F‘i 1 ‘iu 1atic
‘Programmers

Ente rlse Rec €S
uby and Rails

Edited by Susarmah Davidson Plalzer i

What readers are saying about
Enterprise Recipes with Ruby and Rails

Enterprise Recipes with Ruby and Rails covers most of the tasks you
need to accomplish in the enterprise, including integration with other
systems, databases, and security measures. I wish I'd had this book
three years ago.

» Ola Bini
JRuby Core Developer, ThoughtWorks Studios

This book is full of practical, relevant advice instead of theoretical
background or “Hello, World” samples. Once you move beyond the
basic skills of using Ruby and Rails, this is exactly what you need—
real-world recipes that you can put to use immediately. It’s like getting
condensed experience on paper, giving you a two-year head start on
those who have to acquire this knowledge by making their own mis-
takes.

» Stefan Tilkov
CEO and Principal Consultant, innoQ

If you're responsible for developing enterprise software, after reading
this book you’ll want to review all your projects to see where you can
save time and money with Ruby and Rails. Maik Schmidt shows us
once again that enterprise software doesn’t have to be “enterprisey.”

> Steve Vinoski
IEEE Internet Computing Columnist and Member of Technical
Staff, Verivue, Inc.

On exactly the right level, this book explains many interesting
libraries and tools invaluable for enterprise developers. Even experi-
enced Ruby and Rails developers will find new information.

» Thomas Baustert
Rails Book Author, b-simple.de

b-simple.de

Maik Schmidt

The Pragmatic Bookshelf

Raleigh, North Carolina Dallas, Texas

Pra matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Maik Schmidt.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-23-9
ISBN-13: 978-1-934356-23-4
Printed on acid-free paper.
P1.0 printing, November 2008
Version: 2009-4-20

http://www.pragprog.com

For my girls:
Mia, Henriette, and Caro.

_ Confents

Foreword 9
Acknowledgments 12
Preface 13
Part I—Security & E-commerce Recipes 20
1 Implement Enterprise-wide Security 21
1. Protect Information with Symmetric Ciphers 23
2. Protect Secrets with Asymmetric Ciphers 28
3. Verify Data Integrity with Signatures 31
4. Generate Real Random Numbers 35
5. Create Strong and Convenient Passwords 38
6. Store Passwords Securely 44
7. Reanimate Good Old Basic Authentication 48
8. Implement a Single Sign-on System with OpenID ... 51
9. Authenticate with LDAP 58
2 Process E-commerce Payments 62
10. Charge Credit Cards with ActiveMerchant 64
11. Integrate ActiveMerchant with Rails 70
12. Transfer Money with PayPal 78
Part II—Databases & XML Recipes 88
3 Get the Most Out of Databases 89
13. Execute Stored Procedures 91
14. Feed Rails Databases from the Outside 98

15. Access Databases from Different Vendors Simultane-
ously 105

16. Manage Data with Subversion 110

Download at Boykma.Com CONTENTS < 7

4 Tame File and Data Formats 116
17. Manipulate CSVwithRuby 118
18. Read and Write Fixed-Length Records 123
19. HarnessJSONinRuby 130
20. Master BinaryData00 .. 134
5 Process XML Documents the Ruby Way 140
21. XML Data Binding on Steroids 142
22. UseXMLFilesasModels 146
23. Handle Large XML Documents 154
24. High-Performance Parsing 159
25. Work with HTML and Microformats. 165
26. Build Plain-Vanilla XML Documents 172
27. Build Arbitrary XML Documents 174
Part III—Networking & Messaging Recipes 178
6 Perform Basic Networking Tasks with Ease 179
28. Harness the Power of Sockets 180
29. Find Solutions Quickly with open-uri 186
30. GettheMost Outof HTTP 190
31. Scrape Screens with WWW::Mechanize 196
7 Use and Build Web Services 202
32. Publish Resources with REST 203
33. Use REST Services 211
34. Build Your Own SOAP Services 217
35. Use SOAP Services with WSDL 221
8 Talk to Message Brokers 224
36. Transfer Messages with Files 226
37. Create a Messaging Infrastructure 233
38. Integrate withdMS, 242

39. Connect to Message Queues with ActiveMessaging . . . 248

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=7

Download at Boykma.Com CONTENTS da 8

Part IV—Integration & Administration Recipes 256
9 Speak Foreign Languages 257
40. EmbedCand C++ 258
41. MixJdavaandRubyCode, 265
42. UseRMI Services 271
43. Mix Ruby and .NET with IronRuby 275
10 Maintain and Administer Your Applications 284
44. Turn Your Code into Daemons and Services 286
45. Monitor Your Applications with Monit 295
46. Let god Take Care of Your System 301
47. Create Plug-ins for Common Tasks 306
48. Avoid Code Duplication with Generators 311
11 Test the Easy Way 315
49. Improve Your Testing with RSpec 316
50. Integrate RSpecwithRails 323
51. Create Mock Objects with RSpec 326
52. Prototype Services with Sinatra 334
12 Get Documentation Nearly for Free 343
53. Generate Documentation Automatically 345
54. Annotate Your Models Automatically 352
55. Create GreatReports 356
Bibliography 365

Index 366

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=8

_ Foreword

I'm glad someone finally wrote this book.

Let me explain. I've been bullish on Ruby in the enterprise for a long
time now, both with and without Rails. And, the company for which
I work, ThoughtWorks, has also been a strong advocate for enterprise
Rails. It happened for me shortly after I fully understood what sets Rails
apart from other web frameworks. At the time, the last thing I wanted
to see was another web framework, recently having completed a book
comparing the dizzying array of web frameworks in the Java space (the
now very outdated Art of Java Web Development |]). Once you've
spent that much time looking at frameworks, a new one is not high
on your list of priorities. But when Rails came along, I could tell that
it was completely different and that it had lots of compelling, obvious-
in-hindsight ideas embedded inside it. I remember thinking “Wow, this
is going to be a really cool thing when all the libraries catch up.” For
something to be “enterprise ready,” you have to have tons of libraries to
support all the interactions with the outside world and repositories of
reusable code, so I estimated at the time that it would take five or six
years for Ruby to even sit at the table in the enterprise world.

But I was wrong in two ways. First, I greatly underestimated the pas-
sion and fire in the Ruby community to roll up their sleeves and create
all the libraries needed to let Rails play in any space it wants. The sec-
ond way I was wrong reflects the first: it’s just plain easier to write
stuff in Ruby. I was carrying all the prejudices from my experience with
other languages, where it takes a lot of work to write reusable libraries
of code. And the reason for that comes from what I call the “Lockdown
Experiment.”

Back in the mid-90s, an experiment started as a way to make average
developers more effective, because the demand continued (as it does
today) to outstrip the supply of good developers. If the software industry
can figure out a way to make mediocre developers productive, software

Download at Boykma.Com FemETern < 00

development can expand to enterprise scales. Thus, we saw the rise of
languages like Visual Basic and Java and later C#. These languages
were specifically made less powerful than alternatives (like Smalltalk).
The goal of the Lockdown Experiment: make tools to keep average devel-
opers out of trouble while still being able to write code. But then a cou-
ple of interesting things happened. First, creating restrictive tools and
languages didn’t really keep average developers out of trouble, because
average developers sometimes apply great ingenuity to coming up with
ridiculously complex solutions to problems. But while this didn’t really
make the average developers better, it put a serious governor on the
best developers. The whole industry seemed to be optimizing for the
wrong thing: safety at the expense of power, with the stated goal of
creating software faster. Yet, we didn’t produce software faster; we just
annoyed the best developers. The second effect was this new wave of
languages was so restrictive that they immediately had to start supple-
menting them to get real work done. For example, in the Java world, the
second version added a bunch of new features (like anonymous inner
classes), and eventually some limited metaprogramming was added to
Java via aspect-oriented programming.

The real underlying problem with lots of “enterprise languages” is one
that Stuart Halloway of Relevance software summed up brilliantly:
ceremony vs. essence. Languages that require you to jump through
hoops to achieve results are highly ceremonious, whereas languages
that make it easy to do sophisticated things are more essential. At the
end of the day, you have to solve problems. You want languages and
frameworks that lessen the distance from intent to result. Ceremoni-
ous languages sometimes make that distance quite far, requiring lots
of work that doesn’t really move your solution forward. More essential
languages get out of your way, making the distance from intent to result
shorter.

That comes back to the second reason I was wrong about the appear-
ance of libraries in Ruby: it's just plain easier to write stuff in Ruby
because it's a more essential language. And that’s where this book
really shines. It brilliantly illustrates both of my points. It shows how
mature the libraries are in Ruby for doing “enterprisey” stuff like secu-
rity, networking, reporting, and interoperability. And it does a great
job of showing how concise solutions to typical problems leverage the
combination of Ruby and Rails. If this book were written for a more
ceremonious language, it would be twice as thick! This book covers the
gamut of ways that Ruby and Rails fits into and complements enter-

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=10

Download at Boykma.Com FormTERE <]

prises, including how to interact with existing infrastructure like mes-
sage queues, handle monitoring and administration via Ruby libraries,
and even bridge to existing Java and .NET code.

Ultimately, this book shows that Ruby is indeed a first-class citizen in
the enterprise and will continue to grow in stature. The characteristics
that make Rails compelling also make other solutions in Ruby com-
pelling. Every time someone in an enterprise setting rejects Ruby as
a solution to a problem because it isn’t “enterprise ready,” just toss a
copy of this book on their desk. With readable code, concise examples,
and compelling examples, this book will help accelerate Ruby’s rise as
a serious player in the enterprise. That is why I'm so happy this book
was written.

Neal Ford
Software Architect/ Meme Wrangler
ThoughtWorks, Inc.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=11

If you want to experience the loneliness of the long-distance runner,
you have to run a marathon or write a book. Most of the time writing is
a lonely, exhausting business, and the finish line does not seem to ever
get nearer. In these moments, you need someone who cheers you up,
and I thank my editor Susannah Davidson Pfalzer for her patience, for
her professional advice, for her cheerful emails, and for always moti-
vating me to take the next step.

A hearty “Thank you very much!” goes to the whole crew of the Prag-
matic Bookshelf. This book has been another great experience, and I
still cannot imagine writing for any other publisher.

I am deeply grateful to my reviewers for their invaluable comments
and suggestions: Holger Arendt, Matthew Bass, Thomas Baustert, Ola
Bini, Jeff Cohen, Jens-Christian Fischer, Ralf Graf, Kaan Karaca, Bill
Karwin, Matthias Klame, Beate Paland, Uwe Simon, Stefan Tilkov, and
Steve Vinoski. This book wouldn’t be half as good without your help!

Beta books are in my opinion the best thing since the invention of
sliced bread. I highly appreciate the comments and suggestions sent by
Joseph Grace, Eric Kramer, Robert McGuire, Tim Sullivan, and Andrew
Timberlake.

I'd like to thank my family and friends for their patience and support:
Mom, Dad, Yvonne, André, Christian, Agnieszka, AleX, Roland, and
Greta.

Last but not least, I'd like to thank Mia for ignoring all my quirks, for
being infinitely patient, and for constantly reminding me that there’s
more to life than this “computer stuff.”

_ DPreface

It’s a fact: Ruby and Rails are ready for the enterprise. Whether you're
going to implement only a small service or build a full-blown distributed
application, Ruby will be a strong ally.

That is especially true for web applications, because Ruby on Rails
makes creating even the fanciest web applications a breeze. It has
never been easier to implement not only prototypes but also industrial-
strength applications and services in record time.

The term enterprise is a tricky one, with different meanings to dif-
ferent people. When I talk about “the enterprise,” I adhere to Martin
Fowler’s definition in his book Patterns of Enterprise Application Archi-
tecture |]. In a nutshell, enterprise applications enable you to dis-
play, manipulate, and store large amounts of complex data, and they
support or automate business processes with that data.

From this definition, you might think you would need special tools
such as databases and message brokers to develop enterprise appli-
cations. Fortunately, Ruby’s tool support has become much better over
the years. Today it doesn’t matter which database system you prefer,
because Ruby supports all the popular commercial and open source
products. Similarly, you can build asynchronous messaging systems
without worrying much about the message-oriented middleware you'd
like to use.

Ruby’s openness and its strong support for popular network protocols
make it an excellent tool for solving integration problems. You can easily
integrate with HTTP/REST/SOAP/your favorite protocol here services,
and you can create new services based on these protocols, too. The
same applies for legacy code written in C/C++, Java, or C#; that is, you
can reuse your existing code base without much difficulty.

Of course, all your projects will adhere to the highest-quality standards,
because testing and generating reports and documentation are a piece
of cake with Ruby.

Download at Boykma.Com PREFACE < 14

And it’s getting even better every day, because some of the biggest IT
companies spend a lot of money to create and enhance new Ruby plat-
forms that better fit their needs. Both Sun and Microsoft, for example,
pay developers to build JRuby and IronRuby (a Ruby interpreter imple-
mented in C#), respectively, and the whole community benefits from
their efforts. In addition, companies like Oracle have already developed
applications using JRuby on Rails.!

There’s so much you can do in the enterprise with Ruby and Rails, and
this book will be your guide.

Who This Book Is For

This book is for anyone, beginner to experienced in Ruby/Rails, who
wants to learn how to apply their knowledge of Ruby/Rails in their jobs
(that is, “the enterprise”) and now needs some orientation and quick
solutions to urgent problems.

Learning the basics and keywords of a new language is comparatively
easy, and the biggest task is learning all the new libraries. Enterprise
programmers need to know how to parse XML files, how to execute
stored procedures, and how to integrate with SOAP services. These are
things—among many others—that you’ll learn in this book.

What’s in This Book

Enterprise software is different from software that gets shipped to cus-
tomers on a CD or DVD, because it often depends on a complex infras-
tructure. Databases, message-oriented middleware, and daemon pro-
cesses are rarely needed in desktop applications, for example, but for
enterprise programmers they are a commodity.

Also, the life cycle of enterprise applications is special compared to
other domains. Applications are not only created; they also have to
be operated. Many special tools and techniques are needed to make
software that runs 99.99999 percent of the year.

This book deals with all the specialties of typical enterprise applications
and shows you how to address them with Ruby as well as the Rails
framework.

1. http://mix.oracle.com/

http://mix.oracle.com/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=14

Download at Boykma.Com PREFACE <€ 15

Here’s a short road map of all the things we will cover:

* Protecting your system from unwanted access and protecting your
customers’ privacy are extremely important requirements. Learn
how to fulfill them in Chapter 1, Implement Enterprise-wide Secu-
rity, on page 21.

* Outsourcing particular parts of your infrastructure often makes
sense, especially if they aren’t related to your core business. In
Chapter 2, Process E-commerce Payments, on page 62, you'll learn
how to integrate with popular payment gateways so you can get
money from your customers without ever talking to a credit card
company.

* Databases often come to mind first when thinking about enter-
prise software. Read further about Ruby’s database support in
Chapter 3, Get the Most Out of Databases, on page 89.

¢ In Chapter 4, Tame File and Data Formats, on page 116, you'll see
how easy it can be to work with all kinds of textual and binary
data formats.

¢ In enterprises, XML can be found everywhere, and you're better
off when you know how to process XML without thinking about it.
See how to do it in Chapter 5, Process XML Documents the Ruby
Way, on page 140.

¢ Distributed applications became a commodity in enterprise envi-
ronments long ago, and they’re advantageous if you know how to
integrate with all varieties of popular network protocols. See Chap-
ter 6, Perform Basic Networking Tasks with Ease, on page 179 to
learn about it.

¢ For a more formal approach to combining applications and ser-
vices, see Chapter 7, Use and Build Web Services, on page 202.

¢ Communication between processes often happens synchronously,
because synchronous protocols are easy to implement. But they
can lead to performance problems and limit both robustness and
scalability. In Chapter 8, Talk to Message Brokers, on page 224,
you'll learn how to build and integrate with asynchronous mes-
saging systems to overcome these problems.

* Legacy code written in arcane languages such as C/C++, Java,
or C# is not a bad thing if you know how to reuse it with ease.
Chapter 9, Speak Foreign Languages, on page 257 shows you how.

* Building enterprise software often also means operating it. Chap-
ter 10, Maintain and Administer Your Applications, on page 284

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=15

Download at Boykma.Com PREFACE < 16

shows you strategies and techniques for making the administra-
tion and monitoring of processes a breeze.

* Like every piece of software, enterprise applications have to be
tested carefully and thoroughly. To reduce time and effort needed
for testing, read Chapter 11, Test the Easy Way, on page 315.

* Software does not solely consist of code; it also needs documenta-
tion, and so does the poor guy who has to add a feature to your
shiny new application in a year from now. Do everyone a favor and
write some documentation (it might be you who needs it). Most of
it can be generated automatically anyway, as you can see in Chap-
ter 12, Get Documentation Nearly for Free, on page 343.

How You Should Read This Book

As a software developer who writes code in big companies for a living, I
know how stressful a typical working day can be. I also know the pain
you feel when you urgently need a solution to an important problem.
That’s why I've chosen the recipes format for this book.

Each recipe deals with a concrete problem and its solution. You want
to know how to improve performance of your XML parsing? Take a
look at Recipe 24, High-Performance Parsing, on page 159. You need
a versioned database back end? Find a solution in Recipe 16, Manage
Data with Subversion, on page 110. You'd like to start developing Ruby
programs on the .NET platform? Recipe 43, Mix Ruby and .NET with
IronRuby, on page 275 brings you up to speed.

All recipes start with a Problem section explaining the exact problem
that will be solved. They continue with an Ingredients section listing all
libraries you need, and they have a Solution section that shows in detail
how to solve the problem with Ruby. An optional Discussion section
follows that discusses potential shortcomings or alternative solutions,
and you’ll often find a See Also section that refers to related material.
Usually, the recipes do not depend on each other, but whenever I think
it’s advantageous to read some of them in a certain order, I'll give you a
hint in the See Also section.

Most of the tools and technologies described in the recipes are complex
enough to devote a whole book to every single one of them. I tried to
keep all recipes as brief as possible, because I wanted to give you a
basic template to follow and a good starting point for getting up to

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=16

Download at Boykma.Com PREFACE < 17

speed quickly. In addition, all recipes offer plenty of information about
other resources to go to for more information, so if you'd like to learn
more, you can go off on your own to do so.

Code Examples and Conventions

This is a book about Ruby and Rails, so it should come as no surprise
that it contains many code examples. But this is not an introductory
book, and I assume you are familiar with Ruby’s syntax and with Rails.
For example, I won’t explain Rails basics such as working with Active-
Record or installing a RubyGem.

Most examples were written in Ruby, but in today’s enterprise environ-
ments you'll still find much more software written in other languages.
I use C/C++, Java, and C# code in some recipes to show you how to
mix them with Ruby, for example. Knowing these languages is certainly
helpful but not required, and the same is true for libraries such as the
Spring framework? that is used in some recipes in Chapter 8, Talk to
Message Brokers, on page 224.

I've tried to keep all examples platform independent, but sometimes it
was not possible, because some gems are not available on the Microsoft
Windows platform, for example. You'll find a note in the recipes when-
ever that is the case.

Also, you’ll find many README files in the code distribution belonging
to this book. They contain detailed information about setting up the
environment I've used for the samples. I prefer that over long-winded
installation instructions in a book’s text.

When you find a “slippery” road icon beside a paragraph, you should
slow down and read carefully, because they announce difficult or dan-
gerous techniques.

Installing and Using RubyGems

Many recipes depend on one or more RubyGems that you have to install
to run the samples on your own machine. Whenever you have to install
a RubyGem by executing a command such as this:

$ gem install <gem-name>

2. http://springframework.org/

http://springframework.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=17

Download at Boykma.Com PREFACE <€ 18

you might actually have to execute the command as the root user or
administrator or whatever your operating system insists on:

$ sudo gem install <gem-name>

For brevity, require rubygems’ statements have been left out in the code
examples (if you're using Ruby 1.9 or a more recent version, they aren’t
needed anyway).

What Version Do You Need?

All the recipes were prepared with Rails 2.1.0 and the latest versions
of gems and plug-ins as of this writing. In the book’s examples (see
the next section for more information), you'll find a detailed list of all
RubyGems currently installed on my machine. Everything has been
tested with Ruby 1.8.6.

Online Resources

The Pragmatic Programmers have set up a forum for Enterprise Recipes
with Ruby and Rails readers to discuss the recipes, help each other
with problems, expand on the solutions, and even write new recipes.
You can find the forum at http://forums.pragprog.com/forums/80/.

The book’s errata list is located at http://pragprog.com/titles/msenr/errata/.
Submit errata by clicking the “Report erratum” link in the PDF version
of the book or by posting them directly to the errata list.

You'll find links to the source code for almost all the book’s examples
at http://pragprog.com/titles/msenr/code/. If you have the PDF version of
the book, you can access an example’s source code by clicking the gray
lozenge containing the code’s filename that appears before the listing.

Let’s get started!

Maik Schmidt
September 2008
contact@maik-schmidt.de

http://forums.pragprog.com/forums/80/
http://pragprog.com/titles/msenr/errata/
http://pragprog.com/titles/msenr/code/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=18

Tags and Thumb tabs

So you can better find topics in this book, I have added
tabs to each recipe. To find recipes that deal with auto-
mation, for example, look for the Automation tab at the
edge of this page. Then look down the side of the book:
you’ll find a thumb tab that lines up with the tab on this
page for each appropriate recipe.

Administration

Automation

Databases

Documentation

Integration

Messaging

Monitoring

Performance

Rails

REST

Security

Testing

Web applications

Web services

XML

Part 1

Security & E-commerce Recipes

Chapter 1

[mplement

Web applications and enterprise applications often have one thing in
common: they work with sensitive data. Whenever you are working with
sensitive data, it’s absolutely necessary that you protect it. Data secu-
rity is important for a lot of reasons:

* Customer data always has to be kept secret to protect your cus-
tomers’ privacy. If your customers do not trust you any longer,
because someone was able to steal their data, you will quickly be
out of business.

® Credit cards, passwords, and so on, have to be protected from
unauthorized usage to protect you and your customers from fraud
and identity theft.

* Your data might contain important trade secrets that have to be
hidden from your competitors. Industrial espionage is more com-
mon than you might think.

But there’s more to security than just protecting data. Often you have
to prevent your systems from being accessed without permission, and
you have to build strong and secure authentication systems. That is not
as easy as many people think, especially if the authentication systems
should be convenient to use, too.

Download at Boykma.Com

CHAPTER 1. IMPLEMENT ENTERPRISE-WIDE SECURITY «d 22

Your biggest ally for solving all these problems is cryptography. Thanks
to the efforts made by the OpenSSL community, you get some of the
most advanced cryptographic technologies for free in nearly every mod-
ern programming language, and Ruby is no exception.

Whenever you have to exchange sensitive data, you have to encrypt it.
Basically, there are two ways to do this: symmetrical and asymmetrical
cipher algorithms. You'll learn how to use both of them in Recipe 1,
Protect Information with Symmetric Ciphers, on the following page and
Recipe 2, Protect Secrets with Asymmetric Ciphers, on page 28.

When exchanging sensitive data with other companies or customers,
it's important to make sure data does not get tampered with during
transmission. It is also important to verify the identity of a message’s
sender. Learn how to do this in Recipe 3, Verify Data Integrity with
Signatures, on page 31.

For many cryptographic algorithms, random numbers are important.
The more random they are, the more secure your software will be. I
explain how to create real random numbers in Recipe 4, Generate Real
Random Numbers, on page 35.

Passwords are still the basis of nearly all authentication systems in
the world. Consequently, you'll learn how to create secure passwords
in Recipe 5, Create Strong and Convenient Passwords, on page 38, and
you’'ll learn how to store them in a really secure way in Recipe 6, Store
Passwords Securely, on page 44.

There are countless ways to implement an authentication system, and
you’ll see a few in this book. Sometimes it's most efficient to use basic
technology, so you will learn how to protect your actions using HTTP
basic authentication in Recipe 7, Reanimate Good Old Basic Authentica-
tion, on page 48. A more secure, more advanced, and more convenient
technology is OpenlID; you’ll see how to add its power to your appli-
cations in Recipe 8, Implement a Single Sign-on System with OpenlID,
on page 51. Last but not least, I have devoted a whole recipe to LDAP
(Recipe 9, Authenticate with LDAP, on page 58), a reliable partner in the
authentication business.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=22

Protect Information with
Symmetric Ciphers

Problem
,_J L \

Your problem:

C4whIg05mhRpyivIBgKSIACXZFZeb76hMU5SGO/sX3LM=

Real geeks can see that this seemingly random sequence of characters
is a byte string that has been encoded in Base64. What they cannot
see is that this is really a credit card number that has been encrypted
with the Advanced Encryption Standard (AES) in Cipher Block Chain-
ing Mode (CBC)! using a key length of 256 bits.

In this recipe, you'll learn how to encrypt and decrypt data in Ruby with
symmetric cipher algorithms.

| Ingredients | N

e We use the creditcard? library to make things more tangible:

$ gem install creditcard

Solution
,_J L \

OpenSSL? is one of the most advanced and most complete implemen-
tations of cryptographic algorithms that is currently available. It’s fast,
it’s free, and you can find a binding for nearly every programming lan-
guage. There’s one for Ruby, too, and it’s even bundled with Ruby. It
can be used as follows to decrypt the previous ciphertext (if you know
the secret key, that is):

Download security/symmetric_cipher.rb

Line 1 require 'openssl'
require 'digest/shal’

ciphertext = 'C4whIg05mhRpyivIBgKSIAcXZFZeb76hMU5GO/sX3LM="

1. http://en.wikipedia.org/wiki/Cipher_block_chaining
2. http://creditcard.rubyforge.org/
3. http://openssl.org/

http://media.pragprog.com/titles/msenr/code/security/symmetric_cipher.rb
http://en.wikipedia.org/wiki/Cipher_block_chaining
http://creditcard.rubyforge.org/
http://openssl.org/

Download at Boykma.Com

1. PROTECT INFORMATION WITH SYMMETRIC CIPHERS <« 24

5 cipher = OpenSSL::Cipher::Cipher.new('aes-256-cbc')
- cipher.decrypt

cipher.key = Digest::SHAl.hexdigest('tOp$ecret')

cipher.iv '1234567890abcdef' = 2

plaintext = cipher.update(ciphertext.unpack('m="').to_s)
10 plaintext << cipher.final

puts "Plaintext: #{plaintext}"

First we create a new Cipher object for the algorithm used to encrypt
our data. We use the cipher named aes-256-cbc, because we know how
the data has been encrypted. To get a list of all cipher commands that
are supported on your platform, run the following command:

mschmidt> openss1 list-cipher-commands

aes-128-chc cast5-ech des3
aes-128-ecb cast5-ofb desx
aes-192-chc des rc2
aes-192-ech des-cbc rc2-40-cbhc
aes-256-cbc des-cfb rc2-64-chc
aes-256-ech des-ech rc2-chc
base64 des-ede rc2-cfb

bf des-ede-chc rc2-ech
bf-cbc des-ede-cfb rc2-ofb
bf-cfb des-ede-cfb rc4

bf-ech des-ede-ofb rc4-40
bf-ofb des-ede3 rcs

cast des-ede3-chc rc5-cbc
cast-chc des-ede3-cfb rc5-cfb
cast5-chc des-ede3-ofb rc5-ech
cast5-cfb des-ofb rc5-ofb

In line 6, we turn the Cipher object into a decryption engine, and in
the following line, we set the decryption key. Typically, keys that are
used in modern encryption algorithms are a long sequence of bytes.
Because humans are bad at memorizing such byte sequences, we use a
little trick and create the key from an easy-to-remember password with
the SHA1 hash function (this is not as secure as using a random byte
sequence as a key!). This way, the key length will not be exactly 256
bits (32 bytes), but that doesn’t matter as long as it is unambiguous.

Line 8 looks harmless, but it is very important, because here we set
the initialization vector to a byte sequence that is as long as the cipher
algorithm’s block length. Usually, a symmetric encryption algorithm
encrypts a block of input data as long as the key size and appends
the encrypted block to the result. Then it encrypts the next block until
all blocks have been encrypted. In CBC, every block that is going to
be encrypted is XORed with its encrypted predecessor before it gets
encrypted itself. (XOR, or exclusive or, is a binary operation whose out-

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=24

Download at Boykma.Com

1. PROTECT INFORMATION WITH SYMMETRIC CIPHERS < 25

put is 1 if its two input bits are different. Otherwise, the output is 0.)
The first block has no predecessor, so it is XORed with the initialization
vector.

CBC is an effective weapon against known plaintext attacks. If an at-
tacker knows, for example, that you encrypt business letters, then the
attacker can guess that all your plaintexts start with a phrase such as
“Dear Sir or Madam,” which gives him a better chance to break your
encryption. With CBC, the same plaintext never results in the same
ciphertext and makes such attacks much harder.

In contrast to the key, the initialization vector can be safely transferred
over public networks, but it is important that it is never used twice with
the same key. The best strategy is to generate a random initialization
vector for each encryption, and there’s even a method for this named
Cipher#trandom_iv().

The rest of our program is simple, and in line 9, we turn the Base64
string into the original byte string and decrypt it with the update()
method. We store the result in plaintext and could decrypt more data
with subsequent update() calls, but we are finished and call final() in-
stead in line 10.

That’s all! When we run our program, it prints the following:

Plaintext: 5431111111111111

It certainly looks like a credit card number, but is it really one? Credit
card numbers are built according to a fixed scheme. The last digit of
a credit card number is a check digit that is calculated with the Luhn
algorithm,* and the first six digits determine which organization issued
it. Typically, the first two digits are sufficient to identify the credit card
organization. For example, cards issued by Visa always start with 4,
and cards issued by MasterCard start with 51, 52, ..., 55. The creditcard
library hides all these ugly details:

Download security/symmetric_cipher.ro

require 'creditcard’'

if plaintext.creditcard?

puts "Credit card was issued by #{plaintext.creditcard_type}."
else

puts 'Sorry, but this is not a credit card number.'
end

4. http://en.wikipedia.org/wiki/Luhn

http://media.pragprog.com/titles/msenr/code/security/symmetric_cipher.rb
http://en.wikipedia.org/wiki/Luhn
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=25

Download at Boykma.Com

1. PROTECT INFORMATION WITH SYMMETRIC CIPHERS <« 26

Key Management

Don’t be misled by the simplicity of the code samples in this and
in the following recipe. The biggest problem when building a
cryptographic infrastructure is implementing a secure key man-
agement infrastructure, not choosing and applying the right
encryption algorithm. You can use the most secure algorithms
in the world, but if you scribble your keys on a sticky note and
aftach it to your monitor, it won’t help much.

Storing and distributing cryptographic keys is a difficult business
and should not be taken lightly. If you have not studied the
topic yourself for several years, please leave it to the pros and
get a key server.* A key server securely stores all the keys you
need and makes sure that these keys can be accessed only by
authorized applications in a secure manner.

A lot of commercial products are available, and many of them
are implemented as hardware security modules (HSMs).T Those
who prefer an open source software alternative should refer to
StrongKey.* StrongKey is a pretty complex Java enterprise appli-
cation, but once you‘ve installed it, it silently runs in the back-
ground. At the moment, it has client support only for Java (com-
mercial support for C++ is available, too), but you can integrate
it with the Ruby Java Bridge or JRuby (see Recipe 41, Mix Java
and Ruby Code, on page 265 for details).

. http://en.wikipedia.org/wiki/Key_server_%28cryptographic%29
. http://en.wikipedia.org/wiki/Hardware_Security_Module
1. http://www.strongkey.org/

Run the previous program; it outputs the following:

Credit card was issued by mastercard.

Nice, eh? You cannot really check whether this is an existing credit
card number without sending a request to a payment service provider,
but you can at least verify whether the credit card number is syntacti-
cally correct, and you can even determine the credit card company that
issued it.

They wouldn’t call it a symmetric cipher if it did not work the other way
around, would they?

http://en.wikipedia.org/wiki/Key_server_%28cryptographic%29
http://en.wikipedia.org/wiki/Hardware_Security_Module
http://www.strongkey.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=26

Download at Boykma.Com

1. PROTECT INFORMATION WITH SYMMETRIC CIPHERS < 27

To encrypt a credit card number, do the following:

Download security/symmetric_cipher.rb
tnel plaintext = '5431111111111111"'

- cipher = OpenSSL: :Cipher::Cipher.new('aes-256-cbc')
cipher.encrypt

- cipher.key = Digest::SHAl.hexdigest('tOp$ecret')

5 cipher.iv = '1234567890abcdef' = 2

- ciphertext = cipher.update(plaintext)
ciphertext << cipher.final
ciphertext = [ciphertext].pack('m=")
puts "Ciphertext: #{ciphertext}"

That’s symmetrical, isn't it? It differs from the decryption code only in
a single line: line 3. Here we turn our Cipher object into an encryp-
tion machine. The rest stays the same, and the most interesting line is
line 8, because there we convert our encrypted plaintext into a Base64
string. That’s not a necessity, but if you work with encrypted data and
store it in a database, for example, you are better off when you encode
it into something readable.

http://media.pragprog.com/titles/msenr/code/security/symmetric_cipher.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=27

Protect Secrets with
Asymmetric Ciphers

Problem
,_J L \

Symmetric cipher algorithms have a lot of advantages: they are fast,
they can be used to encrypt documents of arbitrary size, and they are
easy to implement. Their biggest disadvantage is key management. If
only two parties want to exchange confidential information, they have
to agree on a single key over a secure channel. But if n parties want
to exchange confidential information, 0.5 * (n? - n) keys have to be
exchanged.

Asymmetric ciphers solve this problem by splitting a key into a public
part and a private part. You can freely publish your public key, and
anyone can send you a confidential message by encrypting it with the
public key. Only you can decrypt the message using your private key.
It’s like a mailbox: everyone can throw in letters that only you can read,
because only you have the key.

All asymmetric cipher algorithms are based on more or less compli-
cated mathematical algorithms, but don’t be afraid—you do not have to
implement them yourself; you will learn how to use them in this recipe.

Solution
,_J L \

Before we get into the details of all the cryptography stuff, we first gen-
erate a public/private key pair using OpenSSL:®

mschmidt> openss1 genrsa -des3 \
> -out private_key.pem 2048
Generating RSA private key, 2048 bit long modulus

e is 65537 (0x10001)
Enter pass phrase for private_key.pem:
Verifying - Enter pass phrase for private_key.pem:

5. http://openssl.org/

http://openssl.org/

Download at Boykma.Com

2. PROTECT SECRETS WITH ASYMMETRIC CIPHERS <« 29

This command creates public and private key information for the RSA
algorithm and stores it in a file named private_key.pem in the current
directory (PEM stands for Privacy-enhanced Electronic Mail). The file has
been encrypted using the symmetric triple DES algorithm® and can be
used only by people who know the right passphrase (tOp$ecret in our
case).

To communicate with other parties securely, we have to send them our
public key, so let’s extract it:

mschmidt> openss1 rsa -in private_key.pem -out \

> public_key.pem -outform PEM -pubout

Enter pass phrase for private_key.pem:
writing RSA key

This creates another .pem file named public_key.pem that contains the
public key part of our RSA key pair. .pem files are nothing special,” so
we can safely take a look at our public key:

mschmidt> cat public_key.pem

MIIBIjANBgkghkiGOwOBAQEFAAOCAQ8AMIIBCgKCAQEAMCSSVH67RCUPqIRjGrEW
t2yE707xFel1+Vze4QmEZqtEKRTHQp70R4FLVFKcsnIdDPY7/ISYZp1VTMZHX7VRO
7v7IH/WtgCS5zQT208D1 ftH2z0du4 T2 Tmtrx5CMKu/M9ITk56IpvRKNiOwQUAXTxK
1yABhMg96zerqgErdcgkiSMNfHwcmsAJLivKRINMRZIV2Y90ZULHbzgYm/QXRmm8V
VX99MPnk909fIof2DGFw3JewLRgxBILUOOCI TWVXFRKUDj7Vvo0QvRuq6F6g7+1B
dTDiLtvto6HR+gun74XriLNOFke9eRh4rUqjI12cbLbcPmIFRrWI6i8n9P9Mpjj9
YQIDAQAB

We could have created a key pair using Ruby, but you probably will
not exclusively communicate with people who use Ruby, so I chose
OpenSSL as a common denominator. That makes it easier to explain
to your business partner’s IT department how to create key files (see
Recipe 3, Verify Data Integrity with Signatures, on page 31 if you want
to learn how to create key pairs using Ruby).

Now that we have a public key, let’s use it to encrypt something:

Download security/rsa_encrypt.rb

lnel require 'openssl'

plaintext = 'Hello, world!'

public_key = OpenSSL::PKey: :RSA.new(I0::read('public_key.pem'))
5 ciphertext = public_key.public_encrypt(plaintext)

puts "Ciphertext length is #{ciphertext.length} bytes."

puts [ciphertext].pack('m=")

6. http://en.wikipedia.org/wiki/Triple_DES
7. http://en.wikipedia.org/wiki/X.509#Certificate_file_extensions

http://media.pragprog.com/titles/msenr/code/security/rsa_encrypt.rb
http://en.wikipedia.org/wiki/Triple_DES
http://en.wikipedia.org/wiki/X.509#Certificate_file_extensions
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=29

Download at Boykma.Com

2. PROTECT SECRETS WITH ASYMMETRIC CIPHERS < 30

The previous program prints the following (for better readability we've
converted the encrypted data into Base64):

Ciphertext length is 256 bytes.
Mx1GNDudFZAu/64gpQ5YEhUR7HWUCO3JyLIm4yQoWpd01jwb0iIuGxu3Jg+I
2CecmCpolGrjgNG+ieHVDKDgstW7WvUywFY8Sc6ocF1P3HoNkUwCdg/IMnMF
snkHOwWQK/YQNkJOn96nAkP32+9+9Bm5kSQ+oWkUoMnGMEfPZSwbfXNer3VC/
J3YBePI2YVwD1gOMPJIqCGoA2zALsknhmGHTVjYtQfcideRgjpS169tjChgor

Qkoey+/Ng22qi+zeAt1+9067eHuy7VWhCQDIPWUIL1f30cBa+0W5vX0AKN2Q
AepgAk5Spwi81ldbJUQbiFRyLO0albDgluWguPrz7VRA==

You have to keep another important aspect about asymmetric ciphers
in mind (especially in your unit tests): their results are rarely determin-
istic, because they often depend on modulus operations. If we run our
program again, it will probably produce a completely different result:
Ciphertext length is 256 bytes.
ksqr7cplL22Wn2jM3VgEriKugWtTYjQKMgkOuRz38J jfmvDHw18faGk8KXUFZ
PMopWrmZ60zk9nYeCeORpCgNOvzO0i rt+qkI2hPMADNsn+gcSrliEcnSOtyUE
SHExswY6IplCbYKtezfHsK7tzFqJIBB8DBLBwWkGsq/yBFGA/baf59dml1lpig
B8ELKc7+b8EHQIj/eHfXSXIX1zm9cwA1lV2RIdPEPF+mqQzUArOHYf4vGzPSa

e8cCVBaKACV5cNTIVrle+KZiBV50t9mbnZxH2gWbC3+ay3/mQTHgthzCpAte
w45KTuMq9/1 fdViKnMSVi/0ZES9+NQBYUprLUvIYlg==

Although this looks completely different from the first one, it still results
in the same plaintext when we decrypt it. Decryption works like this:

Download security/rsa_decrypt.rb

lnel require 'openssl'

ciphertext = I0.read('ciphertext.txt').unpack('m=").to_s
password = 'tOp$ecret'

5 private_key_data = File.read('private_key.pem')
private_key = OpenSSL::PKey::RSA.new(private_key_data, password)
plaintext = private_key.private_decrypt(ciphertext)
puts plaintext

First we read the ciphertext to be decrypted and turn it from Base64
into its original binary representations (see the sidebar on page 125
to learn how pack() and unpack() work). Then, in line 6, we read the
private key we need to decrypt the data in line 7. One thing is very
important: RSA should be used to encrypt small pieces of information
only. The high-order 11 bytes of the RSA output are used to implement
its padding scheme. Thus, for a 2048-bit key (256 bytes), you get 256
- 11 = 245 bytes for your own data (for a 1024-bit key it’'s 117). That’s
perfectly fine for a credit card number or something similar, but it’'s
certainly not sufficient for encrypting movie files. Asymmetric ciphers
are normally used to encrypt keys for symmetric ciphers that are used
to encrypt the actual payload.

http://media.pragprog.com/titles/msenr/code/security/rsa_decrypt.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=30

Verify Data Integrity with
Signatures

Problem
,_J L \

You have to exchange sensitive data with other companies; that is, you
have to send and receive encrypted messages. For any message you
send, you also want to prove that it actually has been sent by you. On
the other side, you want to make sure the data you get comes from the
right source and has not been tampered with during transmission.

Solution
,_J L \

Although the problem sounds difficult, it can be solved easily using
asymmetric cipher algorithms. In addition to the data you want to send,
you send a cryptographic signature proving that the data has been sent
by you. In this recipe, we’ll discuss several strategies for creating this
signature.

Interestingly, asymmetric ciphers have a symmetric facet, too; that is, if
you encrypt data with your private key, it can be decrypted using your
public key. That doesn’t affect the security of your private key, but the
ciphertext’s recipient can prove that the message has been encrypted
by you if the recipient has your public key. We'll use this to create a
solution to our problem, but first we’ll set up our environment.

We assume that Alice wants to send an extremely important message
to Bob. In our test code we’ll need a key pair for Bob and one for Alice.
They are generated as follows:

Download security/signatures/signature.rb

lnel require 'openssl'

def generate_key_pair(name)
private_key = OpenSSL::PKey: :RSA.generate(1024)
5 File.open("#{name}_private.pem", 'w+') do |f|
f.puts private_key.to_pem
end
File.open("#{name}_public.pem", 'w+') do |f|
f.puts private_key.public_key.to_pem
10 end
end

http://media.pragprog.com/titles/msenr/code/security/signatures/signature.rb

Download at Boykma.Com

3. VERIFY DATA INTEGRITY WITH SIGNATURES <« 32

generate_key_pair('alice')
generate_key_pair('bob")

15 def key(name)
OpenSSL: :PKey: :RSA.new(File.read("#{name}.pem"))
end

Ruby’s OpenSSL binding allows us to generate a 1024-bit RSA key by
calling generate(), as we did in line 4. We write both the public part
and the private part of the key in PEM format into two different files
(PEM stands for Privacy-enhanced Electronic Mail). The private part gets
extracted in line 9. In addition, we have defined a helper method named
key() that reads an RSA key identified by its name.

After running this code, you'll find four files containing the private and
public keys of Alice and Bob in the current directory: alice_private.pem,
alice_public.pem, bob_private.pem, and bob_public.pem. We can use these
keys now to send an encrypted message together with a signature from
Alice to Bob:

Download security/signatures/signature.ro

lnel alice_private_key = key('alice_private')
alice_public_key = key('alice_public')
bob_public_key = key('bob_public')
plaintext = "Alice's extremely important message!"
5 ciphertext = bob_public_key.public_encrypt(plaintext)
signature = alice_private_key.private_encrypt(plaintext)

In line 5, Alice’s message is encrypted using Bob’s public key, and in
line 6, we create a signature by encrypting the message again, but this
time we use Alice’s private key (please note that Alice has to know only
Bob’s public key and her own keys). Now Alice sends the ciphertext
and the signature to Bob, and here’s what he has to do to decrypt the
message and make sure it has been sent by Alice:

Download security/signatures/signature.rb

linel bob_private_key = key('bob_private')
- plaintext = bob_private_key.private_decrypt(ciphertext)
if alice_public_key.public_decrypt(signature) == plaintext
- puts "Signature matches."
5 puts "Got: #{plaintext}"

else
puts 'Signature did not match!'
end

Bob regularly decrypts Alice’s message using his private key in line
2. Then, in line 3, the message’s signature is decrypted using Alice’s

http://media.pragprog.com/titles/msenr/code/security/signatures/signature.rb
http://media.pragprog.com/titles/msenr/code/security/signatures/signature.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=32

Download at Boykma.Com

3. VERIFY DATA INTEGRITY WITH SIGNATURES < 33

public key. Only if the result of both decryption calls is the same can
Bob be sure that the message has not been tampered with and has
been sent by Alice. Also, Bob has to know only Alice’s public key and
his own keys.

Run the program, and it will print the following:

mschmidt> ruby signature.rb
Signature matches.
Got: Alice's extremely important message!

If you change a single bit of the ciphertext or of the signature, the pro-
gram will print an error message. All in all, our problem seems to be
solved.

The downside of this approach is that you have to send twice as much
data: the message and the signature that is as long as the message. It
will also consume twice as much processing time if you encrypt your
message with the recipient’s public key, too.

A much better solution would be not to use the whole message as a
signature but only a digest (or fingerprint). In this case, the plaintext
would be encrypted only once, and the signature would be very small.
To achieve this, Alice has to do the following:

Download security/signatures/signature.ro

lnel plaintext = "Alice's extremely important message!"
ciphertext = bob_public_key.public_encrypt(plaintext)
digest = OpenSSL::Digest::SHAl.new
signature = alice_private_key.sign(digest, plaintext)

The message is encrypted with Bob’s public key, and in line 4, a signa-
ture is created by calling the private key’s sign() method. sign() expects
two things: the digest to be used (SHA1 in our case) and the plaintext
to create a signature for. If Alice sends the ciphertext and the signature
to Bob, he can decrypt and verify it as follows:

Download security/signatures/signature.rb

linel bob_private_key = key('bob_private')
- plaintext = bob_private_key.private_decrypt(ciphertext)
digest = OpenSSL::Digest::SHAl.new
if alice_public_key.verify(digest, signature, plaintext)

5 puts "Signature matches."
puts "Got: #{plaintext}"
else

puts 'Signature did not match!'
end

http://media.pragprog.com/titles/msenr/code/security/signatures/signature.rb
http://media.pragprog.com/titles/msenr/code/security/signatures/signature.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=33

Download at Boykma.Com

3. VERIFY DATA INTEGRITY WITH SIGNATURES

Decrypting the ciphertext is business as usual, but in line 4, we use the
verify() method to make sure the signature matches the plaintext and
Alice’s public key. Bob has to use the same digest algorithm as Alice.

That’s it. With minimal overhead you can verify the integrity of all the
messages you receive and send.

| Discussion | \

The techniques demonstrated in this recipe make sense only if you can
be sure that the public keys you're using actually belong to the peo-
ple or companies you'd like to communicate with. In extreme cases,
public keys are handed over personally, but usually it’s sufficient to
load public keys via a communication link secured by SSL where the
server’s identity is verified by a certificate (learn how to verify certifi-
cates with Ruby in Recipe 5, Create Strong and Convenient Passwords,
on page 38).

Also See
,_J L \

* See Recipe 2, Protect Secrets with Asymmetric Ciphers, on page 28
to learn more about asymmetric ciphers and how to use them in
Ruby.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=34

Generate Real Random
Numbers

Problem
,_J L \

For real security, good random numbers are extremely important, be-
cause if your keys and your initialization vectors are as random as
possible, they are also as secure as possible. Unfortunately, on a deter-
ministic machine, you won’t find any random numbers; that is, the
rand() function you can find in nearly every programming language is
only a pseudorandom number generator (PNG).8 It creates numbers that
seem random, but actually they aren’t.

Real randomness can be found only in nature, such as in atmospheric
noise, during radioactive decay, or in a lava lamp. But before you de-
posit some uranium in your office and attach a Geiger counter to your
computer’s USB port, you'd better read this recipe to learn about a
healthier alternative.

| Ingredients | N

e Install the realrand® gem:

$ gem install realrand

Solution
,_J L \

Some nice people already have attached sources of true randomness to
their computers and have made the data available as web services. All

service interfaces look similar (after all, they merely produce a bunch
of bytes), but they differ in some details. The realrand library hides the
details of three of the most popular services (more will be added):

¢ RANDOM.ORG!® generates real random numbers from atmo-
spheric noise.

8. http://en.wikipedia.org/wiki/Pseudorandom_number_generator
9. http://realrand.rubyforge.org/
10. http://www.random.org/

http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://realrand.rubyforge.org/
http://www.random.org/

Download at Boykma.Com 4. GENERATE REAL RANDOM NUMBERS < 36

()

lj_f Joe Asks...
=__What About SecureRandom?

Since Ruby 1.8.7, SecureRandom is part of the standard library.
It generates much better random numbers than the original
rand() method, but it’s still based on deterministic algorithms.
For environments that require real security, it’s still not sufficient.

e The HotBits!! generator creates real random numbers by timing
successive pairs of radioactive decays detected by a Geiger counter
connected to a computer.

¢ EntropyPool'? uses various sources of truly random noise includ-
ing local processes, files and devices, and remote websites.

realrand offers a simple API for all these services and can be used as
follows:

Download security/random_bytes.rb

lnel require 'rubygems'
require 'random/online’
include Random

5 [RandomOrg, FourmilLab, EntropyPool].each do |source|
generator = source.new
puts "#{generator.class}:\t" + generator.randbyte(5).join(',")
end

If you run the previous program on your computer, it will output some-
thing that looks similar to the following (the output on your machine
will be different, because the generated numbers are truly random):
Random: : RandomOrg: 202,222,43,186,55

Random: : FourmilLab: 121,115,208,181,221
Random: :EntropyPool: 46,218,53,191,254

In line 5, we iterate over the different services that are currently sup-
ported by realrand. Then, we create the appropriate generator that will
actually connect to the service, and finally in line 7, we call randbyte()
to generate five random bytes.

11. http://www.fourmilab.ch/hotbits/
12. http://random.hd.org/

http://media.pragprog.com/titles/msenr/code/security/random_bytes.rb
http://www.fourmilab.ch/hotbits/
http://random.hd.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=36

Download at Boykma.Com 4. GENERATE REAL RANDOM NUMBERS < 37

Although the program is as simple as it can be, true randomness comes
at a price, because you have to get the random data from an external
source, which in our case is from an Internet service. This might add
a noticeable performance overhead, and if performance is an issue,
you should cache random bytes locally. For example, you can use the
following class:

Download security/convenient_password.rb

class RandomBytesPool
def initialize(poolsize = 1024, source = Random::RandomOrg.new)
@poolsize = poolsize
@random_source = source
@position = @poolsize + 1
end

def next
if @position >= @poolsize
@pool = @random_source.randbyte(@poolsize)
@position = 0
end
@position += 1
@pool [@position - 1]
end
end

RandomBytesPool caches a configurable amount of random bytes locally,
and its next() method returns them byte by byte. Whenever the pool is
exhausted, it gets refilled with fresh random bytes from one of the ran-
dom byte sources that are supported by realrand. We will use this class
in Recipe 5, Create Strong and Convenient Passwords, on the following

page.

A final note: if you decide to use one of the services we have discussed
in this recipe, take a look at their websites and obey their rules. Often
you are allowed to generate only a certain amount of random numbers
per day, but some of the services offer commercial premium accounts
that allow you to generate more random numbers than with the free
accounts.

http://media.pragprog.com/titles/msenr/code/security/convenient_password.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=37

Create Strong and
Convenient Passwords

Problem
,_J L \

Whenever you create an application where users have to authenticate
themselves using a password, you'd better implement a “Forgot your
password?” function, too. If a user forgot his password, he can use this
function to get a new one via email.

But what password do you send to the user? It does not make sense to
send the same password to all users, because that would be compro-
mised within seconds. You have to generate a new password for every
user. One approach could be to randomly choose a word from a long
list of words such as a dictionary, for example. But words that actually
exist in the real world are never good passwords, because all crackers
know these dictionaries, too, and could try to attack your system by
trying all the dictionary entries.

The only alternative is to generate a random password character by
character, and in this recipe you’ll learn how to do this in Ruby.

| Ingredients | N

¢ Install the realrand'® gem:

$ gem install realrand

¢ Install the ngrams'4 gem:

$ gem install ngrams

Solution
,_J L \

We begin with a rather elegant but naive approach:

Download security/naive_password.rb

def create_password(length)

chars = ('a' .. 'z').to_a + ('1" .. '9").to_a + '%$7@!'.split(//)
Array.new(length, '').collect { chars[rand(chars.size)] }.join
end

13. http://realrand.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/security/naive_password.rb
http://realrand.rubyforge.org/
http://ngrams.rubyforge.org/

Download at Boykma.Com

5. CREATE STRONG AND CONVENIENT PASSWORDS

3.times { puts create_password(8) }

It’s only two lines of code: we create an array named chars containing
all characters that are allowed to appear in our passwords. Then we
create a password by randomly choosing length characters from the
array. Here’s its output (yours will vary):

4wds%j 148

mxxhs vn

nhve@1%!

That is certainly sufficient for applications that do not have to meet
strong security requirements. But to create better passwords, we have
to use a better random number generator, and as you can see in Recipe
4, Generate Real Random Numbers, on page 35, some are available on
the Internet. One of them, RANDOM.ORG, even offers a password gen-
eration service that can be used like this:!®

Download security/random_org_password.rb

Line 1 require 'net/https’

def create_passwords(quantity, length, options = {})
parameters = {

5 "rnd' = 'new',
"format' => 'plain',
'unique' => options[:unique] ? 'on' : 'off',
'digits' => options[:digits] ? 'on' : 'off',
'upperalpha' => options[:upperalphal] ? 'on' : 'off',
10 "loweralpha' => options[:loweralphal] ? 'on' : 'off',

'num' => quantity.to_i,
'"Tlen' => Tength.to_i
}
send_request(parameters)
15 end

def send_request(parameters)
query = parameters.inject([]) do |1, p]
- 1 << "#{p[0]}=#{p[1]}"
20 end.join('&")
- https = Net::HTTP.new(
"www. random.org', Net::HTTP.https_default_port

)
https.use_ss1 = true
25 https.ss1_timeout = 2

https.verify_mode = OpenSSL::SSL::VERIFY_PEER
https.ca_file = '/usr/share/curl/curl-ca-bundle.crt’
https.verify_depth = 2

15. http://random.org/clients/http/

http://media.pragprog.com/titles/msenr/code/security/random_org_password.rb
http://random.org/clients/http/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=39

Download at Boykma.Com

5. CREATE STRONG AND CONVENIENT PASSWORDS < 40

https.enable_post_connection_check = true
30 https.start do |http]
- request = Net::HTTP::Get.new("/strings/?#{query}")
response = https.request(request)
case response
- when Net::HTTPSuccess
35 response.body.split(/\n/)
- when Net::HTTPServiceUnavailable

[]
else
- response.error!
40 end
end
end

In the create_passwords() method, we create a Hash object named param-
etfers that contains all the query parameters we are going to submit to
the web service:

* rnd: We set this parameter to new; that is, a new randomization
will be started for our request.

¢ format: This can be plain or html.

¢ unique: If set to on, this option makes sure we do not get back the
same password twice.

* digits: If set to on, our password will contain digits.

* upperalpha: If set to on, our password will contain uppercase char-
acters.

* loweralpha: If set to on, our password will contain lowercase char-
acters.

¢ num: This is the quantity of passwords to be generated.
¢ len: This is the length of the passwords to be generated.

After we have prepared all parameters, we have to send them to the
RANDOM.ORG web service; we do this in send_request(). We use HTTPS,
because it would be dangerous to transmit our new passwords over
public routers without encrypting them.

We use some Ruby magic in line 18 to turn the parameters hash into a
URL query string. From line 21 to 25, we prepare the HTTPS request. In
other words, we set the request timeout to two seconds, and we verify
the certificate returned by RANDOM.ORG to make sure we are talking
to the right server. It’s important to set enable_post_connection_check @

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=40

Download at Boykma.Com

5. CREATE STRONG AND CONVENIENT PASSWORDS <« 41

to frue, because otherwise Net::HTTP silently ignores warnings related to
SSL errors.

To verify a server certificate, you do not have to install it locally. It’s
sufficient to have root certificates for the most important certificate
authorities (CAs). Web browsers and similar tools such as curl need
these trusted certificates, too, so chances are good that you have them
already somewhere on your hard disk. On my machine I use curl’s curl-
ca-bundle.crt file and assign it to the ca_file member in line 27 (see Chap-
ter 6, Perform Basic Networking Tasks with Ease, on page 179 if you
want to learn more about HTTP clients).

In line 30, we actually start the request and check its results immedi-
ately afterward. If everything went fine, we get back the HTTP status
code OK, and we turn the result document into an array of password
strings by splitting the result document at every newline character.

We handle the case “service unavailable” separately, because it has a
special meaning: random numbers do not grow on trees and have to be
generated continuously. Usually, they are generated bit by bit depend-
ing on some natural process, and the bits are put into a pool. Whenever
a client requests a new random byte, eight bits are taken out of the pool
and are sent back. If there are no more bits left in the pool, you'll get
back an empty result, which is represented by the HTTP status code
503 (service unavailable).

If we get back an error, we raise an exception by calling response.error!.

With only two lines of code, we can generate new passwords:
Download security/random_org_password.rb

lnel quantity, length = ARGV
- puts create_passwords(quantity, Tength, :Toweralpha => true).join("\n")

Let’s create three passwords of twelve lowercase characters each:

mschmidt> ruby random_org_password.rb 3 12
dkT1g3jjfnymkw
fexuslaykjir
zrljghzirypr

That looks good, and it’'s certainly the right way to use real random
processes to create user passwords, but our current solution might
not fit every possible requirement. First, you have to trust your ran-
dom number provider, because all your users’ passwords are created
on its machines. Second, the set of password characters is limited. That
is, you cannot add punctuation characters, for example, which makes

http://media.pragprog.com/titles/msenr/code/security/random_org_password.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=41

Download at Boykma.Com

5. CREATE STRONG AND CONVENIENT PASSWORDS * 42

your passwords less secure. According to the experts in the field (see
Perfect Passwords [1), passwords consisting of only eight charac-
ters are not secure, especially if the password consists solely of letters
and digits and does not contain any punctuation characters (if all this
makes you feel bad about your own passwords, you'd better create new
ones with the code in this recipe!).

Finally, the passwords we have generated so far are difficult to remem-
ber, mainly because they are not pronounceable. If you want your users
to keep their strong passwords and not change them back into some-
thing like maik123 immediately, you'd better add some convenience.
Even government standards deal with this topic.!6

The trick is not to generate a password character by character but as
a sequence of n-grams.!” Simply put, n-grams are sequences of two or
more characters, and every language has a set of rules for combining
such fragments to build words; that is, some of them are valid, and
some are not. For example, zza is a trigram that is allowed to appear
at the end of a word such as pizza, but you won't find an English word
beginning with zza.

Using the ngrams library, we can extract all bigrams and trigrams from
a dictionary, and the library even has methods for building new words
based on the extracted information. That makes it easy to build a pass-
word generator:

Download security/convenient_password.rb

require 'ngrams’

class PasswordGenerator
def initialize(file = Ngram::Dictionary::DEFAULT_STORE)
@dictionary = Ngram::Dictionary.load(file)
end

def generate_password(length)
@dictionary.word(length)
end
end

Only one problem remains: internally, the ngrams library uses Ruby’s
rand() method to generate random numbers, and there’s no official way
to inject a better random number generator. But Ruby wouldn’t be
called a dynamic language if we couldn’t change that, would it?

16. http://www.itl.nist.gov/fipspubs/fip181.ntm
17. http://en.wikipedia.org/wiki/Ngram

http://media.pragprog.com/titles/msenr/code/security/convenient_password.rb
http://www.itl.nist.gov/fipspubs/fip181.htm
http://en.wikipedia.org/wiki/Ngram
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=42

Download at Boykma.Com

5. CREATE STRONG AND CONVENIENT PASSWORDS <« 43

Download security/convenient_password.rb

require 'ngrams'

module Ngram
class Dictionary
@@random_bytes_pool = RandomBytesPool.new

def rand
@@random_bytes_pool.next / 255.0
end
end
end

What a beautiful hack: we have reopened class Ngram::Dictionary to add
the class variable random_bytes_pool (see Recipe 4, Generate Real Ran-
dom Numbers, on page 35) and a new rand() method. Please note that
this solution is not thread-safe, because access to random_bytes_pool is
not synchronized!

The following sample program:
Download security/convenient_password.rb

generator = PasswordGenerator.new
3.times { puts generator.generate_password(12) }

produces something like this:

nazoanonocya

yailipticand

frutellibear

Although they are truly random, some of these words actually look like
real words (be honest: do you know if the frutelli bear actually exists?),
so you'd better check with a dictionary to see whether any existing
words were created.

http://media.pragprog.com/titles/msenr/code/security/convenient_password.rb
http://media.pragprog.com/titles/msenr/code/security/convenient_password.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=43

Recipe 6

Store Passwords Securely

| Problem \

Believe me, even if you think you already know how to store passwords
securely, you probably don’t. There’s a lot of folklore code wandering
around the Internet, and most of it is wrong. In this recipe, you’ll learn
what the biggest threats to your passwords are and how to store them
the right way.

| Ingredients |

e Install the bcrypt-ruby'® gem (at the time of this writing, it is not
available for the Windows platform):

$ gem install bcrypt-ruby

/' Solution \

Let’s say we have a User model that is represented in the database as
follows:

Download security/bcrypt_demo/db/migrate/20080803070736_create_users.rb

class CreateUsers < ActiveRecord::Migration
def self.up
create_table :users do |t]
t.string :name
t.string :hashed_password

t.timestamps
end
end

def self.down
drop_table :users
end
end

Admittedly, it's rather simplistic, but it’s sufficient for demonstration
purposes: our users have a name and a password. At least most people
know that they should never store passwords as plaintext, so usually

18. http://bcrypt-ruby.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/security/bcrypt_demo/db/migrate/20080803070736_create_users.rb
http://bcrypt-ruby.rubyforge.org/

Dol sHOe 6. STORE PASSWORDS SECURELY d 45

passwords are run through a mathematical one-way function such as
MD5 or SHAI1. These algorithms produce a hash value (also called a
Jingerprint). In other words, the same input value always results in the
same output value, and you should not be able to deduce the input
value from the output value. Instead of storing the password itself, you
store only its hash value.

If a user tries to log in now, she sends her username and password
to the application as plaintext (over a secure network connection such
as HTTPS, of course). Then the server calculates the password’s hash
value and compares it to the hash value that has been stored in the
database. If they are equal, the password is correct. Otherwise, it’s not.

The biggest security threat is that someone gets a copy of all usernames
and their according password hashes, because in the worst case (that
is, if you did not store your passwords really securely) the attacker
could derive the original passwords from the hash values. If, for exam-
ple, you have hashed your passwords using MD5, this is easier than
you think, because of rainbow tables. Simply put, these tables contain
the MD5 hashes for all possible character sequences up to a certain
length. Breaking a password is basically reduced to a table lookup.

To protect yourself from rainbow table attacks, you can add a little bit
of random information, called salt, to every password before you turn
it into a hash value. This way, an attacker would need a new rainbow
table for every single password. But that’s still insufficient, because
with today’s computing power, it’s actually possible to perform this kind
of attack. Typical hash algorithms can be computed very quickly on a
modern computer, and they can be calculated even faster on special
devices that have become pretty cheap in the past few years.

Most of today’s password-cracking tools aren’t based on tables any-
more; instead, they use sophisticated algorithms based on cryptanaly-
sis and statistics. That is, if you want to make an attacker’s life more
difficult, you have to drastically increase the time needed to crack your
passwords. This can be achieved by hashing your passwords not only
once but several times and by adding a new random bit of salt for
every iteration. Several algorithms are available for doing this. One of
the most popular is bcrypt, which is used by OpenBSD for encrypting
passwords, for example.!®

19. You can find an excellent article explaining all this in detail at
http://www.matasano.com/log/958/.

http://www.matasano.com/log/958/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=45

Dol sHOe 6. STORE PASSWORDS SECURELY d 46

We use a bcrypt library for Ruby to add a secure password scheme to
our User model:

Download security/bcrypt_demo/app/models/user.rb

Line 1 require 'bcrypt'

class User < ActiveRecord::Base
def password
5 @password | |= BCrypt::Password.new(self.hashed_password)
end

def password=(new_password)
@password = BCrypt::Password.create(new_password, :cost => 10)
10 self.hashed_password = @password
end

def self.authenticate(name, password)
if user = self.find_by_name(name)
15 user = nil if user.password != password
end
user
end
end

We define a virtual password attribute. That is, we can read and write
it, but it is not stored in the database. Only the hashed password
gets stored. In line 5, we implement the reader. If the password has
been created already, we simply return it. Otherwise, we create a new
BCrypt::Password object from the hashed password and return this. The
Password class hides all the cryptographic details and provides some
convenience methods that we will use later.

Our writer’s implementation starts in line 9. Here we create a new Pass-
word object from a plaintext password that has been input by a user.
The cost attribute allows us to control the security level of the password.
The higher the cost value, the longer it takes to break the password. We
store the hashed password in @password and in self.hashed_password, so
it gets stored in the database, too. Note that we do not have to store a
salt value separately.

Finally, we need an authenficate() method that actually checks whether
a certain combination of username and password is valid. First we
check whether the user exists in the database, and if the user does, we
compare the password entered to the password that has been stored in
the database in line 15. Because the Password class overrides the ==()
operator, the code looks very elegant, doesn’t it? Be assured: behind the
scenes a lot of cryptography is performed.

http://media.pragprog.com/titles/msenr/code/security/bcrypt_demo/app/models/user.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=46

Download at Boykma.Com 6. STORE PASSWORDS SECURELY d 47

Let’s use our new User class on the Rails console:

mschmidt> ruby script/console
Loading development environment (Rails 2.1.0)
>> user = User.create(:name => 'Maik', :password => 'tOp$ecret')
=> #<User 1id: 2, name: "Maik",
hashed_password:
"$2a$10$fveY1Zte2p37XsQ0tTtsYeUGLWRgItWPx8zXYcuFl1e0Z...",
created_at: "2008-06-30 13:22:14",
updated_at: "2008-06-30 13:22:14">
>> User.authenticate('Maik', 'wrong password')
=> nil
>> User.authenticate('Maik', 'tOp$ecret')
=> #<User 1id: 2, name: "Maik",
hashed_password:
"$2a$10$fveY1Zte2p37XsQ0tTtsYeUGLWRgItWPx8zXYcuFle0Z...",
created_at: "2008-06-30 13:22:14",
updated_at: "2008-06-30 13:22:14">

>>

We created a new user named Maik who has the password tOp$ecret.
As you can see, only a hashed version of the password has been stored.
Then, we tried to authenticate ourselves using a wrong password. As
expected, we've got nil as a result. Finally, we used the right password
and got a User object back.

Although it’s easy to use the bcrypt library directly, there is even a Rails
plug-in named acts_as_authentable?° for it.

| Discussion | N

Whenever you are writing code related to security, you should be ex-
tremely cautious and skeptical. Always try to get the latest information
available about security holes in all the tools and algorithms you're
going to use. That’s true for bcrypt, too.

At the moment, bcrypt is sufficient for most purposes, but it uses the
Blowfish encryption algorithm?! internally, which has been succeeded
already by Twofish.2? It's a good idea to look for alternative solutions
as early as possible, and stronger hashing algorithms such as SHA-256
are interesting candidates.??

Your software can never be totally secure, but it should be as secure as
possible.

20. http://code.google.com/p/acts-as-authentable/

21. http://en.wikipedia.org/wiki/Blowfish_(cipher)

22. http://en.wikipedia.org/wiki/Twofish

23. http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html

http://code.google.com/p/acts-as-authentable/
http://en.wikipedia.org/wiki/Blowfish_(cipher)
http://en.wikipedia.org/wiki/Twofish
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=47

Reanimate Good Old Basic
Authentication

| Problem \

\
Often the simplest solutions are the best. If you have to restrict access
to some part of your web application and do not want to build an
elaborate access control systems, consider using good old HTTP basic
authentication.?*
Solution
S N \

Line 1

Before we start, please note the following: basic authentication offers a
minimum level of security, and you should use it to protect only non-
critical data. The HTTP standard defines a more secure authentication
method named digest authentication, but at the moment Rails does not
support it.

However, basic authentication is well supported, and it's amazing how
easy it is to protect controller actions from unwanted access with Rails
2.x:

Download security/basic_authentication/app/controllers/authentication_controller.rb

class AuthenticationController < ApplicationController
before_filter :authenticate, :except => [:unprotected]

def unprotected
render :text => "Access granted to anyone.\n"
end

def forbidden
render :text => "Access granted exclusively to you.\n"
end

private

def authenticate
authenticate_or_request_with_http_basic do |user_name, password|
user_name == 'maik' && password == 'tOp$ecret'
end
end
end

24. http://www.ietf.org/rfc/rfc2617 txt

http://media.pragprog.com/titles/msenr/code/security/basic_authentication/app/controllers/authentication_controller.rb
http://www.ietf.org/rfc/rfc2617.txt

Download at Boykma.Com

7. REANIMATE GOOD OLD BASIC AUTHENTICATION < 49

Our controller implements two actions named forbidden() and unpro-
tected() that both render a short text message. In line 2, we install a
filter, so authenticate() gets called before forbidden() is invoked. authenti-
cate() protects our forbidden() method from unauthorized access using
HTTP basic authentication.

Rails 2.0 added a new method named authenticate_or_request_with_http_
basic(). It expects a code block and passes it the username and pass-
word that have been transmitted on the HTTP layer. If it returns frue,
the request is allowed. Otherwise, it is not.

When we invoke an unprotected method, everything works as expected:

mschmidt> curl http://localhost:3000/authentication/unprotected
Access granted to anyone.

That was not too surprising, so let’s see what happens if we try to access
the restricted part of our application:

mschmidt> curl -i http://localhost:3000/authentication/forbidden
HTTP/1.1 401 Unauthorized

WwW-Authenticate: Basic realm="Application"

Status: 401 Unauthorized

Content-Type: text/html; charset=utf-8
Content-Length: 27

HTTP Basic: Access denied.

It works exactly as expected; we get back the HTTP status code 401
and an HTTP header named WWW-Authenticate with the value t;Basic
realm="Application’. This tells us we have requested a resource in the
realm “Application” that requires basic authentication. If you access
the URL using an ordinary web browser, you'll get a dialog box that
looks similar to the one in Figure 1.1, on the following page.

So, let’s pass a username (maik) and a password (tOp$ecret) and see
what happens:

mschmidt> curl -1 \

> maik:tOp\$ecret@localhost:3000/authentication/forbidden
HTTP/1.1 200 OK

Status: 200 OK

Content-Type: text/html; charset=utf-8

Content-Length: 35

Access granted exclusively to you.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=49

Download at Boykma.Com

7. REANIMATE GOOD OLD BASIC AUTHENTICATION < 50

Authentication Required

Enter username and password for "Application" at
http://localhost:3000

User Name:

Password:

rj Use Password Manager to remember this password.

