In-depth coverage of the full-featured
and easy-to-use Ruby on Rails framework

Ruby

on Rails

Timothy Fisher

: —
r |
1’{ = e
Ak] | i
o ; ; G
¥ =

Build and maintain - o
Web sites and ;1}“}}111(‘.11ﬂ()l15

Use Rails conventions
to avoid redundant code

LLearn advanced
RETE t‘m‘hniqum

The book you need to succeed!

Ruby on Rails’ Bible

Ruby on Rails' Bible

Timothy Fisher

WILEY
Wiley Publishing, Inc.

Ruby on Rails® Bible

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-25822-4

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, or online at http: //www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN
THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE
MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT
INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN
THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2008927915

Trademarks: Wiley and related trade dress are registered trademarks of Wiley Publishing, Inc., in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

www.wiley.com

About the Author

Timothy Fisher has over 17 years of experience in the software development industry. He has
served in a variety of roles including chief architect, technical team lead, and senior architect and
developer. Tim is currently an architect with the Compuware Corporation Professional Services
Group in Detroit, Michigan.

Ruby and the Ruby on Rails framework have consumed Tim’s interest and have led him to find the
Southeastern Michigan Ruby Users Group, as well as owning and maintaining the Michigan Ruby
Users Group Web site, www . rubymi . org. Tim is currently working on a large Ruby/Rails collab-
orative project management and planning application to be released as an open source project in
2008.

Tim is an experienced technical writer and author who has contributed to Java developer’s Journal
and XML Journal and written the Java Phrasebook published by Pearson Ed. in 2006. In addition to
his technical skills Tim holds a degree in electrical engineering and a masters degree in education
with a specialty in instructional design for online learning. He lives in Flat Rock, Mich., with his
wife, Kerry, and two sons, Timmy and Camden.

Credits

Acquisitions Editor
Stephanie McComb

Project Editor
Chris Wolfgang

Technical Editor
Scott Deming

Copy Editor
Marylouise Wiack

Editorial Manager
Robyn Siesky

Business Manager
Amy Knies

Sr. Marketing Manager

Sandy Smith

Vice President and Executive Group

Publisher
Richard Swadley

Vice President and Executive Publisher
Bob Ipsen

Vice President and Publisher
Barry Pruett

Project Coordinator
Erin Smith

Graphics and Production Specialists
Melanee Habig
Laura Pence

Quality Control Technician
Caitie Kelly

Proofreading and Indexing
Christine Sabooni
Infodex Indexing Services, Inc.

This book is dedicated to my parents, Thomas and Betty Fisher.
Throughout my life, my mom and dad made it possible for me to
achieve anything that I set my heart and mind to. Without their
love and guidance, an accomplishment such as this book would not
be possible. I am thankful to be able to show this accomplishment
to my dad, and I know that my mom has been with me as I wrote
this book. I am sure she would be proud.

vii

and some that I've never even met face-to-face. First I'd like to thank Wiley for giving me the

opportunity to write this book. Writing a Rails book was something that I had wanted to do as
Rails has become a passion of mine the past few years. Specifically, I'd like to thank the people at
Wiley whom identified me as a candidate to write this book, and those that made the process
smooth and successful. Stephanie McComb is the acquisitions editor that gave me the opportunity
to be the author of this book. For that I am thankful. Chris Wolfgang served as my editor for this
book. Without her, I am quite certain the content you are about to read would not have been
nearly as clear and as readable as I hope it has become.

It is impossible to write a book of this size without a great deal of help from those around me

Ruby on Rails is a large framework that has been the subject of many books, many web sites, and
hundreds if not thousands of articles. There has been a great deal of knowledge and expertise
baked into the Rails framework. It would be impossible for a single person to write a comprehen-
sive Rails book without assistance others who review and provide feedback of the content. I'd like
to acknowledge the contributions of Scott Deming for his work as the Technical Editor of this
book. The job of a Technical Editor is at times more difficult than that of the author. It is the tech-
nical editor’s job to review everything I have written and correct the mistakes and faulty knowledge
that may have passed through into the book. Scott’s advice and feedback have been invaluable in
creating this book.

The next person I'd like to thank also played a very large role in getting this book completed. That
person is Noel Rappin. Noel stepped in late in the writing phase and assisted with completing
some of the content. Noel contributed significant content to the following chapters: 5, 9, 10, 11,
and 12. Noel also wrote both of the appendixes for the book. Noel has his own book published by
Wrox, Professional Ruby on Rails.

Finally, I must acknowledge those who are closest to me, my family. Any author with a young
family appreciates the challenge of maintaining quality family life while writing a book. I have

two boys, Timmy and Camden, who like to keep their dad busy whenever they can. The time I
put into writing a book is time that has to come away from other tasks that I'd normally have more
time for. I thank my wife, Kerry, for her understanding of what it means to me to write this book
and her unwavering support and ability to help me find the time and effort to write. You can read
more about what interests me and perhaps learn a bit from my blog at http: //blog. timothy
fisher.com. Now that this book is completed, I hope to become a much more active blogger!

Ruby on Rails QUICK STATT.iiiiiiiii e 1

PartI: First StepswithRails13
Chapter 1: Learning RUDY.........coooiiiiiiiii e 15

Chapter 2: Getting Started with Rails.................co 67

Partll: RailsInDepth................. ... 105

Chapter 3: Using ACtive ReCOToiiiiiiiiiii it 107
Chapter 4: Controller: Tn Depthi..........ocoiiiiiiiiiiiiiiii e 147
Chapter 5: View: In Depth........ooooiiiiiiiiiii e 173

Part Ill: Developing a Complete Rails Application 203

Chapter 6: Developing Book Shelf: The Basic Framework...............cocoocioiiiiiiiiiiie, 205
Chapter 7: Developing Book Shelf: Adding the Core Functionalityccocooociiiiiirirnn, 249
Chapter 8: Developing Book Shelf: Social SUPPOTT ... 291
Chapter 9: Testing the Book Shelf APpCAtion............cooooiiiiiiiiiiiiii e 333

PartIV: AdvancedRailsccciiivieeeeee...379

Chapter 10: Using Prototype and sCript.actlo.Usccoooiiiiiiiiiiiiiiiiii e 381
Chapter 11: Extending Railsoccooiiiiiii 415
Chapter 12: Advanced TOPICSciiiiiiiiiiiiiii i 467

PartV: Appendixes.ciiiiiiiiiieeeeee... 503
Appendix A: Ruby Quick Reference............ocoooiiiiiiiiiiii e 505
Appendix B: Ruby on Rails GUIde...........coooiiiiiiiiiiiiii e 535

Acknowledgmentsciiiiiiiiiiiiiiiiiiiiiiiaa. X
TS0 Yo T T 1 oY o S 4|

Ruby on Rails Quick Start......................

Installing Instant Rails on WIndowscoooiiiiiiiiiiii e
Installing Ruby and Rails on Mac OS X and LinUXcccooociiiiiiiiiiiiecec
INSAIlING O LAIUK 1.t
Installing on Mac OS X...ooocooiviiiiiiiies
Setting up a Development Environment.................
Source code version control

IDE or Editor?c.coooiiiiiiiiicie
TextMate

INCelli IDEA ..o e
NetBeaANS .. oo

Part I: First Steps with Rails 13

Chapter 1: LearningRuby..................l 15

The Nature of RUDYooiiiii e

Dynamic or static typingccccccceeeeennne

Duck typingocooveveiiiie e
Compiled or scripting language
Compiled JangUagEsccooiiiiiiiiiiii i
Scripted Janguages........ ..ot
Object Oriented PrOZIAIMITINGc.ooviiiiiiaiiiaieit ettt
The Basics Of RUDYooiiiiiiiiii i
Ruby’s interactive shell ...
RUDY SYNEAX DASICS ...t
AddING COMIMETIS ...t

Using parentheses................ccccoceeune.

Using white space..........c.cccocooeeerenn.

Using semicolons..............cccccerviernnee
Running Ruby programs ...
Classes, Objects, and Variables ..o
Using objects i RUDY.........cooiiiiiiii e
Defining ODJECTS. .. oviiiiiiiii i

Contents

WIHNE MEhOAS ...
Methods With Parametersoccooiiiiiiiiii i
Creating instances of & Class...........c.oocooiviiiiiii i
Instance and class methods ...
Instance and class variables ...
Getters and setters in Ruby 0bjectsccooiiiiiiiiiiiiii
INNETITATICE ... e
Built-in Classes and Modules
Scalar objectsccooiiiiiii
Strings................
NUMIBTICS e
SYINDOLS ..
Times and dates
COILECHONS ... e

LEOTATOTS ...
Exception handling ...
Exceptions in Ruby..........cccoociiiiiiiiiiie
Using begin, raise, and rescue
More exception handling using ensure, retry, and else
Organizing Code with Modules.............ccooiiiiiiiiii e
Advanced RUDY TeChNIQUEScooiiiiiiii e
Variable length argument LiStSccooiiiiiiiii e
Dynamic programming with method_missing..............c.ccccooiiiiiiiniiii,
REOPENING CLASSES ...

Chapter 2: Getting Started withRails 67

What is Ruby on Rails? ..o 68
DR e
Convention over configuration
Opinionated software

Rails Architecture...................

Contents

RAILS SCTIPLS .ttt
Rails COMSOIL.........oiiiiiiii e
WEBTICK. ..
GETICTALOTS. ...
MIGTATIONIS ...

Your First Rails APPLCAtIONociiiiiiiiiiiii i
Create the PIOJECL.......oiuiiiiiiiiiiei e,
Set up the database
Create the model...............

Create the controller and views ...
Implementing the index action...........ccociviiiiiiiiiii
Implementing the NeW aCtOMociiiiiiiiiii e
Implementing the create aCtionocooiiiiiiiiiiiiiiie e
Implementing the Show aCtiONc.oociviiiiii i
Implementing the update action
What you have accomplished ...,

Style the application...............ococeiiiiiiiiiiii

WebScaffolding..................

More to get you started

SUIMIMIATY ...ttt

Part Il: Rails In Depth 105

Chapter 3: Using ActiveRecord oo, 107

What is Active Record?o 108
Active Record Basics
Active Record classes and 0bJECSooiviiiiiiiii i
Active Record naming conventions
Class and table NAMES...........coociiiiiiiii i
Table KeYS ..o
Setting up @ MOdel. ..o
Generate a Rails project and model
Configure Active Record.........cocooviiiiiiiiiiiiiie,
Rails Development Environments...............cccooceeveeennenn
UsIing Migrations.coooiiiiiiiiiiiii e
SCHEIMA VETSIONS ...t

Inserting data with mMigrations..............ocoocoiiiiiiiiii i
Create, Read, Update, and Delete..............cooiiiiiiiiiiiii i
CreatiNg TRCOTAS ...ttt
Reading data
Column metadata......

Accessing attributes

Contents

Using the find method...........cocooiiiiiii e
Dynamic fINdersoocooiiiiiii i
FInd using SQL ..o
Creating and finding data with the Rails Consolecccocoiiiiiiiii
UPAUNG TECOTAS. ...t
Delelting TECOTAS ...ttt
Using development log files..............ocoiiiiiii e,

Defining Relationshipsccccoovoiiiiiiiiiiiiie

One-to-one relationships............ccccooeiviiviiiiiiin
Methods added by has_onecccccoein
Methods added by belongs_to..........coocviviiiiiiiiii

Many-to-one relationships............coooiiiiiiiii
Methods added by has_manyccoooiiiiiiii
Methods added by belongs_toccooiiiiiiiiii e

Many-to-many relationships............cociiiiiiiiiii
Methods added by has_and_belongs_to_many

Implementing Validationsccooiiiiiiiiii

Custom Validations................

Advanced Active Record ...
Single table INheTitance ..ot
COMPOSTHIONL ..ttt
TTanSACTIOMIS ...ttt

Chapter 4: Controller: InDepth.................c ... 147

What is ACtionCOntTOLeT?ot 147
AlL ADOUE ROUHIIE ...
Defining CUSIOM TOULESviiiiiitie et
Defining a custom default TOULecooiiiiiiiii e
USING NAMEA TOULES ...ttt
Constructing URLs with url_for ...
Creating and Using Controllers................ccocooioiiinn,
Generating controllers................ocoioiviii
Action MethodsSoooiiiiiiii i,
UsIng request PATAIMETETSccooiiuiiiiiiiii e
Rendering templates........ ..ot
REAITECLS ...
Sending feedback with flashcocooiiiiii
Sending other types of data to the browser
USING FALLETS. ..o
BefOre fIlLeTS ...
After filters
Around filters
Protecting filter methods ...
Working with SESSIONS.oiiiiiiiiiiii e
Using the ActiveRecord Session SLOTAZEccociiieioiiiiiiiiiiiiiiceiiceceec e,
Using MemCached Session SOTAZEcooiiiiiiiiiiiiiie i

Xiv

Contents

CACKIIIIZ e 169
Page CACHITIE ...ooviii e 170
ACHON CACRITIG ..o 171
Fragment CACHINE.cooiiiiiiii e 171

SUITIIIIATY ..ot 172

Chapter5: View: InDepth i, 173

ACHOTIVIBW ... 173
GeUNG £0 The VIBWoiuiiiiii ittt 174
RENETING OPUOTIS ...ttt 175
Responding to different formats ..o 176

Embedded Ruby (ERD)ooiiiiiiiiiiii e 179
Using the <%- and -%> delimiters.ocooiiiiiiiiiiiiii e, 180
Commenting out embedded RUby.............ccoiiiiiiiiii 181

LAY OULS .. 182

Partials ... 185

LIPS e 186
Predefined Rails helperscooooiiiiiiiiii i 187

HTML creation helpers............ccooooiiiiiiii i 188
Form creation helpers...........c.ooiiiiiiiiiie e 190
JavaScript creation helpers...........ccoocioiiiiiiiii e 192
Data Processing helpersoccooiiiiiiiiiiiiiiiii e 193
Debugging helpers...........ccoooiiiiiiiiiiiii i 197
Creating your own block helpers...............ocoiiiiiii 197

JavaScript, Ajax, and RIS ... 198
ProtOtyPe NelPersc.viiiiiiiii e 198
RIS REIPOTS .o 200

SUITIIIIATY ...ttt ettt e 202

Part Ill: Developing a Complete Rails Application 203
Chapter 6: Developing Book Shelf: The Basic Framework 205

APPHCAION OVEIVIEW ...ttt 206

Creating a Skeleton for the Book Shelf Applicationccocooiiiiiiiiiiiii 211
Begin the Book Shelf project...........ccocooiiiiiiiiiiiiii 211
Setting up the databasesc.ooiiiiiiiiii 213

Create the databasesc..ocooiiiiiiiiiiiii 213

Create a Home Page ... 214
Create the Home controller ... 215
Create a layout and VIBWccoiiiiiiiiiiii e 216

The HTML headoovioiiii e 217
The body header SECUiON.co.iviiiiiiii e 219
The body sidebar SECOMooviiiiiiiii e 219
The body CONENT SECHOTovviviiiiiii e 220
Creating the index view templateccoooiiiiiiiiiiiii 221

XV

Contents

Testing the home Page.........cccooiiiiiiiiii
Add SOMIE SLYLE ...
Setup @ default TOULEoooiiiiii e
IMPleMENTINE USETS ..ottt
Create the user modelocooiiiiiiiii e
SeCUTING USET PASSWOTS. ...ttt
Generate the user model..............ocoiiiiiiiiii
Create the user migrationcccccoeeeeeene.
Add user model validations
Implement user registrationcccceevveierirnnnn.
Create a user controller ...
Handle the user passwordcccoooiiiiiiiiiii e
Create a Te@iStration VIEWcooiiiiiiiiiiiiiiei e
Create USer NOME VIEWc.ciiiiiiiiiiiiii e
Implement login and 1ogOULccooiiiiiiiii e
Create login action method.............c..ocooiiiiiiiiii e,
Create the logout action method.....................
Create an application login partial
Test the login and logout functionality
Using a before filter to Protect Pagescoovviiiiiiiiiiiiieiice e
Modify the application controllerocoociiiiiiiiiii e
Add login form to the Signup Pagecooiviviiiiiiiiii e

Chapter 7: Developing Book Shelf: Adding the Core Functionality 249

Adding SUpport for BOOKS.cooiiiiiiiiiiii e
Refactor the Sidebar Code ..ot
Integrating with AMAazON.............ooiiii
Install RUDY/AAZOTLooviiiiiii i
Implement the Book Shelf-Amazon interface..................cocoocooiiiiii

The initialize method...............ccocociiii

The find_by_keyword method
Implementing a Search ...
Create the book search formcccocooiiiiiii
Generate the book controller and search action...............ccocooiiiiiii
Create the book model ...
Generate the book model classcccoooiiiiiiiiiii

Create the book Migrationocooiiiiiiii

Run the MIGrationcooiiiiiiiii e

Associate the book model and the user model

Implement search logic in the book model.................ocoooiii
Create the search results page..............cccocooiinn.
Implement search results paging................ccccocceenin
Implementing the Addition and Deletion of Books..............
Adding @ DOOK ...,

Xvi

Contents

Deleting @ DOOKoiiiiiiii e 284

Add the delete aCHOM.cviiiiiii i 284

Update the page with RJS ... 285

Displaying @ User’s BOOKScoiiiiiiiiii i 286
Implementing the Book Detail Pageccooiiiiiiiiiiiii e 287
SUIMIMIATY ... 290
Chapter 8: Developing Book Shelf: Social Support 291
AddIng SOCIAL SUPPOTT ...t 291
Implementing TAZZINGooiiiiiit et 292
Installing a tagging PIUGITLooioiiiiiii e 292
Install the acts_as_taggable_redux plugin..............ccooooiviiiiiiii 293

Setting up the database for tagging SUPPOTL...........cccooiiiiniiiiiiiiiii e 294
Adding tagging support to the models...............ccoiiiiiiiiiii 297
Adding tagging support to the controllers ... 298
Creating the view layer for tag@ingcccooiiiiiiiiiiii e 301
Implementing the sidebar tag cloud Viewcccooiiiiiiiiii 303

Implement tag_cloud_revised helper method.................ocooiiiiii 307

Generate the tagging style Sheet..............ococioiiiiiiiiiiii 310

Implement the StAtiC tAZ VIEWooviiiiiiiiieiieie e 311

Make the tags editableccocooiiiiiiii 313

Implement the show_for_tag view..............ccocoiiiiiiii 314

USINE TAZS ..o 314
Implementing Book REVIEWSc.oiiiiiiiiiiiiiiiii i 314
Implementing the review model..................ii 315
Adding associations to the book and user modelscccocooiiiiiiiiiiii 317
Implementing the TeVIEW VIEWccooiiiiiiiiiiiiii i 317
Displaying reviews for @ DooK............ccocociiiiiiiiiiii 318
Implementing the review entry formc.cocooiiiiinii 323
Implementing the review cOntrollerocooiiiiiiiii 324
AddINg SOME SEYIEoviiiiici i 326
Adding a DOOK T@VIEWcooiiiiiiiiiiiii e 327
Implementing Book RAUINGSc.coiiiiiiiiiiiii e 328
Extending the ApplCation............ocoiiiiiiii i 329
Improving the user MLeTface...........cooiiviiiiiiii e 329
Implementing an administrator interface.................ccocooiiiiiiiiiii 329
Adding RSS feeds to the applicationocoocioiiiiiiiiiii 330
Adding support for other book information souces...............ccoocooiviiiiiiii 330
Implementing recommendations and SUZZESHONSc.ocovviviiiiioiiiiee 330
Expanding user profiles and adding avatars................c.ocooiiiniiiiiii 330
SUIMIMIATY ... e 331
Chapter 9: Testing the Book Shelf Application.................... 333
WY T@SE? . 333
Using TestirUnNIt. ... 336
TS ASSETLIONIS ... 336

TSt FIXLUTES ..o 338

Contents

Test Methods. ... 338

TESE TUIINETS ... 340

TESE SULLES ... 341
Testing N RALLSooviiii i 342
RS £SE AIT@CIOTY ...ttt 342

Rails test lifecyCle ..o 343
Setting up a Test Databaseccioiiiiiiiiiiiiii e 343
FUNCHONAL T@SES. ...t 345
RUNNING @ ESL ... 347
CIRALIIEZ @ TESE ...t 348
SEtNG UP FIXTUTES ..o 349

Writing a test Method.........ociiiiiiii i 351

More assertion Methods.coovoiiiiiiii e 353

VETIYING YOUL TOSL ...ttt 356

AdING NOTE TESLS ...ttt 356

Add SOME TEVIBWS ...t 359

Verify the tests agaiN..........coocooiiiiiiiiiiii e 360

UTIE TESES ... 361
Setting UP USET fIXLUTES.iviiiiiiieicii e 363

Test authentiCation............ooiiiiii i e 363

Test VAlIAATIONIS ... 365

Test valid PasSWOTAo.oiiiiiiiii i 365

Test valid IOIT ..o 367

Test valid e-mail ..o 368

INEe@ration TeSLS ...ttt e 370
RUNNING AIL T@STS ...t 374
Test COVETAZE ... 374
Debugging TeChMIQUES...........ooiiiiiiiiiii e 375
The Rails 10g FIlESo.viiiiiiiii e 375
Console-based 376
Using the debUZEer ..ot 376
SUIITIATY ©. ettt ettt 377
Part IV: Advanced Rails 379
Chapter 10: Using Prototype and script.aculo.us.................. 381
Prototype, script.aculo.us, and Rails.............occooiiiiiiiiiii i 382
Using Prototype and script.aculo.us from Railsocooooiiiiiii 382
Create @ RAIlS PrOJECT......o.iiiiiiiiii e 383
Include the Prototype and script.aculo.us files................coccocoiiiii, 383

PrOtOLYPE OVEIVIEWiiiiiiiiiiiii it 384
Ruby’s influence on PrOtOLYPecccoviiiiiiiiiiiiiiiiiic e 385

WHhaL IS PTOLOLYPE? ...ttt 385
EXtensions to JavaSCTIPL........oooooiiiii i 385
Simplifying JavaScript with the dollar Signccccoooiiiiiiiiiii 386
Selecting elements with $... 386

Selecting elements With $$... 387

Contents

Creating arrays with $A ... 388

Splitting strings With $W.......ooooiiiiii 389

Getting form field values with $F ... 389

Creating hashes with $H ..., 389

Creating ranges with $R ... 389

More POWETTUL AITAYSoviiiiiiiiii e 389
Enumerating an array ..o 390

JSON SUPPOTL. ..o 391

OOP WIth PIOTOLYPE ..ottt 392
Defining classes and inheritance...............ccocooiiiiiiiiiii e 392
Implementing class inheritance with Prototypeocooviiiiiiiiiii 393
Event Handling ..ot 393
AAJAX 1. 394
AJax TINKS 1o 394

Ajax TINK OPHOTIS ..o 395
SCIIPL.ACULO.US OVETVIEW ...ttt 396
Visual EHECES ... 396
script.aculo.us effects ... 397

EffeCt OPUOTIS ... 398
Using combination effectscocooiiiiiiiiii 399
COMTOLS ... 399
STEARTS .. 399
AULO-COMPLETIONL ... 401
IN-Place @AILIEo 402
Implementing a single value in-place editor.............cccooviiiiiiiiiiii 403

Drag and DIOPcviiiiiiiiiiii e 406
Creating draggable elements...............ocociiiiiiiiiiii e 406
Draggable OPLONS.ouiiiiiiiiiiec e 407

Creating droppable elements.ccooiiiiiiiii i 409
Droppable OPLOTNS.eiiiiii it 409

SOTEADLE 1SS ... 409
JAVASCIIPE TESHILE .. e 411
Creating JavaSCIiPt UNIE LESESeiiiiiiiieiiieii et 411
Running JavaSCTipt UIE LESES.ccouiiiiiiiiiiiiii i 413
SUIMIMIATY ... 413
Chapter 11: ExtendingRailso i, 415
Beyond the COTeoouiiiiiiiiiiii e 415
GETICTALOTS ... 416
The generator direCtory SLIUCIUTEccuiuiiiiiiiiiiiiieic e 417
Writing generator COAe.o 418
Creating the templates..........oooiiiiiiiii e 421
Running the new authentication generator............occoooviviiviiiiiiii e 424
Extending Rails::Generator:NamedBaseccoceoiiiiiiiiiiii 425
PLUGITIS 1. 425
Using the PIUGIn SCIIPL......ooiiiiiiiii e 426

XX

Contents

List available plUInscocoiiiiiii
LISt PIUGITN SOUTCES. ...ttt
Adding and removing plUugin SOUTCESocoviiiiiiiiiiecece e
Discover Iew PIUZIN SOUTCESoovioiiiiiiiiiiie et
Installing, removing, and updating plugins..............coccocoviiiiiiiiiiie,
WIHNG @ PIUGINL. ...
Write @ NeW PIUGIIL.....oouiiiiiiiiiii i
Try out the new plugin................ccocooi
Common techniques used to develop plugins
Extending classes with mixins
OPENING & CLASSveeviiie e
Dynamic extension with callbacks and hooks
USINg cOde GENETAtIONoviiiiiiieit oottt
Managing plugins with PISLOTLcoociiiiiiiiii e
Summary of Useful PIUGINS ...
ACLS_aS_TateADIe. ... oL
Pagination ...
Installing will_paginate............................
Adding pagination to your application
ACtS_as_State_MACNINE. ...t
Installing acts_as_state_machinecoccociiiiiiiiiiiii
Using acts_as_state_machine.............ococoviiiiiiiiii e
ANNOLALe_MOUELS ...ttt
Installing annotate_models...............ocooiiiiiiiiii
Using annotate_MOdelscoociiiiiiiiii i
eXCePHON_NOHHET ...
Installing exception_notifier ...
Using exception_notifier
resource_controller ...
Installing resoure_controller...........................
Using resource_controller............ooiiiiiiiiiiiiie e
Adding user authentiCationc.ociiiiiii i
Installing restful_authenticationc.oocooiiiiioiii e
Using restful_authentication...............cc.ociiiiiiiiiiiiii e
Enhanced scaffolding ...
Streamlinedooiiiiii
ACtiveSCaffoldooiiiiiii e
Implementing content tag@ing..............ccoooiiiiiiiiiiiiiie e
Handling file uploadsccoocooiiiiiiiiii
attachment_fu
ENgines ...
Install the Engines plugin...........ocoooiiiiiiiiii e
Generate the engine SKeleton...............oociiiiiiiii i
Move your application files into the enginec..ocoooooiiiiiiii
Modify your environmentcccooiiiiiiiiiiioi i
Include your engine in your application...............ocociiiiiiiiiiiii e
SUIMIIMIATY ..

Contents

Chapter 12: Advanced TOPicS. . . . v vttt it iiiiiiiiiiiieeenns 467
BeyOond the BASICSo.viiiiiiiii e 467
RESTHUL RALLS ... 468

Some advantages of RESTful architectureccocoooiiiiii 470

REST as a Web service architecture ... 471

REST and represSentationsccooiiiiiiiiiii e 471
Writing a RESTful application with Rails...............ccooooiiii 472

Rails routing and REST ..ot 472

PUT and DELETE full disclosurecoocooiiiiiiiiiiii e 473

Generate @ RESTUl TeSOUICe..........ooviiiiiiiiiiic i 474

Working with Legacy Databases..............ccooiiiiiiiiiiiiii i 481
Override database table and field names................ccccocoiiiiii 482

Side by side with the legacy databaseccoooii 484
Using ACtONMAIIEToiiiiiiii i 487
Configuring a Rails application for e-mail SUPPOTLcoccovviiiiiiiiiiie e 488
Generating a mailer model ... 488
Writing code to send e-mail ..ot 489
Writing code to receive e-mailocooiiiiiiiii 491
ActiveResource and XMLccooiiiiiiiii i 492
Deploying With CapiSIATIOcoiieiiiit ittt 494
Installing and setting up CAPISITANOc.coviiiiiiiiiieiiei e 495
Running basic capistrano tasks..............ccoooiiiiiiiiiiiii e 496
Customizing CapiSIIANOc.oiiiiiiiii oo 499
SUIMIMATY ... e 500

Part V: Appendixes 503

Appendix A: Ruby Quick Reference............... .o, 505
BasiC RUDY SYMEAKocuiiiiiiiiiiiiiiii i 505

Literal @XPIOSSIONIS . .vviiiiiiiit oot 506
AATTAYS e 506
Boolean literals ... 507
HASRES ... 507
INUITIDETS L. 508
RATIZES ... 508
Regular eXPIeSSIONSiviiiiiiii e 508
SUFITIZS Lo 510
SYIMIDOLS. ... 511

Variable and method names ..o 512

OPCTALOTS ..t 513

Method calls...... ..o 515

Special keyword eXpressionsc.oiiiiiiiiii i 516
The 1f eXPIeSSIONoouiiiiiiiii it 516
The Unless eXPreSSIOTL........coviiiiiiiiii et 518
The CaSe eXPIESSIONL........iuiiiiiiii i 518
The fOr eXPresSiOncoiiiiii e 519

Contents

The while eXPressiOnc.oiiiiiiiii e
The Until eXPresSiOnooviiiiiii e
Loop control KEYWOTdS.ouiouiiiiiiiiii i
ASSIGIIINICTIE ...
File input and OULPULc..eivioiiiit e
EXCEPLIONS ...
Objects and ClASSES...........uiiiiiiiiiiiiiii e
Defining methods.........
Blocks ..o
Defining classes and modules....................ccococo.
Defining modulesocoiiiiiiii i
Defining Classesooiiiiiiii i
Superclasses and selfcoooiiiiiiii
Including and extending with modules
AUTIDULES .o
ACCESS COMTOL .o
Method TOOKUP ...

Appendix B: Ruby on Rails Guide.535

GEULUILE SEATEEM ..ottt
Standard Rails application...............cocoocviinin
GENETALOTS. ...

Controllers and HeIPeTsooiiiiiiiiii e
Traditional TOULNEcoiiiiiiiiiii i e
RESTIUL TOULNE ...t
Controller variables ..o
FLETS .
Rendering and rediTeCting...........ooiiiiiiiiiiii i
RESPOTIA L0 ..ttt
HELPOTS s

OGRS 1.
CreatiNg ..o
REAAIIIZ ...
UPAALIIE ..
DIRLELITLE ..ot
RelatioNSRIPS ... oo

DELONES L0 it
RAS_OTI8 ..
has_many
has_and_belongs_to_many
Database Migrations...........c.cooiiiiiiiiiiiiii i
PIUGITIS ..o

3 0 <

n 2006, I wrote a book called the Java Phrasebook, something like a cookbook for Java. While 1

was writing that, my interest and love of Ruby and the Rails framework grew tremendously.

Often during my writing, I would think how much nicer it would be to be writing a Ruby- or
Rails-related book. Early in 2007, I had to pass up my first opportunity to step into the world of
Ruby and Rails writing. The book that I was asked to write at the time, Professional Ruby on Rails,
has since been written by a very capable writer, Noel Rappin, who also contributed content to this
book.

Jump ahead a few months, and the opportunity to write this book, Ruby on Rails Bible, came along.
I knew it would be a tight fit working on this book along with a full-time job and the holidays
coming up, especially having two young children, but I took it! That is how you ended up holding
this book now.

Like many who consider themselves users and, more importantly, fans of the Ruby language, I was
pulled into the world of Ruby by the Rails framework. Prior to Rails, I had heard of Ruby but had
not used it. I first became aware of it through the writing and speaking of Dave Thomas, a tireless
advocate of Ruby well before Rails made it a marketable skill. Ruby had been around for quite
awhile before Rails but had not been able to grab the attention of the masses here in the United
States. Rails has not only brought Ruby to the masses, but it has had a tremendous influence on
the entire Web development industry. Rails clones have sprung up in many languages, including
Java, Perl, Python, and PHP. Many of the patterns and methods of Rails have influenced other
frameworks in other languages as well.

By the time you read this book, you'll have a choice of many books on the subject of Ruby on
Rails. T hope that you find this book was worth your energy!

Who the book is for

This book is for any Web developers who are interested in learning how to create Web applica-
tions using the Ruby on Rails framework. You do not have to know Ruby to use this book. In part
I of the book, you can get an introduction to Ruby and learn enough about it to effectively create
basic Rails applications. You should have some experience with common Web development tech-
nologies such as HTML, JavaScript, and preferably some server-side language such as Java, .net,
Perl, PHP, Ruby, or any other language that you might use to write the server-side of a Web appli-
cation. Although not required, basic knowledge of DOM and CSS would also prove helpful as you
write Rails applications shown in this book.

XXiv

Introduction

How the book is organized

This book is organized into five main parts:

Part I: First Steps with Rails

Part II: Rails In Depth

Part III: Developing a Complete Rails Application
Part IV: Advanced Rails

Part V: Appendixes

Each of these parts is broken down into several chapters.

Part |

This part of the book will teach you the underpinnings that you need to effectively develop a Ruby
on Rails application. You can learn the basics of Ruby and get your first introduction to the Rails
framework.

Part Il

After you've been exposed to the basics of Ruby and Rails, you can immerse yourself in the details
of each of the main components that make up the Rails framework, the Model, Controller, and
View layers.

Part 11l

1 hope you'll enjoy reading and following along with this part of the book as much as I enjoyed
writing it! In this part, you can follow along with the development of a complete Rails application.
You'll go from nothing up to a usable application that you can use within any group or organiza-
tion to share information about a collection of books.

Part IV

This part of the book covers more advanced Rails topics, such as extending Rails through plugins,
generators, and engines. You'll also get an introduction to the Prototype and Scriptaculous
JavaScript libraries in this part.

PartV

If you need extra resources on the Ruby language or references for Rails, these appendixes can offer
you a quick place to look up facts in a hurry.

How to use this book

This book is organized such that it can be read from cover to cover. If you're a new Rails developer
reading it from cover to cover is the best way to learn about Rails. If you are new to Rails but know

Introduction

Ruby already, you can skip the Ruby introduction and just read the chapters that discuss Rails. As
you read through the book, your knowledge of Rails will build with each chapter.

If you know Rails already, you may want to skip ahead to Chapter 6 and read about the develop-
ment of the Book Shelf Web application. I think you'll find the development of that application
will interest even a seasoned Rails developer.

After you've read the book, it is also suitable as a Rails reference that you'll want to keep within
reach on your bookshelf. The two appendixes at the end of the book provide a thorough reference
to both the Ruby language and the Rails APL.

XXV

efore you can get started doing Ruby on Rails development, you have

to set up the software that you will need to develop, run, and test

your applications. There are at least three pieces of software that you
will need. They are:

B The Ruby language runtime
B The Rails framework
B A database (such as MySQL, PostgreSQL, SQLite, Oracle, and DB2)

If you install those three components, you will have all that you need on your
computer to write, run, and test Ruby on Rails Web applications. If you have
past experience writing Web applications, you might be thinking that some-
thing is missing from that list, some type of HTTP and/or application server.
You would be correct in that every Web application needs a server to run;
however, the Rails framework includes a server that works very well for devel-
oping your applications. The server bundled with Rails is called WEBrick, and
it serves as both an HTTP and an application server. This makes it very easy to
set up a local development environment without having to install and config-
ure a potentially large and complex server environment.

Sometimes, it’s easier to see how the technologies fit together from a visual
perspective. Figure QS.1 shows the technology stack that makes up a Web
application built with the Rails framework. Each item in the stack has a
dependency on what lies beneath it. The middle three layers of the diagram
are the three components that you will install software for Rails, Ruby, and
the database.

Actually, to be completely accurate, a database is not required to write a
Rails Web application. It is possible to write Web applications with the Rails
framework that do not use a database. However, without a database to store
data, you are very limited in the types of applications that you can create.

1

IN THIS CHAPTER

Installing Instant Rails on
Windows

Installing Ruby and Rails on
Mac OS X and Linux

Setting up a development
environment

m Ruby on Rails Quick Start

One of Rails’ greatest strengths is its ability to make working with a database extremely simple, and
so without a database, you are also not taking advantage of one of the best features of the Rails
framework.

FIGURE QS.1

The Rails Application Stack

Your Web Application

Ruby on Rails

Ruby

Database

0S (Windows, Linus, Macintosh)

For this book, the database of choice will be MySQL. MySQL is a popular open source database
that is available to everyone at no cost, and it is probably the database that most people are familiar
with. MySQL is also a database that Rails supports out-of-the-box with no extra software or librar-
ies required. It is probably the most widely used database on the Internet today. It provides a full-
featured and robust database for your applications that is easy to set up and use. Commercial
support and commercial versions of MySQL are also available through the company MySQL AB,
which was recently acquired by Sun Microsystems.

The next three major sections provide instructions for installing the required components on the
three most popular operating systems for Rails development, Windows, Linux, and Macintosh. If
you already have these components installed, you are welcome to skip these sections.

Installing Instant Rails on Windows

1f you are developing on the Windows platform, there is an installer available that installs all three
of the components that you need to begin Rails development. Instant Rails provides you with
installs of:

Ruby

Ruby on Rails
MySQL database
Apache Web server

Ruby on Rails Quick Start

If you are not developing with Windows, you can skip the remainder of this section. It is conve-
nient to have a single installer for these components; however, a potential disadvantage is that
these types of installers may not always be up to date with the most current releases of all of the
individual components. They will likely install the most recent stable versions of the components,
which is what you will want in most cases.

Below are the steps for installing and configuring Instant Rails.

1. Download Instant Rails. The first thing you should do is download the Instant Rails
installer application, from http://instantrails.rubyforge.org. At the time of
this writing,
the most recent version of Instant Rails is 2.0, and it is downloaded as InstantRails-2.0-
win.zip.

2. Install Instant Rails. The file that you downloaded in step 1 is a compressed ZIP file that
contains everything you need to run the Instant Rails environment. Installing Instant
Rails after you have downloaded the ZIP file is as simple as extracting the contents of the
ZIP file into the directory that you want to install into. Make sure that the directory you
choose to unzip the file into does not contain any spaces. Spaces cause problems when
you try to run the Instant Rails environment.

After you have completed the Instant Rails installation steps above, you should perform the follow-
ing tasks to verify that you have everything set up correctly.

1. Run Instant Rails. After you have extracted Instant Rails into a directory, navigate into
that directory and double-click the file InstantRails.exe. Make sure that you are logged
onto the Windows computer as an Administrator before you do this.

The first time you run InstantRails.exe, it detects that it is a fresh installation and prompts
you to regenerate its configuration files. You see the dialog box similar to Figure QS.2. Go
ahead and click OK.

FIGURE QS.2

The Instant Rails configuration prompt

Instant Rails
9 Instant Rails has moved From "D:iOpensSourceProjectsiInstantRailsiInstantR ails-wintInstantRailst” to
- "In\softwarelInstantRails-2, 0-wint",

Regenerate configuration Files ?

After the configuration is regenerated for you, you see the Instant Rails Administration
screen, shown in Figure QS.3. On that screen, confirm that it says that the Apache and
MySQL servers are started, as shown in Figure QS.3.

m Ruby on Rails Quick Start

The Instant Rails Administration screen

« Instant Rails

Iil E Started E Started

25/02 15:53:47 Instant Rails: Servers starting

2. Start a sample application. Now that you have the Apache and MySQL servers running,
the next verification step is to start a Rails application that is included with Instant Rails.
Instant Rails includes two sample applications, a cookbook application, and an installa-
tion of the Typo blogging system.

Rails includes an application server that can be used during development for running
your Web applications, called WEBTick. This is the application server that I will refer to
primarily throughout this book, because it is included with every installation of Rails.
The Instant Rails package, however, includes another popular server for running Rails
applications, the Mongrel server. Mongrel can be used in place of WEBrick. Mongrel is
often preferred because it performs much better and can be easily used in conjunction
with Apache as a Web server.

Verify the installation by starting the cookbook application. Click the “I” that you see on
the main Instant Rails Administration screen. This is the left-most icon on the top of the
screen. Clicking the “I” gives you a drop-down menu like the one you see in Figure QS.4.
From that menu, click the Rails Applications option. You get another submenu from
which you should click Manage Rails Applications.

FIGURE QS.4

Selecting the Manage Rails Applications command

« Instant Rails

Help Y E Started

Log Files hervers starting

Configure
‘Applications. ..

Restart Servers Open Ruby Console Window
Stop Servers F3 Open Windows Explorer

Exit

Ruby on Rails Quick Start m

BitNami Ruby Stack

A rising contender to Instant Rails comes from a group called BitNami. They provide easy installations
for many open source applications and frameworks. One of the pre-packaged stacks that they provide
a simple installer for is the Ruby stack which includes everything you need to do Ruby on Rails devel-
opment, including Ruby, Rails, and MySQL. Unlike Instant Rails which is only available for the
Windows platform, the BitNami Ruby Stack is available for Windows, Linux, and Mac platforms. You
can read more about the BitNami Ruby Stack and download it from http://bitnami.
org/stack/rubystack.

This takes you to a screen similar to that shown in Figure QS.5. This is the screen that
you use to start and stop your Rails applications. In the list of applications, you should
see the two Rails applications that come with Instant Rails, cookbook, and typo-2.6.0.
Click the check box next to the cookbook application so that it is selected. Then click the
Start with Mongrel button. This starts up the Mongrel server to listen on port 3001.

FIGURE QS.5

The Rails Applications interface

= Rails Applications gj

Rails Applications Wweb Server
cookbook

[wpe-26.0 Configure Startup Mode..
Start with Mongrel

Open a Rail: Console. ..

Check one or more Rails applications and then click a button above to
perform that action an the selected applications.

To create a new Rails app, click the button below to open a console
window where you can run the 'rails' command.

Unless pou configure the startup mode, the default is to start a Rails app
in development mode on port 3000,

Create Nev Rails App. Refresh List

3. View the cookbook application. After you have started the cookbook application
through the Instant Rails Administration console, you can verify that it is running by
navigating to it in your browser. Open up your browser of choice and navigate to
http://localhost:3001/. You should see the cookbook application screen shown
in Figure QS.6.

That completes the Instant Rails installation and verification.

m Ruby on Rails Quick Start

The cookbook application home screen

‘A Online Cookbook - Microsoft Internet Explorer provided by Compuware... g@@

File Edit Wiew Faworites Tools Help L]

@Back L > | lﬂ @ _I\J fr:Search ‘-':':‘:'Favorites 6‘? - _; -

Address i:sj http:flacalhost:3001) v aGu Links

Online Cookbook

Listing categories
Name

Iew category

Create new category Show all recipes Show all categornies

&] % Local intranet

Installing Ruby and Rails
on Mac OS X and Linux

Both the Mac OS X and Linux systems are also popular choices for Ruby and Rails development.
Years ago, very little software development was done on a Mac computer. Things have changed
dramatically in the past few years, though. Today, the Mac is the platform of choice for many soft-
ware developers, especially Ruby and Rails developers. If you go to a conference that features a lot
of Ruby and Rails speakers, pay attention to what type of computer they are using. You will likely
notice that the vast majority of them use a Mac. Fortunately, for most Mac and Linux users, there
is very little work you need to do to begin Rails development.

Installing on Linux

Linux remains a popular operating system for software development. Linux is also fully compatible
with Ruby and Rails development. In fact, many version of Linux will come with Ruby and Rails
pre-installed. Before you attempt any installation, you’'ll want to first check to see if your computer
already has Ruby and Rails.

You can find detailed information about installing Ruby and Rails on Linux here: http://
users.drew.edu/bburd/RubyOnRails/InstallingRoRinLinux.pdf.

Ruby on Rails Quick Start m

Installing on Mac OS X

If you have a Mac and are running OS X 10.5 (Leopard) or later, you are in very good shape,
because your computer already has both Ruby and Rails installed on it. There is no work for you to
install Ruby and Rails on OS X 10.5 or later.

If you have OS X version 10.4 or earlier, you may have Ruby pre-installed, however it is likely a
version of Ruby that is not compatible with Rails. In that case you will want to update the Ruby on
it to be the latest stable release.

You can find detailed information about setting up Ruby and Rails on a Mac at this Apple site:
http://developer.apple.com/tools/rubyonrails.html.

Setting up a Development Environment

Now that you have the essential components installed for developing and running a Rails applica-
tion, let’s look at some other components that, while not strictly required, make for a much better
development environment.

B Source code version control

B IDE or Editor

Source code version control

After you have the components installed that you need to run a Rails application, before you write
a single line of code, the very next thing you should do is decide upon a source code version-
control application and install it.

The two most popular version-control applications are CVS and SVN. CVS stands for Concurrent
Versioning System, and SVN stands for Subversion. Most Web hosting accounts offer you the abil-
ity to set up either CVS or SVN projects within your hosting account. There are also a few compa-
nies that provide you with a free SVN project space. If you are interested in using a free SVN
account, check out these providers:

B http://beanstalkapp.com/

B https://opensvn.csie.org/

While CVS and SVN probably still remain the most used version-control systems, a new kind of
version-control system — distributed version control — is rapidly gaining popularity. A distrib-
uted version-control system uses a distributed model, whereas version control systems such as
SVN and CVS use a centralized version-control system. In a centralized version-control system
changes are always pushed only to the central repository (in fact there is only one repository in this
type of system). In a distributed version-control system, each developer maintains a complete copy
of the code repository on their computer.

m Ruby on Rails Quick Start

Developers update their code with other’s changes by getting updates from the central repository.
By contrast, in a distributed version-control system, developers are allowed to push their changes
to individual developers without pushing to a central repository, since each developer maintains a
complete repository on their own computer. The distributed version-control model fits the open
source development model particularly well. How well it can work inside of an enterprise remains
to be seen.

