figure is that the wx.StaticText window never 
receives or responds to mouse events, and never takes the user focus. 

Figure 7.1 Samples of wx.StaticText, 
including font, alignment, and color changes



Displaying text 187
How to display static text
Listing 7.1 displays the code that produced figure 7.1. 

import wx 

class StaticTextFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Static Text Example',
                size=(400, 300)) 
        panel = wx.Panel(self, -1) 
        wx.StaticText(panel, -1, "This is an example of static text",   
                (100, 10)) 
        rev = wx.StaticText(panel, -1, 
                "Static Text With Reversed Colors",   
                (100, 30)) 
        rev.SetForegroundColour('white') 
        rev.SetBackgroundColour('black') 
        center = wx.StaticText(panel, -1, 
                "align center", (100, 50),   
                (160, -1), wx.ALIGN_CENTER) 
        center.SetForegroundColour('white') 
        center.SetBackgroundColour('black') 
        right = wx.StaticText(panel, -1, 
                "align right", (100, 70),   
                (160, -1), wx.ALIGN_RIGHT)   
        right.SetForegroundColour('white') 
        right.SetBackgroundColour('black') 
        str = "You can also change the font." 
        text = wx.StaticText(panel, -1, str, (20, 100))   
        font = wx.Font(18, wx.DECORATIVE, 
               wx.ITALIC, wx.NORMAL) 
        text.SetFont(font) 
        wx.StaticText(panel, -1, 
                "Your text\ncan be split\n"   
                "over multiple lines\n\neven blank ones", (20,150)) 
        wx.StaticText(panel, -1, 
                "Multi-line text\ncan also\n"   
                "be right aligned\n\neven with a blank", (220,150), 
                style=wx.ALIGN_RIGHT)        

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = StaticTextFrame() 
    frame.Show() 
    app.MainLoop() 

Listing 7.1 A basic example of how to use static text

Viewing basic static text

Designating 
reversed colors

Designating 
center aligned

Designating 
right aligned

Defining a 
new font

Displaying multi-lines

Displaying aligned multi-lines



188 CHAPTER 7 
Working with the basic controls
The constructor for wx.StaticText is identical to the basic wxWidget construc-
tors, as in the following: 

wx.StaticText(parent, id, label, pos=wx.DefaultPosition,   
        size=wx.DefaultSize, style=0, name="staticText") 

Table 7.1 displays what the parameters are—most wxPython widgets have a simi-
lar set in their constructor. Refer to the widget discussion in chapter 2 for a more 
detailed description of constructor parameters.

In the next section, we’ll discuss style flags in more detail. 

Working with the styles

All of the methods called on the static text instances in listing 7.1 belong to the 
parent wx.Window class; wx.StaticText defines no new methods of its own. A few 
style bits are specific to wx.StaticText, and they are listed in table 7.2.

Table 7.1 Parameters of the wx.StaticText constructor

Parameter Purpose

parent The containing widget

id The wxPython identifier. To automatically create a unique identifier, use -1

label Contains the text that you want to display in the static control.

pos The position of the widget as a wx.Point object or a Python tuple

size The size of the widget as a wx.Size object or a Python tuple

style The style flag

name Name used for finding the object

Table 7.2 Style bit flags unique to the wx.StaticText class

Style Description 

wx.ALIGN_CENTER Centers the static text within the size rectangle of the static text widget. 

wx.ALIGN_LEFT The text is left-aligned in the widget. This is the default. 

wx.ALIGN_RIGHT The text is right-aligned in the widget. 

wx.ST_NO_AUTORESIZE If this bit is used, the static text widget will not resize itself after the text is 
changed with SetLabel(). You would use this in conjunction with a center 
or right-aligned control to preserve the alignment. 



Displaying text 189
The wx.StaticText control overrides SetLabel() in order to resize itself based on 
the new text, which happens unless the wx.ST_NO_AUTORESIZE style is set. 

 When creating a single line static text control with a center or right alignment, 
you should explicitly set the size of the control in the constructor. Specifying the 
size prevents wxPython from automatically sizing the control. The wxPython 
default size is the minimum rectangle surrounding the text. Since by default the 
text control is no larger than the text contained, and there is no blank space to 
show the alignment, it is irrelevant whether the control is left, right, or center 
aligned. To change the text in the widget dynamically during the program with-
out changing the size of the control, set the wx.ST_NO_AUTORESIZE style. This pre-
vents the widget from resizing itself back to a minimum rectangle after the text is 
reset. If the static text is inside a dynamic layout, changing its size may move 
other widgets on the screen, creating a distraction for the user. 

Other techniques for text display

There are other ways of adding static text onto your display. One is the 
wx.lib.stattext.GenStaticText class, which is a Python-only reimplementation 
of wx.StaticText. It is more consistent cross-platform than the standard C++ 
version, and it receives mouse events. It’s also preferable when you want to sub-
class and create your own static text control. 

 You can draw text directly to your device context using the DrawText(text, x,
y) method or the DrawRotatedText(text, x, y, angle) method. The latter is the 
easiest way to add angled text to your display, although a subclass of GenStatic-
Text that handles rotation is also available. Device contexts were covered briefly 
in chapter 6, and will be covered in more detail in chapter 12. 

7.1.2 How can I get the user to enter text? 

Moving beyond the mere display of static text, we’ll 
begin discussing user interaction when entering 
text. The wxPython class for the text entry widget is 
wx.TextCtrl, which allows both single-line and 
multi-line text entry. It can also act as a password 
control, masking the keys pressed. If supported by 
the platform, the wx.TextCtrl also provides rich 
text display, with multiple text styles defined and 
displayed. Figure 7.2 displays a sample of wx.TextCtrl as a single-line control, 
both with and without password masking. 

Figure 7.2 Examples of the 
single line text control, both plain 
and password 



190 CHAPTER 7 
Working with the basic controls
 In the next section, we’ll illustrate how to create the text, then discuss the style 
options for text controls.

How to do it
Listing 7.2 displays the code used to generate figure 7.2. 

import wx 

class TextFrame(wx.Frame): 

    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Text Entry Example', 
                size=(300, 100)) 
        panel = wx.Panel(self, -1) 
        basicLabel = wx.StaticText(panel, -1, "Basic Control:") 
        basicText = wx.TextCtrl(panel, -1, "I've entered some text!", 
                size=(175, -1)) 
        basicText.SetInsertionPoint(0) 

        pwdLabel = wx.StaticText(panel, -1, "Password:") 
        pwdText = wx.TextCtrl(panel, -1, "password", size=(175, -1), 
                style=wx.TE_PASSWORD) 
        sizer = wx.FlexGridSizer(cols=2, hgap=6, vgap=6) 
        sizer.AddMany([basicLabel, basicText, pwdLabel, pwdText]) 
        panel.SetSizer(sizer) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = TextFrame() 
    frame.Show() 
    app.MainLoop() 

The wx.TextCtrl class has a slightly more elaborate constructor than the wx.Window
parent class, adding two arguments: 

wx.TextCtrl(parent, id, value = "", pos=wx.DefaultPosition, 
    size=wx.DefaultSize, style=0, validator=wx.DefaultValidator 
    name=wx.TextCtrlNameStr) 

The parent, id, pos, size, style, and name arguments are all identical to those in 
the wx.Window constructor. The value argument is the initial value of the text dis-
played in the control. 

 The validator argument is used for a wx.Validator. A validator is often used 
to filter data to ensure that only acceptable data is entered into the control. Vali-
dators are discussed in more detail in chapter 9. 

Listing 7.2 The wx.TextCtrl single line example



Displaying text 191
Using single line text control styles
In this section, we’ll begin discussing some of the unique text control style bits. 
Table 7.3 describes the style flags that are used for a single-line text control. 

Like other style flags, these can be combined using the | operator, although the 
three alignment flags are mutually exclusive. 

 The text control automatically manages the user’s keypress and mouse events 
to add text and to move the insertion point. The following common control com-
binations are included:

■ <ctrl-x> cut 
■ <ctrl-c> copy 
■ <ctrl-v> paste 
■ <ctrl-z> undo 

Table 7.3 The style bits for a single line wx.TextCtrl

Style Description

wx.TE_CENTER The text is centered within the control. 

wx.TE_LEFT The text is left justified within the control. This is the default behavior. 

wx.TE_NOHIDESEL The name of this option parses to “no hide sel,” in case you were having 
trouble decoding it. It’s a Windows option to override a default behavior of the 
Windows text widget, namely that it doesn’t highlight the selected text unless 
the widget has focus. With this option selected, the widget will always 
highlight the text. Has no effect on other systems. 

wx.TE_PASSWORD The text entered will not be displayed, but instead masked by asterisks. 

wx.TE_PROCESS_ENTER If this bit is specified, a text enter event is triggered when the user presses 
the enter key within the control. Otherwise, the keypress is managed 
internally by either the text control or the dialog. 

wx.TE_PROCESS_TAB If this bit is specified, a normal character event will be created for a tab key 
pressed (generally meaning a tab will be inserted into the text). If not 
specified, then the tab will be managed by the dialog, usually for keyboard 
navigation between controls. 

wx.TE_READONLY The text control is read-only, and cannot be modified by user input. 

wx.TE_RIGHT The text is right-justified within the control.



192 CHAPTER 7 
Working with the basic controls
7.1.3 How do I change the text without user input? 

In addition to changing the text of the display based on user input, wx.TextCtrl
provides a number of methods that change the text in the display from within 
your program. You can change the text outright, or just move the insertion point 
to a different place in the text. Table 7.4 lists the text manipulation methods of 
wx.TextCtrl. 

These methods are particularly useful when you have a read-only control, or 
if you want the text in the control to change based on events other than a user 
key press.

Table 7.4 Text manipulation methods of wx.TextCtrl

Method Description 

AppendText(text) Appends the text argument to the end of the text in the control. The insertion 
point also moves to the end of the control. 

Clear() Resets the text value of the control to "". Also generates a text updated event. 

EmulateKeyPress(event) Given a keypress event, inserts into the control the character associated with 
the event, just as if the actual keypress had occured. 

GetInsertionPoint()  
SetInsertionPoint(pos)  
SetInsertionPointEnd() 

The position is the integer index of the current insertion point, or to put it 
another way, the index where the next inserted character would be placed. 
The beginning of the control is 0. 

GetRange(from, to) Returns the string between the given integer positions of the control. 

GetSelection()  
GetStringSelection()  
SetSelection(from, to) 

GetSelection() returns a tuple (start, end) with the indexes of the 
currently selected text. GetStringSelection() returns the string 
contents of that range. The setter takes the integer endpoints of the range. 

GetValue()  
SetValue(value) 

SetValue() changes the entire value of the control. The getter returns the 
entire string. 

Remove(from, to) Removes the given range from the text. 

Replace(from, to, value) Replaces the given range with new value. This can change the length  
of the text. 

WriteText(text) Similar to AppendText() except that the new text is placed at the current 
insertion point. 



Displaying text 193
7.1.4 How do I create a multi-line or styled text control? 

You can create a multi-line text control using the 
wx.TE_MULTILINE style flag. If the native widget has 
support for styles, you can change font and color 
styles within the text managed by the control, which 
is sometimes called rich text. For other platforms, 
the calls to set styles are simply ignored. Figure 7.3 
displays an example of multi-line text controls. 

 Listing 7.3 contains the code used to create 
figure 7.3. Typically, creating a multi-line control 
is handled by setting the wx.TE_MULTILINE style 
flag. Later in this section, we’ll discuss using rich 
text styles. 

import wx 

class TextFrame(wx.Frame): 

    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Text Entry Example', 
                size=(300, 250)) 
        panel = wx.Panel(self, -1) 
        multiLabel = wx.StaticText(panel, -1, "Multi-line") 
        multiText = wx.TextCtrl(panel, -1,   
               "Here is a looooooooooooooong line " 
               "of text set in the control.\n\n"
               "See that it wrapped, and that " 
               "this line is after a blank", 
               size=(200, 100), style=wx.TE_MULTILINE) 
        multiText.SetInsertionPoint(0)   

        richLabel = wx.StaticText(panel, -1, "Rich Text") 
        richText = wx.TextCtrl(panel, -1,   
                "If supported by the native control, " 
                "this is reversed, and this is a different font.", 
                size=(200, 100), 
                style=wx.TE_MULTILINE|wx.TE_RICH2) 
        richText.SetInsertionPoint(0) 
        richText.SetStyle(44, 52, wx.TextAttr("white", "black"))   
        points = richText.GetFont().GetPointSize() 
        f = wx.Font(points + 3, wx.ROMAN, 
            wx.ITALIC, wx.BOLD, True)     
        richText.SetStyle(68, 82, wx.TextAttr("blue", 
            wx.NullColour, f))                         
        sizer = wx.FlexGridSizer(cols=2, hgap=6, vgap=6) 

Listing 7.3 Creating a multi-line text control

Figure 7.3 Examples of multi-
line text controls, both with and 
without rich text

Creating a text control

Setting the cursor point

Creating a rich text control

Setting text styles

Creating a font

Setting a style in 
the new font



194 CHAPTER 7 
Working with the basic controls
        sizer.AddMany([multiLabel, multiText, richLabel, richText]) 
        panel.SetSizer(sizer) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = TextFrame() 
    frame.Show() 
    app.MainLoop() 

Using multiple or rich text styles
In addition to wx.TE_MULTILINE, there are other style flags that are only mean-
ingful in the context of a multi-line or rich text control. Table 7.5 lists those win-
dow styles. 

Remember that style bits can be combined, so the multi-line rich text control in 
this example is declared with a style of wx.TE_MULTILINE | wx.TE_RICH2. 

 The text styles used in a wx.TextCtrl widget are instances of the class wx.Text-
Attr. A wx.TextAttr instance has a text color, a background color, and a font, all 
of which can be specified in the constructor as in the following: 

wx.TextAttr(colText, colBack=wx.NullColor, font=wx.NullFont) 

Table 7.5 The style bits for wx.TextCtrl, when used as a multiple line control

Style Description 

wx.HSCROLL If the text control is multi-line, and if this style is declared, long lines will be 
horizontally scrolled instead of wrapped. This option is ignored in GTK+. 

wx.TE_AUTO_URL If the rich text option is set and the platform supports it, this style causes an event 
to be generated when the user mouses over or clicks on a URL in the text. 

wx.TE_DONTWRAP Another name for wx.HSCROLL. 

wx.TE_LINEWRAP A contrast to wx.TE_WORDWRAP. Lines which are wrapped can be wrapped at 
any character. Some operating systems may ignore this style. 

wx.TE_MULTILINE The text control will display multiple lines. 

wx.TE_RICH Under Windows, use the rich text control as the underlying widget. This allows the 
use of styled text. 

wx.TE_RICH2 Under Windows, use the most recent version of the rich text control as the 
underlying widget. 

wx.TE_WORDWRAP Contrast to wx.TE_LINEWRAP, lines which wrap will only do so at word 
boundaries. This option is ignored on many systems. 



Displaying text 195
The text and background colors are wxPython wx.Color objects that can be spec-
ified with a string naming the color or a tuple with the (red, green, blue) values of 
the color. The wx.NullColor indicates that the existing background color of the 
control should be used. The font is a wx.Font object, which we’ll discuss in 
the next subsection. The wx.NullFont object indicates that the current default 
font should be used. 

 The wx.TextAttr class has getter methods for the attributes GetBackground-
Colour(), GetFont(), and GetTextColour(), as well as Boolean existence methods 
for HasBackgroundColour(), HasFont(), and HasTextColour(). If the attribute con-
tains a default value, the existence methods return False. The IsDefault()
method returns true if all three attributes contain default values. The class does 
not have setter methods, since instances of wx.TextAttr are immutable. To 
change the style of text, you must create an instance.

 To use a text style, call SetDefaultStyle(style) or SetStyle(start, end,
style). The first method sets the current style of the control. Any text inserted 
into the control, either by typing or by using AppendText() or WriteText(), is dis-
played in that style. If any of the attributes of the style are default, the current value 
for that style is kept. However, if all of the attributes of the style are default, the 
default style is reinstated. The SetStyle() method is similar, but takes effect 
immediately on the text between the start and end positions. Default attributes 
in the style argument are resolved by verifying the current default style for the 
control. Listing 7.3 uses the following line of code to reverse the colors on several 
characters of text: 

richText.SetStyle(44, 52, wx.TextAttr("white", "black")) 

The background color becomes white, and the text color for those characters 
becomes black.

 Table 7.6 lists the methods of wx.TextCtrl, which are useful in manipulating 
multi-line controls and rich text. 

Table 7.6 Multi-line and style methods of wx.TextCtrl 

Method Description 

GetDefaultStyle()  
SetDefaultStyle(style) 

See the earlier part of this section for a description of default styles. 

GetLineLength(lineNo) Returns the integer length of the given line. 

GetLineText(lineNo) Returns the text of the given line 

continued on next page



196 CHAPTER 7 
Working with the basic controls
Creating styles is much more flexible if you can use arbitrary fonts in the system. 
Next, we’ll show you how to create and use font instances.

7.1.5 How do I create a font? 

Fonts are specified as instances of the class wx.Font. You have access to any font that
has been installed and is accessible to the underlying system. To create a font 
instance, use the following constructor: 

wx.Font(pointSize, family, style, weight, underline=False, 
    faceName="", encoding=wx.FONTENCODING_DEFAULT) 

The pointSize is the font’s integer size in points. The family is used to quickly 
specify a font without having to know the actual name of the font. The exact font 
chosen depends on the system and specific fonts available. A sample of available 
font families are displayed in table 7.7. The exact fonts you get will depend on 
your system.

GetNumberOfLines() Returns the number of lines in the control. For a single-line control, returns 1. 

IsMultiLine()  
IsSingleLine() 

Boolean methods for determining state of the control 

PositionToXY(pos) Given an integer position within the text, returns a tuple with the (col, row) 
index of the position. The column and row indexes both start at 0. 

SetStyle(start, end, 
style) 

Immediately changes the style for the given range of text. 

ShowPosition(pos) Causes a multi-line control to scroll such that the given position is in view. 

XYToPosition(x, y) Inverse of PositionToXY—given a row and column, it returns the  
integer position. 

Table 7.6 Multi-line and style methods of wx.TextCtrl (continued)

Method Description 

Table 7.7 Sample of the existing font families 

Font Description

wx.DECORATIVE A formal, old-English style font

wx.DEFAULT The system default font

wx.MODERN A monospace (fixed-pitch) font

continued on next page



Displaying text 197
The style parameter indicates the italicized nature of the font, and is either 
wx.NORMAL, wx.SLANT, or wx.ITALIC. Similarly, the weight parameter indicates the 
boldness of the font, and is either wx.NORMAL, wx.LIGHT, or wx.BOLD. The constants 
here behave as expected based on their name. The underline parameter works 
only on Windows systems, and if set to True causes the font to be underlined. Use 
the faceName argument to specify the system name of the font you want to display.

 The encoding parameter allows you to select one of several encodings, which 
are mappings between internal characters and font display characters. Encodings 
are not Unicode encodings, just different 8-bit encodings used by wxPython. For 
most usage, you can use the default encoding. 

 To retrieve a list of available fonts on the system, and make them available to 
the user, use the special class wx.FontEnumerator as in the following: 

e = wx.FontEnumerator() 
e.EnumerateFacenames() 
fontList = e.GetFacenames() 

To limit the list to only fixed-width, change the first line to e = wx.FontEnumera-
tor(fixedWidth=True).

7.1.6 Can I have styled text if my platform  
doesn’t support rich text? 

Yes. There is a cross-platform styled text widget in wxPython, called wx.stc. 
StyledTextCtrl, that is a Python wrapper around the Scintilla rich text compo-
nent. Since Scintilla is not part of wxWidgets, but rather a separate third-party 
component that has been incorporated into wxPython, it does not share the same 
API as the classes we have discussed. A full discussion of wx.stc.StyledCtrl is 
beyond our scope here, however, you can find documentation at http://wiki. 
wxpython.org/index.cgi/wxStyledTextCtrl. 

wx.ROMAN A serif font, generally something like Times New Roman

wx.SCRIPT A handwriting or cursive font

wx.SWISS A sans-serif font, generally something like Helvetica or Arial

Table 7.7 Sample of the existing font families (continued)

Font Description



198 CHAPTER 7 
Working with the basic controls
7.1.7 What if my text control doesn’t match my string? 

When using a multi-line wx.TextCtrl, be aware of a small gotcha involving the 
way in which the text control stores the string. Internally, the multi-line string 
inside the wx.TextCtrl is stored using \n as the line separator. This is true no mat-
ter what the underlying operating system is, even though some systems use dif-
ferent character combinations as a line separator. When you retrieve the string 
using GetValue(), the native system’s line separator is restored, so you don’t have 
to worry about manual conversion backwards. The advantage is the text inside 
the control isn’t dependent on any specific operating system.

 The disadvantage is the line length and the line indexes inside the text control 
can be different than they are outside the text control. For example, if you are on 
a Windows system, where the line separator is \r\n, the length of the string 
as reported by GetValue() will be longer than the end of the string in the con-
trol as reported by GetLastPosition(). By adding the following two lines in 
listing 7.3, 

print "getValue", len(multiText.GetValue()) 
print "lastPos", multiText.GetLastPosition() 

we would get the following results from a Unix operating system: 

getValue 119 
lastPos 119 

and the following results from a Windows operating system: 

getValue 121 
lastPos 119 

The implication is that you should never use the position indexes of a multi-line 
text control to refer back to the original string, rather, they should only be used as 
arguments to other methods of wx.TextCtrl. For a substring of the text within the 
control, use GetRange() or GetSelectedText(). Also do not cross the indexes in 
reverse; don’t use indexes of the original string to refer back into the text control. 
Following is an example of the incorrect way to get 10 characters immediately 
after the insertion point: 

aLongString = """Any old 
    multi line string 
    will do here. 
    Just as long as 
    it is multiline""" 
text = wx.TextCtrl(panel, -1, aLongString, style=wx.TE_MULTILINE) 
x = text.GetInsertionPoint() 
selection = aLongString[x : x + 10]  ### THIS WILL BE INCORRECT 



Working with buttons 199
The last line should be commented out for Windows or Mac systems because it 
uses x (the position of the insertion point in the text control) as an index for the 
original string. To return the correct characters in Windows or Mac systems, 
the last line should be written as follows: 

selection = text.GetRange(x, x + 10) 

7.1.8 How do I respond to text events? 

There are a handful of command events generated by wx.TextCtrl widgets that 
you may want to use. All of these events are bound to the text widget in question, 
so you need to pass it to the Bind method to catch the event, as in the following: 

frame.Bind(wx.EVT_TEXT, frame.OnText, text)

Table 7.8 describes these command events. 

Next, let’s discuss controls that are designed primarily to take mouse input. The 
simplest of these is a button. 

7.2 Working with buttons

There are numerous different types of buttons in wxPython. In this section we’ll 
cover text buttons, bitmap buttons, toggle buttons, and generic buttons.

Table 7.8 Events of wx.TextCtrl

Event Description 

EVT_TEXT Generated when the text in the control changes. This event is generated both in 
response to user input, and to the programmatic change via the SetValue() 
method. 

EVT_TEXT_ENTER Generated when the user presses Enter in a text control with the 
wx.TE_PROCESS_ENTER style set. 

EVT_TEXT_URL If on a Windows system, and wx.TE_RICH or wx.TE_RICH2 is set, and 
wx.TE_AUTO_URL is also set, then this event is triggered when a mouse event 
occurs over a URL within the text control. 

EVT_TEXT_MAXLEN If a maximum length is specified for the control using SetMaxLength(), then 
this event is triggered when the user attempts to enter a string longer than the 
maximum length. You might use this, for example, to display a warning message 
to the user. 



200 CHAPTER 7 
Working with the basic controls
7.2.1 How do I make a button? 

In part 1, we described several examples of but-
tons, so we will only briefly cover the basics here. 
Figure 7.4 displays a simple button. 

 Using a button is very straightforward. Listing 7.4 
displays the code for this simple button example.

import wx 

class ButtonFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Button Example', 
                size=(300, 100)) 
        panel = wx.Panel(self, -1) 
        self.button = wx.Button(panel, -1, "Hello", pos=(50, 20)) 
        self.Bind(wx.EVT_BUTTON, self.OnClick, self.button) 
        self.button.SetDefault() 

    def OnClick(self, event): 
        self.button.SetLabel("Clicked") 
        
if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = ButtonFrame() 
    frame.Show() 
    app.MainLoop() 

The wx.Button constructor is similar to constructors we’ve already seen, as in 
the following: 

wx.Button(parent, id, label, pos, size=wxDefaultSize, style=0, 
        validator, name="button") 

The argument specific to wx.Button is the label, the text displayed on the button. 
It can be changed during the program with SetLabel(), and retrieved with Get-
Label(). Two other useful methods are GetDefaultSize(), which returns the sys-
tem suggested default button size (useful for consistency across frames), and 
SetDefault(), which sets that button as the default for the dialog or frame. The 
default button is often drawn differently than other buttons and is typically acti-
vated by pressing Enter while the dialog has focus. 

 The wx.Button class has one cross-platform style flag, wx.BU_EXACTFIT. If 
defined, the button does not use the system default size as a minimum, but 

Listing 7.4 Creating and displaying a simple button

Figure 7.4 A simple button 



Working with buttons 201
instead is sized as small as possible while allowing the label to fit. If the native 
widget supports it, you can change the alignment of the label within the button 
using the flags wx.BU_LEFT, wx.BU_RIGHT, wx.BU_TOP, and wx.BU_BOTTOM. Each flag 
aligns the label to exactly the side you would expect based on its name. As we dis-
cussed in part 1, a wx.Button triggers one command event when clicked, with the 
event type EVT_BUTTON. 

7.2.2 How do I make a button with a bitmap? 

Occasionally, you’ll want a picture on your button, 
rather than a text label, as in figure 7.5. 

 In wxPython, use the class wx.BitmapButton to cre-
ate a button with a picture. The code to manage a 
wx.BitmapButton is very similar to the general button 
code, as displayed in listing 7.5. 

 

import wx 

class BitmapButtonFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Bitmap Button Example', 
                size=(200, 150)) 
        panel = wx.Panel(self, -1) 
        bmp = wx.Image("bitmap.bmp", wx.BITMAP_TYPE_BMP).ConvertToBitmap() 
        self.button = wx.BitmapButton(panel, -1, bmp, pos=(10, 20)) 
        self.Bind(wx.EVT_BUTTON, self.OnClick, self.button) 
        self.button.SetDefault() 
        self.button2 = wx.BitmapButton(panel, -1, bmp, pos=(100, 20), 
            style=0) 
        self.Bind(ex.EVT_BUTTON, self.OnClick, self.button2) 

    def OnClick(self, event): 
        self.Destroy() 
        
if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = BitmapButtonFrame() 
    frame.Show() 
    app.MainLoop() 

The primary difference is that for a bitmap button you need to supply a bit-
map, rather than a label. Otherwise, the constructor and most of the code is 

Listing 7.5 Creating a bitmap button

Figure 7.5 A demonstration of 
a basic bitmap button. The left 
button is drawn with a 3D effect.



202 CHAPTER 7 
Working with the basic controls
identical to the text button case. A bitmap button emits the same EVT_BUTTON
event when clicked. 

 There are a couple of interesting features related to bitmap buttons. First, 
there’s a style flag, wx.BU_AUTODRAW, which is on by default. If the flag is on, the bit-
map is surrounded by a 3D border to make it look like a text button (left button of 
figure 7.5), and the button is a few pixels larger than the original bitmap. If the 
flag is off, the bitmap is simply drawn as a button with no border. The right but-
ton in figure 7.5 shuts off the default by setting style=0, and it does not have the 
3D effect. 

 By default, simply pass wxPython a single bitmap for the main display, and 
wxPython automatically creates standard derivative bitmaps when the button is 
pressed, has the focus, or is disabled. If the normal behavior is not what you want, 
you can explicitly tell wxPython which bitmaps to use with the following meth-
ods: SetBitmapDisabled(), SetBitmapFocus(), SetBitmapLabel(), and SetBitmap-
Selected(). Each of these methods takes a wx.Bitmap object, and each has an 
associated getter function. 

 You cannot combine a bitmap and text by using the normal wxWidgets C++ 
library. You could create a bitmap that contains text. However, as we’ll see in the 
generic button question, there is a wxPython addition that allows this behavior. 

7.2.3 How do I create a toggle button? 

You can create a toggle button using wx.ToggleButton. A toggle button looks 
exactly like a text button, but behaves more like a checkbox in that it gives a visual 
cue to a selected or unselected state. In other words, when you press a toggle but-
ton, it shows its state by continuing to look pressed until you click it again.

 There are only two differences between a wx.ToggleButton and the parent 
wx.Button class : 

■ A wx.ToggleButton sends an EVT_TOGGLEBUTTON event when clicked. 
■ A wx.ToggleButton has GetValue() and SetValue() methods, which manip-

ulate the binary state of the button. 

Toggle buttons can be a useful and attractive alternative to checkboxes, especially 
in a toolbar. Remember, you cannot combine a toggle button with a bitmap but-
ton using the wxWidgets provided objects, but wxPython has a generic button 
class that provides this behavior, which we’ll describe in the next section.



Working with buttons 203
7.2.4 What’s a generic button, and why should I use one? 

A generic button is a button widget that has been completely reimplemented in 
Python, bypassing the use of the native system widget. The parent class is 
wx.lib.buttons. GenButton, and there are generic bitmap and toggle buttons. 

 There are several reasons for using generic buttons: 

■ The generic button look is more similar across platforms than native but-
tons. The flip side is that generic buttons may look slightly different from 
native buttons on a particular system. 

■ Using a generic button, you have more control over the look, and can 
change attributes, such as the 3D bevel width and color, in ways that the 
native control may not allow. 

■ The generic button family allows for combinations of features that the 
wxWidgets button does not. There is a GenBitmapTextButton which allows 
a text label and a bitmap, and a GenBitmapToggleButton which allows a tog-
gle bitmap. 

■ If you are creating a button class, it’s easier to use the generic buttons as 
a base class. Since the code and parameters are written in Python, they 
are more accessible for you to inspect and overwrite when creating a 
new subclass. 

Figure 7.6 displays the generic buttons in action. 
 Listing 7.6 displays the code for figure 7.6. The second import statement, 

import wx.lib.buttons as buttons, is required for the generic button classes to 
be available. 

 

Figure 7.6  
Generic buttons. The top row has 
regular buttons for contrast. This 
shows different color combinations, 
bitmap, bitmap toggle, and bitmap 
text buttons. 



204 CHAPTER 7 
Working with the basic controls
import wx 
import wx.lib.buttons as buttons 

class GenericButtonFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Generic Button Example', 
                size=(500, 350)) 
        panel = wx.Panel(self, -1) 

        sizer = wx.FlexGridSizer(1, 3, 20, 20) 
        b = wx.Button(panel, -1, "A wx.Button") 
        b.SetDefault() 
        sizer.Add(b) 

        b = wx.Button(panel, -1, "non-default wx.Button") 
        sizer.Add(b) 
        sizer.Add((10,10)) 

        b = buttons.GenButton(panel, -1, 'Generic Button')   
        sizer.Add(b) 
                          
        b = buttons.GenButton(panel, -1, 'disabled Generic')   
        b.Enable(False) 
        sizer.Add(b) 

        b = buttons.GenButton(panel, -1, 'bigger')   
        b.SetFont(wx.Font(20, wx.SWISS, wx.NORMAL, wx.BOLD, False)) 
        b.SetBezelWidth(5) 
        b.SetBackgroundColour("Navy") 
        b.SetForegroundColour("white") 
        b.SetToolTipString("This is a BIG button...") 
        sizer.Add(b)   

        bmp = wx.Image("bitmap.bmp", wx.BITMAP_TYPE_BMP).ConvertToBitmap() 
        b = buttons.GenBitmapButton(panel, -1, bmp)   
        sizer.Add(b) 

        b = buttons.GenBitmapToggleButton(panel, -1, bmp)  
        sizer.Add(b) 
        
        b = buttons.GenBitmapTextButton(panel, -1, bmp,   
        "Bitmapped Text", size=(175, 75)) 
        b.SetUseFocusIndicator(False) 
        sizer.Add(b) 
                             
        b = buttons.GenToggleButton(panel, -1, "Toggle Button")   
        sizer.Add(b) 

        panel.SetSizer(sizer) 

if __name__ == '__main__': 

Listing 7.6 Creating and using wxPython generic buttons

Basic generic 
button

Disabled generic button

A button with a 
custom size and color

Generic bitmap 
button

Generic bitmap 
toggle button

Bitmap and 
text button

Generic toggle button



Entering and displaying numbers 205
    app = wx.PySimpleApp() 
    frame = GenericButtonFrame() 
    frame.Show() 
    app.MainLoop()   

In listing 7.6, the use of a generic button is very similar to a regular button. 
Generic buttons emit the same EVT_BUTTON and EVT_TOGGLEBUTTON events as regu-
lar buttons. The generic button includes the GetBevelWidth() and SetBevel-
Width() methods to change the amount of the 3D effect bevel. These are used in 
the large button in figure 7.6. 

 The generic bitmap button class GenBitmapButton works like the normal 
wxPython version. The GenBitmapTextButton takes first the bitmap and then the 
text in the constructor. The generics offer the GenToggleButton class, the GenBit-
mapToggleButton, and the GenBitmapTextToggleButton. All three are the same 
as the non-toggle version, and respond to GetToggle() and SetToggle() to man-
age the toggle state of the button. 

 In the next section, we’ll discuss options for allowing your user to enter or view 
a numerical value.

7.3 Entering and displaying numbers 

At times, you want to display numerical information graphically, or you want the 
user to enter a numerical quantity without having to use the keyboard. In this sec-
tion, we’ll explore the slider, the spinner box, and the display gauge, tools in 
wxPython for numerical entry and display.

7.3.1 How do I make a slider? 

A slider is a widget that allows the user to select a 
number from within a range by dragging a 
marker across the width or height of the control. 
In wxPython, the control class is wx.Slider, 
which includes a read-only text display of the 
current value of the slider. Figure 7.7 displays 
examples of a vertical and horizontal slider. 

 Basic slider use is fairly straightforward, but 
there are a number of events you can add.

Figure 7.7 A vertical wx.Slider 
and a horizontal wx.Slider, 
which use the style flag 
wx.SL_LABELS



206 CHAPTER 7 
Working with the basic controls
How to use a slider
As displayed in listing 7.7, a slider can manage a single value through the control. 

import wx 

class SliderFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Slider Example', 
                size=(340, 320)) 
        panel = wx.Panel(self, -1) 
        self.count = 0 
        slider = wx.Slider(panel, 100, 25, 1, 100, pos=(10, 10), 
                size=(250, -1), 
                style=wx.SL_HORIZONTAL | wx.SL_AUTOTICKS | wx.SL_LABELS ) 
        slider.SetTickFreq(5, 1) 
        slider = wx.Slider(panel, 100, 25, 1, 100, pos=(125, 50), 
                size=(-1, 250), 
                style=wx.SL_VERTICAL | wx.SL_AUTOTICKS | wx.SL_LABELS ) 
        slider.SetTickFreq(20, 1) 
        
if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = SliderFrame() 
    frame.Show() 
    app.MainLoop() 

Typically, when you use the wx.Slider class, all you’ll need is the constructor, 
which differs from the other calls as in the following: 

wx.Slider(parent, id, value, minValue, maxValue, 
        pos=wxDefaultPosition, size=wx.DefaultSize, 
        style=wx.SL_HORIZONTAL, validator=wx.DefaultValidator, 
        name="slider") 

The value is the starting value of the slider, while minValue and maxValue are the 
extreme values. 

Listing 7.7 Displays code for the horizontal and vertical slider



Entering and displaying numbers 207
Working with slider styles

The styles for a slider govern the placement and orientation of the slider, as listed 
in table 7.9. 

If you want changes in the slider value to affect another part of your application, 
there are several events you can use. These events are identical to those emitted 
by a window scroll bar, and are described in detail in the scrolling section of 
chapter 8. 

 Table 7.10 lists the setter properties you can apply to a slider. Each setter has 
an associated Get method—the descriptions in the table refer to the setter only.

Table 7.9 Styles for wx.Slider

Style Description 

wx.SL_AUTOTICKS If set, the slider will display tick marks across it. The spacing is governed by the 
setter method SetTickFreq. 

wx.SL_HORIZONTAL The slider will be horizontal. This is the default. 

wx.SL_LABELS If set, the slider will display labels for the minimum and maximum value, and a 
read-only display of the current value. The current value might not display on all 
platforms. 

wx.SL_LEFT For a vertical slider, the ticks will be on the left of the slider. 

wx.SL_RIGHT For a vertical slider, the ticks will be on the right of the slider. 

wx.SL_TOP For a horizontal slider, the ticks will be on top of the slider. 

wx.SL_VERTICAL The slider will be vertical. 

Table 7.10 Settable attributes of a slider 

Function Description 

GetRange() 
SetRange(minValue, maxValue) 

Sets the boundary range of the slider 

GetTickFreq() 
SetTickFreq(n, pos) 

Sets the spacing between ticks, using the n argument. The pos 
argument is not actually used, but it’s still required. Set it to 1. 

GetLineSize() 
SetLineSize(lineSize) 

Sets the amount by which the value changes if you adjust the slider by 
one line by pressing an arrow key. 

continued on next page



208 CHAPTER 7 
Working with the basic controls
Although sliders provide a quick visual representation of where the value lies 
along the possible range, they also have a couple of weaknesses. They take up a 
lot of space in their primary dimension, and it’s difficult to set the slider exactly 
using a mouse, particularly if the range is quite large, or if the user has an acces-
sibility issue. The spinner, which we’ll discuss in the next section, resolves both of 
these issues.

7.3.2 How can I get those neat up/down arrow buttons? 

A spinner is a combination text control and pair of arrow buttons 
that adjust a numeric value, and is a great alternative to a slider 
when you have minimal screen space. Figure 7.8 displays a 
wxPython spinner control. 

 In wxPython, the wx.SpinCtrl class manages both the spin-
ner buttons and the associated text display. In the next section, 
we’ll create a spinner.

How to create a spinner
Use wx.SpinCtrl to change the value either by pressing the buttons or by typing 
in the text control. Non-numeric text typed into the control is ignored, although 
the control doesn’t change back to the previous value until a button is pressed. A 
numeric value outside the control range is treated as the relevant maximum or 
minimum value, although that value doesn’t revert to the end of the range until 
you press a button. Listing 7.8 displays the use of wx.SpinCtrl.

import wx 

class SpinnerFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Spinner Example', 
                size=(100, 100)) 

GetPageSize() 
SetPageSize(pageSize) 

Sets the amount by which the value changes if you adjust the slider by 
one page by pressing page up or page down. 

GetValue() 
GetValue(value) 

Sets the value of the slider. 

Table 7.10 Settable attributes of a slider (continued)

Function Description 

Listing 7.8 Using wx.SpinCtrl

Figure 7.8  
A spinner control 
in wxPython



Entering and displaying numbers 209
        panel = wx.Panel(self, -1) 
        sc = wx.SpinCtrl(panel, -1, "", (30, 20), (80, -1)) 
        sc.SetRange(1,100) 
        sc.SetValue(5) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    SpinnerFrame().Show() 
    app.MainLoop()          

Nearly all of the complexity of the spin control is in the constructor, which has 
several arguments as in the following: 

wx.SpinCtrl(parent, id=-1, value=wx.EmptyString, 
        pos=wx.DefaultPosition, size=wx.DefaultSize, 
        style=wx.SP_ARROW_KEYS, min=0, max=100, initial=0, 
        name="wxSpinCtrl") 

The first part of this constructor is similar to all the other wx.Window constructors. 
However, the value argument here is a dummy. Set the initial value of the control 
using the initial argument, and use the min and max arguments to set the range 
of the control. 

 There are two style flags for wx.SpinCtrl. By default, wx.SP_ARROW_KEYS is 
declared because it allows the user to change the value of the control from the 
keyboard using the up and down arrow keys. The wx.SP_WRAP style causes 
the value of the control to wrap, meaning that if you go off the edge at one 
extreme, you wind up at the other extreme. Also, you can catch the EVT_SPINCTRL
event, which is generated whenever the spin value is changed (even if it is 
changed via text entry). If the text is changed, an EVT_TEXT is fired, just as it would 
be if you were using a standalone text control.

 As displayed in listing 7.8, you can set the range and value using the Set-
Range(minVal, maxVal) and SetValue(value) methods. The SetValue() function 
can take either a string or an integer. To get the values, use the methods 
GetValue() (which returns an integer), GetMin(), and GetMax(). 

 When you need more control over the behavior of the spinner, such as spin-
ning through floating point values, or a list of strings, you can put a wx.Spin-
Button together with a wx.TextCtrl, and build plumbing between them. Put the 
two controls next to each other and catch EVT_SPIN events from the wx.Spin-
Button, updating the value in the wx.TextCtrl. 



210 CHAPTER 7 
Working with the basic controls
7.3.3 How can I make a progress bar? 

If you want to graphically display a numeric 
value without allowing the user to change it, 
use the relevant wxPython widget wx.Gauge. 
An example of this numeric value is a progress 
bar, displayed in figure 7.9. 

 Listing 7.9 displays the code that created 
this figure. Unlike many other examples in 
this chapter, in this example we added an 
event handler. The following code adjusts the value of the gauge during idle 
time, causing it to loop from start to finish and back again. 

import wx 

class GaugeFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Gauge Example', 
                size=(350, 150)) 
        panel = wx.Panel(self, -1) 
        self.count = 0 
        self.gauge = wx.Gauge(panel, -1, 50, (20, 50), (250, 25)) 
        self.gauge.SetBezelFace(3) 
        self.gauge.SetShadowWidth(3) 
        self.Bind(wx.EVT_IDLE, self.OnIdle) 

    def OnIdle(self, event): 
        self.count = self.count + 1 
        if self.count >= 50: 
            self.count = 0 
        self.gauge.SetValue(self.count) 
        
if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    GaugeFrame().Show() 
    app.MainLoop()   

The constructor for wx.Gauge is similar to the other numerical widgets: 

wx.Gauge(parent, id, range, pos=wx.DefaultPosition, 
        size=wx.DefaultSize, style=wx.GA_HORIZONTAL, 
        validator=wx.DefaultValidator, name="gauge") 

Listing 7.9 Displaying and updating a wx.Gauge

Figure 7.9 A wx.Gauge displaying 
some progress 



Giving the user choices 211
As you enter the numerical value using the range argument, it represents the 
upper bound of the gauge, while the lower bound is always 0. The default style, 
wx.GA_HORIZONTAL provides a horizontal bar. To rotate it 90 degrees, you use the 
style wx.GA_VERTICAL. If you are on Windows, the style wx.GA_PROGRESSBAR gives 
you the native progress bar from the Windows toolkit. 

 As a read-only control, wx.Gauge has no events. However, it does have proper-
ties you can set. You can adjust the value and range using GetValue(), Set-
Value(pos), GetRange(), and SetRange(range). If you are on Windows, and are 
not using the native progress bar style, you can use SetBezelFace(width) and Set-
ShadowWidth() to change the width of the 3D effect. 

7.4 Giving the user choices 

Nearly every application requires a user to choose between a set of predefined 
options at some point. In wxPython, there are a variety of widgets to help the user 
in this task, including checkboxes, radio buttons, list boxes, and combo boxes. 
The following section will guide you through these widgets. 

7.4.1 How do I create a checkbox? 

A checkbox is a toggle button with a text label. Checkboxes are 
often displayed in groups, but the toggle state of each check-
box is independent. Checkboxes are used when you have one 
or more options that have clear on/off states, and the state of 
one option doesn’t affect the state of the others. Figure 7.10 
displays a group of checkboxes. 

 Checkboxes are easy to use in wxPython. They are 
instances of the class wx.CheckBox, and can be displayed 
together by placing them inside the parent container together. 
Listing 7.10 provides the code that generated figure 7.10. 

import wx 

class CheckBoxFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Checkbox Example', 
                size=(150, 200)) 
        panel = wx.Panel(self, -1) 

Listing 7.10 Inserting three checkboxes into a frame

Figure 7.10  
A group of wxPython 
checkboxes



212 CHAPTER 7 
Working with the basic controls
        wx.CheckBox(panel, -1, "Alpha", (35, 40), (150, 20)) 
        wx.CheckBox(panel, -1, "Beta", (35, 60), (150, 20)) 
        wx.CheckBox(panel, -1, "Gamma", (35, 80), (150, 20)) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    CheckBoxFrame().Show() 
    app.MainLoop()   

The wx.CheckBox class has a typical wxPython constructor: 

wx.CheckBox(parent, id, label, pos=wx.DefaultPosition, 
        size=wx.DefaultSize, style=0, name="checkBox") 

The label argument takes the text that is displayed next to the checkbox. Check-
boxes have no style flags which are unique to them, but they do trigger a unique 
command event, EVT_CHECKBOX. The toggle state of a wx.CheckBox can be 
retrieved with the methods GetValue() and SetValue(state), and its value is a 
Boolean. The method IsChecked() is identical to GetValue() and is included to 
make the code clearer. 

7.4.2 How can I create a group of radio buttons? 

A radio button is a widget that allows the user to choose from among several 
options. Unlike checkboxes, radio buttons are explicitly deployed in groups and 
only one of the options can be selected at a time. When a new option is selected, 
the existing selection is switched off. The name radio button comes from the 
group of selection buttons on older car radios that exhibited the same behavior. 
Radio buttons are a bit more complex to use than checkboxes, because they need 
to be organized into a group in order to be useful.

 In wxPython, there are two ways to create a group of 
radio buttons. One of them, wx.RadioButton, requires you to 
create the buttons one at a time, while wx.RadioBox allows 
you to deploy an entire group of buttons with a single object, 
displaying the buttons in a rectangle.

 The wx.RadioButton class is simpler, and is preferred in 
the case where the radio buttons have a direct influence on 
other widgets, or where the layout of the radio buttons is not 
in a simple rectangle. Figure 7.11 displays an example of a 
few wx.RadioButton objects in a group. 

Figure 7.11 Example 
of wx.RadioButton 
where radio buttons 
enable text control 



Giving the user choices 213
 We are using wx.RadioButton in this example because each radio button con-
trols an associated text control. Since widgets outside the radio button group are 
involved, we can’t just use a radio box.

How to create radio buttons
Listing 7.11 displays the code for figure 7.11, which manages the relationship 
between the radio buttons and the text controls. 

import wx 

class RadioButtonFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Radio Example', 
                size=(200, 200)) 
        panel = wx.Panel(self, -1) 
        radio1 = wx.RadioButton(panel, -1, "Elmo", pos=(20, 50),   
          style=wx.RB_GROUP) 
        radio2 = wx.RadioButton(panel, -1, "Ernie", pos=(20, 80)) 
        radio3 = wx.RadioButton(panel, -1, "Bert", pos=(20, 110)) 
        text1 = wx.TextCtrl(panel, -1, "", pos=(80, 50))   
        text2 = wx.TextCtrl(panel, -1, "", pos=(80, 80)) 
        text3 = wx.TextCtrl(panel, -1, "", pos=(80, 110)) 
        self.texts = {"Elmo": text1, "Ernie": text2, "Bert": text3}   
        for eachText in [text2, text3]: 
            eachText.Enable(False) 
        for eachRadio in [radio1, radio2, radio3]:   
            self.Bind(wx.EVT_RADIOBUTTON, self.OnRadio, eachRadio) 
        self.selectedText = text1 

    def OnRadio(self, event):   
        if self.selectedText: 
            self.selectedText.Enable(False) 
        radioSelected = event.GetEventObject() 
        text = self.texts[radioSelected.GetLabel()] 
        text.Enable(True) 
        self.selectedText = text 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    RadioButtonFrame().Show() 
    app.MainLoop()     

We’ve created radio buttons and text boxes, then initialized a dictionary contain-
ing the connections between them. A for loop disables two of the text boxes, and 

Listing 7.11 Using wx.RadioButton to control another widget

Creating radio buttons

Creating text 
controls

Linking buttons and text

Binding events

Event handler



214 CHAPTER 7 
Working with the basic controls
another one binds the radio button command event. When the event is clicked, 
the currently active text box is disabled, and the box matching the clicked button 
is enabled.

 Using wx.RadioButton is similar to wx.CheckBox. The constructor is nearly 
identical, as in the following: 

wx.RadioButton(parent, id, label, pos=wx.DefaultPosition, 
        size=wx.DefaultSize, style=0, 
        validator=wx.DefaultValidator, name="radioButton") 

As in the checkbox, the label is used for the caption displayed next to the button.
 The wx.RB_GROUP style declares the button to be the beginning of a new group 

of radio buttons. The definition of a group of radio buttons is important because 
it governs toggle behavior. When one button in the group is selected, the previ-
ously selected button in the group is toggled to the unchecked state. After a radio 
button is created with wx.RB_GROUP, all subsequent radio buttons added to the 
same parent are added to the same group. This continues until another radio 
button is created with wx.RB_GROUP, starting the next group. In listing 7.11, the 
first radio button is declared with wx.RB_GROUP, and subsequent ones are not. The 
result of this is that all the buttons are considered to be in the same group, and 
clicking on one of them toggles off the previously selected button. 

Using a radio box
Typically, if you want to display a group of but-
tons, declaring them separately is not the best 
method. Instead, wxPython allows you to cre-
ate a single object that encapsulates the entire 
group using the class wx.RadioBox. As dis-
played in figure 7.12, it looks very similar to a 
group of radio buttons. 

 To use the wx.RadioBox class, all you need is 
the constructor. Listing 7.12 displays the code 
that created figure 7.12. 

import wx 

class RadioBoxFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Radio Box Example', 

Listing 7.12 Building a radio box

Figure 7.12 Two examples of 
wx.RadioBox built from the same 
underlying data with different 
configurations 



Giving the user choices 215
                size=(350, 200)) 
        panel = wx.Panel(self, -1) 
        sampleList = ['zero', 'one', 'two', 'three', 'four', 'five', 
                      'six', 'seven', 'eight'] 
        wx.RadioBox(panel, -1, "A Radio Box", (10, 10), wx.DefaultSize, 
                        sampleList, 2, wx.RA_SPECIFY_COLS) 

        wx.RadioBox(panel, -1, "", (150, 10), wx.DefaultSize, 
                        sampleList, 3, wx.RA_SPECIFY_COLS) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    RadioBoxFrame().Show() 
    app.MainLoop()              

The constructor for wx.RadioBox is more complex than the simple radio button, 
since you need to specify the data for all the buttons at once, as in the following: 

wx.RadioBox(parent, id, label, pos=wx.DefaultPosition, 
        size=wxDefaultSize, choices=None, majorDimension=0, 
        style=wx.RA_SPECIFY_COLS, validator=wx.DefaultValidator, 
        name="radioBox") 

There are a few arguments to the constructor that are unfamiliar or different. In 
this constructor, the label argument is the static text which is displayed on the 
border of the box. The buttons themselves are specified in the choices argument, 
which is a Python sequence of the string labels.

 Like a grid sizer, you specify the dimensions of a wx.RadioBox by stating the 
size in one dimension, and wxPython fills as many slots in the other dimension as 
needed. The major dimension size is specified in the majorDimension argument. 
Which dimension is considered major depends on the style flag. The default 
value, which is also used for the example in listing 7.12 and figure 7.12, is 
wx.RA_SPECIFY_COLS. In the example, the number of columns is set to 2 (in the left 
box) or 3 (in the right box), and the number of rows is determined dynamically by 
the number of elements in the choices list. If you want the opposite behavior, set 
the style to wx.RA_SPECIFY_ROWS. If you want to respond to the command event 
when a radio box is clicked, the event is EVT_RADIOBOX. 

 The wx.RadioBox class has a number of methods to manage the state of the 
various radio buttons inside the box. For the methods that allow you to manage a 
specific internal button, pass the index of the button. The indexes start at 0 and 
proceed in the exact order that was used when the button labels were passed to 
the constructor. Table 7.11 lists the methods. 



216 CHAPTER 7 
Working with the basic controls
Radio buttons aren’t the only way to give the user a choice of a series of options. 
List and combo boxes often take up less space, and can also be configured to 
allow the user to make multiple selections from the same group.

7.4.3 How can I create a list box? 

A list box is another mechanism for presenting a 
choice to the user. The options are placed in a rectan-
gular window and the user can select one or more of 
them. List boxes take up less space than radio boxes, 
and are good choices when the number of options is 
relatively small. However, their usefulness drops some-
what if the user has to scroll far to see all options. Fig-
ure 7.13 displays a wxPython list box. 

 In wxPython, a list box is an element of the class 
wx.ListBox. The class has methods that allow you to 
manipulate the choices in the list. 

Table 7.11 Methods of wx.RadioBox

Method Description 

EnableItem(n, flag) The flag argument is a Boolean which is used to enable or disable the 
button at index n. To enable the entire box at once, use Enable(). 

FindString(string) Returns the integer index of the button with the given label, or -1 if the 
label is not found. 

GetCount() Returns the number of buttons in the box. 

GetItemLabel(n)  
SetItemLabel(n, string) 

Returns or sets the string label of the button at index n. 

GetSelection()  
GetStringSelection()  
SetSelection(n)  
SetStringSelection( string) 

The GetSelection() and SetSelection() methods manage the 
integer index of the currently selected radio button. 
GetStringSelection() returns the string label of the currently 
selected button, while SetStringSelection() changes the selection 
to the button with the given string. Neither of the setter functions causes an 
EVT_RADIOBOX to be sent. 

ShowItem(item, show) The show argument is a Boolean used to display or hide the button  
at index item. 

Figure 7.13 A wx.ListBox.
with a simple list of options



Giving the user choices 217
How to create a list box

Listing 7.13 displays the list box code that produced figure 7.13. 

import wx 

class ListBoxFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'List Box Example', 
                size=(250, 200)) 
        panel = wx.Panel(self, -1) 

        sampleList = ['zero', 'one', 'two', 'three', 'four', 'five', 
                      'six', 'seven', 'eight', 'nine', 'ten', 'eleven', 
                      'twelve', 'thirteen', 'fourteen'] 

        listBox = wx.ListBox(panel, -1, (20, 20), (80, 120), sampleList, 
                wx.LB_SINGLE) 
        listBox.SetSelection(3) 
                
if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    ListBoxFrame().Show() 
    app.MainLoop()   

The constructor for the wx.ListBox is similar to the one for a radio box, as in 
the following: 

wx.ListBox(parent, id, pos=wx.DefaultPosition, 
        size=wx.DefaultSize, choices=None, style=0, 
        validator=wx.DefaultValidator, name="listBox") 

The main difference between a radio box and a list box is that a wx.ListBox has 
no label attribute. The elements to be displayed in the list are placed in the 
choices argument, which should be a sequence of strings. There are three mutu-
ally exclusive styles which determine how the user can select elements from the 
list, as described in table 7.12. 

 Users often have problems with multiple and extended selections, because 
they usually expect to see a single selection list, and maintaining the multiple 
selections can be challenging, especially for users with accessibility issues. If you 
do use a multiple or extended list, we recommend that you clearly label the list 
as such. 

Listing 7.13 Using a wx.ListBox



218 CHAPTER 7 
Working with the basic controls
There are three styles that govern the display of scroll bars in a wx.ListBox, as dis-
played in table 7.13.

There is also the style wx.LB_SORT, which causes the elements of the list to be 
sorted alphabetically. 

 There are two command events specific to wx.ListBox. The EVT_LISTBOX event 
is triggered when an element of the list is selected (even if it’s the currently 
selected element). If the list is double-clicked, the event EVT_LISTBOX_DCLICK
is fired. 

 There are several methods specific to list boxes which that you to manipulate 
the items in the box. Table 7.14 describes many of them. All indexes start at zero, 
and represent the current list of items in the list from top to bottom. 

 Once you have a list box, it’s only natural to want to combine it with other wid-
gets, such as a pull-down menu, or a checkbox. In the next section, we’ll explore 
these options.

Table 7.12 Selection type styles for a list box 

Style Description

wx.LB_EXTENDED The user can select a range of multiple items by using a mouse shift-click, or the 
keyboard equivalent.

wx.LB_MULTIPLE The user can have more than one item selected at a time. Essentially, in this 
case, the list box acts like a group of checkboxes.

wx.LB_SINGLE The user can have only one item selected at a time. Essentially, in this case, the 
list box acts like a group of radio buttons.

Table 7.13 Scroll bar type styles for a list box

Style Description

wx.LB_ALWAYS_SB The list box will always display a vertical scroll bar, whether or not it is needed.

wx.LB_HSCROLL If the native widget supports it, the list box will create a horizontal scrollbar if 
items are too wide to fit.

wx.LB_NEEDED_SB The list box will only display a vertical scroll bar if needed. This is the default.



Giving the user choices 219
7.4.4 Can I combine a checkbox  
and a list box? 

You can combine a checkbox with a list box using the 
class wx.CheckListBox. Figure 7.14 displays a check-
box and a list box together. 

 The constructor and most methods of wx.Check-
ListBox are identical to wx.ListBox. There is one new 
event, wx.EVT_CHECKLISTBOX, which is triggered when 
one of the checkboxes in the list is clicked. There are 
two new methods for managing the checkboxes: 

Table 7.14 Methods of list boxes

Method Description 

Append(item) Appends the string item to the end of the list. 

Clear() Empties the list box. 

Delete(n) Removes the item at index n from the list. 

Deselect(n) In a multiple select list box, causes the item at position n to be 
deselected. No effect in other styles. 

FindString(string) Returns the integer position of the given string, or -1 if not found. 

GetCount() Returns the number of strings in the list. 

GetSelection()  
SetSelection(n, select)  
GetStringSelection()  
SetStringSelection(string, select)  
GetSelections() 

Get selection returns the integer index currently selected (single list 
only). For a multiple list, use GetSelections(), which returns a 
tuple of integer positions. For a single list, 
GetStringSelection() returns the string at the selected index. 
The set methods set the given position or string to the state specified 
by the Boolean argument. Changing the selection in this way does not 
trigger the EVT_LISTBOX event. 

GetString(n)  
SetString(n, string) 

Gets or sets the string at position n. 

InsertItems(items, pos) Inserts the list of strings in the items argument into the list box 
before the position in the pos argument. A pos of 0 puts the items 
at the beginning of the list. 

Selected(n) Returns a Boolean corresponding to the selected state of the item at 
index n. 

Set(choices) Resets the list box to the list given in choices—that is, the current 
elements are removed from the list and replaced by the new list. 

Figure 7.14 A check list 
box is very similar to a 
regular list box 



220 CHAPTER 7 
Working with the basic controls
Check(n, check) sets the check state of the item at index n, and IsChecked(item)
returns True if the item at the given index is checked. 

7.4.5 What if I want a pull-down choice? 

A pull-down choice is a selection mechanism that only shows the choices when the 
pull-down arrow is clicked. A pull-down is the most compact way to display a 
choice of elements, and is most useful when screen space is tight. From a user per-
spective, a choice is most useful for a relatively large list of options, although they 
are also preferred when it’s not necessary for the user to see all the options at all 
times. Figure 7.15 displays a closed choice. And figure 7.16 displays an open 
pull-down.

The use of a choice is very similar to a regular list box. Listing 7.14 displays how 
to create a pull-down choice. 

import wx 

class ChoiceFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Choice Example', 
                size=(250, 200)) 
        panel = wx.Panel(self, -1) 
        sampleList = ['zero', 'one', 'two', 'three', 'four', 'five', 
                      'six', 'seven', 'eight'] 
        wx.StaticText(panel, -1, "Select one:", (15, 20)) 
        wx.Choice(panel, -1, (85, 18), choices=sampleList) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    ChoiceFrame().Show() 
    app.MainLoop() 

Listing 7.14 Creating a pull-down choice

Figure 7.15  
A pull-down 
choice, with  
no selection

Figure 7.16  
A pull-down choice 
in the process of 
having an element 
selected



Giving the user choices 221
The constructor for a choice is basically identical to the one for a list box: 

wx.Choice(parent, id, pos=wx.DefaultPosition, 
        size=wx.DefaultSize, choices=None, style=0, 
        validator=wx.DefaultValidator, name="choice") 

A wx.Choice has no specific styles, but it does have a unique command event, 
EVT_CHOICE. Almost all of the methods in table 7.14 that apply to single-selection 
list boxes also apply to wx.Choice objects. 

7.4.6 Can I combine text entry and a list? 

The widget that combines text entry and a list 
is called a combo box, and is essentially a text 
box bolted to a pull-down choice. Figure 7.17 
displays a combo box. 

 On Windows, you can use the right-hand 
style, which is a text box bolted to a list box.

 The code for creating a combo box is sim-
ilar to the choice elements we have already 
seen. In this case the class is wx.ComboBox, which 
is a direct subclass of wx.Choice. Listing 7.15 
displays the code details. 

import wx 

class ComboBoxFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Combo Box Example', 
                size=(350, 300)) 
        panel = wx.Panel(self, -1) 
        sampleList = ['zero', 'one', 'two', 'three', 'four', 'five', 
                      'six', 'seven', 'eight'] 
        wx.StaticText(panel, -1, "Select one:", (15, 15)) 
        wx.ComboBox(panel, -1, "default value", (15, 30), wx.DefaultSize,
                        sampleList, wx.CB_DROPDOWN) 
        wx.ComboBox(panel, -1, "default value", (150, 30), wx.DefaultSize, 
                        sampleList, wx.CB_SIMPLE) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    ComboBoxFrame().Show() 
    app.MainLoop()                           

Listing 7.15 Code for a demonstration of wx.ComboBox

Figure 7.17 A combo box showing the 
left box in the style wx.CB_DROPDOWN, 
and the right in wx.CB_SIMPLE



222 CHAPTER 7 
Working with the basic controls
The constructor for wx.ComboBox should look familiar by now: 

wx.ComboBox(parent, id, value="", pos=wx.DefaultPosition, 
        size=wx.DefaultSize, choices, style=0, 
        validator=wx.DefaultValidator, name="comboBox") 

There are four styles for a wx.ComboBox. Two of them determine how the combo 
box is drawn: wx.CB_DROPDOWN creates a combo box with a pull-down list, and 
wx.CB_SIMPLE creates a combo box with a full list box. You can only use wx.CB_SIMPLE
on Windows systems. Any combo box can be designated wx.CB_READONLY, which 
prevents the user from typing in the text area. When the combo box is designated 
read only, the selection must come from one of the elements in the choice list, even 
if you set it programmatically. Finally, there is wx.CB_SORT, which causes the ele-
ments of the choice list to be displayed alphabetically. 

 Since wx.ComboBox is a subclass of wx.Choice, all of the methods of wx.Choice
can be called on a combo box, as displayed in table 7.14. In addition, a number 
of methods are defined to manipulate the text component, all of which behave 
the way they do for a wx.TextCtrl (see table 7.4 for details). The defined meth-
ods are Copy(), Cut(), GetInsertionPoint(), GetValue(), Paste(), Replace(from,
to, text), Remove(from, to), SetInsertionPoint(pos), SetInsertionPointEnd(), 
and SetValue() 

7.5 Summary

In this chapter, we showed you how to use many of wxPython’s most basic and 
commonly used controls. The generic version is somewhat more consistent 
across platforms.

■ For the display of static text labels, you can use the wx.StaticText class. 
There is also a version implemented completely in wxPython, called 
wx.lib.stattext.GenStaticText.

■ If you need a control that allows the user to enter text, the class to use is 
wx.TextCtrl. It allows both single and multi-line entry, as well as password 
masking and other effects. If the native widget supports it, you can use 
wx.TextCtrl to have styled text. Styles are instances of the class wx.Text-
Attr, and also use wx.Font to encapsulate font information. On all systems, 
you can use the class wx.stc.StyledTextCtrl, which is a wxPython wrapper 
around the open-source Scintilla text component, to achieve color and font 
styles in an editable text component. 

■ To create a button, use the wx.Button class, which also has a generic coun-
terpart, wx.lib.buttons.GenButton. A button can have a bitmap instead of 



Summary 223
a text label (wx.BitmapButton), or have its state toggle between pressed and 
unpressed (wx.ToggleButton). There are generic equivalents to both bit-
map and toggle buttons, which have a fuller range of features than the 
standard versions. 

■ There are a few ways to select or display numerical values. You can use the 
wx.Slider class to display a vertical or horizontal slider. The wx.SpinCtrl
displays a text control with up and down buttons to change a numerical 
value. The wx.Gauge control displays a progress bar indicator of a number. 

■ You can choose from among a series of controls for letting the user pick 
from a list of options. The best control to use is based on the number of 
options, whether the user can select more than one, and the amount of 
screen space you want to use. Checkboxes are managed with the wx.Check-
Box class. There are two ways to get radio buttons: wx.RadioButton gives a 
single radio button, while wx.RadioBox gives a group of buttons displayed 
together. There are several list display widgets that are used similarly. A list 
box is created with wx.ListBox, and you can add checkboxes by using 
wx.CheckListBox. For a more compact pull-down, use wx.Choice. wx.Combo-
Box combines the features of a list and a text control. 

Now that we’ve covered the basics of common widgets, in the next chapter we’ll 
discuss the different kinds of frames that you can use to contain them.



Putting widgets in frames
This chapter covers
■ Creating frames and applying styles
■ Working with frames and scrollbars
■ Creating alternative frame types
■ Creating and manipulating splitter windows
224



The life of a frame 225
All user interaction in your wxPython program takes place inside a widget con-
tainer, which would commonly be called a window. In wxPython, that container is 
called a frame. In this chapter, we’ll discuss several different styles of frames in 
wxPython. The primary wx.Frame class has several different frame style bits which 
can change its appearance. In addition, wxPython offers miniframes, and frames 
that implement the Multiple Document Interface (MDI). Frames can be split into 
sections using splitter bars, and can encompass panels larger than the frame itself 
using scrollbars. 

8.1 The life of a frame

We’ll start by discussing the most basic elements of frames: creating and dispos-
ing of them. Creating a frame involves knowing about all the style elements that 
can be applied; disposing of frames can be more complex than you might ini-
tially suppose.

8.1.1 How do I create a frame? 

We’ve already seen numerous examples of frame creation in this book, but at the 
risk of repeating ourselves, we’ll review the initial principles of frame creation.

Creating a simple frame
Frames are instances of the class wx.Frame. Listing 8.1 displays a very simple 
example of frame creation. 

import wx 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = wx.Frame(None, -1, "A Frame", style=wx.DEFAULT_FRAME_STYLE, 
        size=(200, 100)) 
    frame.Show() 
    app.MainLoop() 

This creates a frame with the title A Frame, and a size of 
200 by 100 pixels. The default frame style used in list-
ing 8.1 provides the standard frame decorations like a 
close box and minimize and maximize boxes. Figure 8.1 
displays the result. 

Listing 8.1 Basic wx.Frame creation

Figure 8.1  
The simple frame 



226 CHAPTER 8 
Putting widgets in frames
 This constructor for wx.Frame is similar to the other widget constructors we 
saw in chapter 7. 

wx.Frame(parent, id=-1, title="", pos=wx.DefaultPosition, 
        size=wx.DefaultSize, style=wx.DEFAULT_FRAME_STYLE, 
        name="frame") 

There are over a dozen style flags specific to wx.Frame, which we’ll cover in the 
next section. The default style provides you with minimize and maximize boxes, 
the system pull-down menu, thick resizable borders, and a caption. This is suit-
able for most of your standard application window needs. 

 There are no event types tied to a wx.Frame beyond those that apply to any 
widget. However, since a wx.Frame is the one element on your screen that the user 
is most likely to close, you’ll usually want to define a handler for the close event so 
that subwindows and data are properly managed. 

Creating a frame subclass
You will rarely create wx.Frame instances directly. As we’ve seen in nearly every 
other example in this book, a typical wxPython application creates subclasses of 
wx.Frame and creates instances of those subclasses. This is because of the unique 
status of wx.Frame—although it defines very little behavior by itself, a subclass with 
a unique initializer is the most logical place to put information about the layout 
and behavior of your frame. Having to juggle your application-specific layouts 
and data without creating subclasses is possible, but is awkward in anything but the 
smallest application. Listing 8.2 displays an example of a wx.Frame subclass.

import wx 

class SubclassFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Frame Subclass', 
                size=(300, 100)) 
        panel = wx.Panel(self, -1) 
        button = wx.Button(panel, -1, "Close Me", pos=(15, 15)) 
        self.Bind(wx.EVT_BUTTON, self.OnCloseMe, button) 
        self.Bind(wx.EVT_CLOSE, self.OnCloseWindow) 

    def OnCloseMe(self, event): 
        self.Close(True) 

    def OnCloseWindow(self, event): 
        self.Destroy() 

Listing 8.2 A simple frame subclass



The life of a frame 227
if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    SubclassFrame().Show() 
    app.MainLoop() 

The resulting frame looks like figure 8.2. 
 We’ve seen this basic structure in many other 

examples, so let’s discuss some of the frame-
specific aspects of this code. The call to the 
wx.Frame.__init__ method has the same signa-
ture as the wx.Frame constructor. The constructor 
for the subclass itself has no arguments, which 
allows you as the programmer to define the arguments that get passed to the par-
ent, and keeps you from having to specify the same arguments repeatedly. 

 Also noteworthy in listing 8.2, is that the subwidgets of the frame are them-
selves placed inside a panel. A panel is an instance of the class wx.Panel, and is a 
simple container for other widgets with little functionality of its own. You should 
almost always use a wx.Panel as the top-level subwidget of your frame. For one 
thing, the extra level can allow greater code reuse, as the same panel and layout 
could be used in more than one frame. Using a wx.Panel gives you some of the 
functionality of a dialog box within the frame. This functionality manifests itself 
in a couple of ways. One is simply that wx.Panel instances have a different default 
background color under MS Windows operating systems—white, instead of gray. 
Secondly, panels can have a default item that is automatically activated when the 
Enter key is pressed, and panels respond to keyboard events to tab through the items
or select the default item in much the same way that a dialog does. 

8.1.2 What are some different frame styles? 

The wx.Frame class has a multitude of possible style flags. Typically, the default 
style is what you want, but there are several useful variations. The first set of style 
flags that we’ll discuss governs the general shape and size of the frame. Although 
not strictly enforced, these flags should be considered mutually exclusive—a 
given frame should only use one of them. Using a style flag from this group does 
not imply the existence of any decorators described in the other tables in this sec-
tion; you’ll need to compose the shape flag together with the other desired deco-
rator flags. Table 8.1 describes the shape and size flags. 

Figure 8.2 The simple frame as  
a subclass



228 CHAPTER 8 
Putting widgets in frames
Out of this group, the style most in need of a screen 
shot is wx.FRAME_TOOL_WINDOW. Figure 8.3 displays a 
small sample of the wx.FRAME_TOOL_WINDOW with 
wx.CAPTION and wx.SYSTEM_MENU also declared. If you 
can’t get the scale from the picture, let us assure 
you that the title bar of the tool frame is narrower 
than the other frame styles we’ve seen.

 There are two mutually exclusive styles that con-
trol whether a frame stays on top of other frames, even when the other frames 
gain the focus. This can be useful for small dialogs that don’t remain visible for 
long. Table 8.2 describes the styles.

 Finally, there are several decorations you can place on your window. These are 
not placed automatically if you abandon the default style, so you must add them, 
otherwise it’s easy to end up with a window that doesn’t close or move. Table 8.3 
gives the list of decoration styles. 

 
 

Table 8.1 Style flags for the shape and size of a frame

Style Flag Description 

wx.FRAME_NO_TASKBAR A perfectly normal frame, except for one thing: under Windows  
systems and others supporting this ability, it will not display in the  
taskbar. When minimized, the frame will iconize to the desktop rather  
than to the taskbar. (This is the way that frames behaved in pre-95 
versions of Windows). 

wx.FRAME_SHAPED The frame is nonrectangular. The exact shape of the frame is set with  
the SetShape() method. Shaped windows will be discussed later in  
this chapter. 

wx.FRAME_TOOL_WINDOW The frame has a smaller than normal title bar, typically used for auxiliary 
frames that contain a variety of tool buttons. Under Windows operating 
systems, a tool window will not display in the task bar. 

wx.ICONIZE The window will initially be shown minimized. This style only has an effect 
in Windows operating systems. 

wx.MAXIMIZE The window will initially be shown maximized (full-screen). This style only 
has an effect in Windows operating systems. 

wx.MINIMIZE The same as wx.ICONIZE 

Figure 8.3 An example of the 
tool window style



The life of a frame 229
The default style is wx.DEFAULT_FRAME_STYLE and is equivalent to wx.MINIMIZE_ 
BOX | wx.MAXIMIZE_BOX | wx.CLOSE_BOX | wx.RESIZE_BORDER | wx.SYSTEM_MENU |
wx.CAPTION. This style creates a typical window that you can resize, minimize, 
maximize, or close. It’s a good idea when composing other styles to start with the 

Table 8.2 Styles for frame floating behavior 

Style Flag Description 

wx.FRAME_FLOAT_ON_PARENT The frame will float on top of its parent, and only its parent. 
(Obviously, to use this style the frame needs to have a parent). Other 
frames will overshadow this frame. 

wx.STAY_ON_TOP The frame will always be on top of any other frame in the system. (If 
you have more than one frame designated as stay on top, the frames 
will overlap normally relative to each other, but will still be on top of all 
the other frames in the system.) 

Table 8.3 Styles for decorating a window

Style Flag Description 

wx.CAPTION Gives the window a title bar. You must include this style to have a place 
for the other elements that traditionally are placed here (the minimize 
and maximize box, the system menu, and context help). 

wx.FRAME_EX_CONTEXTHELP This is for Windows operating systems, and places the question mark 
Help icon in the right corner of the title bar. This style is mutually 
exclusive with wx.MAXIMIZE_BOX and WX.MINIMIZE_BOX. This style 
is an extended style, and must be added with the two-step creation 
process described later. 

wx.FRAME_EX_METAL On Mac OS X, frames with this style will have a brushed metal look. This 
is an extra style which must be set with the SetExtraStyle method.

wx.MAXIMIZE_BOX Puts a maximize box in the normal place on the title bar.

wx.MINIMIZE_BOX Puts a minimize box in the normal place on the title bar. 

wx.CLOSE_BOX Puts a close box in the normal place on the title bar.

wx.RESIZE_BORDER Gives the frame a normal border with handles for resizing.

wx.SIMPLE_BORDER Gives the frame a minimal border with no resizing or decorators. This 
style is mutually exclusive with all the other decorator styles. 

wx.SYSTEM_MENU Puts a system menu on the title bar. The exact contents of the system 
menu are consistent with the other chosen decorator styles—you have a 
“minimize” option only if wx.MINIMIZE_BOX is declared, for example. 



230 CHAPTER 8 
Putting widgets in frames
default style to ensure that you have the right set of decorators. For example, to cre-
ate a tool frame, you might use style=wx.DEFAULT_FRAME_STYLE | wx.FRAME_TOOL_ 
WINDOW. Remember, you can use a ^ operator to remove the flag from a bitmask.

8.1.3 How do I create a frame with extra style information? 

The wx.FRAME_EX_CONTEXTHELP style is an extended 
style, which means that the value of its flag is too 
large to be set using the normal constructor 
(because of the specific limitations of the underly-
ing C++ variable type). Normally you can set extra 
styles after the widget has been created using the 
SetExtraStyle method, but some styles, such as 
wx.FRAME_EX_CONTEXTHELP, must be set before the native UI object is created. In 
wxPython, this needs to be done using a slightly awkward method known as two-
step construction. After using this construction, a frame is created with the famil-
iar question mark icon in the title bar, as displayed in figure 8.4. 

 The flag value has to be set using the method SetExtraStyle(). Sometimes 
the extra style information must be set before the frame is instantiated, leading 
to the philosophical question of how you can call a method on an instance that 
does not yet exist. In the next sections, we’ll show two mechanisms for perform-
ing this operation, with the second being a generic abstraction of the first.

Adding extra style information
In wxPython, extra style information is added before creation by using the special 
class wx.PreFrame, which is a kind of partial instance of a frame. You can set the 
extra style bit on the preframe, and then create the actual frame instance using 
the preframe. Listing 8.3 displays how two-step construction is done in a subclass 
constructor. Notice that it’s actually a three-step process in wxPython (in the 
C++ wxWidgets toolkit, it is a two-step process, hence the name). 

import wx 

class HelpFrame(wx.Frame): 

    def __init__(self): 
        pre = wx.PreFrame()   
        pre.SetExtraStyle(wx.FRAME_EX_CONTEXTHELP)     
        pre.Create(None, -1, "Help Context", size=(300, 100), 
                style=wx.DEFAULT_FRAME_STYLE ^ 

Listing 8.3 A two-stage window creation

Figure 8.4 A frame with the 
extended context help enabled

The pre-construction object b



The life of a frame 231
                (wx.MINIMIZE_BOX | wx.MAXIMIZE_BOX))   
        self.PostCreate(pre)   

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    HelpFrame().Show() 
    app.MainLoop() 

Create an instance of wx.PreFrame() (for dialog boxes, there’s an analogous 
wx.PreDialog()—other wxWidgets widgets have their own preclasses). After this 
call, you can do whatever other initialization you need. 
Call the Create() method, which has the same signature as the wxPython 
constructor. 
This is the wxPython-specific line and is not done in C++. The PostCreate
method does some internal housekeeping that makes your wxPython instance a 
wrapper around the C++ object you created in the first step. 

Adding extra style information generically
The algorithm given earlier is a bit awkward, but it can be refactored into some-
thing a little easier to manage. The first step is to create a generic utility function 
that can manage any two-step creation. Listing 8.4 provides an example using 
Python’s reflective ability to call arbitrary functions passed as variables. This 
example is meant to be called in the __init__ method during the Python instan-
tiation of a new frame. 

def twoStepCreate(instance, preClass, preInitFunc, *args, 
        **kwargs): 
    pre = preClass()                                     
    preInitFunc(pre)                                 
    pre.Create(*args, **kwargs)                      
    instance.PostCreate(pre) 

In listing 8.4, the function takes three required arguments. The instance argument 
is the actual instance being created. The preClass argument is the class object for 
the temporary preclass—for frames it is wx.PreFrame. The preInitFunc is a function 
object that would generally be a callback to an initialization method of the instance. 
After that, an arbitrary number of other optional arguments can be added. 

 The first line of the function, pre = preClass(), reflectively instantiates the 
pre-creation object, using the class object passed as an argument. The next line 
reflectively calls the callback function passed to the preInitFunc—in this context, 

This call creates 
the frame cTransfer of underlying 

C++ pointers d

 b

 c

 d

Listing 8.4 A generic two-step creation function



232 CHAPTER 8 
Putting widgets in frames
that would usually set the extended style flag. Then the pre.Create() method is 
called, using the optional arguments. Finally, the PostCreate method is called to 
transplant internal values from pre to instance. At that point, the instance argu-
ment has been fully created. Assuming that twoStepCreate is imported, the utility 
function could be used as in listing 8.5. 

import wx 

class HelpFrame(wx.Frame): 

    def __init__(self, parent, ID, title, 
                 pos=wx.DefaultPosition, size=(100,100), 
                 style=wx.DEFAULT_DIALOG_STYLE): 
        twoStepCreate(self, wx.PreFrame, self.preInit, parent, 
                id, title, pos, size, style) 

    def preInit(self, pre): 
        pre.SetExtraStyle(wx.FRAME_EX_CONTEXTHELP)     

The class wx.PreFrame, and the function self.preInit are passed to the generic 
function, and the preInit method is defined as the callback.

8.1.4 What happens when I close a frame? 

When you close a frame, it goes away. Eventually. Unless the frame is explicitly 
told not to close. In other words, it’s not completely straightforward. The pur-
pose behind the widget closure architecture in wxPython is to give the closing 
widget ample opportunity to close documents or free any non-wxPython 
resources it might be holding onto. This is especially welcome if you are holding 
onto some kind of expensive external resource, such as a large data structure or a 
database connection. 

 Admittedly, managing resources is a more serious issue in the C++ wxWidgets 
world, since C++ does not manage cleanup of memory allocations for you. In 
wxPython, the explicit need for a multiple step closing process is lessened, but it 
can still be useful to have the extra hooks into the process. (By the way, the switch 
from the word frame to the word widget in this paragraph is deliberate—everything 
in this section is applicable to all top-level widgets, such as frames or dialogs).

When a user triggers the close process
The close process is most commonly triggered by a user action, such as clicking on 
a close box or choosing Close from the system menu or when the application calls 

Listing 8.5 Another two-step creation, using the generic method



The life of a frame 233
the frame’s Close method in response to some other event. When that happens, 
the wxPython framework causes an EVT_CLOSE event to be fired. Like any other 
event in the wxPython framework, you can bind an event handler to be called 
when an EVT_CLOSE happens.

 If you do not declare your own event handler, the default behavior is invoked. 
This default behavior is different for frames and dialogs. 

■ By default, the frame handler calls the Destroy() method and deletes the 
frame and all of its component widgets. 

■ By default, the close handler for dialogs does not destroy the dialog—it 
merely simulates a cancel button press, and hides the dialog. The dialog 
object continues to exist in memory so the application can fetch values from 
its data entry widgets, if desired. The application should call the dialog’s 
Destroy() method when it is finished with the dialog. 

If you write your own close handler, you can use that handler to close or delete 
any external resources, but it’s your responsibility to call the Destroy() method 
explicitly if you choose to delete the frame. Even though Destroy() is often called 
from Close(), just calling the Close() method does not guarantee the destruction 
of the frame. It’s perfectly legitimate to decide to not destroy the frame under 
certain circumstances, such as when the user cancels the close. However, you’ll 
still need a way to destroy the frame if you choose to. If you choose not to destroy 
the window, it’s good practice to call the wx.CloseEvent.Veto() method of the 
close event, to signal to any interested party that the frame has declined the invi-
tation to close itself. 

 If you choose to close your frame from somewhere within your program other 
than the close handler, such as from a different user event like a menu item, the 
recommended mechanism is to call the Close() method of the frame. This starts 
the process described previously in exactly the same way as a system close action 
would. If you must ensure that the frame is definitely deleted, you can call the 
Destroy() method directly; however, doing so may result in resources or data 
managed by the frame not being freed or saved.

When the system triggers the close process
If the close event is triggered by the system itself, due to system shutdown or 
something similar, there’s one other place where you can manage the event. The 
wx.App class receives an EVT_QUERY_END_SESSION event that allows you to veto 
the application shutdown if desired, followed by a EVT_END_SESSION event if all 



234 CHAPTER 8 
Putting widgets in frames
running apps have approved the shutdown of the system or GUI environment. 
The behavior if you choose to veto the close is system-dependent.

 Finally, it’s worth noting that calling the Destroy() method of a widget doesn’t 
mean that the widget is immediately destroyed. The destruction is actually pro-
cessed when the event loop next goes idle—after any events that were pending 
when the Destroy() was called have been handled. This prevents certain prob-
lems that may occur if events are processed for widgets that no longer exist. 

 Over the next couple of sections we’ll be switching from the lifecycle of a frame 
to discussing some things you can do with the frame while it’s alive. 

8.2 Using frames

Frames contain many methods and properties. Among the most important are 
the methods used to find arbitrary widgets inside the frame, and the ones used to 
scroll the content in your frame. In this section, we will discuss how these can 
be accomplished.