{ cancel) (oK)

Figure 1.1: Basic authentication dialog box

To use basic authentication, separate the username/password with
a colon, and put it in front of the host name. Everything worked as
expected; we were granted access to the forbidden() action. Behind the
scenes, our username and password have been transmitted with the
following HTTP header:

Authorization: Basic bWFpazpOMHAkZWNyZXQ=
It seems that our credentials have been encrypted, but they haven’t. In

fact, they have only been encoded with Base64, which is as secure as
plaintext:

mschmidt> ruby -e 'puts "bWFpazpOMHAKZWNyZXQ=".unpack("m=")"
maik:tOp$ecret

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=50

Implement a Single Sign-on
System with OpenliD

Problem
,_J L \

With more and more new services appearing on the Web every day, it
gets harder and harder to manage all your login names and passwords,
doesn’t it? Wouldn't it be great if you could use the same username and
passwords on any website?

OpenID?® is a framework for managing digital identities that is gaining
popularity. It is based on open standards, and it is decentralized. In
other words, it is not controlled by a single—potentially evil—company.
In addition, it is supported by a lot of big players such as AOL and
Technorati.

Perhaps you already have implemented a sophisticated authentication
system for your new application but also want to support OpenID. In
this recipe, you'll learn how you can support OpenlID in parallel to your
own authentication system so your users get the best of breeds.

| Ingredients | N

e Install the ruby-opendid?® gem:

$ gem install ruby-openid
* Change to your Rails application’s root directory, and install the
open_id_authentication plug-in:

mschmidt> ./script/plugin install \
> http://svn.rubyonrails.org/rails/plugins/open_id_authentication

The plug-in depends on the existence of a few database tables, and
it comes with a rake task for creating them:

mschmidt> rake open_id_authentication:db:create
mschmidt> rake db:migrate

25. http://openid.net/
26. http://openidenabled.com/ruby-openid/

http://openid.net/
http://openidenabled.com/ruby-openid/

Download at Boykma.Com

8. IMPLEMENT A SINGLE SIGN-ON SYSTEM WITH OPENID <« 52

Solution
,_J L \

Every authentication system needs a representation of its users, and
here’s how our users are stored in the database:

Download security/openid/demo/db/migrate/20080803114216_create_users.rb

class CreateUsers < ActiveRecord::Migration
def self.up
create_table :users do |t]|
t.string :name, :hashed_password, :identity_url
t.timestamps
end
User.create(:name => 'maik', :password => 'tOp$ecret')
end

def self.down
drop_table :users
end
end

In a real application, we would have many more attributes, but for our
purposes here, a username, a hashed password, and an identity URL
(needed by OpenlID) are sufficient. We need a model for our Rails appli-
cation, too, and for the password authentication mechanism we use the
same model as in Recipe 6, Store Passwords Securely, on page 44:

Download security/openid/demo/app/models/user.rb

require 'bcrypt'

class User < ActiveRecord: :Base
def password
@password | |= BCrypt::Password.new(self.hashed_password)
end

def password=(new_password)
@password = BCrypt::Password.create(new_password)
self.hashed_password = @password

end

def self.authenticate(name, password)
if user = self.find_by_name(name)
user = nil if user.password != password
end
user
end
end

We already know how to authenticate users with a password, but we
still have to add support for OpenID. We do not have to implement the
underlying protocols ourselves but instead can use ruby-openid. It is

http://media.pragprog.com/titles/msenr/code/security/openid/demo/db/migrate/20080803114216_create_users.rb
http://media.pragprog.com/titles/msenr/code/security/openid/demo/app/models/user.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=52

Download at Boykma.Com 8. IMPLEMENT A SINGLE SIGN-ON SYSTEM WITH OPENID <« 53

®00 http://localhost:3000/sessions/new
_‘ http://localhost:3000/sessions /new *(Qv Google \

Username:

Password:

...0ruse

OpenlD: http://maik.schmidt.myop

Signin_

Figure 1.2: Sign in with your OpenlID.

a full-blown OpenlID library that allows you to create both clients and
servers. Although the library is easy to use, you still have to care about
a lot of details when using it directly. The Rails core team decided to
build a thin wrapper around it and made it available as a plug-in named
open_id_authentication.

After you've installed the plug-in, you can create your shiny new login
page supporting both OpenID and authentication via a username and
password (see Figure 1.2):

Download security/openid/demo/app/views/sessions/new.html.erb

<% if flash[:error] %>
<div><%= flash[:error] %></div>
<% end %>

<% form_tag(session_url) do %>

<p>
<label for="name'>Username:</label>
<%= text_field_tag 'name' %>

</p>

<p>
<label for="password'>Password:</Tabel>
<%= password_field_tag %>

</p>

<p>
&helTip;or use

</p>

http://media.pragprog.com/titles/msenr/code/security/openid/demo/app/views/sessions/new.html.erb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=53

Download at Boykma.Com

Line 1

20

25

30

35

8. IMPLEMENT A SINGLE SIGN-ON SYSTEM WITH OPENID <« 54

<p>
<label for="'openid_url'>0penlID:</1abel>
<%= text_field_tag 'openid_url' %>
</p>
<p>
<%= submit_tag 'Sign in', :disable_with => 'Signing in…' %>
</p>
<% end %>

Users can freely choose, if they’d like, to sign up with their OpenID or
with their username. Here’s the controller that makes all this possible:

Download security/openid/demo/app/controllers/sessions_controller.rb

class SessionsController < ApplicationController
def create
if using_open_id?
open_id_authentication
else
password_authentication(params[:name], params[:password])
end
end

protected

def password_authentication(name, password)
if @Quser = User.authenticate(name, password)
successful_login
else
failed_login "User name and/or password is wrong."
end
end

def open_id_authentication
authenticate_with_open_id do |result, identity_url|
unless result.successful?
failed_login(result.message) and return
end
if @Quser = User.find_or_create_by_identity_url(identity_url)
successful_login
else
failed_login "Identity URL #{identity_url} is unknown."
end
end
end

private

def successful_login
session[:user_id] = @user.id
redirect_to :controller => 'Main
end

http://media.pragprog.com/titles/msenr/code/security/openid/demo/app/controllers/sessions_controller.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=54

Download at Boykma.Com

8. IMPLEMENT A SINGLE SIGN-ON SYSTEM WITH OPENID <« 55

Build or Buy?

Implementing an OpenlID client with Ruby is not very difficult,
and the same is frue for an OpenlID server. In principle, you
could become an OpenlD provider within a couple of days.
But as with all things related to security, the devil is in the detail,
so you'd better leave such tasks to the pros.

Some OpenlD providers such as myOpenlD have started to
offer products and services for companies that want to cre-
ate an OpenlID infrastructure on the client side or server side
but that do not want to gain the expertise to do so them-
selves. Before implementing a solution yourself, check whether
you can get one off the shelf.

40 def failed_login(message)
flash[:error] = message
redirect_to(new_session_url)

end
end

At first sight that’s a lot of code, but it’s really easy to understand, and
it actually achieves a lot. In the create() method, we check whether the
user wants to sign in with OpenlID by calling the open_id_authentication
plug-in’s using_open_id?() method in line 3.

If the user prefers to authenticate using a password, we use a pass-
word authentication mechanism that works exactly like the one we have
described in Recipe 6, Store Passwords Securely, on page 44, so we'll
concentrate on open_id_authentication().

The core of our authentication check is the authenticate_with_open_id()
method we call in line 21. It transparently handles all OpenID trans-
actions and expects a code block that gets passed the overall result
of the OpenID authentication and the identity URL that should be
authenticated. First it redirects the user to the user’s OpenlD provider.
In Figure 1.3, on the following page, you can see how this looks for
myOpenlD, for example.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=55

Download at Boykma.Com 8. IMPLEMENT A SINGLE SIGN-ON SYSTEM WITH OPENID <« 56

Sign In e

800
| [<]>](c] {181 & https:/ /www.myopenid.com) signin_password?_=487c-dfb6-295b&tid=167496458t0ken® & Q- |

a OpeniD

Home
Notice e Hom

Recover Account
You must sign in to authenticate to http:/ /localhost:3000 as http://maik.schmidt.myopenid.com/
OpeniD Site Directory
Username http://maik.schmidt.myopenid.com/
Password |
O stay signed in

(Signin) (Cancel)

th an Information Card
SSL certificate
my account

Help | Feedback | Privac Not set Blog | About L anRain, Inc

Figure 1.3: myOpenlID login screen

After a successful login at your OpenlD provider, it usually asks you
whether you’'d like to authenticate the requesting party. Typically, you
can deny this, you can allow it once, or you can allow it forever (to see
how such a page looks for myOpenlID, refer to Figure 1.4, on the next

page).

If the identity URL can be authenticated successfully and if we can
find or create the appropriate User object in the database, we call suc-
cessful_login(), which redirects to the main controller of our application.
Otherwise, we call failed_login() and redirect to the login page after set-
ting an error message. This redirection mechanism works only if we
adjust routes.rb accordingly:

Download security/openid/demo/config/routes.rb

map.open_id_complete 'session',
:controller => 'sessions',
raction => 'create',
:requirements => { :method => :get }
map.resource :session

http://media.pragprog.com/titles/msenr/code/security/openid/demo/config/routes.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=56

Download at Boykma.Com 8. IMPLEMENT A SINGLE SIGN-ON SYSTEM WITH OPENID <« 57

800 OpenlD Verification a
(a2)(e] {2]} & heeps://www.myopenid.com/trust_=x2A487c-dfb6-295batid=1a1cfb16&token=0444d403.0 & Q- |
n
B OpeniD
A site identifying itself as
http://localhost:3000
has asked us for confirmation that
http:/ /maik.schmidt.myopenid.com/
is your identity URL.
Allow r) (Allow Once) (Deny
J

telp | Feedback | Priva age: Not se Blog | About | anRain, In

Figure 1.4: Authenticate the test application at myOpenlID.

That’s it! With a few lines of code, our application supports two conve-
nient and secure authentication mechanisms. There’s really no excuse
for not offering both of them.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=57

Recipe 9

‘ Authenticate with LDAP

| Problem \

A lot of companies use the Lightweight Directory Access Protocol (LDAP)
for storing user account information, and in this recipe you'll learn how
to access a LDAP repository from your Rails application to authenticate
user information.

J Ingredients |

¢ Install the ruby-net-ldap gem:

$ gem install ruby-net-Tldap

/' Solution \

The structure and content of our repository are defined as follows:
Download security/Idap/init.Idif

Create the EnterpriseRecipes organization.
dn: dc=enterpriserecipes,dc=com

objectclass: dcObject

objectclass: organization

o: EnterpriseRecipes

dc: enterpriserecipes

Create some users.

dn:cn=Maik Schmidt,dc=enterpriserecipes,dc=com
objectclass: top

objectclass: inetOrgPerson

cn: Maik Schmidt

sn: Schmidt

mail: Maik.Schmidt@example.com

userPassword: maik123

dn:cn=Jane Rodriguez,dc=enterpriserecipes,dc=com
objectclass: top

objectclass: inetOrgPerson

cn: Jane Rodriguez

sn: Rodriguez

mail: jane@example.com

userPassword: booze

Here we have an organizational unit representing the Enterprise Reci-
pes company, and we have two users who have to authenticate using

http://media.pragprog.com/titles/msenr/code/security/ldap/init.ldif

Download at Boykma.Com

Line 1

20

an email address and a password. Typically, you'd store more attributes
in the repository, and you would not store passwords in plaintext (see
Recipe 6, Store Passwords Securely, on page 44 for a much better
approach), but for demonstration purposes we have everything we need.

Ruby has excellent support for LDAP, and you can choose between sev-
eral libraries:

* A C extension library named Ruby/ LDAP?7
* A pure Ruby implementation named Net::LDAP?®

* Ruby/ActiveLDAP,?® a wrapper around Ruby/LDAP that behaves
like ActiveRecord

In this recipe, we use Net::LDAP, because it’s the easiest to install and
because it does not depend on a local LDAP system as Ruby/LDAP
does, for example. We will build a complete user authentication mech-
anism; it looks like this:

Download security/Idap/user.rb

require 'net/ldap’

class User
BASE = 'dc=enterpriserecipes,dc=com’'
LDAP_USER = 'cn=root,dc=enterpriserecipes,dc=com’
LDAP_PASSWORD = 'tOpS$ecret'

def self.authenticate(email, password)
email_filter = Net::LDAP::Filter.eq('mail’', email)
ldap_con = connect(LDAP_USER, LDAP_PASSWORD)
dn = "'
Tdap_con.search(:base => BASE, :filter => email_filter) do |entry|
dn = entry.dn
end
Idn.empty? and connect(dn, password).bind
end

private

def self.connect(dn, password)
Net: :LDAP.new(
thost => 'localhost',
:port => 389,

27. http://ruby-ldap.sourceforge.net/
28. http://net-Idap.rubyforge.org/
29. http://ruby-activeldap.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/security/ldap/user.rb
http://ruby-ldap.sourceforge.net/
http://net-ldap.rubyforge.org/
http://ruby-activeldap.rubyforge.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=59

Download at Boykma.Com

9. AUTHENTICATE WITH LDAP <« 60

rauth => {
25 :method => :simple,
:username => dn,
:password => password
}
)
30 end
end

One class, two methods, and we are done. Let’s take a look first at
the connect() method beginning in line 20. We create a new Net:LDAP
object using the usual parameters—the name of the host to connect to,
the port of the LDAP server, a username, and a password. Note that
the username is named dn, which is an abbreviation for distinguished
name. In LDAP a distinguished name uniquely identifies an entry in
the repository. We have done this because in authenticate() we can use
connect() to connect to the repository itself and then to authenticate a
user entry, if we have found one.

We create a Net:LDAP:Filter object in line 9 that filters all entries in the
repository that have a certain email address. The eq() method returns
a filter that makes sure that the mail attribute exactly matches the con-
tent of the email argument. Net:LDAP comes with more filters, and most
of them even accept wildcards. For example, to get email addresses
belonging to the domain example.com, you'd pass *example.com.

Then we connect to the repository using the credentials of the adminis-
trative user. In line 12, we look up the distinguished name of the entry
that has a certain email address using the search() method and our fil-
ter. When we have found an entry, we try to connect to the LDAP server
again using the password belonging to the entry we have just found. If
this works, everything is fine, and the user can be authenticated. Here’s
how you’d use the authenticate() method:

Download security/Idap/user.rb

if User.authenticate('Maik.Schmidt@example.com', 'maik123')

puts 'You are logged in!'
else

puts 'Sorry!’
end
With only thirty lines of client code, we have implemented a complete
LDAP authentication mechanism that can be used with a single line
of code. To make this authentication system as secure as possible, we
should use the Secure Sockets Layer (SSL) protocol or its successor,
Transport Layer Security (TLS).

http://media.pragprog.com/titles/msenr/code/security/ldap/user.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=60

Download at Boykma.Com

9. AUTHENTICATE WITH LDAP <« 61

In this case, we have to only slightly change the connect() method:
Download security/Idap/ssl_user.rb

def self.connect(dn, password)
Net: :LDAP.new(
thost => 'localhost',
:port => 636,
rauth => {
:method => :simple,
:username => dn,
:password => password
1,
rencryption => :simple_tls
)

end

We have changed the port number to 636 (LDAPS), and we have added
the :encrypfion option and set it to :simple_fls. That’s all, and now the
authentication system works on an encrypted connection.

http://media.pragprog.com/titles/msenr/code/security/ldap/ssl_user.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=61

Chapter 2

“If you can’t bill it, kill it!” is a popular mantra in the enterprise world,
because companies exist to earn money. Building software is a very
expensive business, and regardless of whether you offer services on the
Internet or ship applications to your customers, you have to get paid
for them somehow.

A common approach to obtain your customers’ money is to charge their
credit cards. Credit cards are widespread, reasonably secure, and easy
to use. Also, they can be processed electronically and without human
intervention, which makes them a good means of payment for web
shops and similar applications.

The biggest problem with credit cards is that you have to process them
via payment gateways offered by payment service providers. They all
have their own idea of what makes up a good API, and it can be tricky to
integrate with them. Fortunately, there’s a Ruby solution that prevents
you from the hassle of programming against a payment gateway’s native
API, and in Recipe 10, Charge Credit Cards with ActiveMerchant, on
page 64, you'll learn how to use it. You should read this recipe before
reading the rest of this chapter.

The focus of Recipe 11, Integrate ActiveMerchant with Rails, on page 70
is the integration of ActiveMerchant with your Rails applications. It's
easy, but you have to pay attention to a few important details.

Sometimes charging a customer’s credit card directly is not an option.
In European countries, for example, credit cards aren’t as widespread
as they are in the United States, and many people are reluctant to enter
their credit card information into a web form. For these cases, special

Download at Boykma.Com CHAPTER 2. PROCESS E-COMMERCE PAYMENTS <« 63

services exist that allow users to manage their payment details centrally
so they have to trust only one party. One of the most popular services
is PayPal, and in Recipe 12, Transfer Money with PayPal, on page 78,
you can learn how to add PayPal support to your Rails applications.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=63

Charge Credit Cards with
ActiveMerchant

Problem
,_J L \

Your company is building a new service, and customers should be able
to pay by credit card. The financial department has chosen a payment
service provider already, so you only have to integrate with the payment
gateway’s API. In this recipe, you’ll learn how to do this.

J Ingredients | \

e Install the ActiveMerchant gem:!

$ gem install activemerchant

Solution
,_J L \

When charging credit cards in an application, you certainly never work
directly with a bank or even with one of the big credit card companies.
Usually, you have to delegate credit card transaction to a payment ser-
vice provider that itself gives you access to a payment gateway and the
according API.

The biggest problem with these payment gateways is that there are so
many to choose from. They all have their pros and cons, and they all
have their own proprietary APIs. In addition, their features often dif-
fer tremendously. Some of them allow you to charge only a customer’s
credit card, while others offer sophisticated address verification ser-
vices or support recurring payments.

Fortunately, some brave people created ActiveMerchant, a framework
that abstracts a lot of payment gateways’ APIs and hides them behind
a nice, clean interface. Simply put, ActiveMerchant is for payment gate-
ways what ActiveRecord or JDBC are for databases. In this recipe, you'll
learn how to access a payment gateway via ActiveMerchant in princi-
ple, and in Recipe 11, Integrate ActiveMerchant with Rails, on page 70,
you’'ll learn how to add payment functionality to a Rails application.

1. http://www.activemerchant.org/

http://www.activemerchant.org/

Download at Boykma.Com

10. CHARGE CREDIT CARDS WITH ACTIVEMERCHANT <« 65

When developers start to integrate with a payment gateway, they usu-
ally do not know a lot about the payment industry’s business processes
and do not see the system from a customer’s perspective. Often they
think that it’s sufficient to have a function for charging a customer’s
credit card, which is pretty easy with ActiveMerchant:

Download ecommerce/samples/purchase.rb

Line 1 require 'active_merchant'
ActiveMerchant::Billing::Base.mode = :test
gateway = ActiveMerchant::Billing::BraintreeGateway.new(
5 :lTogin => 'demo',

:password => 'password'

)

credit_card = ActiveMerchant::Billing::CreditCard.new(
10 :first_name => 'Maik',
:Tast_name => 'Schmidt',
‘number => '4111111111111111",
:month => '10',
:year => (Time.now.year + 1).to_s,
15 :verification_value => '999'

)

options = {
:billing_address => {
20 :name => 'Maik Schmidt',
:addressl => 'Musterstrafle 42',
:city => 'Musterstadt’',
:state => 'XX',
- :country => 'US',
25 1zip => 'X12345'",
- :phone => '555-123-4567"'
1,
:description => 'Beer Anthology (PDF)'
}

30
if !credit_card.valid?
puts 'Credit card is invalid!'
credit_card.errors.each_full { |m| puts m }
else
35 amount_in_cents = 699
response = gateway.purchase(
amount_in_cents, credit_card, options
)
if response.success?
40 puts "We've got the money!"
puts "Transaction ID: #{response.authorization}"
if response.avs_result['code'] != "Y'
puts "Address is suspicious:\n#{response.avs_result['message']}"
end

http://media.pragprog.com/titles/msenr/code/ecommerce/samples/purchase.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=65

Download at Boykma.Com

10. CHARGE CREDIT CARDS WITH ACTIVEMERCHANT <« 66

45 else
puts "Could not purchase the product:\n#{response.message}"
end
end

First we set ActiveMerchant into test mode, because we do not actu-
ally want to perform any real credit card transactions. Nearly all pay-
ment gateways have a sandbox for testing purposes, and ActiveMer -
chant uses a sandbox when in test mode (for production mode replace
:test with :production).

In line 4, we create a proxy object for the payment gateway we’d like to
use. We use the Braintree gateway,? because it has great testing fea-
tures that can be used without registering up front (at the moment of
this writing it does not accept any applications from merchants pro-
cessing less than $100,000 USD a month). To authenticate against the
gateway’s API, we pass a login name and a password.

Then, in line 9, we create a CreditCard instance that gets all the argu-
ments you'd probably expect, such as the card holder’s name, the card
number, its expiration date, and the verification value (a number com-
prising three to four digits that proves you have the cards in hand and
did not get its data from anywhere else). We could have specified the
credit card company that issued the card with the :type attribute, but
usually that’s not necessary, because it's encoded in the leading digits
of the credit card number anyway (the 4 indicates that this is a card
issued by Visa). The credit card we are using in this example is an offi-
cial test card that can be found on the Braintree website, so don’t get
any ideas!

In principle, the credit card information is sufficient for payment pur-
poses, but to increase security and customer convenience, you can
often provide more information when accessing a payment gateway.
That’s why many ActiveMerchant commands accept an opfions hash,
and we fill ours with the customer’s billing address so it can be verified
by the payment gateway. In addition, we add a description text that
might appear on the customer’s bill.

In line 31, the real payment processing starts. First we check the credit
card syntactically by calling valid?(). This makes sure the credit card
number has the right checksum (the last digit is a checksum calcu-
lated with the Luhn algorithm?). Also, it checks whether the card holder

2. http://www.braintreepaymentsolutions.com/
3. http://en.wikipedia.org/wiki/Luhn

http://www.braintreepaymentsolutions.com/
http://en.wikipedia.org/wiki/Luhn
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=66

Download at Boykma.Com

10. CHARGE CREDIT CARDS WITH ACTIVEMERCHANT <« 67

name is empty, whether the card has expired already, and so on. If the
credit card is invalid, we iterate over its errors attribute (it’s a kind of
Hash object) and output error messages similar to those provided by
ActiveRecord. We could have used each(), but the messages returned
by each_full() look better. @

All checks happen on the client side, and even if valid?() returns true,
it doesn’t mean that the credit card actually exist or wasn’t stolen (this
can be checked only by the payment gateway). Always perform these
checks before transmitting a transaction, because it prevents unneces-
sary transaction fees and gives your customers faster feedback if they
have mistyped something.

We actually access the payment gateway for the first time in line 36
when we invoke the purchase() method. It gets the amount we'd like
to charge (to prevent rounding errors, ActiveMerchant processes all
amounts as integer values in cents), the credit card to get the money
from, and the options we have previously defined. It returns an Active-
Merchant::Biling::Response object that tells us whether the purchase has
been successful. If it was successful, we output the response’ autho-
rization attribute. This attribute is some kind of transaction ID gener-
ated by the payment gateway, and it uniquely identifies our credit card
transaction. Depending on the provider, it's possible to set a transac-
tion ID yourself. It can be set with the :order_id option. Then, we check
the results of the address verification service in line 42 (usually you'd
expect a negative result if the address verification has failed, but some
payment gateways process the transaction anyway).

It’s time for a first test run:

mschmidt> ruby purchase.rb

We've got the money!

Transaction ID: 768198172

Address is suspicious:

Street address and postal code do not match.

All in all, everything worked as expected. The money will be transferred,
although the address verification failed. Now, you could get yourself
a merchant account and an account at your favorite payment service
provider and start to get rich. But as stated earlier, this approach works
only for some business models. The purchase() command is great for
charging products that get delivered immediately such as most digi-
tal products (e-books, MP3 files, screencasts, and so on). For physical
goods, it’s rarely appropriate, because customers would not expect their
credit cards to be charged when the order has been filled.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=67

Download at Boykma.Com

10. CHARGE CREDIT CARDS WITH ACTIVEMERCHANT <« 68

There is another mechanism splitting the payment process into two
parts: authorize() and capture(). When a customer places an order, the
money gets authorized at the payment gateway. In other words, the
money is only reserved and not transferred to the merchant’s account.
This reservation usually lasts for a week (sometimes up to a month),
and during this time, the money can be actually transferred with a
capture() command. This way, the merchant makes sure it will eventu-
ally get the money, and the customer can be charged after the goods
have been shipped.

There’s another advantage in processing payments in two steps: if the
customer wants to modify or cancel the order, there’s time left to change
the price or to skip the order altogether. Payments can be rolled back
(this action is called credit), but it’s best to cancel a transaction before
it has been settled. It prevents costs and hassle. With ActiveMerchant,
the authorize/capture cycle can be implemented with ease:

Download ecommerce/samples/purchase.rb

Lne1 amount_in_cents = 1000

response = gateway.authorize(amount_in_cents, credit_card, options)

if response.success?
puts "Amount has been authorized!"

5 puts "Transaction ID: #{response.authorization}"
response = gateway.capture(amount_in_cents, response.authorization)
if response.success?
puts "We've got the money!"

else
10 puts "Could not capture the money:\n#{response.message}"
end
else
puts "Could not authorize transaction:\n#{response.message}"
end

The call to authorize() in line 2 looks exactly like a purchase() call, and
its response can be treated equally, too. The only difference is that no
money actually gets transferred. Usually you'd store the amount to be
transferred and the responses’ authorization attribute in a database so
you could use them after the goods have been shipped. Then, you'd
pass them to capture() (as we do in line 6) to get your money. You have
to pass the amount again, because it may be different from the amount
that has been authorized. For example, you might be unable to deliver
all the goods the customer ordered.

That’s all you have to do to add support for credit card payments to
your web application, because ActiveMerchant simplifies the interac-
tion with typical payment gateways as much as possible. But it does

http://media.pragprog.com/titles/msenr/code/ecommerce/samples/purchase.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=68

Download at Boykma.Com

10. CHARGE CREDIT CARDS WITH ACTIVEMERCHANT <« 69

not support all payment gateway APIs on the planet at the moment (it
supports mostly gateways that are hosted in the United States). But
more gateways get added frequently, and if the one you need isn’t sup-
ported, consider adding an appropriate extension to ActiveMerchant
instead of implementing your own proprietary solution.

Also See
,_J L \

* See Recipe 11, Integrate ActiveMerchant with Rails, on the next
page if you want to learn how to integrate ActiveMerchant with
your Rails applications.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=69

Integrate ActiveMerchant
with Rails

Problem
,_J L \

You've built a web shop with Rails, and now you want to integrate with
a payment gateway so your customers can pay with their credit cards.

J Ingredients | \

* Change to the application’s root directory, and install the Active-
Merchant plug-in:

$./script/plugin install \

> git://github.com/Shopify/active_merchant.git

This isn’t necessary if you have installed the ActiveMerchant gem
already.

¢ Install the ssl requirement gem:

$./script/plugin install \
git://github.com/rails/ssl_requirement.git

Solution
,_J L \

Integrating ActiveMerchant with a Rails application doesn’t differ much
from using it directly, but you have to take care of a few details. Let’s
see how all this works in a very simple Rails shop application where
users can buy regular paper books and e-books.

First add the following to config/environments/development.rb:

Download ecommerce/demoshop/config/environments/development.rb

config.after_initialize do
ActiveMerchant::Billing::Base.mode = :test
end

This makes sure ActiveMerchant runs in test mode during develop-
ment, and you can add similar statements to the test and production
environments.

http://media.pragprog.com/titles/msenr/code/ecommerce/demoshop/config/environments/development.rb

Download at Boykma.Com

11. INTEGRATE ACTIVEMERCHANT WITH RAILs <« 71

800 http://localhost:3000/order
@ http://localhost:3000/order &l Q- Google

Choose Product:

| Paper Book 4}
(Checkout)

0767(3 http:/ /localhost:3000/purchase /checkout
<] J{e][] +] (] @ ocalhost:3000 purchase/checkout © A(Q- Coogle
Card Number ~ 4111111111111111

Card Type [visa =]

Expiration Date (9 %) (2010 %)

cvv 999
First Name Homer
Last Name Simpson
(Purchase)

Figure 2.1: Simplified checkout process

In a real-world application, you'd use SSL everywhere, and the ssl_
requirement plug-in helps you make sure that some actions can be
requested only using SSL. It does not add SSL support to your appli-
cation; it checks only whether certain actions are accessed using SSL!
Adding SSL support right from the beginning makes testing and devel-
oping the application more complicated, so we patch ssl requirement a
bit in the ApplicationController:

Download ecommerce/demoshop/app/controllers/application.rb

include Ss1Requirement

alias :original_ssl_required? :ssl_required?

def ssl1_required?
return false if Tocal_request? || RAILS_ENV == 'test'
original_ssl1_required?

end

In addition, add the following line to the ApplicationController to prevent
CreditCard objects from being written to log files:

Download ecommerce/demoshop/app/controllers/application.rb

filter_parameter_logging :creditcard

http://media.pragprog.com/titles/msenr/code/ecommerce/demoshop/app/controllers/application.rb
http://media.pragprog.com/titles/msenr/code/ecommerce/demoshop/app/controllers/application.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=71

Download at Boykma.Com

11. INTEGRATE ACTIVEMERCHANT WITH RAILS

Now generate the following models and controllers:

./script/generate model Order product:string total_amount:integer
./script/generate model Purchase order_id:integer amount:integer \
description:string xaction_id:string completed:boolean
./script/generate controller Order index ship

./script/generate controller Purchase checkout purchase

A AV A

Two models and two controllers are all we need to build a simple web
shop for selling books (of course, we could build a completely different
business with this staff). Orders can contain only a single product—a
hard-copy book that costs $30 or an e-book that costs $20. E-books
can be purchased immediately, but if a customer buys a hard-copy
book, her credit card will be charged after the book has been shipped.

Each order is associated with a Purchase object that contains the pay-
ment details and tracks the payment status. In Figure 2.1, on the pre-
ceding page, you can see the transition from the order page to the
checkout page, where the customer has to enter all credit card infor-
mation needed to fulfill the payment process. Here’s the Purchase model
that contains the whole payment business logic:

Download ecommerce/demoshop/app/models/purchase.rb

linel class Purchase < ActiveRecord::Base
belongs_to :order

def purchase(order, credit_card)

5 response = gateway.purchase(
order.total_amount, credit_card,
:description => self.description

)
return response.message if !response.success?
10 self.xaction_id = response.authorization
self.completed = true
save
nil
end

def authorize(order, credit_card)
response = gateway.authorize(
order.total_amount, credit_card,
:description => self.description
20)
self.xaction_id = response.authorization
self.completed = false
save
response.success? ? nil : response.message
25 end

http://media.pragprog.com/titles/msenr/code/ecommerce/demoshop/app/models/purchase.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=72

Download at Boykma.Com

11. INTEGRATE ACTIVEMERCHANT WITH RAILs < 73

def capture(order)
unless self.completed
response = gateway.capture(order.total_amount, self.xaction_id)
30 return response.message if !response.success?
self.completed = true
save
end
nil
35 end

private

- def gateway
40 @gateway ||= ActiveMerchant::Billing::BraintreeGateway.new(

:login => 'demo', :password => 'password'
)
end
end

If you read Recipe 10, Charge Credit Cards with ActiveMerchant, on
page 64, this code should look familiar, because all the model’s meth-
ods delegate their work to ActiveMerchant. But there are some differ-
ences: to initialize the connection to the payment gateway only once,
for example, we've put the according code into a private method named
gateway(). There we check if a payment gateway reference has been
assigned to the @gateway attribute already before creating a new one.

Also, the code that manipulates the completed attribute is interesting.
In line 11, for example, we set it to frue, because after we have success-
fully transmitted a purchase command to the payment gateway, the
purchase is complete. That’s different in the authorize() method. There
we set completed to false and store the transaction ID we got from the
payment gateway in line 21. That way, we can use it later in capture()
to complete the purchase.

In line 28, we check whether the capture() action has been invoked for
a purchase that has been completed already. If it has, we do not send
a capture command again. The Purchase model is mainly used in the
PurchaseController:
Download ecommerce/demoshop/app/controllers/purchase_controller.rb

tne1 class PurchaseController < ApplicationController

ss1_required :checkout, :purchase

def checkout
5 session[:order] = params[:order]
end

http://media.pragprog.com/titles/msenr/code/ecommerce/demoshop/app/controllers/purchase_controller.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=73

Download at Boykma.Com

11. INTEGRATE ACTIVEMERCHANT WITH RAILs < 74

def purchase
product = session[:order][:product]
10 credit_card = ActiveMerchant::Billing::CreditCard.new(
params[:creditcard]

)
total_amount = product == 'ebook' ? 2000 : 3000
order = Order.create(
15 :product => product,
:total_amount => total_amount
)

purchase = Purchase.create(
- :amount => total_amount,
20 :description => "You bought: #{product}",
:order => order,
:completed => false

)
result = if product == 'ebook'
25 purchase.purchase(order, credit_card)
else
purchase.authorize(order, credit_card)
end
gateway_error(result) if !result.nil?
30 end
private

def gateway_error(message)
35 render :text => message

end
end
We start by declaring that SSL is needed to invoke any of the controller’s
actions. In the checkout() action in line 5, we store the current order in
the session to make this sample application as short as possible. Usu-
ally, you'd create a shopping cart and store the order in the database
right from the beginning.

We read the order from the session at the beginning of the purchase()
method, and in line 10 we create a CreditCard object from the data that
has been transmitted using the form shown in Figure 2.1, on page 71.
Usually you'd check locally whether the credit card is syntactically cor-
rect by calling credit_card.valid?! I've skipped this check, so you can
provoke errors in the payment gateways by sending wrong credit card
information.

After we have determined the price of the product in line 13, we create
an order and a purchase object in the database, and in line 24 we
determine which payment strategy we should use: e-books are handled
by purchase(), and hard-copy books are passed to authorize().

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=74

Download at Boykma.Com

11. INTEGRATE ACTIVEMERCHANT WITH RAILS <

The only action that’s missing is ship(), which gets invoked after the
book has been shipped:

Download ecommerce/demoshop/app/controllers/order_controller.rb

class OrderController < ApplicationController
def ship
order = Order.find(params[:id])
result = order.purchase.capture(order)
render :text => result if !result.nil?
end
end

It reads the order from the database and then invokes capture() on the
according Purchase object. If something went wrong, an error message
will be output. Otherwise, the regular view will be rendered:

Download ecommerce/demoshop/app/views/order/ship.html.erb

<h2>0rder has been shipped and money has been captured.</h2>

In a final version, the ship() method would not be called by a regular
customer but by a process handling shipments. But we're done, and
thanks to ActiveMerchant, our web shop seamlessly handles the pay-
ment process for both physical and digital goods.

J Discussion | N

Now that you know how easy it is to perform typical credit card transac-
tions, you might think about much more sophisticated solutions. Per-
haps you’d like to store credit card data in your database so your cus-

tomers do not have to enter it every time they buy something in your @

shop.

It's not by accident that we did not store any credit card data in this
recipe, because as soon as you store credit card information in your
system, you have to get it certified according to the rules of the Payment
Card Industry Data Security Standard (PCI-DSS).*

Its most important rules deal with the encryption of credit card infor-
mation and especially with key management. Usually, you have to im-
plement the “split key — dual control” scheme where no single person
has access to a complete cryptographic key (it’s like in those spy movies
from the 60s where two people had to turn a key simultaneously to start

4. https://www.pcisecuritystandards.org/

http://media.pragprog.com/titles/msenr/code/ecommerce/demoshop/app/controllers/order_controller.rb
http://media.pragprog.com/titles/msenr/code/ecommerce/demoshop/app/views/order/ship.html.erb
https://www.pcisecuritystandards.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=75

Download at Boykma.Com

11. INTEGRATE ACTIVEMERCHANT WITH RAILs <« 76

a nuclear missile). This scheme typically has to be implemented with a
key management server or a Hardware Security Module (HSM).

Of course, you have to apply all the typical security measures, too.
That is, you need to have a firewall, antivirus software, an intrusion
detection system, audit logs, and so on. But the certification has a lot of
organizational impacts—for example, your data center will be checked,
and you have to create an “incident response plan”—that makes sure
somebody can be called in case of any problems.

If you have the system running, you're allowed to store encrypted credit
card information in the part of your infrastructure that has been cer-
tified. You are not allowed to store credit card information outside this
scope (not even encrypted!). If you have a messaging system, for exam-
ple, that communicates with your credit card processing system, it is
not allowed to use any message persistence mechanisms.

All in all, getting your infrastructure certified according to the rules
of PCI-DSS takes a lot of work and costs a lot of money. If you abso-
lutely have to store your customer’s credit card data, delegate the task
to your payment service provider! Many of them offer a secure credit
card storage system where you can register your customers’ credit card
data once and get back a unique reference number for each card. This
reference number can be stored locally (even unencrypted) and can be
used in all transactions.

Alternatively, you should consider delegating payment processing to
services such as PayPal, Google Checkout, or Amazon FPS. It might
cost a bit more for each transaction, and it might scare away a few
customers who do not use these services, but it will certainly pay off for
most businesses. Implementing and maintaining an infrastructure that
gets certified according to the PCI-DSS rules can be really expensive.
And news about security problems in your company can take you out
of business in the worst case.

No matter what you eventually do, always keep in mind that credit card
fraud is some kind of identity theft, too. How would you feel if someone
bought tons of porn movies using not only your money but also your
name? Even worse: what if your card had been used for illegal activ-
ities? Before building a payment system yourself, do your homework.
Talk to the experts, and do everything that’s possible to protect your
customers’ privacy and money.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=76

Download at Boykma.Com

11. INTEGRATE ACTIVEMERCHANT WITH RAILs < 77

Also See
,_J L \

* In order to learn how to process your orders in the background,
see Recipe 39, Connect to Message Queues with ActiveMessaging,
on page 248.

* See Recipe 12, Transfer Money with PayPal, on the following page
to learn how to integrate your applications with PayPal.

* To learn ActiveMerchant’s basics, see Recipe 10, Charge Credit
Cards with ActiveMerchant, on page 64.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=77

Recipe 12

Transfer Money with PayPal

Problem
,_J L \

You’'d like to give your customers the opportunity to pay using PayPal
in your web shop.

| Ingredients | N

* Change to the application’s root directory, and install the Active-
Merchant plug-in:

$./script/plugin install \
> git://github.com/Shopify/active_merchant.git

This isn’t necessary if you have installed the ActiveMerchant gem
already.

Solution
,_J L \

To demonstrate how to use the PayPal API in a more or less real-world
example, we’ll build a small web shop for selling screencasts. The shop
will be very simplistic: you can choose between two screencasts, and
you can buy only one at a time. Despite this, the checkout process will
work and look like what you are used to when paying with PayPal in
any other shop.

First you need to create an account for PayPal's developer sandbox.®
After you have done this, point your browser to the sandbox, and cre-
ate test accounts for a seller and a buyer. It’s best to follow the “Create
Manually” link and to walk through the regular registration processes
(always keep in mind that you are in a sandbox, so fill out the manda-
tory form fields, but do not provide real-world data for bank accounts
or credit cards). When you're done, your test account list should look
like Figure 2.2, on the following page.

Select the seller account, and click “Enter Sandbox Test Site.” Log in
with the username and password you chose before, and go to the buyer
account’s profile page. Follow the “API Access” link, and request your

5. https://developer.paypal.com/

https://developer.paypal.com/

ownload at Boykma.Com

12. TRANSFER MONEY WITH PAYPA

800

PayPaIm Sandb Help | Profile | Log Out
an ox

Sandbox

Home

Test Email

Test Accounts

API Credentials Your test accounts are listed below. You must have a Business account to represent a merchant,
and a Personal account to represent a buyer. To simulate an action on the live site (PayPal.com),
select a test account and click Enter Sandbox Test Site.

Test Tools

Can we help?

Create Account: Preconfigured | Create Manually
Additional resources Website Payments Pro
Documentation
PayPal Developer Log-in email Type Status ;ergim Test mode Reset
Community

® paypal_buyer@maik- Personal Unverified Disabled N/A N/A
Customer Support schmidt.de
I View Details
() seller@maik-schmid Business Verified Disabled Enabled N/A
t.de

O View Details

|| Delete

Fees | Privacy | Security Center | Contact Us | User Agreement PayPal, an eBay Company
Copyright @ 1999-2008 PayPal. All rights reserved.

Information about FDIC pass-through Insurance

Z)

Figure 2.2: PayPal test accounts.

These materials have been reproduced with the permission of PayPal, Inc. ©
2008 PAYPAL, INC. ALL RIGHTS RESERVED.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=79

Download at Boykma.Com

12. TRANSFER MONEY WITH PAYPAL

API credentials (choose the signature style, not the certificate). After
the credentials have been created, log out, and go back to the developer
sandbox. Click the “API Credentials” link to see your login, password,
and signature.

Now create a new Rails application:

mschmidt> rails paypaldemo

and add the following lines to config/environments/development.rb (you
have to insert your own credentials):

Download ecommerce/paypaldemo/config/environments/development.rb

config.after_initialize do
ActiveMerchant::Billing::Base.gateway_mode = :test
end

PAYPAL_API_CREDENTIALS = {
:lTogin => 'Your PayPal API login.',
:password => 'Your PayPal API password.',
:signature => 'Your PayPal API signature.'

}

This enables ActiveMerchant’s test mode and makes your sandbox API
credentials available to your application. In production, you would en-
crypt the credentials and manage the encryption key with a key server
(see Recipe 1, Protect Information with Symmetric Ciphers, on page 23).

The whole application is based on two models that are defined in the
database as follows:

Download ecommerce/paypaldemo/db/migrate/20080724163157_create_orders.rb

create_table :orders do |t]
t.string :product, :state, :paypal_token
t.decimal :amount, :precision => 10, :scale => 2
t.timestamps

Download ecommerce/paypaldemo/db/migrate/20080724163243_create_purchases.rb

create_table :purchases do |t]
t.belongs_to :order
t.decimal ramount, :precision => 10, :scale => 2
t.timestamps

An Order object contains the name of the ordered product, the order’s
current state, the total amount to be paid by the customer, and a PayPal
token (more on that in a few paragraphs). Every order is associated with
a Purchase object containing the amount that has actually been paid by
the customer (which might differ from the amount in the order).

http://media.pragprog.com/titles/msenr/code/ecommerce/paypaldemo/config/environments/development.rb
http://media.pragprog.com/titles/msenr/code/ecommerce/paypaldemo/db/migrate/20080724163157_create_orders.rb
http://media.pragprog.com/titles/msenr/code/ecommerce/paypaldemo/db/migrate/20080724163243_create_purchases.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=80

Dol sHOe 12. TRANSFER MONEY WITH PAYPAL < 81

000 http://localhost:3000/

Choose a Screencast:

| Rails Screencast ‘*33
Check out n
eckout PayPal

The safer, easier way to pay

Figure 2.3: Order page with PayPal button.

These materials have been reproduced with the permission of PayPal, Inc. ©
2008 PAYPAL, INC. ALL RIGHTS RESERVED.

I EEEEEEEE———,

To place a new order, we can use the following form:

Download ecommerce/paypaldemo/app/views/order/index.html.erb

<% form_for :order, @order, :url => {
:controller => :purchase ,
raction => :express_checkout } do |f| %>
<label>Choose a Screencast:</label>

<%= f.select :product,
[
['Rails Screencast', 'rails'], ['Erlang Screencast', 'erlang'l]
1 %>

<input type='image'
src="<%= image_path('btn_xpressCheckout.gif') %">
<% end %>

The form contains only two hardwired products, but for our purposes,
it’s sufficient. You can see the order form with the PayPal checkout
button in Figure 2.3. When you click the checkout button, all the work
is delegated to the express_checkout() action in the PurchaseController (you
have to be logged in on your PayPal sandbox while testing):

Download ecommerce/paypaldemo/app/controllers/purchase_controller.rb

tnel class PurchaseController < ApplicationController
PRODUCTS = {
'rails' => {

:price => 4.95, :description => 'Rails Screencast'

5- }!

http://media.pragprog.com/titles/msenr/code/ecommerce/paypaldemo/app/views/order/index.html.erb
http://media.pragprog.com/titles/msenr/code/ecommerce/paypaldemo/app/controllers/purchase_controller.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=81

Download at Boykma.Com

12. TRANSFER MONEY WITH PAYPAL <« 82

'erlang' => {
:price => 5.95, :description => 'Erlang Screencast'
3,
}

def express_checkout
product = params[:order][:product]
order = Order.create(
:state => 'open',
15 :product => product,
:amount => PRODUCTS[product][:price]

@response = gateway.setup_purchase(
20 amount_in_cents(order.amount),
:ip => request.remote_ip,
:description => PRODUCTS[order.product][:description],
:return_url => url_for(:action => :express_checkout_complete),
:cancel_return_url => url_for(:action => :cancel_checkout)
25)

if !@response.success?
paypal_error(@response)
else
30 paypal_token = @response.params['token']
order.update_attributes(
:paypal_token => paypal_token,
:state => 'purchase_setup'

)
35 paypal_url = gateway.redirect_url_for(paypal_token)
redirect_to "#{paypal_url}&useraction=commit"
end
end
40 private

def gateway
@Qgateway ||= ActiveMerchant::Billing::PaypalExpressGateway.new(
PAYPAL_API_CREDENTIALS
45)
end

def paypal_error(response)
render :text => response.message
50 end

def amount_in_cents(amount)
(amount.round(2) * 100).to_i
end
55 end

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=82

Dol sHOe 12. TRANSFER MONEY WITH PAYPAL < 83

Admittedly, that’s a whole bunch of code, but it should look familiar if
you've read Recipe 11, Integrate ActiveMerchant with Rails, on page 70,
and it’s really not complicated. As mentioned before, customers can
buy only one of two products that are defined in the PRODUCTS hash.
Each product has a price and a description that will appear on the
customer’s order receipt.

express_checkout() reads the name of the product that has been ordered
and creates a new order in the database in line 13. The order’s state is
set to :open, so we know we've received the order but did not start the
payment process yet.

PayPal offers more than one API, and we use the “Express” variant that
is represented by PaypalExpressGateway in ActiveMerchant. The gateway
gets initialized only once in the gateway() method in line 42. In line 19,
we prepare the communication with PayPal by calling setup_purchase().
setup_purchase() expects the amount the customer has to pay in cents
(amount_in_cents() is defined in line 52 and does the conversion for us)
and has several options:

* The customer’s IP address is passed to PayPal, because it helps
PayPal reduce the risk of fraud.

¢ PayPal gets a short :description of the product the customer has
bought. It will appear on PayPal’s order receipt.

* PayPal's API implements a callback interface. That is, the cus-
tomer gets redirected from your web shop to the PayPal site, and
with return_url we tell PayPal where the browser should be redi-
rected to after the customer has successfully paid for the order.

® :cancel_url contains the URL to be invoked by PayPal if the cus-
tomer cancels the payment process.

If the purchase could not be set up, we print an error message by call-
ing paypal_error(), which is defined in line 48. Otherwise, we get back
a security token uniquely identifying our session with PayPal in line
30. We store this token in the database and set the order’s state to pur
chase_setup, so we know that the order is not finished yet but has been
prepared for purchase. Then, we invoke redirect_url_for() to determine
the PayPal checkout URL for the token we've received and redirect the
customer.

After clicking the “Checkout” button, you'll be redirected to the PayPal
login page first. Log in with you buyer account, and you’ll see a con-
firmation page that looks like Figure 2.4, on the following page. That’s
what you are used to if you've ever paid something using PayPal.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=83

Download at Boykma.Com

12. TRANSFER MONEY WITH PAYPAL < 84

800 ay - PayPal a
Enterprise Recipes
Review your payment PayPal (2 secure Payments
If the information below is correct, click Pay Now to complete your payment.
View PayPal policies and your payment source rights.
Description Amount
Rails Screencast $4.95
Total: $4.95 USD

Enter gift certificate, reward, or discount

Payment Method: Credit/Debit Card : Visa XXXX-XXXX-XXXX-4626
Change
Ship to: John Doe

1234, Main Street
Springfield, CA 12345
United States
Change

Contact Information: paypal_buyer@maik-schmidt.de

Cancel and return to Enterprise Recipes.

PayPal. The safer, easler way to pay

For more information, read our User Agreement and Privacy Policy

Fees | Privacy | Security Center | Contact Us | User Agreement PayPal, an eBay Company

999 - 2008PayPal. Al rights reserved.

Copyrigh

Information about FDIC pass-through insurance

Figure 2.4: PayPal confirmation page.
These materials have been reproduced with the permission of PayPal, Inc. ©
2008 PAYPAL, INC. ALL RIGHTS RESERVED.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=84

Download at Boykma.Com 12. TRANSFER MONEY WITH PAYPAL <« 85

Please note the “Pay Now” button on the confirmation page. Usually, it'd
be a “Checkout” button, but we have set the URL parameter useraction
to commit in line 36. This tells PayPal there won't be a confirmation step
on our site before a charge is made. If you do not set this parameter,
you can present the whole order details to the customer one more time
before the card is actually charged.

After you've clicked the “Pay Now” button, the user gets redirected to
our site, and PayPal invokes the express_checkout_complete() action:

Download ecommerce/paypaldemo/app/controllers/purchase_controller.ro

tne1 class PurchaseController
def express_checkout_complete
paypal_token = params[:token]
- @order = Order.find_by_paypal_token(paypal_token)
5 @details = gateway.details_for(paypal_token)

if !@details.success?
paypal_error(@details)
else
10 logger.info "Customer name: #{@details.params['name']}"
logger.info "Customer e-mail: #{@details.params['payer']}
@response = gateway.purchase(
amount_in_cents(@order.amount),
:token => @details.params['token'],
15 :payer_id => @details.params['payer_id']
)
if !@response.success?
paypal_error(@response)
else
20 @order.update_attribute(:state, 'closed')
@purchase = Purchase.create(
:amount => @response.params['gross_amount'],
:order => @order

"

)
25 end
end
end

end
PayPal passes back the security token, and we use it to read the appro-
priate order from the database in line 4. Then we determine the details
of the purchase by calling details_for(). This returns a PaypalExpressRe-
sponse object containing a lot of information about the customer, such
as name, address, email address, and so on. It also contains infor-
mation about the customer’s verification status (both address verifica-
tion and bank account verification). You could use this information to
present a final confirmation page to your customers, but we only write
some attributes into the application’s log file and proceed with the pur-
chase process in line 12.

http://media.pragprog.com/titles/msenr/code/ecommerce/paypaldemo/app/controllers/purchase_controller.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=85

Dol sHOe 12. TRANSFER MONEY WITH PAYPAL < 86

purchase() gets the amount to be payed in cents, the PayPal token, and
the payer’s ID that we've gotten back with all the other details. If the
purchase process has been completed successfully, we set the order’s
state to closed and create a new Purchase object in the database for this
order. The Purchase object’s amount attribute is set to the amount we've
gotten back from PayPal in line 22.

Now the payment process is over, and you’ll find an email in your devel-
oper’s sandbox email inbox that looks like Figure 2.5, on the next page.
For the sake of completeness, let’'s take a look at the cancel() method
that is invoked by PayPal when the customer changes his mind any-
where in the payment process:

Download ecommerce/paypaldemo/app/controllers/purchase_controller.ro

class PurchaseController
def cancel_checkout
@order = Order.find_by_paypal_token(params[:token])
@order.update_attribute(:state, 'cancelled')
end
end

We read the order from the database and set its state to cancelled. We
can use @order now to display an appropriate message:

Download ecommerce/paypaldemo/app/views/purchase/cancel_checkout.html.erb

<p>
The payment process for order <%= @order.id %> has been cancelled.
</p>

Again, ActiveMerchant simplified our job significantly, although Pay-
Pal's callback interface differs from the usual request/response cycle
of many other payment gateways. Because PayPal is very popular and
its integration is really easy, you should think about giving your cus-
tomers the opportunity to pay with PayPal.

Also See
,_J L \

® In order to learn more about ActiveMerchant’s basics, see Recipe
10, Charge Credit Cards with ActiveMerchant, on page 64.

http://media.pragprog.com/titles/msenr/code/ecommerce/paypaldemo/app/controllers/purchase_controller.rb
http://media.pragprog.com/titles/msenr/code/ecommerce/paypaldemo/app/views/purchase/cancel_checkout.html.erb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=86

Download at Boykma.Com

12. TRANSFER MONEY WITH PAYPAL <« 87

®0o0 PayPal Developer Central - Email a8
€ https://developer.paypal.com/us s Q~ Coogle

From: payment@paypal.com

To: paypal_buyer@maik-schmidt.de

Date: Sep. 9, 2008 11:54:49 PDT

Subject: Receipt for Your Payment to Enterprise Recipes

Dear John Doe,
This email confirms that you have paid Enterprise Recipes $4.95 USD using PayPal.

This credit card transaction will appear on your bill as "PAYPAL *ENTERPRISER".

Transaction ID: ¢ -

Order Description: Rails Screencast

Total: $4.95 USD 3
% 4

Figure 2.5: PayPal confirmation email.

These materials have been reproduced with the permission of PayPal, Inc. ©
2008 PAYPAL, INC. ALL RIGHTS RESERVED.

I EEEEEEEE———,

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=87

Part 11

Databases & XML Recipes

Chapter 3

__Get the Most Out of Databases

If there’s a single most important technology for enterprise software,
it’s certainly databases. Enterprise software is often expected to store
and manipulate large and complex data sets, managed by relational
database systems (RDBMSs).

Relational database systems are a mature technology, and several ex-
cellent products (both commercially and open source) are available.
Their vendors usually support the SQL standard, but nearly all prod-
ucts come with proprietary extensions.

Some support nonstandard data types, some support nonstandard
functions, and many of them even support stored procedures, which
can be implemented in the vendor’s own programming languages (some
products allow you to write stored procedures using regular languages
such as Perl, Python, or even Ruby).

Rails developers usually use the excellent ActiveRecord library to pre-
vent themselves from having to deal with all these nitty-gritty SQL
details, but by design ActiveRecord cannot cover specialties such as
stored procedures. It’'s still possible to use them with ease, and in
Recipe 13, Execute Stored Procedures, on page 91, you'll learn how to
do it.

In Web 2.0 applications, databases get filled by excited users providing
lots of content. Enterprise environments are different in this respect,
because databases are typically filled by importing large data files.
ActiveRecord does not have elaborate import or batch features right
now, so see how to import data into your Rails applications in Recipe
14, Feed Rails Databases from the Outside, on page 98.

Download at Boykma.Com

CHAPTER 3. GET THE MOST OUT OF DATABASES <« 90

If your company uses products from different vendors, you might be
happy to hear that you can actually use them simultaneously in your
Rails applications. Learn more about it in Recipe 15, Access Databases
Jrom Different Vendors Simultaneously, on page 105, and learn how to
incrementally migrate your applications from one database system to
another.

For most tasks, relational database systems are a perfect fit, but in
some situations other tools are more appropriate. If you have to store
documents including their history of changes, for example, you'd be
better off using a version control system instead of a database. Take a
look at Recipe 16, Manage Data with Subversion, on page 110 to learn
more about this useful technique.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=90

Recipe 13

Execute Stored Procedures

Problem
,_J L \

You are a big ActiveRecord fan, and one of your New Year’s resolu-
tions was to never write SQL statements yourself again. Unfortunately,
ActiveRecord only maps tables to objects, and vice versa. It does not
support stored procedures, which is really a pity, because you can find
them in many legacy databases and there are still companies that do
not allow their developers to access table data directly. Their database
admins insist on using stored procedures.

In this recipe, you'll learn how to use ActiveRecord’s raw connection to
execute arbitrary SQL statements and how to invoke stored procedures.

| Ingredients | N

e Install the ruby-plsql gem:!

$ gem install ruby-plsql

e Install the activerecord-oracle_enhanced-adapter gem:2

$ gem install activerecord-oracle_enhanced-adapter

Solution
,_J L \

The database we are working with is an Oracle database containing the
following objects:

Download databases/stored_procedures/create_db.sql

CREATE TABLE customer (

id NUMBER(10) NOT NULL PRIMARY KEY,
forename VARCHAR2 (60) ,
surname VARCHAR2 (60),

date_of _birth DATE
)

CREATE SEQUENCE customer_id;

1. http://ruby-plsal.rubyforge.org/
2. http://oracle-enhanced.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/databases/stored_procedures/create_db.sql
http://ruby-plsql.rubyforge.org/
http://oracle-enhanced.rubyforge.org/

Download at Boykma.Com

13. EXECUTE STORED PROCEDURES <« 92

There is a table named customer for storing customer data and a se-
quence named customer_id for generating new customer IDs. Usually,
creating a new customer would be easy and could be implemented with
a single INSERT statement. But you have to use the following PL/SQL
function instead:

Download databases/stored_procedures/create_db.sql

CREATE OR REPLACE FUNCTION add_customer(
forename IN VARCHAR2,
surname IN VARCHARZ2,
date_of_birth IN DATE

)

RETURN PLS_INTEGER

IS
1_customer_id PLS_INTEGER;

BEGIN
INSERT INTO customer
VALUES (customer_id.NEXTVAL, forename, surname, date_of_birth)
RETURNING id INTO T_customer_id;
RETURN 1_customer_id;

END add_customer;

Even if you are not familiar with Oracle’s PL/SQL dialect, you should
be able to understand what the add_customer() function does. It takes a
forename, a surname, and a date of birth, and it inserts all these values
into table customer to create a new customer. Afterward, it returns the
ID of the newly created customer, which it got from the customer_id
sequence.

The function’s return type is PLS_INTEGER, although the appropriate col-
umn type is NUMBER(10). That’s for performance reasons, because PLS_
INTEGER is more efficient.

That all looks pretty nice and clean, but you might be wondering how
you'd call the add_customer() function from your Ruby program. Here
we go:

Download databases/stored_procedures/add_customer.rb
Line 1 require 'activerecord'

class Customer < ActiveRecord::Base
set_table_name :customer

def self.create(params)
cursor = self.connection.raw_connection.parse <<-PLSQL
DECLARE
new_id PLS_INTEGER;

http://media.pragprog.com/titles/msenr/code/databases/stored_procedures/create_db.sql
http://media.pragprog.com/titles/msenr/code/databases/stored_procedures/add_customer.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=92

Download at Boykma.Com

13. EXECUTE STORED PROCEDURES <« 93

10 BEGIN
:new_id := add_customer(:forename, :surname, :date_of_birth);
END;
PLSQL
cursor.bind_param('forename', params[:forename], String, 60)
15 cursor.bind_param('surname', params[:surname], String, 60)

cursor.bind_param('date_of _birth', params[:date_of_birth])
cursor.bind_param('new_id', nil, Fixnum)
cursor.exec
new_id = cursor['new_id']
20 cursor.close
customer = Customer.new
customer.id = new_id
customer.forename = params[:forename]
customer.surname = params[:surname]
25 customer.date_of_birth = params[:date_of_birth]
customer
end
end

As usual, we derive our Customer class from ActiveRecord::Base, and in
line 4, we set the table name to customer because otherwise ActiveRecord
would assume that the table is named customers.

Then we define our own create() method, overwriting the one that has
been defined by ActiveRecord. In line 7, we obtain a reference to the
actual database connection through the raw_connection member. The
connection is of type OCI8, because we are working with an Oracle
database and the basis of ActiveRecord’s Oracle support is the ruby-oci8
library.3 (Attention: You are leaving the vendor-independent sector! If
you cannot stand to see nonportable code, you'd better leave the room
now.)

After we have the database connection, we immediately call its parse()
method, passing it another piece of PL/SQL. Here we declare a vari-
able named new_id and set it to the return value of our add_customer()
function. That’s nearly the code you'd use in a PL/SQL program to call
the add_customer() function. The only difference is that we have put a
colon in front of every variable and argument name. This turns them
into bind variables that we’ll use later.

parse() returns a Cursor object, which is more or less Oracle’s term for
a prepared statement. Most databases support prepared statements.
Instead of executing a SQL statement directly, the database creates

3. http://ruby-oci8.rubyforge.org/

http://ruby-oci8.rubyforge.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=93

Download at Boykma.Com

13. EXECUTE STORED PROCEDURES <« 94

Vf Joe Asks...
Y: .
=__What Is a Stored Procedure?

Since the beginning of relational databases, people always
wanted more data types. It all started with numbers and strings,
and today we can store arbitrary binary data, XML documents,
or even complete object hierarchies. So, it came as no surprise
that some vendors allowed their users to store and execute
code in the database. Typically, the code has to be written in
proprietary languages such as PL/SQL (Oracle) or Transact-SQL
(Microsoft, Sybase), but some products support stored proce-
dures written in Java or Perl.

Stored procedures were meant to speed up things in the
database, but as with many technologies, they’'ve been
abused rather quickly. There are countless examples of com-
panies that have implemented most of their business logic in
stored procedures. That’'s a bad idea for many reasons; the
most important one is vendor lock-in. You cannot easily port
your application to any other database product. In addition,
the design of such applications is often horrible, because data
and business logic are coupled too tightly, and most stored pro-
cedure languages lack a lot of important features offered by
other languages.

So, if you remember only one sentence from this book, it should
be the following: Thou shalt not store business logic in the
database!

only the query execution plan and returns a handle for the statement
with placeholders for all its variable parts. If you actually want to exe-
cute the statement, you only have to pass the statement handle and
the variable parts. This speeds up things tremendously, and it prevents
SQ@QL injection attacks. In a production version of our code, you'd call
parse() only once and store the Cursor object.

Now that we have a Cursor object at hand, we only have to fill out its
variable parts. This process is called parameter binding and is done
with a method named bind_param(). It expects up to four arguments:

¢ The name or index of the parameter to be bound. If you prefer to
reference parameters by index, keep in mind that counting starts
at 1.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=94

Download at Boykma.Com

13. EXECUTE STORED PROCEDURES <« 95

* The parameter value. For output parameters, this argument is set
to nil. It can also be set to nil for input parameters, which results
in a NULL value in the database.

* The parameter’s type. Usually, the type of input arguments is
derived from their value’s type; that is, if you pass a String value,
the parameter’s type is String, too. Sometimes it’s necessary to set
the type explicitly. For example, you could set the type of an out-
put parameter to Time and bind it to a DATE column in the database.
OCI8 will convert it automatically then.

¢ The parameter’s maximum length. Many database column types
have a restricted length.

After we have bound all parameters, we can execute the statement by
calling exec(), and in line 19, we read the result that has been returned
by the PL/SQL function. Then we close the cursor to free resources,
and finally we create a new Customer object. Here’s a little sample run:

Download databases/stored_procedures/add_customer.rb

ActiveRecord: :Base.establish_connection(
:adapter => 'oracle',
:username => 'maik',
:password => 'tOp$ecret’

)

me = Customer.create(
: forename = 'Maik',
:surname => 'Schmidt',

:date_of_birth => Time.mktime(1972, 9, 30)
)
puts "My ID is #{me.id}."

me_again = Customer.find(me.id)
puts "My name is #{me_again.forename}."

It prints the following:

mschmidt> ruby add_customer.rb
My ID is 1.
My name is Maik.

Our create() method behaves exactly like the original, and because we
have derived our Customer class from ActiveRecord::Base, we still can use
all its other methods such as find().

Despite all this, create() will never win a beauty contest. It's a classic
example of database access from the 80s: get a connection, prepare a
statement, bind parameters, execute, and read results. What could be

http://media.pragprog.com/titles/msenr/code/databases/stored_procedures/add_customer.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=95

Download at Boykma.Com

13. EXECUTE STORED PROCEDURES <« 96

more tedious? You might think “Hey, if ActiveRecord can map database
tables to Ruby objects, why can’t it map stored procedures to Ruby
methods?” At the moment, it can’t, and it probably never will; however,
some alternative solutions work pretty well. One of them is ruby-plsql,
a small library that maps stored procedures to Ruby methods auto-
matically. At the time of this writing, it supports only a few data types
(support for collection types such as VARRAY is missing completely, for
example), but it’s already sufficient to shorten our first implementation
dramatically:

Download databases/stored_procedures/add_customer.rb

require 'ruby plsql’
plsqgl.connection = ActiveRecord: :Base.connection.raw_connection
new_id = plsql.add_customer('Jane', 'Rodriguez',k Date.today)

That’s how it should be: tell plsgl where to find a database connection,
then invoke stored procedures as if they were regular Ruby methods.
We only had to assign the current Oracle connection to plsgl.connection

Let’s rewrite the first version of our Customer class using ruby-plsql.
Instead of replacing the create() method directly, we will use the
activerecord-oracle_enhanced-adapter library that adds useful exten-
sions to ActiveRecord’s Oracle adapter. Among others, it allows us to
easily replace the default methods for creating, updating, and deleting
objects. Here’s how we replace ActiveRecord’s original create() method:

Download databases/stored_procedures/enhanced_plsql.rb

Line 1 require 'activerecord'

ActiveRecord: :Base.establish_connection(
:adapter => 'oracle_enhanced',
:username => 'maik',

5 :password => 'tOpS$ecret'

)

plsgl.connection = ActiveRecord: :Base.connection.raw_connection

class Customer < ActiveRecord::Base
10 set_table_name :customer

set_create_method do
plsqgl.add_customer(forename, surname, date_of_birth)
end
15 end

We connect to the database using the oracle_enhanced adapter, and
as before we assign the current Oracle connection to plsgl.connection.
Then we define the Customer class and tell ActiveRecord that our table
is named customer, not customers. In line 12, we use set_create_method|()

http://media.pragprog.com/titles/msenr/code/databases/stored_procedures/add_customer.rb
http://media.pragprog.com/titles/msenr/code/databases/stored_procedures/enhanced_plsql.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=96

Download at Boykma.Com

13. EXECUTE STORED PROCEDURES <« 97

to redefine the create() method. The new version does not execute an
INSERT statement but calls our stored procedure instead. It can be
used as follows:

Download databases/stored_procedures/enhanced_plsql.rb

maik = Customer.create(

:forename = 'Maik',

rsurname => 'Schmidt',

:date_of_birth => Time.mktime(1972, 9, 30)
)
jane = Customer.new
jane.forename = 'Jane'
jane.surname = 'Rodriguez’
jane.date_of_birth = Time.mktime(1973, 2, 21)
jane.save

The previous program creates two new database objects. One gets
stored immediately by calling create(), while the other one (jane) is
instantiated first by calling new() and is made persistent later with
the save() method. In both cases, our stored procedure has been used
to store the new customer objects. Similarly, ActiveRecord’s update()
and delete() methods can be changed using the sef_update_method()
and set_delete_method() methods. activerecord-oracle_enhanced-adapter
comes with many more extensions, and to use it in a Rails application,
simply use oracle_enhanced as the adapter name in config/database.yml.

| Discussion | N

ActiveRecord is a great tool, but when it comes to specialties such as

stored procedures, it doesn’t help you much. You have to leave its
warm and safe ecosystem and deal with real-world issues (redundant
length definitions and proprietary interfaces, for example) manually.
Use stored procedures only if you absolutely must.

http://media.pragprog.com/titles/msenr/code/databases/stored_procedures/enhanced_plsql.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=97

Recipe 14

Feed Rails Databases from
the Outside

Problem
,_J L \

You have built an application with Rails, and you're managing its data-
base completely with ActiveRecord. Because of some new requirements,
you have to import bulk amounts of data from the outside; in other
words, data will not be imported by the application but directly into the
database.

In this recipe, you’ll see how to achieve this with native database tools
and with ActiveRecord.

J Ingredients | \

¢ Install the ActiveRecord extensions:*

$ gem install ar-extensions

Solution
,_J L \

Nearly all database products come with an import tool. Oracle calls it
SQL*Loader, DB2 comes with DB2 LOAD, MySQL has the LOAD DATA
statement, and so on. Their biggest advantages are that they are very
fast and they usually have a lot of options to transform the data being

imported in any imaginable way. But if you are using ActiveRecord,
chances are good that you have defined a lot of your model constraints
in Ruby and not in the database. To stay DRY,® you should use a cus-
tom importer to check all your validation rules. In this recipe, we’ll look
at both alternatives.

Let’s say you have to import a list of locations weekly.

4. http://github.com/zdennis/ar-extensions/tree/master/
5. “Don’t Repeat Yourself”’; see The Pragmatic Programmer [] to learn more about
the DRY principle.

http://github.com/zdennis/ar-extensions/tree/master/

Download at Boykma.Com

14. FEED RAILS DATABASES FROM THE OUTSIDE <« 99

They are stored in a database table that has been created as follows:
DownTload databases/dbload/dbload.rb

class Createlocations < ActiveRecord::Migration
def self.up
create_table :Tocations, :force => true do |t|
t.string :label, :street, :postal_code, :city, :country
end
end

def self.down
drop_table :locations
end
end

The model class looks like this:
Download databases/dbload/dbload.rb

class Location < ActiveRecord: :Base
validates_presence_of :Tabel, :street, :postal_code, :city, :country
end

At the moment, we have defined only a single validation rule to make
sure that none of a location’s attributes is empty. The following CSV file
contains two valid locations:

Download databases/dbload/data.csv

label;street;postal_code;city;country
Location 1;MusterstraRe 42;12345;Musterstadt;DE
Location 2;1234 Sample Street;99887;Sample City;GB

In addition to the two data sets, the file contains a header line explain-
ing which attributes are stored in the different columns. The following
statement loads the CSV file into a MySQL database:

Download databases/dbload/mysql_load.sql

LOAD DATA LOCAL INFILE 'data.csv'

INTO TABLE Tlocations

FIELDS TERMINATED BY ';'

LINES TERMINATED BY '\n'

IGNORE 1 LINES

(label, street, postal_code, city, country);

Because of the clean syntax, the statement should be self-explanatory.
Here’s how to use it:

mschmidt> mysql -u maik -p sample

Enter password:

WeTcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 29

Server version: 5.0.37-Tog MySQL Community Server (GPL)

http://media.pragprog.com/titles/msenr/code/databases/dbload/dbload.rb
http://media.pragprog.com/titles/msenr/code/databases/dbload/dbload.rb
http://media.pragprog.com/titles/msenr/code/databases/dbload/data.csv
http://media.pragprog.com/titles/msenr/code/databases/dbload/mysql_load.sql
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=99

Download at Boykma.Com

14. FEED RAILS DATABASES FROM THE OUTSIDE < 100

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> source mysql_load.sql
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: O

That works great, but what happens if we feed it some invalid data—
data where mandatory fields are missing? Right: MySQL will happily
load the invalid data, because it does not know about our application’s
constraints. All validation rules have been defined in the Location model,
so if we do not want to violate the DRY principle, we have to write our
own CSV importer, which is not difficult:

Download databases/dbload/dbload.rb

Line 1 class Location
def self.load(filename)
options = {
:headers => true,

5 :header_converters => :symbol,
:col_sep => ';'
}
begin
10 Location.transaction do

FasterCSV.foreach(filename, options) do |row|
Location.create! (row.to_hash)

end

end

15 rescue => ex
$stderr.puts ex
end
end
end

We have added a new class method named load() to the Location class,
which uses FasterCSV to parse the data to be imported (see Recipe 17,
Manipulate CSV with Ruby, on page 118 for more detailed information
about parsing CSV with Ruby). Hence, the parsing could be reduced
to a single foreach() call, and because the columns in the input files
have the same names as the relevant database columns, we could use
to_hash() in line 12 to create new Location objects.