The most popular distributed version-control system today is GIT. The GIT version-control system
is especially popular in the Ruby on Rails community; it is the official repository for the Rails
source code as well as many of the Rails plug-ins. More open-source applications are moving to
GIT every day. Git Hub is a popular hosted version of GIT that includes social networking features.
Git Hub offers both commercial plans and free plans for open source projects. Git Hub is the home
for the Rails project.

IDE or Editor?

So now that you have most of the infrastructure in place that you will need to begin writing a Rails
application, the next thing to consider is what tool you will use to actually write your code in. If
you are coming from a Java or .Net background, you are probably used to using an integrated
development environment, or IDE as they are commonly called. If you are coming from a back-
ground in Perl, PHP, or another scripting language, you probably did most of your development
using a simpler tool, perhaps just a text editor. For Rails development, you have your choice of
using either an IDE or a simple text editor.

TextMate

E

Intellij IDEA
NetBeans
Eclipse
Heroku

Aptana Studio

TextMate

If you are using a Mac to do your development on, the editor of choice is TextMate. In fact,
would venture to guess that at least 90 percent of developers who use the Macintosh for Rails
development are using TextMate (see Figure QS.7). TextMate is a powerful source code editor that
allows you to write extensions to the base environment. The extensions plug into TextMate to add
new features to the base editor. The extensions are called Bundles. You can find a great deal of
Bundles online that will let you set up TextMate to suit your preferences.

Ruby on Rails Quick Start m

FIGURE QS.7

The TextMate interface

.00 || ajax_feeds_controller.rb — ubyr

v ubyr || # ajax_feeds_controller.ro

v [app
¥ [controllers
' ajax_feeds_controlle|
= application.rb
= classify_controller.ch]
! feed_items_controlle details_for_feed
v feeds_controller.rb :
» [helpers € uri = params[:fetch][s
7 models uri = "http://#{uri}" i /http[s]
b [views
config c b
db }
doc

‘r‘equi re 'reader'

AjaxFeedsController_< ApplicationController

aise "Missing URI" if uri.nil? or uri.length == @
details = Reader::RssAtom.new(uri)
r > @
render date do Ipagel
ge.alert(e.message)

YYYYVYY

seript
stuff

test 1 t Ipage!

YYYYY

tmp

vendor (details.uri == uri)

page[: fetch J.value = details.uri
page[c J.visual_effect

end

page.replace_html 'feed_details’,
=> 'feed_details’',
t => details,
s => { :deta => details }

].show
J.visual_effect :hig ght,

Line. 1 Column: 1 Ruby on Rails t D softTabs: 2 ¢+ —

E

The E text editor is an attempt to port the popular TextMate editor to the Windows platform. It
duplicates many of the features of TextMate and even allows you to use your TextMate Bundles.

Like TextMate, there is a small cost to purchase it.

Intelli) IDEA

Intelli] IDEA is a commercial IDE made by JetBrains (see Figure QS.8). Java developers rave over
the features of this IDE. I have used it myself and have to say that it is my Java IDE of choice. Many
of the other IDEs have implemented features that were first introduced by JetBrains. Version 7 of
IntelliJ IDEA added support for developing Ruby and Rails applications.

NetBeans

NetBeans is an IDE from Sun. In the past, NetBeans has been an IDE for Java development.
However with version 7.0, Sun has added Ruby and Rails support into NetBeans.

m Ruby on Rails Quick Start

The Intelli) IDEA 7.0 interface

El borg - [D:\projectsiotheriborg] - [borg] - ...\appicontrollers\adminiwelcome_controller.rb - IntelliJ IDEA 7.0

Bie Edt Search View GoTo Coge Analyze Refactor Buld Run Tooks YersionControl Window Help

o w % 7 4 | u = 3
== AEE IR - el & AP - A <
1 [§1bora E Cborg M50 borg [0 app EET controllers F10 admin @ fuslcome_controller. i
E ST [configab | 9 eppication_hebersb | W setuprb | @ welcome_contrallerrb ;
5 . el =
2 = E 2 T oy FF = Ciclass Aduin: :UelcomeController £ ApplicationController ;i‘ w
= 2
= R T o no_login_required i
ry| = Cabera B def index 3
3 £ df Application redirect_to page index url —
2 - [Controllers £ end
& &
2 - 3 admin =
| B @ B Hometontroller # o aef login 5
== - P T SiteController I if request.post? &
B8 vockl login = params[:user][:login] —
& B Teds password = params[ruser][:password]) 2
B self.curzent user = User.authenticate (login, password) g
L =] if current_user g
-l i2wescrols redirect to welcome url atb
= else A
- B2 phugins annownce_invalid user b
- Cvails @ end ?
#- [stylesheets a end S
=
G end S
£ def logout =
self.current user = mil
armounce_logged out
redirect_to login url
© end B
private
© def annownce logged out
tlash[:motice] = 'You are now logged out.'
& ema
=1 def 1id b

@& 1000 | [BirDoc|

17 Tnsert Boefauk | =15 L3sto deam (%

Eclipse

Eclipse is probably the most used IDE today. It is developed by the Eclipse Foundation, an open-
source initiative spearheaded by IBM. Much of the Eclipse code base was donated by IBM and was
a part of its commercial IDE product. With a plug-in, you can add full Ruby and Rails support to
the Eclipse environment. RadRails is a popular Eclipse plug-in that gives you the Ruby and Rails
support.

Heroku

Heroku provides a new and unique way of writing Rails applications. Heroku is a completely
online solution for developing applications. You do not install any software on your computer to
use Heroku, other than a Web browser. At the time of this writing, Heroku works only with the
Firefox 2 Web browser. It does not work under Internet Explorer. You can see an example of what
the Heroku interface looks like in Figure QS.9.

10

Ruby on Rails Quick Start m

The Heroku interface

%2 Heroku | myrailsapp - Mozilla Firefox
Ele Edt Yew Hstoy delidows Bookmarks ook Help

- - - - B —
& - < o B hﬁ 1ae | LI bt et myrailsapp. heroku.com

Aptana Studio

Aptana Studio, a product from the company Aptana, is a very attractive option for Ruby on Rails
development. The Aptana Studio product is a stand-alone desktop IDE based on the Eclipse proj-
ect. If you are familiar with Eclipse, you will have no problem getting used to working with Aptana
Studio. It provides excellent support for front-end development, including JavaScript, CSS, and
HTML editing. The Ruby and Rails features are packaged as a plug-in to the Aptana Studio envi-
ronment. The features of Aptana Studio are also available as a plug-in for the generic Eclipse IDE.

Summary

This chapter introduced you to the environment that you will need to begin Ruby and Rails devel-
opment. At this point, you should have installed the tools that you will need to write Ruby and
Rails applications, as well as to write the code that is used in this book.

11

m Ruby on Rails Quick Start

12

You also were given an overview of several version-control systems, as well as IDEs and editors that
are available for Rails development. These are important tools for any developer, and you should
choose the tools that will work best in your environment and with your team. Also, keep in mind
that Ruby and Rails development is evolving rapidly and new tools are released frequently. It is
likely that by the time you read this, there may very well be additional choices available for editing
your Ruby and Rails applications. The Internet is your best source for current information about
the latest preferred development tools.

P

First Steps
with Rails

uby on Rails is a Web application development framework built

using the Ruby programming language. Ruby is a dynamic language

that was created in Japan by Yukihiro Matsumoto. You'll often see
Matsumoto referred to simply as Matz. While Ruby had been growing and
flourishing in Japan and Europe, it took the Rails framework to finally thrust
Ruby into the limelight in the United States. Ruby is steadily growing in
popularity worldwide as a programming language of choice.

It is often described as an elegant language that allows developers to create
concise and very readable code.

If you already consider yourself a Ruby expert, you can probably skip this
chapter; otherwise, I highly recommend reading this chapter before getting
into the details of using Rails. A solid knowledge of the Ruby programming
language makes an excellent foundation for learning and using the Ruby on
Rails framework. A solid understanding of Ruby will also help you if you
want to explore the internals of Rails. Remember that Rails is an open source
project, meaning that all of its source code is available to anyone who wants
to look at it. You can learn a great deal about advanced Ruby techniques
from reading the Rails source code. The power of Ruby plays a large part in
the success of the Rails framework.

The Nature of Ruby

Programming languages tend to have various elements of commonality. I'm
not referring to the syntax of a language, but rather higher-level designs that
apply to a programming language. These elements are what make up the
nature of the language. Here you begin by learning about the nature of Ruby,

15

INTH APTER

The nature of Ruby

Object Oriented Programming

The basics of Ruby

Classes, objects, and variables

Built-in classes and modules

Control flow

Organizing code with modules

Advanced Ruby techniques

m First Steps with Rails

16

OTE.

or what kind of programming language Ruby is. Each of the characteristics you will read about in
this section will help you better understand the type of programming language that Ruby is, and
how it is different from or the same as other languages that you might have experience with. The
elements of Ruby discussed here are dynamic or static typing systems, duck typing, and compiled
or scripted language.

Dynamic or static typing

Programming languages can be classified by the type system they use. A type system defines how a
programming language classifies its data and methods into types. Examples of types used in vari-
ous languages include int, float, String, and Object. A type describes the kind of data used in a par-
ticular variable. There are two general classes of type systems that are used by programming
languages: dynamic typing and static typing. In a static typed language, the compiler enforces type
checking before run-time. In a dynamic typed language, type checking is deferred until run-time.

In a static typed system, the programmer uses variable declarations to provide type information.
For example, in Java, which is a statically typed language, variables must be declared with their
type prior to being used. Examples of statically typed languages include Java, C, C++, C#, and
Pascal.

Other languages, such as OCaml and Haskell, use type inference. This is a form of
static typing where the type is determined at compile time but without the program-
mer having to declare it.

In a dynamically typed language, the programmer does not have to declare data types with variable
declarations. Data types are not known until run-time, and type checking of variables does not
occur until run-time. Examples of dynamically typed languages include Python, JavaScript, Perl,
Lisp, and Ruby.

A closely related concept is that of how strictly a type system enforces type rules. A strongly typed
system enforces type rules strongly, allowing for automatic conversions between types only when
information is not lost due to the conversion. A weakly typed system does not enforce type rules and
allows you to easily convert from one type to another without complaint. Ruby is a weakly typed,
dynamic programming language.

Languages that are statically typed are usually recommended for new developers, as they provide
more protection from run-time errors than a dynamically typed language provides. In a dynami-
cally typed language, it’s easy to make programming errors that are not detected until run-time.
However, if you have solid unit-testing practices, this can alleviate that concern. Because of this,
unit testing is even more important when you're programming in a dynamically typed language
such as Ruby.

Duck typing

You will likely hear someone refer to Ruby as having duck typing. The term duck typing refers to
the popular quote, “If it looks like a duck and quacks like a duck, it must be a duck.” So how does
that quote have anything to do with a programming language? Let’s figure that out.

Learning Ruby _

In Ruby, object instances are not forced to be of any certain type when they are used. As long as
the object being used meets the requirements of the situation in which it is being used, Ruby will
not complain. Another way of saying this is that in Ruby, an object’s type is determined by what it
can do, not by its class. Say you were calling a calculate_average method on an object. In
Ruby, as long as the object you are calling that method on implements a calculate_average
method, everything works fine.

Your code doesn’t have to require the object you are calling the calculate_average method
on to be of any certain class. You might have a method that is expecting an object of a certain class,
but if you had some code that passed in a different class of object, but implemented all the meth-
ods used within that method, the code would execute perfectly fine. This is how programming in
Ruby relates back to the quote, “If it looks like a duck and quacks like a duck, it must be a duck.”
If your objects behave like the type expected at any given place in your code, then as far as Ruby is
concerned, they are of that type, regardless of their real class.

This is very different than the way that many other languages work, including Java. In Java, you
must declare the class type of all of your method parameters. You cannot pass in an instance of a
class that does not match the class type that the method is expecting, even if that instance imple-
ments the same methods as the expected class.

Compiled or scripting language
Another way you can classify languages is by whether they require a compile step or not.

Depending on whether or not they require compilation, a language can be said to be a compiled
language or a scripting language.

Compiled languages

A compiled language requires you to perform a compile step before running the application you are
writing. The language’s run-time executable that runs applications cannot directly understand the
source code of a compiled language. The compiler converts your source code into a binary format
that can be understood by the run-time executable. After you compile your source code, you end
up with files in the compiled format, such as the .class files used by Java. Examples of compiled
languages include C, C++, C#, and Java.

Scripted languages

A scripted language does not require you to compile your source code into another form. The
source code that you write is also the code that the language’s run-time executable uses to execute
your application. The run-time executable of a scripting language is usually called an interpreter.
The interpreter interprets the source code at run-time and converts it to a format that the computer
can execute. The interpreter is specific to a particular language. Examples of scripted languages
include Perl, Python, JavaScript, and Ruby.

Compiled languages are usually faster at run-time because the code is already closer to that of the
computer, whereas code from a scripted language has to be interpreted at run-time. However,
many people believe that scripted languages make up for the run-time performance deficit by

17

m First Steps with Rails

18

being faster to develop an application in. With a compiled language, every time you make a
change, you have to go through a compile phase and an application restart to see the results of
that change. In a scripting language, your application can immediately see the results of a source
code change, as it is running directly from your source code.

Object Oriented Programming

Object oriented programming (OOP) is a style of programming that uses objects to represent data,
and actions that you can perform on that data. OOP allows you to more closely model the real
world with your objects than was possible prior to the advent of OOP. Instead of dealing with
functions and procedures when designing an application, OOP allows you to model the applica-
tion in terms of objects that make up the application’s domain. For example, if you were creating
an application that catalogued books, in an OOP design you would model the application using
objects extracted from the domain, such as Books, Titles, Inventory, and Publisher.

In OOP, you'll often hear the terminology of sending messages to objects. Sending a message to an
object is the equivalent of asking that object to perform some action for you. The action usually
manipulates or provides you with data that the object contains. These actions are called methods.
For example, with a Book object, you might have a method called get_page_count that would
return the book’s page count.

An object can have both methods and data. An object stores data in fields called attributes.
Considering the Book object example again, a Book object may have attributes of title,
publisher, and publication_date. Methods and attributes are the two components that
make up the definition of an object.

The objects in your application will relate to the domain your application serves. For example, if you
are writing an accounting application, you might have objects called Account, User, and Bank. Your
Account object might contain methods for depositing and withdrawing money from an account. The
attributes of the Account object might include an account number, an account name, and an account
balance. When you are writing an application using an object-oriented language, your work consists
of defining objects and using those objects to perform the logic of your application.

Ruby is a pure object-oriented programming language. In Ruby, everything is an object, including
literal strings and numeric types. Objects are at the center of all the code you will write in Ruby.
Unlike most other languages, Ruby does not have any native types that are not objects. Even
numeric types such as integers and floats are represented as objects in Ruby.

People new to Ruby often don’t initially grasp the fact that in Ruby, everything is an object. As an
example, look at the following line of code:

3.methods

This is a valid line of Ruby code that might look a bit strange to you if you're coming to Ruby from
an object-oriented language that considers numeric values as native types instead of objects. This

Learning Ruby _

line asks for the methods that are available on the 3 object. If you wanted to find out what type of
object the number 3 is, you could find that out using this line of code:

3.class

This will return the class Fixnum. In Ruby, integer numbers are instances of the Fixnum class.
The methods class and methods are available on any object that you use in Ruby.

The Basics of Ruby

Before you get into the details of working with Ruby objects, this section provides you with some
of the basics that you should be familiar with when writing and running Ruby programs. With the
knowledge that this section provides you, you should have no problem walking through the exam-
ples that are used throughout the remainder of this chapter. You'll also know how to interactively
follow along with the examples and run them on your own computer. If you are new to Ruby, an
active learning style in which you try out the examples yourself will help you master the language
more efficiently than if you choose to only read through all of the examples.

The basics of Ruby that will prepare you to successfully learn the remainder of the language are
Ruby’s interactive shell, Ruby syntax basics, and Running Ruby programs.

Ruby’s interactive shell

Assuming that you already have Ruby installed on your computer, you have access to a powerful,
interactive Ruby-programming environment called irb. The irb environment is a command-line
Ruby interpreter that lets you enter any valid Ruby syntax and instantly see the results of your
actions. This is being covered before you even learn Ruby because of its great use as a Ruby learn-
ing tool. Throughout this chapter, you will be able to try out the short snippets of Ruby code that
are discussed so that you can interactively follow along as you read. That is a much better style of
learning than just reading through the code samples.

Use the following steps to start irb:

1. Start irb in any command-line environment simply by typing irb. This assumes that
the bin directory of the Ruby installation is in your executable path, which would be the
case if you used an automatic installer like the one-click Ruby installer for Windows.

C:\> irb

2. After typing irb, you should see a command prompt that looks like this:
irb(main) :001:0>

3. At the command prompt, go ahead and type the following line of Ruby code:
irb(main) :001:0> puts "Hello, World"

The puts method writes the passed-in string to the console output.

19

m First Steps with Rails

20

4. Press Enter. You should see this:
Hello, World
=> nil
Irb(main) :002:0>

You see the “Hello, World” string printed. You may not have expected the next line: => nil.
Anytime you execute a line of code in irb, the return value of the executed method is printed to the
console after any values that the method itself may have printed. The puts method always returns
anil value. The value nil is Ruby’s equivalent to a null or empty value.

You can even create methods and then execute them within irb. Try this within irb:

irb(main) :001:0> def add_nums (a,b)
irb(main) :001:0> return a+b
irb(main) :001:0> end

=> nil

You have just created a method named add_nums that takes two parameters. The method returns
the value of those two parameters added together. You can now try out your new method.

Make sure you are still in the same irb session and type this:

irb(main) :001:0> add_nums (5,7)
= 12

Here, you called the method that you created and passed the values 5 and 7. The method returned
the sum of those two values, 12, and so that value is printed to the console.

The irb tool will become one of your best friends as a Ruby programmer.

As you work through the remainder of this chapter, I strongly suggest that you leave
“ the irb console open and try out the small code snippets as you see them.

Ruby syntax basics

Ruby’s syntax borrows some of the best features from languages such as Java and Perl. Before you
begin to program in Ruby, there are a few basic syntax elements that you’ll learn here. These
include adding comments in Ruby, use of parentheses, use of white space, and use of semicolons.

Adding comments

A language’s support for comments allows you to add lines to your source code that the interpreter or
compiler ignores. Comments can be added to Ruby source code using the hash (or pound) symbol,
#. All text that follows a # symbol is considered a comment and ignored by the Ruby interpreter.

This is a comment in a Ruby source code file
puts 'Camden Fisher' # This line outputs a string to the console

Learning Ruby _

As you see in the example above, a comment can be a complete line, or it can follow a line of
Ruby code.

If you have a large block of text that you want to use as a comment, instead of beginning each line
of the comment with a # symbol, you can use Ruby’s multi-line comment syntax shown here:
=begin
This is a multi-line block of comments in a Ruby source file.
Added: January 1, 2008
By: Timothy Fisher
=end
Puts "This is Ruby code"

The =begin marks the beginning a multi-line comment, and the =end closes the multi-line
comment.

It's a good idea to add comments explaining any code that is not understandable simply by looking at
it. If you often find yourself writing complex code that requires comments to explain, you may con-
sider refactoring that code to make it easier to understand and eliminate the need for the comments.

Using parentheses

The use of parentheses in Ruby is most often optional. For example, when you call a method that
takes parameters, you could call it like this:

movie.set_title("Star Wars")
or you could call it like this without the parentheses:
movie.set_title "Star Wars"

If you are chaining methods together, you may get a warning (depending on the version of Ruby
you are using) if you do not use parentheses around your parameters. For example, if you were
writing this code:

puts movie.set_title "Star Wars"
You may see the a warning message similar to this:

warning: parenthesize argument(s) for future version
You can avoid the warning by using parentheses like this:

puts move.set_title("Star Wars")

It is a generally accepted convention amongst Ruby developers to use parentheses if they help a
reader understand an expression. If the parentheses add no value to the readability of an expres-
sion, your code usually looks cleaner without them.

21

m First Steps with Rails

22

Using white space

White space is not relevant in Ruby source code. You can use indentation, blank lines, and other
white space to make your code readable with no effect on its syntax. While white space has no
effect on Ruby syntax, it does have a significant effect on the readability of Ruby code. You should
therefore pick a consistent style that uses white space to enhance the readability of your code.

Common convention is to indent your class bodies, method bodies, and blocks. Here is an exam-
ple showing recommended use of white space in a class:

class
def a_method
puts 'You called a method'
end

def b_method
puts 'You called b method'
end
end

Most text editors that understand Ruby syntax will help you apply appropriate indentation of your
methods and code blocks. Many Ruby authors have adopted an informal standard in the Ruby
community of indenting with two spaces and no tabs, so this may be the standard applied in much
of the code that you find in the open source community. However, I believe that you should
choose an indentation size that works best for you and your team.

Using semicolons

Semicolons are a common indicator of a line or statement ending. In Ruby, the use of semicolons
to end your lines is not required. The only time using semicolons is required is if you want to use
more than one statement on a single line.

Take a look at a method in Ruby:

def add_super_power (power)
@powers .add (power)
end

Notice that there are no semicolons in any of this code, and yet this is perfectly valid Ruby code.
Not requiring semicolons is part of what gives Ruby its reputation as allowing for very clean and
readable code.

Here is an example of Ruby code that would require the use of a semicolon:
def add_super_power (power)
@powers.add (power) ;puts "added new power"

end

In this method, two Ruby statements are being executed in one line of code. The semicolon sepa-
rates the statements. In most cases, though, this style of coding is not recommended. Unless you

Learning Ruby _

have a good reason to do otherwise, you should always give each statement its own line of code.
This avoids the use of semicolons and makes the code more readable by other developers.

Running Ruby programs
The Ruby source files that you create become the input to the Ruby interpreter. Unlike with compiled
languages, with Ruby there is no build step required prior to running your Ruby programs. Running
a Ruby program is as simple as calling the Ruby executable and passing it the name of the file con-
taining your Ruby code. The actual executable program that you use to run your Ruby source code
files is named ruby. Throughout the book, when you see ruby written in lowercase letters in the
mono-space code font, you can assume it is referring to the actual Ruby executable program.

= @\ ‘2‘5" FE Before you continue, you should have Ruby installed on your computer. Installation

D Bt instructions were provided in the Quick Start chapter. If you skipped that, now is a

good time to go back and get Ruby installed.

You also need a text editor to create your Ruby source code in. You can use any text editor that you
are comfortable with. The Quick Start chapter gave a few recommendations for good text editors to
use that feature Ruby code recognition to give you syntax highlighting and some other nice features.

At this time, you should create a directory that you can use to store all of the samples you write in
this chapter. Anytime you want to create a Ruby source file, go to that directory and create the file.
From that same directory, you can run it with the ruby program.

Let’s walk through an example of creating and running a simple Ruby program.

1. In a text editor of your choice, create a file called test_app.rb. Enter the following
Ruby source code:

class SimpleRubyClass
def simple_method
puts 'You have successfully run a Ruby program.'
end
end

my_ class = SimpleRubyClass.new
my_class.simple_method

2. From a command line, use the Ruby interpreter to run your program.
> ruby test_app.rb
3. You should see the output from the method you wrote.

> You have successfully run a Ruby program.

In this example, you created a simple Ruby class and two additional statements outside of the Ruby
class. When you run a Ruby source file, lines of code that are outside of a class definition are auto-
matically executed. In the file you created, the last two lines are automatically executed when you
call ruby test_app.rb. The first line executed creates an instance of the SimpleRubyClass,
and the next line calls the simple_method on that instance.

23

TABLE 1.1

First Steps with Rails

When you create a Ruby source file, you do not have to use any classes. Many useful scripts can be
written without using any Ruby classes at all.

Table 1.1 lists some commonly used options that you can use with the ruby interpreter. For
example, especially if you have a large program file, you might find it useful to run a syntax check
on the source file before you execute it. You can do that with the -¢ command-line option.

Command-line Options Used with the Ruby Interpreter

Option Description Usage
-c Checks the syntax of a source file without ruby -c test_script.rb
executing it.
-e Executes code provided in quotation marks. ruby -e 'puts "Hello World"'
-1 Prints a new line after every line; also called line ruby -1 -e 'print "Add a
mode. newline"'
-v Displays the Ruby version information and ruby -v
executes the program in verbose mode.
-w Provides warnings during program execution. ruby -w test_script.rb
-r Loads the extension whose name follows the -r ruby -rprofile
option.
--version Displays Ruby version information. ruby --version

24

Classes, Objects, and Variables

Objects are not tacked on to the Ruby language as an afterthought as they are in some languages,
such as Perl or early versions of PHP. Nor are objects optional as they are in C++. As you learned
previously, Ruby is a pure object-oriented language. In Ruby, everything is an object. This makes
learning about objects in Ruby very important. They are the foundation for all of the code you will
write in Ruby, and so that is where you'll now begin to explore the details of the Ruby language.

Using objects in Ruby
Since objects and classes are core to Ruby programming, Ruby provides a rich syntax for using

them. In this section, you'll learn how to create objects and classes in Ruby. You'll also learn how
to create methods and variables that will be contained by the classes and objects that you create.

Defining objects

Objects provide a way of modeling your application’s data and actions. In Ruby, you define the
structure of your objects inside of a class. A class is similar to the concept of a type. A class defines
a type of data structure. Looking at Figure 1.1, you see a User class that contains two attributes

Learning Ruby _

(login, password) and two methods (set_password, set_login). When you use the User
class, you create an instance of the class. An instance of a class is also called an object. In Figure 1.1,
the object a_user is an instance of the User class. A class is a way of defining common behavior

for all of the objects that are of that class type. In this example, all instances of the User class will

have the 1login and password attributes, and the set_password and set_login methods.

FIGURE 1.1

The User class

class User
def set_password(password)

User @password = password
login) end a_user = User.new
passwor def set_login(login) a_user.set_password('changeme’)

set_password

> @login = login
set_login g g

end
end

You define a class in your source code using the class keyword. The minimum code you need to
define a class is a class statement with your class name, and the end statement to close the class
definition. The following code would define a User class:

class User
end

It is usually good practice to have each of your classes defined in a separate file. The User class
would typically be stored in a file called user . rb. If you follow this recommendation, your code
becomes better organized, and thus more readable and more maintainable.

Classes are made up of attributes and methods. The remainder of this section will show you the
details of how to create each of these elements in the Ruby classes you write.

Writing methods

A class’s methods define its behavior. Methods allow Ruby classes to perform useful actions and
process data in useful ways. When you are writing a Rails application, your application’s business
logic will be contained in methods that you add to classes. In Ruby, you define methods within
classes using syntax that looks like this:

class Notifier
def print_message
puts 'Wherever you go, there you are.'
end
end

25

m First Steps with Rails

26

In this example, the class Notifier contains one method, named print_message. Take a look
at that method definition line-by-line to understand all of its parts. The first line is

def print_message

Ruby uses the def keyword to signify the start of a method definition. The def keyword is followed
by the name of the method you are defining. The method name is also used when the method is
called someplace else in your code. In this example, the method name is print_message. Your
method names should be concise, yet descriptive of the actions that are performed within the
method. While some people don’t like long method names, it is better to have longer names than
short names that do not accurately convey the purpose of a method.

The next line of the method is the first line of the method body:
puts 'Wherever you go, there you are.'

This line prints a message to the console. The method puts is a built-in Ruby method for writing
string output to the console. In this case, the method name, print_message, is good because it
accurately describes what this method does. If you find yourself wondering what a method does
after looking at its name, perhaps you should consider renaming the method.

The method body continues until an end statement is reached. The end statement marks the end
of the method. For those coming from Java or Perl, note that you do not surround your method
body in curly braces,{ and }, as you do in those languages.

Methods with parameters

You saw an example of a very simple method in the previous section. Methods can also have data
passed to them. The data passed to a method can then be used within the body of the method.
Data values passed to a method are called parameters, or arguments, of that method. Here is an
example of a method that uses parameters:

def add_numbers (numberl, number2)
numberl + number?2
end

This method, add_numbers, takes two parameters, numberl and number2. The parameters are
then used within the body of the method. The variables listed between the parentheses are called
the parameter list. Anytime you use a parameter in the body of your method, you must use the
same name for it that is given in the parameter list. Notice that in your parameter list, you do not
declare any types for the parameters as you do in Java and other statically typed languages.

You might be wondering if a return statement was accidentally left out of the previous method.
Perhaps you were expecting to see the method body written like this:

return numberl + number?2

In Ruby, that line is actually equivalent to the line that does not contain the return statement. In
Ruby, the value of the last statement executed is also returned from the method. Because the

Learning Ruby _

statement numberl + number2 is the last statement in this method body, its value is returned
from the method.

Creating instances of a class

A class defines a type of object. To use an object of that type, you must create an instance of that
class. Consider a class designed to implement simple math operations. You might start with a class
defined like this:

class SimpleMath
def add_numbers
numberl+number?2
end
end

This is the definition of a class called SimpleMath containing one method called add_numbers.
To use the SimpleMath class as an object, you have to first create an instance of it. Every class
has a method called new that is used to create instances of that class. The new method is called
without any parameters, like this:

math = SimpleMath.new

The variable math now contains an instance of the SimpleMath class. Now you can call methods
on that instance, like this:

result = math.add_numbers (3, 5)

This is the first example you've seen of how methods are called in Ruby. Ruby uses the dot opera-
tor () to indicate that what follows is the name of a method that is to be called on the object pre-
ceding the dot operator.

It is common naming practice in Ruby to begin class names with an uppercase letter

ESSSE and capitalize the first letter of each additional word in the class name. Instance
names, and all other variables in Ruby, should begin with a lowercase letter and have multiple
words joined with an underscore character.

Initializing instances with the initialize() method

Often, you’ll want to initialize the state of an object when you create an instance. Many languages
include a method that is called when instances are created. Often, this is called an object construc-
tor. In Ruby, the concept of a constructor is implemented with the initialize method. You can
include an initialize method in any of your classes, and it will be called when an instance is
created using the new method. For example, you could have a class defined like this:

class PhotoAlbum
def initialize
@Qalbum_size = 10
end
end

27

m First Steps with Rails

28

Here, you have a PhotoAlbum class containing an initialize method that sets the album size
to 10 each time an instance of the class is created.

The initialize method can also take parameters. Instead of hard-coding an album size, you
might prefer an initialize method like this:

class PhotoAlbum
def initialize(album_size)
@album_size = album_size
end
end

In this example, the initialize method takes a single parameter, the album size. You pass this
parameter to the new method when you create an instance of the PhotoAlbum class, like this:

my_photo_album = PhotoAlbum.new(20)

This creates your new instance, initialized with an album size of 20.

Instance and class methods

There are two types of methods that a class can define: instance methods and class methods.
Instance methods allow you to interact with instance objects, and class methods allow you to inter-
act with class objects.

Instance methods

In the previous example, the add_numbers method that is declared in the SimpleMath class is
called an instance method. It can only be called on instances of the SimpleMath class. Instance
methods manipulate only the instance on which they are called. An object instance must be cre-
ated in order to use instance methods.

Any method defined in a class using the simple format of the def keyword followed by a method
name is an instance method. Here is a class that contains three instance methods:

class SuperHero
def add_power
method body here..
end

def use_power
method body here..
end

def find_enemy
method body here..
end
end

Learning Ruby _

The three methods defined in this class are instance methods. You must create an instance of the
SuperHero class using the new method to be able to use any of these methods. Once an instance
is created, an instance method is called using the instance variable followed by the dot operator,
like this:

spiderman = SuperHero.new
spiderman.add_power ('super_strength')
spiderman.use_power

The majority of the methods you write within your classes will probably be instance methods.

Class methods

There is another type of method that classes can define, called class methods. A class method can
only be called on a class and cannot be called from an object instance. You've already seen one
example of a class method — the new method that is used to create instances of a class.

Class methods can be defined in a few different ways. You do one of the following to define a class
method:

B Prefix a method name with the class name and the dot operator.
B Prefix a method name with the self keyword and the dot operator.

B Use class << self syntax see the following example).

When you call methods or access attributes on a class, you are not using any specific instance of
that class. Class methods are called like this:

methods = User.methods

This line calls the methods class method of the User class. This would return you an array of all
the class methods for the User class.

The first way you can define a class method is to write it with a preceding class name, like this:

class PhotoAlbum
def PhotoAlbum.delete(album_id)

end
end

In this example, the delete method is created as a class method of the PhotoAlbum class. The
delete method cannot be called from an instance of this class. Instead, you call the delete
method as shown in the following example, passing an integer that represents the ID of an album
you want to delete:

PhotoAlbum.delete (12)

29

m First Steps with Rails

30

Another way to define a class method is to use the self keyword like this:

class PhotoAlbum
def self.delete

end
end

This creates a delete class method for PhotoAlbum that behaves identically to the previous
version.

The final style you see for defining class methods is useful when you have several class meth-
ods that you want to define in one class. You can define a group of class methods using the
class << self syntax like this:

class PhotoAlbum
class << self
def delete(album_id)

end

def ;;ove (album_1id)
end

def ;ename (album_1id)

end
end
end

In this example, all three of the methods contained within the block surrounded by class
<< self are defined as class methods.

Instance and class variables

Just as there are two types of methods that a class can contain, there are also two types of variables
that a class can contain. The two types are the instance variables and the class variables.

Instance variables

It is very common that you'll want to associate data with specific instances of your classes. For exam-
ple, you might have a User class, with each instance representing a different user. Each instance of
user would need its own variables to maintain its object state. Variables that are associated with an
instance of a class are called instance variables. The following is true of all instance variables:

B Instance variable names always begin with @ (the at sign).

B You can access instance variables only through the specific class instance to which they
belong. Each instance of a class has its own instance variables.

Learning Ruby _

B You can define an instance variable anywhere within a class and it will still be visible to
all instance methods within the class.

To illustrate these bullet points, consider this example:

class House
def print_value
puts @value
end

def set_value(a_value)
@value = a_value
end
end

In this example, because of the @ symbol, you should be able to identify @value as an instance
variable. Notice that you do not have to define instance variables outside of your methods as you
do in some other languages, such as Java. Anytime you use a variable that begins with an @ sym-
bol, that variable becomes an instance variable. The print_value method accesses the same @
value variable set by the set_value method. Each instance of the House class maintains its
own copy of the @value variable.

Class variables

In addition to instance variables, a class can also define class variables. A class variable is a variable
that is shared among all instances of a class. Class variables are not referred to in relation to an
instance, as instance variables were. You reference a class variable by using the Class name and the
dot operator, like this:

total_house_value = House.total_value

Using the example of the House class again, a house’s value was stored as an instance variable.
This makes sense because each instance of the House class represents a different house, and each
house will have its own value. The total value of all houses is a good example of a field that could
be represented as a class variable. Each instance, or house, does not need to maintain its own copy
of the total house value. This value is not a data element of any individual house, but rather a data
element that describes all of the houses. Therefore, it makes sense to represent this value as a class
variable.

Class variable names start with two @ signs, @@. The class definition for the House class, including
the total value class variable, would look like this:

class House
@@total_value = 0

def print_value

puts @value
end

31

m First Steps with Rails

32

def set_value(a_value)
@value = a_value
end
end

In this code example, the @@total_value class variable is initialized to a value of zero. You
must initialize class variables before they are used. To keep track of the total value of all houses,
this variable must be updated every time a house value is updated. This requires a slight modifica-
tion of the set_value method, like this:

class House
@@total_value = 0

def print_value
puts @value
end

def set_value(a_value)
@value = a_value
@@total_value = @Rtotal_value + @value
end
end

Now, every time the value of a house is set, that value is also added to the total value of all houses,
which is tracked with the @@total_value class variable. There is actually a potential problem
with this code. Did you spot it? If the set_value method is called more than once for a single
instance — that is, a single house — rather than updating the total value with the new value being
set for that particular house, both values that you've set for that house are added to the total value.
This gives a false total value. Having noted that, the code accurately illustrates the use of class and
instance variables.

Getters and setters in Ruby objects

If you've done any amount of object-oriented program in a different language, you are probably
familiar with the terms getters and setters. Even if you are not, the concept is relatively simple. As
you've learned, an object instance contains data stored in instance variables. Frequent tasks that
you will want to perform are setting the value of those variables and getting the value of those
variables. The methods that perform those actions of setting and getting the values of instance vari-
ables are known as getters and setters.

Getters and setters are also sometimes referred to as accessors and mutators in
some such as C++.

In many other object-oriented languages, you must explicitly define these getter and setter meth-
ods using relatively verbose and repetitive syntax. For example, in Java you might see code that
looks like this in many of the classes:

Class JavaObject {

Learning Ruby _

String stringVal
int intVval;

public String getStringval() {
return stringVal;

public void setStringVal (String stringVal) {
this.stringVal = stringVal;

public int getIntvVal() {
return intval;

public void setIntVal (int intval) {
this.intVal = intVval;

}

While these methods are relatively simple, this can be very tedious and perhaps error-prone if you
make any typographic mistakes as you write these methods for every instance variable that you
want to access outside of a class instance. These methods clutter up your class definitions with
many lines of code that do relatively little. You've probably also noticed that the pattern for each
instance variable getter and setter is the same. It seems that by writing all of these methods, you are
doing a task that is more ideally suited for the computer. Isn’t getting the computer to do work for
you precisely the reason you are writing a software application in the first place?

Fortunately, Ruby saves you from having to repeat these getter and setter methods in all of your
classes by giving you a built-in method that automatically generates the methods for you at run-
time. Before you see that, however, it is educational to see how you would implement getters and
setters in Ruby.

Getters in Ruby

Getters are relatively simple if you recall that methods in Ruby return the value of the last statement
executed, even if you do not include a return statement. Therefore, the above Java class could be
rewritten in Ruby like this (for the moment, you include only the getter methods, not the setters):

class RubyObject
def string_val
@string_val
end

def int_val
@int_val
end
end

33

m First Steps with Rails

34

In this Ruby code, notice that the instance variable names have been changed to reflect the style
commonly used in Ruby code: lowercase variable names with words separated by underscores.
Also notice that in Ruby, you do not have to declare the instance variables prior to using them.

Setters in Ruby

Let’s take a look at how you implement setters in Ruby code. With your growing knowledge of
Ruby code, your first attempt at creating a setter might look like this:

def set_string val (new_string_val)
@string_val = new_string val
end

You would use this method to set the @string wval instance variable like this:
my_ruby_obj.set_string val('a good string')

This method is valid Ruby code and will work just fine, but you can do better. Keep reading to see
a more elegant way to express this setter method.

Using the equal sign in method names

Ruby allows you to define setter methods for the purpose of a more elegant setter method by using
an equal (=) sign at the end of the method name. The following example illustrates how you would
do this using an equal sign method:

def string_val=(new_string val)
@string_val = new_string val
end

It doesn’t look like you've saved much in terms of the definition of the setter method. Its size is
similar, and some might even think this definition is a bit more complex. But, look at how this
method is used:

my_ruby_obj.string_val=('a good string')

Here you see the new method being called just as the set_string val method was called;
however, by ending the method name with an equal sign, you begin to see how this makes the
method call look less like calling a method and more like just setting the attribute value directly.
Go a step further and remember that, in Ruby, you do not have to surround your parameters with
parentheses. You can now write the setter like this:

my_ruby_obj.string _val='a good string'

Ruby lets you go even a step further by providing you with a syntax that is special to methods that
end with the equal sign. You can write these methods with a space between the method name and
the equal sign. For example, you could also write the setter like this:

my_ruby_obj.string_val = 'a good string'

Learning Ruby _

When the Ruby interpreter sees the string_val method followed by the =, it automatically
ignores the space and assumes you are calling the string_val= method. This line makes for a
very readable setter method. This type of special syntax is often referred to by Ruby programmers
as syntactic sugar.

The attr_ methods

Earlier, I said that you didn’t really have to write your own getter and setter methods in Ruby, and
I mentioned that there was a way to have these automatically generated for you at run-time. This is
where the attr_ methods come in. You will find yourself often using these methods.

The attr_reader method

Using the attr_reader method, you can avoid having to create getter methods for instance vari-
ables that you want to be readable from outside of your class. To use the attr_reader method,
simply call it with a symbol representing the instance variable that you want a getter method for,
like this:

class Message
attr_reader :body

def initialize (body)
@body = body
end
end

The @body instance variable is now readable from outside of the class by referencing it through an
instance, like this:

a_message = Message.new("Dear John")
message_body = a_message.body

The message_body variable would now contain the value "Dear John", which was the value of
the @body instance variable.

The attr_writer method

Ruby also provides a method that will automatically create a setter method for you. The attr_
writer method creates an accessor method to allow assignment to an attribute that is equivalent
to a setter method. Using attr_writer is just as easy as at tr_reader was. Take a look at this
example.

class Message
attr_writer :body

end

a_message = Message.new
a_message.body = 'I like school.'

35

m First Steps with Rails

36

In this example, you are able to set the body attribute of the a_message instance because an
attr_writer was created for the body attribute. In practice, you will not use the attr_
writer method very often. For attributes that you want to have both read and write access to, the
attr_accessor method, described next, is a better choice.

The attr_accessor method

If you want to use both getters and setters with instance variables, the attr_accessor method is
what you want to use. The attr_accessor method generates both getters and setters for the
instance variables you pass to it.

class Message
attr_accessor :body, :recipients
end

Now the @body and @recipients instance variables can be read and set from outside of the class.
You get or set these instance variables just as if you were directly accessing the variable, like this:

a_message = Message.new
a_message.body = ''
a_message.recipients = ['tim@timothyfisher.com', 'john@doe.com']

You can see how easy this makes it to set instance variables without having to write any setter code
inside the class.

Inheritance

All object-oriented languages support inheritance. Inheritance is one of the ways in which classes
can be related. You may often hear the term class hierarchy, or maybe object hierarchy. A class
hierarchy is a hierarchical mapping of classes. Inheritance is the main building block of a class hier-
archy, and specifically models the IS-A relationship. For example, a baseball IS-A ball. A football
IS-A ball also.

Consider the example shown in Figure 1.2. You see the Ball class as a parent class of the
Baseball and Football classes. The Baseball and Football classes will inherit all of the
attributes and methods of the Ball class. In Figure 1.2, the Ball class has two attributes, a size
and a weight. These attributes will be inherited by both the Baseball and Football classes.
So instances of Baseball and Football will have size and weight attributes.

The Baseball and Football classes can also add their own attributes and methods to specialize
the class to their particular type. Again referring to Figure 1.2, the Baseball class has a hard_or_soft
attribute that is unique to the Baseball class. The Football class hasan inflation limit
attribute that is unique to the Football class. These attributes specify things about the specific
type of ball that the class represents that are not common to balls in general. Methods and attri-
butes that are inherited from a parent class can be used in the child class just as if they were
defined inside the child class. The parent class of an inheritance relationship is also commonly
called the base class.

FIGURE 1.2

A class hierarchy

Learning Ruby _

Ball

—size
—weight

Baseball Football

—hard_or_soft —inflation_limit

Inheritance is a technique that is very often used by object-oriented programmers. Rails applica-
tions rely very heavily on the use of inheritance. The classes that you write in a Rails application
gain the power of the Rails framework primarily by inheriting from existing Rails classes. When
you create a class that inherits from a parent class, you can also say that your new class extends the
parent class. Referring back to Figure 1.2, the Baseball and Football classes extend the par-
ent class, Ball.

To implement class inheritance in Ruby, you use the greater-than symbol (<) when you define
your class, like this:

class Football < Ball
end

This code means that the Football class is extending or inheriting from the Bal1l class.

Built-in Classes and Modules

Now that you have learned the basic syntax and structure of Ruby programming, it is time to learn
about the built-in features of the language. Ruby contains a wealth of built-in capability that saves
you from having to write a tremendous amount of low-level code in your applications.

The built-in classes and modules that you'll learn about in this section can be divided into two
areas: scalar objects and collections. As you learn about these built-in features, it’s a great idea to
follow along with an open irb session. You can type all of the code snippets used in this section
directly into irb. Lines in the code snippets that begin with => denote output that you will see in
irbif you try out the code snippet.

37

m First Steps with Rails

38

Scalar objects

Scalar objects are objects that represent single values, as opposed to collections of values. In this
section, you'll learn about some of the built-in scalar objects that you’ll use often in Ruby pro-
grams. The scalar objects discussed here include the following:

Strings

Numerics

Symbols

Times and dates

Strings
Strings are used to represent text, or sequences of characters, in Ruby. You can create string literals
in Ruby using single or double quotes, like this:

"This is a string in Ruby."
or like this:
'This is a string in Ruby.'

However, there are differences in how strings are interpreted that you should be aware of so that
you can use the correct quote style in different situations.