8.2.1 What are the methods and properties of wx.Frame? 

The tables in this section contain the most basic properties of wx.Frame, and its 
wx.Window parent class. Many of these properties and methods are covered in 
more detail elsewhere in the book. Table 8.4 contains some of the publicly read-
able and modifiable properties of wx.Frame. 

Table 8.4 Public properties of wx.Frame 

Property Description 

GetBackgroundColor()  
SetBackgroundColor(wx.Color) 

The background color of a frame is the color chosen for any part of the 
frame not covered by a child widget. You can pass a wx.Color to the 
setter method or you can pass a string with the color name. Any string 
passed to a wxPython method expecting a color is interpreted as a call 
to the function wx.NamedColour(). 

GetId()  
SetId(int) 

Returns or sets the wxPython identifier for the widget. 

GetMenuBar()  
SetMenuBar(wx.MenuBar) 

Gets or sets the menu bar object that is currently used by the frame, 
or None if there is no menu bar. 

GetPosition()  
GetPositionTuple()  
SetPosition(wx.Point) 

Returns the x, y position of the upper-left corner of the window, as a 
wx.Point or as a Python tuple. For top-level windows, the position is 
in terms of the display coordinates, for child windows, the position is 
in terms of the parent window. 

continued on next page



Using frames 235
Table 8.5 displays some of the more useful nonproperty methods of wx.Frame. 
One to keep in mind is Refresh(), which you can use to manually trigger a redraw 
a frame.

GetSize()  
GetSizeTuple()  
SetSize(wx.Size) 

The C++ versions of the getter and setter are overloaded. The default 
getter and setter use a wx.Size object. The method 
GetSizeTuple() returns the size as a Python tuple. Also see 
SetDimensions() for other ways of accessing this information. 

GetTitle()  
SetTitle(String) 

The title string associated with a frame is displayed in the title bar of 
the frame if it was created with the wx.CAPTION style. 

Table 8.5 Methods of wx.Frame 

Property Description 

Center(direction=wx.BOTH) Centers the frame (note that the non-American spelling Centre, is 
also defined). The argument can have the value wx.BOTH in which 
case the frame is centered in both directions, or wx.HORIZONTAL 
or wx.VERTICAL, in which case it centers in only one direction. 

Enable(enable=true) If the argument is True, the frame is enabled to receive user input. 
If the argument is False, user input is disabled in the frame. A 
related method is Disable(). 

GetBestSize() For a wx.Frame, returns the minimum size for the frame that fits 
all of its subwindows. 

Iconize(iconize) If the argument is True, minimizes the frame to an icon (the exact 
behavior is, of course, system-dependent). If the argument is 
False, an iconized frame is restored to normal. 

IsEnabled() Returns True if the frame is currently enabled. 

IsFullScreen() Returns True if the frame is being displayed in full screen mode, 
False otherwise. See ShowFullScreen for details.

IsIconized() Returns True if the frame is currently iconized, False otherwise. 

IsMaximized() Returns True if currently in the maximized state, False otherwise.

IsShown() Returns True if the frame is currently visible. 

IsTopLevel() Always returns True for top-level widgets such as frames or 
dialogs, and False for other widget types. 

continued on next page

Table 8.4 Public properties of wx.Frame (continued)

Property Description 



236 CHAPTER 8 
Putting widgets in frames
The SetDimensions() method described in table 8.5 uses a bitmask of size flags 
to define default behavior if the user specifies -1 as the value for a dimension. 
Table 8.6 describes those flags. 

 These methods do not cover the subject of locating specific children that are 
contained by a frame. This subject requires its own section to describe it fully.

Maximize(maximize) If the argument is True, maximizes the frame to fill the screen  
(the exact behavior is, of course, system-dependent). This will  
do the same thing as the user clicking on the Maximize box of  
the frame, which normally will enlarge the frame such that it fills  
the desktop but leaves the taskbar and other system components 
still visible. 

Refresh(eraseBackground=True,  
rect=None) 

Triggers a repaint event for the frame. If rect is none, then the 
entire frame is repainted. If a rectangle is specified, only that 
rectangle is repainted. If eraseBackground is True, the 
background of the window will also be repainted, if False, the 
background will not be repainted. 

SetDimensions(x, y, width, height,  
sizeFlags=wx.SIZE_AUTO) 

Allows you to set the size and position of the window in one method 
call. The position goes into the x and y arguments, the size into the 
width and height arguments. A value of -1 passed to any of the 
first four parameters is interpreted based on the value of the 
sizeFlags argument. Table 8.6 contains the possible values for 
the sizeFlags argument 

Show(show=True) If passed a value of True, causes the frame to be displayed. If 
passed a value of False, causes the frame to be hidden. The call 
Show(False) is equivalent to Hide(). 

ShowFullScreen(show,  
style=wx.FULLSCREEN_ALL) 

If the Boolean argument is True, the frame is displayed in full 
screen mode—meaning it is enlarged to fill the entire display 
including covering the taskbar or other system components on the 
desktop. If the argument is False, the frame is restored to normal 
size. The style argument is a bitmask. The default value, 
wx.FULLSCREEN_ALL, directs wxPython to hide all style elements 
of the window when in full screen mode. The following other values 
can be composed using bitwise operations to suppress certain 
parts of the frame in full screen mode: 
wx.FULLSCREEN_NOBORDER, wx.FULLSCREEN_NOCAPTION, 
wx.FULLSCREEN_NOMENUBAR, 
wx.FULLSCREEN_NOSTATUSBAR, 
wx.FULLSCREEN_NOTOOLBAR. 

Table 8.5 Methods of wx.Frame (continued)

Property Description 



Using frames 237
8.2.2 How do I find a subwidget of a frame? 
Occasionally, you’ll need to find a specific widget on a frame or panel without 
already having a reference to that widget. A common application of this, as shown 
in chapter 6, is to find the actual menu item object associated with a menu selec-
tion (since the event doesn’t hold a reference to it). Another use case is when you 
want an event on one item to change the state of an arbitrary other widget in the 
system. For example, you may have a button and a menu item that mutually 
change each other’s toggle state. When the button is clicked, you need to get the 
menu item to toggle it. Listing 8.6 displays a small example taken from chapter 7. 
In this code, the FindItemById() method is used to acquire the menu item associ-
ated with the ID provided by the event object. The label from that item is used to 
drive the requested color change.

def OnColor(self, event):                                  
    menubar = self.GetMenuBar()                            
    itemId = event.GetId()                                 
    item = menubar.FindItemById(itemId)                    
    color = item.GetLabel()                                
    self.sketch.SetColor(color)                            

In wxPython, there are three methods for finding a subwidget, all of which act 
similarly. These methods are applicable to any widget that is used as a container, 
not just frames, but also dialogs and panels. You can look up a subwidget by inter-
nal wxPython ID, by the name passed to the constructor in the name argument, or 
by the text label. The text label is defined as the caption for widgets that have a 
caption, such as buttons and frames. 

Table 8.6 Size flags for the method SetDimensions 

Flag -1 interpreted as 

wx.ALLOW_MINUS_ONE a valid position or size 

wx.SIZE_AUTO converted to a wxPython default 

wx.SIZE_AUTO_HEIGHT a valid width, or a wxPython default height 

wx.SIZE_AUTO_WIDTH a valid height, or a wxPython default width 

wx.SIZE_USE_EXISTING the current value should be carried forward 

Listing 8.6 A function which finds an item by ID



238 CHAPTER 8 
Putting widgets in frames
 The three methods are: 

■ wx.FindWindowById(id, parent=None) 
■ wx.FindWindowByName(name, parent=None) 
■ wx.FindWindowByLabel(label, parent=None) 

In all three cases, the parent argument can be used to limit the search to a partic-
ular subhierarchy (i.e., it’s equivalent to calling the Find method of that argu-
ment). Also, FindWindowByName() looks first in the name arguments’ if it does not 
find a match, it calls FindWindowByLabel() to look for a match. 

8.2.3 How do I create a frame with a scrollbar? 
In wxPython, scrollbars are not an element of the frame itself, but rather are con-
trolled by the class wx.ScrolledWindow. You can use a wx.ScrolledWindow any place 
that you would use a wx.Panel, and the scrollbars move all the items that are inside 
that scrolled window. Figure 8.5 and figure 8.6 display a scroller in action, both in 
its initial state and after it has been scrolled. The top-left button scrolls off the view-
port, and the lower-right button scrolls on.

 In this section, we’ll discuss how to create a window with a scrollbar and how to 
manipulate the scrolling behavior from within your program.

How to create the scrollbar
Listing 8.7 displays the code used to create the scrolled window. 

import wx 

class ScrollbarFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 'Scrollbar Example', 
                size=(300, 200)) 

Listing 8.7 Creating a simple scrolled window

Figure 8.5 A wx.Scrolled-Window 
after initial creation

Figure 8.6 The same window 
after it has been scrolled



Using frames 239
        self.scroll = wx.ScrolledWindow(self, -1) 
        self.scroll.SetScrollbars(1, 1, 600, 400) 
        self.button = wx.Button(self.scroll, -1, "Scroll Me",
                pos=(50, 20))
        self.Bind(wx.EVT_BUTTON, self.OnClickTop, self.button) 
        self.button2 = wx.Button(self.scroll, -1, "Scroll Back", 
                pos=(500, 350)) 
        self.Bind(wx.EVT_BUTTON, self.OnClickBottom, self.button2) 

    def OnClickTop(self, event): 
        self.scroll.Scroll(600, 400) 
        
    def OnClickBottom(self, event): 
        self.scroll.Scroll(1, 1) 
        
if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = ScrollbarFrame() 
    frame.Show() 
    app.MainLoop() 

The constructor for wx.ScrolledWindow is nearly identical to the one for wx.Panel:

wx.ScrolledWindow(parent, id=-1, pos=wx.DefaultPosition, 
        size=wx.DefaultSize, style=wx.HSCROLL | wx.VSCROLL, 
        name="scrolledWindow") 

All of the attributes behave as you might expect, although the size attribute is the 
physical size of the panel within its parent, and not the logical size of the window 
for scrolling. 

Specifying scroll area size
There are several automatic methods of specifying the size of the scrolling area. 
The most manual way, as displayed in listing 8.1, uses the method SetScrollBars: 

SetScrollbars(pixelsPerUnitX, pixelsPerUnitY, noUnitsX, noUnitsY, 
        xPos=0, yPos=0, noRefresh=False) 

The key concept is that of scroll unit, which is the amount of space the window 
shifts for one movement of the scrollbar (often called a thumb shift, as opposed 
to a page shift). The first two parameters, pixelsPerUnitX and PixelsPerUnitY
allow you to set the size of a scroll unit in both dimensions. The second two 
parameters, noUnitsX, and noUnitsY allow you to set the size of the scroll area in 
terms of scroll units. In other words, the size of the scroll area in pixels is (pixels-
PerUnitX * noUnitsX, pixelsPerUnitY * noUnitsY). Listing 8.7 avoids any potential



240 CHAPTER 8 
Putting widgets in frames
confusion by making the scroll unit one pixel. The xPos and yPos parameters 
allow you set the initial position of the scrollbars in terms of scroll units (not pix-
els), and the noRefresh argument, if true, prevents automatic refresh of the win-
dow after any scroll caused by the SetScrollbars() call. 

 There are three other methods that you can use to set the size of the scrolling 
area and then separately set the scroll rate. You might find these methods easier 
to use, because they allow you to specify dimensions more directly. You can use 
the scroll window method SetVirtualSize(), by setting the size directly in pixels, 
as in the following. 

self.scroll.SetVirtualSize((600, 400)) 

Using the method FitInside(), you can set up the widgets inside the scroll area 
so that the scroll window bounds them. This method sets the boundaries of the 
scroll window to the minimum required to exactly fit all sub-windows: 

self.scroll.FitInside() 

A common use case for FitInside() is when there is exactly one widget inside the 
scroll window (like a text area), and the logical size of that widget has already been 
set. If we had used FitInside() in listing 8.7, a smaller scroll area would have 
been created, since the area would exactly match the edge of the lower-right but-
ton, rather than having additional padding. 

 Finally, if the scroll window has a sizer set inside it, using SetSizer() sets the 
scrolling area to the size of the widgets as managed by the sizer. This is the mech-
anism used most frequently in a complex layout. For more detailed information 
about sizers, see chapter 11. 

 With all three of these mechanisms, the scroll rate needs to be set separately 
using the method SetScrollRate(), as in the following. 

self.scroll.SetScrollRate(1, 1) 

The arguments are the scroll unit size in the x and y directions, respectively. A size 
greater than zero enables scrolling in that direction. 

Scrollbar events
The button event handlers in listing 8.7 programmatically change the position of 
the scrollbars using the Scroll() method. This method takes the x and y coordi-
nates of the scroll window, using scroll units and not pixels. 

 In chapter 7, we promised a listing of the events you can capture from a scroll-
bar, since they are also used to control sliders. Table 8.7 lists all scroll events 



Using frames 241
handled internally by the scroller window. Typically, you won’t use many of these 
events unless you are building custom widgets.

The exact definition of line and page depends on the scroll units you’ve set, one 
line is one scroll unit and one page is the number of complete scroll units that fit 
in the visible portion of the scrolled window. For each of the EVT_SCROLL* events 
listed in the table there is a corresponding EVT_SCROLLWIN* event emitted by the 
wx.ScrolledWindow in response to the events from its scroll bars.

 There is a wxPython-specific scrolled window subclass, wx.lib.scrolledpanel. 
ScrolledPanel, that allows you to automatically set up scrolling on panels that are 
using a sizer to manage the layout of child widgets. An added benefit of the 
wx.lib.scrolledpanel.ScrolledPanel is it allows the user to select the tab key to 
move between subwidgets. The panel automatically scrolls to put the newly 
focused widget in view. To use wx.lib.scrolledpanel.ScrolledPanel, declare it 
like a scrolled window, then, after all the sub-windows have been added, call the 
following method. 

SetupScrolling(self, scroll_x=True, scroll_y=True, rate_x=20, 
        rate_y=20) 

Table 8.7 Events of a scroll bar

Event Type Description 

EVT_SCROLL Called when any scroll event is triggered. 

EVT_SCROLL_BOTTOM Triggered when the user moves the scrollbar to the maximum end of its 
range (the bottom or right side, depending on orientation). 

EVT_SCROLL_ENDSCROLL On MS Windows, triggered at the end of any scrolling session, whether 
it be caused by mouse drag or key press. 

EVT_SCROLL_LINEDOWN Triggered when the user moves the scrollbar down one line.

EVT_SCROLL_LINEUP Triggered when the user moves the scrollbar up one line. 

EVT_SCROLL_PAGEDOWN The user has moved the scrollbar down one page. 

EVT_SCROLL_PAGEUP The scrollbar has moved up one page. 

EVT_SCROLL_THUMBRELEASE Called at the end of any scroll session that has been driven by the user 
actually dragging the scrollbar thumb with the mouse. 

EVT_SCROLL_THUMBTRACK Called repeatedly while the thumb is being dragged. 

EVT_SCROLL_TOP Triggered when the user moves the scrollbar to the minimum end of its 
range, which is either the top or left, depending on orientation.



242 CHAPTER 8 
Putting widgets in frames
The rate_x and rate_y are the scroll units of the window, and the class automat-
ically sets the virtual size based on the size of the subwidgets as calculated by 
the sizer. 

 Remember, when determining the position of a widget inside a scrolled win-
dow, its position is always the physical position of the widget relative to the actual 
origin of the scroll window in the display frame, not the widget’s logical position 
relative to the virtual size of the frame. This is true even if the widget is no longer 
visible. For example, after clicking on the Scroll Me button in figure 8.5, the but-
ton reports its position as (-277, -237). If this isn’t what you want, switch between 
the display coordinates and the logical coordinates using the methods Calc-
ScrolledPosition(x, y) and CalcUnscrolledPosition(x, y). In each case, after the
button click moves the scroller to the bottom right, you pass the coordinates of 
the point, and the scroll window returns an (x, y) tuple, as in the following.

CalcUnscrolledPostion(-277, -237) returns (50, 20) 

8.3 Alternative frame types

Frames are not limited to ordinary rectangles with widgets inside, they can assume
other shapes. You can also create MDI frames which contain other frames inside. 
Or you can leave the title bar off the frame, and still allow the user to drag the 
frame around.

8.3.1 How do I create an MDI frame? 

Remember MDI? Many people don’t. MDI was an early ’90s Microsoft innovation, 
that allowed multiple child windows in an application to be controlled by a single 
parent window, essentially providing a separate desktop for each application. In 
most applications, MDI requires all windows in the application to minimize 
together and maintain the same z-order relative to the rest of the system, which is 
limiting. We recommend using MDI only in cases where the user expects to see all 
of the application windows together, such as a game. Figure 8.7 displays a typical 
MDI environment.

 MDI is supported in wxPython by using native widgets under Windows oper-
ating systems, and simulating the child windows in other operating systems. List-
ing 8.8 provides a simple example of MDI in action. 

 
 
 



Alternative frame types 243
import wx 

class MDIFrame(wx.MDIParentFrame): 
    def __init__(self): 
        wx.MDIParentFrame.__init__(self, None, -1, "MDI Parent", 
                size=(600,400)) 
        menu = wx.Menu() 
        menu.Append(5000, "&New Window") 
        menu.Append(5001, "E&xit") 
        menubar = wx.MenuBar() 
        menubar.Append(menu, "&File") 
        self.SetMenuBar(menubar) 
        self.Bind(wx.EVT_MENU, self.OnNewWindow, id=5000) 
        self.Bind(wx.EVT_MENU, self.OnExit, id=5001) 

    def OnExit(self, evt): 
        self.Close(True) 

    def OnNewWindow(self, evt): 
        win = wx.MDIChildFrame(self, -1, "Child Window") 
        win.Show(True) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    frame = MDIFrame() 
    frame.Show() 
    app.MainLoop() 

Listing 8.8 How to create an MDI window

Figure 8.7  
An MDI window



244 CHAPTER 8 
Putting widgets in frames
The basic concept of MDI is quite simple. The parent window is a subclass of 
wx.MDIParentFrame, and child windows are added just like any other wxPython 
widget, except that they are subclasses of wx.MDIChildFrame. The wx.MDIParent-
Frame constructor is almost identical to wx.Frame, as in the following: 

wx.MDIParentFrame(parent, id, title, pos = wx.DefaultPosition, 
        size=wxDefaultSize, 
        style=wx.DEFAULT_FRAME_STYLE | wx.VSCROLL | wx.HSCROLL, 
        name="frame") 

One difference is that a wx.MDIParentFrame has scrolling on by default. The 
wx.MDIChildFrame constructor is identical, except that it does not have the scroll-
ing. As in listing 8.8, adding the child frame is accomplished by creating one, 
with the parent frame as the parent. 

 You can change the position and size of all child frames simultaneously by 
using the parent frame methods Cascade() or Tile(), which mimic the common 
menu items of the same name. Calling Cascade(), causes the windows to appear 
one on top of the other, as in figure 8.7, while Tile() makes each window the 
same size and moves them so they don’t overlap. To programmatically move 
the focus among the child windows, use the parent methods ActivateNext() and 
ActivatePrevious(). 

8.3.2 What’s a mini-frame and why would I use it? 

A mini-frame is just like a regular frame 
with two primary exceptions: it has a 
smaller title area, and it doesn’t display in 
the window task bar under MS Windows or 
GTK. Figure 8.8 displays an example of a 
smaller title area. 

 The code for creating the mini-frame is 
almost identical to creating a regular frame, the only difference is that the parent 
class is now wx.MiniFrame. Listing 8.9 displays the code. 

import wx 

class MiniFrame(wx.MiniFrame): 
    def __init__(self): 
        wx.MiniFrame.__init__(self, None, -1, 'Mini Frame', 
                size=(300, 100)) 
        panel = wx.Panel(self, -1, size=(300, 100)) 

Listing 8.9 Creating a mini-frame

Figure 8.8 A mini-frame in action



Alternative frame types 245
        button = wx.Button(panel, -1, "Close Me", pos=(15, 15)) 
        self.Bind(wx.EVT_BUTTON, self.OnCloseMe, button) 
        self.Bind(wx.EVT_CLOSE, self.OnCloseWindow) 

    def OnCloseMe(self, event): 
        self.Close(True) 

    def OnCloseWindow(self, event): 
        self.Destroy() 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    MiniFrame().Show() 
    app.MainLoop() 

The constructor for wx.MiniFrame is identical to the constructor for wx.Frame, 
however the mini-frame supports additional style flags, listed in table 8.8. 

Typically, mini-frames are used in toolbox windows (i.e., Photoshop), where they 
are always available and they don’t clutter up the task bar. The smaller caption 
makes them more space efficient, and visually separates them from normal frames. 

8.3.3 How do I make a non-rectangular frame? 
In most applications, frames are rectangles because rectangles have a nice regular 
shape and are relatively simple for an application to draw and maintain. Some-
times, though, you need to break out of the straight line straitjacket. In wxPython, 
you can give a frame an arbitrary shape. If an alternate shape is defined, the parts 
of the frame that are outside the shape are not drawn, and do not respond to 
mouse events; as far as the user is concerned, they are not part of the frame. Fig-
ure 8.9 displays a sample shaped window, displayed against a backdrop of the 
code in the text editor. 

 Events are set up so that a double-click toggles the non-standard shape on and 
off, and a right-click closes the window. This example uses the images module from 
the wxPython demo as the source of the image of Vippi, the wxPython mascot.

Table 8.8 Style flags for wx.MiniFrame

Style Description 

wx.THICK_FRAME Under MS Windows or Motif, draws the frame with a thick border. 

wx.TINY_CAPTION_HORIZONTAL Replaces wx.CAPTION to display a smaller horizontal caption. 

wx.TINY_CAPTION_VERTICAL Replaces wx.CAPTION to display a smaller vertical caption. 



246 CHAPTER 8 
Putting widgets in frames
Listing 8.10 displays the code behind the non-rectangular frame (assuming that 
you can’t read it behind the mascot in figure 8.9). This example is slightly more 
elaborate than some of the others we’ve seen, to display how to manage things 
like window closing in the absence of typical window interface decorations.

import wx 
import images 

class ShapedFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, "Shaped Window", 
                style = wx.FRAME_SHAPED | wx.SIMPLE_BORDER | 
                wx.FRAME_NO_TASKBAR) 
        self.hasShape = False     
        self.bmp = images.getVippiBitmap()                                  
        self.SetClientSize((self.bmp.GetWidth(), self.bmp.GetHeight()))   
        dc = wx.ClientDC(self)               
        dc.DrawBitmap(self.bmp, 0,0, True)   
        self.SetWindowShape() 
        self.Bind(wx.EVT_LEFT_DCLICK, self.OnDoubleClick) 
        self.Bind(wx.EVT_RIGHT_UP, self.OnExit) 
        self.Bind(wx.EVT_PAINT, self.OnPaint) 
        self.Bind(wx.EVT_WINDOW_CREATE, self.SetWindowShape)   

    def SetWindowShape(self, evt=None): 
        r = wx.RegionFromBitmap(self.bmp)   
        self.hasShape = self.SetShape(r) 

    def OnDoubleClick(self, evt): 
        if self.hasShape: 

Figure 8.9  
A window shaped into a 
familiar non-rectangular shape

Listing 8.10 Drawing the shaped window

Acquiring 
the image  b

Drawing 
the image c

Binding 
the 
window 
create 
event d

Setting 
the shape e



Alternative frame types 247
            self.SetShape(wx.Region())   
            self.hasShape = False 
        else: 
            self.SetWindowShape() 

    def OnPaint(self, evt): 
        dc = wx.PaintDC(self) 
        dc.DrawBitmap(self.bmp, 0,0, True) 

    def OnExit(self, evt): 
        self.Close() 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    ShapedFrame().Show() 
    app.MainLoop()      

After getting the image from the images module, we set the size of the inside por-
tion of the window to the size of the bitmap. You can also create the wxPython bit-
map from a regular image file, which will be discussed in more detail in chapter 16.
In this case, we’re drawing the image in the window. This is by no means an inev-
itable choice. You can place widgets and text inside a shaped window just like any 
other one (although they must be inside the shape region). 
This event, which forces a call to SetWindowShape() after the window is created, 
is redundant on most platforms. However, the GTK implementation requires 
that the native UI object for the window be created and finalized before the 
shape is set, so we use the window create event to be notified when that happens 
and set the shape in its handler. 
We use the global method wx.RegionFromBitmap to create the wx.Region object 
needed to set the shape. This is the easiest way to create an irregular shape. You 
can also create a wx.Region from a list of points that define a polygon. The trans-
parent portion of the image’s mask is used as the boundary for the purpose of 
defining the region. 
The double-click event toggles the shape of the window. To return the shape to the 
normal rectangle, call SetShape() with an empty wx.Region as the argument.

Except for the behavior around the edges and the fact that it doesn’t have a nor-
mal close box or title bar, the shaped frame behaves like an ordinary frame. Any 
frame can change its shape, since the SetShape() method is part of the wx.Frame
class, it would be inherited by any subclass. A shaped frame is particularly effec-
tive in a wx.SplashScreen. 

Resetting 
the shape f

 b

 c

 d

 e

 f



248 CHAPTER 8 
Putting widgets in frames
8.3.4 How can I drag a frame without a title bar? 

One obvious result of the previous example is that the frame is stuck—in the 
absence of a title bar, there’s no standard method of dragging the window. To 
resolve this problem, we need to add event handlers to move the window when 
dragging occurs. Listing 8.11 displays the same shaped window as before, with 
the addition of some events for handling left mouse clicks and mouse moves. 
This technique is applicable to any other frame, or even to a window inside a 
frame that you want to move (such as an element in a draw program). 

import wx 
import images 

class ShapedFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, "Shaped Window", 
                style = wx.FRAME_SHAPED | wx.SIMPLE_BORDER ) 
        self.hasShape = False 
        self.delta = wx.Point(0,0) 
        self.bmp = images.getVippiBitmap() 
        self.SetClientSize((self.bmp.GetWidth(), self.bmp.GetHeight())) 
        dc = wx.ClientDC(self) 
        dc.DrawBitmap(self.bmp, 0,0, True) 
        self.SetWindowShape() 
        self.Bind(wx.EVT_LEFT_DCLICK, self.OnDoubleClick) 
        self.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown)   
        self.Bind(wx.EVT_LEFT_UP, self.OnLeftUp)       
        self.Bind(wx.EVT_MOTION, self.OnMouseMove)     
        self.Bind(wx.EVT_RIGHT_UP, self.OnExit) 
        self.Bind(wx.EVT_PAINT, self.OnPaint) 
        self.Bind(wx.EVT_WINDOW_CREATE, self.SetWindowShape) 

    def SetWindowShape(self, evt=None): 
        r = wx.RegionFromBitmap(self.bmp) 
        self.hasShape = self.SetShape(r) 

    def OnDoubleClick(self, evt): 
        if self.hasShape: 
            self.SetShape(wx.Region()) 
            self.hasShape = False 
        else: 
            self.SetWindowShape() 

    def OnPaint(self, evt): 
        dc = wx.PaintDC(self) 
        dc.DrawBitmap(self.bmp, 0,0, True) 

Listing 8.11 Events to allow a user to drag a frame from the body of the frame

New 
events

 b



Alternative frame types 249
    def OnExit(self, evt): 
        self.Close() 

    def OnLeftDown(self, evt):                                      
        self.CaptureMouse()                                         
        pos = self.ClientToScreen(evt.GetPosition())                
        origin = self.GetPosition()                                 
        self.delta = wx.Point(pos.x - origin.x, pos.y - origin.y)   

    def OnMouseMove(self, evt):                                     
        if evt.Dragging() and evt.LeftIsDown():                     
            pos = self.ClientToScreen(evt.GetPosition())            
            newPos = (pos.x - self.delta.x, pos.y - self.delta.y)   
            self.Move(newPos)                                       
        
    def OnLeftUp(self, evt):      
        if self.HasCapture():     
            self.ReleaseMouse()   

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    ShapedFrame().Show() 
    app.MainLoop()      

We’re adding handlers for three events to make this work. Left mouse down, left 
mouse up, and mouse movement. 
A drag event starts when the left mouse is pressed. This event handler does two 
things. First, it captures the mouse, which prevents mouse events from being sent 
to other widgets until the mouse is released. Second, it calculates an offset between 
the position of the event and the upper left-hand corner of the window, which will 
be used to calculate the new position of the window as the mouse moves. 
This handler, called when the mouse moves, first checks to see if the event is a 
drag with the left button down. If so, it uses the new position of the mouse and the 
previously calculated offset to determine the new position of the window, and 
moves the window. 
When the left mouse button is released, ReleaseMouse() is called, which again 
allows mouse events to be sent to other widgets.

This drag technique can be refined to suit other needs. For example, if the 
mouse click should only start a drag if it is within is a defined region, you can do 
a test on the initial location of the mouse down event and only enable dragging 
if the click is in the right place. 

Mouse down  c

Mouse move  d

Mouse 
up

 e

 b

 c

 d

 e



250 CHAPTER 8 
Putting widgets in frames
8.4 Using splitter windows

A splitter window is a particular kind of container widget that manages exactly 
two sub-windows. The two sub-windows can be stacked horizontally or next to 
each other left and right. In between the two sub-windows is a sash, which is a 
movable border that changes the size of the two sub-windows. Splitter windows 
are often used for sidebars to the main window (i.e., a browser). Figure 8.10 dis-
plays a sample splitter window. 

 Splitter windows are useful when you have two panes of information and want 
the user to independently determine the size of each pane. Mac OS X Finder win-
dows are an example of splitter window, and many text editors or graphics pro-
grams use something similar to maintain a list of open files.

8.4.1 Creating a splitter window

In wxPython, a splitter window is an instance of the class wx.SplitterWindow. 
Unlike most other wxPython widgets, splitter windows require further initializa-
tion after they are created before they can be used. The constructor is pretty 
straightforward. 

Figure 8.10 A sample splitter window after initialization



Using splitter windows 251
wx.SplitterWindow(parent, id=-1, pos=wx.DefaultPosition, 
        size=wx.DefaultSize, style=wx.SP_3D, 
        name="splitterWindow") 

The parameters have the standard meanings—parent is the container for the 
widget, pos is the widget’s location on its parent, size is its size. 

 After creating the splitter window, you must call one of three methods on the 
window before it can be used. If you want your splitter to initially display with 
only one sub-window, call Initialize(window), where the window parameter is the 
single sub-window (typically a kind of wx.Panel). In this case, the window will split 
later on in response to some user action. 

 To display the splitter already split, use either SplitHorizontally (window1,
window2, sashPosition=0) or SplitVertically(window1, window2, sashPosition= 
0). Both methods work similarly, with the window1 and window2 parameters con-
taining the two sub-windows, and the sashPosition parameter containing the ini-
tial location of the sash. For the horizontal version, window1 is placed on top of 
window2. If the sashPosition is a positive number, it represents the initial height 
of the top window (i.e., the sash is that number of pixels from the top). If sashPo-
sition is a negative number, it defines the size of the bottom window, or the num-
ber of pixels from the bottom. If the sashPosition is 0, then the sash goes in the 
exact middle of the splitter. In the vertical split method, window1 is on the left, 
and window2 is on the right. Again, a positive sashPosition sets the size of window1
and is the number of pixels the sash is from the left border. A negative sashPosi-
tion similarly sets the size of the right window, and an 0 puts the sash in the cen-
ter. If your sub-windows are complex, we recommend that you use sizers in the 
layout so that they react gracefully to the window resizing when the sash is moved.

8.4.2 A splitter example

The sample code in listing 8.12 displays how the splitter can be created in one 
sub-window and split later in response to a menu selection. This listing also uses 
some events that we’ll talk about later. Notice how the sub-panel that we don’t 
plan on making visible in the splitter right away is hidden by calling its Hide()
method. We do this because we will not initially be telling the splitter to manage 
the size and placement of that sub-panel, so we hide it to get it out of the way. If 
we were to split the splitter and display both sub-panels at the beginning, we 
wouldn’t have to worry about this.

 
 



252 CHAPTER 8 
Putting widgets in frames
import wx 

class SplitterExampleFrame(wx.Frame): 
    def __init__(self, parent, title): 
        wx.Frame.__init__(self, parent, title=title) 
        self.MakeMenuBar() 
        self.initpos = 100 
        self.sp = wx.SplitterWindow(self)   
        self.p1 = wx.Panel(self.sp, style=wx.SUNKEN_BORDER)   
        self.p2 = wx.Panel(self.sp, style=wx.SUNKEN_BORDER) 
        self.p2.Hide()                         
        self.p1.SetBackgroundColour("pink") 
        self.p2.SetBackgroundColour("sky blue")   
        self.sp.Initialize(self.p1)     
        self.sp.SetMinimumPaneSize(10) 

    def MakeMenuBar(self): 
        menu = wx.Menu() 
        item = menu.Append(-1, "Split horizontally") 
        self.Bind(wx.EVT_MENU, self.OnSplitH, item) 
        self.Bind(wx.EVT_UPDATE_UI, self.OnCheckCanSplit, item) 
        item = menu.Append(-1, "Split vertically") 
        self.Bind(wx.EVT_MENU, self.OnSplitV, item) 
        self.Bind(wx.EVT_UPDATE_UI, self.OnCheckCanSplit, item) 
        item = menu.Append(-1, "Unsplit") 
        self.Bind(wx.EVT_MENU, self.OnUnsplit, item) 
        self.Bind(wx.EVT_UPDATE_UI, self.OnCheckCanUnsplit, item) 
        menu.AppendSeparator() 
        item = menu.Append(wx.ID_EXIT, "E&xit") 
        self.Bind(wx.EVT_MENU, self.OnExit, item) 
        mbar = wx.MenuBar() 
        mbar.Append(menu, "Splitter") 
        self.SetMenuBar(mbar) 

    def OnSplitH(self, evt):   
        self.sp.SplitHorizontally(self.p1, self.p2, self.initpos) 
    
    def OnSplitV(self, evt):   
        self.sp.SplitVertically(self.p1, self.p2, self.initpos) 

    def OnCheckCanSplit(self, evt): 
        evt.Enable(not self.sp.IsSplit()) 

    def OnCheckCanUnsplit(self, evt): 
        evt.Enable(self.sp.IsSplit()) 

    def OnUnsplit(self, evt): 
        self.sp.Unsplit() 

Listing 8.12 How to create your very own splitter window

Creating a splitter window

Creating 
sub-panels

Ensuring the spare 
sub-panel is hidden

Initializing a splitter

Responding to a split horizontal request

Responding to a split vertical request



Using splitter windows 253
    def OnExit(self, evt): 
        self.Close() 

app = wx.PySimpleApp(redirect=True) 
frm = SplitterExampleFrame(None, "Splitter Example") 
frm.SetSize((600,500)) 
frm.Show() 
app.SetTopWindow(frm) 
app.MainLoop() 

A splitter window can be split only one way at a time. An attempt to split a window 
that is already split will fail, resulting in the split method returning False (on suc-
cess, it will return True). To determine if the splitter is currently split, call the 
method IsSplit(). This is done in listing 8.12 to ensure that the proper menu 
items are always enabled. 

 If you want to unsplit the window, use Unsplit(toRemove=None). The toRemove
parameter is the actual wx.Window object to remove, and must be one of the two 
sub-windows. If toRemove is None, the bottom or right window is removed, 
depending on the orientation of the splitter. By default, the removed window is 
not deleted by wxPython, so you can add it back later. The unsplit method returns 
True if the unsplit is successful. If the splitter is not currently split, or if the toRe-
move argument is not one of the splitter sub-windows, the method returns False. 

 To ensure you have an accurate reference to the sub-window you want, use the 
getter methods GetWindow1() and GetWindow2(). The GetWindow1() method 
returns the top or left sub-window, while GetWindow2()returns the bottom or right 
window. Since there isn’t a direct setter, to change a sub-window, use the method 
ReplaceWindow(winOld, winNew), where winOld is the wx.Window object you are 
replacing, and winNew is the new window to display. 

8.4.3 Changing the appearance of the splitter 

A number of style flags control the onscreen appearance of the splitter window. 
Note that since the splitter attempts to draw the sash in a manner that blends 
with the native platform controls, not all of the style flags listed will affect all sys-
tems. Table 8.9 describes the available flags.

 As we’ll see in the next section, you can also change the display of the splitter 
from your application, either in response to user action or on your own whim.



254 CHAPTER 8 
Putting widgets in frames
8.4.4 Manipulating the splitter programmatically

Once the splitter window is created, you can use window methods to manipulate 
the position of the sash. Specifically, you can use the method SetSashPosi-
tion(position, redraw=True) to move the sash. The position is the new posi-
tion in pixels, defined from the top for a horizontal sash, or from the left for a 
vertical one. Negative indexes are used as in the split methods to indicate posi-
tion from the other side. If redraw is True, the window updates immediately, oth-
erwise it waits for a regular window refresh. The behavior of the set method is 
not defined if your pixel value is out of range. To get the current sash position, 
use GetSashPosition(). 

 Under the default splitter behavior, the user can move the sash anywhere 
between the two borders. Moving the sash all the way to one border reduces the 
size of one sub-window to zero, causing a de facto unsplit of the window. To pre-
vent this, you can specify the minimum size of the sub-windows using the method 
SetMinimumPaneSize(paneSize). The paneSize parameter is the minimum pixel 
size of a sub-window. The user is prevented from dragging the sash far enough to 
create a smaller sub-window, and programmatic changes to the sash position are 
similarly constrained. As mentioned earlier in this chapter, you can allow pro-
grammatic unsplitting even in a minimum sub-window size, by declaring the 

Table 8.9 Style flags for the splitter window

Style Description 

wx.SP_3D Draw the border and sash with a 3D effect. This is the default style. 

wx.SP_3DBORDER Draws the border in a 3D style, but not the sash. 

wx.SP_3DSASH Draws the sash in a 3D style, but not the border.

wx.SP_BORDER Draws a non-3D border around the window. 

wx.SP_LIVE_UPDATE Changes the default behavior for responding to a sash move. If this flag is not 
set, a line is drawn to indicate the new sash position while the user drags the 
sash. The sub-window sizes are not actually updated until the sash drag ends. 
If this flag is set, then the sub-windows are continually resized, repositioned, 
and redrawn as the sash is dragged. 

wx.SP_NOBORDER Does not draw any border at all. 

wx.SP_NO_XP_THEME Under Windows XP systems, does not use the XP theme for the sash, giving 
the window a more classic windows look. 

wx.SP_PERMIT_UNSPLIT If set, the window can always be unsplit. If not set, you can prevent the window 
from being unsplit by setting the minimum pane size greater than zero. 



Using splitter windows 255
window with the style wx.SP_PERMIT_UNSPLIT. To get the current minimum sub-
window size, use the method GetMinimumPaneSize().

 Change the split mode of the window with the method SetSplitMode(mode), 
where the mode parameter is one of the constants wx.SPLIT_VERTICAL or 
wx.SPLIT_HORIZONTAL. If the mode changes, the top window becomes the left, 
while the bottom becomes the right (and vice-versa if the switch is the other way). 
This method does not cause a redraw of the window, instead, you must explicitly 
force a redraw. You can get the current split mode with GetSplitMode() which 
returns one of the two constant values. If the window is currently unsplit, 
GetSplitMode() returns the most recent split mode.

 Typically, if the wx.SP_LIVE_UPDATE style is not set, the sub-windows only 
resizes at the end of a sash drag session. If you want to force a sub-window redraw 
at any other time, you can use the method UpdateSize(). 

8.4.5 Responding to splitter events

Splitter windows trigger events of type wx.SplitterEvent. There are four differ-
ent event types of the splitter window, as listed in table 8.10. 

The splitter event class is a subclass of wx.CommandEvent. From the splitter event 
instance, you can get access to information about the current state of the splitter 
window. For the two events that concern the movement of the sash, call GetSash-
Position() to recover the sash position relative to the left or the top, depending 
on the splitter orientation. In the position changing event, call SetSashPosi-
tion(pos), and the XOR tracking line showing the expected position of the sash 

Table 8.10 Event types of the splitter window

Event Type Description 

EVT_SPLITTER_DCLICK Triggered when the sash is double-clicked. Trapping this event 
does not block the normal unsplit behavior of this action, unless 
you call the event Veto() method. 

EVT_SPLITTER_SASH_POS_CHANGED Triggered at the end of a sash change, but before the change is 
displayed on screen (so you can react to it). This event can also 
be halted with Veto(). 

EVT_SPLITTER_SASH_POS_CHANGING Triggered repeatedly when the sash is being dragged. This event 
can be halted by using the event Veto() method, in which 
case the sash position does not change. 

EVT_SPLITTER_UNSPLIT This is triggered after the splitter has unsplit. 



256 CHAPTER 8 
Putting widgets in frames
moves to the new position. In the position changed event, the same method will 
move the sash itself. For the double-click event, you can get the exact location of 
the click using the event’s GetX() and GetY() methods. For an unsplit event, you 
can tell which window is going away using the GetWindowBeingRemoved() method. 

8.5 Summary 

■ Most user interaction in a wxPython program takes place inside either a 
wx.Frame or a wx.Dialog. The wx.Frame class represents what a user would 
typically call a window. Instances of wx.Frame are created in much the same 
way as other wxPython widgets. A typical usage of wx.Frame involves creat-
ing a subclass which extends the base class, usually by defining subwidgets, 
layout, and behavior. Usually, a frame contains a single top level subwidget 
of type wx.Panel or some other container window. 

■ There are a variety of style flags specific to wx.Frame. Some of these flags 
affect the size and shape of the frame, others affect how it is drawn relative 
to other frames in the system, and others define what interface decorators 
are on the frame border. In some cases, a two-stage creation process is 
needed to define a style flag. 

■ A request can be made to close a frame by calling the Close() method. This 
gives the frame an opportunity to close any resources it might be holding. 
The frame can also veto a close request. Calling the Destroy() method 
forces a frame to go away without reprieve. 

■ A specific subwidget inside a frame can be found using its wxPython ID, its 
name, or its text label. 

■ Scrolling is managed by including a container widget of type wx.Scrolled-
Window. There are several ways to set the scrolling parameters, the easiest is 
to use a sizer inside the scrolled window, in which case wxPython automat-
ically determines the virtual size of the scroll panel. However, the virtual 
size can be set manually if desired. 

■ There are a couple of different frame subclasses that allow for different looks. 
The class wx.MDIParentFrame can be used to create an MDI, while a wx.Mini-
Frame can create a toolbox-style window with a smaller title bar. Frames can 
be made to appear non-rectangular using the SetShape() method. The 
region can be defined by any bitmap, with a simple color mask to determine 
the edge of the region. Non-rectangular windows are usually without the 
normal title bar allowing the frame to be dragged, but that can be managed 
by explicitly handling mouse events. 



Summary 257
■ A draggable sash between two sub-windows can be implemented using 
wx.SplitterWindow, which can be manipulated interactively by the user or 
programmatically if needed.

In the next chapter, we’ll discuss dialog boxes, which behave similarly to frames.



Giving users choices 
with dialogs
This chapter covers
■ Creating modal dialogs and alert boxes
■ Using standard dialogs
■ Creating wizards 
■ Showing startup tips
■ Creating validators and using them  

to transfer data
258



Working with modal dialogs 259
Where frames are used for long-term interactions with the user, a dialog is typi-
cally used to get a small amount of information from the user, and is then quickly 
dispatched. Dialog windows are often modal, which means that no other frame in 
the application can handle events until the dialog is closed. In this chapter we will 
discuss the many varieties of dialogs available in wxPython. In addition to allow-
ing you to create your own dialog styles, wxPython provides you with several pre-
defined dialog types. These predefined dialogs include both simple interactions, 
such as a basic alert box, and more complex dialogs that mimic system interac-
tions, such as page layout or file selection. 

9.1 Working with modal dialogs

Modal dialogs are used for quick interactions with the user or for any time that 
information in a dialog absolutely must be entered before the user can move for-
ward in the program. Within wxPython, there are several standard functions to dis-
play basic modal dialogs. These dialogs include alert boxes, one line of text entry, 
and choosing from a list. In the following sections, we’ll show you what these dia-
logs look like, and how using the predefined functions will make your life easier.

9.1.1 How do I create a modal dialog? 

A modal dialog blocks other widgets from receiving 
user events until it is closed; in other words, it 
places the user in dialog mode for the duration of 
its existence. As you can see from figure 9.1, you 
can’t always distinguish between dialogs and 
frames by their appearance. In wxPython, the dif-
ference between a dialog and a frame is not based on how they display, but is 
largely a matter of the way in which they handle events.

 A dialog is created and deployed somewhat differently from a frame. List-
ing 9.1 shows the code used to generate figure 9.1. After a dialog is displayed 
and a button is clicked, the dialog closes, and a message is printed to stdout. 

import wx 

class SubclassDialog(wx.Dialog):   
    def __init__(self):          
        wx.Dialog.__init__(self, None, -1, 'Dialog Subclass', 
                size=(300, 100)) 

Listing 9.1 Defining a modal dialog

Figure 9.1  
A sample modal dialog 

Initializing the dialog



260 CHAPTER 9 
Giving users choices with dialogs
        okButton = wx.Button(self, wx.ID_OK, "OK", pos=(15, 15)) 
        okButton.SetDefault() 
        cancelButton = wx.Button(self, wx.ID_CANCEL, "Cancel", 
                pos=(115, 15)) 

if __name__ == '__main__': 
    app = wx.PySimpleApp() 
    dialog = SubclassDialog()
    result = dialog.ShowModal()   
    if result == wx.ID_OK: 
        print "OK" 
    else: 
        print "Cancel" 
    dialog.Destroy()

Compared to the wx.Frame examples in the previous chapter, there are a couple of 
interesting things to note about this code. In the __init__ method, the button is 
added directly to wx.Dialog, rather than to a wx.Panel. Panels are used much less 
commonly in dialogs than in frames, partially because dialogs tend to be simpler 
than frames, but largely because the features of a wx.Panel (standard system back-
ground and tab key transversal through the controls) already exist by default 
in wx.Dialog.

 To get the dialog to display modally, use the ShowModal() method. This has a 
different effect on program execution than the modeless Show() method used for 
frames. Your application will wait at the point of the ShowModal() call until the 
dialog is dismissed. The dialog being shown is the only part of the wxPython 
application that receives user events during that time, although system windows 
from other applications will still work. 

 The mode continues until the dialog method EndModal(retCode) is called, 
which closes the dialog. The retCode argument is an integer value, which is then 
also returned by the original ShowModal() method. Typically, the application uses 
the return value to learn how the user closed the dialog as a guide to future pro-
cessing. However, ending the mode does not destroy or even close the dialog. 
Keeping the dialog around can be a good thing, because it means that you can 
store information about the user’s selections as data members of the dialog 
instance, and recover that information from the dialog even after the dialog is 
closed. In the next sections, we’ll see examples of that pattern as we deal with dia-
logs where the user enters data for use elsewhere in the program. 

 Since there are no event handlers defined in listing 9.1, you may be wondering 
how the dialog does anything in response to the button clicks. The behavior is 
already defined in wx.Dialog. There are two predefined wxPython ID numbers 

Showing the modal dialog



Working with modal dialogs 261
that have special meaning in dialogs. When a wx.Button with the ID wx.ID_OK is 
clicked in a dialog, the mode is ended, the dialog is closed, and wx.ID_OK is the return 
value of the ShowModal() call. Similarly, a button with the ID wx.ID_CANCEL does the 
same things, but returns the value wx.ID_CANCEL. It’s up to the rest of the applica-
tion to ensure that the semantics of OK and Cancel are appropriately enforced. 

 Listing 9.1 displays a typical method of dealing with a modal dialog. After the 
dialog is invoked, the return value is used as the test in an if statement. In this 
case, we simply print the result. In a more complex example, the wx.ID_OK branch 
would implement the actions that the user took within the dialog, such as open-
ing the file or choosing the color. 

 Typically you should explicitly destroy a dialog when you are finished with it. 
This signals the C++ object that it should destroy itself which will then allow the 
Python parts of it to be garbage collected. If you wish to reuse the dialog later in 
your application without having to recreate it, perhaps to speed the response time 
for complex dialogs, you can keep a reference to the dialog and simply call its 
ShowModal() method when you need to activate it again. Be sure to destroy it when 
the application is ready to exit, otherwise MainLoop() will see it as a still existing 
top-level window and will not exit normally.

9.1.2 How do I create an alert box? 

The three simplest ways of interacting with the user via a 
dialog box are wx.MessageDialog, which represents an alert 
box, wx.TextEntryDialog, which prompts the user to enter 
some short text, and wx.SingleChoiceDialog, which allows 
the user to select from a list of available options. The next 
three sections discuss these simple dialogs. 

 A message box dialog displays a short message and 
allows the user to press a button in response. Typically, 
message boxes are used to display important alerts, yes/no 
questions, or to ask the user to continue with or cancel some action. Figure 9.2 
displays a typical message box. 

 Using a message box is quite simple. Listing 9.2 displays two ways of creating a 
message box. 

import wx 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 

Listing 9.2 Creating a message box

Figure 9.2 A standard 
message box, in a yes/
no configuration



262 CHAPTER 9 
Giving users choices with dialogs
    dlg = wx.MessageDialog(None, "Is this explanation OK?",   
                          'A Message Box',                    
                          wx.YES_NO | wx.ICON_QUESTION)       
    retCode = dlg.ShowModal()                                 
    if (retCode == wx.ID_YES): 
        print "yes" 
    else: 
        print "no" 
    dlg.Destroy()
                                    
    retCode = wx.MessageBox("Is this way easier?", "Via Function",  
            wx.YES_NO | wx.ICON_QUESTION)                          

Listing 9.2 creates two message boxes, one after the other. The first method cre-
ates an instance of the class wx.MessageDialog, and displays it using ShowModal(). 

Using the wx.MessageDialog class

Using the constructor for the wx.MessageDialog, you can set the message and but-
tons for the dialog, as in the following: 

wx.MessageDialog(parent, message, caption="Message box", 
    style=wx.OK | wx.CANCEL, pos=wx.DefaultPosition) 

The message argument is the text that is actually displayed inside the body of the 
dialog. If the message string contains \n newline characters, there will be line 
breaks in the text. The caption argument is displayed in the title box of the dia-
log. The pos argument allows you to specify where the dialog is displayed on the 
screen—under MS Windows, this argument is ignored.

 The style flags for a wx.MessageDialog split into two types. The first type con-
trols the buttons that display in the dialog. Table 9.1 describes these styles. 

Table 9.1 Button styles for a wx.MessageDialog

Button Style Description 

wx.CANCEL Include a cancel button. This button will have the ID value of wx.ID_CANCEL. 

wx.NO_DEFAULT In a wx.YES_NO dialog, the No button is the default. 

wx.OK Include an OK button. This button will have the ID value of wx.ID_OK. 

wx.YES_DEFAULT In a wx.YES_NO dialog, the Yes button is the default. This is the default behavior. 

wx.YES_NO Include buttons labeled Yes and No, with the ID values of wx.ID_YES and 
wx.ID_NO, respectively. 

Using 
a class

Using a function  b



Working with modal dialogs 263
The second set of style flags controls the icon displayed next to the message text. 
Those styles are listed in Table 9.2. 

Finally, you can use the style wx.STAY_ON_TOP to display the dialog above any 
other windows in the system, including system windows and wxPython applica-
tion windows. 

 As you can see in listing 9.2, the dialog is invoked using ShowModal(). Depend-
ing on the displayed buttons, the result is either wx.ID_OK, wx.ID_CANCEL, 
wx.ID_YES, or wx.ID_NO. As with other dialogs, you’ll typically use the response 
value to control program execution in response to the dialog. 

Using the wx.MessageBox() function
Line b of listing 9.2 displays a shorter method for invoking a message box. The 
convenience function wx.MessageBox() creates the dialog, calls ShowModal(), and 
returns, wx.YES, wx.NO, wx.CANCEL, or wx.OK. The signature of the function is sim-
pler than the constructor for the MessageDialog object, as in:

wx.MessageBox(message, caption="Message", style=wx.OK) 

In this example, message, caption, and style have the same meanings as in the 
constructor, and you can use all of the same style flags. As we’ll see throughout 
this chapter, several of the predefined dialogs in wxPython also have convenience 
functions. As long as you are creating the dialogs for a single use, the mechanism 
you choose is a matter of preference. If you plan to hold onto the dialog to invoke 
it more than once, it may be preferable to instantiate yourself the object so you 
can hold onto the reference, although for simple dialogs such as these, the time 
saved is probably negligible. 

 To display a lot of text in your message box (i.e., an end-user license agree-
ment display), you can use the wxPython-specific class wx.lib.dialogs.Scrolled-
MessageDialog, which contains the following constructor: 

Table 9.2 Icon styles for a wx.MessageDialog

Style Description 

wx.ICON_ERROR An icon indicating an error. 

wx.ICON_EXCLAMATION An icon indicating an alert. 

wx.ICON_HAND The same as wx.ICON_ERROR 

wx.ICON_INFORMATION The letter “i” information icon. 

wx.ICON_QUESTION A question mark icon. 



264 CHAPTER 9 
Giving users choices with dialogs
wx.lib.dialogs.ScrolledMessageDialog(parent, msg, caption, 
        pos=wx.wxDefaultPosition, size=(500,300)) 

This dialog doesn’t use the native message box widget, it builds a dialog from 
other wxPython widgets. It only displays an OK button, and takes no further 
style information. 

9.1.3 How do I get short text from the user? 

The second simple type of dialog box is wx.Text-
EntryDialog, which is used to get short text 
entry from the user. Typically, you’ll see this 
used when requesting a username or password 
at the beginning of a program, or as a very rudi-
mentary replacement for a data entry form. Fig-
ure 9.3 displays a typical text dialog.

 The code for this example is displayed in 
listing 9.3. 

import wx 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    dialog = wx.TextEntryDialog(None, 
            "What kind of text would you like to enter?", 
            "Text Entry", "Default Value", style=wx.OK|wx.CANCEL) 
    if dialog.ShowModal() == wx.ID_OK: 
        print "You entered: %s" % dialog.GetValue() 
    dialog.Destroy()

As in the previous section, we create an instance of a dialog class, in this case 
wx.TextEntryDialog. The constructor for this class is a bit more complex than the 
simple message dialog: 

wx.TextEntryDialog(parent, message, caption="Please enter text", 
    defaultValue="", style=wx.OK | wx.CANCEL | wx.CENTRE, 
    pos=wx.DefaultPosition) 

The message argument is the text prompt that is displayed in the dialog, while the 
caption is displayed in the title bar. The defaultValue, if set, is displayed inside 
the text box. The style information can include wx.OK and wx.CANCEL, which dis-
plays the appropriate button. 

Listing 9.3 Code for text entry

Figure 9.3  
A text entry standard dialog 



Working with modal dialogs 265
 Several of the styles from an ordinary wx.TextCtrl can also be set here. The 
most useful would be wx.TE_PASSWORD, which masks the input for securely enter-
ing a password. You can also use wx.TE_MULTILINE to allow the user to enter more 
than one line of text in the dialog, and wx.TE_LEFT, wx.TE_CENTRE, and wx.TE_RIGHT
to adjust the justification of the entered text.

 The last line of listing 9.3 displays another difference between the text box
and the message box. The information entered by the user is stored in the dia-
log instance, and must be retrieved by the application afterwards. In this case, 
you can get at the value by using the dialog’s GetValue() method. Remember, 
if the user presses Cancel to exit the dialog, it means they don’t want you to use 
his entered value. You can also programmatically set the value with the Set-
Value() method. 

 The following are convenience functions for dealing with text dialogs: 

■ wx.GetTextFromUser()

■ wx.GetPasswordFromUser()

■ wx.GetNumberFromUser()

Most similar to the usage in listing 9.3 is wx.GetTextFromUser: 

wx.GetTextFromUser(message, caption="Input text", 
    default_value="", parent=None) 

In this example, message, caption, default_value, and parent are all in the 
wx.TextEntryDialog constructor. If the user presses OK, the return value of the 
function is the user entered string. If the user presses Cancel, the function returns 
the empty string.

 If you want the user to enter a masked password, you can use the wx.Get-
PasswordFromUser function. 

wx.GetPasswordFromUser(message, caption="Input text", 
    default_value="", parent=None) 

In this example, the arguments mean what you’d expect. The user input is dis-
played as asterisks, and the return value is as in the previous function—the string 
if the user hits OK, an empty string if the user hits cancel.

 Finally, you can request a number from a user with the wx.GetNumberFrom-
UserMethod. 

wx.GetNumberFromUser(message, prompt, caption, value, min=0, 
    max=100, parent=None) 



266 CHAPTER 9 
Giving users choices with dialogs
The argument names here are a bit different. The message is an arbitrarily long 
message displayed above the prompt string, which is directly above the text entry 
field. The value argument is a numeric long, and is the default value. The min
and max arguments allow you to specify a valid range for user input. If the user exits 
with the OK button, the method returns the entered value, converted to a long. If 
the value cannot be converted to a number, or the value is outside the min and max
range, the function returns -1, which means that if you use this function for a 
range of negative numbers, you may want to consider an alternate plan.

9.1.4 How can I display a list of choices in a dialog? 

If allowing your users a blank text entry seems like too much 
freedom, you can restrict their options by using wx.Single-
ChoiceDialog to give them a single choice out of a group of 
options. Figure 9.4 displays an example. 

 The essential code displayed in listing 9.4 is similar to 
the dialog examples we’ve already discussed in this chapter. 

import wx 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    choices = ["Alpha", "Baker", "Charlie", "Delta"] 
    dialog = wx.SingleChoiceDialog(None, "Pick A Word", "Choices", 
            choices) 
    if dialog.ShowModal() == wx.ID_OK: 
        print "You selected: %s\n" % dialog.GetStringSelection() 
    dialog.Destroy()

The constructor for the wx.SingleChoiceDialog is as follows: 

wx.SingleChoiceDialog(parent, message, caption, choices, 
        clientData=None, style=wx.OK | wx.CANCEL | wx.CENTRE, 
        pos=wx.DefaultPosition) 

The message and caption arguments are as before, displaying the prompt in the 
dialog and the title bar, respectively. The choices argument takes a Python list of 
strings, and they are, as you might suspect, the choices presented in the dialog. 
The style argument has the three options that are in the default, allowing an OK
button, a Cancel button, and the option to center the dialog on the screen. The 

Listing 9.4 Displaying a dialog list of choices

Figure 9.4 A single 
choice dialog



Working with modal dialogs 267
centre option does not work on Windows operating systems, and neither does 
the pos argument. 

 If you want to set the dialog default before the user sees it, use the method 
SetSelection(selection). The argument to that method is the integer index of 
the selection, and not the actual string to be selected. After the user has made a 
selection, you can retrieve it by using either GetSelection(), which returns the 
integer index of the selected option, or GetStringSelection() which returns the 
actual selected string.

 There are two convenience functions for single choice dialogs. The first, 
wx.GetSingleChoice, returns the string that the user selected. 

wx.GetSingleChoice(message, caption, aChoices, parent=None) 

The message, caption, and parent arguments are as in the wx.SingleChoiceDialog
constructor. The aChoices argument is the list of items. The return value is the 
selected string if the user presses OK, and the empty string if the user presses 
Cancel. This means that if the empty string is a valid choice, you should probably 
not use this function. 

 Instead, you might use wx.GetSingleChoiceIndex.

wx.GetSingleChoiceIndex(message, caption, aChoices, parent=None) 

This function has the same arguments, but a different return value. It returns the 
index of the user choice if OK, and -1 if the user hits Cancel. 

9.1.5 How can I display progress? 

In many programs, the program needs to go 
off and do something by itself unencumbered 
by user input. At that time, it’s customary for 
the program to give the user some visual indi-
cation that it’s actually doing something. In 
wxPython, that is often managed with a 
progress box, as displayed in figure 9.5. 

 The sample code to generate this progress 
box is displayed in listing 9.5.

import wx 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 

Listing 9.5 Generating a sample progress box

Figure 9.5 A sample progress box, 
joined in progress 



268 CHAPTER 9 
Giving users choices with dialogs
    progressMax = 100 
    dialog = wx.ProgressDialog("A progress box", 
            "Time remaining", progressMax, 
            style=wx.PD_CAN_ABORT | wx.PD_ELAPSED_TIME | 
            wx.PD_REMAINING_TIME)
    keepGoing = True 
    count = 0 
    while keepGoing and count < progressMax: 
        count = count + 1 
        wx.Sleep(1) 
        keepGoing = dialog.Update(count) 
    dialog.Destroy()

All the options for the progress box are set in the constructor, which looks 
like this: 

wx.ProgressDialog(title, message, maximum=100, parent=None, 
        style=wx.PD_AUTO_HIDE | wx.PD_APP_MODAL) 

The arguments are different than in other dialog boxes. The title is placed in 
the title bar of the window, and the message is displayed in the dialog itself. The 
maximum is the highest possible value of the counter you are using to display 
progress. As you can tell from figure 9.5, the user does not see this number, so feel 
free to make it any value that is convenient for your application. 

 Table 9.3 lists the six styles specific to the wx.ProgressDialog that affect 
its behavior. 

Table 9.3 Styles for wx.ProgressDialog 

Style Description 

wx.PD_APP_MODAL If this flag is set, the progress dialog is modal with respect to the  
entire application, meaning that it will block all user events. If the  
flag is not set, the progress dialog is modal only with respect to its  
parent window. 

wx.PD_AUTO_HIDE The progress dialog will automatically hide itself when it reaches its 
maximum value. 

wx.PD_CAN_ABORT Puts a Cancel button on the progress box for the user to stop the process. 
How to respond to a cancel from this dialog will be explained later. 

wx.PD_ELAPSED_TIME Displays the elapsed time that the dialog has been visible. 

continued on next page



Using standard dialogs 269
To use the progress dialog, make a call to its only method, Update(value,
newmsg=""). The value argument is the new internal value of the progress dialog, 
and calling update causes the progress bar to be redrawn based on the propor-
tion between the new value and the maximum value set in the constructor. The 
value argument can be higher, lower, or equal to the current value argument. If 
the optional newmsg argument is included, the text message on the dialog 
changes to that string. This allows you to give the user a text description of the 
current progress. 

 The Update() method usually returns True. However, if the user has canceled 
the dialog via the Cancel button, the next time you Update(), the method will 
return False. This is your chance to respond to the user’s request to cancel, pre-
sumably by stopping whatever process you are measuring. Given this mechanism 
for detecting a user cancel, it is recommended that you update the progress bar as 
often as possible, so you can test for the cancel. 

9.2 Using standard dialogs

Most operating systems offer standard dialog boxes for tasks like file choosing, 
font selection, and color picking. This enables users to see a consistent look and 
feel across the entire platform. You can use these dialogs from wxPython to give 
your application the same advantage. In addition, if you use wxPython, it provides 
similar dialogs even on platforms that don’t have system dialogs for the feature.

9.2.1 How can I use a file picker? 

File-choosing dialogs tend to be consistent from application to application. In 
wxPython, the wx.FileDialog uses the native OS dialog for the major platforms, 
and uses non-native look-alikes for other operating systems. The MS Windows 
version is displayed in figure 9.6. 

wx.PD_ESTIMATED_TIME Displays an estimate of the total time to complete the process based on the 
amount of time already elapsed, the current value of the counter, and the 
maximum value of the counter. 

wx.PD_REMAINING_TIME Displays an estimate of the amount of time remaining in a process, or 
(estimated time – elapsed time). 

Table 9.3 Styles for wx.ProgressDialog (continued)

Style Description 



270 CHAPTER 9 
Giving users choices with dialogs
You can set up the file dialog to start in any directory, and you can also pass it a 
wildcard filter to limit the display to only certain file types. Listing 9.6 displays 
a basic example. 

import wx 
import os 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    wildcard = "Python source (*.py)|*.py|" \ 
            "Compiled Python (*.pyc)|*.pyc|" \ 
            "All files (*.*)|*.*" 
    dialog = wx.FileDialog(None, "Choose a file", os.getcwd(), 
            "", wildcard, wx.OPEN) 
    if dialog.ShowModal() == wx.ID_OK: 
        print dialog.GetPath() 
    dialog.Destroy()

The file dialog is the most complex dialog we’ve seen in this chapter, in that it has 
several properties that can be programmatically read and written. The construc-
tor allows you to set some of the properties, as in: 

wx.FileDialog(parent, message="Choose a file", defaultDir="", 
        defaultFile="", wildcard="*.*", style=0, 
        pos=wx.DefaultPosition) 

The message argument appears in the title bar of the window. The defaultDir
tells the dialog what directory to display initially. If the argument is empty or 

Listing 9.6 Using wx.FileDialog

Figure 9.6  
The standard Windows 
file chooser 



Using standard dialogs 271
represents a directory that doesn’t exist, the dialog starts in the current working 
directory. The defaultFile preselects a file, typically used when saving a file. The 
wildcard argument allows you to filter the list based on a given pattern, using the 
usual * and ? as wildcard characters. The wildcard can either be a single pattern, 
such as *.py, or a set of patterns in the format <description> | <pattern> | 
<description> | <pattern>—similar to the wildcard used in listing 9.6. 

"Python source (*.py)|*.py|Compiled Python (*.pyc)|*.pyc| 
        All files (*.*)|*.*" 

If there is a pattern with multiple entries, they display in the familiar pull-down 
menu shown in figure 9.6. The pos argument is not guaranteed to be supported 
by the underlying system. 

Selecting a file
The two most important style flags for wx.FileDialog are wx.OPEN and wx.SAVE, 
which indicate the kind of dialog and affect the behavior of the dialog.

 A dialog used for opening a file has two flags that further affect behavior. The 
flag wx.HIDE_READONLY causes the dialog to gray out the checkbox that allows the 
user to open the file in read-only mode. The flag wx.MULTIPLE allows the user to 
select multiple files in a single directory for opening.

 Save file dialogs have one useful flag, wx.OVERWRITE_PROMPT, that forces the 
user to confirm saving a file if the file already exists. 

 Either kind of file dialog can use the wx.CHANGE_DIR flag. When this flag is 
raised, a file selection also changes the application’s working directory to the 
directory where the selection took place. Among other things, this allows the next 
file dialog to open in the same directory without requiring that the application 
store that value elsewhere.

 Unlike the other dialogs we’ve seen so far in this chapter, these properties are 
all gettable and settable via methods. This is true for the properties directory, 
filename, style, message, and wildcard, all of which have getters and setters 
using the usual Get/Set naming convention. 

 After the user has exited the dialog, and after checking that it was exited with 
wx.OK, you can get the user’s choice by using the method GetPath(), which returns 
the full pathname of the file as a string. If the dialog is an open dialog with 
wx.MULTIPLE selected, use GetPaths() instead. That method returns a Python list 
of path strings. If for some reason you need to know which of the pull-down filters 
was active when the user made her selection, you can use the GetFilterIndex()
method, which returns an integer index into the list. To change the index pro-
grammatically, use SetFilterIndex().



272 CHAPTER 9 
Giving users choices with dialogs
 The following is a convenience function for using file dialogs.
wx.FileSelector(message, default_path="", default_filename="", 
    default_extension="", wildcard="*.*'', flags=0, parent=None, 
    x=-1, y=-1) 

The message, default_path, default_filename, and wildcard arguments do what 
you’d expect from the constructor, despite being named differently. The flags
argument is normally called style, and the default_extension adds an exten-
sion onto a selected file name that doesn’t when you save a file. The return value 
is the string pathname if the user presses OK, or an empty string if the user 
presses Cancel. 

Selecting a directory
If the user wants to select a directory rather than a file, use wx.DirDialog, which 
presents a tree view of the directory structure as shown in figure 9.7. 

 The directory selector is somewhat simpler than a file dialog. Listing 9.7 dis-
plays the relevant code. 

import wx 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    dialog = wx.DirDialog(None, "Choose a directory:", 
          style=wx.DD_DEFAULT_STYLE | wx.DD_NEW_DIR_BUTTON) 
    if dialog.ShowModal() == wx.ID_OK: 
        print dialog.GetPath() 
    dialog.Destroy()

Listing 9.7 Displaying a directory chooser dialog

Figure 9.7  
A directory selection dialog



Using standard dialogs 273
Nearly all of the functionality of this dialog is in the constructor. 

wx.DirDialog(parent, message="Choose a directory", defaultPath="", 
    style=0, pos = wx.DefaultPosition, size = wx.DefaultSize, 
    name="wxDirCtrl") 

Because the message argument displays inside the dialog itself, you don’t need a 
hook to change the title bar. The defaultPath tells the dialog what to select, and if 
it’s empty, the dialog shows the root of the file system. The pos and size argu-
ments are ignored under MS Windows, and the name argument is ignored in all 
operating systems. The style flag for this dialog, wx.DD_NEW_DIR_BUTTON, gives the 
dialog a button for creating a directory. This flag may not work in older versions 
of MS Windows. 

 The path, message, and style properties of this class have typical getters and set-
ters. You can use the GetPath() method to retrieve the user selection after the dia-
log is dispatched. This dialog also has a convenience function. 

wx.DirSelector(message=wx.DirSelectorPromptStr, default_path="", 
    style=0, pos=wxDefaultPosition, parent=None) 

All arguments are as in the constructor. The function returns the selected direc-
tory name as a string if OK is pressed, and the empty string if Cancel is pressed. 

9.2.2 How can I use a font picker? 

The font picker dialog in wxPython is different than the file dialog, because it 
uses a separate helper class to manage the information it presents. Figure 9.8 dis-
plays the MS Windows version of the font dialog. 

 Listing 9.8 displays the code used to generate figure 9.8, and should look 
somewhat different than previous dialog examples. 

import wx 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    dialog = wx.FontDialog(None, wx.FontData()) 
    if dialog.ShowModal() == wx.ID_OK: 
        data = dialog.GetFontData() 
        font = data.GetChosenFont() 
        colour = data.GetColour() 
        print 'You selected: "%s", %d points\n' % ( 
                font.GetFaceName(), font.GetPointSize()) 
    dialog.Destroy()

Listing 9.8 Sample code for a font picker dialog box



274 CHAPTER 9 
Giving users choices with dialogs
The constructor for wx.FontDialog is much simpler than the previous constructors. 

wx.FontDialog(parent, data) 

You cannot set a message or caption for this dialog, and the information that is 
ordinarily passed as style flags is instead contained in the data argument, which is 
of the class wx.FontData. The wx.FontDialog class has only one useful method of 
its own, which is GetFontData(), returning the font data instance.

 The wx.FontData instance allows you to set the values that govern the display 
of the font dialog, and also contains the information entered by the user. For 
example, in listing 9.8 the code calls two getter methods of the wx.FontData
instance to determine the details of the selected font. The constructor for 
wx.FontData takes no arguments—all properties must be set by using the methods 
in table 9.4 

Table 9.4 Methods of wx.FontData 

Method Description 

GetAllowSymbols()  
SetAllowSymbols(allowSymbols) 

Determines whether symbol-only fonts (like dingbats) are displayed in 
the dialog. The argument is a Boolean. Only meaningful in Windows 
systems. The initial value of this property is True. 

GetChosenFont()  
SetChosenFont(font) 

Returns the font that the user has chosen as a wx.Font object. You 
should never need to call the setter for this property. If the user has 
selected Cancel, this property is None. The wx.Font class will be 
discussed in more detail in Chapter 12. 

continued on next page

Figure 9.8  
A sample font picker dialog



Using standard dialogs 275
A convenience function for the font dialog, which helpfully sidesteps the whole 
wx.FontData class, is as follows. 

wx.GetFontFromUser(parent, fontInit) 

The fontInit argument is an instance of wx.Font that is used as the initial value of 
the dialog. The return value of the function is a wx.Font instance. If the user 
closes the dialog with an OK, the method wx.Font.Ok() returns True, otherwise, it 
returns False. 

9.2.3 How can I use a color picker? 

The color picker dialog is similar to the font dialog, because it uses an external 
data class to manage its information. Figure 9.9 displays the MS Windows version 
of the dialog. 

 Listing 9.9 displays the code to generate the dialog, which is nearly identical 
to the code seen in the previous section for the font picker. 

import wx 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 

GetColour()  
SetColour(colour) 

Returns the color selected in the color portion of the dialog. The setter 
allows you to preset the default value. The getter returns a 
wx.Colour instance. The setter can take one of those, or a string 
with the name of a color. The initial value of this property is black. 

GetEnableEffects()  
EnableEffects(enable) 

In the MS Windows version of the dialog, this property controls the 
appearance or nonappearance of controls to select color, strikeout, 
and underline features of the font. 

GetInitialFont()  
SetInitialFont(font) 

Returns the font which is the initial value of the dialog (i.e., the current 
application font). This property should be explicitly set by the 
application before the dialog is displayed. Its initial value is None. 

SetRange(min, max) Sets the available range for the point size of the font. Only used on 
MS Windows systems. The initial values are 0 and 0, which means 
there are no limits on the range. 

GetShowHelp()  
SetShowHelp() 

If True, the MS Windows version of this dialog will display a Help 
button. The initial value is False. 

Table 9.4 Methods of wx.FontData (continued)

Method Description 

Listing 9.9 Code for a color picker dialog



276 CHAPTER 9 
Giving users choices with dialogs
    dialog = wx.ColourDialog(None) 
    dialog.GetColourData().SetChooseFull(True) 
    if dialog.ShowModal() == wx.ID_OK: 
        data = dialog.GetColourData() 
        print 'You selected: %s\n' % str(data.GetColour().Get()) 
    dialog.Destroy()

The wxPython class for the color selector is wx.ColourDialog. Those of you in 
America will need to remember the non-USA spelling “colour.” For those of you 
outside America, I’m sure this is a welcome change of pace. The constructor is 
simple, without many options to tweak, as in the following: 

wx.ColourDialog(parent, data=None) 

The data argument is an instance of the class wx.ColourData, which is simpler 
than its font data counterpart. It contains only the default no-argument construc-
tor, and the following three properties: 

■ GetChooseFull/SetChooseFull(flag) A Boolean property that works under 
MS Windows only. When set, the color picker shows the full dialog, includ-
ing the custom color selector. When unset, the custom color selector is 
not shown. 

■ GetColour/SetColour(colour) The property is of the type wx.Colour. This is 
the color value selected by the user. After the graph is closed, call this getter 
to see the user selection. Initially it is set to black. If it is set before the dia-
log is displayed, the dialog initially displays this color. 

■ GetCustomColour(i)/SetCustomColour(i, colour) returns or sets the ele-
ment in the custom color array with index i. The index is between 0 and 
15. Initially all of the custom colors are white. 

Figure 9.9  
A standard wxPython color picker



Using standard dialogs 277
A simple convenience function bypasses the wx.ColorData entirely:

wx.GetColourFromUser(parent, colInit) 

Where colInit is a wx.Colour instance and is the initial value of the dialog when 
displayed. The return value is also a wx.Colour instance. If the user closes the dia-
log with an OK, the method wx.Colour.OK() returns True. If the user closes it with 
a Cancel, the method returns False. 

9.2.4 Can I allow the user  
to browse images? 

If you are doing graphics manipulation 
in your program, it’s often useful to pro-
vide the user with thumbnails of the 
images while they’re browsing the file 
tree. A wxPython dialog for this purpose 
is called wx.lib.imagebrowser.Image-

Dialog. Figure 9.10 displays a sample. 
 Listing 9.10 displays the simple code 

for this image browser dialog.

import wx 
import wx.lib.imagebrowser as imagebrowser 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    dialog = imagebrowser.ImageDialog(None)    
    if dialog.ShowModal() == wx.ID_OK: 
        print "You Selected File: " + dialog.GetFile()   
    dialog.Destroy()

The wx.lib.imagebrowser.ImageDialog class is straightforward, and has relatively 
few options for the programmer to set. To change the dialog’s behavior, review 
the Python source for changing the types of files displayed. The constructor takes 
just two arguments. 

ImageDialog(parent, set_dir=None) 

The set_dir argument is the directory in which the dialog when displayed. If it 
is not set, the application’s current working directory is used. After the dialog is 

Listing 9.10 Creating an image browser dialog

Figure 9.10 A typical image dialog browser



278 CHAPTER 9 
Giving users choices with dialogs
closed, GetFile() returns the complete path string of the selected file, and Get-
Directory() returns just the directory portion. 

9.3 Creating a wizard 

A wizard is a series of simple dialogs chained 
together to force the user to step through them one 
by one. Typically, they are used to guide a user 
through installation or a complex setup procedure 
by breaking down the information into small 
pieces. Figure 9.11 displays a sample wizard, dis-
playing Back and Next buttons. 

 In wxPython, a wizard is a series of pages con-
trolled by an instance of the class wx.wizard.Wizard. 
The wizard instance manages the events that take 
the user through the pages. The pages themselves 
are instances of either the class wx.wizard.Wizard-
PageSimple or wx.wizard.WizardPage. In both cases, 
they are merely wx.Panel instances with the addi-
tional logic needed to manage the page chain. The 
difference between the two instances is manifested 
only when the user presses the Next button. An instance of wx.wizard.WizardPage
allows you to determine dynamically which page to navigate to at runtime, whereas 
an instance of wx.wizard.WizardPageSimple requires that the order be preset 
before the wizard is displayed. Listing 9.11 displays the code for a simple wizard. 

import wx 
import wx.wizard 

class TitledPage(wx.wizard.WizardPageSimple): 
    def __init__(self, parent, title):                       
        wx.wizard.WizardPageSimple.__init__(self, parent)    
        self.sizer = wx.BoxSizer(wx.VERTICAL)                
        self.SetSizer(self.sizer)                            
        titleText = wx.StaticText(self, -1, title)           
        titleText.SetFont(                                   
                wx.Font(18, wx.SWISS, wx.NORMAL, wx.BOLD))   
        self.sizer.Add(titleText, 0,                   
                wx.ALIGN_CENTRE | wx.ALL, 5)                 
        self.sizer.Add(wx.StaticLine(self, -1), 0,     
                wx.EXPAND | wx.ALL, 5)                       

Listing 9.11 Creating a simple static wizard

Figure 9.11 A simple wizard 
sample

Creating 
sample 
pages

 b



Creating a wizard 279
if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    wizard = wx.wizard.Wizard(None, -1, "Simple Wizard")   
    page1 = TitledPage(wizard, "Page 1")   
    page2 = TitledPage(wizard, "Page 2")   
    page3 = TitledPage(wizard, "Page 3")   
    page4 = TitledPage(wizard, "Page 4")   
    page1.sizer.Add(wx.StaticText(page1, -1, 
            "Testing the wizard")) 
    page4.sizer.Add(wx.StaticText(page4, -1, 
            "This is the last page.")) 
    wx.wizard.WizardPageSimple_Chain(page1, page2)   
    wx.wizard.WizardPageSimple_Chain(page2, page3)   
    wx.wizard.WizardPageSimple_Chain(page3, page4)   
    wizard.FitToPage(page1)   

    if wizard.RunWizard(page1):   
        print "Success" 

For the purpose of populating a wizard, we create a simple little page that con-
tains a static text title. Typically, you’d have some form elements here, and prob-
ably some data for the user to enter.
The function wx.wizard.WizardPageSimple_Chain() is a convenience method that 
mutually calls SetNext() and SetPrev() of the two pages passed as arguments. 
Calling FitToSize() sizes the wizard based on the page passed as an argument, 
and also all the pages reachable from that page in the chain. Call this method 
only after the page chain has been created. 
The argument to this method is the page to start the wizard on. The wizard 
knows to close when it reaches a page that has no Next page. The RunWizard()
method returns True if the user goes through the whole wizard and exits by 
pressing the Finish button. 

Creating the wx.wizard.Wizard instance is the first part of using a wizard. The 
constructor looks similar to the following: 

wx.wizard.Wizard(parent, id=-1, title=wx.EmptyString, 
    bitmap=wx.NullBitmap, pos=wx.DefaultPosition) 

In this example, the parent, id, title, and pos are as in wx.Panel. If set, the bitmap
argument displays on each page. There is one style flag, wx.wizard.WIZARD_EX_ 
HELPBUTTON, that causes a Help button to display. This is an extended flag, and 
must be set using the two-step creation process outlined in chapter 8. 

 Typically, you’ll manage the size of the window by calling FitToSize() as dis-
played in line d of listing 9.11, however, you can also set a minimal size by 

Creating wizard 
instance

Creating 
wizard pages

Creating 
page chain

 c

Sizing the wizard d

Running the wizard e

 b

 c

 d

 e



280 CHAPTER 9 
Giving users choices with dialogs
calling SetPageSize() with a tuple or wx.Size instance. The GetPageSize()
method returns the current size. In both cases, the size is only used for the part 
of the dialog reserved for individual pages, while the dialog as a whole will be 
somewhat larger. 

 You can manage the pages from within this class. The method GetCurrent-
Page() returns the page currently being displayed, and if the wizard is not cur-
rently being displayed, the method returns None. You can determine if the current 
page has a next or previous page by calling HasNextPage() or HasPrevPage(). 
Running the wizard is managed with the RunWizard() method, as described in 
line e of listing 9.11. 

 Wizards fire command events that you can capture for more specialized pro-
cessing, as displayed in table 9.5. In all these cases, the event object itself is of the 
class wx.wizard.WizardEvent, which exposes two methods. GetPage() returns the 
wx.WizardPage instance which was active when the event was generated, rather 
than the instance that may be displayed as a result of the event. The method Get-
Direction() returns True if the event is a page change going forward, and False if 
it is a page change going backward. 

The wx.wizard.WizardPageSimple class is treated as though it were a panel. The 
constructor for the class allows you to set the Previous and Next pages, as in 
the following: 

wx.wizard.WizardPageSimple(parent=None, prev=None, next=None) 

If you don’t want to set them in the constructor, you can use the SetPrev() and 
SetNext() methods. And if that’s too much trouble, you can use wx.wizard. 

Table 9.5 Events of wx.wizard.WizardDialog

Event Description 

EVT_WIZARD_CANCEL Fired when the the user presses the Cancel button. This event  
may be vetoed using Veto(), in which case the dialog will not  
be dismissed. 

EVT_WIZARD_FINISHED Fired when the user presses the Finished button. 

EVT_WIZARD_HELP Fired when the user presses the Help button. 

EVT_WIZARD_PAGE_CHANGED Fired after the page has already been changed, to allow  
for postprocessing. 

EVT_WIZARD_PAGE_CHANGING Fired when the user has requested a page change, but it has not  
yet occurred. This event may be vetoed (if, for example, there is a 
required field that needs to be filled). 



Showing startup tips 281
WizardPageSimple_Chain(), which sets up the chaining relationship between 
two pages. 

 The complex version of wizard pages, wx.wizard.WizardPage, differs slightly. 
Rather than setting the Previous and Next explicitly, it defines handler methods 
that allow you to use more elaborate logic to define where to go next. The con-
structor is as follows: 

wx.WizardPage(parent, bitmap=wx.NullBitmap, resource=None) 

If set, the bitmap argument overrides the bitmap set in the parent wizard. The 
resource argument loads the page from a wxPython resource. To handle the page 
logic, override GetPrev() and GetNext() to return whatever you want the wizard 
to do next. A typical usage may be to dynamically determine the Next page based 
on user response to the current page. 