The whole import process runs in a single transaction that starts in line
10. If the import file contains a single line that is not valid, the whole
process will be stopped, all database changes will be rolled back, and
an error message gets printed in line 16.

http://media.pragprog.com/titles/msenr/code/databases/dbload/dbload.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=100

Download at Boykma.Com

14. FEED RAILS DATABASES FROM THE OUTSIDE <« 101

What About XML or YAML?

CSV is not the only data exchange format on this planet, so you
might be asking yourself whether XML or YAML is a good choice
for importing data. Short answer: no, they’re not.

Both XML and YAML have been designed for serializihg and
deserializing complex data structures, and they are really good
at it. Relational databases usually process large amounts of
homogeneous data, and that’s the main reason for their high
performance. For importing data into a relational database,
you should choose a format that closely meets a database’s
structure. So, you should use CSV or fixed-length records.

However, if you absolutely have to import XML or YAML files
(maybe because a customer delivers data in one of these for-
mats), you can import them by writing a custom script as we
did for CSV in this recipe. Ruby has excellent support for both
XML and YAML, and in the ActiveSupport (Not ActiveRecord) class,
you’ll find a method named create_from_xmi() that helps you
turn XML documents into ActiveRecord objects easily.

It might well be that you want to choose a different import strategy;
perhaps you’d like to ignore invalid input lines. To do so, remove the
transaction block, and call create() instead of create!().

If you use a transaction, make sure the rollback segment of your data-
base is sufficiently large (at least if you're using an Oracle database).
Otherwise, the import process will run out of disk space if it reads really
big files.

You can use the loader as follows:
Download databases/dbload/dbload.rb

ActiveRecord: :Base.establish_connection(
:adapter => 'mysql',
:database => 'sample',
:username => 'maik',
:password => 'tOpS$ecret'
)
Location.Toad(ARGV[O0])

Now that we have two solutions available, let's compare them. To get
representative results, we import a large input file containing 200,000
lines both with the MySQL loader and with our own solution. To be

http://media.pragprog.com/titles/msenr/code/databases/dbload/dbload.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=101

Download at Boykma.Com

14. FEED RAILS DATABASES FROM THE OUTSIDE < 102

as fair as possible, the transaction handling in the Ruby program has
been disabled temporarily. Here are the results:

mschmidt> time mysql -u maik -p sample < mysql_load_huge.sql
Enter password:

real O0m8.863s
user 0m0.010s
sys 0m0.035s

mschmidt> time ruby dbload.rb huge_file.csv
real 8m36.506s
user 3m48.672s
sys 0m21.995s

Scary, isn’t it? Although this test isn’t perfectly accurate (for example,
the time it took me to enter my password has been counted, too), it
should give you a good impression of the performance differences. Our
custom solution not only takes much longer, but it also puts a high
load on your database server. Under certain circumstances, the Ruby
importer would be no alternative.

A perfect solution would be a bridge between ActiveRecord and the
database’s internal import features, wouldn’t it? That’s exactly what
the ar-extensions library gives us (among other useful features); we’ll
use it now to find a better balance between speed and validation sup-
port.

We leave the migrations and the Location class as they are, but we have
to prepare the database access as follows:

Download databases/dbload/dbload_arext.rb

require 'ar-extensions'
logger = Logger.new('import.log')
Togger.Tlevel = Logger: :INFO
ActiveRecord: :Base.establish_connection(
:adapter => 'mysql',
:database => 'sample',
:username => 'maik',
:password => 'tOp$ecret’
)

ActiveRecord: :Base.logger = Tlogger

When using ActiveRecord outside Rails, it’s always a good idea to initial-
ize a Logger object. In our case, it is even more advisable, because if you
start an import process that crashes after it has loaded data for hours,
you certainly want to know what has happened. We set the log level to

http://media.pragprog.com/titles/msenr/code/databases/dbload/dbload_arext.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=102

Download at Boykma.Com

14. FEED RAILS DATABASES FROM THE OUTSIDE < 103

INFO so the log file will not contain tons of boring debug messages, and
now we can write the actual load() method:

Download databases/dbload/dbload_arext.rb

Line 1 def load(filename, chunk_size = 3_000, validate = true)
options = {
:headers => true,
:header_converters => :symbol,

.

5 :col_sep => ';

}

locations = []
FasterCSV.foreach(filename, options) do |row|
10 Jocations << Location.new(row.to_hash)
if Tocations.size % chunk_size == 0
Location.import Tlocations, :validate => validate
locations = []
- end
15 end
Location.import Tocations, :validate => validate if Tocations.size > 0
end

The load() method gets the name of the CSV file to be imported, a chunk
size, and a flag indicating whether the data should be validated while
it is imported. The whole logic for reading the CSV file did not change
noticeably compared to our first approach, but instead of importing
every single location at once, we read chunks of a certain size and pass
them to the import() method defined by ar-extensions in line 12.

In our first approach to writing a Ruby import script, we have used
ActiveRecord’s regular mechanism for creating objects in the database,
which resulted in a separate INSERT statement for each object. ar-
extensions is capable of mass assignment statements. As such, it can
create multiple database objects with a single statement. To achieve
this, it uses the database’s internal mass assignment features, and the
only method you need to know is import().

import() takes an array of ActiveRecord objects and imports them into
the database. You might ask yourself why we did not load the whole
CSV file into memory to import it in a single step. The main problem is
that you cannot load every file imaginable into memory because some
of them are too big. A more interesting point is that loading the whole
file into memory will actually slow things down for big files, because
they’d be managed by the operating system’s virtual memory.

http://media.pragprog.com/titles/msenr/code/databases/dbload/dbload_arext.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=103

Download at Boykma.Com

14. FEED RAILS DATABASES FROM THE OUTSIDE < 104

It’s time for a first test run. Again, we will import 200,000 locations,
and we will validate them, too (chunk_size has been set to 1,000):
mschmidt> time ruby dbload_arext.rb huge_file.csv

real 4ml0.669s

user 4m0.778s
Sys Oml.343s

It’s still much slower than MySQL’s native import, but it’s twice as fast
as our first solution. And here are the results when the import process
disables all validations:

real 2m8.000s

user 2m0.031s
sys 0m0.773s

Although the Location class does not have complex validations, the
import process runs twice as fast, and two minutes for loading 200,000
objects is certainly sufficient for most purposes.

All in all, you have to find a healthy balance between checking con-
straints and performance. Often the best solution is to check con-
straints up front using a small script and then loading the data with
the database’s load tool. If performance doesn’'t matter, you can use
a custom loader (preferably using ar-extensions), making sure all your
constraints are met. That’s especially important if you have to import
complicated data affecting more than one table, for example.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=104

Access Databases from
Different Vendors
Simultaneously

Problem
,_J L \

Your company migrates more and more legacy applications to Rails and
MySQL. In the past, all applications were based on Oracle, so during
the transition phase, you often have to access databases from different
vendors simultaneously. For example, customer data is still stored in a
legacy Oracle database, while new orders are already stored in a MySQL
database.

In this recipe, you'll learn how to create database models that work
together seamlessly, even though they are tied to completely different
database products.

Solution
,_J L \

Before we start to operate on both the MySQL and Oracle databases,
let’s look at their structure. Orders are stored in a MySQL database,
and the orders table has been created with the following migration:

Download databases/multiple_db/shop/db/migrate/001_create_orders.rb

create_table :orders do |t]
t.column :customer_id, :int
t.column :product_name, :string
t.column :quantity, :int
t.timestamps

end

Orders consist of a product name, a quantity of ordered products, and
a reference to the customer who has placed the order.

http://media.pragprog.com/titles/msenr/code/databases/multiple_db/shop/db/migrate/001_create_orders.rb

Download at Boykma.Com

15. ACCESS DATABASES FROM DIFFERENT VENDORS SIMULTANEOUSLY < 106

Customers are defined as follows in an Oracle database:
Download databases/stored_procedures/create_db.sql

CREATE TABLE customer (

id NUMBER(10) NOT NULL PRIMARY KEY,
forename VARCHAR2 (60) ,

surname VARCHAR2 (60),

date_of_birth DATE

)
CREATE SEQUENCE customer_id;

Each customer has a forename, a surname, a date of birth, and an ID
that has been emitted by the customer_id sequence. Now we define the
access parameters for both databases in Rails’ database.yml file:

Download databases/multiple_db/shop/config/database.yml

development:
adapter: mysql
encoding: utf8
database: shop
username: maik
password: tOp$ecret

customer_db:
adapter: oracle
username: maik
password: tOp$ecret

Connection parameters of the MySQL database can be found in the
development section, because it’s the database where the current devel-
opment actually happens. In addition, its name adheres to the Rails
conventions, so it will actually be treated as the development database.
The Oracle database parameters section is named customer_db, because
we need it only for accessing customer data.

We have everything ready now to define our model classes, and the
Order class is trivial:

Download databases/multiple_db/shop/app/models/order.rb

class Order < ActiveRecord::Base
belongs_to :customer
end

Defining the Customer class is a bit more complicated, because we have
to tell ActiveRecord that it should use our customer_db connection when
mapping Customer objects.

http://media.pragprog.com/titles/msenr/code/databases/stored_procedures/create_db.sql
http://media.pragprog.com/titles/msenr/code/databases/multiple_db/shop/config/database.yml
http://media.pragprog.com/titles/msenr/code/databases/multiple_db/shop/app/models/order.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=106

Download at Boykma.Com

15. ACCESS DATABASES FROM DIFFERENT VENDORS SIMULTANEOUSLY < 107

To make this as easy and extensible as possible, we define a base class
for all models that are mapped to the Oracle database:

Download databases/multiple_db/shop/app/models/customer_db.rb

class CustomerDatabase < ActiveRecord::Base
self.abstract_class = true
establish_connection(:customer_db) unless connected?
end

By setting the abstract_class member to true, we tell ActiveRecord that no
instance of class CustomerDatabase will ever be created and that it’s not
necessary to map its attributes. Afterward, we call establish_connection(),
passing it the access parameters for the customer_db database connec-
tion. From now on, all classes derived from CustomerDatabase will use
this connection. We can easily define our Customer model now:

Download databases/multiple_db/shop/app/models/customer.rb

require 'customer_db'

class Customer < CustomerDatabase
set_table_name :customer
set_sequence_name :customer_id

has_many :orders
end

Customer has been derived from CustomerDatabase, and because the
objects in the Oracle database do not follow Rails’ conventions, we have
to explicitly set the name of the table to be mapped and the sequence to
be used for generating new IDs. We declare that a customer potentially
has many orders, and we are done. See our cross-database models in
action:

mschmidt> ruby script/console

Loading development environment (Rails 2.1.0)

>> me = Customer.find_by surname('Schmidt')

=> #<Customer 1id: 2, forename: "Maik", surname: "Schmidt",
date_of_birth: "1972-09-30 00:00:00">

>> Order.create(

?> :product_name => 'Ruby book',
?> rquantity = 5,

?> :customer => me

>>)

=> #<Order id: 2, customer_id: 2, product_name: "Ruby book",
quantity: 5, created_at: "2008-05-12 15:32:12",
updated_at: "2008-05-12 15:32:12">

>> me.orders.size

= 1

http://media.pragprog.com/titles/msenr/code/databases/multiple_db/shop/app/models/customer_db.rb
http://media.pragprog.com/titles/msenr/code/databases/multiple_db/shop/app/models/customer.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=107

Download at Boykma.Com

15. ACCESS DATABASES FROM DIFFERENT VENDORS SIMULTANEOUSLY < 108

>> me.orders. first.product_name

=> "Ruby book"

>> me.orders.first.quantity

= 5

This console session looks absolutely harmless. First, we look up a
customer who has a certain surname. Then, we create a new order
placed by the customer. Behind the scenes a lot of magic happens, and
without a single piece of SQL and without mentioning a vendor’s name,
we have placed a new order in the MySQL database and connected it to
a customer in the Oracle database.

ActiveRecord’s design makes it easy to access multiple database simul-
taneously. They do not have to be from different vendors; you can
access multiple MySQL databases, too, for example. But don’t be fooled
by ActiveRecord’s nice, clean interfaces. In the end there’s always some
dirty work to be done in the database server, and all products cur-
rently available differ in subtle and sometimes not so subtle details.
For example, some products are capable of performing joins across dif-
ferent databases running on different servers, while others aren’t. So,
use this technique with caution.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=108

Download at Boykma.Com

15. ACCESS DATABASES FROM DIFFERENT VENDORS SIMULTANEOUSLY <« 109

ActiveR rd and L hemas

ActiveRecord works best with databases strictly adhering to its
conventions, but it’s still useful for legacy schemas that do not
diverge too much from its expectations. Here’s a list of common
problems and their solutions:

e ActiveRecord expects all tfables names to be in the plural
form. For example, a table used for storing customers has
to be named customers. If you prefer the singular form, exe-
cute the following statement after you've established a
database connection:

ActiveRecord: :Base.pluralize_table_names = false

o |f you're working with table names that are neither singu-
lar nor plural forms of your models, you can set the table
name explicitly:
class Customer < ActiveRecord::Base

set_table_name 'cust'
end

e ActiveRecord assumes that all models have a primary ID
column named id. To change this for a certain model, use
the set_primary_key() method:
class Customer < ActiveRecord::Base

set_primary_key 'customer_no'
end

e Sometimes you need to execute arbitrary and/or propri-
etary SQL statements. That’s what execute() is for:
ActiveRecord: :Base.connection.execute(

'set current isolation = UR'

)

There are more methods making your life easier; for example,
you can set prefixes and suffixes for table names (for details,
refer to ActiveRecord’s excellent APl documentation).

Despite this, there are many problems that cannot be solved
easily with ActiveRecord. For example, composite primary keys
cannot be mapped adequately, but a plug-in exists that makes
this task easier.*

*. http://compositekeys.rubyforge.org/

http://compositekeys.rubyforge.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=109

Recipe 16

Manage Data with Subversion

J/ Problem \

You have to store text documents in a database and track all changes
that have been made to them. That is, not only do you have to store
each revision of the document, but you also have to store the name
of the author of each change. In addition, you'd like to calculate the
differences between two revisions.

Every mature version control system solves this problem with ease, so
it’s not too weird to think about using Subversion® as a database back
end for your documents. In this recipe, you’ll learn how to do this in an
elegant and efficient way.

J Ingredients |

e Install the Ruby Subversion bindings.”

¢ The original bindings are far from being convenient, so we add
another layer. Copy the file at http://www.oneofthewolves.com/svn_
repos/svn_repos.ro to a place where your Ruby interpreter will find
it. If you are developing a Rails application, copy it to the lib direc-
tory, for example.

/' Solution \

Subversion internally uses a database to track all changes that have
been made to documents stored in the repository. This database is
based either on a regular file system or on Berkeley DB.® As a user,
you won't notice the difference.

Usually, you don’t access a Subversion repository directly but instead
use its command-line clients or the appropriate features of your devel-
opment tools.

6. http://subversion.tigris.org/
7. http://collaboa.org/docs/svnbindings/install/
8. http://www.oracle.com/database/berkeley-db/

http://www.oneofthewolves.com/svn_repos/svn_repos.rb
http://www.oneofthewolves.com/svn_repos/svn_repos.rb
http://subversion.tigris.org/
http://collaboa.org/docs/svnbindings/install/
http://www.oracle.com/database/berkeley-db/

Download at Boykma.Com

16. MANAGE DATA WITH SUBVERSION <« 111

For integrating Subversion with a Ruby application in principle, you
have two choices:

* Execute Subversion’s command-line client from your Ruby pro-
gram, and parse its result. That would be an easy and straightfor-
ward solution, but it would be highly fragile, too. For example, if
you depend on English messages to be returned by the command-
line client, your software will not run in an environment that uses
messages in another language. In addition, spawning a process
for every access to the repository isn't efficient enough for many
applications.

¢ Use the official bindings for Ruby that come with Subversion. They
are fairly low-level, but they allow you to use Subversion’s func-
tionality in a stable, portable way, and they are pretty fast.

In this recipe, we’ll use the second approach; we start simple and define
a class that represents our documents and a minimal version of a Doc-
umentStorage class:

Download databases/subversion/document_storage.rb

Line 1 require 'svn_repos'

class Document
attr_accessor :path, :content, :author, :revision

def initialize(path, content, author, revision)
@path, @content, @author = path, content, author
@revision = revision

end

def to_s
<<-"E0S".gsub (/A /'
path: #{@path}
content: #{@content}

15 author: #{@author}
revision: #{@revision}
EOS
end
end

20
class DocumentStorage
attr_reader :repository

DEFAULT_PATH = File.join('.', 'data', 'docstore')
25
def initialize(path = DEFAULT_PATH)
@repository = if SvnRepos.repository_exists?(path)
SvnRepos.open(path)

http://media.pragprog.com/titles/msenr/code/databases/subversion/document_storage.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=111

Download at Boykma.Com 16. MANAGE DATA WITH SUBVERSION < 112

else
30 SvnRepos.create(path)
end
end

def add_document(path, content, author)
35 @repository.commit path => content, :author => author
end
end

Every Document instance has a path where it can be found, some con-
tent, an author, and a revision number. The DocumentStorage class at
the moment has only two methods: a constructor and a method to add
new documents to the repository.

inifialize() expects a path pointing to a Subversion repository in the local
file system. In line 27, we check whether a repository already exists at
the path specified. If it does, we open it; otherwise, we create a new one.
In any case, @repository references an instance of class SvnRepos.

This instance is used in add_document() for the first time to add a new
revision of a document to the repository. The method expects three
arguments:

¢ The path that identifies the document in the repository, which is
also the path you can use to get back the document later. If no
document exists at this path, add_document() creates a new one.
Otherwise, a new revision of the document is created.

¢ The content of the document, which can be both textual or binary.
¢ The name of the author who adds the document to the repository.
Line 35 contains the whole logic of the add_document() method and del-

egates all the work to the commit() method of class SvnRepos. It returns
the current revision after the document has been stored.

Let’s create a document storage and add some documents:

Download databases/subversion/document_storage.rb

ds = DocumentStorage.new

ds.add_document('/first/document', "Hello, world!\n", 'maik')
ds.add_document('/first/document’', "Hello!\nHow are you?\n", 'jack')
ds.add_document('/another/document', "Yet another document.\n", 'maik')

The previous code adds two revisions of a document at /first/document
(directories are created for you automatically). One has been edited by
an author named maik; the other one has been contributed by jack.

http://media.pragprog.com/titles/msenr/code/databases/subversion/document_storage.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=112

Download at Boykma.Com

16. MANAGE DATA WITH SUBVERSION <« 113

In addition, maik has created another document that you can find at
/another/document.

Until now we have not defined any methods for retrieving documents,
so we cannot check immediately whether our new documents actually
have been stored. But we can check whether a new Subversion reposi-
tory has been created:

mschmidt> 1s data/docstore
README.txt conf dav db format hooks Tocks

That’s the typical content of a Subversion repository, and everything
seems to be fine. We'll add the missing methods for getting back our
documents:

Download databases/subversion/document_storage.rb

tnel class DocumentStorage
def get_document(path, revision = nil)
return nil unless @repository.path_exists?(path, revision)
content = @repository.file_contents(path, revision)

5 author = @repository.property(:author, revision)
Document.new(path, content, author, revision)
end

- def get_revisions(path)
10 @repository.history(path)
end

def get_history(path)
- get_revisions(path).inject([]) do |h, r|
15 h << get_document(path, r)
end
end
end

get_document() is certainly the most important of our new methods,
because it returns a document located at a certain path that has a
particular revision number. Internally, it delegates most of its work to
SvnRepos. First, it checks whether the requested document exists at all
in line 3. If it doesn’t, it returns nil immediately. In line 3, the docu-
ment’s content is read, and then the revision’s author is determined. It
is stored in a property named author.

To get the integer IDs of all revisions of a single document, you can call
get_revisions(), passing it the document’s path. get_history() returns an
array containing all versions of a document stored in the database.

http://media.pragprog.com/titles/msenr/code/databases/subversion/document_storage.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=113

Download at Boykma.Com

16. MANAGE DATA WITH SUBVERSION <« 114

Here’s how you use them:

Download databases/subversion/document_storage.rb

puts '--- Check for existence'

puts 'Does not exist.' if ds.get_document('/does/not/exist').nil?
puts '--- Get revision IDs'

puts "Revisions: #{ds.get_revisions('/first/document').join(', ')}"
puts '--- Get document revision #1'

puts ds.get_document('/first/document', 1)

puts '--- Get document revision #2'

puts ds.get_document('/first/document', 2)

puts '--- Get document history'

puts ds.get_history('/another/document')

And here’s the result:

--- Check for existence

Does not exist.

--- Get revision IDs
Revisions: 1,2

--- Get document revision #1
path: /first/document
content: Hello, world!

author: maik

revision: 1

--- Get document revision #2
path: /first/document
content: Hello!

How are you?

author: jack

revision: 2

--- Get document history

path: /another/document
content: Yet another document.

author: maik

revision: 3

Everything works as expected, and our DocumentStorage class is nearly
finished. The only thing missing is a diff() method that calculates the
difference between two documents. We won’t define our own but use
the one defined in SvnRepos:

Download databases/subversion/document_storage.rb

puts ds.repository.diff('/first/document', 1, '/first/document', 2)

http://media.pragprog.com/titles/msenr/code/databases/subversion/document_storage.rb
http://media.pragprog.com/titles/msenr/code/databases/subversion/document_storage.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=114

Download at Boykma.Com

16. MANAGE DATA WITH SUBVERSION <« 115

This outputs the revision’s differences in Subversion’s diff format:

--- /first/document (rev 1)
+++ /first/document (rev 2)

@@ -1 +1,2 @@
-Hello, world!
+HelTo!

+How are you?

Subversion together with its Ruby bindings can be a real time-saver
when it comes to handling revisions of documents automatically. But
in contrast to a relational database, you have to manage the reposi-
tory’s structure yourself. In a relational database, different entities are
stored in separate tables, while in a Subversion repository they might
be stored in the same directory. That makes them indistinguishable
without looking at the files’ contents, so plan carefully up front where
to store data, and use only those models with a very simple structure.

You should also keep in mind that our solution works only on the local
file system at the moment, so we do not have to care about user man-
agement, passwords, and so on. If you need a central storage, either
you have to build a small server that wraps the DocumentStorage or you
need to get familiar with Ruby’s Subversion bindings, which is a good
idea anyway.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=115

Chapter 4

W
Enterprise programming is about processing data, and data is a beast
with a lot of different faces. It can be binary or textual, it can be struc-
tured or unstructured, it can be portable or not so portable, and so on.

And the worst thing is that data never comes alone. It often comes in
large amounts.

In this chapter, we will deal with all the data formats that are most pop-
ular in typical enterprise environments (except XML, which is covered
in Chapter 5, Process XML Documents the Ruby Way, on page 140). If
you have to process large amounts of nonhierarchical, homogeneous
data, there are often better alternatives such as comma-separated val-
ues (CSV) or fixed-length record (FLR). They are fast, they do not waste
a lot of space, and they are easy to parse and generate.

Often, you don’t have a choice anyway. If you have to migrate thirty-
year-old customer data to your newest Web 2.0 application, you’ll prob-
ably have to deal with your forefather’s data formats.

If you want to become a welcome visitor in the accounting department,
CSV is the right format for you. For example, it's an excellent way to
move data from a relational database to a spreadsheet application. In
Recipe 17, Manipulate CSV with Ruby, on page 118, you'll see that it's a
piece of cake to manipulate CSV with Ruby. You'll learn how to import
and export CSV data meeting typical enterprise requirements.

Fixed-length record files may painfully remind you of your first com-
puter science courses, but you probably encounter them over and over
again in the real world. Because there’s no standard library to process
them in Ruby, you’ll learn how to build one yourself in Recipe 18, Read
and Write Fixed-Length Records, on page 123.

Download at Boykma.Com

CHAPTER 4. TAME FILE AND DATA FORMATS <« 117

Although you won't find many JavaScript Object Notation (JSON)! files
in a typical enterprise environment, it might well happen that you have
to integrate your programs with one of those new and fancy Web 2.0
applications over a network. They often offer HTTP interfaces based on
JSON documents, and Recipe 19, Harness JSON in Ruby, on page 130
shows you how to use them in your Rails application.

Countless proprietary formats were created in ancient times when stor-
age was much more expensive than today. A lot of them are still in use
in many companies, because it would be too expensive to spend valu-
able developer time to change them and all the applications that are
based on them. In Recipe 20, Master Binary Data, on page 134, you'll
learn what to do if you have to process binary data with Ruby.

1. http://json.org/

http://json.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=117

Recipe 17

Manipulate CSV with Ruby

| Problem \

Today’s web applications often have a nice interface, but a lot of tasks
still can be processed much easier with a spreadsheet application. Peo-
ple working in accounting departments especially love spreadsheets,
and they will love you, too, if you provide them with CSV data that can
be imported into Microsoft Excel or Apple’s Numbers.

But CSV data is important for developers and members of the oper-
ations department, too, because it is an excellent format for exporting
and importing complete database tables. In this recipe, you’'ll learn how
to manipulate CSV with Ruby.

| Ingredients |

¢ If you are using Ruby version 1.8.7 or older, you have to install
the fastercsv gem:?2

$ gem install fastercsv

/' Solution \

Let’'s assume your company provides worldwide weather services to
thousands of customers. Surprisingly, there are many microclimates
on this planet, so it might well be that the weather is fine where you
live but only a few kilometers away a blizzard is raging (at least that’s
what your boss will tell you when he’s not coming to the office today).

The data is gathered from weather stations all over the world and is
stored in a local database. It’s your job to build the import and export
functions for CSV files. Specifically, you have to create functions that
import a CSV file into the database and that export the whole database
as a CSV file.

2. http://fastercsv.rubyforge.org/

http://fastercsv.rubyforge.org/

Download at Boykma.Com

17. MANIPULATE CSV WITH RuBY <« 119

The database table has been created with the following migration:
Download data_formats/csv/weather_app/db/migrate/20080803072920_create_weather_information.ro

create_table :weather_information do |t]|
t.string :location, :cond_day, :cond_night

t.date :date
t.float :temp_max, :temp_min
t.integer :rain_probability
t.timestamps

end

We've shamelessly stolen our database column names from the headers
in our CSV files, which look as follows:

Download data_formats/csv/weather_app/data/weather/weather.csv

LOCATION;DATE; COND_DAY ; COND_NIGHT; TEMP_MAX; TEMP_MIN;RAIN_PROBABILITY
"Duisburg";20080721; "Sunny"; "Cloudy";27.8;19.1;0

"Duisburg" ;20080722; "Showers"; "Showers";25.2;19.9;70
"Duisburg";20080723; "Mostly sunny";"Showers";25.2;16.4;20
"Duisburg'";20080724; "Mostly sunny";"Showers";25.3;16.5;0
"Duisburg";20080725; "Late shower";"Late shower";25.7;19.2;70
"Duisburg" ;20080726; "Mostly sunny";"Cloudy";25.2;18.4;40
"Duisburg'";20080727;"Late shower";"Late shower";27.3;20.8;60

Every line describes the weather (minimum temperature, maximum
temperature, day condition, night condition, rain probability in per-
centage) on a certain day and in a certain location.

Like most CSV files, it looks pretty harmless, but before processing it,
you have to carefully examine its structure. First, you should know its
character set encoding. Second, you have to determine the data type
of each column. In our case, it’'s pretty easy: the DATE column contains
Date objects; TEMP_MIN, TEMP_MAX, and RAIN_PROBABILITY contain Float
objects; and the rest will be String objects. Oh, the separation charac-
ter is a semicolon, not a comma (that's why I prefer that it be called
“character-separated values” and not “comma-separated values”).

First we’ll write a view for uploading a new file:

Download data_formats/csv/weather_app/app/views/weather/index.html.erb

<% form_for :weather_data, @weather_data,
:url => { :action => 'import' },
thtml => { :multipart => true } do |f| %>

<label for="'weather_data_file_data's>Import File:</1abel>
<%= f.file_field :file_data %>

<%= submit_tag 'Import' %>

<% end %>

http://media.pragprog.com/titles/msenr/code/data_formats/csv/weather_app/db/migrate/20080803072920_create_weather_information.rb
http://media.pragprog.com/titles/msenr/code/data_formats/csv/weather_app/data/weather/weather.csv
http://media.pragprog.com/titles/msenr/code/data_formats/csv/weather_app/app/views/weather/index.html.erb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=119

Download at Boykma.Com

17. MANIPULATE CSV WITH RuBY <« 120

We do not use anything special here, and we allow the user to upload
a file using a browser’s regular file upload mechanism. The data is
transferred to the server in parameter weather_data.

Now that we can upload CSV files to our application, we have to process
them by loading their content into our database. The files can become
quite large, so we’d better choose the right tool for the job. It should be
fast, it should not consume much memory, and it should allow us to
perform some simple transformations (type conversions, for example)
on the input data while importing it. The fastercsv library® does all
this and even a bit more. It is a replacement for Ruby’s standard CSV
library, and as its name suggests, it’s significantly faster, but it also has
a slightly better interface. Here’s the import() method:

Download data_formats/csv/weather_app/app/controllers/weather_controller.rb

linel class WeatherController
def import
parser = FasterCSV.new(
params[:weather_data][:file_data],
5 :headers => true,
:header_converters => :symbol,
:col_sep => ';'
)
parser.convert do |field, info]
10 case info.header
when :date
Date.parse(field)
when :rain_probabiTlity
field.to_i
15 when :temp_max, :temp_min
field.to_f
else
field
end
20 end

WeatherInformation.delete_all
parser.each do |row|
- WeatherInformation.create(row.to_hash)
25 end
end
end

3. In Ruby 1.9 the former CSV library has been replaced by fastercsv, so it no longer has
to be installed separately. If you're working with Ruby 1.9 already, you have to replace
fastercsv with CSV in all samples.

http://media.pragprog.com/titles/msenr/code/data_formats/csv/weather_app/app/controllers/weather_controller.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=120

Download at Boykma.Com

17. MANIPULATE CSV WITH RUBY <« 121

Is There Any CSV Standard?

A lot of people still think that there’s no CSV standard, but that’s
not exactly true: since October 2005, RFC 4180* fries to define
how CSV files should look and, in addition, even defines a MIME
type (text/csv). fastercsv is compliant with this RFC.

*. http://www.ietf.org/rfc/rfc4180.txt

\ v

FasterCSV has a nice interface for simple tasks consisting solely of class
methods. For enterprise requirements, this rarely is sufficient, so we’ll
create a FasterCSV instance in line 3, pass it the data to be processed,
and add all options we need before we parse a single line of CSV data.

With the headers option, we tell FasterCSV that the first line of our input
data contains a list of column headers. header_converters defines what
should be done with the headers; we decided to turn them into symbols
(the column header names will be turned into lowercase strings first!)
that can be used to index our columns later. Finally, we tell FasterCSV
that our column separator is a semicolon (the default is comma) by
setting col_sep.

In line 9, we install some converters for our input columns that get
called automatically during the import. The convert() method expects a
code block that gets passed two parameters: the current field value and
a Fieldinfo object containing the column index, the column header, and
the current line in the input file. Depending on the column name, con-
vert() returns a converted field or the original value (for more elaborate
filters, FasterCSV has a filter() method).

The only thing left to do is to parse every single line of the uploaded CSV
file. We start in line 23, and in good old Ruby tradition, it does not need
more than a call to each(). For the sake of simplicity, we’ll always load
the whole weather information. In other words, we delete the weather
information in the database completely before we read new information.
In line 24, we convert the current CSV input row into a Hash object and
pass it to ActiveRecord’s create() method. To make all this work in such
an elegant way, you have to make sure that the database columns have
the same names as the headers in the CSV file.

Now that we can import data into our system, it should be easy to
export it, too.

http://www.ietf.org/rfc/rfc4180.txt
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=121

Download at Boykma.Com

17. MANIPULATE CSV WITH RUBY

And it is:
Download data_formats/csv/weather_app/app/controllers/weather_controller.rb

tnel require 'fastercsv'

class WeatherController < ApplicationController
def export
5 output = FasterCSV.generate do |csv|
csv << %w(
LOCATION DATE COND_DAY COND_NIGHT
TEMP_MAX TEMP_MIN RAIN_PROBABILITY

)
10 WeatherInformation.find(:al1).each do |wi|
csv << [
wi.location, wi.date.strftime('%Y%M%d'), wi.cond_day,
wi.cond_night, wi.temp_max, wi.temp_min,
wi.rain_probabiTlity
15]
end
end
send_data(
output,
20 :type => get_content_type(request.user_agent),
:filename => "weather #{Time.now.strftime('%Y%M%d')}.csv"
)
end
25 private

def get_content_type(user_agent)
user_agent =~ /windows/i ? 'application/vnd.ms-excel' : 'text/csv'
end
30 end

For generating the CSV data, we use FasterCSV’s generate() method in
line 5. It expects a code block and passes it a FasterCSV object. With the
<<() operator, we can add new lines to it, and we immediately use it to
write the header line to the output.

Beginning in line 10, we iterate over all the weather information we
currently have in our database and convert each table row into a line
of CSV data. Finally, in line 18, we send back all exported data using
Rails’ send_data() method. We set the content type depending on the
client’s user agent, so if the client has Microsoft Excel installed, it will
open automatically and display the CSV file.

http://media.pragprog.com/titles/msenr/code/data_formats/csv/weather_app/app/controllers/weather_controller.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=122

Read and Write Fixed-Length
Records

Problem
,_J L \

You have a file containing a list of credit card transactions that has to
be imported by your company’s payment gateway. The file looks like
this:

Download data_formats/flr/creditcards.fir

10112012010hdzNOEyP62uyhTY1i1gnW8Q== Maik Schmidt
019950820098MxbHUfW/Z8Wv1WLZee0231rH5BKos/FasPFcHxYQMc=John Doe
00300122009DkiZIkx9uNkBN2n1JwuQxM26ueVYQOrtodP94T8Zcj8=Jane Rodriguez

The file consists of fixed-length records (FLRs); that is, the attributes
of all data records have a constant width. For example, the first five
characters of each row contain the amount (in cents) to be charged
from a credit card.

Fixed-length records are popular, which comes as no surprise if you
think about the internals of a relational database for a second. When-
ever you define a new column, you have to restrict its size somehow, so
exporting or importing data in fixed-length record format is an obvious
choice.

Ruby does not have a standard library for processing FLR files, and
there does not seem to be any complete library available at all. In this
recipe, we write a library ourselves, which is not too difficult.

Solution
,_J L \

The complete format description of our file looks like this:

e 1-5: Amount in cents

6-11: Credit card valid until the end of (mmyyyy)

12-55: Primary account number (Base64, encrypted with AES-
256-CBC)

56-95: Name of card holder

http://media.pragprog.com/titles/msenr/code/data_formats/flr/creditcards.flr

Download at Boykma.Com

18. READ AND WRITE FIXED-LENGTH RECORDS <« 124

That’s all information we need, so we start with a reader:
Download data_formats/fir/flrfile.rb

tne1 class FixedLengthRecordFile
include Enumerable

def initialize(source, field_sizes)
5 if field_sizes.nil? or field_sizes.empty?
raise ArgumentError, 'Please, pass field sizes!'
end
@file = source
@field_pattern = get_pattern(field_sizes)
10 end

def each
@file.each_line do |T1ine|
- record = Tine.chomp.unpack(@field_pattern)
15 record.map { |f| f.strip! }

yield record
end
end
20 private

def get_pattern(field_sizes)
'A'" + field_sizes.join('A")
end
25 end

FLR = FixedLengthRecordFile # Saves some typing.

Ah, I know what you're thinking: this class looks so harmless! But I can
assure you; it will be everything you need whenever you have to read
fixed-length records (at least if the data you have to read consists solely
of character data).

When initializing a new FixedLengthRecord object, you have to pass two
things: the input source to be processed and an array containing the
width of each column in the file. We merely store this information for
further use, and we build up a format string for the unpack() method,
which splits a string into an array according to a format description.
For our file, it’s “ABAG6A44A40,” and it tells us that each line consists
of four components. The first one is five characters wide, the second
comprises six characters, and so on (see the sidebar on the next page
for more details).

The definition of the each() method in line 12 is more interesting. It
iterates over each line using I0’s each_line() method and splits each line

http://media.pragprog.com/titles/msenr/code/data_formats/flr/flrfile.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=124

Download at Boykma.Com

18. READ AND WRITE FIXED-LENGTH RECORDS <« 125

pack and unpack

pack() turns an Array into a String that has a certain format, and
unpack() does the opposite. Both methods look a bit arcane at
first, but they are invaluable when manipulating data of nearly
any kind. They are similar to the printf() family of functions: they
expect a format string describing the data to be packed or
unpacked.

The following sample turns an array containing three integer
numbers and a string into a null-terminated string:

Download data_formats/flr/pack_sample.rb

name = [72, 111, 109, 'er']
name.pack('c3 A2x') # => "Homer\000"

pack()’s format string is built using a little language with a simple
structure. In our case, the format string expands to three char-
acters represented by integer values (c3), two ASCIl characters
(A2), and a null byte (x)—blanks in the format string are ignored.

Both pack() and unpack() support a large list of data types that
are all identified by a single letter (these letters are called direc-
tives, and you definitely should take a look at their documenta-
tion). Some of them may be followed by a count, as we used in
the previous example. If the count is *, it extends to the end of
the array. We use this feature in the following sample to convert
a string to Baseb4 with the m directive:

Download data_formats/flr/pack_sample.rb

["Homer'] .pack('m=") # => "SG9tZXI=\n"
"SG9tZXI=\n".unpack('m="')[0] # => "Homer"

Because it is so easy to manipulate Basebé4 data with pack()
and unpack(), the baseé4 library has been removed from
Ruby’s standard library.

http://media.pragprog.com/titles/msenr/code/data_formats/flr/pack_sample.rb
http://media.pragprog.com/titles/msenr/code/data_formats/flr/pack_sample.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=125

Download at Boykma.Com

18. READ AND WRITE FIXED-LENGTH RECORDS <« 126

into its components, with unpack() using the format string we created
in initialize(). Finally, we pass the array of components to a code block
in line 16. As you might know already, it’s always a good idea to include
Enumerable when you define an each() method. We did it in line 2, and
it will pay off later.

After all this explanation, let’s try to process our credit card data:
Download data_formats/fir/read_fir_file.rb

lnel require 'date'
require 'flrfile’

parser = FLR.new(File.new(ARGV[O0]), [5, 6, 44, 401)
5 parser.each do |row|
amount = row[0].to_f / 100
valid_to = Date.parse(row[1][0, 2] + '/" + row[1][2, 4]) >> 1
number, holder = row[2], row[3]
- puts "Charge #{amount} from #{holder}."
10 puts "Credit card: #{number}"
end

This short program produces the following output if we pass it our
original input file:

mschmidt> ruby read_flr_file.rb creditcards.flr

Charge 101.12 from Maik Schmidt.

Credit card: hdzNOEyP62uyhTYiignW8Q==

Charge 19.95 from John Doe.

Credit card: 8MxbHUfW/Z8Wv1WLZee0231rH5BKos/FasPFcHxYQMc=

Charge 3.0 from Jane Rodriguez.
Credit card: DkiZJkx9uNkBN2n1JwuQxM26ueVYQOrtodP94T8Zcj8=

In line 4, we create a new FixedLengthRecord object using the FLR abbre-
viation. We pass it our input file and the widths of our input columns.
Then we iterate over each line using the each() method. In the code
block we can access each column by indexing the row array accord-
ingly. We haven’t decrypted the credit card number yet, because that’s
a topic for another recipe (see Recipe 1, Protect Information with Sym-
metric Ciphers, on page 23).

Programming the writer is a bit more complicated, because we have to
open and close the file to be generated, but it’s still easy:

Download data_formats/fir/firfile.rb

linel class FixedLengthRecordFile
def self.open(path, mode, field_sizes)
file = File.open(path, mode)
begin
5 flr_file = new(file, field_sizes)

http://media.pragprog.com/titles/msenr/code/data_formats/flr/read_flr_file.rb
http://media.pragprog.com/titles/msenr/code/data_formats/flr/flrfile.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=126

Download at Boykma.Com

18. READ AND WRITE FIXED-LENGTH RECORDS <« 127

yield flr_file
ensure
file.close
end
10 end

def <<(record)
@file.puts(record.map { |x| x.to_s}.pack(@field_pattern))
end
15 end

To emulate the regular behavior of Ruby’s file access methods, we store
the output file’s current state in our open() method. The we create a
FixedLengthRecord object in line 5 and pass this to a code block after-
ward. To ensure that the file gets closed in any case, we have put every-
thing into a begin ... ensure statement.

It’s certainly useful that we can open fixed-length record files for writ-
ing, but it would be great if we could actually write to them, too. That’s
where the <<() operator comes into play. It is defined in line 12, and it
uses the pack() method to turn an array into a string of fixed-length
columns (before an element is packed, it is converted into a string
using fo_s()). Unsurprisingly, pack() is the inverse method belonging
to unpack().

Let’s use the open() method to create a file containing the status of each
credit card transaction. Our record description looks like this:

e 1-3: Transaction ID, which is the line number where the transac-
tion appeared in the input file.

® 4-5: Status code. O means the transaction has been processed
successfully. All other codes indicate an error.

® 6-45: Card holder’s name.

Here’s the code to write the (faked) results of our credit card transac-
tions to a file:
Download data_formats/flr/write_fir_file.rb
require 'flrfile’
FLR.open('/tmp/results.flr', 'w', [3, 2, 40]) do |flr|

flr << [1, 0, 'Maik Schmidt']

flr << [2, 0, 'John Doe']

flr << [3, 9, 'Jane Rodriguez']
end

http://media.pragprog.com/titles/msenr/code/data_formats/flr/write_flr_file.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=127

Download at Boykma.Com

18. READ AND WRITE FIXED-LENGTH RECORDS <« 128

After running the program, the content of /tmp/result.fir looks like this:

mschmidt> cat /tmp/results.flr
1 0 Maik Schmidt

2 0 John Doe

3 9 Jane Rodriguez

| Discussion | \

You might have noticed that we have silently made an important design
decision: our class processes files, not strings. This absolutely makes
sense when working with big files, because it saves a lot of memory,
but what if you get your data not from a file system but via a network
or something similar? Then you have to process a string, and Ruby’s
StringlO class makes it easy to add file behavior to a string:

Download data_formats/fir/from_string.rb

require 'stringio’
require 'flrfile’

content = <<CONTENT

10112012010hdzNOEyP62uyhTY1i1gnW8Q== Maik Schmidt
019950820098MxbHUfW/Z8Wv1WLZee0231rH5BKos/FasPFcHxYQMc=John Doe
00300122009DkiZIkx9uNkBN2n1JwuQxM26ueVYQOrtodP94T8Zcj8=Jane Rodriguez
CONTENT

parser = FLR.new(StringIO.new(content), [5, 6, 44, 40])
puts parser.inject(0) { |total, row| total += row[0].to_f / 100 }

Our program prints the total amount of money (124.07) that will be
charged when processing the input file. As promised earlier, now it
pays off that we have included the Enumerable module, because we can
use the inject() method that makes our program look so cool. Please
note that we did not have to modify the FixedLengthRecord class to
achieve this. Everything is managed behind the scenes, because StringlO
behaves exactly like a File object.

Writing fixed-length records to a string is a bit more difficult. I have
always wanted to write something like “This is left as an exercise for
the reader,” but I couldn’t resist:

Download data_formats/fir/flrfile.rb
lnel require 'stringio'
class FixedLengthRecordFile
def self.generate(field_sizes)

5 buffer = StringIO.new
flr_file = new(buffer, field_sizes)

http://media.pragprog.com/titles/msenr/code/data_formats/flr/from_string.rb
http://media.pragprog.com/titles/msenr/code/data_formats/flr/flrfile.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=128

Download at Boykma.Com

18. READ AND WRITE FIXED-LENGTH RECORDS <« 129

yield flr_file
buffer.close
buffer.string
10 end
end

This solution is similar to the one that writes to a file: generate() expects
an array of column widths and a code block. In line 5, we create a new
StringlO object and pass it to FixedLengthRecord’s constructor. Then we
invoke the code that has been passed to generate(). Finally, we close
the string buffer and return its content as a string. We can use this
method as follows:

Download data_formats/flr/write_fir_file.rb

result = FLR.generate([3, 2, 40]) do |flr]|
flr << [1, 0, 'Maik Schmidt']
flr << [2, 0, 'John Doe']
flr << [3, 9, 'Jane Rodriguez']

end

puts result

And it produces the following:

1 0 Maik Schmidt
2 0 John Doe
3 9 Jane Rodriguez

Only one important thing is missing now: converters. Just like the con-
verters you can install when using FasterCSV, it should be possible, for
example, to automatically convert column data into the right format or
type. Oh, and setting header names would be a great idea, too, so we
could use them instead of numerical indices, and.... No, this time it’s
really left as an exercise for the reader!

http://media.pragprog.com/titles/msenr/code/data_formats/flr/write_flr_file.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=129

Recipe 19

Harness JSON in Ruby

| Problem \

JavaScript Object Notation (JSON)* might not be as popular as XML,
but it is not an esoteric data format either. It has been standardized for
a long time, and there’s even a request for comments (RFC).5 Ruby has
excellent support for JSON, and in this recipe you’ll learn how to use it
in a real-world situation (to learn more about JSON, see the sidebar on
page 132).

| Ingredients |

* Since Ruby 1.9, the json library is bundled with Ruby. For older
versions, install Ruby’s JSON library® as a gem:

$ gem install json

/' Solution \

Let’s face it: this world is far from being perfect, and if you run a com-
mercial web service, you’'ll probably know that there are nearly as many
scoundrels as honest customers out there. You should do everything to
protect yourself from being cheated. E-scoring has become an important
technology for many e-commerce websites.

An e-score numerically describes a customer’s creditworthiness. The
higher the e-score, the more creditworthy a customer is. Usually, an
e-score is derived from a customer’s address, from his credit history,
and from a lot of statistical data. E-scoring has become an important
business, so it comes as no surprise that you have to integrate with an
e-scoring application, too.

The service you have to use expects a list of persons to be scored, and
it returns a list of scores, one for each person. It is accessed via HTTP,
and the documents that are exchanged are encoded with JSON.

4. http://json.org/
5. http://www.ietf.org/rfc/rfc4627 txt
6. http://json.rubyforge.org/

http://json.org/
http://www.ietf.org/rfc/rfc4627.txt
http://json.rubyforge.org/

Dol sHOe 19. HARNESS JSON IN RuBY <« 131

As a Ruby programmer, you can ignore the JSON details for the moment
and concentrate on the actual data structure. Our customer list looks
as follows:

Download data_formats/json/client.ro

customers = [

{
id => 42,
:name => {
:forename => 'Maik', :surname => 'Schmidt'
1,
:address => {
:street => 'Musterstralle 42',
rcity => 'Musterstadt',
rcountry => 'Germany'
1,

'bank-account' => {
'bank-code' => '11122233', :bac => '987654321'
}
}
]

Coincidentally, it's the same structure that is expected by the e-scoring
service. The list contains only one customer, and this customer has all
the attributes we’d usually expect: there’s an ID, a name, an address,
and a bank account consisting of a bank code and a bank account
number.

Now we have to convert the customers array into a JSON document and
send it to the e-scoring service via HTTP. In Ruby, both HTTP and JSON
are simple. Here we have an example that sends a single person to be
scored to a local test server:

Download data_formats/json/client.rb

lnel require 'rubygems'
require 'json'
require 'net/http’'

5 payload = customers.to_json
puts JSON.pretty_generate(customers)
http = Net::HTTP.new('Tocalhost', 8080)
response = http.post('/e-score', payload)
scores = JSON.parse(response.body)
10 scores.each do |score]
puts "Customer #{score['id']}: #{score['escore']}"
end

It really is that easy. In line 5, we convert our array containing customer
data into a JSON string by calling fo_json(). Then we create an HTTP

http://media.pragprog.com/titles/msenr/code/data_formats/json/client.rb
http://media.pragprog.com/titles/msenr/code/data_formats/json/client.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=131

Download at Boykma.Com 19. HARNESS JSON IN RuBy <« 132

7 A

What Is JSON?

JavaScript Object Notation is a text format for data exchange.
If you are familiar with JavaScript, then you'll already know how
to work with it, because it looks exactly like JavaScript’s literals
for strings, arrays, hashes, and so on.

Instead of explaining the format by showing you tons of boring
BNF grammairs, let’s look at an example:
{

"price": 32.95,

"title": "Enterprise Integration with Ruby",

"tags": ["ruby", "XML", "database", "LDAP"]

In Ruby, the same structure looks like this:

{
"price" => 32.95,
"title" => "Enterprise Integration with Ruby",
"tags" => ["ruby", "XML", "database", "LDAP"]
}

Can you spot the differences? Only the => pieces have been
replaced by colons. The rest is completely the same (in Ruby 1.9
you can even use colons when your keys are symbols). Interest-
ingly, it’s nearly the same in Perl and Python, and that’s proba-
bly the reason for JSON'’s popularity among programmers who
use dynamic languages.

connection to our local server and send the JSON document to the /e-
score path using the POST method.

We get back a result array that is encoded in JSON, too. Consequently,
we parse it in line 9 to get the scores belonging to our customers.
Here’s the output you get if you run the program:

mschmidt> ruby client.rb

[

{
"name": {
"forename": "Maik",
"surname": "Schmidt"
1,

"bank-account": {
"bank-code": "11122233",
"bac": "987654321"

}!

"id": 42,

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=132

Dol sHOe 19. HARNESS JSON IN RuBy < 133

"address": {
"street": "Musterstra\uOOdfe 42",
"city": "Musterstadt",
"country": "Germany"

}

}
]
Customer 42: 0
We have transmitted a perfect JSON document, and the pretty printer of
the JSON class did a really good job (please note that the German eszett
B has been properly encoded as \u00df). Oh, and with a O e-score, I'd
suggest you'd insist that your customer pay up front....

J Discussion | N

Rails directly supports JSON, so to render the customers data structure
used in our example, you'd use the following statement in your Rails
action:

render :json => customers

It’'s certainly a good idea to play around with JSON because it's a
lightweight alternative for XML and integrates perfectly with Ruby’s
dynamic nature. It's also perfect for integrating with JavaScript appli-
cations in your web front ends, so the next time you have to invent a
new data format that’s going to be emitted by a back-end service, give
JSON a chance.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=133

Recipe 20

Master Binary Data

| Problem \

You need to know how to manipulate bits and bytes directly using Ruby.

/' Solution \

In this recipe, we look at the graphics formats supported by mobile
devices, because playing around with computer graphics is always a
lot of fun and gives us an excellent opportunity to learn a lot about
handling binary data with Ruby.

The most popular graphics format for mobile devices is the Wireless
Bitmap Format (WBMP).” It's part of the WAP standard,® and it is
as simple as a graphics format could be, because it supports only

monochrome images and no animation. Consequently, its internal
structure is simple, too:

¢ Each monochrome WBMP image starts with two O bytes. The first

byte indicates the image’s type (0 means monochrome, uncom-
pressed), and the second byte can be used for extension headers.
If it is set to O, no extension headers are transmitted.

¢ The width and height of the image (measured in pixels) follow and

are stored as variable-length unsigned integers® (the WAP spec-
ification calls them multibyte integers). That’'s a really awkward
format that was invented when bandwidth was a valuable good.
Each integer value is encoded as a sequence of octets, and for
every octet, the most significant bit (MSB) indicates whether there
is another octet following (MSB is 1; MSB is 0). To calculate the
resulting integer, concatenate the list of 7-bit values in big-endian
order!? (don’t be scared—it’s only five lines of Ruby code).

¢ Finally, the image data is transmitted as a matrix arranged in rows

(1 bit per pixel). A O represents a black pixel, and a white pixel is
denoted by 1. Where the row length is not divisible by 8, the row
is padded with O bits to the byte boundary.

http://en.wikipedia.org/wiki/Wireless_Application_Protocol_Bitmap_Format
http://en.wikipedia.org/wiki/Wireless_Application_Protocol
http://en.wikipedia.org/wiki/Variable_length_unsigned_integer

. http://en.wikipedia.org/wiki/Big-endian

http://en.wikipedia.org/wiki/Wireless_Application_Protocol_Bitmap_Format
http://en.wikipedia.org/wiki/Wireless_Application_Protocol
http://en.wikipedia.org/wiki/Variable_length_unsigned_integer
http://en.wikipedia.org/wiki/Big-endian

Dol sHOe 20. MASTER BINARY DATA < 135

When working with binary data, it’s indispensable to actually take a
look at the data. The best tool for doing this is a good old hex viewer.
Use whatever you like, but I prefer xxd,!! because it is so simple and
is installed on many systems by default (many text editors such as
TextPad have a hex mode, too). Here’s the content of the test image we
are going to use:

mschmidt> xxd example.wbmp

0000000: 0000 2020 fffo Offf ff80 OLff feOf fO7f

0000010: fc7f fc3f f8ff ffif f1ff ff8f e3ff ffc7 ...72............
0000020: c7ff ffe3 cfcf f3f3 8f87 elfl 9f03 cOf9

0000030: 9f03 c0f9 3f87 elfc 3fcf f3fc 3fff fffc7...7...7...
0000040: 3fff fffc 3fff fffc 3eff ff7c 3eff ff7c 2...7...>..|>..]|
0000050: 3e7f fe7c 9f7f fef9 9f3f fcf9 9f9f fifl >..|..... P,
0000060: cfcl 83f3 c7e0 07e3 e3f8 1fc7 f1ff ff8f
0000070: f8ff fflf fc7f fe3f feOf fO7f ff80 O1ff P

0000080: fffo Offf

The file starts with two O bytes followed by two 0x20 bytes. That means
the image we are going to read is an uncompressed, monochrome image
and is 32 pixels wide and 32 pixels high (if you can even imagine how
the image looks, your geek code!? is probably infinitely high).

Before we do anything else, we create a storage class that encapsulates
all the necessary attributes—an image’s width, its height, and its pixel
data encoded as a two-dimensional byte array:

Download data_formats/binary/image_demo/lib/wbmp_image.rb

class WbmpImage
attr_reader :width, :height, :image_data

def initialize(width, height, image_data)
@width, @height, @image_data = width, height, image_data
end
end

That was trivial, but now we will create the core of our little demo appli-
cation, the WBMP reader. By the way, we do this only for educational
purposes, because there are excellent tools already for manipulating
WBMP data.!®

11. http://linuxcommand.org/man_pages/xxd1.htm
12. http://www.geekcode.com/
13. http://rmagick.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/data_formats/binary/image_demo/lib/wbmp_image.rb
http://linuxcommand.org/man_pages/xxd1.html
http://www.geekcode.com/
http://rmagick.rubyforge.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=135

Dol sHOe 20. MASTER BINARY DATA <« 136

Here’s our implementation:
Download data_formats/binary/image_demo/lib/wbmp_image.rb

tnel class WbmpImage
def self.from_raw_data(raw_data)
type, header = raw_data.slice!(0, 2)
unless type == 0 & & header == 0
5 raise 'Unsupported image type!'
end
width = get_multibyte_integer(raw_data)
height = get_multibyte_integer(raw_data)
- image_data = get_image_data(width, height, raw_data)
10 WbmpImage.new(width, height, image_data)
end

def self.get_multibyte_integer(raw_data)
- multi_int = 0
15 while raw_data[0][7] == 1
- multi_int = (multi_int << 7) | (raw_data.shift & 0x7f)
end
(multi_int << 7) | raw_data.shift
end
20
def self.get_image_data(width, height, raw_data)
bytes_per_row = width / 8
bytes_per_row += 1 if (width % 8) != 0
image_data = []

25 height.times { image_data << raw_data.slice! (0, bytes_per_row) }
image_data
end
end

These three methods are all we need to convert a stream of bytes
representing a WBMP image into a Wbomplmage object. We start with
from_raw_data(), which expects a byte array containing the image data
and returns the according Womplmage object. First we extract the type
and the extension headers in line 3.

When working with chunked data, it's convenient to have a method
that cuts a piece of data from a stream. We use Array#slice!(start length)
for this task. It returns the first length bytes from row_data starting at
index start and removes them from the array. In our case, we get back
the first two bytes, which contain the type and the extension headers
of the image.

Then we extract the width and height of the image using get_multi_int().
This method reads a variable-length unsigned integer from a byte

http://media.pragprog.com/titles/msenr/code/data_formats/binary/image_demo/lib/wbmp_image.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=136

Download at Boykma.Com

20. MASTER BINARY DATA <« 137

stream and uses one of Ruby’s nicest features regarding bit handling:
you can index Fixnum objects with the (() operator to get the value of
a certain bit. In line 15, we check whether the most significant bit of
the first byte of raw_data is set. In addition, we use a lot of the regular
bit manipulation operators that you can find in nearly every modern
programming language: bitwise AND (&), bitwise OR (|), and left shift
(<<).

Finally, we convert the image data into a two-dimensional array. There-
fore, we calculate the amount of bytes used by every row and use our
old friend slice!() to copy the image data row by row.

That’s all we had to do to create a reader that fully supports the WBMP
specification. Wouldn't it be fun to actually display our test image? Let’s
write a small Rails application that renders an arbitrary WBMP image
using ASCII characters. Here’s a method that returns a string repre-
sentation of a Womplmage:

Download data_formats/binary/image_demo/lib/wbmp_image.rb

class WbmpImage
def to_ascii_art
ascii_art = "'
@image_data.each do |line]|
Tine.each do |byte]

7.downto(0) { |i]| ascii_art << (byte[i] ==17 "=" : ".") }
end
ascii_art << "\n"
end
ascii_art
end

end

Black pixels are represented by the asterisk (*); for white pixels we use
a period (.). Now we need a form for uploading WBMP files to our Rails
application:

Download data_formats/binary/image_demo/app/views/image/index.html.erb

<% form_for :image, @image_data,
:url => { :action => 'convert' },
thtml => { :multipart => true } do |f| %>

<label for='"image data_ file_data'>Convert Image:</label>
<%= f.file_field :file_data %>

<%= submit_tag 'Convert' %>

<% end %>

http://media.pragprog.com/titles/msenr/code/data_formats/binary/image_demo/lib/wbmp_image.rb
http://media.pragprog.com/titles/msenr/code/data_formats/binary/image_demo/app/views/image/index.html.erb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=137

Download at Boykma.Com

Line 1

20. MASTER BINARY DATA

There is nothing special about this, and we can see that the form
expects our application to provide an image controller and a convert()
method. Here it is:

Download data_formats/binary/image_demo/app/controllers/image_controller.ro

require 'wbmp_image'

class ImageController < ApplicationController
def convert
raw_data = params[:image][:file_data].string.unpack('C*")
image = WbmpImage.from_raw_data(raw_data)
@ascii_art = image.to_ascii_art
end
end

When a file is transmitted to the application, we get a StringlO object
that encapsulates the file’s content. In line 5, we turn the StringlO into a
string with the string() method and convert the resulting string into an
array of unsigned bytes using unpack(). Now we have the image’s binary
representation and create a Womplmage from it, which gets rendered in
the most trivial way:

Download data_formats/binary/image_demo/app/views/image/convert.html.erb

<pre>
<%= @ascii_art %>
</pre>

As you can see in Figure 4.1, on the following page, we are done! We
have implemented a viewer for binary WBMP images in plain Ruby.

http://media.pragprog.com/titles/msenr/code/data_formats/binary/image_demo/app/controllers/image_controller.rb
http://media.pragprog.com/titles/msenr/code/data_formats/binary/image_demo/app/views/image/convert.html.erb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=138

Download at Boykma.Com

20. MASTER BINARY DAT

http://localhost:3000/image/convert

QO Bl Q- Google

(5) http://localhost:3000/image/convert

e e EEEERERER K EE AR r
EEEEEEREEE EEEEEEEEE

EEEEEEEE

EEE AR AR ERE

EEkEEE K EEEEEREE

L EEREERERAREEREEE

EEREEEE L EEEEREE

FEkEEE EEEERERE R R A AR AR TR

EEEE EEEE AR AR EE A AR A IR

 EEEERERERREAAAA AR A A AEE

EEEEE

EEEE

EE L EEE

EE | REREREREEEEERERR A KA A A AR EREE | AE

k| EEEEEE EEEEEEEE KEkEkEEE _*E

* EEREEE

EEEEREE EEEEE *

LEEEE JEEEEE K

*..*****..... -

*, kEEEE L kEkEkE L kEkEkEE ok

 EEEEEEE EEEEREE EEEEEEE

 EEREEREEREE | REEREEREEE

EEREEREEREE
SRR R R R AR A RARARRARARA AR AR ARR
L REERERARARAFRFRARARAR AR R AR ARS
AR R R AR AR RRARARARR AR AR AR AR AR
L EEREERE RERRERARARARRERAR REEEE
L EEREERE REEREERARAERAEEREEE EREEEE

L EEREEE | FREEREEREREEEEEE | REEEE
L EREEREE RERERREAERARAKREEREE EEEEE

L
LR

L EEEREE EEEEREREREREEEEE kEkEkEE

F, EEEEREE EEREEREEEER

EEEEE *

Ak, EEEEEE *x EEREEEE EE

L EEEEEE L EEEEEE | kE

**-- CECIE Y
EEE,
FEEE FEREERAERAEEE A AR AR AEE

L EEkEEEE R AR EEEE

 EEEEEEE EEEEEEE EEE

EEEE

L EEEEE

EEEEE

FEkEEEE KA EEEEEERAEREEEE | EkEEEEE

.,
<

EEEEREEE EEEEEERERE EEEEEEE

EEEEEEREEE
EEEEA A AR EEE

EEEEEEREEE

 EEE AR R EEE AL

< >l

Figure 4.1: WBMP as ASCII art
.__

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=139

Chapter 5

Process XML Documents

Extensible Markup Language (XML) has become one of the most impor-
tant enterprise technologies in the past decade. Not all enterprises use
message queues and not all have a service-oriented architecture, but
it’s hard to imagine any company that does not use XML.

If you've worked with platforms like Java or .NET before, you may be
surprised about the, um, compactness of Ruby’s standard XML sup-
port. But don’t be misled by its simplicity. Combined with Ruby’s ele-
gance, it's highly convenient, and if you need raw processing power,
you have some alternative libraries right at hand.

In this chapter, we’ll address specific problems that occur when pro-
cessing XML documents in an enterprise environment.

Sometimes building complete object hierarchies from an XML docu-
ment is a bit over the top and you’re better off turning your docu-
ment into a mix of hashes and arrays. Recipe 21, XML Data Binding on
Steroids, on page 142 shows you how to achieve this.

In Recipe 22, Use XML Files as Models, on page 146, you'll learn how to
bind XML documents to Ruby objects using REXML, Ruby’s standard
XML parser.

Scarce resources (both RAM and CPU) are a problem even in the biggest
enterprise, and Ruby sometimes is a bit greedy. In Recipe 23, Handle
Large XML Documents, on page 154, you'll learn to process documents

Download at Boykma.Com CHAPTER 5. PROCESS XML DOCUMENTS THE RUBY WAY <« 141

of nearly arbitrary size, and in Recipe 24, High-Performance Parsing, on
page 159 you’ll see how fast a Ruby solution actually can be.

As you might know, XML has some ugly relatives, such as HTML and its
nicer cousin XHTML. Like grouchy uncle Albert, you have to meet them
once in a while, so in Recipe 25, Work with HTML and Microformats, on
page 165, you'll learn how to get back home as quickly as possible.

Generating XML documents with Ruby and Rails normally is a piece
of cake, as you'll see in Recipe 26, Build Plain-Vanilla XML Documents,
on page 172. But it can be a tough challenge if the recipient insists
on weird formatting and character set encodings. In Recipe 27, Build
Arbitrary XML Documents, on page 174, youll see how to satisfy even
the strangest requirements.

You’'d face most of these problems in any enterprise environment re-
gardless of the programming language you have to use. But as you'll
see, Ruby can be a strong ally in such situations, and, even more
important, it will be more fun....

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=141

Recipe 21

XML Data Binding on Steroids

Problem
,_J L \

You have to read data from XML files, but you do not want to parse
them manually or map them to a sophisticated object hierarchy. You

are interested only in their content, and you want it now!

| Ingredients | N

* Rails comes with XmISimple! already, but if you want to use it in a
regular Ruby application, you have to install the xml-simple gem
separately:

$ gem install xml-simple

Solution
,_J L \

More often than not, you are not interested in all the information that is
stored in an XML document, and consequently you do not want to put
a lot of effort into parsing and mapping it. Additionally, it’s sometimes
inappropriate to create tons of objects that represent only a configura-
tion file or a single order.

Let’s say you want to display the content of order documents that look
like this:

Download xml/data_binding/xmisimple_demo/data/orders/47110815.xml

<?xml version="1.0"'?>
<order id='47110815"' date='2008-07-27"'>
<customer-no>94429999</customer-no>
<items>
<item product-id="42-007-x">
<name>Beer</name>
<quantity>6</quantity>
</item>
<item product-id='16-666-x">
<name>Nuts & Gum</name>
<quantity>1l</quantity>
</item>
</items>
</order>

1. http://xml-simple.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/xml/data_binding/xmlsimple_demo/data/orders/47110815.xml
http://xml-simple.rubyforge.org/

Download at Boykma.Com

21. XML DATA BINDING ON STEROIDS <« 143

For this purpose, we use XmISimple, a Ruby library that turns an XML
document automatically into a mix of hashes and arrays. It already
comes with Rails (it’s part of ActiveSupport), so you do not have to install
it separately. You do not even have to require it.

First we create a model based on XML files:
Download xml/data_binding/xmisimple_demo/app/models/order.rb

class Order
ORDER_DIR = File.join('data', 'orders')

def self.find(order_id)
Xm1SimpTe.xml1_in(
File.join(ORDER_DIR, "#{order_id}.xml1"),
'force_array' => ['item'],
'group_tags' => { 'items' => 'item' }
)
end
end

The find() method reads a single XML document from the data/orders
directory and returns its XmiSimple representation. Ignore the options
right now; I'll explain them later.

Let’s examine the results in the Rails console (p()’s output has been
reformatted for better clarity):
mschmidt> ruby script/console

Loading development environment (Rails 2.1.0)
>> p Order.find('47110815"')

{
"items" => [
{
"name" => "Beer",
"quantity" => "6",
"product-id" => "42-007-x"
1,
{
"name" => "Nuts & Gum",
"quantity" = "1",
"product-id" => "16-666-x"
}
1,
"date" => "2008-07-27",
"customer-no" => "94429999",
"id" => "47110815"
}
=> nil

As you can see, our document’s element and attribute names have been
mapped to hash keys quite naturally. XmISimple’s magic is performed by

http://media.pragprog.com/titles/msenr/code/xml/data_binding/xmlsimple_demo/app/models/order.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=143

Download at Boykma.Com

21. XML DATA BINDING ON STEROIDS <« 144

the xml_in() method, which accepts two arguments: an XML data source
(a filename, an XML string, or an IO object) and a hash of options that
controls how the document’s pieces are mapped.

In our example, we have used a filename and only two of XmISimple’s
many options:

¢ force_array allows you to specify a list of element names that should
always be forced into an array representation. In our case, this
option is interesting for <item> elements, because we do not know
up front how many items an order will have. If we did not set this
option, we’d get back a single element if there was only one <item>
element. But we’'d get an array if there were two or more <item>
elements. By setting force_array, we can rely on getting back an
array, which makes it much easier to write processing code.

* group_tags eliminates extra levels of indirection in the resulting
Ruby data structure. By default, XmISimple will create a new Array
or Hash object for every new element hierarchy in the XML doc-
ument. For the <item> element, we do not want this additional
level; we prefer to have an array of items referenced by the key
itemns.

To fully understand these options, it’s best to play around with them.
Remove the group_tags option in the controller, for example, and see
what happens.

With a single statement you can turn a complex XML document into a
native Ruby structure; that is, accessing the document’s content is as
natural as it can be. But XmISimple has many more options, it has an
additional object-oriented interface, and it can output Ruby structures
as XML documents, too:

Download xml/data_binding/xmlisimple_demo/app/models/order.rb

Line 1 class Order
def self.to_xml(order)
builder = Xm1Simple.new(

'"root_name' => 'order',
5 'group_tags' => {
'customer-no' => 'content',
"items' = 'item',
"name’ => 'content',
- 'quantity' => 'content'
10 }
-)
builder.xml_out(order)
end

end

http://media.pragprog.com/titles/msenr/code/xml/data_binding/xmlsimple_demo/app/models/order.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=144

Download at Boykma.Com

21. XML DATA BINDING ON STEROIDS <« 145

The previous to_xml() method turns the result of the find() method into
the original XML document. Because Hash and Array objects have no
name, XmiSimple uses <opt> by default as the root element’s tag. We
override this in line 4, so our root element is named <order> again.

By default, XmiSimple turns hash keys into attributes, but in our orig-
inal document we have mostly worked with elements. In the following
lines, we use the group_tags option for turning potential attributes into
elements. The content element has a special meaning and stands for the
textual content of every element. If needed, it can be configured using
XmiSimple’s content_key option.

All in all, XmiISimple is a convenient way of working with XML. Addi-
tionally, it can be fast, too, if you have to select different elements
often, because after the document has been parsed, which is one-time
overhead, you're working with plain Ruby arrays and hashes. If you're
working with REXML, for example, a lot of XPath expressions would be
evaluated otherwise.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=145

Recipe 22

‘ Use XML Files as Models

| Problem \

In nearly every company the most critical information is stored in rela-
tional databases, but often only a few privileged processes are allowed
to access it directly. All other processes and services get exported only
as XML files. For example, all information needed to create invoices may
be stored in a database that gets exported periodically as a set of XML
files so they can be sent to a print shop or the files can be displayed
online.

Rails is a database-centric framework, and usually that’s a good thing,
because nearly every serious web application needs a database. But
if you have to read your model data from a different data source—for
example, from an XML file—you can easily do that, too.