Substitution in strings

Substitution occurs in strings when you type in one or more characters that the Ruby interpreter
will change into different characters. A backslash character followed by another character is a com-
mon indicator for string substitution. For example, in a single quoted string, you can place a single
quote inside of a string by escaping the quote with a backslash character, like this:

puts 'I went to Dad\'s house.'
This string outputs the string value:
I went to Dad's house.

The V' is turned into a single quote. This allows you to use single quotes within single-quoted
strings. You can also use a backslash character within a single-quoted string by putting two back-
slashes in the string, like this:

puts 'A backslash looks like this: \\'
=> A backslash look like this: \

These are the only two substitutions that occur in single-quoted strings. Any other backslash char-
acters remain just as you typed them.

Double-quoted strings, however, allow you to use a richer set of backslash sequences for substitu-
tion. For example, the \n sequence turns into a newline character in a double-quoted string.

Learning Ruby

String interpolation
String interpolation allows you to use Ruby expressions inside of double-quoted strings. Take a
look at the following example:

subject = 'zombies'
puts "Timmy likes #{subject}."
=> Timmy likes zombies.

The # and { sequences tell Ruby that what’s enclosed is a Ruby expression that you would like
evaluated, and its result is inserted into the string. In addition to using variables like this, you can
also interpolate other expressions, such as this:

puts "If you add 2 and 5 you get the value #{2+5}."
=> If you add 2 and 5 you get the value 7.

You can skip the braces for instance, class, and global variables. For example, you could use inter-
polation with an instance variable like this:

@subject = 'cooking'
puts "Camden likes #@subject."
=> Camden likes cooking.

String interpolation allows you to write concise code without having to perform a lot of string con-
catenation that you might do in other languages.

String operations
Ruby provides your strings with a great deal of built-in functionality. Here are some of the more
common string methods that you'll use:

B length

This method returns the length of the string that it is called on.

short_str = "This is a short string."
puts short_str.length
=> 22

B include?
Returns true if the string it is called on contains the string passed as a parameter.

"Superman can fly".include? ('Superman')
=> true

B slice

This method returns a substring of the string that it is called on. The substring is speci-
fied by passing an argument of one of the following types: fixnum, range, regular
expression, or string. There is also a variant of this method that deletes the speci-
fied substring from the string that it is called on and returns the deleted substring. This
variant is named slice!.

39

m First Steps with Rails

40

An example taken from the official Ruby documentation site at http:/ruby-doc.org illus-
trates use of this function well:

string = "this is a string"
string.slice! (2) #=> 105
string.slice! (3..6) #=> " is "
string.slice! (/s.*t/) #=> "sa st"
string.slice! ("r") #=> "r"
string #=> "thing"

In the above example, note that the end of the statements include a comment showing
what the return value of that method call would be. For example, string.slice! (2)
would return the ascii character value 105. The string #=> is commonly used to indicate
the return value of a statement in Ruby documentation.

The fourth line of the above example containing the expression string.slice! (/
S.*t/) uses a regular expression as a parameter. In Ruby, regular expressions are cre-
ated with the / delimiter. Ruby provides strong support for using regular expressions,
and though this book does not get into the details of how to use regular expressions,

[strongly advise you to become familiar with them. Regular expressions are very useful
in any programming language.

gsub

This method allows you to specify a portion of a string to be replaced with a different
string. Just as with the s1ice method, there is a variant available that will change the
string that the method is called on. This variant is named gsub!. These methods take
two parameters. The first parameter is a regular expression or a string to match on, and
the second parameter is a string that you want to replace the matched text with. The fol-
lowing examples show how this method is used:

"hello".gsub(/[aeioul/, '*'") #=> "h*11*"
"Superman" .gsub ("Super", "Bat") #=> "Batman"
"hello".gsub(/ ([aeioul)/, '<\1>') #=> "h<e>ll<o>"

In the last line of the example, the replacement string is ' <\1>'. In this string, the \1
sequence will match the result of the [aeiou] regular expression. Surrounding the reg-
ular expression in parentheses, as in this example, creates a matching group. You could
have additional matching groups in the regular expression by including additional regular
expressions surrounded by more sets of parentheses. In the replacement string, you can
match subsequent matching groups using \2, \3, and so on. See this line of code for an
example of multiple matching groups:

"hello".gsub(/(e) (11)/, '<\1><\2>") #=> "h<e><ll>o"

In the previous line of code, the \ 1 sequence matches the regular expression group (e)
and the \2 sequence matches the regular expression group (11).

There are many more methods that you can use on String objects. For a complete description of all
of the methods available for String objects, you should refer to the official Ruby documentation for
Strings at www . ruby-doc.org/core/classes/String.html.

Learning Ruby _

Numerics

Ruby has special classes that represent numbers that you use in a Ruby application. These classes
include Float, Fixnum, and Bignum. The Bignum and Fixnum classes represent integers. They
both extend the Integer class. The classes Float and Integer extend the Numeric class,
which provides basic functionality to all numeric objects.

You can find out the class that a particular number uses by calling its class method, like this:

1980.class
=> Fixnum

3.1459.class
=> Float

10000000000.class
=> Bignum

Now, take a look at a few methods that are commonly used with numbers:

B integer?
Returns true if the number is an integer value.

1980.integer?
=> true

B round
Rounds the number to the nearest integer.

18.3.round #=> 18
18.7.round #=> 19

B to_f
Converts a Fixnum or Bignum to a Float.

15.to_*f #=> 15.0
1000000000000.to_£ #=> 1000000000000.0

B to_i

Converts a Float to an Integer type (either Fixnum or Bignum depending on its
size). The decimal portion of the number is truncated. There is no rounding performed
during the truncation.

15.1.to_1 #=> 15
15.8.to_1 #=> 15
B zero?

Reruns true if the value has a zero value, otherwise it returns false.

There are many more methods available for the numeric classes. For complete method informa-
tion, refer to the official Ruby doc Web site.

41

m First Steps with Rails

42

Symbols

If you are coming to Ruby from a Java or C language background, symbol objects are probably
going to be something new to you. You can think of symbols as placeholders for strings. Symbols
are easily recognized in Ruby code because they are always prefixed with a colon (:). You can con-
vert any string into a symbol by using the to_sym method. The following is an example of creat-
ing a symbol using this method:

city = "Detroit"
city_sym = city.to_sym
puts city_sym

The to_sym method converts the string "Detroit" into an equivalent symbol object. The sym-
bol, city_sym, contains the value :Detroit. When you print the symbol to the console using
the puts method, the console output is:

Detroit

You might be wondering why the value printed was not : Detroit. The reason why you don’t see
that value printed is because the puts method automatically converts the symbol back into a
string before printing it. The string equivalent of a symbol is the symbol value without the colon.
However, if you look at the class type of the variable city_sym, you will see that it is indeed a
Symbol object.

city_sym.class #=> Symbol

You can convert a symbol back into a string using the id2name method. Here, you see how the
:Detroit symbol is converted back to the original string value:

city_string = city_sym.id2name

When you get into Rails development, you will use symbols frequently. Although they may seem a
bit foreign at first, they are simple to use and often make for cleaner and faster code.

Times and dates

In many applications you write, you will have to work with times and dates and usually perform
some manipulation of those values. Ruby provides you with built-in classes to support times and
dates in your application. The classes that provide Ruby’s support for times and dates are Date,
Time, and DateTime. The Time class is the only one of those three that is included with the
Ruby core. The Date and DateTime classes are a part of the Ruby standard library which is
included with Ruby but they must be explicitly included using a require statement when you want
to use them. Below is an example of how you would include the Date and DateTime classes in
your code:

require 'date'

The date library included using the above require statement will give you both the Date and the
DateTime classes.

Learning Ruby _

The require statements should always be placed at the very top of your source files. You can also
use these classes within an irb session simply by using the same require syntax at the com-
mand prompt.

Below you'll see some of the methods and features of the date and time classes. There are many
more methods available for these classes than what is covered in this book. For complete informa-
tion, refer to the official Ruby documentation site www . ruby-doc . org.

Using the Time class
You can create instances of the Time class using the new method as shown here:

time = Time.new

When you use the new method of the Time class, an instance of the Time object representing the
current time is created. To get a Time instance referring to the current time you can also use the
Time.now method. If you want to create an instance that is preset to a given time, you the Time.
local method as shown here:

time = Time.local (2008, "jun", 22, 10, 30, 25)
#=> Sun Jun 10:30:25 -0400 2008

In this example, an instance of Time is created and set to the date June 22, 2008, and the time
10:30 and 25 seconds. The parameters passed to Time.local in this example are in this order
year, month, date, hours, minutes, and seconds.

You can also call Time. local to create a time instance with these parameters: seconds, minutes,
hour, day, month, year, day of the week, day of the year, is it daylight savings time?, and timezone.
Here is an example of how you would create the same time using these parameters:

time = Time.local (25, 30, 10, 22, "jun", 2008, 0, 174, true,
I|ESTI|)
#=> Sun Jun 10:30:25 -0400 2008

Once you have a Time instance created, you can easily get specific field information from it using
instance methods available. Here are some examples:

time.day #=> 22

time.yday #=> 174

time.wday #=> 0

time.year #=> 2008

time.month #=> 6

time.zone #=> "Eastern Daylight Time"
time.hour #=> 10

time.min #=> 30

time.sec #=> 25

43

m First Steps with Rails

44

You can also perform addition and subtraction of time instances. To get the difference between two
times, subtract them, as shown here:

timel = Time.local (2008, "jun", 22, 10, 30, 25)
time2 = Time.local (2008, "jun", 20, 10, 30, 25)
timel - time2 #=> 172800.0

The value returned from subtracting the two times is the time difference expressed in seconds.
Knowing that there are 86,400 seconds in a day (60*60*24), you could convert the result to days
by dividing the result by 86,400, to get two days.

You can add seconds to a time using the addition operator, as shown here:

time = Time.local (2008, "jun", 22, 10, 30, 25)
time + 60 #=> Sun Jun 10:31:25 -0400 2008

In this example, 60 seconds are added to the time instance.

You can compare time instances using either the eql ? method or the <=> operator. The eql?
method will return true if the time that it is called on and the time passed to it are both Time
objects with the same seconds and fractional seconds. The <=> operator also compares time
objects down to the fractional seconds, however its return value is different. Instead of returning
true or false, the <=> operator will return 0 if the time instances are equal, -1 if the time instance
on the left occurs before the time instance on the right, and +1 if the time instance on the left
occurs after the time instance on the right. Here are some comparison examples:

timel = Time.local (2008, "jun", 22, 10, 30, 25)
time2 Time.local (2008, "aug", 12, 10, 30, 25)
time3 = Time.local (2008, "jun", 22, 10, 30, 25)

timel.eql? time2 #=> false
timel.eql? time3 #=> true
timel <=> time2 #=> -1
time2 <=> timel #=> 1
timel <=> time3 #=> 0

Using the Date class

To create a new Date instance, you use the new method, as you did with the Time class. However,
unlike the Time class, when you create a date with the new method, you will not get the current
date. To get a meaningful date instance you should pass parameters to the new method like this:

date = Date.new (2008, 3, 12)

This creates a date instance representing March 12, 2008. The Date class represents dates only and
does not include time information. To see a string representation of the date, use the to_s method:

date.to_s #=> "2008-03-12"

Learning Ruby _

There are accessor methods provided for getting the year, month, and day components of the date:

date.year #=> 2008
date.month #=> 3
date.day #=> 12

Another useful method is the next method. This method will return the next day, as shown here:
date.next.to_s #=> "2008-03-13"

In the above example, the next method is chained with the to_s method to return the string rep-
resentation of the next date. Method chaining can be a convenient way of writing concise expres-
sions in Ruby. If you want to get the next month, or perform month addition, you can use the >>
operator with the date instance. The >> operator will advance a date by the given number of
months. Similarly, the << operator will subtract the given number of months from the date. Both
of these operators will return the modified date but will not change the date instance on which
they are called. Here are some examples:

(date >> 1) .to_s #=> "2008-04-12"
(date << 1) .to_s #=> "2008-02-12"
date.to_s #=> "2008-03-12"

Just as with Time instances, you can test the equality of two dates using the eql? method, or the
<=> operator. The operators behave just as they do for the Time instances, except dates are com-
pared instead of times. Here are some examples:

datel = Date.new (2008, 3, 12)
date2 = Date.new (2008, 7, 15)
date3 = Date.new(2008, 3, 12)

datel.eqgl? date2 #=> false
datel.eqgl? date3 #=> true
datel <=> date2 #=> -1
date2 <=> datel #=> 1
datel <=> date3 #=> 0

Using the DateTime class

The DateTime class is a subclass of the Date class and thus inherits its methods and much of its
behaviour. The DateTime class adds time information to the date information provided by the
Date class.

You can create a DateTime instance with both date and time values set using the new method and
parameters passed in this order (year, month, day, hour, minute, second) as shown here:

date_time = DateTime.new (2008, 3, 12, 10, 30, 25)
date_time.to_s #=> "2008-03-12T710:30:25+00:00"

45

m First Steps with Rails

The DateTime class has access to these accessor methods for getting the time information:

date_time.hour #=> 10
date_time.min #=> 30
date_time.sec #=> 25
date_time. zone #=> "+00:00"

Formatting times and dates

All three of the time and date related classes, Time, Date, and DateTime, include a to_s method that
allows you to get a string representation of the time or date. However, the format provided by the
to_s method may not always be what you want. You can create a formatted date string using a for-
mat that you define using the strftime method that is available to all of these time and date
classes. The strftime method takes a single parameter that is the format string. The format string
can contain text and any of the format specifiers listed in Table 1.2 for printing date and time fields.

TABLE 1.2

Date and Time Formatting Codes for Use with strftime

Format Code Description Example
%a The abbreviated weekday name Sun
Y%A The full weekday name Sunday
%b The abbreviated month name Jan
%B The full month name January
%cC The preferred local date and time representation 03/12/08
%d Day of the month 10
%H Hour of the day, 24-hour clock 21
%l Hour of the day, 12-hour clock 10
Yoj Day of the year 215
%m Month of the year 11
%M Minute of the hour 25
%p Meridian indicator AM or PM
%S Second of the minute 55
%U Week number of the current year, starting with the 5
first Sunday as the first day of the first week
%W Week number of the current year, starting with the 4
first Monday as the first day of the first week
%W Day of the week (Sunday is 0) 2
Yoy Year without a century 95
%Y Year with century 1995
VYA Time zone name EST

46

Learning Ruby

Here are some examples of dates and times formatted using the strftime method:

date = Date.new(2008, 10, 18)
date.strftime("The day is %A, %B %d %Y")
#=> "The day is Saturday, October 18 2008

time = Time.local (2008, "jun", 22, 10, 30, 25)
time.strftime("Date: %a %b %d %Y, Time: %I:3%M:%S")
#=> "Date: Sun Jun 22 2008, Time: 10:30:25"

Collections

All program languages support some method of representing groups of objects or other data ele-
ments. The objects that store collections of other objects are called the collection objects. These
objects are defined by the collection classes, which are some of the most often used classes in any
programming language. In almost any application you write, you will find times when you have to
work with multiple items, and that is where collection classes help you.

Ruby provides you with built-in support for collections using the following collection classes,
which you'll learn about in this section:

B Arrays

W Hashes

B Ranges

Arrays

The array is the most common collection class and is also one of the most often used classes in
Ruby. An array stores an ordered list of indexed values, with the index starting at 0. Ruby imple-
ments arrays using the Array class. Here is an example of how arrays are used in Ruby:

great_lakes = ["Michigan", "Erie", "Superior", "Ontario", "Huron"]
puts great_lakes[0]
puts great_lakes[4]

This code creates an array containing the names of the Great Lakes, and stores it in the great_
lakes variable. The second and third lines print the names of the first and fifth elements of the
array. The output would be:

> Michigan
> Huron

Arrays do not have to be populated when they are created. You can also create an array object
using the Array . new method, like this:

sports = Array.new

47

m First Steps with Rails

You can also create a new empty array using this style of declaration:

sports = []

The Array class also gives you plenty of built-in functionality. Here are some commonly used
methods that you'll use when working with arrays:

empty?
Returns true if the array is empty.

sports = Array.new
puts sports.empty?
=> true

delete
Deletes the named element from the array and returns it.

sports = ['Baseball', 'Football', 'Soccer']
sports.delete('Soccer"')

sports

=> ['Baseball', 'Football']

first

Returns the first element of the array.
names = ['Tim', 'John', 'Mike']
puts names.first

=> Tim

last

Returns the last element of the array.
names = ['Tim', 'John', 'Mike']
puts names.last

=> Mike

push
Adds a new element to the array.

sports = ['Baseball', 'Football', 'Soccer']
sports.push('Tennis"')

=> ['Baseball', 'Football', 'Soccer', 'Tennis']
size

Returns the number of elements contained in the array.
sports = ['Baseball', 'Football', 'Soccer']

puts sports.size
=> 3

Hashes

Like arrays, hashes store a list of values. However, if you use a hash instead of integer indexing, a
hash lets you specify a unique index for each element that you store in the hash.

438

Learning Ruby _

leagues = {"AL"=>"American League", "NL"=>"National League"}
puts leagues["AL"]

Once you have a hash, you can retrieve the value for an element in the hash by referencing its key
value, as you see being done in the second line above. Notice that when you create a hash, you use
the curly braces to enclose the hash, but when you refer to an element of the hash, you use the
straight brackets. If you attempted to use the curly braces when referring to an element of the hash,
you would get a syntax error.

You will also often hear the contents of a hash described as key-value pairs. The terms index and key
are used interchangeably with respect to hashes.

Just as with arrays, the Hash class gives you plenty of built-in functionality. Here are some com-
monly used methods that you'll use when working with hashes:

B empty?

Returns true if the hash is empty.

leagues = {"AL"=>"American League", "NL"=>"National League"}
puts leagues.empty?
=> false

B keys

Returns an array of the hash’s keys.

leagues = {"AL"=>"American League", "NL"=>"National League"}
leagues.keys
=> ['AL', 'NL']

B values
Returns an array of the hash’s values.

leagues = {"AL"=>"American League", "NL"=>"National League"}
leagues.values
=> ['American League', 'National League']

B size

Returns the number of key or value pairs contained in the hash.

leagues = {"AL"=>"American League", "NL"=>"National League"}
leagues.size
=> 2

Ranges

Ruby provides another type of collection that you are probably not familiar with if you are new to
Ruby: the Range class. You can use ranges to represent a sequence that has a defined start point, a
defined end point, and a well-defined procession of elements. You create a range in Ruby using a
start point, two dots, and an end point, like this:

(0..6)

49

m First Steps with Rails

50

This would create a range containing all the integer numbers from zero to six. You can verify that
you have indeed created a Range object by looking at its class, using the following code:

(0..6) .class
=> Range

A good way to verify what are all of the elements contained within a range is to convert the range into
an array. You can convert the range into an array using the to_a method of the range, like this:

(0..6) .to_a
=> [0,1,2,3,4,5,6]

You can use ranges not only for representing sequences of numbers, but also for representing any
elements that have a well-defined sequence. Here is an example that expresses a sequence of letters
as a range:

('a'..'e').to_a
=> [lal’lbl’lcl’ldl’lel]

As with the other collection types in Ruby, you get plenty of built-in functionality with the Range
class. Here are some common methods you can use with ranges:

B first
Returns the first element of a range.
(1..6).first #=> 1

B last
Returns the last element of a range.

(1..6).last #=> 6
(1...6).last #=> 6

Notice that the last the last element specified in the Range declaration is returned as the
last element of the range, even if that element is not included in the range, such as when
you use the triple period range notation.

B include?
Checks to see if the passed parameter value is included within the range.
(‘a'..'f').include? 'k' #=> false
('a'..'f").include? '4d' #=> true
There is also a method available named member? that has the same behavior as
include?.

B ecach

This method allows you to iterate through each of the elements of a range and pass them to
a block specified as a parameter. Blocks are covered later in this chapter, so if this doesn’t
make sense to you now, feel free to have another look after you've read about blocks.

Learning Ruby _

(1..4) .each do |number|
puts number
end

Each element of the range 1, 2, 3, 4 will be printed to the screen on a separate line using
the puts method.

B step

Like the each method, the step method is also an iterator method. Using the step
method, you can iterate through a range using a stepping size specified by the parameter
passed.
(1..6).step(2) do |number|

puts number
end

This example will print out the numbers 1, 3, and 5 each on a separate line.

Control Flow

The control flow features of a programming language specify how the programming language allows
you to control the path of execution through the code that you write. For example, there may be a
group of statements that you only want to be executed under certain conditions, or there may be a
group of statements that you want to repeat until a specified condition becomes true. These are the
types of things that you will use control flow techniques to accomplish. Every programming language
has control flow features built into it, and Ruby is no exception. Ruby’s primary control flow mecha-
nisms are:

Conditionals
Loops
Blocks

Iterators

Each of these mechanisms provides a different style of controlling the flow of your application. As
you write more Ruby programs, you will find scenarios in which each of these mechanisms
becomes valuable.

Conditionals

Conditionals allow you to specify a block of code that is executed conditionally, based on the
result of some expression. Ruby supports three types of conditional statements:

B if statement
B unless statement

B case statement

51

m First Steps with Rails

52

The if statement

The 1if statement tests whether an expression is true or false. The expression being tested immedi-
ately follows the keyword if in a line of code. If the expression evaluates to true, the block of code
following the if statement is executed. If the expression evaluates to false, the contained block of
code is skipped.

In this example, the variable value_a is compared with the variable value_b. The statement
value_a is bigger is only executed if the statement value_a > value_b is true.

if value_a > value_b
puts 'value_a is bigger'
end

You can also specify a second block that is executed if the 1 £ expression evaluates to false. This is
called the else block and is preceded by an else statement, like this:

if value_a > value_b

puts 'value_a is bigger'
else

puts 'value_b is bigger'
end

In this example, the correct statement is printed, depending on the values of the two variables.

There is one more statement that you can use with an if statement. That is the elsif statement.
The elsif statement allows you to specify a block that is executed conditionally if the previous
if or elsif statement did not evaluate to true. Here is an example:

if color == 'red'
puts 'The color is red'
elsif color == 'blue’
puts 'The color is blue'
else
puts 'Could not determine color'
end

The unless statement

Another conditional supported by Ruby is the unless statement. The unless statement works
opposite to how the 1f statement works. The block of code contained by the unless statement is
executed only if the expression passed to the unless statement evaluates to false. Take a look at
the following example:

unless value_a > value_b
puts 'Value B is the larger number'
end

This code would print the message ' Value B is the larger number' only if the value stored in
value_b is larger than the value stored in value_a.

Learning Ruby _

The case statement

The case statement allows you to compare a variable to a number of different possible values and
execute a group of methods based on which of the values it matches. This construct can replace a
series of 1 . . else statements. Consider the following block of 1 £. . else statements:

if color == 'red’
puts 'The color is red'
elsif color == 'blue’
puts 'The color is blue'
elsif color == 'green'
puts 'The color is green'
else
puts 'Unrecognized color name.'
end

In this series of 1 £ . . else statements, the color variable is compared against a series of different
values to find one that matches. If it does not find a match, there is an ending else to print a
default message. This example illustrates how you could implement the very same logic using a
case statement:

case color
when 'red'
puts 'The color is red'
when 'blue'
puts 'The color is blue'
when 'green'
puts 'The color is green'
else
puts 'Unrecognized color name.'
end

As you see here, after the case statement, you specify the variable that you want to match. Each
when statement is the equivalent of an elseif in the previous implementation. When a matching
condition is found, the statement or statements following that when statement (up until the next
when statement) are executed. After executing those statements, the control flow passes to the line
after the case statement’s closing end statement.

You can also specify groups of valid values, as in the following example:

when 'red', 'purple’

Loops, blocks, and iterators

Loops, blocks, and iterators allow you to define sections of code that you want to execute repeat-
edly, often until a given condition is satisfied. The constructs you'll learn about here include:

B for loops
B while and until loops
B code blocks

53

m First Steps with Rails

54

If you have experience with other programming languages, you are probably familiar with the con-
cept of for, while, and until loops. However, code blocks may be very new to you. They are a
feature that gives Ruby a great deal of its unique power and capability for writing clean, elegant,
and concise code.

for loops

The Ruby for loop allows you to execute a given block of code an amount of times specified by an
expression preceding the block. If you are used to using the for loops in Java, JavaScript, C, C++,
or a language similar to one of those, pay particular attention here, as the Ruby for loops are differ-
ent than the for loops in those languages. Here is an example of a Ruby for loop:

cities = ['Southgate', 'Flat Rock', 'Wyandotte', 'Woodhaven']
for city in cities

puts city
end

Executing this loop would result in each of the city names contained in the cities array being
printed to the console. Here is another example of a for loop that iterates over a hash variable,
using both the key and value elements as variables within the block.

hash = {:r=>'red', :b=>'blue, :y=>'yellow'}
for key,value in hash

puts "#{key} => #{valuel}"
end

Executing this loop will result in the following output:

vy => yellow
b => blue
r => red

while and until loops

In addition to the for loop, Ruby supports other looping constructs that are also common in
many other programming languages: the while loop and the until loop. The while and
until loops execute a block of code while a certain condition is true, or until the condition
becomes true. Here are some examples:

num = 10
while num >= 0 do
puts num
num = num - 1
end

num = 0
until num > 10 do
puts num
num = num + 1
end

Learning Ruby _

Blocks

In several of the previous examples that used iterators, such as the each or step method of a
Range object, you have seen Ruby blocks in use. Blocks are groups of statements that can be
passed into a method as a parameter. They are commonly used with iterators. The each method,
which is available on any class that is enumerable in Ruby, is probably the place you will use
blocks most often. Here is an example of a block used with the each statement:

colors = ['red', 'blue', 'yellow', 'green']
colors.each do |color|

puts color

color_count = color_count + 1
end

In this example, the block is enclosed by the do and end statements. The block is passed a single
parameter which is enclosed in the pipes. The block is passed as a parameter to the each method.
Blocks can also be enclosed by curly brackets. The example below is equivalent to the previous one:

colors = ['red',K 'blue', 'yellow', 'green']
colors.each { |color|

puts color

color_count = color_count + 1

}

Although not a syntax rule, common usage is to use the curly brackets around blocks when you
have a short block that will fit on the same line as the method invocation to which the block is
passed, such as this example:

colors.each { |color| puts color}
If your block spans multiple lines, the do/end syntax is preferred.

Blocks are a construct that is new to many programmers, especially those coming from Java or C
language backgrounds. They are frequently used in Ruby code so you should become very familiar
with them. I have just touched on what you can do with blocks. There is a great deal more to learn
about them. You can learn more with many good online references; just do a Google search on
Ruby Blocks.

The yield statement

You can create your own methods that accept blocks as a parameter and be able to pass parameters
into those blocks using the yield statement. Take a look at an example of a method that can
accept a block as a parameter:

class TimsBooks
def initialize
@books = ['Ruby on Rails Bible', 'Java Phrasebook']
end

def each
@books.each {|book| yield book }

55

m First Steps with Rails

56

end
end

books = TimsBooks.new

books.each do |book|
puts book

end

In this example, the TimsBooks class contains an instance variable that is an array of books. The
@books variable is initialized at object creation time. The each method is implement to iterate
through the @books array and yield each book value to the block that is passed to the each method.
Toward the bottom of the example, you see how the each method can be used with an instance of
TimsBooks to print the name of each book. Using this technique you could write your own each
methods for any classes that you write that contain some data that can be iterated upon.

The yield statement calls the passed in block, passing any parameters that are passed to it along
to the block. So in the above example, each time yield is called, the block containing the puts
book statement is called passing the name of a book from the @books array. The resulting output
will be a list of the books in the @books array.

Iterators

An iterator is a method that allows you to step through a group of values in a systematic way.
Iterators are featured in many programming languages, and Ruby has rich support for them. You
have seen some of the iterator methods already. Some of the iterator methods supported by Ruby
described here.

B cach

The each method is the most common iterator. You can use the each method to step
through any element that is enumerable such as an array or hash.

students = ['Tim', 'Camden', 'Kerry', 'Timmy"']
students.each do |student|

puts student.name
end

B times

The times method is an iterator used on integer values. It is used to repeatedly execute
a block of code.

3.times {puts 'Ruby rules'}
This will print the line 'Ruby Rules' three times.
B map

The map method is commonly used with Array objects. It calls the passed block once
for each element of the array on which it is called. Its return value is a new array contain-
ing each of the values returned by the subsequent calls to the block.

[1,2,3].map {|x]| x * x}

#=> [1,4,9]

Learning Ruby _

This example returns an array that contains the squares of each of the elements contained
in the original array.

B upto

The upto method is an iterator used with elements that have some form of ordering
associated with them. Common examples of where you can use this method include inte-
gers and alphabetic characters as shown below:

4.upto(7) {|x| puts x}

'a'.upto('c') {|char| puts char}

In the first example above, the values 4, 5, 6, and 7 are printed. In the second example,
the characters a, b, and c are printed.

Exception handling

Every good developer should be familiar with error handling techniques and know how to handle
errors that occur in a program. No matter how well you have written and tested your program, there
will always be error conditions that occur in your program. These error conditions are not always the
fault of the developer, but could be triggered by a number of things, including bad input from an
external component , unavailable external resources, or incorrect usage by the end user

Before OOP became popular, error handling was mostly accomplished using return values and
error codes. All of your functions would return a value that would indicate whether the function
succeeded or failed. On failure, the return value would contain an error code or perhaps an error
message. Unfortunately, this style of programming tends to require error-handling code around all
of your functions and within the functions. Often, the purpose of a particular function is lost in so
much error-handling code.

Object-oriented languages introduced a new style of error handling with a more object-oriented
approach. This style uses exception objects that can be thrown and caught by your code and handled
where appropriate. This style of error handling is usually referred to as exception handling. The
exception handling features of Ruby allow you to handle unexpected conditions that occur while
your code is running.

Exceptions in Ruby

In Ruby when an exceptional condition occurs, you can raise an exception using either the raise
statement or the throw statement. When you raise an exception, control flow is diverted away
from the current context to exception handling code. Exceptions that are raised can be caught with
a rescue block. Rescue blocks are created with the rescue statement. Exceptions are represented
as Exception objects. Exception objects are instances of the Exception class or a subclass of
the Exception class. Ruby includes a hierarchy of built-in exception classes. There are seven
classes that are direct subclasses of Exception. These are the following:

B NoMemoryError

B ScriptError

57

m First Steps with Rails

58

SecurityError
SignalException
SystemExit

SystemStackError

StandardError

The StandardError exception class represents exceptions that are considered normal and that
you should attempt to handle in your application code. The other exception classes represent
lower-level and more serious errors that you most likely will not be able to recover from. Most pro-
grams do not attempt to handle these exception classes. There are many built-in subclasses of
StandardError, and you are free to also create your own subclasses to define custom excep-
tions for your application.

The Exception class defines two methods that will help you get more information

about the problem that occurred. These two methods should be implemented by all of its subclasses.
The two methods are message and backtrace. The message method returns a string that gives
human-readable information about the cause of the exception. The backtrace method returns an
array of strings that represent the call stack at the point the exception was raised.

Using begin, raise, and rescue

The three statements that are used most often to perform exception handling in Ruby are the
raise, begin, and rescue statements. The raise statement is used to create, or throw, and
exception. You can call raise with zero, one, two, or three arguments. If you use raise with no
arguments, a RuntimeError object is raised. If you use one argument with raise, one of the fol-
lowing conditions will apply:

B If the single argument is an Exception argument, that exception is raised.
W If the argument is a string, a RuntimeError is raised and the string is set as its message.
B If the argument is an object that has an exception method, that method should return

an Exception class. The Exception class returned will be raised.

If you use raise with two arguments, the second argument should be a string that will get set as the
message of the exception defined by the first argument. Finally, you can call raise with three argu-
ments also. In that case, the first argument will define an exception class, the second argument will
define a string to be set as the exception’s message, and the third argument will contain an array of
strings which will be set as the backtrace for the exception object.

Here is an example of how you might raise a Runt imeError exception with a specified message:
raise RuntimeError, "Bad value used."

The begin statement designates the start of a block of code for which you want to apply excep-
tion handling. The rescue statement specifies the start of a block of code that is executed if an
exceptional condition occurs within the block of code that began with the begin statement. To

Learning Ruby _

illustrate the uses of exception handling in Ruby, you'll see how exception handling is commonly
used along with Ruby’s built-in file support to catch errors that might occur when you are trying to
open a file.

def read_file(file_name)
begin
afile = File.open(file_name, "r")
buffer = afile.read(512)
end

rescue SystemCallError
handle error
end

rescue StandardError
handle error
end

rescue
default exception handler
end
end

This method attempts to open a file with the name you pass into the method, and to read the first
512 bytes from it. An exception can be raised from within either the File.open or the afile.
read methods. If an exception is raised within either of those methods, the control flow of the
code will jump out of the begin block. The block that begins with the code rescue
SystemCallError will be executed if a SystemCallError exception is raised. If the excep-
tion raised is a StandardError exception, the block that rescues StandardError will be exe-
cuted. If the exception thrown is neither of those two types, the default exception handling block
will be executed (this is the rescue block that does not specify a parameter).

As you saw in the previous example, a rescue block can specify a specific type of exception to
handle, or not specify an exception type at all. If no exception type is specified, the block will han-
dle any exception type that has not been handled by a previous rescue block. You can specify
more than one exception type for a rescue block to handle also. For example, if you wanted to
handle SystemCallError and StandardError the same way, you might write an exception
handler like this:

rescue SystemCallError, StandardError
handle error
end

In many cases, you will want to get information about the exception that occurred in the rescue
block that handles it. You can access the exception object by defining a rescue block like this:

rescue => ex

puts "#{ex.class}: #{ex.message}"
end

59

m First Steps with Rails

60

In the above example, the exception object is stored in the ex variable. You can access any of the
exception’s methods through the ex variable. If your rescue clause is for a specific type of excep-
tion, the syntax to get the exception object would look like this:

rescue ArgumentError => ex
puts "#{ex.class}: #{ex.message}"
end

More exception handling using ensure, retry, and else

Now that you have the basics of Ruby exception handling down, let’s look at three additional state-
ments that are part of Ruby’s exception handling support. These are the ensure, retry, and
else statements.

The retry statement

If you put a retry statement inside of a rescue block, the block of code that the rescue block is
attached to will be run again. This is a good option for errors that are likely to resolve themselves.
For example, if the load on a server was too high when you called it the first time, if you wait a bit
and attempt the call again, it may succeed. The following code illustrates that scenario:

network_access_attempts = 0
begin
network_access_attempts += 1
open ('http://www.timothyfisher.com/resource') do |f|
puts f.readlines
end
rescue OpenURI::HTTPError => ex
if (network_access_attempts < 4)
sleep(100)
retry
else
handle error condition
end
end

In the begin block of this code, it attempts to open a network resource. If an exception is thrown
while attempting to open that resource, the rescue block will be executed. Within the rescue
block, we check to see if we have attempted to access the resource less than four times. If so, the

code sleeps for 100 mS and then uses the retry statement to retry the begin block. If the same
exception occurs four times, we give up and attempt to handle the error.

The else statement

A begin-rescue code block may also include an else block. The else block will be executed
if the code in the begin block completes without raising any exceptions. Below is an example of
how you might use an else block:

begin
network_access_attempts += 1

Learning Ruby _

open('http://www.timothyfisher.com/resource') do |f]
puts f.readlines
end
rescue => ex
puts 'Error reading file'
puts "#{ex.class}: #{ex.message}"
else
puts 'Successfully read the entire remote file'
end

If any exceptions are raised in the else block, they are not caught by any of the rescue state-
ments attached to the begin block.

The ensure statement

The ensure statement is used to start a block that will always be executed, no matter what hap-
pens in the preceding begin block. The ensure block will be run after the begin block com-
pletes, or after a rescue statement completes if the begin block resulted in an exception. If the
code also contains an else block, the else block will be run before the ensure block. The
ensure block will always be the last block run. If control is transferred away from the begin
block before it completes, perhaps by using a return statement, the ensure block will still be
run, however the else block would not be run in that case. An else block is only run if the
begin block runs to completion. An ensure block is always run no matter what happens in the
begin block. Here is an example of exception handling code that uses an ensure block:

begin
file = open("/some_file", "w")
write to the file
rescue => ex
puts 'Error writing file'
puts "#{ex.class}: #{ex.message}"

else

puts 'Successfully updated file'
ensure

file.close
end

In this example, the code opens a file and would then attempt to write to that file. If an exception
occurs, the exception is printed to the screen. If the write completes successfully, a success mes-
sage is printed to the screen using the else block. In either case, the ensure block runs to make
sure that the file gets closed.

The normal use of an ensure block is to ensure that your code performs necessary housekeeping
tasks, such as closing files, close database connections, or completing database transactions. Unless
an ensure block contains an explicit return statement, it will not affect the return value of your
method. For example, in the following code, the value returned will be hello and not goodbye.
If you're wondering why hello is used as a return value, recall that the last value of a method is
also the value that gets returned. The ensure block will not overwrite that return value.

61

62

First Steps with Rails

begin
'hello’
ensure
'goodbye'
end

Organizing Code with Modules

One of the most commonly touted benefits of object oriented programming is that it can result in
more reusable code. You can use reusable code in multiple applications, and it saves developers
time and money. Organizing your code into classes and separating your classes into different files
is one way of creating reusable chunks of code. Often, though, you may have a situation where you
have a bunch of methods that don’t naturally fall into a specific class, and yet they are methods
that you find yourself using again and again, perhaps in many of your classes. This is where Ruby’s
concept of a module can help you out.

A module in Ruby provides a namespace that allows you to group methods and constants together,
similar to the way a class groups methods and attributes. A Ruby module definition looks like this:

module Messaging
def send_email

end

def send_im

end

def send_text_message

end
end

This creates a Messaging module that bundles together methods related to sending a message
over various protocols, e-mail, instant messaging, or text messaging. Any place where you wanted
to use these methods, you could include this module as a mixin.

In addition to providing a convenient namespace and place to put methods and constants that do not
fall naturally into a class definition, modules also give you the ability to use mixins. The Ruby con-
cept of a mixin is a way of including methods and constants defined in a module into another module
or class. Previously you saw how to define a Messaging module. Now if you have a Notifier class
that you want to use these methods in, you would simply include this module like this:

require 'messaging'

class Notifier

Learning Ruby _

include Messaging
end

The Notifier class uses a require statement to import the file containing the Messaging
module. This example assumes that the module is stored in a file contained in the same directory
as the Notifier class, with a filename messaging.rb. The include statement imports all of
the methods contained in the Messaging module into the Notifier class.

Perhaps the most common examples of mixins are the Enumerable and Comparable modules
that are included with Ruby. These modules are mixed into quite a few classes by default, and you
can easily mix them into your own classes as well. The Enumerable module defines useful itera-
tors for any class that defines an each method. It is important to remember that the Enumerable
module does not define the each method. You must define the each method in any class that
you include the Enumerable module into. Enumerable defines methods such as all?, any?,
collect, find, find_all, include?, inject, map, and sort. See the Ruby documentation
Web site for a complete description of the methods of the Enumerable module www.ruby-
doc.org/core/classes/Enumerable.html.

The Comparable module defines general comparison methods for any class that defines the <=>
method. You can include the Comparable module into any class for which you have defined the
<=> method. The Comparable module defines methods that look like operators such as: <, <=,
==,> and >=.

Advanced Ruby Techniques

In this section, you'll learn some additional techniques that will be useful to you when you are
writing and studying Rails programs. The techniques described in this section are also used inter-
nally by Rails.

Variable length argument lists

All of the method examples that you've seen so far in this chapter have used fixed argument lists.
Ruby also supports variable length argument lists. A method that allows a variable length argument
list lets you call it with different numbers of methods in different situations. Take a look at the fol-
lowing example:

def print_strings(*strings)
strings.each { |str| puts str }
end

This is a method that will accept a variable number of arguments. The strings variable contains
an array holding all of the arguments that are passed to this method. In the body of a method, the
each iterator is used to step through each of the strings passed in and to print its value.

63

m First Steps with Rails

64

Dynamic programming with method_missing

The method_missing method is a feature of Ruby that you will find very useful in certain situa-
tions. Before you get into the details of that, though, let’s talk about what is meant by the term
dynamic programming. Dynamic programming is a style of programming in which you create code
or change the nature of your program’s code at run-time.

If you attempt to call a method that does not exist for the object you are using it on, you normally
get an undefined method error. For example, try typing this code in irb:

class EmptyClass
end

obj = EmptyClass.new
obj.say_hello

In this code, you are attempting to call the method say_hello on an instance of the
EmptyClass. Because this method does not exist, you will see an error message like the following
printed to the console:

NoMethodError: undefined method 'say hello' for
#<EmptyClass:0x28f7d64>
from (irb) :31
from :0

Here, irb is telling you that it cannot find this method in your class. Go ahead and exit that irb
session to clear its memory and restart irb. Recreate the EmptyClass, slightly modified, as
shown here:

class EmptyClass
def method_missing(method, *args)
puts 'Sorry, I could not find the method you are
calling.'
Puts "The method you called is #{method}."
end
end

obj = EmptyClass.new
obj.say_hello

Now when you call the say_hello method in irb, you see this output:

Sorry, I could not find the method you are calling.
The method you called is say_hello.

As you can see, because the method you called could not be found in the EmptyClass, the
method_missing method was called. The method_missing method is called by Ruby anytime
you try to call a method that does not exist. The name of the method, and any arguments that you
passed to the method you were trying to call, are also passed to the method_missing method.

Learning Ruby _

Reopening classes

In Ruby, no class definition is ever final. You can reopen the definition of any Ruby class, includ-
ing classes that you previously defined, even classes that are built into Ruby, and modify those
class definitions to change the behavior of those classes.

Let’s look at an example where you will reopen a commonly used built-in Ruby class, the String
class. Try this out by typing the following code into an irb session:

class String
def reverse_and_capitalize
self.reverse.capitalize
end
end

You've added a new instance method named reverse_and_capitalize to the String class.
This method combines the features of the built-in reverse and capitalize methods. The
reverse_and_capitalize method is now available on any string that you create. Try it out:

str = "say hello"
str.reverse_and_capitalize
=> "Olleh yas"

You created a string object the normal way and called the new method that you added. Your method
is now a part of the String class, just like any other method that you use with the String class. In
addition to adding methods, you could also redefine a method by reopening the class.

You can use this technique to extend external libraries that you use, as well as the built-in Ruby
classes.

& Developers have expectations from commonly used methods, and if you change
% the behavior of those methods, you must make sure that it is well documented and
everyone who uses your modification is aware of those changes.

Summary

This chapter has provided you with a basic overview of the Ruby programming language. While
what it provided is far from a complete overview of Ruby, it should be more than enough to get
you started writing Rails applications, which is the ultimate goal of this book.

As you begin writing Rails applications and as you gain more experience with both Ruby and Rails,
your Ruby skills will increase, and I am certain you will seek out additional resources to further
enhance your Ruby programming skills. Programming Ruby: The Pragmatic Programmers’ Guide is
often referred to as the Ruby Bible (also commonly called the pickaxe book because of the image of a
pickaxe depicted on its cover) and is probably a book that you will want to own at some point. This
book is written by a Ruby pioneer, Dave Thomas, and was one of the first Ruby language books pub-
lished in the United States. It remains the most referenced and most used Ruby language book.

65

n the summer of 2003, David Heinemeier Hansson was building the

Basecamp Web application for a small company called 37signals. In the

process of developing Basecamp, he created a core of functionality that
he wanted to reuse on other applications he was developing. He extracted it
and turned it into an open-source project that became Ruby on Rails.

Rails was first released to the public in the summer of 2004 as version

0.5. Hansson presented Ruby on Rails at the 2004 International Ruby
Conference. Since its release, Rails has grown in popularity at an incredible
pace. Version 1.0 of Rails was released on December 13, 2005. At the time
of this writing, Rails is at version 1.2.

Rails’ growth is not limited to the existing community of Ruby developers. It
has pulled in converts from languages such as Java, PHP, and Perl, among
others. By the time you read this, there will be more books available about
Ruby on Rails than any other framework from any language. The Ruby on
Rails framework has served as a catalyst for incredible growth of awareness
and use of the Ruby programming language. The creator of the Ruby pro-
gramming language, Yukihiro Matsumoto (known online as Matz), has
referred to Rails as Ruby’s Killer App.

To take a look at some existing applications created using

* Rails, check out the list of real-world Rails applications main-
tained on the official Ruby on Rails wiki site at http://wiki . rubyon
rails.org/rails/pages/RealWorldUsage. You can find a list of the
top 100 Rails sites, as ranked by Alexa.com, at http://rails100.
pbwiki . com. Finally, the site wvw . happycodr .com provides a showcase
for applications built with Rails.

67

INTH APTER

What is Ruby on Rails?

Rails architecture

Rails scripts

Your first Rails application

More to get you started

m First Steps with Rails

68

What is Ruby on Rails?

Ruby on Rails is an application framework composed of several libraries; together, these libraries
supply a complete framework for building Web applications. You can use Rails to build any kind
of Web application. Common examples of applications built using Rails include blogs, wikis (sites
that can be edited by anyone with access to them), project tracking applications, photo gallery
applications, social networking applications, and online shopping sites. Any database-backed Web
application is a good candidate for Rails development.