9.4 Showing startup tips 

Many applications use startup tips as a way of intro-
ducing users to program features they otherwise 
may not see. There is a very simple mechanism in 
wxPython for showing startup tips. Figure 9.12 dis-
plays a sample tip window. 

 Listing 9.12 displays the code. 

import wx 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    provider = wx.CreateFileTipProvider("tips.txt", 0) 
    wx.ShowTip(None, provider, True) 

There are two convenience functions that govern the startup tips. The first cre-
ates a wx.TipProvider, as in the following: 

wx.CreateFileTipProvider(filename, currentTip) 

The filename attribute is the name of a file with the string tips. The currentTip is 
the index of the tip within the file to start with, and the first tip in the file is index 
0. The application is responsible for storing that information between runs. 

Listing 9.12 Displaying a startup tip in five lines or less

Figure 9.12 A sample tip 
window with a helpful message.



282 CHAPTER 9 
Giving users choices with dialogs
 The tip file is a simple text file where each line is a new tip. Blank lines in the 
file are skipped, and lines beginning with # are considered comments, and are 
also skipped. Here is the tip file for this example. 

You can do startup tips very easily. 
Feel the force, Luke. 

The tip provider is an instance of the class wx.PyTipProvider. If you need more 
elaborate functionality, you can create your own subclass of wx.TipProvider and 
override the function GetTip(). 

 The function that displays the tip is wx.ShowTip(). 

wx.ShowTip(parent, tipProvider, showAtStartup) 

The parent is the parent window, if any, and the tipProvider is usually created 
from wx.CreateFileTipProvider. The showAtStartup argument controls whether 
the Show Tips At Startup checkbox is selected. It does not control whether the 
tips are actually displayed at startup, that’s up to you. The return value of this 
function is the Boolean state of the Show Tips At Startup checkbox so that you 
can use that value the next time your application starts. 

9.5 Using validators to manage data in a dialog 

A validator is a special wxPython object that simplifies managing data in a dialog. 
When we discussed events in chapter 3, we mentioned briefly that if a widget has 
a validator, the validator can be automatically invoked by the event system. We’ve 
also seen validator as a parameter in the constructor of several of the wxPython 
widget classes, but we haven’t yet discussed them. 

 The validator has three unrelated functions:

■ Validates the data in the control before the dialog closes
■ Automatically transfers data to and from the dialog
■ Validates the data as the user types

9.5.1 How do I use a validator to ensure correct data?

A validator object is a subclass of wx.Validator. The parent class is abstract, and 
isn’t used directly. Although there are a couple of predefined validator classes in 
the C++ wxWidget set, in wxPython, you will need to define your own validator 
classes. As we’ve seen in other cases, your Python classes need to inherit from a 
Python-specific subclass, wx.PyValidator, to be able to override all the parent 



Using validators to manage data in a dialog 283
methods. A custom validator subclass must also override the method Clone(), 
which should return an identical copy of the validator.

 A validator is attached to a specific widget in your system. That can be accom-
plished in one of two ways. First, if the widget allows it, the validator can be 
passed as an argument to the widget constructor. If the widget does not have a 
validator argument to its constructor, you can still attach a validator by creating a 
validator instance and calling the widget’s SetValidator(validator) method. 

 To validate the data in the control, start by overriding the method Vali-
date(parent) in your validator subclass. The parent argument is the parent win-
dow of the validator’s widget, either the dialog or a panel. Use this to get the 
data from other widgets in the dialog if that’s important, or you can ignore the 
argument altogether. You can use self.GetWindow() to get a reference to the 
widget being validated. The return value of your Validate(parent) method is a 
Boolean. A True value indicates to the rest of the system that the data in the val-
idator’s widget is valid. A False value indicates a problem. You are allowed to 
use wx.MessageBox() to display an alert from the Validate() method, but you 
shouldn’t do anything else that could raise events in the wxPython application. 

 The return value of the Validate() method is important. It comes into play 
when you attempt to close a dialog using the OK button, (the button with an ID of 
wx.ID_OK). As part of the processing of the OK click, wxPython calls the Vali-
date() function of any widget the dialog contains that has a validator. If any of 
those methods return False, the dialog will not close. Listing 9.13 displays a sam-
ple dialog with a validator that checks to see that all text controls have data. 

import wx 

about_txt = """\ 
The validator used in this example will ensure that the text 
controls are not empty when you press the Ok button, and 
will not let you leave if any of the Validations fail.""" 

class NotEmptyValidator(wx.PyValidator):   
     def __init__(self): 
         wx.PyValidator.__init__(self) 

     def Clone(self): 
         """ 
         Note that every validator must implement the Clone() method. 
         """ 
         return NotEmptyValidator() 

Listing 9.13 A validator checking that all text controls have data

Creating the validator subclass



284 CHAPTER 9 
Giving users choices with dialogs
     def Validate(self, win):   
         textCtrl = self.GetWindow() 
         text = textCtrl.GetValue() 

         if len(text) == 0: 
             wx.MessageBox("This field must contain some text!", "Error") 
             textCtrl.SetBackgroundColour("pink") 
             textCtrl.SetFocus() 
             textCtrl.Refresh() 
             return False 
         else: 
             textCtrl.SetBackgroundColour( 
                 wx.SystemSettings_GetColour(wx.SYS_COLOUR_WINDOW)) 
             textCtrl.Refresh() 
             return True 

     def TransferToWindow(self): 
         return True 

     def TransferFromWindow(self): 
         return True 

class MyDialog(wx.Dialog): 
    def __init__(self): 
        wx.Dialog.__init__(self, None, -1, "Validators: validating") 

        # Create the text controls 
        about   = wx.StaticText(self, -1, about_txt) 
        name_l  = wx.StaticText(self, -1, "Name:") 
        email_l = wx.StaticText(self, -1, "Email:") 
        phone_l = wx.StaticText(self, -1, "Phone:") 
        
        name_t  = wx.TextCtrl(self, validator=NotEmptyValidator())   
        email_t = wx.TextCtrl(self, validator=NotEmptyValidator())   
        phone_t = wx.TextCtrl(self, validator=NotEmptyValidator())   

        # Use standard button IDs 
        okay   = wx.Button(self, wx.ID_OK) 
        okay.SetDefault() 
        cancel = wx.Button(self, wx.ID_CANCEL) 

        # Layout with sizers 
        sizer = wx.BoxSizer(wx.VERTICAL) 
        sizer.Add(about, 0, wx.ALL, 5) 
        sizer.Add(wx.StaticLine(self), 0, wx.EXPAND|wx.ALL, 5) 
        
        fgs = wx.FlexGridSizer(3, 2, 5, 5) 
        fgs.Add(name_l, 0, wx.ALIGN_RIGHT) 
        fgs.Add(name_t, 0, wx.EXPAND) 
        fgs.Add(email_l, 0, wx.ALIGN_RIGHT) 
        fgs.Add(email_t, 0, wx.EXPAND) 

b Using the validator method

Using the validator c



Using validators to manage data in a dialog 285
        fgs.Add(phone_l, 0, wx.ALIGN_RIGHT) 
        fgs.Add(phone_t, 0, wx.EXPAND) 
        fgs.AddGrowableCol(1) 
        sizer.Add(fgs, 0, wx.EXPAND|wx.ALL, 5) 

        btns = wx.StdDialogButtonSizer() 
        btns.AddButton(okay) 
        btns.AddButton(cancel) 
        btns.Realize() 
        sizer.Add(btns, 0, wx.EXPAND|wx.ALL, 5) 

        self.SetSizer(sizer) 
        sizer.Fit(self) 

app = wx.PySimpleApp() 

dlg = MyDialog() 
dlg.ShowModal() 
dlg.Destroy() 

app.MainLoop() 

This method tests that the underlying control has some data. If it does not, the 
background color of the widget is changed to pink.
In these lines, a new validator it attached to each text field in the dialog.

Figure 9.13 displays the dialog after attempting to close it with a blank field. 
 The code that explicitly tells the dialog to check the validators is not in the list-

ing—it is a part of the wxPython event system. 
Another difference between dialogs and frames is 
that dialogs have the validator behavior built-in 
and frames do not. If you would like to use valida-
tors for validating controls not located in a dialog, 
call the parent window’s Validate() method. If the 
wx.WS_EX_VALIDATE_RECURSIVELY extra style is set 
for the window, Validate() of all the child win-
dows is also called. If any of the validations fail, 
Validate returns False. Next, we’ll discuss how to 
use validators to transfer data.

 b

 c

Figure 9.13 Attempting to 
close an invalid validator



286 CHAPTER 9 
Giving users choices with dialogs
9.5.2 How do I use a validator to transfer data?

The second important function of a validator is 
that it automatically transfers data into the dialog 
display when a dialog is opened, and automatically 
transfers data from the dialog to an external source 
when the dialog is closed. Figure 9.14 displays a 
sample dialog. 

 To accomplish this, you must override two 
methods in your validator subclass. The method 
TransferToWindow() is automatically called when 
the dialog is opened. You must use this method to 
put data into the validator’s widget. The method 
TransferFromWindow() is automatically called when 
the dialog is closed using the OK button, after it has already been validated. You 
must use this method to move the data from the widget to some other source. 

 The fact that a data transfer must happen implies that the validator must 
know something about an external data object, as displayed in listing 9.14. In this 
example, each validator is initialized with a reference to a global data dictionary, 
and a key within that dictionary that is important to that control. When the dialog 
is opened, the TransferToWindow() method reads from the dictionary at that key 
and places the data in the text field. When the dialog is closed, TransferFrom-
Window() reverses the process and writes to the dictionary. The example displays a 
dialog box to show you the transferred data. 

import wx 
import pprint 

about_txt = """\ 
The validator used in this example shows how the validator 
can be used to transfer data to and from each text control 
automatically when the dialog is shown and dismissed.""" 

class DataXferValidator(wx.PyValidator):   
     def __init__(self, data, key): 
         wx.PyValidator.__init__(self) 
         self.data = data 
         self.key = key 

     def Clone(self): 
         """ 

Listing 9.14 A data transferring validator

Figure 9.14 The transferring 
validator—this dialog will 
automatically display entered 
values when closed

Declaring the validator



Using validators to manage data in a dialog 287
         Note that every validator must implement the Clone() method. 
         """ 
         return DataXferValidator(self.data, self.key) 

     def Validate(self, win):   
         return True 

     def TransferToWindow(self):   
         textCtrl = self.GetWindow() 
         textCtrl.SetValue(self.data.get(self.key, "")) 
         return True 

     def TransferFromWindow(self):   
         textCtrl = self.GetWindow() 
         self.data[self.key] = textCtrl.GetValue() 
         return True 

class MyDialog(wx.Dialog): 
    def __init__(self, data): 
        wx.Dialog.__init__(self, None, -1, "Validators: data transfer") 

        about   = wx.StaticText(self, -1, about_txt) 
        name_l  = wx.StaticText(self, -1, "Name:") 
        email_l = wx.StaticText(self, -1, "Email:") 
        phone_l = wx.StaticText(self, -1, "Phone:") 
        
        name_t  = wx.TextCtrl(self,   
                validator=DataXferValidator(data, "name")) 
        email_t = wx.TextCtrl(self, 
                validator=DataXferValidator(data, "email")) 
        phone_t = wx.TextCtrl(self, 
                validator=DataXferValidator(data, "phone")) 

        okay   = wx.Button(self, wx.ID_OK) 
        okay.SetDefault() 
        cancel = wx.Button(self, wx.ID_CANCEL) 

        sizer = wx.BoxSizer(wx.VERTICAL) 
        sizer.Add(about, 0, wx.ALL, 5) 
        sizer.Add(wx.StaticLine(self), 0, wx.EXPAND|wx.ALL, 5) 
        
        fgs = wx.FlexGridSizer(3, 2, 5, 5) 
        fgs.Add(name_l, 0, wx.ALIGN_RIGHT) 
        fgs.Add(name_t, 0, wx.EXPAND) 
        fgs.Add(email_l, 0, wx.ALIGN_RIGHT) 
        fgs.Add(email_t, 0, wx.EXPAND) 
        fgs.Add(phone_l, 0, wx.ALIGN_RIGHT) 
        fgs.Add(phone_t, 0, wx.EXPAND) 
        fgs.AddGrowableCol(1) 
        sizer.Add(fgs, 0, wx.EXPAND|wx.ALL, 5) 

Not validating data

Called on dialog open

Called on dialog close

Associating a validator with widget



288 CHAPTER 9 
Giving users choices with dialogs
        btns = wx.StdDialogButtonSizer() 
        btns.AddButton(okay) 
        btns.AddButton(cancel) 
        btns.Realize() 
        sizer.Add(btns, 0, wx.EXPAND|wx.ALL, 5) 

        self.SetSizer(sizer) 
        sizer.Fit(self) 

app = wx.PySimpleApp() 

data = { "name" : "Jordyn Dunn" } 
dlg = MyDialog(data) 
dlg.ShowModal() 
dlg.Destroy() 

wx.MessageBox("You entered these values:\n\n" + 
              pprint.pformat(data)) 

app.MainLoop() 

Calling of the transfer data methods of validators happens automatically for dia-
logs. To use validators for transferring data in non-dialog windows, call the parent 
widget’s TransDataFromWindow() and TransferDataToWindow() methods as neces-
sary. If the window has the wx.WS_EX_VALIDATE_RECURSIVELY extra style set, the 
transfer functions are also called on all of the child widgets.

 In the next section, we’ll discuss the most active use of a validator object, using 
it to evaluate data as the user enters it into the dialog box. This uses the validator 
and help from the wxPython event system.

9.5.3 How do I validate data as it is entered?

You can also use a validator to validate data 
entered into the dialog as the user enters it, before 
the data is passed to the widget. This is very pow-
erful, since it can prevent bad data from getting 
into your application. Figure 9.15 displays an 
example, the dialog text explains the idea. 

 This method of validating data is less auto-
mated than other mechanisms. You must explic-
itly bind the character events from the validator’s 
widget to a function, as in the following: 

self.Bind(wx.EVT_CHAR, self.OnChar) 

Figure 9.15 A validator verifying 
data on the fly 



Using validators to manage data in a dialog 289
The widget assumes that the event source belongs to the validator. Listing 9.15 
displays this binding in action. 

import wx 
import string 

about_txt = """\ 
The validator used in this example will validate the input on the fly 
instead of waiting until the okay button is pressed. The first field 
will not allow digits to be typed, the second will allow anything 
and the third will not allow alphabetic characters to be entered. 
""" 

class CharValidator(wx.PyValidator): 
    def __init__(self, flag): 
         wx.PyValidator.__init__(self) 
         self.flag = flag 
         self.Bind(wx.EVT_CHAR, self.OnChar)   

    def Clone(self): 
         """ 
         Note that every validator must implement the Clone() method. 
         """ 
         return CharValidator(self.flag) 

    def Validate(self, win): 
         return True 

    def TransferToWindow(self): 
         return True 

    def TransferFromWindow(self): 
         return True 

    def OnChar(self, evt):                                       
         key = chr(evt.GetKeyCode())                             
         if self.flag == "no-alpha" and key in string.letters:   
              return                                             
         if self.flag == "no-digit" and key in string.digits:    
              return                                             
         evt.Skip()                                              

class MyDialog(wx.Dialog): 
    def __init__(self): 
        wx.Dialog.__init__(self, None, -1, "Validators: behavior 

modification") 

        # Create the text controls                   

Listing 9.15 Validating on the fly

Binding the character event

Viewing 
the data 
handler



290 CHAPTER 9 
Giving users choices with dialogs
        about   = wx.StaticText(self, -1, about_txt) 
        name_l  = wx.StaticText(self, -1, "Name:") 
        email_l = wx.StaticText(self, -1, "Email:") 
        phone_l = wx.StaticText(self, -1, "Phone:") 
                                                   
        name_t  = wx.TextCtrl(self, validator=CharValidator("no-digit"))   
        email_t = wx.TextCtrl(self, validator=CharValidator("any")) 
        phone_t = wx.TextCtrl(self, validator=CharValidator("no-alpha")) 
        okay   = wx.Button(self, wx.ID_OK) 
        okay.SetDefault() 
        cancel = wx.Button(self, wx.ID_CANCEL)
        sizer = wx.BoxSizer(wx.VERTICAL) 
        sizer.Add(about, 0, wx.ALL, 5) 
        sizer.Add(wx.StaticLine(self), 0, wx.EXPAND|wx.ALL, 5) 
        
        fgs = wx.FlexGridSizer(3, 2, 5, 5) 
        fgs.Add(name_l, 0, wx.ALIGN_RIGHT) 
        fgs.Add(name_t, 0, wx.EXPAND) 
        fgs.Add(email_l, 0, wx.ALIGN_RIGHT) 
        fgs.Add(email_t, 0, wx.EXPAND) 
        fgs.Add(phone_l, 0, wx.ALIGN_RIGHT) 
        fgs.Add(phone_t, 0, wx.EXPAND) 
        fgs.AddGrowableCol(1) 
        sizer.Add(fgs, 0, wx.EXPAND|wx.ALL, 5) 

        btns = wx.StdDialogButtonSizer() 
        btns.AddButton(okay) 
        btns.AddButton(cancel) 
        btns.Realize() 
        sizer.Add(btns, 0, wx.EXPAND|wx.ALL, 5) 

        self.SetSizer(sizer) 
        sizer.Fit(self) 

app = wx.PySimpleApp() 

dlg = MyDialog() 
dlg.ShowModal() 
dlg.Destroy() 

app.MainLoop() 

Because the OnChar() method is in a validator, it gets called before the widget 
responds to the character event. The method allows the event to pass on to the 
widget by using Skip(). You must call Skip(), otherwise the validator interferes 
with normal event processing. The validator performs a test to see if the character 
is valid for the control. If the character is invalid, Skip() is not called, and event 

Binding the 
validator



Summary 291
processing stops. If necessary, events other than wx.EVT_CHAR can also be bound 
and the validator handles those events before the widget does.

 Validators are a powerful and flexible mechanism for handling data in your 
wxPython application. Using them properly helps make the development and 
maintenance of your application smoother.

9.6 Summary 

■ Dialogs are used to handle interaction with the user in cases where there is 
a specific set of information to be obtained, and the interaction is usually 
over quickly. In wxPython, you can use the generic wx.Dialog class to create 
your own dialogs, or you can use one of several predefined dialogs. In 
many cases, commonly used dialogs also have convenience functions that 
make the use of the dialog easier. 

■ Dialogs can be displayed modally, meaning that all other user input within 
the application is blocked while the dialog is visible. A modal dialog is 
invoked by using the ShowModal() method, which returns a value based on 
whether the user pressed OK or Cancel to the dialog. Closing a modal dia-
log does not destroy it, and the same dialog instance can be used again. 

■ There are three generic simple dialogs available in wxPython. wx.Message-
Dialog displays an alert box or a yes/no question. wx.TextEntryDialog
allows the user to enter text, and wx.SingleChoiceDialog gives the user a 
choice based on a list of items. 

■ When performing a long background task, you can use wx.ProgressDialog
to display progress information to the user. The user can pick a file using 
the standard file dialog by using the wx.FileDialog class. There is a stan-
dard tree view which allows the user to pick a directory that is created using 
the wx.DirDialog class. 

■ You can access the standard font picker using wx.FontDialog and the stan-
dard color picker using wx.ColorDialog. In both cases, the dialog behavior 
and user response are controlled by a separate data class. 

■ To browse thumbnail images, use the wxPython-specific class wx.lib.image-
browser.ImageDialog. This class allows the user to walk through her file 
system and select an image. 

■ You can create a wizard by using the wx.wizard.Wizard class to tie together a 
group of related dialog forms. The dialog forms are instances of either the 
class wx.wizard.WizardSimplePage or wx.wizard.WizardPage. The difference



292 CHAPTER 9 
Giving users choices with dialogs
is that the page to page path for a simple page needs to be laid out before 
the wizard is displayed, while the standard page allows you to manage that 
logic at runtime. 

■ Startup tips can easily be displayed using the functions wx.CreateFileTip-
Provider and wx.ShowTip. 

■ Validators are powerful objects that can automatically prevent a dialog from 
closing if the data entered is incorrect. They can also automatically transfer 
data between a dialog display and an external object, and can verify data 
entry on the fly.



Creating and using 
wxPython menus
This chapter covers
■ Creating menus
■ Working with menu items
■ Adding submenus, pop-up menus,  

and custom menus
■ Usability guidelines for menus
293



294 CHAPTER 10 
Creating and using wxPython menus
It’s difficult to imagine an application without the familiar bar at the top starting 
with File and Edit and ending with Help. Menus are such a common part of the 
standard interface kit that they tend to fade into the background without drawing 
much attention. That’s too bad, because the way that menus give the user access 
to all functionality quickly and easily was truly revolutionary. 

 In wxPython, there are three primary classes that manage menu functionality. 
The class wx.MenuBar manages the menu bar itself, while wx.Menu manages an 
individual pull-down or pop-up menu. A wx.MenuBar instance can, of course, con-
tain multiple wx.Menu instances. The class wx.MenuItem represents one specific 
item within a wx.Menu.

 In chapter 2 we provided a brief introduction to menus, in listing 5.5 we pro-
vided a mechanism for easily creating menu items, and in chapter 7 we intro-
duced information on special menu effects. In this chapter, we will provide more 
detail on the creation and use of wxPython menus. 

10.1 Creating Menus

First, we will discuss menu bars. To use a menu bar, perform the following actions:

■ Create the menu bar 
■ Attach the menu bar to the frame 
■ Create the individual menus 
■ Attach the menus to the menu bar or to a parent menu 
■ Create the individual menu items 
■ Attach the menu items to the appropriate menu 
■ Create an event binding for each menu item 

The order in which you perform these actions is somewhat flexible, as long as you 
create all items before use, and all actions are completed in the frame initializa-
tion method. You can manipulate the menus later in the process, but after the 
frame is visible, the order in which you do things may affect what the user sees. 
For example, it doesn’t matter if you attach the menu bar to the frame right after 
creation, or if you wait until all other procedures are complete. For readability 
and maintenance purposes, we recommend that you keep related components 
together. For suggestions on how to organize menu creation, see the section on 
refactoring in chapter 5. In the next sections, we’ll cover basic menu tasks.



Creating Menus 295
10.1.1 How do I create a menu bar and attach it to a frame? 

To create a menu bar, use the wx.MenuBar constructor, which takes no arguments.

wx.MenuBar() 

Once the menu bar is created, attach it to a wx.Frame (or a subclass) using the Set-
MenuBar() method. Typically, you would do this inside the __init__() or OnInit()
method of the frame: 

menubar = wx.MenuBar() 
self.SetMenuBar 

You don’t need to maintain a temporary variable for the menu bar, but doing so 
will make adding menus to the bar somewhat more straightforward. To get at the 
menu bar from someplace else in the program, use wx.Frame.GetMenuBar().

10.1.2 How do I create a menu and attach it to the menu bar? 
A wxPython menu bar consists of individual menus, each of which needs to be 
created separately. The following displays the constructor for wx.Menu. 

wx.Menu(title="", style=0) 

There is only one valid style for wx.Menu
instances. Under GTK, the style wx.MENU_ 
TEAROFF allows the menu to be detached 
from the menu bar and used as a stand-
alone selector. Under other platforms, 
the style has no effect. If the platform 
supports it, a title can be given to the 
menu when it is created, which will add 
the text at the top of the menu above any 
regular menu items that are added to the 
menu. Figure 10.1 displays a blank win-
dow with three menus.

 Listing 10.1 displays the series of menus being added to a menu bar, without 
any items being added. 

import wx 

class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, "Simple Menu Example") 
        p = wx.Panel(self) 

Listing 10.1 Adding menus to a menu bar

Figure 10.1  
A blank window with three menus



296 CHAPTER 10 
Creating and using wxPython menus
        menuBar = wx.MenuBar()   
        menu = wx.Menu()   
        menuBar.Append(menu, "Left Menu")   
        menu2 = wx.Menu() 
        menuBar.Append(menu2, "Middle Menu") 
        menu3 = wx.Menu() 
        menuBar.Append(menu3, "Right Menu") 
        self.SetMenuBar(menuBar) 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    frame = MyFrame() 
    frame.Show() 
    app.MainLoop() 

In the wxPython menu API, most of the manipulation of an object is managed by 
its container class. Later in this chapter, we’ll discuss the specific methods of 
wx.Menu, since most of the methods concern manipulation of the menu items 
within the menu. In the remainder of this section, since we are talking about 
manipulating wx.Menu objects, we’ll be listing the methods of wx.MenuBar that 
concern menus. Table 10.1 displays the four methods within wx.MenuBar

that manipulate the contents of the menu bar.

Table 10.1 Methods of wx.MenuBar for manipulating the menus in the menu bar

Function Description 

Append(menu, title) Appends the menu parameter to the end of the menu bar (the rightmost 
element displayed). The title parameter will be used to display the new 
menu. Returns True if successful, otherwise False. 

Insert(pos, menu, title) Inserts the given menu so that it is at the given pos (after this call, 
GetMenu(pos) == menu is true). As if inserting into a list, all the 
following  menus are shifted to the right. The menu indexes are zero-based, 
so a pos of 0 is equivalent to putting the menu at the left of the menu bar. 
Inserting at GetMenuCount() as the pos is the same as using Append. 
The title is used for the display name. Returns True if successful. 

Remove(pos) Removes the menu at the position pos, shifting all other menus leftward. 
Returns the menu being removed. 

Replace(pos, menu, title) Replaces the menu at position pos, with the new menu passed in the menu 
parameter, and using the display name given by the title parameter. The 
other menus on the menu bar are unaffected. Returns the menu which was 
previously at the position pos. 

Creating a menu bar
Creating a menu

Appending the 
menu to the bar



Creating Menus 297
The wx.MenuBar class contains a few other methods that manipulate the compo-
nent menus in other ways, as displayed in table 10.2. 

10.1.3 How do I add items to a pull-down menu? 

There are a couple of mechanisms for adding new menu items to a pull-down 
menu. The easier is to use the Append() method of wx.Menu, as in: 

Append(id, string, helpStr="", kind=wx.ITEM_NORMAL) 

The id parameter is a wxPython ID. The string argument is the string that will be 
displayed on the menu. The helpStr, if defined, will be displayed in the frame’s 
status bar when the menu is highlighted. The kind argument allows you to set the 
type of the menu item to a toggle item. Later in this chapter we’ll describe better 
ways of managing toggle items. The Append method places the new item at the 
end of the menu.

 If you want to append a menu separator to the menu, the easiest way is the no-
argument method wx.Menu.AppendSeparator(), which places a new separator at 
the end of the menu. 

 Listing 10.2 displays an example of using the Append() method to build a 
menu with two items and a separator. 

import wx 

class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 
                          "Menu Example with StatusBar") 

Table 10.2 Menu property methods of wx.MenuBar

Method Description 

EnableTop(pos, enable) Sets the enable/disable state of the menu at position pos. If enable is 
True, then the menu is enabled, if False, then it is disabled. 

GetMenu(pos) Returns the menu object at the given position. 

GetMenuCount() Returns the number of menus in the menu bar. 

FindMenu(title) Returns the integer index of the menu in the menu bar with the given title. 
If there is no such menu, the method returns the constant wx.NOT_FOUND. 
The method will ignore decorations for keyboard shotcuts, if any. 

GetLabelTop(pos)  
SetLabelTop(pos, label)

Getter and setter method for the display label of the menu at the  
given position. 

Listing 10.2 Sample code for adding items to a menu



298 CHAPTER 10 
Creating and using wxPython menus
        p = wx.Panel(self) 
        self.CreateStatusBar() 

        menu = wx.Menu() 
        simple = menu.Append(-1, "Simple menu item", 
            "This is some help text") 
        menu.AppendSeparator() 
        exit = menu.Append(-1, "Exit", 
            "Selecting this item will exit the program") 
        self.Bind(wx.EVT_MENU, self.OnSimple, simple) 
        self.Bind(wx.EVT_MENU, self.OnExit, exit) 
                  
        menuBar = wx.MenuBar() 
        menuBar.Append(menu, "Menu") 
        self.SetMenuBar(menuBar) 

    def OnSimple(self, event): 
        wx.MessageBox("You selected the simple menu item") 

    def OnExit(self, event): 
        self.Close() 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    frame = MyFrame() 
    frame.Show() 
    app.MainLoop() 

Figure 10.2 displays the menu with sepa-
rators and status text. 

 Along with Append(), there are two 
other families of methods for menu item 
insertion. To put a menu item at the 
beginning of the menu, use one of the 
following methods:

■ Prepend(id, string, helpStr="",
kind=wx.ITEM_NORMAL) 

■ PrependSeparator(). 

These two methods take the same arguments as their appending counterparts, 
with the only difference being the placement of the resulting menu item at the 
top of the menu rather than at the bottom. 

 To place the new item at an arbitrary place within the menu, use one of the fol-
lowing Insert methods: 

Figure 10.2 A sample menu, with separators 
and status text.



Creating Menus 299
■ Insert(pos, id, string, helpStr="", kind=wx.ITEM_NORMAL) 
■ InsertSeparator(pos) 

The new argument here, pos, is the index within the menu where the new item is 
displayed, so an index of 0 puts the new item at the beginning, and an index of 
the menu size puts the new item at the end. All menu items after the point of inser-
tion are shifted downward. 

 All of these insertion methods implicitly create an instance of the class 
wx.MenuItem. You can also explicitly create an instance of that class using its con-
structor to set additional properties of the menu item besides just its label. For 
instance, you can set custom fonts or colors. The constructor for wx.MenuItem is 
as follows: 

wx.MenuItem(parentMenu=None, id=ID_ANY, text="", 
    helpString="", kind=wx.ITEM_NORMAL, subMenu=None) 

The parentMenu argument, if specified must be a wx.Menu instance. The new menu 
item is not automatically added to the display of the parent menu when con-
structed. You must do this yourself. This behavior is different than the ordinary 
behavior of wxPython widgets and their containers. The id argument is the iden-
tifier for the new item. The trick of setting the id to -1 to automatically generate 
an ID works the same for menu items as it does for windows. The text argument 
is the menu item’s display string in the menu, and the helpString argument is the 
display string in the status bar, when highlighted. The kind is wx.ITEM_NORMAL for 
plain menu items; we’ll see next that toggle menu items have different values. If 
the subMenu argument is not null, the new menu item is actually a submenu. We 
do not recommend that you use this mechanism to create submenus; instead use 
the mechanism described in section 10.3, Sprucing up your menus.

 Unlike most widgets, creating the menu item does not add it to the specified 
parent menu. To add the new menu item to a menu, use one of the following 
methods of wx.Menu: 

■ AppendItem(aMenuItem) 
■ InsertItem(pos, aMenuItem) 
■ PrependItem(aMenuItem) 

All three behave the same as their implicit counterparts described earlier.
 To remove a menu item from the menu, use the method Remove(id), which 

takes a wxPython ID, or RemoveItem(item), which takes a menu item as the argu-
ment. Any subsequent menu items are shifted upward in the display. The Remove()



300 CHAPTER 10 
Creating and using wxPython menus
methods return the actual menu item that was affected. This allows you to store 
the item for later use. Unlike menu bars, menus don’t have a method for direct 
replacement of menu items. A replacement must be managed as a removal and 
subsequent insertion.

 The wx.Menu class also has two getters for obtaining information about its com-
ponent menu items. GetMenuItemCount() returns the number of items in the 
menu, and GetMenuItems() returns a list of the menu items in the menu ordered 
by their position within the menu. This list is a copy of the actual list in the menu, 
meaning that changing the returned list does not change the menu itself. There-
fore, you cannot use this list to bypass the methods for adding and removing 
menu items. 

 You can continue to add or remove menu items from a menu during runtime 
while the menu is active. Listing 10.3 displays sample code that adds menus dur-
ing runtime. The OnAddItem() method, called when the button is pressed, inserts 
a new item at the end of the menu.

import wx 

class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 
                          "Add Menu Items") 
        p = wx.Panel(self) 
        self.txt = wx.TextCtrl(p, -1, "new item") 
        btn = wx.Button(p, -1, "Add Menu Item") 
        self.Bind(wx.EVT_BUTTON, self.OnAddItem, btn)   

        sizer = wx.BoxSizer(wx.HORIZONTAL) 
        sizer.Add(self.txt, 0, wx.ALL, 20) 
        sizer.Add(btn, 0, wx.TOP|wx.RIGHT, 20) 
        p.SetSizer(sizer) 
        
        self.menu = menu = wx.Menu() 
        simple = menu.Append(-1, "Simple menu item") 
        menu.AppendSeparator() 
        exit = menu.Append(-1, "Exit") 
        self.Bind(wx.EVT_MENU, self.OnSimple, simple) 
        self.Bind(wx.EVT_MENU, self.OnExit, exit) 
                   
        menuBar = wx.MenuBar() 
        menuBar.Append(menu, "Menu") 
        self.SetMenuBar(menuBar) 

Listing 10.3 Adding menu items during runtime

Binding the 
button event



Creating Menus 301
    def OnSimple(self, event): 
        wx.MessageBox("You selected the simple menu item") 

    def OnExit(self, event): 
        self.Close() 

    def OnAddItem(self, event):   
        item = self.menu.Append(-1, self.txt.GetValue())   
        self.Bind(wx.EVT_MENU, self.OnNewItemSelected, item)   

    def OnNewItemSelected(self, event): 
        wx.MessageBox("You selected a new item") 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    frame = MyFrame() 
    frame.Show() 
    app.MainLoop() 

In this sample, OnAddItem() reads the value of the text in the text field, and uses 
Append() to add a new item to the menu. In addition, it binds a menu event 
so that the new menu item has functionality. In the next section, we’ll discuss 
menu events.

10.1.4 How do I respond to a menu event? 

In the last section, we displayed two code examples that respond to a menu 
selection. Like many of the widgets we saw in chapter 8, selecting a menu item 
triggers an instance of wx.CommandEvent of a specific type. In this case, the type is 
wx.EVT_MENU. 

 Menu item events vary from other command events in the system in two ways. 
First, the Bind() function that associates the menu item event with a specific 
function is called, not on the menu item instance or its containing menu or 
menu bar instances, but on the frame which contains the menu bar. Secondly, 
since the frame usually has multiple menu items responding to the same 
wx.EVT_MENU trigger, the Bind() method needs to take a third parameter, which is 
the menu item itself. This allows the frame to differentiate between menu events 
from different items. 

 So, a typical call to bind a menu event would look like this: 

self.Bind(wx.EVT_MENU, self.OnExit, exit_menu_item) 

where self is the frame, self.OnExit is the handling method, and exit_menu_ 
item is the menu item itself. 

Adding 
the item

Binding 
a menu 
event



302 CHAPTER 10 
Creating and using wxPython menus
 Although the idea of binding the menu event through the frame may seem a 
little odd, there is a reason for it. Binding events through the frame allows you to 
transparently bind a toolbar button to the same handler as the menu item. If the 
toolbar button has the same wxPython ID as a menu item, the single Bind() call 
for wx.EVT_MENU will bind both the menu selection and the toolbar button click. 
This is possible because both the menu item event and the toolbar event get 
routed through the frame. If the menu item event was handled in the menu bar, it 
would never see the toolbar event. 

 Occasionally, you will have multiple menu items that need to be bound to the 
same handler. For example, a set of radio button toggle menus, all of which do 
essentially the same thing, may be bound to the same handler. To avoid having to 
bind each one separately, if the menu items have consecutive identifier numbers, 
use the wx.EVT_MENU_RANGE event type: 

self.Bind(wx.EVT_MENU_RANGE, function, id=menu1, id2=menu2) 

In this case, any menu item with an identifier between menu1 and menu2 (inclusive) 
would bind to the given function. 

 Although typically you’ll only care about menu item command events, there 
are other menu events that you can respond to. In wxPython, the class wx.Menu-
Event manages menu drawing and highlighting events. Table 10.3 details four 
event types for wx.MenuEvent. 

Now that we’ve covered the basics of menu creation, we’ll begin describing how to 
work with menu items.

Table 10.3 Event types of wx.MenuEvent

Event type Description 

EVT_MENU_CLOSE Triggered when a menu is closed. 

EVT_MENU_HIGHLIGHT Triggered when a menu item is highlighted. Bound to a specific menu 
item ID. By default causes help text to be displayed in the frame’s  
status bar. 

EVT_MENU_HIGHLIGHT_ALL Triggered when a menu item is highlighted, but not bound to a specific 
menu item ID—meaning that there’s just one handler for the entire menu 
bar. You’d call this if you wanted any menu highlight change to trigger an 
action, no matter which items are selected. 

EVT_MENU_OPEN Triggered when a menu is opened. 



Working with menu items 303
10.2 Working with menu items

Although menus and menu bars are obviously vital to the structure of a menu sys-
tem, most of your time and effort will be spent dealing with the menu items. In 
the next few sections, we’ll talk about common menu item functions such as find-
ing an item, enabling or disabling an item, creating toggle menu items, and 
assigning keyboard shortcuts.

10.2.1 How do I find a specific menu item in a menu? 

There are a number of ways in wxPython to find a specific menu or menu item
given a label or an identifier. You often use these methods in event handlers, 
especially when you want to modify a menu item or display its label text in 
another location. Listing 10.4 augments the previous dynamic menu example by 
using FindItemById() to get the appropriate menu item for display. 

import wx 

class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 
                          "Find Item Example") 
        p = wx.Panel(self) 
        self.txt = wx.TextCtrl(p, -1, "new item") 
        btn = wx.Button(p, -1, "Add Menu Item") 
        self.Bind(wx.EVT_BUTTON, self.OnAddItem, btn) 

        sizer = wx.BoxSizer(wx.HORIZONTAL) 
        sizer.Add(self.txt, 0, wx.ALL, 20) 
        sizer.Add(btn, 0, wx.TOP|wx.RIGHT, 20) 
        p.SetSizer(sizer) 
        
        self.menu = menu = wx.Menu() 
        simple = menu.Append(-1, "Simple menu item") 
        menu.AppendSeparator() 
        exit = menu.Append(-1, "Exit") 
        self.Bind(wx.EVT_MENU, self.OnSimple, simple) 
        self.Bind(wx.EVT_MENU, self.OnExit, exit) 
                  
        menuBar = wx.MenuBar() 
        menuBar.Append(menu, "Menu") 
        self.SetMenuBar(menuBar) 

    def OnSimple(self, event): 
        wx.MessageBox("You selected the simple menu item") 

Listing 10.4 Finding a specific menu item



304 CHAPTER 10 
Creating and using wxPython menus
    def OnExit(self, event): 
        self.Close() 

    def OnAddItem(self, event): 
        item = self.menu.Append(-1, self.txt.GetValue()) 
        self.Bind(wx.EVT_MENU, self.OnNewItemSelected, item) 

    def OnNewItemSelected(self, event): 
        item = self.GetMenuBar().FindItemById(event.GetId())   
        text = item.GetText() 
        wx.MessageBox("You selected the '%s' item" % text) 
       
if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    frame = MyFrame() 
    frame.Show() 
    app.MainLoop() 

In this example, FindItemById() is used to get the item for the purpose of getting 
its text label for the display.

 Both wx.MenuBar and wx.Menu have essentially the same methods for finding 
out information about specific menu items. The primary difference is that the 
wx.MenuBar methods will find an item anywhere on the menu bar, while the wx.Menu
items will find an item only if it is in that particular menu. For most uses, the 
wx.MenuBar items are preferred, at least in part because the menu bar is easily 
accessible using the wx.Frame.GetMenuBar() method. 

 To find a top-level menu from the menu bar, use the menu bar method Find-
Menu(title). This method returns either the index of the appropriate menu or the 
constant wx.NOT_FOUND. To get the actual menu, use GetMenu(): 

def FindMenuInMenuBar(menuBar, title): 
    pos = menuBar.FindMenu(title) 
    if pos == wx.NOT_FOUND: 
        return None 
    return menuBar.GetMenu(pos) 

The title parameter of FindMenu matches the menu title with or without the 
decorator label characters discussed next. For example, FindMenu("File") still 
matches the menu item even if its label was instantiated as &File. All of the meth-
ods in these menu classes that find a menu item based on a label string share 
this functionality. 

 Table 10.4 specifies the methods of wx.MenuBar which can be used to find or 
manipulate a specific menu item. 

Getting 
the menu 
item



Working with menu items 305
Table 10.5 displays a similar menu item API for wx.Menu. The methods behave 
similarly to the menu bar counterparts, except that the returned menu item must 
be in the invoked menu instance. 

 After the menu item is returned, you may want to do something useful, such as 
enable or disable the item. In the next section, we’ll discuss enabling and dis-
abling menu items.

Table 10.4 Menu item manipulation methods of wx.MenuBar

Method Description 

FindMenuItem(menuString,  
itemString) 

Searches for a menu named menuString and a menu item named 
itemString within that menu. Returns the found menu item or 
wx.NOT_FOUND. 

FindItemById(id) Returns the menu item associated with the given wxPython identifier. If 
there is no such item, returns None. 

GetHelpString(id)  
SetHelpString(id,  
helpString) 

Getter and setter for the help string of the menu item with the given 
wxPython identifier. If there is no such menu item, then the getter 
returns "". If there is no such menu item, the setter has no effect. 

GetLabel(id)  
SetLabel(id, label) 

Getter and setter for the display label of the menu item with the given 
wxPython identifier. Manages nonexistent ID the same way as the help 
string methods. These methods should only be used after the menu bar 
has been associated with a frame. 

Table 10.5 Menu Item methods of wx.Menu

Method Description 

FindItem(itemString) Returns the menu item associated with the given itemString, 
or wx.NOT_FOUND 

FindItemById(id) As the menu bar method

FindItemByPosition(pos) Returns the menu item associated with the given position in the 
menu 

GetHelpString(id)  
 
SetHelpString(id,  
helpString) 

As the menu bar methods

GetLabel(id)
SetLabel(id, helpString)

As the menu bar methods



306 CHAPTER 10 
Creating and using wxPython menus
10.2.2 How do I enable or disable a menu item? 

Similar to other widgets, menus and menu items can be enabled or disabled. A 
disabled menu or menu item usually displays as gray text, rather than black. 
A disabled menu or menu item does not trigger highlight or selection events, it’s 
invisible to the event system.

 Listing 10.5 displays sample code that toggles a menu item’s enabled state, 
using the menu bar IsEnabled() and Enable() methods inside the button 
event handler. 

import wx 

ID_SIMPLE = wx.NewId() 

class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 
                          "Enable/Disable Menu Example") 
        p = wx.Panel(self) 
        self.btn = wx.Button(p, -1, "Disable Item", (20,20)) 
        self.Bind(wx.EVT_BUTTON, self.OnToggleItem, self.btn) 
        
        menu = wx.Menu() 
        menu.Append(ID_SIMPLE, "Simple menu item") 
        self.Bind(wx.EVT_MENU, self.OnSimple, id=ID_SIMPLE) 

        menu.AppendSeparator() 
        menu.Append(wx.ID_EXIT, "Exit") 
        self.Bind(wx.EVT_MENU, self.OnExit, id=wx.ID_EXIT) 
                  
        menuBar = wx.MenuBar() 
        menuBar.Append(menu, "Menu") 
        self.SetMenuBar(menuBar) 
        
    def OnSimple(self, event): 
        wx.MessageBox("You selected the simple menu item") 

    def OnExit(self, event): 
        self.Close() 

    def OnToggleItem(self, event): 
        menubar = self.GetMenuBar() 
        enabled = menubar.IsEnabled(ID_SIMPLE) 
        menubar.Enable(ID_SIMPLE, not enabled) 
        self.btn.SetLabel( 
            (enabled and "Enable" or "Disable") + " Item") 

Listing 10.5 Sample enable and disable item code



Working with menu items 307
    if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    frame = MyFrame() 
    frame.Show() 
    app.MainLoop() 

To view or change the enable state of a menu item from the menu bar, from a 
specific menu, or from the menu item itself, call wx.MenuBar.IsEnabled(id), 
wx.Menu.IsEnabled(id), or wx.MenuItem.IsEnabled(). Menu bar and menu meth-
ods each take the wxPython identifier of a menu item. Both methods return True
if the item exists and is enabled, and False if the item is disabled or does not 
exist. The only difference is that the wx.Menu method only searches within that 
particular menu, while the menu bar method searches the entire menu bar. The 
wx.MenuItem method takes no arguments, and returns the state of that particular 
menu item.

 To change the enabled state, use wx.MenuBar.Enable(id, enable), wx.Menu. 
Enable(id, enable), or wx.MenuItem.Enable(enable). The enable parameter is a 
Boolean. If True, the menu item in question is enabled, if False, it is disabled. The 
scope of the Enable() methods is the same as the IsEnabled() methods. You can 
also enable or disable an entire top-level menu using the method wx.MenuBar. 
EnableTop(pos, enable). In this case, the pos parameter is the integer position of 
the menu within the menu bar, and the enable parameter is a Boolean. 

10.2.3 How do I associate a menu item with a keyboard shortcut? 

In wxPython you can set up keyboard 
navigation and shortcuts for menu items. 
Figure 10.3 displays a sample menu with 
keyboard decoration added. Notice that 
the menu names have an underlined 
character, and that next to the item 
labeled Accelerated is a Ctrl-A. 

 Studies have shown that keyboard 
shortcuts are not always the time saver 
that you think they are. However, they 
are standard interface elements, and 
your users will expect them to be there. Shortcuts are also helpful for users with 
accessibility issues. Listing 10.6 displays the code for adding keyboard shortcuts 
to menu items. 

Figure 10.3  
Menu items with keyboard shortcuts



308 CHAPTER 10 
Creating and using wxPython menus
import wx 

class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 
                          "Accelerator Example") 
        p = wx.Panel(self) 
        menu = wx.Menu()         
        simple = menu.Append(-1, "Simple &menu item")   
        accel  = menu.Append(-1, "&Accelerated\tCtrl-A")   
        
        menu.AppendSeparator() 
        exit = menu.Append(-1, "E&xit") 
        
        self.Bind(wx.EVT_MENU, self.OnSimple, simple) 
        self.Bind(wx.EVT_MENU, self.OnAccelerated, accel) 
        self.Bind(wx.EVT_MENU, self.OnExit, exit) 
                  
        menuBar = wx.MenuBar() 
        menuBar.Append(menu, "&Menu") 
        self.SetMenuBar(menuBar) 

        acceltbl = wx.AcceleratorTable( [   
                (wx.ACCEL_CTRL, ord('Q'), exit.GetId()) 
            ]) 
        self.SetAcceleratorTable(acceltbl) 

    def OnSimple(self, event): 
        wx.MessageBox("You selected the simple menu item") 

    def OnAccelerated(self, event): 
        wx.MessageBox("You selected the accelerated menu item") 

    def OnExit(self, event): 
        self.Close() 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    frame = MyFrame() 
    frame.Show() 
    app.MainLoop() 

There are two kinds of keyboard shortcuts in wxPython; mnemonics and acceler-
ators. Next, we’ll be describing the differences between each type.

Listing 10.6 Associating keyboard shortcuts to menu items

Creating a 
mnemonic

Creating an 
accelerator

Using an accelerator table



Working with menu items 309
Using mnemonic shortcuts
A mnemonic is a single character that is used to access the menu item, and is rep-
resented visually by underlining that character. Mnemonics can be created by 
specifying the display text for the menu or menu item, and placing an ampersand 
before the character you want to use for the mnemonic, for example &File, &Edit, 
or Ma&cros. If you want an ampersand in your menu text, you must enter it as a 
double ampersand, for example, Font && Spacing.

 Mnemonics are meant to be an alternate method for navigating a menu tree. 
They are only active when explicitly invoked by the user; under MS Windows this 
is done by pressing the alt key. Once the mnemonics are activated, the next key-
press opens the top-level menu with the matching mnemonic. The key press after 
that opens the submenu or menu item within that menu, and so on until a menu 
item is selected, at which point a menu event is triggered as though the menu had 
been selected using the mouse. Mnemonic characters must be unique within the 
menu, but do not need to be unique across the entire menu bar. Typically, the first 
character of the menu display text is used as the mnemonic. If you have more 
than one menu item that starts with the same letter, there is no particular guide-
line governing which other character to use (the most common choices are the 
second letter or the last letter depending on which seems more reasonable). It’s 
more important that the menu text be clear than to have the perfect mnemonic.

Using accelerator shortcuts
An accelerator in wxPython is a more typical keyboard shortcut, meaning a key 
combination that can be invoked any time which triggers the menu item. An 
accelerator can be created in two ways. The simpler way is to include the acceler-
ator key combination in the display text of the menu or menu item when it is 
added to its parent. To do this, put a tab character \t after the text of your menu 
item. After the tab character, define the key combination. The first part of the key 
combination is one or more of Alt, Ctrl, or Shift, separated by either a + or a -, 
and followed by the actual key of the accelerator. For example: New\tctrl-n, Save
As\tctrl-shift-s. Even if you only have one special key in the first part, you still 
use + or - to separate that part from the actual key. It does not matter if you use 
upper or lowercase for the key combination. 

 The actual key can be any number or letter or a function key, written as F1
through F12, plus one of the special words displayed in table 10.6 that represent 
other keys. 

 The wxPython methods ignore both mnemonics and accelerators for the pur-
pose of finding a menu or menu item by its name. In other words, the call 



310 CHAPTER 10 
Creating and using wxPython menus
menubar.FindMenuItem("File", "Save

As"), will still match the Save As menu 
item, even if that item’s display name 
was entered as Save &As\tctrl-shift-s.

 Accelerators can also be created 
directly using an accelerator table, 
which is an instance of the class 
wx.AccleratorTable. An accelerator 
table consists of a list of wx.Accelra-
torEntry objects. The constructor for 
wx.AcceleratorTable takes a list of 
accelerator entries, or it takes no argu-
ments at all. In listing 10.6, we are 
taking advantage of the fact that wxPy-
thon will implicitly call the wx.Accel-
eratorEntry constructor with the list of 
arguments, (wx.ACCEL_CTRL, ord('Q'),
exit.GetId()). The constructor for 
wx.AcceleratorEntry is as follows. 

wx.AcceleratorEntry(flags,  
keyCode, cmd) 

The flags parameter is a bitmask with 
one or more of the following constants: 
wx.ACCEL_ALT, wx.ACCEL_CTRL, wxACCEL_ 
NORMAL, or wx.ACCEL_SHIFT. This param-
eter indicates which modifier keys need 
to be pressed to trigger the accelerator. 
The keyCode argument represents the 
regular key to be pressed to trigger the accelerator. It is either the ASCII number 
corresponding to a character, or one the special characters found in the wxWidgets 
documentation under Keycodes. The cmd argument is the wxPython identifier of 
the menu item which triggers its command event when the accelerator is invoked. 
As you can see from listing 10.6, declaring an accelerator in this way does not cause 
the key combination to be listed on the menu with the item display name. You still 
need to do that separately.

Table 10.6 Non-alphanumeric accelerator keys

Accelerator Key 

del Delete 

delete Delete 

down Down arrow 

end End 

enter Enter 

esc Escape 

escape Escape 

home Home 

ins Insert 

insert Insert 

left Left arrow 

pgdn Page down 

pgup Page Up 

return Enter 

right Right arrow 

space Space bar 

tab Tab 

up Up arrow 



Working with menu items 311
10.2.4 How do I create a toggle menu item  
with a checkbox or radio button? 

Menu items are not only used for getting 
user input in the form of selections, they 
can also be used to display the state of the 
application. The most common mecha-
nism for displaying state via a menu item 
is the use of a toggle menu item that emu-
lates a checkbox or radio button (you can 
also just change the text of the menu item 
or use the enabled/disabled status to reflect 
application state). Figure 10.4 displays an 
example of both checkbox and radio 
menu items in action. 

 As you might expect from its name, a checkbox toggle menu item changes 
from the off state to the on state and back every time it is selected. A radio toggle 
menu item allows exactly one menu item in a group to be in the on state. When 
another item in the group is selected, it moves to the on state and the item that 
was previously in the on state changes to the off state. Listing 10.7 displays how 
checkboxes and radio items are created. 

import wx 

class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 
                          "Toggle Items Example") 
        p = wx.Panel(self) 
        menuBar = wx.MenuBar() 
        menu = wx.Menu() 
        exit = menu.Append(-1, "Exit") 
        self.Bind(wx.EVT_MENU, self.OnExit, exit) 
        menuBar.Append(menu, "Menu") 

        menu = wx.Menu() 
        menu.AppendCheckItem(-1, "Check Item 1") 
        menu.AppendCheckItem(-1, "Check Item 2") 
        menu.AppendCheckItem(-1, "Check Item 3") 
        menu.AppendSeparator() 
        menu.AppendRadioItem(-1, "Radio Item 1") 
        menu.AppendRadioItem(-1, "Radio Item 2") 

Listing 10.7 Building toggle menu items

Figure 10.4 Sample toggle menus, showing 
both checkboxes and radio button menu items



312 CHAPTER 10 
Creating and using wxPython menus
        menu.AppendRadioItem(-1, "Radio Item 3") 
        menuBar.Append(menu, "Toggle Items") 
        
        self.SetMenuBar(menuBar) 

    def OnExit(self, event): 
        self.Close() 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    frame = MyFrame() 
    frame.Show() 
    app.MainLoop() 

As you can see from the listing, a checkbox menu item is added using the method 
AppendCheckItem(id, item, helpString=""), which is similar to Append(). The 
arguments are the wxPython identifier, the display name in the menu, and the 
Help string to display in a status bar. Similarly, you can also use PrependCheckItem 
(id, item, helpString="") and InsertCheckItem(pos, id, item, helpString=""), 
both of which behave identically to their ordinary, non-checkbox, counterparts. 

 Radio button menu items can be appended using the AppendRadioItem(id,
item, helpString="") method, and you can also use the methods PrependRadio-
Item(id, item, helpString="") and InsertRadioItem(pos, id, item, help-
String=""). Any set of consecutive radio menu items is considered a group, and 
only one member of the group can be toggled on at a time. The boundaries of a 
radio group are marked by the first non-radio menu item or menu separator in 
either direction. By default, the first member of a radio group is checked when 
the radio group is created. 

 Toggle menu items can be created using Append() by passing the kind param-
eter one of the constant values wx.ITEM_CHECK, wx.ITEM_NORMAL, wx.ITEM_RADIO, or 
wx.ITEM_SEPARATOR, each of which creates a menu item of the appropriate type. 
This is helpful if you are automating the creation of the menu items using some 
kind of data-driven process. All types of menu items can be created using the 
same method, although to make a separator by specifying a kind of wx.ITEM_ 
SEPARATOR you must pass wx.ID_SEPARATOR for the id parameter.

 You can also create a toggle menu item when you use the wx.MenuItem con-
structor, by passing one of the constant values mentioned earlier to the kind
parameter of the constructor. The resulting menu item can be added to a menu 
using any of the AppendItem(), PrependItem(), or InsertItem() family. 

 To determine the toggle state of a menu item, use IsCheckable(), which 
returns True if the item is a checkbox or radio item, or IsChecked(), which returns 



Sprucing up your menus 313
True if the item is a toggle and it is currently checked. You can set the toggle state 
of a menu item using the Check(check) method, which takes a Boolean argument, 
and sets the menu item appropriately. If the item is a radio button, the other 
items in the group are also changed. 

 You can also get the toggle state of a menu item from the menu or menu bar 
by using the method IsChecked(id), which takes the identifier of the menu item 
you wish to check. The usual restrictions apply—the menu bar item only works if 
it has been attached to a frame, and the menu version only finds menu items 
within that menu. You can set the state of the menu item from either the menu 
bar or menu using Check(id, check), which sets the state of the menu item with 
the given ID to the result of the Boolean. 

10.3 Sprucing up your menus

Over the next few sections we’ll discuss alternatives to make your menus more 
useful by making your menus more complex. First, we’ll discuss nested submenus, 
then we’ll talk about placing pop-up menus anywhere in your application. We’ll 
close the section with thoughts on fancy styles for menu items.

10.3.1 How do I create a submenu? 

If your application becomes too complex, 
you can create a submenu inside a top-
level menu, which allows you to nest 
menu items and fit more items within a 
top-level menu. Submenus are particu-
larly useful at grouping a set of options 
that belong together logically, especially 
when there would be too many options 
to fit comfortably at the top-level. Fig-
ure 10.5 displays a sample wxPython 
application with a submenu. 

 Listing 10.8 displays the code used to generate the figure. 

import wx 

class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 

Listing 10.8 Building a nested submenu

Figure 10.5 A submenu in wxPython



314 CHAPTER 10 
Creating and using wxPython menus
                          "Sub-menu Example") 
        p = wx.Panel(self) 
        menu = wx.Menu() 

        submenu = wx.Menu() 
        submenu.Append(-1, "Sub-item 1") 
        submenu.Append(-1, "Sub-item 2") 
        menu.AppendMenu(-1, "Sub-menu", submenu)   
        
        menu.AppendSeparator() 
        exit = menu.Append(-1, "Exit") 
        self.Bind(wx.EVT_MENU, self.OnExit, exit) 
                  
        menuBar = wx.MenuBar() 
        menuBar.Append(menu, "Menu") 
        self.SetMenuBar(menuBar) 

    def OnExit(self, event): 
        self.Close() 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    frame = MyFrame() 
    frame.Show() 
    app.MainLoop() 

You’ll notice from listing 10.8 that a submenu is created in the same way as a top-
level menu. You create an instance of the class wx.Menu, then populate it with 
menu items in the same way. The difference is that rather than appending it to 
the top-level menu bar, you append it to another menu using the method Append-
Menu(id, text, submenu, helpStr). The arguments are very similar to Append(). 
The id is the wxPython identifier of the menu being added. The text argument is 
the display string used within the parent menu. The submenu itself is passed in 
the submenu parameter, and the text for the status bar goes in helpStr. In addi-
tion, there are also menu versions of the other insertion methods, Prepend-
Menu(id, text, submenu, helpStr) and InsertMenu(pos, text, submenu, helpStr). 
These methods behave analogously to the menu item versions discussed earlier 
in this chapter.

 Remember that the order of the steps for submenus is a little more important 
than for plain menu items, and it’s recommended that you add the items to the 
submenu first, and then attach the submenu to the parent menu. This enables 
wxPython to correctly register keyboard shortcuts to the correct menu. You can 
nest submenus to arbitrary depth by appending to an existing submenu rather 

Appending 
the submenu



Sprucing up your menus 315
than the top-level menu, but you still need to create the new submenu before add-
ing it to its parent. 

10.3.2 How do I create a pop-up menu? 

Menus don’t just pull down from menu 
bars at the top of your frame. They can 
also pop up from anywhere in the frame. 
Most of the time, a pop-up menu is used 
to provide actions that are context-sensi-
tive, and that relate to the object at the 
location where the user clicks. Figure 10.6
displays an example of pop-up menus 
in action. 

 Pop-up menus are created very similarly to standard menus, however, they are 
not attached to the menu bar. Listing 10.9 displays the code for a sample pop-
up menu. 

import wx 

class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 
                          "Popup Menu Example") 
        self.panel = p = wx.Panel(self) 
        menu = wx.Menu() 
        exit = menu.Append(-1, "Exit") 
        self.Bind(wx.EVT_MENU, self.OnExit, exit) 

        menuBar = wx.MenuBar() 
        menuBar.Append(menu, "Menu") 
        self.SetMenuBar(menuBar) 

        wx.StaticText(p, -1, 
            "Right-click on the panel to show a popup menu", 
            (25,25)) 

        self.popupmenu = wx.Menu()   
        for text in "one two three four five".split():   
            item = self.popupmenu.Append(-1, text) 
            self.Bind(wx.EVT_MENU, self.OnPopupItemSelected, item) 
        p.Bind(wx.EVT_CONTEXT_MENU, self.OnShowPopup)   

    def OnShowPopup(self, event):   
        pos = event.GetPosition() 

Figure 10.6 A pop-up menu being popped up

Listing 10.9 Code to create a pop-up menu in an arbitrary widget

Creating a menu Populating 
the menu

Binding a show 
menu event

Displaying the pop-up



316 CHAPTER 10 
Creating and using wxPython menus
        pos = self.panel.ScreenToClient(pos) 
        self.panel.PopupMenu(self.popupmenu, pos) 

    def OnPopupItemSelected(self, event): 
        item = self.popupmenu.FindItemById(event.GetId()) 
        text = item.GetText() 
        wx.MessageBox("You selected item '%s'" % text) 

    def OnExit(self, event): 
        self.Close() 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    frame = MyFrame() 
    frame.Show() 
    app.MainLoop() 

The pop-up menu is created like any other menu (notice the use of a for loop to 
quickly create the menu items). Instead of being appended to the menu bar, it is 
stored in the instance variable self.popupmenu. Then the frame binds the method 
OnShowPopup() to the event wx.EVT_CONTEXT_MENU. The event wx.EVT_CONTEXT_ 
MENU is triggered by whatever the standard mechanism is for triggering a pop-up 
menu on the underlying operating system. Under MS Windows and GTK, the 
mechanism is a right mouse click, under the Mac OS, it’s a control click. 

 When the user performs a pop-up-triggering click on the frame, the OnShow-
Popup() handler method is called. The first thing this method does is determine 
the position to display the menu. The event position given in the wx.Context-
MenuEvent instance passed to this method is stored in absolute screen coordinates, 
so we need to convert the coordinates to be relative to the panel which contains 
the pop-up, using the method ScreenToClient().

 After that the pop-up menu is invoked with the method PopupMenu(menu, pos)
or you can use the related method PopupMenuXY(menu, x, y). The PopupMenu func-
tion does not return until either a menu item has been selected or the menu is dis-
missed by pressing escape or clicking outside the menu region. If a menu item is 
selected, its event is processed normally (meaning that it needs to have a method 
bound to EVT_MENU), and the event processing is also completed before the Pop-
upMenu method returns. The return value of PopupMenu is an uninteresting Boolean, 
so the only mechanism for responding to the selected item is the ordinary menu 
event mechanism. 

 A pop-up menu can have a title that displays at the top of the menu when it is 
activated. The title is manipulated with the properties wx.Menu.SetTitle(title)
and wx.Menu.GetTitle(). 



Sprucing up your menus 317
10.3.3 How can I create fancier menus? 

If ordinary menu items aren’t interesting 
enough for you, you can add a custom bit-
map to be displayed next to the menu 
item (or used as a custom check symbol). 
Under MS Windows, you can also adjust 
the font and color of the menu item. Fig-
ure 10.7 displays a fancy menu example. 

 Listing 10.10 displays the code to pro-
duce the menu. To determine whether 
the program is running under Windows, 
you can check that 'wxMSW' is in the
wx.PlatformInfo tuple. 

import wx 

class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 
                          "Fancier Menu Example") 
        p = wx.Panel(self) 
        menu = wx.Menu() 

        bmp = wx.Bitmap("open.png", wx.BITMAP_TYPE_PNG) 
        item = wx.MenuItem(menu, -1, "Has Open Bitmap") 
        item.SetBitmap(bmp)   
        menu.AppendItem(item) 

        if 'wxMSW' in wx.PlatformInfo: 
            font = wx.SystemSettings.GetFont( 
                wx.SYS_DEFAULT_GUI_FONT) 
            font.SetWeight(wx.BOLD) 
            item = wx.MenuItem(menu, -1, "Has Bold Font") 
            item.SetFont(font)   
            menu.AppendItem(item) 

            item = wx.MenuItem(menu, -1, "Has Red Text") 
            item.SetTextColour("red")   
            menu.AppendItem(item) 
            
        menu.AppendSeparator() 
        exit = menu.Append(-1, "Exit") 
        self.Bind(wx.EVT_MENU, self.OnExit, exit) 
                  

Listing 10.10 Sample code for fancier menu items

Figure 10.7 Menu items with custom 
bitmaps, colors, and fonts

Adding a custom bitmap

Changing the font

Changing the text color



318 CHAPTER 10 
Creating and using wxPython menus
        menuBar = wx.MenuBar() 
        menuBar.Append(menu, "Menu") 
        self.SetMenuBar(menuBar) 

    def OnExit(self, event): 
        self.Close() 

if __name__ == "__main__": 
    app = wx.PySimpleApp() 
    frame = MyFrame() 
    frame.Show() 
    app.MainLoop() 

Adding color or style to a menu item is primarily a matter of manipulating the 
properties that control the display. The only property that is applicable on a plat-
form other than Windows is the bitmap, managed by GetBitmap(), that returns an 
item of type wx.Bitmap. There are two setters. The first, which works on all plat-
forms, is SetBitmap(bmp). This sets a bitmap displayed next to the menu item at 
all times. If you are on MS Windows and want to set custom bitmaps for a toggle 
menu, you can use SetBitmaps(checked, unchecked=wx.NullBitmap), which cre-
ates one bitmap to be displayed when the item is checked, and one when it is 
unchecked. If the menu item is not a toggle, the checked argument is unused. 

 Under MS Windows, there are three other properties that you can change 
to affect menu item appearance, as listed in table 10.7. We recommend that you 
use these with caution, and only in cases where they would clearly enhance the 
user experience.

Now that we’ve covered the functional aspects of using menus, we’ll close the 
chapter with a brief discussion of how to use menus well and how to make your 
application easier for your users.

Table 10.7 Menu item appearance properties 

Methods Description 

GetBackgroundColour()  
SetBackgroundColour(colour) 

The property type is wx.Colour, the setter can also be passed a string 
which is the name of a wxPython color. Manages the background color of 
the item. 

GetFont()  
SetFont(font) 

The display font of the item. Type is wx.Font.

GetTextColour()  
SetTextColour(colour) 

Manages the color of the text in the item display. Type as in  
background color. 



Usability guidelines for menus 319
10.4 Usability guidelines for menus 

For most complex applications, the menu bar is the user’s primary point of con-
tact with the application’s functionality. Getting the menu right can go a long way 
toward making the application easier to use; getting it wrong can make your 
application impossible to navigate. With that in mind, here are some guidelines 
for usability in menu design. 

10.4.1 Keeping menus uniform in length

Scanning the applications you use on a regular basis suggests that the upper 
bound on menu length is about 10-15 items before the user’s eyes start to glaze 
over. Longer menus should definitely be split up. You should lean toward creating 
menus that are roughly the same length, keeping in mind that it’s not always pos-
sible or desirable. 

10.4.2 Creating logical item groups

You should never have a grouping of more than five items without a separator, 
unless there’s a very strong logical reason to do so—such as a history list, or a list 
of plugins. Groups of more than five items tend to be very difficult for people to 
process. To have a larger group, the items would need to be very strongly linked 
together and have a reason why the user would expect the list to be longer than 
five items. 

Adhere to standards when ordering menus
You should always stick to the accepted standard for menu ordering. The left-
most menu is FILE, and it contains new, open, save, print, and quit functionality, 
usually in that order, although other functionality is often added between print-
ing and quitting. Nearly every application will use that functionality. The next 
menu is EDIT, and it contains undo, cut, copy, paste, and usually find, depending 
on what is appropriate for your application. The HELP menu is always right-
most, and a windows menu is frequently next to that. In between, you are gener-
ally on your own. 

Provide easy access to commonly-used items 
The user will always be able to access items that are higher in the menu more 
quickly than those at the bottom. The implication is that more commonly used 
options should be at the top. An exception is that most studies show that it’s faster 
to hit the second item than the first. 



320 CHAPTER 10 
Creating and using wxPython menus
Use informative menu names
Remember that the width of the menu target on the menu bar is proportional to 
the length of the name, and the width of the menu when it opens is proportional 
to the longest name of the items within it. Try to avoid giving top-level menus 
names shorter than four letters. Except for common names, we recommend that 
they be longer whenever possible, without being unclear. Don’t be afraid to give a 
menu item longer text, although at about the 30-40 character range they become 
hard to read. 

Remember the ellipsis when an item leads to a dialog
Any menu item that results in a dialog box being displayed should have a label 
that ends in an ellipsis (...). 

Adhere to standard keyboard shortcuts
For keyboard shortcuts, always use the 
accepted standards for common functional-
ity, as displayed in table 10.8.

 There is no commonly accepted shortcut 
for Redo, you’ll sometimes see Ctrl-y, Alt-z, 
or another combination. If you are provid-
ing many keyboard shortcuts beyond the 
common set, it’s recommended that you 
provide the user with an option to change 
them. Keyboard shortcuts are most valuable 
in an application where the user is doing a 
lot of typing, such as a text editor. They are 
less valuable in an application where the 
user is doing a lot of mouse work. 

Reflect the active toggle state
When creating a toggle menu item, there are 
a couple of things to be careful about. First, 
remember that an unchecked checkbox 
menu item looks identical to a normal menu 
item. If the item text says something like 
fancy mode on, the user may not know that selecting the menu item actually 
changes fancy mode. Another concern is having the item text reflect the state that 
is not currently active, rather than the one that is. This happens when you use the 

Table 10.8 Common keyboard shortcuts

Shortcut Function 

Ctrl-a Select all 

Ctrl-c Copy 

Ctrl-f Find 

Ctrl-g Find Again 

Ctrl-n New 

Ctrl-o Open 

Ctrl-p Print 

Ctrl-q Quit 

Ctrl-s Save 

Ctrl-v Paste 

Ctrl-w Close 

Ctrl-x Cut 

Ctrl-z Undo 



Summary 321
menu text to say what the selection does, for example saying Turn fancy mode off if 
fancy mode is on. There is no statement in the menu indicating what the state of 
fancy mode actually is, which can be confusing. To avoid this problem, it’s a good 
idea to have a custom bitmap for unchecked menus (on platforms which allow 
this) to give the user a visual cue that the menu is a toggle. If you can’t do that, 
text like toggle fancy mode or switch fancy mode (now on) can be clearer. 

Use nesting cautiously
Nested hierarchical menus can be awkward to navigate, since they force the user 
to tunnel the mouse pointer through a narrow alley, then swerve at a 90-degree 
angle. You definitely want to avoid having more than one layer of nesting. If you 
are trying to map something that is genuinely tree-like, such as a directory tree, 
you may want to consider a separate dialog box with a tree control. Also, if you 
think your user population is going to have any kind of accessibility or coordina-
tion issues, try to avoid nested menus. 

Avoid using font or color
Can you remember any application ever making use of font or color in its menu 
items? Neither do we (with the exception of menus whose purpose is to select a 
font or color). Definitely for use only in very rare cases. 

10.5 Summary 

■ Menus are the most commonly used mechanism for allowing the user to trig-
ger commands in a GUI application. Menus in wxPython are created using 
three primary classes, wx.MenuBar, which represents the menu bar and con-
tains menus, represented by wx.Menu. The menu is made up of menu items, 
represented by wx.MenuItem. To build a menu bar, the menu bar item is 
created and attached to a frame. Each individual menu is created, and menu 
items are added to it. Then the menu is added to the menu bar. Items can be 
added at any place in the menu. An item can also be a menu separator, 
rather than a normal menu item. Menu item objects can be created explicitly 
or implicitly created when the item is added to the parent menu. 

■ Selecting a menu triggers a command event with the type wx.EVT_MENU. 
Menu events are bound via the containing frame, not via the menu item, 
menu, or menu bar. This allows toolbar buttons to trigger the same 
wx.EVT_MENU event as a menu item. If you have multiple menu items with 
consecutive identifiers that all have the same handler, they can be bound in 
one call using the event type wx.EVT_MENU_RANGE. 



322 CHAPTER 10 
Creating and using wxPython menus
■ Menu items can be found by ID or by label from either the containing menu 
or the containing menu bar. A menu item can also be enabled or disabled 
from its containing menu or menu bar. 

■ A menu can be attached to another menu rather than the menu bar, mak-
ing it a nested submenu. There are specific methods of wx.Menu which allow 
you to add a submenu in the same way that a typical menu item is added. 

■ Menus can be associated with keys in two ways. A mnemonic is the keyboard 
menu navigation triggered when the user presses the ALT key. When in 
mnemonic mode, the key presses trigger the appropriate menu or menu 
item. Mnemonics are created by inserting an ampersand before the appro-
priate character when creating the menu. A true accelerator key can be cre-
ated to bind a key combination to a menu item. This information can also 
be included when the menu item is created. The decorators for keyboard 
shortcuts are ignored for the purposes of finding a menu item by name. 

■ A menu item can have a toggle state. It can be a checkbox menu item, 
which switches from a checked to unchecked state and vice-versa when 
selected. The item can also be a radio menu item, in which case it is part of 
a group, only one of which can be in the checked state at a time. The 
checked state of a menu item can also be queried or changed via the menu 
bar or containing menu. 

■ A menu can be created to pop up on a click inside a wxPython widget, 
rather than pulling down from the menu bar. This is done by trapping the 
event type wx.EVT_CONTEXT_MENU, and using the method PopupMenu() to dis-
play the pop-up. Menu item events within the pop-up are handled normally.

■ You can create a custom bitmap for a menu item, and under Windows oper-
ating systems, you can change the color and font of a menu item. Common 
sense should dictate the use of this feature.



Placing widgets 
with sizers
This chapter covers
■ Understanding sizers
■ Spacing widgets in sizers
■ Using the grid family of sizers
■ Using box sizers
■ Looking at sizers in action
323



324 CHAPTER 11 
Placing widgets with sizers
Traditionally, one of the most vexing problems in programming a UI is managing 
the physical layout of the widgets within the window. In the beginning, there was 
absolute positioning, and the programmer would explicitly set the size and posi-
tion of each widget on the screen. This is—to put it mildly—tedious, not to 
mention a pain in the neck. Even worse, absolute positioning only works if you 
have absolute control over the window size and number of widgets. If you allow 
the user to do something wild and crazy like make his text-entry widget bigger by 
resizing the window, you need to capture the window-resize event, then explicitly 
change the size and position of each widget. While you’re doing that, make sure 
that the widgets still look good and don’t overlap or fall off the edge of the win-
dow. This is even more of a pain in the neck and it gets worse if the user’s inter-
action normally changes the number and type of widgets in the display. And, of 
course, if you or your client decide you want a different interface look, you have 
to go through the whole process all over again. 

 What you need is a structure that decides how to resize and move the widgets 
based on a predetermined pattern. There have been several solutions proposed 
to this problem. There is even a deprecated mechanism or two in the wxPython 
system. The recommended way to deal with complicated layout these days is by 
using a sizer. A sizer is an automated algorithm for laying out a group of widgets. 
A sizer is attached to a container, usually a frame or panel. Subwidgets that are 
created within a parent container must be separately added to the sizer. When the 
sizer is attached to the container, it then manages the layout of the children con-
tained inside it. 

 The advantages of using a sizer are substantial. The sizer will automatically 
respond by recalculating the layout of its children when its container’s size is 
changed. Similarly, if one of the children changes size, the sizer can automatically 
refresh the layout. Furthermore, sizers are easy to manage when you want to 
change the layout. The biggest downside is that the layouts sizers enforce can be 
somewhat restrictive. However, the most flexible sizers, the grid bag and box, will 
be able to do nearly everything you’ll want them to. 

11.1 What’s a sizer? 

A wxPython sizer is an object whose sole purpose is to manage the layout of a set 
of widgets within a container. The sizer is not a container or a widget itself. It is 
just the representation of an algorithm for laying out a screen. All sizers are 
instances of a subclass of the abstract class wx.Sizer. There are five sizers 



What’s a sizer? 325
provided with wxPython, defined in table 11.1. Remember, sizers can be placed 
inside other sizers to give you even more flexibility. 

If you want your layout to be grid- or box-like, wxPython can definitely accommo-
date; in practice almost any useful layout can be imagined as either a grid or a set 
of boxes. 

 All sizers know the minimal size of each of their children. Typically, the sizer 
also allows for additional information about the layout, such as how much space to 
place between widgets, how much it can increase the size of a widget to fill space, 
and how to align widgets when they are smaller than their allotted space. From 
these bits of information the sizer uses its layout algorithm to determine the size 
and position of each child. Each kind of sizer in wxPython will produce a different 
final layout from the same group of child widgets. You can see this throughout this 
chapter, as we use very similar layouts to demonstrate each sizer type.

 There are three basic steps you take to use a sizer: 

1 Add the sizer to a container. Connect the sizer to the widget whose chil-
dren it is managing. A sizer is added to the container widget using the 
method SetSizer(sizer) of wx.Window. Since this is a method of wx.Window,
this means that any wxPython widget can have a sizer, although a sizer is 
only meaningful for widgets which are containers. 

2 Add each child widget to the sizer. All of the child widgets need to be sep-
arately added to the sizer. Merely creating child widgets with the con-
tainer as a parent is not enough. The primary method for adding a widget 

Table 11.1 The predefined sizers in wxPython

Sizer Type Description

Grid A very basic grid layout. Best used when the widgets you are placing are all exactly the 
same size and neatly fall into a regular grid.

Flex grid A slight change from the grid sizer, allowing better results when the widgets are  
different sizes. 

Grid bag The most flexible member of the grid sizer family, allowing for more arbitrary placement of 
widgets in the grid. Useful for layouts where the display can be thought of as an irregular 
grid, with perhaps some items that take up more than one grid square.  

Box Either a horizontal or vertical box with widgets laid out in a line. Very flexible in controlling 
widget behavior when resized. Generally used in a nested fashion. Useful for nearly any kind 
of layout, although figuring out exactly how to nest the boxes can be tricky. 

Static box A standard box sizer with a line and a title around it.



326 CHAPTER 11 
Placing widgets with sizers
to a sizer is, appropriately enough, Add(). The Add() method has a couple 
of different signatures, which will be discussed in the next section. 

3 (optional) Enable the sizer to calculate its size. Tell the sizer to calculate 
its size based on its children by calling either the wx.Window method Fit()
on the parent window object or the Fit(window) method of the sizer. (The 
window method redirects to the sizer method.) In either case, the Fit()
method asks the sizer to calculate its size based on what it knows about its 
children, and it resizes the parent widget to fit. There is a related method, 
FitInside(), which does not change the display size of the parent widget, 
but does change its virtual size—meaning that if the widget is inside 
a scrolled panel, wxPython would recalculate whether or not scroll bars 
are needed. 

At this point we need to discuss both the behavior of specific sizers as well as the 
behavior common to all sizers. There’s always a question whether to present the 
general or specific information first. Our solution is to start by presenting the 
grid sizer, which is the easiest to understand. After that, we’ll discuss behavior 
common to all sizers, using the grid sizer as an example. (It helps that most of the 
common behaviors are very easy to visualize using the grid sizer as an example.) 
After that, we’ll show the rest of the specific sizer types. 

11.2 Basic sizers with the grid sizer

All of the following examples use a boring little widget whose goal is to take up 
space in a layout so you can see how the sizers work. Listing 11.1 gives the code 
for that widget, which is imported by the rest of the examples in this chapter. 
You’ll see plenty of pictures of it throughout—it’s basically a simple rectangle with 
a label. 

import wx 

class BlockWindow(wx.Panel): 
    def __init__(self, parent, ID=-1, label="", 
                 pos=wx.DefaultPosition, size=(100, 25)): 
        wx.Panel.__init__(self, parent, ID, pos, size, 
                          wx.RAISED_BORDER, label) 
        self.label = label 
        self.SetBackgroundColour("white") 

Listing 11.1 The block window, used as a widget in later examples



Basic sizers with the grid sizer 327
        self.SetMinSize(size) 
        self.Bind(wx.EVT_PAINT, self.OnPaint) 

    def OnPaint(self, evt): 
        sz = self.GetClientSize() 
        dc = wx.PaintDC(self) 
        w,h = dc.GetTextExtent(self.label) 
        dc.SetFont(self.GetFont()) 
        dc.DrawText(self.label, (sz.width-w)/2, (sz.height-h)/2) 

We’ll be placing several of these block widgets inside a frame using different siz-
ers throughout this chapter. We’ll start with the grid sizer.

11.2.1 What is a grid sizer? 

The simplest sizer offered by wxPython is the 
grid. As the name implies, a grid sizer places its 
children in a two-dimensional grid. The first 
widget in the sizer’s child list goes in the upper 
left corner of the grid, and the rest are laid out 
left-to-right and top-to-bottom, until the last 
widget is placed in the bottom right of the grid. 
Figure 11.1 shows an example, with nine wid-
gets placed in a 3 x 3 grid. Notice that there is a slight gap between each widget. 

 When you resize the grid sizer, each slot gets bigger, but by default the widgets 
stay the same size, and stay attached to the top left corner of their assigned slot. 
Figure 11.2 shows the same window after being resized. 

 Listing 11.2 shows the code used to generate figures 11.1 and 11.2. 

Figure 11.1  
A simple grid sizer layout

Figure 11.2  
The grid sizer layout, 
made bigger by the user



328 CHAPTER 11 
Placing widgets with sizers
import wx 
from blockwindow import BlockWindow 

labels = "one two three four five six seven eight nine".split() 

class GridSizerFrame(wx.Frame): 
    def __init__(self):                   
        wx.Frame.__init__(self, None, -1, "Basic Grid Sizer") 
        sizer = wx.GridSizer(rows=3, cols=3, hgap=5, vgap=5)   
        for label in labels: 
            bw = BlockWindow(self, label=label) 
            sizer.Add(bw, 0, 0)   
        self.SetSizer(sizer)   
        self.Fit() 

app = wx.PySimpleApp() 
GridSizerFrame().Show() 
app.MainLoop() 

As you can see from listing 11.2, a grid sizer is an instance of the class wx.Grid-
Sizer. The constructor explicitly sets the four properties which are unique to the 
grid sizer: 

wx.GridSizer(rows, cols, vgap, hgap) 

In this constructor rows and cols are integers that specify the size of the grid—
the number of widgets to be placed across and down. If either is set to 0, its value 
is inferred from the number of children in the sizer. For example, if the sizer cre-
ated with the constructor wx.GridSizer(2, 0, 0, 0) has eight children, it will need 
to have four columns to fit the children in two rows, as specified. 

 The vgap and hgap parameters allow you to put vertical and horizontal space 
between the widgets. The vgap is the number of pixels to place between adjacent 
columns, and the hgap is the number of pixels to place between adjacent rows. 
These pixels are in addition to any pixels specified by the widget as its border, as 
we’ll see in a couple more sections. The properties rows, cols, vgap, and hgap all 
have their getter and setter methods—GetRows(), SetRows(rows), GetCols(), Set-
Cols(cols), GetVGap(), SetVGap(gap), GetHGap(), and SetHGap(gap). 

 The sizing and placement algorithm of the grid sizer is straightforward. It cre-
ates its initial grid layout when Fit() is first called. If necessary, the number of rows 
and columns are calculated from the number of elements in the list. Each space in 
the grid is the same size—even if the size of each widget is different. The largest 

Listing 11.2 Using a grid sizer

Create the 
grid sizer

Add widget to sizer

Associate sizer 
with frame



Basic sizers with the grid sizer 329
dimension is used to calculate the size—each space in the grid is as wide as the wid-
est child and as tall as the tallest child. Because of this, a grid sizer is best suited for 
layouts where the children are naturally all the same size (a calculator keypad is a 
classic example). A grid sizer with wildly different sized widgets tends to look a lit-
tle odd. If you still want a grid-like layout, but you have different sized widgets, you 
will probably be better off looking at either the flex grid sizer or the grid bag sizer. 