J Solution \

Let’s assume you have to display invoices, but instead of reading the
corresponding model data from a database, you have to read it from
XML files. All files are stored in a directory named data/invoices, and the
filenames follow a simple pattern: <customer-no>.xml. The documents
we have to process potentially contain a list of invoices and look like
this:

Download xml/data_binding/invoice_app/data/invoices/94429999.xml

<?xml version="1.0"'?>
<invoices>
<invoice invoice-no='47110815">
<invoice-date>2008-09-15</invoice-date>
<due-date>2008-10-01</due-date>
<customer customer-no="'94429999'>
<name>Maik Schmidt</name>
<address>
<street>Musterstrale 42</street>
<city>Musterstadt</city>
<postal-code>12345</postal-code>
</address>
</customer>
<net-amount currency='USD' amount='7.73'/>
<gross-amount currency='USD' amount='8.97'/>

http://media.pragprog.com/titles/msenr/code/xml/data_binding/invoice_app/data/invoices/94429999.xml

Download at Boykma.Com

22. USE XML FILES AS MODELs <« 147

<vat rate='16.0"' currency="USD' amount='1.24'/>

<items>
<item product-id='42-007-x">
<name>Beer</name>

<unit-price currency='USD' amount='0.99'/>
<quantity>6</quantity>
<net-amount currency="'USD' amount='5.94"/>
<gross-amount currency='USD' amount='6.89'/>
<vat rate='16.0"'/>
</item>
<item product-id='16-666-x">
<name>Nuts & Gum</name>
<unit-price currency="'USD' amount='1.79'/>
<quantity>1</quantity>
<net-amount currency="'USD' amount='1.79'/>
<gross-amount currency="USD' amount='2.08'/>
<vat rate='16.0"/>
</item>
</items>
</invoice>
</invoices>

<item> elements contain all the information you would typically expect
in an invoice, such as a due date, customer data, a list of invoice
line items, lots of money amounts, and VAT rates. Note that all these
amounts come with a currency, and we do not have to perform any
calculations ourselves. We have to display the data only.

Although we do not read any data from a database, we need to create
a model for our invoices. Typically, models are built using Rails’ Active-
Record module, which insists on model data coming from a database.
This time, we will read our model data from an XML file and parse it
using Ruby’s standard XML parser, Ruby Electric XML (REXML).2

First we map the XML document’s elements and attributes to a hierar-
chy of business objects. Ruby’s Struct class makes this easy:

Download xml/data_binding/invoice_app/app/models/invoice.rb

Money = Struct.new(:currency, :amount)
Address = Struct.new(:street, :postal_code, :city)
Customer = Struct.new(:customer_no, :name, :address)
Vat = Struct.new(:rate, :amount)
Item = Struct.new(
:product_id, :name, :unit_price, :quantity,
:net_amount, :gross_amount, :vat

2. http://www.germane-software.com/software/rexml/

http://media.pragprog.com/titles/msenr/code/xml/data_binding/invoice_app/app/models/invoice.rb
http://www.germane-software.com/software/rexml/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=147

Download at Boykma.Com

22. USE XML FILES As MODELs <« 148

class Invoice
attr_accessor :invoice_no, :invoice_date, :due_date, :customer
attr_accessor :net_amount, :gross_amount, :vat, :items

end

We did not declare any types explicitly, but you can easily guess that
the address attribute of a Customer object will be an instance of class
Address, for example.

These simple storage classes are all we need to proceed, so now we
are going to map some real XML documents to our new classes using
REXML. Let’s begin with the <invoice> element:

Download xml/data_binding/invoice_app/app/models/invoice.rb

Line 1 require 'rexml/document’
class Invoice
INVOICES_DIR = File.join('data', 'invoices')

5 def self.find(customer_no)
filename = File.join(INVOICES_DIR, "#{customer_no}.xml")
invoice_doc = REXML::Document.new(File.new(filename))
invoice_node = invoice_doc.root.elements[1]
invoice = Invoice.new
10 invoice.invoice_no = invoice_node.attributes['invoice-no']
invoice.invoice_date = invoice_node.elements['invoice-date'].text
invoice.due_date = invoice_node.elements['due-date'].text
invoice.customer = get_customer(invoice_node)
invoice.net_amount = get_money(invoice_node.elements['net-amount'])
15 invoice.gross_amount = get_money(
invoice_node.elements['gross-amount']
)
invoice.vat = get_vat(invoice_node)
invoice.items = get_items(invoice_node)
20 invoice
end
end

We require REXML first, so in line 7, we load and parse an XML doc-
ument by calling the constructor of REXML::Document. If the file cannot
be found or the document cannot be parsed for any reason, this action
raises an exception. Otherwise, invoice_doc refers to a tree representing
our document.

To get the root of the tree, we call the document’s root() method in line
8. Remember that our root node is an <invoices> element, which has
one or more <invoice> children. For the sake of simplicity we read only
the first <invoice> child. Every element node in a REXML tree has a
member named elements that can be indexed with a numerical position

http://media.pragprog.com/titles/msenr/code/xml/data_binding/invoice_app/app/models/invoice.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=148

Download at Boykma.Com 22. Ust XML FILES AS MODELS <« 149

4 N

XPath

One of the most useful features of REXML is its intfegrated XPath
1.0* support. XPath is a domain-specific language that makes it
easy to access every single piece of an XML document. XPath
expressions look a bit like file paths, but they are much more
powerful and can contain function calls and logical operators.

REXML allows you to index the elements member of an
REXML::Element object with an XPath expression, for example:

Download xml/data_binding/xpath_sample.rb

doc = REXML: :Document.new(File.new('invoices/94429999.xml"))
doc.elements['//items/item[1]/name'].text # -> 'Beer'
doc.elements['//net-amount/@amount '] # -> '7.73"

As you can see, the XPath is not related to the element; that is,
you can fetch any element of a document through any other
element.

A full infroduction of XPath is beyond the book’s scope, but the
Internet is full of excellent tutorials.t

*. http://www.w3.org/TR/xpath
t. See http://www.w3schools.com/xpath/default.asp, for example.

or with an XPath pointing to a child element. We use the position 1 to
refer to the first child element (yes, the index starts at 1, not 0!).

In line 10, we copy content for the first time using the aftributes member.
You can treat it as a regular Ruby Hash object (although it isn’t one). In
other words, you can get the value of a particular attribute by indexing
aftributes with the attribute’s name.

Getting the textual content belonging to an element is different: you
have to call fext() on the element, as you can see in line 12. If your
element contains more than one text node, call texis() to get an array of
all text nodes belonging to the element.

XPath, elements, and attributes are the most important tools when work-
ing with REXML, and we use them frequently in several helper methods
such as get_money() or get_customer().

http://media.pragprog.com/titles/msenr/code/xml/data_binding/xpath_sample.rb
http://www.w3.org/TR/xpath
http://www.w3schools.com/xpath/default.asp
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=149

Download at Boykma.Com

22. USE XML FILES As MODELs < 150

Those methods are defined as follows:
Download xml/data_binding/invoice_app/app/models/invoice.rb

linel class Invoice
private

def self.get_money(node)
5 Money.new(node.attributes['currency'], node.attributes['amount'])
end

def self.get_customer(invoice_node)
customer_node = invoice_node.elements['customer']
10 Customer.new(
customer_node.attributes['customer-no'],
customer_node.elements['name'].text,
get_address(customer_node)
)

15 end

def self.get_address(customer_node)
address_node = customer_node.elements['address']
Address.new(

20 address_node.elements['street'].text,
address_node.elements['postal-code'].text,
address_node.elements['city'].text

)
end
25
def self.get_vat(invoice_node)
Vat.new(
invoice_node.elements['vat'].attributes['rate'],
get_money(invoice_node.elements['vat'])
30)
end

def self.get_items(invoice_node)
items = []
35 invoice_node.elements.each('items/item') do |item|
items << Item.new(
item.attributes['product-id’'],
item.elements['name'] . text,
get_money(item.elements['unit-price']),
40 item.elements['quantity'].text.to_i,
get_money(item.elements['net-amount']),
get_money(item.elements['gross-amount']),
item.elements['vat'].attributes['rate']

45 end
items
end
end

http://media.pragprog.com/titles/msenr/code/xml/data_binding/invoice_app/app/models/invoice.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=150

Download at Boykma.Com

22. UsE XML FILES AS MODELS

All these methods do not contain anything special in that they copy the
XML document’s content using only the elements and attfributes mem-
bers. The only exception is the iterator code in line 35. Here we use
elements not to access a single element but to iterate over all <item>
children of an <items> node.

If we copy our parsing code to app/models/invoice.rb, we can look up
invoices like regular database models using find() in a Rails controller:

Download xml/data_binding/invoice_app/app/controllers/invoice_controller.rb

class InvoiceController < ApplicationController
def show
@invoice = Invoice.find(params[:id])
end
end

A bit of view code turns our object into a nice and printable invoice
document, as you can see in Figure 5.1, on the following page. The
HTML code to render the inner table looks like this:

Download xml/data_binding/invoice_app/app/views/invoice/show.html.erb

<table width="100%" id="invoicetable">
<tbody>
<tr>

<th> Product ID </th>
<th> Product Name </th>
<th> Unit Price </th>
<th> Quantity </th>
<th> Net Amount </th>
<th> VAT </th>
<th> Gross Amount </th>

</tr>
<% for item in @invoice.items %>
<tr class="<%= cycle('odd', 'even') %>'">

<td><%= item.product_id %></td>
<td><%= item.name %></td>
<td><%= number_to_currency(item.unit_price.amount) %></td>
<td><%= item.quantity %></td>
<td><%= number_to_currency(item.net_amount.amount) %></td>
<td><%= item.vat %>%</td>
<td><%= number_to_currency(item.gross_amount.amount) %></td>
</tr>
<% end %>
<tr class="divider">
<td colspan="6"> </td>
<td> </td>
</tr>
<tr class="total">
<td colspan="6" align="right">Total</td>

http://media.pragprog.com/titles/msenr/code/xml/data_binding/invoice_app/app/controllers/invoice_controller.rb
http://media.pragprog.com/titles/msenr/code/xml/data_binding/invoice_app/app/views/invoice/show.html.erb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=151

Download at Boykma.Com

22. USE XML FILES AS MODELs < 152

800 Invoice #47110815

Dear Maik Schmidt,

Thank you very much for shopping with ACME!

Invoice #47110815 (2008-09-15)

Billing Address: Product ID Product Name Unit Price Quantity Net Amount VAT Gross Amount
42-007-x Beer $0.99 6 $5.94 16.0% $6.89

Maik Schmidt

lcustomer 94429999 16-666-x Nuts & Gum $1.79 1 $1.79 16.0% $2.08

MusterstraBe 42

12345, Musterstadt Total

VAT: $1.24
Net Amount: $7.73
Gross Amount: $8.97

Please, pay by 2008-10-01.

Best Regards,

ACME

Figure 5.1: The rendered invoice

<td> </td>
</tr>
<tr class="total">
<td colspan="6" align="right">VAT: </td>
<td><%= number_to_currency(@invoice.vat.amount.amount) %></td>
</tr>
<tr class="total">
<td align="right" colspan="6">Net Amount: </td>
<td><%= number_to_currency(@invoice.net_amount.amount) %></td>
</tr>
<tr class="total">
<td align="right" colspan="6">Gross Amount: </td>
<td style="border-top: 1lpx dotted black'>
<u>

<%= number_to_currency(@invoice.gross_amount.amount) %>

</u>
</td>
</tr>
</tbody>
</table>

Rails strictly follows the Model-View-Controller (MVC) pattern, so it
comes as no surprise that our view does not differ from a view that
uses a regular database model. The view and model are completely sep-

arated, and only the controller knows our little secret: the model data
has been read from an XML file, not from a database table.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=152

Dol sHOe 22. USE XML FILES AS MODELS < 153

| Discussion | \

Experienced developers are probably familiar with this kind of XML
data binding. On platforms like Java, for example, it’s supported by a
lot of tools. Because of the dynamic nature of Ruby, additional tools

aren’t necessary, and we can easily map XML documents to classes
manually. This way, we can also add more business logic such as vali-
dations, for example.

By using only a few methods of the REXML-API, we have turned a com-
plex XML document into a hierarchy of business objects. REXML offers
many more functions to conveniently manipulate XML documents, and
you should take a close look at its documentation. For our original
purpose, the few methods described earlier are sufficient.

But you have to keep some shortcomings in mind:

¢ REXML supports all modern character set encodings for both in-
put and output, but internally it encodes all text nodes with the
UTF-8 character set encoding. Be careful if you manipulate text.

* Currently, REXML does not support any validation standards
such as Document Type Definition (DTD) or XmlSchema. There’s
basic support for RELAX NG, but it’s far from version 1.0.

e REXML is slow, and you should use it only when programmer
convenience is more important than performance.

Also See
,_J L \

* See Recipe 21, XML Data Binding on Steroids, on page 142 to learn
how to serialize XML documents automatically.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=153

Recipe 23

Handle Large XML
Documents

Problem
,_J L \

RAM gets cheaper and cheaper every day, but it’s still severely limited,
especially if you're creating a web application that is used concurrently
by a lot of users. It's not a good idea to slurp really large XML docu-
ments into main memory.

Interestingly, it happens often that people generate XML documents
without thinking about the size of the result file. Maybe five years ago
the file contained only 20KB, but as the business grew, the files grew,
too, and now they are monsters. That’s mostly because those people
who create the files rarely have to process them, so it might happen
that an application that ran seamlessly for years crashes unexpectedly.

In this recipe, you'll learn how to bring the memory footprint of your
XML parsing code to a minimum.

Solution
,_J L \

We'll assume you are working for a telecom company that generates
large XML documents containing call detail records (CDRs)® every day.

In principle, a CDR describes who called whom and for how long. There
is no official standard, and probably every telecom company on this
planet has invented its own data format to store this vital information.
The data files are way too big to be loaded into RAM completely, and
it’s your job to visualize all records belonging to a particular phone
number. Our data files looks like this:

DownTload xml/pull_parser/demo/data/cdr/20080719.xml

<?xml version="1.0"?>
<cdr-1ist date='2007-09-27'>
<cdr from='+42111111111" timestamp='00:23:39"'

to="+4912345678" duration='720"/>
<cdr from='+32012345678"' timestamp='00:23:40"
to="+4912345678" duration='907"/>

3. http://en.wikipedia.org/wiki/Call_detail_record

http://media.pragprog.com/titles/msenr/code/xml/pull_parser/demo/data/cdr/20080719.xml
http://en.wikipedia.org/wiki/Call_detail_record

Download at Boykma.Com

Line 1

20

. HANDLE LARGE XML DOCUMENTS

<cdr from='+4912345678' timestamp='00:24:02"
to="+42111111111" duration='808"/>
<cdr from='+019999999' timestamp='00:25:00"
to="+32012345678"' duration='1051"'/>
<l-—- ... -
<cdr from='+019999999' timestamp='23:02:17"
to="'+4912345678"' duration='574"/>
<cdr from='+4912345678"' timestamp='23:02:18"
to="+42111111111" duration="880"'/>
<cdr from='+4912345678"' timestamp='23:43:29"'
to="+4912345678"' duration='1137"/>
<cdr from='+42111111111" timestamp='23:44:15"
to="+4912345678" duration='214"/>
</cdr-1ist>

These files look harmless, because they consist only of <cdr> elements
that have four attributes: from= tells us who initiated the phone call, to=
contains the recipient’s phone number, timestamp= determines the call’'s
start time, and duratfion= contains the duration of the call measured in
seconds. Typically, such a file comprises several million records and
can quickly grow larger than 2GB.

REXML—Ruby’s standard XML parser—comes with a powerful pull
parser API that allows us to read XML documents piece by piece. We can
use it to read the CDR files incrementally without consuming noticeable
amounts of memory:

Download xml/pull_parser/demo/app/models/call_detail_record.rb

require 'rexml/parsers/pullparser’

class CallDetailRecord
CDR_DIR = File.join('data', 'cdr')
attr_accessor :from, :to, :timestamp, :duration

def initialize(from, to, timestamp, duration)
@from, @to, @timestamp, @duration = from, to, timestamp, duration
end

def self.find_all1(from, date = Time.now)
input_file = CDR_DIR + '/' + date.strftime('%Y%m%d') + '.xml'
parser = REXML::Parsers::PullParser.new(File.new(input_file))
cdrs = []
while parser.has_next?
event = parser.pull
if event.start_element? and event[0] ==
attributes = event[1]
if attributes['from'] == from
cdrs << CallDetailRecord.new(
attributes['from'],

cdr

http://media.pragprog.com/titles/msenr/code/xml/pull_parser/demo/app/models/call_detail_record.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=155

Download at Boykma.Com

23. HANDLE LARGE XML DOCUMENTS < 156

attributes['to'],
attributes['timestamp'],
attributes['duration']

25)
end
end
end
cdrs
30 end
end

The first part of our CallDetadilRecord class is pretty straightforward. We
merely declare accessors for all the attributes we have found in the XML
document. It gets more interesting in line 13. Here we initialize the pull
parser for our input file. Please note that we only create a new File object
and do not read the file immediately.

A pull parser turns an XML document into a stream of events, and in
line 15, we check whether there are still events left in our input file.
Whenever we get a new event, we extract it from the stream in line 16.
But what is an event?

A new event is generated if the parser finds something interesting such
as the start tag of a new element or a new text node. You can check
what type of event has been encountered by calling one of the following
methods: attlistdecl?(), cdata?(), comment?(), doctype?(), elementdecl?(),
end_element?(), entity?(), entitydecl?(), instruction?(), notationdecl?(),
start_element?(), text?(), or xmidecl?().

We are interested only in <cdr> elements, so in line 17, we use the
start_element?() method to check whether we have found the start of a
new element. If yes, we use event[0] to check whether the element is
named cdr. REXML does not implement an inheritance hierarchy for
the different event types. Instead, you have to use the (() operator to
get more information about an event object. Depending on the event
type, the number of attributes you can look up varies (take a look at
the REXML documentation* for the details).

In the case of a start element, you'll find the name of the element in
event[0] and a Hash object containing its attributes in event[1]. We use
this in line 18, and whenever we find an element that has the right
from= attribute, we create a new CallDetailRecord object and append it to
the cdrs array.

4. http://www.ruby-doc.org/stdlib/libdoc/rexml/rdoc/classes/REXML/Parsers/PullEvent.html

http://www.ruby-doc.org/stdlib/libdoc/rexml/rdoc/classes/REXML/Parsers/PullEvent.html
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=156

Download at Boykma.Com

23. HANDLE LARGE XML DOCUMENTS < 157

So if the NSA (“No Such Agency”) wants to know which numbers have
been dialed from +4912345678 on July 19, 2008, run the following
statement on your Rails console:

mschmidt> ruby script/console

Loading development environment (Rails 2.1.0).

>> who = "+4912345678'; ts = Time.utc(2008, 7, 19)

=> Sat Jul 19 00:00:00 UTC 2008

>> CallDetailRecord. find_all(who, ts).each do |cdr|

?> puts cdr.timestamp + ": #{cdr.to}"

>> end

00:24:02: +42111111111

23:02:18: +42111111111

23:43:29: +4912345678

=> [#<CallDetailRecord:0x34574ac @duration="808", @to="+42111111111",
@from="+4912345678", @timestamp="00:24:02">,
#<CallDetailRecord:0x34562c8 @duration="880", @to="+42111111111",
@from="+4912345678", @timestamp="23:02:18">,
#<CallDetailRecord:0x3455d3c @duration="1137", @to="+4912345678",
@from="+4912345678", @timestamp="23:43:29">]

We use CallDetailRecord as if it were a regular database model. It does
not have all the convenience methods you'd get from an ActiveRecord
object, but at least it hides all the ugly XML parsing details (an impor-
tant detail you should not forget about is that REXML encodes all texts
as UTF-8 internally).

| Discussion | \

Our solution works best with homogeneous documents that contain
large lists of equally structured elements. Whenever you have such a
document and whenever you have to process it sequentially—that, is
element by element—you should consider using pull parsing.

For many years developers have used only two XML parsing strategies:
tree parsing and event parsing. The most popular APIs are the Docu-
ment Object Model (DOM) for tree parsing and the Simple API for XML
(SAX) for event parsing.

With DOM, you have to read every XML document completely into main
memory, which is definitely not an option if the string representation of
your document exceeds a certain size. Usually, a DOM tree consumes
several times more memory than the same document on a hard disk.

The memory footprint of a SAX parser is much better, but its program-
ming model is more complicated, because it somehow inverses control:
the parser tells you what to do and when to do it.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=157

Dol sHOe 23. HANDLE LARGE XML DOCUMENTS < 158

Pull parsers have been developed to make XML parsing possible even in
highly restricted environments such as cell phones. They use a hybrid
approach; they do not read an input document completely but piece by
piece. But instead of waiting for the parser to tell you what it has found,
you ask it whether it has something interesting for you whenever you
need more information. This way, the memory footprint of a pull parser
is minimal, and you are still in control. @

Pull parsers have some disadvantages, too: they work on a very low
level, and you have to take care of every tiny detail. Additionally, error
handling becomes more complicated. For example, it's possible to real-
ize your document is not well-formed right after you've read the last
character, and therefore you have to roll back all the things you have
done until then.

Eventually, you shouldn’t forget that RAM is not the only scarce re-
source. If the documents you’d like to process are really big, it might
well happen that you can still process them without running out of
memory, but processing could take far too long.

Also See
,_J L \

* See Recipe 24, High-Performance Parsing, on the following page
if you want to save not only memory but also CPU cycles when
parsing XML documents.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=158

Recipe 24

High-Performance Parsing

Problem
,_J L \

Ruby is an interpreted language, which means it’s not as fast as its
compiled counterparts. By the time you read this, several Ruby com-
pilers will be available, but none of them will automatically solve the
problems described in this recipe. Usually, this is not a problem, but
it could happen that you create a Ruby program for parsing an XML
document that is too slow. Maybe you have developed it in record time,
but that doesn’t count much if it does not fulfill your customer’s needs.

In this recipe, you’ll learn how to increase the performance of your XML
parsing code tremendously.

| Ingredients | N

e Install the LibXML® gem:

$ gem install T1ibxml-ruby

At the time of this writing, installing LibXML as a gem does not
work out of the box on the Microsoft Windows platform.

Solution
,_J L \

Let’s assume you have to create a Rails application that scans through
an XML file containing credit card transactions and displays all trans-
actions belonging to a particular credit card. The file might look like
this:

Download xml/libxml2/ccdemo/data/cc_xactions/20080729.xml

<?xml version='1.0'?>
<cc-xactions date='20080729'>
<cc-xaction id="'100001"' cc-ref='2537403"' type='credit' amount='12.00'>
<text>Monthly bill.</text>
</cc-xaction>
<l-- ... -=>
<cc-xaction id='400224"' cc-ref='95932' type='purchase' amount='19.99'>
<text>A new book.</text>
</cc-xaction>
</cc-xactions>

5. http://libxml.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/xml/libxml2/ccdemo/data/cc_xactions/20080729.xml
http://libxml.rubyforge.org/

Dol sHOe 24. HIGH-PERFORMANCE PARSING <« 160

Each transaction has a unique identifier that can be found in the id=
attribute. All credit cards are identified by a reference ID, which is
stored in the cc-ref= attribute (using the credit card number to identify
a credit card is not allowed, which is why we use an artificial identifier).

If you get money from your customer, the type= attribute is purchase;
otherwise, it’s credit. amount= tells us how much money has been trans-
ferred, and the content of the <text> element appears on the cus-
tomer’s credit card bill.

The input files contain several thousand credit card transactions, and
you've tried all traditional methods already, but your application is still
too slow. You've measured performance and have come to the conclu-
sion that more CPU cycles are needed in the XML parsing code.

To solve this problem, we’ll use the LibXML library. It is a C extension
and embeds the GNOME libxml2 library® into the Ruby interpreter. Like
REXML, it uses XPath wherever possible. Our model looks like:

DownTload xml/libxml2/ccdemo/app/models/credit_card_transaction.rb

Line 1 require 'xml/Tibxml'

class CreditCardTransaction
XACTION_DIR = File.join('data', 'cc_xactions')

attr_reader :xaction_id, :cc_ref, :type, :amount, :text

def initialize(xaction_id, cc_ref, type, amount, text)
@xaction_id, @cc_ref, @type = xaction_id, cc_ref, type
10 @amount, @text = amount, text
end

def self.find_all(cc_ref)
- xactions = []
15 input_file = "#{XACTION_DIR}/xactions.xml"
- doc = XML: :Document.file(input_file)
doc.find('//cc-xactions/cc-xaction').each do |node|

if node['cc-ref'] == cc_ref
xactions << CreditCardTransaction.new(
20 node['id'],

node['cc-ref'],
node["type'],
node["amount'],
node.find_first('text"')
2)
end
end

6. http://xmisoft.org/

http://media.pragprog.com/titles/msenr/code/xml/libxml2/ccdemo/app/models/credit_card_transaction.rb
http://xmlsoft.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=160

Download at Boykma.Com

24. HIGH-PERFORMANCE PARSING < 161

xactions
end
30 end

That does not differ much from our REXML solution, because both
libraries have a similar API, and they even use UTF-8 for encoding char-
acters internally.

In line 16, we read and parse our input file in a single step. The result is
a tree representation of our XML document. In line 17, we iterate over
all <cc-xaction> elements using the find() method. As with REXML’s
iterators, we can use an XPath expression to select the nodes we're
interested in (see Recipe 22, Use XML Files as Models, on page 146). In
line 20, we copy the content of an attribute, and in line 24, we copy
an element’s content. The controller action for finding all credit card
transactions is trivial:

DownTload xml/libxml2/ccdemo/app/controllers/credit_card_transaction_controller.ro

class CreditCardTransactionController < ApplicationController
def show
@xactions = CreditCardTransaction.find_all(params[:id])
end
end

The view looks as follows, and its result can be seen in Figure 5.2, on
the following page:

DownTload xml/libxml2/ccdemo/app/views/credit_card_transaction/show.html.erb

<% if @xactions.size == 0 %>
<p>Currently, there are no transactions.</p>
<% else %>
<table>
<tr>
<th>Transaction ID</th>
<th>Credit Card Reference</th>
<th>Amount</th>
<th>Text</th>
</tr>
<% for xaction in @xactions %>
<tr>
<td><%= xaction.xaction_id %></td>
<td><%= xaction.cc_ref %></td>
<% sign = (xaction.type == 'purchase') ? '+' : '-' %>
<td><%= sign + number_to_currency(xaction.amount) %></td>
<td><%= xaction.text %></td>
</tr>
<% end %>
</table>
<% end %>

http://media.pragprog.com/titles/msenr/code/xml/libxml2/ccdemo/app/controllers/credit_card_transaction_controller.rb
http://media.pragprog.com/titles/msenr/code/xml/libxml2/ccdemo/app/views/credit_card_transaction/show.html.erb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=161

Download at Boykma.Com

24. HIGH-PERFORMANCE PARSING

LibXML Test Application

800
| (<l>Jlc] [.18.] @ http://localhost:3000/credit_card_transaction/show/2537403 aa-

Transaction ID Credit Card Reference Amount Text

100001 2537403 -$12.00 Monthly bill.

400224 2537403 +$19.99 A new book.

Figure 5.2: List of credit card transactions

Although we have read model data from an XML file and although we
have parsed the files using a C extension, we could still use Rails’ regu-
lar MVC pattern. By looking at the view, you cannot see where the data
came from.

| Discussion | \

So far, so good, but our solution does not differ much from a REXML
solution. Why should it be so much faster?

The secret ingredient is the raw power of C, but you cannot determine
how much faster your program runs by looking at the code. I have
provided a little benchmark that compares three functions that do the
same but use different parsers. The first one uses LibXML:

Download xml/libxml2/performance_test.rb

Line 1 require 'xml/Tibxml'
def Tibxml_parse(xml_string)
xactions = []
parser = XML::Parser.new
5 parser.string = xml_string
doc = parser.parse
doc.find('//cc-xactions/cc-xaction').each do |node|
xactions << CreditCardTransaction.new(
node['id'],
10 node['cc-ref'],
node["type'],
node["amount'],
node.find('text').to_a.first.content
)
15 end
xactions
end

http://media.pragprog.com/titles/msenr/code/xml/libxml2/performance_test.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=162

Dol sHOe 24. HIGH-PERFORMANCE PARSING <« 163

That looks exactly like the code we used in the CreditCardTransaction
class. The only difference starts in line 4. Here we read our input doc-
ument from a string and not from a file to create fair testing conditions
for all approaches. Here’s a solution that uses REXML:

Download xml/libxmlI2/performance_test.ro

Line 1 require 'rexml/document’
def rexml_parse(xml_string)
xactions = []
doc = REXML::Document.new(xml_string)
5 doc.elements.each('//cc-xactions/cc-xaction') do |node]|
xactions << CreditCardTransaction.new(

node.attributes['id'],
node.attributes['cc-ref'],
node.attributes["type'],

10 node.attributes["amount'],
node.elements['text'].text
)
end
xactions
15 end

This function should not contain any surprises, and for the sake of
completeness we’ll look at an Hpricot version, too (see Recipe 25, Work
with HTML and Microformats, on page 165 to learn more about Hpricot):

Download xml/libxmlI2/performance_test.ro

Line 1 require 'hpricot'
def hpricot_parse(xml_string)
xactions = []
doc = Hpricot.XML(xml_string)
5 (doc/'//cc-xactions/cc-xaction').each do |node|
xactions << CreditCardTransaction.new(

node['id'],
node['cc-ref'],
node["type'],

10 node["amount'],
(node/ "text ') .inner_html
)
end
xactions
15 end

Hpricot was always meant to be an HTML parser, but its XML() method
makes it possible to parse XML documents, too.

As you can see, the three solutions differ only in a few characters, and
now we use Ruby’s Benchmark module to compare them.

http://media.pragprog.com/titles/msenr/code/xml/libxml2/performance_test.rb
http://media.pragprog.com/titles/msenr/code/xml/libxml2/performance_test.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=163

Dol sHOe 24. HIGH-PERFORMANCE PARSING < 164

DownTload xml/libxmi2/performance_test.rb

require 'benchmark'

xml_string = I0::read(input_file)

Tabel_width = 8

Benchmark.bm(label_width) do |x|
x.report('rexml: ') { rexml_parse(xml_string) }
x.report('Tibxm1: ') { Tibxml_parse(xml_string) }
x.report('hpricot: ') { hpricot_parse(xml_string) }

end

First, we feed our two functions with an example document containing
1,000 credit card transactions (I've run those tests on an Apple Mac-

Book Pro):
mschmidt> ruby performance_test.rb 1000

user system total real
rexml: 3.110000 0.040000 3.150000 (3.189711)

Tibxm1: 0.050000 0.010000 0.060000 (0.060367)
hpricot: 0.510000 0.000000 0.510000 (0.523038)

That’s pretty impressive already, but let's see what happens when we
parse 10,000 elements:
mschmidt> ruby performance_test.rb 10000
user system total real
rexml: 218.810000 1.640000 220.450000 (222.433778)

Tibxm1: 2.020000 0.110000 2.130000 (2.168987)
hpricot: 6.600000 0.060000 6.660000 (6.727825)

Wow! As you can see, not only is LibXML much faster than REXML, but
it is really fast! Regarding this figures, it would be completely impossible
to provide a satisfying user experience using REXML, but the perfor-
mance of LibXML is still acceptable. Hpricot has excellent performance,
too, but when you have to install a separate library anyway, you should
install the fastest one. In addition, LibXML fully implements the XML
standard (and some of its relatives), while Hpricot does not.

Despite all this, you have to consider some shortcomings: although
LibXML is probably one of the most complete XML implementations
available, its Ruby binding is still in an early stage of development, and
as with all C extensions, you have to test your software intensely. You
especially have to check for memory leaks!

REXML is convenient and an adequate solution for small XML docu-
ments. But the API of LibXML is nice, too, and it’s currently the only
library that enables you to handle really big documents sufficiently fast.

http://media.pragprog.com/titles/msenr/code/xml/libxml2/performance_test.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=164

Recipe 25

Work with HTML and
Microformats

Problem
,_J L \

It happens often that you have to extract information from websites by
actually parsing their HTML code. Usually, you use a mixture of regular
expressions and methods for string manipulation, but this approach
does not scale well, because it leads to ugly and fragile solutions.

In this recipe, you’ll learn how to parse HTML.

J Ingredients | \

e Install the hpricot” gem:

$ gem install hpricot

¢ Install the mofo® library:

$ gem install mofo

Solution
,_J L \

Microformats® are a perfect way to embed snippets of structured infor-
mation into an ordinary website. Simply put, a microformat is only
a naming convention for Cascading Style Sheets (CSS)!° classes. For
example, there’s a microformat for storing address information as an
hCard, which is the microformat representation of a vCard defined in
RFC-2426.1!

An hCard’s full name is always stored in an XHTML element that has
the CSS class fn (full name), an email address is stored in an element
that has the class email, and so on. The type of the element doesn’t
matter. Currently, nine microformats have been specified, and draft
specifications exist for another eleven.

7. http://code.whytheluckystiff.net/hpricot/
8. http://mofo.rubyforge.org/

9. http://microformats.org/

10. http://www.w3.org/Style/CSS/

11. http://www.ietf.org/rfc/rfc2426.1xt

http://code.whytheluckystiff.net/hpricot/
http://mofo.rubyforge.org/
http://microformats.org/
http://www.w3.org/Style/CSS/
http://www.ietf.org/rfc/rfc2426.txt

Download at Boykma.Com

25. WORK WITH HTML AND MICROFORMATS

If the microformat document you are interested in is embedded in an
XHTML document, everything is fine, because you can use an XML
parser to extract it. Otherwise, you have to parse HTML, which is a lot
more complex.

Although XML and HTML look similar, they are different beasts from
a technical point of view. Still, they get mixed often, and you can find
XHTML documents that have been embedded into HTML files, for exam-
ple. Here we have such a document:

DownTload xml/microformats/vcard_demo/public/hcard/maik.html

Line 1 <html>

<head>
<title>Maik Schmidt's Vcard</title>

</head>

5 <body>

Here's some content that is not even well-formed!
<p>
<div id="hcard-Maik-Schmidt" class="vcard">

- <a class="url"

10 href="http://maik-schmidt.de">Maik Schmidt

Maik Schmidt
<div class="adr">

<div class="street-address">Musterstraße 42</div>
Musterstadt

15 12345
Germany
</div>

Phone: +49123456789

Email: <a class="email"
20 href="mailto: foo@example.com">foo@example.com
</div>
</body>
</div>

That’s a perfectly valid HTML page (see a rendered version in Figure 5.3,
on the following page), and although it looks pretty normal, it still con-
tains something special: a microformat hCard.

Plug-ins are available for some web browsers that automatically extract
microformat information and allow you to use it in other applications.
In Figure 5.4, on the next page, you can see one for Apple’s Safari
browser.!2 I've opened the page containing my vCard, and the plug-in
offers to add it to the address book automatically. If a page contains
hCalendar elements (that’s a microformat for calendar entries), they
can be added to iCal automatically, and so on.

12. http://zappatic.net/safarimicroformats/

http://media.pragprog.com/titles/msenr/code/xml/microformats/vcard_demo/public/hcard/maik.html
http://zappatic.net/safarimicroformats/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=166

Dol sHOe 25. WORK WITH HTML AND MICROFORMATS < 167

800 Maik Schmidt's Vcard
 http://localhost:3000/hcard/maik.htm| =

Here's some content that is not even well-formed!

Maik Schmidt
MusterstraBe 42
Musterstadt

12345 Germany

Phone: +49123456789
Email: foo@example.com

Figure 5.3: Maik’s vCard

~ Microformats found at:

http:/ /localhost:3000/hcard /maik.html

Maik Schmidt
hCard o
Insert hCalendars in : [Home D]
Insert hCards in : [)

(Done)ehdd-aﬂ"a

Figure 5.4: A browser plug-in for microformats

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=167

Download at Boykma.Com

25. WORK WITH HTML AND MICROFORMATS

This kind of information exchange works for web applications, too, and
you can give your customers the opportunity to import their vCard data
encoded as a microformat hCard from another website instead of enter-
ing them manually.

To extract microformat information from a website, you have to iden-
tify elements that have certain CSS classes, but in our case the target
website is not an XHTML document, so the XML parser complains that
the site’s content is not well-formed. You actually have to parse HTML,
but it’s much easier than you might think right now.

When you feed our sample HTML page to an XML parser, it will com-
plain about a few things. For example, the entity ß is not defined,
and the
 tag in line 18 is opened but never closed. That’s all OK for
HTML documents, but it is not allowed in an XML document. Anyway,
the embedded microformat hCard is encoded as XHTML, and we’d like
to map it to a Vcard object that has the following structure:

DownTload xml/microformats/vcard_demo/app/models/vcard.rb

class Vcard
attr_accessor :name, :street, :postal_code, :city, :email
attr_accessor :phone, :url, :country

end

Parsing HTML is usually much more difficult than parsing XML, but
Ruby programmers can use one of the most convenient HTML parsers
ever: Hpricot. We use it in this recipe to map the profile data manually:

Download xml/microformats/vcard_demo/app/controllers/vcard_controller.rb

lnel require 'hpricot'
require 'open-uri'

class VcardController < ApplicationController

5 def import

- external_url = params[:external_url]
doc = Hpricot(open(external_url))
@vcard = Vcard.new
@vcard.url = doc.at('//a[@class="ur1"]')['href']

10 @vcard.name = classified_node(doc, 'fn')
@vcard.street = classified_node(doc, 'street-address')
@vcard.city = classified_node(doc, 'Tocality')
@vcard.postal_code = classified_node(doc, 'postal-code')
@vcard.country = classified_node(doc, 'country-name')

15 @vcard.phone = classified_node(doc, 'tel')
@vcard.email = classified_node(doc, 'email')

end

http://media.pragprog.com/titles/msenr/code/xml/microformats/vcard_demo/app/models/vcard.rb
http://media.pragprog.com/titles/msenr/code/xml/microformats/vcard_demo/app/controllers/vcard_controller.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=168

Download at Boykma.Com

25. WORK WITH HTML AND MICROFORMATS < 169

private
20

def classified_node(doc, class_name)
doc.at("//[@class="#{class_name}']").inner_html

end
end
We find the URL to read the vCard data from in params[:external_url]. To
parse our customer’s vCard, we read the document from the remote
location in line 7 and pass it to Hpricot (see Recipe 29, Find Solutions
Quickly with open-uri, on page 186 for more information about open-
uri). In line 9, we search for an <a> element that has the class url using
the af() method. It expects an XPath expression identifying the node we
are interested in, and we access the node’s href= attribute with the ()()
operator.

In the following example, we use the classified_node() method to extract
the missing information from the input document. clossified_node()
builds an XPath expression dynamically to find an element that has
a certain class name. It returns its content calling inner_htmi(), which
creates an HTML fragment consisting of all children’s contents. There’s
a method named inner_text(), too, which returns only text nodes, but in
our case inner_html() is an adequate choice, because it preserves HTML
entities (we use ß in the street name, for example).

After we've copied the content to our Vcard object, we can render it as
follows (see the result in Figure 5.5, on the next page):

Download xml/microformats/vcard_demo/app/views/vcard/import.html.erb

<% if @vcard.nil? %>
<p>We could not import you Vcard.</p>
<% else %>
<p>Your Vcard has been imported successfully:</p>
<p>
<%= Tink_to @vcard.name, @vcard.url %>

<%= @vcard.street %>

<%= @vcard.postal_code %> <%= @vcard.city %>

<%= @vcard.country %>

</p>
<p>
Email: <%= @vcard.email %>

Phone: <%= @vcard.phone %>
</p>
<% end %>

Now, you might think it'd be a great idea to build a library that extracts
microformats automatically from HTML documents.

http://media.pragprog.com/titles/msenr/code/xml/microformats/vcard_demo/app/views/vcard/import.html.erb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=169

Download at Boykma.Com

25. WORK WITH HTML AND MICROFORMATS < 170

006 http://localhost:3000/vcard /import?external_url=http://localhost:3000/hcard /maik.html |
j <« > (4 1 @ http://localhost:3000/vcard/import?external _url=http://localhost:3000/hcard /maik.html Q- |

Your Vcard has been imported successfully:

Maik Schmidt
Musterstraie 42
12345 Musterstadt
Germany

Email: foo@example.com
Phone: +49123456789

Figure 5.5: The imported vCard

But it'd be better to spend your time building a better mousetrap,
because the mofo library already hides the nitty-gritty details and sup-
ports all microformats currently available. Here’s an alternative version
of our import() action:

Download xml/microformats/vcard_demo/app/controllers/vcard_controller.ro

require 'mofo'

class VcardController
def import_mofo
@vcard = hCard.find :first => params[:external_url]
end
end

That’s nice, isn’t it? With a single line of code we've extracted the whole
vCard, and its attributes are encapsulated in an HCard object already.
Attributes of these objects can be mapped directly to the microformat
class names, and they can be used in a view like this:

Download xml/microformats/vcard_demo/app/views/vcard/import_mofo.html.erb

<% if @vcard.nil? %>
<p>We could not import you Vcard.</p>
<% else %>
<p>Your Vcard has been imported successfully:</p>
<p>
<%= link_to @vcard.fn, @vcard.url %>

<%= @vcard.adr.street_address %>

<%= @vcard.adr.postal_code %> <%= @vcard.adr.locality %>

<%= @vcard.adr.country_name %>

</p>
<p>
Email: <%= @vcard.email %>

Phone: +<%= @vcard.tel %>
</p>
<% end %>

http://media.pragprog.com/titles/msenr/code/xml/microformats/vcard_demo/app/controllers/vcard_controller.rb
http://media.pragprog.com/titles/msenr/code/xml/microformats/vcard_demo/app/views/vcard/import_mofo.html.erb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=170

Download at Boykma.Com

25. WORK WITH HTML AND MICROFORMATS <« 171

All CSS classes have been cleanly mapped to attribute names, and mofo
does it not only for hCard objects but also for all the other microformats
that have been specified already.

Parsing HTML documents is needed more often than you might think.
A lot of companies still offer services not in the form of sophisticated
SOAP or REST interfaces but instead force you to read information
directly from their websites. Because this technology is so popular, it
even has a name: it’'s called screen scraping'® (see Recipe 31, Scrape
Screens with WWW::Mechanize, on page 196 to learn more about it). The
structure of the embedded data is often completely proprietary (some-
times the information is embedded as CSV in HTML comments), but if
you are lucky, the provider uses a microformat or at least XHTML. In
these cases, Hpricot or mofo is everything you need to build a solution
quickly.

13. http://en.wikipedia.org/wiki/Screen_scraping

http://en.wikipedia.org/wiki/Screen_scraping
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=171

Build Plain-Vanilla XML
Documents

Problem
,_J L \

Nearly every enterprise application has to generate XML documents
sooner or later, so in this recipe you’ll learn how to do this in the most
elegant way with Ruby.

| Ingredients | N

e Builder!* comes with Rails automatically, but if you want to create
XML documents outside a Rails application, you have to install it
as a separate gem:

$ gem install builder

Solution
,_J L \

Rails comes with an excellent XML generator named Builder:XmIMarkup,
and usually that is all you need. For example, here’s how you turn a
typical customer object (with a name, an address, and so on) into an
XML document (the @customer variable could have been initialized in a
Rails controller, for example):

DownTload xml/build_xml/demo/app/views/customer/show.xml.builder

Line 1 xml.instruct! :xml, :version => '1.0', :encoding => 'utf-8'
xml.customer('customer-no' => @customer.customer_no) do
xm1.name(
:forename => @customer.forename,
5 :surname => @customer.surname
)

xml.street(@customer.street)

xml.city(@customer.city)

xml.tag! ('postal-code', @customer.postal_code)
10 end

Builder is really a great tool, and although its usage is highly intuitive,
we’ll walk through our example.

14. http://builder.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/xml/build_xml/demo/app/views/customer/show.xml.builder
http://builder.rubyforge.org/

Download at Boykma.Com

26. BUILD PLAIN-VANILLA XML DOCUMENTS <« 173

Being good citizens we generate an XML prolog in line 1. The following
line, then, uses nearly all of Builder's features. Whenever you invoke a
method on a Builder instance, an element with the same name as the
method is created. In our case, a <customer> element gets emitted. We
pass the method a Hash object, and its key/value pairs automatically
become attributes of the <customer> element. Then it gets a bit more
interesting, because we also pass the customer() message a code block.
Within the code block, we get a reference to the customer element, so we
can add child elements to it.

The only method left to be explained is tag!() in line 9. Many characters
that are allowed in XML elements and attribute names are not allowed
in Ruby method names. For example, a Ruby method cannot be named
postal-code(). In such cases you have to use tag!().

To see what is returned by our application, we use the curl'® command:

mschmidt> curl -i http://localhost:3000/customer/show/1
HTTP/1.1 200 OK

Content-Type: application/xml; charset=utf-8
Content-Length: 231

<?xml version="1.0" encoding="utf-8"7>
<customer customer-no="94429999">
<name surname="Schmidt" forename="Maik"/>
<street>Musterstraße 42</street>
<city>Musterstadt</city>
<postal-code>12345</postal-code>
</customer>

For the sake of brevity we have removed all the HTTP headers that we
are currently not interested in. Everything is OK: the document is well-
formed, and the character set encoding is correct. Usually, that’s all
you need to produce XML documents.

15. http://curl.haxx.se/

http://curl.haxx.se/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=173

Recipe 27

Build Arbitrary XML
Documents

Problem
,_J L \

Far too many people do not use an XML parser for processing XML doc-
uments. Some of them still parse XML documents using Java’s indexOf()
method and think that all character set encodings other than Windows-
125116 are from Hell. That’s not too clever, but if you have to interact
with a system that expects all incoming documents to have the same
encoding or some weird formatting, you have to create your documents
accordingly.

You might be tempted to ignore such issues on your new project, but
you might have to integrate with a nonliberal application. (Unfortu-
nately, it’s not one of those monsters that disappears if you stop believ-
ing in it.) Not too long ago, for example, it made a big difference if you
sent
 or
 to a popular web browser (did you notice the blank
before the second slash?).

You can rarely control all details with typical XML generators, so in this
recipe you'll learn how to create even the strangest XML documents.

Solution
,_J L \

XML is a rather liberal standard regarding formatting issues. For exam-
ple, there are several ways to encode empty elements:

<empty-element/>
<empty-element></empty-element>

Usually, the order of attributes doesn’t matter, and it doesn’t matter
whether you use single or double quotes. The following elements are all
equal:

<name forename="Maik" surname="Schmidt"/>

<name surname="Schmidt" forename="Maik'"/>
<name surname='Schmidt' forename='Maik'/>

16. http://en.wikipedia.org/wiki/Windows- 1251

http://en.wikipedia.org/wiki/Windows-1251

Download at Boykma.Com

27. BUILD ARBITRARY XML DOCUMENTS <« 175

If you actually have to control such details, it’s best if you take things
into your own hands and create the documents from a regular template
instead of using a generator. So, let’s assume we have a reference to
a typical customer object in an instance variable named @customer (a
customer has the usual attributes: forename, surname, and so on). The
following template file turns it into an XML document:

Download xml/build_xml/demo/app/views/customer/show_flexible.xml.erb

<?xm1 version="'1.0"' encoding='"1iso0-8859-15"'?>
<customer customer-no='<%= @customer.customer_no %>'>
<name surname='<%= @customer.surname %>'
forename="'<%= @customer.forename %>'/>
<street><%= @customer.street %></street>
<City><%= @customer.city %></city>
<postal-code><%= @customer.postal_code %></postal-code>
</customer>

It should be fairly obvious that we can do whatever we want now regard-
ing formatting issues. We can arrange elements and attributes in any
way we like, we can use either double quotes or single quotes, and so
on. But we also have to be careful about many things ourselves. For
example, the previous view code silently assumes that the attributes
of our customer object do not contain special characters such as &.
Otherwise, we would have to encode them accordingly.

What if you have to create XML documents in another character set
encoding such as ISO-8859-15? Then you have to convert the result-
ing document accordingly, and because we may need the conversion
method more than once, we add a convenience method to the Applica-
tionController:

DownTload xml/build_xml/demo/app/controllers/application.rb

require 'iconv'

class ApplicationController < ActionController::Base
def convert(to_char_set = 'iso-8859-15")

converter = Iconv.new(to_char_set, 'utf-8')
response.body = converter.iconv(response.body)

content_type = "application/xml; charset=#{to_char_set}"
response.headers['content-type'] = content_type
end

end

convert() converts the response body from UTF-8 to ISO-8859-15 and
sets the HTTP header content-type correctly. Now we install convert()
with Rails’ ofter_filter() mechanism.

http://media.pragprog.com/titles/msenr/code/xml/build_xml/demo/app/views/customer/show_flexible.xml.erb
http://media.pragprog.com/titles/msenr/code/xml/build_xml/demo/app/controllers/application.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=175

Download at Boykma.Com

27. BUILD ARBITRARY XML DOCUMENTS < 176

DownTload xml/build_xml/demo/app/controllers/customer_controller.rb

class CustomerController < ApplicationController
after_filter :convert, :only => [:show_flexible]

def show_flexible
@customer = Customer.find(params[:id])
respond_to do |format]|
format.xml
end
end
end

After the show_flexible() method has finished its job, convert() gets called,
turns our result document into the right encoding, and sets all neces-
sary HTTP headers correctly. Here’s a sample run (executed in a termi-
nal using the ISO-8859-15 encoding):

mschmidt> curl -i http://localhost:3000/customer/show_flexible/1
HTTP/1.1 200 OK

Content-Type: application/xml; charset=iso0-8859-15
Content-Length: 240

<?xml version="'1.0"' encoding="is0-8859-15"'?>
<customer customer-no='94429999'>
<name surname='Schmidt'
forename="Maik'/>
<street>Musterstrale 42</street>
<city>Musterstadt</city>
<postal-code>12345</postal-code>
</customer>

There’s one important thing left to remember: we assume that our
application uses UTF-8 internally, and if your element or attribute
names contain special characters themselves, you have to save the tem-
plate file in the right character set encoding.

lconv

In version 1.8, Ruby’s native support for different character set encod-
ings is currently far from being complete, but with the GNU libiconv!”
project we have a strong ally in an international environment. This
library supports nearly every important character set on the planet
and converts data encoded in a particular character set into another
(if you'd like to see which languages are supported on your system, run
iconv -l on your command line).

17. http://www.gnu.org/software/libiconv/

http://media.pragprog.com/titles/msenr/code/xml/build_xml/demo/app/controllers/customer_controller.rb
http://www.gnu.org/software/libiconv/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=176

Dol sHOe 27. BUILD ARBITRARY XML DOCUMENTS < 177

Its Ruby binding is named Iconv and can be used like this:

require 'iconv'
converter = Iconv.new('utf-8', 'iso-8859-1') # to, from
puts converter.iconv('Uber-Programmer")

This program converts the text “Uber-Programmer” from the charac-
ter set ISO-8859-1 to the Unicode character set UTF-8. You have to
make sure that your input string actually has the right encoding, so if
you read data from a database or from a file, make sure you know its

encoding.

The situation has changed dramatically. Since version 1.9, Ruby sup- @
ports different character set encodings for source files, objects, and 10

streams. See Programming Ruby [] to learn all about it.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=177

Part III

Networking & Messaging
Recipes

Chapter 6

Perform Basic

As the Internet gets bigger and bigger, nearly every application needs to
access network resources somehow. Sometimes it’s as simple as check-
ing for updates of an application at startup, but often programs have
to interact with complex web services or even allow their users to work
concurrently on shared data.

In enterprise environments, network programming is a common task,
too. For example, the different components of a distributed application
usually communicate via networks. Although network programming in
an enterprise environment does not differ much from network program-
ming in the outside world, you still have to take care of some important
requirements. Every request should have a timeout to prevent applica-
tions from hanging, and you often have to use proxy servers instead of
accessing foreign hosts directly, for example.

Sockets are still the basis for most networked applications, and there-
fore you’ll learn how to use them in Recipe 28, Harness the Power of
Sockets, on the next page. Then we will deal with higher-level applica-
tion protocols such as HTTP, HTTPS, and FTP. We start in Recipe 29,
Find Solutions Quickly with open-uri, on page 186, where you'll learn
how to request network resources with a single line of code. In Recipe
30, Get the Most Out of HTTP, on page 190, you'll see how to control
even the tiniest details of HTTP conversations, and you’ll even learn how
to implement new HTTP commands. Eventually, in Recipe 31, Scrape
Screens with WWW::Mechanize, on page 196, we have some fun and
learn how to control websites programmatically without using a web
browser.

Recipe 28

Harness the Power of Sockets

Problem
,_J L \

Sockets are the basis of nearly all networked applications, but usually
you do not have to use them directly, because application protocols
such as HTTP hide all the details from you. Still, from time to time you
have to use them on both the server side and the client side.

In enterprise environments you often find many legacy socket servers,
so in this recipe you’ll learn how to replace one of them with a shiny
new Ruby server. You'll learn how to write a client, too.

Solution
,_J L \

The server we are going to replace implements a minimal service repos-
itory. No one knows who wrote the server, and the source code has
disappeared, too. Some changes are needed, so it has to be replaced by
a new server with the same interface.

For every service that is running in your company’s service-oriented
architecture, the server contains a basic set of information. For exam-
ple, it tells you where a particular service is running, which version
has been deployed, and how many instances of the service have been
started. All service information is stored in a single database table:

mysql> select * from service_infos;

o o - pomm - - pomm - +
| name | version | host | port | instances |
oo - L BT Fomm - +--—-—- e i +
| billing | 2.13 | prodhost | 4711 | 2 |
| order | 8.01 | staginghost | 11223 | 5|
oo - L BT Fomm - +--—-—- e i +

2 rows in set (0.00 sec)

As you can see, version 2.13 of a service named biling runs on host
prodhost. It listens on port 4711 and 4712, because two instances of
the service have been started.

Currently, the server understands only an info command, which expects
a service name and returns all service information as a list of key/value
pairs. The first line starts with OK if everything is OK, and it starts with
ERROR if something went wrong.

Download at Boykma.Com

28. HARNESS THE POWER OF SOCKETS

A typical conversation using the telnet command looks like this:
mschmidt> telnet Tocalhost 12345

= Trying ::1...
telnet: connect to address ::1: Connection refused
Trying 127.0.0.1...
Connected to localhost.
Escape character is 'A]'.
info billing
= 0K
name: billing
instances: 2
port: 4711
version: 2.13
host: prodhost
Connection closed by foreign host.

f

The old server works as specified, so let’s write a new one that behaves
the same way:

Download basic_networking/socket/basic_server.rb

Line 1 require 'gserver'
require 'activerecord'

class ServiceInfo < ActiveRecord::Base; end

class ServiceInfoServer < GServer
def initialize(port = 12345, Togger = $stdout)
super(port, GServer::DEFAULT_HOST, Float::MAX, Togger, true)
end

def serve(client)
begin
command = client.gets.chomp
log "Got command: #{command}"
15 if command =~ /info\s+(.+)/
service_name = $1
if si = Servicelnfo.find_by_name(service_name)
client.puts 'OK'
si.attributes.each { |k,v| client.puts "#{k}: #{v}" }

20 else
client.puts "ERROR: service #{service_name} is unknown."
end
else
client.puts 'ERROR: command #{command} is unknown.'
25 end

rescue => ex
log "An error occurred: #{ex.message}"
client.puts 'ERROR'
- end
30 end
end

http://media.pragprog.com/titles/msenr/code/basic_networking/socket/basic_server.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=181

Download at Boykma.Com 28. HARNESS THE POWER OF SOCKETS <« 182

Ruby comes with gserver, which is an excellent library for creating mul-
tithreaded socket servers. To build a new server, you have to derive from
GServer and implement a method named serve() that gets called for every
new client connection in a separate thread.

That's exactly what we do, but first we initialize the server in line 8.
GServer's initialize() method expects a lot of parameters:

* port and host (defaults to 127.0.0.1) determine on which host the
server is running and on which port it is listening.

¢ maxConnections sets the maximum amount of connections that will
be handled in parallel (defaults to 4).

* stdlog (defaults to S$stderr) can be used to set a logger and audit
controls if logging should be enabled or not (the default).

* debug (the default is false) sets the server into a debugging mode
in which it logs more detailed error messages.

In line 13, we read the data the client has sent and check whether it
contains a valid command. If yes, we try to read service information
from the database and send it back in line 18 together with an OK
status. In case of an error, we send an error status to the client, and if
we detect an unexpected exception, we write a log message in line 27.
The only thing left to do is start the server:

Download basic_networking/socket/basic_server.rb

ActiveRecord: :Base.establish_connection(
:adapter => 'mysql', :database => 'services',
:username => 'admin', :password => 'tOp$ecret'

)

server = ServiceInfoServer.new(12345)

server.start

server.join

After initializing the database connection, we create an instance of class
ServicelnfoServer and invoke its start() method. The server is started in a
separate thread, and to prevent it from terminating immediately, we
call join(), which waits for all running threads to complete. Currently,
we don’t care about pooling the database connection, but all the other
concurrency issues are handled by GServer.

If we send the server the info biling command from earlier, it will return
the same information as the old server, and it will print the following
on the console:

12345 start

[Sun Jul 20 16:09:23 2008] ServiceInfoServer 127.0.0.1:
0.0.1:12345 client:6527

[Sun Jul 20 16:09:31 2008] ServiceInfoServer 127.
localhost<127.0.0.1> connect

http://media.pragprog.com/titles/msenr/code/basic_networking/socket/basic_server.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=182

Dol sHOe 28. HARNESS THE POWER OF SOCKETS < 183

[Sun Jul 20 16:09:35 2008] Got command: info billing
[Sun Jul 20 16:09:35 2008] ServiceInfoServer 127.0.0.1:12345 client:6527
disconnect

We are done! A less responsible developer would spend the rest of the
day at the beach, but we will add some final touches. Servers should
always write a log file, and GServer has some basic logging support. To
be honest, it is very basic, so we will replace it with something more
sophisticated, namely, Ruby’s Logger class:

Download basic_networking/socket/service_info_server.rb

require 'logger'

class ServiceInfoServer
def log(message, level = Logger::INFO)
@stdlog.add(level) { message } if @stdlog
end

def debug(message) log(message, Logger::DEBUG); end

def info(message) log(message); end

def warn(message) log(message, Logger::WARN); end

def fatal(message) log(message, Logger::FATAL); end
end

We override log() and use GServer's @stdlog attribute, which refers to the
logger object that has been passed to initialize().

Now we can use methods such as debug(), info(), or warn() to write
messages that have a certain level to a log file. But we have to create a
Logger object before we start the server:

Download basic_networking/socket/service_info_server.rb

logger = Logger.new('server.log')

Togger.formatter = proc { |severity, datetime, progname, msg|
"#{datetime.strftime('%Y-%m-%d %H:%M:%S')} #{severity} - #{msg}\n"

}

server = ServiceInfoServer.new(12345, logger)

When you use ActiveRecord, the behavior of Logger slightly changes, so
we set its log line format explicitly.

Let’s use our new log methods to write a message to the log file when-
ever we get a new request. Instead of adding this to the server() method,
we’ll use event handlers, another nice GServer feature.

http://media.pragprog.com/titles/msenr/code/basic_networking/socket/service_info_server.rb
http://media.pragprog.com/titles/msenr/code/basic_networking/socket/service_info_server.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=183

Download at Boykma.Com 28. HARNESS THE POWER OF SOCKETs < 184

Download basic_networking/socket/service_info_server.rb

class ServiceInfoServer
def connecting(client)

hostname = client.peeraddr[2] || client.peeraddr[3]
info "Got a request from #{hostname}."
end

def stopping
info 'Shutting down server.'
@stdlog.close if @stdlog
end
end

You can add up to four event handlers that get called when a client
connects (connecting()), when it disconnects (disconnecting()), when the
server is started (starting()), and when it is stopped (stopping()). We have
implemented connecting() to write a short message to the log file for
every incoming request, and in stopping() we clean up a bit.

The server is complete now, but testing it manually using telnet is a bit
tedious. A Ruby client will help:

Download basic_networking/socket/client.rb

lnel require 'socket'

class ServiceInfoClient

def initialize(port, host = 'localhost')
5 @port, @host = port, host
end

def get_service_info(name)
socket = TCPSocket.open(@host, @port)
10 socket.write("info #{name}\n")
service_info = socket.read
socket.close
Tlines = service_info.split(/\n/)
status = lines.shift
15 raise status unless status == 'OK'
Tines.inject({}) do |result, line]|
key, value = Tine.chomp.spTlit(':")
result[key] = value.strip
- result
20 end
end
end

Using a socket server is even simpler than building it.

http://media.pragprog.com/titles/msenr/code/basic_networking/socket/service_info_server.rb
http://media.pragprog.com/titles/msenr/code/basic_networking/socket/client.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=184

Dol sHOe 28. HARNESS THE POWER OF SOCKETS < 185

If you run the client like this:
Download basic_networking/socket/client.rb

require 'pp’'
client = ServiceInfoClient.new(12345)
pp client.get_service_info('order')

it will output the following to the console:

{"name"=>"order",
"jnstances"=>"5",
"port"=>"11223",
"version"=>"8.01",
"host"=>"staginghost"}

In the server log file, you will find something like this:

2008-07-20 19:43:36 INFO - ServicelInfoServer 127.0.0.1:12345 start

2008-07-20 19:43:41 INFO - Got a request from localhost.

2008-07-20 19:43:41 INFO - Got command: info order

2008-07-20 19:43:41 INFO - ServicelInfoServer 127.0.0.1:12345 client:6542
disconnect

2008-07-20 19:44:00 INFO - Shutting down server.

The whole socket handling happens in lines 9 to 12. We open a TCP
socket, write data to it, read the response, and close the socket. That’s
all there is to it; the rest of the code deals with parsing the response
and checking the status of the operation.

GServer's API consists of only a few methods, but it’s sufficient to create
socket servers that can handle small to medium traffic in record time.
It’s also possible to add industrial-strength logging to it and to handle
important events such as new connections separately. On the client
side, we can benefit from Ruby’s excellent socket support, which is
covered in full detail in Programming Ruby [l.

http://media.pragprog.com/titles/msenr/code/basic_networking/socket/client.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=185

Find Solutions Quickly with
open-uri

Problem
,_J L \

You often find yourself writing tedious networking code when you just
want to fetch some data via HTTP or FTP. You think it doesn’t have to
be so complicated. In this recipe, you'll learn that you're right and that
open-uri is what you need.

Solution
,_J L \

To quickly access data on a network, Ruby’s open-uri is an excellent
choice. Basically, open-uri adds new functionality to Ruby’s original
open() method in the Kernel module. If the first argument passed to
open() starts with a protocol specifier such as http://, https://, or fip://,
then it reads data from a network resource. Otherwise, it falls back to

the original version of open().

Here’s how you read some information about new Ruby books from
your favorite publisher’s website:

Download basic_networking/open-uri/read_pragprog.rb

require 'open-uri'

ruby_count = 0
options = { 'user-agent' => "Ruby/#{RUBY_VERSION}" }
open('http://www.pragprog.com', options) do |f]|
f.each_Tine { |1ine| ruby_count += 1 if 1ine =~ /Ruby/ }
puts f.base_uri
puts f.content_type
puts f.charset
if f.content_encoding.size > 0
puts content_encoding.join(', ")

else
puts 'Missing content encoding.'
end
puts f.last_modified || 'Missing Tlast-modified header.'
puts f.status.join(': ')
end

puts "#{ruby count} Tlines contain the word 'Ruby'."

http://media.pragprog.com/titles/msenr/code/basic_networking/open-uri/read_pragprog.rb

Download at Boykma.Com

29. FIND SOLUTIONS QUICKLY WITH OPEN-URI

That's the output you get when you run this program (yours may vary
depending on Ruby’s current popularity):

mschmidt> ruby read_pragprog.rb

http://www.pragprog.com

text/html

utf-8

Missing content encoding.

Missing last-modified header.

200: OK

5 Tlines contain the word 'Ruby’.

In our program, we invoke open(), passing it a URL and the HTTP
header user-agent, which gets sent with the request. You can provide
as many headers as you need, and it’s possible to set some additional
options we’ll talk about later. open() accepts a code block, which itself is
passed a File object (a Tempfile object to be concise). You can use all reg-
ular methods to read from it, and the object has been enriched by a few
methods related to the network protocol used such as content_type() or
status().

It's also possible to get all the information directly, that is, without
passing a code block:

Download basic_networking/open-uri/read_pragprog2.ro

require 'open-uri'

result = open("http://www.pragprog.com")

if result.status[0] == '200'
Tines = result.read.split(/\n/)
ruby_count = lines.select { |Tine| line =~ /Ruby/ }.size

puts "The web site was encoded using #{result.charset}."
puts "#{ruby count} Tlines contain the word 'Ruby'."

else
puts "We've got an unexpected result: #{result.status.join('/')}"

end

And it works for FTP, too:

Download basic_networking/open-uri/ftp_test.rb

require 'open-uri'
require 'digest/md5'

filename "ruby-1.8.6-plll.tar.gz'
response = open("ftp://ftp.ruby-lang.org/pub/ruby/1.8/#{filename}")
content = response.read
digest = Digest::MD5.hexdigest(content)
if digest != 'c36e011733a3a3be6f43bal27b7cd7485"
puts "Wrong digest: #{digest}!"

http://media.pragprog.com/titles/msenr/code/basic_networking/open-uri/read_pragprog2.rb
http://media.pragprog.com/titles/msenr/code/basic_networking/open-uri/ftp_test.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=187

Download at Boykma.Com

29. FIND SOLUTIONS QUICKLY WITH OPEN-URI < 188

else

puts 'Everything is fine!'

File.open(filename, 'wb') { |f| f.write(content) }
end
This program downloads a certain version of the Ruby interpreter and
checks its validity by calculating its MD5 digest and comparing it to the
one that is noted on the website. The call to open() does not differ from
the HTTP version; we only pass a URL starting with ffp://.

In enterprise applications, you often have to access network resources
using proxies. By default open-uri considers the content of the envi-
ronment variables http_proxy, https_proxy, and ffp_proxy. That is, you can
use them to specify a proxy for a particular protocol. The following shell
command sets your HTTP proxy host to myproxyhost and the proxy port
to 8080 (run it before starting your program):

mschmidt> export http_proxy=http://myproxyhost:8080

If you want to disable proxies explicitly, set the :proxy option to nil:

response = open('http://www.pragprog.com/"', :proxy => nil)

When you are trying the examples with Ruby 1.8, you might run into
some problems depending on your firewall settings and depending on
the URLs you are trying to fetch. open-uri is under active develop-
ment, and Ruby 1.9 brings some new and useful options that fix all
these problems. For example, HTTP redirections can be followed auto-
matically now with the :redirect option, and it’s possible to specify a
timeout with the :read_fimeout option. Timeouts are extremely impor-
tant in an enterprise environment, because a hanging network call can
have severe consequences and bring many dependent applications to
an unexpected halt. In Ruby 1.9, you can set a timeout of two seconds
like this:

response = open('http://www.pragprog.com/', :read_timeout => 2)

Thanks to the timeout module, you can achieve the same result in Ruby
1.8:

Download basic_networking/open-uri/timeout_test.rb

require 'open-uri'
require 'timeout'

begin
timeout(2) do
response = open('http://www.pragprog.com')
puts response.status.join('/")
end

http://media.pragprog.com/titles/msenr/code/basic_networking/open-uri/timeout_test.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=188

Download at Boykma.Com

29. FIND SOLUTIONS QUICKLY WITH OPEN-URI < 189

rescue Timeout::Error

puts 'The open call timed out.'
rescue => ex

puts "An unexpected exception occurred: #{ex}."
end

This works for all potentially blocking calls, so in principle timeout is a
nice tool. But it has a severe bug,! so be careful, or use the terminator
gem? instead.

Support for HTTPS has gotten much better, too. In Ruby 1.8, open-
uri insists on verifying a peer certificate, which is often not what you
want if you are writing a one-off script only. At the moment, you actu-
ally have to patch open-uri to circumvent this. If you are using a more
recent version of Ruby already, you can set the :ssl_verify_mode option to
OpenSSL::SSL::VERIFY_NONE.

Finally, you can set your FTP connections to passive mode by setting
ftpo_active_mode to false.® But because it’s the new default anyway, you
probably won’t do that very often.

All in all, open-uri is a highly productive tool (especially in recent ver-
sions of Ruby), but you have to keep its shortcomings in mind. For
example, it supports only GET requests and does not give access to
HTTP headers. In Recipe 30, Get the Most Out of HTTP, on the next
page and Recipe 33, Use REST Services, on page 211, you can learn
how to overcome these limitations.

1. http://headius.blogspot.com/2008/02/rubys-threadraise-threadkill-tfimeoutrb.html
2. http://codeforpeople.com/lib/ruby/terminator/
3. Read http://slacksite.com/other/ffp.html if you do not know what active and passive modes

are.

http://headius.blogspot.com/2008/02/rubys-threadraise-threadkill-timeoutrb.html
http://codeforpeople.com/lib/ruby/terminator/
http://slacksite.com/other/ftp.html
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=189

Recipe 30

‘ Get the Most Out of HTTP

| Problem \

/' Solution \

Line 1

You often have to implement clients for services based on HTTP, and
you need a library that allows you to control every single aspect of
requests, responses, and connections. In this recipe, you’ll learn about
Net::HTTP, Ruby’s standard HTTP client library.

Net:HTTP is the basis of most specialized Ruby network libraries, due
to the fact that it belongs to the Ruby standard and has a convenient
API. For example, you can use it for quickly sending GET requests and
printing their results. The following program prints the HTTP standard
to your console (if you have downloaded it, read it; it really contains a
bunch of useful information):

Download basic_networking/net-http/get_sample.rb

require 'net/http’'
Net::HTTP.get_print 'www.ietf.org', '/rfc/rfc2616.txt’

Posting form data is easy, too, and in the following program we’ll post a
request to the publisher’s website, search for the term Enterprise, and
print all links on the result page:

Download basic_networking/net-hitp/enterprise_search.rb

require 'net/http’
require 'hpricot'

response = Net::HTTP.post_form(
URI.parse('http://www.pragprog.com/search'),
{ 'q' => 'Enterprise' }

)

case response
when Net::HTTPSuccess
puts 'Your search succeeded.'
doc = Hpricot(response.body)
(doc/'//a') .each { |a| puts a.attributes['href'] }
when Net::HTTPRedirection
puts "The search form has moved to #{response['location']J}."
else
response.error!
end

http://media.pragprog.com/titles/msenr/code/basic_networking/net-http/get_sample.rb
http://media.pragprog.com/titles/msenr/code/basic_networking/net-http/enterprise_search.rb

Download at Boykma.Com

30. GET THE MosT OuUT oF HTTP <« 191

To post a form on the fly, post_form() is an excellent choice. It expects
an URI object pointing to the location we’d like to post form data to and
a Hash object containing all form parameters we’d like to post (the only
parameter we send is named qg). All encoding and header issues are
handled behind the scenes, and we get back a Net::HTTPResponse object.

To be concise, we get back an object whose class has been derived from
Net::HTTPResponse, because that's how Net:HTTP indicates the response
status. We check the status beginning in line 9, and if everything went
fine—that is, if response is an instance of Net::HTTPSuccess—we parse the
response’s body and print all the links it contains. If you do not under-
stand how we extract all anchor tags using Hpricot, take a look at Recipe
25, Work with HTML and Microformats, on page 165.

If our request has been redirected, we print its new location (HTTP
header elements can be accessed with the response object’s ()() oper-
ator), and if we have an error, we print an error message and raise an
exception using error!().