So what has made Rails such a popular framework over such a short span of time? A simple
response is that Rails lets you build powerful Web applications quickly and easily by doing a
majority of the work common to most Web applications. What makes Rails different from the
many other existing Web application frameworks, such as Apache Struts, Apache Cocoon, and
Perl’s Maypole, is that Rails makes development fun and easy for the developer. Rails accomplishes
this through many innovations that have not been seen before in any other framework.

The boost in productivity that can be gained by building a Web application with the Rails frame-
work is well documented and has been one of its strongest selling points. More than one case
study has shown that Web application development can be sped up by a factor of as much as ten
by using the Rails framework and the Ruby language instead of more traditional Java or .Net
architectures.

Rails provides a full-stack framework. This means that Rails provides all the pieces needed to build a
complete Web application in one package. You don’t need to cobble together several different
frameworks to get the functionality that is common to most Web applications. Using the analogy
of building a house, Rails supplies the complete plumbing, electrical, and framework already built.
You just have to add the functionality and features specific to your application. The basic functions
provided by Rails are:

HTML templating
Database storage and retrieval

Handling of Web request and response
HTML form handling

If you've done a significant amount of Web development in the past, with or without a framework,
you've probably gotten used to having to know several different languages. It is common to have to
switch back and forth between languages from task to task in typical Web application develop-
ment. For example, your database setup and access is coded in SQL, your front end may be coded
in some specific templating language, and your business logic may be in Java, .Net, or some other
programming language.

When you write a Web application using Rails, almost all of the development you do is in Ruby.
You can define your database in Ruby, access your database in Ruby, use Embedded Ruby (ERb) in
your templates, and code your business logic in Ruby. This frees your mind to focus on one lan-
guage to learn and know well.

Getting Started with Rails _

Both within the Rails source code and externally, Rails espouses several design paradigms that you
will run into again and again as you develop with Ruby on Rails. The following sections describe
these paradigms.

DRY

Don’t Repeat Yourself (DRY) is a philosophy that can be seen throughout the Rails framework.
What this philosophy means is that you should not have to repeat yourself in code, configuration,
or in many cases even documentation, within a single Web application. For example, in a Rails
application, you define your database structure in one place and one place only.

You do not have your database structure defined in SQL files, configuration files, or model object
files. This saves you work and prevents errors, as well. When something in your application
changes, you only need to make the change in one place. You generally do not need to hunt
through a mess of files in a Rails application to make a change to your application.

Convention over configuration

Rails relies on accepted convention over configuration. A common characteristic of many applica-
tion frameworks is that you have to configure them using lengthy and complex XML files. Rails
does what you might think it should do in most cases without having to specify any configuration.
You are also able to override the default behavior of Rails in most areas when you need to do some-
thing that may be unconventional.

A good example of this philosophy in use within Rails is in the standard Rails routing mechanism.
Without having to type a single line of configuration, Rails figures out which classes and methods
handle every page request, simply by inspecting the URL. Rails has a standard or conventional for-
mat for specifying the URLs your application uses. The name of a controller class, an action
method, and a primary key identifying a record being worked with are specified in the URL.

Opinionated software

The development team behind Rails is not shy about admitting that Rails contains built-in opinions
of how Web applications should be developed and designed. Some developers might tell you that
an application framework should be completely free of opinions, and designed to be as flexible as
possible, accommodating any design decisions that application developers might want to use.
Rejecting that view, the developers of Rails have staked out a vision and have taken a definite side
on how applications should be developed.

The creator of Rails, David Heinemeier Hansson, has said that the opinionated software aspect of
Ruby on Rails has been a large contributor to its ease of use and its overall success. By not trying to
be all things to all people, Rails focuses on doing what it does exceptionally well, and in most cases
it succeeds with flying colors. By sacrificing some flexibility at the infrastructure layer provided by
Rails, you gain tremendous flexibility at the application layer, where you will be more productive
and better able to implement your application the way you want it sooner and better.

69

m First Steps with Rails

70

| Throughout the remainder of this book, David Heinemeier Hansson is referred to

- % by his initials DHH. This practice is common throughout Rails literature, probably
due to the length of his name. Anytime you see a reference to DHH, you now know that it refers
to the Rails creator.

The paradigm convention over configuration is a characteristic of opinionated software. By following
the opinions set forth by the designers of Rails, you gain tremendous productivity by avoiding hav-
ing to deal with configuration files. Rails also has an opinion of how your database should be
designed, including details such as table-naming conventions. If you adhere to those opinions, you
gain tremendous productivity by giving Rails the ability to automatically generate the vast majority
of your database access code.

Rails Architecture

When developers are talking about architecture, they are speaking about the way an application’s
code and other components are assembled together into a whole that makes up the application. A
good software architecture can make an application easier to develop, maintain, understand, and
extend. A good software architecture also improves the quality of an application.

The architecture of the Rails framework is one of its many strengths. It provides a solid foundation
upon which you can build your own applications.

MVC

The Model-View-Controller, or MVC, design pattern, has long been accepted as a better way to
architect software applications. MVC is accepted as a better way because it makes applications eas-
ier to develop, understand, and maintain. MVC simplifies the implementation of an application by
dividing it into several layers, each with a given role and responsibilities.

The layers that make up an MVC application are the Model, the View, and the Controller layers.
The model layer is responsible for maintaining the state of an application. It encapsulates an appli-
cation’s data and business logic for manipulating the data. The view layer provides the user inter-
face of an application. The controller layer is responsible for figuring out what to do with user and
other external input. The controller layer interprets user input and responds to user requests by
communicating with the model layer, and rendering views using the view layer.

You can think of the controller as the conductor of the application. It determines which views to
show, based on the input received.

MVC was originally created with desktop GUI applications in mind. When developers first started
writing Web applications, they took a step backward and seemed to have forgotten the benefits of
MVC. Many of the early Web applications mixed business logic, presentation, data access, and
event handling all in giant, complex script files written in languages such as PHP, Perl, and Java’s
JSP. As Web applications became larger and grew in complexity, developers and Web architects

Getting Started with Rails _

realized they would need a better architecture to support these large applications. Web develop-
ment frameworks such as Struts and WebObjects began to emerge, which brought the MVC design
pattern back to Web applications.

The MVC design pattern, as applied to a Web application, is shown graphically in Figure 2.1. In
the context of a Web application, the view layer represents the Web pages that make up the user
interface of a Web application. The controller layer handles the HTTP requests and communicates
with the model layer. The model layer communicates with a database and performs necessary busi-
ness logic required to manipulate the data.

FIGURE 2.1

MVC architecture of a Web application

Request
E—— Model

Database

Controller

Browser Response :
-~ View

Rails and MVC

The MVC design pattern is at the core of the Rails framework. By using Ruby on Rails, your Web
application will also use the MVC design pattern. The implementation of Rails is divided into
libraries based around each layer of the MVC pattern. Model, view, and controller layer separation
is very visible to Rails application developers. Most classes that you will write while building a Rails
application will be one of these three types and, as discussed later in this chapter, they are even
organized into model, view, and controller directories.

The ActiveRecord library provides the foundation of the model layer. ActiveRecord, and the model
classes that you build on top of ActiveRecord, provide the model layer of your application. This
layer provides object relational mapping (ORM) between Rails classes and the database you use, such
as MySQL, Oracle, or some other database. An ORM maps relational database structures to an
object hierarchy. It is possible to build a Rails application that does not use a database, but that is
not common. If you were not using a database, your model layer might use some other form of
persistent storage, or perhaps just provide business logic if your application does not provide any
persistent storage.

71

m First Steps with Rails

ActiveRecord is based on a design pattern by Martin Fowler. You can read more
about the ActiveRecord design pattern at www.martinfowler.com/eaaCatalog/
activeRecord.html.

The view layer of a Rails application is implemented in ERB template files. These files contain a
mixture of HTML and embedded Ruby code (ERDb), and are similar to JSP, ASP, or PHP files. There
are two other built-in template file types that Rails supports. One file type is RXML files, which
give you an easy way to create XML files using Ruby code.

The other file type is RJS files, which allow you to create JavaScript fragments using Ruby code. RJS
stands for Ruby JavaScript. The JavaScript fragments are executed in the client browser just as
JavaScript embedded in an HTML file is. The use of RJS is a common technique used for creating
AJAX features. The Rails code that implements this feature comes from a library called Action Pack.

FIGURE 2.2

*EF For more information on using RJS to create AJAX features, see Chapter 5.
\'l:--

\

The Rails controller implementation, also part of the Action Pack library, insulates developers from
having to deal with CGI and related request and response data, including form data. Controllers
handle incoming browser requests, call appropriate functions on model objects, and render your
view templates into pure HTML, which the Web server then returns to the browser.

Rails provides you with very simple methods for getting data sent from a Web page, and simple
methods for returning data for presentation in Web pages. In the course of developing a Rails
application, you will write many controller classes. Controller classes are written in pure Ruby and
contain methods referred to as actions. Generally, a single controller corresponds to a single Web
page, and each action corresponds to an action that you can perform on that Web page.

Figure 2.2 shows how a Rails application implements the MVC design pattern, and how requests
are routed from a browser through the application.

Ruby on Rails MVC implementation

72

Action Pack
ActiveRecord

Controllers View

rhtml

/ rxml
rjs
Browser ! 8

Database

Getting Started with Rails _

All Rails applications are laid out in an identical style in terms of directory structure and locations
of files. Following is an overview of the standard directory structure of a Rails application. Later in
this chapter, when you create your first Rails application, you can see how easy it is to automati-
cally generate this entire directory tree. Each directory and its contents are described here:

app: Where all the application’s MVC code goes

config: Application configuration files

db: Database schema and migration files

doc: Documentation for your application

lib: Application-specific custom code that isn’t part of your MVC code

log: The application log files automatically created by Rails

public: JavaScript, CSS, images, and other static files

script: Rails scripts for code generation, debugging, and performance utilities
test: Unit-test related code and related files

tmp: Cache, session information, and socket files used by the Web server

vendor: Where Rails plug-ins are installed

Rails Scripts

In addition to providing an application development framework that you use to write your Web
application, Rails also provides some excellent tools that assist you in the process of developing
your application. These tools are packaged as scripts that you run from the command-line of what-
ever operating system you develop on.

The most important scripts to become familiar with and use regularly in your development are:

Rails Console
WEBrick Web server

Generators

Migrations

Each of these script types is described in the next section.

Rails Console

The Rails Console is a command-line utility that lets you run a Rails application in a full Rails envi-
ronment right from the command-line. This is an invaluable tool for debugging during the devel-
opment process. You may recall that the last chapter introduced the Interactive Ruby console (irb).
The Rails Console is an extension of irb, offering all the features of irb along with the ability to
auto-load your complete Rails application environment, including all its classes and components.
Using the Rails Console, you can walk through your application step-by-step and look at its state
at any point of execution.

73

m First Steps with Rails

74

WEBrick

WEBTick is a Web server included with the Rails framework, and is ideal for local developer test-
ing. The WEBrick server is written in pure Ruby and runs on any platform that you develop on,
including Windows, Mac, or Unix. Rails is configured to automatically make use of the WEBrick
server. Alternatively, if you have the Mongrel or lighttpd sever installed on your system, Rails uses
either of those servers.

A really great feature about WEBrick, Mongrel, and lighttpd is that they all feature automatic
reloading of code. This means that when you change your source code, you do not have to restart
the server to have it take effect. You can immediately reload a Web page to see any of your changes
take effect.

Generators

Rails includes code generation scripts, which are used to automatically generate model and con-
troller classes for your application. Code generation is an important part of Rails that can increase
your productivity when developing Web applications. By running a simple command-line script,
you can generate skeleton files for all of your model and controller classes.

The code generation script also generates database migration files for each model it generates, as
well as unit tests and associated fixtures. With more experience, you can even write your own gen-
erators to automatically generate pieces of your application that you find yourself using frequently.

i For more information about writing your own generators, check out Chapter 11.

Migrations

Migrations are a very cool feature of Rails that can make your life simpler and easier. They bring
the principle of DRY to life. Migrations are pure Ruby code that define the structure of a database.
When you use migrations, you no longer have to write SQL to create your database. Over the
course of a project, it is very common for your database schema to evolve as you learn more about
your problem domain.

Migrations are written such that each change you make to your database schema is isolated in a
separate migration file, which has a method to implement or reverse the change. This makes it an
easy process to roll forward or backward across revisions of your project’s schema. Migration files
are run with a special Rails script.

Your First Rails Application

At this point, although this chapter has barely scratched the surface of Rails and has not yet gone
into any detail on any of the components that make up Rails, you can write your first Rails applica-
tion. This section shows you how easy it is to write a simple Rails application, and how quickly
you can get up and running with a basic application skeleton. The application you create in this
section even includes a database.

Getting Started with Rails _

As you work through this application, you are very much encouraged to follow along on your
computer and build the application as you read this section. Reading coupled with practice is a
much more efficient way of learning than through reading alone. However, for those who just want
to download the completed application, you can find it on this book’s Web site, rubyonrails
bible.com. Even if you download the completed application, you should still read through this
section, as it presents many general Rails development concepts in the context of developing the
application.

If you've been reading this book from the start, you should already have a working installation of
Rails and MySQL on your computer. If you do not yet have Rails or MySQL installed and need
help getting them installed, see this book’s Quick Start chapter for complete installation
instructions.

Each of the following five steps is described in the sections that follow.

. Create the project using the rails command.
. Set up the database.
Create the model.

Create the controller and views.

u-l-hg.om_\

Style the application.

Create the project

The first step in creating a Rails application is to use the rails command-line program to gener-
ate the directory structure for your application. For your first Rails application, this section walks
you through steps to create a very simplified version of a contact list manager.

This application implements a reasonable amount of real-world functionality, while remaining sim-
ple enough to not make your learning curve too steep. First create a directory called rails_
projects that will serve as the root of the Rails projects that you can build throughout this book.
After you've created the rails_projects directory, navigate into that directory and run the
rails project generation script, as shown here:

cd rails_projects

rails contactlist
create
create app/controllers
create app/helpers
create app/models
create app/views/layouts
create config/environments
create config/initializers
create db
create doc
create lib

create log/production.log
create log/development.log
create log/test.log

75

m First Steps with Rails

76

This script creates a directory called contactlist inside your rails_projects directory.
Inside the contactlist directory, you can see that the rails command created the complete
Rails standard directory structure that is common to all Rails applications. Standard versions of
many files required by Rails were also created and put in their appropriate directories.

For example, the last three files created are the Rails log files. A separate log file is created for each
environment used in the standard development process: development, test, and production. This
simple command has done a tremendous amount of work for you. It also provides the benefit of
creating a standard directory structure that is common across all Rails applications.

1f you work on several Rails applications, you can always rely on files being located in the same
places, no matter what the application is. Although it is easy to take this for granted, few other
frameworks prior to Rails enforced such a practice. If you've spent a lot of time developing Java
applications, you never know where you are going to find a given file or what the directory struc-
ture might look like as you transition across Java projects.

As mentioned earlier, Rails is compatible with many different Web servers. For your first applica-
tion, stay with the Web server that is distributed with Rails, WEBrick. This allows you to launch
the Web server to test out your application at any time without going through the trouble of
installing another Web server. Now that you've generated the skeleton of your first application,
start WEBrick and see what you've achieved with a single command.

ruby script/server Webrick
Booting WEBrick
Rails application started on http://0.0.0.0:3000
Ctrl-C to shutdown server; call with --help for options

The script/server command tells Rails to start up the server specified as a parameter, in this
case WEBrick. In UNIX environments, you normally would not have to precede the command
with ruby, so you could just type . /script/server Webrick. Also, the server name parame-
ter is not required if WEBrick is the only server you have configured for your Rails application. As
a result, this command would also start the WEBrick server: ruby script/server.

By default, WEBTick always binds to port 3000. If you want to change the default port assignment,
you can do that in the environment . rb file, which is covered later in this book. You can also
specify a different port from the command-line when you start up the server using the -p option
as shown here:

ruby script/server -p 80
This command would start the server bound to port 80.

Now open your browser of choice and navigate to http://localhost:3000 to see the screen
shown in Figure 2.3. You can see that by simply running the Rails generation script, you have the
skeleton of a working Web application with no additional work yet on your part. Of course, a skel-
eton is all the application is in its current form. Now comes the more interesting task of actually
making your application do something useful, or at least useful in the context of saying you wrote
your first Rails application.

Getting Started with Rails m

If you look back at the console window where you started the server, you can see that some log
messages have printed. As your Rails application runs, it continuously outputs messages to this
window, which allows you to trace your application and figure out what it is doing.

Note that the default Rails Web page shown in Figure 2.3 also lists the typical steps involved in get-
ting your application built. Follow the steps shown in this figure for the remainder of this section.

Throughout the rest of this chapter, the root directory, rails_projects/
contactlist, will not be specified. When you see a directory mentioned, such as
app/models, you should assume that it is located in the rails_projects/contactlist
directory unless otherwise specified.

FIGURE 2.3

The default Rails application start page

8 Ruby on Rails: Welcome aboard - Windows Internet Explorer FEX
Fle Edt View Favorites Tooks Help "

OO RBG Pwodrmm @ 2 23 USHBEEDS

Address |] http:/focahost: 3000/ VB ke " GHddicows - g Google[Gr %4> @ setnos~
——— |
| Welcome aboard
i You're riding the Rails!
RAILS
About your application’s environment Join the community
= Ruby Rail
Getting started O';F "‘” b"s
Here's how to get rolling: Bt]
Mailing lists
; IRC channel
1. Create your databases and edit i
config/database.yml i
Bug tracker

Rails needs to know your login and password.
Browse the

. documentation
2. Use script/generate to create your
models and controllers
Rails APT
To see all available options, run it without parameters Ruby standard libra
Ruby care
3. Set up a default route and remove or
rename this file
Routes are setup in config/routes.rb.
55
€ @ Internet

Set up the database

Begin by creating a simple database using MySQL with one table that will hold a list of contacts. In
this database, titled contactlist_development, create one table with the name contacts. This
table will hold contact information for your application. Use the command-line interface of MySQL
to do this:

77

m First Steps with Rails

78

mysgl -u root -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 2

Server version: 5.0.45-community-nt MySQL Community Edition (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysgl> create database contactlist_development;
Query OK, 1 row affected (0.29 sec)

mysgl> use contactlist_development;

Database changed

mysqgl> create table contacts (
-> id int not null auto_increment,
-> first_name varchar(100) not null,
-> last_name varchar(100) not null,

-> address varchar(255) not null,
-> city varchar(100) not null,
-> state varchar(2) not null,
-> country varchar(100) not null,
-> phone varchar (15) not null,
-> email varchar (100),

-> primary key(id));
Query OK, 0 rows affected (0.40 sec)

You can verify that you created the database and table correctly using the Show and Describe com-
mands, as shown here:

mysgl> show tables;

o +
| Tables_in_contactlist_development |
Sy +
| contacts |

o +

1 row in set (0.00 sec)

mysgl> describe contacts;

o mm Fmmm e tm— e Fmm— Fmmm Fmmmmmm
———

| Field | Type | Null | Key | Default | Extra |

o mm e m Fmmm e o Fmm e Fmmmmmm e
-——

| id | int(11l) | NO | PRI | NULL | auto_increment |

| first_name | varchar(100) | NO | | | |

| last_name | varchar(100) | NO | | | |

| address | varchar(255) | NO | | | |

| city | varchar(100) | NO | | | |

| state | varchar(2) | NO | | | |

Getting Started with Rails _

country | varchar(100) | NO | | | |

|

| phone | varchar(1l5) | NO | | | |

| email | varchar(100) | NO | | NULL | |

mmm e TP e o mm e oo
_——

9 rows in set (0.02 sec)

You should now have your database completely set up and ready to use. The database is strategi-
cally named contactlist_development, which is the same name you gave to your project,
with the addition of the development suffix. This allows you to take advantage of more Rails
automation, or convention-over-configuration, magic.

Rails automatically looks for databases that have the same name as the project, plus the environ-
ment suffixes (_development, _test, _production). Of course, if you want to use a differ-
ent name for your database, you are able to do that by specifying the name of your database in the
config/database.yml file.

ey g e In Chapter 3 you will learn an easier way to create your database without having to
‘)\%‘_\ use the mysqgl command-line application at all. Instead you will use a simple rake
task to create the database.

Create the model

Now that you have a working database, the next step in creating your Rails application is to create
your model classes. In case you forgot, the model classes are responsible for managing an applica-
tion’s data and business logic. If you were to look at a description of the business problem your
application is trying to solve, the model classes will usually correspond to the nouns that show up
in that description.

For a contact list application, the most obvious noun that would show up would be the noun, con-
tact. Rails gives you a generate script which allows you to automatically generate class files for
models, views, and controllers.

The generate script is located in the script directory at the root of your Rails application. The first
generate script parameter is the name of the object type you want to generate, in this case a model
object. The second parameter is the name you want to give the model that is generated. Use the
name Contact for your model class. This parameter is case-insensitive, and so you could specify it
as either Contact or contact.

Using the generate script, go ahead and create the Contact model.

ruby script/generate model Contact
exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/contact.rb

create test/unit/contact_test.rb

create test/fixtures/contacts.yml

create db/migrate

create db/migrate/001_create_contacts.rb

79

m First Steps with Rails

80

Notice that the choice of the name Contact for the model class is the same name given to the name
of the table minus the plural. This is not an accident. By giving the model the same name as your
table name, Rails provides you with a wealth of functionality for this model object, without having
to write any code yourself. Again, you see an example of convention over configuration here. By
sticking with the Rails conventions for naming database tables and model classes, you will gain a
great deal of functionality with no configuration required.

Notice that by running this generate script, Rails created four files. The first file created,
contact.rb, is your model object. This was created in the app/models directory. The app
directory is the home for all of an application’s model, view, and controller classes.

The second file created is the contact_test.rb file. This file contains the skeleton for a unit
test that you can use to write unit tests in for the Contact object. This was created in the test/
unit directory. Rails places all test-related files into the project’s test directory. The subdirectory
of test, called unit, contains unit test files. The third file created is another test-related file,
contacts.yml. This file is called a fixture file, which is used to set up test data for your unit
tests. Fixtures are covered in more detail later in this book.

Developer testing in a Rails application is covered in detail in chapter 9. Developer
testing includes unit, functional, and integration testing. Rails provides built-in sup-
port for each of these types of tests.

The fourth file created is a migration class, 001_create_contacts.rb. This contains an empty
migration class that you could use to create a migration for creating the contacts table in the data-
base. Because you already did that using MySQL, you don’t need to worry about the migration file
in this chapter.

E‘F For more information about cover migrations, check out the details of the model
=<8 layer, as discussed in Chapter 3.

Take a look at the contents of the app/models/contact.rb file. Your file should look like this:

class Contact < ActiveRecord: :Base
end

Were you expecting to see more? This is an empty class definition of a class called Contact that
extends from the ActiveRecord: :Base class. While this doesn't look like it provides much
functionality, your class has gained quite a bit of functionality just by extending from the
ActiveRecord: : Base class. Thanks to magic provided by ActiveRecord, your Contact class
now fully understands the contacts table that you created in the database earlier. You can use this
class to create Contact objects, read contact records from the database, and store contact data to
the database. All this without writing a single line of model code.

You probably want to see this for yourself, so start the Rails Console and play around with your
new Contact class a little.

Getting Started with Rails

1. Start the Rails Console. From the root directory of your contactlist project, type this:

ruby script/console
Loading development environment
>>

This starts up the Rails Console and loads your application’s environment.

2. Create a new Contact model object. At the >> prompt, you can now type any valid
Ruby syntax. Try this:

>> my contact = Contact.new

=> #<Contact:0x476d488 @attributes={"city"=>"", "country"=>"",
"first_name"=>"", "address"=>"", "last_name"=>"",
"email"=>nil, "state"=>""}, @new_record=true>

>>

After you type the first line, the second line shown above is the response you get. Throughout this
book and while you're in the Rails Console, you can differentiate input that you type from output
by the prompt preceding the line. The >> prompt is the input line prompt. The => prompt begins
lines that contain the Console output.

The Rails Console always prints the final return value of whatever method was executed by the
statement you typed. In this example, what you see is the notation for a Contact object instance.
The Contact .new statement caused a new instance of Contact to be created and returned. This
instance contains an attribute for each field that you created in the contacts database table. This is
the first proof you have that the Contact object really has been tied to the contacts database table,
through no code of your own. The hexadecimal number near the beginning of the return value fol-
lowing #<Contact: is probably a different value on your computer. This is the address that is
assigned to the object that was created. You usually don’t have to pay much attention to that
number.

3. Continue by assigning some values to the object’s attributes. As you type each of the
lines below, you will see the attribute value printed as output:

>> my_contact.first_name = 'Timothy"’

>> my_contact.last_name = 'Fisher'

>> my_contact.address = '25296 Hunter Lane'
>> my contact.city = 'Flat Rock'

>> my_ contact.state = 'MI'

>> my_contact.country = 'USA'

>> my_contact.phone = '555-555-5555"

>> my contact.email = 'tim@timothyfisher.com'

4. Save the contact object. Run the object’s save method to have this data saved to the
database. The save method is inherited from the ActiveRecord: : Base class.

>> my_contact.save
=> true

81

m First Steps with Rails

82

You have now created a new contact using the Contact model object. By calling it save method,
anew record has been created in your contactlist_development database. Now you can use
the Contact object to find and retrieve from the database the record that you just created. To do
this, use a class method of Contact called find.

1. Load your contact object from the database. Make sure you are still in the Rails
Console, and then try this:

>> result = Contact.find(:first)
=> #<Contact:0x474c864 @attributes={"city"=>"Flat Rock",

"country"=>"USA", "id"=>"1", "phone"=>"555-555-5555",
"first_name"=>"Timothy", "address"=>"25296 Hunter Lane",
"last_name"=>"Fisher", "email"=>"tim@timothyfisher.com",

"state"=>"MI"}>
>>
An instance of the Contact class representing the data record found in the database is
returned and printed to the console after executing the £ind method. The single argu-
ment you passed to the £ind method is : £irst. This is a Ruby symbol that the £ind
method interprets to mean ‘find the first row in the contacts table.’

2. Print an attribute. Try printing the first_name attribute of the result object to ver-
ify that it contains the data you expect:

>> puts result.first_name

Timothy

=> nil

>>

As you can see, the value Timothy is printed to the screen by the puts command. The
return value of puts is always nil. That is why you also see nil printed following the
first_name value.

Now youw've created your Contact model object and convinced yourself that it is connected to the
contacts table through some Rails code contained in the ActiveRecord: : Base class.

Create the controller and views

You have a database and you have a model class. Now you need a way to talk to the model class
from a Web application. This is where you use the controller and view layers of the MVC architec-
ture. The controller you create will allow you to perform three of the four standard create, read,
update, and delete (CRUD) operations on your contact list data. You will implement create, read,
and update. Because this controller provides functionality related to the Contact model, call the
controller the ContactController.

If you look at sample Rails code, you'll find that some developers would name the controller
ContactsController instead of ContactController. Note the difference in plurality. Later
in this chapter, you will see an example of Rails scaffolding which automatically creates controllers
for your model objects. When you generate scaffolding, a pluralized controller is created.
Pluralizing the controller name would seem to make sense as it is a controller that allows you to
work with your contacts. I believe it is easy to justify either name, so my suggestion is to use the
naming style you prefer and stick with it.

Getting Started with Rails _

Just as you used the generate script to create your model class, use the generate script to create the
controller and view classes. You simply have to change the first parameter to the generate script to
the word controller, and Rails will generate the controller class given the name you pass as the
second parameter. When you specify your controller name to the generator, you do not append
the word Controller. For example, for the ContactController, you would just use the word
Contact. Go ahead and generate your controller now:

ruby script/generate controller Contact

exists app/controllers/

exists app/helpers/

create app/views/contact

exists test/functional

create app/controllers/contact_controller.rb
create test/functional/contact_controller_ test.rb
create app/helpers/contact_helper.rb

From the output you see after generating your controller, notice that Rails has generated more
than just your controller object; Rails has also created a directory to hold views, a helper file, and
a functional test file. These are objects that you generally always need to use in conjunction with
a controller, and so the developers of Rails have simplified your life by just creating them all at
once —you don’t have to do any extra work. The app/views/contact folder will hold the
html . erb view files associated with this controller.

The controller object is in the app/controllers/contact_controller.rb file. Take a look
at that file. You should see this:

class ContactController < ApplicationController
end

After having seen the model file, perhaps you’re not surprised to see such a short file. The
ContactController class extends the ApplicationController class. You can find the
ApplicationController classin the app/controllers directory with the filename
application.rb. The ApplicationController class is where you place functionality that
you want to be available to all of your application’s controllers. If you were to look at the
ApplicationController class, you would see that it inherits from another Rails class,
ActionController: :Base. ActionController: :Base is a Rails class that provides all
controllers with methods for performing common Web programming tasks, such as accessing form
and session data.

To implement the required functionality for the contact list application, you will be adding the fol-
lowing methods to the controller class: index, show, new, create, and update. In many Rails
applications it is common convention to use a method named index as the method that displays a
list of all the objects of a given type. So for your application, the index method will display a list
of all available contacts. The functionality of the other methods should be self-explanatory based
on their name.

Open the contact_controller.rb file and add these methods, as shown here:

83

m First Steps with Rails

84

class ContactController < ApplicationController
def index
end

def show
end

def new
end

def create
end

def update
end
end

Each of these methods will handle a different type of request from the browser. There will also be a
view template associated with the index, show, and new methods. The create and update
methods to not need view templates because they simply process the forms displayed by new and
show respectively and then redirect the user to the index method to show all contacts again.

By default, Rails looks for a view template that contains the same name as the controller method
and renders that template after running the controller method. As a result, the index method
would render a template located in app/views/contact with the name index.html .erb.
Methods in a controller class that handle Web requests are called actions in Rails nomenclature.

You have created actions for index, show, new, create, and update in the
ContactController. As you complete the remainder of the Contacts application in this chap-
ter, you'll implement these actions to perform the following functions:

index: This action is called to display a list of all contacts stored in the database.

B show: This action is called to display the details of a selected contact. The details are dis-
played on an editable form that the user can also use to make updates to the contact.

B new: This action is used to display a form that will be used by the user to create a new
contact. Do not confuse this instance method with the class method named new that is
common to all classes.

B create: This action is called to process the request to create a new contact.

B update: This action is called to process the request to update an existing contact.
From these descriptions, note that show and update form a related pair of actions, as do new and
create. The show action will always be called before the update action is called, and the new

action will always be called before the create action is called. In both of these instances, one
action displays a form, and the other action processes the form submit.

Getting Started with Rails _

Implementing the index action

First, focus on the index method. The index method prints a list of all the contacts stored in the
database.

Create the index action. Open up the app/controllers/contact_controller.rb class
and create the index method as shown here:

def index
@Qcontacts = Contact.find(:all)
end

The single line you've added to the index method is enough for your application to be able to
retrieve all of the contact records contained in the database. This is done using the £ind class
method on the Contact class. The parameter :all tells the £ind method that you want it to
return all of the contacts that it finds. The contacts are returned as an array of Contact objects
and stored in the @contacts instance variable.

Recall that in Ruby, the @ symbol preceding a variable name makes that variable an instance variable.
It is very important that you store the results of Contact.find(:all) into an instance variable
because instance variables are also accessible from the view templates. This bit of controller code has
made the list of contacts available to your index view template, which you will implement next.

You need to create a view template to display the contacts, but before you do that, you’ve now
reached a good point in your application to discuss how Rails routes to a specific controller and
method based on a URL. The routing mechanism that Rails uses is another example of the frame-
work’s use of convention over configuration. By default, Rails uses the following pattern to decide
where to route URLs:

wWww . someapp.com/controller/method/id

The first path element in the above example URL controller is the name of the controller to
use. The second path element method is the specific method contained in the controller to call. A
method in a controller class that handles requests and can be routed to directly is also often
referred to in Rails as an action.

Finally, the 1d is the id of an element that is passed to the method as a parameter called id. Not all of
the controller methods require the id to be passed, and so that element is optional. The method
index is a default action in Rails and can be omitted if you want to call that action. As a result, if you
pass only a controller name in your URL, your request is routed to the default action name index.

Try starting the server again, and view the application to this point in the browser to see what kind
of results you've achieved. This is also a good check to make sure you've done everything right up
to this point. Start the server with this command:

ruby script/server

Once you see the response messages telling you that the server has successfully started, open a
browser and navigate to this address: http://localhost:3000/contact/index.

85

FIGURE 2.4

First Steps with Rails

Based on what was discussed about how Rails routes URLs, you should be able to realize that this
URL will route to the index method of the Contact controller. You should see the message shown
in Figure 2.4. This screen tells you that Rails is trying to render a template located in app/views/
contact/index.html.erb.

Because you have not yet created that template, you get the Template is missing error display.
Since index is the default method for a controller, you could also have navigated to it without
specifying the action, like this: http://localhost:3000/contact.

The Missing Template page

@Back x

2 Action Controller: Exception caught - Windows Internet Explorer IZI[E| E]
File Edit View Favorites Tools Help ;,'

»

2] |ﬂ \g] ;\J /-'Saarch ‘ij;’Favorites {4 v :7

»
Address }@2 http:/flocalhost: 3000/contactlist V! Go | Links E delidous = |,

Template is missing

Missing template ./script/../config/../app/views/contact/list.rhtml

.ﬂ:l Done

nternet

86

Create the index template. In order to display the list of records on a Web page, you now need to
create an index.html.erb template in the app/views/contact directory.

Create a file called index.html .erb in the app/views/contact directory. Type the follow-
ing line into it and then save it:

My Contacts

Now go back to your browser, still pointing at http://localhost:3000/contact/index,
and refresh the page. You should see the contents of the index.html . erb file displayed.

You've now reached an important milestone in your development. You have successfully routed a
URL to a method in a controller that you wrote, and a view template that you wrote. You still can’t
see the list of contacts that you are after, though, and so you need to go back into index.html.
erb and do the real work of displaying the contact list. Type this code into index.html .erb:

Getting Started with Rails

<hl>My Contact List</hl>
<% if @contacts.blank? %>
<p>No contacts to display.</p>
<% else %>
<ul id="contacts">
<% @contacts.each do |c| %>

<%= link_to c.first_name+' '+c.last_name,
{:action => 'show', :id => c.id} -%>
</1li>
<% end %>

<% end %>
<p><%= link_to "New Contact", {:action => 'new' } %></p>

Now if you refresh the browser, you should see the screen shown in Figure 2.5. If you have been
following along with this example, the contact list should contain the single record that you cre-
ated in the database earlier when you were testing the Contact model class using the Rails
Console. The contact should be a link, and you should also see a New Contact link. Let me walk
you through the code that you typed in to get this screen.

First, I'll explain some embedded Ruby (ERb) syntax. Notice that several lines in the above code
are surrounded by <% %> and <%= %>. These symbols let Rails know that what’s enclosed is Ruby
code, which should be interpreted prior to returning the page. The <% %> syntax surrounds Ruby
statements that do not return strings to be displayed. The <%= %> syntax surrounds Ruby state-
ments that result in a string that is inserted into the HTML at the location of the statements.

Look at lines 2 and 3:

<% 1f @contacts.blank? %>
<p>No contacts to display.</p>

FIGURE 2.5

The ContactList list view

‘A http://localhost: 3000/contact/list - Windows Internet E.... E@@

File Edit View Favorites Tools Help :,'
. —, - »
- T \) e
@ Back 2 |ﬂ @ (i | Search ;"\!J Favorites @
Address |-§] http:/flocalhost: 3000/contact list v Go |[Llinks *

My Contact List:
+ Timothy Fisher

New Contact

-gll Done ‘ Internet

87

m First Steps with Rails

88

Check to see if the @contacts array is blank or empty. The blank? method returns true if the
array is empty; otherwise, it returns false. If the array is empty, the message "No contacts to
display" appears on the screen.

The next portion of the code, lines 5 to 11, is reached if the @contacts array contains one or
more items:

<ul id="contacts">

)

<% @contacts.each do |c| %>
<1li>
<%= link_to c.first_name+' '+c.last_name,
{:action => 'show', :id => c.id} -%>
</1li>
<% end %>

This block of code creates an unordered list that contains a list item for each of the contacts in the
@contacts array. The each method is an iterator that steps through each of the items contained
in the @contacts array. For each item in the array, the block of code surrounded by the do and
end statements is executed. Immediately following the do statement is the syntax |c|. This means
that each item in the @contacts array is placed in the c variable.

For each item, the Rails 1ink_to helper method is used, which creates an HTML link. The first
parameter passed to link_to is the text that is placed between the <a> and tags. The sec-
ond parameter specifies the action that is called when the link is clicked. For example, this code:

<%= link_to 'Timothy Fisher', {:action => 'show',6 :id => 1} -%>
ends up on the resulting Web page as:
Timothy Fisher

For each of the contacts, then, a link is created containing the contact’s first and last name joined
together. The href of the link will consist of contact/show/ followed by the id of the contact
being displayed.

In the last line of the template:
<p><%= link_to "New Contact", {:action => 'new' } %></p>

you again use the 1ink_to method to create a link for adding a new contact. This link displays
the text New Contact and calls the action new when clicked.

You now have a completed list view. No matter how many contacts you have in the database, this
simple view displays a list of all the contacts. When you click any contact, you are routed to the
show action. That action should cause the Web application to display a page that can be used to
view and edit the details of a contact. Next you'll implement the new action and its associated view
template so that you will be able to add additional entries into your contacts database.

Getting Started with Rails _

Implementing the new action

With what you have implemented so far, you can start the contact list application and view a list of
all of your contacts. Now let’s go ahead and create the controller method and view template that
will allow you to display a form from which a user can create a new contact.

1. Create the new action. Open up the contact_controller.rb file and modify the
new method to look like this:

def new
@contact = Contact.new
end

The single line in the new method creates a new Contact object that will be used to
hold the new contact information you create. Next, you'll create a view template to dis-
play the new contact form in the browser.

2. Create the new template. In the app/views/contact directory, create a new file
named new.html . erb. This will be the template for creating a new contact. Type the
following code into this file:
<hl>Create New Contact</hl>
<% form_for :contact, :url => {action=>'create'} do |f|

<p><label for="contact_first_name">First Name:</label>
<%= f.text_field 'contact', 'first_name' %></p>

<p><label for="contact_last_name">Last Name:</label>
<%= f.text_field 'contact', 'last_name' $%$></p>

<p><label for="contact_address">Address:</label>
<%= f.text_field 'contact',6 'address' %></p>

<p><label for="contact_city">City:</label>
<%= f.text_field 'contact', 'city' %></p>

<p><label for="contact_state">State:</label>
<%= f.text_field 'contact', 'state' %></p>

<p><label for="contact_country">Country:</label>
<%= text_field 'contact',6 'country' %></p>

<p><label for="contact_phone">Phone:</label>
<%= f.text_field 'contact', 'phone' %></p>

<p><label for="contact_email">Email:</label>

<%= f.text_field 'contact', 'email' %></p>

<%= f.submit "Create" %>

<% end %>

<p><%= link_to 'Back', {:action => 'index'} %></p>

89

m First Steps with Rails

90

Now let’s walk through the code you created in the new. html . erb template. There are really
only a few interesting things going on in this template. First, look at the second line of the
template:

<% form_for :contact, :url => :action=>'create' do |f| %>

In this line, you use a Rails helper method form_for. This method creates the opening tag for an
HTML form. You pass three parameters to the form_for tag. The first parameter specifies the
object type for which the form is being created. In this case that is a contact object. The second
parameter specifies where the form should be submitted. In this case, the form is submitted to the
create action.

Since a controller is not specified it will default to the current controller, which is the contact con-
troller. The last parameter that is passed to the form_for tag is the code block that begins with
the do | £] statement. Inside the block is where you will specify the body of the form.

Now look at the contents of the form that you are creating. Within the form body, you see several
repetitions of the following lines, one for each field in the contacts table:

<p><label for="contact_first_name">First Name:</label>
<%= f.text_field 'first_name' %></p>

These lines create an HTML label tag and an HTML text input field. The input field is created using
another Rails method called text_field which is called on the form_builder which was
passed into the block as the £ variable. The text_field method takes a single parameter. The
parameter is the name of the attribute that this text field will contain. The output of the text_
field method will be HTML code like the following;

<input id="contact_first_name" name="contact[first_name]"
size="30" type=""text” value=""" />

After all of the labels and text fields, the last three lines of the new template contain this code:

<%= f.submit "Create" %>
<% end %>
<p><%$= link_to 'Back', {:action => 'index'} %></p>

Here you see another Rails helper method. The submit method creates a form submit button. The
button will use the parameter to the submit method as its label. The end statement ends the con-
tents of the form block. Finally, the last line of the template uses the Rails helper method 1ink_
to to create a link back to the index view.

When a user clicks the Create button on this form, the data will be submitted to the create
action of the Contact controller. The create action will handle the record creation for creating
a new contact. In the next section you'll create the create action.

Make sure your WEBrick server is still running and go back to the contact list page. Now click the
New Contact link, and you should see the new contact screen shown in Figure 2.6.

FIGURE 2.6

Getting Started with Rails _

The ContactList new contact view

2 http://localhost:3000/contact/new - Windows Internet Explorer
Fle Edit View Favorites Tools Help

Address |] http:/flocalhost: 3000/contactinen % | [6o

@Bm (> | |ﬂ @ ;‘J /j'SEEFd’\ g Favorites &) (- :’,’

s | g delicnts - [y Google[GR jp> @setiome

:{:
B R T

Create New Contact
FastName |
LastName|]
Address: \:I
o]
State: | |
Cowny]
P]
Bmat

Back

] Done

® Internet

You should see the new contact form with a blank edit field for all of the attributes of the new con-
tact. Don’t click the Create button just yet. You need to create the create action next so that your

application correctly handles the creation of a new contact.

Implementing the Create action
In the previous section you created the new action and a view template that allows you to display
an empty form that the user can use to create new contact records. The form you created will get
submit to the create action of the contact_controller. That is a method you have not writ-
ten yet, so that will be the next action method that you will create.

Create the create action. Open up the contact_controller.rb file and add a create
method using the code below:

def create
@contact = Contact.new(params]|:contact])
if @contact.save!

end
end

redirect_to :action => "index"
else
render :action => "new"

91

m First Steps with Rails

92

In this create method, you create a new instance of a Contact object passing the parameters
from the new form into the Contact .new method. After creating the new Contact instance and
setting it to the @contact instance variable, you attempt to save that using the save! instance
method.

If the save! method returns successfully the redirect_to method is used to redirect the user
back to the index method which will show the list page. The list should now contain the new
contact that was created. If the save! method does not return successfully, the new form is
re-rendered.

Create a few new contacts using the new contact page and make sure that everything works as
expected. After you create a new contact, you should see the new contact listed along with your
other contacts on the contacts list page. If you see any errors reported, or if the contacts are not
being created as expected, read back through the previous sections, and make sure that you've
done everything correctly up to this point.

Implementing the show action

At this point, your application is able to display a list of contacts, and you are able to create new
contacts using a new contact form. You do not yet have a way to view and edit existing contacts. In
this section, you'll take the first step towards creating the view and edit functionality by creating
the show action. The show action will display a form containing an existing record’s attributes.
From the show form you can update the contact and then submit those changes to the update
method that you'll implement in the next section.

1. Create the show action. Go back to the contact_controller.rb file. Create the
show method so that it now looks like this:

def show
@contact = Contact.find(params[:id])
end

The show method uses the Contact . find (params[:id]) statement to find the con-
tact whose id matches the id passed on the URL. If found, the contact is loaded into the
@contact instance variable. The £ind method accepting the contact id is another
method provided to all model classes that extend ActiveRecord: : Base. Because you
know that instance variables are also accessible from the view templates, you now have
what you need to proceed with creating the view template to display the contact’s details.

2. Create the show template. As you create the view, remember that it also has to support
editing of the contact data, not just a static display. In the app/views/contact direc-
tory, create a file called show.html . erb with the following content:

<hl>View/Edit Contact</hl>

<% form_for :contact, @contact, :url => {:action=>'update',
:id=>@contact.id} do |f]| %>

<p><label for="contact_first_name">First Name:</label>

<%= f.text_field 'contact', 'first_name' %></p>

Getting Started with Rails

<p><label for="contact_last_name">Last Name:</label>
<%= f.text_field 'contact', 'last_name' %></p>

<p><label for="contact_address">Address:</label>
<%= f.text_field 'contact',6 ‘'address' %></p>

<p><label for="contact_city">City:</label>
<%= f.text_field 'contact', 'city' %></p>

<p><label for="contact_state">State:</label>
<%= f.text_field 'contact', 'state' %></p>

<p><label for="contact_country">Country:</label>
<%= f.text_field 'contact',6 'country' %></p>

<p><label for="contact_phone">Phone:</label>
<%= f.text_field 'contact', 'phone' %></p>

<p><label for="contact_email">Email:</label>
<%= f.text_field 'contact', 'email' %></p>

<%= f.submit "Update" %>
<% end %>

<p><%= link_to 'Back', {:action => 'index'} %></p>

Assuming your server is still running, go back to the contact list screen from Figure 2.5 and click
the contact, Timothy Fisher. Clicking the contact takes you to the show action, and you should
now see the view shown in Figure 2.7. On this screen, you see a label and edit field for each of the
contact’s attributes. There is also an Update button, and a link back to the contact list screen.