11.2.2 How do you add or remove children from a sizer? 

The order in which child widgets are added to the sizer is very important. This is 
different from the general case of adding children to a parent widget. The typical 
layout algorithm for a sizer takes each child one at a time in order to determine 
its place in the display. The placement of the next item is dependent on where the 
previous items have already gone. For example, the grid sizer moves left to right 
and top to bottom based on the order of the widgets. In most cases, when you cre-
ate the sizer in the parent widget constructor, you will be able to add the items in 
the correct order. However, in some cases, you’ll need more flexibility, particu-
larly if you are dynamically changing your layout at runtime. 

Using the Add() method
The most common method for adding a widget to a sizer is Add(), which appends 
the new widget to the end of the sizer’s child list. The exact meaning of being at 
the end of the list depends on the sizer type, but in general it means that the new 
widget will display toward the lower right of the display. The Add() method has 
three distinct styles: 

Add(window, proportion=0, flag=0, border=0, userData=None) 
Add(sizer, proportion=0, flag=0, border=0, userData=None) 
Add(size, proportion=0, flag=0, border=0, userData=None) 

The first version is the one you will use most often, and it allows you to append a 
widget to the sizer. The second version is used to nest one sizer inside another—
this is most commonly done with box sizers, but you can do it with any sizer type. 
The third version allows you to add an empty space the size of the wx.Size object 
or (width, height) tuple to the sizer, generally used as a separator (for example, 
in a toolbar). Again, this is most often used in box sizers, but can be used in any 
sizer to make an area of the window blank or to enforce a separation between the 
other widgets.

 The other parameters affect how the item is displayed within the sizer. 
Some of these items are only valid for certain sizers. The proportion element is 
only used by box sizers, and affects how much an item is stretched when the 



330 CHAPTER 11 
Placing widgets with sizers
parent window changes size. This will be discussed, along with box sizers, later 
in this chapter. 

 The flag option is a place to put any of a number of bit flags which control 
alignment, border, and resizing. Those options will be discussed in a later section. 
The border parameter contains the width of the border, if a border is specified in 
the flag option. The userData parameter can be used to pass extra data if needed 
by a sizer for its algorithm. You might use this if you were designing a custom sizer. 

Using the Insert() method
As you might expect if you’ve read the Menus chapter (chapter 10), there are 
related methods for inserting the new widget at other places in the sizer. The 
Insert() method allows you to place the new widget at an arbitrary index. It also 
has three flavors: 

Insert(index, window, proportion=0, flag=0, border=0, userData=None) 
Insert(index, sizer, proportion=0, flag=0, border=0, userData=None) 
Insert(index, size, proportion=0, flag=0, border=0, userData=None)

Using the Prepend() method
There is also a Prepend() method, which adds the new widget, sizer, or space at 
the beginning of the sizer list, meaning that it will tend to display toward the 
upper left: 

Prepend(window, proportion=0, flag=0, border=0, userData=None) 
Prepend(sizer, proportion=0, flag=0, border=0, userData=None) 
Prepend(size, proportion=0, flag=0, border=0, userData=None) 

Figure 11.3 shows what the grid layout from 
listing 11.1 would look like if Prepend() had 
been used instead of Add().

 If you add new items to the sizer after it 
has already been displayed on screen, you 
need to call the sizer method Layout() to 
force the sizer to rearrange itself to accommo-
date the new item. 

Using the Detach() method
In order to remove an item from the sizer, you call the Detach() method, which 
removes the item from the sizer, but does not destroy it. This is especially useful if 
you want to hold on to the item you are removing for potential future use. There 
are three ways to use Detach(). You can pass it the window or sizer object that you 
want to detach, or you can pass it the integer index of the object: 

Figure 11.3  
A grid layout with items prepended



Basic sizers with the grid sizer 331
Detach(window) 
Detach(sizer) 
Detach(index) 

In all three cases, the Detach() method returns a Boolean representing whether 
the item was actually removed—it will return false if you try to detach an item that 
is not in the sizer. Unlike some other removal methods we’ve seen, Detach() does 
not return the item being removed, so if you want to keep it around, you need to 
already have a variable referencing the object. 

 Removing the item from the sizer does not change the on-screen display auto-
matically. You need to call the Layout() method to force a resize and redraw. 

 You can always get a reference to the sizer that a window is in by using the 
wx.Window method GetContainingSizer(). The method returns None if the widget 
is not contained by a sizer. 

11.2.3 How do sizers manage the size and alignment  
of their children? 

When a new item is added to a sizer, the sizer uses either the initial size of the 
item, or the item’s best size if there is no initial size set, in its layout calculations. 
In other words, the sizer does not adjust the size of an item until the sizer is asked 
to, usually in the context of a window being resized. 

 When the sizer parent widget is resized, the sizer needs to change the size of its 
components in response. By default, the sizer keeps the widget aligned to the top 
and left of its assigned space in the layout—although the exact specifics of what is 
considered to be its assigned space vary from sizer to sizer. 

 You can adjust the resize behavior of a specific widget by assigning specific val-
ues to the flag parameter when you add the widget to the sizer. Figure 11.4 shows 
the result of several different flags applied to the basic grid sizer example, after a 
user makes the window larger. 

Figure 11.4  
A grid with resizing widgets



332 CHAPTER 11 
Placing widgets with sizers
Listing 11.3 shows the code used to generate figure 11.4. It is identical to the pre-
vious listing, except for the addition of a dictionary of flag values to be applied to 
the widgets as they are added. These values are shown in bold font.

import wx 
from blockwindow import BlockWindow 

labels = "one two three four five six seven eight nine".split() 
flags = {"one": wx.ALIGN_BOTTOM, "two": wx.ALIGN_CENTER,                 
         "four": wx.ALIGN_RIGHT, "six": wx.EXPAND, "seven": wx.EXPAND,   
         "eight": wx.SHAPED}                                             
    
class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, "GridSizer Resizing") 
        sizer = wx.GridSizer(rows=3, cols=3, hgap=5, vgap=5) 
        for label in labels: 
            bw = BlockWindow(self, label=label) 
            flag = flags.get(label, 0) 
            sizer.Add(bw, 0, flag) 
        self.SetSizer(sizer) 
        self.Fit() 

app = wx.PySimpleApp() 
TestFrame().Show() 
app.MainLoop() 

In this example, widgets “one,” “two,” and “four” change which part of the grid 
they align with using the flags wx.ALIGN_BOTTOM, wx.ALIGN_CENTER, and wx.ALIGN_ 
RIGHT, respectively. You can see that as the window is resized, the widgets stay in 
contact with the side of their slot denoted by the flag (widget “three,” which does 
not specify a flag, stays aligned to the top and left). Widgets “six” and “seven” 
both use the wx.EXPAND flag to tell the sizer to change their size to fill the available 
space, while widget “eight” uses wx.SHAPED to change its size while retaining a 
consistent proportion. 

 Table 11.2 shows the possible values of flag which are relevant for sizing
and alignment. 

 Since these flags are a bitmask, they can be combined using |, in cases where 
that combination would be meaningful. So, wx.ALIGN_TOP | wx.ALIGN_RIGHT keeps 
the widget in the top right corner of its space. (Note that mutually exclusive val-
ues such as wx.ALIGN_TOP | wx.ALIGN_BOTTOM will always resolve to the non-default 

Listing 11.3 A grid sizer with flags for aligment and sizing

Alignment flags



Basic sizers with the grid sizer 333
value. This is because the default values are integer 0 and would not change the 
value of the other operand in a bitwise or operation.) 

 There are a few methods that you can use to manipulate the size and position-
ing of a sizer or its component widgets at runtime. You can obtain the current size 
and position of the sizer itself using the methods GetSize() and GetPosition()—
the position is relative to the container that the sizer is associated with. This is 
most helpful if the sizer is nested inside another sizer. You can force a sizer to take 
on a specific size by calling the method SetDimension(x, y, width, height). After 
this method is called, the sizer recalculates the size of its children based on its new 
size and position. 

Table 11.2 Size and alignment behavior flags

Flag Description 

wx.ALIGN_BOTTOM Aligns the widget to the bottom of its allotted space. 

wx.ALIGN_CENTER Places the widget so that the center of the widget is in the center of 
its allotted space. 

wx.ALIGN_CENTER_HORIZONTAL Places the widget so that it is centered horizontally in its  
allotted space. 

wx.ALIGN_CENTER_VERTICAL Places the widget so that it is centered vertically in its allotted space. 

wx.ALIGN_LEFT Aligns the widget so that it is against the left edge of its allotted 
space. This is the default behavior. 

wx.ALIGN_TOP Aligns the widget so that it is against the top edge of its allotted 
space. This is the default behavior. 

wx.EXPAND Changes the size of the widget to fill its allotted space any time the 
size of the parent window changes. 

wx.FIXED_MINSIZE Causes the sizer to keep the minimum size of the item fixed, rather 
that checking if the item's best size has changed each time the sizer 
does a Layout().

wx.GROW The same as wx.EXPAND but two whole characters shorter. Think of 
all the time you’ll save! 

wx.SHAPED Changes the size of the widget such that it fills its allotted space 
along one dimension, and the other dimension is filled in proportion 
to the original shape of the widget. The proportional size of the 
smaller dimension cannot exceed the amount of space given to the 
widget by the sizer. 



334 CHAPTER 11 
Placing widgets with sizers
11.2.4 Can I specify a minimum size for my sizer or its children? 

Another important factor in the layout of widgets within a sizer is the ability to 
specify a minimum size for the sizer itself or for any of its children. Often, you 
don’t want a control or a sizer to get smaller than a particular size, usually because 
it will cause text to be cut off by the edge of the widget. Or, in the case of a nested 
sizer, an entire widget might no longer be displayed inside the window. Given 
their normal placement within a dialog, the OK and Cancel buttons are common 
candidates for falling off the edge of a frame this way. Few things are more frus-
trating for a user than having the buttons for dismissing a dialog disappear. Luck-
ily, you can use the specified minimum size to prevent this from happening. 

 Figure 11.5 shows an example of setting the minimum size for a specific wid-
get. This window has not been resized by a user. 

Listing 11.4 shows the code to create this figure. It is similar to the basic grid code 
with the addition of a single call to SetMinSize(). 

import wx 
from blockwindow import BlockWindow 

labels = "one two three four five six seven eight nine".split() 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, "GridSizer Test") 
        sizer = wx.GridSizer(rows=3, cols=3, hgap=5, vgap=5) 
        for label in labels: 
            bw = BlockWindow(self, label=label) 
            sizer.Add(bw, 0, 0) 
        center = self.FindWindowByName("five") 
        center.SetMinSize((150,50)) 
        self.SetSizer(sizer) 

Listing 11.4 A grid sizer with a minimum size set

Figure 11.5  
A grid sizer with the size 
of one item set explicitly



Basic sizers with the grid sizer 335
        self.Fit() 
app = wx.PySimpleApp() 
TestFrame().Show() 
app.MainLoop() 

When a sizer is created, it implicitly creates a minimum size based on the com-
bined minimum size of its children. Most controls know their minimum “best 
size,” and the sizers query that value to determine the defaults of the layout. If the 
control is created with a size explicitly set, that size overrides the control’s default 
calculation of its minimum best size. The minimum size of a control can also be 
set using the window methods SetMinSize(width, height) and SetSizeHints 
(minW, minH, maxW, maxH)—the latter method allowing you to specify a maximum 
size as well. A widget will usually adjust its best size if attributes of that widget—
typically the display font or label text—change. 

 The best size of a container window is determined from its sizer if the window 
has one. If not, the window’s best size is whatever is required to be large enough 
to show all its children at their current size. If the window has no children, its 
minimum size is used if set. If all else fails, the current size of the container win-
dow is used as its best size. 

 You can access the minimum size for the entire sizer with GetMinSize(). If you 
want to set a larger minimum size for the entire sizer, you do it using SetMinSize 
(width, height), which you can also invoke with a wx.Size instance—SetMin-

Size(size), although in wxPython you’d rarely explicitly create a wx.Size. After 
the minimum size has been set, GetMinSize() returns either the explicit size or the
combined size of the children, whichever is larger. 

 If you want only to set the minimum size of a specific child within the sizer, use 
the SetItemMinSize() method of the sizer. Like Detach(), there are three ways to 
invoke SetItemMinSize(), with a window, a sizer, or an index: 

SetItemMinSize(window, size) 
SetItemMinSize(sizer, size) 
SetItemMinSize(index, size) 

In this case, the window or sizer being set must be a child of the sizer instance 
being invoked. The method will search through the entire nested tree of sizers 
looking for the specific subwindow or subsizer if needed. The index is the index 
in the list of the sizer’s children. The size parameter, either a wx.Size object or a 
(width, height) tuple, is the explicit minimum size of the item within the sizer. If 
the minimum size as you set it is greater than the current size of the widget, it is 



336 CHAPTER 11 
Placing widgets with sizers
automatically resized. You can’t set the maximum size from the sizer, only from 
the widget using SetSizeHints(). 

11.2.5 How do sizers manage the border around each child? 

A wxPython sizer can place a border around any or all of its children. The border 
is a consistent amount of empty space separating the widget from its neighbors. 
The size of the border is taken into account when the sizer calculates the place-
ment of its children—the child is not made smaller to accommodate the width of 
the border. The size of the border does not change when the sizer resizes. 

 Figure 11.6 shows a 10-pixel border 
placed around all or part of the widgets 
in our basic grid layout. In each row, the 
middle element has the border around 
all four sides, while the other widgets 
have a border around only some sides. 
Adding the border does not make the 
widgets smaller; rather, it makes the 
frame larger. 

 Listing 11.5 has the code relevant to figure 11.6. Again, it’s similar to the basic 
grid sizer, but now we’ve added a dictionary of border values, and a 10-pixel bor-
der argument to the Add() statement. 

import wx 
from blockwindow import BlockWindow 

labels = "one two three four five six seven eight nine".split() 
flags = {"one": wx.BOTTOM, "two": wx.ALL, "three": wx.TOP,   
         "four": wx.LEFT, "five": wx.ALL, "six": wx.RIGHT,   
         "seven": wx.BOTTOM | wx.TOP, "eight": wx.ALL,       
         "nine": wx.LEFT | wx.RIGHT}                         

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, "GridSizer Borders") 
        sizer = wx.GridSizer(rows=3, cols=3, hgap=5, vgap=5) 
        for label in labels: 
            bw = BlockWindow(self, label=label) 
            flag = flags.get(label, 0) 
            sizer.Add(bw, 0, flag, 10)   
        self.SetSizer(sizer) 
        self.Fit() 

Listing 11.5 The grid sizer code with borders

Figure 11.6 The grid sizer with a border

Border 
flags

Adding widgets with 
border specified



Using the other sizer types 337
app = wx.PySimpleApp() 
TestFrame().Show() 
app.MainLoop() 

Putting a border around a widget inside a sizer is a two-step process. The first step 
is to pass additional flags to the flags parameter when the widget is added to the 
sizer. You can specify a border around the entire widget using the flag wx.ALL, or 
you can border on a specific side using wx.BOTTOM, wx.LEFT, wx.RIGHT, or wx.TOP. 
Naturally, the flags can be combined for any set of border sides you would like, 
such as wx.RIGHT | wx.BOTTOM which would give you a border on the right and bot-
tom sides of the widget. Since border, sizing, and alignment information is all 
sent via the same flags parameter, you will often have to use the bitwise or oper-
ation to combine border information with sizing and alignment information for 
the same widget. 

 After you send the border information to the flags parameter, you also need 
to pass the width of the border, in pixels, to the border parameter. For example, 
the following call will add the widget to the end of the sizer list, placing a five 
pixel border around the whole thing: 

sizer.Add(widget, 0, wx.ALL | wx.EXPAND, 5) 

The widget will then expand to fill its available space, always leaving five blank 
pixels around it. 

11.3 Using the other sizer types

Having covered the basics, we can move on to the more complicated and flexible 
sizer options. Two of these options—the flex grid sizer and grid bag sizer—are 
essentially variations on the grid theme. The other two—the box and static box 
sizers—use a different and more flexible layout structure.

11.3.1 What’s a flex grid sizer? 

A flex grid sizer is a more flexible version of a grid sizer. It is nearly identical to 
the regular grid sizer, with the following exceptions: 

■ It determines a separate size for each row and column. 
■ By default, it does not change the size of its cells when resized. You can 

specify which rows or columns should grow if needed. 



338 CHAPTER 11 
Placing widgets with sizers
■ It can grow flexibly in either direction, meaning that you can specify pro-
portional amounts for individual child elements, and you can specify the 
behavior in the non-flexible direction. 

Figure 11.7 shows a flex grid sizer in 
action, using the same nine-cell layout as 
used for the basic grid sizer. In this case, 
the center cell has been made larger. 

 Compare this image to figure 11.5, 
showing the same layout in an ordinary 
grid sizer. In the ordinary grid sizer, each 
cell is the same size as the middle object. 
In the flex grid sizer, cells are sized according to the row and column they are part 
of. They take the width of the widest item in their column and the height of the 
tallest item in their row. In this case, the cells for items “four” and “six” are taller, 
because they are in the same row as item “five,” while the cells for “two” and 
“seven” are wider. The cells for “one,” “three,” “seven,” and “nine” are the nor-
mal size, and are unaffected by the larger widget. 

 Figure 11.8 shows the default behavior of a flex grid sizer when resized, which 
is that the size of the cells is unchanged. 

Listing 11.6 shows the code for creating the image in figure 11.8. 

import wx 
from blockwindow import BlockWindow 

labels = "one two three four five six seven eight nine".split() 

class TestFrame(wx.Frame): 
    def __init__(self): 

Listing 11.6 Creating a flex grid sizer

Figure 11.7 A simple flex grid sizer

Figure 11.8  
A flex grid sizer being resized.



Using the other sizer types 339
        wx.Frame.__init__(self, None, -1, "FlexGridSizer") 
        sizer = wx.FlexGridSizer(rows=3, cols=3, hgap=5, vgap=5) 
        for label in labels: 
            bw = BlockWindow(self, label=label) 
            sizer.Add(bw, 0, 0) 
        center = self.FindWindowByName("five") 
        center.SetMinSize((150,50)) 
        self.SetSizer(sizer) 
        self.Fit() 

app = wx.PySimpleApp() 
TestFrame().Show() 
app.MainLoop() 

A flex grid sizer is an instance of wx.FlexGridSizer. The class wx.FlexGridSizer is 
a subclass of wx.GridSizer, so the property methods of wx.GridSizer are still 
available. The constructor for wx.FlexGridSizer is identical to the parent class: 

wx.FlexGridSizer(rows, cols, vgap, hgap) 

In order to have a row or column grow when the sizer grows, you need to 
explicitly tell the sizer that the row or column is growable by using the appro-
priate method: 

AddGrowableCol(idx, proportion=0) 
AddGrowableRow(idx, proportion=0) 

When the sizer grows horizontally, the default behavior is for the new width to be 
allocated equally to each growable column. Similarly, a vertical resize is allocated 
equally to each growable row. To change the default behavior and make rows or 
columns grow at different rates, you use the proportion argument to the add 
growable methods. If the proportion element is used, then the new space is allo-
cated to the row or column relative to their proportion arguments. For example, 
if you have two resizable rows, and their proportions are 2 and 1, then the first 
row will get 2/3 of the new space, and the second row will get 1/3. Figure 11.9 
shows the flex grid sizer with proportional spacing. In this case, the middle row 
and column have proportion 2, and the end rows and columns have proportion 1. 
Figure 11.9 shows what that looks like in practice.

 As you can see, while all the cells have gotten larger, the middle row and col-
umn have gotten larger twice as fast as the ends. The widgets have not resized to 
fill the cells, although they could if the wx.EXPAND flag had been used when they 
were added to the sizer. Listing 11.7 shows the code used to create the flex grid 
sizer—notice the use of the add growable methods.  



340 CHAPTER 11 
Placing widgets with sizers
import wx
from blockwindow import BlockWindow

labels = "one two three four five six seven eight nine".split()

class TestFrame(wx.Frame):
    def __init__(self):
        wx.Frame.__init__(self, None, -1, "Resizing Flex Grid Sizer")
        sizer = wx.FlexGridSizer(rows=3, cols=3, hgap=5, vgap=5)
        for label in labels:
            bw = BlockWindow(self, label=label)
            sizer.Add(bw, 0, 0)
        center = self.FindWindowByName("five")
        center.SetMinSize((150,50))
        sizer.AddGrowableCol(0, 1)
        sizer.AddGrowableCol(1, 2)
        sizer.AddGrowableCol(2, 1)
        sizer.AddGrowableRow(0, 1)
        sizer.AddGrowableRow(1, 5)
        sizer.AddGrowableRow(2, 1)
        self.SetSizer(sizer)
        self.Fit()

app = wx.PySimpleApp()
TestFrame().Show()
app.MainLoop()

If you use proportional sizing on one of your growable rows or columns, you need 
to specify a proportional amount on all the growables in that direction, otherwise 
you will get an odd flicker effect on resize as wxPython tries to deal with a propor-
tion of zero. 

Listing 11.7 The flex grid sizer with growable elements

Figure 11.9  
A flex grid sizer with a 
growable row and column



Using the other sizer types 341
 There is one other mechanism to control widget growth in a flex grid sizer. By 
default, the proportional sizing applies to both directions of the flex grid; how-
ever, you can specify that only one direction should resize proportionally using 
the method SetFlexibleDirection(direction), where the direction values are 
wx.HORIZONTAL, wx.VERTICAL, or wx.BOTH (the default). Then you specify the 
behavior in the other direction using SetNonFlexibleGrowMode(mode). For exam-
ple, if you call SetFlexibleDirection(wx.HORIZONTAL), the columns behave as 
specified using AddGrowableCol(), and the call to SetNonFlexibleGrowMode()
defines the behavior of the rows. Table 11.3 shows the available values for the 
mode parameter. 

Each of the methods discussed in the previous paragraph has an associated get-
ter, GetFlexibleDirection() and GetNonFlexibleGrowMode(), which returns the 
integer flags. To emphasize the point made in the table, any setting specified 
using these methods supersedes the settings created by AddGrowableCol() and 
AddGrowableRow(). 

11.3.2 What’s a grid bag sizer? 

A grid bag sizer is a further enhancement of a flex grid sizer. There are two inno-
vations in the grid bag sizer. 

■ The ability to add a widget to a specific cell within the grid. 
■ The ability to have a widget span several cells of the grid (the way that a cell 

in an HTML table can). 

Table 11.3 Non-flexible grow mode values

Mode Description 

wx.FLEX_GROWMODE_ALL The flex grid resizes all cells in the non-flexible direction equally. This 
overrides any behavior set using the add growable methods—all 
cells are resized regardless of their proportion or even whether or not 
they were specified as growable. 

wx.FLEX_GROWMODE_NONE Cells in the non-flexible direction are not resized, regardless of 
whether they were specified as growable. 

wx.FLEX_GROWMODE_SPECIFIED The sizer only grows those cells in the non-flexible direction that 
were specified as growable using the appropriate method. However, 
the sizer ignores any proportion information and grows all those cells 
equally. This is the default behavior. 



342 CHAPTER 11 
Placing widgets with sizers
Figure 11.10 shows a sample grid bag sizer. It’s very similar to the example we’ve 
been using throughout this chapter, with the addition of new widgets to show a 
sample of a row span and a column span. 

 Listing 11.8 shows the code used to generate figure 11.10. Notice that the 
Add() method looks a little different than before. 

import wx 
from blockwindow import BlockWindow 

labels = "one two three four five six seven eight nine".split() 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, "GridBagSizer Test") 
        sizer = wx.GridBagSizer(hgap=5, vgap=5) 
        for col in range(3): 
            for row in range(3): 
                bw = BlockWindow(self, label=labels[row*3 + col]) 
                sizer.Add(bw, pos=(row,col)) 

        bw = BlockWindow(self, label="span 3 rows") 
        sizer.Add(bw, pos=(0,3), span=(3,1), flag=wx.EXPAND)   

        bw = BlockWindow(self, label="span all columns") 
        sizer.Add(bw, pos=(3,0), span=(1,4), flag=wx.EXPAND)   

        sizer.AddGrowableCol(3)   
        sizer.AddGrowableRow(3)   

        self.SetSizer(sizer) 
        self.Fit() 

app = wx.PySimpleApp() 
TestFrame().Show() 

app.MainLoop() 

Listing 11.8 Grid bag sizer sample code

Figure 11.10  
A sample grid bag sizer

Widget 
spanning 

rows

Widget 
spanning 
columnsMake last row 

and col growable



Using the other sizer types 343
The grid bag sizer is an instance of wx.GridBagSizer, which is a child class of 
wx.FlexGridSizer. This means that all flex grid sizer properties apply here, 
including the adding of growable rows and columns. 

 The constructor for wx.GridBagSizer is a little different than its parent classes: 

wx.GridBagSizer(vgap=0, hgap=0) 

You don’t need to specify the number of rows and columns in a grid bag sizer 
because you are adding child items directly into specific cells in the grid—the 
sizer will figure out the grid dimensions from there. 

Using the Add() method on a grid bag sizer
The Add() method for grid bag sizers is different than for other sizers. It has 
four options: 

1 Add(window, pos, span=wx.DefaultSpan, flag=0, border=0,  
userData=None) 

2 Add(sizer, pos, span=wx.DefaultSpan, flag=0, border=0,  
userData=None) 

3 Add(size, pos, span=wx.DefaultSpan, flag=0, border=0,  
userData=None) 

4 AddItem(item) 

These should look familiar, being operationally similar to the generic sizer meth-
ods. The window, sizer, size, flag, border, and userData parameters all behave the 
same way as in the generic sizer method. The pos element represents the cell within 
the sizer that the widget is assigned to. Technically, the pos element is an instance of 
the class wx.GBPosition, but through the magic of wxPython, you can just pass a 
tuple of the form (row, col), where the upper left of the grid bag is (0, 0).

 Similarly, the span parameter represents the number of rows and columns that 
the widget should take up in the sizer. It is an instance of the class wx.GBSpan, but 
again, wxPython allows you to pass a tuple of the form (rowspan, colspan). If the 
span is not specified, the default value is (1, 1), meaning that the widget takes up 
one cell in each direction. For example, to place a widget in the second row, first 
column, and have it take up three rows and two columns, you would use the call 
Add(widget, (1, 0), (3, 2)) (the indexes are zero-based, so the second row has 
index one, and so forth). 

 The item parameter of the AddItem method is an instance of the class 
wx.GBSizerItem, which encapsulates all the information needed for a grid bag 
sizer to place the item. It’s unlikely that you’ll need to create a wx.GBSizerItem



344 CHAPTER 11 
Placing widgets with sizers
directly. If you do want to create one, its constructors have the same parameter 
signature as the other grid bag sizer Add() methods. Once you have a wx.GBSizer-
Item, there are a number of getter methods that allow you access to properties of 
the item, perhaps the most useful of which is GetWindow(), which returns the 
actual widget being displayed. 

 Because items are added to a grid bag using the row and column index and 
spans, the order in which the items are added does not have to correspond to the 
display order the way that it does in other sizers. This can make it a bit of a head-
ache to keep track of which item is actually displayed in which cell. Table 11.4 lists 
several ways the grid bag sizer makes it easier for you to track the items.

Grid bags also have a couple of properties that can be used to manipulate cell size 
and item position. After the grid bag has been laid out and displayed onscreen 
you can use the method GetCellSize(row, col) to retrieve the on-screen display 
size of the given cell. This size includes the horizontal and vertical gap managed 
by the sizer itself. You can find the size of an empty cell using the method GetEmpty-
CellSize(), and you can change that property with SetEmptyCellSize(sz), where 
sz is a wx.Size object or a Python tuple. 

Table 11.4 Grid bag sizer methods for managing items

Method Description 

CheckForIntersection(item, 
excludeItem=None)  
CheckForIntersection(pos, 
span, excludeItem=None) 

Compares the given item or given position and span with all other items 
in the sizer. Returns True if any of those items overlap the position of 
the item or the given position and span. The excludeItem is an 
optional item which is not included in the comparison (perhaps because 
it is item being tested against). The pos argument is a 
wx.GBPosition or a tuple. The span argument is a wx.GPSpan or  
a tuple. 

FindItem(window)  
FindItem(sizer) 

Returns the wx.GBSizerItem corresponding to the given window or 
sizer. Returns None if the window or sizer is not in the grid bag. This 
method will not recursively check inside subsizers. 

FindItemAtPoint(pt) The pt argument is a wx.Point instance or a Python tuple 
corresponding to the coordinate of the containing frame. The method 
returns the wx.GBSizerItem at that point. Returns None if the point 
is outside frame boundaries or if there is no sizer item at that point. 

FindItemAtPosition(pos) This method returns the wx.GBSizerItem at a given cell position, 
where pos is a wx.GBPosition or a Python tuple. Returns None if the 
position is outside the sizer bounds or if there is no item at that position.

FindItemWithData(userData) Returns the wx.GBSizerItem for an item in the grid bag with the given 
userData object. Returns None if there is no such object. 



Using the other sizer types 345
 You can retrieve the position or span of an object that is already in the grid bag 
with the methods GetItemPosition() and GetItemSpan(). Each method will take a 
window, a sizer, or an index as the argument. The index argument corresponds to 
the index in the sizer’s Add() list, which is unlikely to be meaningful in a grid bag 
context. Each method has a corresponding setter, SetItemPosition(window, pos)
and SetItemSpan(window, span), in which the first argument can again be a win-
dow, sizer, or index, and the second argument is a Python tuple or a wx.GBPosition
or wx.GBSpan object. 

11.3.3 What’s a box sizer? 

The box sizer is the simplest and most flexible of the sizers provided by wxPy-
thon. A box sizer is a single vertical column or horizontal row, with the widgets 
being laid out in a line from left to right or top to bottom. Although this may 
sound too simplistic to be of any use, the real power of the box sizer comes from 
the ability to nest sizers inside each other, giving you the advantage of being able 
to easily place a different number of items in each row or column. And since each 
sizer is a separate entity, you have more flexibility in terms of layout. Despite the 
seeming simplicity, for most applications a vertical sizer with horizontal sizers 
nested inside will allow you to create your needed layout. 

 Figures 11.11–11.14 show several examples of simple box sizers. Each of these 
frames has been slightly resized by the user before the screen shot, to show how 
each sizer responds to the growth. Figure 11.11 shows a horizontal box sizer and 
figure 11.12 shows the same widgets in a vertical box sizer. 

Figure 11.13 shows a vertical sizer with one widget that is set to expand and fill 
the available vertical space. Figure 11.14 shows a vertical sizer with two widgets 
set to grab the available vertical space in different proportions. 

 

Figure 11.11 A horizontal box sizer
Figure 11.12  
A vertical box sizer



346 CHAPTER 11 
Placing widgets with sizers
The code to generate all four sizer frames is given in listing 11.9.

import wx 
from blockwindow import BlockWindow 

labels = "one two three four".split() 

class TestFrame(wx.Frame): 
    title = "none" 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, self.title) 
        sizer = self.CreateSizerAndWindows() 
        self.SetSizer(sizer) 
        self.Fit() 

class VBoxSizerFrame(TestFrame): 
    title = "Vertical BoxSizer" 

    def CreateSizerAndWindows(self):   
        sizer = wx.BoxSizer(wx.VERTICAL) 
        for label in labels: 
            bw = BlockWindow(self, label=label, size=(200,30)) 
            sizer.Add(bw, flag=wx.EXPAND) 
        return sizer 

class HBoxSizerFrame(TestFrame):   
    title = "Horizontal BoxSizer" 

    def CreateSizerAndWindows(self): 
        sizer = wx.BoxSizer(wx.HORIZONTAL) 

Listing 11.9 Generating a number of box sizers

Figure 11.13  
A vertical sizer 
with one stretch 
element

Figure 11.14  
A vertical sizer  
with two stretch 
elements

The vertical sizer

The horizontal sizer



Using the other sizer types 347
        for label in labels: 
            bw = BlockWindow(self, label=label, size=(75,30)) 
            sizer.Add(bw, flag=wx.EXPAND) 
        return sizer 

class VBoxSizerStretchableFrame(TestFrame):   
    title = "Stretchable BoxSizer" 

    def CreateSizerAndWindows(self): 
        sizer = wx.BoxSizer(wx.VERTICAL) 
        for label in labels: 
            bw = BlockWindow(self, label=label, size=(200,30)) 
            sizer.Add(bw, flag=wx.EXPAND) 

        # Add an item that takes all the free space 
        bw = BlockWindow(self, label="gets all free space", size=(200,30)) 
        sizer.Add(bw, 1, flag=wx.EXPAND) 
        return sizer 

class VBoxSizerMultiProportionalFrame(TestFrame):   
    title = "Proportional BoxSizer" 
    
    def CreateSizerAndWindows(self): 
        sizer = wx.BoxSizer(wx.VERTICAL) 
        for label in labels: 
            bw = BlockWindow(self, label=label, size=(200,30)) 
            sizer.Add(bw, flag=wx.EXPAND) 

        # Add an item that takes one share of the free space 
        bw = BlockWindow(self, 
                label="gets 1/3 of the free space", 
                size=(200,30)) 
        sizer.Add(bw, 1, flag=wx.EXPAND) 

        # Add an item that takes 2 shares of the free space 
        bw = BlockWindow(self, 
                label="gets 2/3 of the free space", 
                size=(200,30)) 
        sizer.Add(bw, 2, flag=wx.EXPAND) 
        return sizer 

app = wx.PySimpleApp() 
frameList = [VBoxSizerFrame, HBoxSizerFrame, 
             VBoxSizerStretchableFrame, 
             VBoxSizerMultiProportionalFrame] 
for klass in frameList: 
    frame = klass() 
    frame.Show() 
app.MainLoop() 

Horizontal with 
free space

Proportional sizing



348 CHAPTER 11 
Placing widgets with sizers
After seeing the previous sizer examples, most of this code should make sense. 
Box sizers are instances of the class wx.BoxSizer, which is a direct subclass of 
wx.Sizer, adding almost no new methods. The constructor for wx.BoxSizer takes 
one argument: 

wx.BoxSizer(orient) 

The orient parameter represents the direction of the sizer, and can take either 
the value wx.VERTICAL or wx.HORIZONTAL. The only new method defined for box 
sizers is GetOrientation() which returns the integer constant value as it was set in 
the constructor. You cannot change the orientation of a box sizer once it has been 
created. All other functions of a box sizer use the common sizer methods dis-
cussed earlier in this chapter 

 The layout algorithm for a box sizer treats the sizer’s primary direction 
(defined by its orientation when constructed) differently from its secondary direc-
tion. In particular, the proportion parameter only applies when the sizer is grown 
or shrunk along its primary direction, while the wx.EXPAND flag only applies when 
the sizer changes size in its secondary direction. In other words, when a vertical 
box sizer is stretched vertically, the proportion parameter passed to each of the 
Add() method calls determines how each item will grow or shrink vertically. The 
proportion parameter affects a horizontal box sizer the same way, except for 
affecting horizontal growth of the sizer and its items. On the other hand, growth 
in the secondary direction is controlled by using the wx.EXPAND flag for items, so 
items in a vertical box sizer will only grow horizontally if they have the wx.EXPAND
flag set, otherwise the items remain at their minimum or best size. Figure 6.7 in 
chapter 6 illustrates this process graphically.

 In box sizers proportional item growth works similarly to the way it works with 
flex grid sizers, with some exceptions. First, the box sizer proportional behavior is 
determined using the proportion parameter when the widget is added to the 
sizer—you do not need to separately specify it as growable the way that you would 
with a flex grid sizer. Second, the behavior of the sizer for proportions of 0 is dif-
ferent. In a box sizer, a proportion of 0 means that the widget will not be resized 
from its minimum or best size in the primary dimension, but it can still grow in 
the secondary dimension if the wx.EXPAND flag is used. When the box sizer calcu-
lates the layout of its items for the primary dimension it first adds up the space 
needed by the fixed size items, which are those with a proportion of 0. The 
remaining space is divided between the proportional items, with those with a 
larger proportion value getting the larger amount of the free space.



Using the other sizer types 349
11.3.4 What’s a static box sizer? 

A static box sizer combines a box sizer with a static box. The static box provides a 
nice-looking border and text label around the sizer. Figure 11.15 shows three 
static box sizers in action. 

Listing 11.10 shows the code used to create the static box sizers. There are two 
interesting things to notice here. The first is that you must create the static box 
object separately from the sizer, and the second is that this example shows how 
you might use nested box sizers. In this case, there are three vertical static box siz-
ers placed inside a horizontal box sizer. 

import wx 
from blockwindow import BlockWindow 

labels = "one two three four five six seven eight nine".split() 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, "StaticBoxSizer Test") 
        self.panel = wx.Panel(self) 

        box1 = self.MakeStaticBoxSizer("Box 1", labels[0:3])   
        box2 = self.MakeStaticBoxSizer("Box 2", labels[3:6])   
        box3 = self.MakeStaticBoxSizer("Box 3", labels[6:9])   

        sizer = wx.BoxSizer(wx.HORIZONTAL)   
        sizer.Add(box1, 0, wx.ALL, 10) 
        sizer.Add(box2, 0, wx.ALL, 10) 
        sizer.Add(box3, 0, wx.ALL, 10) 

        self.panel.SetSizer(sizer) 
        sizer.Fit(self) 

    def MakeStaticBoxSizer(self, boxlabel, itemlabels): 
        box = wx.StaticBox(self.panel, -1, boxlabel)   
        sizer = wx.StaticBoxSizer(box, wx.VERTICAL) 

Listing 11.10 An example of a static box sizer

Figure 11.15  
Three static box sizers

Make static 
boxes

Use sizer to manage others

Make static box



350 CHAPTER 11 
Placing widgets with sizers
        for label in itemlabels:                     
            bw = BlockWindow(self.panel, label=label)   
            sizer.Add(bw, 0, wx.ALL, 2) 

        return sizer 

app = wx.PySimpleApp() 
TestFrame().Show() 
app.MainLoop() 

Static box sizers are instances of the class wx.StaticBoxSizer, which is a child class 
of wx.BoxSizer. The constructor takes the static box and the orientation: 

wx.StaticBoxSizer(box, orient) 

In this constructor orient has the same meaning as it does for an ordinary 
wx.BoxSizer, and the box parameter is a wx.StaticBox. There is only one other 
method defined for static box sizers, GetStaticBox(), which returns the 
wx.StaticBox used to build the sizer. You cannot change the static box once 
the sizer is created. 

 The wx.StaticBox class has a typical constructor for wxPython controls, but in 
practice, many of the parameters have useful defaults and can be ignored. 

wx.StaticBox(parent, id, label, pos=wx.DefaultPosition, 
        size=wx.DefaultSize, style=0, name="staticBox") 

For use in a static box sizer, you do not need to set the pos, size, style, or name
attributes, since the position and size will be managed by the sizer, and there are 
no unique style flags for a wx.StaticBox. This makes the constructor simpler:

box = wx.StaticBox(self.panel, -1, boxlabel) 

Now that we’ve shown you what the various kinds of sizers are, we’re going to 
show you how you might use them in a real layout. See chapter 6 for another 
example of sizers being used to create a complex layout.

11.4 Can I see a real-world example  
of sizers in action? 

So far, the sizer examples we’ve shown have been deliberately contrived to display 
the functionality of the sizers. However, you might be wondering how to use sizers 
to build a real layout, and we hope the folowing example will give you some ideas. 
Figure 11.16 shows a moderately complicated layout built with various sizers. 

Add items 
to box



Can I see a real-world example 351
of sizers in action?
The code used to create figure 11.16 is shown in listing 11.11. The code looks 
complex, but we’ll go through it piece by piece.

import wx 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, "Real World Test") 
        panel = wx.Panel(self) 

        # First create the controls         
        topLbl = wx.StaticText(panel, -1, "Account Information")   
        topLbl.SetFont(wx.Font(18, wx.SWISS, wx.NORMAL, wx.BOLD)) 

        nameLbl = wx.StaticText(panel, -1, "Name:") 
        name = wx.TextCtrl(panel, -1, ""); 

        addrLbl = wx.StaticText(panel, -1, "Address:") 
        addr1 = wx.TextCtrl(panel, -1, ""); 
        addr2 = wx.TextCtrl(panel, -1, ""); 

        cstLbl = wx.StaticText(panel, -1, "City, State, Zip:") 
        city  = wx.TextCtrl(panel, -1, "", size=(150,-1)); 
        state = wx.TextCtrl(panel, -1, "", size=(50,-1)); 
        zip   = wx.TextCtrl(panel, -1, "", size=(70,-1)); 
        
        phoneLbl = wx.StaticText(panel, -1, "Phone:") 
        phone = wx.TextCtrl(panel, -1, ""); 

        emailLbl = wx.StaticText(panel, -1, "Email:") 
        email = wx.TextCtrl(panel, -1, ""); 

        saveBtn = wx.Button(panel, -1, "Save") 
        cancelBtn = wx.Button(panel, -1, "Cancel") 

Listing 11.11 Using sizers to build the address form

Figure 11.16  
A more realistic sizer example

Creating 
widgets

 b



352 CHAPTER 11 
Placing widgets with sizers
        # Now do the layout. 

        # mainSizer is the top-level one that manages everything 
        mainSizer = wx.BoxSizer(wx.VERTICAL)     
        mainSizer.Add(topLbl, 0, wx.ALL, 5)      
        mainSizer.Add(wx.StaticLine(panel), 0,   
                wx.EXPAND|wx.TOP|wx.BOTTOM, 5)   

        # addrSizer is a grid that holds all of the address info 
        addrSizer = wx.FlexGridSizer(cols=2, hgap=5, vgap=5)  
        addrSizer.AddGrowableCol(1)                            
        addrSizer.Add(nameLbl, 0,                              
                wx.ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL)       
        addrSizer.Add(name, 0, wx.EXPAND)                      
        addrSizer.Add(addrLbl, 0,                              
                wx.ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL)       
        addrSizer.Add(addr1, 0, wx.EXPAND)                    
        addrSizer.Add((10,10)) # some empty space   
        addrSizer.Add(addr2, 0, wx.EXPAND)          

        addrSizer.Add(cstLbl, 0, 
                wx.ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL) 
        
        # the city, state, zip fields are in a sub-sizer 
        cstSizer = wx.BoxSizer(wx.HORIZONTAL)         
        cstSizer.Add(city, 1)                         
        cstSizer.Add(state, 0, wx.LEFT|wx.RIGHT, 5)   
        cstSizer.Add(zip)                             
        addrSizer.Add(cstSizer, 0, wx.EXPAND)         
        
        addrSizer.Add(phoneLbl, 0,                         
                wx.ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL)   
        addrSizer.Add(phone, 0, wx.EXPAND)                 
        addrSizer.Add(emailLbl, 0,                         
                wx.ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL)   
        addrSizer.Add(email, 0, wx.EXPAND)                 

        # now add the addrSizer to the mainSizer 
        mainSizer.Add(addrSizer, 0, wx.EXPAND|wx.ALL, 10)   

        # The buttons sizer will put them in a row with resizeable 
        # gaps between and on either side of the buttons 
        btnSizer = wx.BoxSizer(wx.HORIZONTAL)   
        btnSizer.Add((20,20), 1)                
        btnSizer.Add(saveBtn)                   
        btnSizer.Add((20,20), 1)                
        btnSizer.Add(cancelBtn)                 
        btnSizer.Add((20,20), 1)                

        mainSizer.Add(btnSizer, 0, wx.EXPAND|wx.BOTTOM, 10) 

Vertical 
sizer

 c

Columns  
for address

 d

Row with 
empty space

 e

Nested 
horizontal

 f

Phone and 
email

 g

Flex sizer 
added to 
main

 h

Button 
row

 i



Can I see a real-world example 353
of sizers in action?
        panel.SetSizer(mainSizer) 

        # Fit the frame to the needs of the sizer. The frame will 
        # automatically resize the panel as needed. Also prevent the 
        # frame from getting smaller than this size. 
        mainSizer.Fit(self)                                      
        mainSizer.SetSizeHints(self) 

app = wx.PySimpleApp() 
TestFrame().Show() 
app.MainLoop() 

The first part of the code is the creation of the widgets used in the window, which 
begins at this line. We create them all before adding the sizers. 
The primary sizer in this layout is mainSizer, a vertical box sizer. The first ele-
ments added to mainSizer are the top static text label, and a static line. 
The next element in the sizer is addrSizer, which is a flex grid sizer with two col-
umns that is used to hold the rest of the address information. The left column of 
addrSizer is designed for the static text captions, while the right one gets the text 
controls. This means that the labels and controls need to be added in an alternat-
ing order to keep the grid correct. You can see that nameLbl, name, addrLbl, and 
addr1 are the first four elements added to the flex grid. 
The next row is different, since the second address line has no caption. In that 
case, a (10, 10) sized chunk of empty space is added, and then the addr2 control. 
The next line is different again, as the “City, State, Zip” line take three different 
text controls, so a horizontal box sizer cstSizer is created. The three controls are 
added to cstSizer and then the box sizer is added to addrSizer.
The phone and email lines are added to the flex sizer. 
The address flex sizer is officially added to the main sizer. 
The button row is added as a horizontal box sizer with some empty spacer ele-
ments to separate the buttons. Notice how the spacers are given a proportion of 1 
and the buttons are left with the default of 0.

That ends the element layout, after that the sizer is fitted and given a size hint to 
prevent the frame from getting any smaller. 

 Before reading the next paragraph or running the example, try to figure out 
how this frame will respond to growth in the horizontal and vertical dimension. 

 If the window is resized vertically, none of the elements will move. This is 
because the main sizer is a vertical box sizer being resized in its primary direction, 
and none of its top-level elements were added with a proportion greater than 
zero. If the window is resized horizontally, the main sizer is a vertical box sizer 

 b

 c

 d

 e

 f

 g
 h
 i



354 CHAPTER 11 
Placing widgets with sizers
being resized in the secondary direction, and therefore all its elements with the 
wx.EXPAND flag stretch horizontally. This means the label at the top doesn’t grow, 
but the static line and the subsizers stretch horizontally. The flex grid sizer for the 
addresses specifies column 1 as growable, meaning that the second column con-
taining the text controls will stretch. Within the “City, State, Zip” row, it is the city 
element which is given a proportion of 1, and will stretch, while the state and ZIP
controls stay the same size. The buttons will stay the same size since they have a pro-
portion of zero, but the empty space before, between, and after them will equally 
divide up the extra horizontal space since they each have a proportion of 1. 

 So, if you guessed that the grown window would look like figure 11.17, you 
were right. 

Notice how the elements that we wanted to stretch horizontally have, in fact, 
stretched, but the widgets are still displayed in basically the same position relative 
to each other. Despite the stretching, the window still looks good and is still usable. 

11.5 Summary 

■ Sizers are a solution to the problem of managing layout in a wxPython 
program. Rather than manually specifying the size and position of each 
element in the layout, you can add the elements to a sizer, and the sizer is 

Figure 11.17 The account information, after the window was stretched



Summary 355
responsible for placing each element on the screen. Sizers are particularly 
good at managing layout when the user resizes the frame manually.

■ All wxPython sizers are instances of a subclass of wx.Sizer. To use a sizer, 
you need to associate it with a container widget. Then, as child widgets are 
added to the container, you must also add them to the sizer. Finally, you 
call the sizer’s Fit() method to trigger the sizer’s algorithm for place-
ment and layout. 

■ All sizers start with information about the minimal preferred size for each 
of its children. Each one uses a different mechanism for placing the wid-
gets, so the same group of widgets will look different when placed inside a 
different sizer. 

■ Perhaps the simplest sizer in wxPython is the grid sizer (wx.GridSizer). In a 
grid sizer, elements are placed in a two-dimensional grid based on the 
order in which they are added to the sizer, starting with the top left and 
moving across and then down to the bottom right. Typically, you set the 
number of columns in the grid, and the sizer determines how many rows it 
needs, although you can specify both dimensions if you want. 

■ All sizers have various methods for adding widgets to the sizer. Since the 
order in which children are added to the sizer is important in the final lay-
out, various methods are used to add a new widget to the front, back, or 
arbitrary spot in the list. When a widget is added to the sizer, other proper-
ties can be set which control how the child element changes when the sizer 
is grown or shrunk. The sizer can also be configured to place a border gap 
around some or all sides of the object. 



Manipulating basic 
graphical images
This chapter covers
■ Loading images and creating image objects 
■ Creating device contexts
■ Drawing to device contexts
■ Drawing text to the context
■ Managing drawing pens, drawing brushes, and 

device coordinates
356



Working with images 357
The most fundamental action that any UI toolkit performs is the simple act of 
drawing on the screen. At its most basic level, every widget defined in wxPython 
consists of a series of draw commands sent to the screen. Whether those draw 
commands are in the wxPython codebase depends on whether the widget is 
native to the local operating system or completely defined by wxPython. In this 
chapter, we’ll show you how to control wxPython at the level of basic drawing 
commands. We’ll also show you how to manage and display other graphical ele-
ments like images and fonts. 

 The primary abstraction used by wxPython in drawing is the device context. The 
device context uses a standard API to manage drawing to devices such as the 
screen or a printer. The device context classes are where the most basic drawing 
functionality is located, such as drawing lines, curves, or text. 

12.1 Working with images

Most applications need to load at least one image that is externally stored in a 
file. Examples would include toolbar graphics, cursors, icons, splash screens, or 
merely images used for decoration or to add some pizzazz. Traditionally, the 
complication in working with images is having to deal with all of the different 
graphical file formats that might be used to store an image. Fortunately, wxPy-
thon manages all of that for you—from inside wxPython. You’ll use the same 
abstraction to deal with any image no matter its original format.

 In the following sections, we’ll talk about the abstractions that wxPython uses 
to manage images, which include large-scale images, as well as cursor images. 
You’ll see how to load the images into your program, and then how to manipu-
late them.

12.1.1 How do I load images?

Image manipulation in wxPython is a dual-headed system where platform-
independent image handling is managed by the class wx.Image, while 
platform-dependent image handling is managed by the class wx.Bitmap. In 
practice, what this means is that external file formats are loaded and saved by 
wx.Image, while wx.Bitmap takes care of displaying the image to the screen. Fig-
ure 12.1 displays the creation of different images and bitmaps, read in from dif-
ferent file types. 

 To load an image from a file use the wx.Image constructor: 

wx.Image(name, type=wx.BITMAP_TYPE_ANY, index=-1)



358 CHAPTER 12 
Manipulating basic graphical images
The name parameter is the name of the file to load from and the type is the han-
dler type. The type ID is either wx.BITMAP_TYPE_ANY, or one of the type flags listed 
in Table 12.1. If you use wx.BITMAP_TYPE_ANY, then wxPython will attempt to auto-
matically detect the file type. If you use a specific file type, wxPython will convert 
the file using that type. Listing 12.1 displays how images can be loaded using 
wx.BITMAP_TYPE_ANY. 

import wx 

filenames = ["image.bmp", "image.gif", "image.jpg", "image.png" ] 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="Loading Images") 
        p = wx.Panel(self) 

        fgs = wx.FlexGridSizer(cols=2, hgap=10, vgap=10) 
        for name in filenames: 
            img1 = wx.Image(name, wx.BITMAP_TYPE_ANY)   

            w = img1.GetWidth() 
            h = img1.GetHeight() 
            img2 = img1.Scale(w/2, h/2)   

            sb1 = wx.StaticBitmap(p, -1, wx.BitmapFromImage(img1))   
            sb2 = wx.StaticBitmap(p, -1, wx.BitmapFromImage(img2)) 
                                    
            fgs.Add(sb1) 
            fgs.Add(sb2) 

        p.SetSizerAndFit(fgs) 
        self.Fit() 

Listing 12.1 Loading and scaling simple images

Figure 12.1  
Big and little images 
of different types

Loading images 
from a file

 b

Scaling 
images

 c

Turning images into bitmap widgets  d



Working with images 359
app = wx.PySimpleApp() 
frm = TestFrame() 
frm.Show() 
app.MainLoop() 

This listing should be rather straightforward. We start with a list of the image 
names that we want to load in. Looping over them, we first construct an instance 
of wx.Image, using the any type flag to direct wxPython to figure out the format 
without bothering us b. Then we scale the image to half size using the image 
methods c, and convert the image to a bitmap to be able to add the image to the 
display d. 

 Although this example defers the determination of the image format to wxPy-
thon, you can also specify the format explicitly. In the next section we’ll show you 
what image formats are supported by wxPython.

Specifying an image file format
Images are managed with the use of image handlers. An image handler is an 
instance of wx.ImageHandler that provides a plug-in architecture for managing 
image formats. Under normal circumstances, you will not need to worry about 
the details of how image handlers work. All you need to know is that each handler 
has its own unique wxPython identifier to load a file in the associated format. 
Supported formats are listed in table 12.1. The type flag is the value used if you 
want to specify a type when loading an image. 

Table 12.1 Supported file formats in wxPython 

Handler class Type flag Notes 

wx.ANIHandler wx.BITMAP_TYPE_ANI Animated cursor format. This handler only loads images, 
it does not save them. 

wx.BMPHandler wx.BITMAP_TYPE_BMP Windows and OS/2 bitmap format 

wx.CURHandler wx.BITMAP_TYPE_CUR Windows cursor icon format 

wx.GIFHandler wx.BITMAP_TYPE_GIF Graphic Interchange Format. Due to copyright restrictions, 
this handler does not save images. 

wx.ICOHandler wx.BITMAP_TYPE_ICO Windows icon format 

wx.IFFHandler wx.BITMAP_TYPE_IFF Interchange file format. This handler only loads images, it 
does not save them. 

continued on next page



360 CHAPTER 12 
Manipulating basic graphical images
To use a MIME-type to identify the file, rather than a handler type ID, use the func-
tion wx.ImageFromMime(name, mimetype, index=-1), where name is the filename, 
and mimetype is the string with the type of the file. The index parameter denotes 
the image to load in the case that the image file contains multiple images. This is 
only used by the GIF, ICO, and TIFF handlers. The default value (-1) means choose 
the default image, and is interpreted as the first image (index=0) by the GIF and 
TIFF handler and as the largest and most colorful one by the ICO handler. 

Creating image objects
wxPython uses other global functions to create different kinds of wx.Image
objects. To create an empty image with a specific size, use the function wx.Empty-
Image(width, height)—all the pixels in the created image will be black. To create 
an image from an open stream or Python file-like object, use wx.ImageFrom-
Stream(stream, type=wx.BITMAP_TYPE_ANY, index=-1) Sometimes it’s useful to 
create an image from raw RGB data, which can be done using wx.ImageFrom-
Data(width, height, data) where data is a string where each set of three consec-
utive characters represents a pixel’s red, green, and blue components. The size of 
the string should always be width*height*3. 

wx.JPEGHandler wx.BITMAP_TYPE_JPEG Joint Photographic Experts Group format. 

wx.PCXHandler wx.BITMAP_TYPE_PCX PC Paintbrush format. When saving in this format, 
wxPython counts the number of different colors in the 
image. If possible, the image is saved as an 8-bit image 
(that is, if it has 256 or fewer colors). Otherwise, it saves 
as 24-bit. 

wx.PNGHandler wx.BITMAP_TYPE_PNG Portable Network Graphics format. 

wx.PNMHandler wx.BITMAP_TYPE_PNM Can only load ASCII or raw RGB images. Images saved by 
this handler are saved as raw RGB. 

wx.TIFFHandler wx.BITMAP_TYPE_TIF Tagged Image File Format. 

wx.XPMHandler wx.BITMAP_TYPE_XPM XPixMap format. 

(auto) wx.BITMAP_TYPE_ANY Will try to autodetect the format to use and will then 
invoke the handler for it. 

Table 12.1 Supported file formats in wxPython (continued)

Handler class Type flag Notes 



Working with images 361
Creating bitmap objects
There are several ways to create a bitmap object. The basic wx.Bitmap construc-
tor is wx.Bitmap(name, type=wx.BITMAP_TYPE_ANY). The name argument is a file-
name and the type argument can be one of the types specified in the table 12.1. 
If the bitmap class is able to natively handle the file format then it does so, 
otherwise the image is automatically loaded via wx.Image and converted to a 
wx.Bitmap instance. 

 You can also create an empty bitmap with the method wx.EmptyBitmap(width,
height, depth=-1)—the width and height parameters are, of course, the dimen-
sions of the bitmap, and the depth is the color depth of the eventual image. There 
are two functions that allow you to create a bitmap from raw data. The function 
wx.BitmapFromBits(bits, width, height, depth=-1) creates a bitmap where the 
bits parameter is a Python list of bytes. The behavior of this function depends on 
the platform. On most platforms the bits are either 1 or 0 and the function cre-
ates a monochromatic bitmap. On Windows platforms, the data is passed directly 
to the Windows API function CreateBitmap(). The function wxBitmapFromXPM-
Data(listOfStrings) takes as a parameter a list of Python strings, reading the 
strings as data in XPM format. 

 You can convert back and forth from an image to a bitmap by using the 
wx.Bitmap constructor wx.BitmapFromImage(image, depth=-1). The image param-
eter is the actual wx.Image object, and the depth is the color depth of the resulting 
bitmap. If the depth is not specified, the current display’s color depth is used. You 
can convert the bitmap back into an image using the function wx.ImageFrom-
Bitmap(bitmap), passing an actual wx.Bitmap object. In listing 12.1, bitmap 
objects are created using the bitmap constructor and then used to construct 
wx.StaticBitmap widgets, which allows them to be placed into a container widget 
just like any other wxPython item. 

12.1.2 What can I do with an image? 
Once you have your image in wxPython, you can manipulate it in numerous use-
ful ways, and use it to write some powerful image adjustment scripts. 

 You can query the size of the image with the methods GetWidth() and Get-
Height(). You can also recover the color value at any pixel with the methods 
GetRed(x, y), GetGreen(x, y), and GetBlue(x, y). The return value of all these 
color methods is an integer with a value between 0 and 255 (in C terms, it’s an 
unsigned int, but that distinction is not particularly meaningful in Python). Sim-
ilary, you can set an individual pixel with SetRGB(x, y, red, green, blue), where x
and y are the pixel coordinates, and the color values are between 0 and 255. 



362 CHAPTER 12 
Manipulating basic graphical images
 You can get all the data in one enormous lump with the method GetData(). 
The return value of the GetData() method is a big string where each character 
represents a member of an RGB triple, and each character can be considered an 
integer value between 0 and 255. The values are in order, with the first one being 
the red value of the pixel at (0, 0), the next one being the green value at (0, 0), 
and the next being the blue value at (0, 0). The next three are the color values at 
(0, 1) and so on. Algorithmically, it could be defined using the following Python 
pseudocode.

def GetData(self): 
    result = "" 
    for y in range(self.GetHeight()): 
        for x in range(self.GetWidth()): 
            result.append(chr(self.GetRed(x,y))) 
            result.append(chr(self.GetGreen(x,y))) 
            result.append(chr(self.GetBlue(x,y))) 
    return result 

There are two things to be aware of when using the corresponding SetData(data)
method that reads in similarly formatted string of RGB values. First, the Set-
Data() method does not perform range or bounds checking to determine if your 
incoming string has values in the right range or if it is the correct length given the 
size of the image. If your values are incorrect, the behavior is undefined. Sec-
ondly, due to the way the underlying C++ code manages memory, it’s a bad idea 
to pass a string returned by GetData() right back into SetData()—you should 
make a fresh string. 

 The image data string can easily be converted to and from other Python types 
that make it easier to access and manipulate the RGB values as integers, such as 
an array or a numeric type. For example, to make something that hurts the eyes if 
you stare at it too long, try this 

import array 
img = wx.EmptyImage(100,100) 
a = array.array('B', img.GetData()) 
for i in range(len(a)): 
    a[i] = (25+i) % 256 
img.SetData(a.tostring()) 

Table 12.2 defines the many methods of wx.Image that perform simple image 
manipulations.  

 Those methods represent the starter set of image manipulation. In the next 
section we’ll show you two ways to manage the more complex topic of a transpar-
ent or semitransparent image.



Working with images 363
Setting image masks to specify a transparent image 
An image mask is a special color set in the image which is rendered as transparent 
when the image is displayed on top of some other part of your display. A virtual 
greenscreen, so to speak, but you can set it to any color you want. You can set an 
image mask with the method SetMaskColor(red, green, blue), where red, green, 
and blue define the colors of the mask for the image. If you want to turn off the 
mask, use SetMask(False), and reset it with SetMask(True). The method Has-
Mask() returns a Boolean with the current state of the mask. You can also set the 
mask from another image of the same size using the method SetMaskFrom-
Image(mask, mr, mg, mb)—in this case the mask is defined to be all the pixels in 
the mask wx.Image that have the color mr, mg, mb, regardless of what color those 
pixels are in the main image. This gives you a lot of flexibility in creating a mask, 
since you no longer have to worry about the color of the pixels in your original 

Table 12.2 Image manipulation methods of wx.Image

Method Description 

ConvertToMono(r, g, b) Returns a wx.Image the same size as the original, where all pixels 
with the exact r, g, b color value are white, and all others are black. 
The original image is untouched. 

Mirror(horizontally=True) Returns a mirror image of the original. If the horizontally 
parameter is True, then the image is flipped around the horizontal 
axis, otherwise around vertical. The original image is unchanged. 

Replace(r1, g1, b1, r2, g2, b2) Changes the called image in-place. Every pixel with a color value of 
r1, g1, b1 is reset to the color value r2, g2, b2. 

Rescale(width, height) Changes the size of the image to the new width and height. The 
original image is changed in-place, with pixel colors scaled to fit the 
new size. 

Rotate(angle,  
rotationCentre, interpolating= 
True, offestAfterRotation=None) 

Returns a new image created by rotating the original image. The 
angle parameter is a floating point indicating the amount of rotation 
in radians. The rotationCentre is a wx.Point around which the 
rotation occurs. If interpolating is True, a slower, more 
accurate algorithm is used. The offsetAfterRotation is a point 
indicating how much the image should be shifted after the rotation. 
Any blank pixels uncovered by the rotation will be set to black or to 
the mask color if the image has a mask. 

Rotate90(clockwise=True) Rotates the image 90 degrees in the direction governed by the 
Boolean clockwise parameter. 

Scale(width, height) Returns a copy of the orginal image scaled to the new width  
and height. 



364 CHAPTER 12 
Manipulating basic graphical images
image. You can retrieve the mask color using the methods GetMaskRed(), Get-
MaskGreen(), and GetMaskBlue(). If an image with a mask is converted to a 
wx.Bitmap then the mask is automatically converted to a wx.Mask object and 
assigned to the bitmap. 

Setting alpha values to specify a transparent image
An alpha value is another way to specify a transparent or partially transparent 
image. Each pixel has an alpha value, which is between 0 (if the image is totally 
transparent at that pixel) and 255 (if the image is completely opaque at that 
pixel). You set alpha values with the SetAlphaData(data) method, which takes a 
string of byte values similar to SetData(), but with only one value per pixel. Like 
SetData(), SetAlphaData() does no range checking. You can see if an alpha is set 
using HasAlpha() and you can recover the entire data set with GetAlphaData(). 
You can set the alpha value of a specific pixel with SetAlpha(x, y, alpha), and 
recover that value with GetAlpha(x, y). 

 In contrast to the image manipulation capabilities of wx.Image, you can do rel-
atively little with a wx.Bitmap. Nearly all of the methods of the wx.Bitmap are sim-
ple getters of properties such as width, height, and color depth. 

12.1.3 How can I change cursors? 

The cursor is the most direct avatar of the user’s presence on the screen. As such, 
it’s used to provide immediate feedback to the user about the area being 
explored. Normally, it’s a pointer to where the user’s next mouse click will take 
effect, but depending on what widget the cursor is currently over, it can be a 
directional arrow, a text placement I-beam, or crosshairs. Typically, an applica-
tion signals that it is too busy to accept input by changing the cursor to some kind 
of busy symbol, such as the classic hourglass. 

 You’ll want to use the cursor to signal state in your application, and even 
though wxPython handles most of the basics for common widgets, you’ll some-
times want to customize it, either because you have a custom widget or because 
your application needs to override the normal cursor behavior to signal a new 
state. Perhaps you just want your application to have its own unique cursor. In this 
section we’ll show you how to use a cursor to signal state and how to customize 
cursors in wxPython.

 You can create cursor objects in a variety of ways in wxPython. The cursor class 
is wx.Cursor, and there are two different ways of creating an instance. The simpler 
is the method wx.StockCursor(id), that returns an instance of a predefined sys-
tem cursor. As defined in table 12.3, the id parameter can be any number of flags.



Working with images 365
Table 12.3 Predefined stock cursors 

Cursor ID Description 

wx.CURSOR_ARROW The normal arrow cursor. 

wx.CURSOR_ARROWWAIT A busy cursor showing both the normal arrow and an hourglass. 
Available on Windows systems only. 

wx.CURSOR_BLANK The invisible cursor. Useful when you want to trick the user. 

wx.CURSOR_BULLSEYE A bullseye cursor (small circle inside a larger cursor). Sometimes 
useful for precision pointing. 

wx.CURSOR_CHAR A character cursor. Not available on all platforms. 

wx.CURSOR_CROSS The ever-popular cross-hair cursor. 

wx.CURSOR_HAND Classic pointing hand cursor. 

wx.CURSOR_IBEAM The vertical I-beam cursor typically used inside a text edit field. 

wx.CURSOR_LEFT_BUTTON A cursor that depicts a mouse with the left button pressed—used to 
hint to the user that he should press that button. May not be 
available on all platforms. 

wx.CURSOR_MAGNIFIER Magnifying glass typically used to indicate zoom. 

wx.CURSOR_MIDDLE_BUTTON Depicts a mouse with the middle button pressed. 

wx.CURSOR_NO_ENTRY Cursor containing the arrow and a circle-with-a-slash no entry 
symbol. Used to indicate that an area of the screen is invalid (as the 
target of a drag and drop, for example). 

wx.CURSOR_PAINT_BRUSH A cursor that looks like a paint brush. Typically used in a paint 
program. 

wx.CURSOR_PENCIL The pencil cursor usually used in draw programs. 

wx.CURSOR_POINT_LEFT The cursor is a left-pointing arrow. 

wx.CURSOR_POINT_RIGHT The cursor is a right-pointing arrow. 

wx.CURSOR_QUESTION_ARROW The arrow with the question mark next to it usually used to indicate 
context-sensitive help. 

wx.CURSOR_RIGHT_ARROW Just like the normal arrow cursor, but in a mirror, so that it points to 
the right. 

wx.CURSOR_RIGHT_BUTTON A mouse with the right button pressed. 

continued on next page



366 CHAPTER 12 
Manipulating basic graphical images
Now that we’ve discussed predefined cursors, we’ll show you how to create custom 
cursors using your own images.

Creating custom cursors 
You can create a custom cursor from an image using the method wx.CursorFrom-
Image(image). The image parameter is a wx.Image instance. The image is auto-
matically resized to 32 x 32 (on MacOS 16 x 16). The mask color of the image 
becomes the transparent color of the cursor. By default, the hotspot is set to the 
(0,0) corner of the cursor image. To change that, you need to set an option in 
the image before you convert it: 

image.SetOptionInt(wx.IMAGE_OPTION_CUR_HOTSPOT_X, 0) 
image.SetOptionInt(wx.IMAGE_OPTION_CUR_HOTSPOT_Y, 22) 

The actual wx.Cursor constructor is: 

wx.Cursor(name, type, hotSpotX=0, hotSpotY=0) 

The name parameter is the filename of the cursor to load. The type parameter is 
the icon type to load and uses the same wx.BITMAP_TYPE_ flags as wx.Image and 
wx.Bitmap. The hotSpotX and hotSpotY parameters set the hotspot of the icon. If 
the bitmap type used is wx.BITMAP_TYPE_CUR to load from a .cur file, then the 
hotspot is set automatically from the hotspot defined in the .cur file. 

wx.CURSOR_SIZENESW One of the cursors usually used to indicate both direction resize, this 
one has arrows pointing from the lower left (southwest) to upper  
right (northeast). 

wx.CURSOR_SIZENS The vertical resize cursor, pointing up and down. 

wx.CURSOR_SIZENWSE The other dual-direction resize cursor, pointing from lower right to 
upper left. 

wx.CURSOR_SIZEWE The horizontal reize cursor, pointing left and right. 

wx.CURSOR_SIZING Generic sizing cursor, with arrows pointing in all four compass 
directions. 

wx.CURSOR_SPRAYCAN Another painting cursor. 

wx.CURSOR_WAIT The hourglass wait cursor. 

wx.CURSOR_WATCH The watch-shaped wait cursor. 

Table 12.3 Predefined stock cursors (continued)

Cursor ID Description 



Dealing with device contexts 367
 Once you have the cursor created, using it is a simple matter of calling the 
SetCursor(cursor) on any wxPython widget. This method causes the cursor to 
be changed to the new shape when the cursor passes over the widget. There is 
also a global wx.SetCursor(cursor) method that globally sets the cursor for the 
entire application.

 Images are great, but they only scratch the surface of what you can do graph-
ically in wxPython. In the next section, we’ll show how to send draw commands to 
the screen, or a file, or other display objects. 

12.2 Dealing with device contexts

As we discussed earlier in this chapter, drawing to the screen is the most basic 
thing that a UI toolkit does. Most of the drawing that wxPython does is encapsu-
lated within the paint methods of each widget, because that encapsulation is per-
haps the second most basic thing that a UI toolkit does. That won’t always be 
enough for you, though. Sometimes, as in chapter 6, you’ll need to draw in 
response to a user command. Sometimes you’ll want some fancy animation. Some-
times you’ll want to draw your screen to a nonstandard display like a printer. 
Sometimes, you’ll want a widget with a custom look, and sometimes you’ll just 
want to be decorative. In wxPython, all these tasks are managed by manipulating 
an appropriate device context.

 A device context is the abstraction that wxPython uses to allow you to draw on 
a graphical device, such as the screen or a printer, without knowing the details of 
that device. This is managed by providing an abstract parent class, wx.DC, which 
defines a common API used by a series of subclasses, each of which represents a 
different graphic device. Chapter 6 presents device contexts, with an extended 
example of how to use them. In the following sections we’ll discuss device con-
texts in more detail.

12.2.1 What is a device context, and how can I create one? 

There are ten subclasses of wx.DC in wxPython, split into the following three groups: 

■ Contexts used for drawing to a screen
■ Contexts used for drawing to a location other than a screen
■ Contexts used to buffer a device context until you are ready to draw it to 

a screen



368 CHAPTER 12 
Manipulating basic graphical images
Screen-based device contexts
The first group represents device contexts that draw to the screen. You’d think 
there would only need to be one of these, but in fact wxPython provides four of 
them, depending on exactly where you need to draw, and exactly when you are 
doing the drawing. 

■ wx.ClientDC

■ wx.PaintDC

■ wx.WindowDC

■ wx.ScreenDC

Screen device contexts are meant to be created temporarily. This means you 
should only create them locally whenever you need one for drawing, and allow 
them to be garbage collected normally. You should never try to hold on to a 
screen device context as, say, an instance variable—this is unsafe and could lead 
to an unstable program. 

 Typically, you will draw to a window on the screen using either a wx.ClientDC
or a wx.PaintDC. Which one you use depends on when you are performing the 
drawing. If you are drawing to the screen during a EVT_PAINT event handler you 
must use wx.PaintDC. At all other times, you must use wx.ClientDC. In fact, when-
ever you bind a handler to the EVT_PAINT event, you must create a wx.PaintDC
object in the handler method even if you don’t use it (not creating a wx.PaintDC can
cause the platform to assume that the event wasn’t fully handled and so it will 
send another event). The reason that the paint events require a different kind of 
device context is that the wx.PaintDC instances are optimized to only draw within 
the area of the window that is actually being refreshed during the redraw event, 
making redrawing faster. 

 You create a client or paint device context via a simple constructor whose one 
argument is the wxPython widget that you wish to draw upon—wx.ClientDC(win-

dow) or wx.PaintDC(window). When you use these contexts, you will only be able to 
draw within the client area of that widget. This means that in a frame you will not 
be able to draw over the border, the title bar, or other decorations. 

 If you need to draw on the entire area of a frame including the borders and 
decorations, you should use a wx.WindowDC. You create a wx.WindowDC in the same 
way you would a wx.ClientDC—the constructor is wx.WindowDC(window). Like a 
wx.ClientDC, you should not create a wx.WindowDC during a paint event—the bor-
der-drawing behavior is not compatible with the clipping optimization of the 
paint device context. 



Dealing with device contexts 369
 Occasionally, you won’t want to be limited to merely drawing to a single win-
dow, and you need the whole screen to be your canvas. In that case, you can use a 
wx.ScreenDC. Again, you should not create one of these during a paint event. The 
constructor takes no arguments (since you don’t need to specify a window for the 
drawing to take place within)—wx.ScreenDC(). After that, you can use it just like 
any other device context. The images you draw are displayed on top of all of the 
windows in your display. 

Non-screen device contexts
The second group of device contexts are used to draw to items other than a 
screen. This is sort of a grab bag of different kinds of things that can be treated as 
logically equivalent to a screen display. 

■ wx.MemoryDC

■ wx.MetafileDC 
■ wx.PostScriptDC

■ wx.PrinterDC

The first of these is wx.MemoryDC, which allows you to draw to a bitmap that is 
stored in memory and not being displayed. You create a wx.MemoryDC with a no 
argument constructor, wx.MemoryDC(), but you must associate it with a bitmap 
before using it. This is accomplished by calling the method SelectObject(bit-
map) with an argument of type wx.Bitmap. Once that is done, you can draw to the 
memory device context, and the internal bitmap is changed. When you are done 
drawing, you can use the Blit() method to draw the bitmap to a window. We’ll 
discuss memory device contexts in more detail in the following section.

 The creation of MS Windows metafiles is simplified by using the wx.Meta-
fileDC context. This context is only available on Windows systems—although it’s 
hard to imagine all that much call for creating metafiles on other systems (frankly, 
it’s hard to imagine there’s all that much call for it on Windows systems, either). 
You create a metafile device context by passing a constructor with a file name, 
wx.MetafileDC(filename=""). If the filename is blank, the metafile is created in 
memory, but it’s worth noting that there’s not much you can do with it within 
wxPython. After creation, draw commands sent to this device context are written 
to the file. When you are done drawing, you can optionally call the method 
Close() which has no effect on the file itself, but does return a wxPython wx.Meta-
file object. With the current version of wxPython, the only thing you can do with 
a wx.Metafile object is send it to the clipboard with the SetClipboard(width=0,
height=0) method. 



370 CHAPTER 12 
Manipulating basic graphical images
 Similar functionality that is of greater use across platforms is the wx.Post-
ScriptDC object that creates Encapsulated PostScript files (.eps) files. You create a 
wx.PostScriptDC file from a print data object—wx.PostScriptDC(printData). The 
printData argument is of the type wx.PrintData, which will be discussed in chap-
ter 17. Once created, the PostScript device context can be used like any other DC. 
The filename you save to can be set in the wx.PrintData object. So, you can save 
the .eps file as in the following example. 

    data = wx.PrintData() 
    data.SetFileName("/tmp/test.eps") 
    data.SetPaperId(wx.PAPER_LETTER) 
    dc = wx.PostScriptDC(data) 
    dc.StartDoc("") 
    dc.DrawCircle(300,300, 100) 
    dc.EndDoc() # the file is written at this point 

On Windows systems, you can access any Windows printer driver using the 
wx.PrinterDC. This class is also created from a print data object—wx.PrinterDC

(printData). We’ll discuss printing further in chapter 17. 

Buffered device contexts
The third group of device contexts allows you to buffer a device context until you 
are ready to draw it to a screen. 

■ wx.BufferedDC

■ wx.BufferedPaintDC

Buffering allows you to perform individual drawing commands to the buffer, and 
then draw them all to the screen in one shot. This prevents screen flicker when 
you are doing several redraws at once. As a result, buffering is a common tech-
nique when doing animation or other screen intensive drawing techniques. 

 There are two buffered device contexts in wxPython—wx.BufferedDC, which 
can be used to buffer any device context (but is normally used just with a 
wx.ClientDC), and wx.BufferedPaintDC, which is specifically designed to buffer a 
wx.PaintDC. The buffered contexts both work in essentially the same way, as some-
thing of a simplified wrapper around a memory device context. The wxBufferedDC
constructor takes a device context and an optional bitmap as parameters—
wx.BufferedDC(dc, buffer=None). On the other hand, wx.BufferedPaintDC takes a 
window and an optional bitmap—wx.BufferedPaintDC(dc, buffer=None). The dc
argument is the device context where you want the drawing to end up when fin-
ished, for the wx.BufferedPaintDC window argument is used to create a wx.PaintDC
internally and the buffer argument is a bitmap that is used as the temporary 



Dealing with device contexts 371
buffer. If the buffer argument is not specified, the device context creates its own 
bitmap internally. Once the buffered device context is created, you use it just as 
though it was the device context that you intend to have as the final drawing. 
Internally, the buffer context uses a memory device context and the bitmap to 
store the drawing. The shortcut is that you don’t have to do anything in particular 
to get the buffer to draw to the real device context. It happens automatically. 
When the buffered device context is garbage collected (typically when the method
ends and it drops out of scope), the C++ destructor function triggers the Blit()
which draws the final contents of the buffer to the actual device context, with no 
further work needed on your part. 

12.2.2 How do I draw to a device context? 

Now that you have your device context, you may want to actually draw some pic-
tures of your own onto it. One advantage of the device context concept is that 
your program does not care which kind of device context is being used—the draw 
commands are the same no matter what. 

 Using wxPython, there are many ways to draw to a device context. The device 
context API defines about eighteen or so different methods that allow you to draw 
on the screen. Table 12.4 lists the first batch: methods that let you draw geometric 
shapes. Unless stated otherwise, all of these methods use the current pen to draw 
their lines, and the current brush to fill in their shape. We’ll discuss more details 
about pens and brushes later in this chapter. 

Table 12.4 Device context methods for drawing geometric shapes 

Method Description 

CrossHair(x, y) Draws a cross-hair along the entire extent of the context—a horizontal line at 
the given y coordinate and a vertical line at the given x coordinate, meeting at 
the point (x, y). 

DrawArc(x1, y1, x2, y2, 
xc, yc) 

Draws a circular arc, starting at the point (x1, y1) and ending at the point 
(x2, y2). The center of the circle whose arc is being described is the point 
(xc, yc). The arc is drawn counterclockwise from the first point to the 
second point. The current brush is used to fill in the wedge shape. 

DrawCheckMark(x, y, 
width, height) 

Draws a check mark, as you’d see inside a selected check box, inside the 
rectangle with the upper left corner (x, y), and the given width and 
height. The brush is not used to fill the background. 

DrawCircle(x, y, radius) Draws a circle centered on (x, y) with the given radius. 

continued on next page



372 CHAPTER 12 
Manipulating basic graphical images
For all of the Draw methods that take just an x and y parameter, there is a corre-
sponding Draw...Point method that takes a wx.Point instance instead; for exam-
ple, DrawCirclePoint(pt, radius). If the method has both an x, y and a width, 
height pair, then there is a method that takes both a wx.Point and a wx.Size, and 

DrawEllipse(x, y, width, 
height) 

Draws an ellipse inscribed inside the rectangle with an upper left corner at (x, 
y) and with the given width and height. 

DrawEllipticArc(x, y, 
width, height,  
start, end) 

Draws an arc of an eclipse. The first four parameters are as in DrawEllipse. 
The start and end parameters are the start and end angles of the arc 
relative to the three-o’clock position from the center of the rectangle. Angles 
are specified in degrees (360 is a complete circle). Positive values mean 
counterclockwise motion. If start is equal to end, a complete ellipse will  
be drawn. 

DrawLine(x1, y1,  
x2, y2) 

Draws a line which starts at the point (x1, y1) and ends before the point 
(x2, y2). (By long-standing and inscrutable graphic toolkit convention, the 
endpoint is not drawn by this method). 

DrawLines(points, 
xoffset=0, yoffset=0) 

Draws a series of lines. The points parameter is a list of instances of 
wx.Point (or two-element tuples that are converted to wx.Point). The lines 
are drawn from point to point until the end of the list. If the offset is used, it is 
applied to each point in the list, allowing a common shape to be drawn at any 
point in the DC. The brush is not used to fill in the shape. 

DrawPolygon(points, 
xoffset=0, yoffset=0 
fillstyle= 
wx.ODDEVEN_RULE) 

Draws a series of lines, similar to DrawLines, except that a line is also drawn 
between the last point and the first, and the brush is used to fill the polygon. 

DrawPoint(x, y) Fills in the given point using the current pen. 

DrawRectangle(x, y, 
width, height) 

The point (x, y) is the upper left-hand corner of the rectangle, and the 
width and height parameters are the dimensions. 

DrawRoundedRectangle
(x, y, width, height, 
radius=20) 

Exactly like DrawRectangle(), but with the corners replaced by 90 degrees 
of a circle. The radius parameter governs the curvature. If positive, it is the 
radius of the circle used in pixels. If negative, the value size of the circle is 
made proportional to the whichever dimension of the rectangle is smaller. (The 
exact formula is - radius * dimension) 

DrawSpline(points) Takes in a Python list of points and draws the appropriate spline curve. This 
curve is not filled in by the brush. 

FloodFill(x, y, color, 
style=wx.FLOOD_SURF
ACE) 

Fills the space with the color of the current brush. The algorithm starts at the 
point (x, y). If the style is wx.FLOOD_SURFACE, then all touching pixels 
which match the given color are redrawn. If the style is wx.FLOOD_BORDER, 
then all pixels are drawn until a border in the given color is reached. 

Table 12.4 Device context methods for drawing geometric shapes (continued)

Method Description 



Dealing with device contexts 373
is called Draw...PointSize, for example, DrawRectanglePointSize(pt, sz). Those 
methods also have a corresponding Draw...Rect version, that takes a wx.Rect
instance, DrawRectangleRect(rect). 

 You can get the size of the device context using the method GetSize(), which 
returns a wx.Size instance. You can retrieve the color value at a specific pixel with 
the method GetPixel(x, y), which returns a wx.Color instance. 

 Figure 12.2 displays a screen shot of the picture we’re going to build using the 
draw methods and double buffering.