That’s all nice, but if you need to just quickly download a document or
post some form data, you could also use open-uri (see Recipe 29, Find
Solutions Quickly with open-uri, on page 186) or WWW::Mechanize (see
Recipe 31, Scrape Screens with WWW::Mechanize, on page 196). They
are even slightly more convenient, so we will concentrate on the more
advanced features of Net::HTTP.

Net::HTTP is a good choice if you need full-blown support for HTTPS, such
as if you have to control aspects such as timeouts and proxies or if you
need some of the more esoteric features of HTTP such as the OPTIONS
or TRACE verbs. In Net::HTTP, every HTTP verb is represented by its own
class; you can create an object representing a certain HTTP command
and initialize it step-by-step. The first example in this recipe could be
rewritten as follows:

Download basic_networking/net-http/get_sample2.rb

Line 1 require 'net/http’

url = URI.parse('http://www.ietf.org/rfc/rfc2616.txt"')
request = Net::HTTP::Get.new(url.path)
5 response = Net::HTTP.start(url.host, url.port) do |http]|
http.request(request)
end
puts response.body

http://media.pragprog.com/titles/msenr/code/basic_networking/net-http/get_sample2.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=191

Dol sHOe 30. GET THE MosST OUT oF HTTP <« 192

You might ask yourself why you should use a more complicated solu-
tion, but believe me: we're building up to something. In line 4, we cre-
ate a Net:HTTP::Get object representing a GET request. We do not send
it immediately and could still set some request headers, for example.
Then we start an HTTP connection, and in line 6, we eventually send
the request to the server. At the end, we print the response’s body, and
we're done.

The representation of HTTP commands as classes is one of the most
interesting features of Net:HTTP, because it makes the library highly
extensible. Right now it already implements HTTP and WebDAV,* but
you can easily add new verbs. For example, you could write a library
for CalDAV.? Both WebDAV and CalDAV are HTTP extensions; in other
words, they add new verbs to the regular set of GET, POST, and so on.
For example, CalDAV adds MKCALENDAR that can be used to create new
calendars on a central web server.

We'll start small and will implement a new HTTP command only for
demonstration purposes. Our command is named UNDO, and it could
be used to undo changes that happened to a particular web resource.

First we implement an HTTP server that supports an UNDO command:

Download basic_networking/net-http/undo.rb

require 'webrick'
include WEBrick

class UndoServlet < HTTPServlet::AbstractServilet
def do_UNDO(request, response)
response.status = 200
response.body = "Changes to #{request.path} have been undone.\n"
end
end

server = HTTPServer.new(:Port => 4200)

server.mount('/"', UndoServlet)

%w(INT TERM).each do |signal]|
trap(signal) { server.shutdown }

end

server.start

Yes, that’s all. Instead of GET or POST, our web server supports only
UNDO. It does not actually do anything, but if you start it, you can send
it an UNDO command and get a response.

4. http://www.webdav.org/specs/rfc4918.html
5. http://www.webdav.org/specs/rfc4791.html

http://media.pragprog.com/titles/msenr/code/basic_networking/net-http/undo.rb
http://www.webdav.org/specs/rfc4918.html
http://www.webdav.org/specs/rfc4791.html
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=192

Download at Boykma.Com

30. GET THE MosT OuUT oF HTTP <« 193

mschmidt> telnet localhost 4200

= Trying ::1...

Connected to localhost.
Escape character is 'A]'.
UNDO /resource HTTP/1.0

ft

HTTP/1.1 200 OK
Connection: close
Content-Length: 39

Changes to /resource have been undone.
Connection closed by foreign host.

OK, the server is working fine, but we are interested in a client for our
completely proprietary HTTP extension. Here it is:

Download basic_networking/net-http/undo_client.rb

Line 1 require 'net/http’

module Net
- class HTTP
5 class Undo < HTTPRequest
METHOD = 'UNDO'
REQUEST_HAS_BODY = false
RESPONSE_HAS_BODY = true
end
10 end
end

url = URI.parse('http://localhost:4200/my-resource')
- request = Net::HTTP::Undo.new(url.path)
15 response = Net::HTTP.new(url.host, url.port).start do |http]
http.request(request)
end

case response
20 when Net::HTTPSuccess
puts response.body
else
response.error!
end

Lines 3 to 11 contain everything we need to define the UNDO com-
mand. We set its name, and we determine whether the request and/or
response carries data in the body. That’s all we have to do, and if you
think about it, everything makes sense. HTTP defines a tight framework
where the requests and responses of new commands can have a body
or not, but everything else is fixed.

http://media.pragprog.com/titles/msenr/code/basic_networking/net-http/undo_client.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=193

Download at Boykma.Com

Line 1

30. GET THE MosT OuT oF HTTP <« 194

Alternative HTTP Client Libraries

can choose from several alternative libraries:

maore.

be extended easily.

WWW::Mechanize, on page 196.

*. http://dev.ctor.org/http-access2/
http://rfuzz.rubyforge.org/
t. http://mechanize.rubyforge.org/

—+

\

Net:HTTP is probably the most popular HTTP client library,
because it belongs to Ruby’s standard distribution and has a
nice, clean interface. But it also lacks some important features,
and for some purposes it’'s not as convenient as it could be. You

o HitpClient* supports cookies, digest authentication, auto-
matic redirections, asynchronous requests, and much

e RFuzz' was developed mainly to test HTTP services. It gives
you a lot of control over even the tiniest details, and it’s
extremely fast. It has rudimentary cookie support and can

o WWW::Mechanizet helps automate typical website inter-
actions and makes it possible to script user interac-
tions. It is covered in Recipe 31, Scrape Screens with

J

In line 14, we create our new command for the first time, and the rest
of the program looks like our previous examples, which is exactly what
we wanted. We have just invented a new HTTP command, and its usage
does not differ from any of the standard commands.

UNDO is certainly a command you’d like to protect using basic authen-
tication, and maybe your server can be accessed only via HTTPS and
through a proxy? No problem, the following program has it all:

Download basic_networking/net-http/undo_client_safe.rb

require 'net/https’'
proxy = Net::HTTP::Proxy(

proxy_host, proxy_port, proxy_user, proxy_pass
)
connection = proxy.new('Tocalhost', 4200)
connection.use_ss1 = true
connection.verify_mode = OpenSSL::SSL::VERIFY_NONE
request = Net::HTTP::Undo.new('/my-resource')
request.basic_auth 'maik', 'tOp$secret’
response = connection.request(request)
puts response.body

http://dev.ctor.org/http-access2/
http://rfuzz.rubyforge.org/
http://mechanize.rubyforge.org/
http://media.pragprog.com/titles/msenr/code/basic_networking/net-http/undo_client_safe.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=194

Dol sHOe 30. GET THE MosT OuUT oF HTTP <« 195

Instead of creating a connection directly, we create a Proxy object first
and use it to create a connection in line 5 (if the proxy host is nil, you'll
get back a regular connection). Then we put the connection into SSL
mode and tell it to not verify certificates. We create a new Undo request
object (our example works for all other HTTP commands as well), and
in line 9, we set the username and password for HTTP basic authenti-
cation. Finally, we send the request and print the response’s body.

There are a lot of convenience libraries out there dealing with protocols
based on HTTP such as XML-RPC or SOAP. If you're working with these
protocols, you should use specialized libraries. But if you need access
to every single detail of HTTP, you should consider using Net:HTTP. It
allows you to start small and grow with your needs.

Also See
,_J L \

* See Recipe 5, Create Strong and Convenient Passwords, on page 38
if you need to know how to verify certificates.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=195

Recipe 31

Scrape Screens with
WWW::Mechanize

Problem
,_J L \

Today many websites are applications too, but their interfaces usually
consist of a bunch of HTML pages, which rarely can be processed easily
by other applications. The situation is getting better and better, with
more new web applications offering both an HTML interface and a REST
interface, but there are still countless interesting applications that you
cannot use out of the box.

And wouldn’t it also be nice if you could test your legacy web appli-
cations automatically just as you test your new and shiny Rails appli-
cations? Maybe there’s a website whose content you’d like to use in a
totally different context but it’s hidden in the gory details of some HTML
pages. Or maybe you want to add an RSS feed to a site that doesn’t have
one.

Screen scraping® is a technology that deals with exactly these problems,
and in this recipe you’ll learn how to control websites with Ruby.

J Ingredients | \

e Install WWW::Mechanize,” a screen-scraping library:

$ gem install mechanize

Solution
,_J L \

In the beginning it's easy to download web pages programmatically
using an arbitrary HTTP client and to “parse” HTML pages using spiffy
regular expressions. Sooner or later you'll realize this approach does
not scale well and is overly fragile. You'll quickly have to deal with cook-
ies, with session IDs, and with subtle changes in the HTML pages on a
daily basis. It will pay off quickly to use a grown-up solution from the

6. http://en.wikipedia.org/wiki/Screen_scraping
7. http://mechanize.rubyforge.org/

http://en.wikipedia.org/wiki/Screen_scraping
http://mechanize.rubyforge.org/

Dol sHOe 31. SCRAPE SCREENS WITH WWW::MECHANIZE < 197

The Pragmatic Bookshelf

The .
Pragmatic

ﬁrogrammers

.
A New PickAxe!)|
l’mgri\jr_munﬂ
Over the coming months, the Ruby community will be making Ruby .
the switch to Ruby 1.9. We've updated the Ruby bible to cover anadl
1l the new features “
Find Out More » .
—T TS
]
Search o

Figure 6.1: Pragmatic Bookshelf home page

beginning. Ruby programmers can use WWW::Mechanize, which is not
only powerful but also convenient. WWW::Mechanize is a library that
was built to automate the interaction with websites. Instead of clicking
a link on a website manually, you tell WWW::Mechanize to do it and get
back the resulting page. WWW::Mechanize takes care of all details such
as cookie handling, redirections, and so on.

As a first exercise, we will visit the publisher’s website,® log in to the
shop, and look how often the words Ruby and Rails are mentioned on
the welcome page. To do that with a regular web browser, you have
to point it to the website and click the “Login” button (see it in Fig-
ure 6.1). Then you are transferred to a page containing the login form
you can see in Figure 6.2, on the next page (secured by SSL, of course).
By inspecting the page’s source code, you can see how the different
elements of the form are named. The email field is named email, the
password field is named password, and the checkbox’s name is remem-
ber_me. Input your credentials (you are a registered customer already,
aren’t you?), then click the “Login” button, and you’ll be directed to the
welcome page.

8. http://www.pragprog.com/

http://www.pragprog.com/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=197

Download at Boykma.Com

Line 1

31. SCRAPE SCREENS WITH WWW ::MECHANIZE

Login Now

If you placed an order in our old system
email (pre October, 2007), see below...

E-mail Address

Password
paSSWplLdv —) Forgot your password?
/ ¥ Remember me on this computer
(Existing customers: If you placed orders with us using our
rememberime old system, you will not automatically have an account on this
UERUSUISEIS,

system—we thought that was a tad presumptuous. But, if you
sign up now using the e-mail address from those orders, they
will automatically be added to your new account.)

SUDMIY e O

Figure 6.2: Pragmatic Bookshelf login form

Now that we have explained what we want to do in epic prose, let’s take
a look at the Ruby solution:

Download basic_networking/screen-scraping/pp_login.rb

require 'Jogger'
require 'mechanize'

agent = WWW: :Mechanize.new { |a| a.log = Logger.new('scrape.log') }
agent.user_agent_alias = 'Mac Safari'

page = agent.get('http://www.pragprog.com')

page = agent.click page.links.text('Login')

login_form = page.forms.first

login_form.email = ARGV[0]

login_form.password = ARGV[1]

agent.log.debug "Logging in with email address #{ARGV[0]}."
login_form.checkboxes.name('remember_me') .check

page = agent.submit(login_form, login_form.buttons.first)

page.links.each { |link| puts link.text if link.text =~ /Ruby|Rails/ }
agent.click page.links.text('Log Out')

http://media.pragprog.com/titles/msenr/code/basic_networking/screen-scraping/pp_login.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=198

Download at Boykma.Com

31. SCRAPE SCREENS WITH WWW::MECHANIZE < 199

When you run it passing your credentials, you'll get output that will
look like this (yours may vary depending on the amount of Ruby and
Rails links on your welcome page):

mschmidt> ruby pp_login.rb you@example.com tOp$ecret

Advanced Rails Recipes: 72 New Ways to Build Stunning Rails Apps

Agile Web Development with Rails: Second Edition

Agile Web Development with Rails, 1lst Edition

Rails for PHP Developers
Payment Processing with PayPal and Ruby

That's amazing, isn’t it? All the steps we have described can be repre-
sented by simple Ruby instructions that we are going to dissect now.

First we create a WWW::Mechanize agent, providing it with a Logger
object. Our client will log all interesting details about the forthcom-
ing conversation between our client and the web server. Then we tell
the agent to pretend to be a Safari browser on Mac OS X by setting
user_agent_alias to Mac Safari. This is only an abbreviation for the real
user agent that will be sent; a mapping of popular browsers can be
found in WWW::Mechanize::AGENT_ALIASES.

In line 6, we tell our client to read the Pragmatic Programmer’s home
page by calling get(). This method call actually does a lot: it requests
the page specified by our URL, it automatically follows redirections (no
matter whether the new target location is accessed via HTTP or HTTPS),
it handles cookies, and it parses the HTML page we get back using
Hpricot (see Recipe 25, Work with HTML and Microformats, on page 165
to learn more about it).

Then we simulate a click on the link named “Login” to get to the login

page. All links that WWW::Mechanize could find are stored in an attri-

bute named links. You can treat it as an array, but you can look up

links by name as well by using fext(). Here we have some magic again,

because the definition of the link we are clicking looks as follows:

<img alt="Login" height="27"

src="http://www.pragprog.com/images/login-button.gif?12037268"
title="" width="72" />

The link referring to the login page does not have a name, because it is a
button represented by an image. But we still can refer to it by the name

“Login,” because WWW::Mechanize is clever enough to get the text from
the tag’s alt= attribute.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=199

Download at Boykma.Com

31. SCRAPE SCREENS WITH WWW::MECHANIZE < 200

Corresponding to the links attribute there is a forms attribute containing
all forms of an HTML page. From inspecting the page’s source code, we
know that the login form is the first one, so we obtain a reference to it
in line 9. WWW::Mechanize automatically turns all form members into
attributes, so text and password fields can be initialized by setting the
appropriate members of the form. Checkboxes are treated differently,
and we activate the remember_me checkbox using the check() method
in line 13 (you can uncheck it with uncheck(), and you can toggle its
status with click()).

In line 12, we demonstrate how to write custom messages to the log file,
which is possible but rarely needed, because WWW::Mechanize writes
a lot of useful information itself. For example, the log file contains all
request and response headers, all cookies and their values, all redirec-
tions, and so on.

Eventually, we submit the form using submit(), passing it the form and
the button we’d like to click, and we get back the shop’s welcome page.
We iterate over all links in the page, print their text, and as good citizens
log out.

WWW::Mechanize comes with many more useful options that are espe-
cially important in enterprise environments. For example, the following
program sets the timeout for opening a connection to two seconds and
the timeout for reading from a connection to five seconds. In addition,
it specifies a proxy server including the username and password.

Download basic_networking/screen-scraping/mechanize_options.rb

agent = WWW: :Mechanize.new

agent.open_timeout = 2

agent.read_timeout = 5

agent.set_proxy('myproxy', 8080, 'proxy_ user', 'proxy_password')

Another interesting feature is that the agent remembers all pages it
has visited in an internal history. For example, you can use visited?() to
check whether a certain URL has been visited already, and you can use
visited_page() to get a page you have seen before:

Download basic_networking/screen-scraping/crawler.ro

agent = WWW::Mechanize.new

index_page = 'http://www.pragprog.com'

page = agent.get(index_page)

puts agent.visited?(index_page) # -> true

puts agent.visited_page(index_page).title # -> The Pragmatic Bookshelf

http://media.pragprog.com/titles/msenr/code/basic_networking/screen-scraping/mechanize_options.rb
http://media.pragprog.com/titles/msenr/code/basic_networking/screen-scraping/crawler.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=200

Download at Boykma.Com

31. SCRAPE SCREENS WITH WWW::MECHANIZE < 201

It gets even better: WWW::Mechanize supports transactions; that is, you
can visit a page, then follow some links on it in a separate transaction,
and finally return to your starting point as if nothing happened. The
following script visits the publisher’'s home page, follows all links that
have the word titles in it (these are the links that point to a book’s page),
and prints their title:

Download basic_networking/screen-scraping/crawler.rb

tnel class LinkCrawler < WWW::Mechanize
def process
home_page = get 'http://www.pragprog.com'
home_page.Tinks.with.href(/titles/).each do |Tink]|
5 begin
transact do
book_page = click Tink
Now we are on a hew page.
print book_page.title
10 end
We are on the home page again.
rescue => ex

puts ex
end
15 puts " (#{visited?(link.href)})"
end
end

end

20 LinkCrawler.new.process

For the first time we've created a class for our web agent that is de-
rived from WWW::Mechanize. This allows us to use all methods directly,
which results in really beautiful code. Look at line 4, for example, where
we iterate over all links containing the word titles. Isn’t that lyrical?
Hpricot makes this possible.

When you run this script, it will probably visit some links more than
once, so it prints the title of some books more than once, too. That’s
because on the home page every book is typically linked more than
once (“Don’t Repeat Yourself, eh?”). You might ask whether we could
prevent this by using visited?(). You have to keep in mind that our visit
runs in a transaction, and because the agent’s history will be reset
after the transaction is over, the agent will not remember that we have
followed a particular link already. Hence, visited?() will always return
false.

There are many more powerful features in WWW::Mechanize we cannot
cover in this short recipe. You should have learned that screen scraping
is an useful technique and that it can be easily implemented in Ruby.

http://media.pragprog.com/titles/msenr/code/basic_networking/screen-scraping/crawler.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=201

Chapter 7

Use and Build Weh Seri

Web services are an exciting technology and have a lot of advantages
over more traditional application architectures. Suddenly you can build
great mashups and connect applications in ways no one would have
thought of a few years ago.

But why should you care about them when writing enterprise software?
Well, the term web services is a bit misleading. You are not limited to
the Web when you want to use and implement them. They use only
standard web technology, and their underlying protocols are exactly
what you need when implementing a service-oriented architecture (SOA)
in a modern enterprise infrastructure.

Simply put, you can choose between two different architectures today:
Representational State Transfer (REST) and SOAP. There are a lot of
flame wars raging on the Internet about which way is superior, but
in this book we will not take sides and will follow a more pragmatic
approach. We use whatever makes our life easier, because Ruby and
Rails have excellent support for both SOAP and REST.

You'll learn how to build your own REST services using Rails in record
time in Recipe 32, Publish Resources with REST, on the next page, and
Recipe 33, Use REST Services, on page 211 shows you how to manipu-
late resources with Ruby.

We use soap4r below in Recipe 34, Build Your Own SOAP Services, on
page 217 to implement a pure Ruby SOAP server, and in Recipe 35, Use
SOAP Services with WSDL, on page 221 you’ll learn how to access such
a server if you have a description of its interface written in WSDL.

Recipe 32

Publish Resources with REST

| Problem \

You want to expose some of your company’s applications as REST ser-
vices, because they need only a minimal set of infrastructural overhead
and can be used by all clients that have access to an HTTP library. In
addition, you can quickly add an HTML user interface to them if you
need one.

In this recipe, you’ll learn how to build such services using the Rails
framework.

/' Solution \

Let’s say your company has access to an SMS gateway but its interface
is somewhat complicated, so you decide to hide it behind a REST inter-
face. Not only will the service send the SMS, but it will also store it in
a database. Consequently, it provides endpoints for reading messages,
but it does not allow you to update or delete them.

We'll build the service in several steps, and before we write any RESTful
code, we design the resources, their representations, and their URIs.
Then we build the server, and finally we write a small test client.

The REST service can be used by different applications that we call
mandators. Every mandator has a name and a message limit that de-
fines how many messages it is allowed to send in a certain period of
time (-1 means “no limit”). Mandators are represented in the database
as follows:

Download web_services/rest/rest-sample/db/migrate/001_create_mandators.rb

create_table :mandators do |t]|
t.column :name, :string
t.column :message_limit, :int
t.timestamps

end

In addition, we need an XML representation of our mandator resource.
The following document describes a mandator named “Application
Monitor” that is currently not allowed to send any messages:

Download web_services/rest/mandator.xml

<mandator name='Application Monitor' message_limit='0"'/>

http://media.pragprog.com/titles/msenr/code/web_services/rest/rest-sample/db/migrate/001_create_mandators.rb
http://media.pragprog.com/titles/msenr/code/web_services/rest/mandator.xml

Dol sHOe 32. PUBLISH RESOURCES WITH REST <« 204

HTTP Verb URI Action
GET /message-service/mandators index
GET /message-service/mandators/{mandatorname} show
POST /message-service/mandators create
PUT /message-service/mandators/{mandatorname} update
DELETE /message-service/mandators/{mandatorname} destroy

Figure 7.1: Mapping REST resources to actions

To manipulate mandators “the REST way,” we have to write an appli-
cation that responds to certain combinations of HTTP commands and
URIs that we have listed in Figure 7.1 (variable URI components are set
in curly braces).

A DELETE command should be mapped to a destroy() action, a POST com-
mand should be mapped to create(), and so on. Wouldn't it be great if
we could automatically map these commands to the actions of a class
named, let’s say, MandatorsController? You guessed it already: Rails has
a mechanism to do this:

Download web_services/rest/rest-sample/config/routes.rb

tne1 ActionController::Routing::Routes.draw do |map]|
base = '/message-service'
map.resources :mandators, :path_prefix => base
map.resources :messages,
5 :path_prefix => base + '/mandators/:mandatorname’
end

This configuration maps HTTP commands to methods of class Manda-
torsController as we have defined them in Figure 7.1. If, for example,
we get a DELETE request pointing to /message-service/mandators/billing,
the destroy() action gets invoked, and paramsl:id] contains biling. In this
context, id is quite a misnomer, but that’s Rails’ standard behavior,
because in Rails resource URIs typically contain the primary keys of all
resources involved. For example, instead of using a name such as biling
to identify a mandator, you would use a number such as 42. You'll find
readable resource names a much better style to use, so we’ll create an
application that supports readable resource names. In line 4, we define
how our message resources are represented, but you can safely ignore
this for now.

http://media.pragprog.com/titles/msenr/code/web_services/rest/rest-sample/config/routes.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=204

Download at Boykma.Com

32. PUBLISH RESOURCES WITH REST <« 205

After this little preparation, we can implement the create() method of
our controller that gets invoked for POST requests and creates a new
mandator resource:

Download web_services/rest/rest-sample/app/controllers/mandators_controller.rb

line1 class MandatorsController < ApplicationController
skip_before_filter :verify_authenticity_token

POST /message-service/mandators
5 def create
mandator = Mandator.find_or_create_by_name(
:name => params[:mandator][:name],
:message_limit => params[:mandator][:message_Tlimit]

)
10 headers[:location] = mandator_path(mandator)
render :nothing => true, :status => '201 Created'
end

end

Before we do anything else, we disable the verify_authenticity_token filter
in line 2, which is used to prevent cross-site request forgery.! In our
internal application, we don’t need it, and in fact it would make life a
bit more complicated, because we had to authenticate ourselves when
using most of the HTTP commands.

REST services should be idempotent; that is, if a client tries to create
a resource that already exists, it gets back a URL pointing to the exist-
ing resource. That’s why we use the find_or_create_by_name() method to
create a new mandator resource.

In line 7, we profit again from some Rails magic. Although we have sent
an XML document to our action, we do not have to parse it explicitly.
Rails has already done this for us and converted the document into a
hash using XmiSimple (see Recipe 21, XML Data Binding on Steroids, on
page 142). If you absolutely want to parse the request body yourself,
you can get it by calling request.body.read.

After we have stored the new mandator in the database, we set the
location header in line 10 so that our clients know how to reference
the newly created resource. To build the resource URI, we use manda-
tor_path(), which has been generated by Rails behind the scenes. We
have to pass it only the variable part of our resource URI, and it returns
the complete URI. Please note that we do not check whether a manda-
tor already exists before we create it. We can safely send the same XML
document twice, which is the valid behavior for a REST service, and

1. http://en.wikipedia.org/wiki/Cross-site_request_forgery

http://media.pragprog.com/titles/msenr/code/web_services/rest/rest-sample/app/controllers/mandators_controller.rb
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=205

Download at Boykma.Com

32. PUBLISH RESOURCES WITH REST

it’s called idempotence (to be honest, we should have checked that all
attributes of the new resource are equal-—mot only the name but also
the message limit).

Finally, we can add our application monitor to the list of mandators by
posting its XML representation to our application:

mschmidt> curl -i -d@mandator.xml \

> -H 'content-type: application/xm1' \

> http://Tocalhost:3000/message-service/mandators

HTTP/1.1 201 Created

location: /message-service/mandators/Application%20Monitor

We have skipped most of the HTTP headers for brevity, but you can see
that the status code and the locatfion header have been set correctly. On
the request side, it’s important to set the right content-type header. By
the way, if you've ever asked yourself when to use application/xml for the
content-type header and when to use text/xml, you should take a look at
the official W3C standard.?

When working with resources, you always have to be prepared for miss-
ing resources, too. The REST way of telling your client that something
is missing is to send back the HTTP status code 404. Because we need
this often, we add a new method to the ApplicationController:

Download web_services/rest/rest-sample/app/controllers/application.rb

class ApplicationController
def if_found(obj)
if obj
yield
else
render :text => 'Not found.', :status => '404 Not Found'
false
end
end
end

Adding the missing methods to MandatorsController is easy:

Download web_services/rest/rest-sample/app/controllers/mandators_controller.rb

Line 1 class MandatorsController
GET /message-service/mandators
def index
mandators = Mandator.find(:all)
5 if_found(mandators) { render :xml => mandators.to_xml }
end

2. http://www.w3.org/TR/xhtml-media-types/

http://media.pragprog.com/titles/msenr/code/web_services/rest/rest-sample/app/controllers/application.rb
http://media.pragprog.com/titles/msenr/code/web_services/rest/rest-sample/app/controllers/mandators_controller.rb
http://www.w3.org/TR/xhtml-media-types/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=206

Download at Boykma.Com

32. PUBLISH RESOURCES WITH REST <« 207

GET /message-service/mandators/{mandatorname}

def show
10 mandator = Mandator.find_by_name(params[:id])
if_found(mandator) { render :xml => mandator.to_xml }
end

PUT /message-service/mandators/{mandatorname}
15 def update
mandator = Mandator.find_by_name(params[:id])
if_found mandator do
current_name = mandator.name
attributes = {

20 :name => params[:mandator][:name],
:message_limit => params[:mandator][:message_Tlimit]
}
if mandator.update_attributes(attributes)
if mandator.name == current_name
25 render :nothing => true, :status => '200 OK'
else

headers[:Tocation] = mandator_path(mandator)
render :nothing => true,
:status => '301 Moved Permanently'
30 end
else
render :xml => mandator.errors.to_xml,
:status => '400 Bad Request'
end
35 end
end

DELETE /message-service/mandators/{mandatorname}
def destroy
40 mandator = Mandator.find_by_name(params[:id])
if_found mandator do
mandator.messages.each { |m| m.destroy }
mandator.destroy
- render :nothing => true, :status => '200 OK'
45 end
end
end

Rails takes care of all the technical details; it routes incoming requests
to the right action, but it’s still the application’s task to adhere to the
REST principles. For example, we send back a 404 status code when-
ever a resource is missing, and we send back a 301 (Moved Permanently)
when a mandator is renamed in line 28.

We use ActiveRecord’s fo_xml() method to convert database objects into
XML strings, but usually, this method does not return what you want,
so you are better off overwriting it in your model class.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=207

Download at Boykma.Com

32. PUBLISH RESOURCES WITH REST

Download web_services/rest/rest-sample/app/models/mandator.rb

class Mandator < ActiveRecord::Base
has_many :messages
validates_uniqueness_of :name

def to_xml(options = {})
options[:indent] ||= 2
xml = options[:builder] ||= Builder::XmIMarkup.new(
:indent => options[:indent]
)
xml.instruct! unless options[:skip_instruct]
xm1.mandator(
'name' => self.name,
'message_Tlimit' => self.message_limit
)
end
end

We are done with the mandator resource, so now it’s time to take care
of the messages we’'d like to send and store. In the database they look
as follows:

Download web_services/rest/rest-sample/db/migrate/002_create_messages.rb

create_table :messages do |t|
t.column :mandator_id, :int

t.column :sender, :string
t.column :receiver, :string
t.column :content, :string
t.column :status, :string, :default => 'in-transmission'
t.timestamps
end

And as XML documents they look like this:
Download web_services/rest/message.xml

<message created-at='2008-10-18T13:40:00'>
<sender phone-number='12345678"/>
<receiver phone-number='987654321"/>
<content>Hello, world!</content>
</message>

We have defined the routing for this resource already in the routes.ro
file at the beginning of this recipe. The MessagesController class will look
similar to the MandatorsController class. Most of its method depend on
the existence of a mandator in the database. Hence, we add a method to
ApplicationController that makes sure we get a valid mandator reference
with every request and that loads the referenced mandator from the
database.

http://media.pragprog.com/titles/msenr/code/web_services/rest/rest-sample/app/models/mandator.rb
http://media.pragprog.com/titles/msenr/code/web_services/rest/rest-sample/db/migrate/002_create_messages.rb
http://media.pragprog.com/titles/msenr/code/web_services/rest/message.xml
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=208

Download at Boykma.Com

32. PUBLISH RESOURCES WITH REST

Download web_services/rest/rest-sample/app/controllers/application.rb

class ApplicationController
def must_specify_mandator
if params[:mandatorname]
@mandator = Mandator.find_by_name(params[:mandatorname])
if_found(@mandator) { params[:mandator_id] = @mandator.id }
return false unless @mandator
end
true
end
end

We will install must_specify_mandator() using before_filter(), so it’s easy to
implement the missing methods:

Download web_services/rest/rest-sample/app/controllers/messages_controller.ro

linel class MessagesController < ApplicationController
skip_before_filter :verify_authenticity_token
before_filter :must_specify_mandator

5 # GET /message-service/{mandatorname}/messages
def index
messages = @mandator.messages
messages = nil if messages.empty?
if_found(messages) { render :xml => messages.to_xml }
10 end

GET /message-service/{mandatorname}/messages/{id}

def show
message = Message.find(params[:id])
15 if_found(message) { render :xml => message.to_xml }
end

POST /message-service/{mandatorname}/messages
def create

20 1imit = @mandator.message_limit
if Timit != -1 and @mandator.messages.size >= Timit
render :nothing => true, :status => '400 Bad Request'
else
sms = params[:message]
25 status = send_message(sms)

message = Message.create(
:mandator => @mandator,

:receiver => sms[:receiver][:phone_number],

:sender => sms[:sender][:phone_number],
30 :content => sms[:content],

:status => status

)
headers[:Tocation] = message_path(@mandator.name, message)
render :nothing => true, :status => '201 Created'
35 end
end

http://media.pragprog.com/titles/msenr/code/web_services/rest/rest-sample/app/controllers/application.rb
http://media.pragprog.com/titles/msenr/code/web_services/rest/rest-sample/app/controllers/messages_controller.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=209

Dol sHOe 32. PUBLISH RESOURCES WITH REST <210

def update
render :nothing => true, :status => '405 Method Not Allowed'
40 end

def destroy
render :nothing => true, :status => '405 Method Not Allowed'
end
45

private

def send_message(sms)
Add your code to send short messages here.
50 "in-transmission'
end
end

There are not many unusual things in the controller. The most complex
method is create(), but that’s mainly because we store several attributes
and because we check whether a mandator’s message limit has been
exceeded. From a technical point of view, line 33 is interesting. Here we
create a resource URI comprising two variable parts: a mandator name
and a message identifier.

It’s not allowed to update or delete messages, so we send back the HTTP
status code 405 (Method Not Allowed) when update() or destroy() is called.

In this recipe we have implemented a REST service for nontrivial nested
resources that have readable URIs that can be manipulated by various
HTTP commands. Our service sends back reasonable status codes and
strictly adheres to the HTTP standard. Using Rails we could follow a
step-by-step approach—that is, we could develop the service incremen-
tally for every URI and for every HTTP command that should be sup-
ported. Take a look at RESTful Web Services |] if you want to learn
more about REST.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=210

Recipe 33

Use REST Services

| Problem \

REST services are becoming more and more popular on the Web and in
enterprise infrastructures, so it’s a good idea to learn how to use them
from your Ruby application.

In this recipe, we’ll develop a client library for the short message service
we built in Recipe 32, Publish Resources with REST, on page 203. All
its commands and their resources are listed in Figure 7.1, on page 204,
and our client will fully support all methods related to the manipulation
of mandators. As you probably remember, all applications that want
to use the message service have to register as a mandator, which is
characterized by its name and a message limit that determines how
many messages it is allowed to send in a certain period of time.

J Ingredients |

¢ Install the rufus-verbs® gem:

$ gem install rufus-verbs

J Solution \

Before you manipulate resources on a server, it’s always a good idea to
implement a local resource abstraction yourself. Here’s ours:

Download web_services/rest/mandator.rb
require 'rexml/document’

class Mandator
attr_accessor :name, :message_limit

def initialize(name, message_limit)
@name, @message_limit = name, message_limit
end

def to_s
"#{@name}: #{@message_ Timit}"

end

def to_xml

3. http://rufus.rubyforge.org/rufus-verbs/

http://media.pragprog.com/titles/msenr/code/web_services/rest/mandator.rb
http://rufus.rubyforge.org/rufus-verbs/

Download at Boykma.Com

33. USE REST SERVICES

doc = REXML::Document.new
doc.add_element('mandator’',

'name' => @name, 'message Tlimit' => @message_limit
)
xml_string =
doc.write(xml_string)
xml_string

end

def Mandator.from_xml(xml_string)
mandators = []
doc = REXML: :Document.new(xml_string)
doc.each_element('//mandator') do |element|
mandators << Mandator.new(
element.attributes['name'],
element.attributes['message_Timit']

)
end
mandators
end

end
That’s all we need to represent a mandator and to map it to XML docu-
ments, and vice versa (learn more about XML processing in Chapter 5,
Process XML Documents the Ruby Way, on page 140). Such documents
look like this:

Download web_services/rest/mandator.xml
<mandator name='Application Monitor' message_limit='0"'/>

Now we can start to implement the REST client. All RESTful web ser-
vices are based on HTTP, and in principle you can use them with any
library that supports all HTTP commands such as Net:HTTP. But there
are more convenient solutions that support caching, automatic com-
pression, and other nice things, for example. One of them is rufus-verbs,
and we use it as follows:
Download web_services/rest/message_service_rufus.rb

lnel require 'rubygems'
require 'rufus/verbs'
require 'uri'
require 'mandator'

include Rufus::Verbs

class MessageService
def initialize(host, port)
10 @base_url = "http://#{host}:#{port}/message-service"
end

http://media.pragprog.com/titles/msenr/code/web_services/rest/mandator.xml
http://media.pragprog.com/titles/msenr/code/web_services/rest/message_service_rufus.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=212

Download at Boykma.Com 33. USE REST SERVICES <« 213

def get_mandators
response = get "#{@base_url}/mandators"
15 return [] if response.code.to_i == 404
assert_response_code(response, 200)
Mandator.from_xml(response.body)

end
20 def get_mandator(mandatorname)
response = get mandator_path(mandatorname)
return nil if response.code.to_i == 404

assert_response_code(response, 200)
Mandator.from_xml(response.body).first
25 end

def mandator_path(mandatorname)
"#{@base_url}/mandators/#{URI.encode(mandatorname)}"
end
30

def assert_response_code(response, code)

if response.code.to_i != code
raise "Got unexpected response code: #{response.code}"
end
35 end
end

In initialize(), we determine the base URL needed to identify all the re-
sources we'd like to manipulate. Then in get_mandators(), we actually
access the REST service for the first time. In line 14, we send a GET
request and get back the expected response. The method we call is
actually named get(), because Rufus::Verbs defines a method for all HTTP
commands. These methods return an object that has been derived from
Net::HTTPResponse, because under the hood Rufus::Verbs uses Net::HTTP.

If no mandators could be found (we get back the HTTP status 404), we
return an empty array. Otherwise, we make sure we've gotten the status
code 200 and then convert the response body into an array of Mandao-
tor objects. Because we often have to check for a certain HTTP status,
we have added the assert_response_code() method. It checks whether
we have gotten a particular status code and raises an exception if we
haven’t.

gef_mandator() works similarly; the only thing worth noting is a little
convenience method named mandator_path(), which creates a resource
identifier for a mandator that has a particular name. We can thus use
our client to get a list of all mandators or to get a mandator with a
certain name.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=213

Download at Boykma.Com

33. USE REST SERVICES

Download web_services/rest/message_service_rufus.rb

service = MessageService.new('Tocalhost', 3000)
service.get_mandators.each { |m| puts m }
puts service.get_mandator('foo')

We still have to add methods that actually create and modify resources
on the server, but adding the missing functionality is easy, because
rufus-verbs also implements a puf() method, a post() method, and a
delete() method:

Download web_services/rest/message_service_rufus.rb

tnel class MessageService
XML_TYPE = 'application/xml'

def create_mandator(mandator)
5 response = post("#{@base_url}/mandators") do |req]
req['content-type'] = XML_TYPE
mandator.to_xml
end
assert_response_code(response, 201)
10 response['Tocation']
end

def update_mandator(mandatorname, mandator)
options = { :no_redirections => true }
15 response = put(mandator_path(mandatorname), options) do |req]
req['content-type'] = XML_TYPE
mandator.to_xml

end
if 1 ([200, 301].include?(response.code.to_i))
20 raise "Could not update mandator: #{response.code}"
end
end

def delete_mandator(mandatorname)

25 response = delete(mandator_path(mandatorname)) do |req|
req['content-type'] = XML_TYPE
end
assert_response_code(response, 200)
end
30 end

All these methods accept a code block that gets passed the current
request object (it’s an instance of class Net:HTTPRequest), so we can set
the right content-type header before sending the request to the server.
The content that’s eventually sent is the value returned by the code
block.

http://media.pragprog.com/titles/msenr/code/web_services/rest/message_service_rufus.rb
http://media.pragprog.com/titles/msenr/code/web_services/rest/message_service_rufus.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=214

Download at Boykma.Com

33. USE REST SERVICES <« 215

The rest is business as usual; in other words, we check the status code
of the response and raise an exception wherever it is appropriate.

Line 14 is a bit more interesting, because there we set the no_redirections
option to true. The reason for this is simple: by default, rufus-verbs
follows redirects, and when updating a mandator resource, it might
well happen that we get back a 301 status (Moved Permanently) (such as
if we change its name). Setting no_redirections prevents our client from
following such a redirection. Here you can see how to use it:

Download web_services/rest/message_service_rufus.rb

service = MessageService.new('Tocalhost', 3000)

Create a new mandator named 'foo'.
mandator = Mandator.new('foo', 42)
service.create_mandator(mandator)
puts service.get_mandator('foo')

Change the mandator's message 1limit to 1,000.
mandator.message_limit = 1000
service.update_mandator('foo', mandator)

puts service.get_mandator('foo')

Change the mandator's name to 'bar'.

mandator.name = 'bar'

service.update_mandator('foo', mandator)

puts service.get_mandator('foo') # Does no Tonger exist!
puts service.get_mandator('bar')

That’s it! We have written a client for our REST service that handles all

possible return codes and even comes with a class that deals with the
whole XML serialization in fewer than 100 lines of code.

Alternative REST Client Libraries

REST is a popular technology among Ruby programmers, so it should
come as no surprise that more than one client library exists. rest-client*
and HTTParty® are interesting products, for example.

rest-open-uri® is interesting, too, because it adds some code to Ruby’s
open-uri library (see Recipe 29, Find Solutions Quickly with open-uri,
on page 186 for more details) and turns it into a full-blown REST client

4. http://rest-client.neroku.com/
5. http://httparty.rubyforge.org/
6. http://rest-open-uri.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/web_services/rest/message_service_rufus.rb
http://rest-client.heroku.com/
http://httparty.rubyforge.org/
http://rest-open-uri.rubyforge.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=215

Download at Boykma.Com 33. USE REST SERVICES < 216

library. Here’s an alternative implementation of the get_mandators() and
create_mandator() methods using rest-open-uri:

Download web_services/rest/message_service_rest_uri.rb

tne1 def get_mandators
response = nil
begin
response = open "#{@base_url}/mandators"
5 rescue OpenURI::HTTPError => ex
return [] if ex.message =~ /A404/
end

assert_response_code(response, 200)
Mandator.from_xml(response.read)
10 end

def create_mandator(mandator)
response = open(
"#{@base_url}/mandators",
15 :method => :post,
:body => mandator.to_xml,
'content-type' => XML_TYPE

)
assert_response_code(response, 201)
20 response.metal['Tocation']
end

def assert_response_code(response, code)

if response.status[0].to_i != code
25 raise "Got unexpected response code: #{response.code}"
end
end

As you can see, there are only a few subtle differences. rest-open-uri
raises an exception whenever a resource cannot be found, so we have
to check for this condition explicitly in line 5. Instead of defining a
method for each HTTP command, the open() method accepts a :method
option that we set to POST in line 15.

Handling responses is slightly different. The objects that are returned
by open() have a property named meta that contains meta-information
such as response headers. We use it in line 20 to get the location header.
To get the HTTP status of a response, we have to use the status attribute,
a two-element array. The first element contains the status code, and the
second element contains the status message.

Also See
,_J L \

* Read Recipe 32, Publish Resources with REST, on page 203 first
to learn how to create REST services.

http://media.pragprog.com/titles/msenr/code/web_services/rest/message_service_rest_uri.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=216

Recipe 34

Build Your Own SOAP Services

| Problem \

For big companies it’s often a problem to define services and interfaces
in a standardized manner. SOAP addresses this problem (and solves
others too), and Ruby is an excellent platform for rapidly developing
NEW services.

Perhaps many applications in your company need to verify bank ac-
counts. This is a nontrivial task, because nearly every banking institu-
tion uses its own proprietary algorithm to generate new account num-
bers. You decided to pay for an external web service that provides
this functionality. It expects the bank identification code (BIC) and the
international bank account number (IBAN) of the bank account to be
checked (despite its full-bodied name, the IBAN is currently limited to
European countries). It returns the verification result (true or false) and
the name of the bank belonging to the BIC. If the BIC is invalid, the
name will be empty.

In this recipe, we build a bank account verification service based on
SOAP that has the interface described earlier.

| Ingredients |

* Since Ruby 1.9, soap4r” is no longer part of Ruby's standard
library and has to be installed as a gem:

$ gem install soap4r

/' Solution \

Instead of tying each application directly to the service, we’d like to
implement a SOAP service that hides its interface. This way, we have to
implement it only once, all clients can access it in standardized manner,
and if the external services’ interface changes someday, we have to
change only a single component (for an overview of our architecture,
see Figure 7.2, on the next page).

7. http://dev.ctor.org/soapdr/

http://dev.ctor.org/soap4r/

Dol sHOe 34. BUILD YOUR OWN SOAP SERVICES <218

Client

Internal SOAP ¢ > External
Service

Service

Figure 7.2: SOAP architecture

Before dealing with any SOAP details, we will build our own account
checker service:

Download web_services/soap/account_checker.rb

class AccountChecker
def check_account(bic, iban)
if iban.to_i % 2 ==
['National Bank', true]
else
[nil1, false]
end
end
end

This is only a dummy service for demonstration purposes; a real solu-
tion would probably send the input parameters to a web service via
HTTPS or something similar. But for our rapid prototyping approach, it
does everything we need, and its interface is realistic. Now we have to
expose the check_account(bic,iban) method; we can choose from at least
three different SOAP libraries:

¢ Although Action Web Service® has been removed from the Rails
core, it’s still a powerful tool. It supports both SOAP and its sim-
pler sibling, XML-RPC.

e The WSO2 Web Services Framework for Ruby® is a rather new
project depending on a web services library written in C.

8. http://aws.rubyforge.org/
9. http://wso2.org/projects/wsf/ruby/

http://media.pragprog.com/titles/msenr/code/web_services/soap/account_checker.rb
http://aws.rubyforge.org/
http://wso2.org/projects/wsf/ruby/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=218

Download at Boykma.Com

34. BUILD YOUR OWN SOAP SERVICES

* The standard library soap4r has always been an excellent choice.

We use soap4r to implement our service, because it does not have to be
installed separately and because it is very convenient:

Download web_services/soap/account_checker.rb

lnel require 'soap/rpc/standaloneServer’

class AccountCheckerServer < SOAP::RPC::StandaloneServer
def initialize(xargs)
5 super
@log.level = Logger::Severity::DEBUG
add_servant(AccountChecker.new)
end
end

That’s the whole server! We have to derive our server class from SOAP:
RPC::StandaloneServer, and in the initialize() method we pass all argu-
ments to the superclass. Then we set the log level of our server to DEBUG
so we can see which documents are exchanged during development.

The real magic happens in line 7, because here we make all public
methods of our AccountChecker class available as SOAP endpoints by
calling add_servant() and passing it an AccountChecker instance. Let’s
start the server:

Download web_services/soap/account_checker.rb

server = AccountCheckerServer.new(

'Account Checker', # Application Name
'urn:AccountChecker', # Default Namespace
'0.0.0.0", # Host
2000 # Port

)
trap(:INT) { server.shutdown }
server.start

When you run the program, it listens for incoming requests on port
2000, and it can be stopped by sending it an INT signal. With the follow-
ing client, we can test whether everything works as expected:

Download web_services/soap/account_checker_client.rb

Line 1 require 'soap/rpc/driver’

account_checker = SOAP::RPC::Driver.new(
'http://localhost:2000"',
5 'urn:AccountChecker'

)

account_checker.add_method('check_account', 'bic', 'iban')

http://media.pragprog.com/titles/msenr/code/web_services/soap/account_checker.rb
http://media.pragprog.com/titles/msenr/code/web_services/soap/account_checker.rb
http://media.pragprog.com/titles/msenr/code/web_services/soap/account_checker_client.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=219

Dol sHOe 34. BUILD YOUR OWN SOAP SERVICES <« 220

bic, iban = ARGV
10 name, status = account_checker.check_account(bic, iban)
if status
puts "Account is OK and belongs to #{name}."
else
puts 'Account is not OK.'
15 end

In line 3, we create a proxy for our SOAP server that is running on
localhost and that is listening on port 2000. Then, in line 7, we tell the
proxy that the server has a method named check_account() that expects
two parameters named bic and iban. Now we can use the server as if it
were a regular object in our local process. Run the client, and it outputs
the following:

mschmidt> ruby account_checker_client.rb 123456 987654
Account is OK and belongs to National Bank.

Everything is fine, and if you take a look at the server’s log file, you can
see which documents have been exchanged between the server and the
client. Although this way of creating a SOAP client seems easy, it gets
a bit tedious to add every single method manually if your target service
has many methods. In Recipe 35, Use SOAP Services with WSDL, on
the following page, you can learn about an alternative approach.

A final note about performance: soap4r uses WEBrick by default, which
is absolutely fine for small applications. If you need more power, you
should take a look at mongrel-soap4r.'©

Also See
,_J L \

* See Recipe 35, Use SOAP Services with WSDL, on the next page to
learn about an alternative approach to building SOAP clients.

10. http://mongrel-soap4r.rubyforge.org/

http://mongrel-soap4r.rubyforge.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=220

Recipe 35

Use SOAP Services with WSDL

| Problem \

| Ingredients |

/' Solution \

Line 1

You want to use a SOAP service described by a WSDL file from your
Ruby application.

* See the ingredients in Recipe 34, Build Your Own SOAP Services,
on page 217.

In Recipe 34, Build Your Own SOAP Services, on page 217, we have
built a SOAP service for checking bank accounts, and we have writ-
ten a Ruby client manually. Depending on the complexity of a ser-
vice’s interface, this can become pretty tedious, so it's often advanta-
geous to describe a SOAP service’s interface in a higher-level language
and generate the client code automatically. The Web Service Descrip-
tion Language (WSDL) has been invented for exactly this purpose, and
a description of our service reads like this (I've created it manually,
because generating it automatically is a difficult problem in dynamic
languages):

Download web_services/soap/account_checker.wsdl

<?xml version="1.0"?>

<definitions name="AccountCheckerInterfaceDescription"
targetNamespace="http://www.example.com/wsdl/AccountChecker.wsdl"
xmIns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.com/wsd1/AccountChecker.wsdl"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema" >

<message name='"check_account_in">
<part name="bic" type="xsd:string"/>
<part name="1iban" type='"'xsd:string"/>
</message>

<message name='"check_account_out'">
<part name="status" type=''xsd:integer'"/>
<part name='"name" type="xsd:boolean"/>
</message>

http://media.pragprog.com/titles/msenr/code/web_services/soap/account_checker.wsdl

Download at Boykma.Com

35. USE SOAP SERVICES WITH WSDL <222

<portType name="AccountCheckerInterface'>
20 <operation name="check_account'>
<input message="tns:check_account_in"/>
<output message="tns:check_account_out"/>
</operation>
</portType>
25
<binding name="AccountCheckerBinding"
type="tns:AccountCheckerInterface">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http" />
30 <operation name="check_account'>
<soap:operation soapAction="check_account'/>
<input>
<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
35 namespace="urn:AccountChecker"
use="encoded" />
</input>
<output>
- <soap:body
40 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:AccountChecker"
use="encoded" />
</output>
</operation>
45 </binding>

<service name="AccountCheckerService'">
<documentation>
A service for checking bank accounts.
50 </documentation>
<port binding="tns:AccountCheckerBinding"
name="AccountCheckerPort">
<soap:address location="http://localhost:2000"/>
- </port>
55 </service>
</definitions>

That’s a lot of stuff, but most of it is boilerplate.

If you ignore all namespace declarations and everything related to
encoding, you can see that this WSDL file defines a single method
named check_account(bic.iban) that returns the name of a bank and
a verification status. If the status is false, the name of the bank is
empty (that’s an interesting detail that cannot be expressed easily using
WSDL). The service can be used via HTTP, and it's listening on port
2000 on localhost.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=222

Download at Boykma.Com 35. USE SOAP SERVICES W

Let’s create a client automatically:
Download web_services/soap/wsdl_client.rb

Line 1 require 'soap/wsdlDriver'

wsdl = "file://#{File.expand_path('account_checker.wsd1')}"
- account_checker = SOAP: :WSDLDriverFactory.new(wsdl).create_rpc_driver
5 bic, iban = ARGV
- name, status = account_checker.check_account(bic, iban)

if status

puts "Account is OK and belongs to #{name}."

else
10 puts 'Account is not OK.'

end

With a single statement in line 4, we create a proxy for the account
checker service described in the WSDL file. Then we can use it as if it
were a regular Ruby object. We only have to convert the filename of the
WSDL file into a file URL, because the WSDLDriverFactory expects a URL.
This makes sense, because often you get the interface descriptions of
a service from the same host the service is running on and not from a
local file system.

http://media.pragprog.com/titles/msenr/code/web_services/soap/wsdl_client.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=223

Chapter 8

Historically, software applications were built as large monolithic cre-
ations, the result of linking together hundreds of individual object files
produced by a compiler. Over the years, common functions have been
separated into libraries that could be shared by several programs, but
still the applications were completely self-contained.

As network technologies became more popular, the design of software
started to change. Long before the advent of Web, developers created
their first mashups. They weren't the fancy kind of mashups where
you can see your friends’ current positions on a colorful map, but they
were able to separate pieces of business logic and reuse them from sev-
eral applications. For example, in the insurance and banking indus-
try, developers created client/server architectures where services per-
formed complex calculations needed by many applications. For the first
time, we had a real separation of concerns and code reuse on a larger
scale.

But every approach has its downsides, and building distributed appli-
cations using clients and servers still led to tight coupling. It was not
as tight as in the monolithic applications approach, but it remained
a problem. Whenever an important server was unavailable, the whole
system stopped. In addition to this lack of robustness, scalability and
performance became issues.

The biggest problem was that clients and servers had to talk directly
to each other; in other words, they had to communicate in a syn-
chronous manner. Message brokers changed the situation completely
and solved a lot of the existing problems. Instead of communicating
directly, processes now can send messages to the message broker,

Download at Boykma.Com

CHAPTER 8. TALK TO MESSAGE BROKERS < 225

which is responsible for delivering it to its destination. If the target
application is unavailable, it will wait until it is up and running again.
Asynchronous communication has a lot of advantages:

* When applied correctly, your applications become more robust,
because in an asynchronous architecture, it usually doesn’t mat-
ter whether the receiver of a message is currently available. The
message will be delivered when the receiver is up again.

¢ It makes your application more responsive, because you can run
time-consuming tasks in a background process, so your users do
not have to wait for it to complete.

* [t's more scalable, because you can break your tasks into small
pieces that can be queued and processed by independent servers.

* You can share not only pieces of business logic but even complete
business processes.

In the past, it was difficult to integrate Ruby processes with modern
message brokers, but in the past few years the situation has changed
dramatically. Finally we have the tools and technologies to talk to nearly
every message broker in the market; in this chapter, you’ll learn how to
do it.

Before we start to work with complex message-oriented middleware, we
take a look at a much simpler way of message distribution in Recipe 36,
Transfer Messages with Files, on the following page. Then we’ll build a
complete asynchronous messaging architecture based on ActiveMQ in
Recipe 37, Create a Messaging Infrastructure, on page 233. It will allow
for arbitrary combinations of Ruby and Java processes.

Most message brokers today support the Java Message Service (JMS)
API, but Ruby does not speak JMS by default. In Recipe 38, Integrate
with JMS, on page 242, you’'ll learn how to overcome this shortcoming
and connect Ruby to any of your JMS-compliant services.

Your Rails projects will certainly benefit from ActiveMessaging, a library
that makes integrating your fancy new web application with a messag-
ing architecture a breeze. Learn more about it in Recipe 39, Connect to
Message Queues with ActiveMessaging, on page 248.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=225

Recipe 36

Transfer Messages with Files

Problem
,_J L \

You have several processes that gather orders from various sources.
Some come from your own web application, and others are produced
automatically by the software systems of your business partners. The
orders are encoded as XML documents, they are stored in text files, and
they all have a unique ID that is part of the filename.

You’d like to treat these orders as messages that get processed individ-
ually and asynchronously, but you do not want to set up a messaging
infrastructure to process them. You are looking for something more
pragmatic.

J Ingredients | \

e Install all gems related to secure network protocols:!

$ gem install net-ssh
$ gem install net-sftp
$ gem install net-scp

Solution
,_J L \

For many distributed applications, sending messages using files is still
an appropriate solution (we use files and messages interchangeably in
this recipe, and a file may contain several messages), especially if your
messages are very big or if you have to transfer large amounts of them.
In this recipe, you'll see how to create a server that watches for new
files and processes them individually. Additionally, you’ll learn how to
distribute files using various file transfer mechanisms.

1. http://net-ssh.rubyforge.org/

http://net-ssh.rubyforge.org/

Download at Boykma.Com

Line 1

20

25

30

35

40

36. TRANSFER MESSAGES WITH FILES

We start with a message consumer, that is, with a server that observes
a certain local directory and waits for new XML files:

Download messaging/files/consumer.rb

require 'ftools'

require 'Jogger'

class MessageConsumer
attr_accessor :input_dir, :done_dir, :error_dir
attr_accessor :sleep_interval, :filename_pattern

def initialize
@sleep_interval = 2

@filename_pattern = "x.xml'
@logger = Logger.new(STDOUT)
end
def start

while true do
files = Dir[File.join(@input_dir, @filename_pattern)]
files.each do |filename]|
begin
new_filename = filename.sub(/\.xm1$/, "-#{$$}.xm1")
if File.move(filename, new_filename)
filename = new_filename
if process(filename)
File.move(filename, @done_dir)
else
File.move(filename, @error_dir)
end
end
rescue Errno::ENOENT
@logger.info "Another process handles #{filename}."
rescue => ex
@logger.error "Error processing #{filename}: #{ex}"
File.move(filename, @error_dir) 1if File.exist?(filename)
end
end
sleep @sleep_interval
end
end

def process(filename)

message_id = File.basename(filename, '.xml')
@logger.info "Processing #{message_id}."
true

end

end

Although the server is really simple, it actually does a lot: every two
seconds it reads all new files with an .xml extension from a configurable

http://media.pragprog.com/titles/msenr/code/messaging/files/consumer.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=227

Dol sHOe 36. TRANSFER MESSAGES WITH FILEs <« 228

input directory and passes their names to the process() method. pro-
cess() can do whatever it wants with the file, but it has to return a
processing status. If it returns true, the input file will be moved to a
directory for files that have been processed successfully (done); other-
wise, it will be moved to an error directory. Our sample implementation
logs only the message ID, which is the filename without its extension,
and always returns frue.

The core of our server is file handling, so we use a lot of Ruby’s goodies.
For example, in line 16, we use the DIR class’ ()() operator to find all files
that have a certain extension in our input directory. In the same line,
File’s join() method creates the right path to a particular file no matter
which platform the consumer is running on. @

In lines 19 and 20, we handle an important aspect of every message
consumer: concurrency. To handle more workload, we make sure right
from the beginning that it’s possible to start more than one consumer
process observing the same input directory. We have to synchronize
these processes so that no incoming message gets processed twice. To
achieve this, we rename the input file and add the consumer’s process
ID (PID) to the filename. If the file can be renamed (moved) success-
fully, it is processed regularly. Otherwise, another consumer process
has grabbed it already. In this case, we raise an exception and log an
info message in line 28.

There are some alternatives to support concurrency. For example, we
could start several processes with different input directories, but such
solutions quickly turn into a configuration management nightmare. We
also could use the operating system’s file locking mechanisms, but they
are often complicated, they are rarely portable, and they do not work
on every file system.

At the end of the start() method, we put the program to sleep for a
while, so other processes get a chance to do their work. You can start a
consumer as follows:

Download messaging/files/consumer.rb

receiver = MessageConsumer.new

receiver.input_dir = 'data/in’
receiver.done_dir = 'data/done’
receiver.error_dir = 'data/err’

receiver.start

Now we need a client to send a new message to the consumer.

http://media.pragprog.com/titles/msenr/code/messaging/files/consumer.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=228

Dol sHOe 36. TRANSFER MESSAGES WITH FILEsS <« 229

Let’s begin with a solution that communicates with our consumer using
a local file system:

Download messaging/files/fs_sender.rb

class LocalFileMessageSender
def initialize(target_dir)
@target_dir = target_dir

end

def send(message_id, content)
filename = "#{message_id}.xm1"
File.open(File.join(@target_dir, filename), 'w') do |file]
file.write(content)
end
end
end

The core of our LocalFileMessageSender class is the send() method. It
expects a message’s ID and its content and sends it to a message con-
sumer by writing it to the right directory.

Let’s send a first XML document to the consumer:
Download messaging/files/fs_sender.rb

sender = LocalFileMessageSender.new('data/in")
message = "<?xml version='1.0'?>\n<order id='0815'/>\n"
sender.send('order-0815', message)

The consumer’s output looks as follows:

I, [2008-07-23T09:58:04.227777 #4892] INFO -- : Processing order-0815.

That might not look like much, but we actually have two processes
communicating with each other using the file system. We have effec-
tively set up a messaging infrastructure! Before you go now and ask
your boss for a pay rise, we’'d better enhance it a bit.

The biggest problem of our current solution is that the communicat-
ing processes have to be on the same machine. At the least they have
to share the same file system, which might well be a network file sys-
tem. To make the distribution of our processes more flexible, we’ll add
support for FTP to the client:
Download messaging/files/ftp_sender.rb

Line 1 require 'net/ftp'

require 'tempfile’

class FileTransferMessageSender
5 attr_accessor :host, :username, :password, :target_dir

http://media.pragprog.com/titles/msenr/code/messaging/files/fs_sender.rb
http://media.pragprog.com/titles/msenr/code/messaging/files/fs_sender.rb
http://media.pragprog.com/titles/msenr/code/messaging/files/ftp_sender.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=229

Dol sHOe 36. TRANSFER MESSAGES WITH FILEsS <« 230

def initialize

@host = 'lTocalhost'
- @username = 'anonymous'
10 @target_dir = ".'
end

def send(message_id, content)
tmp_file = Tempfile.new(message_id)
15 tmp_file.write(content)
tmp_file.flush
filename = "#{message_id}.xml"
Net::FTP.open(@host) do |ftp|
- ftp.login(@username, @password)
20 ftp.chdir(@target_dir)
ftp.puttextfile(tmp_file.path, filename)
end
end
end

send() has still the same signature, but its implementation became a bit
more complex. First we have to write the message’s content to be sent
into a temporary file, because to transfer files using FTP we actually
need a file to be transferred (sounds reasonable, doesn’t it?).

Ruby has a dedicated class for this purpose named Tempfile. We create
an instance in line 14, fill it with the message’s content, and flush it to
make sure it’s available immediately.

Caution: By default Tempfile creates files in your operating system’s
directory for temporary files, which potentially can be accessed by a
lot of users. If your messages contain sensitive information, it's bet-
ter to create them in a directory that can be read only by the process
owner. You can pass a directory name explicitly to the constructor:
Tempfile.new(message_id, ‘path/to/dir’)).

Now that we have a local file containing our message, we send it to the
remote consumer using Net::FTP. We create a connection to the remote
host in line 18. Then we send our credentials, change to the directory
the message consumer is observing, and finally transfer the file.

We just need to set some more attributes to use the new client while the
rest stays the same (of course, the message consumer has to observe
the directory the client writes to):

Download messaging/files/ftp_sender.rb

sender = FileTransferMessageSender.new
sender.host = 'localhost'
sender.username = 'maik’

http://media.pragprog.com/titles/msenr/code/messaging/files/ftp_sender.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=230

Dol sHOe 36. TRANSFER MESSAGES WITH FILEsS <« 231

sender.password = 'tOpS$ecret'
sender.target_dir = 'data/in'
message = "<?xml version='1.0'?>\n<order id='0815'/>\n"

sender.send('order-0815', message)

For internal systems we have a nice solution now, but what if you're
communicating with an external customer? For that you should use
a more secure protocol such as Secure Shell File Transfer Protocol
(SFTP).2 By using Net::SFTP, that’s easy:

Download messaging/files/sftp_sender.rb

Line 1 require 'net/sftp’

class SecureFileTransferMessageSender
def send(message_id, content)
5 filename = File.join(@target_dir, "#{message id}.xml1")
Net::SFTP.start(@host, @username, :password => @password) do |sftp|
sftp.file.open(filename, 'w') do |f|
f.write(content)
end
10 end
end
end

For brevity we show only the new implementation of the send() method,
because the rest of the class is the same as in the FTP variant. In line 6
we create an SFTP connection calling start(). The connection is passed
to a code block, and there we open a file for writing on the remote host.
Afterward, we write our message to the file, and we’re done. (Net::SFTP
has lots of convenient methods such as upload() and download() that
are well worth a look at its excellent API documentation.)

Instead of writing the message data directly to the remote host, we
could have used the temporary file approach as we did in our FTP
implementation, but this way our client is more secure. By the way,
when you run the client, you'll be probably asked to enter your pass-
word for a file named ~/.ssh/id_rsa. That’s because SFTP is based on the
Secure Shell (SSH) protocol® and its public key infrastructure.*

Another popular file transfer protocol based on SSH is Secure Copy
(SCP),® and it can be used similarly to SFTP.

http://en.wikipedia.org/wiki/SSH_file_transfer_protocol
http://en.wikipedia.org/wiki/Ssh

Read http://kimmo.suominen.com/docs/ssh/ to learn how to circumvent this.
http://en.wikipedia.org/wiki/Secure_copy

S N

http://media.pragprog.com/titles/msenr/code/messaging/files/sftp_sender.rb
http://en.wikipedia.org/wiki/SSH_file_transfer_protocol
http://en.wikipedia.org/wiki/Ssh
http://kimmo.suominen.com/docs/ssh/
http://en.wikipedia.org/wiki/Secure_copy
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=231

36. TRANSFER MESSAGES WITH FILES < 232

Download messaging/files/scp_sender.rb

Line 1 require 'net/scp'’

class SecureCopyMessageSender
def send(message_id, content)
5 filename = File.join(@target_dir, "#{message_id}.xm1")
Net::SCP.start(@host, @username, :password => @password) do |scp]|
scp.upload! StringIO.new(content), filename
end
end
10 end

This time we have used the upload!() method in line 7, and we have
passed it a StringlO object, so we do not have to create a temporary file.

| Discussion | \

You might say that our first approach to building a messaging system
is a bit primitive and has some disadvantages. For instance, right now
it works in only one direction, and it does not support any acknowl-
edge mechanisms. Its performance is suboptimal if you have to send
many small messages, and it does not scale well across different hosts.
Finally, it does not support a way to address the target consumer in a
fine-grained manner.

But it also has some invaluable advantages. You can implement it eas-
ily in a short amount of time. It allows for large amounts of data to
be transferred, and you can write clients in nearly every programming
language in the world. You can even use a simple cp command to send
a message.

http://media.pragprog.com/titles/msenr/code/messaging/files/scp_sender.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=232

Recipe 37

Create a Messaging
Infrastructure

Problem
,_J L \

For a new customer project, your company has to create a large dis-
tributed application. It should be fast, robust, and highly scalable, and
its components should not depend on a single programming language.
You came to the conclusion that only an asynchronous messaging sys-
tem can fulfill all the customer’s requirements.

You decided to set up a full-blown messaging infrastructure based on a
mature message broker. It should have persistence mechanisms, and it
should support clients in various programming languages. At the least,
it has to support Ruby and Java processes acting as both senders and
consumers.

J Ingredients | \

¢ Download and unpack Apache’s ActiveMQ® for your platform. It

runs out of the box, and you do not have to perform any additional
installation steps (a Java virtual machine has to be installed, too).

e Install the STOMP library for Ruby:’

$ gem install stomp

Solution
,_J L \

Although our problem sounds like a really big one, it can be easily
solved when we break it down into smaller pieces. In this recipe, you'll
first learn how to write message consumers and producers in Ruby.
After we have them working, we’ll start to add Java processes, so at the
end we’ll have Java and Ruby programs interchanging messages in all
directions.

The first problem to be solved is choosing the right message broker.
Various products are available, but most of them come with bindings

6. http://www.activemaq.org/
7. http://stomp.rubyforge.org/

http://www.activemq.org/
http://stomp.rubyforge.org/

Line 1

37. CREATE A MESSAGING INFRASTRUCTURE

only for Java and C++. ActiveMQ is one of the best open source mes-
sage brokers, and it has excellent support for dynamic languages like
Ruby, because it implements the Streaming Text Orientated Messaging
Protocol (STOMP).® STOMP has been developed to make it easier for
dynamic languages to integrate with message brokers.

When starting ActiveMQ, you typically find the following messages in
the console output:

mschmidt> bin/activemq

ACTIVEMQ HOME: /Users/mschmidt/activemq

ACTIVEMQ BASE: /Users/mschmidt/activemq
Loading message broker from: xbean:activemq.xm]l

Listening for connections at: tcp://localhost:61616

TransportConnector - Connector openwire Started
Listening for connections at: ssl://localhost:61617
TransportConnector - Connector ss1 Started
Listening for connections at: stomp://localhost:61613
TransportConnector - Connector stomp Started
Listening for connections at: xmpp://localhost:61222
TransportConnector - Connector xmpp Started

A message broker’s job is to manage the communication between pro-
cesses, and ActiveMQ allows these processes to connect in various
ways. It starts several listeners that all deal with different protocols.
Java programs will usually use OpenWire, while Ruby programs use
STOMP. Although the processes use different protocols, they access
the same message queues and topics.

Now that the broker is running, we will create a first Ruby consumer:
Download messaging/activemq/consumer.rb
require 'stomp'
user, password = "', "'
host, port = 'localhost', 61613
connection = Stomp::Connection.open(user, password, host, port)
destination = ARGV[O0]
connection.subscribe destination, { :ack => 'auto' }
puts "Waiting for messages in #{destination}."
while true
message = connection.receive
message_id = message.headers['message-id']
puts "Got a message: #{message.body} (#{message_id})"
end
connection.disconnect

8. http://stomp.codehaus.org/

http://media.pragprog.com/titles/msenr/code/messaging/activemq/consumer.rb
http://stomp.codehaus.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=234

37. CREATE A MESSAGING INFRASTRUCTURE < 235

()

l/f Joe Asks...
MWM?

Nearly all message brokers support two different commmunicao-
tion models:

e Message queues are used for poinf-to-point communica-
tion where each message can be consumed by only one
client.

e The publish/subscribe model is represented by topics, and
it is used if a message can be consumed by more than
one client.

In messaging APIs such as JMS, you often find a class hierar-
chy that is split info two parts: one deals with queues, and
the other one deals with topics. STOMP uses a more simplis-
tic approach; you have to use special name prefixes to iden-
tify the correct destination: /queue/ or /topic/. If, for example,
you want to address a message queue named orders.input in
your message-oriented middleware (MOM), you have to call
it /queue/orders.input in your STOMP configuration. For a topic
named news.of.foday, you'd use /topic/news.of.today.

We create a new Stomp::Connection object using the host and port infor-
mation we found in ActiveM@’s console log (Ruby’s STOMP library has
a more convenient class named Stomp::Client, but for demonstration
purposes Stomp::Connection is better). Because we did not set up any
explicit ActiveMQ users, we leave the user and password arguments
blank. We could also have left out all arguments, because open() uses
the same defaults as ActiveMQ.

In line 7, we subscribe to a particular destination, which can be a
queue or a topic that is provided on the command line. By setting
the ack option to auto, we make sure that every message we receive
gets acknowledged immediately, so the sender knows we got it. Alter-
natively, we could set this option to client. In this case we’d have to call
ack() on the connection using the message’s ID. Otherwise, it would get
delivered again by the message broker.

You can subscribe to as many destinations as you like by calling sub-
scribe() for every destination. Whenever you receive a new message, you

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=235

37. CREATE A MESSAGING INFRASTRUCTURE < 236

can find the name of its destination in the destination header (message.
headers|'destination’] in our case).

In line 9, we start the inevitable event loop waiting for new messages
to arrive. Whenever we get one, we output its body and its message-
id header (that’s the one you'd use for an explicit acknowledge) and
continue to wait for new stuff using receive().

We have written a complete message consumer in only a dozen lines of
code. That’s certainly impressive, but without a corresponding sender
it’s only half the fun:

Download messaging/activemg/sender.rb

Line 1 require 'stomp'

user, password = s
host, port = 'localhost', 61613

5 connection = Stomp::Connection.open(user, password, host, port)
destination, message = ARGV[0..1]
options = { 'persistent' => 'false' }
connection.send destination, message, options
connection.disconnect

As you might have expected, it looks similar to the consumer, because
before we do anything else we have to connect to ActiveMQ first. We take
the destination queue and the message to be sent from the command
line and initialize the options we’d like to use when sending a message.
Right now we declare only that we do not want our messages to be
stored by the message broker, so we set persistent to false. In line 8,
we send our message and close the connection to the message broker
afterward.