Now take a closer look at the code in the show view template. Notice that this code is almost iden-
tical to the code you used in the new template. The only differences are a different page title in the
first line, <h1>View/Edit Contact</hl>, different parameters for the form_for method,
and a different label on the Submit button, Update. Let’s take a look at the form_for line that is
used in this template:

<% form_for: contact, @contact, :url => {:action=>'update',6 :id=>@
contact.id} do |f| %>

Here you are passing four parameters to the form_for tag. This is one more than what was
passed for the new template. The first parameter specifies the object type for which the form is
being created. In this case that is a contact object.

The second parameter specifies a specific object instance that will be used to populate the form ele-
ments in the form that is created. Remember that in the show action, you set an @contact
instance variable to contain the contact instance that the user clicked on. That object instance is
used to populate the contact form.

93

m First Steps with Rails

The ContactList View/Edit contact view

A httpz//localhost: 3000/contact/show/1 - Windaws Internet Explorer

File Edit View

(€L

D X B G| Psen 9

Favoritss Tools Help

e @@ 25 UG Y

= =
<3 [] http:/focshost:3000/contactishowft ¥ EJ o Lniks [delianus ~ [, Google|[Gl v 02 () settingsw

State: MI

Country: |USA

Email: tim@tim

Back

View/Edit Contact

L

othyfisher com]

&] Done

@ Internet

9

The third parameter specifies where the form should be submitted. In this case, the form is submit-
ted to the update action, and an id is also specified so that the update action will be able to
retrieve the correct contact to update it. Since a controller is not specified it will default to the cur-
rent controller, which is the contact controller.

The last parameter that is passed to the form_for tag is the code block that begins with the do
| £| statement. Inside the block is where you will specify the body of the form.

With the exception of a different label on the form submit button, the contents of the form code
block is identical to what you saw for the new form. However, since you passed an instance vari-
able that holds a valid contact object, each of the form input fields will be pre-populated with the
values of that contact instance.

If you remember that one of the core philosophies that drive Rails development is Don’t Repeat
Yourself, or DRY, you might be thinking at this point that there is an awful lot of duplication
between the show.html . erb and new.html . erb templates. In Chapter 5, you will learn about
another Rails technology called partials that will allow you to eliminate all of the duplication for
cases such as this one where you have duplicated code between two or more views.

Implementing the update action

In the previous section you implemented the show action. This action allowed you to click on an
existing contact and be taken to a form where you can view and change the details of an existing

Getting Started with Rails _

contact. Now you will implement the update action which will handle the submission of the form
displayed by the show action to make changes to a contact.

Create the update action. Open up the contact_controller.rb file and add an update
method using the code below:

def update
@contact = Contact.find(params[:1d])
@Qcontact.attributes = params|[:contact]
@contact.save!
redirect_to :action => "index"

end

In this method, you first find the correct Contact object to update using the Contact. find
method with the id of the contact that was edited. Remember that you specified the id of the con-
tact being edited along with the update action in the form_for tag of the show template. After
you have the correct contact instance, you update its attributes using the attributes= method
of the contact instance.

You specify the new attributes by grabbing them from the request parameters using the syntax
params [:contact]. The attributes= method is provided by ActiveRecord: :Base to all
of your model classes. Using this method is a quick way to update all of a model object’s attributes
with a single line of code. With the contact’s attributes updated, you'll then call the save! method
to save the new attributes to the database. Finally, the user is redirected back to the main contact
list using the redirect_to method with the :action=>"index" parameter.

This completes the implementation of the show and edit functionality. Now you can try out the
new functionality by clicking a contact from the contact list view. You should be taken to the con-
tact display/edit view. From that view, go ahead and edit a few of the contact’s fields and then click
the update button. If you changed the contact’s name, you should see that reflected in the display
of the contat list. You can verify changes to other attributes by viewing the contact’s details again
by clicking on that contact again.

Assuming all went well for you, you have now completed the functionality that you originally set
out to implement, that is the ability to create, view, and update contacts in your contact list appli-
cation. If all did not go well and your show-and-edit functionality does not seem to work as adver-
tised, I'd suggest that you double-check all of your code and make sure you did not skip any steps
in the previous sections. In most cases, the error screens that Rails presents when something does
go wrong are informative enough to be able to quickly diagnose a problem.

What you have accomplished

Let’s recap what you have been able to accomplish so far. From absolutely nothing, you have cre-
ated a new Rails application, and a MySQL database to serve as a Contact List application. With the
Contact List application, you can show a list of contacts stored in the database, view and edit an
existing contact, and create a new contact. If you've been creating the application as you read this,
you were probably able to create everything in less than one hour. Not bad for your first

95

m First Steps with Rails

96

experience with writing a Rails application. Now to finish off this first application, add a bit of style
so that it looks better. You'll do that in the next section.

Style the application

You have a complete application that meets the requirements set forth when you started develop-
ing it, but most people would find it lacking in appeal. The look and feel of an application is often
an important part of whether or not it is successful.

A Rails application is typically styled using CSS style sheets. When you created the project, the
public/stylesheets directory was created. This is the directory where you will place any
style sheets that you create.

You want to be able to include a style sheet in every page without having to modify every view
template file to link the style sheet. Rails gives you the answer you need through another file type
called layouts.

You can put boilerplate HTML in a layout file and have that included in all of your view templates.
The layout file can include content that goes both before and after the content of your view tem-
plates. The content in a layout file wraps the view templates with which it is associated. If you cre-
ate a layout file with the same name as your controller, it is used automatically with all of the views
associated with that controller. If you want to give the layout file a different name, you can specify
the name of a layout file in any controller class.

If you want a layout file to apply to all of your view templates, regardless of the controller, you can
use a layout file named application.html.erb in the application/views/layouts
directory. This layout will be applied to all of your views that do not have a more specific layout
file specified. If you have an application layout file and a controller specific layout file, the control-
ler specific layout file will be used for views rendered from that controller.

To style the contact list application, you will create an application.html.erb layout file that
will be used for each of your view templates.

Specifying the name of a layout file in any controller class is covered in Chapter 4,
along with details about the controllers.

Create a layout template. In the app/views/layouts directory, create a file called
application.html.erb. Type the following content into the file:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html>
<head>
<title>Contact List Manager</title>
<%= stylesheet_link_tag 'styles' %>
</head>
<body>

Getting Started with Rails _

<%= yield %>
</body>
</html>

This provides the standard template for an HTML Web page. Now, all of your views rendered by
the contact controller will be wrapped with this code and be a little more standards-compliant. The
content of a view template is inserted where the <%= yield %> statement is also.

In the HTML HEAD section, a title is provided in the layout so that the title bar in the browser will
show your application name as Contact List Manager. Finally, the layout includes a style sheet
using a Rails helper method, stylesheet_link_tag.

The stylesheet_link_tag helper method allows you to easily link to a CSS style sheet with-
out having to remember the standard HTML method of doing so. The parameter passed to this
method specifies the name of your style sheet without the . css extension. Rails looks for style
sheets in the public/stylesheets directory of your project. So with the link you've added to
your layout template, Rails will look for a file named styles.css in the public/
stylesheets directory.

Within layout templates in older Rails application code, you might see the line <%=

. @content_for_ layout %> instead of <%=yield %>. In new applications, the
preferred method for indicating where content is inserted in a layout is to use <%= yield %>
instead of <%= @content_for layout %>. The <%= yield %> method is more indicative of the
fact that Ruby blocks are involved in how the content insertion happens, because the yield key-
word is associated with Ruby blocks.

Create a stylesheet. Create the styles.css file in public/stylesheets and begin adding
some style to the application. Use the following content:

body {
font-family: "Trebuchet MS";
}
hl {
font-weight: bold;
text-align:center;
}
ul {
font-size: 1.2em;
line-height: 1.5em;
}
label {
float: left;
width: 125px;
font-weight: bold;
}

97

m First Steps with Rails

98

input {
float: left;
width: 170px;

a, a:visited {
color: blue;
font-weight: bold;

}
form {
float:left;
margin-bottom: 20px;
}
p {
clear:both;
float: left;
margin-top: 0px;
margin-bottom: 10px;
}

#contact_submit {
clear: both;
float: left;
width: 75px;
margin-top: 15px;
margin-left: 220px;
}

It is not a goal of this book to teach CSS skills, so I will not walk through the details of the CSS
style sheet. However, CSS is an important skill for any Web developer to have. The style sheet
shown above is fairly basic and should not be confusing to a Web developer. If you are not familiar
with any of the styles used in this style sheet, it would be a very good idea for you to pick up a
book about CSS and polish up on that skill. Whether it is your job to develop front-end code or
not, you will find it helpful to understand basic CSS styling.

Now if you reload the application, you should see a nicer looking index view and much nicer look-
ing form views also. On the form views, each of your text input boxes should be aligned on the
left. With a bit of CSS styling you can turn any Web page into something that is nicer to look at.

WebScaffolding

Now that you've completed your first basic Rails application, here’s another bit of Rails magic. You
could have generated the model, controller, and view classes that you needed using a single Rails
generator script called scaffolding. Scaffolding is an excellent resource for quickly prototyping an
application or to get something up and running in the early stages of application development.

Getting Started with Rails

Let’s walk through a quick example of how you might start an application using the Rails scaffold-
ing generator. From a command-line, use the rails command to create a new Rails project:

> rails scaffold_test

That will create the skeleton for a new Rails project for you. For this example, let’s assume you
were creating an interface to manage a list of users. Use the scaffold generator to create complete
scaffolding for a User model:

> ruby script/generate scaffold User name:string email:string
birthdate:date
exists app/models/
exists app/controllers/
exists app/helpers/
create app/views/users
exists app/views/layouts/
exists test/functional/
exists test/unit/
create app/views/users/index.html.erb
create app/views/users/show.html.erb
create app/views/users/new.html.erb
create app/views/users/edit.html.erb
create app/views/layouts/users.html.erb
create public/stylesheets/scaffold.css
dependency model
exists app/models/
exists test/unit/
exists test/fixtures/
create app/models/user.rb
create test/unit/user_test.rb
create test/fixtures/users.yml
create db/migrate
create db/migrate/001_create_users.rb
create app/controllers/users_controller.rb
create test/functional/users_controller_test.rb
create app/helpers/users_helper.rb
route map.resources :users

As you see by the output of this command, the scaffold generator creates quite a few files for you
with no additional work. You get everything that you need to support a users model including a
controller, a helper, the model class, views, and tests.

Now take a look at a few of the files that were generated for you. First, open up the User model
from app/models/user.rb. Your file should be similar to this:

class User < ActiveRecord: :Base
end

99

m First Steps with Rails

There is nothing too interesting here. This looks just like a model class that is generated with the
regular model generator. Now, open up the UsersController from app/controllers/
users_controller.rb. You should see the code shown in Listing 2.1.

LISTING 2.1

app/controllers/users_controller.rb

class UsersController < ApplicationController
GET /users
GET /users.xml
def index
@users = User.find(:all)

respond_to do |format|
format.html # index.html.erb
format.xml { render :xml => @Qusers }
end
end

GET /users/1
GET /users/l.xml
def show
@Quser = User.find(params[:1id])

respond_to do |format|
format.html # show.html.erb
format.xml { render :xml => @Quser }
end
end

GET /users/new
GET /users/new.xml
def new

@Quser = User.new

respond_to do |format|
format.html # new.html.erb
format.xml { render :xml => Quser }
end
end

GET /users/1l/edit
def edit

@Quser = User.find(params[:1id])
end

POST /users
POST /users.xml
def create

100

@user = User.new(params]|:user])

respond_to do |format|

Getting Started with Rails _

if @Quser.save
flash[:notice] = 'User was successfully created.'
format.html { redirect_to(Quser) }
format.xml { render :xml => @Quser, :status => :created, :location =>
Quser }
else
format.html { render :action => "new" }
format.xml { render :xml => @Quser.errors, :status => :unprocessable_
entity }
end
end
end
PUT /users/1
PUT /users/1l.xml
def update
Quser = User.find(params|[:id])
respond_to do |format|
if @Quser.update_attributes (params|[:user])
flash[:notice] = 'User was successfully updated.'
format.html { redirect_to(Quser) }
format.xml { head :0k }
else
format.html { render :action => "edit" }
format.xml { render :xml => @Quser.errors, :status => :unprocessable_
entity }
end
end
end

DELETE /users/1

DELETE /users/l.xml

def destroy
@Quser = User.find(params[:id])
@Quser.destroy

respond_to do |format|
format.html { redirect_to(users_url)
format.xml { head :0k }
end
end
end

}

101

m First Steps with Rails

102

Now you see the real power of the scaffold generator. The users controller contains a complete
implementation of all of the CRUD methods for users. The methods implemented for you include:
index, show, new, edit, create, update, and destroy. The implementation of these meth-
ods uses the RESTful architecture style which is covered in detail in Chapter 12.

In addition to a controller that implements all of the CRUD methods, the scaffold generator also
creates view templates for you that correspond to all of the CRUD methods. Within the app/views
directory, you should see the following subdirectories and files:

-- layouts

______ users.html.erb
-- users

—————— edit.html.erb
______ index.html.erb
______ new.html.erb
—————— show.html.erb

With the controller methods and the view templates created by the scaffold generator, you have a
complete implementation of the CRUD functionality for a given model. Many developers like to
start their projects by generating scaffolding for all of their model objects. This gives them a head
start on development and an excellent code base to build upon.

| In Chapter 11, you can read about some additional scaffolding implementations that
are available as Rails plugins. These external scaffolding plugins generally will gen-
erate richer user interfaces in the view templates.

More to Get You Started

On the Web, you can find many excellent learning resources to get you started with Rails develop-
ment. The Official Ruby on Rails Web site (www . rubyonrails.org) is the first place to look. A
sampling of the learning resources you can find on this site includes the following:

B Creating a Weblog in 15 minutes: This shows you how to create a simple Web log
application from scratch in less than 15 minutes. The Web log you create includes a com-
ments feature and an administration interface.

B Putting Flickr on Rails: In this, you'll create a photo search application that makes use
of the public API to the popular photo-sharing site, Flickr.com.

B Evolving your database schema without a sweat: This 20-minute tutorial provides a
great overview of the features available for managing your database schema using Rails
migrations.

There are several very good Rails presentations on the Ruby on Rails site, and many excellent Rails
resources are also available on other Web sites. If you do a Google search on Rails and tutorials
you can find many excellent Rails tutorials, some emphasizing a certain feature, and others more

Getting Started with Rails _

general in nature. An excellent site with many online forums dedicated to Rails is the Rails Forum,
available at www.railsforum.com.

You may also be interested in the Ruby on Rails mailing list. You can find more information about
this at www . rubyonrails.org/community. Be warned, though, that the mailing list tends to
generate a tremendous amount of traffic, so you may want to set up a filter to automatically sort
these messages into a folder of their own or just subscribe to the weekly digest.

If you like to chat with live peers, you can also find the official Rails IRC channel on the irc.
freenode.net server, with the channel name #rubyonrails. There are also many good Rails
forums on various sites. Just doing a Rails search on Google should be enough to get you started
with exploring what is available.

Summary

This chapter provides an overview of Ruby on Rails, a little bit of its history, and an introduction to
what it provides and how it is architected. You were also shown how to write your very first Rails
application. The steps you used to create the simple Rails application built in this chapter are the
same steps that you will usually follow to begin development of any Rails application that you
write. The steps to follow are:

. Use the Rails command to create the project directory structure and default files.

Create the database for your project.

Create one or more model objects.

Create one or more controller objects.

G kA W=

. Create and style your views.

With the relatively small number of lines of code that you have to actually write, you can create a
Web application that allows users to view a list of contacts, add new contacts to a database, view a
contact’s details, and edit a contact.

103

Rails In Depth

IN THIS PART

Chapter 3
Using Active Record

Chapter 4
Controller: In Depth

Chapter 5
View: In Depth

ails applications implement the model-view-controller (MVC) design

pattern. The model layer of an MVC application implements the

application’s business logic and encapsulates the application’s data.
This is often the most significant part of an application. It is this layer that
should contain the core of your functionality. The view and controller layers Active Record basics
could be replaced to re-implement your application in another environment,
such as when converting a desktop application to a Web application; how-
ever, the model layer can ideally remain intact across these different operat-
ing environments.

What is Active Record?

Setting up a model

Using migrations

Create, read, update, and

Rails implements the model layer primarily using a component called Active delete
Record. Active Record provides a powerful abstraction layer and is often
referred to as elegant because of its use of the following techniques: Defining relationships

B Convention over configuration: If you follow Active Record’s con- Implementing validations

ventions, you'll save yourself from having to write many lines of
configuration code. Active Record is able to automatically discover
the details of your database schema and provide you with simple Advanced Active Record
functionality for accessing and managing your data.

Custom validations

B Metaprogramming: Using metaprogramming, Active Record
dynamically adds features to your model classes, saving you from
having to write common code over and over again. For example,
Active Record adds attributes to your model objects for every col-
umn in your database tables.

B Domain-specific language: Rails implements a domain-specific
language (DSL) for managing your data. Rails extends Ruby to
implement a DSL, making actions such as adding validations and
relationships to your objects seem like part of the language.

The model layer is also usually a good place to start your application
development.

107

FIGURE 3.1

What is Active Record?

In object-oriented programming, data structures are represented by a hierarchy of classes. In a
database, data is most often stored in a set of relational database tables. There is an inherent mis-
match between your program’s object view and the database’s relational view of data. Over the
years, there have been many attempts to reconcile this mismatch, including attempts to create
object databases. For the most part, object databases never took off. A primary reason for this was
the already established base of relational databases and tools supporting them. Another solution to
this mismatch problem is through the use of Object-relational-mapping tools. Object relational
mapping (ORM) is the mapping of relational database tables to object-oriented classes.

A good ORM hides the details of your database’s relational data behind your object hierarchy. This
is precisely what you get in a Rails application. One of the most important components of Rails is
the Active Record library. Active Record implements an ORM for Rails applications.

As you can see in Figure 3.1, an ORM provides the mapping layer between how a database works
with its data and how an object-oriented application works with its data. An ORM maps database
tables to classes, database table rows to objects, and database table columns to object attributes.
This is precisely the mapping that Active Record carries out for you. By using Active Record, your
application does not have to deal with database constructs such as tables, rows, or columns at all.
Your application only deals with classes, objects, and attributes. Active Record maps these to their
database equivalents for you.

Object relational mapping

Database Object Oriented Application
Tables ORM Classes
Rows < > Objects
Columns Attributes
SaL Ruby, Java, etc.

108

The pattern upon which the Active Record library is based is not unique to Rails; Active Record is
based on a design pattern created by Martin Fowler that also goes by the name Active Record. It is
from this design pattern that the Active Record library got its name.

There are many ORM implementations available in different languages. What makes Active Record
special is its ease of use and the power you get from it with very few lines of code. Unlike most
other ORM implementations, you don’t have to write lines upon lines of configuration code to set
up Active Record. In fact, Active Record will work in your application with absolutely no configu-
ration at all, if you follow recommended naming schemes in your database and classes.

Using Active Record

Another feature of Active Record that makes it easier for you to work with is its implementation of
a domain-specific language (DSL) for working with your application’s data. A DSL is a programming
language intended for use in a specific problem domain. In general, Ruby’s syntax makes it easy to
create DSLs. The DSL nature of Active Record means that you can use dynamically generated
methods, such as find_by_first_name ('tim'), to retrieve a record by a column name. You
can also perform tasks such as modeling an association between tables with the method has_one
or has_many followed by the name of another model class. Many of the things you will do with
Active Record methods will feel like they are a part of the language you are using. This is a side
effect of the nature of a DSL.

Active Record Basics

In this section, you can learn some of the basics of Active Record prior to employing them in the
sections that follow. Some basics I cover here are classes, objects, and naming conventions.

Active Record Classes and Objects

Active Record is implemented in Rails as a set of base classes from which your model objects
extend. Each table in your database is generally represented by a class that extends an Active
Record base class. Simply by extending the Active Record base classes, your model objects inherit a
wealth of functionality. In fact, your model objects may be as simple as this:

class Book < ActiveRecord: :Base
end

This empty class definition is enough to give your Book class quite a bit of functionality merely by
extending the ActiveRecord: :Base class. By using ActiveRecord: : Base, Rails knows
that this class wraps a database table named books. Active Record will dynamically add metadata
to this class for all of the table columns that are in the books table. This includes data such as col-
umn names, types, and lengths. Active Record also adds attributes to your class for each of the col-
umns in the database.

Active Record manages database connections for your application. You don’t have to write any
code to set up database connections or to manage those in your Rails application. Basically, all of
the details related to working with a database are hidden from you, the developer, by Active
Record. As a developer, you work with objects and do not have to deal with things like database
connections, tables, columns, and SQL statements.

Active Record naming conventions

Active Record makes heavy use of the convention-over-configuration principle. If you follow a few
simple naming conventions, you can take advantage of many dynamic features of Active Record
with no configuration required.

109

m Rails In Depth

Class and table names

Your database tables should be named with the plural form of the names of your model classes.
For example, if you want a model class named Book, you would create a corresponding table
named books. By using this convention, Rails is able to automatically find the table that corre-
sponds to your model class without having to write any configuration code. Rails even supports
many irregular plural nouns, such as ‘people’ being the plural of ‘person.’

I Rails does not know about all irregular pluralizations, but for the cases when Rails
doesn’t know the plural form of a model you want to use, you can tell Rails about
your custom pluralizations. To define your own pluralizations, you add code to the config/
environment .rb file, like this:

Inflector.inflections do |inflect]
inflect.irregular 'sheep', 'sheeps'
end

In this example, you are telling Rails to use the word ‘sheeps’ as the plural form of the word
‘sheep’. You can add as many singular/plural definitions as you want within a single Inflector.
inflections block.

You should name your database tables with all lowercase table names and underscore-separated
words. The corresponding model classes use camel-casing. Camel-casing is a style of joining words
where underscores are removed, and multiple words are joined together with the first letter of each
word capitalized. For example, a database table named comic_books, would correspond to a
model named ComicBook.

In some cases, such as when you are working with a legacy database, you may not have the free-
dom of naming the database tables yourself. In that case, you can override the default table name
that Rails expects for a particular model by using the set_table_name method. The following
code specifies that the Shape class should use the shape_1items table.

class Shape < ActiveRecord::Base
set_table_name 'shape_items'
end

= If you don't like giving your database tables plural names, you can configure Rails
to work with singular-named database tables by adding this line to config/
environment.rb:

ActiveRecord: :Base.pluralize_table_names = false
Table keys
There are two types of database keys for which naming is important in Rails: primary keys and for-
eign keys.

110

Using Active Record

Primary keys

The primary key is what uniquely identifies each row in a database table. Your tables should have a
primary key with the column name id. The id column should be an integer type and should be
auto-incrementing. Rails will automatically use this column as a unique identifier. Rails migrations,
which are discussed later in this chapter, automatically create a primary key column named id for
each table that is created. If you want to use a different field as the primary key for a table, Rails
allows that, but with some restrictions. See the sidebar “Using Alternate Primary Keys with Rails”
for more information.

Using Alternate Primary Keys with Rails

By default, Rails uses a field called id as the primary key for all of your database tables. Rails migra-
tions generate this field automatically so you do not have to specify it in your table creation migra-
tions. While this field is suitable for most purposes, there may be times when you have to work with
a legacy database for which you do not get to choose the primary key fields. As with many other
things in Rails, you can override the default Rails primary key field name and specify any field for a
particular model. You do this using the set_primary_key method in the model class definition
that wraps the table for which you want an alternate primary key.

For example, say you had a table named images that contained a primary key field named image_
id. In the Image model class, you would use this code:

class Image < ActiveRecord: :Base
set_primary_key "image_id"
end

The most notable restriction on using alternate primary keys in Rails is that you cannot use compos-
ite keys as primary keys. Composite keys are keys that use more than one database column. For
example, a key that used the image_id field and the created_at field in combination would not
be allowed as a primary key in a Rails application. This is a restriction that is often criticized by both
Rails enthusiasts and antagonists. It is a restriction that is not likely to change in the near future,
though, so if you're writing a Rails application, you will need to deal with it or have a strategy to
overcome it. (There is a Rails plugin available that extends the database layer of Rails to support
composite primary keys. If you are interested in this plugin, you can find out more about it at
http://compositekeys.rubyforge.org. In Chapter 11 you will learn more about using plu-
gins with Rails.)

Your application can use a composite key as long as it is not the primary key. As a result, if you need
a composite key, perhaps you have the flexibility to add a new field to serve as your primary key.

If you do override the primary key column name, you also become responsible for creating unique
primary key values. Rails will not automatically generate a primary key value for any table that con-
tains a non-default primary key name.

When you work with a non-default primary key field name, you still refer to the primary key attri-
bute as id when you set the primary key value for an object . However, any other time you refer to
the primary key attribute, you use the name that you assigned that field in the set_primary_key
method.

111

FIGURE 3.2

Foreign keys

Foreign keys are used in a table to identify a row in another table that is related to the row contain-
ing the foreign key. For example, in Figure 3.2, the book_1id column in the pages table is a for-
eign key that relates a row in the pages table to a row in the books table. Foreign keys in a Rails
application should be named with the singular name of the referenced table followed by 14, just as
book_id is named in Figure 3.2.

Primary and foreign keys

books pages

112

ID: PRIMARY KEY \ ID: PRIMARY KEY

book_id: FOREIGN KEY

Setting up a Model

If you followed along with the development of your first Rails application in Chapter 2, you saw a
simple example of generating a model using the Rails script/generate script. Here you will
use the Rails script/generate script again to create a model class used throughout this chap-
ter to explore the details of a Rails model layer and how Active Record helps you.

Generate a Rails project and model

Begin by using a command-line and creating a Rails project, model, and database. The command-
line feedback that you receive when you run the various commands throughout this chapter is not
always specifically shown in this book; if you see feedback that is not shown in this book as you
run the commands, don’t be surprised. You should expect Rails to generate feedback from its com-
mands, similar to what you saw in Chapter 2.

1. Create a new Rails project that you will use for the examples in this chapter. This
creates the skeleton of a new Rails application, along with the correct Rails application
directory structure.

rails -d mysgl chapter3

The -d option you used in the command above lets Rails know that you will be using a
MySQL database. Valid values for the database type are mysql, oracle, postgresqgl,
sglite2, and sglite3. If you do not use the -d option, the default database type is
sglite3. This database type is used by Rails to configure a sample database configura-
tion file that you can use to specify your database server. You will see how to use that file,
database.yml, do that a bit later in this chapter.

Using Active Record

2. Navigate into the new chapter3 directory and generate a model called
ComicBook. Use the script/generate script to do this, as shown below. This cre-
ates the ComicBook model class, a migration for creating the comic_books table, and
some related unit test files.

cd chapter3
ruby script/generate model ComicBook

3. Create a database for use with this chapter’s examples. Now use the MySQL com-
mand-line to create a comic_books_development database. You could also use a
MySQL GUI if you have one installed that you are comfortable with.
mysgl -u root -p
Enter password: << your password >>
mysgl> create database comic_books_development;

You should now have the basic elements you need to follow along with the examples in this chap-
ter: a Rails project named chapter3, a model within that chapter named ComicBook, and a MySQL
database named comic_books_development.

Configure Active Record

You may have noticed that you gave your database a different name from the name you gave the
Rails project. When the database is named the same as the project, with the addition of environ-
ment suffixes (_development, _test, or _production), and you are using MySQL as your
database, you do not have to create any database configuration. For example, had you named your
database chapter3_development, you could have skipped this configuration step. However, it
is not always realistic that you can give your database the same name as the Rails project name you
choose. Often you may have to follow a company standard for naming your databases.

Because your database name is completely different than the application name, a small amount of
database configuration is required. The code that configures the databases you will use with your
Rails application is stored in a configuration file called database.yml.

In your chapter3 project directory, open the file config/database.yml and look for the sec-
tion that contains this code:

development :
adapter: mysqgl
encoding: utf8
database: chapter3_development
username: root
password:
host: localhost

This is the default database configuration that Rails created when you generated the chapter3
application. Notice the default database name of chapter3_development. The default configu-
ration also assumes that a root username is available with a blank password. The database is
assumed to be running on the same computer that you are developing on, localhost.

113

m Rails In Depth

You created a database named comic_books_development, so change this line:
database: chapter3_development

to use the name of your database:

database: comic_books_development

Also, if you used a username and password other than root, be sure to change those lines in the
configuration.

You may be wondering about the different database environments that have been referred to. Rails
supports the use of three separate environments for running your application in: the development,
test, and production environments. The following section has a description of the three environ-
ments supported by Rails.

Rails Development Environments

It is a good development practice to use different infrastructure environments when developing a
Web application. Each environment should contain a unique database, Web server, and other
external components that your application may require. Rails has built-in support for running your
applications in three different environments. The environments supported by Rails are called
development, test, and production. Each of these environments is described below:

B Development: This is the environment used when developing your application. You also
perform most of your debugging in this environment. In this environment, Rails reloads
classes each time you call a new action. This picks up any changes that you make to the
class files dynamically, which makes this environment ideal for debugging your code as
you write it.

B Test: This is the environment in which you test your application. Rails uses this environ-
ment when running unit, functional, and integration tests. Each time your tests are run,
the test database is completely replaced; therefore, you should be careful not to specify
the same database name for your test environment as you use for your development or
production environments.

B Production: The production environment is used by your application in production.
This must be the most robust and fault-tolerant of your environments. It should be ade-
quately scalable and be able to handle expected load. In this environment, Rails loads
your classes only once. If you make changes to your classes, they will not be picked up
unless you restart your Rails application. While not ideal for developing in, this feature
improves the performance of this environment, making it more suitable for use by end
users.

You can specify the environment that you want your application to run in by editing the config/
environment.rb file. The following line contained in that file specifies the environment that
Rails will use:

ENV['RAILS_ENV'] ||= 'production’

114

Using Active Record

This line is commented out when you first create a Rails application. If you want to use this line to
specify your environment, make sure you uncomment the line.

The databases for each environment are configured in the config/database.yml directory of
your Rails application. You can also include environment specific configuration for your applica-
tion by adding the appropriate configuration to the files contained in your application’s config/
environments directory. This directory contains a configuration file specific to each environ-
ment; development .rb, test.rb, and production.rb.

Most of the code that you will write in this book targets the development environment. However,
when you get to Chapter 9, where testing is covered in detail, you'll see how the test environment
is used.

Using Migrations

Rails migrations are an excellent example of the DRY philosophy applied to Rails. Remember that
DRY means Don’t Repeat Yourself. With the power of migrations, you are able to define and man-
age the evolution of your database in a single place. You do not need SQL script files, XML config-
uration files, or any other files to manage the evolution of your application’s database. Migrations
also make your database definition independent of the specific database that you decide to use.
The same migration file that you create for a MySQL database will also work with an Oracle or
PostgreSQL database.

Rails migrations are simple Ruby classes that contain instructions that create or modify your data-
base schema. You will create a new migration file for each change that you want to make to your
database schema. When you generated your model, you may have noticed that a migration file was
also created. Anytime you create a model using the Rails generator, a migration file is also created
for you. Writing a migration file is often one of the first things you will do when you begin writing
the model layer of your application.

Take a look at the migration file that was created for your ComicBook model. You'll find the file
001_create_comic_books.rb in the db/migrate directory of your chapter3 project.

class CreateComicBooks < ActiveRecord::Migration
def self.up
create_table :comic_books do |t]
t.timestamps
end
end

def self.down
drop_table :comic_books
end
end

115

TABLE 3.1

The first thing you should notice is that this is a Ruby class that extends another Active Record
class, ActiveRecord: :Migration. The class contains two class methods:

B self.up
Called when a migration is applied, and used to set up your database schema elements.
B self.down

Called when a migration is reversed. This method should undo the actions of the self.
up method.

In the auto-generated migration, the self . up method creates the comic_books table using the
create_table method. A code block is passed to this method that you will use to setup the col-
umns of the table. So far the only columns being setup are created with this line:

t.timestamps

This will automatically create two columns for the table, one named created_at and one named
updated_at. These columns will hold timestamps for row creation and update. The self.down
method drops the table.

It is always a good practice to design your data model before you create your migrations. The data
model design can be as simple as a table listing all of the columns and their data types for each of
your tables. Table 3.1 shows a data model design for the comic_books table that you will
implement.

Comic Book Table Definition

Field Name Field Type Description

id Integer The primary key

title String The title of the comic book

writer String The writer of the comic book

artist String The artist of the comic book

issue Integer Issue number of the comic book

publisher String The publisher of the comic
book

created_at Datetime Date and time that the record
was created

updated_at Datetime Date and time that the record

was updated

116

Using Active Record

Using the table definition provided in Table 3.1, you can now create a migration that creates the
database schema for this table.

1. Edit the file 001_create_comic_books. rb so that it looks like this:

class CreateComicBooks < ActiveRecord::Migration
def self.up
create_table :comic_books do |t]
t.string :title
.string :writer
.string :artist
.integer :issue
.string :publisher
.timestamps

o

end
end

def self.down
drop_table :comic_books
end
end

2. Run the migration by typing the following from a command-line. This should be run
from your chapter3 project directory.

rake db:migrate

When you run the migration above, you should see output similar to this:

== CreateComicBooks: migrating ==================================
-- create_table(:comic_books)

-> 0.025s
== CreateComicBooks: migrated (0.257s)

You can now take a look at the comic_books database using a GUI front-end tool or the MySQL
command-line. You can see that the comic_books table has been created with the columns you
specified in the migration.

Notice that the migration code does not specify a column for the 14 field. That is because the id
field is the default primary key field for all tables and is created automatically unless you specify
that it should not be created. Take a closer look at the block that you passed into the create_
table method:

.string :title
.string :writer
.string :artist
.integer :issue
.string :publisher
.timestamps

t ¢ f ot

117

m Rails In Depth

118

Each of the lines in this block creates a new column in the table. For example in the first line, a
column named title is created with a string type. Ruby will translate this into an appropriate
database field type. In the case of MySQL this would become a varchar field. The valid field
types that you can use in migrations are: string, text, integer, float, datetime, time-
stamp, time, date, binary, and boolean. Each of these Ruby types will result in an appropri-
ate database field type. Notice that the name of the field is passed as a symbol object. If you look at
the last line in the above code you will see something slightly different. The line contains the code
t.timestamps and no field names. The t . timestamps method creates the created_at and
updated_at columns.

You used the Rake tool to run the database migration. Rake is a tool written in Ruby that is used to
perform a variety of build-related development tasks. If you are familiar with the UNIX make util-
ity, or the Java Ant utility, Rake is similar to those tools. Scripts that are run using Rake are called

Rake files. Rake files are written in pure Ruby code. Rails uses a Rake file to implement a bunch of
useful tasks. You can see more of the Rake tasks available for your Rails application by typing this:

rake --tasks

You will use a variety of rake tasks throughout this book. In addition to the db:migrate task
which you already used in this chapter, two additional rake tasks are useful to know about now.

B rakedb:create:all

This task will automatically create the databases that you have specified in your
config/database.yml file. This makes it easy for you to specify your database infor-
mation in a single place, the database.yml file and then you can use rake to create
your database anytime that you need to create it. You do not have to rely on using any
external tool, such as the MySQL command line tool.

B rake db:drop:all

This task drops all of the databases that you have specified in your config/database.
yml file. This is useful if you feel that your database has been corrupted or somehow put
into a bad state.

The above commands create or drop all of your databases. You can also use similar commands to
create or drop a database specific to a single environment. You specify a single environment like
this:

rake db:create RAILS_ENV=development
rake db:drop RAILS_ENV=development

Schema versions

The first time you run a migration, a new table that you may not recognize is also created in your
schema. This table is called schema_info, and it keeps track of the current version of the data-
base schema. The database schema is the current structure of the database, including the tables and
columns that make up the database.

Using Active Record

Each migration file that is run creates a new database schema version. The migration you ran is
contained in the file 001_create_comic_books.rb. The 001 at the beginning of the filename
is the migration number that corresponds to the database version number that will be created after
this migration is run. Each migration that either you create or that is generated for you must have a
unique three-digit number as the first three characters of the migration filename.

Migrations that are used to create database tables commonly contain the name of the table
prepended with the word ‘Create’ following the three digit migration number, such as you see in
the file name 001_create_comic_books.rb.

Using the rake command that you used to run the migration, you can also specify a specific
schema version number to migrate up to or back to. When migrating to a version number that is
lower than the current schema version number, each of the migrations past the version that you
are migrating to will have their self.down methods executed.

The following rake command will migrate your database to a specific schema version number:
rake db:migrate VERSION=3

If your database had been at schema version 5, the self.down methods would be run on migra-
tions 004 and 005. If your schema version was 1, the self .up methods would be run on migra-
tions 002 and 003. When migrating down, such as from version 5 to version 3, the migration
self.down methods are run in reverse order. For example, the 005 migration self.down
method would run first, followed by the 004 self.down method. When migrating up, the
self .up methods are run in numerical order.

Migration methods

There are a large number of built-in migration methods available within your migration files that
you inherit from extending the ActiveRecord: :Migration class. The most common methods
that you will use to manipulate tables, columns, and indexes are summarized here. For a complete
reference of available migration methods, go to http://api.rubyonrails.com/classes/
ActiveRecord/Migration.html.

Tables

Migration methods are available to create, drop, and rename a table. These methods are summa-
rized here:

create_table(table_name, options)
drop_table(table_name)
rename_table (old_name, new_name)

Each of these methods takes one or two table names as parameters. The create_table method
also takes a second parameter, called options, which is a hash containing SQL options that you
might want to use when creating your table. An example of using create_table with the
options hash is shown here:

create_table('tables', {'DEFAULT CHAR SET'=>'UTF-8'})

119

m Rails In Depth

120

This would create a table called players and set the SQL parameter DEFAULT CHAR SET to be
UTF-8.

Columns

You can also add, rename, or remove columns from a database table using migration methods. The
migration methods to perform these tasks are as follows:

add_column (table_name, column_name, column_type, options)
rename_column (table_name, old_column_name, new_column_name)
remove_column (table_name, column_name)

When you create a column using the add_column method, the column_type can be any of the
following types: : string, :text, :integer, :float, :decimal, :datetime, :time-
stamp, :time, :date, :binary, :boolean.

The add_column method also takes an options hash that contains parameters related to the
table you are creating. For example, you can specify a default value for a column by passing an
options hash like this:

{:default => 10}
Other common option parameters are : 1imit and :null. These can be used to set a field size
limit and to specify whether or not a field can be set to null, respectively.
Indexes
You can add and remove database indexes using the migration methods listed here:

add_index (table_name, column_name, options)
remove_index (table_name, options)

The options parameter for both of these methods is a hash that can be used to specify the index
type and index name, such as in this example:

add_index (:comic_books, :writer, :unique=>true, :name=>'writer_
idx"')

or like below to remove an index:

remove_index (:comic_books, :name=>'writer_index')

Inserting data with migrations

In addition to modifying your database schema, you can also insert data into your database in a
migration file. This makes it convenient to insert default data that your application might need to
run. In this section, you can create a new migration and use it to add some default data into your
comic_books database.

Using Active Record

1. Create a new migration for inserting data. From the command-line, create the migra-
tion by running the generate migration scripts, as follows:

ruby script/generate migration AddDefaultData

This creates a new migration file in db/migrations called 002_add_default_
data.rb. Recall that the first migration you ran was created automatically for you when
you generated the ComicBook model. You can use as many migrations as you want by
supplementing the migrations that are generated with your model classes with migrations
that you manually generate, such as the one you generated here.

2. Edit the migration script to add data insertion. Now you should open the migration
file that you just generated in db/migrations/002_add_default_data.rband
edit it so that it looks like this:

class AddDefaultData < ActiveRecord::Migration
def self.up
ComicBook.create :title=>"Spectacular Spiderman",

:writer=>"Roger Stern",
rartist=>"Marie Severin",
:publisher=>"Marvel",
:issue=>"54"

end

def self.down
ComicBook.delete_all
end
end

3. Run the new migration to add your default data. From the command-line, run this
migration using Rake, as follows:
rake db:migrate

4. Verify that the default data is now in your database. Using either the MySQL com-

mand-line or a GUI interface, verify that the comic_books table contains the record
added in your migration.

After going through the steps above, you could also migrate your database down by using the
command:

rake db:migrate VERSION=1

This command would run the self.down method of your migration defined in 002_add_
default_data.rb. You could then verify that the default data has been removed from your
database.

Using a migration, you were able to create default data in your database. This is a common way of
setting up default data for a Rails application. Remember that in a migration, you have full access
to all of the code, including your models. Using the power of Ruby and your model layer, you can
perform complex manipulations of your database using migrations.

121

122

Create, Read, Update, and Delete

You may have heard the term CRUD used before when referring to database operations. CRUD is
an acronym that stands for the general categories of operations that you can perform on data stored
in a database. These categories are as follows:

Create: Create records in the database.
Read: Read one or more records from the database.

Update: Update a record in the database.

Delete: Delete a record in the database.

Rails makes it easy to perform each of these operations on your data using built-in Active Record
methods. In general, each of your model classes wraps a table in your database. For example, the
ComicBook model class that you created with the script/generate script wraps the comic_
books database table. You will use the ComicBook class and instances of that class to access data
in the comic_books table and to create new records for that table.

Each column in a database table becomes an attribute in the class that wraps that table. Your
ComicBook class will contain the following attributes: id, title, writer, artist,
publisher, issue, created_at, and updated_at.

The following subsections step through each of these operation categories, exploring the details of
each.

Creating records

There are several ways of creating new records using your Rails model classes. Each way uses a
slightly different syntax, which you can see in this section.

One of the ways in which you can create new records in Rails is by instantiating a new object, set-
ting its attributes, and then performing a save operation. The database operations necessary to
insert a record into the database are completely encapsulated behind Active Record. Within your
code, you simply deal with Ruby code and Ruby objects. This is in keeping with a good ORM
implementation.

Here is an example of creating a record in the comic_books table that you created earlier in this
chapter:

my_comic_book = ComicBook.new

my_comic_book.title = 'Captain America'
my_comic_book.issue = 20
my_comic_book.writer = 'Ed Brubaker'
my_comic_book.artist = 'Mike Perkins'
my_comic_book.publisher = 'Marvel'

my_comic_book.save

Using Active Record

This save method writes this record to the comic_books database table. The new method can
also accept a hash attribute for setting the attributes of the object instance you are creating. Let’s
add another record to the database using this style:

my_comic_book = ComicBook.new (

:title => 'Captain America',
:issue => 10,

:writer => 'Ed Brubaker',
:artist => 'Lee Weeks',
:publisher => 'Marvel')

my_comic_book.save

Yet another way of using the new method is to pass it a block. Shown here, this technique is used
to add another comic book to your database:

ComicBook.new do |book|

end

book.title = 'Batman'
book.issue = 18
book.writer = 'Bill Finger'
book.artist = 'Bob Kane'
book.publisher = 'DC'

book. save

Add one more comic book to your database using this technique, which creates a model and data-
base record all in one line:

my_comic_book = ComicBook.create(

:title => 'Superman & Batman',
:issue => 2,

:writer => 'John Byrne',
:artist => 'John Byrne',
:publisher => 'DC')

You may recall that this is the style you used to create a default database record in the second
migration you wrote. The create method both instantiates the ComicBook instance and saves the
record to the database. You can pass an array of hashes to the create method to create multiple
objects and database records with one method call. An array of object instances will be returned

from that call.

In all of these methods for creating a new object and record, Active Record automatically creates a
new unique value and sets that as the 1d attribute while saving the record. After performing a save,
you can then access the primary key as an attribute of the object, like this:

new_id = my_comic_book.id

123

Using created_at and updated_at Fields

By adding fields with the names created_at and updated_at to your database tables, you gain a
bit of free functionality from Rails. Rails automatically updates these fields every time your records
are created or updated. It is easy to add these fields from a migration using the t.timestamps
method as you used in the examples in this chapter.

You can also choose to use fields with the names created_on and updated_on. The difference is
that these fields are set with a date value, and the created_at and updated_at fields are set with
a date and time value.

Reading data
Rails uses a combination of database introspection and metaprogramming to simplify your life as a

developer when it comes to using your model classes and objects to read data from the database.

This section details how Rails helps you read the data that is stored in the database using your Rails
model classes and built-in Rails methods. You can learn how to use column metadata, object attri-
butes, and Rails £ind methods in the following subsections:

Column metadata

Accessing attributes

Using the £ind method

Dynamic finders

Find using SQL

Column metadata
When a model class such as ComicBook is first loaded, Rails is able to infer the database table

name to which it corresponds from the name of the class. Rails then gathers information about that
database table by querying the database system tables. Detailed information about each column of
your database table is placed into the @@columns class variable, which makes @@columns an
array of Column objects. Each of the Column objects contains the following attributes:

name: The name of the database column.

null: Boolean value that is true if this column attribute can be set to null.

primary: Boolean value that is true if this column is the Rails unique identifier.
scale: Specifies the scale for a decimal column.

sql_type: The type of the attribute this column holds.

precision: Specifies the precision for a decimal column.

default: The default value specified in the table definition for the column.