Listing 12.2 displays a simple radar graph that plots a collection of values in the 
range of 0-100 onto a polar coordinate system designed to easily show outliers. 
You may use this kind of graph to monitor some sort of resource allocation met-
rics, and a quick glance at the graph can tell you when conditions are good 
(within some accepted tolerance level), or approaching critical levels (total 
resource consumption). In this sample, the graph is continually refreshed with 
random data. This is a long example that demonstrates a number of things we’ve 
shown thus far.

import wx 
import math 
import random 

Listing 12.2 Drawing a radar graph

Figure 12.2  
A sample radar graph



374 CHAPTER 12 
Manipulating basic graphical images
class RadarGraph(wx.Window): 
    def __init__(self, parent, title, labels): 
        wx.Window.__init__(self, parent) 
        self.title = title 
        self.labels = labels 
        self.data = [0.0] * len(labels) 
        self.titleFont = wx.Font(14, wx.SWISS, wx.NORMAL, wx.BOLD) 
        self.labelFont = wx.Font(10, wx.SWISS, wx.NORMAL, wx.NORMAL) 

        self.InitBuffer() 

        self.Bind(wx.EVT_SIZE, self.OnSize) 
        self.Bind(wx.EVT_PAINT, self.OnPaint) 

    def OnSize(self, evt): 
        # When the window size changes we need a new buffer. 
        self.InitBuffer() 

    def OnPaint(self, evt):   
        dc = wx.BufferedPaintDC(self, self.buffer)   

    def InitBuffer(self):   
        w, h = self.GetClientSize()         
        self.buffer = wx.EmptyBitmap(w, h) 
        dc = wx.BufferedDC(wx.ClientDC(self), self.buffer) 
        self.DrawGraph(dc) 
        

    def GetData(self): 
        return self.data 

    def SetData(self, newData): 
        assert len(newData) == len(self.data) 
        self.data = newData[:]  
        dc = wx.BufferedDC(wx.ClientDC(self), self.buffer)   
        self.DrawGraph(dc) 
    
    def PolarToCartesian(self, radius, angle, cx, cy): 
        x = radius * math.cos(math.radians(angle)) 
        y = radius * math.sin(math.radians(angle)) 
        return (cx+x, cy-y) 

    def DrawGraph(self, dc):   
        spacer = 10 
        scaledmax = 150.0 

        dc.SetBackground(wx.Brush(self.GetBackgroundColour())) 
        dc.Clear() 
        dw, dh = dc.GetSize() 

Refresh window 
from the buffer

 b

Creating the buffer c

Updating 
when data 
changes

Drawing the graph



Dealing with device contexts 375
        dc.SetFont(self.titleFont)   
        tw, th = dc.GetTextExtent(self.title) 
        dc.DrawText(self.title, (dw-tw)/2, spacer)   
 
        th = th + 2*spacer   
        cx = dw/2 
        cy = (dh-th)/2 + th 

        mindim = min(cx, (dh-th)/2)   
        scale = mindim/scaledmax 

        dc.SetPen(wx.Pen("black", 1))   
        dc.SetBrush(wx.TRANSPARENT_BRUSH) 
        dc.DrawCircle(cx,cy, 25*scale) 
        dc.DrawCircle(cx,cy, 50*scale) 
        dc.DrawCircle(cx,cy, 75*scale) 
        dc.DrawCircle(cx,cy, 100*scale) 

        dc.SetPen(wx.Pen("black", 2)) 
        dc.DrawLine(cx-110*scale, cy, cx+110*scale, cy) 
        dc.DrawLine(cx, cy-110*scale, cx, cy+110*scale) 
 
        dc.SetFont(self.labelFont)   
        maxval = 0 
        angle = 0 
        polypoints = [] 
        for i, label in enumerate(self.labels): 
            val = self.data[i]      
            point = self.PolarToCartesian(val*scale, angle, cx, cy)  
            polypoints.append(point) 
            x, y = self.PolarToCartesian(125*scale, angle, cx,cy) 
            dc.DrawText(label, x, y)   
            if val > maxval: 
                maxval = val 
            angle = angle + 360/len(self.labels) 
            
        c = "forest green"   
        if maxval > 70: 
            c = "yellow" 
        if maxval > 95: 
            c = "red" 
        dc.SetBrush(wx.Brush(c))   
        dc.SetPen(wx.Pen("navy", 3)) 
        dc.DrawPolygon(polypoints)   
        
class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="Double Buffered Drawing", 
                          size=(480,480)) 
        self.plot = RadarGraph(self, "Sample 'Radar' Plot", 
                          ["A", "B", "C", "D", "E", "F", "G", "H"]) 

Drawing the title

Finding the center point

Calculating the scale factor

Drawing the axes

Translating 
data values to 

polygon points

Drawing the labels

Setting brush color

Drawing the plot polygon



376 CHAPTER 12 
Manipulating basic graphical images
        # Set some random initial data values 
        data = [] 
        for d in self.plot.GetData(): 
            data.append(random.randint(0, 75)) 
        self.plot.SetData(data) 

        # Create a timer to update the data values 
        self.Bind(wx.EVT_TIMER, self.OnTimeout) 
        self.timer = wx.Timer(self) 
        self.timer.Start(500) 

    def OnTimeout(self, evt): 
        # simulate the positive or negative growth of each data value 
        data = [] 
        for d in self.plot.GetData(): 
            val = d + random.uniform(-5, 5) 
            if val < 0: 
                val = 0 
            if val > 110: 
                val = 110 
            data.append(val) 
        self.plot.SetData(data) 

app = wx.PySimpleApp() 
frm = TestFrame() 
frm.Show() 
app.MainLoop() 

This method does not need any drawing commands of its own. The buffered DC
object automatically blits self.buffer to a wx.PaintDC when the device context is 
destroyed at the end of the method, Therefore, no new drawing needs to be 
done—we’ve already taken care of it.
We create a buffer bitmap to be the same size as the window, then draw our graph 
to it. Since we use wx.BufferedDC whatever is drawn to the buffer will also be 
drawn to the window when the InitBuffer method is complete.

12.2.3 How do I draw images to the context? 

Even with the existence of the image and bitmap objects mentioned at the begin-
ning of this chapter, you will still need to use device context methods to draw 
images or copy from one device context to another, a process called a blit. One com-
mon use for this feature is to draw part of an image to the context. Historically, 
this was used to allow a program to deploy all of its peripheral images in one file, 
and use a partial blit to draw only the part that corresponded to a particular 
image or toolbar icon.

 b

 c



Dealing with device contexts 377
 There are three device context methods used to draw images to the context, 
whether from another device context or from a preexisting image. 

■ Blit()

■ DrawBitmap()

■ DrawIcon()

Probably the most important method, and definitely the most complex one, 
is Blit():

Blit(xdest, ydest, width, height, source, xsrc, ysrc, 
    logicalFunc=wx.COPY, useMask=False, xsrcMask=-1, 
    ysrcMask=-1) 

Copying part of an image
The purpose of Blit() is to copy pixels rapidly from one device context to 
another. It’s typically used when you want to copy part of one image to part of 
another image or to quickly copy pixel data to the screen. We’ve already seen 
that Blit() is used to manage buffered device contexts, for example. It is a very 
powerful and flexible method, with a number of parameters. Generally, it 
involves setting a rectangle on the destination context to be copied to, setting a 
rectangle on the source to copy from, and then a few parameters for the copy 
itself. The destination for a blit is the wx.DC instance whose Blit() method is 
being invoked. The xdest and ydest parameters are the location of the top left 
corner of the rectangle in the destination context where the data copy will begin. 
The width and height parameters set the size of the rectangle to be copied. The 
source is the other wx.DC where the pixels are coming from. This can be any 
other subclass of wx.DC. The xsrc and ysrc parameters denote the position on 
the source device context where the copying should start—obviously this will not 
necessarily be the same as xdest and ydest. However, the width and height 
parameters are shared between the source and destination—the two rectangles 
must be the same size. 

 The logicalFunc is the algorithm used to merge the old pixels and the new—
the default behavior is to overwrite, but various kinds of XORish behavior can be 
defined. In table 12.6, we’ll show a complete list of logical functions. If the use-
Mask parameter is True, the blit is performed with a mask governing which pixels 
are actually copied. In this case, the selected source area must be a bitmap with an 
associated mask or alpha channel. If specified, the xsrcMask and ysrcMask param-
eters govern where on the mask the copy starts. If they aren’t specified, then xsrc
and ysrc are used. There is also a BlitPointSize() version of the method which 



378 CHAPTER 12 
Manipulating basic graphical images
replaces all three point pairs with wx.Point instances, and the width and height 
with a wx.Size. 

Drawing a bitmap
Assuming you want to draw a complete image onto your device context, there are 
a couple of simpler methods you can use. To draw a bitmap, you have Draw-
Bitmap(bitmap, x, y, useMask=False). The bitmap parameter is a wx.Bitmap object, 
which is drawn to the device context at the point (x, y). The useMask parameter 
is a Boolean. If it is False, the image is drawn normally. If True, and if the bit-
map has a mask or alpha channel associated with it, then the mask is used to 
determine which parts of the bitmap are transparent. If the bitmap is monochro-
matic, the current text foreground and background colors are used for the 
bitmap, otherwise, the bitmap’s own color scheme is used. Figure 12.3 displays 
that functionality. 

Listing 12.3 displays a simple example of using a device context to display a bit-
map, as used to create figure 12.3. 

import wx 
import random 
random.seed() 

Listing 12.3 Creating a device context and drawing a bitmap

Figure 12.3  
Drawing a face to the 
screen multiple times



Dealing with device contexts 379
class RandomImagePlacementWindow(wx.Window): 
    def __init__(self, parent, image): 
        wx.Window.__init__(self, parent) 
        self.photo = image.ConvertToBitmap()   

        self.positions = [(10,10)]   
        for x in range(50): 
            x = random.randint(0, 1000) 
            y = random.randint(0, 1000) 
            self.positions.append( (x,y) ) 
            
        self.Bind(wx.EVT_PAINT, self.OnPaint) 

    def OnPaint(self, evt): 
        dc = wx.PaintDC(self)   
        brush = wx.Brush("sky blue") 
        dc.SetBackground(brush) 
        dc.Clear()   

        for x,y in self.positions:   
            dc.DrawBitmap(self.photo, x, y, True) 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="Loading Images", 
                          size=(640,480)) 
        img = wx.Image("masked-portrait.png") 
        win = RandomImagePlacementWindow(self, img) 

app = wx.PySimpleApp() 
frm = TestFrame() 
frm.Show() 
app.MainLoop() 

You may also draw a wx.Icon with DrawIcon(icon, x, y), which places the wx.Icon
object at the point (x, y) in the device context. Any other image that you want to 
draw to the device context must first be converted to either a wx.Bitmap or 
a wx.Icon. 

12.2.4 How can I draw text to the context? 

To draw text into your device context, the method is DrawText(text, x, y). The 
string to draw is passed to the text parameter, and the x and y parameters mark 
the upper-left corner of the drawn text, meaning that the text is drawn below the 
y coordinate you pass. For angled text, use the DrawRotatedText(text, x, y,
angle) method. The angle parameter is in degrees. A positive value rotates the 

Getting the bitmap

Creating random locations

Clearing the DC with the background brush
Drawing the bitmap



380 CHAPTER 12 
Manipulating basic graphical images
text clockwise, and a negative value rotates it counterclockwise. The correspond-
ing DrawTextPoint(text, pt) and DrawRotatedTextPoint(text, pt, angle) ver-
sions are also available.

 You control the style of the text with features of the device context itself. The 
device context maintains a current font, text foreground color, and text back-
ground color. You can access this information with the getter and setter methods 
GetTextForeground(), SetTextForegroud(color), GetTextBackground(), SetText-
Background(color), GetFont(), and SetFont(font). In wxPython you can specify 
whether text even has a background color with the method SetBackground-
Mode(mode). The legal values for mode are wx.SOLID if you want text to have a back-
ground color and wx.TRANSPARENT if you do not. 

 When putting text on the screen, it’s useful to know in advance how much 
space it will take up. If you just want to know the general dimensions of the cur-
rent font, you can use the methods GetCharHeight() and GetCharWidth() which 
return the average character height and width of the current font.

 You can determine exactly how much space a specific string will take up with 
the method GetTextExtent(string). This method returns a tuple (width,
height) showing the exact dimensions of the rectangle bounding this text were it 
to be drawn in the current font. For more detail, use the method GetFull-
TextExtent(string), which returns a tuple (width, height, descent, external-
Leading). The descent value is the distance between the nominal baseline of the 
font and the actual bottom of the rectangle (where descending letters such as “y” 
are drawn), and the external leading is the (usually zero) amount of space added 
to the vertical dimension by the font itself. Often, what you really need to do with 
text extents is determine exactly where within the text a specific width is crossed 
(such as the right margin of your text display). The GetPartialTextEx-

tents(text) method is a handy shortcut. It returns a list where each element is 
the width of the displayed string up to that point. The first element shows the 
display width of just the first character, the second element shows the width of 
the first two characters, and so on. To put it another way, it returns a list, widths, 
calculated as follows: 

widths[i] = GetTextExtent(text[:i])[0] 

The list can be used to determine how many characters you can draw in the avail-
able space.

 All graphic operations are governed by the abstractions for pens and brushes 
to manage the characteristics of the foreground and background of your drawing. 
In the next section, we’ll cover those objects.



Graphics manipulation 381
12.3 Graphics manipulation

Graphics work is not limited to images and device contexts. There are other 
abstractions that allow you to control the drawings you make. In this section, we’ll 
talk about the pen used for drawing lines, the brush used to paint backgrounds, 
pixel manipulation, and color names. 

12.3.1 How do I manage the foreground drawing pen? 

The color and style of the lines you draw on your device context are controlled by 
the current pen, which is an instance of the class wx.Pen. To get the current pen, 
use the device context method GetPen(). Not surprisingly, you can set the current 
pen with SetPen(pen). 

 The wx.Pen class is a simple structure with several properties related to draw-
ing lines. The constructor for wx.Pen lets you set some of the properties. 

wx.Pen(colour, width=1, style=wx.SOLID) 

The colour parameter is either a wx.Colour object or any of the things that can be 
automatically converted to one—a tuple of RGB values, a string color name, or a 
string of RGB hex values such as "#12C588". The width is the width of the pen line, 
in pixels. The style controls the way in which the line is displayed. Table 12.5 dis-
plays the legal values of the style parameter—note that not all styles are sup-
ported on all platforms. 

Table 12.5 Drawing styles of wx.Pen 

Style Description 

wx.BDIAGONAL_HATCH The pen will draw backward (northwest to southeast) hatch lines. 

wx.CROSSDIAG_HATCH A combination of wx.BDIAGONAL_HATCH and wx.FDIAGONAL_HATCH—
in other words, it creates x shapes. 

wx.CROSS_HATCH Crosshatched + shapes. 

wx.DOT Small dots. 

wx.DOT_DASH Alternating between small dots and longer dashes. 

wx.FDIAGONAL_HATCH The pen will draw forward (southwest to northeast) hatch lines. 

wx.HORIZONTAL_HATCH Short, horizontal hash lines. 

wx.LONG_DASH Long dashes. 

continued on next page



382 CHAPTER 12 
Manipulating basic graphical images
In addition to the complete constructor, there are a number of predefined pens, 
listed next. The description of the pens should be clear from the name—any 
attribute not specified in the pen name will be set the default value. 

wx.BLACK_DASHED_PEN 
wx.BLACK_PEN 
wx.CYAN_PEN 
wx.GREEN_PEN 
wx.GREY_PEN 
wx.LIGHT_GREY_PEN 
wx.MEDIUM_GREY_PEN 
wx.RED_PEN 
wx.TRANSPARENT_PEN 
wx.WHITE_PEN 

The color, width, and style properties of the pen are accessible after creation 
with the normal property method names—GetColour(), SetColour(color), Get-
Width(), SetWidth(width), GetStyle(), and SetStyle(). There are a couple of 
other properties that you can change in the pen. One is the end cap, the style that 
the pen uses at the end of a line. Typically, this is only visible for lines that are 
wider than one pixel. The methods are GetCap() and SetCap(cap). The valid val-
ues for the cap are: wx.CAP_BUTT, which ends the line with a straight edge, 
wx.CAP_PROJECTING, which puts a square projection on the end of the line, and 
wx.CAP_ROUND, which rounds off the end of the line with a semicircle. The default 
is wx.CAP_ROUND. Similarly, you can define the join style, which is what the pen 
draws when two lines meet. The methods for this are wx.GetJoin(), and wx.Set-
Join(join). The legal join values are: wx.JOIN_BEVEL, where the outside corners 
of the two lines are merely connected with a straight line, wx.JOIN_MITER, where 
the outer edges of the two lines are continued until they meet at a point, and 

wx.SHORT_DASH Shorter dashes. 

wx.SOLID A solid line. This is the default. 

wx.STIPPLE Use a provided bitmap as the pen stroke. 

wx.TRANSPARENT Do not draw any lines. 

wx.USER_DASH Use the provided dash pattern. 

wx.VERTICAL_HATCH Vertical hash lines. 

Table 12.5 Drawing styles of wx.Pen (continued)

Style Description 



Graphics manipulation 383
wx.JOIN_ROUND, which places a circular arc over the meeting points to round off 
the corner. The default is wx.JOIN_ROUND.

 If you create the pen with the wx.USER_DASH style, you can set the specific style 
of the dash with the methods GetDashes() and SetDashes(dashes). The dashes
parameter is a list of 16-bit strings of ones and zeroes. Each dash is interpreted 
with a 1 being a drawn pixel and a 0 being an undrawn pixel. The user dash pen 
style cycles through the provided dashes when drawing a pen line. If the pen has 
the wx.STIPPLE style, you can set a bitmap to be used as the stipple with Set-
Stipple(stipple), and you can recover the bitmap with GetStipple(). 

 When you are drawing with a pen (or blitting from another bitmap), the exact 
algorithm used to set the pixel in the destination context is called the logical func-
tion, and you can set it with SetLogicalFunction(function). The default value is 
wx.COPY, which places the source color as-is onto the destination. The other logi-
cal functions perform various bitwise operations using the color values of the 
source and destination. The most commonly used operations are wx.XOR and 
wx.INVERT, both of which can be used to manage rubber-banding or other graphic 
mechanisms where you need to set a pixel to another color temporarily, and then 
set it right back. Those are far from the only functions offered by wxPython, how-
ever. Table 12.6 displays the complete list, with the algorithms written out in 
Python bitwise operators.

 Following is a quick just-in-time refresher on Python bitwise operators. 

 & bitwise and 
 | bitwise or 
 ^ bitwise exclusive or 
 ~ bitwise complement 

Table 12.6 Logical copy functions 

Function Algorithm 

wx.AND source & destination 

wx.AND_INVERT ~source & destination 

wx.AND_REVERSE source & ~destination 

wx.CLEAR All pixels set to 0—black 

wx.COPY source 

wx.EQUIV ~source ^ destination 

continued on next page



384 CHAPTER 12 
Manipulating basic graphical images
Again, the logical function applies any time pixels are drawn to the device con-
text, whether using the draw functions or blit. 

12.3.2 How do I manage the background drawing brush? 

Any kind of fill operation, including flood fill or the fill of items created using the 
draw functions, is managed using the device context’s current brush, which is an 
instance of wx.Brush. You can get the current brush using GetBrush(), and set one 
with SetBrush(brush). Calling the DC method Clear() redraws the entire device 
context using the current background brush. 

 The brush instances are a bit simpler than the pen. Here is the constructor 
for wx.Brush.

wx.Brush(colour, style=wx.SOLID) 

The colour is, of course, the color used by the brush. As usual, it can be a 
wx.Colour instance, or an RGB-tuple, or a string. The style governs how the brush 
fills space, and can be one of the following, all of which have the same meaning as 
they do for wx.Pen. 

wxBDIAGONAL_HATCH     
wxCROSSDIAG_HATCH     
wxCROSS_HATCH 
wxFDIAGONAL_HATCH   
wxHORIZONTAL_HATCH   

wx.INVERT ~destination 

wx.NAND ~source | ~destination 

wx.NOR ~source & ~destination 

wx.NO_OP destination 

wx.OR source | destination 

wx.OR_INVERT ~source | destination 

wx.OR_REVERSE source | ~destination 

wx.SET All pixels set to 1—white 

wx.SRC_INVERT ~source 

wx.XOR source ^ destination 

Table 12.6 Logical copy functions (continued)

Function Algorithm 



Graphics manipulation 385
wxSOLID 
wxSTIPPLE    
wxTRANSPARENT   
wxVERTICAL_HATCH     

The color and style can be manipulated via getter and setter—GetColour(), Set-
Colour(colour), GetStyle(), SetStyle(). The only other thing you can do with a 
brush is set the stipple pattern with SetStipple(bitmap). If you create a stipple 
for the brush, then the style is also set to wx.STIPPLE for you. You can retrieve the 
stipple using GetStipple(). 

12.3.3 How can I manage logical  
and physical device coordinates? 

In this section we’ll talk about a variety of ways that wxPython allows you to man-
age coordinates, sizing, and the like. Let’s start with coordinate axis manage-
ment. Ordinarily, the coordinate system of a wxPython device context starts with 
(0, 0) in the upper-left, with the y coordinate getting larger as you move down, 
and the x coordinate getting larger as you move right. This is in keeping with the 
standard of nearly every graphics system since the beginning of time, and of 
course, the y-axis is flipped from the normal way a mathematical plane is drawn. 
Should the inconsistency with your geometry textbook bother you, you can 
change the orientation with the method SetAxisOrientation(xLeftRight,

yBottomUp); both of the parameters are Boolean. If xLeftRight is True, then the 
x-axis increases from left to right, if it’s False then the axis is flipped and 
increases from right to left. Similarly, if yBottomUp is True then the y-axis increases 
as it heads up, otherwise, it increases as it heads down. 

 The coordinate axis is measured in pixels. However, at times you’ll want to 
store your dimension in some more useful real-world measurement. You can 
manage the conversion by setting a map mode with the method SetMapMode(mode). 
The map mode is a conversion that the device context will use between the phys-
ical coordinates of the screen and the logical coordinates in the measurement you 
specify. The legal values of the mode are displayed in table 12.7.

Table 12.7 Device context mapping modes 

Mode Logical Unit 

wx.MM_LOMETRIC 0.1 millimeters 

wx.MM_METRIC 1 millimeter 

continued on next page



386 CHAPTER 12 
Manipulating basic graphical images
The accuracy of the logical to physical mapping depends on how well your system 
reports the dot pitch of the monitor in order to perform the conversion. You can 
see the value being used for the conversion with the method GetPPI(), which 
returns the value of pixels per inch. In practice, I wouldn’t depend on a logical 
inch exactly matching a real inch.

 The mapping mode conversions are automatically applied to your points and 
sizes when you use a device context method. Sometimes you will need to perform 
the conversion outside the device context. To convert from your logical coordi-
nate to the device coordinate you use the methods LogicalToDeviceX(x) and 
LogicalToDeviceY(y). Both of these methods take in the integer measurements in 
the logical coordinates, apply the mapping mode, and return the measurement 
in device coordinates. There are related methods which use the mapping mode, 
but do not care about the current orientation of the axes, in essence taking an 
absolute value of the coordinate. Those methods are called LogicalToDevice-
XRel(x) and LogicalToDeviceYRel(y). 

 The inverse set of methods take a location on the device axis and convert it to 
the logical coordinate system. Those methods, as you might guess, are called 
DeviceToLogicalX(x), DeviceToLogicalY(y), DeviceToLogicalXRel(x), and Device-
ToLogcialYRel(y). 

 There are a series of device context methods that allow some information and 
control over the portion of the device context that you are drawing in. Often, you 
want to restrict drawing updates to a particular section of the device context. This 
is usually done for performance reasons, especially if you know that only one por-
tion of a large or complex graphic needs to be redrawn. This kind of redraw is 
called clipping, and the method for setting it is SetClippingRegion(x, y, width,
height). The four parameters specify a rectangle with the upper left corner, and 
the dimensions. Once set, only drawing actions taking place within the clipping 
region will be processed. To unset a clipping region, use the method Destroy-
ClippingRegion(), which completely clears the clipping region. After that method 
is called, drawing actions are processed throughout the device context. To read 

wx.MM_POINTS A point (as in the printing unit of measure—point size). Equal to 1/72nd of an inch. 

wx.MM_TEXT Default value. The unit is 1 pixel. 

wx.MM_TWIPS Printing unit, 20 to a point, or 1440 to an inch. 

Table 12.7 Device context mapping modes (continued)

Mode Logical Unit 



Graphics manipulation 387
the current clipping region, use the method GetClippingBox(), which returns a 
tuple (x, y, width, height). 

 As you draw into a device context, wxPython maintains the value of the rect-
angle that would minimally surround all the drawing you have done to the con-
text. This rectangle is called the bounding box, and is often useful in determining if 
the context needs to be refreshed. You can get the four sides of the bounding box 
with the methods MaxX(), MaxY(), MinX(), MinY(). These methods return the 
appropriate minimum or maximum value in device coordinates for the bounding 
box in the direction specifed. If there’s a specific point on the screen that you want 
within the bounding box for some reason, you can add it with the method Calc-
BoundingBox(x, y), which recalculates the extent of the bounding box exactly as 
though you had drawn something at that point. You can start the bounding box 
calculations all over with the method ResetBoundingBox(). After that method is 
called, the bounding box reverts to its default state, as if nothing had been drawn 
to the context. 

12.3.4 What color names are predefined? 

The following color names are guaranteed to be recognized by wxPython: 

aquamarine black blue blue violet

brown cadet blue coral cornflower blue

cyan dark gray dark green dark olive green

dark orchid dark slate blue dark slate gray dark turquoise

dim gray firebrick forest green gold

goldenrod gray green green yellow

indian red khaki light blue light gray

light steel blue lime green magenta maroon

medium aquamarine medium blue medium forest green medium goldenrod

medium orchid medium sea green medium slate blue medium spring green

medium turquoise medium violet red midnight blue navy

orange orange red orchid pale green

pink plum purple red

salmon sea green sienna sky blue



388 CHAPTER 12 
Manipulating basic graphical images
An additional set of color names and values can be loaded into the in-memory 
color database using the updateColourDB function located in the wx.lib.colourdb
module.

12.4 Summary 

■ In wxPython, you can easily perform common graphics operations includ-
ing image manipulation and drawing onto the screen. Images are managed 
via the class wx.Image, which handles platform-independent image tools, 
such as loading from common image file formats, and the class wx.Bitmap, 
which handles platform-dependent tasks such as drawing the image to the 
screen. Predefined image handlers exist for the most popular file formats. 
Once you have a wx.Image instance, you can do a variety of useful filtering 
operations on the data. You can define a transparent mask color, which 
causes a specific color in the image to be rendered as though it was trans-
parent, allowing for chroma-key effects. You can also define a series of alpha 
values to make the image partially transparent on a pixel-by-pixel basis. 

■ A bitmap can be created from a bitmap file, or it can take in a wx.Image
object and convert it to a bitmap. The only advantage of having your image 
in a wx.Bitmap instance is that wxPython needs an instance of wx.Bitmap in 
order to be able to draw your image to the screen. 

■ You can create your own cursor or use one of about two dozen stock cur-
sors, including the most commonly used arrows and wait cursers, as well as 
some more obscure ones. You can also create your own cursor from a 
wx.Image instance. 

■ Actual drawing to the screen or to any of a number of other virtual devices 
is managed through the device context class wx.DC, which is an abstract 
class defining a common API for drawing. Various subclasses of wx.DC allow 
you to draw to the screen, directly to memory or to a file, or to a printer. 
Device contexts should only be created locally in your program, and should 
not be stored globally. When drawing to the screen, the type of device con-
text you use depends on whether or not you are drawing within an 
EVT_PAINT handler. There also are separate device contexts which allow you 

slate blue spring green steel blue tan

thistle turquoise violet violet red

wheat white yellow yellow green



Summary 389
to draw outside the normal client area of a window or on an arbitrary place 
on the screen, even if it is not inside your window. 

■ Other kinds of device contexts, such as wx.MemoryDC or wx.BufferedDC, 
allow you to draw directly to memory for the purpose of buffering draw 
operations until you are ready to show the completed image on screen. The 
wx.BufferedDC and wx.BufferedPaintDC classes allow a simple shortcut to 
managing buffered drawing. 

■ Several different methods allow you to draw lines or geometric shapes to a 
device context. Many of them have secondary forms allowing you to pass 
wx.Size or wx.Point instances to them directly rather than having to break 
them out into component pieces. You can draw text to the device context, 
either straight or rotated an arbitrary number of degrees. Helper methods 
allow you to manage the font, and determine how much space on the 
screen your text will cover. 

■ In addition to being able to draw a bitmap to the device context, you can 
perform a Blit() which allows you to rapidly copy part of the content of one 
device context to another. You can also draw an icon to the device context. 

■ You control the color and style of your drawing with a wx.Pen instance, 
which handles foreground drawing, and a wx.Brush instance, which handles 
background filling. In both cases, the device context maintains a current 
value for the object, which you can change at will. You can set the color and 
style for both objects, and for a pen you can also manage the width and dash 
pattern. The exact way in which the source pixel from the pen is combined 
with the color already existing in the device context is computed with the 
logical function—the default is to just copy the source over the destination, 
but there are a variety of other flavors to choose from.

■ The device context draws in physical coordinates, meaning pixels, but you 
can set a parallel logical scale in inches or millimeters, and convert all your 
coordinates to their physical pixel values when you draw. You can also set 
the clipping region, which sets a rectangle in your device context as being 
the only area in which drawing should actually take place. The inverse 
of the clipping region is the bounding box, which is the rectangle repre-
senting the region of your device context in which drawing has already 
taken place. 





Part 3

Advanced wxPython

I     n this part we start with three more complex widget objects, and move to 
features that won’t be a part of every wxPython program, but are good to know 
for the times when you will need to, say, print something.

 In chapter 13, “Building list controls and managing items,” we cover the list 
control. More advanced than the simple list box, the list control allows a full Win-
dows Explorer-like display, complete with different modes. You’ll see how to 
switch between modes, add text and images to the list, and respond to user events. 
Chapter 14, “Coordinating the grid control,” adds another dimension to the list, 
resulting in the grid control. Grids are very flexible, and we’ll show you all the 
ways to manage your data in the grid, as well as the mechanisms for customizing 
grid display and editing. Chapter 15, “Climbing the tree control,” deals with the 
tree control, which allows you to compactly display tree hierarchies. We’ll show 
how to manage the tree data, traverse the tree, and customize the tree display.

 In chapter 16, “Incorporating HTML into your application,” we’ll show how
HTML is a convenient way to specify styles for text labels and for printing. We’ll 
show you how HTML widgets work, and their limitations with respect to stan-
dard HTML. Chapter 17, “The wxPython printing framework,” covers print 
issues, how to draw to a printer, as well as how to manage the standard print 
dialogs to communicate between wxPython and the underlying print system. 
We’ll also show you how to add print preview functionality. Chapter 18, “Using 
other wxPython functionality,” covers topics that didn’t fit elsewhere. It covers 
passing data back and forth via the clipboard, then how to manage drag and 
drop operations. We’ll also show you how to create periodic behavior using 
timers, and offer a few thoughts on threading in wxPython applications.





Building list controls 
and managing items
This chapter covers
■ Creating list controls in different styles
■ Managing items in a list
■ Responding to user selections from lists
■ Editing labels and sorting lists
■ Creating large list controls
393



394 CHAPTER 13 
Building list controls and managing items
Everyone has a list she needs to see, and wxPython programmers are no excep-
tion. In wxPython, there are two controls that you can use to display list-based 
information. The simpler is the list box, which is a plain single-column scrolled 
list similar to what you get from an HTML <select> tag. List boxes were discussed 
in chapter 8, and will not be discussed further in this chapter.

 This chapter focuses on the more complicated list display, list control, a full-
featured list widget. The list control displays ListCtrl multiple columns of infor-
mation for each row, sorts based on any column, and can be displayed in different 
styles. You have a lot of flexibility over the detailed display of each part of the 
list control. 

13.1 Building a list control

The list control can be created in one of four different modes:

■ icon 
■ small icon 
■ list 
■ report 

The basic idea of the modes should be familiar to you if you’ve ever used MS Win-
dows Explorer or the Mac Finder—they correspond roughly to those programs’ 
view options. We’ll start our exploration of the list control by describing how to 
build a list control in each of the various modes.

13.1.1 What is icon mode?
A list control looks like the display panel of a file tree system like MS Windows 
Explorer. The control displays a list of information in one of four different modes. 
The default is icon mode, where each element in the list is displayed as an icon with 
the text for the item below. Figure 13.1 displays a sample list in icon mode. 

 The code for figure 13.1 is displayed in listing 13.1. Note that listing 13.1 
depends on some .png files being in the directory with this module. These files 
are available at the book’s website for you to run this example. 

import wx 
import sys, glob 

class DemoFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 

Listing 13.1 Creating a sample list in icon mode



Building a list control 395
                          "wx.ListCtrl in wx.LC_ICON mode", 
                          size=(600,400)) 
        il = wx.ImageList(32,32, True)   
        for name in glob.glob("icon??.png"): 
            bmp = wx.Bitmap(name, wx.BITMAP_TYPE_PNG) 
            il_max = il.Add(bmp) 
        self.list = wx.ListCtrl(self, -1   
                style=wx.LC_ICON | wx.LC_AUTOARRANGE) 
        self.list.AssignImageList(il, wx.IMAGE_LIST_NORMAL)
        for x in range(25):        
            img = x % (il_max+1) 
            self.list.InsertImageStringItem(x, 
                    "This is item %02d" % x, img) 

app = wx.PySimpleApp() 
frame = DemoFrame() 
frame.Show() 
app.MainLoop()

In listing 13.1, the demo frame creates an image list to hold references to the 
images to be displayed, then it builds and populates the list control. We’ll discuss 
image lists later in this chapter. 

13.1.2 What is small icon mode?
Small icon mode is like the regular icon mode, but with smaller icons. Figure 13.2 
displays the same sample list, this time in small icon mode. 

 Small icon mode is most useful when you want to fit more items in the widget 
display, especially when the icons are not detailed enough to require being shown 
in full size. 

Creating an image list

Creating the list widget

Populating the list

Figure 13.1  
A sample list in icon mode



396 CHAPTER 13 
Building list controls and managing items
13.1.3 What is list mode?

In list mode, the list displays in multiple columns, automatically wrapping from 
the bottom of one column to the top of the next as needed, as displayed in 
figure 13.3. 

 List mode has nearly all of the same strengths as small icon mode. The choice 
between them is largely a matter of whether column organization or row organi-
zation makes more sense for your data.

Figure 13.2  
A sample list control 
in small icon mode

Figure 13.3  
A sample list 
control in list mode



Building a list control 397
13.1.4 What is report mode?

In report mode, the list is displayed in a true multi-column format, with each row 
able to have an arbitrary number of columns attached to it, as displayed in 
figure 13.4. 

The report mode is different enough from the icon mode that it’s worth present-
ing the sample code here as well. Listing 13.2 displays the code for creating a list 
in report mode.

import wx 
import sys, glob, random 
import data 

class DemoFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 
                          "wx.ListCtrl in wx.LC_REPORT mode", 
                          size=(600,400)) 

        il = wx.ImageList(16,16, True) 
        for name in glob.glob("smicon??.png"): 
            bmp = wx.Bitmap(name, wx.BITMAP_TYPE_PNG) 
            il_max = il.Add(bmp) 
        self.list = wx.ListCtrl(self, -1, style=wx.LC_REPORT)   
        self.list.AssignImageList(il, wx.IMAGE_LIST_SMALL) 
                     
        for col, text in enumerate(data.columns):   

Listing 13.2 Creating a sample list in report mode

Figure 13.4  
A sample list control 
in report mode

Creating the list

Adding columns



398 CHAPTER 13 
Building list controls and managing items
            self.list.InsertColumn(col, text) 

        for item in data.rows:   
            index = self.list.InsertStringItem(sys.maxint, item[0]) 
            for col, text in enumerate(item[1:]): 
                self.list.SetStringItem(index, col+1, text) 

            # give each item a random image 
            img = random.randint(0, il_max) 
            self.list.SetItemImage(index, img, img) 

        self.list.SetColumnWidth(0, 120)   
        self.list.SetColumnWidth(1, wx.LIST_AUTOSIZE) 
        self.list.SetColumnWidth(2, wx.LIST_AUTOSIZE) 
        self.list.SetColumnWidth(3, wx.LIST_AUTOSIZE_USEHEADER) 

app = wx.PySimpleApp() 
frame = DemoFrame() 
frame.Show() 
app.MainLoop() 

In the next sections, we’ll discuss how the values are inserted into the proper loca-
tions. Report controls are not intended to be very complicated in their display 
logic. They are best suited for simple lists that contain one or two extra columns 
of data. If your list control is complex, or contains more data, it is recommended 
that you switch to a grid control, as described in chapter 14.

13.1.5 How do I create a list control?

A wxPython list control is an instance of the class wx.ListCtrl. The constructor is 
similar to the other widget constructors, as shown here

wx.ListCtrl(parent, id, pos=wx.DefaultPosition, 
        size=wx.DefaultSize, style=wx.LC_ICON, 
        validator=wx.DefaultValidator, name="listCtrl") 

These parameters contain values from other widget constructors we have seen. 
The parent is the containing widget, the id is the wxPython identifier, with -1
indicating automatic creation. Explicit layout is managed by pos and size. The 
style controls the mode and other display options—we’ll see those values 
throughout this chapter. The validator is used to validate specific inputs and is 
discussed in chapter 9. The name parameter is rarely used. 

 The style flag is a bitmask that manages a few different features of the list con-
trol. The first set of values that can be included in the style flag sets the mode in 
which the list displays. The default mode value is wx.LC_ICON. Table 13.1 displays 
the list control mode values. 

Adding rows

Setting column widths



Building a list control 399
In an icon or small icon list, there are three style flags that control the alignment 
of the icon relative to the list. The default value, wx.LC_ALIGN_TOP, aligns the icons 
to the top of the list. To get a left alignment, use wx.LC_ALIGN_LEFT. The style 
LC_AUTOARRANGE wraps the icons when reaching the right or bottom edge of 
the window.

 Table 13.2 displays styles for a report list that affect the display. 

Bitmask flags can be combined with the bitwise or operation. Use wx.LC_REPORT |
wx.LC_HRULES | wx.LC_VRULES to get a list which looks very much like a grid. By 
default, all list controls allow multiple selection. To modify this so that only one 
item in the list can be selected at a time, pass the flag wx.LC_SINGLE_SEL. 

 Unlike other widgets we have seen, the list control adds a couple of methods to 
allow you to change style flags at runtime on an already existing list control. The 
method SetSingleStyle(style, add=True) allows you to add or remove one style 
flag, based on the contents of the add parameter. The call listCtrl.SetSingle-
Style(LC_HRULES, True) adds horizontal rules, while the call listCtrl.SetSingle-
Style(LC_HRULES, False) removes them. The call SetWindowStyleFlag(style)
allows you to reset the whole window style, given an entire new bitmask, such as 
SetWindowStyleFlag(LC_REPORT | LC_NO_HEADER). These methods are useful for 
modifying the list control mode on the fly. 

Table 13.1 List control mode values

Style Description 

wx.LC_ICON Icon mode, with large icons

wx.LC_LIST List mode 

wx.LC_REPORT Report mode 

wx.LC_SMALL_ICON Icon mode, with small icons

Table 13.2 Display styles for a report list

Style Default 

wx.LC_HRULES Display grid lines between rows of the list

wx.LC_NO_HEADER Do not display the column headers. 

wx.LC_VRULES Display grid lines between columns of the list



400 CHAPTER 13 
Building list controls and managing items
13.2 Managing items in a list

Once the control list is created, you can begin adding information to the list. In 
wxPython, this job is managed differently for textual information than it is for the 
images associated with each item in the list. In the following sections, we’ll show 
you how to add images and text to your list control.

13.2.1 What is an image list and how do I add images to it? 

Before we can talk about how information is added to the list control, we need to 
say a few words about how a list control manages images. Any image used within a 
list control must first be added to an image list, which is an indexed array of 
images stored with the list control. When associating an image with a specific item 
in the list control, the index of the image within the image list is used to refer to 
the image, rather than using the image itself. This mechanism ensures that each 
image is loaded only once, no matter how often it is used in the list. This serves to 
conserve memory in the case where an icon is repeated in several items in a list. It 
also allows for a relatively straightforward connection between multiple versions 
of the same image that can be used to denote different modes. For more informa-
tion on creating wxPython images and bitmaps, see chapter 12. 

Creating an image list
The image list is an instance of wx.ImageList, with the following constructor.

wx.ImageList(width, height, mask=True, initialCount=1) 

The width and height parameters specify the pixel size of the images added to 
the list. Images larger than the specified size are not allowed. The mask parameter 
is a Boolean. If True, the image is drawn with its mask, if it has one. The initial-
Count parameter sets the initial internal size of the list. If you know that the list is 
going to be quite large, specifying the count initially may save memory alloca-
tions and time later on. 

Adding and removing images
You can add an image to the list using the method Add(bitmap, mask=wx.NullBit-
map), where bitmap and mask are both instances of wx.Bitmap. The mask argument 
is a monochrome bitmap that represents the transparent parts of the image, if 
any. If the bitmap already has a mask associated with it, the associated mask is 
used by default. If the bitmap doesn’t have a mask and you don’t have a mono-
chrome transparency map, but would rather set a specific color of the bitmap as 
the transparent color, you can use the method AddWithColourMask(bitmap,



Managing items in a list 401
colour), where the colour is the wxPython color (or the name of one) to use as 
the mask. If you have a wx.Icon object to add to the image list, use the method 
AddIcon(icon). All of the add methods return the index where the new image has 
been assigned inside the list, which you can hold on to if you want to use the 
image later on. 

 The following code snippet displays an example of creating an image list (sim-
ilar to listing 13.1). 

il = wx.ImageList(32, 32, True) 
for name in glob.glob("icon??.png"): 
    bmp = wx.Bitmap(name, wx.BITMAP_TYPE_PNG) 
    il_max = il.Add(bmp) 

The image list must then be assigned to a list control using the following 
method call.

self.list.AssignImageList(il, wx.IMAGE_LIST_NORMAL) 

To remove an image from the image list, use the Remove(index) method, where 
index is the integer index into the image list. This method modifies the index val-
ues for any image after that point in the image list, which might cause problems if 
you are dependent on specific index values elsewhere in the program. To remove 
the entire image list, use RemoveAll(). You can modify the bitmap at a specific 
index with the method Replace(index, bitmap, mask=wx.NullBitmap), where 
index is the index in the image list to modify, and bitmap and mask are as in Add(). 
If the item to modify is an icon, use the method ReplaceIcon(index, icon). There 
isn’t a replace method that manages color masks. 

Using the image list
You can get the length of the image list by using the method GetImageCount(), 
and the size of each individual image by using the method GetSize(), which 
returns a tuple (width, height).

 While not directly relevant in the list control context, you can also draw an 
image from an image list onto a device context. For more information about 
device contexts, see chapters 6 and 12. The method is Draw, as in the following: 

Draw(index, dc, x, y, flags=wx.IMAGELIST_DRAW_NORMAL, 
        solidBackground=False) 

In this call, the index parameter is the index of the item to draw within the image 
list and the dc parameter is a wx.DC device context to draw to. The x and y param-
eters are the starting position on the device context to draw the image. The flags
control how the image is drawn, and bitmask of one or more of the constants 



402 CHAPTER 13 
Building list controls and managing items
wx.IMAGELIST_DRAW_NORMAL, wx.IMAGELIST_DRAW_TRANSPARENT, wx.IMAGELIST_ 

DRAW_SELECTED, and wx.IMAGELIST_DRAW_FOCUSED. If solidBackground is True, the 
draw method uses a faster algorithm works only if the background being drawn 
on is solid.

 Once you have an image list, you need to attach it to the list control. This is 
done using one of two list control methods, AssignImage(imageList, which) or 
SetImage(imageList, which). The two methods take identical parameters, the 
first being the image list, and the second being an integer flag with the value 
wx.IMAGE_LIST_NORMAL or wx.IMAGE_LIST_SMALL. The only difference between the 
two is how the image list is managed on the C++ side. With AssignImage(), the 
image list becomes part of the list control and is destroyed when the list control is. 
With SetImage(), the image list retains a separate life, and is not automatically 
disposed of when the list control is destroyed, but will instead be disposed of 
when the Python object goes out of scope.

 The list control can have two image lists assigned to it. The normal list, which 
is the one assigned with wx.IMAGE_LIST_NORMAL, is used in the display of regular 
icon mode. The small image list, assigned with wx.IMAGE_LIST_SMALL, is used in 
report and small icon mode. Under most circumstances, you only need to add 
one image list, but if you want the list to display in multiple modes (so the user 
can move from normal to small icon mode), you should provide both lists. If you 
do that, remember that the list control items will only know about images via 
the index into the image list, so the two image lists must match index for index. If 
the document icon is index two in the normal sized image list, it must also be 
index two in the small image list.

 There is also an associated getter method for the list control, GetImage-
List(which), that returns the image list associated with the which flag passed to 
the method. 

13.2.2 How can I add and delete items from a list? 

Before you can display a list, you need to add text information to it. In an icon 
list, you can add new items as icons, strings, or both. In a report view, you can 
also set information for the different columns in the row after you set the initial 
icon and/or string. The API and naming conventions for the item manipulation 
methods differ from those used by some of the other controls we’ve seen so far, 
so even if you already understand how menus or list boxes work, you still should 
read this section.

 Adding text information to the list control is a one step process for an icon list, 
but a multi-step process for a report list. The first step, common to each list, is 



Managing items in a list 403
adding the first item in the row. For report lists, you must separately add the col-
umns and the information in columns other than the leftmost one. 

Adding a new row
To add a new row, use one of the InsertItem() methods. Which one you use 
depends on the kind of item you are inserting. If you are just inserting a string 
into the list, use InsertStringItem(index, label), where the index is the row in 
the list where the new item will be displayed. If you just have an image, then use 
InsertImageItem(index, imageIndex). In this case, the first index is the row in the 
list control, and the imageIndex is an index into the image list attached to the list 
control. To insert an image item, the image list must already have been created 
and assigned. If the image index you use is out of bounds in the image list, then 
you’ll get a blank image. If you want to add an item that has both an image and a 
string label, use InsertImageStringItem(index, label, imageIndex). This method 
combines the parameters of the previous two such that the index is still the index 
within the list control, label is the string display, and imageIndex is the index into 
the appropriate image list. 

 Internally, the list control manages information about its items by using 
instances of the class wx.ListItem. We mention that because the last method for 
inserting items to the list control is InsertItem(index, item), where item is an 
instance of wx.ListItem that you have already created. We’re not going into very 
much detail about list items here because it’s unlikely you’ll be using them much, 
and because the class is not very complicated—it’s almost completely made up of 
getter and setter methods. Nearly all of the properties of a list item are exposed 
via methods in the list control itself. 

Adding columns
To add columns to a list control in report mode, create the columns, then set the 
individual data cells for each row/column pair. Creating columns is done with 
the InsertColumn() method, which has the following signature. 

InsertColumn(col, heading, format=wx.LIST_FORMAT_LEFT, width=-1) 

In this method call, the col parameter is the index of the new column within the 
list—as with rows, you must supply this value. The heading parameter is the string 
text at the head of the column. The format parameter controls the alignment of 
the text in that column, acceptable values are wx.LIST_FORMAT_CENTRE, 
wx.LIST_FORMAT_LEFT, and wx.LIST_FORMAT_RIGHT. The width parameter is the ini-
tial display width of the column in pixels—the user can change that by dragging 
the column header edges around. To use a wx.ListItem object to set the column, 



404 CHAPTER 13 
Building list controls and managing items
there is also a version of this method named InsertColumnInfo(info), which 
takes a list item as the parameter. 

Setting values in a multi-column list
You may have noticed that inserting an item using the row methods described 
earlier only sets the initial column of a multi-column report list. To set the strings 
in other columns, use the method SetStringItem(). 

SetStringItem(index, col, label, imageId=-1) 

The index and col parameters are the row and column indexes for the cell you 
are setting. You can set the col parameter to 0 to set the first column, but the 
index must correspond to a row that already exists in the list control—in other 
words, you can only use this method on a row that has already been added. The 
label argument is the text to display in the cell, and the imageId is an index back 
into the appropriate image list, if you want to display an image in the cell. 

 The SetStringItem() method is technically a special case of the method Set-
Item(info), that takes a wx.ListItem instance. To use this method, set the row, col-
umn, and any other parameters on the list item instance before adding it to the 
list. You can also get the wx.ListItem instance at the cell by using the method Get-
Item(index, col=0), which returns the first column of a row by default, but takes 
the second parameter to allow you to select an item from a different column. 

Item properties
There are a number of getter and setter methods that allow you to specify a part 
of an item. For the most part, these methods work on the first column of a row. To 
get at other columns, you might need to get the entire item using GetItem() and 
then use getter and setter methods of the item class. You can set the image for an 
item using SetItemImage(item, image, selImage), where the item parameter is 
the index of the item in the list, and image and selImage are both indexes into the 
image list, indicating the regular image and the image when selected, respec-
tively. You can get or set the text of an item by using GetItemText(item) and Set-
ItemText(item, text). 

 You can get or set the state of an individual item using GetItemState(item,
stateMask) and SetItemState(item, state, stateMask). In this case, state and 
stateMask come from the values described in table 13.3. The state parameter 
(and the return value of the getter) is the actual state of the item, the stateMask is 
a mask of all possible values of current interest. 

 You can get a specific column with GetColumn(col), which returns the wx.List-
Item instance for the column at the index col—meaning the header item for the 



Responding to users 405
column. You can also set a column that has already been added using the method 
SetColumn(col, item). You can programmatically get the width of a column using 
GetColumnWidth(col), which returns the list width in pixels—obviously this is only 
useful for a list in report mode. You can set the column width using SetColumn-
Width(col, width). The width is either the integer width or one of the special val-
ues wx.LIST_AUTOSIZE, which sets the width to that of the longest item, or 
wx.LIST_AUTOSIZE_USEHEADER, which will set the width to that of the header text. 
Under non-Windows operating systems wx.LIST_AUTOSIZE_USEHEADER may just 
automatically set the column width to 80 pixels. 

 If you are getting confused about the indexes you’ve already added, you can 
query the list for the number of items already in it. The method GetColumn-
Count() returns the number of columns defined in the list, and the method Get-
ItemCount() returns the number of rows. If your list is in list mode, then the 
method GetCountPerPage() returns the number of items in each column. 

 To delete items from the list, use DeleteItem(item), which takes the index of 
the item in the list. If you want to zap all the items at once, use DeleteAllItems(), 
or ClearAll(), both of which will manage the trick. You can delete a column with 
DeleteColumn(col), which takes the column index of the doomed column. 

13.3 Responding to users

Typically, the point of a list control is to do something when the user selects an 
item in the list. In the following sections, we’ll show what events a list control can 
respond to, and present an extended example of using list control events.

13.3.1 How can I respond to a user selection in a list? 
Like other controls, a list control triggers events in response to user actions. You 
can set handlers for these events using the Bind() method, as discussed in 

Table 13.3 Parameters for the state mask

State Description 

wx.LIST_STATE_CUT The item is being cut. This state is only available under MS Windows. 

wx.LIST_STATE_DONTCARE The state doesn’t matter. This state is only available under MS Windows. 

wx.LIST_STATE_DROPHILITED The item is highlighted because it is receiving a drop from a drag & drop. 
This state is only available under MS Windows. 

wx.LIST_STATE_FOCUSED The item has the cursor focus. 

wx.LIST_STATE_SELECTED The item is currently selected. 



406 CHAPTER 13 
Building list controls and managing items
chapter 3. All of these event handlers receive an instance of wx.ListEvent, which 
is a subclass of wx.CommandEvent. The wx.ListEvent has a few getter methods spe-
cific to its class. Some of the properties are only valid for specific event types 
described in other sections of this chapter. The properties common to all event 
types are described in table 13.4. 

There are several different event types for wx.ListEvent, each of which can be 
given a different handler. Some of the events are discussed in later sections where 
they are more relevant. Table 13.5 lists all of the event types dealing with select-
ing items in the list. 

Table 13.4 Properties of wx.ListEvent

Property Description 

GetData() The user data item associated with the list item for the event 

GetKeyCode() In a keypress event, the key code for the key pressed 

GetIndex() The index of the affected item within the list 

GetItem() The actual wx.ListItem affected by the event 

GetImage() The image in the cell affected by the event 

GetMask() The bit mask in the cell affected by the event 

GetPoint() The actual mouse position of the event 

GetText() The text in the cell affected by the event 

Table 13.5 Event types for selecting items in a list control 

Event Type Description 

EVT_LIST_BEGIN_DRAG Triggered when the user begins a drag operation with the left  
mouse button 

EVT_LIST_BEGIN_RDRAG Triggered when the user begins a drag operation with the right  
mouse button 

EVT_LIST_DELETE_ALL_ITEMS Triggered by a call to a DeleteAll() method of the list 

EVT_LIST_DELETE_ITEM Triggered by a call to a Delete() method of the list 

EVT_LIST_INSERT_ITEM Triggered when an item is inserted into the list 

EVT_LIST_ITEM_ACTIVATED The item has been activated, by a user pressing enter or double click 
while the item is selected 

continued on next page



Responding to users 407
Listing 13.3 will provide examples of many of these event types in a running 
program.

13.3.2 How can I respond to a user selection in a column header? 

In addition to events that are triggered by a user event within the main body of the 
list, there are events that are triggered by user activity in the column headers of a 
report list control. The wx.ListEvent objects created by a column event have 
another property, GetColumn(), that returns the index of the column in which the 
event takes place. If the event is a drag event of a column border, the index is for 
the column on the left side of the border being dragged. If the event is triggered 
by a click that is not inside a column, the method returns -1. Table 13.6 contains 
the list of column event types. 

Listing 13.3 displays some list event processing, and also provides examples of 
the methods described later in this chapter. Notice the various items triggered by 
menus in this program. 

 

EVT_LIST_ITEM_DESELECTED Triggered when the item loses the user selection

EVT_LIST_ITEM_FOCUSED Triggered when the item with the focus changes 

EVT_LIST_ITEM_MIDDLE_CLICK Triggered when the middle mouse button is clicked on the list 

EVT_LIST_ITEM_RIGHT_CLICK Triggered when the right mouse button is clicked on the list 

EVT_LIST_ITEM_SELECTED Triggered when an item is selected with a left mouse click 

EVT_LIST_ITEM_KEY_DOWN Triggered when a key is pressed while the list control has the focus

Table 13.5 Event types for selecting items in a list control (continued)

Event Type Description 

Table 13.6 List control column event types

Event Type Description 

EVT_LIST_COL_BEGIN_DRAG Triggered when the user begins to drag a column border

EVT_LIST_COL_CLICK Triggered by a click inside a column header

EVT_LIST_COL_RIGHT_CLICK Triggered by a right click inside a column header 

EVT_LiST_COL_END_DRAG Triggered when the user completes a drag of a column border 



408 CHAPTER 13 
Building list controls and managing items
import wx 
import sys, glob, random 
import data 

class DemoFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 
                          "Other wx.ListCtrl Stuff", 
                          size=(700,500)) 
        self.list = None 
        self.editable = False 
        self.MakeMenu() 
        self.MakeListCtrl() 

    def MakeListCtrl(self, otherflags=0):   
        if self.list: 
            self.list.Destroy() 
        if self.editable: 
            otherflags |= wx.LC_EDIT_LABELS 
            
        il = wx.ImageList(16,16, True)   
        for name in glob.glob("smicon??.png"): 
            bmp = wx.Bitmap(name, wx.BITMAP_TYPE_PNG) 
            il_max = il.Add(bmp) 

        self.list = wx.ListCtrl(self, -1, style=wx.LC_REPORT|otherflags)
        self.list.AssignImageList(il, wx.IMAGE_LIST_SMALL) 
        for col, text in enumerate(data.columns):   
            self.list.InsertColumn(col, text) 
        for row, item in enumerate(data.rows):   
            index = self.list.InsertStringItem(sys.maxint, item[0]) 
            for col, text in enumerate(item[1:]): 
                self.list.SetStringItem(index, col+1, text) 
            img = random.randint(0, il_max)   
            self.list.SetItemImage(index, img, img) 
            self.list.SetItemData(index, row)   

        self.list.SetColumnWidth(0, 120)                          
        self.list.SetColumnWidth(1, wx.LIST_AUTOSIZE)             
        self.list.SetColumnWidth(2, wx.LIST_AUTOSIZE)             
        self.list.SetColumnWidth(3, wx.LIST_AUTOSIZE_USEHEADER)   
        
        self.Bind(wx.EVT_LIST_ITEM_SELECTED, self.OnItemSelected,   
                self.list) 
        self.Bind(wx.EVT_LIST_ITEM_DESELECTED, self.OnItemDeselected,
                self.list) 
        self.Bind(wx.EVT_LIST_ITEM_ACTIVATED, self.OnItemActivated, 
                self.list)  
        self.SendSizeEvent() 

Listing 13.3 An example of many different list events and properties

Creating the list

Loading into image list

Adding the columns

Adding the rows

Assigning random images

Setting data item

Setting 
column 
widths

Binding user events



Responding to users 409
    def MakeMenu(self):   
        mbar = wx.MenuBar() 
        menu = wx.Menu() 
        item = menu.Append(-1, "E&xit\tAlt-X") 
        self.Bind(wx.EVT_MENU, self.OnExit, item) 
        mbar.Append(menu, "&File") 

        menu = wx.Menu() 
        item = menu.Append(-1, "Sort ascending") 
        self.Bind(wx.EVT_MENU, self.OnSortAscending, item)         
        item = menu.Append(-1, "Sort descending") 
        self.Bind(wx.EVT_MENU, self.OnSortDescending, item) 
        item = menu.Append(-1, "Sort by submitter") 
        self.Bind(wx.EVT_MENU, self.OnSortBySubmitter, item) 

        menu.AppendSeparator() 
        item = menu.Append(-1, "Show selected") 
        self.Bind(wx.EVT_MENU, self.OnShowSelected, item)         
        item = menu.Append(-1, "Select all") 
        self.Bind(wx.EVT_MENU, self.OnSelectAll, item) 
        item = menu.Append(-1, "Select none") 
        self.Bind(wx.EVT_MENU, self.OnSelectNone, item) 

        menu.AppendSeparator() 
        item = menu.Append(-1, "Set item text colour") 
        self.Bind(wx.EVT_MENU, self.OnSetTextColour, item) 
        item = menu.Append(-1, "Set item background colour") 
        self.Bind(wx.EVT_MENU, self.OnSetBGColour, item) 

        menu.AppendSeparator() 
        item = menu.Append(-1, "Enable item editing", kind=wx.ITEM_CHECK) 
        self.Bind(wx.EVT_MENU, self.OnEnableEditing, item) 
        item = menu.Append(-1, "Edit current item") 
        self.Bind(wx.EVT_MENU, self.OnEditItem, item) 
        mbar.Append(menu, "&Demo") 

        self.SetMenuBar(mbar) 

    def OnExit(self, evt): 
        self.Close() 

    def OnItemSelected(self, evt):   
        item = evt.GetItem() 
        print "Item selected:", item.GetText() 
        
    def OnItemDeselected(self, evt):   
        item = evt.GetItem() 
        print "Item deselected:", item.GetText() 

    def OnItemActivated(self, evt):   
        item = evt.GetItem() 

Creating a menu

Item selected handler

Item deselected handler

Item activated handler



410 CHAPTER 13 
Building list controls and managing items
        print "Item activated:", item.GetText() 

    def OnSortAscending(self, evt): 
        self.MakeListCtrl(wx.LC_SORT_ASCENDING)    
        
    def OnSortDescending(self, evt): 
        self.MakeListCtrl(wx.LC_SORT_DESCENDING)   

    def OnSortBySubmitter(self, evt):   
        def compare_func(row1, row2): 
            # compare the values in the 4th col of the data 
            val1 = data.rows[row1][3] 
            val2 = data.rows[row2][3] 
            if val1 < val2: return -1 
            if val1 > val2: return 1 
            return 0 

        self.list.SortItems(compare_func) 

    def OnShowSelected(self, evt):   
        print "These items are selected:" 
        index = self.list.GetFirstSelected() 
        if index == -1: 
            print "\tNone" 
            return 
        while index != -1: 
            item = self.list.GetItem(index) 
            print "\t%s" % item.GetText() 
            index = self.list.GetNextSelected(index) 
            
    def OnSelectAll(self, evt):   
        for index in range(self.list.GetItemCount()): 
            self.list.Select(index, True) 
    
    def OnSelectNone(self, evt):   
        index = self.list.GetFirstSelected() 
        while index != -1: 
            self.list.Select(index, False) 
            index = self.list.GetNextSelected(index) 

    def OnSetTextColour(self, evt): 
        dlg = wx.ColourDialog(self) 
        if dlg.ShowModal() == wx.ID_OK:   
            colour = dlg.GetColourData().GetColour() 
            index = self.list.GetFirstSelected() 
            while index != -1: 
                self.list.SetItemTextColour(index, colour) 
                index = self.list.GetNextSelected(index) 
        dlg.Destroy() 

    def OnSetBGColour(self, evt):   
        dlg = wx.ColourDialog(self) 

Rebuilding lists 
with sort style

Sorting with nested function

Showing selected items

Selecting all items

Deselecting selected items

Changing text color

Changing background color



Editing and sorting list controls 411
        if dlg.ShowModal() == wx.ID_OK: 
            colour = dlg.GetColourData().GetColour() 
            index = self.list.GetFirstSelected() 
            while index != -1: 
                self.list.SetItemBackgroundColour(index, colour) 
                index = self.list.GetNextSelected(index) 
        dlg.Destroy() 

    def OnEnableEditing(self, evt):   
        self.editable = evt.IsChecked() 
        self.MakeListCtrl() 
        
    def OnEditItem(self, evt):   
        index = self.list.GetFirstSelected() 
        if index != -1: 
            self.list.EditLabel(index) 
            
class DemoApp(wx.App): 
    def OnInit(self): 
        frame = DemoFrame() 
        self.SetTopWindow(frame) 
        print "Program output appears here..." 
        frame.Show() 
        return True 

app = DemoApp(redirect=True) 
app.MainLoop() 

Once you’ve entered the code and run it, you’ll receive a demo of list control fea-
tures, including items like sort that will be discussed in the next sections.

13.4 Editing and sorting list controls 

In this section, we’ll discuss editing, sorting, and finding items in list controls.

13.4.1 How can I edit a label? 

Editing an entry in the list is simple, except in report lists, where the user can only 
edit the first column in each row. For other kinds of lists, that’s not an issue; the 
regular label for each item is editable. 

 To make a list editable, include the style flag wx.LC_EDIT_LABELS in the con-
structor when the list is created. 

list = wx.ListCtrl(self, -1, style=wx.LC_REPORT | wx.LC_EDIT_LABELS) 

If the edit flag is set, the user can start an edit session by clicking on a list item 
that has already been selected (it doesn’t have to be a quick double-click). The 

Turning editing on

Editing selected items



412 CHAPTER 13 
Building list controls and managing items
edit box is similar to editing within Windows Explorer. The user receives a small 
edit-in-place box where the text label was. Pressing Enter ends the edit session, 
and the new text becomes the text label. A mouse click elsewhere in the list con-
trol also ends the edit session (there can only be one edit session at a time). Press-
ing Escape cancels the edit session, and the new text is discarded.

 The following two event types are triggered by an editing session. 

■ EVT_LIST_BEGIN_LABEL_EDIT 
■ EVT_LIST_END_LABEL_EDIT 

Remember that if you want the normal processing to proceed in addition to your 
custom handler, you need to include a call to the event method Skip() in your 
event handler. A list event with the event type EVT_LIST_BEGIN_LABEL_EDIT is trig-
gered when the user starts an edit session, and one with the event type 
EVT_LIST_END_LABEL_EDIT is triggered when the session ends (either by an Enter or 
an Escape cancel). You can veto the begin edit event, in which case the edit session 
does not start. Vetoing the end edit event prevents the list text from changing.

 The wx.ListEvent class has a couple of properties that are only interesting 
when processing an EVT_LIST_END_LABEL_EDIT event. The method GetLabel()
returns the new text of the list item label after the edit has been completed and 
okayed. If the edit was canceled via the escape key, then the method returns an 
empty string. This means that you cannot use GetLabel() to distinguish between 
a cancel and the user deliberately changing the item text to an empty string. If 
required, the method IsEditCancelled() returns True if the edit end was due to a 
cancel, and False otherwise. Use that method when you need to distinguish 
between a successful edit session and a canceled one. 

 If you want to have some other user event start an edit session, you can trigger 
an edit programmatically using the list control method EditLabel(item), where 
the item parameter is the index of the list item to be edited. This method triggers 
the EVT_LIST_BEGIN_LABEL_EDIT event, and the edit session continues just as 
though it had been initiated in the usual way. 

 If you would like to directly manipulate the text control being used for the 
editing, you can get it with the list control method GetEditControl(). The 
method returns the text control being used for the current edit. If there is no cur-
rent edit, the method returns None. Currently, the method only works under Win-
dows operating systems.



Editing and sorting list controls 413
13.4.2 How can I sort my list? 

There are three useful ways to sort a list control in wxPython, that we’ll discuss in 
this section in ascending order of complexity 

Telling the list to sort when created
The easiest way to sort a list control is by telling the list control in the constructor 
to sort items. You do this by using one of the style flags wx.LC_SORT_ASCENDING or 
wx.LC_SORT_DESCENDING. This flag causes the list to be sorted when initially dis-
played, and on MS Windows, the sorting continues to be honored when new items 
are added. The sort is based on the string text for each list item’s data, and is a 
simple string comparison. If the list is in report mode, the sort is based on the 
string in column 0 (the left-most column) of each row. 

Sorting based on data other than the display text
Occasionally, you’ll want to sort your list based on something other than the 
string value of the list label. You can do that in wxPython, but it’s a slightly more 
complicated process. First, you need to set item data for each item in the list, by 
using the SetItemData(item, data) method. The item is the index of the item 
within the (unsorted) list, and the data is whatever data you want to associate with 
that item. The data item must be an integer or a long value (due to the C++ 
expected data type), which limits the usefulness of this mechanism somewhat. To 
retrieve the item data for a row, use the method GetItemData(item).

 Once you have the item data in place, you can use the method Sort-
Items(func) to sort the items. The argument to the method is a Python callable 
object which takes in two integers. The function is called with the associated data 
of two list items to be compared—you don’t get any reference to the rows them-
selves. The function should return a positive integer if the first item is greater 
than the second (meaning the first item should be earlier in the sorted list), a 
negative value if the first item is less than the second (meaning the first item is 
later in the sorted list), and zero if the two are equal. Although the most obvious 
way to implement this function is to just do a numerical comparison of the two 
items, that is by no means the only thing that you could do in the sort method. 
For instance, the data item could be a key in an external dictionary or list that has 
a more complex data item, which you could compare to determine sort order. 

Column sorting with the mixin class
One common case for sorting a list control is to give the user the ability to sort a 
list in report view in any column by clicking on the column. You could do that 



414 CHAPTER 13 
Building list controls and managing items
with the SortItems() mechanism, but it would be somewhat complex to keep 
track of the columns. Fortunately, a wxPython mixin class, called ColumnSorter-
Mixin, manages the information for you, and lives in the module wx.lib.mixins. 
listctrl. Figure 13.5 displays the column sorting using the mixin class. 

 Declare the mixin just like any other Python multiple inheritance declaration, 
as in the following. 

import wx.lib.mixins.listctrl as listmix 

class ListCtrlPanel(wx.Panel, listmix.ColumnSorterMixin): 
    def __init__(self, parent, log): 
        wx.Panel.__init__(self, parent, -1, style=wx.WANTS_CHARS) 
        self.list = TestListCtrl(self, tID) 
        self.itemDataMap = musicdata 
        listmix.ColumnSorterMixin.__init__(self, 3) 

Notice that the mixin is not extending the list control itself, although it could do 
that as well, but it’s more likely that you are creating a custom panel. Instead, it’s 
extending the containing panel. The panel gets code to manage the sorting and 
to bind the mouse click event in the column header. Listing 13.4 displays a com-
pleted column sorter example. 

import wx 
import wx.lib.mixins.listctrl 
import sys, glob, random 
import data 

Listing 13.4 A report list with the column sorter mixin

Figure 13.5  
The column sorter mixin in 
action—notice the arrow in 
the date column indicating 
sort direction



Editing and sorting list controls 415
class DemoFrame(wx.Frame, wx.lib.mixins.listctrl.ColumnSorterMixin):  
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 
                          "wx.ListCtrl with ColumnSorterMixin", 
                          size=(600,400)) 

        il = wx.ImageList(16,16, True) 
        for name in glob.glob("smicon??.png"): 
            bmp = wx.Bitmap(name, wx.BITMAP_TYPE_PNG) 
            il_max = il.Add(bmp) 

        self.up = il.AddWithColourMask   
            wx.Bitmap("sm_up.bmp", wx.BITMAP_TYPE_BMP), "blue") 
        self.dn = il.AddWithColourMask( 
            wx.Bitmap("sm_down.bmp", wx.BITMAP_TYPE_BMP), "blue")         
        
        self.list = wx.ListCtrl(self, -1, style=wx.LC_REPORT)
        self.list.AssignImageList(il, wx.IMAGE_LIST_SMALL) \
        for col, text in enumerate(data.columns): 
            self.list.InsertColumn(col, text) 
        self.itemDataMap = {}   
        for item in data.rows: 
            index = self.list.InsertStringItem(sys.maxint, item[0]) 
            for col, text in enumerate(item[1:]): 
                self.list.SetStringItem(index, col+1, text) 
            self.list.SetItemData(index, index)   
            self.itemDataMap[index] = item 
            img = random.randint(0, il_max) 
            self.list.SetItemImage(index, img, img) 
                
        self.list.SetColumnWidth(0, 120) 
        self.list.SetColumnWidth(1, wx.LIST_AUTOSIZE) 
        self.list.SetColumnWidth(2, wx.LIST_AUTOSIZE) 
        self.list.SetColumnWidth(3, wx.LIST_AUTOSIZE_USEHEADER) 

         wx.lib.mixins.listctrl.ColumnSorterMixin.__init__(self,   
             len(data.columns)) 

    def GetListCtrl(self): 
        return self.list 

    def GetSortImages(self): 
        return (self.dn, self.up) 

app = wx.PySimpleApp() 
frame = DemoFrame() 
frame.Show() 
app.MainLoop() 

Deriving from the mixin

Adding arrows to the image list

Creating data maps

Associating data 
with maps

Initializing the columns sorter



416 CHAPTER 13 
Building list controls and managing items
For the mixin to work, you need to perform the following in your own panel class: 

1 The class that extends ColumnSorterMixin must have a method called 
GetListCtrl() which returns the actual list control to be sorted. This 
method is used by the mixin to get a reference to the control. 

2 In the __init__() method of the extending class, you must create the list 
control referred to by GetListCtrl() before you call the __init__()
method of the ColumnSorterMixin. The __init__() method of the mixin 
takes one argument, an integer representing the number of columns in 
the list control. 

3 You must use SetListData() to set a unique data value for each row in the 
list. This can be (and most likely will be) nothing more than an index into 
a more complex data structure. 

4 The extending class must have an attribute called itemDataMap. This 
attribute must be a dictionary. The keys to this dictionary are the data val-
ues set by SetListData(). The values are a tuple of the values you want to 
use to sort by each column. (Typically, this will just be the text in each col-
umn). In other words, the itemDataMap essentially replicates the data in 
the control in a form that is easy to sort. 

In a typical usage of ColumnSorterMixin, you will either create the itemDataMap as 
you add items to your list control or you will create the itemDataMap first, and use 
that to build the list control itself. 

 Although the setup can be complex, the ColumnSorterMixin is a great choice 
for a common sorting use case. 

13.4.3 How can I learn more about list controls? 

Sometimes, you’ll need to determine which item is selected in a list from some-
place else in your program, or you’ll need to change which item is currently 
selected programmatically in response to a user event, or to something happen-
ing internally in your program. 

 There are several related methods for finding the index of an item in the list, 
given some other piece of information about the item, as displayed in table 13.7. 

 Table 13.8 displays possible components of the flags return value from Hit-
Test(). If applicable, more than one flag may be returned. 



Editing and sorting list controls 417
Table 13.7 Methods for finding items in a list

Method Description

FindItem(start, str, 
partial=False) 

Finds the first item whose label matches str. If the start index is -1, then the 
search starts at the beginning, otherwise the search starts at the start index. If 
partial is True then the test is a “starts with” test, rather than a whole string 
test. The return value is the index of the matching string. 

FindItemAtPos(start, 
point, direction) 

Finds the first item near point, a wx.Point referencing a postion relative to 
the upper left corner of the list control. The direction parameter tells 
wxPython what direction to move in from the starting point to find the item. 
Possible values are wx.LIST_FIND_DOWN, wx.LIST_FIND_LEFT, 
wx.LIST_FIND_RIGHT, and wx.LIST_FIND_UP. 

FindItemData(start, 
data) 

Finds the item whose data (set with SetItemData()) matches the data 
parameter. The start parameter behaves as in FindItem(). 

HitTest(point) Returns a Python tuple of the form (index, flags). The index is the item in 
the list control which is at the given point, or -1 if there is no such item. The 
flags parameter contains further information about the point and the item. It is 
a bitmask with values described in table 13.8. 

Table 13.8 Flags for the HitTest() method

Flag Description 

wx.LIST_HITTEST_ABOVE The point is above the client area of the list 

wx.LIST_HITTEST_BELOW The point is below the client area of the list 

wx.LIST_HITTEST_NOWHERE The point is in the client area of the list, but not part of any item. 
Usually this is because it is after the end of the list. 

wx.LIST_HITTEST_ONITEM The point is anywhere in the bounding rectangle of the item 
returned in the index value. 

wx.LIST_HITTEST_ONITEMICON The point is specifically in the icon portion of the item returned in 
the index value. 

wx.LIST_HITTEST_ONITEMLABEL The point is specifically in the label portion of the item returned 
in the index value. 

wx.LIST_HITTEST_ONITEMRIGHT The point is in the blank area to the right of the item 

wx.LIST_HITTEST_ONITEMSTATEICON The point is inside the state icon of an item. This assumes that 
the list is in tree mode, and there is a user defined state. 

wx.LIST_HITTEST_TOLEFT The point is to the left of the client area of the list 

wx.LIST_HITTEST_TORIGHT The point is to the right of the client area of the list



418 CHAPTER 13 
Building list controls and managing items
To go in the other direction, there are a few methods that will give you informa-
tion about the item, given the index. The methods GetItem() and GetItemText()
were discussed earlier. Others are listed in Table 13.9. 

Table 13.10 lists values of the geometry parameter for GetNextItem(). The geome-
try parameter is only used under MS Windows. 

Table 13.11 displays the possible values of the state parameter from the GetNext-
Item() method.

Table 13.9 Item informational methods of the list control

Method Description 

GetItemPosition(item) Returns the position of the item as a wx.Point. Only interesting in 
icon or small icon mode. The point returned is the upper left corner of 
the item placement. 

GetItemRect(item,  
code= wx.LIST_RECT_BOUNDS) 

Returns a wx.Rect with the bounding rectangle of the item at index 
item. The code parameter is optional. The default value is 
wx.LIST_RECT_BOUNDS, and causes wxPython to return the entire 
bounding rectangle for the items. Other values for the parameter are 
wx.LIST_RECT_ICON, which causes the return value to be only the 
bounding rectangle of the icon part, and wx.LIST_RECT_LABEL 
which returns the rectangle around the label. 

GetNextItem(item, geometry= 
wx.LIST_ALL, state= 
wx.LIST_STATE_DONTCARE ) 

Returns the next item in the list after the given item index, based on 
the geometry and state parameters. The geometry and state 
parameters each have several values listed in tables which follow. 

SetItemPosition(item, pos) Moves the item at index item to the wx.Point passed in the pos 
parameter. Only meaningful for a list in icon or small icon view. 

Table 13.10 Values for the geometry parameter of GetNextItem()

Value Description 

wx.LIST_NEXT_ABOVE Find the next item in the given state that is above the start item in the display. 

wx.LIST_NEXT_ALL Find the next item in the given state by index order in the list. 

wx.LIST_NEXT_BELOW Find the next item in the given state that is below the start item in the display. 

wx.LIST_NEXT_LEFT Find the next item in the given state that is to the left of the start item  
in the display. 

wx.LIST_NEXT_RIGHT Find the next item in the given state that is to the right of the start item  
in the display. 



Editing and sorting list controls 419
Table 13.12 displays the methods used for changing the text display of an item 
with a few getter and setter methods that control the font and color of the item. 

Table 13.13 displays other methods of list controls that don’t merit their own sec-
tion, but are also useful. 

Table 13.11 Values of the State parameter for GetNextItem()

Value Description 

wx.LIST_STATE_CUT Find only items that are selected for a clipboard cut and paste. 

wx.LIST_STATE_DONTCARE Find any item, regardless of its current state. 

wx.LIST_STATE_DROPHILITED Find only items that are currently drop targets. 

wx.LIST_STATE_FOCUSED Find only items that have the focus. 

wx.LIST_STATE_SELECTED Find only items that are currently selected. 

Table 13.12 Display properties of the list control

Methods Description 

GetBackgroundColour()  
SetBackgroundColour(col) 

Manages the background color for the entire list control. The col 
parameter is a wx.Colour, or the string name of a color. 

GetItemBackgroundColour(item)  
SetItemBackgroundColour(item,  
col) 

Manages the background color for the item at index item. This 
property is only used in report mode. 

GetItemTextColour(item)  
SetItemTextColour(item, col) 

Manages the text color for the item at index item. This property is 
only used in report mode. 

GetTextColour()  
SetTextColour(col) 

Manages the text color for the entire list. 

Table 13.13 Other useful methods of the list control 

Methods Description

GetItemSpacing() Returns a wx.Size item with the space in pixels between icons. 

GetSelectedItemCount() Returns the number of items in the list control that are currently selected. 

GetTopItem() Returns the index of the item at the top of the visible portion of the display. 
Only meaningful in list and report mode. 

continued on next page



420 CHAPTER 13 
Building list controls and managing items
These tables cover much of the functionality of a list control. However, so far, all 
the list controls we’ve seen are limited by the fact that all their data must exist in 
the program memory at all times. In the next section, we’ll discuss a mechanism 
for providing list data only as it is needed for display.

13.5 Creating a virtual list control 

Let’s assume that your wxPython application needs to display a list of all your cli-
ents. Initially you use a regular list control, and it works fine. Eventually your use 
of wxPython makes you more and more successful. Your client list gets longer and 
longer. Too many clients and your application starts to have performance prob-
lems. Perhaps it takes a longer amount of time to start up. Probably it starts using 
more and more memory. What can you do? You can create a virtual list control.

 The problem is a result of the way list control data is managed. Typically, the 
data is copied into the list control from wherever the data is generated. This is 
potentially wasteful of resources, and while in a small list it is unlikely to make any 
difference, creating a larger list control could use a significant amount of memory 
as well as a lot of startup time. 

 To minimize the memory and startup requirements of a list control, wxPython 
allows you to declare a virtual list control, which means that the information about 
each item is only generated on demand when the control needs to display the 
item. This prevents the control from needing to store each item in its own mem-
ory space, and also means that the entire control isn’t declared at startup. The 
drawback is that retrieval of the list items may be slower in a virtual list. 
Figure 13.6 displays a virtual list in action. 

 Listing 13.5 displays the entire code example that produces the virtual list 
control. 

 
 

GetViewRect() Returns a wx.Rect corresponding to the smallest rectangle needed to span 
all items wthout scrolling. Only meaningful in icon and small icon mode. 

ScrollList(dx, dy) Causes the control to scroll. The dy parameter is the vertical amount in 
pixels. The dx parameter is the horizontal amount. For icon, small icon, or 
report view, the unit is pixels. If the list control is in list mode, then the unit is 
columns of the list display. 

Table 13.13 Other useful methods of the list control (continued)

Methods Description



Creating a virtual list control 421
import wx 
import sys, glob, random 
import data 

class DataSource:   
 
    def GetColumnHeaders(self): 
        return data.columns 

    def GetCount(self): 
        return len(data.rows) 

    def GetItem(self, index): 
        return data.rows[index] 

    def UpdateCache(self, start, end): 
        pass 

class VirtualListCtrl(wx.ListCtrl):   
   def __init__(self, parent, dataSource): 
        wx.ListCtrl.__init__(self, parent, 
            style=wx.LC_REPORT|wx.LC_SINGLE_SEL|wx.LC_VIRTUAL)   
        self.dataSource = dataSource 
        self.Bind(wx.EVT_LIST_CACHE_HINT, self.DoCacheItems) 
        self.SetItemCount(dataSource.GetCount())   
        columns = dataSource.GetColumnHeaders() 
        for col, text in enumerate(columns): 
            self.InsertColumn(col, text) 

    def DoCacheItems(self, evt): 

Listing 13.5 A virtual list control

Figure 13.6  
A virtual list control

A data source

Declaring the 
virtual list

 b

Creating a list 
with virtual flag

Setting list size



422 CHAPTER 13 
Building list controls and managing items
        self.dataSource.UpdateCache( 
            evt.GetCacheFrom(), evt.GetCacheTo()) 

    def OnGetItemText(self, item, col):   
        data = self.dataSource.GetItem(item) 
        return data[col] 

    def OnGetItemAttr(self, item):  return None 
    def OnGetItemImage(self, item): return -1 

class DemoFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, -1, 
                          "Virtual wx.ListCtrl", 
                          size=(600,400)) 

        self.list = VirtualListCtrl(self, DataSource()) 

app = wx.PySimpleApp() 
frame = DemoFrame() 
frame.Show() 
app.MainLoop() 

The data source class is a simple example that stores our sample data items. A 
real data source class would manage fetching items from a database or similar, 
but only needs to implement the same interface as our simple example. 

 To create a virtual list, the first step is to make the flag wx.LC_VIRTUAL one of 
the flags passed to the list control on initialization b. Typically, you need to cre-
ate your virtual list control by subclassing wx.ListCtrl, rather than just using the 
constructor. This is because you need to override some methods of wx.ListCtrl
in order to populate the virtual list. The declaration will look something like 
the following: 

class MyVirtualList(wx.ListCtrl): 

    def __init__(self, parent): 
        wx.ListCtrl.__init__(self, parent, -1, 
            style=wx.LC_REPORT|wx.LC_VIRTUAL) 

The virtual list control must also call the SetItemCount() method sometime dur-
ing its initialization. This tells the control how many data items exist in the data 
source so it sets appropriate limits and can manage the scrollbars. You can call 
SetItemCount() again if the number of items in the data source changes. Any of 
the On methods you override must be able to handle any value between 0 and Set-
ItemCount() - 1. 

Getting text on demand



Summary 423
 Your virtual list control can override three methods of the parent class in order 
to determine what is displayed in the list control. The most important method to 
override is OnGetItemText(item, col). The item and col parameters are the row 
and column of the cell to be drawn and the return value is the string of the text to 
be displayed in that cell. For example, the following method just displays the 
coordinates of the cell.

def OnGetItemText(self, item, col): 
    return "Item %d, column %d" % (item, col) 

If you want an image to be displayed in a row, you need to override the method 
OnGetItemImage(item). The return value is an integer index into the list control’s 
image list described earlier. If you do not override the method, the base class ver-
sion returns -1, indicating no image to be displayed. If you want to change some 
of the display attributes of the row, then you can override the method OnGetItem-
Attr(item), which again takes a row index as a parameter and returns an instance 
of the class wx.ListItemAttr. That class has a number of getters and setters that 
can be used to set the color, alignment, or other display settings for the row. 

 If the data on which you are basing the virtual list control changes and you 
wish to update the display, you can use the list control method RefreshItem(item)
that forces a redraw of that particular row. The related method RefreshItems 
(itemFrom, itemTo) redraws all the rows between the two indexes.

 To help you optimize fetching of data items in your data source, the virtual list 
control will send the EVT_LIST_CACHE_HINT event whenever it is about to display a 
new page of data. This gives your data source an opportunity to fetch several 
records at once from the database (or whatever) and save them. The subsequent 
OnGetItemText() calls for those items can be much quicker than having to go back 
to the database for each record.