Now we will benefit from a messaging architecture for the first time:
without starting the consumer process first, run the sender twice to
send two messages to the queue named orders.input:

mschmidt> ruby sender.rb /queue/orders.input Foo
mschmidt> ruby sender.rb /queue/orders.input Bar

Unsurprisingly, nothing special happened. In both cases the client con-
nected to ActiveMQ, delivered its message, and quit. See what happens
when we start the consumer now:

mschmidt> ruby consumer.rb /queue/orders.input

Waiting for messages in /queue/orders.input.

Got a message: Foo (ID:Tocalhost-51542-1206098404495-5:40:-1:1:1)
Got a message: Bar (ID:localhost-51542-1206098404495-5:41:-1:1:1)

http://media.pragprog.com/titles/msenr/code/messaging/activemq/sender.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=236

37. CREATE A MESSAGING INFRASTRUCTURE < 237

Alternative Messaging Protocols

There are alternatives to STOMP such as the Advanced Mes-
sage Queuing Protocol (AMQP)* and ActiveMQ’s REST inter-
face.! Both of them are not as mature as STOMP at the
moment, but they might become alternatives in the future, and
Apache’s Qpid project! already comes with a Ruby client.

*. http://amqgp.org/
t. http://activemng.apache.org/rest.ntml
t. http://cwiki.apache.org/qpid/

That should give you a good understanding of asynchronous messag-
ing. Although the message consumer wasn't running when we sent
our messages, they still arrived when we started it. If we had set the
persistent option to frue in the sender, we even could have shut down
ActiveMQ for a while before starting the consumer. This behavior makes
asynchronous messaging a perfect choice for building robust systems.

Now that our consumer is running anyway, why not use a Java program
to give it something to do?

Download messaging/activemg/src/com/example/messaging/MessageSender.java

lne1 package com.example.messaging;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.;
5 1import org.springframework.jms.core.JmsTemplate;

public class MessageSender {
public void setDestination(IJmsTemplate destination) {
- this.destination = destination;
10 }
public void sendMessage(String message) throws Exception {
this.destination.convertAndSend(message);

}

public static void main(String[] args) throws Exception {
final String configFile = args[0];
final String message = args[1];
final ApplicationContext factory =
20 new FileSystemXmlApplicationContext(configFile);

http://amqp.org/
http://activemq.apache.org/rest.html
http://cwiki.apache.org/qpid/
http://media.pragprog.com/titles/msenr/code/messaging/activemq/src/com/example/messaging/MessageSender.java
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=237

37. CREATE A MESSAGING INFRASTRUCTURE < 238

final MessageSender sender =
(MessageSender) factory.getBean("messageSender") ;
sender.sendMessage (message) ;
25 }

private IJmsTemplate destination;

}

It might surprise you that the Java client does not need a lot of code
either. Our secret ingredient is the Spring framework,® an application
framework based on dependency injection. Basically, it allows you to
design applications in a way that makes it very easy to configure them
from the outside, and it comes with a lot of useful classes such as
JmsTemplate. JmsTemplate hides a lot of the mechanics needed for typi-
cal JMS tasks, and we use it in sendMessage() to send a message to a
certain message queue.

An instance of JmsTemplate is also the only member variable of the
MessageSender class, and it can be set using setDestfination(). You cer-
tainly have noticed that this method is not called anywhere in the
whole source file, so who calls it? It’s the FileSystemXmlApplicationCon-
text class belonging to the Spring framework. Its constructor takes a
list of XML configuration files and automatically creates and combines
objects according to the declarations in these files. We need only one,
and its important part looks like this:

Download messaging/activemqg/etc/sender.xml

<bean id="messageSender" class="com.example.messaging.MessageSender'>
<property name="destination" ref="orderQueue"/>
</bean>

<bean id="connectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616" />
</bean>

<bean id="orderQueue"
class="org.springframework.jms.core.JImsTemplate">
<property name='"connectionFactory" ref="connectionFactory"/>
<property name='"defaultDestinationName" value="orders.input"/>
</bean>

Spring calls objects it instantiates beans, and we configure three of
them: messageSender, connectionFactory, and orderQueue.

9. http://springframework.org/

http://media.pragprog.com/titles/msenr/code/messaging/activemq/etc/sender.xml
http://springframework.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=238

37. CREATE A MESSAGING INFRASTRUCTURE < 239

Each bean is associated with a certain class that is specified with the
class= attribute, and they all have properties that can be defined with
the <property> element. When Spring creates a bean, it sets its prop-
erties by calling the appropriate setter method. For example, to set the
destination property of the messageSender bean, it calls setDestination()
and passes the orderQueue bean, which has to be instantiated before.
Note that we set the default destination name (that is, the queue name)
to orders.input and not to /queue/orders.input as we did in the Ruby pro-
grams (see the sidebar the Joe Asks... on page 235 for details).

Now you can see how the destination queue is set in our MessageSender
class: in line 19, we initialize all Spring beans, and in line 22, we get
a reference to our fully initialized MessageSender instance (our sam-
ple configuration is for demonstration purposes only, and if you actu-
ally use Spring and JMS, you’d better study the official documentation
carefully).!©

To start the Java program, use the following shell script:

Download messaging/activemq/start_sender.sh

export CLASSPATH=bin:1ib/spring.jar

export CLASSPATH=$CLASSPATH:1ib/activemg-al1-5.0.0.jar
export CLASSPATH=$CLASSPATH:1ib/commons-Tlogging-1.1.jar
javac -d bin src/com/example/messaging/MessageSender.java
java com.example.messaging.MessageSender etc/sender.xml "$1"

We make sure that the class path contains all necessary Java archives
and our own classes. Then we compile the MessageSender class, and
finally we start it, passing the Spring configuration file and the message
to be sent as command-line arguments. When we run it as follows:

mschmidt> ./start_sender.sh 'Hello, Java!’

our Ruby consumer will output this:

Waiting for messages in /queue/orders.input.
Got a message: Hello, Java! (ID:localhost-53210-1206130854111-0:0:1:1:1)

Wow! We have set up an architecture that passes asynchronous mes-
sages seamlessly from Java processes to Ruby processes. And vice
versa?

10. http://activemq.apache.org/jmstemplate-gotchas.html

http://media.pragprog.com/titles/msenr/code/messaging/activemq/start_sender.sh
http://activemq.apache.org/jmstemplate-gotchas.html
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=239

37. CREATE A MESSAGING INFRASTRUCTURE

Here we go:

Download messaging/activemq/src/com/example/messaging/MessageReceiver.java

lne1 package com.example.messaging;

import javax.jms.Message;

import javax.jms.MessagelListener;
5 dmport javax.jms.TextMessage;

import javax.jms.BytesMessage;

import org.springframework.context.support.;

10 public class MessageReceiver implements MessagelListener {
public void onMessage(final Message message) {
try {
String content = null;
if (message instanceof BytesMessage) {

15 BytesMessage bytesMessage = (BytesMessage)message;
Tong messagelLength = bytesMessage.getBodylLength(Q);
byte[] buffer = new byte[(int)messagelLength];
bytesMessage.readBytes(buffer);
content = new String(buffer);

20 } else if (message instanceof TextMessage) {
content = ((TextMessage)message).getText();

}
System.out.printin("We've got a message: " + content);
}
25 catch (Exception e) {
System.err.printin(e.getMessage());
}
}
30 public static void main(final String[] args) {
new FileSystemXmlApplicationContext(args);
}

}

Again, we use the Spring framework, so our main() method does noth-
ing but set up the application context. The actual message handling
happens in onMessage(). It gets called whenever we receive a new mes-
sage and first checks the message’s type in line 14. If we have received
a binary message, we convert it into a String; otherwise, we read the
content directly.

In most messaging APIs, messages have a type; they can be text mes-
sages, or they can be binary messages. STOMP does not support such
types by default, but some brokers have ways to simulate them by
setting various headers. ActiveMQ, for example, treats messages as

http://media.pragprog.com/titles/msenr/code/messaging/activemq/src/com/example/messaging/MessageReceiver.java
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=240

37. CREATE A MESSAGING INFRASTRUCTURE < 241

text messages if their content-length header is 0. Ruby’s STOMP library
always sets this header to the correct length, so all messages sent using
the library are treated as binary messages. You're better off if you check
the type of an incoming message.

The important part of our Spring configuration looks as follows:
Download messaging/activemq/etc/receiver.xml

<bean id="messageReceiver"
class="com.example.messaging.MessageReceiver" />

<bean id="orderQueue"

class="
org.springframework.jms.1listener.DefaultMessagelListenerContainer">
<property name='"connectionFactory" ref="connectionFactory" />
<property name="messagelListener" ref="messageReceiver" />
<property name="destinationName" value="orders.input" />
<property name='"concurrentConsumers" value="1" />
<property name="sessionTransacted" value="true"/>

</bean>

We can start the MessageReceiver with a shell script similar to the one
we used for the sender and send it some messages with our Ruby
sender. We are done!

If you have used message-oriented middleware from Java or C++ in
the past, you might ask yourself whether STOMP is too simple to ful-
fill your needs. Be assured that it isn’t, because its inventors added
all the important features. For example, STOMP even has support for
transactions.!!

With only a few lines of code and configuration, we have implemented
an asynchronous messaging system that supports arbitrary combina-
tions of senders and consumers no matter if they've been written in
Java or Ruby. The only important prerequisite is support for STOMP.
That is, if your message broker supports STOMP natively, you can con-
nect with your Ruby clients immediately. If it doesn’t, read Recipe 38,
Integrate with JMS, on the next page to learn how to turn every message
broker into a STOMP broker.

11. See http://svn.codehaus.org/stomp/ruby/trunk/test/test_client.ro to learn how to use them.

http://media.pragprog.com/titles/msenr/code/messaging/activemq/etc/receiver.xml
http://svn.codehaus.org/stomp/ruby/trunk/test/test_client.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=241

Recipe 38

Integrate with JMS

J Problem \

You are surrounded by services that are based on the Java Message
Service API (JMS), and you want to know how to connect to a JMS
message broker with Ruby.

J Ingredients |

* Perform all installation steps described in Recipe 37, Create a Mes-

saging Infrastructure, on page 233.
¢ Download the latest StompConnect!? release (at the time of this

writing it’s a single .jor file named stompconnect-1.0.jar).

' Solution \

Put simply, JMS is to message brokers what JDBC is to database man-
agement systems, and every message broker vendor today adds a JMS
binding to its product. That’s good news for all the Java programmers
out there, but the poor Ruby people cannot benefit from it. They could
use JRuby and actually use a native JMS binding, but that’s not an
appropriate solution in all cases.

The messaging protocol that is supported best by Ruby is STOMP (see
Recipe 37, Create a Messaging Infrastructure, on page 233), but at the
moment only a few message brokers support it. Wouldn't it be nice if
we could turn every JMS broker into a STOMP broker automatically?
In this recipe, you’ll learn how to do this.

Let’s say you have to work with an ActiveMQ installation whose STOMP
connector has been disabled, as is often the case in companies using
Java exclusively. You’'d like to talk to a service waiting for new messages
in a message queue named testqueue using a Ruby client.

StompConnect is the tool that we need now. It is a protocol adapter (aca-
demics probably call it a message mediator) that turns STOMP requests
into JMS messages, and vice versa. The architecture we’ll build now

12. http://stomp.codehaus.org/StompConnect

http://stomp.codehaus.org/StompConnect

38. INTEGRATE WITH JMS

looks like Figure 8.1, on the following page; in other words, StompCon-
nect will run as a separate process communicating with the JMS client
of the process we’d like to address. Here’s how to start StompConnect:

Download messaging/jms/stomp_connector.sh

export CLASSPATH=11ib/commons-logging-1.1.jar

export CLASSPATH=$CLASSPATH:1ib/activemg-al1-5.0.0.jar
export CLASSPATH=$CLASSPATH:1ib/stompconnect-1.0.jar
export properties=-Djava.naming.factory.initial=\
org.apache.activemq.jndi.ActiveMQInitialContextFactory
export properties="$properties \
-Djava.naming.provider.url=tcp://Tocalhost:61616"

java $properties org.codehaus.stomp.jms.Main \
tcp://localhost:62222 ConnectionFactory

As usual, we build up the class path, which contains the Java archives
for StompConnect and for the message broker we’d like to use. In addi-
tion, StompConnect needs Commons-Logging.'®> Then we define two
Java properties telling StompConnect where to get JMS connections
from (java.naming.factory.initial) and which message broker should be
used (jova.naming.provider.url). Finally, we start StompConnect, passing
it the URL of the STOMP connector to be created. Here’s the output of
our script:

mschmidt> ./stomp_connector.sh

Mar 25, 2008 6:12:35 PM org.codehaus.stomp.jms.StompConnect\
createConnectionFactory

INFO: Looking up name: ConnectionFactory in INDI InitialContext for JIMS\
ConnectionFactory

Mar 25, 2008 6:12:35 PM org.codehaus.stomp.tcp.TcpTransportServer\
doStart

INFO: Listening for connections at: tcp://Tocalhost:62222

As expected, a new STOMP connector is listening on port 62222, and
it will delegate requests to the ActiveMQ broker waiting for OpenWire
requests on port 61616. We can try it with a little Ruby sender:

Download messaging/jms/sender.rb

require 'stomp'

user, password = "', "'

host, port = 'localhost', 62222

connection = Stomp::Connection.open(user, password, host, port)
destination = '/queue/testqueue’

options = { 'persistent' => 'false' }

message = "Hello, world!\n"

connection.send destination, message, options
connection.disconnect

183. http://commons.apache.org/logging/

http://media.pragprog.com/titles/msenr/code/messaging/jms/stomp_connector.sh
http://media.pragprog.com/titles/msenr/code/messaging/jms/sender.rb
http://commons.apache.org/logging/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=243

38. INTEGRATE WITH JMS <244

- N N — N N
Virtual Machine Virtual Machine
Ii\upl:)y StompConnect > Ja\:l'I).:)MS
\ y, \ y,

Message
Broker

Figure 8.1: StompConnect using several virtual machines

It's a perfectly normal Ruby STOMP client (see Recipe 37, Create a
Messaging Infrastructure, on page 233 to learn more about Ruby and
STOMP), and the only thing worth mentioning is the queue name. To
address the queue named festqueue, we have to use /queue/testqueue in
our STOMP client (see the Joe Asks... on page 235).

That's already a nice solution for bringing STOMP support to a JMS
broker, but it comes at a price: all messages have to be passed from
one Java virtual machine (JVM) to another. It would be much more
efficient if StompConnect were running in the same JVM as the service
to which it connects. See the resulting architecture in Figure 8.2, on
the next page.

To achieve this, we need to take a closer look at the service we are
using. Let’s say it is a really simple Java JMS service that looks like
this:

Download messaging/jms/src/com/example/messaging/MessageReceiver.java

package com.example.messaging;
import javax.jms.Message;
import javax.jms.Messagelistener;

import javax.jms.TextMessage;
import javax.jms.BytesMessage;

import org.springframework.context.support.;

http://media.pragprog.com/titles/msenr/code/messaging/jms/src/com/example/messaging/MessageReceiver.java
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=244

38. INTEGRATE WITH JMS <« 245

Virtual Machine

RAup? ¢—J | StompConnect <—>u

1IMS
pp
\ ? v

Message

Broker

Figure 8.2: StompConnect using a single virtual machine
I EEEEEEEE———,

public class MessageReceiver 1implements Messagelistener {
public void onMessage(final Message message) {
try {
String content = null;
if (message instanceof BytesMessage) {
System.out.printin("Bytes");
BytesMessage bytesMessage = (BytesMessage)message;
Tong messagelLength = bytesMessage.getBodylLength();
byte[] buffer = new byte[(int)messagelLength];
bytesMessage.readBytes(buffer);
content = new String(buffer);
} else if (message instanceof TextMessage) {
System.out.printin("Text");
content = ((TextMessage)message).getText();
}

System.out.println("lWe've got a message:

+ content);
}
catch (Exception e) {
System.err.println(e.getMessage());
}
}

public static void main(final String[] args) throws Exception {
new FileSystemXmlApplicationContext(args);

}

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=245

38. INTEGRATE WITH JMS <« 246

This service waits for new messages, and whenever a new message
arrives, it prints its content to the console. It doesn’t matter whether
it has been a textual or a binary message. The service has to be config-
ured using the Spring framework,!* and to actually run it, we need its
Spring configuration:

Download messaging/jms/etc/receiver_activemqg.xml

<bean id="messageReceiver"

class="com.example.messaging.MessageReceiver" />

<bean id="connectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616" />
</bean>

<bean id="testQueue"

class="
org.springframework.jms.1listener.DefaultMessagelListenerContainer">
<property name='"connectionFactory" ref="connectionFactory" />
<property name="messagelListener" ref="messageReceiver" />
<property name="destinationName" value="testqueue" />
<property name="concurrentConsumers" value="5" />
<property name='"sessionTransacted" value="false"/>

</bean>

There’s nothing special about it: we configure the message receiver,
wrap it in a bean named testQueue, and declare a bean for the message
broker connection. We could instantiate a StompConnect object directly
now in our service if we did not use Spring. In that case, we’d need
access to the source code, and we’d have to recompile and to deploy the
service. But by adding one more bean, we can turn this service into a
STOMP service without all the hassle:

Download messaging/jms/etc/stomp_connect.xml

<bean id="stompConnect"
class="org. codehaus.stomp.jms.StompConnect"
init-method="start">
<property name="connectionFactory" ref="connectionFactory" />
<property name="uri" value="tcp://localhost:62222" />
</bean>

We inject the message broker’s connection factory and the URL to be
used for the STOMP connector into the stompConnect bean. When you
restart the service, it will behave as before, but it will expose its mes-
saging endpoints via STOMP, too. This service can be used by Ruby

14. http://springframework.org/

http://media.pragprog.com/titles/msenr/code/messaging/jms/etc/receiver_activemq.xml
http://media.pragprog.com/titles/msenr/code/messaging/jms/etc/stomp_connect.xml
http://springframework.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=246

38. INTEGRATE WITH JMS <247

clients with ease now! We needed access only to the service’s configura-
tion, but often this is much easier than configuring the message broker
(to be concise, we also have to add StompConnect’s Java archive to the
service’s class path).

StompConnect is a powerful tool and works with every JMS-compliant
message broker in the market. It brings Ruby support to every message
broker available. It works seamlessly with ActiveMessaging, so it brings
full JMS support to your Rails applications, too.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=247

Connect to Message Queues
with ActiveMessaging

Problem
,_J L \

Most of your company’s infrastructure is based on asynchronous mes-
saging; in other words, vital components can be used only by exchang-
ing messages with them. One of them is a central order handler.

It’s your task to build a Rails application for placing orders by sending
messages to the company’s central order handler. Orders will be stored
in a local database, and the application will listen for order status mes-
sages emitted by the order handler. This way, the front end can provide
a nice and responsive user experience while it can still keep track of
the current status of the orders.

J Ingredients | \

* Perform all installation steps described in Recipe 37, Create a Mes-
saging Infrastructure, on page 233.

* From your Rails application’s root directory, install the ActiveMes-
saging'® plug-in:

mschmidt> script/plugin install \
> http://activemessaging.googlecode.com/svn/trunk/plugins/\
> activemessaging

Solution
,_J L \

This scenario is pretty common: a time-consuming task is handed to a
back-end service that sends back a result asynchronously when it has
finished the task (see a simplified view of our architecture in Figure 8.3,
on page 250).

In Recipe 37, Create a Messaging Infrastructure, on page 233, you can
see how to integrate ordinary Ruby code with message-oriented middle-
ware. This time Rails gets added to the game, and it does not support

15. http://code.google.com/p/activemessaging/

http://code.google.com/p/activemessaging/

39. CONNECT TO MESSAGE QUEUES WITH ACTIVEMESSAGING

access to messaging architectures natively. But ActiveMessaging is a
plug-in that makes messaging with Rails a piece of cake.

Before we send and receive messages, we’ll build a model for orders in
the database:

Download messaging/activemessaging/msgdemo/db/migrate/001_create_orders.rb

create_table :orders do |t]
t.column :customer, :string

t.column :product, :string
t.column :quantity, :int
t.column :status, :string, :default => 'OPEN'
t.timestamps
end

Admittedly, this is a rather lightweight order model, but for our pur-
poses it’s sufficient. It stores the customer’s name, the order’s status,
and the name and quantity of the product that has been ordered (for
an order entry form, see Figure 8.4, on page 251). We could already
implement a controller for manipulating it, but our controller does not
need to store only orders; it also has to send them to a message queue.
We have to edit some configuration files first that have been installed
together with the ActiveMessaging plug-in.

One of them, broker.yml, defines all connection parameters for the mes-
sage broker. We'll use ActiveMQ with the STOMP protocol, so our config-
uration looks as follows (ActiveMessaging supports more message bro-
kers, but for the rest of the recipe I assume you're running ActiveMQ
in its standard configuration):

Download messaging/activemessaging/msgdemo/config/broker.yml

development:
adapter: stomp
login: ""
passcode:
host: Tocalhost
port: 61613
reliable: true
reconnectDelay: 5

The next configuration file is messaging.rb. It defines symbolic names for
all message queues that we are going to use:

Download messaging/activemessaging/msgdemo/config/messaging.rb

ActiveMessaging::Gateway.define do |s|
s.destination :order, '/queue/orders.input’
s.destination :order_status, '/queue/orders.status'
end

http://media.pragprog.com/titles/msenr/code/messaging/activemessaging/msgdemo/db/migrate/001_create_orders.rb
http://media.pragprog.com/titles/msenr/code/messaging/activemessaging/msgdemo/config/broker.yml
http://media.pragprog.com/titles/msenr/code/messaging/activemessaging/msgdemo/config/messaging.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=249

39. CONNECT TO MESSAGE QUEUES W IVEMESSAGING

orders.input

Rails Order
App Handler
<

orders.status

Figure 8.3: High-level architecture

In our application we need two messages queues: one for sending orders
(-:order) and one for receiving order status messages (:order_status). The
symbolic :order queue is mapped to a physical message queue named
/queue/orders.input. It’s used in the OrderConftroller class to send incom-
ing orders to the central order handler where they get processed asyn-
chronously:

Download messaging/activemessaging/msgdemo/app/controllers/order_controller.ro

Line 1 require 'activemessaging/processor’

class OrderController < ApplicationController
include ActiveMessaging::MessageSender

publishes_to :order

def add
order = Order.new(params[:order])
10 if request.post? and order.save
flash.now[:notice] = 'Order has been submitted.'
publish :order, order.to_xml
redirect_to :action => 'show_status', :id => order.id
end
15 end

def show_status
@order = Order.find(params[:id])
end
20 end

Our first Rails controller with ActiveMessaging support does not differ
much from an ordinary controller.

http://media.pragprog.com/titles/msenr/code/messaging/activemessaging/msgdemo/app/controllers/order_controller.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=250

39. CONNECT TO MESSAGE QUEUES WITH ACTIVEMESSAGING <251

®00o http://localhost:3000/order/add

Create New Order

Customer Name:
Maik Schmidt

Product:
New Ruby Book

Quantity:
1

_Submit Order

i

Figure 8.4: Create a new order.

We mix in ActiveMessaging::MessageSender, and in line 6, we tell Rails
that this controller will send messages to the order queue we defined
earlier in messaging.ro.

The add() method works like an ordinary Rails action; it takes the form
parameters from a view, creates a new Order instance, and stores it in
the database. Then, in line 12, we use the publish() method to send an
XML representation of the newly created order to the order handler.

After the order has been placed, it will have the default status OPEN, as
you can see in Figure 8.5, on page 253. This status will not change no
matter how often you click the refresh button, because at the moment
we do not process the status messages published by the order handler.
To change this, we have to add a processor to our Rails application. The
corresponding generator is part of the ActiveMessaging plug-in, and you
can run it like this:

mschmidt> ruby script/generate processor OrderStatus

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=251

39. CONNECT TO MESSAGE QUEUES WITH ACTIVEMESSAGING

This creates a skeleton file named order_status_processor.ro that looks as
follows after we have added all functionality we need:

Download messaging/activemessaging/msgdemo/app/processors/order_status_processor.rb

tnel require 'rexml/document’

class OrderStatusProcessor < ApplicationProcessor
subscribes_to :order_status

def on_message(message)
doc = REXML: :Document.new(message)
order_id = doc.root.attributes['id"']
order_status = doc.root.text
10 order = Order.find(order_id)
order.status = order_status
order.save
logger.debug "Status of order #{order_id} is #{order_status}."
end
15 end

Similar to the OrderController, we have to declare that we are using mes-
saging facilities. In line 4, we tell Rails that our OrderStatusProcessor lis-
tens for new messages in the :order_status queue. That's all we have
to do, because the rest of the messaging mechanism is more or less
passive: whenever a new message arrives in the order status queue,
the on_message() action gets invoked automatically by ActiveMessaging.
In the action, we parse the XML document contained in the message,
extract its order ID and the order status, and store it in the database.
The incoming XML documents are very simple and typically look like
this:

<order-status id="47110815">SHIPPED</order-status>

To be concise, on_message() is not invoked completely automatically,
because that would mean the listener is running within the Rails frame-
work itself. To circumvent this, the ActiveMessaging developers have
created a poller daemon that waits for messages and invokes the appro-
priate Rails actions whenever it receives something new. The poller
script is part of the ActiveMessaging plug-in, and when you start it
like this:

mschmidt> ruby script/poller run

you'll see the following in your application’s log file:

ActiveMessaging: Loading ... app/processors/application.rb

ActiveMessaging: Loading ... app/processors/order_status_processor.rb

=> Subscribing to /queue/orders.status (processed by \
OrderStatusProcessor)

http://media.pragprog.com/titles/msenr/code/messaging/activemessaging/msgdemo/app/processors/order_status_processor.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=252

39. CONNECT TO MESSAGE QUEUES WITH ACTIVEMESSAGING

®e0o http://localhost:3000/order/show_status /2

EIE@ 9hltp','/Iu(alhosl'3000[order/5how_stalus/2(D - gv Google \
Status of Order 2

Customer: Maik Schmidt
Product: New Ruby Book
Quantity: 1

Status: OPEN

‘—ﬁ

Figure 8.5: The order has been submitted.

orders.input orders.input

Rails Message Order
App Broker Handler

orders.status

AM
Poller

Figure 8.6: System design

For a more detailed view of the architecture we have developed in this
recipe so far, see Figure 8.6. The Rails application puts messages into a
queue named orders.input, which is managed by the ActiveMQ message
broker. The broker passes the message to the order handler, which
actually processes the order. When the order has been processed, the
order handler sends the result to another message queue named orders.
status, which is also managed by ActiveMQ. Afterward, the status mes-
sage is transmitted to the poller daemon, and the daemon turns it into
a call to the right on_message() action.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=253

39. CONNECT TO MESSAGE QUEUES WITH ACTIVEMESSAGING < 254

Only one component of the overall architecture is missing in our test
environment: the order handler. Perhaps we could use a copy of the
production system, but for testing purposes it’s always better to have
your own simulator at hand:

Download messaging/activemessaging/order_handler.rb

Line 1 require 'stomp'
require 'rexml/document’

- class OrderHandler
5 attr_accessor :user, :password, :host, :port

def initialize
@user, @password = "', "'
@host, @port = 'localhost', 61613
10 end

def handle_orders(in_queue, out_queue)
connection = Stomp::Connection.open @user, @password, @host, @port
connection.subscribe in_queue, { :ack => 'client' }
15 puts "Waiting for messages in #{in_queue}."
while true
message = connection.receive
body = message.body
- message_id = message.headers['message-id']
20 puts "Got a message: #{body} (#{message_id})"
- order_status = get_order_status(body)
options = { 'persistent' => 'false' }
connection.send out_queue, order_status, options
connection.ack message_id
25 end
connection.disconnect
end

private
30
def get_order_status(body)
doc = REXML: :Document.new(body)
order_id = doc.root.attributes['id"']
"<order-status id="'#{order_id}'>SHIPPED</order-status>"
35 end
end

Our OrderHandler's complete business logic can be found in the han-
dle_orders() method. Basically, it takes order documents from an input
queue, parses them, and creates output documents that have the same
order ID and a constant status (SHIPPED). That might not be very sophis-
ticated, but for testing the other components it's good not to have too
many variable parts.

http://media.pragprog.com/titles/msenr/code/messaging/activemessaging/order_handler.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=254

39. CONNECT TO MESSAGE QUEUES W IVEMESSAGING <255

®e0o http://localhost:3000/order/show_status/2
EIB [Z] http://localhost:3000 /order/show_status/2 & & Q~ ¢
Status of Order 2

Customer: Maik Schmidt
Product: New Ruby Book
Quantity: 1

Status: SHIPPED

Figure 8.7: The order has been shipped.

As usual, we start a STOMP connection, subscribe to a destination, and
start an event loop. This time we chose to use the client acknowledge
mechanism in line 14; in other words, we have to explicitly acknowl-
edge incoming messages in line 24. Otherwise, the message would be
delivered again by the message broker.

After you have started the order handler like this:
Download messaging/activemessaging/order_handler.rb

order_handler = OrderHandler.new

order_handler.handle_orders(
'/queue/orders.input’',
'/queue/orders.status’'

)

you can refresh your browser window a few times and eventually see a
picture similar to Figure 8.7.

We already knew that messaging with Ruby is easy, but ActiveMessag-
ing makes it even more comfortable. Using only a minimal set of con-
figuration parameters and three methods (publishes_to(), subscribes_to(),
and publish()), we’ve been able to combine an existing messaging archi-
tecture and a Rails application in record time.

http://media.pragprog.com/titles/msenr/code/messaging/activemessaging/order_handler.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=255

Part IV

Integration & Administration
Recipes

Chapter 9

Ruby is a great programming language, and perhaps it’s the most beau-
tiful and most productive language available today. But Ruby isn’t per-
fect, and there never will be a perfect programming language. C and
assembly language will always be the fastest in execution speed, while
Java and C# will probably always have bigger standard libraries. But
Ruby is an open and liberal language and plays nicely with others.

For many people, one of the most critical issues when working with
dynamic languages is performance. Admittedly, Ruby certainly isn’t the
fastest language in the world, but in Recipe 40, Embed C and C++, on
the next page, you'll learn how to beef it up with the raw power of good
ol’ C and C++ code.

Although Ruby’s standard library is getting bigger with every release,
it still lacks some significant classes and algorithms that every Java
programmer takes for granted. Don’t worry, because in Recipe 41, Mix
Java and Ruby Code, on page 265 youll learn how to integrate Java
code into your Ruby programs.

Some language integration tasks are more common than others. For
example, there are countless Java legacy applications using Remote
Method Invocation (RMI) on the planet. Consequently, we have devoted
a whole recipe to this topic (Recipe 42, Use RMI Services, on page 271).

With the advent of IronRuby, the entire world of .NET and all of its
libraries became available to Ruby programmers. In Recipe 43, Mix
Ruby and .NET with IronRuby, on page 275, you will learn how to mix
Ruby with all the other .NET languages.

Recipe 40

Embed C and C++

| Problem \

Your company has gone through a typical IT evolution. Although in the
last years most software has been developed in Java, you still have a
lot of legacy C or C++ code floating around. This code often has to be
integrated even into new programs, and in addition you are afraid that
Ruby sometimes might not meet all your performance needs.

In this recipe, you'll learn how to embed C/C++ code directly into your
Ruby programs so you can add the power of C on the fly whenever it’s
needed.

| Ingredients |

e Install the ruby-inline gem:!

$ gem install RubyInline

Unfortunately, ruby-inline does not work very well on Microsoft
Windows systems.

' Solution \

The techniques you will learn in this recipe should be used only if you
have to increase the performance of a certain method or if you urgently
need a particular function that is available only in a C library. When-
ever you need a complete binding for a library, you should create a reg-
ular Ruby extension (Dave Thomas, Chad Fowler, and Andy Hunt have
written a whole chapter about this in Programming Ruby [D.

To keep things clear, we start with the inevitable factorial example,
which looks as follows in pure Ruby:
Download foreign_languages/c/factorial_test.rb

class FactorialTest
def factorial(n)

result = 1
n.downto(2) { |x| result »= x }
result
end
end

1. http://rubyinline.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/foreign_languages/c/factorial_test.rb
http://rubyinline.rubyforge.org/

40. EMBED C AND C++ <259

There’s really nothing special about it: we have defined a method cal-
culating the factorial of a given number with only a few lines of Ruby
code. Now we replace it with a C solution:
Download foreign_languages/c/factorial_test.rb
require 'inline'
class FactorialTest
inline(:C) do |builder|
builder.c <<-CSOURCE
long factorial_c(const int n) {
long result = 1, i = n;
while (i >= 2)

result »= i--;
return result;
}
CSOURCE
end

end

The previous code actually defines a new method named factorial_c()
in the FactoryTest class. It is compiled on the fly by the Ruby Inline
library. Its most important method is named inline(), which gets a sym-
bol determining the programming language to be inlined. We pass it
the symbol C (the default) to indicate we’d like to embed some C code.
inline() expects a code block and passes it a builder instance for the
programming language chosen.

On the builder instance, we invoke the c() method. It expects a string
containing C code, compiles it, and automatically converts basic data
types from C to Ruby, and vice versa. For example, it turns integer
values into Fixnum instances, and String objects become char*. Here we
have a little benchmark test comparing the performance of our two
methods:

Download foreign_languages/c/factorial_test.rb

require 'benchmark'
Tabel_width = 6
test = FactorialTest.new
Benchmark.bm(label_width) do |x|
x.report('ruby: ') { 1.upto(10_000_000) { test.factorial(12) } }
x.report('C: ") { 1.upto(10_000_000) { test.factorial_c(12) } }
end

http://media.pragprog.com/titles/msenr/code/foreign_languages/c/factorial_test.rb
http://media.pragprog.com/titles/msenr/code/foreign_languages/c/factorial_test.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=259

40. EMBED C AND C++ <260

And here are the results (measured on an Apple MacBook Pro):

mschmidt> ruby factorial_test.rb

user system total real
ruby: 44.490000 0.150000 44.640000 (44.665101)
C: 2.570000 0.010000 2.580000 (2.577188)

Unsurprisingly, the C function is about twenty times faster than its
Ruby equivalent. But before you get too enthusiastic and start to write
your software in C again, we'd better take a look at the downsides of
our approach. The following program:

Download foreign_languages/c/factorial_test.rb

test = FactorialTest.new
puts "factorial(15) = #{test.factorial(15)}"
puts "factorial_c(15) = #{test.factorial_c(15)}"

produces this:

factorial(15) 1307674368000
factorial_c(15) = 2004310016

What happened? Is there a logical bug in one of these trivial methods?

Not really, but we forgot that Ruby automatically turns Fixnum objects

into Bignum objects if necessary. The Ruby factorial method returns @
correct results even for bigger numbers, while the C version suffers

from the usual overflow errors. The factorial of 15 is too big to fit into

32 bits, and instead of indicating an error, the C runtime system silently

cuts off some bits and returns a wrong result.

Despite these shortcomings, Ruby Inline is very nice, because we can
write time-critical algorithms in C now while the library handles typical
data conversions automatically. It’s even possible to add new converters
using the add_type_converter() method.

But what if we need a tighter integration with Ruby? Let’s take a look
at a more complex example; in Recipe 20, Master Binary Data, on
page 134, we have implemented a method for decoding multibyte inte-
ger values, that is, for integer values that are encoded with a flexible
amount of bytes. If the most significant bit (MSB) of a byte is set, we
add its lower seven bits to our integer and read the next byte. If the
MSB is zero, we have found the last seven bits of our integer value. For
example, the two bytes Ox81 and 0x06 result in the decimal integer value
134, because the bytes are encoded in binary as follows:

1000 0001 0000 0110

http://media.pragprog.com/titles/msenr/code/foreign_languages/c/factorial_test.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=260

40. EMBED C AND C++ <261

The MSB of the first byte is set, while the MSB of the second is not.
Hence, our integer value consists of the lower seven bits of the two
bytes:

00 0000 1000 0110

Our Ruby implementation for converting such values looked like this:

Download foreign_languages/c/multi_byte_int.rb

class MultiByteIntegerReader
def self.get_multibyte_integer(raw_data)
multi_int = 0
while raw_data[0][7] == 1
multi_int = (multi_int << 7) | (raw_data.shift & 0x7f)
end
(multi_int << 7) | raw_data.shift
end
end

raw_data is an array of unsigned integer values that gets modified in the
get_multibyte_integer() method, because whenever we need a new byte,
we call shift() on the array. If we want to rewrite this method in C, we
actually have to pass it a Ruby Array object, and we have to modify it,
too. Sound complicated? Here we go:

Download foreign_languages/c/multi_byte_int.rb
require 'inline'
class MultiByteIntegerReader
inline do |builder|
builder.c_singleton <<-CSOURCE
VALUE get_multibyte_integer_c(VALUE raw_data) {
unsigned int multi_int = 0;
unsigned int current_value = FIX2INT(rb_ary_shift(raw_data));
while ((current_value & 0x80)) {
multi_int = (multi_int << 7) | (current_value & 0x7f);
current_value = FIX2INT(rb_ary_shift(raw_data));
}
return INT2FIX((multi_int << 7) | current_value);
}
CSOURCE
end
end

This time we call c_singleton() to create a Ruby class method, and again
we pass it the source code of the C function we’d like to add to the
MultiBytelntegerReader class. Right in the first line of our C code we
get in contact with Ruby’s most important internal structure: VALUE.
The Ruby interpreter uses this structure to represent all objects, and
whenever you need a concrete instance of an object, you have to con-

http://media.pragprog.com/titles/msenr/code/foreign_languages/c/multi_byte_int.rb
http://media.pragprog.com/titles/msenr/code/foreign_languages/c/multi_byte_int.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=261

40. EMBED C AND C++ <262

vert the VALUE object first using a macro. Our builder does this auto-
matically and converts a Ruby array we pass to get_mulfibyte_integer_c()
using RARRAY() behind the scenes. You have to keep that in mind: our
row_data variable is now a Ruby array in the same way as the Ruby
interpreter usually sees them.

After initializing multi_int, we call rb_ary_shift(), passing it our Ruby array.
This is what happens whenever you invoke shift() on an Array in your
Ruby programs. rb_ary_shift() is Ruby’s internal C function for shifting a
value from an Array. Because our array contains Fixnum objects, we have
to convert them with the FIX2INT() macro into regular integer values.
current_value now contains the integer representation of the first value
stored in the row_data array.

The rest of the function looks like the Ruby version, because the binary
operators are the same in C and Ruby. We only have to use INT2FIX() to
convert our integer result to a Fixnum object before returning it to the
Ruby world (note that the return value of our function is of type VALUE).

Now that we have both alternatives available, let’s run a little bench-
mark to see which one is faster:

Download foreign_languages/c/multi_byte_int.rb

require 'benchmark'
label_width = 6
runs = 10_000_000
Benchmark.bm(label_width) do |x|
x.report('ruby: ') do
1.upto(runs) do
MultiByteIntegerReader.get_multibyte_integer([0x81, 0x06])
end
end
x.report('C: ') do
1.upto(runs) do
MultiByteIntegerReader.get_multibyte_integer_c([0x81, 0x06])
end
end
end

The result looks as follows:

mschmidt> ruby multi_byte int.rb

user system total real
ruby: 27.990000 0.060000 28.050000 (28.059626)
C: 6.490000 0.000000 6.490000 (6.494582)

As expected, the C version is faster than Ruby, but all in all it’s still
a surprising result. The C code absolutely mirrors the Ruby code and

http://media.pragprog.com/titles/msenr/code/foreign_languages/c/multi_byte_int.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=262

40. EMBED C AND C++ <263

even uses internal Ruby functions to emulate the original Ruby ver-
sion. Despite all this, the Ruby code is about four times slower. That’s
the price you have to pay when working with an interpreted language,
but these figures might change in upcoming Ruby versions. Ruby 1.9
compiles programs to byte code, for example, to improve performance.

C and C++ are similar in many respects, so you can use Ruby Inline for
embedding C++ code, too:

Download foreign_languages/c/cpp_message_printer.rb

lnel require 'inline'

class MessagePrinter
inline(:C) do |builder|

5 builder.include '<iostream>'
builder.include '<string>'
builder.add_compile_flags '-x c++', '-Istdc++'

builder.c <<-CSOURCE
void shout_message(int i, char* message) {
10 std::string upperCase = std::string(message);
std::transform(
upperCase.begin(), upperCase.end(),
upperCase.begin(), ::toupper

-)3
15 while (i-- > 0)
- std::cout << upperCase << std::endl;
}
CSOURCE
end
20 end

This code defines a simple MessagePrinter class and a single method
named shout_message() that prints a particular message in uppercase
several times. In lines 5 and 6, we include the C++ iostream and string
libraries. Then we add some compile flags to make sure our embedded
function is treated as C++ code and to link the stdc++ library to our
program.

The rest of the code is simple: we convert the message argument into a
std::string object and turn it into uppercase (look at the code, and you’'ll
certainly remember why you switched to Ruby). Then we’ll start a loop
and print the upperCase variable i times using the C++ I/0 facilities. We
can use the MessagePrinter class as follows:

Download foreign_languages/c/cpp_message_printer.ro

MessagePrinter.new.shout_message 3, 'Hello, world!"'

http://media.pragprog.com/titles/msenr/code/foreign_languages/c/cpp_message_printer.rb
http://media.pragprog.com/titles/msenr/code/foreign_languages/c/cpp_message_printer.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=263

40. EMBED C AND C++ <264

And here’s what you get when you run the sample program on the
command line:

mschmidt> ruby cpp_message_printer.rb

HELLO, WORLD!

HELLO, WORLD!
HELLO, WORLD!

Although our example program looks nice and clean, things get compli-
cated rather quickly when combining Ruby and C++ using Ruby Inline.
For example, there are no specific type conversions for C++, not even for
basic types such as std:string. If you need a tighter integration between
Ruby and C++, you should take a look at Rice.? Rice is a C++ wrapper
around the Ruby’s C API and makes it very easy to combine C++ code
with Ruby’s internals.

2. http://rice.rubyforge.org/

http://rice.rubyforge.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=264

Recipe 41

Mix Java and Ruby Code

| Problem \

Java has become one of the most widespread programming languages
not only in modern enterprise environments but also in the open source
world. Consequently, countless Java libraries are available solving al-
most every programming task you can imagine.

Although Ruby has been gaining popularity rather quickly, it still lacks
a lot of even basic functionality that’s mature in Java. Wouldn't it be
great if you could embed Java solutions into your Ruby programs? In
this recipe, you’ll learn how to do that.

J Ingredients |

* Install the Ruby Java Bridge (RJB):3

$ gem install rjb
¢ Download and unpack the Apache Xerces* XML parser.
¢ Download and unpack JDOM.5

/' Solution \

One of the things that is missing most when using Ruby in enterprises
is the validation of XML documents. Whenever you receive XML docu-
ments from an external source, you should check whether they adhere
to the structure you are expecting before you actually process them.
Many validation techniques are available, such as Document Type Def-
inition (DTD),® XML Schema,” and RELAX NG8 or Schematron.®

For Java, many excellent validating XML parsers are available that sup-
port these standards. In Ruby, a validating XML parser is still missing

http://rjb.rubyforge.org/
http://xerces.apache.org/xerces2-j/

http://jdom.org/
http://en.wikipedia.org/wiki/Document_Type_Definition
http://www.w3.org/XML/Schema

http://relaxng.org/
http://xml.ascc.net/resource/schematron/schematron.html

© ® N Ok w

http://rjb.rubyforge.org/
http://xerces.apache.org/xerces2-j/
http://jdom.org/
http://en.wikipedia.org/wiki/Document_Type_Definition
http://www.w3.org/XML/Schema
http://relaxng.org/
http://xml.ascc.net/resource/schematron/schematron.html

Line 1

41. MIx JAvA AND RUBY CODE

and is urgently needed (although the latest version of LibXML looks
promising). But we can use a Java parser until someone builds a Ruby
solution.

Let’s say you have implemented a web service for sending short mes-
sages in cellular networks. Clients send an XML document describing
a short message, and your service is responsible for transmitting it to
its receiver. An XML schema representing a short message document
looks as follows:

Download foreign_languages/java/sms.xsd

<xs:schema xmIns:xs="http://www.w3.0rg/2001/XMLSchema" >
<xs:element name="sms">
<xs:complexType>
<Xs:sequence>
<xs:element name='sender' type='xs:token'/>
<xs:element name='receiver' type='xs:token'/>
<xs:element name='content' type='xs:string'/>
</Xs:sequence>

<xs:attribute name="created-at" type="xs:dateTime" />
</xs:complexType>
</Xs:element>
</xs:schema>

Our schema is pretty trivial and describes <sms> elements that have
a single, optional attribute named created-at= and three child elements
named <sender>, <receiver>, and <content>. Here is an instance of
our XML schema:

Download foreign_languages/java/sms.xml

<sms created-at='2008-10-18T13:40:00"'>
<sender>12345678</sender>
<receiver>987654321</receiver>
<content>Hello, world!</content>
</sms>

In Java we can use the Apache Xerces XML parser to validate the pre-
vious document against our schema:

Download foreign_languages/java/src/SchemaValidator.java

import java.io.StringReader;
import java.io.File;

import org.jdom.Document;

import org.jdom.input.SAXBuilder;

public class SchemaValidator {
public static Document isValid(
String xmlFileName,
String xm1SchemaFileName)

<« 266

http://media.pragprog.com/titles/msenr/code/foreign_languages/java/sms.xsd
http://media.pragprog.com/titles/msenr/code/foreign_languages/java/sms.xml
http://media.pragprog.com/titles/msenr/code/foreign_languages/java/src/SchemaValidator.java
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=266

41. MiX JAVA AND RUBY CODE <« 267

10 {
try {
final SAXBuilder builder =
new SAXBuilder("org.apache.xerces.parsers.SAXParser", true);
- builder.setFeature(
15 "http://apache.org/xml/features/validation/schema",
true
)
builder.setFeature(
"http://apache.org/xml/features/validation/" +
20 "schema-full-checking",
true
DN
builder.setFeature(
"http://xml.org/sax/features/validation",
25 true
)
builder.setFeature(
"http://xml.org/sax/features/namespaces",
false
30);
builder.setProperty(
"http://apache.org/xml/properties/schema/" +
"external-noNamespaceSchemalocation",
new File(xmlSchemaFileName).toURL().toString()
35);

return builder.build(xm1FiTeName);
}
catch (Exception e) {
System.err.printin("Document is invalid:
40 return null;

}

+ e.getMessage());

}
}

Admittedly, this code looks horrible, but it’s not difficult to understand.
Instead of working with DOM documents and elements directly, we
use JDOM to represent the documents we are interested in. Under the
hood, JDOM uses the Xerces parser to handle all the XML parsing, but
the JDOM classes make it much easier to navigate in the resulting tree.

In line 12, we create a SAXBuilder instance that we’ll use to parse XML
documents. SAXBuilder is a JDOM convenience class and needs a real
XML parser. As announced before, we use the Xerces parser. Then we
set a lot of features and properties describing how we’d like to validate
our documents. You do not have to understand them in detail. Just
believe me that you need them all to validate a document against an
XML schema.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=267

41. MiX JAVA AND RUBY CODE <« 268

After the builder has been configured properly, we actually parse a doc-
ument in line 36. If the document can be parsed without problems, we
return its JDOM representation. Otherwise, an exception is raised, and
we return null in line 40.

In Java that’s all we need, and we could use the following sample pro-
gram to validate an XML document against an XML schema on the
command line:

Download foreign_languages/java/src/SchemaValidator.java

public static void main(String[] args) {
String xmlFile = args[0];
String schemaFile = args[1];
if (isvalid(xmlFile, schemaFile) != null) {
System.out.printin(xmlFile + " is valid.");
} else {
System.out.printin(xmiFile +
}
}

is invalid.");

But that’s not exactly what we want. We want to use the SchemaValidator
class in a Ruby program. Fortunately, Ruby programmers are in a very
privileged situation regarding the integration of Java code, because they
can choose from two mature solutions:

* The Ruby Java Bridge (RJB) uses the Java Native Interface (JNI)
to combine Ruby and Java.

* JRuby is a Java implementation of the Ruby language; it actually
is a Ruby interpreter written in Java.

Both of them have pros and cons, and in this recipe we take a look at
alternative solutions of our original problem. Let’s see how to integrate
the SchemaValidator class using Rjb:

Download foreign_languages/java/rjb_validator.rb

Line 1 require 'rjb’'
classpath = '.:1ib/jdom.jar:1ib/xercesImpl.jar'
Rjb::1oad(classpath)
- SchemaValidator = Rjb::import('SchemaValidator')
5 xml_file, xml_schema_file = ARGV[O .. 1]
doc = SchemaValidator.isValid(xml_file, xml_schema_file)
if doc.nil?
puts "#{xml_file} is invalid."
else
10 puts "#{xml_file} is valid."
puts "Receiver: " + doc.getRootElement.getChild('receiver').getText
end

http://media.pragprog.com/titles/msenr/code/foreign_languages/java/src/SchemaValidator.java
http://media.pragprog.com/titles/msenr/code/foreign_languages/java/rjb_validator.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=268

41. MixX JAVA AND RUBY CODE <« 269

That’s a real textbook example, isn’'t it? First we define the classpath
that has to be used. It points to the current directory, to the JDOM
library, and to the Xerces parser. In line 4, we import the SchemaValida-
for class into the Ruby namespace, and at this point SchemaValidator is
indistinguishable from a regular Ruby class. Then we read the name of
the file to be validated and the name of the XML Schema file to be used
for validation from the command line.

In line 6, we call the isValid() method to check whether our XML doc-
ument actually contains a valid short message. If the result is nil, we
print an error message. Otherwise, we print the receiver’s phone num-
ber by calling some JDOM methods. Yes, getRootElement(), and so on,
are all methods that have been imported from Java libraries automati-
cally. Run the program, and it prints the following to the console:
mschmidt> ruby rjb_validator.rb sms.xml sms.xsd

sms.xml is valid.
Receiver: 987654321

That's all great, but as promised, I'll show you an alternative: JRuby.
As explained earlier, JRuby is a complete rewrite of the original Ruby
interpreter in Java. That means it is a Java program that has to be
installed separately.

You might ask why somebody would do that, but actually the JRuby
interpreter has a lot of advantages over the C version: it’s portable, it’'s
fast, it supports real threads, and it has access to all the byte code that
has been created for the Java Virtual Machine (JVM). Yes, with JRuby
you can use all code that runs on a JVM, and JRuby makes it a breeze
to integrate this code with Ruby:

Download foreign_languages/java/jruby_validator.rb

lnel require 'java'
include_class 'SchemaValidator'

xml_file, xml_schema_file = ARGV[O .. 1]
5 doc = SchemaValidator.is_valid(xml_file, xml_schema_file)
if doc.nil?
puts "#{xml_file} is invalid."

else
puts "#{xml_file} is valid."
10 puts "Sender: " + doc.get_root_element.get_child('sender').get_text
end

That's a JRuby program that integrates our SchemaValidator class. We
have to require the java library, and we have to explicitly include the
classes we’d like to use by calling include_closs() (in Rjo we had to use

http://media.pragprog.com/titles/msenr/code/foreign_languages/java/jruby_validator.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=269

41. MixX JAVA AND RUBY CODE <« 270

import()). From this point, the Java classes and the Ruby code become
indistinguishable again. In line 5, we call SchemaValidator's is_valid()
method. But wait—the method was named isValid(), wasn’t it? That’s
one of JRuby’s services: you can use the Java naming style, but you
can also use the Ruby conventions. Nice, eh?

We use this feature again in line 10: all JDOM method calls use the
Ruby naming style, and they are automatically converted to the right
Java methods. We could have also used the following version:

puts "Receiver: + doc.getRootElement.getChild('sender') .getText

Then our program would have looked exactly like its Rjb counterpart.
Here’s the output of a test run:
mschmidt> jruby jruby validator.rb sms.xml sms.xsd

sms.xml 1is valid.
Sender: 12345678

As you see, combining Java and Ruby code is seamless, and such
hybrid approaches may well be the future of programming. You can
write critical system code that has to be executed fast in a static lan-
guage like Java, but your application code and your domain-specific
languages can be written in a dynamic language like Ruby.

| Discussion | N

Now that you know two excellent Java integration technologies, you
might ask yourself which one you should use. As often, the answer is
that it depends.

Rjp comes as a RubyGem and can be integrated into your project within
a minute. If you are in the middle of a Ruby project and urgently need
some functionality that you can find only in Java, Rjb is an excellent
choice (see Recipe 42, Use RMI Services, on the following page for an
example). But it has some serious shortcomings and does not support
multithreading, for example. Hence, you cannot integrate all Java code
such as the Swing library.

If you know up front that an essential part of your application will con-
sist of Java code, you should take a look at JRuby. JRuby actually is a
good candidate for becoming Ruby’s most popular platform, because it
is actively supported by Sun Microsystems and provides a lot of conve-
nient goodies. For example, it supports Ruby method name conventions
in Java classes, turns Java iterators automatically into each() methods,
and is an excellent platform for Rails projects.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=270

Recipe 42

Use RMI Services

J Problem \

During the late 90s many companies created a lot of Java services using
Java Remote Method Invocation (RMI). Today there are better alterna-
tives, but at that time it was a reasonable choice. Most of the services
have been replaced already by REST and SOAP servers, but some crit-
ical components still can be used only by RMI clients, which usually
have to be written in Java.

There is no native RMI binding for Ruby, but in this recipe you’ll learn
how to overcome this shortcoming so you can use RMI services from
your Ruby and Rails applications.

J Ingredients |

e Install the Ruby Java Bridge (RJB):!©

$ gem install rjb

J Solution \

The service we're going to use is the company’s central user account
manager. Its interface looks as follows:

Download foreign_languages/rmi/src/com/example/AccountManager.java

package com.example;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface AccountManager extends Remote {
User authenticate(
String username,
String password) throws RemoteException;

}

It's a simple interface that consists of a single method named
authenticate(). It expects a username and a password, and it returns
a User object if a user could be authenticated successfully. Otherwise,
it returns null.

10. http://rjb.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/foreign_languages/rmi/src/com/example/AccountManager.java
http://rjb.rubyforge.org/

42. USE RMI SERVICES

The User class looks like this:

Download foreign_languages/rmi/src/com/example/User.java

package com.example;

public class User implements java.io.Serializable {
public User(String forename, String surname) {
this.forename = forename;
this.surname = surname;

public String getForename() {
return this.forename;

public String getSurname() {
return this.surname;

public String toString() {
return this.forename +

+ this.surname;

private String forename;
private String surname;

A real User class would have a lot more attributes, but for demon-
stration purposes the forename and surname are sufficient. Because
we’d like to transfer User objects using RMI, we have to implement the
java.io.Serializable interface. Let’s create an account management server:

Download foreign_languages/rmi/src/com/example/Server.java

package com.example;

import java.rmi.registry.Registry;

import java.rmi.registry.LocateRegistry;
import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

public class Server implements AccountManager {
public User authenticate(String username, String password) {
User user = null;

if (username != null && username.equals("maik"))
if (password != null && password.equals("tOp$ecret"))
user = new User("Maik", "Schmidt");

return user;

public static void main(String args[]) throws Exception {
AccountManager manager =

http://media.pragprog.com/titles/msenr/code/foreign_languages/rmi/src/com/example/User.java
http://media.pragprog.com/titles/msenr/code/foreign_languages/rmi/src/com/example/Server.java
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=272

42. USE RMI SERVICES <273

(AccountManager)UnicastRemoteObject.exportObject(
new Server(), 0
);
Registry registry = LocateRegistry.getRegistry();
registry.bind("AccountManager", manager);
System.out.println("Started Account Manager.");

}

Our current implementation of the authenticate() method is pretty sim-
ple, but we do not need anything more sophisticated at the moment. In
the main() method we only create a new Server object and bind it to the
local RMI registry so clients can find it by its name (AccountManager)
We compile the server and all the other classes we need as follows:

mschmidt> mkdir classes
mschmidt> javac -d classes src/com/example/:.java

Then we start the RMI registry and the server:

mschmidt> cd classes

mschmidt> rmiregistry &

mschmidt> java com.example.Server
Started Account Manager.

It’s important to change to the classes directory first, because otherwise
the RMI registry would not find our classes. Now that we have the server
up and running, we need a client:

Download foreign_languages/rmi/src/com/example/Client.java

package com.example;

import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;

public class Client {
public Client() throws Exception {
Registry registry = LocateRegistry.getRegistry(Q);
this.accountManager =
(AccountManager)registry.lookup("AccountManager");

}

public User authenticate(
String username,
String password) throws Exception

{

return this.accountManager.authenticate(username, password);

}

private AccountManager accountManager;

http://media.pragprog.com/titles/msenr/code/foreign_languages/rmi/src/com/example/Client.java
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=273

42. USE RMI SERVICES - 274

The Java client looks up the AccountManager object in the local RMI
registry and delegates all requests to it. We'll integrate it into a small
Ruby program now using Rjb:

Download foreign_languages/rmi/authenticate.rb

Line 1 require 'rjb’'
classpath = 'classes'
Rjb::load(classpath)
Client = Rjb::import('com.example.Client"')
5 client = Client.new

username, password = ARGV[O .. 1]
user = client.authenticate(username, password)
puts user ? user.toString : "Could not authenticate #{username}."

Rjb provides access to Java code via the Java Native Interface (JNI). In
line 3, we load the Java Virtual Machine, passing it our class path. Then
we obtain a reference to the Client class in the com.example package.
Rjp automatically maps it to a Ruby class, so we can instantiate an
object and invoke its authenticate() method. The resulting User object
gets mapped, too, and we check the result in the last line. A sample
run looks as follows:

mschmidt> ruby authenticate.rb maik tOp\$ecret

Maik Schmidt

mschmidt> ruby authenticate.rb maik wrong_password
Could not authenticate maik.

Works like a charm, doesn’t it? Rjpb maps Java code to Ruby, and vice
versa, quite naturally, and it’s a perfect solution if you have to reuse
existing Java code of reasonable complexity. Because of Ruby’s thread-
ing model, though, it’s not possible to use Java code that uses Java’s
native threads.

http://media.pragprog.com/titles/msenr/code/foreign_languages/rmi/authenticate.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=274

Mix Ruby and .NET with
IronRuby

Problem
,_J L \

You've developed a lot of software on the Microsoft .NET platform, and
you’'d like to use Ruby for a new application. The application has to use
some of the libraries you've created over the years, and it will depend
on some of the .NET core classes. In this recipe, you'll learn it all.

| Ingredients | N

¢ On RubyForge!! you'll find a binary distribution of IronRuby!2
that you can unzip and copy to your Programs folder. Don’t for-
get to add ironruby/bin to your path.

¢ Download and install Microsoft Visual C# Express Edition.!3

e Download and install an Oracle database server or at least an
Oracle client!'# for Microsoft Windows.

Solution
,_J L \

.NET is a flexible platform when it comes to new languages. While Java
is a platform-independent language, .NET is a language-independent
platform, meaning code from different languages can be combined arbi-
trarily. At least that is true for all programming languages that can be
compiled to Common Language Runtime (CLR) byte code. In principle,
the CLR is a virtual machine similar to the JVM.

IronRuby is an implementation of a Ruby interpreter written in C#, and
it targets the CLR. It allows you to mix Ruby code with any .NET code,
no matter whether it has been written in C#, VB .NET, or any other
CLR language. At the time of this writing, IronRuby is in an early stage
of development, so it is not feature-complete and still has bugs and

11. http://ironruby.rubyforge.org/

12. http://ironruby.net/

13. http://www.microsoft.com/Express/

14. http://www.oracle.com/technology/software/products/database/

http://ironruby.rubyforge.org/
http://ironruby.net/
http://www.microsoft.com/Express/
http://www.oracle.com/technology/software/products/database/

Line 1

20

43. Mix RuBY AND .NET WITH IRONRUBY

quirks. But it’s mature enough to start some experiments, and it will
certainly become more stable within a short period of time.

In this recipe, we’ll use IronRuby to implement a small report genera-
tor that reads some statistical information from an Oracle database (it
will work similarly on other database systems such as Microsoft SQL
Server, for example) and outputs them in a real Microsoft Windows win-
dow (see Figure 9.1, on page 282).

The database table we create a report for contains orders and is defined
as follows:

Download foreign_languages/net/orders.sql

CREATE TABLE orders (

id NUMBER(10) NOT NULL PRIMARY KEY,
product VARCHAR2 (100),

state VARCHAR2 (30),

created_at DATE

)

Orders have an ID, the name of the product that has been ordered, a
state, and a creation timestamp. The state can be open or closed. To
create the report, we use some C# code:

Download foreign_languages/net/Report/StandardReport.cs

using System;
using System.Data.OracleClient;

namespace Report {
public class ReportData {
public 1int totalOrders;
public int closedOrders;

}

public class StandardReport {
public StandardReport(string user, string password) {
connection = new OracleConnection();
connection.ConnectionString = GetConnectionString(user, password);
connection.Open();

}

public ReportData Create() {
ReportData reportData = new ReportData();
OracleCommand command = connection.CreateCommand();
command.CommandText = "select count(*) from orders";
OracleDataReader reader = command.ExecuteReader();
reader.Read();
reportData.totalOrders = reader.GetInt32(0);

http://media.pragprog.com/titles/msenr/code/foreign_languages/net/orders.sql
http://media.pragprog.com/titles/msenr/code/foreign_languages/net/Report/StandardReport.cs
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=276

43. Mix RUBY AND .NET WITH IRONRUBY 277

command.CommandText =

25 "select count(*) from orders where state='closed'";
reader = command.ExecuteReader();
reader.Read();
reportData.closedOrders = reader.GetInt32(0);
command.Dispose();

30 return reportData;

}

private string GetConnectionString(string user, string password) {
return "User ID=" + user + ";Password=" + password +
35 ";Unicode=True";

}

private OracleConnection connection;

- }

0 }

If you know C++ or Java, you should be able to understand the pro-
gram. First it imports the System and System.Data.OracleClient names-
paces. Then it defines two classes (named ReportData and Standard-
Report) in the Report namespace. ReportData is a simple storage class
that contains all the statistical information we need, which includes
the total number of orders and the number of orders that have been
closed already.

In line 11, we define the constructor for StandardReport objects. It takes
the username and the password that are needed for connecting to the
database, and it also establishes a connection using the OracleConnec-
tion class.

The Create() method beginning in line 17 contains the main business
logic of our report generator. It executes two SQL statements to deter-
mine the total number of orders and the number of closed orders and
stores them in a ReportData object. The GetConnectionString() method at
the end of the program generates a connection string as needed by the
OracleClient.

We did not care much about resource management, and we did not
close the resources we used to make the program shorter, but all in all
this code should look familiar if you've ever written database code in
Java, C++, or C#.

To make the code available to other programs on the .NET platform, it
has to be converted to a .NET assembly (DLL). Doing so on the com-
mand line is pretty tedious, so I recommend using Microsoft Visual

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=277

43. Mix RUBY AND .NET wiITH IRONRUBY <« 278

Studio Edition for C# for this task. Create a new class library project
(call it Report), add the previous code, and add a reference to Sys-
tem.Data.OracleClient. In the project properties, go to the Signing tab,
and choose the “Sign the assembly” option. Afterward, build the project,
and you'll find a file named Report.dil in the bin\Release directory belong-
ing to the project.

Let’s use the DLL in our first IronRuby program:

Download foreign_languages/net/sample.rb

require 'Report.dll’

sr = Report::StandardReport.new('maik', 'tOp$ecret')
report_data = sr.create

puts "Total orders: #{report_data.totalOrders}"

The most important feature in this short program is that we can directly
import the .dll file with a require() statement. Afterward, we can treat the
imported C# classes as if they were regular Ruby classes.

Run the program, and its output will look like this (r is a shortcut for
the IronRuby interpreter):

c:\mschmidt> ir sample.rb
Total orders: 27

Easy, isn’t? But before we try more complicated things, we need to take
another look at the DLL import, because there are several alternatives
for embedding a DLL into an IronRuby program. If the .dll file is in
IronRuby’s library path, you can require it directly as we've done it
here. But, usually, library assemblies are installed globally, and then
you have to specify it in more detail. In our case, the require() statement
would look like this:

require 'Report, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=44371d941e7ae83f"'

You have to pass the following attributes:
¢ The assembly’s name (without a file extension).
* The assembly’s version.

* A culture, that is, the locale of the assembly. It should be neutral if
possible.

* A 64-bit hash value of the public key belonging to the private key
that has been used to sign the assembly.

http://media.pragprog.com/titles/msenr/code/foreign_languages/net/sample.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=278

Line 1

43. Mix RuBY AND .NET WITH IRONRUBY

To determine the public key token of a DLL, use the sn (strong name)
tool:

c:\mschmidt> sn -T Report.dll

Microsoft (R) .NET Framework Strong Name Utility Version 3.5.21022.8
Copyright (c) Microsoft Corporation. All rights reserved.

Public key token is 44371d941le7ae83f

If you want to install the DLL in the global assembly cache, use gacutil:

c:\mschmidt> gacutil /i Report.dll

Uninstalling it works similarly (do not use the .dll in this case):

c:\mschmidt> gacutil /u Report

Now we’ll concentrate on our original problem and build a small appli-
cation on top of our C# library. First we put the username and the
password needed to log in to the database into an XML configuration
file that looks as follows:

Download foreign_languages/net/config.xml

<?xm1 version='1.0"' encoding="utf-8'?>
<config>
<database>
<user>maik</user>
<password>tOp$ecret</password>
</database>
</config>

The following statements parse and process the XML file:
Download foreign_languages/net/report.rb

require 'mscorlib’
require 'System, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089'
require 'System.Xml, Version=2.0.0.0,
Culture=neutral,PublicKeyToken=b77a5c561934e089'

Xml = System: :Xml
doc = Xml::XmlDocument.new
doc.load('config.xml1")

def doc.get_first_element(name)
get_elements_by_tag_name(name).item(0).inner_text
end

user = doc.get_first_element('user')
password = doc.get_first_element('password')

http://media.pragprog.com/titles/msenr/code/foreign_languages/net/config.xml
http://media.pragprog.com/titles/msenr/code/foreign_languages/net/report.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=279

43. Mix RUBY AND .NET wiITH IRONRUBY < 280

We load all assemblies we need, and in line 7 we define an abbreviation
for the System:Xml namespace (that is a trick that we will use often).
Then we create an XmiDocument instance and call its load() method
to load and parse the config.xml file. Experienced .NET developers will
notice that the method should be called Load() instead (method names
start with an uppercase letter by convention on the .NET platform), but
IronRuby supports both the .NET and Ruby naming conventions for
classes and methods.

Then, in line 11, we do something really interesting and define a sin-
gleton method named get_first_element() on the doc object. We know
that we have to extract two text elements from the configuration file
(<user> and <password>), and we know that XmlIDocument has only
a GetElementsByTagName() method that always returns a whole list of
elements, which is not what we want. We define our own method that
does exactly what we want: it searches for elements that have a certain
name, takes the first one (we know there’s only one), and extracts its
text content. Please note that gef_first_element() is a Ruby method that
has been added to a class written in C#!

Extracting the username and password is easy now, so we can use
them to create the report data:

Download foreign_languages/net/report.rb

require 'Report.dil’

StandardReport = Report::StandardReport
ReportData = Report::ReportData

class ReportData
def to_s
"total: #{totalOrders}/closed: #{closedOrders}"
end
end

sr = StandardReport.new(user, password)
report_data = sr.create
puts report_data

That’s similar to our first sample, but this time we have reopened the
ReportData to add a better to_s() method and to show off a bit.

As promised, we’ll show the report data not only on the console but in
a fancy and colorful window.

http://media.pragprog.com/titles/msenr/code/foreign_languages/net/report.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=280

43. Mix RUBY AND .NET wiITH IRONRUBY <« 281

Here’s the code:
Download foreign_languages/net/report.rb

Line 1 require 'PresentationFramework, Version=3.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35"'
require 'PresentationCore, Version=3.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35"'

Window = System::Windows: :Window

Application = System::Windows::Application

Button = System::Windows::Controls::Button

StackPanel = System::Windows: :Controls::StackPanel
10 Label = System::Windows::Controls::Label

Thickness = System: :Windows: :Thickness

window = Window.new

window.title = 'Fancy .NET Report'
15 stack = StackPanel.new

stack.margin = Thickness.new 15

window.content = stack

20 "Here's our Report:",
"Total orders: #{report_data.totalOrders}",
"Closed orders: #{report_data.closedOrders}"
].each do |message|
label = Label.new
25 Tlabel.font_size = 24
Tlabel.content = message
stack.children.add Tabel
end

30 button = Button.new
button.content = 'Close’
button.font_size = 24
button.click { |sender, args| Application.exit }
stack.children.add button
35 app = Application.new
app.run window

Admittedly, the first lines look a bit scary, but we load only the assem-
blies from the Windows Presentation Foundation (WPF) framework that
we need, and we define abbreviations for all classes that we’ll use.

The fun stuff begins in line 13 where we create a new window that has
a stack layout (using this layout, all GUI elements that are added to
the window pile up to a stack). Then we print three lines of text by
creating a new Label object for each of them. In line 27, the labels are

http://media.pragprog.com/titles/msenr/code/foreign_languages/net/report.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=281

43. Mix RUBY AND .NET wWITH IRONRUBY <« 282

M Fancy .MET Report E|@@

Here's our Report:
Total orders: 27
Closed orders: 12

Close

Figure 9.1: An IronRuby .NET application

added to the stack layout. A close button is defined beginning in line
30, and its event handler is specified in line 33. Event handlers get
a reference to the event sender and several arguments describing the
event in more detail, but we ignore them and stop the application. The
button gets added to the stack, too, and at the end we create and start
the application shown in Figure 9.1.

Despite the ugly require statements and namespace abbreviations, this
is pretty nice and expressive code. Although IronRuby is at an early
stage of development, it’s already a useful tool and will certainly become
an interesting alternative for Ruby developers who work on the Win-
dows platform anyway.

| Discussion | N

If you want to write Ruby programs only on the Windows platform, you
can use the One-Click Installer for Windows, !> but this means you do
not have access to the wonderful world of the whole .NET API in your
Ruby programs.

The biggest problem with IronRuby at the moment of this writing is
that it is not complete yet. Important libraries are missing (Rails makes
good progress but is far from being mature enough to use it in pro-
duction), and it will have to catch up with Ruby 1.9. But IronRuby has

15. http://rubyinstaller.rubyforge.org/

http://rubyinstaller.rubyforge.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=282

43. Mix RUBY AND .NET wiITH IRONRUBY <« 283

great momentum, and chances are good that it will become another
full-blown Ruby platform.

Also See
,_J L \

® See Rails for .NET Developers |] to learn more about Ruby
and Rails on .NET.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=283

Chapter 10

Maintain and Administer

Developing software in and for enterprise environments is different
from most other approaches. Usually, enterprise developers work in
big teams, they often have to reuse proprietary libraries and applica-
tions, and they have to work closely together with the operations and
QA departments.