124

Using Active Record

B type: The Ruby type that the column is represented as.

B limit: The maximum size of the attribute for this column.

Using the ComicBook model class example, the following code would print out each of these
metadata attributes, for each attribute of the ComicBook model:

ComicBook.columns.each { |column|
puts column.name
puts column.null
puts column.primary
puts column.scale
puts column.sqgl_type
puts column.precision
puts column.default
puts column.type
puts column.limit
}
You may never need to use this column metadata, but it is good to know that it is available. A
common use of it is to build dynamic user interfaces. This is how Rails scaffolding is built.
Scaffolding is a built-in feature of Rails that dynamically creates a basic Web interface for your Web
application.

= For more information regarding scaffolding, go to Chapter 11.

Accessing attributes

Attribute accessors for your Rails model classes are implemented using a Ruby metaprogramming
technique that allows Rails to dynamically attach accessors to your classes. Rails overrides the
method_missing method to implement the accessors. The method_missing method is called
anytime you call a method that does not exist for the object you are calling it on. This allows you
to access the attributes of any of your classes like this:

the_title = comic_book.title

This may look like you are just accessing an attribute of the comic_book object without going
through a method at all. If you are a Java programmer this may seem like the common way that
you access public attributes. However, keep in mind that in Ruby, you cannot access any attributes
from outside of their class unless you have explicitly created attribute accessors. From this perspec-
tive, you can think of attributes in Ruby classes as always being equivalent to private attributes in
Java classes. So in the above code, title is actually an accessor method that you are using to
access the title attribute. Because of the way the accessors are implemented, the accessor meth-
ods actually do not exist in your objects until they are called. This means that if you were to try
this:

comic_book.methods.include? 'title’

a value of false would be returned, because the title accessor method does not yet exist. Rails
uses the same technique to implement dynamic finder methods for your objects.

125

126

Using the find method

Active Record provides a powerful £ind method that you can use to find data rows in your tables.
The easiest way of finding a record in your database is to pass a primary key value to the £ind
method. All of your model classes include a £ind method that takes one or more primary key val-
ues as a parameter and returns one or more records as objects. Multiple primary keys can be
passed as an array, and an array of matching objects will be returned.

When attempting to find a record by primary key, a RecordNotFound exception is thrown if
Active Record is not able to find a row with the primary key you are searching for.

The following code either returns an object that has an 1d value of 5, or prints "Record Not
Found" to the console:

begin

my_comic_book = ComicBook.find(5)
rescue

puts "Record Not Found"
end

Finding with conditions

You can also use the £ind method with a first parameter of : first or :all, followed by a
:conditions parameter that specifies criteria for finding records, similar to a SQL where clause.
You could use the following code to retrieve all comic books with the ‘Captain America’ title:

ComicBook.find(:all, :conditions=>"title = 'Captain America'")

This call returns an array of ComicBook objects with the title of ‘Captain America’. If no rows can
be found that match the criteria, an empty array is returned. If you wanted to find only the first
record matching the criteria, you would use the £ind method with the : first parameter, like
this:

ComicBook.find(:first, :conditions=>"title = 'Captain America'")

When using the : first attribute, a single record’s object is returned instead of an array. So the
above line would return an instance of ComicBook, if a comic book with the title ‘Captain
America’ was found. If a record can not be found meeting the conditions specified, anil value is
returned.

The :conditions parameter can also use placeholders when specifying attribute values. For
example, suppose you wanted to execute the following search:

ComicBook.find(:first,
:conditions=>"title='Spiderman' and writer='Stan
Lee'")

Using attribute placeholders, you could write this as follows:

title = 'Spiderman’

Using Active Record

writer = 'Stan Lee'
ComicBook.find(:first,
:conditions=>["title=? and writer=?", title,
writer])

Using this style, the : conditions parameter is an array. The where clause is the first element in
the array, and the attribute values are the next elements in the array.

Rails automatically quotes and escapes the attribute values when you use this style. You should
always use this style when you are using attribute values that have come directly from a Web page.
If you did not use the ? placeholders and instead simply inserted the variables containing values
that a user typed, you would be opening your application up to adverse attacks.

A malicious user could gain control over your database and execute any SQL statement they
desired by submitting parameter values which themselves contained SQL commands. You may
have heard this type of attack referred to as a SQL Injection Attack. When you use the placeholder
style, Rails prevents this type of attack by quoting and escaping the attribute variables.

You can also pass the : order parameter to the £ind method to sort the returned objects. Here
you find all of the database rows and sort them by the issue attribute in descending order:

ComicBook.find(:all, :order => 'issue DESC')

There is also a £ind_all method that returns all of the rows in your database. You can call this
method with no parameters and all of your database rows will be returned as an array of objects.
Be wary of using this method if your database contains many rows, as this uses a lot of memory to
hold all of the objects that are created.

Dynamic finders
In addition to the basic £ind method, Rails creates additional finder methods dynamically that

correspond to each of the columns in your database. For example, in your ComicBook class, you
can easily find all of the comic books written by Stan Lee using this code:

results = ComicBook.find_by writer ('Stan Lee')

You can use £ind_by method for every column in the table. These methods are dynamically cre-
ated using the method_missing technique that was also used to create attribute accessors
explained earlier in this chapter.

Now what if you want to find all of the comic books written by Stan Lee and drawn by your favor-
ite artist? Rails can help you out there, too. In addition to the single-column £ind_by methods,
Rails will also dynamically generate multiple-column £ind_by methods. You could answer your
question with the following code:

results = ComicBook.find by writer_and_ artist('Stan Lee', 'Steve
Ditko')

127

m Rails In Depth

128

In fact, Rails provides you with £ind_by methods using any number of your column names. Each
column name is separated from the preceding by and, as in the above two-column example. Going
a step further, you could execute the following £ind method, as well:

results = ComicBook.find_ by writer_and_artist_and_title('Stan
Lee', 'Steve Ditko', 'Spiderman') ;

Find using SQL

1f the £ind methods that Active Record provides for you do not meet your requirements, you can
resort to using raw SQL to find the records that you want. You do this by using the £ind_by_sqgl
method. This method takes a SQL statement as a parameter and executes that SQL statement. The
records retrieved by the SQL statement you passed are returned in an array from the £ind_by_
sgl method.

Here’s an example that uses the £ind_by_sqgl method:

results = ComicBook.find_by sqgl ("SELECT * from comic_books WHERE
issue>25")

In this example, the SQL statement "SELECT * from comic_books WHERE issue>25" is
passed to the database, and the records retrieved are turned into ComicBook objects and returned
in an array.

Creating and finding data with the Rails Console

If you've been reading along in this chapter up to this point, you've learned a lot of new techniques
for creating and reading data into your application. Let’s take a break from the Rails detailed cover-
age and try out some of what you've learned using the Rails Console.

1. At acommand-line, start up the Rails Console for your chapter3 project. At the root
of the chapter3 project, type this:

ruby script/console

This starts the Rails Console. Recall that the Rails Console is an interactive environment
in which you have full access to your Rails classes and the full power of Ruby.

2. Find a record stored in the database. Earlier in this chapter, you ran a migration that
added a row to the comic_books table. Now use the £ind method to retrieve this
record, as shown here:
comic_book = ComicBook.find(:first)
puts comic_book.title
=> Captain America

The first line should have found the comic book entry you created earlier, and the second
line prints the comic book’s title. You should see the comic book’s title, ' Captain
America', printed on the console.

Using Active Record

3. Create a new instance of your ComicBook class. Now, create an instance of the
ComicBook class and set its attributes, like this:

comic_book = ComicBook.new

comic_book.title = 'Spiderman'
comic_book.issue =1
comic_book.writer = 'Stan Lee'
comic_book.artist = 'Steve Ditko'
comic_book.publisher = 'Marvel'

4. Create a new row in the database by saving the ComicBook instance.
comic_book.save

By executing the save method, you have saved the new comic book to the database.
Your database should now contain two records. Verify that in the next step.

5. Retrieve all database rows. Use the £ind_all method to get all of the rows in the
database as an array of ComicBook objects. Use the Array#1length method to get a
count of objects in the database.

all _rows = ComicBook.find_all

puts all_rows.length

=> 2

This should print a value of "2 to the console, because the comic_books table should
now contain two records. If you created the comic book records that were shown in the
“Creating Records” section, you probably are up to six comic books in the database
instead of two.

6. Retrieve a database row by its primary key. Use the £ind method and the 14 from the
comic book you saved in Step 3 to retrieve that item from the database.
id = comic_book.id
new_comic_book = ComicBook.find(id)
puts new_comic_book.writer
=> Stan Lee

This should have found the comic book that you created in Step 1 and printed its writer
to the console.

7. Retrieve a database row using a dynamic finder method. Use one of the dynamic
finder methods, such as £ind_by_title shown here, to retrieve the new record by its
title.
a_comic = ComicBook.find_by title('Spiderman')
puts a_comic.issue
=> 1
This should have found the comic book that you created in Step 1 and printed its issue
number to the console.

By now, you've learned how to create and retrieve records from your database the Rails way. Next,
you'll learn how to update and delete records.

129

m Rails In Depth

130

Updating records

After you've made changes to a model, you usually want to save those changes back to the data-
base. With Rails, you update your database records just by working with your model classes. You
do not have to write any SQL code to perform database updates.

Before you can update a record, you first need to retrieve it. Here you retrieve the first record in
the database and change the issue number:

comic = ComicBook.find(:first)
comic.issue = 100
comic.save

This code is very simple. You retrieve the desired record from the database, update one or more
attributes on the returned object, and then perform a save.

You can simplify the above code even further by using the update_attribute method, as
shown here:

comic = ComicBook.find(:first)
comic.update_attribute :issue, 100

The update_attribute method allows you to set the value of an attribute and save the
changed value back to the database in one step.

Deleting records

Rails has two methods for deleting objects from your database. These methods are slightly different
in their behavior, and are as follows:

B delete: Aborts on minor errors.

B destroy: Does not abort unless there is a critical database error.

You can call either of these methods on any of your model object instances, such as your comic
book instance:

comic.destroy

After calling the method, the record associated with the object is deleted from the database
immediately.

Using development log files

Rails insulates you, the developer, from having to write SQL statements to access your database.
However, there are times when you're debugging an application and you'd like to know what SQL
Rails is using internally. For this purpose, the place to look is the development log file.

Open up the development. log file in the chapter3/log directory. You should see some-
thing similar to Figure 3.3.

Using Active Record

FIGURE 3.3

The development . log file

B development.log - Notepad lg@
Format iew Help

WARNING: vou're using the Ruby-based mysqlL 1ibrary that ships with Rails. This Tibrary s
is nmwz_‘smte%ijfor production.” Please install the C-based mysoL Tibrary instead Cgem
insta mys .
0[4;36;0 e .000000)0[Cm 0[0;1mSET NAMES 'utfs'0[om
D[UmSET SQL_AUTO_IS_NULL=00[0m
0[0; IMCREATE TABLE ‘schema_info’ (version int(ll)do[om
1 [ONINSERT INTO "schema_infa’ Cvarsion) vaLUES(0)0[dm
0[0; Imiysql s Errar : #AIZSolTab'\E “schema_info' already
_info. {version wnt(ll))
0[OMSELECT wversion FROM schema dnfoo[om

)n[om 0[0;1MCREATE TABLE comic_baooks® ("id” mt(ll) DEFAULT
NULL auto_inpcr ement PRIMARV KEY, title' warchar(255) DEFAULT NULL, ‘write
varchar(zssj DEFAULT MNULL, ‘artistt wvarchar(255) DEFAULT NULL, “issue” 1nt(11) DEFAULT
MULL, ‘publisher® warchar(255) DEFAULT NULL, ‘created_at’ datetime DEFAULT NULL
updated at’ datetime DEFAULT WULL) ENGINE=INNODED[Om
0[4;35;1msqL (0.032000)0[0m 0[OmUFDATE schema_info SET version = 10[om
imsaL (0. oooooo)n[Om 0[0; ImSELECT version FROM schema_infoD[Om
migrating to addpefaultpata
0[4;35;ImComicBook Columns (0 031000y0[0m 0[0msHOW FIELDS FROM “comic_books'o[om
ImsqL (0.00000070[0m 0[0;1mBEGIND [Om
ImComicBook Create €0. oooooojn[Om D[OmINSERT INTO “comic_books' ¢artist’
pu 1isher”, 1ssue , ‘created_at’y VALUES(Marie
26:08', 'Roger stern', 'spectacular spiderman', ‘marvel’, 54,

0[0; ImCOMMITE [Om
0 [OmUPDATE schema_info SET version = 2p[om
. 00000070 [om 0[0;1MSELECT * FROM schema_infoo[om
.01gooo)ofom 0[OmSHOW TABLESD[Om
L 000000) 0 [Om 0[0;1mSHOW FIELDS FROM “comic_books ™ o[om
04 Imsal (0.015000)0[0m 0[0mdescribe "comic_books 0[om
0[4;36;1msqL (0.000000)0[0m 0[0;1msHOW KEVS FROM “comic_books ™ 0[om

The development . log file contains every SQL statement that is sent to the database server,
including the details of how long it took to execute each SQL statement.

This level of logging would impact the performance of your production environment. You'd also
end up with a very large log file that you’d somehow have to manage. For these reasons, you only
get the SQL statement logging when you are in the development environment.

Defining Relationships

Modeling data relationships in your classes is an important part of mapping data that is stored in a
relational database. The word relational implies that there are relations among the database tables
that contain your data. Active Record provides powerful yet very easy-to-use syntax for represent-
ing data relationships in your model classes.

You define relationships in your data models using the data modeling domain-specific language
(DSL) that is built into Active Record. Throughout this section, you can see examples of how
Active Record’s DSL makes data modeling easy for you, the developer.

The relationships that you'll define are of the following types:

B One-to-one
B Many-to-one

B Many-to-many

To implement these relationship types, Rails uses the following methods, which make up the Rails
association DSL:

131

132

Rails In Depth

belongs_to

has_one

has_many
has_and_belongs_to_many

acts_as_list

acts_as_tree

You use these methods within your model classes to create associations. As you use these methods,
their use may seem more like a natural part of the language, as opposed to the fact that you are
explicitly calling methods. This is the hallmark of a well-designed DSL. Each of the methods is
used with the form shown here:

<relationship> <relationship_target> <named parameters>
For example, a typical use of the has_many method would look like this:
has_many :chapters :order=>position

In this example, the relationship is has_many, the relationship target is : chapters and
:order=>position is a named parameter that specifies how the associated chapters should be
ordered. The following sections cover in more detail how these methods are used for each of the
relationship types.

One-to-one relationships

The one-to-one relationship is the simplest relationship, and can be modeled as shown in Figure 3.4.
This type of relationship implies that there is a one-to-one correspondence between objects of one
type and objects of another type. A one-to-zero-or-one relationship is actually modeled in the same
way. In a one-to-zero-or-one relationship, one side of the relation can be empty.

The example used in Figure 3.4 considers books and their cover images. Assuming that the same
image is never used on two different book covers, there is always a one-to-one relationship
between books and cover images. Another way of saying this is that a book has one cover image,
and a cover image belongs to one book.

Modeling this type of relationship in a Rails application requires a foreign key in one of the data-

base tables and the use of some Rails DSL magic in your model classes. The foreign key should be
used in the table that represents the zero-or-one side of the relationship. If it is a strict one-to-one
relationship, one of the objects will usually seem to be naturally more dominant. The foreign key
goes with the table of the less dominant object.

In the example of Figure 3.4, the cover_images table contains a foreign key book_id associat-
ing a cover_image with a specific book.

FIGURE 3.4

Using Active Record

One-to-one relationship

books

id: \ id:
book_id:

cover_images

class Book

class Coverlmage

has_one :cover_image

belongs_to :hook

cover_image

book

The Book class uses the has_one method to create the relationship with a CoverImage object:

class Book < ActiveRecord: :Base

has_one
end

:cover_image

Methods added by has_one

The has_one method causes the following methods to be automatically added to the Book class:

B cover_image

Returns the associated CoverImage object, or nil if no object is associated.

B cover_image=

Assigns the CoverImage associate object, extracts the primary key, sets it as the foreign
key, and saves the Book object.

B cover_image.nil?

Returns true if there is no associated CoverImage object.

B build_cover_image (attributes={})

Returns a new CoverImage object that has been instantiated with attributes and
linked to this Book object through a foreign key, but has not yet been saved. This will
only work if the association already exists. It will not work if the association isnil.

B create_cover_image

Returns a new CoverImage object that has been instantiated with attributes, linked
to this Book object through a foreign key, and that has already been saved. Notice how
this is different from the build_cover_image method, in that this method saves the

associated CoverImage instance that is returned.

These methods are all related to the associated class, which is the CoverImage class. For general
purposes, replace the text cover_image in the methods above with the singular form of the asso-
ciated class for whatever classes you are associating with the has_one relationship to get the

methods added.

133

m Rails In Depth

134

The CoverImage class also requires some special Rails code. For this side of the relationship, you
use the belongs_to method, like this:

class CoverImage < ActiveRecord: :Base
belongs_to :book
end

Methods added by belongs_to

The belongs_to method causes the following methods to be automatically added to the
CoverImage class:

B Dbook
Returns the associated Book object, or nil if no object is associated.
B book=
Assigns the Book associate object, extracts the primary key, sets it as the foreign key.
B book.nil?
Returns true if there is no associated Book object.
B build_book(attributes={})

Returns a new Book object that has been instantiated with attributes and linked to
this Book object through a foreign key, but has not yet been saved.

B create_book

Returns a new Book object that has been instantiated with attributes, linked to this
CoverImage object through a foreign key, and that has already been saved. Notice how
this is different from the build_book method, in that this method saves the associated
Book instance that is returned.

These methods are all related to the associated class, which is the Book class. For general purposes,
replace the text book in the methods above with the singular form of the associated class for what-
ever classes you are associating with the belongs_to relationship to get the methods added.

Many-to-one relationships

The many-to-one relationship is the most common type of data relationship. The simplest way of
explaining a many-to-one relationship is with a picture. Figure 3.5 shows a many-to-one relation-
ship that exists between books and chapters. A book represents the ‘one’ side of the relationship,
and the chapters are the ‘many’ side of the relationship; one book contains many chapters.

Both chapters and books are models in your Rails application. In your database, each of the models is
represented in a separate table. Databases use a concept called foreign keys to create a relationship
between two tables. A foreign key is a column in one table that points to a row in a different table. In a
Rails application, the foreign keys must be named with the singular form name of the table they are
pointing to, followed by _id. For example, the foreign key column in the chapter’s table would be
named book_id. This column specifies the book that a chapter is contained within.

Using Active Record

FIGURE 3.5

Many-to-one relationship

books chapters

id: \ id:
book_id:

class Book class Chapter
has_many :chapters belongs_to :hook
chapters|] book

In addition to setting up your database schema in the correct way to model a many-to-one rela-
tionship, you also add special code to your model classes in a Rails application. Using the books
and chapters example, your Book class would look like this:

class Book < ActiveRecord::Base
has_many :chapters
end

The has_many method indicates that a book has many chapters.

Methods added by has_many

By using the has_many method, the following methods are added to your Book class:

B collection

Returns an array of all the associated objects. An empty array is returned if none are
found.

B collection<<(object, ..)

Adds one or more objects to the collection by setting their foreign keys to the collection’s
primary key.

B collection.delete(object, ..)

Removes one or more objects from the collection by setting their foreign keys to NULL.
This will also destroy the objects if they are declared as belongs_to and dependent on
this model.

B collection=objects

Replaces the collection’s content by deleting and adding objects as appropriate.
B collection.singular_ids

Returns an array of the associated objects’ ids.
B collection.singular_ids=ids

Replace the collection with the objects identified by the primary keys in ids.

135

m Rails In Depth

136

collection.clear

Remove every object from the collection. This associated objects are destroyed if they are
associated with : dependent => :destroy, or deleted from the database if associated
with :dependent => :delete_all, otherwise their foreign keys are set to NULL.

collection.empty?

Returns true if there are no associated objects.
collection.size

Returns the number of associated objects.
collection. find

Finds an associated object using the same rules as when you use the £ind method from
one of your Active Record models directly.

collection.build(attributes = {})

Returns one or more new objects of the collection type that have been instantiated with
attributes and linked to this object through a foreign key, but have not yet been
saved. This will only work if the associated object already exists and is not nil.

collection.create(attributes = {})

Returns a new object of the collection type that has been instantiated with attributes,
linked to this object through a foreign key, and that has already been saved. This will
only work if the associated object already exists and is not nil.

Where the collection is referenced, in the case of the Book class this would be chapters.
For example to determine how many chapters are associated with a given book, you could use this

method:

chapter_count = book.chapters.size

You also add code to the Chapter model, which would look like this:

class Chapter < ActiveRecord: :Base

belongs_to :book

end

Here you used the belongs_to method, which is the other side of a has_many relationship.

Methods added by belongs_to

You have already seen the methods that are added by the belongs_ to relationship previously
when we discussed the has_one and belongs_to relationships.

Many-to-many relationships

In a many-to-many relationship, each side of the relationship can point to more than one related
object. Again, the best way to illustrate this kind of relationship is through a picture. Let’s look at
the many-to-many relationship in Figure 3.6. This example uses a Book and a Store model. A store

FIGURE 3.6

Using Active Record

contains many books, and thus it’s easy to understand this ‘many’ side of the relationship. Looking
at the relationship from the other direction, a book is usually sold in many different stores. Because
both objects can be related to many of the other objects, you have a many-to-many relationship.

In a many-to-one relationship, a foreign key was used to model the relationship in the database. A
many-to-many relationship must be modeled in the database using a slightly more complex tech-
nique. You use a relationship join table to model the many-to-many relationship. In Figure 3.6 this
join table is shown as books_stores. In order for Rails to recognize the table and correctly build
the association, this join table should be named with the names of the two related tables in alpha-
betical order and separated by an underscore. Thus in this case, you end up with the table named
books_stores. You would create this table using a migration, just as you create regular model
object tables. However, you do not need to generate a model class to represent this table.

Many-to-many relationship
hooks books_stores stores
id: book_id: / id:
store_id:
class Book class Store
has_and_belongs_to_many : stores has_and_helongs_to_many : books
stores|] books(]

As with the other Rails recognized relationships, you also have to add some code to each of the
related models. The method call that you will add to each model is the same in this case. It is the
has_and_belongs_to_many method. You will often see this shortened as HABTM in discus-
sions online. So following through with the example shown in Figure 3.6, you would add this
method to each of the Book and Store classes.

class Book < ActiveRecord: :Base
has_and_belongs_to_many :stores
end

class Store < ActiveRecord: :Base
has_and_belongs_to_many :books
end

Methods added by has_and_belongs_to_many

By using the has_and_belongs_to_many method, the following methods are added to your
Book and Store classes:

137

138

collection

Returns an array of all the associated objects. An empty array is returned if none are
found.

collection<< (object, ..)

Adds one or more objects to the collection by creating associations in the join table
(collection.pushand collection.concat are aliases to this method).

collection.delete(object, ..)

Removes one or more objects from the collection by removing their associations from the
join table. This does not destroy the objects.

collection=objects

Replaces the collection’s content by deleting and adding objects as appropriate.
collection.singular_ids

Returns an array of the associated objects’ ids.
collection.singular_ids=ids

Replace the collection with the objects identified by the primary keys in ids.
collection.clear

Remove every object from the collection. This does not destroy the objects.
collection.empty?

Returns true if there are no associated objects.

collection.size

Returns the number of associated objects.

collection.find(id)

Finds an associated object responding to the id and that meets the condition that it has
to be associated with this object.

collection.build(attributes = {})

Returns a new object of the collection type that has been instantiated with attributes
and linked to this object through the join table, but has not yet been saved.

collection.create(attributes = {})

Returns a new object of the collection type that has been instantiated with attributes,
linked to this object through the join table, and that has already been saved.

Where the collection is referenced, in the case of the Book class this would be stores, and
in the case of the Store class, this would be books. For example to determine how many stores
are associated with a given book, you could use this method:

store_count = book.stores.size
and to find the number of books in a given store, you could use this method:

book_count = store.books.size

Using Active Record

Implementing Validations

Validations allow you to define valid states for each of your Active Record model classes. Rails
makes it easy to add validations to your model classes. As you saw with modeling relationships in
Rails, you make use of more of Active Record’s domain-specific language to model validations in
your Rails application. You can do several kinds of validations using the built-in validation DSL.

When an attribute in one of your Active Record model classes fails a validation, that is considered
an error. Each of your Active Record model classes maintains a collection of errors in an attribute

called errors. This makes it easy for you to display appropriate error information to the users of
your application when validation errors occur.

Now let’s look at some examples of how you might use validations in your code. Remember the
example of comic books that you worked with in previous sections of this chapter? Add a valida-
tion to ensure that a comic book always contains a title. Open the app/models/comic_book.
b file and edit it as follows:

class ComicBook < ActiveRecord: :Base
validates_presence_of :title
end

The validates_presence_of method adds a validation to the ComicBook class that will
make sure every comic book has a title. If you attempt to save a ComicBook instance that does
not contain a title, you will get an error preventing the record from being saved. There is a method
available to you named valid? that you can use to test the validity of your attributes at any time.
The valid? method will run the validations and return true or false indicating whether the vali-
dations passed for the model instance on which it was called. In the example below, you would get
a return value of false when you call the valid? method.

comic = ComicBook.new
comic.valid? #=> false

You could then look at the errors collection to see what the validation problems are.

comic.errors.each_full do |message|
puts message
end

Since you have only defined one validation for the ComicBook class, this would print the follow-
ing message:
Title can't be blank

If you had defined additional validations, you would see an error message for each validation that was
unsuccessful. This is very useful to use when displaying errors to the user of a Web application.

There are also methods available on the errors collection that are useful for obtaining additional
information about your validation errors. The method invalid? allows you to pass it a specific
attribute name and it will return true or false to tell you whether that specific attribute is valid or
not. Using the comic book example, you could use this method like this:

139

m Rails In Depth

140

comic = ComicBook.new
comic.valid?
comic.errors.invalid? (title) #=> true

Calling invalid? on the title attribute returns true since that attribute does not pass the vali-
dates_presence_of validation. If you want to get the error message associated with a specific
attribute, you can use the on method as shown here:

comic = ComicBook.new
comic.valid?
comic.errors.on(:title) #=> can't be blank

This returns the string "can't be blank". Notice that the word "Title" is not a part of the
string that is returned.

Note that you can only call these methods on the errors collection after you have performed a
validation, such as by using the valid? method.

The next validation method we’ll look at is the validates_format_of method. This method is
useful for ensuring that an attribute conforms to a specific format. One of the places this is used
most often is to validate the format of an email address. Below is an example of how you
might use the validates_format_of method within a User class to validate an email
attribute.

class User < ActiveRecord: :Base
validates_format_of :email
end

Rails includes many more built-in validation methods. These are briefly described in Table 3.2. For
complete details of how these methods work and the options that you can use with these, you
should refer to the Rails documentation on validations available online at the following URL:

http://api.rubyonrails.org/classes/ActiveRecord/Validations/
ClassMethods.html

If you want to save an object despite any validation errors that you might have you can call the
save method with an argument of false. The line below will force the object to be saved even with
validation errors:

comic = ComicBook.new
comic.save (false)

TABLE 3.2

Using Active Record

Method

Rails Built-in Validation Methods

Description

validates_
acceptance_of

validates_associated

validates_
confirmation_of

validates_each

validates_
exclusion_of

validates_format_of

validates_inclusion_

of
validates_length_of

validates_
numericality_of

validates_presence_
of

validates_size_of

validates_
uniqueness_of

This validation is best described using an example. You could use this validation to
validate that the user has accepted a terms of service agreement by checking a check
box.

Validates whether associated objects are all valid themselves. Works with any kind
of association.

Allows you to validate that the user has confirmed fields such as a password or email
address in a second entry field.

Validates each attribute against a block.

Validates that an attribute is not in a particular enumerable object.

Validates the value of an attribute using a regular expression to insure it is of the
correct format.

Validates whether the value of an attribute is available in a particular enumerable
object.

Validates that the length of an attribute matches length restrictions specified.

Validates whether an attribute is numeric.

Validates that the attribute is not blank.

This is an alias for validates_length_of

Validates that an attribute is unique in the database.

Custom Validations

If you find that the built-in validation methods do not meet your needs, you can create custom val-
idations that still allow you to use Rails errors collection and validations mechanics. You do this by
defining a validate method for the Active Record class that you want the custom validations on.
In this validate method you can check the state of multiple attributes and manipulate the errors
collection as needed.

This might be very useful for cases when you want to determine the validity of your object based
on the values of multiple attributes. For example, suppose you want to be sure that a user has
either entered a login name, or an email address when registering. You could do this with the fol-
lowing custom validation:

141

142

Rails In Depth

Class User < ActiveRecord: :Base
def validate
if login.blank? && email.blank?

errors.add_to_base("You must enter either a login or an email
address")
end
end
end

If both the 1ogin and the email are blank, an error message is added to the errors collection.
This is done using the add_to_base method of the errors collection. This method allows you
to add an error message that is not associated with a specific attribute, but instead it is associated
with the object as a whole.

If you wanted to add your own error message specific to an attribute, you can do that using the
add method of the errors collection. This method takes the name of an attribute and the error
message you want to associate with that attribute as parameters. Below is an example of how you
might use this method:

comic_book.errors.add('login', 'You must enter a login name')

There is one more method that you'll find handy when using the errors collection. That is the
clear method. The clear method will clear the errors collection of all errors. To repopulate
it, you must validate the object again through either built-in or custom validations, or simply add
error messages to it manually using the above add methods.

comic_book.errors.clear

Advanced Active Record

You can create many very powerful Web applications using only the techniques and methods that
were covered in the previous sections of this chapter. However, there are times when you may want to
implement more advanced data related code. This section walks you through several more advanced
things that you can do with Active Record. You'll learn how to implement single table inheritance, how
to use composition, and how to implement transactions using Active Record and Rails.

Single table inheritance

Active Record uses a database technique called single table inheritance to support inheritance in
your model classes. With single table inheritance, a class and all of its descendents use the same
database table. For example, the ComicBook model that you've been working with in this chapter
could have extended a model class called Book, because a comic book is a type of book. Your
application might also work with other types of books, such as text books. You might have a
TextBook model which also extends the Book model. With single table inheritance, books,
comic books, and text books would be stored in the same table. See Figure 3.7 for an example of
how the classes and database should be laid out.

FIGURE 3.7

Using Active Record

Single table inheritance

Book
title
author
[|
ComicBook TextBook
artist Subject
grade_level
books]

Id type title author artist subject grade_level
1 ComicBook Spiderman S.Lee M. Bagley
2 TextBook Easy Math J.Doe Math 4

Notice that the common table is given the plural name of the base class. In this case, the table is
named books. The books table contains a column named type, which specifies for a particular
record whether that record is a text book or a comic book. Active Record automatically manages

the type column.

Your model classes would be defined like this:

class ComicBook < Book

end

class TextBook < Book

end

class Book < ActiveRecord: :Base

end

If you perform a query using the Book class, it returns both text books and comic books. A query
using the ComicBook class returns only comic books and a query using the TextBook class

returns only text books, as expected.

If you ever need to see the type field, you cannot access it using book . type because the type field
is a class attribute. However, you can access it from your objects like this:

book[: type]

The above line would return the type of the object, either ComicBook or TextBook.

143

FIGURE 3.8

Rails In Depth

Composition

Composition is a design pattern in which you have one class composed of several other classes. Note
that this is not the same as inheritance, in which a subclass extends a base class. With composition,
you have a main class and one or more component classes. This design pattern is also referred to as
aggregation.

Rails implements the composition pattern using one table that is mapped to multiple classes.
Consider the example of a Book that is composed of a Publisher. Figure 3.8 shows how the
classes and database table would be laid out. As you can see, the books table contains columns for
attributes that exist in both the Book and Publisher classes. You would implement the compo-
sition in your Book model class like this:

class Book < ActiveRecord: :Base
composed_of :publisher, :class_name => "Publisher",
:mapping => [[:publisher_name, :name],
[:publisher_country, :country]]
End

Rails implementation of the Composition Pattern

144

books
Book

Id -

id
title — | title

author
author publisher
publisher_name l
publisher_country

Publisher
name
country

The first parameter to composed_of is the name that the component class is referred to by the
main class. In this example, because the first parameter to composed_of and the component
class name are the same, you could have eliminated the : class_name parameter. By default,
Rails looks for a class that contains the same name as the first parameter to composed_of.

The : class_name parameter allows you to override the Rails default and use a different name
from that of the class as the first parameter. For example, you could have used this line:

composed_of :publisher_info, :class_name => "Publisher",

Using Active Record

The second parameter to composed_of specifies the attribute mappings. The :mapping array
associates columns in the books database with attributes in the Publisher class. For the map-
ping in this example, the publisher_name column in the books table is mapped to the name
attribute of the Publisher class, and the publisher_ country column is mapped to the
country attribute of the Publisher class.

You also have to add some code to your component class, Publisher. Publisher would look
like this:

class Publisher
def initialize (name, country)
@ name = name
@ country = country
end

attr_reader : name, : country
end

You must create an initialize method that contains a parameter for each attribute that the
component represents. Within the initialize method, you have to create instance attributes
for each of the component attributes.

Rails adds accessors to the main class for the component class and each of its attributes. You could
access the Publisher object from an instance of the Book class using: book.publisher. You
can also set the publisher of a book using this code:

book.publisher = Publisher.new('', '', '"')

You access each of the attributes in the component class through the parent class attribute of the
main class. From an instance of the Book class, you would access the Publisher attributes like
this:

pub_name = book.publisher. name
pub_country = abook.publisher. country

Composition is often used when you have a class that you want to use across many models. An
often-cited example is the case of a Person and Address class. A Person is composed of an
Address. In this example, you might want to also use the Address class across other models.
The Business and Museum classes might also be composed of an Address. Employing compo-
sition in this example would save you from having to repeat the attributes and behavior contained
in the Address model in all of the models that are composed with it.

Transactions

Many applications that you write will require the use of database transactions. Transactions are a
way of grouping database actions together, such that they either all execute as expected, or none of
them execute in the case of an error.

145

Rails supports transactions using a transaction class method that is available on all model classes
that extend ActiveRecord: :Base. A typical example of when transactions are required is when
you are working with bank accounts. When you transfer money from one account to another, that
process can be broken down into the following actions:

1. Subtract the transfer amount from the account that you are transferring from.

2. Add the transfer amount to the account that you are transferring to.

If the first action, subtracting the money from the ‘from’” account succeeded, but the second action
of adding the money to the ‘to’ account failed, you would have many unhappy customers if your
application did not make use of transactions. If both of these actions were wrapped in a transac-
tion, a failure in the second action would cause the first action to be undone, or rolled back. A roll
back is a database term for undoing an action that was performed on the database.

Using this example, in your Rails application, you would likely have a class named Account. The
Account class would have a transfer method implemented as follows:

def transfer (from, to, amount)
Account.transaction do
from.withdraw (amount)
to.deposit (amount)
end
end

Now if any failures occur in either of the method calls contained in the block that begins with the
Account . transaction do line, all of the database actions will be rolled back. Therefore, either
both the withdrawal and deposit actions succeed, or they are both rolled back. This is exactly the
behavior that you were seeking.

Summary

This chapter explored the details of Active Record and how you can use its features to create the
model layer of your Web application. You were shown how to use Active Record to perform the
following tasks:

Create models for your application using the Rails script/generate script
Use Rails migrations to create and modify your database
Find records in your database using a variety of ActiveRecord methods

Update and delete rows in your database

Model your database relations using ActiveRecord methods
B Add data validations to your model classes

You also learned how to use some advanced features of Rails, including Single Table Inheritance,
Composition, and Transactions. Active Record allows you to create the model layer of your Web
applications with ease and simplicity.

146

n this chapter, you will learn about the controller layer of the MVC

framework implemented in Rails applications. The controller layer of an

MVC application is responsible for figuring out what to do with external
input. The controller layer interprets user input and responds to user
requests by communicating with the model layer, and rendering views using
the view layer. You can think of the controller as the conductor of the appli-
cation; it determines which views to show based on the input received.

The controller layer should be the only layer of your application that knows
the client is actually a Web browser. All interaction with the Web server and
knowledge of such interaction should be confined to methods in your con-
troller classes. This layer should not contain a great deal of your business
logic; the business logic should be contained within your model layer.
Theoretically, you could rewrite the controller layer to adapt the application
to a different platform, such as a non-browser environment.

Rails implements the controller layer primarily using a component called
ActionController. ActionController is joined with ActionView to make up the
Action Pack component of Rails. Action Pack provides the functionality for
processing incoming requests from the browser and for generating responses
to the browser.

What is ActionController?

In Rails, your application’s controller and view layers use the Action Pack
components of Rails. Controllers are implemented using the

147

IN THIS CHAPTER

What is ActionController?

All about routing

Creating and using controllers

Using filters

Working with sessions

Caching

148

ActionController component of Action Pack. The ActionController component provides you with
an easy-to-use functionality related to the following areas:
B Routing
Interfacing with the Web server
Using sessions

Cache management

Rendering view templates
Throughout this chapter, you can learn how ActionController helps you with each of these tasks.

In a typical Rails application, you might have many controller classes. Each of your application’s
model classes will typically have a controller class for working with that model. For example, you
might have defined a user model or a book model. You would probably also want to create a
UserController class and a BookController class. These controller classes would handle
requests to show, create, update, and delete these types of model objects. Each controller class you
write will inherit from the Rails class, ActionController: :Base. This is how your controller
classes gain the power of Rails.

All About Routing

A Web application receives requests from a browser, takes action to process those requests, and
returns a response that is directed back to the browser. Sitting in between the browser and the
Web application is usually a Web server. The Web server passes the browser requests to your Rails
Web application, but once they are passed into your application, where do they go from there? The
ActionController component uses a routing subsystem to route the Web requests to the appropri-
ate method in your Rails application. The routing subsystem routes requests to methods that are
called action methods. The action methods are contained in controller classes.

The action methods in your application’s controller classes receive the incoming requests and
invoke methods contained in other layers of the application, such as the model layer; using the
view layer, a response is generated and returned to the requesting browser.

The Rails routing mechanism is very flexible and can be adapted to meet any special requirements

that you might have. However, you can get basic routing functionality immediately without having
to write a single line of configuration code. The basic routing functionality is useful for many com-
plete Web applications that you may write.

Let’s start by looking at an example request from the browser to this URL:

www . bookstore.com/book/show/1234

Controller: In Depth

This request is received by the Web server and passed to the routing subsystem of Rails. The rout-
ing subsystem interprets this as a request to invoke the show method of the BookController
class and pass an id parameter of 1234. The flow of events that occur when this request is
received looks like this:

1. The Web server passes the request to the Rails routing subsystem.

2. The routing subsystem parses the request, identifying the requested controller and
action.

A new instance of the requested controller is created.

The process method of the controller is called and is passed request and response
details.

5. The controller calls the specified action method.

=8 For more information on templates, see Chapter 5.

S=Iv

GCROS
SO
Observe the pattern here in relation to how the request was routed:

http://server_url/controller name/action name/optional id

This is the default routing mechanism that is built into Rails. The first path element following the
server URL is the name of a controller to invoke. The second path element is an action contained
within that controller, and the last path element is the 1d of a data item. Not all of your actions
will require a parameter, and so the 1d path element is optional. For example, a request to list all
of the books contained in the store might look like this:

http://www.bookstore.com/book/1list

Defining custom routes

You do not have to use the default routing mechanism if it does not meet your needs. Let’s look at
an example of where you might want to define a custom routing mechanism. You might have a
Web application that lets users view articles posted on previous days. Perhaps you want to be able
to accept URLs that look like this sample:

http://myarticles.com/article/2008/1/20

You would like this to be interpreted as a request for articles that were created on the date
1/20/2008, and so the general routing pattern would look like this:

http://myarticles.com/article/year/month/day

So how do you tell Rails about that routing pattern? The answer is through a file that was gener-
ated when you generated the Rails skeleton for your application using the rails command. This
file is the routes. rb file found in the config subdirectory of your Web application directory.
Open up config/routes.rb and take a look at the default routes. You should see these routes
already defined:

149

150

map.connect ':controller/:action/:id.:format'
map.connect ':controller/:action/:id'

Each of the map . connect statements defines a route that connects URLs to controllers and
actions. The string passed to the map . connect method specifies a pattern to match the URL
against. The routes you see defined look for three path elements. The path elements are mapped to
the fields named in this string and placed into a parameters hash. For example, the path book/
show/1234 produces the following parameters hash:

@params = { :controller => 'book’
raction => 'show'
:id => 1234 }

The routing subsystem then invokes the show method of the store controller and passes a
parameter of :1d with a value of 1234.

Now that you understand how the default route is implemented, let’s figure out how you would
define a route to map the URL containing year, month, and date path elements. Remember that, as
in the case of the default route, you must pass a route pattern string to the map . connect method.
The pattern string matching the desired URLs would look like this:

"article/:year/:month/:day"

This pattern matches the path elements of the URLs that you want to use. If you create a route
using this string passed to the map . connect method, does that define a complete route? If you
think it does, let me ask this: What action method would these requests be routed to? This route
pattern does not include an action name. Therefore, you know the route is not complete as is. The
pattern string is complete, though. It contains enough information to match the desired URL for-
mat. You need to pass an additional parameter to map . connect to specify an action. This would
give you a route that looks like this:

map.connect "article/:year/:month/:day",
:controller => "article",
raction => "show_date"

This route works as long as the URL always contains a year, a month, and a date. Suppose you
want to also allow users to enter only a year, or only a year and month, and see the articles corre-
sponding to those timeframes. To make that work, you can tell the route that the : day and
:month elements do not have to be there, or in Ruby code, you can say that these elements can
have a nil value. You would now modify the route to look like this:

map.connect "article/:year/:month/:day",
:controller => "article",
:action => "show_date",
:day => nil,
:month => nil

Controller: In Depth _

Now things are beginning to look pretty good, but what if someone tried to use a URL that looked
like this:

http://myarticles.com/article/8

This URL doesn’t look like it is meant for the route you just defined. However, remember when
you said that the :day and :month elements are not required, and the route was modified to
allow those elements to not be present? Given that, this URL can match the route you defined. It
would interpret the value 8 as the :year parameter. This is probably not what you want, though.
The route would be better if it restricted the date fields to be valid date values. Let’s add that vali-
dation by modifying the route to look like this:

map.connect " article/:year/:month/:day",
:controller => " article",
raction => "show_date",
:requirements => { :year => /(l9|20)\d\d/,
:month => /[01]?\d/,
rday => /[0-3]?\d/ 1},
:day => nil,
:month => nil

Now, a :requirements parameter is added that specifies requirements for the :year, :month,
and :day fields. Regular expressions are used to make sure that each of the date fields contains a
valid value. Now you have a well-defined route for accepting requests like the one you originally
specified:

http://myarticles.com/article/2008/1/20

Defining a custom default route

Now you understand a bit about how requests are routed to your controllers and actions in a Rails
application. Routing is accomplished by parsing path elements of a URL to map a request to a con-
troller and action method. This convention is okay for most of your Web application, but what
about your application’s home page? Typically, you want the home page to be routable just by
going to your application’s server URL without specifying any path elements. For example, the
home page for myarticles.com should be reachable by using this simple URL:

http://www.myarticles.com

Further suppose that your home page featured some dynamic functionality that required process-
ing by your code. How would Rails know what controller and method to route the home page
request to? The answer is to define a route that matches a URL with no path elements, like this:

map.connect "",

:controller => "home",
raction => "index"

151

m Rails In Depth

152

directly in the public directory.

By specifying an empty pattern string, this pattern matches against any URL that it sees, including
the home page request with no path elements. It tells the routing subsystem to send this request to
the index method of the home controller.

ION You must also delete public/index.html in order for the default route to work. This
is because Rails will bypass the routing mechanism for any htmi1 files that it finds

Be careful where you place this in the routes. rb file, though. If a URL matches multiple routes
defined in routes. rb, the first one matched will be the route used. This is important to keep in
mind. If you placed this route as the first route listed in your routes. rb file, this would catch
every request, and every request would end up getting routed to the index method of the home
controller. You would want to list this route at the end of all your routes.

Using named routes

The routes that you've seen so far are called anonymous routes. There is also a way of creating a
named route. A named route will allow you to simplify the URLs that you use in your code.

Named routes are very simple to create. Instead of using the method map . connect in your
routes.rb file, you replace the word connect with the name you want to give to that route.
For example, you could create a named route for the year/month/date articles route that was cre-
ated previously by renaming it like this:

map.dates " article/:year/:month/:day",
:controller => " article",
:action => "show_date",
:requirements => { :year => /(l9|20)\d\d/,
:month => /[01]?\d/,
rday => /[0-3]?\d/ 1},
:day => nil,
:month => nil

You should also rename your home page route to home, like this:
map . home

:controller => "home",
raction => "index"

non
’

This creates a name route called home that will use the home controller and the index action.
Next, you'll see how useful named routes can be.