13.6 Summary 

■ The list control is wxPython’s widget for displaying lists of information. It is 
more complex and fully featured than the simpler list box widget. List con-
trols are instances of the class wx.ListCtrl. A list control can be displayed in 
icon mode, with each item text displaying below an icon, or small icon
mode with smaller icons. In list mode the elements display in columns, 
wrapping from the bottom of one to the top of the next and in report
mode, the list displays in multi-column format with column headers and 
one row per item. 



424 CHAPTER 13 
Building list controls and managing items
■ The images for a list control are managed in an image list, which is an array 
of images accessible via an integer index. The list control can maintain sep-
arate image lists for different list modes, allowing for easy switching 
between, say, large and small icon mode. 

■ You insert text into the list using the method InsertStringItem(index,
label), and an image using the InsertImageItem(index, imageIndex)
method. To add both at once, you can use InsertImageStringItem(index,
label, imageIndex). To add columns in report mode, you use the method 
InsertColumn(col, heading, format="wx.LIST_FORMAT_LEFT, width=-1). 
Once the column has been added you can add text to new columns using 
the method SetStringItem(index, col, label, imageId=-1). 

■ List controls generate several events that can be bound to program 
actions. The event items are of class wx.ListEvent. Common event types 
include EVT_LIST_INSERT_ITEM, EVT_LIST_ITEM_ACTIVATED, and EVT_LIST_ 
ITEM_SELECTED. 

■ If the list control is declared with the flag wx.LC_EDIT_LABELS, then the user 
will be able to edit the text of list items when they are selected. The edit is 
accepted by pressing enter or clicking elsewhere in the control, it is can-
celed by pressing the escape key. 

■ You can sort lists by declaring them with the flag wx.LC_SORT_ASCENDING or 
wx.LC_SORT_DESCENDING. This will sort items based on their string order. In 
report mode, the strings in column 0 will be used. You can use the method 
SortItems(func) to create your own custom sorting method. For a list in 
report mode, the mixin class wx.lib.mixins.listctrl.ColumnSorterMixin
can give you the ability to sort on a user-selected column. 

■ A list control declared with the flag wx.LC_VIRTUAL is a virtual list control. 
This means that its data is determined dynamically at runtime when items 
in the list are displayed. For a virtual list control, you must override the 
method OnGetItemText(item, col) to return the proper text to display in 
the given row and column. You can also override the methods OnGetItem-
Image(item) or OnGetItemAttr(item) to return the image or list display 
attributes for each row. If the underlying data changes, you can update a 
single row of the list using the method RefreshItem(item) and multiple 
rows with the method RefreshItems(itemFrom, itemTo). 

Eventually, your data will become too complex to be stored in a mere list. You’ll 
need something designed for a full two-dimensional spreadsheet style display, 
called the grid control, which we’ll discuss in the next chapter.



Coordinating 
the grid control
This chapter covers
■ Creating a grid
■ Adding rows and cells and managing  

column headers
■ Using a custom cell renderer
■ Creating custom editors
■ Capturing user events
425



426 CHAPTER 14 
Coordinating the grid control
The grid widget is perhaps the most complex and flexible single widget in wxPy-
thon. In this chapter, you’ll get a chance to see and work with many of the grid 
widget’s features. We’ll talk about how you enter data into the grid control and 
how you manage the display attributes of the control, and we’ll talk about custom 
editors and renderers. At base, the grid control allows you to display tabular data 
in a spreadsheet-like grid format. The widget allows you to specify labels for rows 
and columns, change the grid size by dragging grid lines, and specify font and 
color attributes for each cell individually. 

 In most cases, you will display your value as a simple string. However, you can 
also specify a custom renderer for any cell that allows you to display data differ-
ently; for example, displaying a Boolean value as a checkbox. You can edit a grid 
cell in-place in the table, and you can use different types of editors for different 
kinds of data. You can also create your own custom renderers and editors to give 
you nearly unlimited flexibility in the display and management of cell data. Grids 
also have a large amount of mouse and keyboard events that you can capture and 
use to trigger code in your application.

 We’ll start our discussion by showing two ways to create a wxPython grid.

14.1 Creating your grid

A grid control is a display of a two-dimensional data set. For the control to display 
useful information, you need to tell the grid control what data on which it should 
work. In wxPython, there are two different mechanisms for handling data in a grid 
control, each of which handles adding, deleting, and editing the data in a slightly 
different manner. 

■ The grid control can directly manage the values in each row and column.
■ The data can be managed indirectly using a grid table.

The simpler is to have the grid control manage the values directly. In this case, 
the grid maintains its own copy of the data. This can be awkward if there is a lot 
of data or if your application already has an existing grid-like data structure. If 
so, you can use a grid table to manage the data for the grid. See chapter 5 to 
review how grid tables can be thought of as a model in an MVC framework.

14.1.1 How do I create a simple grid? 

Although the grid control has a huge number of methods to control the precise 
display and management of its data, getting started with a grid control is 



Creating your grid 427
straightforward. Figure 14.1 displays a sample grid, with some string data added 
to each cell. 

 Grid controls are instances of the class wx.grid.Grid. Because of the size of the 
grid class and related classes, and the fact that many programs do not use it, 
the wxPython grid classes are in their own module that is not automatically 
imported into the core namespace. The constructor for wx.grid.Grid is similar to 
the other widget constructors. 

wx.grid.Grid(parent, id, pos=wx.DefaultPosition, 
        size=wx.DefaultSize, style=wx.WANTS_CHARS, 
        name=wxPanelNameStr) 

All of these parameters are similar to the basic wx.Window constructor, and have 
the same meaning. The wx.WANTS_CHARS style is the default for a grid; beyond 
that, the wx.grid.Grid defines no specific style flags of its own. Since the grid 
class is so complex, a grid in your application is more likely than other widgets 
to  be implemented as a custom subclass, rather than using an instance of 
wx.grid.Grid directly. 

 Unlike the other widgets we’ve seen, calling the constructor is not enough to 
create a usable grid. There are two ways to initialize the grid:

■ CreateGrid()

■ SetTable()

Figure 14.1  
A basic grid control 



428 CHAPTER 14 
Coordinating the grid control
In this section we’ll discuss one method, and the second method will be covered 
in the discussion of grid tables. 

 To explicitly initialize the grid, use the method CreateGrid(numRows, num-
Cols, selmode=wx.grid.Grid.SelectCells). This method should be called 
directly after the constructor, and must be called before the grid is displayed. 
The first two parameters, numRows and numCols, specify the initial size of the grid. 
The third parameter, selmode, specifies how selection of cells is managed in 
the  grid. The default value, wx.grid.Grid.SelectCells, means that the user 
selection will be made up of individual cells. The other values are wx.grid. 
Grid.SelectRows, meaning that entire rows will be selected at once, and 
wx.grid.Grid.SelectionColumns where entire columns are selected at once. After 
creation, you can access the selection mode with the method GetSelectionMode()
and you can reset the mode with the method SetSelectionMode(mode). You can 
get the number of rows and columns using the methods GetNumberCols() and 
GetNumberRows(). 

 Internally, wxPython sets up a two-dimensional array of strings after the grid
is initialized with CreateGrid(). Once the grid is initialized, you can place data 
using the method SetCellValue(row, col, s). The row and col parameters are 
the coordinates of the cell to set, and the s is the string text to display at those 
coordinates. If you want to retrieve the value at a specific coordinate, you can use 
the function GetCellValue(row, col), which returns the string. To empty the entire 
grid at once, you can use the method ClearGrid(). Listing 14.1 displays the sample 
grid code used to create figure 14.1.

import wx 
import wx.grid 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="Simple Grid", 
                          size=(640,480)) 
        grid = wx.grid.Grid(self) 
        grid.CreateGrid(50,50) 
        for row in range(20): 
            for col in range(6): 
                grid.SetCellValue(row, col, 
                                  "cell (%d,%d)" % (row, col)) 

app = wx.PySimpleApp() 
frame = TestFrame() 

Listing 14.1 A sample grid created using CreateGrid()



Creating your grid 429
frame.Show() 
app.MainLoop() 

The use of CreateGrid() and SetCellValue() to set up your grid is generally lim-
ited to the case where your grid data is made up of simple strings. If your data is 
more complex, or if the table is particularly large, you’re probably better off cre-
ating a grid table, as discussed next. 

14.1.2 How do I create a grid with a grid table? 

In more complicated cases, you can keep your data in a grid table, which is a sep-
arate class that stores the data and interacts with the grid control to display the 
data. The grid table is especially recommended where: 

■ the data from the grid is complex
■ the data is already stored in other objects in your system
■ the grid is large enough that it should not all be stored in memory at once

In chapter 5, we discussed grid tables in the context of the MVC design pattern, 
along with different ways of implementing a grid table in your application. In this 
chapter, we’ll focus on the nuts and bolts of using a grid table. Figure 14.2 dis-
plays a grid created using a grid table. 

 To use a grid table, create your own subclass of wx.grid.PyGridTableBase. Your 
subclass must override a few of the methods of the parent wx.grid.GridTableBase
class. Listing 14.2 displays the code used to create figure 14.2. 

import wx 
import wx.grid 

class TestTable(wx.grid.PyGridTableBase):   
    def __init__(self): 
        wx.grid.PyGridTableBase.__init__(self) 
        self.data = { (1,1) : "Here", 
                      (2,2) : "is", 
                      (3,3) : "some", 
                      (4,4) : "data", 
                      } 
        
        self.odd=wx.grid.GridCellAttr() 
        self.odd.SetBackgroundColour("sky blue") 
        self.odd.SetFont(wx.Font(10, wx.SWISS, wx.NORMAL, wx.BOLD)) 

Listing 14.2 The code for using the grid table mechanism

Defining the table grid



430 CHAPTER 14 
Coordinating the grid control
        self.even=wx.grid.GridCellAttr() 
        self.even.SetBackgroundColour("sea green") 
        self.even.SetFont(wx.Font(10, wx.SWISS, wx.NORMAL, wx.BOLD)) 

    def GetNumberRows(self): 
        return 50 

    def GetNumberCols(self): 
        return 50 

    def IsEmptyCell(self, row, col): 
        return self.data.get((row, col)) is not None 

    def GetValue(self, row, col):   
        value = self.data.get((row, col)) 
        if value is not None: 
            return value 
        else: 
            return '' 

    def SetValue(self, row, col, value): 
        self.data[(row,col)] = value 

    def GetAttr(self, row, col, kind): 
        attr = [self.even, self.odd][row % 2] 
        attr.IncRef() 
        return attr 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="Grid Table", 
                          size=(640,480)) 

        grid = wx.grid.Grid(self) 

        table = TestTable() 
        grid.SetTable(table, True)   

app = wx.PySimpleApp() 
frame = TestFrame() 
frame.Show() 
app.MainLoop() 

In listing 14.2, all the application-specific logic has been moved to the grid table 
class, so there’s no need to also create a custom subclass of wx.grid.Grid.

Providing data for the grid

Assigning the table



Creating your grid 431
For the grid table to be valid, there are five methods that you must override. 
Table 14.1 lists those methods. As we’ll see in this chapter, there are other grid 
table methods that you can override to give your table more functionality. 

 To attach the grid table instance to your table instance call the method Set-
Table(table, takeOwnership=False, selmode=wx.grid.Grid.SelectCells) instead of 
calling CreateGrid(). The table parameter is your instance of wx.grid.PyGrid-
TableBase. The takeOwnership parameter causes the grid control to own the table. 

Table 14.1 Methods to override in wx.grid.GridTableBase

Method Description 

GetNumberCols() Returns the number of columns to display in the grid

GetNumberRows() Returns the number of rows to display in the grid

GetValue(row, col) Returns the value to display at the row and col coordinate passed as parameters

IsEmptyCell(row, 
col) 

Returns True if the cell at the row and col coordinate is supposed to be empty. 
In many cases, this method will be hardwired to always return False. 

SetValue(row, col, 
value) 

Allows you to update your underlying data structure to match the user edit, if you 
want to. For a read-only table, you must still declare this method, but you can have 
it pass and do nothing. Automatically called when the user edits a cell.

Figure 14.2  
A simple grid using the 
grid table mechanism



432 CHAPTER 14 
Coordinating the grid control
If the parameter is set to True, the table is deleted by the wxPython system when 
the grid is deleted. The selmode parameter works the same way in SetTable() as 
it does in CreateGrid(). 

 There are a few other methods you may want to override to manage various 
parts of the grid other than the table data itself. Later in this chapter, we’ll discuss 
some of those methods along with that different functionality. And, we’ll see that 
in some cases a table created with SetTable behaves differently than one created 
with CreateGrid().

 One additional method that you can override is Clear(), which is called when 
the ClearGrid() is called on the grid—you would override this method to clean 
up the underlying data source, if appropriate. Now that you’ve gotten your data 
into the grid, you can start to do all sorts of fun stuff with it. In the next section, 
we’ll show you how to manipulate the look of your grid.

14.2 Working with your grid

Once the grid is created and initialized, you can tweak it in a wide variety of ways. 
Cells, rows, or columns can be added and removed. You can add headers, change 
the size of a row or column, and programmatically change the visible or selected 
portion of the grid. Over the next few sections, we’ll cover these grid manipula-
tion features.

14.2.1 How do I add and delete rows, columns, and cells? 

Even after the grid has been created, you can still add new rows and columns. 
Note that the mechanism works differently depending on how the grid was cre-
ated. You can append a column at the right of your grid using the method 
AppendCols(numCols=1). To append a row at the bottom of your grid, use the anal-
ogous method AppendRows(numRows=1). 

 If you want to add a row or column other than the end of your grid, you can 
use the method InsertCols(pos=0, numCols=1) or InsertRows(pos=1, numRows=1). 
In both cases, the pos parameter represents the index of the first of the new ele-
ment being added. If the numRows or numCols is greater than one, further elements 
are added to the right of the start position (for columns), or below the start posi-
tion (for rows). 

 To delete a row or column, you can use the methods DeleteCols(pos=0, num-
Cols=1) and DeleteRows(pos=0, numRows=1). In these methods, the pos parameter 
is the index of the first row or column to be removed, and any further elements 
are removed to the right or below that index as appropriate. 



Working with your grid 433
 If the grid was initialized with CreateGrid(), the methods discussed previously 
always work, and any cells in the new rows or columns created start with an empty 
string as their value. If, however, the grid was initialized with SetTable(), the grid 
table object must approve the change to the table. This is because some table 
models may not be able to manage a change in table size (i.e., if the model is the 
display for a database table that you cannot modify).

 To approve the change, your grid table must override the same change 
method. For example, if you call InsertCols() on your grid, the grid table must 
also declare an InsertCols(pos=0, numCols=1) method. The grid table method
returns a Boolean True to approve the change or False to veto it. For example, to 
create a table that only allows rows to be appended to a limit of 50 rows, write the 
following method in your grid table base.

def AppendRows(self, numRows=1): 
    return (self.GetRowCount() + numRows) <= 50 

That method returns True to approve the change as long as the new total of rows 
is less than or equal to 50. 

 The contents of the new rows are dependent on the GetValue() methods of the 
grid table, so if you allow a size change in your table, you need to be sure that the 
GetValue() method can handle the new number of rows and columns. 

 Certain changes to a grid do not show up immediately, but instead wait for the 
grid to be refreshed. You can trigger an immediate refresh of the grid by using 
the method ForceRefresh(). In general, if you make a programmatic change to 
your grid that is not showing up, it’s a good idea to try inserting a ForceRefresh()
call to ensure that your change is displayed. 

 If you are doing a large set of changes to a grid and you don’t want the grid 
display to flicker during the change, tell the grid to do the process as a batch by 
using the BeginBatch() method. This call increments an internal counter for the 
grid. You must balance the BeginBatch() call with a later call to EndBatch()—
the EndBatch() call decrements the internal counter. While the counter is greater 
than zero; that is, between a begin and end call, the grid will not repaint itself. 
You may nest begin and end calls as necessary, they will increment and decrement 
the counter as called. As long as there is still an outstanding begin without an 
end, the grid will not repaint. 

14.2.2 How do I manage the row and column headers of a grid? 

In a wxPython grid control, each row and column has its own label. By default, 
rows are given numeric labels starting with 1 and columns are given alphabetical 



434 CHAPTER 14 
Coordinating the grid control
labels starting with A and continuing to Z, which is followed by AA, AB, and so on. If 
you’re creating a spreadsheet, this is great, but not necessary for most other appli-
cations. For something a bit less generic, wxPython provides methods to change 
the labels. Figure 14.3 displays a sample grid with label headers. 

Listing 14.3 contains the code used to build the figure—in this example, the grid 
was initialized with CreateGrid(). 

import wx 
import wx.grid 

class TestFrame(wx.Frame): 

    rowLabels = ["uno", "dos", "tres", "quatro", "cinco"] 
    colLabels = ["homer", "marge", "bart", "lisa", "maggie"] 

    def __init__(self): 
        wx.Frame.__init__(self, None, title="Grid Headers", 
                          size=(500,200)) 
        grid = wx.grid.Grid(self) 
        grid.CreateGrid(5,5) 
        for row in range(5): 
            grid.SetRowLabelValue(row, self.rowLabels[row])   
            grid.SetColLabelValue(row, self.colLabels[row])   
            for col in range(5): 
                grid.SetCellValue(row, col, 
                        "(%s,%s)" % (self.rowLabels[row], self.colLabels[col])) 

app = wx.PySimpleApp() 
frame = TestFrame() 
frame.Show() 
app.MainLoop() 

Listing 14.3 Code for a sample non-model grid with custom labels

Figure 14.3  
A sample grid with 
custom labels created

 b



Working with your grid 435
As with adding and deleting rows, changing labels is done differently based on 
the type of grid. For grids that are created with CreateGrid(), set the label values 
using the methods SetColLabelValue(col, value) and SetRowLabelValue(row,
value). b The col and row parameters are the index of the appropriate column 
or row, and the value parameter is the string to be displayed in that label. To get 
the labels for a row or a column, use the methods GetColLabelValue(col) and 
GetRowLabelValue(row). 

 For a grid control using an external grid table, you can achieve the same effect 
by overriding the grid table methods GetColLabelValue(col) and GetRowLabel-
Value(row). To clear up any confusion, these methods are called internally by the 
grid control when it needs to display a label and the grid has an associated table. 
Since the returned value is determined dynamically by the code you put in the 
overridden method, there’s no need to override or call the setter methods. The 
setter methods still exist—still SetColLabelValue(col, value) and SetRowLabel-
Value(row, value)—but you would rarely use them, and only if you want the user 
to be able to change the underlying data. Typically, you don’t need the setters. 
Listing 14.4 displays how to change labels in a table grid—this listing produces 
the same output as the previous listing. 

import wx 
import wx.grid 

class TestTable(wx.grid.PyGridTableBase): 
    def __init__(self): 
        wx.grid.PyGridTableBase.__init__(self) 
        self.rowLabels = ["uno", "dos", "tres", "quatro", "cinco"] 
        self.colLabels = ["homer", "marge", "bart", "lisa", "maggie"]
        
    def GetNumberRows(self): 
        return 5 

    def GetNumberCols(self): 
        return 5 

    def IsEmptyCell(self, row, col): 
        return False 

    def GetValue(self, row, col): 
        return "(%s,%s)" % (self.rowLabels[row], self.colLabels[col]) 

    def SetValue(self, row, col, value): 
        pass 

Listing 14.4 Code for grid with a grid table that has custom labels



436 CHAPTER 14 
Coordinating the grid control
    def GetColLabelValue(self, col):   
        return self.colLabels[col] 
       
    def GetRowLabelValue(self, row):   
        return self.rowLabels[row] 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="Grid Table", 
                          size=(500,200)) 
        grid = wx.grid.Grid(self) 
        table = TestTable() 
        grid.SetTable(table, True)
        
app = wx.PySimpleApp() 
frame = TestFrame() 
frame.Show() 
app.MainLoop()

By default, the labels are centered in their spaces; however, you can change that 
behavior by using the methods SetColumnLabelAlignment(horiz, vert) and Set-
RowLabelAlignment(horiz, vert). In both cases, the horiz parameter controls the 
horizontal alignment and can have the values wx.ALIGN_LEFT, wx.ALIGN_CENTRE, or 
wx.ALIGN_RIGHT. The vert parameter controls the vertical alignment and can have 
the values wx.ALIGN_TOP, wx.ALIGN_CENTRE, or wx.ALIGN_BOTTOM. 

 The row and column label areas share a common set of attributes for color 
and font display. You can manage those properties with the setter methods Set-
LabelBackgroundColour(colour), SetLabelFont(font), and SetLabelTextColour 
(colour), each of which modifies the property implied by its name. The colour
attribute is an instance of wx.Colour or something that wxPython converts to a 
color, such as the string name of a color. The font property is an instance of 
wx.Font. The associated getter methods, GetLabelBackgoundColour(), GetLabel-
Font(), and GetLabelTextFont(), all exist. 

14.2.3 How can I manage the size of grid elements? 

The grid control offers several different methods to manage the size of cells, 
rows, and columns. In this section we’ll discuss each of these methods. Figure 14.4 
displays some of the ways to change the size of a specific cell. 

 Listing 14.5 displays the code for creating a grid with resized cells, rows, 
and columns. 

  

Column labels

Row labels



Working with your grid 437
import wx 
import wx.grid 

class TestFrame(wx.Frame): 

    def __init__(self): 
        wx.Frame.__init__(self, None, title="Grid Sizes", 
                          size=(600,300)) 
        grid = wx.grid.Grid(self) 
        grid.CreateGrid(5,5) 
        for row in range(5): 
            for col in range(5): 
                grid.SetCellValue(row, col, "(%s,%s)" % (row, col)) 

        grid.SetCellSize(2, 2, 2, 3)         
        grid.SetColSize(1, 125)   
        grid.SetRowSize(1, 100) 

app = wx.PySimpleApp() 
frame = TestFrame() 
frame.Show() 
app.MainLoop() 

Changing cell size
One basic way to affect the size of a cell is to make it span more than one row or 
column, analogous to the HTML rowspan and colspan attributes. To manage this 
in wxPython, use the method SetCellSize(row, col, num_rows, num_cols). This 
sets the cell at the coordinates row, col to flow over num_rows rows and num_col
cols. Under normal circumstances, each cell takes up one row and one column, so 
to get the cell to overflow, you need to pass a value higher than one to those 
parameters. Passing a num_rows or num_cols value that is zero or less results in 
an error. If you set up a cell size that overlaps another cell’s previously declared 

Listing 14.5 Code sample for resized cells

Figure 14.4  
A sample grid, 
showing resized cells, 
rows, and columns 



438 CHAPTER 14 
Coordinating the grid control
overflow size, the previously set cell has its size reset to one row and one column. 
You can also shut off overflow display on a cell by cell basis using the method Set-
CellOverflow(row, col, allow). Passing this method prevents the cell from over-
flowing even if its size has been set with SetCellSize().

 A more typical method of sizing a grid is by managing the pixel size on a row 
or column basis. You can set the size of a specific row or column by using the 
method SetColSize(col, width) to change the width of a column, and SetRow-
Size(row, height) to change the width of a row. Naturally, you can determine the 
current size of a row or column using GetColSize(col) or GetRowSize(row). 

Setting default sizes
You can change the size of the entire grid by changing the default size of all rows 
or all columns. Following are the two methods for this.

SetDefaultColSize(width, resizeExistingCols=False) 
SetDefaultRowSize(height, resizeExistingRows=False). 

In both cases, the first parameter is the new size in pixels. If the Boolean second 
parameter is True, all the currently existing rows or columns are immediately 
resized to the new default. If the parameter is False, existing rows or columns are 
left untouched, and the new default is only applied to new rows or columns as 
they are added. In a typical use, you would most likely want to set this value at the 
beginning of your initialization, even before the call to CreateGrid() or Set-
Table(). You can get the current default sizes using GetDefaultColSize() and 
GetDefaultRowSize(). 

 There is a performance implication to setting the default versus setting the 
sizes for individual rows or columns. To store the default values, wxPython only 
needs to store the two integer values. As soon as you set a single row or column to 
a non-default size, wxPython switches and stores the size of every row or column 
in an array. If your table is very large, this could use a significant amount of addi-
tional memory, so it’s something to watch.

 Occasionally, you’ll want to set a minimum size for a row or column so that no 
matter what program methods are called or what the user does by dragging grid 
lines, the row or column can get no smaller. This may be the case if you have text 
that you don’t want to be chopped in half, or a number that you don’t want digits 
cut off from. 

 In wxPython, you can set the minimum value on a grid-wide basis or set it sep-
arately for individual rows and columns. To change the minimum value for the 
entire grid, use the method SetColMinimalAcceptableWidth(width) or SetRow-
MinimalAcceptableHeight(height). The parameter is the minimal size for all 



Working with your grid 439
rows or columns in pixels. To set the minimum on a row-by-row basis, use Set-
ColMinimalWidth(col, width) or SetRowMinimalHeight(row, height). For these 
methods, the first parameter is the index of the item being sized and the second 
method is the new size in pixels. The minimal size of an individual row must be 
higher than the minimum grid-wide value, if that value is set. Existing rows or 
columns that happen to have a size smaller than the new minimum will not be 
automatically resized. Therefore, you probably want to call these methods early 
in the initialization process before data is added. For performance reasons, it’s 
best to keep the minimum acceptable values close to the actual smallest size of a 
real cell as displayed. Each of these methods has one of the following associated 
getter functions. 

■ GetColMinimalAcceptableWidth()

■ GetRowMinimalAcceptableHeight()

■ GetColMinimalWidth(col)

■ GetRowMinimalHeight(row)

Setting label sizes
The label area on the grid has a separate set of sizing functions. In this case, you 
are setting the width of the row labels, and the height of the column labels, which 
means you are treating the column labels as a special row, and the row labels as a 
special column. As an example, look at a spreadsheet and notice how the row and 
column labels are laid out. The setter methods are SetRowLabelSize(width), 
which sets the width of the row labels, and SetColLabelSize(height), which sets 
the width of the column labels. You can retrieve these sizes with the getter meth-
ods GetRowLabelSize() and GetColLabelSize(). 

 Often, you won’t care about the actual pixel size of your cells, you’ll want them 
to be auto sized big enough to display your data. In wxPython you can auto size 
the entire grid with the method AutoSize(). When that is called, all rows and col-
umns are resized to minimally fit their contents. You can auto size on a more fine-
grained basis using methods specific to rows and columns. The method Auto-
SizeColumn(col, setAsMin=True) forces the column at the specified index to be 
automatically resized to minimally fit its contents. If the setAsMin parameter is 
True, the new auto size is made the minimum size of that column. Similarly, the 
method AutoSizeColumns(setAsMin=True) resizes all the columns in the grid. 
There are analogous methods for rows, AutoSizeRow(row, setAsMin=True) and 
AutoSizeRows(setAsMin=True). Again, the setAsMin parameter allows you to 
simultaneously reset the minimum size of the row. 



440 CHAPTER 14 
Coordinating the grid control
 You can also allow the user to adjust the row size by dragging the cell label bor-
ders. The primary set of methods for doing this are: 

■ EnableDragColSize(enable=True), governs whether the user can drag the 
column labels

■ EnableDragRowSize(enable=True), governs whether the user can drag the 
row labels

■ EnableDragGridSize(enable=True) governs both dimensions at once

Using the enable methods without the parameter is a shortcut to enabling the 
dragging. Following are parallel methods that are shortcuts for disabling dragging:

■ DisableDragColSize()

■ DisableDragRowSize()

■ DisableDragGridSize()

Following is a set of getter methods: 

■ CanDragColSize()

■ CanDragRowSize()

■ CanDragGridSize()

14.2.4 How can I manage which cells are selected or visible? 
In a grid control, one or more cells can be selected by the user. In wxPython, 
there are several methods that allow you to manipulate the group of selected 
cells. You can also locate the exact cell containing the cursor, and the exact screen 
position of any specific cell in the grid. 

 At any given time, the selection in a grid control can be zero or more of 
the following:

■ a collection of individually selected cells
■ a collection of selected rows
■ a collection of select columns
■ a collection of selected blocks of cells

The user can select more than one group of cells by control- or command-clicking 
on cells, row or column labels, or dragging the mouse across cells. To determine 
whether there are any cells selected in the grid, use the method IsSelection()
that returns True if there is a current selection in the grid of any kind. You can 
query whether any specific cell is in a current selection by using the method 



Working with your grid 441
IsInSelection(row, col), that returns True if the cell at the given coordinates is 
currently selected. 

 Table 14.2 displays several methods that allow you to get the current selection 
returned to you in different ways. 

There are also several methods for setting or modifying the selection. The first is 
ClearSelection() which removes any current selection. After this method is 
called, IsSelection() returns False. You can do the opposite action—make all 
the cells selected—with the method SelectAll(). You can select an entire column 
or row with the methods SelectCol(col, addToSelected=False) and Select-
Row(row, addToSelected=False). In both cases, the first argument is the index of 
the row or column to select. If the addToSelected argument is True, all other cur-
rently selected cells remain selected and the row or column is added to the exist-
ing selection (simulating a control or command-click). If the addToSelected
argument is False then all the other selected cells are deselected and the new row 
or column replaces them as the selection. You can similarly add a rectangular 
block with the method SelectBlock(topRow, leftCol, bottomRow, rightCol,
addToSelected=False), where the first four arguments are the corners of the rect-
angle, and addToSelected behaves as in the previous methods. 

 You can tell whether a particular cell is visible in the current display by using 
the method IsVisible(row, col, wholeCellVisible=True). The method returns 
True if the cell at the given row and col attributes is currently displayed onscreen, 
as opposed to being in the hidden part of a scrolled container. If wholeCell-
Visible is True, the entire cell must be visible for the method to return True, if the 
parameter is False, any part of the cell being visible is good enough. Conversely, 

Table 14.2 Methods to return the set of currently selected cells

Method Return Value 

GetSelectedCells() Returns a Python list of all the cells that were individually selected. 
Each item in the list is a tuple of (row, col) values. 

GetSelectedCols() Returns a Python list of the indexes of the columns that were 
selected by clicking the column labels. 

GetSelectedRows() Returns a Python list of the indexes of the rows that were selected by 
clicking the row labels. 

GetSelectionBlockTopLeft() Returns a Python list, each element of which is a (row, col) tuple 
of the top left corner of a currently selected rectangle. 

GetSelectionBlockBottomRight() Returns a Python list, each element of which is a (row, col) tuple 
of the bottom right corner of a currently selected rectangle. 



442 CHAPTER 14 
Coordinating the grid control
the method MakeCellVisible(row, col) ensures that the cell at the given coordi-
nates is visible with a minimal amount of scrolling. 

 In addition to the selected cells, the grid control also has a cursor cell that rep-
resents the cell with the current user focus. You can determine the current position
of the cursor with the methods GetGridCursorCol() and GetGridCursorRow(), that 
return the appropriate integer index. You can place the cursor explicitly with the 
method SetGridCursor(row, col). Not only does this method move the cursor, it 
implicitly calls MakeCellVisible on the new cursor location. 

 Table 14.3 describes grid control methods that help convert between grid 
coordinates and display coordinates. 

You could use these to convert the location of a mouse click to the grid cell that 
contains the click.

14.2.5 How do I change the color or font of a grid cell? 
As with other controls, there are a set of properties that you can use to change the 
display attributes for each cell. Figure 14.5 displays some of what you can do with 
the attribute methods. 

 Listing 14.6 displays the code used to create figure 14.5. Notice the use of 
both grid methods aimed at a specific cell and of the creation of wx.grid.Grid-
CellAttr objects.  

Table 14.3 Coordinate conversion methods

Method Description 

BlockToDeviceRect 
(topLeft, bottomRight)

The topLeft and bottomRight parameters are cell coordinates—in 
wxPython, pass them as (row, col) tuples. The return value is a wx.Rect in 
device pixel coordinates of the rectangle bounded by the given grid coordinates. 
If necessary, the rectangle is clipped to the size of the grid window. 

CellToRect(row, col) Returns a wx.Rect with the coordinates relative to the container for the cell at 
grid coordinates (row, col).

XToCol(x) Returns the integer index of the column containing the given x coordinate in 
relation to the container. If there is no column at that coordinate, returns 
wx.NOT_FOUND. 

XToEdgeOfCol(x) Returns the integer index of the column whose right edge is closest to the given 
x coordinate. If there is no such column, returns wx.NOT_FOUND. 

YToRow(y) Returns the integer index of the row containing the given y coordinate. If there 
is no such row, returns wx.NOT_FOUND. 

YToEdgeOfRow(y) Returns the row whose bottom edge is closest to the given y coordinate. If there 
is no such row, returns wx.NOT_FOUND. 



Working with your grid 443
import wx 
import wx.grid 

class TestFrame(wx.Frame): 
    
    def __init__(self): 
        wx.Frame.__init__(self, None, title="Grid Attributes", 
                          size=(600,300)) 
        grid = wx.grid.Grid(self) 
        grid.CreateGrid(10,6) 
        for row in range(10): 
            for col in range(6): 
                grid.SetCellValue(row, col, "(%s,%s)" % (row, col)) 
         
        grid.SetCellTextColour(1, 1, "red") 
        grid.SetCellFont(1,1, wx.Font(10, wx.SWISS, wx.NORMAL, wx.BOLD)) 
        grid.SetCellBackgroundColour(2, 2, "light blue") 
        
        attr = wx.grid.GridCellAttr() 
        attr.SetTextColour("navyblue") 
        attr.SetBackgroundColour("pink") 
        attr.SetFont(wx.Font(10, wx.SWISS, wx.NORMAL, wx.BOLD)) 

        grid.SetAttr(4, 0, attr) 
        grid.SetAttr(5, 1, attr) 
        grid.SetRowAttr(8, attr) 

app = wx.PySimpleApp() 
frame = TestFrame() 
frame.Show() 
app.MainLoop() 

Listing 14.6 Changing the color of grid cells

Figure 14.5  
A sample usage of the 
grid attribute methods



444 CHAPTER 14 
Coordinating the grid control
We’ll begin by discussing the methods used for setting the default values for the 
entire grid. You can set the default alignment for all the cells in the grid with 
SetDefaultCellAlignment(horiz, vert) where horiz is wx.LEFT, wx.CENTRE, or 
wx.RIGHT, and vert is wx.TOP, wx.CENTRE, or wx.BOTTOM. You can recover the 
default cell alignment with GetDefaultCellAlignment() which returns a tuple of 
(horiz, vert). 

 The background and text color can be set with the methods SetDefaultCell-
TextColour(colour) and SetDefaultCellBackgroundColour(colour). As usual, the 
color can either be a wx.Colour instance or the string name of a color. The getters 
are GetDefaultCellTextColour() and GetDefaultCellBackgroundColour(). Finally, 
you can manage the default font with SetDefaultCellFont(font) and GetDefault-
CellFont().

 Using the following methods, you can set all of these attributes for an individ-
ual cell. 

GetCellAlignment(row, col) 
SetCellAlignment(row, col, horiz, vert) 

GetCellBackgroundColour(row, col) 
SetCellBackgroundColour(row, col, colour) 

GetCellFont(row, col) 
SetCellFont(row, col, font) 

GetCellTextColour(row, col) 
SetCellTextColour(row, col, colour) 

Each method behaves as the default, with the addition of the row and col
attributes that define the coordinates of the cell being discussed. 

 Selected cells have different background and foreground colors, which can be 
changed. The methods are SetSelectionBackground(colour) and SetSelection-
Foreground(colour), with the associated getter methods GetSelectionBack-
ground() and GetSelectionForeground(). 

 You can place extra space around the grid control by using the method Set-
Margins(extraWidth, extraHeight)—the parameters indicate the amount of pix-
els that are used to pad the grid within its container. 

 Internally, the wx.grid.Grid class uses a class called wx.grid.GridCellAttr to 
manage the attributes of each cell. That class has getter and setter methods for all 
of the properties discussed in this section. You can get the cell attr object for a 
specific cell by using the method GetOrCreateCellAttr(row, col), which provides 
you with the cell attribute object for the appropriate cell, creating an object if nec-
essary. A cell attribute object is only created if the cell has defined properties 



Custom renderers and editors 445
different from the grid default. Once you have the cell attribute object, you can 
use it to define display properties of the cell.

 To create your own cell attribute object, the constructor is wx.grid.GridCell-
Attr(). You can set some parameters, then pass the object to the methods Set-
ColAttr(attr) or SetRowAttr(attr), which applies the display attributes to every 
cell in that row or column, as displayed in listing 14.6. 

 If you are using a grid table, you can override the method GetAttr(row, col)
to return a wx.grid.GridCellAttr instance specific to that particular cell, which is 
used by the grid in displaying that cell. 

 You can also change the color and display of the grid lines. The display of 
the grid lines is controlled with the method EnableGridLines(enable). The 
enable parameter is a Boolean. If True, the lines are displayed, if False they are 
not displayed. You can change the color of the grid lines with SetGridLine-
Color(colour). 

14.3 Custom renderers and editors

What makes the grid control so flexible and useful is the idea that the mechanism 
for displaying or editing a cell’s contents can be changed on a cell-by-cell basis. In 
the following sections, we’ll show how to use predefined renderers and editors, 
and how to write your own.

14.3.1 How do I use a custom cell renderer? 
By default, a wxPython grid displays its data as a simple string, however, you can 
also display your data in a different format. You may want Boolean data to display 
as a checkbox, or a numerical value to display in a graphical format, or a list of 
data to display as a sparkline. 

 In wxPython, each cell can have its own renderer, which allows it to display its 
data differently. The following sections discuss a few renderers that come pre-
defined in wxPython, and how to define your own if you so desire.

Predefined renderers
A grid renderer is an instance of the class wx.grid.GridCellRenderer, which is an 
abstract parent class. Typically, you would use one of its subclasses. Table 14.4 
describes several predefined renderers that you can use in your cells. Each of 
these classes has a constructor and getter and setter methods. 

 To get the renderer for a specific cell, use the method GetCellRenderer(row,
col), which returns the renderer instance for the given cell coordinates. To set the 
renderer for a cell, use SetCellRenderer(row, col, renderer), where the renderer



446 CHAPTER 14 
Coordinating the grid control
argument is the new renderer for that cell. These methods simply set or get the 
renderer stored in the cell’s attribute object, so you can also deal with the Grid-
CellAttr directly if you prefer. You can get and set the default renderer for the 
entire grid by using the methods GetDefaultRenderer() and SetDefaultRen-
derer(renderer). 

 You can set the renderer for an entire column at once—the typical use case for 
this being a spreadsheet application where certain columns always display data of 
a particular type. The methods for doing this are SetColFormatBool(col), SetCol-
FormatNumber(col), and SetColFormatFloat(col, width, precision). Each of 
these methods sets the column attribute to use the renderer with the same name, 
and is a shortcut for calling SetColAttr() with a custom attribute object.

Creating a custom renderer
To create your own custom cell renderer, create a subclass of wx.grid.PyGridCell-
Renderer—as with other wxPython classes, the Py version of the class allows for a 
Python class to subclass the base C++ class and properly reflect virtual method 

Table 14.4 Predefined grid cell renderers

Renderer class Description 

wx.grid.GridCellAutoWrapStringRenderer Prints the textual data with word wrapping at the cell 
boundaries. 

wx.grid.GridCellBoolRenderer Renders Boolean data by using a checkbox in the middle of 
the cell—checked for True, unchecked for False. 

wx.grid.GridCellDateTimeRenderer Allows the cell to display a formatted date and/or time. 

wx.grid.GridCellEnumRenderer Renders a number as a textual equivalent. In other words, the 
data in the cell is in the list [0,1,2], but the cell would be 
rendered as one of [“John”, “Fred”, “Bob”]. 

wx.grid.GridCellFloatRenderer Renders numerical floating point data with a specific width 
and precision. The constructor for this class takes two 
arguments (width=-1, precision=-1), where the 
width is the minimum number of digits to show, and the 
precision is the maximum number of digits displayed after 
the decimal point. The numbers displayed by this renderer are 
right justified by default. 

wx.grid.GridCellNumberRenderer Renders numerical data as entered. The numbers displayed by 
this renderer are right justified by default. 

wx.grid.GridCellStringRenderer Renders the cell data as a simple string. By default, data 
rendered by this renderer is left justified. This is the default 
renderer used by the grid for all cells. 



Custom renderers and editors 447
calls to the Python methods. Creating a custom cell renderer allows you to do 
things like display a numerical value as a mini-bar graph or perform special for-
matting on a string or date.

 Figure 14.6 displays a sample custom renderer that randomly draws a back-
ground color for the cell. The renderer is set for a specific row. You’ll notice if 
you execute the code that the grid will flicker on redraw, as it reassigns the ran-
dom color.

 Listing 14.7 lists the code used to create the custom renderer, displaying the 
overridden renderer class and the overridden methods. 

import wx 
import wx.grid 
import random 

class RandomBackgroundRenderer(wx.grid.PyGridCellRenderer):   
    def __init__(self): 
        wx.grid.PyGridCellRenderer.__init__(self) 

    def Draw(self, grid, attr, dc, rect, row, col, isSelected):  
        text = grid.GetCellValue(row, col) 
        hAlign, vAlign = attr.GetAlignment() 
        dc.SetFont( attr.GetFont() ) 
        if isSelected: 
            bg = grid.GetSelectionBackground() 
            fg = grid.GetSelectionForeground() 
        else: 
            bg = random.choice(["pink", "sky blue", "cyan", 
                    "yellow", "plum"])
            fg = attr.GetTextColour() 

        dc.SetTextBackground(bg) 
        dc.SetTextForeground(fg) 

Listing 14.7 The code for a custom grid renderer that changes color randomly

Figure 14.6  
A custom grid 
renderer, setting 
background colors 

Defining the 
renderer

What to 
draw



448 CHAPTER 14 
Coordinating the grid control
        dc.SetBrush(wx.Brush(bg, wx.SOLID)) 
        dc.SetPen(wx.TRANSPARENT_PEN) 
        dc.DrawRectangleRect(rect)            
        grid.DrawTextRectangle(dc, text, rect, hAlign, vAlign) 

    def GetBestSize(self, grid, attr, dc, row, col): 
        text = grid.GetCellValue(row, col) 
        dc.SetFont(attr.GetFont()) 
        w, h = dc.GetTextExtent(text) 
        return wx.Size(w, h) 
  
    def Clone(self): 
        return RandomBackgroundRenderer() 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="Grid Renderer", 
                          size=(640,480)) 

        grid = wx.grid.Grid(self) 
        grid.CreateGrid(50,50) 

        attr = wx.grid.GridCellAttr()   
        attr.SetRenderer(RandomBackgroundRenderer()) 
        grid.SetRowAttr(4, attr)   
        
        for row in range(10): 
            for col in range(10): 
                grid.SetCellValue(row, col, 
                                  "cell (%d,%d)" % (row, col)) 

app = wx.PySimpleApp() 
frame = TestFrame() 
frame.Show() 
app.MainLoop() 

Your renderer class must override three methods of the base class. 

■ Draw()

■ GetBestSize()

■ Clone()

The most important of these methods is Draw(grid, attr, dc, rect, row, col,
isSelected). The arguments to this method provide information about the grid 
that you will need to draw the cell. The grid argument is the grid instance con-
taining this cell. The attr argument contains the grid attribute instance with the 
foreground and background color, among others. The dc argument is the device 

Assigning to row 4



Custom renderers and editors 449
context to draw to if you need to use primitive drawing methods. The rect is the 
bounding rectangle of the cell in logical coordinates. The grid coordinates of 
the cell are given by the row and col elements, and isSelected is True if the cell is 
currently selected. Within your draw method, you are free to do whatever you 
want. You may find it convenient to call the super method of the base class, which 
draws the background color from the attr parameter and sets the foreground 
color and text font.

 The second method to override is GetBestSize(grid, attr, dc, row, col). 
This method returns a wx.Size instance that represents the preferred size of the 
cell for that data, the size of which you can calculate on your own. The grid, attr, 
dc, row, and col attributes are defined exactly as they are in the Draw() method. 

 Finally, you should override the method Clone(), that returns a wx.grid.Grid-
CellRenderer instance, which should be equal to the instance being called. Once 
the renderer is defined, you can use it just like the predefined renderer, by setting 
it as the renderer for specific cells. 

14.3.2 How do I edit a cell? 

A wxPython grid control allows you to edit cell values in place. For the grid as 
a whole, editing is on by default. Clicking on a selected cell, or beginning 
to type a new data value, opens a default string editor that lets you enter a dif-
ferent string. In this section, we’ll discuss a number of ways to modify this 
default behavior. 

 You can shut off the editing for the entire grid with the method Enable-
Editing(enable)—the enable parameter is a Boolean. If it is False, no cell in the 
grid can be editable. If editing is turned off using this function, then individual 
cells cannot have editing turned on. If the editing is on from this method, how-
ever, individual cells (or rows or columns) can be designated as read-only. You can 
determine if the grid is currently editable with the method IsEditable(). 

 You can set the editing state for a specific cell with the method SetRead-
Only(row, col, isReadOnly=True). A True passed to the isReadOnly parameter 
makes the cell read-only, a False makes the cell editable again. The SetRead-
Only() method is a shortcut for the method of the same name in the class 
wx.grid.GridCellAttr. In other words, you could set a cell to be read-only using 
something like GetCellAttr(row, col).SetReadOnly(isReadOnly). The advantage 
of using the cell attribute mechanism is that you can combine it with the SetRow-
Attr() and SetColAttr() methods to set entire rows or columns as editable or 
read-only at one time. 



450 CHAPTER 14 
Coordinating the grid control
 You can also manage the editable nature of the grid using the methods 
EnableCellEditControl(enable=True) and DisableCellEditControl(), the latter 
method is equivalent to EnableCellEditControl(False). The enable method will 
create and show the cell editor in the currently selected cell. The disable method 
will hide the editor in the current cell, saving the edited data. The method Can-
EnableCellControl() returns true if the enable method will work on the current 
cell, meaning that the grid is editable and the cell has not been designated read-
only. The method IsCellEditControlEnabled() returns true if the cell editor is 
active for the current cell. 

 There are also some methods that are used internally that you can use for 
more fine-grained control of the edit process. You can trigger an edit of the cur-
rent cell (the cell at the cursor position) using the method ShowCellEdit-
Control(), and you can end the edit with the method HideCellEditControl(). 
You can determine if the current cell is available for editing using the method 
IsCurrentCellReadOnly(). You can ensure that the new value entered in the edi-
tor is properly stored by the grid using the method SaveEditControlValue(). The 
grid control implicitly calls this method when focus moves away from the cell 
being edited, but it’s a good idea to implicitly call it when you are doing some-
thing in your program that might cause a value to be lost (such as closing the win-
dow that encloses the grid). 

 Each individual cell has its own specific editor object. You can get a reference 
to that editor object with the method GetCellEditor(row, col), the return value 
is an instance of the class wx.grid.GridCellEditor. You can set the editor with the 
method SetCellEditor(row, col, editor) where the editor parameter is a 
wx.grid.GridCellEditor. You can manage defaults for the entire grid with the 
GetDefaultEditor() and SetDefaultEditor(editor). Just like the renderers, 
the editor object is stored as part of the wx.grid.GridCellAttr objects associated 
with the cell, row, or column. 

14.3.3 How do I use a custom cell editor? 

As with renderers, wxPython offers several standard editors for different types, 
and provides you the option to create your own. 

Predefined editors
All wxPython editors are subclasses of the class wx.grid.GridCellEditor. Table 14.5
describes the standard editors. 

 In the next section, we’ll show you how to create a custom cell editor.



Custom renderers and editors 451
Creating a custom editor
You may want to create a custom editor to do some custom processing on the 
value entered. To create your own editor, create a subclass wx.grid.PyGridCell-
Editor. Subclassing an editor is a bit more complex than subclassing a renderer. 
Table 14.6 displays several methods that you are required to override. 

 Table 14.7 displays more methods of the parent class that you can override to 
improve the appearance or display of your custom editor. 

Table 14.5 Cell editors in wxPython

Editor Description 

wx.grid.GridCellAutoWrapStringEditor Uses a multi-line text control for editing the data value 

wx.grid.GridCellBooleanEditor An editor for Boolean cell data, consisting of a checkbox that the 
user can check or uncheck. It’s visually slightly different from the 
checkbox used by the Boolean renderer. You do not have to have a 
Boolean renderer to use a Boolean editor—you could have the 
data display as 1 or 0 or on/off or something like that. 

wx.grid.GridCellChoiceEditor An editor for a specific list of options. When invoked, the user sees 
a pull-down list of the choices similar to a combo block. The 
constructor takes the parameters (choices, 
allowOthers=False). The choices parameter is the list of 
strings. If allowOthers is True, then the user can also type an 
arbitrary string in addition to selecting from the pull-down list. 

wx.grid.GridCellEnumEditor Derives from wx.grid.GridCellChoiceEditor and manages 
equating the numeric data value to the string presented to the user.

wx.grid.GridCellFloatEditor An editor for entering floating point numbers with a specific 
precision. The constructor takes the parameters (width=-1, 
precision=-1), where the width is the minimum number of 
digits to show, and the precision is the maximum number of 
digits displayed after the decimal point. Numbers entered using 
this editor are converted to the appropriate width and precision. 

wx.grid.GridCellNumberEditor An editor for entering integer numbers. The constructor takes the 
parameter (min=-1, max=-1). If min and max are set, the 
editor does range checking and vetoes attempts to enter a number 
out of the range. If the editor is range checking, it also uses a 
spinner control on the right of the cell to allow the user to change 
the values via the mouse. 

wx.grid.GridCellTextEditor The default editor for entering string data. 



452 CHAPTER 14 
Coordinating the grid control
Table 14.6 PyGridCellEditor methods that you must override

Method Description 

BeginEdit(row, col, grid) The row and col attributes are the coordinates of the cell, and the 
grid is the containing grid. This method is called at the beginning of 
the edit request. In it, the editor is expected to fetch the value to edit, 
and do anything else needed to get ready for the edit. 

Clone() Return an equal copy of the editor. 

Create(parent, id, evtHandler) This method is expected to create the actual control used by the editor. 
The parent parameter is the containing widget, the id is the wxPython 
identifier of the control to create, and the evtHandler is the event 
handler bound to the new control. 

EndEdit(row, col, grid) Returns True if the edit has changed the value of the cell. Any other 
cleanup needed should be performed here. 

Reset() Called if the edit is canceled. Should return the value in the control to 
its original value. 

Table 14.7 PyGridCellEditor methods that you can override 

Method Description 

Destroy() Perform any final cleanup when the editor is destroyed. 

IsAcceptedKey(evt) Return True if the key pressed in the evt should start the editor. The key 
F2 will always start the editor. The base class version assumes that any 
keypress will start the editor unless it’s modified by a control, alt, or shift. 

PaintBackground(rect, attr) The two parameters are rect, a wx.Rect with the logical dimensions  
of the control on screen, and attr, the wc.grid.GridCellAttr 
associated with the cell. The purpose of this method is to draw any part  
of the cell not covered by the edit control itself. The base class version 
takes the background color from the attribute and fills the rectangle with 
that color. 

SetSize(rect) The rect attribute is a wx.Rect with the logical dimensions of the 
control on the screen. Use this method if needed to position the control 
within the rectangle. 

Show(show, attr) The show attribute is a Boolean determining whether the editor should be 
displayed, the attr is the cell attribute instance for the cell. Called to 
show or hide the control. In this method you would do anything needed 
behind the scenes to allow the display. 

StartingClick() When the editor is started by a mouse click on the cell, this method is 
called to allow the editor to use that click for its own purposes. 

continued on next page



Custom renderers and editors 453
Once your editor is completed, you can set it as the editor for any cell using the 
SetCellEditor method. Listing 14.8 displays a sample custom editor that auto-
matically converts the text you enter to uppercase. 

import wx 
import wx.grid 
import string 

class UpCaseCellEditor(wx.grid.PyGridCellEditor):   
    def __init__(self): 
        wx.grid.PyGridCellEditor.__init__(self) 

    def Create(self, parent, id, evtHandler):   
        self._tc = wx.TextCtrl(parent, id, "") 
        self._tc.SetInsertionPoint(0) 
        self.SetControl(self._tc) 

        if evtHandler: 
            self._tc.PushEventHandler(evtHandler) 

        self._tc.Bind(wx.EVT_CHAR, self.OnChar) 

    def SetSize(self, rect) 
        self._tc.SetDimensions(rect.x, rect.y, rect.width+2, rect.height+2, 
                               wx.SIZE_ALLOW_MINUS_ONE) 

    def BeginEdit(self, row, col, grid):       
        self.startValue = grid.GetTable().GetValue(row, col) 
        self._tc.SetValue(self.startValue) 
        self._tc.SetInsertionPointEnd() 
        self._tc.SetFocus() 
        self._tc.SetSelection(0, self._tc.GetLastPosition()) 

    def EndEdit(self, row, col, grid): 
        changed = False 
        val = self._tc.GetValue() 
        if val != self.startValue: 
            changed = True 
            grid.GetTable().SetValue(row, col, val) # update the table 

StartingKey(evt) If the editor is started by a key press, this method is called to allow the  
edit control to use the key, if desired (by using it as part of the actual edit, 
for example). 

Listing 14.8 Creating a custom uppercase editor

Table 14.7 PyGridCellEditor methods that you can override (continued)

Method Description 

Declaring the editor

Called on creation



454 CHAPTER 14 
Coordinating the grid control
        self.startValue = '' 
        self._tc.SetValue('') 
        return changed 

    def Reset(self):        
        self._tc.SetValue(self.startValue) 
        self._tc.SetInsertionPointEnd() 

    def Clone(self):  
        return UpCaseCellEditor() 

    def StartingKey(self, evt): 
        self.OnChar(evt) 
        if evt.GetSkipped(): 
            self._tc.EmulateKeyPress(evt) 

    def OnChar(self, evt): 
        key = evt.GetKeyCode() 
        if key > 255: 
            evt.Skip() 
            return 
        char = chr(key) 
        if char in string.letters: 
            char = char.upper() 
            self._tc.WriteText(char)   
        else: 
            evt.Skip() 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="Grid Editor", 
                          size=(640,480)) 

        grid = wx.grid.Grid(self) 
        grid.CreateGrid(50,50) 
        grid.SetDefaultEditor(UpCaseCellEditor())   

app = wx.PySimpleApp() 
frame = TestFrame() 
frame.Show() 
app.MainLoop() 

Refer to tables 14.6 and 14.7 to match the methods used in the editor class when 
they are called.

Converting to upper case

Making a default editor



Capturing user events 455
14.4 Capturing user events

The grid control gives a number of user events that you can respond to. We’ll sep-
arate them into mouse events and keyboard events. This allows you fine-grained 
control over the user events, enabling your grid to be more responsive. 

14.4.1 How can I capture user mouse selections? 
For the grid control, not only are there several different mouse event types, there 
are also a few different event classes for those types. The most commonly used 
event class is wx.grid.GridEvent. The grid event class is a subclass of wx.Command-
Event, and provides several methods to get at details of the event, as displayed in 
table 14.8. 

There are several different event types associated with wx.grid.GridEvent. As in 
table 14.9, the names of the event types evoke the event being processed. 

Table 14.8 Methods of wx.grid.GridEvent

Method Description 

AltDown() Returns true if the alt key was pressed when the event was triggered. 

ControlDown() Returns true if the control key was pressed when the event was triggered. 

GetCol() Returns the index of the column of the cell where the event occurred. 

GetPosition() Returns a wx.Point representing the logical coordinates in pixels where  
the event occurred. 

GetRow() Returns the index of the row of the cell where the event occurred. 

MetaDown() Returns true if the meta key was pressed when the event was triggered. 

Selecting() Returns True if the event is a selection and False if the event is a deselection of  
a cell. 

ShiftDown() Returns True if the shift key was pressed when the event was triggered. 

Table 14.9 Cell event types for grid mouse events 

Event Type Description 

wx.grid.EVT_GRID_CELL_CHANGE Triggered when the user changes the data in a cell  
via an editor.

wx.grid.EVT_GRID_CELL_LEFT_CLICK Triggered when the user performs a left mouse click in a cell. 

continued on next page



456 CHAPTER 14 
Coordinating the grid control
There are two event types that have an instance of wx.grid.GridSizeEvent. The 
event types are wx.grid.EVT_GRID_COL_SIZE, triggered when a column is resized, 
and wx.grid.EVT_GRID_ROW_SIZE, triggered when a row is resized. The grid size 
event has five of the same methods as wx.GridEvent—AltDown(), ControlDown(), 
GetPosition(), MetaDown(), and ShiftDown. The final method of wx.grid.Grid-
SizeEvent is GetRowOrCol() that returns the index of the row or column changed, 
depending on the event type, of course.

 There is one event that has an instance of wx.grid.GridRangeSelectEvent. The 
event type is wx.grid.EVT_GRID_RANGE_SELECT. It is triggered when the user selects 
a contiguous rectangle of cells. The event instance has methods to GetBottom-
RightCoords(), GetBottomRow(), GetLeftCol(), GetRightCol(), GetTopRight-

Coords(), and GetTopRow() of the rectangle selected, with the return value being 
either an integer index or a (row, col) tuple for the coordinate methods. 

wx.grid.EVT_GRID_CELL_LEFT_DCLICK Triggered when the user performs a left mouse double-click 
in a cell. 

wx.grid.EVT_GRID_CELL_RIGHT_CLICK Triggered when the user performs a right mouse click in  
a cell. 

wx.grid.EVT_GRID_CELL_RIGHT_DCLICK Triggered when the user performs a right mouse double-click 
in a cell. 

wx.grid.EVT_GRID_EDITOR_HIDDEN Triggered when a cell editor is hidden at the end of an  
edit session. 

wx.grid.EVT_GRID_EDITOR_SHOWN Triggered when a cell editor is shown at the beginning of an 
edit session. 

wx.grid.EVT_GRID_LABEL_LEFT_CLICK Triggered when the user performs a left mouse click in the 
row or column label area. 

wx.grid.EVT_GRID_LABEL_LEFT_DCLICK Triggered when the user performs a left mouse double click 
in the row or column label area. 

wx.grid.EVT_GRID_LABEL_RIGHT_CLICK Triggered when the user performs a right mouse click in the 
row or column label area. 

wx.grid.EVT_GRID_LABEL_RIGHT_DCLICK Triggered when the user performs a right mouse double click 
in the row or column label area. 

wx.grid.EVT_GRID_SELECT_CELL Triggered when the user moves the focus to a new cell, 
selecting it. 

Table 14.9 Cell event types for grid mouse events (continued)

Event Type Description 



Capturing user events 457
 Finally, there is one event that has an instance of wx.grid.GridEditorCreated-
Event with an event type of EVT_GRID_EDITOR_CREATED. As the name implies, the 
event is triggered when an editor is created by an edit session. The event 
instance has GetCol(), GetRow(), and GetControl() methods, which return the 
column index of the event, row index of the event, and the edit control being 
used, respectively.

14.4.2 How can I capture user keyboard navigation? 

In addition to using the mouse, the user can navigate through the grid with the 
keyboard. You can also programmatically change the cursor with the move meth-
ods listed in table 14.10. Many of the methods take an expandSelection parame-
ter. This parameter works the same in each method. If the parameter is True, the 
current selection is stretched to include the new cursor position. If the parameter 
is False, the current selection is replaced by the new cursor.

Table 14.10 Grid cursor move methods 

Method Description 

MoveCursorDown(expandSelection) Moves cursor down. Equivalent to a down arrow keypress 
(without expanding selection) or a shift-down keypress (with 
expanding selection). 

MoveCursorDownBlock(expandSelection) Moves the cursor down to one cell further than the current 
vertical extent of the selection. Equivalent to a ctrl-down 
keypress (without expanding selection) or a shift-control-
down keypress (with expanding selection). 

MoveCursorLeft(expandSelection) Moves cursor left. Equivalent to a left arrow keypress  
(without expanding selection) or a shift-left keypress (with 
expanding selection). 

MoveCursorLeftBlock(expandSelection) Moves the cursor left to one cell further than the current 
horizontal extent of the selection. Equivalent to a ctrl-left 
keypress (without expanding selection) or a shift-control-left 
keypress (with expanding selection). 

MoveCursorRight(expandSelection) Moves cursor right. Equivalent to a right arrow keypress 
(without expanding selection) or a shift-right keypress (with 
expanding selection). 

MoveCursorRightBlock(expandSelection) Moves the cursor right to one cell further than the current 
horizontal extent of the selection. Equivalent to a ctrl-right 
keypress (without expanding selection) or a shift-control-right 
keypress (with expanding selection). 

continued on next page



458 CHAPTER 14 
Coordinating the grid control
That covers nearly all of what you need to know about grids. In the next chapter, 
we’ll tackle the next widget, the tree control.

14.5 Summary 

■ The grid control allows you to create spreadsheet-like grid tables with a 
great deal of control and flexibility. The grid control is an instance of the 
class wx.grid.Grid. Typically grid controls are complex enough that it’s 
worthwhile to create your own custom grid subclass with its own __init__
method rather than just creating an instance of the base class and calling its 
methods elsewhere in your application. 

■ There are two ways to populate a grid control with data. The control can be 
built explicitly with the CreateGrid(numRows, numCols) method, after which 
individual cells can be set with the SetCellValue(row, col, s) method. 
Alternately, you can create an instance of a grid table, which acts as a model 
for the grid, and allows you to easily use data from another source in the 
grid display. A grid table is a subclass of wx.grid.PyGridTableBase with 
methods such as GetValue(row, col) which can be overridden to drive the 
grid behavior when displaying a cell. The table is connected to the grid 
control using the method SetTable(table). When a grid is created with a 
table, then the table gets veto power over changes to the grid’s size with the 
row and column creation and removal methods. 

■ A grid has row and column labels that have default values similar to what you 
would expect in a spreadsheet. The display text and other display attributes 

MoveCursorUp(expandSelection) Moves cursor up. Equivalent to an up arrow keypress  
(without expanding selection) or a shift-up keypress (with 
expanding selection). 

MoveCursorUpBlock(expandSelection) Moves the cursor up to one cell further than the current 
vertical extent of the selection. Equivalent to a ctrl-up 
keypress (without expanding selection) or a shift-control-up 
keypress (with expanding selection). 

MovePageDown() Moves the cursor selection down, such that the cells at the 
bottom of the display move to the top of the display. 

MovePageUp() Moves the cursor selection up, such that the cells at the top 
of the display move to the bottom of the display. 

Table 14.10 Grid cursor move methods (continued)

Method Description 



Summary 459
of the labels can be changed with grid properties. The size of a row or col-
umn can be set explicitly for each item, or the grid can auto size based on the 
displayed data. The user can also be allowed to change the size of the grid by 
dragging the grid lines. You can set a minimum size for each row or column 
if desired, to prevent cells from becoming too small to display their data. In 
addition, specific cells can be set to overflow into other rows or columns 
using the SetCellSize(row, col, numrows, numcols) method. 

■ The user can select one or more rectangles of cells in the grid, and that pro-
cess can be duplicated programmatically with a number of different Select
methods. A grid cell that is scrolled off the screen can be moved onto the 
display with the MakeCellVisible(row, col) method. 

■ Much of the power and flexibility of the grid control comes from the ability 
to create custom renderers and editors for each cell. A renderer controls the 
display of information in the cell. The default renderer is just a simple 
string, but there are predefined renderers for Boolean, integer, and float-
ing point data. You can create your own renderer by subclassing wx.Grid. 
PyGridCellRenderer and overwriting one method for drawing. 

■ By default, a wxPython grid allows in-place editing of the data. You can 
change that property on a cell-by-cell basis, or by row or column, or for the 
entire grid. The editor object governs what control the user sees when edit-
ing in place. The default is a normal text edit control for modifying strings. 
There are predefined editors for Boolean, integer, and floating point data, 
as well as one which gives users a finite choice of options. You can create 
your own custom renderer by subclassing wx.grid.GridCellEditor and 
overriding several of the base class methods. 

■ The grid control has a number of different events that you can capture, 
including separate events for mouse clicks in the cells and in the labels, and 
events triggered by changing the size of a cell. In addition, you can trigger 
navigation of the cursor in the grid programmatically. 



Climbing the tree control
This chapter covers
■ Creating a tree control and adding items
■ Using styles to design the tree control
■ Navigating the tree programmatically
■ Managing the tree selection
■ Controlling the visibility of items
460



Creating tree controls and adding items 461
The tree control is the last of the three wxPython controls for displaying complex 
data. In this case, the tree control is designed to show data with a strong hierar-
chy, where you can see that each piece of data has parent and child relationships. 
One standard example is a file tree, where directories have subdirectories or files 
inside them, leading to a nested hierarchy of files. Another example is a Docu-
ment Object Model (DOM) tree of an HTML or XML document. Like the list and 
grid controls, the tree control provides some flexibility over the display of the 
items, and allows you to edit tree items in place. In this chapter, we’ll show you 
how to edit tree items and how to respond to user tree control events.

15.1 Creating tree controls and  
adding items 

A tree control is an instance of the class 
wx.TreeCtrl. Figure 15.1 displays a sam-
ple tree control.

 Listing 15.1 shows the code used to 
generate that example. Notice that the 
tree is driven by an external structure 
stored in a file called data.py. We won’t 
print that file here, but it is available at 
the book’s web site. It consists of a nested 
list structure of the wxPython class hier-
archy, a convenient data set for a tree 
control. Some of the mechanisms in this 
sample are discussed later in this chapter. 

 
 

import wx 
import data 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, 
            title="simple tree", size=(400,500))   
        self.tree = wx.TreeCtrl(self)           
        root = self.tree.AddRoot("wx.Object")   
        self.AddTreeNodes(root, data.tree)   

Listing 15.1 Sample code for the tree example

Creating the tree

Adding a root node

Adding nodes from the data set

Figure 15.1 A basic tree control example



462 CHAPTER 15 
Climbing the tree control
        self.Bind(wx.EVT_TREE_ITEM_EXPANDED, 
             self.OnItemExpanded,   
             self.tree)   
        self.Bind(wx.EVT_TREE_ITEM_COLLAPSED, 
             self.OnItemCollapsed, 
             self.tree) 
        self.Bind(wx.EVT_TREE_SEL_CHANGED, 
             self.OnSelChanged, self.tree) 
        self.Bind(wx.EVT_TREE_ITEM_ACTIVATED, 
             self.OnActivated, self.tree) 
        self.tree.Expand(root)   

    def AddTreeNodes(self, parentItem, items):   
        for item in items: 
            if type(item) == str: 
                self.tree.AppendItem(parentItem, item) 
            else: 
                newItem = self.tree.AppendItem(parentItem, item[0]) 
                self.AddTreeNodes(newItem, item[1]) 
                
    def GetItemText(self, item): 
        if item: 
            return self.tree.GetItemText(item) 
        else: 
            return "" 
        
    def OnItemExpanded(self, evt): 
        print "OnItemExpanded: ", self.GetItemText(evt.GetItem()) 
        
    def OnItemCollapsed(self, evt): 
        print "OnItemCollapsed:", self.GetItemText(evt.GetItem()) 

    def OnSelChanged(self, evt): 
        print "OnSelChanged:   ", self.GetItemText(evt.GetItem()) 

    def OnActivated(self, evt): 
        print "OnActivated:    ", self.GetItemText(evt.GetItem()) 

app = wx.PySimpleApp(redirect=True) 
frame = TestFrame() 
frame.Show() 
app.MainLoop() 

The following constructor for wx.TreeCtrl is typical of the wxPython widget 
constructors. 

wx.TreeControl(parent, id=-1, pos=wx.DefaultPosition, 
        size=wx.DefaultSize, style=wx.TR_HAS_BUTTONS, 
        validator=wx.DefaultValidator, name="treeCtrl") 

Binding some interesting events

Expanding the first level

Building the tree nodes



Creating tree controls and adding items 463
The parameters are similar to the generic wx.Window object. The constructor pro-
vides you with an empty tree with no elements. 

15.1.1 How do I add a root?

When you add items to the tree, the first item you add must be the root ele-
ment. The method for adding the tree’s root is AddRoot(), called with the fol-
lowing parameters: 

AddRoot(text, image=-1, selImage=-1, data=None) 

You can add a root only once. If you try to add a second root after one has been 
set, wxPython raises an exception. The text parameter of the method contains 
the display string for the root element. The image parameter is an index into the 
image list representing the image displayed next to the text in the tree. The 
image lists will be discussed in more detail in section 15.5, but for now it’s enough 
to know that they behave similarly to the image list for a list control. The sel-
Image is a similar index that is set into the image list for selected items. The data
parameter is a data object that is associated with that item, mostly for purposes of 
sorting. However, as a wxPython programmer you do not want to use this mech-
anism for specifying the data object, because the C++ data type of the data
parameter is a class called wx.TreeItemData. If you are programming in C++, use 
wx.TreeItemData as a wrapper around your data. If you are programming in 
Python, there’s a shortcut that we’ll discuss in section 15.3. 

 The AddRoot() method returns an ID for the root item. The tree control uses 
its own class to manage items, wx.TreeItemId. For the most part, you don’t need 
to worry about the exact value of this ID. It’s enough to know that each item has a 
unique wx.TreeItemId, and that the values can be tested for equality. The meth-
ods of the tree control class that take indexes to search or identify individual items 
of the tree all take instances of wx.TreeItemId. The wx.TreeItemId is not mapped 
to any simple type—its actual data value is not relevant, since you only use it to 
test for equality. 

15.1.2 How do I add more items to the tree?

Once you have the root in place, you can begin to add elements to the tree. The 
method you’ll use most frequently is AppendItem(parent, text, image=-1, sel-
Image=-1, data=None). The parent parameter is the wx.TreeItemId of the existing 
tree item which will be the parent of the new item. The text is the text string that 
is displayed for the new item. The image and selImage parameters are, as in the 
add root method, indexes into the appropriate image list for the image to be 



464 CHAPTER 15 
Climbing the tree control
displayed with the new item. The data parameter is also used the same way as in 
the add root method. The result of this method is that the new item is placed at 
the  end of the parent item’s list of children. The method returns the wx.Tree-
ItemId of the newly created item. You’ll need to hold on to that ID if you want to 
add children to that item. A sample interaction may look like the following.

rootId = tree.AddRoot("The Root") 
childId = tree.AppendItem(rootId, "A Child") 
grandChildId = tree.AppendItem(childId, "A Grandchild") 

This snippet provides you with a root item, gives the root item a child, and gives 
that child a child node of its own.

 To add the child item at the beginning of the list of children rather than at the 
end, use the method PrependItem(parent, text, image=-1, selImage=-1, data= 
None). With the exception of the placement of the new item, this method behaves 
identically to AppendItem(). The parameters have the same meaning, and it also 
returns the wx.TreeItemId of the new item. 

 If you want to insert an item into an arbitrary spot of your tree, you can use 
one of the two insert methods. The first is InsertItem(parent, previous, text,
image=-1, selImage=-1, data=None). The parent, text, image, selImage, and data
parameters are identical to the append and prepend versions of this method. 
The previous parameter is a wx.TreeItemId corresponding to an item in the child 
list of the parent. The new item is placed in that child after the item passed in the 
previous argument.

 If you want to put a new item before something in the list rather than after, use 
the method InsertItemBefore(parent, before, text, image=-1, selImage=-1,
data=None). As the name suggests, this method places the new item before the 
item passed in the before parameter. However, the before parameter is not a tree 
item ID. Rather, it is the integer index of the item in the child list. (Yes, this is con-
fusing. No, there’s no easy way to get at the index, you have to manage it yourself. 
Yes, this is the legacy of a rough patch in the original C++ code.) In any case, 
assuming you’ve passed in the correct value, this behaves as you would expect. 
The new item is added before the item at the given index, and the method 
returns a wx.TreeItemId for the new item. 

15.1.3 How do I manage items?

To get rid of an item already in the tree, use the Delete(item) method, where the 
item parameter is the wx.TreeItemId of the item to be zapped. Calling this func-
tion causes a tree event to be triggered with the event type EVT_TREE_DELETE_ITEM. 



What styles control the display 465
of the tree control?
Later in this chapter we’ll discuss the details of this event type. To leave the item 
itself, but delete all of its child nodes, call the method DeleteChildren(item)
where the item is again a wx.TreeItemId. This method causes all children of the 
given item to be deleted. Oddly, it does not generate a delete event. To clear the 
tree entirely, use the method DeleteAllItems(). As you might guess, this method 
deletes all the items in the tree. It is supposed to generate a separate delete event 
for each item, however, this does not work on some older MS Windows systems. 

 Once you’ve added an item to the tree, you can recover its display text using 
the method GetItemText(item), where the item is a wx.TreeItemId, and the return
value is the display text. If you want to change the text of an item, use the method 
SetItemText(item, text), where item is again a wx.TreeItemId, and text is the 
new display text. 

 Finally, you can get the total number of items in the tree by using the method 
GetCount(). If you want the number of children under just one specific item, use 
GetChildrenCount(item, recursively=True). The item parameter is the wx.Tree-
ItemId of the parent. If recursively is False then the method returns only the 
number of immediate children of the parent, if it is True, the count is for all chil-
dren no matter what their nested depth. 

15.2 What styles control the display  
of the tree control? 

The display styles for the tree control fall into four basic categories. The first set 
defines whether the tree control has explicit buttons displayed next to the text of 
a parent object as a target for expanding or collapsing the parent node. These are 
displayed in table 15.1.

The next set, displayed in table 15.2, determines where the tree control draws 
connecting lines. 

Table 15.1 Button codes for the tree control

Style Description 

wx.TR_HAS_BUTTONS The tree control has whatever buttons are typical for the platform. For example 
on MS-Windows a small (+) button is used to indicate that the item can be 
expanded and a small (-) button is used to indicate that it can be collapsed. 

wx.TR_NO_BUTTONS The tree control does not have buttons next to parent nodes. 



466 CHAPTER 15 
Climbing the tree control
The third set of styles, displayed in Table 15.3, controls the selection mode of 
the tree.

Table 15.4 displays other styles that affect display properties of the tree. 

Table 15.2 Line codes for the tree control

Style Description 

wx.TR_LINES_AT_ROOT If set, the tree control will draw lines between the multiple root items. Note 
that you can only have multiple root items if wx.TR_HIDE_ROOT is set. 

wx.TR_NO_LINES If set, the tree control will not draw any vertical connecting lines between 
siblings. This item, if set, will supercede wx.TR_LINES_AT_ROOT. 

wx.TR_ROW_LINES The tree control will draw a border between rows. 

Table 15.3 Selection mode styles for the tree control

Style Description 

wx.TR_EXTENDED Multiple disjoint items can be selected (by control-clicking or command-clicking, 
depending on your operating system). May not be implemented on all systems. 

wx.TR_MULTIPLE A range of consecutive items can be set, but only a single range. 

wx.TR_SINGLE Only one tree node can be selected at a time. This is the default mode. 

Table 15.4 Other styles for the tree control 

Style Description 

wx.TR_FULL_ROW_HIGHLIGHT If set, the tree will highlight the entire horizontal width of the row 
being selected. By default, only the section actually containing 
the text is highlighted. On MS Windows systems this option is 
only valid if wx.NO_LINES is also set. 

wx.TR_HAS_VARIABLE_ROW_HEIGHT If set, the rows will be different height depending on their 
individual image and text components. Otherwise, all rows will 
have the same height, determined by the tallest row. 

wx.TR_HIDE_ROOT If set, the root element as determined by AddRoot() will not be 
displayed. Instead, all of the children of that node will be 
displayed as if they were roots. Use this option to give the 
appearance of a tree with multiple roots. 



Sorting elements of a tree control 467
Finally, wx.TR_DEFAULT_STYLE provides you the default tree display based on what-
ever existing styles are closest to the native widget on your current operating sys-
tem (i.e., different button types for Windows and Mac). You can change the styles 
for the widget on the fly during your program using the method SetWindow-
Style(styles), where the styles parameter is the integer bitmask of the new 
styles you want.

 To change the display characteristics of the tree, the tree control has several 
properties that are similar to those we’ve seen in other controls. In all cases, the 
item parameter is a wx.TreeItemId corresponding to the item you want changed. 
You can set the background color of the item with the method SetItemBack-
groundColor(item, col), where col is a wx.Colour or something wxPython can 
convert to a color. You can change the text color with SetItemTextColour(item,
col), with the col again representing a color. You can set the display font of the 
item with SetItemFont(item, font), where the font argument is a wx.Font
instance. If you just want the text to display bold, you can use the method Set-
ItemBold(item, bold=True), where the bold argument is a Boolean which deter-
mines if the item should be displayed in bold. These four methods each have an 
associated getter function. The getter functions are GetItemBackgroundColor 
(item), GetItemTextColour(item), GetItemFont(item), and IsBold(item). In each 
case, the item parameter is a wx.TreeItemId. 

15.3 Sorting elements of a tree control 

The basic mechanism for sorting elements of a tree control is the method Sort-
Children(item). The item parameter is, as you should expect by now, an instance 
of wx.TreeItemId. The method sorts the children of that item from the top of the 
list downward in alphabetical order of their display strings. 

 There’s one quirk to sorting in a tree control. In order for a tree to sort, each 
tree item needs to have data attached, which is true even if you are going to use 
the default sort. In the default case, the attached data is merely None, but for sort-
ing to work, you still need to explicitly set that in the tree control.

 In section 15.1, we mentioned that the methods that allow you to create a tree 
item also allow you to associate the item with an arbitrary data object. We also told 
you not to use that mechanism. The data item is of the type wx.TreeItemData. 
If you were programming in C++, you’d create a subclass of wx.TreeItemData
that wrapped your actual data item. Since you are not programming in C++, 
there’s a predefined set of shortcuts in wxPython that you can use to associate a 
Python object with a tree item. 



468 CHAPTER 15 
Climbing the tree control
 The shortcut setter method is SetItemPyData(item, obj). You pass this method
a wx.TreeItemId and an arbitrary Python object, and wxPython manages the asso-
ciation behind the scenes. When you want the data item back, you call GetItem-
PyData(item), which returns the Python object. 

There is a special wxPython constructor for wx.TreeItemData that takes 
a Python object: wx.TreeItemData(obj). You can then use the Get-
ItemData(item) and SetItemData(item, obj) methods to manage the
Python data. This is the mechanism that the SetItemPyData() method 
uses behind the scenes. This information may be useful to you at some 
point, but for the most part you can get by with the py data methods. 

To use the associated data for sorting your tree, your tree must be a custom sub-
class of wx.TreeCtrl, and you must override the method OnCompareItems(item1,
item2). The two parameters are wx.TreeItemId instances of the two items being 
compared. The return value is -1 if item1 should sort before item2, 1 if item1
should sort after item2 and 0 if the two items are equal. This method is automat-
ically called by the tree control when it sorts to calculate each comparison. You 
can do whatever you want within the OnCompareItems() method. Specifically, 
you can call GetItemPyData() to get the associated data methods for each item, as 
in the following: 

def OnCompareItems(self, item1, item2); 
    data1 = self.GetItemPyData(item1) 
    data2 = self.GetItemPyData(item2) 
    return cmp(data1, data2) 

This snippet sorts the tree based on whatever the Python comparison function 
returns for data1 and data2.

15.4 Controlling the image for each item 

The images for the tree controls are managed with an image list in much the 
same way as images are managed in list controls. For details on creating image 
lists, see chapter 13. Once you’ve created the image list, you assign it to the tree 
control using the method SetImageList(imageList) or AssignImageList(image-
List). The former allows the image list to be shared with other controls, and the 
latter gives ownership of the image list to the tree control. You can later get 
the image list using the method GetImageList(). Figure 15.2 displays a sample 
tree with some images. 

ADVANCED 
NOTE



Controlling the image for each item 469
Listing 15.2 provides the code used for figure 15.2. It uses the art provider object 
to provide common images. 

import wx 
import data 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, 
                title="simple tree with icons", size=(400,500))   
        il = wx.ImageList(16,16)   
        self.fldridx = il.Add(                     
            wx.ArtProvider.GetBitmap(wx.ART_FOLDER,   
                    wx.ART_OTHER, (16,16))) 
        self.fldropenidx = il.Add( 
            wx.ArtProvider.GetBitmap(wx.ART_FILE_OPEN,    
                    wx.ART_OTHER, (16,16))) 
        self.fileidx = il.Add( 
            wx.ArtProvider.GetBitmap(wx.ART_NORMAL_FILE, 
                    wx.ART_OTHER, (16,16)))
        self.tree = wx.TreeCtrl(self)
        self.tree.AssignImageList(il)   
        root = self.tree.AddRoot("wx.Object") 
        self.tree.SetItemImage(root, self.fldridx,   
                               wx.TreeItemIcon_Normal) 

Listing 15.2 A tree control with icons

Figure 15.2  
The sample tree with an image list assigned

Creating an image list

Adding images 
to a list

Attaching a list and tree

Setting root images



470 CHAPTER 15 
Climbing the tree control
        self.tree.SetItemImage(root, self.fldropenidx, 
                               wx.TreeItemIcon_Expanded) 
        

        self.AddTreeNodes(root, data.tree) 
        self.tree.Expand(root) 
        

    def AddTreeNodes(self, parentItem, items): 
        for item in items: 
            if type(item) == str: 
                newItem = self.tree.AppendItem(parentItem, item)   
                self.tree.SetItemImage(newItem, self.fileidx,     
                                       wx.TreeItemIcon_Normal) 
            else: 
                newItem = self.tree.AppendItem(parentItem, item[0]) 
                self.tree.SetItemImage(newItem, self.fldridx,   
                                       wx.TreeItemIcon_Normal) 
                self.tree.SetItemImage(newItem, self.fldropenidx, 
                                       wx.TreeItemIcon_Expanded) 
   
                self.AddTreeNodes(newItem, item[1]) 
                
    def GetItemText(self, item): 
        if item: 
            return self.tree.GetItemText(item) 
        else: 
            return "" 
      

app = wx.PySimpleApp(redirect=True) 
frame = TestFrame() 
frame.Show() 
app.MainLoop() 

As we’ve seen, when you add an item to the list, you have the option of associating 
two different images with the item—one for the unselected state and one for 
when the item is selected. As with list controls, you specify the index of the image 
you want within the image list. If you want to get the image assigned after the 
item is created, you can use the method GetItemImage(item, which=wx.Tree-
ItemIcon_Normal). The item parameter is the wx.TreeItemId of the item. The 
which parameter controls which image you get back. With the default value 
wx.TreeItemIcon_Normal you get the index of the unselected image for the item. 
Other values for the which parameter are wx.TreeItemIcon_Selected which 
returns the image in the selected state, and wx.TreeItemIcon_Expanded, and 
wxTreeItemIcon_SelectedExpanded which return images used when the tree 
item is expanded. Note that the latter two images cannot be set using the add 

Setting data images

Setting node 
images



Navigating the tree programmatically 471
methods—if you want to set them, you have to do it with the method SetItem-
Image(item, image, which=wx.TreeItemIcon_Normal). The item is, again, the 
wx.TreeItemId of the item under discussion, the image parameter is the integer 
index of the new image, and the which parameter takes the same values with the 
same meaning as in the getter method. 

15.5 Navigating the tree programmatically 

In section 15.1 we mentioned that there was no direct way to get a Python list 
of the children of a given item in the tree, let alone the index of a specific 
child. To do that, you need to walk the tree nodes yourself using the methods 
in this section.