There are even more differences: in contrast to desktop applications, for
example, many enterprise applications don’t have a user interface and
run in the background as daemons or services. Depending on the oper-
ating system, it can be tricky to implement such background processes
yourself, so in Recipe 44, Turn Your Code into Daemons and Services,
on page 286, you'll learn to automate this task.

Another big challenge when creating enterprise software solutions is
not only to write programs but also to operate them. In contrast to ordi-
nary desktop applications, enterprise software often has to run 24/7,
and outages usually cost a lot of money. It’s inevitable that you have
to monitor critical components and act appropriately if something goes
wrong. In Recipe 45, Monitor Your Applications with Monit, on page 295
and in Recipe 46, Let god Take Care of Your System, on page 301, you'll
learn how to monitor your Ruby applications, how to restart them auto-
matically when they crash, and how to send notifications in case of
problems.

CHAPTER 10. MAINTAIN AND ADMINISTER YOUR APPLICATIONS < 285

Many companies have lots of standards for all kinds of things: develop-
ers have to name objects according to a certain scheme, web applica-
tions have to follow a particular style guide, and so on. To make your
life simpler, it’s a good idea to encapsulate as many of these standards
in reusable components, so in Recipe 47, Create Plug-ins for Common
Tasks, on page 306, you'll learn how to create your own Rails plug-ins,
and Recipe 48, Avoid Code Duplication with Generators, on page 311
shows you how to create your own generators.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=285

Turn Your Code into Daemons
and Services

Problem
,_J L \

In an enterprise environment you often have to create daemon pro-
cesses,! which are processes running without a controlling terminal
in the background (HTTP servers are a good example of this class of
processes). Although it’'s not rocket science to turn a process into a
daemon manually, it’s still complicated enough that it’s better to let it
be done automatically by a library.

In this recipe, you'll learn how to turn a Ruby application into a dae-
mon on Unix-like operating systems or into a service on the Microsoft
Windows platform (that’s what daemons are called on Windows).

J Ingredients | \

¢ If you want to run daemons on a Unix-like operating system,
install the daemons gem:?

$ gem install daemons

e In a Microsoft Windows environment, install the win32-service
gem:3

$ gem install win32-service

Solution
,_J L \

Before we turn a process into a daemon process, we need a small test
application. The following server observes a directory for new files; it
walits for new orders encoded in XML. The input filenames must start
with the prefix order, and they must have the extension .xml.

1. http://en.wikipedia.org/wiki/Daemon_%28computer_software%29
2. http://daemons.rubyforge.org/
3. http://win32utils.rubyforge.org/

http://en.wikipedia.org/wiki/Daemon_%28computer_software%29
http://daemons.rubyforge.org/
http://win32utils.rubyforge.org/

44. TURN YOUR CODE INTO DAEMONS AND SERVICES < 287

Download administration/daemons/order_import.rb

lnel require 'Togger'

working_dir = ARGV[O] || '/tmp/orders'
interval = (ARGV[1] || 10).to_i

5 Togger = Logger.new File.join(working_dir, 'order_import.log')
logger.info 'Started order import...'

Tloop do
orders = Dir["#{working_dir}/order=.xml1"]
10 orders.each do |filename|

logger.info "Processing #{filename}."

Do something with order file...

15 File.delete(filename)
end
sleep interval
end

At the beginning of the program, we define a couple of variables: work-
ing_dir points to the directory where we expect new orders to arrive,
interval defines how often we check the working directory for new files
(the default is ten seconds), and logger references a Logger object that
we use to log the program’s activity to a file. Log files are an inevitable
tool for daemons, because without them it’s nearly impossible to check
whether the daemon actually does what it should do.

Then we start an endless loop, and in line 9, we read a list of all new
order input files from the working directory. We iterate over the files,
process them (actually we do nothing with them, because that’s not
important for what we want to achieve), and at the end the files are
deleted so they don’t get processed twice. All important events are writ-
ten to the log file, and in line 17, the program sleeps for the amount of
seconds defined.

So far, so good. We can start the program and feed it with new orders
by copying .xml files to its input directory. But it would run in the fore-
ground, and our goal is to turn it into a daemon running in the back-
ground. Here’s where the Daemons library comes into play, because
it has some convenient mechanisms for creating and controlling dae-
mon processes. Add the following lines at the beginning of the current
program:

Download administration/daemons/instant_daemon.rb

require 'daemons'
Daemons.daemonize :backtrace => true

http://media.pragprog.com/titles/msenr/code/administration/daemons/order_import.rb
http://media.pragprog.com/titles/msenr/code/administration/daemons/instant_daemon.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=287

44 . TURN YOUR CODE INTO DAEMONS AND SERVICES < 288

That's all. If you start the program, it will automatically detach itself
from the current terminal and will run in the background. The method
that makes all this possible is daemonize(). It accepts an options hash
and currently supports two optional options. We use the backirace
option, because it makes debugging a daemon a lot easier. When the
backtrace option is set, the daemon writes a backtrace of the last excep-

tions to pid/(app_name).log. If onfop is set to frue, the program is not
daemonized, which is also useful when debugging.

You should call daemonize() as early as possible; otherwise, you'd prob-
ably get some surprising results. If you daemonize the current program
after the Logger instance has been initialized, for example, the logger
can be invalid, because its I/O stream would have been closed (dae-
mons usually close all streams that are not needed on startup). In any
case, you have to make sure that all file paths you're using are absolute
paths, because a daemon process usually changes its current working
directory to /.

Creating a daemon process with the Daemons library is trivial, but usu-
ally the creation is only a small step. After the daemon has been cre-
ated, you need some tools to stop and restart it. Nearly all popular dae-
mons use the same trick: when the process starts, it writes its process
ID (PID) to a file with the extension .pid. An external script uses this file
to control the daemon. For example, it could pass the file’s content to
the kil command to stop the daemon.

The Daemons library has excellent support for these mechanisms, and
the only thing you have to do is create a simple control script:

Download administration/daemons/order_import_control.rb

require 'daemons'
Daemons.run(File.join(File.dirname(__FILE__), 'order_import.rb'))

Now you can control the order import process with the following com-
mands (while the daemon is running, you find its PID in a file named
order_import.rb.pid):

$# Start the process in the background:
$ ruby order_import_control.rb start
$# Restart the process:

$ ruby order_import_control.rb restart
$# Stop the process:

$ ruby order_import_control.rb stop

$# Start the process in the foreground:
$ ruby order_import_control.rb run

http://media.pragprog.com/titles/msenr/code/administration/daemons/order_import_control.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=288

44. TURN YOUR CODE INTO DAEMONS AND SERVICES <« 289

4 N

Process.daemon on Ruby 1.9

In Ruby 1.9 the Process class has a new class method named
daemon(stay_in_dir=false keep_stdio_open=false). It “daemonizes”
the current process and puts it into the background. Like a
good daemon, it sets the current working directory to / unless
stay_in_diir is frue. In this case, it stays in the current directory. Stan-
dard input, output, and error are redirected to /dev/null. If you
do not want this, set keep_stdio_open to true.

This method is really convenient, but it is not available on all
platforms, so you should use it only if your platform is supported
and you do not want to migrate your application to other plat-
forms.

. J

The run option is useful when debugging a daemon process. You can
pass command-line arguments to the original script after a double
hyphen. The following statement starts the order import process with
the /tmp working directory and a sleep interval of five seconds:

$ ruby order_import_control.rb start -- /tmp 5

That's all fine when you're working on some kind of Unix, but it doesn’t
help you much on a Microsoft Windows box. Here we need completely
different mechanisms that are provided by the win32-service library.

Microsoft Windows offers a life-cycle API for services and controls them
using a special management console. This is a graphical tool that can be
used to start, stop, and pause services, for example. This is completely
different from Unix where every developer has to create their own script
to control new daemon processes.

win32-service brings Window’s service API to Ruby, so here’s the order
import process implemented as a Windows service:

Download administration/daemons/win/order_import.rb

lnel require 'Togger'
require 'win32/daemon’
include Win32

5 class OrderImportService < Daemon
def initialize(opts = {})
super()
@opts = opts
end

http://media.pragprog.com/titles/msenr/code/administration/daemons/win/order_import.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=289

44. TURN YOUR CODE INTO DAEMONS AND SERVICES <290

def service_init

@interval = @opts[:interval] || 10
@working_dir = @opts[:working_dir] || 'c:/orders'
@logger = Logger.new(@opts[:logfile] || 'c:/order_import.log')
15 @logger.info 'Starting order import...'
end

def service_main
@logger.info 'Order import has been started.'
20 while running?
orders = Dir["#{@working_dir}/order=.xm1"]
orders.each do |filename|
@logger.info "Processing #{filename}."

25 # Do something with order file...

File.delete(filename)

end
sleep(@interval)
30 end
@logger.info 'Order import has been stopped.'
end
end
35 if __FILE__ == $0

order_import_service = OrderImportService.new
order_import_service.mainloop
end

The service does not differ much from the Unix version, but we had to
define a class named OrderimportService that is derived from Daemon.
Daemon handles all Windows specifics behind the scenes, so we only
have to provide the life-cycle management methods our service needs.
In our case, we have two of them: service_init() and service_main().

service_init() is called when the service is started and can be used to
initialize data and files that are needed by the service. We define some
member variables including the log file, which is just as important on
Windows as it is on Unix.

service_main() implements the service’s main logic and contains the code
that will be running constantly after the service has been started. It
looks nearly exactly like the former version; there are only two dif-
ferences: we use member variables now instead of regular variables,
because we are in a class now. More important, we use Daemon’s run-
ning?() method in line 20 to check whether the service is still running.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=290

44 . TURN YOUR CODE INTO DAEMONS AND SERVICES <« 291

At the end of the program, we actually start the service, and in line 37,
we call another Daemon method named mainloop() that registers the
service so it can wait for new events.

Before a service can be started, it has to be installed. Service manage-
ment unsurprisingly is done by the Service class, and we use it to write
a method for installing Ruby services more or less automatically:

Download administration/daemons/win/install_service.rb

require 'win32/service’
include Win32

def install_service(name, display_name, executable)
Service.create(
name,
nil,
:display_name => display_name,
:binary_path_name => 'ruby ' + File.expand_path(executable)

)
puts "Service #{name} has been installed."
end

We need only the class method create(), which expects a service’s log-
ical name, the name of the host it should run on, and an options hash
containing the service’s properties. We set the host to nil (it defaults to
localhost), and we set only two properties (there are many more). With
display_name, we specify the string that will be displayed in the sys-
tem’s service management console, and binary_path_name points to the
service’s executable. Because our service is written in Ruby, we build
a string that executes the Ruby interpreter and passes it the absolute
path of the script we want to turn into a service. The following state-
ment installs the OrderimportService:

Download administration/daemons/win/install_service.rb

install_service(
'order_import',
'Order Import',
'order_import.rb'

)

After you have installed the service, it can be managed like any other
Windows service with the management console you can see in Fig-
ure 10.1, on the following page. Click Start, and you will find a log
file at c:\order_import.log.

http://media.pragprog.com/titles/msenr/code/administration/daemons/win/install_service.rb
http://media.pragprog.com/titles/msenr/code/administration/daemons/win/install_service.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=291

44 . TURN YOUR CODE INTO DAEMONS AND SERVICES <292

4 Services E] @
file Action Yiew Help
- = (o I T
Services (Local) @ Services (Local)
Order Import jame | Description | Status | Startup Type | Loda
“@yLogical Disk Manage... Configures... Manual Loc
Start the service Transmits ... Disabled Loc
S8Ms Software Shado... Manages s... Manual Lo
BamysqL Started Automatic Loc
et Logon Supports p... Manual Lot
S NetMeeting Remote.., Enables an... Manual Loc
“Network Connections Manageso... Started Manual Loc
DDE Frovides ... Disabled Lot
DDEDSDM ManagesD... Disabled Lo
Location A... Collectsan... Started Manual Lot -
E Provisionin... Manages X... Manual Lot
SRNT LM Security Sup... Providesss... Manual Loc—
S 0ffice Source Engine Speichert I... Manual Lot
4@y Order Import Manual Loc
2 Logsa... Collects pe... Manual el
“4Plug and Play Enablesac... Started Automatic Loc
yPortable Media Seri... Retrievest.., Manual Loc
“Print Spooler Loads files ... Started Automatic Loc
“Protected Storage Provides pr... Started Automatic Loc
Qo5 RSP Providesn... Manual Log,
ﬂ(|H""h B snaid /-..;‘.‘.. RAeal ‘\)..
Extended A Standard /

Figure 10.1: Microsoft Windows Service console

Sometimes you might want to manage your services yourself, and the
Service class lets you do whatever you want with a service. In the fol-
lowing program, we play a bit with our order import service:

Download administration/daemons/win/service_management.rb

Line 1 require 'win32/service’
- include Win32

- def wait_for_state(state)
5 print "Waiting for state '#{state}'"
- i=0
- while Service.status('order_import').current_state != state
- i+=1
- print '." if i % 1000 ==
10 end
- puts
- end

- puts "Display name: #{Service.get_display_name('order_import')}"

- Service.configure(

- 'order_import',

- nil,

- :display_name => 'Order Import 2008'
20)

http://media.pragprog.com/titles/msenr/code/administration/daemons/win/service_management.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=292

44 . TURN YOUR CODE INTO DAEMONS AND SERVICES <293

Service.start('order_import')
wait_for_state('running')
puts 'Service has been started.'

25 Service.pause('order_import"')
wait_for_state('paused')
puts 'Service has been paused.'

Service.resume('order_import")
30 puts 'Service has been resumed.'
wait_for_state('running')

Service.stop('order_import')
wait_for_state('stopped')
35 puts 'Service has been stopped.'

Service.delete('order_import')
puts 'Service has been uninstalled.'

All methods do exactly what their names promise, and nearly all expect
the service’s name as the first argument with only one exception: the
configure() method gets the same arguments as creatfe(). In line 14, we
demonstrate how to read a service’s display name, and in the wait_for_
state() method you can see how to wait for a certain service state. The
program’s output looks like this:

C:\tmp> ruby service_management.rb

Display name: Order Import

Waiting for state 'running'

Service has been started.

Waiting for state 'paused'

Service has been paused.

Service has been resumed.

Waiting for state 'running'

Waiting for state 'stopped'...........c.iiiina...

Service has been stopped.
Service has been uninstalled.

As you can see, it can take a long time to stop a service.

All in all, Ruby’s support for daemons and services is excellent. No mat-
ter which platform you’re working on, you will always find a convenient
solution quickly if you need to put some code into the background. The
biggest problem still is that it’s pretty hard to write portable services
that will work on any platform, but that’s not specific to Ruby.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=293

44 . TURN YOUR CODE INTO DAEMONS AND SERVICES <294

Also See
,_J L \

¢ After you have put a process into the background, it's easy to
forget about it. That's OK as long as the process does what it’s
supposed to do and as long as it starts automatically after a sys-
tem reboot. But when working with daemons, you shouldn’t be
too confident (read some of Edgar Allan Poe’s books if you don’t
believe me), so take a look at Recipe 45, Monitor Your Applications
with Monit, on the next page or Recipe 46, Let god Take Care of
Your System, on page 301 to learn how to check whether your
processes are working properly.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=294

Monitor Your Applications
with Monit

Problem
,_J L \

You've written a lot of Ruby programs that have become vital parts
of your company’s infrastructure. Although you gave your best, some-
times one of them crashes and has to be restarted. As a pragmatic
programmer, you decided to monitor them so they get restarted auto-
matically when they crash. In this recipe, you'll learn about monit, a
monitoring tool that will do all the heavy lifting for you.

| Ingredients | N

e Install monit,* (if there’s a more recent version, use that instead of
4.10.1):

$ wget http://www.tildeslash.com/monit/dist/monit-4.10.1.tar.gz
$ tar xzvf monit-4.10.1.tar.gz

$ cd monit-4.10.1

$./configure && make && sudo make install

Solution
,_J L \

Monitoring processes on a Unix-like system usually can be reduced to
the same techniques:

* The process to be monitored can be started and stopped using
different command-line options or different scripts, and it writes
its process ID (PID) to the file system.

* A process monitor reads the PID files and looks up the current
status of the processes to be monitored at fixed intervals from the
process list.

In this recipe, we take a look at a tool that follows these principles
and that can be used to monitor arbitrary processes: monit. We’ll use it
to observe the order import daemon we wrote in Recipe 44, Turn Your
Code into Daemons and Services, on page 286, because it fulfills the

4. http://www.tildeslash.com/monit/

http://www.tildeslash.com/monit/

45. MONITOR YOUR APPLICATIONS WITH MONIT

prerequisites we defined earlier: the order import daemon is controlled
by a script named order_import_control.rb that accepts a start option and
a stop option. It also writes the PID of the current order import daemon
to the file system.

monit is a popular, all-purpose process monitor that is written in C and
that has a powerful configuration language. Here’s the configuration
file that monitors nearly every important aspect of our system and of
the order import daemon:

Download administration/monitoring/monitrc.conf

lnel set daemon 60
set logfile '/tmp/monitoring.log'
set mailserver smtp.example.com username "sysadm" password "tOp$ecret"”
set alert admin@example.com { nonexist, timeout } with mail-format {
5 from: monit@example.com
}
set alert boss@example.com only on { timeout }
set httpd port 2812 and
use address localhost
10 alTow Tocalhost
allow admin:monit

Check the system's status:
check system localhost
15 if loadavg(lmin) > 4 then alert
if loadavg(5min) > 2 then alert
if memory usage > 75% then alert
if cpu usage(user) > 70% then alert
if cpu usage(system) > 30% then alert
20 if cpu usage(wait) > 20% then alert

Check status of order import daemon:
check process order_import with pidfile /tmp/order_import.rb.pid
start program "/tmp/order_import_control.rb start"
25 stop program = "/tmp/order_import_control.rb stop"
if cpu > 60% for 2 cycles then alert
if cpu > 80% for 5 cycles then restart
if totalmem > 100.0 MB for 5 cycles then restart
if loadavg(5min) greater than 8 for 6 cycles then stop
30 if 3 restarts within 5 cycles then timeout
group server

Let’s dissect it line by line:

* Line 1 tells monit to start as a daemon and to check all monitored
processes every 60 seconds (this monitoring interval is called a
cycle).

http://media.pragprog.com/titles/msenr/code/administration/monitoring/monitrc.conf
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=296

45. MONITOR YOUR APPLICATIONS WITH MONIT < 297

¢ In line 2, we configure a log file monit uses to log important events.
Instead of writing to a log file, you can also send events to the
syslog daemon.

* monit is able to send emails in case of important events, so in line
3 we configure the mail server to be used.

* For every monitoring system it’s vital to specify who gets notified
when certain errors occur. monit is no exception, so we define two
email recipients in lines 4 and 7. The first recipient gets an email
whenever a service crashes or does not respond any longer. The
second recipient gets an email only in the case of timeouts. monit
emails always have the same layout, but you can configure them
in nearly any way you like. For example, we set the from header to
monit@example.com.

* To give you a quick and comprehensive overview of your processes’
status, monit comes with an integrated HTTP server. Its configu-
ration starts in line 8, and we want it to start on port 2812. In
addition, we specify that it should accept connections only from
localhost and that access to the web server is protected by a user-
name (admin) and password (monit).

* Beginning in line 14, we specify critical system conditions that are
independent of a particular application. The configuration should
not need much explanation, because it reads like plain English,
doesn’t it? For example, we tell monit to send an alert whenever
more than 75 percent of the system’s memory is used or whenever
more than 70 percent CPU time is spent in the user space.

¢ The configuration of the order import process starts in line 23 and
looks similar to the earlier configuration of the system’s monitor-
ing. In addition, we specify the commands for starting and stop-
ping the order import process, and we tell monit what to do if
the process cannot be restarted three times within five cycles (five
minutes in our case). All checks in this section (CPU, memory, and
so on) refer to the process’ usage and not to the overall system’s
usage.

* monit supports process groups, and in line 31 we put the order
import process into the “server” group.

Now that we have a configuration file, let’s use it to actually monitor
the order import daemon:

mschmidt> monit -c monitrc.conf
Starting monit daemon with http interface at [localhost:2812]

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=297

45. MONITOR YOUR APPLICATIONS WITH MONIT < 298

The previous command starts a monit process in the background. Its
log file should look like this:

[Jul 15 21:21:25] info : Starting monit daemon with http interface at \
[Tocalhost:2812]

[Jul 15 21:21:25] info : Starting monit HTTP server at [localhost:2812]

[Jul 15 21:21:25] info : monit HTTP server started

[Jul 15 21:21:25] info : Monit started

[Jul 15 21:21:25] error : 'order_import' process is not running
[Jul 15 21:21:25] info : 'order_import' trying to restart
[Jul 15 21:21:25] info : 'order_import' start: \

/tmp/order_import_control.rb
[Jul 15 21:22:25] info : Monit has not changed
[Jul 15 21:22:25] info : 'order_import' process is running with pid 759

monit started its HTTP interface, immediately noticed that the order
import process wasn't working, and restarted it. In addition, it sent
an email that you can see in Figure 10.2, on the following page. monit
starts all processes immediately if you invoke it like this:

mschmidt> monit -c monitrc.conf start all

It’s also possible to start, stop, or restart process groups that have been
defined using the group declaration in the configuration file:

mschmidt> monit -c monitrc.conf -g server restart all

If you no longer need monit, you can terminate it with a single command
as well:

mschmidt> monit -c monitrc.conf quit
monit daemon with pid [7636] killed

Now that the order import process is running, monit checks periodically
whether it’s doing fine. If it crashes or if you stop it deliberately, you'll
find the following in monit’s log file within a minute:

[Jul 15 21:30:26] error : 'order_import' process is not running

[Jul 15 21:30:26] info : 'order_import' trying to restart

[Jul 15 21:30:26] info : 'order_import' start: \
/tmp/order_import_control.rb

[Jul 15 21:31:26] info : 'order_import' process is running with pid 779

Observing the log file is certainly not the most convenient way to check
your system’s overall status, so it’s time to remember that we have con-
figured monit’s web server. Point your web browser to http://localhost:
2812, click the “order_import” link. and you’ll see something like Fig-
ure 10.3, on page 300.

That’'s what a sysadmin’s dreams are made of! monit’s web front end
reports nearly every little aspect of a process’s status. Despite this,

http://localhost:2812
http://localhost:2812
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=298

45. MONITOR YOUR APPLICATIONS WITH MONIT < 299

® O O monit alert -- Does not exist order_import — Inbox —)

From: monit@example.com
Subject: monit alert — Does not exist order_import
Date: July 15, 2008 9:30:26 PM GMT+02:00
To: Maik Schmidt

Does not exist Service order_import

Date: Tue, 15 Jul 2008 21:30:26 +0200
Action: restart

Host: localhost

Description: 'order_import' process is not running

Your faithful employee,
monit

Figure 10.2: Email sent by monit

always use as many and as specific tests as possible in your configura-
tion. Even if a process is running, it doesn’t mean that it does what it’s
expected to do (monitoring processes is a bit like watching your office
mates: some of them only pretend to be working).

| Also See \ \

* See Recipe 46, Let god Talke Care of Your System, on page 301 to
learn about another monitoring tool that can be completely con-
figured with Ruby.

¢ If you want to learn how to turn your programs into daemons, take
a look at Recipe 44, Turn Your Code into Daemons and Services, on
page 286.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=299

200

45. MONITOR YOUR APPLIC

Home> order import

TIONS WITH MONIT < 300

it 4.

Process status

Parameter Value

Name order_import

Pid file /tmp/order_import.rb.pid
Status

Group server

Monitoring mode active

Monitoring status

Start program '/tmp/order_import_control.rb start' timeout 1 cyde(s)
Stop program '/tmp/order_import_control.rb stop' timeout 1 cycle(s)
Check service every 1 cyde

Timeout If 3 restart within 5 cycles then unmonitor else if passed then alert
Data collected Tue Jul 15 21:28:26 2008

Process id 759

Parent process id 1

Process uptime 7m

CPU usage 0.0%

Memory usage 0.3% [7304kB]

Children 0

Total CPU usage (indl. children) 0.0%

Total memory usage (indl. children)

0.3% [7304kB]

Pid If changed 1 times within 1 cyde(s) then alert
Ppid If changed 1 times within 1 cyde(s) then alert
Load average (Smin) I greater than 8.0 6 times within 6 cycle(s) then stop else if passed 1 times within 1 cycle(s) then alert

Memory amount limit (ind. children)

If greater than 102400 5 times within 5 cyde(s) then restart else f passed 1 times within 1 cyde(s) then alert

CPU usage limit

If greater than 80.0% 5 times within 5 cycle(s) then restart else if passed 1 times within 1 cydle(s) then alert

CPU usage limit

If greater than 60.0% 2 times within 2 cycle(s) then alert else if passed 1 times within 1 cycle(s) then alert

Start service) (Stop service) (Restart service) (Disable monitoring

Figure 10.3: monit process status
I EEEEEEEE———,

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=300

Let god Take Care of Your
System

Problem
,_J L \

You’d like to monitor all your applications automatically, but some of
them are difficult to monitor, because you have to check a lot of things
to make sure they're actually doing what they are supposed to do. You
need a monitoring tool that can be configured with a full-grown pro-
gramming language, and in this recipe you'll learn about one: god.

| Ingredients | N

* Install god,5 a monitoring tool written completely in Ruby:

$ gem install god

Solution
,_J L \

In this recipe, we’ll take a look at a monitoring tool named god that was
written in Ruby and—even better—can be configured using Ruby. We’'ll

use it to observe the order import daemon we wrote in Recipe 44, Turn
Your Code into Daemons and Services, on page 286, and here’s a god
configuration file that monitors it:

Download administration/monitoring/god_conf.rb

tnel God.load File.join(File.dirname(__FILE_), 'email_conf.rb')

control_script = '/tmp/order_import_control.rb'
God.watch do |w]|
5 w.name = 'order_import'
.interval = 60.seconds
.start = "#{control_script} start"
.stop = "#{control_script} stop"
.restart = "#{control_script} restart"
.start_grace = 10.seconds
.restart_grace = 10.seconds
.pid_file = '/tmp/order_import.rb.pid'’
.group = 'server'

= £ = £ £ £ =

5. http://god.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/administration/monitoring/god_conf.rb
http://god.rubyforge.org/

46. LET GOD TAKE CARE OF YOUR SYSTEM <« 302

15 w.behavior(:clean_pid_file)

w.start_if do |start]|
start.condition(:process_running) do |c]|
c.interval = 20.seconds

20 c.running = false
c.notify = 'admin'
end
end
25 w.restart_if do |restart]|

restart.condition(:memory_usage) do |c|
c.above = 100.megabytes
c.times = [3, 5]
c.notify = 'admin'
30 end

restart.condition(:cpu_usage) do |c|
c.above = 60.percent
c.times = 5
35 c.notify = %w(admin boss)
end
end
end

Admittedly, it’s much longer than the monit configuration file you saw
in Recipe 45, Monitor Your Applications with Monit, on page 295, but
it’s plain Ruby. We start by loading the email configuration (we’ll look
at it later) and by setting control_script to the name of the order import
process’s control script. This way we do not have to repeat it in the
rest of the configuration file (that’s the advantage when you use a full-
blown programming language). In line 4, the real configuration starts,
and every process that should be monitored by god has to have its own
code block passed to god’s watch() method.

In lines 5 to 13, we define some global parameters like the process’s log-
ical name, the interval god should use to watch the process, the names
of the start/stop/restart commands, and the name of the process’s PID
file. Interestingly, you do not have to specify the pid_file parameter. In
this case, god daemonizes your program automatically.

god allows for special commands to be applied before a process is
started or stopped. For example, it’s often useful to delete the PID file of
a process that has crashed before restarting it. That's what we specify
in line 15.

The monitoring rules for the order import process start in line 17. Here
we use the start_if() method to define when the process has to be started.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=302

46. LET GOD TAKE CARE OF YOUR SYSTEM <« 303

start_if() contains at least one condition that is defined using the condi-
tion() method. If any of the condition blocks return true, the start action
gets executed. We check the running status, so the order import pro-
cess gets started if it is not running (sounds reasonable, doesn't it?). In
addition, we set interval to twenty seconds, so god checks every twenty
seconds whether the process is running. Such local interval definitions
overwrite the global one, so you can check important conditions more
often, for example. Finally, the notify attribute specifies who gets noti-
fied if the process gets started. You'll see how the admin recipient is
defined in a minute.

A restart is triggered when any of the conditions defined in the code
block beginning in line 25 is met. We check whether the process’s mem-
ory usage has been greater than 100 megabytes in three of five checks.
If yes, the admin recipient is notified, and the process is restarted.
Nearly the same happens if the CPU consumption has been more than
60 percent for five checks. In that case, the boss gets notified, too.

We have specified all email recipients and settings in a separate file that
gets included in the main configuration:

Download administration/monitoring/email_conf.rb

tnel God::Contacts::Email.message_settings = {
:from => 'god@example.com'

}

5 God::Contacts::Email.server_settings = {
raddress => 'smtp.example.com',
rport => 25,
:domain => 'example.com',
rauthentication => :plain,

10 :user_name => 'sysadm',
:password => 'tOp$ecret’

}
God.contact(:email) do |c|
15 c.name = 'admin'
c.email = 'admin@example.com'
end

God.contact(:email) do |c|
20 c.name = 'boss'
c.email = 'boss@example.com'
end

http://media.pragprog.com/titles/msenr/code/administration/monitoring/email_conf.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=303

46. LET GOD TAKE CARE OF YOUR SYSTEM <« 304

god uses a default layout for notification emails and their subjects. You
can freely redefine all components of this layout, and we set the from
header to god@example.com in line 2 (it will probably help to improve
your software quality if you get an email from god in case of any fail-
ures). Then we configure our mail server’s settings.

At the end, we define all possible contacts—all those people who might
potentially get notifications from god. At the moment we declare those
contacts who get notified via email, but god has an extensible noti-
fication framework, so you can implement more notification channels
yourself. For example, you can easily notify contacts using short mes-
sages on a cell phone.

When you start god with the current configuration, it will print some-
thing like this (timestamps have been removed for brevity):

mschmidt> god -D -c god_conf.rb

INFO: Using pid file directory: /Users/mschmidt/.god/pids

INFO: Started on drbunix:///tmp/god.17165.sock

INFO: order_import move 'unmonitored' to 'up'

INFO: order_import moved 'unmonitored' to 'up'

INFO: order_import [trigger] process 1is not running (ProcessRunning)
INFO: order_import move 'up' to 'start'

INFO: order_import before_start: no pid file to delete (CleanPidFile)
INFO: order_import start: /tmp/order_import_control.rb start

INFO: order_import moved 'up' to 'up'

INFO: order_import [ok] process 1is running (ProcessRunning)

INFO: order_import [ok] memory within bounds [7156kb] (MemoryUsage)
INFO: order_import [ok] cpu within bounds [0.0%] (CpuUsage)

INFO: order_import [ok] process 1is running (ProcessRunning)

The -D option tells god not to turn itself into a daemon, so we can
watch its log output on the console. As expected, god notices that the
order import process isn’t running and starts it immediately. In the
next lines, you can see that god permanently checks the process’s CPU
and memory usage. Everything works fine!

god supports many of the same commands as monit. You can quit god
with the quit command (terminate quits not only god but also all pro-
cesses it is monitoring), for example, and you can also apply commands
to groups of processes. One of the most useful commands is log that
prints the last 1,000 log messages belonging to a process to the console
and updates every second:

mschmidt> god log order_import

INFO: order_import [ok] process is running (ProcessRunning)

INFO: order_import [ok] memory within bounds [7152kb] (MemoryUsage)

INFO: order_import [ok] cpu within bounds [0.0%] (CpuUsage)
INFO: order_import [ok] process is running (ProcessRunning)

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=304

46. LET GoD TAKE CARE OF YOUR SYSTEM <« 305

Vf Joe Asks...
f

“~__monit or god?

You shouldn’t ask yourself whether monitoring your processes is
a good thing (it definitely is!), but you might ask which tool you
should use. Both monit and god are excellent monitoring tools,
so in principle you can choose either of them. Unfortunately,
both tools share a common disadvantage: they do not support
Microsoft Windows, and they probably never will.

god’s biggest advantage is that it can be configured using
Ruby, so if you have processes that are tricky to manage, god
might be the better choice. It can also monitor nondaemo-
nizing scripts. On the other hand, monit is more mature, has a
bigger community, has commercial support (which is a strong
argument for many big companies), and—at the moment—
has many more features like the web front end you’ve seen
before.

You can monitor not only Ruby applications with god but also Mongrel
processes, database servers, files, directories, network services, and
so on. In this recipe, we have barely scratched the surface of all its
features.

Also See
,_J L \

* See Recipe 45, Monitor Your Applications with Monit, on page 295
to learn about another popular monitoring tool.

¢ If you want to learn how to turn your programs into daemons, take
a look at Recipe 44, Turn Your Code into Daemons and Services, on
page 286.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=305

Create Plug-ins for Common
Tasks

Problem
,_J L \

You have written several Ruby on Rails applications in the past, and
quite naturally you've gathered a lot of code that you reuse in new
applications. Although this is quite a good thing, it does not feel very
convenient, because you often copy files from various locations, and
you often have to adjust a few lines here and there manually. These
times are gone now, because in this recipe you’ll learn to create your
own plug-ins and generators for Rails applications, so you'll never have
to copy and manually adjust code again.

Solution
,_J L \

Rails has great support for plug-ins and generators, and you've proba-
bly already used some of them such as open_id_authentication in Recipe
8, Implement a Single Sign-on System with OpenID, on page 51, for
example. In this recipe, we’ll create a plug-in named acts_as_proprietary
that adds some functionality to your Rails applications that we’ll imag-
ine is needed in the company youre working for. It adds a dump()
method to your database models that creates a textual representation
of a model's content. We'll assume that your operations department
insists on this format in log files.

Creating plug-ins is easy, because Rails comes with a plug-in generator.
To create the acts_as_proprietary plug-in, run the following command:

mschmidt> script/generate plugin acts_as_proprietary

After the command runs successfully, you'll find a new subdirectory
named acts_as_proprietary in the vendor/plugins directory that contains:

README

MIT-LICENSE

Rakefile

init.rb

install.rb

uninstall.rb
1ib/acts_as_proprietary.rb
tasks/acts_as_proprietary_tasks.rake
test/acts_as_proprietary_test.rb

47. CREATE PLUG-INS FOR COMMON TASKS <« 307

All plug-ins are stored in vendor/plugins and share the same directory
layout. Some of the files are self-explanatory: the README file contains
information about the plug-in (you have to fill this file, of course), and
MIT-LICENSE contains a copy of the MIT license that plug-ins usually use.
When a plug-in is installed, install.rb is run, so it can create configuration
files and so on. uninstall.rb is executed when it is uninstalled.

I'll explain the meaning of the other files in the following paragraphs. We
start with lib/acts_as_proprietary.ro. Right after the plug-in skeleton code
has been generated, the file is empty, and it is supposed to be used for
the plug-in’s main code (if you need more than one file to implement
your plug-in’s logic, add them all to the lib directory). The code that
adds a dump() method to an ActiveRecord model looks as follows:

Download administration/plugins/plugin_demo/vendor/plugins/acts_as_proprietary/lib/acts_as_proprietary.rb

tnel module EnterprisePlugin
module Acts
module Proprietary
def self.included(base)
5 base.extend ClassMethods
end

module ClassMethods
def acts_as_proprietary(options = {})
10 cattr_accessor :sort_attributes
self.sort_attributes = options[:sort_attributes] || false
include InstanceMethods
extend SingletonMethods
end
15 end

This module contains instance methods.
module InstanceMethods
def dump
20 result = "Model:#{self.class.name}\n"
keys = attributes.keys
keys.sort! if self.sort_attributes
keys.each { |key| result << "#{key}:#{attributes[key]}\n" }
result
25 end
end

This module contains class methods.
module SingletonMethods
30 end
end
end
end

http://media.pragprog.com/titles/msenr/code/administration/plugins/plugin_demo/vendor/plugins/acts_as_proprietary/lib/acts_as_proprietary.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=307

47. CREATE PLUG-INS FOR COMMON TASKs < 308

This is a wonderful piece of Ruby code, isn’t it? It makes use of some
fairly advanced features that we’ll dissect now. The file starts with
three nested module declarations that aren’t absolutely necessary, but
it’s good style to choose an unambiguous namespace for all the code
belonging to your plug-ins. Usually the code will be used in an unknown
environment, and choosing good names prevents namespace clashing.

In line 4, we define the included() method for our module that is invoked
whenever our module is included in another module or class. When
included() is called, it adds the methods of the ClassMethods module to
the including module or class.

Right now the ClassMethods module contains only one method named
acts_as_proprietary(), which is the method we’d like to call later in a
database model to add a dump() method to it. acts_as_proprietary() gets
an options hash that can be used to vary the plug-in’s behavior. At the
moment, only the sort_attributes option is supported. It controls whether
a model’s attributes get sorted before they are dumped. To store the
option, we define and initialize a class variable using caftr_accessor().
Then we turn all members of the InstanceMethods module into instance
methods of the including class, and we turn all members of the Single-
tonMethods module into class methods of the including class.

Finally, we define the dump() method in the InstanceMethods module. It
turns the name of the current class and all entries of the aftributes hash
into a nicely formatted text. Depending on the value of sort_attributes,
the entries get sorted up front. Please note that affributes is a member of
the ActiveRecord::Base class; you'll see in a minute how we connect our
code to ActiveRecord.

Actually, Rails does not have an explicit plug-in API, so our library does
not contain any special plug-in code. When a Rails application starts,
it initializes all plug-ins in the vendor/plugins directory; in other words,
it runs the init.ro file of every plug-in. To make our acts_as_proprietary
plug-in available, we have to add the following to init.ro:

Download administration/plugins/plugin_demo/vendor/plugins/acts_as_proprietary/init.ro

require 'acts_as_proprietary'
ActiveRecord: :Base.send(
:include,
EnterprisePlugin: :Acts: :Proprietary

)

This loads the acts_as_proprietary library and adds the new functional-
ity to the ActiveRecord::Base class so it is available in all model classes.

http://media.pragprog.com/titles/msenr/code/administration/plugins/plugin_demo/vendor/plugins/acts_as_proprietary/init.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=308

47. CREATE PLUG-INS FOR COMMON TASKS

Let’s try it with a Customer model that has been created with the follow-
ing migration:

Download administration/plugins/plugin_demo/db/migrate/20080712165043_create_customers.rb

create_table :customers do |t]
t.string :forename
t.string :surname
t.date :date_of _birth
t.timestamps

end

Customer.create(

: forename => 'John',

rsurname => 'Doe',

:date_of_birth => Date.new(1968, 7, 22)
)

The model class looks like this:

Download administration/plugins/plugin_demo/app/models/customer.rb

class Customer < ActiveRecord::Base
acts_as_proprietary :sort_attributes => true
end

It's a normal model class, but it uses our new acts_as_proprietary plug-
in. Every Customer instance should have a dump() method now:

mschmidt> ruby script/console

Loading development environment (Rails 2.1.0)
>> puts Customer.find(1).dump

Model :Customer

created_at:Sat Jul 12 16:57:07 UTC 2008
date_of _birth:1968-07-22

forename: John

id:1

surname:Doe

updated_at:Sat Jul 12 16:57:07 UTC 2008
=> nil

Works like a charm, doesn’t it? The acts_as_proprietary example shows
a common pattern that is used by many popular plug-ins. Keep in mind
that although our plug-in enhanced the ActiveRecord::Base class, plug-
ins are free to enhance any part of Rails, add new classes, or do any-
thing else that you want to do. In principle, you can do whatever you
want in your plug-in code. The only trick is that your plug-in’s init.ro
automatically runs at startup.

http://media.pragprog.com/titles/msenr/code/administration/plugins/plugin_demo/db/migrate/20080712165043_create_customers.rb
http://media.pragprog.com/titles/msenr/code/administration/plugins/plugin_demo/app/models/customer.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=309

47. CREATE PLUG-INS FOR COMMON TASKs < 310

Also See
,_J L \

* To learn about another way to reuse code across applications, see
Recipe 48, Avoid Code Duplication with Generators, on the next

page.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=310

Avoid Code Duplication with
Generators

Problem
,_J L \

Many enterprise applications share common functionality that is often
replicated by copying code. In this recipe, you'll learn how to prevent
this and how to write a generator that creates Rails code automatically.

Solution
,_J L \

Let’s assume that all your company’s web applications must have a spe-
cial controller named InfoController that reports the application’s current
state. We'll create a generator for an InfoController that has a predefined
status() method returning status information for the current application.
The following command creates all the necessary stubs and skeletons:

mschmidt> script/generate plugin acme_monitoring --with-generator

A plug-in does not necessarily need a generator, so we've added the
--with-generator option to create one. The command has created a sub-
directory named vendor/plugins/acme_monitoring/generators, and for each
new generator a directory with the generator’s name has to be created
in this directory. Our generator is named info_controller, so we create a
subdirectory named info_confroller. This way we can invoke the genera-
tor with script/generate info_controller when we're done. Here’s the gener-
ator’s code:

Download administration/plugins/generator_demo/vendor/plugins/acme_monitoring/generators/info_controller/info_controller_generator.rb

tne1 class InfoControllerGenerator < Rails::Generator::Base
def initialize(runtime_args, runtime_options = {})
super
@application_name = args.shift || 'UnknownApplication'
5 @custom_methods = args || []
end

def manifest
record do |m|
10 m.template(
"info_controller.rb',
'app/controllers/info_controller.rb',
:collision => :skip,

http://media.pragprog.com/titles/msenr/code/administration/plugins/generator_demo/vendor/plugins/acme_monitoring/generators/info_controller/info_controller_generator.rb

48. AvoIiD CODE DUPLICATION WITH GENERATORS <« 312

rassigns => {

15 :application_name => @application_name,
:custom_methods => @custom_methods
}
)
20 m.directory 'app/views/info’

@custom_methods.each do |method|
m.tempTlate(
'view.html.erb',
"app/views/info/#{method}.html.erb",
25 :collision => :skip,
:assigns => { :method_name => method }
)
end
end
30 end
end

Rails comes with several base classes for all kinds of generators, and
we have derived InfoControllerGenerator from Rails::Generator::Base, which
is the most general one. There are more specific base classes (for model
generators, for example), so before you start to write a new generator,
choose your base class carefully.

In the initialize() method, we read the arguments that have been passed
to the generator on the command line from the args variable. The first
argument is the name of the application to create the InfoController for,
and the rest of the arguments contain a list of methods to create method
stubs for.

Every generator has to define a manifest() method that returns a Rails:
Generator:Manifest object. In principle, the manifest describes which
files and directories will be created, and it describes how they will be
created, too. record() is a convenience method that makes creating a
new manifest a piece of cake. It expects a code block that gets passed
the Manifest to be finalized. The Manifest class has some useful methods,
and in line 10 we use its femplate() method.

Our generator generates a file named app/controllers/info_controller.rb,
and it creates .html.erb files in the app/views directory for every method
that has been passed to the generator on the command line. For both
the controller and for the view files, we need ERb templates stored in the
templates directory.

template() expects the name of the template file to be copied, the name
of the destination, and some options. Before the file is copied, it is run

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=312

48. AvoIiD CODE DUPLICATION WITH GENERATORS <« 313

through the ERb engine, so the template may contain arbitrary Ruby
code. With template()’s assigns option, you can define parameters that
are available as variables in the template. By setting collision to skip, we
make sure that the generator does not override an existing file.

In line 20, the app/views/info directory is created if it does not exist
already, and in the following line we create an .html.erb file for every
method of the InfoController class using the template() method.

The rest of the generator logic can be found in the template files, and
the template for the InfoController class looks as follows:

Download administration/plugins/generator_demo/vendor/plugins/acme_monitoring/generators/info_controller/templates/info_controller.rb

tne1 class InfoController < ApplicationController
def status
application_name = '<%= application_name %>'
status = "Everything's OK with #{application_name}."
5 render :text => status
end
<% for method 1in custom_methods %>
<% next if method == 'status' %>
def <%= method %>
10 # Your code here.
end
<% end %>
end

Most of the template is regular text, but we create a customized sta-
tus message in line 4, and we iterate over all custom method names
that have been passed to generate a method stub for each of them in
line 7. The template for the views is much simpler and contains only a
placeholder:

Download administration/plugins/generator_demo/vendor/plugins/acme_monitoring/generators/info_controller/templates/view.html.erb

<%= method_name %>: Your view code here.

Let’s test the info_controller generator:

mschmidt> script/generate info_controller --svn FancyApplication 1init
create app/controllers/info_controller.rb

A app/controllers/info_controller.rb
A app/views/info
A app/views/info/init.html.erb

As expected, two files have been created. Although we did not define
what to do with the --svn switch, our generator added the generated
files to the current Subversion repository exactly like all the other Rails
generators.

http://media.pragprog.com/titles/msenr/code/administration/plugins/generator_demo/vendor/plugins/acme_monitoring/generators/info_controller/templates/info_controller.rb
http://media.pragprog.com/titles/msenr/code/administration/plugins/generator_demo/vendor/plugins/acme_monitoring/generators/info_controller/templates/view.html.erb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=313

48. AvoiD CODE DUPLICATION WITH GENERATORS < 314

All standard options are supported by default, and if you'd like to
improve the usage message that is printed when the --help option is
passed, add a file named USAGE to the info_controller directory so it gets
included automatically.

The generated controller looks like this:
Download administration/plugins/generator_demo/app/controllers/info_controller.rb

class InfoController < ApplicationController

def status
application_name = 'FancyApplication'
status = "Everything's OK with #{application_name}."
render :text => status

end

def init
Your code here.

end

end

That’s it! The only thing left to do is make the new plug-in available
to your colleagues. This is easy, because Rails’ plugin command sup-
ports all important network protocols available. For example, you could
upload the whole acme_monitoring directory code to an HTTP server, to
a Subversion repository, or to a Git repository. If you have uploaded
the code to svn://example.com/acme_monitoring, for example, you could
install the plug-in with the following command from your application’s
root directory (Git has been supported since Rails 2.1, and for a Git
repository, pass the Git URL, respectively):

mschmidt> ./script/plugin install svn://example.com/acme_monitoring

All in all, writing plug-ins and generators surely is not a trivial task, but
it’s not rocket science either. The next time you think about copying and
modifying some files, ask yourself whether it’s time for a new plug-in—
maybe even a plug-in the whole Rails community might benefit from.

Also See
,_J L \

* See Recipe 47, Create Plug-ins for Common Tasks, on page 306 to
learn about another way to reuse code across applications.

http://media.pragprog.com/titles/msenr/code/administration/plugins/generator_demo/app/controllers/info_controller.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=314

Chapter 11

For software developers, there’s nothing as great as writing code, but
professional software developers need other skills, too: testing, for ex-
ample. That’s especially true when writing enterprise software, because
many big companies have strict quality and documentation standards.

Nearly all Ruby developers use Test::Unit, because it’s part of every Ruby
distribution and works nicely with Rails. It’s certainly one of the most
convenient unit testing frameworks available, but unit testing is not the
only way to make sure your software works as it is supposed to work.
There’s a new kid on the block named behavior-driven development, and
you can learn more about it in Recipe 49, Improve Your Testing with
RSpec, on the next page and Recipe 50, Integrate RSpec with Rails, on
page 323.

When you think of testing, you almost certainly think of mock objects,
too. Even trivial enterprise applications often depend on external com-
ponents that are difficult to integrate into your tests. In Recipe 51, Cre-
ate Mock Objects with RSpec, on page 326, you'll learn how to simulate
them using RSpec’s mock features.

Unit testing is not the only important testing discipline; integration
tests, for example, are important too, especially when you are working
with distributed applications consisting of many components. When-
ever new components have to be written, it's advantageous if you can
quickly build an interface prototype that other applications can inte-
grate with as soon as possible. Recipe 52, Prototype Services with Sina-
tra, on page 334 shows you how this can be done.

Improve Your Testing with
RSpec

Problem
,_J L \

As a modern software developer you are writing unit tests for every
new piece of code, and they have increased the quality of your applica-
tions tremendously. Despite this, you might not feel comfortable when
writing tests, because you might think you are describing how your
application should not behave instead of specifying how it should.

You are not alone, and in this recipe you will learn what behavior-driven
development (BDD) is and how to benefit from it in your Ruby and Rails
applications.

| Ingredients | N

¢ If you do not want to use RSpec in a Rails application, it’'s suffi-
cient to install the rspec gem:!

$ gem install rspec

Solution
,_J L \

In this recipe, you'll learn how to work with RSpec, a tool supporting
BDD.2 BDD is quite similar to good old unit testing, but it uses a com-
pletely different vocabulary. Instead of focusing on the technical details,
BDD focuses on the purpose of a piece of software. This makes it easier
to translate specifications into user stories and test cases. In addition,
it allows technical and businesspeople to use the same language.

As an example, in this recipe we’ll use two small classes:
Download testing/rspec/stock.rb

Product = Struct.new(:name)

class Stock
attr_reader :products

1. http://rspec.info/
2. http://en.wikipedia.org/wiki/Behavior_driven_development

http://media.pragprog.com/titles/msenr/code/testing/rspec/stock.rb
http://rspec.info/
http://en.wikipedia.org/wiki/Behavior_driven_development

49. IMPROVE YOUR TESTING WITH RSPEC <« 317

def initialize
@products = []
end

def empty?
@products.empty?
end

def add_product(product)
raise ArgumentError if product.nil? or product.name.nil?
@products << product

end

def products_by_name(name)
@products.select { |p| p.name == name }
end

def count
@products.size
end
end

Product represents a product identified only by its name, and Stock
implements a stock containing several products. We can check whether
the stock is empty, we can add new products to the stock, and we can
look up products by their names. In addition, we have a reader named
products that returns all products currently in stock.

Back in the old days of unit testing, you probably wrote test cases
similar to the following:

Download testing/rspec/unit_test_stock.rb

require 'test/unit'
require 'stock'

class StockTest < Test::Unit::TestCase
def setup
@stock = Stock.new
end

def test_new_stock_is_empty
assert @stock.empty?
end

def test_empty_stock_should_not_contain_a_product_having_a_name
assert_equal 0, @stock.products_by name('foo').size
end
end

http://media.pragprog.com/titles/msenr/code/testing/rspec/unit_test_stock.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=317

49. IMPROVE YOUR TESTING WITH RSPEC <« 318

That's a perfectly normal unit test suite. The setup() method gets called
before each test method and initializes a new Stock instance. All test
methods start with the prefix test_, and we use the assertions of the
Test::Unit framework such as assert_equal() to make sure certain condi-
tions are met. When we run it, we get the following result:

mschmidt> ruby unit_test_stock.rb

Loaded suite unit_test_stock
Started

Finished in 0.000513 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

You might think that this is a good way to test your code, and from a
technical point of view you are absolutely right. There’s no redundancy
because we have used the setup() method and because every test case
has its own method with a meaningful name. Still, it’s not satisfying
from a psychological point of view, because it reads like a test specifi-
cation and not like a specification of the Stock class’ behavior. Also, the
names of the test cases are a bit awkward because of their prefixes, and
you have to know a bit about Test::Unit to know what the setup() method
is all about.

Here’s an alternative version using RSpec:

Download testing/rspec/stock_simple_spec.rb

tne1 describe Stock, '(newly created)' do
before(:each) do

@stock = Stock.new
end

it { @stock.should be_empty }

it 'should not contain products having a certain name' do
@stock.should have(0).products_by name('foo')
10 end
end

Although it does the same as the unit testing variant, it reads much
better, doesn’t it? It starts with a describe() declaration that takes the
name of the class whose behavior we’d like to specify. Optionally, it
takes a string describing the circumstances under which we're testing
the class in more detail. We are going to test the behavior of a newly
created Stock object, so we pass it the string “(new one)” (you'll see why
we've put it in parentheses in a minute).

http://media.pragprog.com/titles/msenr/code/testing/rspec/stock_simple_spec.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=318

49. IMPROVE YOUR TESTING WITH RSPEC <« 319

Instead of defining a setup() method that gets magically called by the
Test::Unit framework, we use a more expressive method named before(),
which gets a code block that will be called before each test (you probably
guessed it already: yes, there is an affer() method, too).

Then we specify two aspects of our Stock class’ behavior by calling the
it() method. it() accepts a string describing the test case and a block of
test code (if you don’t pass it a string, it derives one from the test code,
as we’ll see in a minute). Before we dissect the code that actually tests
the Stock class, let’s run it for the first time:

mschmidt> spec stock_simple_spec.rb --format specdoc

Stock (newly created)
- should be empty
- should not contain products having a certain name

Finished in 0.008053 seconds

2 examples, 0 failures

With the rspec framework comes a command-line tool named spec for
executing RSpec specifications. We pass it the specification’s filename
and the format option (by default, spec produces the same output as
Test::Unit). In the output you find all the strings we have used in our
specification, and RSpec has generated a “should be empty” message
for the it() declaration that did not declare one explicitly. It actually
reads like a specification for the behavior of an empty stock, doesn’t it?

But let’s take a closer look at the test code. In both cases we have called
a method named should() that has been added by RSpec to every object
(there’s also a should_notf() method). In line 6, we use it to make sure
that the empty?() method returns frue for an empty stock. empty?() is a
predicate—a method returning either true or false. For these predicates,
RSpec has a mechanism that allows us to put a be_ prefix in front of
the predicate’s name and pass it to should(). So, @stock.should be_empty
does exactly what it says and makes sure that the empty?() method of
the Stock object that has been created in the before() block returns true.

In line 9, we invoke have() to check whether a collection (an array, for
example) contains a particular number of items. Alternatively, we could
have written @stock.products_by_name(’foo’).should have(0).items, and in-
stead of items at the end of the method chain, we could have even used
any other name such as elements, for example. It’s just added for better
readability.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=319

49. IMPROVE YOUR TESTING WITH RSPEC < 320

Although the statement does the same as asserf_equal 0, @stock.products_
by_name(’foo’).size in the corresponding unit test, it reads much better,
and that’s what BDD is about: naming things. That’s really the main
idea: you'll think differently about testing your code if you use a differ-
ent vocabulary. Instead of “test,” say “should,” and your test cases will
read and feel better.

To explore more of RSpec’s features, we will specify our Stock class in
a more detailed manner. First we extract behavior that is needed in
more than one situation. RSpec calls this shared examples, and they
are defined as follows:

Download testing/rspec/stock_spec.rb

shared_examples_for 'non-empty stock' do

it { @stock.should_not be_empty }

it { @stock.should have_at_least(l).products }
end

A shared example defines test cases that can be imported (like Ruby
mixins) by describe() blocks, and you can define as many shared exam-
ples as you need. We include the “nonempty stock” example in the fol-
lowing specification:

Download testing/rspec/stock_spec.rb

Line 1 describe Stock do
before(:each) do

@stock = Stock.new
end

it 'should not accept empty products' do
Tambda { @stock.add_product(nil) }.should raise_error(ArgumentError)
end

10 describe '(empty)' do
it { @stock.should be_empty }

it 'should not contain products having a certain name' do
@stock.should have(0).products_by_name('foo')

15 end

it 'should add a product' do

Tambda {
- @stock.add_product Product.new('foo')
20 }.should change(@stock, :count).by(l)
- end

end

http://media.pragprog.com/titles/msenr/code/testing/rspec/stock_spec.rb
http://media.pragprog.com/titles/msenr/code/testing/rspec/stock_spec.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=320

49. IMPROVE YOUR TESTING WITH RSPEC <« 321

describe 'with a single foo product' do

25 before(:each) do
@stock.add_product Product.new('foo')
end

it_should_behave_like 'non-empty stock'
30
it 'should find a product named "foo"' do
@stock.should have(l).products
@stock.should have(l).products_by_name('foo')
- @stock.products.first.name.should be_eql('foo"')
35 end
end
end

In this specification, you’ll find many things I've already explained, but
there are also some new features. First you'll recognize that a describe()
block may contain describe() blocks itself. Then, in line 7, you can see
how to make sure a certain method raises an exception. We cannot
use should() directly on the method that should raise an exception for
obvious reasons, so we have to turn it into a Proc object using the
lambda() method.

Line 20 demonstrates another nice function of the RSpec framework,
namely, the change() method. We add a new product to the current
stock and use change() to make sure that the number of items in stock
has changed by one exactly.

Do you remember the shared examples we defined some paragraphs
earlier? In line 29, we use them to declare that a stock containing a
single item should behave like an nonempty stock by calling it_should_
behave_like(). That’s a really useful feature, and it not only reads nicely,
but it also supports the DRY principle. Whenever you define new test
cases dealing with nonempty Stock instances, you can run the standard
cases by adding a single line of code.

Finally, in line 34, we use be_edl() to check two strings for equal-
ity. be_edl() checks whether two objects have the same value, while
be_equal() would check whether two objects are the same. There are
more variants such as be_frue(), be_false(), or be_nil(), for example, and
you should check RSpec’s excellent documentation for details.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=321

49. IMPROVE YOUR TESTING WITH RSPEC < 322

If we feed the earlier program to the spec command, it prints the follow-
ing (tested) specification:

mschmidt> spec stock _spec.rb --format specdoc

Stock
- should not accept empty products

Stock (empty)

- should be empty

- should not contain products having a certain name
- should add a product

Stock with a single foo product

- should not be empty

- should have at Teast 1 products

- should find a product named "foo"

Finished in 0.096581 seconds

7 examples, 0 failures

| Discussion | N

If you have written lots of unit tests for your current applications,
there’s no urgent need to migrate them to RSpec, but in your next
project you definitely should give BDD a chance, especially because
in this recipe we have covered RSpec’s specification features only. It
also has a framework for describing and executing user stories, and it
comes with a great library for mocking objects.

In the beginning, it’s a bit difficult to think in specifications and not in
tests, but after you get used to it, it will make your tests more expres-
sive, more readable, and more fun.

Also See
,_J L \

¢ If you'd like to test your Rails applications with RSpec, too, take a
look at Recipe 50, Integrate RSpec with Rails, on the next page.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=322

Recipe 50

Integrate RSpec with Rails

Problem
,_J L \

You've used RSpec to test your regular application code for a while, and
now you’d like to use it in your Rails applications, too.

J Ingredients | \

* When using RSpec in a Rails application, it’s good practice to in-
stall both the rspec module and the rspec_on_rails plug-in locally.
This makes sure they fit together:

$ script/plugin 1install git://github.com/dchelimsky/rspec.git
$ script/plugin install git://github.com/dchelimsky/rspec-rails.git

Then generate all files needed by RSpec and its documentation:

$ script/generate rspec
$ rake doc:plugins

The documentation then can be found in doc/plugins/rspec_on_rails/
index.html.

Solution
,_J L \

In Recipe 49, Improve Your Testing with RSpec, on page 316, you can see
how to create an executable specification for an ordinary Ruby class.
Wouldn't it be great if we could use RSpec for testing Rails components
such as models and controllers, too? That’s where rspec-rails comes
into play. It adds full support for RSpec to Ruby on Rails applications,
and we’ll use it to test and specify a Product model that has been created
with the following database migration:

Download testing/rspec/rspecsample/db/migrate/20080708191641_create_products.rb

create_table :products do |t|
t.string :name
t.timestamps

end

And here’s the model class:

Download testing/rspec/rspecsample/app/models/product.rb

class Product < ActiveRecord::Base
validates_presence_of :name
end

http://media.pragprog.com/titles/msenr/code/testing/rspec/rspecsample/db/migrate/20080708191641_create_products.rb
http://media.pragprog.com/titles/msenr/code/testing/rspec/rspecsample/app/models/product.rb

50. INTEGRATE RSPEC WITH RAILs < 324

As you certainly know (because you are writing tests for every new piece
of code!), Rails comes with excellent support for automatic tests based
on the Test:Unit framework. All tests (functional, integration, and unit
tests) can be found in the test directory and its subdirectories. rspec-
rails is similar but expects all files in the spec directory. Model tests go
to the models subdirectory, controller tests can be found in controllers,
and so on. Here is a minimum specification for the Product model:

Download testing/rspec/rspecsample/spec/models/product_spec.rb

require File.dirname(__FILE_) + '/../spec_helper'

describe Product do
it 'should not accept empty names' do
product = Product.new
product.should have(l).errors_on(:name)
end
end

Along with the rspec-rails framework, a lot of rake tasks get installed
(run rake -T to see all tasks available). One of them is the spec task that
runs all specifications in the spec directory:

mschmidt> rake spec

Finished in 0.226938 seconds

1 example, 0 failures

If you want to run certain specifications, use rake spec:models to test
only models, rake spec:controllers to test only controllers, and so on. To
change the output format, you have to edit spec/spec.opts and adjust
the format option accordingly. To print all specifications without run-
ning the tests, use the spec:doc task:

mschmidt> rake spec:doc

Product
- should not accept empty names

Finally, we will create a ProductsController and a specification that makes
sure the show() action works properly. When the rspec-rails plug-in
is installed, we can create a controller and its according specification
stubs with the rspec_controller generator:

mschmidt> script/generate rspec_controller Products

This command generates a regular controller but instead of the normal
Rails test cases in the fest directory, it creates test stubs in spec (there’s

http://media.pragprog.com/titles/msenr/code/testing/rspec/rspecsample/spec/models/product_spec.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=324

50. INTEGRATE RSPEC WITH RAILS <« 325

a rspec_model command, too). After we have added a minimal show()
action, the controller looks like this:

Download testing/rspec/rspecsample/app/controllers/products_controller.rb

class ProductsController < ApplicationController
def show
@product = Product.find(params[:id])
end
end

And here’s a small specification that checks whether the show() action
works correctly:

Download testing/rspec/rspecsample/spec/controllers/products_controller_spec.rb

require File.dirname(__FILE_) + '/../spec_helper'

describe ProductsController do
before(:each) do
Product.create(:id => 1, :name => 'Ruby Book')
end

it 'should show single product' do
get :show, :id => 1
response.should be_success
assigns[:product].should == Product.find(1)
end
end

It looks like yet another RSpec specification, and there are no surprising
new features. First we create a new Product instance before every new
test case (you can use fixtures to initialize the database, too). Then we
send a GET request to the show() action to look up the product with the
ID 1. We check whether the request has been successful and whether
the right product has been assigned to the controller variable @product.

rspec-rails defines many functions that make testing Rails applications
much easier, and you’ll find more details in the online documentation.
But our example should be sufficient to show you how RSpec integrates
with Rails.

Also See
,_J L \

* See Recipe 49, Improve Your Testing with RSpec, on page 316 to
learn the basics of RSpec.

http://media.pragprog.com/titles/msenr/code/testing/rspec/rspecsample/app/controllers/products_controller.rb
http://media.pragprog.com/titles/msenr/code/testing/rspec/rspecsample/spec/controllers/products_controller_spec.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=325

Create Mock Objects with
RSpec

Problem
,_J L \

You're testing your application with RSpec, but your tests need too
much time, because a lot of them access the database frequently. In
addition, some tests depend on external services, which makes testing
quite difficult:

* You cannot rely on the service to be available all the time; some
test cases will not run properly if the service isn’t available.

* You cannot ask the service provider to switch off a service to test
your application’s behavior in case of network failures. Also, you
cannot ask the provider to return specific error conditions so you
can test how your application deals with them.

¢ Perhaps you have to pay for each service request even if it's a test
request. This could make your test suite very expensive.

* Some services do not have a testing interface, and you do not want
to test with real-world data.

The solution is to use mock objects for these components, and in this
recipe you’ll learn how to mock objects with RSpec.

| Ingredients | N

* See the extra ingredients in Recipe 50, Integrate RSpec with Rails,
on page 323.

Solution
,_J L \

Mock objects are often used in unit tests, and simply put, they are
crash-test dummies for real objects. That is, instead of testing your
application with a real database, for example, you test it with mock
objects that behave as if they would access a real database. They offer
the same API, but their behavior can be fully controlled by the pro-
grammer. That way, unit tests can test how your software behaves
under extreme conditions that could hardly be simulated otherwise.

51. CREATE MOCK OBJECTS WITH RSPEC < 327

For example, mock objects can raise database exceptions that cannot
be provoked in reality without pulling some plugs.

In this recipe, we’ll assume that we’ve built a web shop shipping prod-
ucts. Because of customer demand, we’ll add a tracking function so
customers can see the current state of their shipments. The logis-
tics service we're working with has a RESTful web service for tracking
packages. Its URL scheme is /package-history/:fracking_number; in other
words, it expects a tracking number and returns XML documents that
look as follows:

Download testing/rspec/tracking_service.xml

<?xm1 version="1.0" encoding="UTF-8"?>
<package-history 1id="42-xyz-4711">
<steps>
<step ts="2008-10-09 00:45">Received package</step>
<step ts="2008-10-10 08:23">First delivery attempt</step>
<step ts="2008-10-10 08:24">Receiver not at home</step>
<step ts="2008-10-11 09:51">Second delivery attempt</step>
<step ts="2008-10-11 09:53">Delivered</step>
</steps>
<state>delivered</state>
</package-history>

The document is easy to understand: at the first delivery attempt the
customer was not at home, so the logistics company tried it a second
time and succeeded. The package’s overall state is “delivered,” and writ-
ing a client for this service is a piece of cake with Ruby:

Download testing/rspec/rspecmocks/lib/tracking_service.rb

require 'open-uri'
require 'rexml/document’

class TrackingService
def initialize(url = 'http://localhost:4567")
@Qurl = url
end

def track(tracking_number)
request_uri = "#{@url}/package-history/#{tracking_number}"
doc = REXML: :Document.new(open(request_uri).read)
doc.elements['/package-history/state'].text
end
end

The track() method builds the URL for the history of the package and
requests it with open-uri. REXML parses the resulting XML document

and extracts the package’s current state (see Recipe 29, Find Solutions
Quickly with open-uri, on page 186 to learn more about open-uri and

http://media.pragprog.com/titles/msenr/code/testing/rspec/tracking_service.xml
http://media.pragprog.com/titles/msenr/code/testing/rspec/rspecmocks/lib/tracking_service.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=327

51. CREATE MOCK OBJECTS WITH RSPEC <« 328

Recipe 22, Use XML Files as Models, on page 146 to get familiar with
REXML).

Next we’ll create a ShipmentController and an Order model:

mschmidt> ./script/generate rspec_controller Shipment
mschmidt> ./script/generate rspec_model Order

We've used the RSpec generators that create not only the controller and
the model but also stubs for the appropriate RSpec specifications. In
the database, orders are defined as follows:

Download testing/rspec/rspecmocks/db/migrate/20080727090427_create_orders.rb

create_table :orders do |t]
t.string :product, :tracking_number
t.integer :quantity
t.timestamps

end

An order contains the name of the product that was ordered, the quan-
tity the customer ordered, and the tracking number we have from the
logistics partner when the order shipped. Here’s the code of the Ship-
mentController we need for tracking an order:

Download testing/rspec/rspecmocks/app/controllers/shipment_controller.ro

class ShipmentController < ApplicationController
def track
@order = Order.find(params[:id])
@state = begin
TrackingService.new.track(@order.tracking_number)
rescue
:unavailable
end
end
end

We read the order from the database and pass its tracking number to
the tracking service client to determine the order’s current state. If the
frack() method raises an exception, @state will be set to :unavailable.

Before writing a first test, we create a fixture that makes sure we always
have at least one order in the database:

Download testing/rspec/rspecmocks/spec/fixtures/orders.ymil

beer:
id: 1
product: Beer
quantity: 6

tracking_number: 42-xyz-4711

http://media.pragprog.com/titles/msenr/code/testing/rspec/rspecmocks/db/migrate/20080727090427_create_orders.rb
http://media.pragprog.com/titles/msenr/code/testing/rspec/rspecmocks/app/controllers/shipment_controller.rb
http://media.pragprog.com/titles/msenr/code/testing/rspec/rspecmocks/spec/fixtures/orders.yml
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=328

Line 1

Line 1

51. CREATE MOCK OBJECTS WITH RSPEC

And here’s our first specification for the ShipmentController:
Download testing/rspec/rspecmocks/spec/controllers/shipment_controller_spec.rb

describe ShipmentController, 'track' do
fixtures :orders

it 'should track package correctly' do
get :track, :id => orders(:beer)
assigns[:state].should eql('delivered')
end
end

First we load our fixtures file, and in the if() call we invoke the frack()
action, passing it the order we've defined in the fixtures file. In line 6, we
check whether the controller has set the @state variable to “delivered.”
Let’s run the test:

mschmidt> rake spec

(in ./testing/rspec/rspecmocks)
F

iD)

'ShipmentController track should track package correctly' FAILED
expected "delivered", got :unavailable (using .eql?)
./spec/controllers/shipment_controller_spec.rb:9:

Finished in 0.214836 seconds

1 example, 1 failure

Oops! That didn’t work as expected, did it? Obviously, the tracking ser-
vice did not return delivered but :unavailable. It’s even worse: there is no
tracking service at all, so our client tried to open a connection but got
an error instead. Even if we had access to a tracking service, how’'d it
know about our test order and the tracking number that we made up?

To test our controller's behavior, we need to simulate a real tracking
service; that is, we have to create a mock object that acts like a tracking
service but returns constant results:

Download testing/rspec/rspecmocks/spec/controllers/shipment_controller_spec.rb

describe ShipmentController, 'track with mock service' do
fixtures :orders

before :each do
tracking_service = mock('tracking service')
tracking_service.stub! (:track).and_return('delivered')
TrackingService.stub! (:new).and_return(tracking_service)
end

< 329

http://media.pragprog.com/titles/msenr/code/testing/rspec/rspecmocks/spec/controllers/shipment_controller_spec.rb
http://media.pragprog.com/titles/msenr/code/testing/rspec/rspecmocks/spec/controllers/shipment_controller_spec.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=329

51. CREATE MOCK OBJECTS WITH RSPEC <« 330

10 it 'should track package correctly' do
get :track, :id => orders(:beer)
assigns[:state].should eql('delivered')

end
end

That’s the same specification as earlier, but it contains an additional
before() call where we define our tracking service simulation. In line
5, we call RSpec’s mock() method to create a general mock object (an
instance of Spec::Mocks:Mock to be concise). Then we use stub!() and
and_return() to teach this mock object to return “delivered” whenever its
frack() method is invoked. We use stubl() again to change the behavior
of TrackingService’s new() method. It will no longer return a new instance
of the TrackingService service class but our mock object instead. That’s
the whole trick: create mock objects that return only constant results,
and redefine methods of the classes you'd like to test. Let’s see whether
it works:

mschmidt> rake spec
(in ./testing/rspec/rspecmocks)

Finished in 0.267375 seconds

1 example, 0 failures

We can simulate every single aspect of the tracking service, so let’s
make the tracking service unavailable for the next specification:

Download testing/rspec/rspecmocks/spec/controllers/shipment_controller_spec.rb

tnel describe ShipmentController, 'tracking service unavailable' do
fixtures :orders

before :each do
5 tracking_service = mock('unavailable tracking service')
tracking_service.stub!(:track).and_raise(IOError)
TrackingService.stub! (:new).and_return(tracking_service)
end

10 it 'should not be able to track package' do
get :track, :id => orders(:beer)
assigns[:state].should eql(:unavailable)

end
end

Instead of returning a constant state, we let the tracking service raise
an IOError exception in line 6. To make the test pass, we have to check
whether @state was set to :unavailable in line 12.

http://media.pragprog.com/titles/msenr/code/testing/rspec/rspecmocks/spec/controllers/shipment_controller_spec.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=330

51. CREATE MOCK OBJECTS WITH RSPEC <« 331

We have completely decoupled our test specification from any real-
world tracking service, so the only external component the specification
relies on is the database. It is used when loading the fixtures file, and
the controller needs it to find the order to be tracked. Wouldn't it be
great if we could get rid of it, too? You guessed it: RSpec allows us to
mock up models:

Download testing/rspec/rspecmocks/spec/controllers/shipment_controller_spec.rb

Line 1 describe ShipmentController, 'track with mock model' do
before :each do
order = mock_model(Order, :tracking_number => '42")
Order.stub! (:find).and_return(order)

5 tracking_service = mock('tracking service')
tracking_service.stub! (:track).and_return('delivered')
TrackingService.stub! (:new).and_return(tracking_service)

end

10 it 'should track package correctly without database access' do
get :track, :id => 42
assigns[:state].should eql('delivered')
end
end

With mock_model() in line 3, we create a mock object for the Order model
that has a constant tracking number. In the following line, we replace
Order’s original find() method, so it now always returns our mock object.
No matter which ID you pass when invoking the ShipmentControllers
tfrack() action, it will always find our test order and pass it to the track-
ing service mock object.