Within the code that you write, either in classes or view templates, you'll often need to specify
links. Especially for situations where there is a link that you find yourself using over and over
again, such as a link to an action that is accessible from every page, it is useful to have a way of
specifying that link without having to hardcode the full URL into every page template. Named
routes give you the ability to specify a link URL using a convenient name.

Controller: In Depth _

Without taking advantage of a named route, you might have a link specified like this repeated in
many of your template files:

<%= link_to 'Home', :controller => 'home', :action => 'index' %>

However, if you take advantage of the named route you created above using map . home in the
routes. rb file, this link can be specified like this:

<%= link_to 'Home', home_url %>

By using home_ur1l, Rails knows that you are referring to the route named home and will auto-
matically use the controller and method specified in that route. Not only does this reduce the
amount of code that you have to type, but it also abstracts the home page link into a single place—
the named route. If you decided to change the name of the controller or action method used to
display the home page, you will not have to change all of your view templates that use that link.
You only have to change the named route.

You can use named routes to generate URLs in your controller code by using the name of the route
followed by _url. For example, in the previous link, you used the home_url method to create a
link to the home page of the application.

You can also pass parameters to the URL generation methods as a hash to specify details of the
URL. For example, here is how you could create a URL to request all articles for the year 2007
using the dates route that you created earlier:

@articles_2007 = dates_url(:year => 2007)

The parameter : year maps to the : year parameter that you defined in the dates route definition.
You can also pass in parameters that are not defined in the route and they will be appended to the
query string as additional parameters. For example, consider the following code:

Qarticles_2007 = dates_url (:year => 2007, :group_by => 'weekday')

This would result in having an additional parameter named group_by passed into your action
method. You could then use this additional parameter to construct an appropriate query.

Constructing URLs with url_for

Rails provides a method named url_for that allows you another way of constructing URLs
within your code. Recall the route that is defined for you when you first generate a new Rails
application:

map.connect ':controller/:action/:id'

Assume that somewhere in your code, you want to create a URL that would map to the action and
controller specified in that route. The url_for method constructs a URL given a set of options
that you pass to it.

153

m Rails In Depth

@link = url_for(:controller=>"article", :action=>"show",
:1d=>123)

This would create a link in the @1 ink variable with a value similar to this:
http://www.myapp.com/article/show/123

The url_for method takes the parameters passed to it and creates a URL that maps those param-
eters to a pattern specified in one of your routes. This abstracts the details of how your URLs are
specified out of your code. The details of your URLs have to exist in one place only, your
routes.rb file.

In addition to specifying the controller and action when you call the url_for method, there are a
number of additional parameters that url_for supports that allow you to customize the URLs
that it generates. These options are listed in Table 4.1.

TABLE 4.1

url_for Supported Parameters

Option Data Type Description
:anchor String Adds an anchor name to the generated
URL.
:host String Sets the host and port name used in the

generated URL.

:only_path Boolean Specifices that only the path should be
generated. The protocol, host name, and
port are left out of the generated URL.

:protocol String Sets the protocol used in the Generated
URL, that is, ‘https.’

:user String Used for inline HTTP authentication.
(used only if :password is also present)

:password String Used for inline HTTP authentication.
(used only if :user is also present)

:escape Boolean Determines whether the returned URL
will be HTML escaped or not. (true by
default)

:trailing_slash Boolean Appends a slash to the generated URL.

CROSSREE With the release of Rails 2.0 a new style of routing become popular. That style is
e b ‘é _‘_,@3‘ =% called RESTful routes. This is a way of constructing routes that correspond to a
RESTful architecture. RESTful architecture and routes are covered in Chapter 12.

154

Controller: In Depth

Creating and Using Controllers

Now that you understand routes, you should know how requests end up in the action methods of
your controller classes. Now let’s see what your controller methods do with those requests.

Generating controllers

Controller classes can be automatically generated for you using the Rails script/generate
script. You pass the controller parameter and the name of the controller you want to generate to
the script like this:

ruby script/generate controller User

You would run the previous command from the root of your Rails application directory. If you
run this command, you will see output similar to this:

exists app/controllers/

exists app/helpers/

create app/views/user

exists test/functional/

create app/controllers/user_controller.rb
create test/functional/user_controller_test.rb
create app/helpers/user_helper.rb

Three files are created by running the script: the controller class file, a functional test file for the
controller, and a helper file. The controller file is what you want to look at now, so open up the
app/controllers/user_controller.rb file. The file should look like this:

class UserController < ApplicationController
end

The only thing you see in this file is that it is a class that extends the ApplicationController
class. The ApplicationController class was automatically generated by Rails when you cre-
ated the application skeleton using the rails command. Take a look at that file, which you can
find in app/controllers/application.rb:

Filters added to this controller apply to all controllers in
the application.

Likewise, all the methods added will be available for all
controllers.

class ApplicationController < ActionController::Base
helper :all # include all helpers, all the time

See ActionController::RequestForgeryProtection for details
Uncomment the :secret if you're not using the cookie session
store
protect_from_ forgery # :secret =>
'7dbe320£76e9f0135ab2ebl6457a5b20"

end

155

m Rails In Depth

The ApplicationController extends a Rails internal class called

ActionController: :Base. Extending this class is what gives your controllers all of the built-
in functionality that they have, which you'll learn about in this chapter. In the
ApplicationController, you see a method named protect_from_forgery being called.
This method adds protection from malicious attacks against your application.

A common type of attack that is carried out against Web applications is called a cross-site request
forgery (CSRF). This type of attack is prevented by adding a token based on the current session to
all forms and Ajax requests. This allows your controllers to accept only the requests that contain
this forgery protection token.

There is a parameter named : secret that is commented out by default. The : secret parameter
can be used to specify a salt value which is used to generate the forgery protection token. The salt
value assists in making the token more secure. If you do a Google search on CSRF you can learn
more about this kind of attack.

In the ApplicationController, you also see a call to the method helper with a parameter
of :all being passed. This makes all of the helper classes available to all of your controllers.

Take a look at the helper file that was created by the generator. Open up app/helpers/user_
helper.rb.

module UserHelper
end

This is an empty Ruby module. Helper modules are where you will place methods that you want to
share across your view templates. Often, you'll need a method that is used by all of the view tem-
plates associated with the controller. All of the methods that you put into the helper modules are
automatically made available to all of the view templates associated with that controller.

GROS

If you know the names of some of the action methods that you want to include in your controller
class, you can also specify those to the script/generate script and have stubs for those meth-
ods created, as well. For example, run this generate command:

! You can start defining methods for the helper files in Chapter 5 when views are
covered.

e

ruby script/generate controller Book list show new

This creates a Book controller class for you with method stubs for each of the method names you
passed: 1ist, show, and new. Your generated controller class will look like this:

class BookController < ApplicationController

def list
end

def show
end

156

Controller: In Depth _

def new
end
end

You might have also noticed that a few additional files were created corresponding to each of the
action methods:

app/views/book/list.html.erb
app/views/book/show.html.erb
app/views/book/new.html.erb

These are Rails view templates, which you will use to describe the pages rendered as a result of
each of those actions. You'll learn more about the view templates in Chapter 5 when views are cov-
ered in depth. For the remainder of this chapter, it’s safe to ignore those files.

That’s all you need to get started with creating a controller class. In the remainder of this chapter,
you'll see how you can build up the empty controller class to handle all of your browser requests.

Action methods

Methods contained in your controllers that have requests routed to them are called action methods.
Note that not all methods in your controllers are necessarily action methods. You may have some
helper methods used by your action methods that are never routed to.

As you saw in the previous section, you can have the script/generate script create stubs for
your action methods, or you can hand-code any action methods that you want to add. Action
methods are defined just like any standard instance method. What makes action methods different
is that they are able to use functionality provided to your class by Rails to access the Web request
and response information.

Naming Your Controllers and Actions

You may come across many different opinions of how you should name your controllers and actions
in a Rails application. | believe that your naming style is important to the readability and maintain-
ability of your application, and thus worth discussing.

Controller classes should be named with nouns, while action methods should be named with verbs.
If you find yourself needing to use a verb-noun combination as the name of your actions, this is often
characteristic of needing a new controller. For example, consider a controller, properly named using
a noun as User. Also assume that you have a page that shows a user’s profile and a different page
that shows a user’s address information. You might have methods in your User controller to display
these pages named show and show_address. The second method, show_address, is an example
of a verb-noun combination that might indicate the need for a new controller. Rather than have both
of these methods in the User controller, it is probably a good idea to use two controllers — one
named User and the other named Address. Now each of these controllers can have a show
method without requiring the verb-noun action name.

157

158

Rails provides built-in functionality to allow you to easily perform the following functions in the
action methods of your controllers:

Use request parameters submitted by the browser.

Render a template in response to a request.

Send a redirect to the requesting browser.

Send short feedback messages to the browser.

Using request parameters

Many of the requests that your action methods will receive will contain request parameters submit-
ted by the browser, which you will need to process the requested action. This includes parameters
submitted in a URL using an HTTP GET request, and parameters contained in the HTTP header of
a POST request. As an example, assume the following URL is passed to your Rails application:

http://www.myapp.com/user/show/123

Using the default route, Rails will route this request to the show method of your
UserController class. A user id is also passed to the show method. The show method should
look up the user identified by that user id and display details about that user. Let’s start creating a
show method to perform those actions:

class UserController < ApplicationController
def show
end

end

The first thing you need to do is get the user id that is passed to the show method. Rails makes all
of the request parameters available through a params hash. Obtain the user id from the params
hash in your show method:

class UserController < ApplicationController
def show
user_id = params|[:id]
end
end

Recall from the earlier discussion of Rails routing mechanisms that the id parameter passed in the
URL path is made available as the : id parameter. You could then use a model class to retrieve the
user corresponding to that id:

class UserController < ApplicationController
def show
user_id = params|[:id]
@user = User.find(user_id)
end
end

Controller: In Depth _

Assuming, you have a User model, calling its £ind method and passing the user id will retrieve
the User object for the desired user. Notice that an instance variable, @user, receives the
returned User object. Any instance variables are automatically available to your view templates.
By setting the User object as an instance variable, your view template will be able to use that
object to display information about the user.

Rendering templates

Rails templates define the views of your Rails application. At the end of your action, you typically
will render a template to return a new Web page to the user. Continuing with the example request
to display information about a particular user through the show method, add a render call to dis-
play a user view template:

class UserController < ApplicationController
def show
user_id = params|[:id]
@Quser = User.find(user_id)
render :template => "show"
end
end

Here the render method is called with an options hash containing a single value, the name of a
template to render. In this case, the show template is specified. This would cause the view template
stored in app/views/user/show.html.erb to be rendered. While this correctly illustrates
how to render a template, if the template you want to render is named the same as the action
method, the render call is not necessary. By default, an action method that does not perform any
renders or redirects will render a template containing the same name as the action method, if such
a template exists. With that in mind, modify the method to only call the render method if the user
being looked up is not found:

class UserController < ApplicationController
def show
if !'@Quser = User.find(params[:id])
render :template => "user_not_found"
end
end
end

Now if the user is found, no explicit render is called, so the default show.html . erb template
will be rendered, which is what you want. However, if the user is not found, a template named
user_not_found.html.erb will be rendered. This template could contain an error message
for the user. One other change was made here. Instead of using a temporary user_id local vari-
able to hold the user id value, the params [: id] value is now passed directly to the User. find
method, saving you a line of code.

| Where views are covered in Chapter 5, you can see many more ways to use the
render method to create other responses.

159

Redirects

In addition to rendering a template, Rails also has built-in functionality that allows you to easily
send a redirect to the browser. Let’s look at an example of where you might want to use a redirect:

def create
@book = Book.new (params|[:book])
if @book.save
redirect_to :action=>'show', :id=>Q@book.id
else
redirect_to :action=>'new'
end
end

In this example, a new Book object is created and saved. If the save operation is successful, the
user is redirected to the show page to show the details of the new book. If the save is not success-
ful, the user is redirected back to the new book page so that the user can try again. Like the ren-
der method, the redirect_to method takes an options hash to determine where it should
redirect the browser to. In this first use of redirect_to above, an :action and an :id value
are passed. This instructs the browser to redirect to the action method specified. Because a control-
ler is not specified, the same controller that contains this create method is assumed. You could
have also passed a : controller value to redirect to a method in a different controller.

The :1d parameter passed to redirect_to is also passed on to the show method. There is also
a shortcut you can use to specify the book’s id. You could write the redirect_to method like
this:

redirect_to :action=>'show', :id=>@book

Just by passing the @book object as the : id value, Rails extracts the id value from the @book
object and uses that as the value for the :1id parameter.

Sending feedback with flash

The flash feature of Rails is a way of passing simple feedback messages from your application back
to the browser. Do not confuse this use of the word flash, with the name of the Flash Web devel-
opment technology from Adobe. They are not related. In this case, flash is the name for an internal
storage container used by Rails to store temporary display data. The flash area is implemented as a
special kind of hash, and you work with it much like you work with a regular hash in Ruby.

Data that is stored into the flash is kept for the duration of one action, and then it is removed. The
flash is a convenient place to store short status messages that need to be communicated from one
action to the next. Examples of where flash is commonly used include displaying results of a login
attempt, results of a file upload, or results of a form submission.

You populate the flash in a controller method by using a symbol key value passed to £1lash, like
this:

flash[:login_result] = 'Successful Login'

160

Controller: In Depth

Take a look at a controller method that uses the flash:

def login
if login_user
flash[:notice] = 'Successful Login'
redirect_to :action=>'home'
else
flash[:notice] = 'Your login attempt was unsuccessful'
redirect_to :action=>'create'
end
end

Here, the result of a login attempt is stored in a flash :notice parameter. The flash parameters
you use can be any name you choose, but it is common practice to use :notice, :warning, and
:error to denote common types of status messages.

The data you store in flash is then used within your view templates. Although view templates are
covered in detail in Chapter 5, let’s preview a portion of a view template that uses the flash:

<div>
<hl1>The Book Store</hl>
<% unless flash[:notice] .blank? %>
<div id="notification"><%= flash[:notice] %></div>
<% end %>
</div>

This small template snippet displays the flash[:notice] string unless it is blank. This snippet
could be put into your layout templates so that the notice would be displayed on any of your views
that included a notice. This also gives a reason for using standard names for your flash messages,
such as the recommended :notice, :warning, and :error. If the flash names were page-
specific, you wouldn’t be able to use this snippet in a common layout file.

Using flash.now and flash.keep

Normally any data that you store into the flash area is cleared after one request. If you would like
to extend the life of data stored in the flash, you can do that using the £1ash.keep method. The
flash.keep method will extend the life of the flash for one additional request.

In the previous examples where flash was used, after storing a string into flash, the next page was
displayed by using a redirect. Remember that when storing data in the flash, it is kept for the life of
one action (that is, one request). If, in the controller where you set the flash, you rendered a tem-
plate instead of doing a redirect, the flash would still be kept until the next page request, which is
probably not what you wanted. If you are rendering a template instead of redirecting when you set
flash, you should use the £1lash.now method. The £lash.now method changes the behavior of
the flash so that the data is kept for only the current request.

161

162

Sending other types of data to the browser

You've seen how to render templates and send redirects to the browser. Both of these actions nor-
mally result in a new HTML page being displayed. However, Rails also assists you if you want to
send non-HTML data to the browser from an action method.

Returning text

If you want to return text to the browser from one of your action methods, you use the render
method with the : text hash key, like this:

render :text => "hello, world"

This will send the specified text to the browser without being wrapped in any template or layout.
This can be useful for testing purposes.

Returning JSON data

If you are using Ajax in your Web application, you may often want to render JSON data from your
action methods. This can be done using the : json parameter with the render method as shown
here:

render :json => {:name => "Timothy"}

This will return the specified hash as a JSON encoded string. This also sets the content type for the
HTTP response as application/json.

Rendering a specific file

If you want to render a template that is not located in the normal place that Rails looks for view
templates, or you want to render some other type of file, you can use the render method with the
: file parameter.

Renders the template located at the absolute path specified
render :file => "c:/path/to/some/template.erb"

The call to render above will render the Erb template stored in the non-standard location speci-
fied.

Returning XML

Returning XML content to the browser is no more difficult than returning text or JSON data was.
You use the render method with the :xml parameter like this:

render :xml => book.to_xml

This returns the XML string generated by the book. to_xml method to the browser. The correct
HTTP content type for XML data, text/xml, is also set for you.

Controller: In Depth _

Using Filters

Filters are methods that are run before or after a controller’s action methods are executed. Filters
are very useful when you want to ensure that a given block of code is run, no matter what action
method is called. Rails supports three types of filter methods:

B Before filters
B After filters
B Around filters

Before filters

Before filters are executed before the code in the controller action is executed. Filters are defined at
the top of a controller class that calls them. To set up a before filter, you call the before_filter
method and pass it a symbol that represents the method to be executed before action methods.
Here is an example of how you would use a before filter:

class UserController < ApplicationController
before_filter :verify logged_in
def verify_logged_in

end
end

In this example, the method verify logged_in is applied as a before filter. Before any of the
action methods are called, the verify_ logged_in method is called.

Instead of passing a symbol to the before_filter method, you could pass a snippet of Ruby
code that would be executed as the before filter.

You may not want a filter to apply to all of the action methods in a controller. For example, if the
UserController class had an action method named 1ogin, which handled the logging in of a
user, you obviously would not want to apply the verify_ logged_in filter before calling that
action. You can exclude methods from a filter by passing the : except parameter, like this:

before_filter :verify logged_in, :except => :login

Now the filter is called before all of the controller’s action methods, except for the 1ogin method.
You can also pass a comma-separated list of methods to exclude:

before_filter :verify logged_in, :except => :login, :list

If you find the list of exclusions growing to the point that you want more methods without the fil-
ter than you have the filter being applied to, you can use the : only parameter, which has the
opposite effect. When you pass the : only parameter, all action methods will be excluded from
the filter, except for those specified in the : only parameter:

163

m Rails In Depth

164

before_filter :verify logged_in, :only => :show, :edit

In this example, the verify logged_in filter method is called only before the show and edit
methods. It is not called before any other action methods in the controller.

After filters

After filters are executed after the code in the controller action is executed. As with before filters,
you define after filters at the top of the controller class in which they are called. You use the
after_filter method to set up an after filter, like this:

class PhotoController < ApplicationController
after_filter :resize_photo
def resize_photo

end
end

The setup is identical to the way you set up before filters. The method represented by the symbol
passed to after_filter is executed after your controller action methods. Like with the
before_filter method, you could pass a snippet of Ruby code instead of a symbol to the
after_filter method.

You can also use the : except and :only parameters with after filters, just as they are used with
before filters.

Around filters

Around filters contain code that is executed both before and after the controller’s code is executed.
Around filters are useful when you would otherwise want to use both a before and an after filter.
The way you implement an around filter is different and a bit more complex than how before and
after filters are implemented. A common way to implement an around filter is to define a special
class that contains before and after methods. Let’s walk through the implementation of a com-
mon example of where around filters are used to provide logging for your controllers.

First, create a logging class that contains a before and after method:

class ActionLogger
def before(controller)
@start_time = Time.new
end

def after(controller)
@end_time = Time.now
@Qelapsed_time = @end_time.to_f - @start_time.to_f
@action = controller.action_name

Controller: In Depth

next save this logging detail to a file or database
table
end
end

In this ActionLogger class, the before method captures the time an action is started, and the
after method captures the time an action completes, the elapsed time, and the name of the
action that is being executed. You could then write this data to a log file, or perhaps use a log
model that you would create an instance of here and save it with this data.

Now, look at how you use the ActionLogger class as an around filter. In your controller class,
simply add the around_filter method and pass an instance of the ActionLogger as a
parameter, like this:

class PhotoController < ApplicationController
around_filter ActionLogger.new
end

The ActionLogger will now be called before and after all of the action methods that you add to
the PhotoController class.

You can also pass method references and blocks to the around_£ilter method. If you pass a
method reference, the reference must point to a method that has a call to the yield method to
call the action being called. The example below is borrowed from the Rails API documentation.
This shows how you might use an around filter to catch exceptions from your action methods.

around_filter :catch_exceptions

private

def catch_exceptions
yield

rescue => exception
logger.debug "Caught exception! #{exception}"
raise

end

This provides simple exception handling for all of your action methods.

The final way of using an around filter is by passing a block to the around_£ilter method.
When you pass a code block to the around_£ilter method, the block explicitly calls the action
using action.call instead of using the yield method. Below is an example that logs a before
and after message around each action method call.

around_filter do |controller, action|
logger.debug "before #{controller.action_name}"
action.call
logger.debug "after #{controller.action_name}"
end

165

m Rails In Depth

166

Protecting filter methods

Something that I haven’t talked about yet is the fact that you can potentially route to any method
(that you put into a controller class) from a browser. For example, assume that you have the
default route defined:

map.connect ':controller/:action/:id’

You could type the following address in your browser to make a direct call to the after filter
method that was defined in the previous section:

www . myapp . com/photo/resize_photo

However, when you defined the resize_photo filter method, you probably did not intend this
method to be routable from a browser call. In this case, how can you prevent this method from
being routable?

The answer goes back to something that is common in most object-oriented programming lan-
guages: the ability to protect methods within a class. All methods contained in Ruby classes have
one of these protection levels:

B Public: These methods are accessible by any external class or method that uses the class
in which they are defined.

B Protected: These methods are accessible only within the class in which they are defined,
and in classes that inherit from the class in which they are defined.

B Private: These methods are only accessible within the class in which they are defined. No
external class or method can call these methods.

By default, methods are always public, meaning that any external class or method can access them.
You can declare methods as protected or private by putting a protected or private keyword
before the methods that you want to protect. This example contains protected and private
methods:

class SuperHero
def say_hello

end

protected
def use_power

end

private
def get_real_identity

end

Controller: In Depth _

def assign_sidekick

end
end

This class has one protected method and two private methods. In the SuperHero class, because
you don’t want just anyone to know a hero’s true identity, the get_real_identity method is
made a private method. Only other methods within the SuperHero class can call it. The use_
power method can be called only by methods within the SuperHero class or methods in classes
that inherit from the SuperHero class.

I Protected and private methods are not routable from the browser.

Getting back to the discussion of filter methods, anytime you define a filter method, you should
make it a protected or private method, as you normally do not want your filter methods to be
routable from the browser.

Working with Sessions

Sessions are a common technique in Web applications to remember data that you want to preserve
across multiple requests. Remember that the underlying protocol of the Web, HTTP, is a stateless
protocol, meaning that each request to the server is like calling a new invocation of your applica-
tion. Inherently, there is no memory or state preserved across requests. This was fine when the
Web was used mostly as a home for static informational pages without a lot of dynamic content.

However, as the Web became more dynamic and Web applications became more popular, the
need to maintain state across multiple browser requests became pressing. This is where the session
comes in handy. The session is a container that allows you to store information that you want to
use across multiple requests. The session data is stored either in the server’s file system, the server’s
memory, or in a database.

Sessions are commonly used to store information about a user’s browsing session. For example,
when a user logs into your application, information about that user is saved to the session so that
the user can navigate around within the Web application without having to log in for each new
page request. Without sessions, your Web application would not be able to remember the user as
they browsed through various pages of the Web application. Sessions are also commonly used to
store shopping cart information on a shopping site, as well as user preferences.

Each session stored on the server, either in the database or in the file system, is identified by a
unique id. The unique id is stored in a session cookie that is sent to the browser. The browser
returns this session cookie with each page request so that the server can look up the session and
preserve state across requests.

Rails has built-in support that makes using a session simple in a Rails application. Rails automati-
cally creates a session for each user of your application. You store information into the session by

167

m Rails In Depth

168

using the session hash. The session hash is used just like any regular Ruby hash. For exam-
ple, you can store a user’s id into the session like this:

session[:user_id] = @Quser.id

As a result of storing this to the session hash, the user id is saved to the session store and is
available to future requests. Retrieving information from the session is just as easy, using standard
hash access techniques like this:

user_id = session]:user_id]

You may have noticed a directory called tmp in your Rails application directory tree. This is the
directory in which the session data is stored. There are actually three choices for where Rails stores
session data. The available options are as follows:

B File system
B Database

B [n memory

The file system is used by default and requires no additional configuration. This is sufficient for
development, testing, and many small-scale Web applications. You run into problems with storing
the session on the file system if you have a Web application that is load balanced and served off of
multiple servers, as is commonly done for performance reasons. In this situation, not all requests
are routed to the same physical server. Your application exists on multiple physical servers, and a
load-balancing router will route Web requests across the different instances of your application.

If your session is stored on the file system and a user is routed to a different physical server during
a browsing session, the application will not be able to find the session associated with that user.
This makes storing the session in the database a popular alternative for Rails production environ-
ments. Rails also allows you to store session information in memory. This option performs very
well because reading and writing from memory is a very fast operation, compared to reading and
writing to disk.

Using the ActiveRecord session storage

As its name implies, the ActiveRecord session storage uses ActiveRecord to store the session data
into a table in your database. By having the session stored in the database, it becomes accessible
from multiple computers and thus works well in an environment where you have load-balanced
servers.

Let’s look at how you set up a Rails application to use ActiveRecord session storage. There are a
few simple steps to follow, which are described here:

Controller: In Depth

1. Create a migration to set up session storage in your database. Just as you use migra-
tions to set up the database tables that hold your application’s data, you can also use a
migration to create the session data table. In fact, you can create this migration automati-
cally using this rake command:

rake db:sessions:create RAILS_ENV=production

2. Apply the session setup migration. Now you can run the rake migrate command to
apply the new migration, like this:

rake db:migrate RAILS_ENV=production

3. Configure Rails to use ActiveRecord session storage. Next, you have to tell Rails that
you are using ActiveRecord session storage. You do this by editing the config/envi-
ronment . rb file. Simply remove the comment from the following line:

Config.action_controller.session_store = :active_record_store

4. Restart the application. This is the last thing you need to do. After the application is
restarted, sessions will be stored in the database. How you restart the server depends on
the server that you are using. To restart a Rails application that is using the WEBrick
server, stop the existing server by pressing Ctrl+C in the console window in which you
started the server and restart it with the following;

ruby script/server

Using MemCached session storage

MemCached is used to provide the in-memory session storage option. MemCached is based on
software that was originally developed by Danga Interactive for the LiveJournal blog-hosting Web
site. When using MemCached, sessions are stored in your server’s memory and are never written to
disk. Because this option does not require any hard disk /O, it is much faster than the other
options. For more information about using Memcached see the Ruby on Rails wiki site, and the
Memcached home page:

http://wiki.rubyonrails.org/rails/pages/MemCached

www . danga . com/memcached/

Caching

Caching is an important technique that you can use to increase the performance of any Web appli-
cation. Caching speeds up Web applications by storing the result of calculations, renderings, and
database calls for subsequent requests. The Action Controller component of Rails includes built-in
support for caching in your Rails applications.

Rails support for caching is available at these three levels of granularity:

169

m Rails In Depth

170

B Page
B Action

B Fragment

Page caching

Page caching is a caching technique where the entire output of an action is stored as an HTML file
that the Web server can serve without having to go through Rails to call the action again. Using
this technique can improve performance by as much as 100 times over having to always dynami-
cally generate the content. Unfortunately, this technique is only useful for stateless pages that do
not differentiate between application users. Applications in which a user logs in and is given
unique views of data are not a candidate for this technique. Applications that do not require a user
logon to view data, such as wikis and blogs, may benefit from this technique.

You can turn on page caching for any methods in your controller classes by using the caches_
page method call. You pass the actions that you want to cache as parameters to caches_page.
You do not have to include all of your controller’s actions. Here is an example:

class BlogController < ActionController: :Base
caches_page :show, :new

def show
end
def new

end
end

This causes the results of the show and new methods to be cached. The first time the actions are
run, the HTML result is cached. This HTML cache file will be returned on subsequent calls to these
methods without having to call the actions again.

You can expire cached pages by deleting the cached file. When a cached file is deleted, it is regen-
erated on the next call to the action to which it applies. To delete a cached page, you use the
expire_page method. A common time to delete a cached page is when you perform an update
to the page that is cached. In your update action method, you would also delete the cached page
like this:

class BlogController < ActionController: :Base

def update
expire_page :action => "show", :id => params][:id]
redirect_to :action => "show", :id => params][:id]
end

end

Controller: In Depth _

The action and id for which the page has been cached are passed to the expire_page method to
delete the cached page. You can then perform a redirect to regenerate the newly updated page and
thus create a new cached page.

Action caching

As with page caching, action caching saves the entire output of an action response. The difference
is that with action caching, the action calls are still routed to the controller so that any filters can
still be applied. This is useful when you have a filter setup to provide a restriction on who can view
the cached action.

class BookController < ApplicationController
before_filter :authenticate
caches_action :show, :list

end

In this example, the methods show and 1ist require that the user is authenticated before the
methods are called. This is accomplished with the authenticate before filter. If, the show and
list actions were cached using page caching, the before filter would never be called once the page
was cached. Therefore, to preserve the authentication requirement, these pages must be cached
using the action caching technique.

Fragment caching

Fragment caching is used to cache blocks within templates rather than caching the entire output of
an action method. This technique is useful when certain parts of an action change frequently and
would be difficult to cache, and other parts remain relatively static and thus can be cached.
Fragment caching is done in view templates instead of the controller classes as the other forms of
caching were.

A fragment cache is designated with a cache_do block. The lines inside the block enclosed in the
cache_do statement will be cached. Here is an example of code that you might use in a view
template:

Welcome <%= @user.name %>
<% cache do %>

Please choose a topic:

<%= render :partial => "topic", :collection => @topics %>
<% end %>

In this example, the first line displays a user’s name. Because the name is different for every user
that logs in, this is not a good candidate for caching. Following the user’s name, a list of topics is
displayed. Because the list of topics remains relatively static, this is a good candidate for caching,
and thus the lines that display the topic lists are wrapped with the cache_do statement.

171

m Rails In Depth

172

Summary

In this chapter, you learned how Rails helps you to implement the controller layer in an MVC Web
application. The ActionController component of Rails is what allows you to easily create control-
lers for your applications.

Some of the topics that are related to the controller layer of a Web application that you learned
about in this chapter are: routing, creating and using controllers in a Rails application, using filters,
sessions, and content caching. These are all topics that you will find yourself making use of over
and over again as you develop real world Rails applications.

You have now learned about how Rails helps you create the model and controller layers of your
Web application. In the next chapter, you will learn how Rails helps you with the final layer of
your MVC Web application, the view layer. The view layer is closely related to the controller layer
and it is a good idea to have the knowledge you gained in this chapter fresh in your mind as you
read that chapter.

o far you've read about the model and controller layers of a Rails

application. There is one layer remaining to discuss in an MVC

(Model-View-Controller) application. That is the view layer. The view
layer is the layer that presents your application to the end users. Although
this layer shouldn’t handle any of your application’s business or processing
logic, it is at least as important to the success of an application as the model
and controller layers. You may have the greatest technology in the world, but
if you can’t present it in a way that is easy to use and appealing, ultimately
your technology will go unused.

Rails offers you a number of tools that will assist you in creating a well-
designed, maintainable and rich view layer.

ActionView

The Rails component that manages the view layer of your application is
called ActionView. ActionView is what provides you with most of the tech-
nologies that you will read about in the remainder of this chapter. These
technologies include the following;

Embedded Ruby (ERb)
Layout templates

Partial templates

Helper methods

In a Rails application, your view templates are placed into a directory under
the app directory called views. Within the views directory, each control-
ler has its own subdirectory for views relating to actions in that controller. In

173

ActionView

Embedded Ruby

Layouts

Partials

Helpers

JavaScript, Ajax, and RJS

m Rails In Depth

174

addition, there is a special controller called layouts which contains the common layouts used
throughout the application. You can create your own subdirectories for other shared view files. In
an application that has a BooksController, a UsersController, and an ImagesController, your view
directory would look like this:

app

| -- book

| -- image
| -- user

| -- layout
| -- shared

The book, image, and user directories hold views that are rendered by their corresponding con-
trollers. The layout directory holds layout files, which you'll learn more about later in this chapter.
The shared directory is not created automatically, but you'll end up using it in many of the appli-
cations that you write. The shared directory holds partial views — another Rails view technology
that you'll learn about in this chapter — that are used by views from multiple directories.

Getting to the view

Recall from Chapter 4 that views are rendered by actions contained in controller classes. If the view
to be rendered is not explicitly declared by an action, Rails looks for a view with the same base
name as the action method contained in the view directory corresponding to the controller name.
In Chapter 4, you saw the following controller code:

class UsersController < ApplicationController
def show
user_id = params|[:id]
@Quser = User.find(user_id)
render :action => "show"
end
end

In this example, the render statement is not actually required because it is reiterating the default
by telling Rails to render a template with the name show. Since this is the same name as the action
method, Rails will look for this template by default even if the render line were omitted. Because
this is the UserController, Rails will look for the show template in app/views/users/show.
html.erb.

An individual controller method can only call render or redirect_to one time during any
particular call to the method. This applies only to render calls in the controller that render a full
file — the view code can render as many partial views as needed. Performing a second render or
redirect in the controller will result in an exception. However, calling render or redirect does not
automatically stop execution of the method. The recommended idiom for ensuring exit from a
method after a render looks like this:

View: In Depth

def conditional
if params|[:id] .blank?
render :action => "nothing" and return
end
render :action => "conditional"
end

The and return at the end of the first render line ensures that the method will be exited.
Again, the last line is a repetition of the default action and is included here for clarity.

Rendering options

The render method has more than one trick up its sleeve. There are a several different options
you can use in your controllers and views to specify different kinds of output. The render
method takes an option hash as its arguments (some types also take a block argument). Although
the order of the hash is unimportant, by convention the type of the render is the first argument.

As alluded to earlier, the default type of render is : action, where the value is the name of the
action file to render. The following call:

render :action => "show"

will cause Rails to render the file app/views/<controller name>/show.html.erb (but
see the next section for how the format of the output can be changed.). By default, the layout of
the current controller is used, however the optional argument : layout allows you to specify the
string name of a layout to use instead. It’s fairly unusual for this to be used explicitly, normally
code that chooses to render the view from another action will just redirect to that action.

There are two other ways to specify an entire template file as the target of the rendering. The first
is render :template => "controller/template". The : template option is identical to
:action, except that it requires you to specify the entire path to the template from within the
views directory (minus the .erb extension). This allows you to specify a template in a different
directory.

The layout from the current controller is applied. The other method is render : file. The value
for file is the absolute filename of a file somewhere that you want to use as the template. Passing
the second argument :use_full_path => true causes file to search relative to the views direc-
tory and add the correct extension — in other words, behaving just like render :template. By
default no layout is used, the argument : layout => true causes the current controller layout to
be used. The : file and : template versions of render are used very rarely — I don’t think I've
ever seen a legitimate usage in production code. Redirects and partial rendering are the preferred
methods.

Any template system needs a way to allow common parts of templates to be extracted and inserted
into the full template. The most commonly used method within Rails to manage this is the partial
template. A partial template is just like any other ERb file in your views directory, except that the
names of partial templates are required to begin with an underscore character ().

175

m Rails In Depth

176

There are two common use cases for partial templates. Within an ERb view file, partial templates
are invoked to allow sharing of a piece of view code used multiple times. Within a controller, call-
ing a partial template most often means that the partial page view is being sent back to the browser
as the result of an Ajax call.

The syntax in both cases is the same:
render :partial => "partial_name"

You do not include the leading underscore in the partial name when you invoke a partial; Rails will
add that for you.

There are two less frequently used methods for rendering a piece of text. The call render : text
=> string will place the value of the string in the output stream. The string can be a double-
quoted Ruby string with interpolation. This is generally used for short Ajax or error messages.

A similar argument render :inline => "<%=hello %>, takes an inline ERD string, processes
it, and returns the result to the output stream. If there is a second argument : type => :builder
than the string is evaluated by Ruby’s Builder module instead of ERb. In both the text and inline
case, it is assumed that the layout is not to be added unless explicitly specified as in a partial render.

Two types of standard render output different formats than the standard HTML: : xml and : json.
In both cases, the value of the argument is an object to be converted to the specified format. You
do not need to explicitly perform the conversion; Rails will do it for you.

Finally, : render :update triggers Ruby JavaScript (RJS) processing, which will be discussed in
detail later in this chapter.

All render methods, by default, return an HTTP status code of 200 if successful. This can be over-
ridden in all render methods by explicitly passing a : status option with the code you want
returned. Also, the method render_to_string takes all the same arguments as the ordinary
render, but returns the value as a string without outputting the value to the response object.

Responding to different formats

Prior to Rails version 2.0, view templates were named with the extension . rhtml. So in this exam-
ple, the show template would have been in a file named show. rhtml. Rails 2.0 changed the naming
of view templates to use the .html .erb extension. This extension gives a better indication of the
templating technology being used, which is embedded Ruby or ERb.

Now although .html.erb is the most common extension for a Rails view file, the general form is
.<format>.<mechanism>, where the format usually represents the MIME type of the file being
created, and the mechanism is the template engine used to create the file. So, a .html.erb file is
an ERD file that renders into an HTML file, while a . js. erb file renders to JavaScript and rss.
erb renders to an RSS file. Standard Rails comes with a second mechanism option, the Builder
module, which is most often used to create XML files. You can specify a builder file with the exten-
sion .builder. Other template engines, such as Markaby or Haml, are available as plugins that
register their own extensions.

View: In Depth

A file whose name ends in . erb without a format will match any requested format. This is useful
if you have an file that is rendered in response to both a regular controller call (which is an HTML
request looking for html.erb) and an Ajax call (which is a JavaScript request looking for js.
erb). A file that is just plain . erb will be found by both requests.

You'll notices that this naming is another example of Rails using convention over configuration.
The name of your view file specifies both the kind of request it responds to and the method used
to render it. That's a nice shortcut, and it allows an elegant way to have the same controller action
emit multiple formats from the same data. The controller method respond_to allows the same
controller to easily serve separate output depending on the incoming request.

The most basic respond_to looks like this:

def index
Qusers = User.find(:all)
respond_to do |format|
format.html
format.xml { render :xml => @Qusers }
end
end

Conceptually, what’s going on here is very similar to a case expression on the format of the incom-
ing request. Each expression inside the block represents a format that the method can handle.
When a request comes in, the matching expression is fired — if the expression has a block, as the
.xml expression does in this example, then the block is invoked.

If the expression does not have a block, like the .html expression in this example, then default
behavior is invoked. This means that Rails will search for a file in the app/views/<controller>
directory for a file that matches the controller method name and the format — in this case index.
html.erb or index.html .builder — and the file will be rendered. If the format requested
does not have a matching expression inside the respond_to block, then Rails will respond with
an error.

The exact implementation isn’t quite identical to a case statement. The block passed to the
respond_to method is invoked with an object of the Rails core type Responder. Inside the
block, the Responder object can be called with methods matching known MIME types. For each
method called, the Responder object determines what it’s response would be — either the
passed block or the default behavior.

After the block is invoked, the respond_to method invokes the response matching the actual
user request type. The relevant point is that, although the respond_ to call looks and acts some-
thing like a case statement, the internal mechanism is quite different — the respond_to call will
not short-circuit. If you have any other code inside the respond_to block, that code will always
be called, even if it is after a format call that matches the current user request.

In normal usage, the requested format is inferred from the extension of the URL in the browser
request, so users/index.html returns the HTML version, while users/index.xml returns

177

the XML version. By default, Rails recognizes eight format extensions (see Table 5.1). It is the
responsibility of your application to ensure that your response is a valid example of the requested
format.

TABLE 5.1

Format Extensions

MIME Type Format

atom Syndication feed in Atom format.

html Regular HTML. The default for normal requests if no other format is specified.
ics iCalendar standard format for calendar data.

js JavaScript. The default for Ajax requests if no other format is specified.

rss RSS syndication feed.

text Plain text, assumed not to be parsed by the browser for output

xml An XML file that isn’t an Atom or RSS feed.

yaml A YAML file.

178

Although the format is usually inferred from the file extension of the URL, it can also be passed in
the query string portion of the URL like any other parameter, as in user/index?format=html.
The format can also be set or changed programmatically in your Rails controller code by setting the
attribute request . format.

You can also add additional formats on your own to augment the eight that Rails provides. The file
config/initializers/mime_types.rb is the place to put any MIME customization that
you are looking for. (In older versions of Rails, this code is placed in config/environment.b.)

There are two different commands. If you are creating a file extension for a MIME type not covered
in the original list, you use something like the following:

Mime: :Type.register "image/png", :png

The first argument is the MIME type, and the second argument is the file extension that you are
registering. After this line of code, the format object inside a respond_to block will add the
format . png method, which works exactly like the existing eight methods.

Sometimes, you need to create a new file extension that represents a new context for an existing
MIME type — the way that, for example, atom and rss are new contexts for xml documents.
Here’s the canonical example:

Mime: :Type.register_alias "text/html", :iphone

View: In Depth

You want to be able to serve specialized content an iPhone using the same respond_to structure,
but the output to the iPhone is just another kind of HTML. No problem, just tell Rails that your
new pseudo-MIME type is an alias of an existing type, and everything will work out just fine. This
example is also a use case for changing the response type programmatically — when you detect the
iPhone browser, you can change the format to iphone and serve the specialized content.

Embedded Ruby

ActionView uses the Embedded Ruby (ERD) library to provide you with a complete templating sys-
tem for creating the Web pages that will make up the presentation layer of your application. The
Embedded Ruby library allows you to mix Ruby code along with HTML inside of your view tem-
plates. If you are familiar with Java, the Rails template mechanism with embedded Ruby is similar
to what you get in Java with JSPs and their use of embedded Java.

NG - 0 Embedded Ruby predates the Rails framework. It is implemented as a stand-alone

SECERE Ruby library that can just as easily be used outside of a Rails application. The
embedded Ruby library makes a powerful templating mechanism for any type of templating
engine that you want to create.

Take a look at how you embed Ruby code inside of a Rails view template.

Users

<% users.each do |user| %>
<%= user.name %></1li>
<% end %>

The template mixes regular HTML code along with Ruby code embedded in <% and %> delimiters.
If you look closely at the code, you'll actually notice that in line 4, the Ruby code block begins with
the <%= delimiter instead of just <%. If the Ruby code begins with the <%= delimiter, the return
value of the code will be included in the HTML page. So in this example, the result of calling user.
name is included in the HTML page. Assume that the users array contains three users with the names,
Tim Fisher, Scott Deming, and Tom Fisher. The HTML code generated by the above template code
would be as follows (allowing for some white space cleanup):

Users

<1i>Tim Fisher</1li>
Scott Deming</1li>
<1i>Tom Fisher</1li>

The return value of ERb segments that begin with the <% delimiter is discarded and does not
become a part of the generated HTML code. However, variables declared or set in those segments
are available to later parts of the ERb template.

179

m Rails In Depth

180

Within a Rails ERb template, you have access to any instance variable of the controller that invoked
the template — typically, these instance variables are set in the controller method before the view
is invoked. The controller object itself is available as the variable controller. Several of the con-
troller objects are accessible as variables as well, including params, session, logger, request,
and response. If the ERDb template is called as a partial, then further local variables can be made
available to the template when it is invoked.

You can place any valid Ruby code in a view template between the <% or <%= delimiters, there are
no technical limitations on the code. However, do not consider that as encouragement to put as
much Ruby code as you can in your templates. Rails best practice is to avoid putting extensive
amounts of code in your actual ERb template (this is consistent with best practice in other web
application engines).

You should limit the Ruby code that you use in your view templates to code that creates your view
only. Even complex view code should probably be moved to a helper module, which will be dis-
cussed in more detail later in this chapter. You should be careful not to include any business logic
inside of your view templates. Business logic should be confined to the actual model objects.

Mixing business logic in your view code is almost always a bad idea and will usually cause head-
aches down the road for the following reasons:

B Ruby code inside of view templates is harder to test.

B The resulting code, with multiple layers of Ruby and HTML indentation, quickly
becomes nearly impossible to read.

B You are breaking the MVC architecture by putting business logic into the view layer, mak-
ing it hard to find any of your business logic should you ever have to change it in any way.

B Business code embedded in view logic is nearly impossible to refactor into cleaner struc-
tures. You will become trapped by early decisions that you can’t undo without breaking
code.

B With business logic in your view layer, there is now a tighter coupling between your view
and model layers. Remember that the ideal situation is low coupling between the MVC
layers of your application. Tight coupling makes it difficult to modify the view code as
well. Remember the iPhone example earlier? It's much easier to add support for a new
view context if the view code is nice and separate from the rest of the world.

Even though you've been warned against overusing embedded Ruby, it is nice to know that you
have the full power of the Ruby language in your templates for when you need it.