 To start walking the tree, get the root using GetRootItem(). This method 
returns the wx.TreeItemId of the root item of the tree. You can then use methods 
such as GetItemText() or GetItemPyData() to retrieve more information about 
the item. 

 Once you have an item, getting its children involves a kind of an iterator
which lets you walk through the list of children one by one. You get the first child 
in the subtree with the method GetFirstChild(item) which returns a two-
element tuple (child, cookie). The item is the wx.TreeItemId of the first child, 
and the second is a special token value. In addition to telling you what the first 
child is, this method initializes an iterator object that allows you to walk through 
the tree. The cookie value is just a token that allows the tree control to keep track 
of multiple iterators on the same tree at the same time without them interfering 
with each other.

 Once you have the cookie from GetFirstChild(), you can get the rest of the 
children by repeatedly calling GetNextChild(item, cookie). The item is the ID of 
the parent tree item, and the cookie is the cookie as returned by GetFirstChild()
or the previous call to GetNextChild(). The GetNextChild() method returns a 
two-element tuple (child, cookie). If there is no next child, you’ve reached the 
end of the child list, and the system returns an invalid child ID. You can test this 
by using the method wx.TreeItemId.IsOk(), or using the Python shortcut of just 
testing the item, since it has a magic __nonzero__ method. The following helper 
function returns a list of the text for each child of a given tree item. 

def getChildren(tree, parent): 
    result = [] 
    item, cookie = tree.GetFirstChild(parent) 
    while item: 
        result.append(tree.GetItemText(item)) 



472 CHAPTER 15 
Climbing the tree control
        item, cookie = tree.getNextChild(parent, cookie) 
    return result 

This method gets the first child of the given parent item, adds its text to the list, 
then loops through the child items until it gets an invalid item, at which point it 
returns the result. The order in which items are displayed is based on the current 
display state of the tree—you will get the items in the exact order of the current 
display from top to bottom. 

 To cut right to the end and get the last child for a given parent, you can use the 
method GetLastChild(item), which returns the wx.TreeItemId of the last item in 
the list. Since this method is not used to drive an iterator through the entire child 
list, it does not need the cookie mechanism. If you have the child and you want 
the parent, the method GetItemParent(item) will return the tree ID of the parent 
of the given item. 

 You can walk back and forth between items at the same level using the meth-
ods GetNextSibling(item), and GetPrevSibling(item). These methods return 
the tree ID of the appropriate item. Since these methods are also not used to drive
iterators, they do not need a cookie. If there is no next or previous item because 
you have reached the end of the list, the method returns an invalid item (i.e., 
item.IsOk() == False. 

 To determine if an item has any children, use the method ItemHasChil-
dren(item) which returns a Boolean True or False. You can set whether an item 
has children using the method SetItemHasChildren(item, hasChildren=True). If 
an item has its children property set to True, it will display onscreen as though it 
had children, even if there are no actual children. This means that the item will 
have the appropriate button next to it, allowing it to be collapsed or expanded 
even if there is nothing to actually show by expanding the item. This is used to 
implement a virtual tree control where not all items logically in the tree have 
to physically be there, saving runtime resources. This technique is demonstrated 
in section 15.7.

15.6 Managing the tree selection 

A tree control allows you to programmatically manage the set of selected items in 
the tree. The basic method for doing this is the method SelectItem(item,
select=True). In a single selection tree control, this method takes a wx.Tree-
ItemId and makes that item the current selection, and the previously selected 
item is automatically deselected. If the select parameter is False, then this 
method can be used to deselect the currently selected item. In a multiple or 



Controlling which items are visible 473
extended tree control, then the SelectItem() method changes the state of the 
item without changing the selected status of any other item in the tree. In a mul-
tiple or extended selection tree, you can also use the method ToggleItemSelec-
tion(item), which just flips the select state of the item passed to the method. 

 There are three shortcut methods for deselecting items. The plain method 
Unselect() deselects the currently selected item of a tree in single select mode. In 
a multiple select tree, use the method UnselectAll(). If you only want to deselect 
one item within a multiple select tree, use the method UnselectItem(item).

 You can query the select state of an item with the method IsSelected(item), 
which returns Boolean True or False. In a single selection tree, you can get the 
wx.TreeItemId of the current selection with the method GetSelection(). If it’s a 
multiple selection list, use the method GetSelections(), that returns a Python list 
of the wx.TreeItemId of all selected items. 

 When the selection changes in a tree control, there are two events that are trig-
gered that can be captured. The first event, wx.EVT_TREE_SEL_CHANGING, happens 
before the selection is actually changed. If you handle this event, you can use the 
event Veto() method to prevent the selection from changing. After the selection 
has changed, the event wx.EVT_TREE_SEL_CHANGED is triggered. The event class for 
these events is wx.TreeEvent, discussed more completely in section 15.8.

15.7 Controlling which items are visible 

There are two mechanisms in the tree control that allow you to programmatically 
control various aspects of which items are visible on the screen display. You can 
specify whether a given tree item is expanded or collapsed with the methods Col-
lapse(item) and Expand(item). These methods change the display of the tree 
control, and have no effect if called on an item that does not have children. There 
is a convenience function, CollapseAndReset(item), that collapses the item and 
deletes all of its children from the tree. In addition, the method Toggle(item)
changes the state of the item from expanded to collapsed or vice versa. You can 
query the current expanding state of the item with the method IsExpanded(item). 

 Expanding or collapsing a tree item triggers two events in much the same way 
that changing the selection does. Before the expand or collapse, the event 
wx.EVT_TREE_ITEM_COLLAPSING or wx.EVT_TREE_ITEM_EXPANDING is triggered. In 
your handler method, you can block the expansion or collapse with the event 
Veto() method. After the expansion or collapse takes place, the event wx.EVT_ 
TREE_ITEM_COLLAPSED or wx.EVT_TREE_ITEM_EXPANDED is triggered, depending, of 



474 CHAPTER 15 
Climbing the tree control
course, on whether the event was an expansion or collapse of the item. All four 
of these events are types of the wx.TreeEvent class. 

A virtual tree
One interesting use of the expanding and collapsing items is to create a virtual 
tree where new items are only added when a parent is expanded. Listing 15.3 dis-
plays a sample tree with new items added. 

import wx 
import data 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="virtual tree with icons", 

size=(400,500)) 
        il = wx.ImageList(16,16) 
        self.fldridx = il.Add( 
            wx.ArtProvider.GetBitmap(wx.ART_FOLDER, wx.ART_OTHER, (16,16)))
        self.fldropenidx = il.Add( 
            wx.ArtProvider.GetBitmap(wx.ART_FILE_OPEN,   wx.ART_OTHER,  
                  (16,16))) 
        self.fileidx = il.Add( 
            wx.ArtProvider.GetBitmap(wx.ART_NORMAL_FILE, wx.ART_OTHER, 
                  (16,16))) 
        self.tree = wx.TreeCtrl(self) 
        self.tree.AssignImageList(il) 
        root = self.tree.AddRoot("wx.Object") 
        self.tree.SetItemImage(root, self.fldridx, 
                               wx.TreeItemIcon_Normal) 
        self.tree.SetItemImage(root, self.fldropenidx, 
                               wx.TreeItemIcon_Expanded) 

        self.tree.SetItemPyData(root, data.tree)   
        self.tree.SetItemHasChildren(root, True) 
                                    
        self.Bind(wx.EVT_TREE_ITEM_EXPANDED, self.OnItemExpanded,   
                  self.tree) 
        self.Bind(wx.EVT_TREE_ITEM_COLLAPSED, self.OnItemCollapsed, 
                  self.tree) 
        self.Bind(wx.EVT_TREE_SEL_CHANGED, self.OnSelChanged, self.tree) 
        self.Bind(wx.EVT_TREE_ITEM_ACTIVATED, self.OnActivated, self.tree) 

        self.Bind(wx.EVT_TREE_ITEM_EXPANDING, 
                  self.OnItemExpanding, self.tree)
        self.tree.Expand(root) 

    def AddTreeNodes(self, parentItem):   
        items = self.tree.GetItemPyData(parentItem) 

Listing 15.3 A tree where new items are added dynamically on expansion

Creating a root

Binding events

Adding nodes to a parent



Controlling which items are visible 475
        for item in items: 
            if type(item) == str: 
                # a leaf node 
                newItem = self.tree.AppendItem(parentItem, item) 
                self.tree.SetItemImage(newItem, self.fileidx, 
                                       wx.TreeItemIcon_Normal) 
            else: 
                # this item has children 
                newItem = self.tree.AppendItem(parentItem, item[0]) 
                self.tree.SetItemImage(newItem, self.fldridx, 
                                       wx.TreeItemIcon_Normal) 
                self.tree.SetItemImage(newItem, self.fldropenidx, 
                                       wx.TreeItemIcon_Expanded) 
                self.tree.SetItemPyData(newItem, item[1]) 
                self.tree.SetItemHasChildren(newItem, True) 

    def GetItemText(self, item): 
        if item: 
            return self.tree.GetItemText(item) 
        else: 
            return "" 
        
    def OnItemExpanded(self, evt): 
        print "OnItemExpanded: ", self.GetItemText(evt.GetItem()) 

    def OnItemExpanding(self, evt):   
        print "OnItemExpanding:", self.GetItemText(evt.GetItem()) 
        self.AddTreeNodes(evt.GetItem()) 
        
    def OnItemCollapsed(self, evt): 
        print "OnItemCollapsed:", self.GetItemText(evt.GetItem())  
        self.tree.DeleteChildren(evt.GetItem())   

    def OnSelChanged(self, evt): 
        print "OnSelChanged:   ", self.GetItemText(evt.GetItem()) 

    def OnActivated(self, evt): 
        print "OnActivated:    ", self.GetItemText(evt.GetItem()) 

app = wx.PySimpleApp(redirect=True) 
frame = TestFrame() 
frame.Show() 
app.MainLoop() 

This mechanism could be expanded to read the data from any external source for 
viewing. We’ll mention the possibility of the data being in a database, but this 
mechanism could also be used to build a file tree, preventing you from having to 
traverse areas of the file structure that users aren’t interested in.

Creating nodes when expanding

Removing nodes 
when collapsing



476 CHAPTER 15 
Climbing the tree control
Controlling visibility
There are a number of methods that allow you to manage which items are visible 
within the display. An object may be not visible either because it has been scrolled 
off the visible part of its containing frame or because it is part of a child list that is 
collapsed. You can determine whether an item is visible on the screen with the 
IsVisible(item) method which returns True if the item is visible, and False if it is 
not. You can force an item to become visible by using the method Ensure-
Visible(item). This method forces the item to become visible by expanding the 
item’s parent (and its parent, and so on) if needed, and then scrolling the tree to 
put the item in the visible part of the control. If you only need to do the scrolling 
portion, use the method ScrollTo(item) to manage the task.

 Iterate through the visible items in the tree starting with the method Get-
FirstVisibleItem(). This method returns the wx.TreeItemId of the topmost item 
in the visible portion of the display. To iterate through the display, use the 
method GetNextVisible(item) passing it the previously used item returned from 
GetFirstVisibleItem() or GetNextVisible(). This method returns the wx.Tree-
ItemId of the item following the one passed to the method (meaning the next 
lowest row in the display) regardless of nesting or depth. To move upward in the 
list, use the method GetPreviousVisible(item). If the item is not visible, then an 
invalid item is returned. 

 There are a few other methods that affect the visible display of items in the 
tree. The tree control has a property that sets the number of pixels that are 
indented by the control at each new level. Get the current value of that property 
with GetIndent(), and set it with SetIndent(indent), where indent is the integer 
value of the number of pixels to indent new levels.

 Get information about the tree item at a specific point using the method Hit-
Test(point), where point is a wx.Point of a location in the tree control. The 
return value is a tuple (item, flags) where item is the wx.TreeItemId of the item 
at that point, or None. If there is no item at that point, then an invalid item will be 
returned which can be tested by calling its IsOk() method. The flags portion of 
the result is a bitmask with several possible values giving extra information about 
the location being tested. Table 15.5 contains a complete list of flags.

 There are a couple of methods that allow you to deal with the actual bound-
aries of the items on the screen. The method GetBoundingRect(item, text-
Only=False) returns a wx.Rect instance corresponding to the bounding rectangle 
of the text item on the screen. The item parameter is the wx.TreeItemId of the 
item in question. If the textOnly parameter is True then the rectangle only 
includes the area covered by the item’s display text. If the parameter is False, 



Making a tree control user editable 477
then the rectangle also includes the image displayed with the rectangle. In nei-
ther case does the rectangle include the blank area from the edge of the tree con-
trol to the beginning of a nested display item. If the item is not currently visible, 
then the method returns None. 

15.8 Making a tree control user editable 

The tree control can be set up to allow the user to edit the text display of the var-
ious tree items. This allows you to make the control interactive, so the user can 
make changes to the data on the fly. This may be useful in a DOM or XML editor, 
allowing the user to change the document directly from the structured view.

 This functionality is enabled by creating the tree control with the style flag 
wx.TR_EDIT_LABELS. With this flag set, the tree control behaves similarly to the 
editable list control. Selecting a tree item gives the user a text control to edit 

Table 15.5 Valid hit test flags for the tree control

Hit Test Flag Description 

wx.TREE_HITTEST_ABOVE The point is above the tree’s client area and not part of  
any item.

wx.TREE_HITTEST_BELOW The point is below the tree’s client area and is not part of  
any item. 

wx.TREE_HITTEST_NOWHERE The point is within the tree’s client area, but is still not part 
of any item. 

wx.TREE_HITTEST_ONITEMBUTTON The point is on the expand/contract icon button which is 
part of the item. 

wx.TREE_HITTEST_ONITEMICON The point is on the image portion of the item. 

wx.TREE_HITTEST_ONITEMINDENT The point is in the indent area to the left of the display text 
of the item. 

wx.TREE_HITTEST_ONITEMLABEL The point is in the display text of the item. 

wx.TREE_HITTEST_ONITEMRIGHT The point is to the right of the display text of the item. 

wx.TREE_HITTEST_ONITEMSTATEICON The point is in the state icon for the item. 

wx.TREE_HITTEST_TOLEFT The point is to the left of the tree’s client area and is not 
part of any item. 

wx.TREE_HITTEST_TORIGHT The point is to the right of the tree’s client area and is not 
part of any item. 



478 CHAPTER 15 
Climbing the tree control
the text. Pressing escape cancels the edit without changing the item. Leaving the 
edit session in any other way (such as pressing Enter or clicking outside the text 
control) okays the edit and changes the tree item. 

 You can programmatically start an edit on a particular tree item with the 
method EditLabel(item). The item parameter is the wx.TreeItemId of the item 
you wish to edit, which triggers the edit process in exactly the same way as if the 
user had selected the item. To stop the edit from your program, use the method 
EndEditLabel(cancelEdit). As of this writing, EndEditLabel() only works under 
Windows systems. In this case, you don’t need to pass the item ID—there can 
only be one active edit at a time, so that’s the one that will be ended. The can-
celEdit parameter is a Boolean. If it is True, the edit is canceled, and the tree 
item is not changed, if it is False, the edit is accepted normally. If for some reason 
you need access to the actual text edit control being used, call the method Get-
EditControl() which returns the wx.TextCtrl instance being used for the current 
edit, or None if there is no current edit. Currently, this method only works on Win-
dows systems. 

 When an edit session begins, either by user selection or by a call to Edit-
Label(), a wx.TreeEvent with event type wx.EVT_TREE_BEGIN_LABEL_EDIT is trig-
gered. If this event is vetoed with the event Veto() method, the edit does not 
actually start. When the session ends, either by a user click or a call to EndEdit-
Label(), an event of type wx.EVT_TREE_END_LABEL_EDIT is triggered. This event can 
also be vetoed, in which case the edit is canceled, and the tree item is not changed.

15.9 Responding to other user events  
from a tree control 

In this section, we’ll discuss the properties of the wx.TreeEvent class. Table 15.6 
lists those properties. 

Table 15.6 Properties of wx.TreeEvent 

Property Description 

GetKeyCode() Returns the integer key code of the key pressed. Only valid for the event type 
wx.EVT_TREE_KEY_DOWN. This property will not tell you if any modifier keys were 
also pressed. 

GetItem() Returns the wx.TreeItemId of the item which is the subject of the event. 

continued on next page



Responding to other user events 479
from a tree control
Table 15.7 lists a few event types for the wx.TreeEvent that didn’t fit into any of 
the previous sections, but that may be useful at some point. 

That’s most of what you need to know about the tree control proper. We’ll close 
off the chapter with a useful variant of the control that you can also use. 

GetKeyEvent() Only valid for wx.EVT_TREE_KEY_DOWN events. Returns the underlying 
wx.KeyEvent being wrapped by the wx.TreeEvent. This key event will be  
able to tell you if modifier keys, such as shift or command, were pressed during  
the event. 

GetLabel() Returns the current text label of the item. Valid for the 
wx.EVT_TREE_BEGIN_LABEL_EDIT and wx.EVT_TREE_END_LABEL_EDIT. 

GetPoint() Returns a wx.Point of the mouse position for the event. Only valid for the  
drag events. 

IsEditCancelled() Only valid for a wx.EVT_TREE_END_LABEL_EDIT action. Returns a Boolean—
True if the current edit ended with a user cancel, and False otherwise. 

SetToolTip(tooltip) Only valid for the wx.EVT_TREE_ITEM_GETTOOLTIP event. Allows you to set the 
tooltip for the item. This property only works on Windows systems. 

Table 15.7 Other event types for the tree control 

Event type Description 

wx.EVT_TREE_BEGIN_DRAG This event is triggered when the user starts to drag a tree item with the 
left mouse button pressed. In order for the drag to actually do anything, 
the event handler must explictly call the event method Allow(). 

wx.EVT_TREE_BEGIN_RDRAG This event is triggered when the user starts to drag a tree item with 
the right mouse button pressed (on Macintosh systems, this means a 
control-click). In order for the drag to actually do anything, the event 
handler must explictly call the event method Allow(). 

wx.EVT_TREE_ITEM_ACTIVATED Triggered when an item is activated by a user double-click. 

wx.EVT_TREE_ITEM_GETTOOLTIP This event is sent when the mouse hovers over an item in the tree, 
and can be used to set a tooltip that is specific to that item. Simply 
set the label parameter in the event object and the system will take 
care of the rest. 

wx.EVT_TREE_KEY_DOWN This event is sent when a key is pressed while the tree control has 
the focus.

Table 15.6 Properties of wx.TreeEvent (continued)

Property Description 



480 CHAPTER 15 
Climbing the tree control
15.10 Using a tree list control 

In addition to the wx.TreeCtrl, wxPython provides the wx.gizmos.TreeListCtrl
which is a combination of a tree control and a list control in report mode. In addi-
tion to the features of the wx.TreeCtrl discussed in this chapter, the TreeListCtrl
is able to display additional columns of data for each row. Figure 15.3 displays a 
sample tree list control. 

From the user’s perspective the control looks like a list control in report mode 
with a tree control embedded in one of the columns, but from the programmer’s 
perspective it is very similar to the tree control with some additional methods, 
parameters, and events borrowed from the list control for dealing with the extra 
columns. Listing 15.4 displays the code for a tree list control. 

import wx 
import wx.gizmos 
import data 

class TestFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="TreeListCtrl", size=(400,500))

Listing 15.4 Using a tree list control

Figure 15.3  
A sample tree list control



Using a tree list control 481
        il = wx.ImageList(16,16) 
        self.fldridx = il.Add( 
            wx.ArtProvider.GetBitmap(wx.ART_FOLDER, wx.ART_OTHER, (16,16))) 
        self.fldropenidx = il.Add( 
            wx.ArtProvider.GetBitmap(wx.ART_FILE_OPEN,   wx.ART_OTHER, 

(16,16))) 
        self.fileidx = il.Add( 
            wx.ArtProvider.GetBitmap(wx.ART_NORMAL_FILE, wx.ART_OTHER, 

(16,16))) 
         
        self.tree = wx.gizmos.TreeListCtrl(self, style =   
            wx.TR_DEFAULT_STYLE | wx.TR_FULL_ROW_HIGHLIGHT) 
        self.tree.AssignImageList(il) 
        self.tree.AddColumn("Class Name")   
        self.tree.AddColumn("Description") 
        self.tree.SetMainColumn(0) # the one with the tree in it... 
        self.tree.SetColumnWidth(0, 200) 
        self.tree.SetColumnWidth(1, 200) 

        root = self.tree.AddRoot("wx.Object")         
        self.tree.SetItemText(root, "A description of wx.Object", 1)   
        self.tree.SetItemImage(root, self.fldridx, 
                               wx.TreeItemIcon_Normal) 
        self.tree.SetItemImage(root, self.fldropenidx, 
                               wx.TreeItemIcon_Expanded)         
        self.AddTreeNodes(root, data.tree) 
        self.Bind(wx.EVT_TREE_ITEM_EXPANDED, self.OnItemExpanded, self.tree)
        self.Bind(wx.EVT_TREE_ITEM_COLLAPSED, self.OnItemCollapsed, 
                  self.tree) 
        self.Bind(wx.EVT_TREE_SEL_CHANGED, self.OnSelChanged, self.tree) 
        self.Bind(wx.EVT_TREE_ITEM_ACTIVATED, self.OnActivated, self.tree) 
        self.tree.Expand(root) 
        
    def AddTreeNodes(self, parentItem, items): 
        for item in items: 
            if type(item) == str: 
                newItem = self.tree.AppendItem(parentItem, item) 
                self.tree.SetItemText(newItem,                          
                                       "A description of %s" % item, 1)
                self.tree.SetItemImage(newItem, self.fileidx, 
                                       wx.TreeItemIcon_Normal) 
            else: 
                newItem = self.tree.AppendItem(parentItem, item[0]) 
                self.tree.SetItemText(newItem, "A description of %s" %  
                         item[0], 1) 
                self.tree.SetItemImage(newItem, self.fldridx, 
                                       wx.TreeItemIcon_Normal) 
                self.tree.SetItemImage(newItem, self.fldropenidx, 
                                       wx.TreeItemIcon_Expanded) 
   
                self.AddTreeNodes(newItem, item[1]) 

Creating  
the control

Creating columns

Adding text to 
another column

Adding text 
to another 

column



482 CHAPTER 15 
Climbing the tree control
    def GetItemText(self, item): 
        if item: 
            return self.tree.GetItemText(item) 
        else: 
            return "" 
        
    def OnItemExpanded(self, evt): 
        print "OnItemExpanded: ", self.GetItemText(evt.GetItem()) 
        
    def OnItemCollapsed(self, evt): 
        print "OnItemCollapsed:", self.GetItemText(evt.GetItem()) 

    def OnSelChanged(self, evt): 
        print "OnSelChanged:   ", self.GetItemText(evt.GetItem()) 

    def OnActivated(self, evt): 
        print "OnActivated:    ", self.GetItemText(evt.GetItem()) 

app = wx.PySimpleApp(redirect=True) 
frame = TestFrame() 
frame.Show() 
app.MainLoop() 

Because of the similarities of the list control for the extra methods, we don’t need 
to list all the methods here. The API for adding and modifying columns is essen-
tially identical to the one in the list control. 

15.11 Summary 

■ The tree control provides you with a compact display of nested, hierarchical 
data, such as a file tree, or an XML document. Tree controls are instances of 
the class wx.TreeCtrl. Occasionally, you’ll want to subclass wx.TreeCtrl, 
particularly if you need to do custom sorting. 

■ To add items to the tree, start with the method AddRoot(text, image=-1,
selImage=-1, data=None). The return value of this method is a wx.Tree-
ItemId representing the root item of the tree. The tree control uses its 
wx.TreeItemId as its own identifier class, rather than using integer IDs, as 
most of the other widgets do. Once you have the root item, you can start 
adding child items with the method AppendItem(parent, text, image=-1,
selImage=-1, data=None), passing it the ID of the parent item. The new item 
is added to the end of the child list of the parent item. The method returns 
the wx.TreeItemId of the new item. There are related items for prepending 



Summary 483
the item to the front of the list, or inserting it at an arbitrary location within 
the list. The method Delete(item) removes an item from the tree, and 
DeleteChildren(item) removes all the children of the given item. 

■ The tree control has several styles which change the visual display of the 
tree. One set controls the type of flip button next to the item for expanding 
or collapsing the tree item. Another set controls whether lines are drawn 
between items in the list. A third set controls whether the tree has single or 
multiple selection. You can also use styles to simulate a tree with multiple 
roots by hiding the actual root of the tree. 

■ By default, a tree can be sorted in alphabetical order of the display text. 
However, in order for this to work, you must attach data to each item. The 
easiest way to do this is with the method SetItemPyData(item, obj) which 
associates an arbitrary Python object with the item. You can recover the 
data with GetItemPyData(item). If you want to use the data to write a cus-
tom sorting function, you must extend the wx.TreeCtrl class and override 
the method OnCompareItems(item1, item2) where the two arguments are 
the IDs of the items to be compared. 

■ The tree control manages images with an image list similar to the way that 
list controls manage it. You use SetImageList(imageList) or AssignImage-
List(imageList) to attach an image list to the tree control. Then, when new 
items are added to the list, you can associate them with specific indexes 
within the image list. 

■ There is no specific method that allows you to recover the child list of a par-
ent item. Instead, you need to iterate over the child list, starting with the 
method GetFirstChild(item). This returns the item ID of the first child 
along with a cookie that you use to pass to GetNextChild(item, cookie) and 
which allows multiple iterations of the child list to be active at the same time. 
You can also go straight to the end of the list with GetLastChild(item). 

■ You can manage the selection of the tree with the method Select-
Item(item, select=True). In a multiple selection tree, you can also use 
ToggleItemSelection(item) to change the state of the given item. You can 
query the state of an item with IsSelected(item). You can expand or col-
lapse an item with Expand(item) or Collapse(item), or toggle its current 
state with Toggle(item). 

■ The style wx.TR_EDIT_LABELS makes the tree control user editable. In an 
editable list, the user can select an item, and type in a new display label. 
Pressing escape cancels the edit without changing the item. You can also 



484 CHAPTER 15 
Climbing the tree control
veto the edit by trapping the wx.EVT_TREE_END_LABEL_EDIT event type. Veto-
ing the event forces a cancel without changing the item. The wx.TreeEvent
class provides properties that allow access to the display text of the item 
being manipulated, as well as other properties of the event. 



Incorporating HTML 
into your application
This chapter covers
■ Displaying HTML in a wxPython window
■ Manipulating and printing HTML windows
■ Using the HTML parser
■ Supporting new tags and other file formats
■ Using widgets in HTML
485



486 CHAPTER 16 
Incorporating HTML into your application
Originally intended as a simple semantic markup for a hypertext system used by 
physicists, HTML has since become more complex and widespread. Over time, 
HTML’s document markup has proven useful outside of a web browser, and is now 
often used as a commonly understood minilanguage for general text markup (as 
in a text control), or to manage a series of hyperlinked pages (as in a help system). 
In wxPython, there are a number of features dedicated to managing your HTML
needs within your application. You can display simple HTML in a window, follow 
hyperlinks, create your own HTML help pages, and even embed a more fully fea-
tured browser if you need more complexity. 

16.1 Displaying HTML

The most important thing you can do with HTML in wxPython is display it in a 
window. Over the next two sections we’ll discuss the HTML Window object and 
show how you can use it on your own local text or on a remote URL. 

16.1.1 How can I display HTML in a wxPython window? 

HTML within wxPython is a useful mechanism for 
quickly describing a text layout involving styled text or 
a simple grid, as we discussed in chapter 6. The wxPy-
thon wx.html.HtmlWindow class is used for this pur-
pose. Its goal is to display HTML, making it a fancy 
static text control with hypertext links. Figure 16.1 dis-
plays a modest example. 

 Listing 16.1 displays the code used to create fig-
ure 16.1.

import wx 
import wx.html 

class MyHtmlFrame(wx.Frame): 
    def __init__(self, parent, title): 
        wx.Frame.__init__(self, parent, -1, title) 
        html = wx.html.HtmlWindow(self) 
        if "gtk2" in wx.PlatformInfo: 
            html.SetStandardFonts() 

        html.SetPage( 
            "Here is some <b>formatted</b> <i><u>text</u></i> " 
            "loaded from a <font color=\"red\">string</font>.") 

Listing 16.1 Displaying the simple HtmlWindow

Figure 16.1 A very simple 
HtmlWindow



Displaying HTML 487
app = wx.PySimpleApp() 
frm = MyHtmlFrame(None, "Simple HTML") 
frm.Show() 
app.MainLoop() 

As you can see, the wx.html.HtmlWindow is declared and used the same way as every 
other wxPython widget, however, you must import the wx.html module, as wx. 
html.HtmlWindow is declared in a submodule of the wx package along with several 
HTML helper classes. The constructor is nearly identical to wx.ScrolledWindow. 

wx.html.HtmlWindow(parent, id=-1, pos=wx.DefaultPosition,   
        size=wx.DefaultSize, style=wx.html.HW_SCROLLBAR_AUTO, 
        name="htmlWindow") 

All of these parameters should look familiar by now. The most important differ-
ence is that the default style is wx.html.HW_SCROLLBAR_AUTO, which tells the HTML
window to automatically add scrollbars as needed. The opposite style—never dis-
play scrollbars—uses the style flag wx.html.HW_SCROLLBAR_NEVER. One more 
HTML window style to use is wx.HW_NO_SELECTION, which prevents the user from 
making a text selection in the window.

 When writing the HTML for display in the HTML window, remember to keep it 
simple. The widget is designed for simple styled text display, not for use as a full 
multimedia hypertext system. Most basic text tags are supported, but more 
advanced features like cascading style sheets and JavaScript are not. Highly com-
plex tables and image setups may work, but you’re setting yourself up for a fall. 
Table 16.1 contains the officially supported HTML tags. In general, tags and 
attributes behave as they would in a web browser, however, this is not a full-
fledged browser, and there are likely to be cases that behave oddly. So that there is 
no confusion, table 16.1 is not in perfect HTML syntax—it’s just the tag name fol-
lowed by the list of supported attributes for that tag, if any. When using the HTML
window you’ll need to use proper HTML syntax. 

Table 16.1 Valid HTML tags for the HTML window widget 

Category Valid tags

Document Structure 
Tags

<a href name target>  
<body alignment bgcolor link text> 
<meta content http-equiv>  
<title> 

continued on next page



488 CHAPTER 16 
Incorporating HTML into your application
The HTML window uses wx.Image to load and display images, so it can support all 
the image file formats that wx.Image does. 

16.1.2 How can I display HTML from a file or URL? 
Once you have an HTML window created, the next challenge is to display the 
HTML text in the window. The following four methods are used to get HTML text 
into the window. 

■ SetPage(source)

■ AppendToPage(source)

■ LoadFile(filename)

■ LoadPage(location)

The most direct is the method SetPage(source), where the source parameter is a 
string containing the HTML source that you want displayed in the window. 

 Once you have text in the page, you can append HTML to the end of text that 
is currently in the window with the method AppendToPage(source). For both the 
SetPage() and AppendToPage() methods, the code assumes that the source is 

Text Structure Tags <br> 
<div align> 
<hr align noshade size width> 
<p> 

Text Display Tags <address> 
<b> <big> <blockquote>  
<center> <cite> <code>  
<em>  
<font color face size>  
<h1> <h2> <h3> <h4> <h5> <h6>  
<i> <kbd> <pre>  
<samp> <small> <strike> <string> 
<tt>  
<u> 

List Tags <dd> <dl> <dt> <li> <ol> <ul> 

Image and Map Tags <area coords href shape> <img align height src width usemap> <map name> 

Table Tags <table align bgcolor border cellpadding cellspacing valign width>  
<td align bgcolor colspan rowspan valign width nowrap>  
<th align bgcolor colspan valign width rowspan> <tr align bgcolor valign> 

Table 16.1 Valid HTML tags for the HTML window widget (continued)

Category Valid tags



Displaying HTML 489
HTML, meaning that if you pass it plain text, the spacing is ignored in keeping 
with the HTML standard. 

 If you want your window to behave more like a browser by actually browsing 
external resources, you have two options. The method LoadFile(filename) reads 
the contents of a local file and displays them in the window. In this case, the win-
dow takes advantage of the MIME type of the file to load an image file or an 
HTML file. If it can’t decide which type the file is, it loads the file as plain text. If 
the document that is loaded contains relative links to images or other documents, 
the base location used to resolve those links is the location of the original file.

 Of course, a real browser isn’t limited to mere local files. You can load a remote 
URL with the method LoadPage(location), where the location is typically a URL, 
but could also be a pathname to a local file. The MIME type of the URL is used to 
determine how the page is loaded. Later in this chapter, we’ll describe how to add 
support for new file types.

 Figure 16.2 displays a page loaded into an HTML window. 

Listing 16.2 displays the code used to display figure 16.2. 

import wx 
import wx.html 

Listing 16.2 Loading the HTML window content from a web page

Figure 16.2 An HTML window loaded from a remote URL



490 CHAPTER 16 
Incorporating HTML into your application
class MyHtmlFrame(wx.Frame): 
    def __init__(self, parent, title): 
        wx.Frame.__init__(self, parent, -1, title, size=(600,400)) 
        html = wx.html.HtmlWindow(self) 
        if "gtk2" in wx.PlatformInfo: 
            html.SetStandardFonts() 

        html.LoadPage(
            "http://wxwidgets.org/manuals/2.5.4/wx_wxbutton.html")

app = wx.PySimpleApp() 
frm = MyHtmlFrame(None, "Simple HTML Browser") 
frm.Show() 
app.MainLoop() 

The key point in listing 16.2 is the LoadPage() method. A more full-featured win-
dow would probably display the URL in a text box, and change the window con-
tents when the user enters a new URL.

16.2 Manipulating the HTML window

Once you have an HTML window, you can manage it in various ways. You can trig-
ger actions based on user input, manipulate the contents of the window, automat-
ically bind the containing frame to display information about the window, and 
print the page. In the following sections, we’ll describe how to accomplish each 
of these.

16.2.1 How can I respond to a user click on an active link? 

The use of a wx.html.HtmlWindow is not limited to display. You can also respond to 
user input. In this case, you do not need to define your own event handlers, as the 
C++ code comes with a set of predefined handlers that you can override in your 
own subclass of wx.html.HtmlWindow. This is the sort of thing you’d do to make 
your HTML window behave like an actual browser, including following hyper-
links, and displaying tooltips when the user hovers over a link. 

 Table 16.2 describes the defined handlers. The wx.html.HtmlWindow class 
does not define these events using the normal event system, so you must handle 
them with these overloaded member functions, rather than binding them as 
event types.

 Again, if you want an HTML window that responds to user input, you must cre-
ate your own subclass and override these methods.



Manipulating the HTML window 491
16.2.2 How can I change an HTML window programmatically? 

If you are displaying an HTML page, there’s a good chance that your frame is 
behaving like a browser in one way or another. Even if it’s not actually browsing 
the web, it could be browsing help files, or other kinds of linked data. If your user 
is browsing, the text being changed in your display also needs to change in 
response to user information.

 There are a couple of ways to access and change information in the HTML win-
dow while it’s running. First, you can get the URL of the currently opened page 
with the method GetOpenedPage(). This method only works if the current page was 
loaded using the LoadPage() method. If so, the return value is the URL of the cur-
rent location (as a string). If not, or if there is no currently open page, the method 

Table 16.2 Event handlers of wx.html.HtmlWindow

Method Description 

OnCellClicked 
(cell, x, y, event) 

Called when the user clicks inside the HTML document. The cell argument is a 
wx.html.HtmlCell object representing a portion of the displayed document, 
usually something like a run of same-styled text, a table cell, or an image. The 
wx.html.HtmlCell class is created by the HTML parser, and will be discussed 
later in the chapter. The x and y coordinates are the exact pixel location of the 
mouse click, and the event is the relevant mouse click event. The default version 
of this method simply delegates to OnLinkClicked() if the cell contains a link, 
otherwise it does nothing. 

OnCellMouseHover 
(cell, x, y) 

Called when the user rolls the mouse over an HTML cell, where a cell has the 
same definition as above. The arguments are as in OnCellClicked(). 

OnLinkClicked(link) Called when the user clicks on a hyperlink. The link argument is of the parser-
created class wx.html.HtmlLinkInfo, and contains the information needed 
to load the linked resource. The default version of the method calls LoadPage on 
the URL in the link. A common use case for overriding this method is to use an 
HtmlWindow to make a fancy about box for an application. In that case you might 
change the behavior so the user clicks homepage to launch’s the system’s default 
browser using Python’s webbrowser module. 

OnOpeningURL 
(type, url) 

Called when the user requests a URL to open, whether it is a page or an image 
that is part of a page. The type argument is wx.html.HTML_URL_PAGE, 
wx.html.HTML_URL_IMAGE, or wx.html.HTML_URL_OTHER. This method 
returns one of the following—wx.html.HTML_OPEN to allow the resource to 
load, wx.html.HTML_BLOCK to prevent the resource from loading, or a string 
that will be used as a url redirect, and this method is then called again on the 
redirected location. The default version of this method always returns 
wx.html.HTML_OPEN. 

OnSetTitle(title) Called when the HTML source has a <title> tag. Generally used to display that 
title elsewhere in the application. 



492 CHAPTER 16 
Incorporating HTML into your application
returns an empty string. There’s a related method, GetOpenedAnchor(), that returns
the anchor within the currently opened page. If the page was not opened with 
LoadPage(), you get an empty string. 

 To get the HTML title of the current page, use the method GetOpenedPage-
Title(), returning whatever value is contained in the current page’s <title> tag. 
If the current page doesn’t have a <title> tag, you get an empty string. 

 There are a few methods for changing the text selection within the window. 
The method SelectAll() changes the text selection to the entire body text of the 
opened page. You can make a more specific selection with SelectLine(pos) or 
SelectWord(pos). In both cases, the pos argument is the wx.Point of the mouse 
position, and selects either the entire line or just the word at that point. To extract 
the current selection as plain text you can use the SelectionToText() method, 
while the method ToText() returns the entire document as plain text. 

 The wx.html.HtmlWindow maintains a history list of the source pages loaded 
into it. Using the methods listed in table 16.3, that history list can be navigated as 
in a typical browser. 

To change the fonts being used, use the method SetFonts(normal_face, fixed_ 
face, sizes=None). The normal_face argument is the string name of the font you 
want to use for the proportional font in the window display. If the normal_face is 
an empty string, the system default is used, otherwise, the exact font names used 
are dependent on the operating system. The fixed_face argument works simi-
larly, and specifies the font used for monospaced text in your browser (for exam-
ple, within <pre> tags). If specified, the sizes element is a Python list of seven 
integers representing the absolute font sizes that correspond to the HTML logical 
font sizes between -2 and +4 (as used in a <font> tag). If the argument is None or 
not specified, defaults are used. There are default constants for wx.html.HTML_ 
FONT_SIZE_n, where n is between 1 and 7. These constants specify the default font 

Table 16.3 History methods of wx.html.HtmlWindow

Method Description 

HistoryBack() Loads the previous entry in the history list. Returns False if there is no such entry. 

HistoryCanBack() Returns True if there is a previous entry in the history list, False otherwise. 

HistoryCanForward() Returns True if there is a next entry in the history list, False otherwise. 

HistoryClear() Empties the history list. 

HistoryForward() Loads the next entry in the list. Returns False if there is no such entry. 



Manipulating the HTML window 493
used for the corresponding HTML logical font size. The exact values of the con-
stants may differ depending on the underlying system. To select a set of fonts and 
sizes that are based on the user’s system preferences (rather that the hard-coded 
defaults) call SetStandardFonts(). This is especially useful when running wxPy-
thon under GTK2, as it produces a better set of fonts. 

 If for some reason you need to change the distance between the edge of the 
window text and the edge of the window, the HTML window defines the method 
SetBorders(b). The b argument is the integer pixel width between the edge of the 
window and the beginning of the text.

16.2.3 How can I display the page title in a frame’s title bar? 

One thing you’ve probably noticed in your web browser is that the display window 
is not the only element of the browser. Among the other elements of note are a 
title bar and status bar in the containing frame. Typically, the title bar displays the 
title of the HTML page being displayed, and the status bar displays information 
about links as they are moused over. In wxPython, there are a couple of shortcuts 
that allow you to set this relationship up quickly and easily. Figure 16.3 displays 
this relationship in action using a page from the wxWidgets online documenta-
tion. The title of the window display is based on the web page title, and the status 
bar text, also comes from the HTML window. 

 Listing 16.3 displays the code used to produce figure 16.3. 

Figure 16.3 An HTML window with status and title bar caption



494 CHAPTER 16 
Incorporating HTML into your application
import wx 
import wx.html 

class MyHtmlFrame(wx.Frame): 
    def __init__(self, parent, title): 
        wx.Frame.__init__(self, parent, -1, title, size=(600,400)) 
        self.CreateStatusBar() 
        
        html = wx.html.HtmlWindow(self) 
        if "gtk2" in wx.PlatformInfo: 
            html.SetStandardFonts()       
        html.SetRelatedFrame(self, self.GetTitle() + " -- %s")   
        html.SetRelatedStatusBar(0)   

        html.LoadPage(
            "http://wxwidgets.org/manuals/2.5.4/wx_wxbutton.html")

app = wx.PySimpleApp() 
frm = MyHtmlFrame(None, "Simple HTML Browser") 
frm.Show() 
app.MainLoop() 

To set up the title bar relationship, use the method SetRelatedFrame(frame, for-
mat). The frame argument is the wx.Frame where you want the HTML window’s title 
information to display. The format argument is the string you want to display in 
the title bar of that frame. It can be any string you want, as long as it contains the 
pattern “%s” somewhere—that pattern is replaced by the <title> of the HTML
page being displayed in the HTML window. A typical format argument would be 
something like “My wxPython Browser: %s”. When a page is loaded in the win-
dow, the frame title is automatically replaced with the new page information. 

 To set up the status bar, use the method SetRelatedStatusBar(bar). This 
method must be called after SetRelatedFrame(), as it associates the HTML win-
dow with an element in the status bar of the related frame. The bar argument is 
the display slot in the status bar that should be used to display the status informa-
tion. Typically, this will be 0, but it could be different if the frame has its status bar 
configured to display multiple slots. If the bar argument is -1, no messages are 
displayed. Once this relationship is created, when the mouse moves over an 
active anchor in the HTML display, the URL being linked to is displayed in the 
status bar.

Listing 16.3 Loading the HTMLWindow content from a web page

Associating the 
HTML to the frame

Associating the HTML to the status bar



Manipulating the HTML window 495
16.2.4 How can I print an HTML page? 

Once the HTML is displayed on the screen, the next logical thing to do is print 
the HTML. The class for this is wx.html.HtmlEasyPrinting. You create an instance 
of wx.html.HtmlEasyPrinting with a simple constructor, 

wx.html.HtmlEasyPrinting(name="Printing", parentWindow=None) 

The parameters aren’t usually that important—the name parameter is just a string 
that is used for display in the various dialogs that the easy printing instance cre-
ates. If defined, the parentWindow is the parent window of those dialogs. If the 
parentWindow is None, the dialogs display at the top level. You should only create 
one instance of wx.html.HtmlEasyPrinting. Although this is not enforced by the 
wxPython system, the class is designed to be a singleton. 

Using the class instance
With a name like wx.html.HtmlEasyPrinting, you’d expect that using the class 
would be easy. And it is. To start, you can show the user dialog boxes for settings 
with the methods PrinterSetup() and PageSetup(). Calling these methods causes 
the appropriate dialog to be displayed to the user. The easy printing instance 
stores these settings for later use, so that you don’t have to. If you want to access 
those data objects for your own specific handling, use the methods GetPrintData()
and GetPageSetupData(). The GetPrintData() method returns a wx.PrintData
object, and GetPageSetupData() returns a wx.PageSetupDialogData object, both of 
which are discussed in more detail in chapter 17. 

Setting fonts
You can set the fonts for the printing using the method SetFonts(normal_face,
fixed_face, sizes). This method behaves in the same way SetFonts() does for 
the HTML window (the settings in the print object do not affect the settings in the 
HTML window). You can set a page header or page footer to be printed on each 
page using the methods SetHeader(header, pg) and SetFooter(footer, pg). The 
header and footer arguments are the strings to be displayed. In the string, you 
can use the placeholder @PAGENUM@ which is replaced at runtime with the page 
number being printed. You can also use the placeholder @PAGESCNT@ which is the 
total number of pages being printed. You can use either placeholder as many 
times as you want. The pg parameter is one of the three constants wx.PAGE_ALL, 
wx.PAGE_EVEN, or wx.PAGE_ODD. The constant controls on which pages the header 
or footer displays. By calling this method more than once with different pg set-
tings, you can set separate headers and footers for odd and even pages. 



496 CHAPTER 16 
Incorporating HTML into your application
Previewing output

If you want to preview the output before printing, you can use PreviewFile(html-
file). In this case the input is the name of a file local to your machine containing 
the HTML. Alternately, you can use the method PreviewText(htmlText, base-
path=""). The htmltext is the actual HTML you want printed. The basepath is a 
path or URL to the location of the file which is used to resolve things like relative 
image paths. Both methods return Boolean True if the preview is successful, and 
Boolean False if not. If there is an error, the global method wx.Printer.GetLast-
Error() will have more information about the error. More detailed information 
about that method is discussed in chapter 17.

Printing

Having read this far in the section about the easy printing method, you are prob-
ably wondering how to simply print an HTML page. The methods are Print-
File(htmlfile) and PrintText(htmlText, basepath). The arguments behave the 
same way as they do in the preview methods, with the exception that these meth-
ods actually print to the printer using the settings specified in the settings dia-
log. A True result indicates that, as far as wxPython was concerned, the printing 
was successful. 

16.3 Extending the HTML window

In this section we’ll show you how to handle obscure HTML tags in the HTML
window, how to invent your own tags, how to embed wxPython widgets in the 
HTML, how to handle other file formats, and how to create a real HTML browser 
in your application.

16.3.1 How does the HTML parser work? 

The HTML window has its own internal parser within wxPython. Actually, there 
are two parser classes, but one of them is a refinement of the other. In general, 
working with parsers is only useful if you want to extend the functionality of the 
wx.html.HtmlWindow itself. If you are programming in Python and want to use an 
HTML parser for other purposes, we recommend using one of the two parser 
modules that are distributed with Python (htmllib and HTMLParser), or an external 
Python tool like Beautiful Soup. We’re only going to cover this enough to give you 
the basics needed to add your own tag type. 



Extending the HTML window 497
 The two parser classes are wx.html.HtmlParser, which is the more generic 
parser, and wx.html.HtmlWinParser, which is a subclass of wx.html.HtmlParser, 
with extensions specifically created to support displaying text in a wx.html.Html-
Window. Since we’re mostly concerned with HTML windows here, we’ll focus on 
the subclass. 

 To create an HTML parser, use one of two constructors. The basic one, 
wx.html.HtmlWinParser(), takes no arguments. The parent wx.html.HtmlParser
class also has a no-argument constructor. You can associate a wx.html.HtmlWin-
Parser() with an existing wx.html.HtmlWindow using the other constructor—
wx.html.HtmlWinParser(wnd), where wnd is the instance of the HTML window. 

 To use the parser, the simplest way is to call the method Parse(source). The 
source parameter is the HTML string to be processed. The return value is the 
parsed data. For a wx.html.HtmlWinParser, the return value is an instance of 
the class wx.html.HtmlCell. 

 The HTML parser converts the HTML text into a series of cells, where a cell is 
some meaningful fragment of the HTML. A cell can represent some text, an image, 
a table, a list, or any other specific element. The most significant subclass of wx. 
html.HtmlCell is wx.html.HtmlContainerCell, which is simply a cell that can con-
tain other cells within it, such as a table, or a paragraph with different text styles. 
For nearly every document that you parse, the return value will be an wx.html.Html-
ContainerCell. Each cell contains a Draw(dc, x, y, view_y1, view_y2) method, 
which allows it to actually draw its information in the HTML window. 

 Another important cell subclass is wx.html.HtmlWidgetCell, which allows an 
arbitrary wxPython widget to be inserted into an HTML document just like any 
other cell. This can include any kind of widget used to manage HTML forms, but 
can also include static text used for formatted display. The only interesting 
method of wx.html.HtmlWidgetCell is the constructor. 

wx.html.HtmlWidgetCell(wnd, w=0) 

In the constructor, the wnd parameter is the wxPython widget to be drawn. The w
parameter is a floating width. If it is not 0, it is an integer between 1 and 100, and 
then the width of the wnd widget is dynamically adjusted to be that percentage of 
the width of its parent container. 

 There are many other cell types that are used to display the more typical parts 
of an HTML document. For more information regarding these other cell types, 
refer to the wxWidgets documentation. 



498 CHAPTER 16 
Incorporating HTML into your application
16.3.2 How can I add support for new tags? 

The cells returned by the parser are created internally by tag handlers, a pluggable 
structure by which HTML tags are associated with the creation and manipulation 
of the HTML parser cells. You can create your own tag handlers and associate 
them with HTML tags. With this mechanism you can extend the HTML window to 
include standard tags not currently supported, or custom tags of your own inven-
tion. Figure 16.4 displays the use of a custom HTML tag. 

Listing 16.4 displays the code used to produce figure 16.4. 

import wx 
import wx.html 

page = """<html><body> 

This silly example shows how custom tags can be defined and used in a 
wx.HtmlWindow. We've defined a new tag, &lt;blue&gt; that will change 
the <blue>foreground color</blue> of the portions of the document that 
it encloses to some shade of blue. The tag handler can also use 
parameters specified in the tag, for example: 

<ul> 
<li> <blue shade='sky'>Sky Blue</blue> 
<li> <blue shade='midnight'>Midnight Blue</blue> 
<li> <blue shade='dark'>Dark Blue</blue> 
<li> <blue shade='navy'>Navy Blue</blue> 
</ul> 

</body></html> 
""" 

Listing 16.4 Defining and using a custom tag handler

Figure 16.4  
A wx.HtmlWindow using 
a custom tag handler



Extending the HTML window 499
class BlueTagHandler(wx.html.HtmlWinTagHandler):   
    def __init__(self): 
        wx.html.HtmlWinTagHandler.__init__(self) 

    def GetSupportedTags(self):   
        return "BLUE" 

    def HandleTag(self, tag):   
        old = self.GetParser().GetActualColor() 
        clr = "#0000FF" 
        if tag.HasParam("SHADE"): 
            shade = tag.GetParam("SHADE") 
            if shade.upper() == "SKY": 
                clr = "#3299CC" 
            if shade.upper() == "MIDNIGHT": 
                clr = "#2F2F4F" 
            elif shade.upper() == "DARK": 
                clr = "#00008B" 
            elif shade.upper == "NAVY": 
                clr = "#23238E" 

        self.GetParser().SetActualColor(clr)   
        container = self.GetParser().GetContainer()           
        container.InsertCell(wx.html.HtmlColourCell(clr)) 
        self.ParseInner(tag) 
        self.GetParser().SetActualColor(old) 
        container = self.GetParser().GetContainer()           
        container.InsertCell(wx.html.HtmlColourCell(old)) 
        return True 

wx.html.HtmlWinParser_AddTagHandler(BlueTagHandler)   

class MyHtmlFrame(wx.Frame): 
    def __init__(self, parent, title): 
        wx.Frame.__init__(self, parent, -1, title) 
        html = wx.html.HtmlWindow(self) 
        if "gtk2" in wx.PlatformInfo: 
            html.SetStandardFonts() 
        html.SetPage(page) 

app = wx.PySimpleApp() 
frm = MyHtmlFrame(None, "Custom HTML Tag Handler") 
frm.Show() 
app.MainLoop() 

The tags themselves are represented internally as methods of the class wx.Html. 
Tag, which is created by the HTML parser. Typically, you won’t need to create your 
own instances. Table 16.4 displays the wx.Html.Tag class with methods that are 
useful to retrieve information about the tags. 

Declaring the 
tag handler

Defining tags that 
are handled

Handling the tag

Telling the parser 
about the handler



500 CHAPTER 16 
Incorporating HTML into your application
A tag handler used for extending the HTML window is a subclass of wx.html. 
HtmlWinTagHandler. Your subclass needs to override two methods, and needs to 
be aware of one further method. The first method to override is GetSupported-
Tags(). This method returns the list of tags that are managed by this handler. 
The tags must be in uppercase, and if there is more than one they are separated 
by a comma, with no spaces in between, as in the following example. 

GetSupportedTags(self): 
    return "MYTAG,MYTAGPARAM" 

The second method that you need to override is HandleTag(tag). Within the 
HandleTag method, you handle the tag by adding new cell elements to the parser 
(or alternately making changes to the container cell that the parser has open at that 
point). You get the parser by calling the GetParser() method of the tag handler. 

 To write a HandleTag() method, you should: 

1 Get the parser. 

2 Process the parameters to your tag as necessary, possibly making changes 
to or creating a new cell. 

3 If the tag being parsed is a begin/end pair with inner text, parse the text 
in between. 

4 Perform any cleanup needed to the parser. 

Table 16.4 Some methods of wx.Html.Tag

Method Description 

GetAllParams() Returns all the parameters associated with the tag as a string. For some 
purposes, it might be easier to parse this string rather than get each  
parameter individually. 

GetName() Returns the tag name, in uppercase text. 

HasParam(param) Returns True if the tag has the given parameter. 

GetParam(param,  
with_commas=False) 

Returns the value of the parameter param. If the with_commas parameter is 
True, you get a raw string including the quotation marks starting and ending 
the value, if any. Returns an empty string if the parameter doesn’t exist. The 
related method GetParamAsColour(param) returns the parameter value as 
a wx.Color, and the method GetParamAsInt(param) returns  
the value as an int. 

HasEnding() Returns True if the tag has an ending tag, and false otherwise. 



Extending the HTML window 501
As mentioned, you get the parser with GetParser(). To add or edit cells in the 
parser, you have three options. First, if you want to add another cell to the con-
tainer, you can work with the current container. Next, you call the parser’s Get-
Container() method, then create your wx.html.HTMLCell subclass instance by 
whatever means you want, and add it to the container by calling the container’s 
InsertCell(cell) method.

 Occasionally, you’ll want to create a container that is subordinate or nested 
within the currently open container. One example might be a table cell that is 
nested within a table row. To do this, you need to call the parser method OpenCon-
tainer(). This method returns your new container cell, into which you can insert 
display cells with the InsertCell(cell) method. For every container you open in 
your tag handler, you are expected to close it using the CloseContainer()
method. If you do not have a balance between your OpenContainer() and Close-
Container() calls, it will disrupt the parser behavior on the rest of the HTML text. 

 Another option is to create a container at the same level as the parser’s current 
container, meaning that you aren’t nesting containers. An example would be a 
new paragraph—it’s not part of the previous paragraph, nor is it subordinate to 
it; it’s a new entity in the page. In order to get that behavior in the parse, you 
need to close the existing container, open a new container, and reverse the pro-
cess at the end of the method. 

parser = self.GetParser() 
parser.CloseContainer() 
parser.OpenContainer() 

# Do all your stuff 

parser.CloseContainer() 
parser.OpenContainer() 

This has the effect of giving you a new container to put your information into, but 
ensuring that the parser has a clean container at the same nesting depth that 
existed at the beginning of the method. 

16.3.3 How can I support other file formats? 

By default, the HTML window can handle files with the MIME type text/html, 
text/txt, and image/* (assuming the wxPython image handlers are loaded). 
When confronted with a file that is not an image or HTML file, the HTML window 
attempts to display it as plain text. That may not be the behavior you want. If there 
is some file format that you want displayed in a custom way, you can create a 



502 CHAPTER 16 
Incorporating HTML into your application
wx.html.HtmlFilter to manage it. For example, you might want XML files to dis-
play as a source tree, or you could display Python source files with syntax coloring. 

 To create a filter, you must build a subclass of wx.html.HtmlFilter. This class 
has two methods, and you must override both of them. The first method is Can-
Read(file). The file parameter is an instance of wx.FSFile—the wxPython rep-
resentation of an opened file. The wx.FSFile class has two properties that you 
would use to determine if your filter can read the file. The method GetMimeType()
returns the file’s MIME type as a string. The mime type is usually determined by 
the file’s extension. The method GetLocation() returns a string with the absolute 
path or URL to the file location. The CanRead() method should return True if the 
filter will handle the file, otherwise it returns False. A sample CanRead() to han-
dle Python source files may look like the following. 

CanRead(self, file): 
    return file.GetLocation().endswith('.py') 

The second method you need to override is ReadFile(file). This method takes 
in the same file parameter, and returns a string HTML representation of the 
file’s contents. If you don’t want to use the wxWidgets C++ file mechanisms to 
read the file, you can use the Python file mechanisms by simply opening a Python 
file at file.GetLocation(). 

 Once the filter has been created, it must be registered with the wx.html.Html-
Window using the window’s AddFilter(filter) static method. The filter param-
eter is an instance of your new wx.html.HtmlFilter class. Once it has registered the 
filter, the window uses it to manage the file objects that pass the CanRead() test.

16.3.4 How can I get a more fully featured HTML Widget? 

Although the wx.html.HtmlWindow is not a fully featured browser pane, there are 
a couple of options for embedding a more fully featured HTML rendering win-
dow. If you are on a Windows platform, you can use the class wx.lib.iewin.IEHtml-
Window, which is a wxPython wrapper around the Internet Explorer ActiveX 
control. This allows you to embed an Internet Explorer window directly into 
your application. 

 Using the Internet Explorer (IE) control is relatively straightforward and sim-
ilar to using the internal wxPython HTML window. It has a widget-like construc-
tor, as in the following. 

wx.lib.iewin.IEHtmlWindow(self, parent, ID=-1, 
        pos=wx.DefaultPosition, size=wx.DefaultSize, style=0, 
        name='IEHtmlWindow') 



Summary 503
Everything here is in keeping with wxPython widgets, the parent is the parent 
window, and the ID is the wxPython ID. There are no useful style flags for an IE
window. To load HTML into the IE component, use the method LoadString 
(html), where the html parameter is an HTML string to display. You can load from 
an open file, or anything that is a Python file object, using the method Load-
Stream(stream), or from a URL using the method LoadString(URL). You can 
retrieve the text being displayed with the method GetText(asHTML). The asHTML
parameter is a Boolean. If True, the text is returned in HTML, otherwise, it’s just 
returned as a text string. 

 On other platforms, you can try the wxMozilla project (http://wxmozilla. 
sourceforge.net), which attempts to create a wxPython wrapper around the 
Mozilla Gecko renderer. Currently, the project is still in beta. The wxPython 
extension for this project has an installer for Windows and Linux, with Mac OS X
support in progress. 

16.4 Summary 

■ HTML is not just for the Internet anymore. In wxPython, you can use 
an HTML window to display text with a simple subset of HTML markup. 
The HTML window is of the class wx.html.HtmlWindow. In addition to HTML
text, the HTML window can manage any image that has a currently loaded 
image handler. 

■ You can give the HTML window its display information as a string, a local 
file, or a URL. You can respond to a user click either as a hypertext browser 
normally would, or with a custom response of your own. You can also con-
nect the HTML window to its frame so that the title and status information 
automatically displays in the correct locations. The HTML window main-
tains a history list that you can access and manipulate. You can use the class 
wx.Html.HtmlEasyPrinting to print your page straightforward. 

■ There is an HTML parser in wxPython that you can use to create your own 
custom tags for your window. You can also set up custom file filters to ren-
der other file formats to an HTML window. 

■ Finally, if you get frustrated with the limitations of the HTML window, a 
wrapper around the Internet Explorer ActiveX control is available. If you 
aren’t on Windows, there’s a beta version of a wrapper around the Mozilla
Gecko HTML renderer. 



The wxPython 
printing framework
This chapter covers
■ Printing in wxPython
■ Creating and displaying the print dialog
■ Creating and displaying the page setup dialog
■ Printing from your application
■ Performing a print preview
504



How do I print in wxPython? 505
In chapter 16, we looked at one method of printing in wxPython—using wx.Html-
EasyPrinting. This works fine if you are trying to print HTML (or something that 
can easily be converted to HTML), but is somewhat lacking as a complete printing 
solution. There is a more general printing framework in wxPython, which you 
can use to print anything and everything you want. Essentially, the wxPython 
framework allows you to draw your application to a printer, using device contexts 
and drawing operations. You can also create print previews that mimic your print 
display to the screen.

 This chapter will cover the most important class in this framework, wx.Print-
out, which manages the actual graphics component. The printout instance can be 
managed either by a wx.Printer object representing the printer or a wx.Print-
Preview object allowing for a screen-based rendering of the printout. We’ll also 
look at a few classes that manage printer-related data, and the standard dialog 
boxes you can use to present that information to the user. 

17.1 How do I print in wxPython? 

We’ll start with the wx.Printout class. Like frames, and unlike many of the widget 
classes, you’ll create your own custom subclass of wx.Printout. Next, you will 
override methods of wx.Printout to define your custom printing behavior. There 
are seven methods of wx.Printout that you can override to customize how the 
printout object does its work. These methods are automatically called by wxPython
during the course of a printing session. Figure 17.1 displays six of these methods 

Figure 17.1 The lifecycle of a printout showing all the methods automatically 
called by wxPython



506 CHAPTER 17 
The wxPython printing framework
that are triggered by specific events. In most cases you will not need to overwrite 
all of them.

17.1.1 Understanding the printout lifecycle

You start a printing session by creating an instance of your printout object, and 
also an instance of the class wx.Printer. 

wx.Printer(data=None) 

The optional data parameter is an instance of wx.PrintDialogData. To start 
the actual printing, call the Print(parent, printout, prompt=True) method of 
wx.Printer. The parent parameter is the parent window for the printing (it’s used 
as the parent window for any dialogs that are invoked). The printout parameter 
is your wx.Printout instance. If the prompt parameter is True, wxPython will dis-
play the printer dialog before printing, otherwise it will not. 

 After the Print() method starts, it calls the first of the overridable methods of 
wx.Printout, OnPreparePrint(). The prepare method is guaranteed to be called 
before the wx.Printout instance does anything else, so it’s a good place to gather 
your data or do any calculations that need to be done before printing begins. 
The actual printing begins with the OnBeginPrinting() method, which you can 
also override for custom behavior if you want—by default, the method does 
nothing. The OnBeginPrinting() method will be called only once for the entire 
print session. 

 Each individual copy of the document that you wish to print triggers one call 
of OnBeginDocument(startPage, endPage), where startPage and endPage are inte-
ger arguments telling wxPython what pages of the document to print. Both argu-
ments are inclusive. If you override this method, you must call the base class 
method because it does some important accounting (such as calling wx.DC.Start-
Doc()). In wxPython, you call the parent method with the line base_OnBegin-
Document(startPage, endPage). Returning False from OnBeginDocument will cancel
the print job. 

 The method you are most likely to override is OnPrintPage(pageNum), which is 
where you place your drawing commands for each page. The pageNum argument is 
the number of the page to print. Within this method, you call GetDC(), which 
returns an appropriate device context, depending on your current system plat-
form. For actual prints, the instance you get is of the class wx.PrinterDC if you are 
on an MS Windows system. On any other system, the instance is of the class 
wx.PostScriptDC. If you are inside a print preview operation, you get a wx.MemoryDC
for any operating system. Once you have the device context, you can make any 



How do I print in wxPython? 507
device context drawing operations you want, and they will be printed or pre-
viewed appropriately. 

 After the pages are printed, the events unwind. At the end of each copy, a call 
to OnEndDocument() is triggered. Again, if you override this method, you must 
call the base class method with the line base_OnEndDocument(). This calls the 
wx.DC.EndDoc() method. And, when all your copies are done, the OnEndPrint-
ing() method is called, finishing the print session. 

 There is one other overridable method of wx.Printout, which you will usu-
ally need to override and which is used by the printing framework for loop con-
trol. The method HasPage(pageNum) returns True if the integer pageNum is within 
the document and False otherwise. The default is to return True only when 
pageNum == 1. 

17.1.2 Print framework in action

What follows is a code example to show you how the print framework works in 
practice. The example consists of a simple framework for printing text files, and 
an application that allows you to type a simple text file. Figure 17.2 displays 
the application. 

 Listing 17.1 displays both the print framework we’ve already discussed, as well 
as the dialog data mechanisms we’ll get to shortly. 

Figure 17.2 The simple printing framework in action



508 CHAPTER 17 
The wxPython printing framework
import wx 
import os 

FONTSIZE = 10 

class TextDocPrintout(wx.Printout):   
    
    def __init__(self, text, title, margins): 
        wx.Printout.__init__(self, title) 
        self.lines = text.split('\n') 
        self.margins = margins 

    def HasPage(self, page):    
        return page <= self.numPages 

    def GetPageInfo(self): 
        return (1, self.numPages, 1, self.numPages) 

    def CalculateScale(self, dc):   
        
        ppiPrinterX, ppiPrinterY = self.GetPPIPrinter() 
        ppiScreenX, ppiScreenY = self.GetPPIScreen() 
        logScale = float(ppiPrinterX)/float(ppiScreenX) 
  
        pw, ph = self.GetPageSizePixels()   
        dw, dh = dc.GetSize() 
        scale = logScale * float(dw)/float(pw) 
        dc.SetUserScale(scale, scale) 
        self.logUnitsMM = float(ppiPrinterX)/(logScale*25.4) 

    def CalculateLayout(self, dc): 
        topLeft, bottomRight = self.margins   
        dw, dh = dc.GetSize() 
        self.x1 = topLeft.x * self.logUnitsMM 
        self.y1 = topLeft.y * self.logUnitsMM 
        self.x2 = (dc.DeviceToLogicalXRel(dw) – 
                bottomRight.x * self.logUnitsMM) 
        self.y2 = (dc.DeviceToLogicalYRel(dh) – 
                bottomRight.y * self.logUnitsMM)
        self.pageHeight = self.y2 - self.y1 - 2*self.logUnitsMM   
        font = wx.Font(FONTSIZE, wx.TELETYPE, wx.NORMAL, wx.NORMAL) 
        dc.SetFont(font) 
        self.lineHeight = dc.GetCharHeight() 
        self.linesPerPage = int(self.pageHeight/self.lineHeight) 

    def OnPreparePrinting(self):   
        dc = self.GetDC() 
        self.CalculateScale(dc) 
        self.CalculateLayout(dc) 

Listing 17.1 A long example of a print framework in action

Declaring the printout class

How many pages?

Scaling the DC to screen size

Adjusting scale

Determining margins

Putting a buffer 
around page

Calculating page count



How do I print in wxPython? 509
        self.numPages = len(self.lines) / self.linesPerPage 
        if len(self.lines) % self.linesPerPage != 0: 
            self.numPages += 1 

    def OnPrintPage(self, page):   
        dc = self.GetDC() 
        self.CalculateScale(dc) 
        self.CalculateLayout(dc) 
        dc.SetPen(wx.Pen("black", 0))   
        dc.SetBrush(wx.TRANSPARENT_BRUSH) 
        r = wx.RectPP((self.x1, self.y1), 
                      (self.x2, self.y2)) 
        dc.DrawRectangleRect(r) 
        dc.SetClippingRect(r) 

        line = (page-1) * self.linesPerPage   
        x = self.x1 + self.logUnitsMM 
        y = self.y1 + self.logUnitsMM 
        while line < (page * self.linesPerPage): 
            dc.DrawText(self.lines[line], x, y) 
            y += self.lineHeight 
            line += 1 
            if line >= len(self.lines): 
                break 
        return True 

class PrintFrameworkSample(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, size=(640, 480), 
                          title="Print Framework Sample") 
        self.CreateStatusBar() 

        self.tc = wx.TextCtrl(self, -1, "", 
                              style=wx.TE_MULTILINE|wx.TE_DONTWRAP) 
        self.tc.SetFont(wx.Font(FONTSIZE, wx.TELETYPE, wx.NORMAL, wx.NORMAL))
        filename = os.path.join(os.path.dirname(__file__), "sample-text.txt")
        self.tc.SetValue(open(filename).read()) 
        self.tc.Bind(wx.EVT_SET_FOCUS, self.OnClearSelection) 
        wx.CallAfter(self.tc.SetInsertionPoint, 0) 

        menu = wx.Menu() 
        item = menu.Append(-1, "Page Setup...\tF5", 
                           "Set up page margins and etc.") 
        self.Bind(wx.EVT_MENU, self.OnPageSetup, item) 
        item = menu.Append(-1, "Print Setup...\tF6", 
                           "Set up the printer options, etc.") 
        self.Bind(wx.EVT_MENU, self.OnPrintSetup, item) 
        item = menu.Append(-1, "Print Preview...\tF7", 
                           "View the printout on-screen") 
        self.Bind(wx.EVT_MENU, self.OnPrintPreview, item) 
        item = menu.Append(-1, "Print...\tF8", "Print the document") 

Printing a page

Drawing an outline

Drawing text



510 CHAPTER 17 
The wxPython printing framework
        self.Bind(wx.EVT_MENU, self.OnPrint, item)
        menu.AppendSeparator() 
        item = menu.Append(-1, "E&xit", "Close this application") 
        self.Bind(wx.EVT_MENU, self.OnExit, item) 
        
        menubar = wx.MenuBar() 
        menubar.Append(menu, "&File") 
        self.SetMenuBar(menubar) 

        self.pdata = wx.PrintData()   
        self.pdata.SetPaperId(wx.PAPER_LETTER) 
        self.pdata.SetOrientation(wx.PORTRAIT) 
        self.margins = (wx.Point(15,15), wx.Point(15,15)) 

    def OnExit(self, evt): 
        self.Close() 

    def OnClearSelection(self, evt): 
        evt.Skip() 
        wx.CallAfter(self.tc.SetInsertionPoint, 
                     self.tc.GetInsertionPoint()) 

    def OnPageSetup(self, evt): 
        data = wx.PageSetupDialogData() 
        data.SetPrintData(self.pdata) 
        data.SetDefaultMinMargins(True) 
        data.SetMarginTopLeft(self.margins[0]) 
        data.SetMarginBottomRight(self.margins[1]) 
        dlg = wx.PageSetupDialog(self, data)   
        if dlg.ShowModal() == wx.ID_OK: 
            data = dlg.GetPageSetupData() 
            self.pdata = wx.PrintData(data.GetPrintData()) 
            self.pdata.SetPaperId(data.GetPaperId()) 
            self.margins = (data.GetMarginTopLeft(), 
                            data.GetMarginBottomRight()) 
        dlg.Destroy() 

    def OnPrintSetup(self, evt): 
        data = wx.PrintDialogData(self.pdata) 
        dlg = wx.PrintDialog(self, data) 
        dlg.GetPrintDialogData().SetSetupDialog(True) 
        dlg.ShowModal(); 
        data = dlg.GetPrintDialogData() 
        self.pdata = wx.PrintData(data.GetPrintData()) 
        dlg.Destroy() 

    def OnPrintPreview(self, evt):   
        data = wx.PrintDialogData(self.pdata) 
        text = self.tc.GetValue() 
        printout1 = TextDocPrintout(text, "title", self.margins) 
        printout2 = TextDocPrintout(text, "title", self.margins) 

Initializing print Initializing print data

Getting page 
setup data

Starting print preview



How do I print in wxPython? 511
        preview = wx.PrintPreview(printout1, printout2, data) 
        if not preview.Ok(): 
            wx.MessageBox("Unable to create PrintPreview!", "Error") 
        else: 
            frame = wx.PreviewFrame(preview, self, "Print Preview", 
                                    pos=self.GetPosition(), 
                                    size=self.GetSize()) 
            frame.Initialize() 
            frame.Show() 

    def OnPrint(self, evt):   
        data = wx.PrintDialogData(self.pdata) 
        printer = wx.Printer(data) 
        text = self.tc.GetValue() 
        printout = TextDocPrintout(text, "title", self.margins) 
        useSetupDialog = True 
        if not printer.Print(self, printout, useSetupDialog) \ 
           and printer.GetLastError() == wx.PRINTER_ERROR: 
            wx.MessageBox( 
                "There was a problem printing.\n" 
                "Perhaps your current printer is not set correctly?", 
                "Printing Error", wx.OK) 
        else: 
            data = printer.GetPrintDialogData() 
            self.pdata = wx.PrintData(data.GetPrintData()) # force a copy 
        printout.Destroy() 
    
app = wx.PySimpleApp() 
frm = PrintFrameworkSample() 
frm.Show() 
app.MainLoop() 

The printout class presented in listing 17.2 is able to print simple text docu-
ments, but doesn’t handle page numbers or titles, and it assumes that no lines are 
longer than will fit within the page width. Those features are left as an exercise for 
the reader.

 The most important code snippets are in the OnPreparePrinting() and 
OnPrintPage() methods of the framework and the OnPrint() method of the sam-
ple window. Notice how the draw commands in the OnPrintPage() are the same as 
if you were drawing to the screen. 

17.1.3 Working with wx.Printout methods

There are a few getter-type methods in wx.Printout that allow you to retrieve 
information about the current print environment. Table 17.1 lists these informa-
tion retrieval methods. 

Starting print



512 CHAPTER 17 
The wxPython printing framework
In the following sections, we’ll discuss how to present the print dialog box to 
the user.

17.2 How do I display the print dialog? 

Data about the print job, such as what pages to print and how many copies to 
make, is managed via the standard print dialog. The print dialog is similar to the 
font and color dialogs in that the dialog instance in wxPython is merely a thin 
wrapper around the native control and a separate data object that stores the dia-
log data. 

17.2.1 Creating a print dialog

Figure 17.3 displays a sample print setup dialog. 
 In this case, the dialog is an instance of the class wx.PrintDialog, which you 

can get with the following constructor. 

wx.PrintDialog(parent, data=None) 

Table 17.1 Information retrieval methods of wx.Printout

Method Description 

GetDC() This method returns the device context to be used for drawing the document for 
the printer or the print preview. 

GetPageInfo() Returns a 4-element tuple (minPage, maxPage, pageFrom, pageTo). The 
minPage and maxPage return values are the lowest and highest allowable page 
numbers, and they default to 1 and 32000. The pageFrom and pageTo values 
are the range that must be printed, and those values default to 1. You may 
override this method in your sublclass. 

GetPageSizeMM() Returns a tuple (w, h) of the width and height of a page in millimeters. 

GetPageSizePixels() Returns a tuple (w, h) of the width and height of a page in pixels. If the printout 
is being used for a print preview, the pixel count will reflect the current zoom level, 
meaning that the reported pixel count will change with the zoom level. 

GetPPIPrinter() Returns a tuple (w, h) of the pixels per inch of the current printer in both 
horizontal and vertical directions. In a preview, this value is consistent even if the 
zoom level of the preview changes. 

GetPPIScreen() Returns a tuple (w, h) of the pixels per inch of the current screen in both 
horizontal and vertical directions. In a preview, this value is consistent even if the 
zoom level of the preview changes. 

GetTitle() Returns the printout’s title. 



How do I display the print dialog? 513
In this example, parent is the parent frame for the dialog, and data, if used, is 
a pre-existing wx.PrintDialogData instance that is used for the initial values of 
the dialog.

Using the methods
Once you have the dialog, you can display it using the standard ShowModal()
method that will return wx.ID_OK or wx.ID_CANCEL depending on how the dialog 
is closed by the user. After you close the dialog, you can get to the data that the 
user entered with the method GetPrintDialogData(). You can also get to the 
printer device context associated with that data using the method GetPrintDC(), 
which will return None if no context has been created yet. The OnPrintSetup()
method of the example in listing 17.1 displays how this dialog may be retrieved 
in practice. 

Using the properties
The data object itself has several properties, one of which is a reference to an 
object of type wx.PrintData, which has even more properties. You can create your 
wx.PrintDialogData object using the constructor, wx.PrintDialogData(). This 
allows you to preset properties before you open the dialog. 

 The wx.PrintDialogData object has four properties that control whether vari-
ous parts of the print dialog are enabled. The method EnableHelp(enable)
turns the help feature of the dialog on or off. Other parts of the dialog are con-
trolled by EnablePageNumbers(enable), which covers the page number entry 
box, EnablePrintToFile(enable), which manages the actual print button, and 
EnableSelection(enable), which handles the toggle between print all and print 
selection only.

Figure 17.3  
The print setup dialog



514 CHAPTER 17 
The wxPython printing framework
 Table 17.2 displays other properties of the dialog data object that allow you to 
manage information about the print request. 

The wx.PrintData instance returned by the GetPrintData() method provides fur-
ther information about the printing. In general, these items are in the printer set-
tings subdialog of your print dialog. Table 17.3 lists the properties in the 
wx.PrintData object. The wx.PrintData object duplicates the collate and number 
of copies properties of wx.PrintDialogData.

 The second useful print dialog contains the page setup data. In the next sec-
tion we’ll discuss the page setup data and its use.

Table 17.2 Properties of wx.PrintDialogData

Method Description 

GetAllPages() Returns True if the user has selected the option to print the entire document. 

GetCollate()  
SetCollate(flag) 

Returns True if the user has selected the option to collate the printed pages. 

GetFromPage()  
SetFromPage(page) 

Returns the integer page number of the first page to print, if the user chooses 
to print a page range.

GetMaxPage()  
SetMaxPage(page) 

Returns the maximum page number in the document.

GetMinPage()  
SetMinPage(page) 

Returns the minimum page number in the document. 

GetNoCopies()  
SetNoCopies() 

Returns the number of copies that the user has chosen to print. 

GetPrintData()  
SetPrintData(printData) 

Returns the wx.PrintData object associated with this dialog. 

GetPrintToFile()  
SetPrintToFile(flag) 

Returns True if the user has chosen the option of printing to a file. The 
mechanism for printing to the file is managed by wxPython. 

GetSelection()  
SetSelection(flag) 

Returns True if the user has chosen the option of printing only the current 
selection. The exact definition of what is considered to be the current 
selection is up to your application. 

GetToPage()  
SetToPage(page) 

Returns the integer page number of the last page to print if the user specifies 
a range. 



How do I display the page setup dialog? 515
17.3 How do I display the page setup dialog? 

Figure 17.4 displays how the page setup dialog allows the user to set data related 
to the page size. 

 Like the print data dialog, this dialog consists of a minimal dialog object that 
manages a data class of its own. In the next section, we’ll discuss how to create a 
page setup dialog.

17.3.1 Creating a page setup dialog

You can create a page setup dialog by instantiating an instance of the class 
wx.PageSetupDialog. 

wx.PageSetupDialog(parent, data=None) 

The parent parameter is the parent window of the new dialog. The data param-
eter is an instance of wx.PageSetupDialogData—if you pass your own created 

Table 17.3 Properties of wx.PrintData 

Method Description 

GetColour()  
SetColour(flag) 

Returns true if the current print is for color printing. 

GetDuplex()  
SetDuplex(mode) 

Returns the current setting for printing on both sides of the page. The 
possible values are wx.DUPLEX_SIMPLE (no double-sided printing), 
wx.DUPLEX_HORIZONTAL (double-sided printing as though the pages 
were to be bound pad-style along the horizontal edge), and 
wx.DUPLEX_VERTICAL (double-sided printing as though the pages 
were to be bound book-style along the vertical edge). 

GetOrientation()  
SetOrientation(orientation) 

Returns the orientation of the page. Possible values are 
wx.LANDSCAPE and wx.PORTRAIT. 

GetPaperId()  
SetPaperId(paperId) 

Returns one of several identifiers matching the paper type. Space 
prevents a full listing. Common values are wx.PAPER_LETTER, 
wx.PAPER_LEGAL, and wx.PAPER_A4. See the wxWidgets 
documentation for a full listing of paper IDs. 

GetPrinterName()  
SetPrinterName(printerName) 

Returns the name used by the system to refer to the current printer. If 
the value is the empty string, the default printer is used. 

GetQuality()  
SetQuality(quality) 

Returns the current quality value of the printer. The setter only accepts 
the values wx.PRINT_QUALITY_DRAFT, 
wx.PRINT_QUALITY_HIGH, wx.PRINT_QUALITY_MEDIUM, or 
wx.PRINT_QUALITY_LOW. The getter can return any of these, or an 
arbitrary positive integer representing the dots per inch setting. 



516 CHAPTER 17 
The wxPython printing framework
instance in, the dialog starts off displaying the values of that instance. Once cre-
ated, the dialog behaves like any other modal dialog, and you can display it using 
ShowModal(). As usual, the return value indicates whether the user closed the win-
dow with the wx.ID_OK or the wx.ID_CANCEL button. After the dialog has closed, 
you can gain access to the data object by calling GetPageSetupDialogData(), which 
returns an instance to the class wx.PageSetupDialogData. 

17.3.2 Working with page setup properties

The wx.PageSetupDialogData class has several properties having to do with page 
setup. Table 17.4 shows properties that control the display of the dialog box itself. 
Unless otherwise specified, all of these properties default to True. 

Figure 17.4  
The wxPython page setup dialog box

Table 17.4 Dialog control properties of wx.PageSetupDialogData 

Property Description 

GetDefaultMinMargins()  
SetDefaultMinMargins(flag) 

If this property is True and you are on the MS Windows system,  
the page setup will use the current properties of the default printer  
as the default minimum margin size. Otherwise, it will use a  
system default. 

continued on next page



How do I display the page setup dialog? 517
Table 17.5 displays the additional properties of the wx.PageSetupDialogData class 
that control the margin and paper size for the page.

GetDefaultInfo()  
SetDefaultInfo(flag) 

If this property is True and you are on an MS Windows system, the page 
setup dialog will not be shown. Instead all the defaults for the current 
printer will be put into the data object. 

EnableHelp(flag)  
GetEnableHelp() 

If True, the help portion of the dialog is enabled. 

EnableMargins(flag)  
GetEnableMargins() 

If True, the portion of the dialog dedicated to sizing the margins  
is enabled. 

EnableOrientation(flag)  
GetEnableOrientation() 

If True, the portion of the dialog for changing the orientation of the paper 
is enabled. 

EnablePaper(flag)  
GetEnablePaper() 

If True, the portion of the dialog which allows the user to change the 
paper type is enabled. 

EnablePrinter(flag)  
GetEnablePrinter() 

If True, the button allowing the user to setup a printer is enabled. 

Table 17.5 Margin and size properties of wx.PageSetupDialogData

Property Description 

GetMarginTopLeft()  
SetMarginTopLeft(pt) 

The getter returns a wx.Point where the x value is the current left 
margin, and the y value is the current top margin. The setter allows you 
to change these values with a wx.Point or Python tuple. 

GetMarginBottomRight()  
SetMarginBottomRight(pt) 

The getter returns a wx.Point where the x value is the current right 
margin, and the y value is the current bottom margin. The setter allows 
you to change these values with a wx.Point or Python tuple. 

GetMinMarginTopLeft()  
SetMinMarginTopLeft(pt) 

As in GetMarginTopLeft(), only the value is the minimum 
allowable value for the left and top margins. 

GetMinMarginBottomRight()  
SetMinMarginBottomRight(pt) 

As in GetMarginBottomRight(), only the value is the minimum 
allowable value for the right and bottom margins. 

GetPaperId()  
SetPaperId(id) 

Returns the wxPython identifier for the current paper type. The same as 
the property of wx.PrinterData. 

GetPaperSize()  
SetPaperSize(size) 

The getter returns a wx.Size instance with the horizontal and vertical 
paper size. The unit is millimeters. 

GetPrintData()  
SetPrintData(printData) 

The getter returns the wx.PrintData instance associated with the 
current print session. 