At the end of this recipe we’ll cover another important feature of RSpec
that will help you make sure your mock objects are used correctly.
Usually, you do not use mock objects directly, but they are used by the
software you are testing. For example, the mock object representing
our tracking service is used in the ShipmentController class. In our case
it's used in only one place, but sometimes mock objects are used in
more complex environments, so it’s helpful if you can check in your
specification what exactly has happened to the mock object:

Download testing/rspec/rspecmocks/spec/controllers/shipment_controller_spec.rb

Line 1 describe ShipmentController, 'track with expectation' do
fixtures :orders

before :each do
5 @tracking_service = mock('tracking service')
@tracking_service.stub! (:track).and_return('delivered')
TrackingService.stub! (:new).and_return(@tracking_service)
end

http://media.pragprog.com/titles/msenr/code/testing/rspec/rspecmocks/spec/controllers/shipment_controller_spec.rb
http://media.pragprog.com/titles/msenr/code/testing/rspec/rspecmocks/spec/controllers/shipment_controller_spec.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=331

51. CREATE MOCK OBJECTS WITH RSPEC <« 332

10 it 'should track package correctly' do
@tracking_service.should_receive(:track) .with('42-xyz-4711").
once.and_return('delivered')
get :track, :id => orders(:beer)
assigns[:state].should eql('delivered')
15 end
end

This time we've assigned the mock object to a member variable so we
can use it in the specification. The magic happens in line 11 (it's a
fairly long line, so we had to split it into two) where we tell RSpec what
we expect: the ShipmentController should call the track() method exactly
once, passing it the “42-xyz-4711” argument. track() should return the
“delivered” string. If any of these conditions isn’t met (for example, if
track() is called twice), the RSpec specification will fail.

RSpec has a lot of methods for checking what happened to a mock
object. Here are a few of them:3

Download testing/rspec/mock_sample.rb

mock.should_receive(:method) .with(no_args())
mock.should_receive(:method) .with(any_args())
mock.should_receive(:method) .with(/foo/)
mock.should_receive(:method).with('foo', anything(), true)
mock.should_receive(:method) .with(duck_type(:walk, :talk))
mock.should_receive(:method).twice
mock.should_receive(:method).exactly(3).times
mock.should_receive(:method).at_least(:once)
mock.should_receive(:method).at_most(:twice)
mock.should_receive(:method).any_number_of_times

Thanks to Ruby’s expressiveness, this shouldn’t need much explana-
tion. With no_args() and any_args(), you specify that a method should
receive no arguments or an arbitrary amount of arguments, respec-
tively. anything() is a placeholder that stands for any type of argument,
and with duck_type() we make sure that the argument understands the
walk() and talk() messages. As you've seen in our last specification, you
can freely combine these expectations.

Mock objects certainly help you make your tests run faster, but—more
important—they help you test the really interesting aspects of your soft-
ware, that is, how it behaves under extreme conditions. Whenever you
have to integrate with external components (web services, databases,
file systems, and so on), create mock objects for all of them, and test as
many corner cases as you can think of. It’s so easy with RSpec.

3. See http://rspec.rubyforge.org/rspec/1.1.11/classes/Spec/Mocks.html for a complete overview.

http://media.pragprog.com/titles/msenr/code/testing/rspec/mock_sample.rb
http://rspec.rubyforge.org/rspec/1.1.11/classes/Spec/Mocks.html
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=332

51. CREATE MOCK OBJECTS WITH RSPEC <« 333

Also See
,_J L \

* See Recipe 49, Improve Your Testing with RSpec, on page 316 to
learn the basics of RSpec.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=333

Prototype Services with
Sinatra

Problem
,_J L \

Your company uses a service-oriented architecture; in other words,
each new application consists of distributed REST components. All
components are developed independently and are tied together in an
integration test. Usually, that happens rather late in the process, and
to start integration tests earlier, it’s often useful to build a prototype of
a service. In this recipe, you’ll learn how to create a mock-up of a REST
service within minutes.

| Ingredients | N

e Install the Sinatra* and haml® gems:

$ gem install sinatra
$ gem install haml

Solution
,_J L \

Although creating web services with Rails is a breeze compared to most
other approaches, it still requires some ceremony. The biggest prob-
lem when building small applications or prototypes is that the code is
spread across many files. For these purposes, better tools exist, and
Sinatra is one of them, because it is a domain-specific language for
creating web applications.

We’'ll use Sinatra to build a prototype of a catalog service, namely, a ser-
vice managing a list of products. (Ramaze® is another lightweight web
application framework that is certainly worth a look.) All its resources
are encoded as XML documents, and it should support the endpoints
described in Figure 11.1, on the following page.

4. http://rubyforge.org/projects/sinatra/
5. http://haml.hamptoncatlin.com/
6. http://ramaze.net/home/

http://rubyforge.org/projects/sinatra/
http://haml.hamptoncatlin.com/
http://ramaze.net/home/

52. PROTOTYPE SERVICES WITH SINATRA

HTTP Verb URI Action

GET /products Returns a list of all products

GET /products/:id Returns the product identified by :id
POST /products Creates a new product

DELETE /products/:id Deletes the product identified by :id

Figure 11.1: The actions we’d like to simulate

Even if we are building a prototype only, it still will be backed by a
database. To make things as easy as possible, we use SQLite,” and we
create only a single table for our catalog’s products:

Download testing/sinatra/catalog.rb

lnel require 'sinatra'
require 'activerecord'

configure do
5 ActiveRecord: :Base.establish_connection(
:adapter => 'sqglite3',
:database => './catalog.db',
rtimeout => 5000
)

class CreateProducts < ActiveRecord::Migration
def self.up
create_table :products, :force => true do |t]
t.string :name
15 t.decimal :price, :precision => 10, :scale => 2
end
end
end
CreateProducts.up
20
class Product < ActiveRecord::Base
validates_uniqueness_of :name
end
Product.create(:name => 'Beer', :price => 6.99)
25 end

That's pretty straightforward ActiveRecord code, but you might wonder
what the configure() call in line 4 does. Like Rails, Sinatra supports
different environments (development, test, and production). In devel-
opment mode, Sinatra reloads the whole program after every request,

7. http://www.sglite.org/

http://media.pragprog.com/titles/msenr/code/testing/sinatra/catalog.rb
http://www.sqlite.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=335

52. PROTOTYPE SERVICES WITH SINATRA < 336

which is nice, because it speeds up the development cycle; however, it
can also be a problem. If you initialize a database at the beginning of
your program, for example, it would be re-created after every request,
which probably is not what you want. All code that is encapsulated in
a configure() block is executed only once.

Now the database is ready, and we can implement the first REST end-
point. The following code makes sure that the whole catalog can be
requested as an XML document at /products:

Download testing/sinatra/catalog.rb

Line 1 get '/products' do
header 'Content-Type' => 'text/xml; charset=utf-8'
products = Product.find(:all)
builder do |xml|
5 xml.instruct!
xml.products do
products.each do |product]|
xml.product :name => product.name, :price => product.price
end
10 end
end
end

Sinatra’s get() method expects a route and a code block. Whenever a
GET request is sent to the route, the code block will be executed, and
its result is delivered to the client. You can modify other attributes of
the response, too, so in line 2, we set the Content-Type header with
the header() method. Then we read all products that are currently in
the database and convert them into an XML document using Builder (to
learn more about Builder, see Recipe 26, Build Plain-Vanilla XML Docu-
ments, on page 172). Let’s start the catalog service:

mschmidt> ruby catalog.rb -e development

== C(CreateProducts: migrating
-- create_table(:products, {:force=>true})

-> 0.3044s
== C(CreateProducts: migrated (0.3047s)

== Sinatra has taken the stage on port 4567 for development

Sinatra supports only a few command-line arguments, and we have
used -e to run in the development environment (which is the default
anyway). After the database has been initialized, Sinatra listens on its
default port 4567 (you can set the port with the -p option).

http://media.pragprog.com/titles/msenr/code/testing/sinatra/catalog.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=336

52. PROTOTYPE SERVICES WITH SINATRA < 337

It’s time to initiate a first request:

mschmidt> curl -i http://localhost:4567/products
HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8
Content-Length: 105

<?xm1 version="1.0" encoding="UTF-8"?7>
<products>

<product price="6.99" name="Beer"/>
</products>

First shot, first hit! We've successfully requested the first resource from
our new service prototype. And it was not even a real fake: everything
was read from a database and has been properly serialized with Builder
into an XML document. Let’s write the code for requesting a single prod-
uct now:

Download testing/sinatra/catalog.rb

linel helpers do
def product_to_xml(xml, product)
xml.product :name => product.name, :price => product.price
end
5 end

get '/products/:id' do
header 'Content-Type' => 'text/xml; charset=utf-8'
unless product = Product.find_by_id(params[:id])
10 response.status = 404
else
builder do |xmT]|
xml.instruct!
product_to_xml(xml, product)
15 end
end
end

At first we use another useful Sinatra feature: helpers. We know that we
have to serialize a Product object into an XML document again, so we
have written a small helper method named product_fo_xmi() that does
it for us. Once defined, a helper method can be used everywhere in a
program.

The business logic is implemented again in a code block that is passed
to the get() method. This time we need a parameter from the request
URL that is the ID of the product to be returned. In the first argument
to get(), we can find a placeholder named :id. Sinatra extracts such
placeholders and puts them into the params hash automatically, so we
can access it in line 9. Then we try to find the referenced product in

http://media.pragprog.com/titles/msenr/code/testing/sinatra/catalog.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=337

52. PROTOTYPE SERVICES WITH SINATRA < 338

the database. We use find_by_id() and not find(), because it returns nil
instead of raising an exception if no product can be found. If we cannot
find it, we set the response’s status to 404 (Not Found) and return an
empty body. Otherwise, we turn the product into an XML document
with our new product_fo_xml() helper in line 14. See it in action:
mschmidt> curl http://localhost:4567/products/1

<?xml version="1.0" encoding="UTF-8"7>
<product price="6.99" name="Beer"/>

Looking up products in the catalog works like a charm, so it’s time for
the next level, that is, adding products:

Download testing/sinatra/catalog.rb

tnel require 'rexml/document’

post '/products' do
xml = request.env['rack.input'].read
5 doc = REXML: :Document.new(xml)
product = Product.create(
:name => doc.elements['/product/@ame'].value,
:price => doc.elements['/product/@rice'].value.to_f

)
10 header 'Location' => "/products/#{product.id}"
response.status = 201
end

To make our service RESTful, we have to use the post() method this
time. It works exactly like get() but gets invoked whenever Sinatra
receives a POST request. In line 4, we read the payload that has been
sent with the request (an XML document containing a product). At the
moment we have to use this awkward syntax to get the request body,
but it works without problems (rack is a library that is used by Sinatra).
The rest of the code is easy: we turn the XML document that has been
transmitted in the request into a Product object using REXML and store
it in the database. In line 10, we set the Location header, and finally we
set the response’s status code to 201 (Created).

Now we can take this document:

Download testing/sinatra/product.xml

<product name='Fresh Donuts' price='0.99'/>

and add it to the catalog:

mschmidt> curl -i -H 'content-type:text/xml' -d @product.xml \
> http://Tocalhost:4567/products

HTTP/1.1 201 Created

Location: /products/2

http://media.pragprog.com/titles/msenr/code/testing/sinatra/catalog.rb
http://media.pragprog.com/titles/msenr/code/testing/sinatra/product.xml
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=338

52. PROTOTYPE SERVICES WITH SINATRA < 339

curl sends application/www-form-urlencoded by default in the content-
type header, so we set it explicitly to text/xml. Otherwise, the posted
data would be misinterpreted by Sinatra, and we could not read it. As
expected, the status code is 201 (Created), and the Location header con-
tains a link to the newly created product resource.

The opposite direction—that is, getting rid of a product—can be imple-
mented as follows:

Download testing/sinatra/catalog.rb

delete '/products/:id' do
if Product.exists?(params[:id])
Product.delete(params[:id])
else
response.status = 404
end
end

If a product can be found, it will be deleted. If not, 404 is returned.
Here’s what happens if you try to delete a nonexistent product:

mschmidt> curl -i -X DELETE http://localhost:4567/products/42
HTTP/1.1 404 Not Found

We're done with all the endpoints we needed, and we've covered a lot
of Sinatra’s features (we didn’'t cover PUT requests, but I'm fairly sure
you can guess how they are implemented). But I've saved some of Sina-
tra’s coolest features for the end of the recipe. For example, Sinatra
automatically serves static files in the public directory. Put an informa-
tive README file into the public directory, and your clients can get it as
follows:

mschmidt> curl http://localhost:4567/README

This is a prototype of the catalog application.
It is only meant for integration purposes.

It gets even cooler: Sinatra supports templates written in Embedded

Ruby (ERb), XHTML Abstraction Markup Language (HAML), and Syn-
tactically Awesome Style Sheets (SASS). It even has support for partials.

We'll use HAML and SASS to create an HTML view of our catalog. Here’s
the code that’s needed:

Download testing/sinatra/catalog.rb

get '/screen.css' do
header 'Content-Type' => 'text/css; charset=utf-8'
sass :screen

end

http://media.pragprog.com/titles/msenr/code/testing/sinatra/catalog.rb
http://media.pragprog.com/titles/msenr/code/testing/sinatra/catalog.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=339

52. PROTOTYPE SERVICES WITH SINATRA < 340

800 Our Fancy Catalog
l < | » | A http://localhost:4567 /catalog A'Q- Google @)

Our Catalog:

1. Beer ($6.99)
2. Fresh Donuts ($0.99)

Figure 11.2: HTML view of catalog
I EEEEEEEE———,

get '/catalog' do
@products = Product.find(:all)
ham1l :catalog

end

When the URL /screen.css is requested, Sinatra reads the file screen.css
from the views directory (all templates are stored in the views directory)
and converts it into a Cascading Style Sheets (CSS) file with the sass()
method. Similar things happen for /catalog: views/catalog.haml is read
and is transformed into an HTML document. catalog.haml looks like

this:
Download testing/sinatra/views/catalog.haml
%html
%head
%title Our Fancy Catalog
%link{:rel => 'stylesheet', :href => '/screen.css', |
rtype => 'text/css', :media => 'screen'} |
%body
%h2 Our Catalog:
#content
%01

= Tist_of(@products) do |p|
= "#{p.name} ($#{p.price})"

Before the HAML crash course starts, point your browser to http://
localhost:4567/catalog, and you'll see something like Figure 11.2.

http://media.pragprog.com/titles/msenr/code/testing/sinatra/views/catalog.haml
http://localhost:4567/catalog
http://localhost:4567/catalog
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=340

52. PROTOTYPE SERVICES WITH SINATRA < 341

HAML is a markup language that frees HTML documents from a lot of
redundant clutter. In the beginning it reads a bit strange, but when you
get used to it, it’s an invaluable time-saver. In HAML documents inden-
tation matters, so you do not have to close elements. Regular HTML
elements start with a percentage sign, and attributes are defined within
curly braces and Ruby’s hash syntax.

We've split the %link element across two lines, so we had to end those
lines with a pipe symbol (|). #content is an abbreviation for the following:

<div id='content'>
and to generate a class= attribute instead of id=, we had to write .content.

You can embed arbitrary Ruby code into HAML documents. If the code
is introduced by a hyphen (-), it gets executed only, but if it’s introduced
by an equal sign (=), its result is embedded into the document. The
list_of() helper creates <lIi> elements for all elements in an array, and
we use it to generate a list of all products.

SASS documents are structured in a similar way. Here’s ours:
Download testing/sinatra/views/screen.sass

body
font-family: sans-serif

content
padding: lem

After it has been interpreted by the sass() method, it will look like this:

body {
font-family: sans-serif; }

content {

padding: lem; }
That's it! In 90 lines of code we have built a REST service that accesses
a database. It not only implements all the endpoints we needed, but it
also comes with nice add-ons such as an HTML view of the catalog.

In principle, you could use Sinatra to build small web services or appli-
cations, but it’s best suited for prototyping interfaces and services.
Instead of scribbling your ideas on a piece of paper, type them into
your editor next time. The sooner you start to integrate all parts of a
new distributed application, the better it will work.

http://media.pragprog.com/titles/msenr/code/testing/sinatra/views/screen.sass
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=341

52. PROTOTYPE SERVICES WITH SINATRA < 342

Also See
,_J L \

® To learn how to build complete web services based on REST and
SOAP, see Chapter 6, Perform Basic Networking Tasks with Ease,
on page 179.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=342

Chapter 12

(et Documentation

Developing enterprise applications is expensive, and therefore many
of them get comparatively old (do you remember how popular COBOL
programmers were during the Y2K crisis?). Often they are maintained
by generations of developers, and making this possible requires good
documentation.

The most important parts of a software project’s documentation are
the so-called API docs generated from a program’s source code and dia-
grams describing the structure of the database on which the application
works. They are also the most unstable parts, and usually they change
very often. Because of this, all modern languages have mechanisms
for creating such documentation automatically, and Ruby is no excep-
tion. In Recipe 53, Generate Documentation Automatically, on page 345,
you’'ll learn how to generate most of your project’s documentation from
comments in your source code and from your database.

Abstraction is a nice thing when it comes to databases, but some-
times you are interested in concrete information. If you are working
with ActiveRecord, for example, you often need to know the structure
of the table underlying your model. Usually, you have to look it up
in the according migration or—even worse—in the database. In Recipe
54, Annotate Your Models Automatically, on page 352, you'll learn how
to add table definitions automatically to your models.

CHAPTER 12. GET DOCUMENTATION NEARLY FOR FREE <« 344

An important feature of most enterprise applications is reporting, be-
cause many enterprise applications have no user interface and com-
municate with the outside world via reports. In Recipe 55, Create Great
Reports, on page 356, you'll learn how to create reports in various out-
put formats. No matter whether you need CSV, HTML, or PDF files and

no matter how complicated your database is, Ruby helps you find a
solution quickly.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=344

Generate Documentation
Automatically

Problem
,_J L \

You have finished your new Rails application, so now you want to
deploy it to the production environment. But before that, the QA depart-
ment wants to have database diagrams showing the relationships be-
tween your application’s models, and it wants API documentation ex-
plaining all the classes and their methods.

In this recipe, you'll learn how to generate documentation automatically
from the comments in your application code and from your database
schema.

J Ingredients | \

e Install Railroad,! a tool for generating database diagrams.

$ gem install railroad

e Install the Graphviz? tool suite for visualizing graphs. It’s free and
open source.

Solution
,_J L \

Let’s say your application’s database contains the typical COLA tables:
customers, orders, line items, and accounts. They have been created
with the following ActiveRecord migrations:

create_table :customers do |t]|
t.string :forename, :surname
t.timestamps

end

create_table :accounts do |t|
t.belongs_to :customer
t.string rpay_type
t.timestamps

end

1. http://railroad.rubyforge.org/
2. http://www.graphviz.org/

http://railroad.rubyforge.org/
http://www.graphviz.org/

53. GENERATE DOCUMENTATION AUTOMATICALLY < 346

create_table :orders do |t]
t.belongs_to :customer
t.string :comment
t.timestamps

end

create_table :Tine_items do |t]
t.belongs_to :order

t.string :name
t.integer rquantity
t.decimal :price_per_unit
t.timestamps

end

Although these migrations describe the attributes of all models, they
do not explain their relationships (the only exception is the belongs_to()
method, which creates a foreign key column). All relationships have to
be declared in the model classes:
class Customer < ActiveRecord::Base

has_one :account

has_many :orders
end

class Account < ActiveRecord: :Base
belongs_to :customer
end

class Order < ActiveRecord::Base
belongs_to :customer
has_many :1ine_items

end

class LineItem < ActiveRecord::Base
belongs_to :order
end

For software developers, these declarations read like a specification
and would usually be sufficient. But QA departments often insist on
database diagrams, and for more complex databases, that really makes
sense.

Many tools are available for generating diagrams from databases auto-
matically, but most of them do not produce decent results for Rails
databases. Usually, such tools read all the information they need from
the database’s data dictionary. For example, they expect you to define
relationships between tables with foreign key constraints. In Rails ap-
plications, you do this in your model classes, which aren’t taken into
account by regular tools. Railroad is different, because it has been
explicitly designed for visualizing Rails databases.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=346

53. GENERATE DOCUMENTATION AUTOMATICALLY < 347

Customer

forename :string
surname :string

Account

kpay_type :string) onmment :stringJ

(Lineltem w

name :string
quantity :integer
price_per_unit :decimal

Figure 12.1: Database diagram

mschmidt> railroad -M --hide-magic -o models.dot
mschmidt> dot -Tpng models.dot > models.png

The railroad command scans the application’s models and produces a
.dot file. This file contains a textual representation of a graph describ-
ing the database tables and their relationships. It can be turned into
images of various formats by the dot command that is part of the
Graphviz tool suite. In the previous example, the .dot file is turned
into the PNG image shown in Figure 12.1. See the Joe Asks... on the
following page for details about DOT.

Railroad’s output can be controlled by many command-line switches.
We have used -M for generating a diagram of our models (-C would gen-
erate a class diagram of the controllers), and --hide-magic hides Rails’
magic attributes like created_at. -o determines the name of the out-
put file to be produced, and there are many more switches that are
described in Railroad’s excellent documentation.

Because Railroad emits DOT files, you can export your diagrams auto-
matically into every graphic format you need. It’s especially useful to
export them as Scalable Vector Graphic (SVG) files that can be imported
by drawing tools such as Microsoft Visio, for instance.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=347

53. GENERATE DOCUMENTATION AUTOMATICALLY < 348

\/

AN

Joe Asks. ..
What Is DOT?

DOT is a text format for describing graphs consisting of nodes
and edges. The following code specifies a simplified version of
the relationship between the Customer and the Account model
as it is shown in Figure 12.1, on the previous page:

&

f

Download documentation/models.dot

digraph models_diagram {
graph[overlap=false, splines=true]
"Account" [shape=Mrecord, Tabel="Account"]
"Customer" [shape=Mrecord, Tabel="Customer"]
"Customer" -> "Account" [
arrowtail=odot, arrowhead=dot, dir=both
]
}

Even without explaining every detail, you should be able to
understand most of the code: digraph defines a new directed
graph, and with the graph declaration we set some global
properties of the graph to be drawn (with DOT you do not only
define nodes and edges but also their appearance). We do
not want nodes to overlap, and it’s OK if edges aren’t drawn as
straight lines but as splines if necessary.

Then we define two nodes named “Customer” and “Account”
that both have a label and use the predefined Mrecord shape
(a rectangle with rounded corners). Finally, we define an edge
connecting these two notes, and we specify how the connec-
tion should look.

Creating .doft files is easy, and you should keep that in mind
whenever you have to visualize a graph structure. Several
tools are available for turning .dot files info various graphic for-
mats such as PNG or Scalable Vector Graphics (SVG). One
of the most popular tools is the Graphviz package from AT&T
Research Labs.

http://media.pragprog.com/titles/msenr/code/documentation/models.dot
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=348

53. GENERATE DOCUMENTATION AUTOMATICALLY

Now that we have nice diagrams for our database, let’'s see whether we
can create nice API documentation, too. Here we have an extended and
fully documented version of the Order class:

Download documentation/sampleshop/app/models/order.rb

Line 1 # This class encapsulates all attributes of an order. In addition, it
provides some methods for calculating various figures.
class Order < ActiveRecord::Base
belongs_to :customer
5 has_many :1ine_items

Calculates the total amount of an order.
def total_amount()
self.line_items.inject(0) { |total, 1i| total += Ti.total_price }
10 end

Calculates the payment amount of an order.

#
discount::
15 # Discount (percentage) that will be granted to the customer.

This method still has some =problems=:
» It does not check if discount is negative.
» It does not check if discount is greater than 100.
- def payment_amount(discount = 0)
20 total_amount() * (1 - discount / 100)
end
end

All comments look pretty normal, but they contain some special fea-
tures that will become obvious when we turn the inline documentation
into pretty HTML pages:

mschmidt> rake doc:app

This command generates documentation for all classes belonging to
your application in the doc/app directory. The HTML page document-
ing the Order class can be found in doc/app/classes/Order.html, and it is
shown in Figure 12.2, on the following page.

As you can see, most of the comment text has been copied verbatim to
the generated HTML documents, but some parts have been interpreted
as a special kind of markup: RDoc. RDoc is the standard tool for embed-
ding documentation into Ruby source code, and in contrast to similar
tools such as Javadoc, it’s refreshingly simple. Usually, it’s sufficient to
do nothing but write comments, and there are only a few special rules.

http://media.pragprog.com/titles/msenr/code/documentation/sampleshop/app/models/order.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=349

53. GENERATE DOCUMENTATION AUTOMATICALLY <@ 350

600 Class: Order
@ /doc/app/classes/Order.html

cass Order

In: app/models/order.rb
Parent: ActiveRecord::Base

This class encapsulates all attributes of an order. In addition, it
provides some methods for calculating various figures.

Methods
payment_amount total_amount

Public Instance methods
payment_amount(discount = 0)

Calculates the payment amount of an order.

discount: Discount (percentage) that will be granted to the customer.
This method still has some problems:

o It does not check if discount is negative.
e It does not check if discount is greater than 100.

[Source]

total_amount()

Calculates the total amount of an order.

[Source]

[Validate]

Figure 12.2: RDoc output sample

In line 14, for example, we have appended two colons to the name of
the discount argument to produce a labeled list (containing only a sin-
gle item). This is a typical style for documenting method arguments,
because there is no such thing as @param in Javadoc. The Rails project
uses a different style and would have written the same comment as
follows:

* +discount+ - Discount (percentage) that will be granted to the
customer.

This produces a bulleted list and sets the word discount with a type-
writer font. To emphasize a word, you can also make it bold by enclosing
it in * characters, as we did in line 16, or you can use underscores for
italics.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=350

53. GENERATE DOCUMENTATION AUTOMATICALLY < 351

Every Ruby installation comes with the rdoc command-line tool, and
running ri RDoc outputs excellent documentation. Whenever you are
commenting code, make sure you're using RDoc style, because it’s easy
and pays off quickly.

Although RDoc and Railroad are completely independent, they create
surprisingly good results when used together—mot only for your QA
department but also for you and your fellow developers.

Also See
,_J L \

You might also take a look at Recipe 54, Annotate Your Models Automat-
ically, on the next page to learn how to create documentation for your
database.

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=351

Annotate Your Models
Automatically

Problem
,_J L \

When working with ActiveRecord, you rarely think about database spe-
cifics. ActiveRecord simplifies your model classes, and migrations make
it easy to create their definitions in the database. But during devel-
opment you forget the table structure when editing models or writing
fixtures, and you often find yourself switching between files just to look
up a certain attribute.

In this recipe, you’ll learn how to circumvent this by using annotfate, a
tool for annotating Rails models automatically.

| Ingredients | N

e Install the annotate-models gem:3

$ gem install annotate-models

Solution
,_J L \

For demonstration purposes, we create a simple customer model:

mschmidt> ruby script/generate model Customer forename:string \
> surname:string

This results in the following migration:
Download documentation/annotate/annotate_sample/db/migrate/001_create_customers.rb

create_table :customers do |t]
t.string :forename
t.string :surname
t.timestamps

end

The migration describes the customers table’s structure in a database-
independent manner; that is, you cannot see the exact definition of
a column (what's the maximum length of the forename column, for
instance?), and you cannot see all the columns that are created in

3. http://annotate-models.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/documentation/annotate/annotate_sample/db/migrate/001_create_customers.rb
http://annotate-models.rubyforge.org/

54. ANNOTATE YOUR MODELS AUTOMATICALLY < 353

the database. For example, the previous migration creates an integer
column named id and two datetime columns named created_at and
updated_at. All these details are hidden in the model where you can-
not see any of a customer’s attributes, because Rails generates only
two lines of code:

class Customer < ActiveRecord::Base
end

Classes derived from ActiveRecord::Base do not need more information,
because ActiveRecord dynamically reads all attribute definitions from
the database whenever it's necessary. Usually that’s a good thing, be-
cause it eliminates redundancy. But during development you often have
to switch from your model code to the appropriate migration file to look
up the definition of a certain attribute.

With annotate, these times are over. annotate is a Ruby script that exam-
ines all your models and inserts a comment containing detailed schema
information into the according source files:

mschmidt> annotate

Annotated Customer
mschmidt> cat app/models/customer.rb

created_at :datetime
updated_at :datetime

== Schema Information

Schema version: 1

#

Table name: customers

#

id rinteger not null, primary key
forename :string(255)
surname :string(255)
#

#

#

class Customer < ActiveRecord::Base
end

For our Customer model, annotate has inserted the table name and the
definition (including column types and constraints) of all five columns.

By default annotate puts the annotation in front of the model class.
Using the -p (position) switch, you can put it after the class:

mschmidt> annotate -p after
Annotated Customer

mschmidt> cat app/models/customer.rb
class Customer < ActiveRecord::Base
end

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=353

54. ANNOTATE YOUR MODELS AUTOMATICALLY

created_at :datetime
updated_at :datetime

== Schema Information

Schema version: 1

#

Table name: customers

#

id :integer not null, primary key
forename :string(255)
surname :string(255)
#

#

#

As you can see, annotate is clever enough to remove the existing anno-
tation and to replace it with a new one. In addition, it does not touch
your own comments:

mschmidt> cat app/models/customer.rb
This is our customer model class.
class Customer < ActiveRecord::Base
end

mschmidt> annotate

Annotated Customer

mschmidt> cat app/models/customer.rb

created_at :datetime
updated_at :datetime

== Schema Information

Schema version: 1

#

Table name: customers

#

1d :integer not null, primary key
forename :string(255)
surname :string(255)
#

#

#

This is our customer model class.
class Customer < ActiveRecord::Base
end

By the way, all this magic happens in your fixtures files as well:

mschmidt> cat test/fixtures/customers.yml
== Schema Information
Schema version: 1

Table name: customers

id rinteger not null, primary key
forename :string(255)
surname :string(255)

created_at :datetime
updated_at :datetime

FH O OH W R H R H KR W R

< 354

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=354

54. ANNOTATE YOUR MODELS AUTOMATICALLY < 355

Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html

one:
forename: MyString
surname: MyString

two:
forename: MyString
surname: MyString

If you want to get rid of all annotations, use the -d (delete) switch:

mschmidt> annotate -d

Removed annotation from: Customer
mschmidt> cat app/models/customer.rb
This is our customer model class.
class Customer < ActiveRecord::Base
end

annotate works fine with legacy tables, too; if you've set the table name
in your model explicitly with set_table_name(), it still produces correct
results. It does not work, though, with multiple database connections
as we have described them in Recipe 15, Access Databases from Differ-
ent Vendors Simultaneously, on page 105.

To get the most out of it, it's best to make annotate part of your build
process. For example, you could write a rake task that executes annotate
every time rake db:migrate gets called. Even better, you can modify the
db:migrate task directly:

Download documentation/annotate/annotate_sample/Rakefile

namespace :db do
task :migrate do
sh 'annotate'
end
end

This works because Rake by default does not overwrite the do:migrate
task but adds the new functionality to it. From now on, annotate is run
automatically after new migrations have been applied to the database.

http://media.pragprog.com/titles/msenr/code/documentation/annotate/annotate_sample/Rakefile
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=355

Recipe 55

Create Great Reports

| Problem \

Many enterprise applications are implemented as background services
and do not have a graphical user interface. They often write only to log
files and databases and can communicate with the outside world only
via reports. Sometimes these reports are as simple as the outcome of a
SQL query, but they can also be complex spreadsheets, HTML pages,
or PDF documents containing lots of tables and graphs.

Reporting features are often forgotten when planning new applications,
and they usually get implemented hastily at the end of a project, be-
cause many programmers do not like to deal with these aspects of an
application.

But if you have the right tools, reports actually can be fun, and in this
recipe you’'ll learn how to create nice-looking reports in various output
formats with ease.

J Ingredients |

* The reports in this recipe will be created using the ruport gem:*
$ gem dinstall ruport

¢ If you want to use ruport with ruby-dbi or with ActiveRecord in your
Rails application, you have to install two additional gems:

$ gem install ruport-util
$ gem install acts_as_reportable

' Solution \

The most important thing when creating a report is its basis—the data
to create a report for—because usually a report is only a highly con-
densed version of this database. A report can be as simple as a single
number like the number of open orders, for example, but it can also be
a PDF document comprising several hundred pages.

4. http://rubyreports.org/

http://rubyreports.org/

55. CREATE GREAT REPORTS <« 357

To make things more tangible in this recipe, we’ll assume that we’re
working for a company selling cell phones and have to create reports
describing the cell phone models currently stored in the company’s
shop database. To achieve this, we’ll use the Ruport framework, a pow-
erful library for creating first-class reports with Ruby.

Although it’s not limited to relational database systems, the main clas-
ses of the Ruport framework represent relational database concepts
such as tables and groupings. Ruport adds some convenience meth-
ods for filtering and sorting data and a lot of functionality for creating
various output formats.

We'll start with a simple Ruport:Data::Table object representing a cell
phone with a manufacturer, a model, a certain weight, and a flag indi-
cating whether it has a GPS receiver. To make things more interesting,
we immediately create two cell phone data sets:

Download documentation/ruport/ruport_sample.rb

require 'ruport'
phones = Table(%w(manufacturer model weight gps))
phones << {
'manufacturer' => 'Nokia', 'model' => 'N95',
'weight' => '120', 'gps' => true

}

phones << {
'manufacturer' => 'Apple', 'model' => 'iPhone',
'weight' => '135', 'gps' => false

}

puts phones
puts 'Column names:

’

+ phones.column_names.join(', ')

The previous program produces a simple report resembling the format
MySQL uses to display query results:

ittt bbbt bbb bbb bbbl +
| manufacturer | model | weight | gps |
ittt bbbt bbb bbb bbbl +
| Nokia | N95 | 120 | true

| Apple | iPhone | 135 | false |
ittt bbbt bbb bbb bbbl +

Column names: manufacturer, model, weight, gps

As you can see, a Table object’s to_s() method produces a nicely for-
matted text report, and column_names() returns an Array containing its
column names.

http://media.pragprog.com/titles/msenr/code/documentation/ruport/ruport_sample.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=357

55. CREATE GREAT REPORTS <« 358

The following program slightly modifies the report:
Download documentation/ruport/ruport_sample.rb

phones = phones.sub_table(%w(manufacturer model weight))
phones.rename_columns(
'manufacturer' => 'Manufacturer',
'model’ => 'Model',
'weight' => 'Weight (gram)'
)
puts phones
puts 'Column names:

’

+ phones.column_names.join(', ')

It produces the following result:

oo +
| Manufacturer | Model | Weight (gram) |
e L EE e +
| Nokia | N95 | 120
| Apple | iPhone | 135
e L EE e +

Column names: Manufacturer, Model, Weight (gram)

With the sub_table() method, we have reduced the column set we're
reporting on, and with rename_columns() we have made the column
headings a bit more attractive. Now we’ll swap the manufacturer and
model columns and add another phone data set:
Download documentation/ruport/ruport_sample.rb
phones.swap_column('Model', 'Manufacturer')
phones << {

'"Manufacturer' => 'Apple', 'Model' => 'iPhone 3G',

'Weight (gram)' => '133', 'gps' => true
}

puts phones

The program prints the following:

i +
| Model | Manufacturer | Weight (gram) |
oo m o mm e ————————————oo- +
| N95 | Nokia | 120
| iPhone | Apple | 135
| iPhone 3G | Apple | 133
i +

Please note that we have to use the current column names to add a
new phone and that the gps attribute will be stored but not printed.

OK, our text report is as nice as a text report can be, but it certainly
will not win a beauty contest, and it has some disadvantages, too. For
example, it cannot be imported by a spreadsheet application.

http://media.pragprog.com/titles/msenr/code/documentation/ruport/ruport_sample.rb
http://media.pragprog.com/titles/msenr/code/documentation/ruport/ruport_sample.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=358

55. CREATE GREAT REPORTS <« 359

A CSV file could be imported, so let’s create one:
Download documentation/ruport/ruport_sample.rb

puts phones.to_csv

Here’s the program’s output:

Model,Manufacturer,Weight (gram)
N95,Nokia, 120

iPhone,Apple, 135

iPhone 3G,Apple,133

It starts to pay off that the data we're working on is represented by Table
objects, because they come with some useful standard formatters, and
new formatters can be added if needed. HTML is supported by default,
too, and a single statement such as the following:

Download documentation/ruport/ruport_sample.rb

puts phones.sort_rows_by(%w(Manufacturer Model)).to_html

produces the following <table> element:

<table>

<tr>
<th>ModeTl</th>
<th>Manufacturer</th>
<th>Weight (gram)</th>

</tr>

<tr>
<td>N95</td>
<td>Nokia</td>
<td>120</td>

</tr>

<tr>
<td>iPhone</td>
<td>Apple</td>
<td>135</td>

</tr>

<tr>
<td>iPhone 3G</td>
<td>Apple</td>
<td>133</td>

</tr>

</table>

Before the HTML report has been created, the table data has been
sorted by the manufacturer attribute first and then by the model attri-

bute. This has been achieved by using the sort_rows_by() method that
expects an array of column names to sort the table data by.

http://media.pragprog.com/titles/msenr/code/documentation/ruport/ruport_sample.rb
http://media.pragprog.com/titles/msenr/code/documentation/ruport/ruport_sample.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=359

55. CREATE GREAT REPORTS <« 360

Grouping is as easy as sorting with Ruport, and it’s such an important
task that it's represented by its own class named Grouping. It is used in
the following program to group our cell phone data by the manufacturer
attribute:

Download documentation/ruport/ruport_sample.rb

grouping = Grouping(phones, :by => 'Manufacturer')
puts grouping

The program outputs the following:

Nokia:
itttk +

| Model | Weight (gram) |
itttk +

| N95 | 120 |
oo +
Apple
e +
| Model | Weight (gram) |
o +
| iPhone | 135

| iPhone 3G | 133
o +

That’s all nice, and Ruport has tons of more useful methods for filtering,
grouping, and sorting data (take a look at The Ruport Book |]
for a detailed reference). But reporting is more fun when data comes
from a real database, so now we’ll combine Ruport and ActiveRecord.

We'll do it the right way; that is, we’ll use two separate tables for rep-
resenting cell phones and their manufacturers. First we’ll create and
initialize the manufacturers table with the following migration:

Download documentation/ruport/phones/db/migrate/20080704153504_create_manufacturers.ro

create_table :manufacturers do |t]
t.string :name
t.timestamps

end

Load sample data:
Manufacturer.create(:name => 'Nokia')
Manufacturer.create(:name => 'Apple')

http://media.pragprog.com/titles/msenr/code/documentation/ruport/ruport_sample.rb
http://media.pragprog.com/titles/msenr/code/documentation/ruport/phones/db/migrate/20080704153504_create_manufacturers.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=360

55. CREATE GREAT REPORTS

And we have a table for cell phones, too:
Download documentation/ruport/phones/db/migrate/20080704153604_create_cell_phones.rb

create_table :cell_phones do |t|
t.belongs_to :manufacturer
t.string :model
t.integer :weight
t.boolean 1gps
t.timestamps
end

Load sample data:

[
['"Nokia', 'N95', 120, true],
['Apple', 'iPhone', 135, false],
['Apple', '"iPhone 3G', 133, true],
J.each do |p]
Cel1Phone.create(
:manufacturer_id => Manufacturer.find_by_name(p[0]).1d,
:model => p[1l], :weight => p[2], :gps => p[3]
)
end

That's similar to the initialization we did manually when creating our
Table object, but now we are working with a database using model
classes to represent the database tables:

DownTload documentation/ruport/phones/app/models/manufacturer.rb

require 'ruport/acts_as_reportable’

class Manufacturer < ActiveRecord::Base
has_many :cell_phones
acts_as_reportable

end

Download documentation/ruport/phones/app/models/cell_phone.rb

class CellPhone < ActiveRecord::Base
belongs_to :manufacturer
acts_as_reportable

end

The only special thing in these classes is the acts_as_reportable() decla-
ration. It makes sure that we can use all the Ruport methods we have
used directly before in both the Manufacturer and CellPhone classes.

Now we’ll create a ReportController class for generating reports as CSV
files, HTML tables, and PDF documents. But before that, we have to
add something to the mime_types.rb file.

<4361

http://media.pragprog.com/titles/msenr/code/documentation/ruport/phones/db/migrate/20080704153604_create_cell_phones.rb
http://media.pragprog.com/titles/msenr/code/documentation/ruport/phones/app/models/manufacturer.rb
http://media.pragprog.com/titles/msenr/code/documentation/ruport/phones/app/models/cell_phone.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=361

Line 1

20

25

30

35

map.connect

Download documentation/ruport/phones/config/initializers/mime_types.rb
Mime: :Type.register 'application/pdf',
And we have to make sure that the following statement appears in
routes.rb:

Download documentation/ruport/phones/config/routes.rb

’

Everything is prepared, so we can create a ReportfController with an
action for creating a report that shows all cell phones in the database
grouped by manufacturer:

Download documentation/ruport/phones/app/controllers/report_controller.rb

class ReportController < ApplicationController
def all_phones
report = CellPhone.report_table(

:all,

:only => %w(model weight),

rinclude => {

:manufacturer => { :only => %w(name) }

}!

:transforms => lambda do |row|
row['weight'] = '%.2f'" % (row['weight'] * 0.035274)

end,
:order => 'model'’

)

report.rename_columns(
"model’ =>
'manufacturer.name’' =>
'weight' =>

)

report = Grouping(report,
respond_to do |format|
format.csv {

send_data report.to_csv,
itype => 'text/csv',
:filename =>

}
format.pdf {

send_data report.to_pdf,
:type => 'application/pdf',
:disposition =>
:filename => 'all_phones.pdf'

}

format.html { @report_table
end
end

55. CREATE GREAT REPORTS

:controller/:action. :format'

'Manufacturer',
'"Weight (oz)'

'Manufacturer')

'all_phones.csv'

report.to_html

http://media.pragprog.com/titles/msenr/code/documentation/ruport/phones/config/initializers/mime_types.rb
http://media.pragprog.com/titles/msenr/code/documentation/ruport/phones/config/routes.rb
http://media.pragprog.com/titles/msenr/code/documentation/ruport/phones/app/controllers/report_controller.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=362

55. CREATE GREAT REPORTS <« 363

That'’s a fairly big amount of code, but it contains only four statements
that we’ll dissect now. The first ranges from lines 3 to 13 and calls
the report_table() method that has been added to the CellPhone model
by the acts_as_reportable() declaration. Basically, report_table() creates
a Table object, as we did manually in the former examples. Here’s an
explanation of all the arguments we have passed:

* all specifies that we’d like to read all cell phones from the data-
base. You can use all the specifiers that ActiveRecord’s find()
method supports, including first and last, for example.

* With the :only option we define the columns in which we are inter-
ested.

* Every CellPhone object is associated with a Manufacturer object,
and the :include option allows us to define which manufacturer
attribute we’d like to see in the report.

* The :transforms option is a powerful one and accepts an array
of Proc objects (or a single one as in our case). Every object is
passed the current row of data, so the data to be reported can
be transformed up front. We use this mechanism to convert a cell
phone’s weight from grams to ounces before displaying it.

¢ :order specifies which attribute should be used for ordering the
data.

To set default values, many of the options passed to report_table() can
be passed to acts_as_reportable(), too.

In line 14, we rename some columns, and in line 19 we group the cell
phones by their manufacturers. These statements look exactly like the
ones we have used before, because report is an ordinary Table instance
that has been initialized from a database.

report contains all the data we need in the right format, so the only task
left is rendering its content. As promised, we will support three different
formats, so we use respond_to() to distinguish them. This way you can
determine a report’s output format from an extension added to the URL.
For the PDF report, point your browser to /report/all_phones.pdf; for an
HTML version, point it to /report/all_phones.html, and so on.

For rendering CSV and PDF, we don’t have to do anything special. We
call send_data(), passing it the report in the right format, the content’s
disposition (inline embeds the result in the browser window; otherwise
the content would be stored in a local file), and a filename for the data

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=363

55. CREATE GREAT REPORTS <« 364

e 0o all_phones.pdf (1 page) (e}
=T NaN) G
| Previous Next 2Zoom Move Text select sidebar search

Nokia

Model | Weight (0z)
N95 [4.23

Apple

Model Weight (0z)
iPhone 4.76
iPhone 3G | 4.69

Figure 12.3: Phone report as a PDF document
I EEEEEEEE———,

in case the user wants to store it locally. In Figure 12.3, you can see
the PDF version.

For the HTML view, add the following file:
Download documentation/ruport/phones/app/views/report/all_phones.html.erb

<div class="report">
<%= @report_table %>
</div>

This template embeds the HTML table produced by Ruport’s to_html()
method in a <div> element with the class report. This way you could
add some CSS styles to turn the report into something beautiful.

We have barely scratched the surface of Ruport’s capabilities, and you
should use this recipe’s code as a starting point for experiments. There
are many more ways to transform and filter data; Ruport also addresses
important topics such as eager loading of dependent data and so on. In
addition, it gives you nearly endless possibilities to format your reports
or to create graphs.

http://media.pragprog.com/titles/msenr/code/documentation/ruport/phones/app/views/report/all_phones.html.erb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=364

[BKO5]

[BMtRcO8]

[CEOS8]

[ForO3]

[Fow03]

[HTOO]

[RRO7]

[TFHOS8]

Mark M. Burnett and Dave Kleiman. Perfect Passwords.
Syngress Media, Rockland, MA, 2005.

Gregory Brown, Michael Milner, and the Ruport commu-
nity. The Ruport Book: Your guide to mastering Ruby Reports.
Rinara Press LLC, 2008.

Jeff Cohen and Brian Eng. Rails for .NET Developers. The
Pragmatic Programmers, LLC, Raleigh, NC, and Dallas, TX,
2008.

Neal Ford. Art of Java Web Development: Struts, Tapestry,
Commons, Velocity, JUnit, Axis, Cocoon, InternetBeans, Web-
Work. Manning Publications Co., Greenwich, CT, 2003.

Martin Fowler. Patterns of Enterprise Application Architec-
ture. Addison Wesley Longman, Reading, MA, 2003.

Andrew Hunt and David Thomas. The Pragmatic Program-
mer: From Journeyman to Master. Addison-Wesley, Reading,
MA, 2000.

Leonard Richardson and Sam Ruby. RESTful Web Services.
O'Reilly & Associates, Inc, Sebastopol, CA, 2007.

David Thomas, Chad Fowler, and Andrew Hunt. Program-
ming Ruby: The Pragmatic Programmers’ Guide. The Prag-
matic Programmers, LLC, Raleigh, NC, and Dallas, TX, third
edition, 2008.

Symbols

to_xmi(), 207

A

Action Web Service, 218
ActiveMerchant
credit cards and, 64-69
Rails integration, 71f, 70-77
website for, 64
ActiveMessaging, 250f, 251f, 253f,
255f, 248-255
ActiveMQ, 233, 234
ActiveRecord
extensions for, 98
legacy data and, 109
model annotation, 352-355
multiple databases, accessing, 108
outside of Rails, 102
ruport gem and, 356
stored procedures, 91-97
acts_as_proprietary plug-in, 306
Administration, 284-314
daemons and services, 292f,
286-294
generators for, 311-314
god and, 301-305
monit and, 299f, 295-299, 300f
overview of, 284-285
plug-ins for, 306-310
Administration recipes, 31-34, 38-61,
98-108, 226-255, 286-299,
301-314, 345-364
Advanced Encryption Standard (AES),
23
AMQP, 237
annotate, 353
Apache ActiveMQ, 233, 234
Apache Qpid, 237
Apache Xerces XML parser, 265, 267

Application maintenance, see
Administration

Asymmetric ciphers, 28-30

Asynchronous communication, 225

Authorize/capture cycle, 68, 73

Automated documentation, 347f, 350f,
345-351

Automation recipes, 196-201,
226-232, 286-299, 301-314,
316-342, 345-364

B

Bank identification code (BIC), 217
Base64 data, 125
Behavior-driven development (BDD),
315
RSpec and, 316-322
Benchmark module, 163
Berkeley DB, 110
Binary data, 134-138, 139f
Bind variables, 93
Blowfish, 47
Braintree gateway, 66

C

C and C++, embedding code, 258-264
CalDAV, 192
Call detail records (CDRs), 154
Cell phone report example, 364f,
356-364
Cipher Block Chaining Mode (CBC), 23,
25
Ciphers
asymmetric, 28-30
symmetric, 23-27
Code duplication, avoiding, 311-314
Code, in this book, 17
Comma-separated values, see CSV
Common Language Runtime (CLR), 275

COMMONS-LOGGING

BIBLIOGRAPHY

Commons-Logging, 243
Composite primary key, 109
Compound primary key, 109
Credit card payments, 62
ActiveMerchant and, 64-69
ActiveMerchant and Rails
integration, 71f, 70-77
charging, when to, 72
fixed-length records, 123-129
parsing XML, 162f, 159-164
storing data from, 75-76
see also E-commerce payments
Creditworthiness, 130
Cryptography, 22
CSS classes, 165
Csv
advantages of, 116
data manipulation with Ruby,
118-121
file importer, 100
vs. other data exchange formats, 101
reports and, 359, 363
standard for, 121
customer_db connection, 107

D

Daemon processes, 292f, 286-294
Data, 116-138
accessing on a network, 186-189
binary, 134-138, 139f
CSV manipulation with Ruby,
118-121
fixed-length records, 123-129
JSON in Ruby, 130-133
memory and, 128
overview of, 116-117
pack and unpack, 125
see also Databases; XML documents
Data binding, XML, 142-145
Data security, see Security
Databases, 89-115
credit card data, storing, 75-76
data exchange formats and, 101
importing data into Rails, 98-104
language integration and, 276
LDAP and, 58-61
mandators in, 203
of OpenlID users, 52
overview of, 89-90
PayPal and, 80
simultaneous access to, 105-108

stored procedures, executing, 91-97
Subversion and, 110-115
testing and, 326, 328
see also Data; Documentation
Decryption, 23-27, 30, 34
Digest, 33
Digest authentication, 48
dn (distinguished name), 60
Document Object Model (DOM), 157
Documentation, 343-364
automatic generation of, 347f, 350f,
345-351
model annotation, 352-355
overview of, 343-344
reports, 364f, 356-364
Documentation recipes, 316-333,
345-364
DOT, 348
DRY principle, 98, 311-314

E

E-commerce payments, 62-86
ActiveMerchant and, 64-69
ActiveMerchant and Rails

integration, 71f, 70-77
authorize/capture cycle, 68, 73
PayPal and, 78-86, 87f

E-scores, 130

Email
god, monitoring and, 303
monit and, 297, 299f

Encryption, 22, 75
asymmetric ciphers, 28-30
random numbers, 35-37
signatures, 31-34
symmetric ciphers, 23-27

Enterprise software, 14

Enterprise, meaning of, 13

EntropyPool, 36

ERb (embedded Ruby), 339

Errata, 18

Extensible markup language, see XML

documents

F

Fingerprint, 33, 45

503 service unavailable code, 41
Fixed-length records (FLRs), 123-129
FLR, see Fixed-length records
Fowler, Chad, 258

Fowler, Martin, 13

GEMS

BIBLIOGRAPHY

G

Gems, see Installation

Generators, 311-314, 324

god (application monitoring tool),
301-305

Graphics data formats, 134-138, 139f

Graphviz, 345, 347, 348

Grouping, 360

H

HAML, 341
Hardware Security Module (HSM), 26,
76
Hash keys, 145
hCard, 165, 167f
see also Microformats
Helpers, Sinatra and, 337
Hex mode, 135
HotBits, 36
Hpricot, 163, 168
HTML and microformats, 167f, 170f,
165-171
HTTP
client libraries, 194
monit and, 297
networking with Ruby, 190-195
HTTP authentication, 50f, 48-50
HTTParty, 215
HttpClient, 194
Hunt, Andy, 258

I

Iconv, 177
Idempotent, 205, 206
info_controller, 311
Initialization vector, 24, 25
Installation
ActiveMerchant gem, 64
ActiveMessaging, 248
activerecord-oracle_enhanced-
adapter gem,
91
annotate-models gem, 352
berypt-ruby gem, 44
builder gem, 172
creditcard gem, 23
daemons gem, 286
fastercsv gem, 118, 120n
god gem, 301
Graphiz tool suite, 345

haml gem, 334
hpricot gem, 165
IronRuby, 275
json gem, 130
LibXML gem, 159
mofo gem, 165
ngrams gem, 38
Railroad, 345
realrand gem, 35, 38
RSpec and, 323
rspec gem, 316
Ruby Java Bridge, 265
ruby-inline gem, 258
ruby-net-ldap gem, 58
ruby-openid gem, 51
ruby-plsql gem, 91
RubyGems, 17
rufus-verbs gem, 211
ruport gem, 356
secure network protocol gems, 226
sinatra gem, 334
soap4r gem, 217
ssl_requirement gem, 70
StompConnect, 242
win32-service library, 289
WWW::Mechanize, 196
xml-simple gem, 142
Integration recipes, 31-43, 51-61,
64-86, 91-108, 110-115,
118-138, 146-158, 165-177,
180-201, 226-255, 258-283
International bank account number
(IBAN), 217
IronRuby, 282f, 275-283

J

Java and Ruby code, 265-270

Java Message Service API, see JMS

Java Native Interface (JNI), 268

Java Remote Method Invocation (RMI),
271-274

Java Virtual Machine (JVM), 269

JavaScript Object Notation, see JSON

JDOM, 265, 267

JMA integration, 244f, 245f, 242-247

JRuby, 268, 269

JSON, in Ruby, 130-133

K

Key server, 26
Keys, 24, 25

KNOWN PLAINTEXT ATTACKS

BIBLIOGRAPHY

asymmetric ciphers, 28
hash, 145
management of, 26
primary, 353
RSA, 32

Known plaintext attacks, 25

L

Language integration, 257-283
C/C++ code and Ruby, 258-264
Java code and Ruby, 265-270
.NET, IronRuby and Ruby, 282f,

275-283
RMI services and Ruby, 271-274
LDAP, see Lightweight Directory Access
Protocol (LDAP)

Legacy data, 109

Legacy schema, 109

Lightweight Directory Access Protocol

(LDAP), 58-61

Luhn algorithm, 25

M

Mandators, 203
Message brokers, 224-255
ActiveMessaging and, 250f, 251f,
253f, 255f, 248-255
JMS integration, 244f, 245f,
242-247
message infrastructure, 233-241
message transfer by file, 226-232
overview of, 224-225
queues vs. topics, 235
Message queues and ActiveMessaging,
250f, 251f, 253f, 255f, 248-255
Messaging recipes, 226-255
Microformats and HTML, 167f, 170f,
165-171
Microsoft Visual C# Express, 275
Mock objects, RSpec and, 326-333
Model annotation, 352-355
Monit, 299f, 295-299, 300f, 305
Monitoring recipes, 295-299, 301-305
Most significant byte (MSB), 260
MVC pattern, 152, 162
myOpenlID, 55

N

n-grams, 42
.NET and Ruby, 275-283

.NET assembly (DLL), 277, 278
Net::HTTP, 190-195
Network programming, 179-201
HTTP and, 190-195
open-uri, 186-189
overview of, 179
screen scraping, 197f, 198f, 196-201
sockets, 180-185

(@)

Objects, mock, RSpec and, 326-333

OpenlID, single sign-on, 53f, 56f, 571,
51-57

OpenSSL, 23, 28

open-uri, 186-189, 327

Oracle client, 275

Oracle database example, 91-97

Oracle databases, 106

Order handling example, 250f, 251f,
253f, 255f, 248-255

P

Pack and unpack, 125
Parameters, 94
Parsing, high-performance, 162f,
159-164
Passwords, 38-43
OpenlD and, 55
storing, 44-47
Patterns of Enterprise Application
Architecture (Fowler), 13
Payment Card Industry Data Security
Standard (PCI-DSS), 75
Payment gateways, 64, 65, 67
Payments, see E-commerce payments
PayPal, 78-86, 87f
Performance recipes, 98-104, 154-164
Plug-ins
creating, 306-310
generators and, 311
Point-to-point communication, 235
Poller daemon, 252
The Pragmatic Programmer: From
Journeyman to Master (Hunt &
Thomas), 98
Prepared statement, 94
Primary key, 353
Process ID (PID), 288, 295
Programming Ruby: The Pragmatic
Programmer’s Guide, 2nd Ed.
(Thomas, Fowler, Hunt), 258

PROTOTYPE SERVICES

BIBLIOGRAPHY

Prototype services, 335f, 340f, 334-342

Pseudorandom number generator
(PNG), 35

Public/private keys, 28

Pull parsers, 155, 156, 158

Q

Qpid, 237
Queues vs. topics, 235

R

Railroad, 345, 346
Rails
ActiveMerchant integration, 71f,
70-77
digest authentication support and,
48
importing databases into, 98-104
model data and, 152f, 146-153
MVC pattern and, 152, 162
plug-ins, 306-310
RSpec integration and, 323-325
versions, 18
XML document formatting, 174-176
Rails recipes, 44-57, 70-86, 98-108,
146-153, 172-177, 203-210,
248-255, 306-314, 323-325,
345-355
Rainbow tables, 45
Ramaze, 334
Random numbers, 35-37
RANDOM.ORG, 35, 39, 40
RDoc, 349
Recipes
Administration, 31-34, 38-61,
98-108, 226-255, 286-299,
301-314, 345-364
Automation, 196-201, 226-232,
286-299, 301-314, 316-342,
345-364
Documentation, 316-333, 345-364
Integration, 31-43, 51-61, 64-86,
91-108, 110-115, 118-138,
146-158, 165-177, 180-201,
226-255, 258-283
Messaging, 226-255
Monitoring, 295-299, 301-305
Performance, 98-104, 154-164
Rails, 44-57, 70-86, 98-108,
146-153, 172-177, 203-210,

248-255, 306-314, 323-325,
345-355
REST, 190-195
Security, 23-61, 64-86
Testing, 316-342
thumb tabs for, 19
Web applications, 64-86, 146-153,
165-171, 190-201, 203-210,
334-342
Web services, 130-133, 165-171,
190-195, 203-223, 334-342
XML, 142-177
Recipes, in this book, 16
Relational database systems
(RDBMSs), 89
RELAX NG, 265
Remote Method Invocation (RMI),
271274
Reporting, see Documentation
Reports, creating, 364f, 356-364
Representational State Transfer
(REST), see REST recipes
Resources, for this book, 18
REST recipes, 190-195, 202
client libraries, 215
idempotence and, 205, 206
prototype services and, 335f, 340f,
334-342
resources, publishing, 204f, 203-210
services, 211-216
rest-client, 215
rest-open-uri, 215
REXML, 147-149, 153, 155, 160
RFuzz, 194
Rice, 264
RSA, see Encryption
RSpec
mock objects and, 326-333
Ruby integration and, 323-325
testing and, 316-322
Ruby
base64 data and, 125
benchmark module, 163
CSV manipulation, 118-121
encryption in, 22
enterprise readiness, 13
generating XML documents,
172-173
gserver library, 182
HTTP networking and, 190-195
integration and, 13

RUBY INLINE LIBRARY

BIBLIOGRAPHY

JSON and, 130-133
LDAP support, 59
LibXML gem, 159
open-uri, 186-189
Subversion bindings for, 110
versions, 18, 118, 120n, 289
XML and, 144
XmlSimple, 143
see also Administration; Language
integration; XML documents
Ruby Inline library, 258
Ruby Java Bridge (RJB), 265, 268, 271
RubyGems, installation of, 17
The Ruport Book: Your Guide to
Mastering Ruby Reports. (Brown,
Milner et al), 360
Ruport gem, 356

S

Salt, passwords and, 45
SASS, 341
Scalable vector graphic (SVG) files, 347
Schematron, 265
Screen scraping, 171, 197f, 198f,
196-201
Screencast shop example, 78-86
Secure Copy (SCP), 231
Secure Sockets Layer (SSL), 61
SecureRandom, 36
Security, 21-61
asymmetric ciphers, 28-30
credit card encryption, 25, 75-76
cryptography, 22
HTTP authentication, 50f, 48-50
LDAP and, 58-61
passwords, 38-43
passwords, storing, 44-47
in PayPal, 85
random numbers, 35-37
signatures, 31-34
single sign-on, 53f, 56f, 57f, 51-57
symmetric ciphers, 23-27
Security recipes, 23-61, 64-86
Servers, socket, 180-185
Service-oriented architecture, see SOA
Shared examples, in RSpec, 320
Signatures, 31-34
Simple API for XML, 157
Sinatra and prototype services, 335f,
340f, 334-342
Single sign-on, 53f, 56f, 57f, 51-57

sn (strong name) tool, 279
SOA, 202
SOAP services
building, 218f, 217-220
WSDL and, 221-223
Sockets, 179-185
Spring, 17
SQLite, 335
SSH protocol, 231
SSL, 41
STOMP, 233, 234
StompConnect, 242, 243, 244, 245f
Stored procedures, 94
StrongKey, 26
Subversion, data management and,
110-115
Symmetric ciphers, 23-27

T

Testing, 315-342
behavior-driven development and,
315
prototype services (Sinatra), 335f,
340f, 334-342
RSpec and, 316-322
RSpec and mock objects, 326-333
RSpec and Rails integration,
323-325
Testing recipes, 316-342
TextPad, 135
Thomas, Dave, 258
Thumb tabs, 19
timeout, 188, 189
Transport Layer Security (TLS), 61
Twofish, 47

U

Unit testing, 315, 326
User authentication system, 59

A\

Validation, XML, 265

vCard, 165, 170f

vendor/plugins, 307

Version control systems, 110-115
Versions, 18, 118, 120, 289, 295

W

Weather station example, 118-121

WEB APPLICATIONS RECIPES

BIBLIOGRAPHY

Web applications recipes, 64-86,
146-153, 165-171, 190-201,
203-210, 334-342

Web Service Description Language, see
WSDL

Web services, 202-223

overview of, 202

REST publishing, 204f, 203-210

REST services, 211-216

SOAP services, building, 218f,
217-220

SOAP services, WSDL and, 221-223

Web services recipes, 130-133,
165-171, 190-195, 203-223,
334-342

WebDAV, 192

WEBFrick, 220

Windows Presentation Foundation
(WPF), 281

Wireless bitmap format (WBMP), 134,
135, 137, 139f

WSDL and SOAP services, 221-223

WSO02 Web Services Framework for
Ruby, 218

WWW::Mechanize, 194, 196-201

X

Xerces XML parser, 265, 267
XML, 101
XML documents, 140-176
data binding, 142-145
formatting issues and, 174-176
generating, 172-173
HTML and microformats, 167f, 170f,
165-171
message brokers and, 226-232
as models, 152f, 146-153
overview of, 140-141
parsing, high-performance, 162f,
159-164
RAM and, 154-158
REXML and, 147, 148, 153
validation of, 265
XPath and, 149
XML recipes, 142-177
XML Schema, 265, 266
XOR, 25
XPath, 149, 150, 160

Y

YAML, 101

All About R

If you’re programming in Ruby, you need the PicikcAxe Book: the definitive reference to the
Ruby Programming language, now available in a new version for Ruby 1.9. Fix a traditional
wealk spot in testing, and see how to automatically test graphical user interfaces using
Ruby.

Programming Ruby 1.9 (The Pickaxe for 1 9)

The Plckaxe book, named for the tool on the cover,
is the definitive reference to this highly-regarded
language.

_ Pro rammlng
* Up-to-date and expanded for Ruby version 1.9 1.1 S—.
* Complete documentation of all the built-in éf e
classes, modules, and methods ¢ Complete
descriptions of all standard libraries ¢ Learn more
about Ruby’s web tools, unit testing, and
programming philosophy

Programming Ruby 1.9: The Pragmatic
Programmers’ Guide Dave Thomas
Dave Thomas with Chad Fowler and Andy Hunt

(992 pages) ISBN: 978-1-9343560-8-1. $49.95 w

http://pragprog.com/titles/ruby3

Scripted GUI Testing with Ruby

If you need to automatically test a user 1nterface
this book is for you. Whether it's Windows, a Java
platform (including Mac, Linux, and others) or a

web app, you'll see how to test it reliably and Scnpted GUI
repeatably. TCStll’lg
with Ruby

This book is for people who want to get their hands
dirty on examples from the real world—and who
know that testing can be a joy when the tools don’t
get in the way. It starts with the mechanics of
simulating button pushes and keystrokes, and
builds up to writing clear code, organizing tests,
and beyond.

Scripted GUI Testing with Ruby

Ian Dees

(192 pages) ISBN: 978-1-9343561-8-0. $34.95
http://pragprog.com/titles/idgtr

http://pragprog.com/titles/ruby3
http://pragprog.com/titles/idgtr

Web 2.0

Welcome to the Web, version 2.0. You need some help to tame the wild technologies out
there. Start with Prototype and script.aculo.us, a book about two libraries that will make
your JavaScript life much easier. See how to reach the largest possible web audience with
The Accessible Web.

Prototvpe and script.aculo.us

Tired of éeltting swamped il’ll the nitty-gritty of
cross-browser, Web 2.0-grade JavaScript? Get back g

in the game with Prototype and script.aculo.us, two

extremely popular JavaScript libraries that make it gﬁggg&gﬁﬁ
a walk in the park. Be it Ajax, drag and drop, oo o et o
autocompletion, advanced visual effects, or many

other great features, all you need is to write one or
two lines of script that look so good they could
almost pass for Ruby code!

Prototype and script.aculo.us: You Never Knew
JavaScript Could Do This!

Christophe Porteneuve

(330 pages) ISBN: 1-934356-01-8. $34.95
http://pragprog.com/titles/cppsu

Christophe Portenetive

Edted by Dl Stetnbery

Design Accessible Web Sites

O
The 2000 U.S. Census revealed that 12% of the

population is severely disabled. Sometime in the e

next two decades, one in five Americans will be

older than 65. Section 508 of the Americans with Desi n Accessible
Disabilities Act requires your website to provide Web Sites
equivalent access to all potential users. But beyond Thirty-six Keys

to Creating Content for
All Audiences and Platforms

the law, it is both good manners and good business
to make your site accessible to everyone. This book
shows you how to design sites that excel for all
audiences.

Design Accessible Web Sites: 36 Keys to
Creating Content for All Audiences and 4
Platforms Jeremy J. Sydik
Jeremy Sydik

(304 pages) IsBN: 978-1-9343560-2-9. $34.95
http://pragprog.com/titles/jsaccess

http://pragprog.com/titles/cppsu
http://pragprog.com/titles/jsaccess

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers
will be there with more titles and products to help you stay on top of your game.

Enterprise Recipes with Ruby and Rail’s Home Page
http://pragprog.com/titles/msenr
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments in the news.

If you liked this PDF, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: pragprog.com/titles/msenr.

ContoctlUs

Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com
Non-English Versions: translations@pragprog.com
Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/msenr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/msenr
www.pragprog.com/catalog

	Contents
	Foreword
	Acknowledgments
	Preface
	Security & E-commerce Recipes
	Implement Enterprise-wide Security
	Protect Information with Symmetric Ciphers
	Protect Secrets with Asymmetric Ciphers
	Verify Data Integrity with Signatures
	Generate Real Random Numbers
	Create Strong and Convenient Passwords
	Store Passwords Securely
	Reanimate Good Old Basic Authentication
	Implement a Single Sign-on System with OpenID
	Authenticate with LDAP
	Process E-commerce Payments
	Charge Credit Cards with ActiveMerchant
	Integrate ActiveMerchant with Rails
	Transfer Money with PayPal

	Databases & XML Recipes
	Get the Most Out of Databases
	Execute Stored Procedures
	Feed Rails Databases from the Outside
	Access Databases from Different Vendors Simultaneously
	Manage Data with Subversion
	Tame File and Data Formats
	Manipulate CSV with Ruby
	Read and Write Fixed-Length Records
	Harness JSON in Ruby
	Master Binary Data
	Process XML Documents the Ruby Way
	XML Data Binding on Steroids
	Use XML Files as Models
	Handle Large XML Documents
	High-Performance Parsing
	Work with HTML and Microformats
	Build Plain-Vanilla XML Documents
	Build Arbitrary XML Documents

	Networking & Messaging Recipes
	Perform Basic Networking Tasks with Ease
	Harness the Power of Sockets
	Find Solutions Quickly with open-uri
	Get the Most Out of HTTP
	Scrape Screens with WWW::Mechanize
	Use and Build Web Services
	Publish Resources with REST
	Use REST Services
	Build Your Own SOAP Services
	Use SOAP Services with WSDL
	Talk to Message Brokers
	Transfer Messages with Files
	Create a Messaging Infrastructure
	Integrate with JMS
	Connect to Message Queues with ActiveMessaging

	Integration & Administration Recipes
	Speak Foreign Languages
	Embed C and C++
	Mix Java and Ruby Code
	Use RMI Services
	Mix Ruby and .NET with IronRuby
	Maintain and Administer Your Applications
	Turn Your Code into Daemons and Services
	Monitor Your Applications with Monit
	Let god Take Care of Your System
	Create Plug-ins for Common Tasks
	Avoid Code Duplication with Generators
	Test the Easy Way
	Improve Your Testing with RSpec
	Integrate RSpec with Rails
	Create Mock Objects with RSpec
	Prototype Services with Sinatra
	Get Documentation Nearly for Free
	Generate Documentation Automatically
	Annotate Your Models Automatically
	Create Great Reports
	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