Table 17.4 Dialog control properties of wx.PageSetupDialogData (continued)

Property Description 



518 CHAPTER 17 
The wxPython printing framework
Now that we’ve described all of the data dialogs, we’ll focus on printing some-
thing on the printer.

17.4 How do I print something? 

Now that we’ve seen all of the print framework pieces, we need to print some-
thing. The actual printing part is controlled by an instance of the wx.Printer
class. Having now explained all the other parts, the printing itself couldn’t be 
simpler. Next, we’ll provide you with the steps in the OnPrint() method that were 
included in listing 17.1. 

Step 1  Get all your data in order
This would include at least the wx.Printout object with the printer commands, 
and will usually include a wx.PrintDialogData instance as well. 

Step 2  Create a wx.Printer instance 
To create the instance, use the constructor wx.Printer(data=None). The optional 
data parameter is an instance of wx.PrintDialogData. If included, the data in that 
instance governs the printing, so generally, you’ll want to include one of those. 

Step 3  Print with the wx.Printer method Print ()
The Print() method takes the following parameters:

Print(parent, printout, prompt=True). 

The parent instance is a window to use as the parent window for any dialogs that 
are triggered while printing. The printout is your wx.Printout object to print. If 
prompt is True, the printer dialog box is displayed before printing, otherwise 
printing will start immediately. 

 The Print() method returns True if printing was successful. If not, you can 
call  the printer method GetLastError() and get back one of the constants 
wx.PRINTER_CANCELLED (if the failure was due to the user canceling printing), 
wx.PRINTER_ERROR (if the failure occurred during the printing itself), or 
wx.PRINTER_NO_ERROR (if Print() returned True and nothing went wrong. 

 There are two other things you can do with a wx.Printer instance: 

■ You can display the abort dialog box with CreateAbortWindow(parent,
printout), where parent and printout are as in the Print() method. If the 
user has aborted the print job, you can find out by calling the Abort()
method, which will return True in that case. 



How can I perform a print preview? 519
■ You can explicitly display the print dialog with PrintDialog(parent), and 
you can retrieve the active print data object with GetPrintDialogData(). 

17.5 How can I perform a print preview? 

One of the advantages of the device contexts as they are implemented in wxPy-
thon is that it makes it easy to manage print preview, since most of the function-
ality comes from just replacing the printer device context with a screen device 
context. However, the print preview API is a bit different than for regular print-
ing. For one thing, since print preview takes place on screen in a window, wxPy-
thon provides a frame class for previewing. The next three sections describe the 
print preview process.

Step 1  Create preview instance
The first step in a print preview is creating an instance of the class wx.PrintPre-
view, which is analogous to wx.Printer. Here is the constructor. 

wx.PrintPreview(printout, printoutForPrinting, data=None) 

Notice that where the wx.Printer instance took the parent window in the con-
structor, and the printout in the printing method, wx.PrintPreview handles the 
printout in the constructor. The first parameter to the constructor is printout, 
the wx.Printout object used to manage the preview. The printoutForPrinting
parameter is another wx.Printout object. If it is not None, the print preview win-
dow, when displayed, contains a Print button that starts the print to the printer 
process. The printoutForPrinting printout object is used for the actual print. If 
the printoutForPrinting parameter is None, the button is not displayed. Of 
course, there is nothing preventing you from passing the same instance to both 
printout and printoutForPrinting, or from having both instances being identi-
cal versions of your custom printout class. The data parameter is either a 
wx.PrintData object or a wx.PrintDialogData object. If specified, it is used to con-
trol the print preview. In listing 17.1, we displayed an example of using a print 
preview in the OnPrintPreview() method of the window.

Step 2  Create preview frame
Once you have your wx.PrintPreview, you need the frame in which to view it. This 
is provided by the class wx.PreviewFrame, which is a subclass of wx.Frame provid-
ing the basic user interaction widgets for the preview. The constructor for 
wx.PreviewFrame allows you to pass it your wx.PrintPreview instance.



520 CHAPTER 17 
The wxPython printing framework
wx.PreviewFrame(preview, parent, title, pos=wx.DefaultPosition, 
        size=wx.DefaultSize, style=wx.DEFAULT_FRAME_STYLE, 
        name="frame") 

The only really interesting parameter here is preview, which takes the wx.Print-
Preview instance to be previewed. Everything else is standard wx.Frame boiler-
plate. The wx.PreviewFrame does not define any custom styles or events.

Step 3  Initialize the frame
Before you Show() your wx.PreviewFrame, you need to call the Initialize()
method, which creates the internal pieces of the window and does other internal 
accounting. Once you Show() the frame, the buttons on the frame manage navi-
gating through the preview and zooming and the like with no further interven-
tion on your part. Should you want to intervene, you can look at the methods 
CreateControlBar() and CreateCanvas(), which create internal objects of the 
class wx.PreviewControlBar and wx.PreviewCanvas, respectively. Overriding those 
methods to create your own canvas and/or control bar objects, allows you to cus-
tomize the look and feel of your print preview window. 

17.6 Summary 

■ There is a general print framework in wxPython which goes beyond merely 
printing HTML to allow you to print anything that can be drawn to a device 
context. The main class in this framework is wx.Printout, but wx.Printer
and wx.PrintPreview are also prominent. 

■ The wx.Printout class manages the graphical details of your print, and 
includes several lifecycle methods which can be overridden to customize 
the behavior and data used during your print session. The printing takes 
place during the method OnPrintPage(). 

■ The standard dialogs for printer setup and page setup are accessible from 
wxPython. The printer setup dialog is an instance of wx.PrintDialog, and 
the page setup dialog is an instance of wx.PageSetupDialog. Both dialogs 
have associated data classes that allow your program to manipulate all the 
values displayed in the dialogs. 

■ Once the data is in place, actually sending it to the printer is a relatively 
straightforward application of the wx.Printer class. You can use the 
wx.PrintPreview class to manage a print preview session, which includes a 
print preview frame, and the option to specify normal printing behavior 
from that frame. 



Using other 
wxPython functionality
This chapter covers
■ Placing objects on a clipboard
■ Using the drop target
■ Transferring and retrieving custom data objects 
■ Setting timed events using wx.Timer
■ Writing multithreaded wxPython applications
521



522 CHAPTER 18 
Using other wxPython functionality
After seventeen chapters and over five hundred pages, we still haven’t covered 
everything that wxPython can do. In this chapter, we’ll cover features that, while 
useful, aren’t large enough to justify an entire chapter on their own. They include 
how to work with objects for clipboards, drag and drop operations, timers, and how
to implement multithreading.

18.1 Putting objects on the clipboard 

The clipboard and drag and drop features are closely related in wxPython. In 
both cases, the inter-window communication is mediated using an instance of 
wx.DataObject or one of its subclasses. The wx.DataObject is a special data object 
which contains metadata describing the formats that can be used to output the 
data. We’ll start by discussing the clipboard, and then we’ll talk about how drag 
and drop is handled differently. 

 There are three elements to a cut and paste operation. 

■ source
■ clipboard
■ target

If the source is in your application, your application is responsible for creating an 
instance of wx.DataObject and handing it off to the clipboard object. Often, the 
source for the clipboard data is external to your application.

 The clipboard is a global object that holds onto the data and interacts with the 
underlying system clipboard as needed. 

 The target object is responsible for retrieving the wx.DataObject from the 
clipboard and converting it into some kind of useful data for your application. 

18.1.1 Getting data in the clipboard

If you want your application to be a source for a clipboard event, meaning you 
want to be able to cut or copy data to the clipboard, place that data inside a 
wx.DataObject wrapper. The wx.DataObject wrapper class allows you to have 
metadata, meaning that the object also knows what kind of formats it can be read 
from or written as. This would be important if, for example, you were writing a 
word processing program and wanted to give the user the option of pasting in 
data as unformatted text or as formatted rich text. Most of the time, however, you 
don’t need that much power or flexibility in your clipboard activity. wxPython 



Putting objects on the clipboard 523
provides three predefined subclasses of wx.DataObject for the most common use 
cases: plain text, bitmap image, and a filename. All of these derived objects are 
subclasses of wx.DataObject via the concrete subclass wx.DataObjectSimple. The 
data object simple class is specifically meant to be the parent class for data objects 
that have exactly one format.

 To pass plain text, create an instance of the class wx.TextDataObject, using 
its constructor: 

wx.TextDataObject(text="") 

The text parameter is the text that you want to pass to the clipboard. If you don’t 
know the text when you create the object, you can set the text with the Set-
Text(text) method. You can recover the text using the GetText() method, and you 
can also find out how long the text is with the method GetTextLength(). 

 Having created the data object, you must then access the clipboard. The sys-
tem clipboard is a global object in wxPython, named wx.TheClipboard. To use the 
clipboard, open it using the clipboard method Open(). The method returns a 
Boolean True if the clipboard has been opened, and False otherwise. It is possible 
for the clipboard open to fail if the clipboard is being written to by another appli-
cation, so you should check the return value before using the clipboard. When 
you are done using the clipboard, close it by calling the clipboard method 
Close(). Leaving the clipboard open can block other clipboard users, so the goal 
is to have it open for as small an amount of time as possible. 

18.1.2 Manipulating data in the clipboard

While you have the clipboard open, you can manipulate the data object it holds in 
a couple of different ways. You can place your object on the clipboard with Set-
Data(data), where the data parameter is any wx.DataObject instance. You can 
empty the clipboard with the method Clear(). If you want the data on the clip-
board to survive after the close of your application, you must call the method 
Flush(), which instructs the system to hold on to your data. Otherwise, the 
wxPython clipboard object is cleared when your application exits. 

 Here is the code to add text to the clipboard: 

text_data = wx.TextDataObject("hi there") 
if wx.TheClipboard.Open(): 
    wx.TheClipboard.SetData(text_data) 
    wx.TheClipboard.Close() 



524 CHAPTER 18 
Using other wxPython functionality
18.1.3 Retrieving text data from the clipboard

Recovering text data is also rather simple. Again, you need to retrieve and open 
the clipboard. Once you have the clipboard, call the method GetData(data), 
where data is an instance of some concrete subclass of wx.DataObject. As we’ll see 
in a moment, the data parameter should not have any actual data of its own 
when the method is called. This is an unusual getter, in that the return value of 
the method is not what you would expect—your data. Instead, the return value 
of this method is True if the data in the clipboard is able to be output in some for-
mat compatible with the data object passed in to the method. In this case, since 
we are passing in a wx.TextDataObject, a True result means that the clipboard 
data can be converted to plain text. Another way to look at it is if the method 
returns True, the clipboard data has been placed into the data object. If your data 
object is not compatible with the format of the data in the clipboard the method 
returns False. So, boilerplate code to retrieve text data from the clipboard looks 
like this. 

text_data = wx.TextDataObject() 
if wx.TheClipboard.Open(): 
    success = wx.TheClipboard.GetData(text_data) 
    wx.TheClipboard.Close() 
if success: 
    return text_data.GetText() 

Note that when you retrieve the data from the clipboard it does not matter which 
application placed it there. The data in the clipboard itself is managed by the 
underlying operating system, and wxPython’s responsibility is to make sure that 
the formats match up behind the scenes to ensure that you get only data formats 
that you can handle. 

18.1.4 The clipboard in action

In this section, we’ll display a simple example that illustrates how to pass data to 
and from the clipboard. It’s a frame with two buttons that allows the user to copy 
and paste text. When you run it, the example should look like figure 18.1. 

 Listing 18.1 displays the code used to produce figure 18.1. 
 
 
 
 
 
 



Putting objects on the clipboard 525
import wx 

t1_text = """\ 
The whole contents of this control 
will be placed in the system's 
clipboard when you click the copy 
button below. 
""" 

t2_text = """\ 
If the clipboard contains a text 
data object then it will be placed 
in this control when you click 
the paste button below. Try 
copying to and pasting from 
other applications too! 
""" 

class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="Clipboard", 
                          size=(500,300)) 
        p = wx.Panel(self) 

        self.t1 = wx.TextCtrl(p, -1, t1_text, 
                              style=wx.TE_MULTILINE|wx.HSCROLL) 
        self.t2 = wx.TextCtrl(p, -1, t2_text, 
                              style=wx.TE_MULTILINE|wx.HSCROLL) 
        copy = wx.Button(p, -1, "Copy") 
        paste = wx.Button(p, -1, "Paste") 

        fgs = wx.FlexGridSizer(2, 2, 5, 5) 
        fgs.AddGrowableRow(0) 
        fgs.AddGrowableCol(0) 

Listing 18.1 A sample clipboard transaction

Figure 18.1  
An example frame that 
uses the clipboard



526 CHAPTER 18 
Using other wxPython functionality
        fgs.AddGrowableCol(1) 
        fgs.Add(self.t1, 0, wx.EXPAND) 
        fgs.Add(self.t2, 0, wx.EXPAND) 
        fgs.Add(copy, 0, wx.EXPAND) 
        fgs.Add(paste, 0, wx.EXPAND) 
        border = wx.BoxSizer() 
        border.Add(fgs, 1, wx.EXPAND|wx.ALL, 5) 
        p.SetSizer(border) 

        self.Bind(wx.EVT_BUTTON, self.OnDoCopy, copy) 
        self.Bind(wx.EVT_BUTTON, self.OnDoPaste, paste) 

    def OnDoCopy(self, evt):   
        data = wx.TextDataObject() 
        data.SetText(self.t1.GetValue()) 
        if wx.TheClipboard.Open(): 
            wx.TheClipboard.SetData(data)   
            wx.TheClipboard.Close() 
        else: 
            wx.MessageBox("Unable to open the clipboard", "Error") 

    def OnDoPaste(self, evt):   
        success = False 
        data = wx.TextDataObject() 
        if wx.TheClipboard.Open(): 
            success = wx.TheClipboard.GetData(data)   
            wx.TheClipboard.Close() 

        if success: 
            self.t2.SetValue(data.GetText())   
        else: 
            wx.MessageBox( 
                "There is no data in the clipboard in the required format",
                "Error") 

app = wx.PySimpleApp() 
frm = MyFrame() 
frm.Show() 
app.MainLoop() 

In the next section, we’ll discuss how to pass other data formats such as bitmaps.

18.1.5 Passing other data formats

Passing bitmaps back and forth via the clipboard is nearly identical to passing text. 
The data object subclass you use is wx.BitmapDataObject, and its getter and setter 
are called GetBitmap() and SetBitmap(bitmap). The data passed to and from the 
clipboard via this data object must be of the type wx.Bitmap. 

Copy button event handler

Placing data 
on clipboard

Paste button event handler

Getting data 
from clipboard

Updating the 
text widget



Being the source of a drag and drop 527
 The final predefined data object type is wx.FileDataObject. Typically, this 
data object is used in drag and drop (discussed in section 18.2), such as when 
you drop a file from your Explorer or Finder window onto your application. You 
can use this data object to receive filename data from the clipboard, and you can 
retrieve the filenames from the data object with the method GetFilenames(), 
which returns a list of strings where each string is one filename that has been 
added to the clipboard. You can place data onto the clipboard using this data 
object using the method AddFile(file), which adds a filename string to the 
data object. There are no other methods to manipulate the list directly, so you’re 
on your own if you want to perform other manipulations. Later in this chapter 
we’ll discuss how to transfer custom objects via the clipboard, and how to drag 
and drop objects.

18.2 Being the source of a drag and drop 

Drag and drop is functionally similar to cut and paste. In both cases, you are 
transferring data between various parts of your own application or between two 
different applications. Since the problem of managing data and formats is nearly 
identical, wxPython uses the same wx.DataObject hierarchy to ensure that for-
mats are handled properly. 

 The biggest difference between drag and drop and cut and paste is that cut 
and paste relies on the existence of the centralized clipboard. Since the clip-
board manages the data, the source application is done with the operation as 
soon as it passes it along—the source doesn’t care what happens after that. Not 
so with a drag and drop. Not only does the source application need to create a 
drag manager object to serve the purpose of the clipboard, but it must also wait 
for the target application to respond. Unlike a clipboard operation, in drag and 
drop it is the target application that gets to decide whether the operation is a cut 
or a copy, so the source must wait to find out what it is expected to do with the 
transferred data. 

 Typically, you will start your drag source operation from inside an event han-
dler, often a mouse down event, since the drag generally happens with the mouse 
down. Creating a drag source requires four steps: 

1 Create data object

2 Create wx.DropSource instance

3 Execute drag operation

4 Cancel or accept drop



528 CHAPTER 18 
Using other wxPython functionality
Step 1  Create a data object
The first step is to create your data object. This is done exactly as described 
earlier for a clipboard operation. For simple data, it is easiest to use the pre-
defined subclasses of wx.DataObject. Data object in hand, you can create a drop 
source instance. 

Step 2  Create drop source instance
The next step is to create an instance of wx.DropSource, which is the object that 
will play a transfer role analogous to that of the clipboard. The constructor for 
wx.DropSource is. 

wx.DropSource(win, iconCopy=wx.NullIconOrCursor, 
        iconMove=wx.NullIconOrCursor, 
        iconNone=wx.NullIconOrCursor) 

The win argument is the window object which initiates the drag and drop opera-
tion. The other three parameters allow you to customize the graphic used as the 
mouse is dragged for locations that will result in a copy, in a move, and where the 
drop is not allowed. If not specified, system defaults will be used. The graphics 
need to be wx.Cursor objects on MS Windows systems, but are wx.Icon objects on 
Unix—the Mac OS currently ignores your custom graphic.

 Once you have your wx.DropSource instance, associate your data object to it 
with the method SetData(data). Next, we’ll describe the actual drag.

Step 3  Execute the drag
The drag operation is begun by calling the drop source method DoDrag-
Drop(flags=wx.Drag_CopyOnly). The flags parameter specifies which operations 
the target can perform on the data. Legal values are wx.Drag_AllowMove, which 
authorizes the target to perform either a move or a copy, wx.Drag_DefaultMove, 
which not only authorizes both a move or a copy, but makes the move operation 
the default, and wx.Drag_CopyOnly, indicating that the target can only specify a 
copy operation. 

Step 4  Handle the drop
The DoDragDrop() method will not return until the drop is either canceled or 
accepted by a target. In the meantime, your application thread is blocked, 
although paint events will continue to be sent. The return value of DoDrag-
Drop() is based on the operation requested by the target and consists of one of 
the following:



Being the source of a drag and drop 529
■ wx.DragCancel for a canceled operation 
■ wx.DragCopy for a copy 
■ wx.DragMove for a move
■ wx.DragNone on an error 

It is your application’s responsibility to respond to the return value appropriately. 
Typically, this means doing nothing in response to the copy, but deleting the 
dragged data in response to a move. 

18.2.1 Dragging in action

Listing 18.2 displays a complete drag source control suit-
able for testing by dragging the arrow graphic to any 
application on your system that accepts text. Figure 18.2 
displays that example.

 

import wx 

class DragController(wx.Control): 
    """ 
    Just a little control to handle dragging the text from a text 
    control. We use a separate control so as to not interfere with 
    the native drag-select functionality of the native text control. 
    """ 
    def __init__(self, parent, source, size=(25,25)): 
        wx.Control.__init__(self, parent, -1, size=size, 
                            style=wx.SIMPLE_BORDER) 
        self.source = source 
        self.SetMinSize(size) 
        self.Bind(wx.EVT_PAINT, self.OnPaint) 
        self.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown) 
        
    def OnPaint(self, evt): 
        # draw a simple arrow 
        dc = wx.BufferedPaintDC(self) 
        dc.SetBackground(wx.Brush(self.GetBackgroundColour())) 
        dc.Clear() 
        w, h = dc.GetSize() 
        y = h/2 
        dc.SetPen(wx.Pen("dark blue", 2)) 
        dc.DrawLine(w/8,   y,  w-w/8, y) 
        dc.DrawLine(w-w/8, y,  w/2,   h/4) 
        dc.DrawLine(w-w/8, y,  w/2,   3*h/4) 

Listing 18.2 A small drag source control

Figure 18.2 The drop 
source control as it 
looks on screen



530 CHAPTER 18 
Using other wxPython functionality
    def OnLeftDown(self, evt): 
        text = self.source.GetValue() 
        data = wx.TextDataObject(text) 
        dropSource = wx.DropSource(self)   
        dropSource.SetData(data)   
        result = dropSource.DoDragDrop(wx.Drag_AllowMove)   
        if result == wx.DragMove: 
            self.source.SetValue("")   
        
class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="Drop Source") 
        p = wx.Panel(self) 
        label1 = wx.StaticText(p, -1, "Put some text in this control:") 
        label2 = wx.StaticText(p, -1, 
           "Then drag from the neighboring bitmap and\n" 
           "drop in an application that accepts dropped\n" 
           "text, such as MS Word.") 
        text = wx.TextCtrl(p, -1, "Some text") 
        dragctl = DragController(p, text) 
        sizer = wx.BoxSizer(wx.VERTICAL) 
        sizer.Add(label1, 0, wx.ALL, 5) 
        hrow = wx.BoxSizer(wx.HORIZONTAL) 
        hrow.Add(text, 1, wx.RIGHT, 5) 
        hrow.Add(dragctl, 0) 
        sizer.Add(hrow, 0, wx.EXPAND|wx.ALL, 5) 
        sizer.Add(label2, 0, wx.ALL, 5) 
        p.SetSizer(sizer) 
        sizer.Fit(self) 

app = wx.PySimpleApp() 
frm = MyFrame() 
frm.Show() 
app.MainLoop() 

Next, we’ll show you what drag and drop looks like from the target side.

18.3 Being the target of a drag and drop 

The steps required to be a drag and drop target roughly mirror the steps involved 
in being a source. The biggest difference is that on the source side you can use the 
class wx.DropSource directly; on the target side, you must first write your own cus-
tom subclass of wx.DropTarget. Once you have your target class, you’ll need to cre-
ate an instance of it and associate that instance with any wx.Window instance by 
using the wx.Window method SetDropTarget(target). With a target set, that 
wx.Window object, whether it’s a frame, a button, a text area, or other widget, 

Creating the drop source

Setting the data

Performing 
the drop

Deleting from 
source if desired



Being the target of a drag and drop 531
becomes a valid drop target. In order to receive data on your drop target you must 
also create a wx.DataObject instance of the desired type and associate it with the 
drop target with the drop target method SetDataObject(data). You need to pre-
define the data object before the actual drop operation so that the drop target will 
be able to negotiate formats correctly. To retrieve the data object from the target, 
there’s a getter method GetDataObject(). The boilerplate code displayed here 
allows the drop target to receive text, and only text. This is because the data object 
has been set to an instance of wx.TextDataObject. 

class MyDropTarget(wx.DropTarget): 

    def __init__(self): 
        self.data = wx.TextDataObject() 
        self.SetDataObject(data) 

target = MyDataTarget() 
win.SetDropTarget(target) 

18.3.1 Using your drop target
The various event functions of your wx.DropTarget subclass get called when a 
drop occurs. The most important of these is OnData(x, y, default), which is the 
one event method that you must override in your custom drop target class. The x
and y parameters are the location of the cursor at the time of the drop. The 
default parameter is the default result of the drop operation (i.e., copy or move), 
and is one of the four values listed earlier as possible return values for DoDrag-
Drop(). Exactly which value gets passed as the default is based on the underlying 
operating system, the flags passed to DoDragDrop(), and the state of the modifier 
keyboard keys when the drop occurs. In practice, this usually means that if no key-
board keys are pressed, you get the default as specified by DoDragDrop(), but if the 
control or command key is pressed, you get the other operation if both are 
allowed by the call to DoDragDrop(). Within the OnData() method (and only within 
the OnData() method), you can call GetData(). The GetData() method takes the 
actual data from the drop source and puts it in the data object associated with 
your drop target object. Contrary to your probable expectation, GetData() does 
not return the data object, which is one reason why you would usually hold onto 
your data object as an instance variable. Here is the boilerplate code for 
MyDropTarget.OnData(). 

def OnData(self, x, y, default): 
    self.GetData() 
    actual_data = self.data.GetText() 
    # Do something with the data here... 
    return default 



532 CHAPTER 18 
Using other wxPython functionality
The return value of OnData() should be the resulting operation—you should 
return the default value, unless there is an error and you need to return wx.Drag-
None. Once you have the data, you can do whatever you want with it. Remember, 
since OnData() returns information about the resulting operation, rather than the 
data itself, if you want to use the data elsewhere, you need to put it in an instance 
variable where it will still be accessible outside the method. 

 After the drop operation is either completed or canceled, the result value 
returned from OnData() is returned from DoDragDrop(), and the drop source’s 
thread continues forward. 

 Within the wx.DropTarget class there are five On... methods that you can over-
ride in your subclass to provide custom behavior when the target invoked. We’ve 
already seen OnData(). Here are the others. 

 OnDrop(x, y), 
 OnEnter(x, y, default), 
 OnDragOver(x, y, default), and 
 OnLeave(). 

The meanings of the x, y, and default parameters are all as in OnData(). You do 
not need to override any of these methods, but you can if you want to provide cus-
tom feedback or functionality in your application. 

 The OnEnter() method is called first, when the mouse enters the drop target. 
You might use this to update a status window, for example. It returns the opera-
tion to be performed if a drop occurs (usually the one specified by the default
parameter) or wx.DragNone if you will not accept the drop. The return value of 
this method is used by wxPython to specify which icon or cursor is used as the 
mouse glides over the window. The method OnDragOver() is called continuously 
as the mouse is inside the window, and again, it returns the desired operation 
or wx.DragNone. The method OnDrop() is called when the mouse is released and 
the drop occurs, and it calls OnData() by default. Finally, OnLeave() is called as the 
cursor exits the window in question.

 As with data objects, wxPython provides a couple of predefined drop target 
classes to cover the most common cases. You still need to create a subclass and 
override a method to handle the data, but in this case the predefined class han-
dles the wx.DataObject for you. For text, the class wx.TextDropTarget provides the 
overridable method OnDropText(x, y, data). You would override this method 
instead of OnData(). The x and y are the drop coordinates, and the data parame-
ter is the string being dropped, which you can use immediately without having to 
make further queries about data objects. Your override should return True if you 



Being the target of a drag and drop 533
accept the new text, and False otherwise. For file drops, the predefined class is 
wx.FileDropTarget, and the method to override is OnDropFiles(x, y, filenames), 
where filenames is a list of the names of the files being dropped. Again, you can 
manipulate them as needed, and return True or False when done. 

18.3.2 Dropping in action

The code sample in listing 18.3 displays how to create a frame that will accept file 
drops. You can test this code by dragging a file from your Explorer or Finder win-
dow onto the frame, and viewing the file information displayed in the frame. Fig-
ure 18.3 displays what the code looks like when it’s running. 

 

import wx 

class MyFileDropTarget(wx.FileDropTarget):   
    def __init__(self, window): 
        wx.FileDropTarget.__init__(self) 
        self.window = window 

    def OnDropFiles(self, x, y, filenames):   
        self.window.AppendText("\n%d file(s) dropped at (%d,%d):\n" % 
                               (len(filenames), x, y)) 
        for file in filenames: 
            self.window.AppendText("\t%s\n" % file) 

class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="Drop Target", 
                          size=(500,300)) 
        p = wx.Panel(self) 
        label = wx.StaticText(p, -1, "Drop some files here:") 

Listing 18.3 The code for a file drop target

Figure 18.3  
The drop target frame

Declaring the 
drop target

Dropping file handler data



534 CHAPTER 18 
Using other wxPython functionality
        text = wx.TextCtrl(p, -1, "", 
                           style=wx.TE_MULTILINE|wx.HSCROLL) 
        sizer = wx.BoxSizer(wx.VERTICAL) 
        sizer.Add(label, 0, wx.ALL, 5) 
        sizer.Add(text, 1, wx.EXPAND|wx.ALL, 5) 
        p.SetSizer(sizer) 
        dt = MyFileDropTarget(text)   
        text.SetDropTarget(dt) 

app = wx.PySimpleApp() 
frm = MyFrame() 
frm.Show() 
app.MainLoop() 

So far, we’ve limited the data transfer discussion to predefined wxPython objects. 
Next, we’ll discuss how to put your own data on the clipboard.

18.4 Transferring custom objects

Working with wxPython’s predefined data objects limits you to plain text, bit-
maps, or files. To be creative, you can allow any of your custom objects to be trans-
ferred between applications. In this section, I’ll show you how to add more 
advanced features to your wxPython application, like transferring a custom data 
object and transferring an object in multiple formats.

18.4.1 Transferring a custom data object 

Although the available data object options of text, bitmap, and list of filenames 
are flexible enough to cover a variety of uses, sometimes you will need to transfer
a custom object, such as your own graphic format, or a custom data structure. 
Next, we’ll cover a mechanism for transferring custom data objects, while retain-
ing control over what kind of data your object will accept. The limitation on this 
method is that, for reasons that will be abundantly clear in a moment, it only 
works within wxPython. You cannot use this method to allow other applications 
to read your custom format. To send RTF to Microsoft Word, this mechanism 
won’t work. 

 To do the custom data transfer, we’re going to use the wxPython class wx.Cus-
tomDataObject, which is designed to handle arbitrary data. The constructor for 
wx.CustomDataObject is. 

wx.CustomDataObject(format=wx.FormatInvalid) 

Making the text a target



Transferring custom objects 535
The format parameter is technically an instance of the class wx.DataFormat, how-
ever, for our purposes, we can just pass it a string, and wxPython will take care of 
the data type. We only need the string to act as a label to differentiate one custom 
format from another. Once we have our custom data instance, we can put data 
into it using the method SetData(data). The catch here is that in wxPython, the 
data parameter has to be a string. An annoying limitation, but there’s a Python 
process for converting almost any Python object into a string—the pickle mod-
ule. So, the boilerplate code will look something like this. 

data_object = wx.CustomDataObject("MyNiftyFormat") 
data = cPickle.dumps(my_object) 
data_object.SetData(data) 

After this snippet, you can pass the data_object to the clipboard or another data 
source to continue the data transfer.

18.4.2 Retrieving a custom object
To retrieve the object, perform the same basic steps. For a clipboard retrieve, cre-
ate a custom data object with the same format, then get the data and unpickle it. 

data_object = wx.CustomDataObject("MyNiftyFormat") 
if wx.TheClipboard.Open(): 
    success = wx.TheClipboard.GetData(data_object) 
    wx.TheClipboard.Close() 
if success: 
    pickled_data = data_object.GetData() 
    object = cPickle.loads(pickled_data) 

A drag and drop works similarly. Set the data object of the drop source to your 
custom data object with the pickled data, and the data target unpickles the data in 
its OnData() method and puts the data someplace useful. 

 Another way to create custom data objects is to build your own subclass of 
wx.DataObject. If you choose to go that route, you’ll want to make your class a 
subclass of either wx.PyDataObjectSimple (for the generic object), or wx.PyText-
DataObject, wx.PyBitmapDataObject, or wx.PyFileDataObject. That will enable 
you to override all the necessary methods. 

18.4.3 Transferring an object in multiple formats 
The big advantage of using wxPython data objects for data transfer is that the data 
objects are aware of their format. A data object can even manage the same data in 
multiple formats. For example, you may want your own application to receive your 
data in your own custom formatted text object, but you may still want other appli-
cations to be able to receive the data as plain text. 



536 CHAPTER 18 
Using other wxPython functionality
 The mechanism for managing this functionality is the class wx.DataObject-
Composite. All of the derived data objects we’ve seen so far have been subclasses 
of wx.DataObjectSimple. The purpose of wx.DataObjectComposite is to combine 
an arbitrary number of simple data objects into one data object. The combined 
object can deliver its data to a data object matching any of the component sim-
ple types. 

 To build a composite data object, start with the no-argument constructor 
wx.DataObjectComposite(), and then add the individual data simple objects with 
the method Add(data, preferred=False). To build a data object that combines 
your custom format with a plain text one, use. 

data_object = wx.CustomDataObject("MyNiftyFormat") 
data_object.SetData(cPickle.dumps(my_object)) 
text_object = wx.TextDataObject(str(my_object)) 
composite = wx.DataObjectComposite() 
composite.Add(data_object) 
composite.Add(text_object) 

After this, pass the composite object to the clipboard or your drop source. If the 
target class requests the data using a data object in the custom format, it receives 
the pickled object. If it requests the data as plain text, it gets the string represen-
tation. The Add() method takes a second argument, preferred, which is a Bool-
ean that marks the particular data object as the default if the target object does 
not specify a format (or specifies more than one). If no component is explicitly 
marked as preferred, the first object added is considered to be the preferred one. 

 In the next section, we’ll show you how to use a timer to manage regularly 
scheduled events.

18.5 Setting timed events using wx.Timer 

Sometimes you need your application to generate events based on the passage 
of a certain length of time. Games are certainly one usage, another might be giv-
ing a dialog a certain amount of time before it is automatically dismissed. To get 
this functionality, you can use the wx.Timer class in different ways. 

18.5.1 Generating EVT_TIMER events

The most flexible and powerful way to use a wx.Timer class is to get it to generate 
EVT_TIMER events which you can bind to just like any other event. 



Setting timed events using wx.Timer 537
Creating the timer
To create a timer, first create a wx.Timer instance using this constructor. 

wx.Timer(owner=None, id=-1) 

The owner parameter is some instance implementing wx.EvtHandler, meaning 
any wxPython widget or anything else that can receive event notifications. The 
optional id is used to differentiate this particular timer from any others. If it is 
not specified, wxPython will generate an ID number for you. If you don’t want 
to set the owner and ID parameters when you create the timer, you can do so at 
any time using the method SetOwner(owner=None, id=-1), which sets the same 
two parameters. 

Binding the timer
After you’ve created the timer, you can bind the wx.EVT_TIMER event within your 
event handling widget with a line of code as in the following. 

self.Bind(wx.EVT_TIMER, self.OnTimerEvent) 

If you need to bind handlers for more than one timer to more than one handler 
function, you can either pass each timer’s ID to Bind, or pass the timer object as 
the source parameter. 

timer1 = wx.Timer(self) 
timer2 = wx.Timer(self) 
self.Bind(wx.EVT_TIMER, self.OnTimer1Event, timer1) 
self.Bind(wx.EVT_TIMER, self.OnTimer2Event, timer2) 

Just like all the other event code we’ve seen, this causes wxPython to react to the 
wx.EVT_TIMER event by passing control to the OnTimerEvent() method (or what-
ever method you put in that place). 

Starting and stopping the timer
After the timer event is bound, all you need to do is start the timer, with the 
method Start(milliseconds=-1, oneShot=False). The milliseconds parameter 
is, of course, the number of milliseconds that will elapse between the timer send-
ing out the wx.EVT_TIMER events. Not all operating systems have system clocks 
with millisecond precision—if the operating system wxPython is running on does 
not, then the best timing available will be used. If the milliseconds parameter is 
-1, then the interval value when the timer was last started will be used (meaning 
that milliseconds actually is required the first time a wx.Timer is started). If one-
Shot is True, then the timer will fire its event once and then stop itself. Otherwise, 



538 CHAPTER 18 
Using other wxPython functionality
you must explicitly stop the timer with the Stop() method. The Start() method 
returns a Boolean value indicating success or failure in starting the timer. Starting 
the timer may fail under unusual circumstances on systems where timers are a 
limited resource. Listing 18.4 uses this mechanism to drive a digital clock, updat-
ing the display once every second.

import wx 
import time 

class ClockWindow(wx.Window): 
    def __init__(self, parent): 
        wx.Window.__init__(self, parent) 
        self.Bind(wx.EVT_PAINT, self.OnPaint)   
        self.timer = wx.Timer(self)           
        self.Bind(wx.EVT_TIMER, self.OnTimer, self.timer)   
        self.timer.Start(1000)   

    def Draw(self, dc):   
        t = time.localtime(time.time()) 
        st = time.strftime("%I:%M:%S", t) 
        w, h = self.GetClientSize() 
        dc.SetBackground(wx.Brush(self.GetBackgroundColour())) 
        dc.Clear() 
        dc.SetFont(wx.Font(30, wx.SWISS, wx.NORMAL, wx.NORMAL)) 
        tw, th = dc.GetTextExtent(st) 
        dc.DrawText(st, (w-tw)/2, (h)/2 - th/2) 
        
    def OnTimer(self, evt):   
        dc = wx.BufferedDC(wx.ClientDC(self)) 
        self.Draw(dc) 

    def OnPaint(self, evt): 
        dc = wx.BufferedPaintDC(self) 
        self.Draw(dc) 

class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="wx.Timer") 
        ClockWindow(self) 

app = wx.PySimpleApp() 
frm = MyFrame() 
frm.Show() 
app.MainLoop() 

Listing 18.4 A simple digital clock

Creating the timer

Binding a 
timer eventSetting time interval

Drawing current time

Displaying the time event handler



Creating a multithreaded wxPython application 539
Identifying current timer state
You can tell the timer’s current state with the method IsRunning() and the cur-
rent interval with the method GetInterval(). The method IsOneShot() will 
return True if the timer is running and is set to only fire once.

 The wx.TimerEvent instance is nearly identical to its parent wx.Event class, but 
it does include a wx.GetInterval() method to return the interval of the timer in 
question. Using the event method GetId() returns the timer ID, in case you have 
bound events from multiple timers to the same handler and want to do different 
actions based on the specific timer which is firing. 

18.5.2 Learning other timer uses
Another way to use the timer, preferable in the case where there’s no obvious 
event target for the timer event, is to subclass wx.Timer. In your subclass you can 
override the method Notify(). That method is automatically called every time 
the timer interval passes—in the parent class, it’s the Notify() method that trig-
gers the timer event. Your subclass is under no obligation to trigger a timer event, 
however, and you can do anything you want in the Notify() method to respond to 
the timer’s interval. 

 To trigger one specific action at some time in the future, there’s a shortcut 
class called wx.FutureCall. Just about the only thing you need to know about 
wx.FutureCall is in this constructor. 

wx.FutureCall(interval, callable, *args, **kwargs) 

Once created, the wx.FutureCall instance waits an interval number of millisec-
onds, then calls the callable object passed to callable using any other positional 
or keyword arguments, which are passed to the callable using normal Python 
rules for argument passing. The interval is only triggered once, which is similar to 
a wx.Timer with oneShot=True. Once you’ve created the future call instance, you 
are done. Unless you plan to use the instance again, you don’t need to keep a ref-
erence to it. 

18.6 Creating a multithreaded wxPython application 

In most GUI applications, it’s useful for long-running processes to run in the 
background of the application so that they don’t interfere with the user’s interac-
tion with the rest of the application. The mechanism for allowing background 
processing is typically to spawn a thread and allow the long process to run in that 
thread. And that’s what you’ll do in a wxPython program, with a couple of specific 
points that we’ll describe in this section. 



540 CHAPTER 18 
Using other wxPython functionality
 The most important point is that GUI operations must take place in the main 
thread, or the one that the application loop is running in. Running GUI opera-
tions in a separate thread is a good way for your application to crash in unpredict-
able and hard-to-debug ways. Technical reasons for this include the fact that 
many Unix GUI libraries are not thread-safe and issues involving the creation of 
UI objects under MS Windows. wxPython is not designed to have its own events 
take place in multiple threads, so we recommend that you not try it. 

 This prohibition includes any item that interacts with the screen, specifically, 
including wx.Bitmap objects. You’re probably okay using wx.Image though, since 
that class does not typically deal with display issues. 

 Typically with wxPython applications, the background threads send messages 
to the UI thread for all UI updates, rather than taking care of the GUI updates 
themselves. Fortunately, there’s no limit imposed by wxPython concerning the 
number of background threads you can have. 

 In this section, we’ll look at a few ways you can effectively multithread your 
wxPython application. The most common technique is to use the wx.CallAfter()
function, discussed next. Then, we’ll look at how to set up a parallel event queue 
using Python’s Queue object. Finally, we’ll walk through how you can develop a 
customized solution for multithreading.

18.6.1 Working with the global function wx.CallAfter()

Listing 18.5 displays a sample use of threads, using the wxPython global function 
wx.CallAfter(), which is the easiest way to pass messages to your main thread. 
Simply, wx.CallAfter() allows the thread to call a function on a different thread 
when the current event processing completes. The functional object passed to 
wx.CallAfter() will always be executed in the main thread.

 Figure 18.4 displays the resulting multithreaded frame. 

Figure 18.4  
Multithreading in the 
background



Creating a multithreaded wxPython application 541
Listing 18.5 displays the code to produce this threading example.

import wx 
import threading 
import random 

class WorkerThread(threading.Thread): 
    """ 
    This just simulates some long-running task that periodically sends 
    a message to the GUI thread. 
    """ 
    def __init__(self, threadNum, window): 
        threading.Thread.__init__(self)   
        self.threadNum = threadNum 
        self.window = window 
        self.timeToQuit = threading.Event() 
        self.timeToQuit.clear() 
        self.messageCount = random.randint(10,20) 
        self.messageDelay = 0.1 + 2.0 * random.random() 

    def stop(self): 
        self.timeToQuit.set() 

    def run(self):   
        msg = "Thread %d iterating %d times with a delay of %1.4f\n" \ 
              % (self.threadNum, self.messageCount, self.messageDelay) 
        wx.CallAfter(self.window.LogMessage, msg)   

        for i in range(1, self.messageCount+1): 
            self.timeToQuit.wait(self.messageDelay) 
            if self.timeToQuit.isSet(): 
                break 
            msg = "Message %d from thread %d\n" % (i, self.threadNum) 
            wx.CallAfter(self.window.LogMessage, msg)   
        else: 
            wx.CallAfter(self.window.ThreadFinished, self)   
         
class MyFrame(wx.Frame): 
    def __init__(self): 
        wx.Frame.__init__(self, None, title="Multi-threaded GUI") 
        self.threads = [] 
        self.count = 0 
        
        panel = wx.Panel(self) 
        startBtn = wx.Button(panel, -1, "Start a thread") 
        stopBtn  = wx.Button(panel, -1, "Stop all threads") 
        self.tc = wx.StaticText(panel, -1, "Worker Threads: 00") 

Listing 18.5 A threaded example using wx.CallAfter() to pass messages  
to the main thread

Running the thread

Posting a call to 
LogMessage

Posting a call to 
LogMessage

Posting a call to 
ThreadFinished



542 CHAPTER 18 
Using other wxPython functionality
        self.log = wx.TextCtrl(panel, -1, "", 
                               style=wx.TE_RICH|wx.TE_MULTILINE) 

        inner = wx.BoxSizer(wx.HORIZONTAL) 
        inner.Add(startBtn, 0, wx.RIGHT, 15) 
        inner.Add(stopBtn, 0, wx.RIGHT, 15) 
        inner.Add(self.tc, 0, wx.ALIGN_CENTER_VERTICAL) 
        main = wx.BoxSizer(wx.VERTICAL) 
        main.Add(inner, 0, wx.ALL, 5) 
        main.Add(self.log, 1, wx.EXPAND|wx.ALL, 5) 
        panel.SetSizer(main) 

        self.Bind(wx.EVT_BUTTON, self.OnStartButton, startBtn) 
        self.Bind(wx.EVT_BUTTON, self.OnStopButton, stopBtn) 
        self.Bind(wx.EVT_CLOSE,  self.OnCloseWindow) 

        self.UpdateCount() 

    def OnStartButton(self, evt): 
        self.count += 1 
        thread = WorkerThread(self.count, self)   
        self.threads.append(thread) 
        self.UpdateCount() 
        thread.start()   
    

    def OnStopButton(self, evt): 
        self.StopThreads() 
        self.UpdateCount() 
        

    def OnCloseWindow(self, evt): 
        self.StopThreads() 
        self.Destroy() 

    def StopThreads(self):   
        while self.threads: 
            thread = self.threads[0] 
            thread.stop() 
            self.threads.remove(thread) 
            

    def UpdateCount(self): 
        self.tc.SetLabel("Worker Threads: %d" % len(self.threads)) 
        

    def LogMessage(self, msg):   
        self.log.AppendText(msg) 
        

    def ThreadFinished(self, thread):   
        self.threads.remove(thread) 
        self.UpdateCount() 

Creating a 
thread

Starting the thread

Removing threads from pool

Logging a message

Removing a thread



Creating a multithreaded wxPython application 543
app = wx.PySimpleApp() 
frm = MyFrame() 
frm.Show() 
app.MainLoop() 

This listing uses Python’s threading module. While the C++ wxWidgets toolkit 
does offer threading tools, we recommend you stick with the Python native ones. 
They are much simpler.

 This code passes methods to the main thread using wx.CallAfter(func,
*args). Functionally, this posts an event to the main thread, after which the event 
is processed in the normal manner, and triggers the call func(*args). So in this 
case, the thread calls LogMessage() during its lifecycle, and ThreadFinished()
before it is through.

18.6.2 Managing thread communication with the queue object
Although using CallAfter() is the easiest way to manage thread communication, 
it’s not the only mechanism. You can use Python’s thread-safe Queue object to 
send command objects to the UI thread. The UI thread should be written to take 
commands from this queue in a wx.EVT_IDLE event handler. 

 Essentially, you will be setting up a parallel event queue for thread communi-
cation. The command objects can be whatever makes sense for the application, 
ranging from simple data values to thread objects whose run() method should be 
called when invoked. If you are using this method, the worker threads should call 
the global function wx.WakeUpIdle() when they add a command object to the 
queue to ensure that there will be an idle event as soon as possible. This technique 
is more complex than wx.CallAfter(), but it’s a lot more flexible. In particular, 
this mechanism can help you to communicate between two different background 
threads, although all GUI manipulation should still be on the main thread.

18.6.3 Developing your own solution 

You can also have your worker threads create instances of a wxPython event (stan-
dard or custom) and send it to a specific window in the UI thread using the global 
function wx.PostEvent(window, event). The event is added to the internal pend-
ing event queue for that window, and wx.WakeUpIdle is automatically called. The 
advantage of this approach is that the event would then walk through the typical 
wxPython event facility, meaning you get a lot of event handling functionality for 
free. The disadvantage is that you have to manage all of the thread and event pro-
cessing that the wx.CallAfter() function performs for you.



544 CHAPTER 18 
Using other wxPython functionality
18.7 Summary 

■ Drag and drop and clipboard events are very similar, both use the meta-
object wx.DataObject to mediate data formats. Default data objects exist for 
text, files, and bitmaps, but custom formats can be created. In using the 
clipboard, the global object wx.TheClipboard manages the data transfer 
and represents the underlying system clipboard. 

■ For a drag and drop operation, the drag source and drag target work 
together to manage the data transfer. The drag source event blocks until 
the drag target rules on whether the drag operation is valid. 

■ The wx.Timer class allows you to set events to happen at a set time in the 
future or periodically. The timer class can be explicitly set to trigger ordi-
nary wxPython events, or one of a couple of wrapper functions can be used. 

■ Threading in wxPython is possible, but it’s very important to make sure that 
all GUI activity takes place in the main thread. You can use the function 
wx.CallAfter() to manage interthread communication. 



index
Symbols

__main__  14

A

about box  147, 178, 182, 491
accelerator  308

special keys  309
alert box  259, 261
alignment  189, 332
alpha value  364, 388
application  16

crash  54
lifecycle  34–35
object  11, 30–31, 34, 54
subclass  31

art provider  469
autocompletion  85, 87, 94, 

106, 112
automatic resizing  48

B

best size  335
Bind  60, 65–67, 80–81, 199, 

288, 301, 537
binder object  72, 78
bitmap  359, 369–370, 400

button  201
clipboard  526
converting from image  361
drawing  378

bitmap objects, creating  361

bitmask  44
bitwise operators  383
Blit  153, 369, 376–377, 389

logical function  377
border  328, 336
box

about  147, 178, 182, 491
alert  259, 261
bounding  387, 389
checkbox  17, 211
close  225
combo  17, 221
list  17, 58, 216
sizer  174, 324–325, 348–349

box sizer  174, 325, 345
layout algorithm  348

brush  371, 384
buffer  106, 151, 370
buffer device context  151, 153
buttons  17, 199

arrow  208
bitmap  201
generic  203
radio  17, 212
toggle  162, 202

C

C++  20–27, 44, 97–98, 103, 
130, 154, 189, 202, 235, 
464, 502

adding a root  463
bridging gaps with Python 

code  80

destructor  153, 371
different from Python  84
expected data type  413
interaction with Python  28
macros in  63
manages image list  402
manages memory  362
naming conventions  33–34
object names  9
overridden by Python  78
Python class subclasses  446
sorting a tree control  467
threading tools  543
toolkit  9–10
two-stage window creation  

230
user input  490
wxWidget set  282

calltips  85, 88, 94, 97, 106
CaptureMouse  152
cell

editor  449–450
span  437

checkbox  17, 211
menu item  312
toggle menu item  311

checked menu  158
child node  464
child widgets  329
children  325
choice dialog  266
clipboard  522

bitmaps  526
clearing  523
545



546 INDEX
clipboard (continued)
event  522
example  524
file object  527
manipulating data in  523
pasting from  92
putting data in  522
retrieving data  524
transaction  525

clipping  386
region  389

close box  225
close event  226
close process  232
color database  388
color names  387
color picker  169, 275
ColumnSorterMixin  416
combo box  17, 221
command event  74, 199
command line  84, 93
command prompt  84
command recall  91
constructor  43, 210, 250,  

368, 463
message dialog  51
pull-down choice  221
spin control  209
wx.Button  200
wx.CustomDataObject  534
wx.FlexGridSizer  339
wx.Frame  40, 226
wx.Frame parameters  41
wx.grid.Grid  427
wx.GridSizer  328
wx.html.HtmlEasyPrinting  

495
wx.html.HtmlWidgetCell  

497
wx.html.HtmlWindow  487
wx.Image  357
wx.ImageList  400
wx.ListBox  217
wx.ListCtrl  398
wx.MenuItem  299
wx.MessageDialog  262
wx.Pen  381
wx.RadioBox  214
wx.RadioButton  214

wx.Slider class  206
wx.SplitterWindow  251
wx.StaticText parameters  

188
wx.TextCtrl class  190
wx.TextEntryDialog  264
wx.TreeCtrl  462

container hierarchy  69, 73
controller  126–127
coordinate axis  385
coordinate, conversion  386
crust  107
cursor  359, 364, 388

custom  366
predefined  365

custom application class  33
custom events  62, 77
cut and paste

elements  522
Pycrust shell shortcuts  92
See also drag and drop

D

design pattern  117
device context  148, 154, 357, 

367, 401, 519
creation time  368
dealing with  367
drawing to  371

device coordinates  385
dialog  51, 55

closing  260
creation  259

dialog box  165
dialog data object  514
directory selector  272
dispatcher  98, 108
display  148

gauge  205
docstring  13, 88, 97
doodle  147
drag and drop  522, 527,  

544
return value  528
target of  530
See also cut and paste

drag manager  527
drag operation  528

drag source  527
example  529

draw  148, 389
See also device context

draw images  376
draw methods, varient types  

372
drop target  531

drop  532
entering  532
exit  532
mouse over  532
return value  532

dropping, example  533
duplication  118

E

edit flag  411
edit session  412
editing, events  412
editor  109, 459

custom  451
Encapsulated PostScript  370
encodings  197
EndModal  260
errors, troubleshooting guide  

53
event  57, 59, 70

terminology  57
event binder  58, 60, 63–64

names  63
event binding  64–65

before wxPython 2.5  67
event driven  57–58, 61

application  57
architecture  59, 61

event handler  58, 60, 65, 69, 
73–74

event handling  57, 69, 76, 93
cycle  59

event loop  86
event object  57, 62–64
event processing  69, 72–73

enabling  71
event queue  58
event source  58
event triggers  62
event type  58, 60, 69



INDEX 547
event-based  68
events, sequential ID  67
ExitMainLoop  39
extended style  230

F

file dialog  165
opening  271
saving  271

file format  357, 359, 501
file picker  269
file type  358
filling  110
fixed-width  197
flex grid sizer  325, 337

comparison to grid sizer  
338

font  196
for HTML printing  495
picker  273

frame  9, 40, 225
creating  225
decoration  228
dragging  248
finding  237
floating  229
shaped  245
statusbar  49
widgets  42

functions  27

G

gauge  210
display  205

GenBitmapTextButton  203
GenBitmapToggleButton  203
generic  121

button  203
geometric shapes  371
GIF  359
Graphical User Interface.  

See GUI
greenscreen  363
grid  426

adding elements  432
auto size  439
batch process  433

cell alignment  444
cell color  444
default size  438
direct initalization  428
display attributes  442
draggable size  440
editing  449
element size  438
event types  455, 459
header labels  435
headers  433
initialize  427
inserting elements  432
keyboard navigation  457
label size  439
labels  458
minimum size  438
refresh  433
selection  440, 459
setting cell values  428
visibility  441

grid bag sizer  325, 341
dimensions  343
empty cell  344
span  344

grid control  426
element size  436

grid coordinates  442
grid label, color and font  436
grid module  427
grid sizer  325, 327, 355

layout algorithm  328
resize behavior  327

grid table  426, 429
adding elements  433

GTK  24, 244, 317–318
GUI  12, 40, 104

unit-test  140

H

handler function  64, 72, 75
help  90
history  91
history list  492
horizontal box sizer  345
HTML  17, 179, 486

cells  497
displaying  486

including wxPython wid-
gets  497

loading file  489
parser  496, 499, 503
renderer  178

HTML window
changing  491
fonts  492

htmllib  496
HTMLParser  496
Hyper Text Markup Lan-

guage. See HTML

I

icon  359
alignment  399
list  399
mode  394

id  42
in tree items  463

IDLE  85
idle

event  153
loop  59–60

image  16, 357, 400
converting from bitmap  361
creating from RGB  360
handler  359
loading  357
manipulation  361, 388
mask  363
types  402

image list  395, 400, 423–424
using  401

image objects, creating  360
imports  9
instance variables  122
intent  121
Internet Explorer  502–503
interpreter  110
inter-window communication  

522
introspect  111
introspection  14
item data  413
item, finding in list  416



548 INDEX
J

Java  20
JavaScript  487
JPEG  360

K

keyboard interrupt  93
keyboard shortcut  307, 320

PyCrust command recall  91
Keycodes  310
keypress  191

L

layout  118, 125, 170, 325
code  117

list
events  424
insertion  424

list box  17, 216
combining with checkbox  

219
creating  216

list control  394, 398, 423
adding columns  403
adding rows  403
attatching image list  402
column header events  407
column sorting  413
data storage  420
editing  411
events  405
information  416
modes  394
selection  399
sort  413
style flags  398

list event  412
list item properties  404
list item, state  404
list mode  396
ListBox  394
ListCtrl  394
logical function  383, 389
loop

event  86
main event  9, 12

M

Mac OS  6–8, 13, 24, 28, 229, 
250, 316, 503

magic literals  118, 122
main event loop  30, 77
main loop  59
MainLoop  32, 34, 54
managing resources  232
map mode  385
mapping, logical to physical  

386
mask  400
maximize  225
MDI  41, 225, 244, 256

frame  242
menu  17, 158, 294

creating  295
design  319
display string  299
length  319
manipulating  297
ordering  319
separator  51, 299
status bar text  297
tearoff  295

menu bar  49, 155
creating  294

menu event  301
binding  301

menu item  158, 303, 306, 322
add bitmap  317
adding  297
adding dynamically  300
binding multiple items  302
disabling  306
ellipsis  320
enabling  306
event  301
finding  303
groups  319
information about  300
insertion  299
manipulating  304
removal  299
styles  318
with mnemonic  309

meta-data  522
MIME-type  360

mini-frame  244
minimize  225
minimum size  334–335
mnemonic  308–309
modal dialog  259, 261
model  126–127, 133

custom  136
Model/View/Controller.  

See MVC
modules

crust  107
dispatcher  98, 108
editor  109
filling  109
grid  427
interpreter  110
introspect  111
shell  111
support  105–106

monochromatic  361
mouse click  62
mouse event  151
mouse pointer  4
Mozilla  503
MS Windows  267, 273, 309, 

317, 387, 412, 506, 540
multi-column, list control  397
multi-line  194

text control  193
Multiple Document Interface. 

See MDI
multithreaded  539
MVC  117, 137, 140, 145

compenents  126
keeping model and view 

separate  126

N

namespace  95
naming conventions  33
nested list  461
nested menus  321
notebook  86

O

object, callable  88
OnExit  37–38



INDEX 549
OnInit  11–12, 32, 34, 37–38, 
54–55

orientation, axis  385
output, directing  35

P

page setup
dialog  515
properties  516

page title  493
paint events  368
panel  227, 241
password control  189
PCX  360
pen  371, 381

predefined  382
Pending  77
pickle  535
PNG  317, 360, 395, 397, 401, 

408, 415
PNM  360
pop up  322
pop-up menu  183, 293–294, 

313, 315–317
post  60
pretty print  97
print  505

dialog  512
drawing  506
framework  507
HTML  495

print preview  519
HTML  496

print request  514
printer  505

dialog  506
events  506

printing  506
per copy  506

printing framework  507
printing session  506
printout lifecycle  505–506
ProcessEvent  72, 74, 78, 81–82
progress bar  210

box  267
dialog  267

prompt  84, 91
properties  33

proportion  339–340, 348
single direction  341

pull-down  220
Py  115

package  105
support modules  105

PyAlaCarte  104, 109
PyAlaMode  104, 109, 111
PyCrust  84–87, 90–91, 93, 95, 

102, 104, 108, 111–112, 
115

useful features  86
wrapper  99

PyFilling  104
PyGridTableBase  128,  

130–131, 133–134, 136
PyShell  104, 108, 111
Python  6, 21, 95
PYTHONPATH  53
PyUnit  140
PyWrap  99, 104

Q

queue
event  58, 67
object  543

Queue object  543

R

radio button  17, 212
radio button menu item, 

group boundaries  312
radio menu  158
radio toggle menu item  311
redirect  37
redirecting output  35
redraw  153
refactoring  117–118, 120–121, 

125, 140, 231
reflection  231
ReleaseMouse  152
renderer  445, 459

custom  446
grid  445
overridden methods   

448
predefined  445

report list
editing  411
setting values  404

report mode  397
column width  405

resize
automatic  48
direction  174

rich text  189, 193–194

S

sash  250
Scintilla  89, 197
scroll unit  239

size  240
scroll window  240

position  242
scrollbar  177, 207, 218, 225, 

238, 241, 326
events  240

scrolling area  239
separator  297
session  98
SetTopWindow  32, 36, 38, 40
shebang  13
shell  84–86, 93, 102, 111
ShellFacade  111
ShowModal  52, 167, 260
shutdown  38

emergency  39
Simplified Wrapper and Inter-

face Generator. See SWIG
size flags  332
sizer  49, 170, 172, 240–241, 

324, 350
adding children  329
calculate size  326
changing size  331
child list  329
example  350
inserting  330
nesting  329
prepend  330
removing items  330
static box  325, 349

Skip  71–72, 75–76, 80–81, 156
slider  17, 205

styles  207



550 INDEX
small icon
list  399
mode  395

spinner  208
splash screen  180
splitter  225
splitter window  250

manipulating  254
split  251
styles  253

startup tips  281
static text  186
status bar  49, 155, 493–494

multiple fields  156
status fields  157–158
stc.StyledTextCtrl  89
stretch factor  173
string, extent  380
style  45, 186

flags  227
submenu  158, 313

order of creation  314
subwidget  237
subwindow  47, 49, 55,  

162
superdoodle  147
SWIG  10, 21, 28
syntax  118

highlighting  89
sys.stderr  35
sys.stdout  35

T

tabs
calltip  97
dispatcher  98
display  97
namespace  95
session  98

tag handler  498, 500
TestCase  141
TestSuite  141
text  17, 186

angled  379
dialog  264
drawing to device context  

379
entry  189

metrics  380
style  380

text box  265
text control  412

string storage  198
thread  540

communication  543
threading module  543
TIFF  360
timer

events  536
notify  539
starting and stopping  537
state  539

tip window  281
title bar  248, 493

pattern  494
Tkinter  19
tkInter  86
toggle button  202
toggle menu item  297, 311, 

320
toolbar  17, 49, 155, 161

tools  162
toolbox windows  245
tools, to run wxPython  6
tooltip  164
top window  14
top-level window  30, 34,  

38–39, 54
transfer

custom data  534
multiple formats  535

transparent  364
mask  388

tree  272
adding elements  463
adding items  482
buttons  465
collapsing  473
connecting lines  465
data object  463
display attributes  467
display properties  466
editable  477, 483
expanding  473
image list  468
images  483
indent  476

iterating  483
iterator  471
managing items  464
navigating  471
root element  463
selection  472, 483
selection mode  466
sibling items  472
sorting  467, 483
styles  465, 483
virtual  474
visibility  476
visible  473

tree control  461, 482
tree item

data  467
images  470
specific point  476

tree list control  480
two-step construction  230–231

U

unable to import  53
unit test  117, 140

event  144
unittest  140–141
Unix  35, 54, 540
unpickle  535
update  137

V

validator  190, 282, 285
testing data as entered   

288
transferring data with  286
using for correctness  282

vertical box sizer  345
veto  39, 233–234
view  126
virtual list control  420, 424

displaying text  423
image  423
update  423

virtual list, size  422



INDEX 551
W

web page title  493
widgets

adding to a sizer  325
basic  17
child  24, 288, 329
controlling growth in  

sizer  341
defined  9
HTML  502
laying out  170

Windows  24, 35, 54, 369
wizard  278
wx  9–10, 96, 102
wx.AccelratorEntry  310
wx.AccleratorTable  310
wx.App  11, 31, 38, 54, 64, 77, 

82, 180, 233
wx.App subclass  31–32
wx.App.MainLoop  59, 61
wx.Bitmap  153, 357, 361, 364, 

369, 388, 400, 540
wx.BitmapButton  201
wx.BitmapDataObject  526
wx.BoxSizer  171–173, 348
wx.Brush  152, 384, 389
wx.BufferDC  153
wx.BufferedDC  148, 152,  

370, 389
Wx.BufferedPaintDC  148
wx.BufferedPaintDC  370,  

389
wx.BufferPaintDC  153
wx.Button  62, 65, 68, 74–75, 

79, 200
wx.Button,  48
wx.CallAfter  540, 544
wx.CheckBox  211
wx.CheckListBox  219
wx.Choice  221
wx.ClientDC  149, 152–153, 

368
wx.Color  195, 373
wx.Colour  170, 381, 384,  

436, 444
wx.ColourData  169, 276
wx.ColourDialog  169, 276
wx.ComboBox  221

wx.CommandEvent  57, 62, 64, 
74, 81, 301, 406, 455

wx.ContextMenuEvent  316
wx.CreateFileTipProvider  281
wx.Cursor  364, 366, 528
wx.CursorFromImage  366
wx.CustomDataObject  534
wx.DataFormat  535
wx.DataObject  522–524,  

527–528, 535, 544
wx.DataObjectComposite  536
wx.DataObjectSimple  523, 

536
wx.DC  148, 153–154, 367, 377, 

388, 401
wx.DEFAULT_FRAME_ 

STYLE  45
wx.Dialog  40, 74, 152, 260
wx.DirDialog  272
wx.DropSource  527–528
wx.DropTarget  530–531

event handlers  532
wx.Event  57, 59–60, 62–63, 

71–72, 80–81
wx.EVT_BUTTON  60, 64
wx.EVT_MENU  64
wx.EvtHandler  58, 60, 64–65, 

67, 71, 81, 127, 537
methods  67

wx.Exit  39
wx.FileDataObject  527
wx.FileDialog  165–166,  

269, 271
wx.FlexGridSizer  171, 339
wx.Font  195–196, 436
wx.FontData  274
wx.FontDialog  274
wx.FontEnumerator  197
wx.Frame  14, 40, 47, 55,  

225–227, 234–235, 494
subclass  226

wx.FSFile  502
wx.FutureCall  539
wx.GBPosition  343
wx.GBSizerItem  343
wx.GBSpan  343
wx.GetFontFromUser  275
wx.GetNumberFromUser  265
wx.GetPasswordFromUser  265

wx.GetSingleChoice  267
wx.GetSingleChoiceIndex  

267
wx.GetTextFromUser  265
wx.gizmos.TreeListCtrl  480
wx.grid.Grid  128, 130, 427, 

430, 444, 458
wx.grid.GridCellAttr  442, 444
wx.grid.GridCellEditor  450, 

459
wx.grid.GridCellRenderer  

445, 449
wx.grid.GridEvent  455
wx.grid.GridTableBase  429, 

431
wx.grid.PyGridCellEditor  451
wx.grid.PyGridCellRenderer  

446, 459
wx.grid.PyGridTableBase  429, 

458
wx.GridBagSizer  172, 343
wx.GridSizer  171–172, 328, 

355
wx.html module  487
wx.html.HTMLCell  501
wx.html.HtmlCell  497
wx.html.HtmlContainerCell  

497
wx.Html.HtmlEasyPrinting  

503
wx.html.HtmlEasyPrinting  

495
wx.html.HtmlFilter  502
wx.html.HtmlParser  497
wx.html.HtmlWidgetCell  497
wx.html.HtmlWindow  178, 

487, 490, 503
events  490

wx.html.HtmlWinParser  497
wx.html.HtmlWinTagHan-

dler  500
wx.Html.Tag  499
wx.HtmlEasyPrinting  505
wx.HTMLWindow  186
wx.Icon  401, 528
wx.ID_ANY  42–43
wx.ID_CANCEL  42, 52, 261
wx.ID_HIGHEST  43
wx.ID_LOWEST  43



552 INDEX
wx.ID_OK  42, 52, 261
wx.Image  357, 359–360,  

362–364, 388, 488
wx.ImageHandler  359
wx.ImageList  400
wx.lib.buttons.GenButton  203
wx.lib.dialogs.ScrolledMessa-

geDialog  263
wx.lib.evtmgr.eventManager  

140
wx.lib.iewin.IEHtmlWindow  

502
wx.lib.imagebrowser.ImageDi-

alog  277
wx.lib.mixins.listctrl  414
wx.lib.pubsub  140
wx.lib.ScrolledPanel  241
wx.lib.stattext.GenStaticText  

189
wx.ListBox  216, 218
wx.ListCtrl  398, 422–423
wx.ListEvent  406–407, 412

event types  406
wx.ListItem  403–404
wx.ListItemAttr  423
wx.MDIChildFrame  244
wx.MDIParentFrame  244
wx.MemoryDC  149, 153, 369, 

389, 506
wx.Menu  50, 158–159,  

295–296, 299–300, 304, 
314, 321

wx.MenuBar  294–296, 304, 321
wx.MenuEvent  302
wx.MenuItem  159, 294, 299, 

321
wx.MessageBox  263
wx.MessageDialog  51,  

261–262
wx.MetafileDC  149, 369
wx.MiniFrame  244
wx.MouseEvent  58, 63–64
wx.NewID  51
wx.NewId  42–43
wx.OK  52
wx.PageSetupDialog  515, 520
wx.PageSetupDialogData  515, 

517
wx.PaintDC  149, 153, 368

wx.Panel  48, 55, 170, 227, 260
wx.Pen  151, 381
wx.Point  43, 378
wx.PostEvent  543
wx.PostScriptDC  149,  

369–370, 506
wx.PreFrame  230, 232
wx.PreviewCanvas  520
wx.PreviewControlBar  520
wx.PreviewPane  519
wx.PrintData  513–514
wx.PrintDialog  512, 520
wx.PrintDialogData  506,  

513, 518
properties  513

wx.Printer  505–506, 518, 520
wx.PrinterDC  149, 369–370, 

506
wx.Printout  505–506, 511, 

518–520
information retrieval  512

wx.PrintPreview  505, 519–520
wx.ProgressDialog  268
wx.PyCommandEvent  78
wx.PyDataObjectSimple  535
wx.PyEvent  78, 82
wx.PyEventBinder  63, 65, 81
wx.PyGridModel  128
wx.PySimpleApp  32, 180
wx.PyValidator  282
wx.RadioBox  212, 214–215
wx.RadioButton  212
wx.RealPoint  44
wx.RegisterId  42
wx.ScreenDC  149, 368–369
wx.ScrolledWindow  238
wx.ShowTip  282
wx.SingleChoiceDialog  53, 

261, 266
wx.Size  43, 378
wx.SizeEvent  62–63
wx.Sizer  177, 324, 355
wx.Slider  205
wx.SpinCtrl  208
wx.SplashScreen  180, 247
wx.SplitterEvent  255
wx.StaticBoxSizer  172, 350
wx.StaticText  186
wx.StatusBar  50, 156, 158, 173

wx.stc.StyledTextCtrl  197
wx.StockCursor  364
wx.TextAttr  194
wx.TextCtrl  189–190, 192, 

195, 198
wx.TextDataObject  523–524, 

531
wx.TextDropTarget  532
wx.TextEntryDialog  52, 261, 

264
wx.TheClipboard  523, 544
wx.Timer  536–537, 544
wx.TimerEvent  539
wx.TipProvider  281
wx.ToggleButton  202
wx.ToolBar  50, 161, 164
wx.TreeCtrl  461–462, 468, 

480, 482
wx.TreeEvent  473, 478
wx.TreeItemData  467–468
wx.TreeItemId  463, 465, 467, 

470–472, 476, 478
wx.Validator  190, 282
wx.WakeUpIdle  543
wx.Window  188, 234, 325–326, 

427, 463, 530
wx.WindowDC  149, 368
wx.wizard.Wizard  278–279
wx.wizard.WizardEvent  280
wx.wizard.WizardPage  278, 

281
wx.wizard.WizardPageSimple  

278, 280
wxMozilla  503
wxPython  26, 57

library  57
package  10

wxWidgets  10, 20–22, 24, 33, 
42, 63, 78, 230, 502

X

XML  123
XOR  383
XPM  360–361

Y

Yield  77


	wxPython in Action
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized
	Author Online
	about the title
	about the cover illustration

	Part 1 - Introduction to wxPython
	Welcome to wxPython
	1.1 Getting started with wxPython
	1.2 Creating the bare minimum wxPython program
	1.2.1 Importing wxPython
	1.2.2 Working with applications and frames

	1.3 Extending the bare-minimum wxPython program
	1.4 Creating the final hello.py program
	1.5 What can wxPython do?
	1.6 Why choose wxPython?
	1.6.1 Python programmers
	1.6.2 wxWidget users
	1.6.3 New users

	1.7 How wxPython works
	1.7.1 The Python language
	1.7.2 The wxWidgets toolkit
	1.7.3 Putting it together: the wxPython toolkit

	1.8 Summary

	Giving your wxPython program a solid foundation
	2.1 What do I need to know about the required objects?
	2.2 How do I create and use an application object?
	2.2.1 Creating a wx.App subclass
	2.2.2 Understanding the application object lifecycle

	2.3 How do I direct output from a wxPython program?
	2.3.1 Redirecting output
	2.3.2 Modifying the default redirect behavior

	2.4 How do I shut down my wxPython application?
	2.4.1 Managing a normal shutdown
	2.4.2 Managing an emergency shutdown

	2.5 How do I create and use the top-level window object?
	2.5.1 Working with wx.Frame
	2.5.2 Working with wxPython IDs
	2.5.3 Working with wx.Size and wx.Point
	2.5.4 Working with wx.Frame styles

	2.6 How do I add objects and subwindows to a frame?
	2.6.1 Adding widgets to a frame
	2.6.2 Adding a menubar, toolbar, or status bar to a frame

	2.7 How can I use common dialogs?
	2.8 What are some common errors with application objects and frames?
	2.9 Summary

	Working in an event-driven environment
	3.1 What terminology do I need to understand events?
	3.2 What is event-driven programming?
	3.2.1 Coding event handlers
	3.2.2 Designing for event-driven programs
	3.2.3 Event triggers

	3.3 How do I bind an event to a handler?
	3.3.1 Working with the wx.EvtHandler methods

	3.4 How are events processed by wxPython?
	3.4.1 Understanding the event handling process
	3.4.2 Using the Skip() method

	3.5 What other event properties are contained in the application object?
	3.6 How can I create my own events?
	3.6.1 Defining a custom event for a custom widget

	3.7 Summary

	Making wxPython easier to handle with PyCrust
	4.1 How do I interact with a wxPython program?
	4.2 What are the useful features of PyCrust?
	4.2.1 Autocompletion
	4.2.2 Calltips and parameter defaults
	4.2.3 Syntax highlighting
	4.2.4 Python help
	4.2.5 Command recall
	4.2.6 Cut and paste
	4.2.7 Standard shell environment
	4.2.8 Dynamic updating

	4.3 What do the PyCrust notebook tabs do?
	4.3.1 Namespace tab
	4.3.2 Display tab
	4.3.3 Calltip tab
	4.3.4 Session tab
	4.3.5 Dispatcher tab

	4.4 How can I wrap PyCrust around my wxPython application?
	4.5 What else is in the Py package?
	4.5.1 Working with the GUI programs
	4.5.2 Working with the support modules

	4.6 How can I use modules from the Py package in my wxPython programs?
	4.7 Summary

	Creating your blueprint
	5.1 How can refactoring help me improve my code?
	5.1.1 A refactoring example
	5.1.2 Starting to refactor
	5.1.3 More refactoring

	5.2 How do I keep the Model and View separate in my program?
	5.2.1 What is a Model-View-Controller system?
	5.2.2 A wxPython model: PyGridTableBase
	5.2.3 A custom model

	5.3 How do you unit-test a GUI program?
	5.3.1 The unittest module
	5.3.2 A unittest sample
	5.3.3 Testing user events

	5.4 Summary

	Working with the basic building blocks
	6.1 Drawing to the screen
	6.1.1 How do I draw on the screen?

	6.2 Adding window decorations
	6.2.1 How do I add and update a status bar?
	6.2.2 How do I include a submenu or checked menu?
	6.2.3 How do I include a toolbar?

	6.3 Getting standard information
	6.3.1 How do I use standard file dialogs?
	6.3.2 How do I use a standard color picker?

	6.4 Making the application look nice
	6.4.1 How do I lay out widgets?
	6.4.2 How do I build an about box?
	6.4.3 How do I build a splash screen?

	6.5 Summary


	Part 2 - Essential wxPython
	Working with the basic controls
	7.1 Displaying text
	7.1.1 How do I display static text?
	7.1.2 How can I get the user to enter text?
	7.1.3 How do I change the text without user input?
	7.1.4 How do I create a multi-line or styled text control?
	7.1.5 How do I create a font?
	7.1.6 Can I have styled text if my platform doesn’t support rich text?
	7.1.7 What if my text control doesn’t match my string?
	7.1.8 How do I respond to text events?

	7.2 Working with buttons
	7.2.1 How do I make a button?
	7.2.2 How do I make a button with a bitmap?
	7.2.3 How do I create a toggle button?
	7.2.4 What’s a generic button, and why should I use one?

	7.3 Entering and displaying numbers
	7.3.1 How do I make a slider?
	7.3.2 How can I get those neat up/down arrow buttons?
	7.3.3 How can I make a progress bar?

	7.4 Giving the user choices
	7.4.1 How do I create a checkbox?
	7.4.2 How can I create a group of radio buttons?
	7.4.3 How can I create a list box?
	7.4.4 Can I combine a checkbox and a list box?
	7.4.5 What if I want a pull-down choice?
	7.4.6 Can I combine text entry and a list?

	7.5 Summary

	Putting widgets in frames
	8.1 The life of a frame
	8.1.1 How do I create a frame?
	8.1.2 What are some different frame styles?
	8.1.3 How do I create a frame with extra style information?
	8.1.4 What happens when I close a frame?

	8.2 Using frames
	8.2.1 What are the methods and properties of wx.Frame?
	8.2.2 How do I find a subwidget of a frame?
	8.2.3 How do I create a frame with a scrollbar?

	8.3 Alternative frame types
	8.3.1 How do I create an MDI frame?
	8.3.2 What’s a mini-frame and why would I use it?
	8.3.3 How do I make a non-rectangular frame?
	8.3.4 How can I drag a frame without a title bar?

	8.4 Using splitter windows
	8.4.1 Creating a splitter window
	8.4.2 A splitter example
	8.4.3 Changing the appearance of the splitter
	8.4.4 Manipulating the splitter programmatically
	8.4.5 Responding to splitter events

	8.5 Summary

	Giving users choices with dialogs
	9.1 Working with modal dialogs
	9.1.1 How do I create a modal dialog?
	9.1.2 How do I create an alert box?
	9.1.3 How do I get short text from the user?
	9.1.4 How can I display a list of choices in a dialog?
	9.1.5 How can I display progress?

	9.2 Using standard dialogs
	9.2.1 How can I use a file picker?
	9.2.2 How can I use a font picker?
	9.2.3 How can I use a color picker?
	9.2.4 Can I allow the user to browse images?

	9.3 Creating a wizard
	9.4 Showing startup tips
	9.5 Using validators to manage data in a dialog
	9.5.1 How do I use a validator to ensure correct data?
	9.5.2 How do I use a validator to transfer data?
	9.5.3 How do I validate data as it is entered?

	9.6 Summary

	Creating and using wxPython menus
	10.1 Creating Menus
	10.1.1 How do I create a menu bar and attach it to a frame?
	10.1.2 How do I create a menu and attach it to the menu bar?
	10.1.3 How do I add items to a pull-down menu?
	10.1.4 How do I respond to a menu event?

	10.2 Working with menu items
	10.2.1 How do I find a specific menu item in a menu?
	10.2.2 How do I enable or disable a menu item?
	10.2.3 How do I associate a menu item with a keyboard shortcut?
	10.2.4 How do I create a toggle menu item with a checkbox or radio button?

	10.3 Sprucing up your menus
	10.3.1 How do I create a submenu?
	10.3.2 How do I create a pop-up menu?
	10.3.3 How can I create fancier menus?

	10.4 Usability guidelines for menus
	10.4.1 Keeping menus uniform in length
	10.4.2 Creating logical item groups

	10.5 Summary

	Placing widgets with sizers
	11.1 What’s a sizer?
	11.2 Basic sizers with the grid sizer
	11.2.1 What is a grid sizer?
	11.2.2 How do you add or remove children from a sizer?
	11.2.3 How do sizers manage the size and alignment of their children?
	11.2.4 Can I specify a minimum size for my sizer or its children?
	11.2.5 How do sizers manage the border around each child?

	11.3 Using the other sizer types
	11.3.1 What’s a flex grid sizer?
	11.3.2 What’s a grid bag sizer?
	11.3.3 What’s a box sizer?
	11.3.4 What’s a static box sizer?

	11.4 Can I see a real-world example of sizers in action?
	11.5 Summary

	Manipulating basic graphical images
	12.1 Working with images
	12.1.1 How do I load images?
	12.1.2 What can I do with an image?
	12.1.3 How can I change cursors?

	12.2 Dealing with device contexts
	12.2.1 What is a device context, and how can I create one?
	12.2.2 How do I draw to a device context?
	12.2.3 How do I draw images to the context?
	12.2.4 How can I draw text to the context?

	12.3 Graphics manipulation
	12.3.1 How do I manage the foreground drawing pen?
	12.3.2 How do I manage the background drawing brush?
	12.3.3 How can I manage logical and physical device coordinates?
	12.3.4 What color names are predefined?

	12.4 Summary


	Part 3 - Advanced wxPython
	Building list controls and managing items
	13.1 Building a list control
	13.1.1 What is icon mode?
	13.1.2 What is small icon mode?
	13.1.3 What is list mode?
	13.1.4 What is report mode?
	13.1.5 How do I create a list control?

	13.2 Managing items in a list
	13.2.1 What is an image list and how do I add images to it?
	13.2.2 How can I add and delete items from a list?

	13.3 Responding to users
	13.3.1 How can I respond to a user selection in a list?
	13.3.2 How can I respond to a user selection in a column header?

	13.4 Editing and sorting list controls
	13.4.1 How can I edit a label?
	13.4.2 How can I sort my list?
	13.4.3 How can I learn more about list controls?

	13.5 Creating a virtual list control
	13.6 Summary

	Coordinating the grid control
	14.1 Creating your grid
	14.1.1 How do I create a simple grid?
	14.1.2 How do I create a grid with a grid table?

	14.2 Working with your grid
	14.2.1 How do I add and delete rows, columns, and cells?
	14.2.2 How do I manage the row and column headers of a grid?
	14.2.3 How can I manage the size of grid elements?
	14.2.4 How can I manage which cells are selected or visible?
	14.2.5 How do I change the color or font of a grid cell?

	14.3 Custom renderers and editors
	14.3.1 How do I use a custom cell renderer?
	14.3.2 How do I edit a cell?
	14.3.3 How do I use a custom cell editor?

	14.4 Capturing user events
	14.4.1 How can I capture user mouse selections?
	14.4.2 How can I capture user keyboard navigation?

	14.5 Summary

	Climbing the tree control
	15.1 Creating tree controls and adding items
	15.1.1 How do I add a root?
	15.1.2 How do I add more items to the tree?
	15.1.3 How do I manage items?

	15.2 What styles control the display of the tree control?
	15.3 Sorting elements of a tree control
	15.4 Controlling the image for each item
	15.5 Navigating the tree programmatically
	15.6 Managing the tree selection
	15.7 Controlling which items are visible
	15.8 Making a tree control user editable
	15.9 Responding to other user events from a tree control
	15.10 Using a tree list control
	15.11 Summary

	Incorporating HTML into your application
	16.1 Displaying HTML
	16.1.1 How can I display HTML in a wxPython window?
	16.1.2 How can I display HTML from a file or URL?

	16.2 Manipulating the HTML window
	16.2.1 How can I respond to a user click on an active link?
	16.2.2 How can I change an HTML window programmatically?
	16.2.3 How can I display the page title in a frame’s title bar?
	16.2.4 How can I print an HTML page?

	16.3 Extending the HTML window
	16.3.1 How does the HTML parser work?
	16.3.2 How can I add support for new tags?
	16.3.3 How can I support other file formats?
	16.3.4 How can I get a more fully featured HTML Widget?

	16.4 Summary

	The wxPython printing framework
	17.1 How do I print in wxPython?
	17.1.1 Understanding the printout lifecycle
	17.1.2 Print framework in action
	17.1.3 Working with wx.Printout methods

	17.2 How do I display the print dialog?
	17.2.1 Creating a print dialog

	17.3 How do I display the page setup dialog?
	17.3.1 Creating a page setup dialog
	17.3.2 Working with page setup properties

	17.4 How do I print something?
	17.5 How can I perform a print preview?
	17.6 Summary

	Using other wxPython functionality
	18.1 Putting objects on the clipboard
	18.1.1 Getting data in the clipboard
	18.1.2 Manipulating data in the clipboard
	18.1.3 Retrieving text data from the clipboard
	18.1.4 The clipboard in action
	18.1.5 Passing other data formats

	18.2 Being the source of a drag and drop
	18.2.1 Dragging in action

	18.3 Being the target of a drag and drop
	18.3.1 Using your drop target
	18.3.2 Dropping in action

	18.4 Transferring custom objects
	18.4.1 Transferring a custom data object
	18.4.2 Retrieving a custom object
	18.4.3 Transferring an object in multiple formats

	18.5 Setting timed events using wx.Timer
	18.5.1 Generating EVT_TIMER events
	18.5.2 Learning other timer uses

	18.6 Creating a multithreaded wxPython application
	18.6.1 Working with the global function wx.CallAfter()
	18.6.2 Managing thread communication with the queue object
	18.6.3 Developing your own solution

	18.7 Summary


	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y