Using the <%- and -%> delimiters

Often you will have lines in your templates that contain Ruby statements that do not result in any-
thing being printed to the HTML output, such as this one:

<% users.each do |user| %>

View: In Depth

In those instances, a blank line is inserted into the generated HTML output where the lines occur.
For the template segment that I've been discussing, the actual generated HTML output, including
blank lines, would look like this:

Users

<1i>Tim Fisher</1li>
<1li>Scott Deming
<1i>Tom Fisher</1li>

Notice that there is a blank line in the HTML code where the two lines that are surrounded by the
<% and %> delimiters are. If you are using a lot of embedded Ruby lines, this can bloat your HTML
output and make the source view harder to read. If you have enough of them, this can even
increase the amount of time it takes to serve your page.

Note, however, that these blank lines are not displayed on the page since empty lines in an HTML
file are not printed to the browser screen. Even so, it’s often useful to be able to clean up the white
space a bit.

ERb provides a way to prevent these blank lines from being inserted into the generated HTML out-
put: Instead of using the <% and %> delimiters, use <% and -%> as delimiters — adding the minus
sign to the end delimiter. This prevents a newline character from being inserted into the generated
HTML output where an ERb template would otherwise emit a blank line. Proper use of these
delimiters can allow you to create better-formatted HTML code for your view templates.

Commenting out embedded Ruby

If you want to disable a line of embedded Ruby code, you can use the standard Ruby comment
symbol, #. This prevents the following embedded Ruby segment from having any effect. This
works on both outputting and non-outputting code segments, that is, segments that begin with
either <%= or <%. Take a look at the following example:

<%# if name == 'Tim' %>
I am <%=# name %>
<%# end %>
The generated HTML output of this code block would be the following:

I am

The first line, the conditional statement, has no effect on whether the second line is displayed
because it is commented out. The name variable is also not printed because that segment is also
commented out.

181

182

Layouts

In a Web application, it is considered good practice to reuse a common template across multiple
pages of your site, such that the common features are in one shared file. Quite often, the entire site
will have a common template applied. The common template contains the basic layout of your
Web site. For example, each page may include a header section at the top displaying your com-
pany logo and some navigation, a footer section at the bottom displaying copyright information,
and a sidebar area on the left or right displaying navigation and other links.

The HTML skeleton code that defines the overall structure of your Web pages is often known as
the layout. Using a layout, you can define your site’s common structures in a single place and have
that template used by all of your pages to avoid having to duplicate code in each of your view tem-
plates. Like many things that are done often, and involve consolidating common code, using lay-
outs is very easy in Rails.

Inside the app/views directory is a standard directory named layouts. You will put your lay-
out templates into the layouts directory.

Listing 5.1 shows an example of a typical application.html.erb file. This is a layout file that
you will create yourself in Chapters 6 through 8 as you write a complete Rails application. This
layout contains elements that are common to many layout templates that you will create. These
common elements include the following;

B An HTTP doctype declaration at the top of the file
B The standard html, head, and body tags

B Standard head elements, including page title, JavaScript include tags, and Stylesheet
include tags

B Layout of the body content. In this template, the body is divided into three main sections,
a header, a sidebar, and a content section. In many applications, you might also want a
footer section.

The header section displays a logo and then either a sign in or sign out link, depending on whether
or not a user is currently logged in (the logged_in? method would most likely be defined in the
ApplicationHelper class. You don't see the contents of the sidebar, as that is rendered as a
partial. The content section starts with a display of flash notices and error messages, if any have
been specified by the controller action. The most important line in this template is the one that
specifies the location of the body content of the page looks like this:

<%= yield %>

This line instructs Rails to insert the content of the template being requested at this location, in
exactly the same way that a regular Ruby method yields control to a block argument. In this case,
the ERb layout template acts as a method and the bock being invoked is the output as specified
by the controller action. Most often it’s another ERb template, but any Rails render activity could
be included there.

View: In Depth

application.html.erb Layout Template

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title><%= @Qtitle %></title>

<%= stylesheet_link_tag "style" %>

<%= javascript_include_tag :defaults %>
</head>

<body>
<div id="header">
<div id="logo_image">
<%= link_to image_tag('main_logo.png'),
{:controller=>'home', :action=>'index'} %>
</div>
<% if !logged_in? %>
<%= render :partial=>"user/signin" %>
<% else %>
<div id="user_menu">
<%= link_to 'Logout',6 :controller=>'user',
raction=>'logout' %>
</div>
<% end %>
<div style="clear: both; height: Opx;"></div>
</div>

<%= render :partial=>"shared/sidebar" %>

<div id="Content">
<% if flash[:notice] -%>
<div id="notice"><%= flash[:notice] %></div>
<% end -%>
<% if flash[:error] -%>
<div id="error"><%= flash[:error] %$></div>
<% end -%>
<%= yield %>
</div>
</body>
</html>

183

184

Take a look toward the top of the sample file and notice the one instance variable referenced in the
layout file — @title. Normally, you try to minimize the usage of instance variables in layouts.
Each instance variable used is a dependence requiring each and every controller action that uses
this layout to define the variable. The variable must be declared either in the controller action or
in the view that is the main part of the action. In other words, each view file could start with the
line <% @title = "something" %>, and that variable reference would be available in the layout.

A common practice is to specify the instance variable in a before filter, which itself might redirect
to another method that is overridden in each specific controller. Another option is to call a helper
method in the layout instead of using an instance variable directly.

The layout file includes required JavaScript and CSS files by using the Rails helper methods
javascript_include_tag and stylesheet_include_tag, both of which work similarly.
Each method takes a list of source files. If an absolute path is not specified, then the appropriate
public directory of your Rails application is assumed. If a file extension is not specified, then the
normal extension for that file type is assumed.

The JavaScript include method takes a special argument : defaults, which causes the standard
Prototype and Scriptaculous libraries (prototype.js and effects.js) to be included. In
addition, if the file public/application. js exists, it is included in the defaults. In both the
JavaScript and CSS methods, passing the argument :all will automatically include all files in the
Rails public directory. For JavaScript files, the default files are guaranteed to be included first, so it
is safe to use when other files have dependencies on Prototype or Scriptaculous. As with many
other tag helpers, an optional hash argument at the end will be passed on as attributes of the HTML
tag being created.

Both the JavaScript and CSS helpers take an optional argument : cache => true. If this argument
is present, and if the global property ActionController: :Base.perform_caching is also
true, then Rails will roll all the files being included into one single file. This reduces the number
of HTTP connections required to get the content, and can also reduce the total amount of data sent
if your web server compresses response data. The default name of the resulting file isall.js or
all.css. If you want to use an alternate name for the file, use that name instead of true as the
value of the cache argument.

Another header tag that you might include in a layout is auto_discovery_link_tag, which
returns an HTML link tag, suitable for browser auto detection of an RSS or Atom feed. The method
takes three arguments. The first is the type of link, which can by : rss or :atom. The second
argument is a URL, and takes any of the normal mechanisms for specifying a URL. The final argu-
ment is a hash allowing you to specify one of three options, : rel specifies the rel attribute in the
tag and defaults to alternate, : title allows you to specify the title of the feed as it shows up
in the browser pulldown — the default is the same as the the link type. Finally, : type allows you
to specify a MIME type, if the default is unsuitable for some reason.

Under normal circumstances, the layout associated with a given controller action is the layout for that
controller, app/views/layout/<controller>.<format>.erb. If there isn't a layout for the
given controller, then Rails will look for a file named application.<format>.erb. If no layout
is specified and the default file is also not specified, then no layout will be rendered. The format is
significant here, you can have different layouts for the same controller but with different formats.

View: In Depth

The layout can be specified in two places. Controllers have a class method called 1ayout which
allows you to specify either the string name of the layout you wish to use or the symbol name of a
method which dynamically returns the name of the layout to use. The latter method allows you to
dynamically switch layouts based on runtime criteria. The layout method also takes the common
conditional options : except and :only. The value of each option is a symbol or list of symbols
corresponding to actions in the controller. The : only option specifies that the layout is for only
those symbols, while the : except option specifies that the layout is for all symbols except those
specified.

A layout can also be specified in any render call with the optional argument : layout, the value
of which is the name of the layout to be used. The value : layout => false indicates that no
layout should be used.

Partials

Partials, which have already been mentioned earlier in the chapter, are sub templates that allow
you to organize your view template code in much the same way that classes and methods allow you
to organize your Ruby code. If you have a common part of your view that is used on multiple pages,
it is a good idea to put the block of template code that created that view component into a partial.
Also, if you have a very large template, you can usually break it into more readable and maintain-
able chunks by using partials.

Partials can be invoked from anywhere inside a view, where you’d normally use them in conjunc-
tion with ERb’s output delimiter.

Q

<%= render :partial => "some_partial" %>

This command causes Rails to go off and render the file _some_partial in the same directory as
the view making the call. The leading underscore in the file name is what makes it a partial — you
don’t add the underscore to the name when you reference it in a render call.

If no directory is specified, the view directory of the current controller is assumed, however you
can specify other directories relative to the view directory, such as shared/partial_name.
Again, the leading underscore is not included.

By default, any instance variable already declared in the controller action or view is visible from the
partial and local variables declared in the controller or view are not available in the partial. However,
it's usually considered poor practice to require the partial to depend on the instance variables of the
external action, and better practice to explicitly pass any needed objects to the partial.

The optional argument : object => obj places obj into the partial with the same variable name
as the partial itself. For example:

render :partial => "task", :object => @most_recent_task

185

186

The object @most_recent_task will be available in the partial using the local variable name
task. This is reasonably elegant, but I often find that my partial files have longer names that don’t
really work as variable names. Also, you'll often want to pass more than one argument to a partial.
The :1locals option allows you to specify a hash of objects and their new local names within the
partial:

render :partial => "display_ task",
:locals => {:task => @task, :user => Quser}

The keys in the locals hash are symbols denoting the names the variables will be available as within
the partial — it’s not unusual for the names to be identical to the instance variable names, as in
this example. The advantage of specifying the variables explicitly in the partial call is that it keeps
the partial from being dependent on the instance variables of the calling controller and allows it to
be used more flexibly.

A partial can automatically be called multiple times by using the : collection argument, which
automatically iterates and runs the partial once for each element in the collection. The following
line:

render :partial => "task", :collection => @all_tasks
is equivalent to:

@all_tasks.each do |obj|
render :partial => "task", :object => obj
end

The optional argument : spacer_template specifies another partial template to to be inserted
between each object — generally these are on the order of a horizontal line, and don’t need any
arguments.

Normally, a partial render doesn’t include the layout — the assumption is that the layout has
already been taken care of someplace else. However, if you must, you can specify the layout with
the : layout option. As with other cases, a value of true indicates the current controller.

Helpers

Rails provides a very wide variety of methods designed to encapsulate and simplify common view-
layer tasks. Collectively these methods are called helpers and are available in any view template.
(They are not, however, available from inside the controller, at least not without some possibly
awkward hacking.) In addition, Rails generates an ApplicationHelper module and another
helper module for each controller. As you've probably guessed, those modules are all the files in
the app/helpers directory.

View: In Depth

In Rails, all of your helpers in all of your app/helper files are available to all your template files
at all times. This behavior is controlled by the following line, placed in your app/controllers/
application.rb file by Rails when the project is generated.

helper :all # include all helpers, all the time

And yes, the comment is also generated by Rails. If this line did not exist (or if you removed it),
you would get the older behavior, which is that each template would have access to methods
defined in ApplicationHelper, and all methods defined in the helper corresponding to the
controller responding to the request.

You can augment the basic behavior with additional calls to helper, which can be placed in the
application.rb file or in any individual controller. The argument to helper can be any or all
of the following (you can pass in more than one argument at a time):

B A block. Any methods defined inside the block will be available for all templates in that
controller. This looks like so:
helper do
def header
"<hl>Applicaton Header</hl>"
end
end

B A constant, representing a module that has already been loaded via require. The mod-
ule is included for all templates.

B A string, such as widgets/fred. In this case, Rails will look for the file relative to the
app/helper directory, and will assume the associated module to be included is
namespaced, such as Widgets: : FredHelper.

B A symbol, such as :my. In this case, Rails will require the file app/helper/
my_helper.rb and include the associated module, assumed to be MyHelper.

B The special symbol :all, which causes the behavior described earlier.

The signature for the helper method is helper (*args, &block), so while you are limited to
a single block, the remaining arguments can be included in any combination you want. You can
have more than one helper method in a controller.

Predefined Rails Helpers

To get a sense of what kind of features are placed in helpers, here’s a list of the ones that Rails
defines for you, at least as of this writing, along with the most commonly used or useful methods
in each helper module. Each of these helper modules is automatically included and available from
any template or from any of the standard helper modules. Many of them are most useful when
creating your own helper methods. It’s occasionally useful to include a specific helper module in
an unusual location — it's often necessary to do so in order to test helper methods, for example.
Every now and then, a helper will be useful within a model and you'll include a helper module
there, but that’s something to do sparingly.

187

188

HTML Creation Helpers

The following helper modules all assist in the creation of HTML output. As such, they are most
often used in your own helper methods, rather than in an ERb file.

AssetTagHelper

The helpers in this module generally create HTML tags pointed at a specific resource. The most
commonly used are javascript_include_tag and stylesheet_link_tag, both of
which were discussed in the section on layouts. Another useful methods in this module is
auto_discover_link, which creates a 1ink tag in an HTML header. Suitable for browser
discovery of RSS feeds, it takes an argument for the type of feed : rss or :atom, an argument
for the URL of the feed and an argument for any other tag options.

The module also contains the image_tag method, which creates HTML img tags, given a URL
source, and optional keys for :alt text, : size as a string of the form (width x height), and
:mouseover, which specifies an alternate image for when the mouse pointer is over the image.

RecordldentificationHelper

The most useful method in this module is dom_id (also available in controllers), which takes an
object and an optional prefix, as in dom_1id (@user, :row), and converts it to an id of the form
row_user_45, using the class of the object — if the object is new and doesn’t have an ID number
then the string is row_new_user. This would be used inside a HTML tag in ERb or in your own
helpers:

<div i1d="<%= dom_id(Quser, :div) %>">
or
content_tag(:div, :id => dom_id(@user, :div))

A similar method, dom_c1lass, does the same thing without the ID.

RecordTagHelper

This module contains two helpers that are shortcuts for using both dom_id and dom_class for
the same tag. The general one is content_tag_for (tag_name, record, *args, &block).
This method is roughly equivalent to the HTML:

<tag_name id="dom_id(record)" class="dom_class">block contents</
tag>

Where the tag name is the first argument to the method. The block contents are evaluated and
placed inside the tag. A DOM prefix can be the third argument; there can also be the usual key/
value pairs that get put in the tag.

A sample usage might be:

content_tag_for(:span, @person, :name) { @person.name }

View: In Depth

This would evaluate to something like the following depending on the actual contents of the variable:
Hollis Mason

The module also contains the method div_for, which is a simplified version that always returns
div tags.

TagHelper
The most commonly used method in this module is content_tag, often used in your helpers to
build HTML output. It can be used in two forms. The first takes content as a string:

content_tag(:td, "Banana", :class => "food")

The first argument is the tag, the second is the content, and then the usual key/value pairs. This
call would result in:

<td class="food"

The second form puts the content in a block. Within your helper module, the block form would
look like this:

content_tag(:td, :class => "food") do
"Banana"
end

See the later section on block helpers to show how this style can be used in an ERb context, rather
than a Ruby context.

A simpler method in this module, tag, works for HTML tags that have no content. Another
method cdata_section takes an argument and wraps it in an XML CDATA tag sequence.

UrlHelper

The star of this module is url_for, which converts a hash of options to a URL in ways that
you've already seen a few times. Remember that in a RESTful universe, the argument to url_for
can be an ActiveRecord object, the URL and controller action are defined by the HTTP method
chose.

Other related methods in this module include calls to url_for as part of their functionality.
Obviously the most commonly used is 1ink_to, which takes a string and a url_for argument
set and creates an HTML link, the button_to method is similar but outputs a button.

The 1ink_to_if and 1ink_to_unless, and 1ink_to_unless_current methods allow
you to specify alternate text if a condition is true, the latter method sets the condition to whether
the page you are on is or is not the page being linked to — commonly used in a menu or naviga-
tion structure to put a special style on the current page. And mail_to creates an email link.

189

190

Form Creation Helpers
The following modules all contain methods specifically used to create HTML forms or form parts.

ActiveRecordHelper

These are a few relatively little-used methods. The methods error_message_on and error_
messages_for convert ActiveRecord validation errors into useful string, this is used for those
error messages displayed when a user inputs invalid information into a form. Use error_
message_on with strings for an instance variable name and method (similar to form helpers), and
error_message_for with a string or list of strings. The methods form and input are rarely
used form generation tags.

FormHelper

This module contains the bulk of form creation helpers that work with form_for and an
ActiveRecord module. Most of these methods take as arguments a symbol representing the object
and the method being mapped to the form element, however, if these methods are called inside a
form_for block, then the object is implicitly set to the object of the form_£for. So:

<%= text_field(:user, :name) %>
But:

<% form_for(:user) do |f| %>
<%= f.text_field(:name) %>

<% end %>

In the second version, the user sent to the form_for method is also associated with any helper
called via the form object inside the block.

The typical method in this module takes the object, method and an options hash to be added to
the eventual tag. These methods are:
B check_box

Also takes additional parameters for the checked and unchecked value of the field. Rails
adds a hidden variable for unchecked checkboxes to ensure that a value is posted for
them.

B file_field

File upload element. The form must be declared as multipart for this to work.
B hidden_field

A hidden input tag.
B label

A label tag, often associated with another input field. Takes an argument before the
options hash for the text of the label if it’s not the same as the method name.

View: In Depth

B password_field
Text field with masked entry for passwords.
B radio_button

Takes an extra argument before the options hash for the value of the button. All radio
buttons with the same object and method are linked, the one whose value matches the
value of the object will be selected.

B select

Takes an argument for the caption of the select button.
W text_area

A multi-line text entry field
B text_field

A single-line text entry field.

The form_for method takes a series of arguments, the first of which is typically the object being
mapped to the form, if the RESTful URL for that argument is not where you want the form post to
be directed, a :url option lets you specify the destination as a hash, string, or routing method. As
just shown, the tag takes a block inside of which the fields of the form are entered.

Often, you'll want a part of the form to be attached to another object, most typically if you want a
user to be able to enter a main object and a child object from another model at the same time. The
fields_for method allows you to wrap those fields and associate them with a separate object. It
takes the same argument structure as form_for, except without a URL.

<% form_for Quser do |f|%>
<%= f.text_field :name %>
<% fields_for @user.address do |a| %>
<%= a.text_field :city %>
<% end %>
<% end %>

Note that the form elements that belong to the inner f£ields_for block are called on the inner
form builder object, in this case a, instead of £.

FormOptionsHelper

Methods that create various flavors of option tags to get placed inside select tags, as well as the
select helper method itself, which creates an HTML select. It is similar to the other form builder
method, but takes an extra argument before the options containing the list of option tags. The basic
form of that argument is a two-dimensional array where each element is [display, value]. If
you just want the option HTML tags from a two-dimensional array, the method options_for_
select takes a collection and an optional selected value and returns the string of tags.

f.select(:state, [["California", "CA"], ["Oregon", "OR"]1)

191

192

All select tags take an option, : include_blank, which is a prompt string or true, and always is
the first element of the list, and thus what displays if there is no selected value. A similar method,
:prompt, only includes the extra element if there is no selected value.

There are a few more specialized tag methods in this module

B collection_select

Takes an arbitrary collection of Ruby objects and converts them into a select and option
tags. The arguments are the same object and value as for any form element tag, followed
by the collection to be used, followed by a method used on those objects for the value of
each option and a method used for the text of each option, then the normal key/value pairs:

f.collection_select(:state, US_STATES, :mail_abbr, :name)
B country_select

Returns a select tag with options for selecting many, many countries. An associated
method, country_options_for_select, returns just the option tags.

B time_zone_select

Returns a select tag of all time zone from the time zone database and has an associated
time_zone_options_for_select method.

FormTagHelper

This module contains all the form helpers that are used in the older, form_tag style of form
creation. The primary advantage of this set of helpers as that they are not required to be attached
to an ActiveRecord object, making them more flexible. Most of these take a name, value, and
options, and are otherwise analogous to the FormHelper methods. These methods include
check_box_tag, file_field_tag, hidden_field_tag, image_submit_tag,
password_field_tag, radio_button_tag, select_tag, submit_tag, text_
area_tag, and text_field_tag.

The form_tag method is used to create the entire form, and field_set_tag creates an HTML
fieldset. For the form, the argument is the URL being posted to.

JavaScript Creation Helpers

These helper modules are used for JavaScript and Web service support.

AtomFeedHelper

This has one method, atom_feed, and a sub module AtomFeedHelper: : AtomFeedBuilder.
An instance including that module is passed the block argument of this method. You would use
this to create an Atom feed. Almost all of the action takes place in the block. The builder object
works just like the Ruby XML builder, so any unknown method call on it will result in an XML
tag. The feed. title in the following example:

atom_feed do |builder|
feed.title("Feed For Thought")
end

View: In Depth

Results in the XML <title>Feed For Thought</title>. The feed helpers manage the
requirements for the header and whatnot of the feed, you need to pass it the contents. Each entry
in the feed needs to call the entry method of the builder, and then add at least a title and content
to the entry.

atom_feed do |builder|
feed.title("Feed For Thought")
@posts.each do |post]|
feed.entry (post) do |entry|
entry.title(post.title)
entry.content (post.content)
end
end
end

The Atom specification discusses all the possible fields in an Atom feed.

JavaScriptHelper

In this module, you'll find a number of utilities for escaping JavaScript and otherwise dealing with
JavaScript strings inside your Rails program.

The most useful function here is probably javascript_tag, which takes JavaScript as either a
string or block argument and encloses it in a fully escaped script tag.

javascript_tag do
alert ("Hey!")
end

This module also contains 1ink_to_function and button_to_function, the first argument
to either method is the text for the resulting link or button. The function to be called is either
passed as the next string argument, or as a block, which is evaluated as RJS (see the next section
for details). Finally, the escape_javascript function takes as string and escapes things like
HTML tags and quotation marks so the string can be passed to a JavaScript string.

PrototypeHelper

This contains a number of helpers for making Ajax and RJS calls and will be fully discussed in the
next section.

ScriptaculousHelper

This contains a number of helpers for making Ajax and RJS calls and will be fully discussed in the
next section.

Data Processing Helpers
These helper modules are used for data processing.

193

194

CaptureHelper

The big method here is capture, which takes a block argument and returns it as a string. This is
extremely useful in writing your own block helpers and will be discussed in a bit more detail in
just a moment. A related method, content_for, takes a symbol and a block and associates them
for the life of the request, allowing you to evaluate the block later on:

content_for (:banana) { "Yum" }
And then later on:

vield :banana

DateHelper

The DateHelper module has a series of methods for evaluating dates. First, is a method that converts
a time range to text. The method distance_of_time_in_words — takes three arguments, the
start time, the end time (which defaults to now), and a boolean as to whether seconds should be
included. It returns a fuzzy time string representing the distance between the two timestamps along
the lines of “about a day” or “over 4 years” — the kind of thing you frequently see timestamping
blog posts or comments. If you are comparing the time to now, then the shortcut method time_
ago_in_words will also work.

Next up is a series of methods for picking dates in forms via a series of select tags. These elements
come in a form_£for version and a form_tag version, which are slightly different.

The ActiveRecord versions are called date_select, time_select, and date_time_
select. The methods take the normal object name and method arguments. They can be specialized
by using the :discard family of options to drop the year, month, date, hour, minute, or second
options, so :discard_year => true. The : order option takes a list of the sub fields to use,
such as :order => [:day, :year]. In this version, parts not included in an order list are not
included in the generated form. The :default option sets the date and time for the initial value
of the fields if the supplied ActiveRecord doesn’t have a value. All of these methods place their
selects into the field in such a way that ActiveRecord will automatically parse them into the date
fields correctly.

The non-ActiveRecord versions are called select_date, select_time, and select_date_
time. In this version, you can still set an : order option to change the order of the fields, but
fields not included in the list are still appended to the end of the generated form.

If you want to have a form with a subset of the fields, you must build it yourself from the helper
methods select_vyear, select_month, select_day, select_hour, select_minute,
and select_second. All of these methods take a date or time value as their first argument, to
set the field or fields. The second argument is an options hash. These helpers generate fields with
names that match the type of field, year, month, and so on. To change the default, pass a value to
the : field_name option.

View: In Depth

NumberHelper

A few helpful methods for converting numbers to different formats.

B number_to_currency

Takes the number and an options hash and returns a currency string. The options over-
ride the defaults, :;precision => 2, :unit => 'S$', :separator =>".",
:delimiter => ", ".

B number_to_human_size

Converts a file size in bytes to a human readable version, like 10GB, or 1.5 MB. The
optional second argument is the number of decimal places of precision.

B number_to_percentage

Converts the number to a percentage string, does not multiply it by 100 — number_
to_percentage (100) returns 100.000%. There are two optional arguments, with
the defaults :precision => 3, :separator => ", ".

B number_to_phone

Converts an integer to a phone number string, by default in the common American for-
mat of 123-456-7890. Options include :area_code => true, which puts the area
code in parentheses; :delimiter, which defaults to -; : extension, which adds an
extension; and : country_code, which adds one of those, too.

B number_with_delimiter

Writes the number using the delimiter to separate thousands, and a separator to separate
decimals. The delimiter is the second argument, the separator the third, the default values
are the American format of comma and decimal point.

B number_with_precision

Displays the number to an arbitrary number of decimal points, the default is 3.

SanitizeHelper

The methods in this helper are designed to strip HTML or JavaScript entities from a string, you
should always use one of these methods to qualify any text being displayed directly from user data
entry to prevent cross-site scripting attacks.

The primary method here is sanitize, which takes text as an argument and removes anything
that looks like an HTML tag, except for a few tags that are on a whitelist. If a : tags argument is
passed, then only the tags in that list are allowed, if an :attributes argument is passed then
only those attributes within the allowed HTML tags are allowed. The global white list is specified in
the attributes ActionView: :Base.sanitize_allowed_tags and ActionView: :Base.
sanitize_allowed_attributes. You can set custom lists in the config. rb file.

More aggressively, the method strip_tags removes all HTML tags from the text, and strip_
links removes all HTML anchor tags.

195

m Rails In Depth

196

TextHelper

This module has kind of a pot-luck set of methods for manipulating text:

B auto_link

Takes incoming text and converts anything that looks like a URL or email address to a
link. An optional second argument can be :all, :email_addressses, or :urls,
and controls what kind of links are generated. An optional third argument is a hash
added to each link.

concat

Adds text to the ERb output stream, given text and a block biding. See the section on
block helpers later in this chapter for why this is useful.

cycle

Takes one or more text values, and returns an object. When that object is called, it
returns the strings one by one in a loop. An optional argument :name allows the cycle to
be reset with reset_cycle (name). This is often used to alternate colors in a table:

<% @books.each do |book| %>
<tr class="<%= cycle("even", "odd") %>">
</tr>

<% end %>

excerpt

Takes some text and a phrase and returns a subset of the text centered on the phrase.
The optional third argument specifies how long the excerpt should be on each side of the
phrase, defaulting to 100 characters.

highlight

Takes text and a phrase and highlights all instances of the phrase, as in the display of
search results. An optional third argument can change the highlighting, which defaults to
HTML strong.

markdown
1f the BlueCloth gem is installed, parses the given text as Markdown.
pluralize

Takes a number, then a singular noun. If the number is 1, then the singular is returned,
otherwise the plural form of the noun is returned. An optional third argument allows you
to specify your own plural form.

simple_format

Converts the given text to HTML, converting a single newline to a br tag and a double
newline to a p tag.

textilize

If the RedCloth gem is installed, converts the given text as Textile.

View: In Depth

Debugging Helpers

The helpers in this section assist in debugging or performance improvement.

BenchmarkHelper

The sole method in this module is benchmark, which takes a block and a text message, and logs
the amount of time it takes to run the block of code to the appropriate log file. An optional second
argument specifies the log level.

CacheHelper

The sole method in this module is cache, which allows you to cache an arbitrary fragment of a
view. The method takes an optional argument, which is a URL-style hash allowing you to uniquely
identify the fragment (it doesn’t have to be a real URL, just a unique identifier) and a block. The
result of the block is cached and inserted the next time the fragment is called without having to
evaluated the block again.

DebugHelper

The sole method in this helper is debug, which takes an object and returns a YAML-compatible
inspection of the object wrapped in a pre tag so it can be placed in your HTML output for testing.

Creating Your Own Block Helpers

Within your own helpers, you are free to write any valid Ruby you want, and use any other helpers
that might assist. There is one technique that you should know about, which is the ability to write
a helper that surrounds arbitrary ERb. For the purposes of an example, let’s say you want a helper
that creates a table row with two cells, the first has a caption, and the second has arbitrary ERb, so:

<% captioned_row "Location" do %>
<%= f.text_field :city %>
f.text_field :city %>
<%= f.text_field :zip %>
<% end %>

In the code snippet, the helper call is enclosed in a ERb evaluate tag not an ERb evaluate and print
tag. This means that the helper method will need to explicitly place the output text into the ERb
stream (doing an evaluate and print for blocks doesn’t work). However, the text field calls inside
the block are entered as evaluate and print, those will be dealt with as string.

The helper to process this code looks like this:

def captioned_row(caption, &block)
caption_cell = content_tag(:td, caption)
data_cell = content_tag(:td, capture(&block)
row = content_tag(:tr, caption_cell + data_cell)
concat (row, block.binding)

end

197

198

This method uses several helpers that you have already seen. The content_tag method builds
up the HTML tags for the table cells and row. The capture method evaluates the block and
returns its result as a string — conveniently, you do not need to specify that the block should be
evaluated as ERb; it will be automatically be parsed and processed by the ERb engine. It will not,
however, be included in the page output until you call concat, which takes the text that you
want to place in the output, and the binding for the block. A block binding is something like a fro-
zen set of variable states, and the concat helper uses the block binding to get at the ERb output
stream.

JavaScript, Ajax, and RJS

One of Rails’ earliest advantages over competing frameworks was it’s embrace of Ajax as a mechanism
for interaction between the browser and the Web application. In an Ajax interaction, the browser
makes a behind-the-scenes call to the server, and uses the result to update part of the page on the
fly. Rails makes adding Ajax effects to you Web application as easy as adding regular links and
actions. This section will cover Rails support for Ajax interaction through helper methods that
generate Prototype and script.aculo.us code. Chapter 10 contains more information on the
Prototype and script.aculo.us libraries themselves, including information on the script.
aculo.us helpers that manage drag and drops.

Ruby JavaScript (R]S) is a later addition to Rails toolkit to support more complex JavaScript inter-
action by providing Ruby helpers that create JavaScript code.

Prototype Helpers

The helper methods in the PrototypeHelper module are all designed to support Ajax interaction
by generating a Prototype object that makes a remote call and evaluates the response. The basic
mechanism for most of these methods is to take a URL and a DOM ID. The URL is called when the
interaction is triggered, and the result replaces the text in the specified DOM element. Although
some of these methods have additional options for more complex interactions, the preferred mech-
anism for more complex Javascript is an RJS template call.

The Ajax helper methods take many common options. Unless otherwise specified, all of these
methods have an options argument at the end that takes a :url option to specify the server target
of the Ajax action, and an :update option to take the DOM ID to be updated — if no update is
specified, it’s assumed that further instructions will come from the JavaScript returned by the
server. If you want the text to be an insertion rather than a replacement, specify the :position
option to be :after, :before, :bottom, or :top.

Several further options allow you to specify additional JavaScript code to be executed under various
conditions. Again, RJS has largely, but not completely, rendered these obsolete. A JavaScript snippet
passed to the : condition option can halt the execution of the request before the server is con-
tacted by returning false. The : confirm option, if specified, is the text of a confirmation box that
must be okayed before the request proceeds. JavaScript, to be executed before the Ajax call is made,

View: In Depth

should be passed to the :before option. JavaScript can be executed during processing by specify-
ing the : 1loading, :loaded, or :interactive options. Once those are complete, any
JavaScript code passed to :after option is executed.

Additional callbacks can be based on the result of the call by passing the script to the : success
or : failure options. In either case, the code passed to the : complete option is executed after
that. In place of the success or failure options, any integer corresponding to a specific HTTP
response code can be used as an option key. Finally, two non-callback options: the : submit
options specifies the parent DOM element for any form element in the Ajax call if for some reason
the currently active form isn’t the parent; and the :with option is a JavaScript snippet that must
return a string suitable to be appended to the query string of the request.

And here are the helpers themselves, along with any further options or quirks specific to that
method;

B form_remote_tag

The Ajax version of form_tag for non-ActiveRecord forms. Its only arguments are the
option tag, and the block that will contain the form elements. The :html option specifies
an alternate URL for browsers without JavaScript.

B link to_remote

The Ajax version of 1ink_to, creates a clickable link with Ajax consequences. By default
the HTTP method of this connection is POST. The first argument is the text of the link,

the second argument is the options hash. The :html option adds additional attributes to
the anchor tag. The :href option provides an alternate target if JavaScript is not enabled.

B observe_field

The first argument to this method is the DOM ID of a form element the second argument
is an options hash. When the form element changes — anything that would trigger a
JavaScript changed event — the URL is called and the response is evaluated. Instead of
a :url, you can specify : function, which is JavaScript code that will become the body
of a function called when the field changes.

You may assume that the generated function will have the arguments element and
value. An additional option, : frequency, specifies the amount of time in seconds
between checks of the field. A property called : on purports to allow you to change the
event being tracked, but as of this writing, a Prototype bug prevents it from working.
Also, when specifying the :with option, you may use the JavaScript variable value,
which has the new value of the field element.

B observer_form

Like observe_field, but the DOM ID is of an entire form, and the URL or function is
triggered if any element in the form is changed. The only difference in the options from
observe_field is that the value parameter for the :with option contains the entire
form.

199

m Rails In Depth

200

B periodically call_remote

Takes just the options hash as an argument. Uses the : frequency option to determine
how often, in seconds, it should make its remote call. The default is ten seconds.

B remote_form_for

The Ajax version of form_for (also can be called as form_for_remote). The first
arguments specify the ActiveRecord, followed by the options hash, and the form block.

B remote_function

Given the option hash, returns just the JavaScript for making the remote Ajax call, suit-
able for insertion in some other kind of user or JavaScript event.

B submit_to_remote

Can be used to create a remote submission inside a form.

RJS helpers

RJS allows you to create a wide variety of common JavaScript Ajax functionality by writing Ruby.
RJS code can be triggered in many ways. The render :update method takes an optional block
that is evaluated as RJS:

render :update do |page]
page.replace_html "header", "Clicked!"
end

The page variable is the variable that can respond to the RJS generator methods and is automatically
created by render :update. The helper method doesn’t need to have the page in its arguments,
but can use page as a local variable.

1f the default controller action for a JavaScript request finds a file with the extension .rjs, then
that file is evaluated as if it was inside a render :update block, complete with a page variable
created for your use inside the template. Finally, the Prototype helper update_page, takes a
block in exactly the same way as render :update and returns the created JavaScript code.

Within an RJS template the page variable has about two dozen Ruby methods that create
JavaScript. The most commonly used are probably the three that affect HTML for a given DOM id:

B insert_html

Takes three options, a position as in the options for the Prototype helpers in the last sec-
tion, and a DOM ID to be affected. The third option is either a string to be inserted directly
or a key/value hash which is interpreted as though it was a call to render, so typically
something like :partial => 'partial_view'. The resulting text is placed in the
DOM element as specified by the position.

View: In Depth

B replace

The first argument is a DOM ID, the second is the text to render in the same way as in
insert_html. The text completely replaces the DOM element, including its tags, or
what JavaScript calls the outer HTML of the element.

B replace_html
As replace, but does not effect the tag of the element. In other words, it replaces the
JavaScript inner HTML of the element.

Any RJS method that takes a DOM ID as its first element can also be accessed via an alternate
method, like so:

page.replace_html "header", "new text"
This is equivalent to:
page["header"] .replace_html, "new text"
and:
page.select ("header") .first.replace_html, "new text"

The last version is the most flexible; the option to the select method can be any CSS-style selector.
The result is an enumeration of all matching elements. You can then deal with that enumeration
using Prototype’s iteration methods, which are very similar to Ruby’s.

The select form is often used to bulk hide or show a set of DOM elements using the RJS methods
hide, show, and toggle, which change the visibility of the DOM element passed to them. The
method remove takes the element completely out of the DOM tree. All four of these methods can
take multiple DOM IDs as arguments at one time.

The draggable, drop_receiving, and sortable methods all take a DOM ID and create a
script.aculo.us object for that DOM ID

T For more details on creating a script.aculo.us object, see Chapter 10.

The visual_effects method gives access to the entire range of script.aculo.us visual
effects. The first argument to this method is the name of the effect, the DOM ID being affected is
the second argument, the third argument is an option hash. The exact list of visual effects is
dynamically determined by what script.aculo.us offers, but commonly used ones include
‘highlight, :fade, :appear, and :puff. The script.aculo.us documentation has a
complete list.

A few methods let you include arbitrary JavaScript outside of what is provided:

" >>

Inserts its argument as JavaScript directly to the page, as in page << "1 + 1".

201

m Rails In Depth

202

B alert
Sends a JavaScript alert call with the given text argument.
B assign

The arguments are a variable name and a value and the generated JavaScript assigns that
value to that variable on the client-side.

B call

Takes a JavaScript function and a list of arguments and inserts a call to that function into
the RJS JavaScript.

B delay

Takes a numerical argument and a block. Waits that number of seconds on the client and
then evaluates the block

B literal
Creates a JSON object from the given text.
B redirect_to

Takes a Rails URL format and redirects the entire client-side browser page to that URL.

Summary

In this chapter, you learned about the view layer of a Rails application. Just as with the other layers
of your application, Rails provides significant help to you, the developer, in creating the views for
your application.

In Chapter 10, you'll learn about the Prototype and Scriptaculous JavaScript toolkits, which are
distributed with Rails. These toolkits provide even more power to you as you develop the views for
your Web application.

G Y

L N | —_—

Developing a
Complete Rails
Application

Chapter 6
Developing Book Shelf: The
Basic Framework

Chapter 7
Developing Book Shelf: Adding
the Core Functionality

Chapter 8
Developing Book Shelf: Social
Support

Chapter 9
Testing the Book Shelf
Application

his chapter marks the beginning of step-by-step development of a

complete and useful Rails application. If you are familiar with the

Web development market, you know that most of the hottest appli-
cations being developed today feature some sort of social aspect. The option
for users to provide content and interact with other users is a key component
of what is usually referred to as a Web 2.0 application. The application you
can write by following along in this chapter fits in nicely with the Web 2.0
paradigm.

This application will allow groups to create an online catalog of books. Using
the application, users can add books, share book reviews, share book ratings,
and organize the books using tags. Book Shelf, as I've named this application,
could be used by a user group, a community group, a school, a local library,
a workplace, or just about any group of people that have some interest in
books.

You will develop Book Shelf using an iterative process in which you will
design a feature and then code that feature. This process is repeated until all
of the required features of the application have been implemented. In this
chapter, you will put in place the basic framework of the application and
implement a user model with authentication so that a user is able to log in
to and out of the application. The development continues in the next two
chapters.

I strongly encourage you to follow along with the development of the applica-
tion and to write the code on your computer as you read about it. However, 1
do recognize that this is not the best learning style for everyone who will read
this book. Therefore, if you'd like to see the complete source code for the
application, you can download it from www . rubyonrailsbible. com.

205

Application overview

Creating a skeleton for the
application

Create a home page

Implementing users

m Developing a Complete Rails Application

Application Overview

Previous chapters have covered the various features that make up Rails; in this chapter you can
learn through the experience of writing what I feel is an interesting application.

206

Your Book Shelf application will include the following features:

User registration, login, and account management

Ability to add and remove books to and from user-specific shelves
Automatic population of book information for added books

Ability to search the Amazon catalog to find books that a user wants to add
Links to purchase books online

Support for book reviews

Tagging of books

Rating of books

One of the best ways of communicating the goals for an application upfront is through pictures. To
give you a good idea of what is to be developed, I'll cheat a bit here by showing you how the appli-
cation looks when it’s complete. Figures 6.1 to 6.4 show four of the Book Shelf application’s main
screens, which are described here:

Book Shelf Home Page: The screen shown in Figure 6.1 is what users will see when
they first navigate to the Book Shelf application. This is the starting point for all users
and visitors.

User Home Page: The page shown in Figure 6.2 is a home page for users who have
logged into the application.

Add Book Page: The page shown in Figure 6.3 is where users can view results of
searches against the Amazon catalog and find books that they want to add to their book
shelf.

Book Detail Page: The page shown in Figure 6.4 is where users view details about a par-
ticular book that is on someone’s shelf. This is also the page where users are able to read
and submit book reviews.

Developing Book Shelf: The Basic Framework _

FIGURE 6

The Book Shelf Home page

[>[B] [Glzfcos

Sign-In

Username: ‘

o TN Share and Discover New Books
1 Share your knowledge of books, add reviews, rate books, organize
books with tags.

| View the Books

| Tag cloud contant Recently Added Books... 0l

Prototype &
iptaculous (BN >
INACTION P 3 Java

v

zur.ero@j ? @ vsow 6651 [

Done

207

Developing a Complete Rails Application

FIGURE 6.2

The User Home page

Higtory kmarks Yahoo! Tools Help

-G o % o [P [hto:/tocabost:000juserinome

Rook Shelf
.L_J._.)._JIJ_J __)_J_J._, il

Login successful

My Books

L Java Phrasebook (Developer's Library) Delete from Shelf
Jawva Author(s): Timothy R. Fisher 1 Users
- Release Date: 2006-11-06

! My Amazon i
| Wishlist i ISBN: 0672329077

| All Books
! Ruby Cookbook (Cookbooks (O'Reilly)) Delete from Shelf i
Author(s): Lucas CarlsonLeonard Richardson 1 Users

Release Date: 2006-07-19
ISBN: 0596523696

| Add Book
i

]

SRR TR Ajax on Rails Delete from Shelf

| Invite a friend Author(s): Scott Raymond 1 Users

| enter email: ' Release Date: 2007-01-03

i H ISBN: 0596527446 &
Done zotera Gl © | O B YSow 3.07% | [

208

FIGURE 6

Developing Book Shelf: The Basic Framework

The Add Book page

Mozilla Firefox

View Higiory del Bookmarks Yshoo! Tools Help

@@

foac] [P [http:focaihost:3000/book/search

| | Nextpage
| [s
% My Books -

| All Books

-—
 Add Book ﬂ‘
| —
i

| Invite a friend
| enter email:

e

| My Amazon L =l
| Wishrist 3

Agile Web Development with Rails, 2nd Edition
Author(s): Dave ThomasDavid HanssonLeon BreedtMike
ClarkJames Duncan DavidsonJustin GehtlandAndreas Schwarz
Release Date: 2006-12-14

ISBN: 0977616630

Progr ing Ruby: The Prag ic Progr ' Guide,
Second Edition

Author(s): Dave ThomasChad FowlerAndy Hunt

Release Date: 2004-10-01

ISBN: 0974514055

RESTful Web Services

Author(s): Leonard RichardsonSam RubyDavid Heinemeier
Hansson

Release Date: 2007-05-08

ISBN: D586529260

Add to Shelf

Add to Shelf

Add to Shelf

v

Done

zur.ero@j ? @ Bvsow 4875 [V

209

m Developing a Complete Rails Application

The Book Detail page

fie Edt View Hgtory delidous Bookmarks Yashoo! Tools Help

G- & g e [P [htto:/Aocabost:3000/bookishowst

Java Phrasebook (Developer's Library)
Author: Timothy R. Fisher
Release Date: 2006-11-06

My Books

! My Amazon
| Wishist

All Books

Users: 1
Added to BookShelf on: Wed Nov 07 21:40:13 -0500 2007
Buy from Amazon

i Al BT i User Reviews (0)
| Be the first to review this book)
; S —

| Invite a friend

| enter email: i

i '— i v
Done zotera Gl © | O B YSow 2205 | [

If you follow the development of the Book Shelf application through the next two chapters, I hope
you find something missing from the chapters. I am referring to unit tests, something that should
normally be a part of your development process. In any real application development cycle, I very
strongly recommend that you write your unit tests shortly after you implement a particular feature.

You can also practice test-driven development, in which you actually write your unit tests before
you write the code that implement the tests. Either of these development styles will produce
higher-quality code that is a great deal more maintainable. For this book, I have chosen to central-
ize the writing of tests into a chapter of its own so that the reader who wants to look up how to
write tests for a Rails application has a dedicated chapter to go to.

Chapter 9 includes tests for the Book Shelf application.

210

Developing Book Shelf: The Basic Framework _

Creating a Skeleton for the Application

This section leads you through creating a skeleton for the Book Shelf application. The skeleton
will set up the application’s directory structure and provide a home for the code you will write
throughout the remainder of the chapter. You will also create application databases for three differ-
ent environments: test, development, and production.
CRG ey o= This chapter assumes that you have already installed Ruby and Rails on your devel-
= Jﬂ‘?%— e opment computer. If you have not, see the Quick Start chapter for help with install-
ing those components.

Begin the Book Shelf project

The project is named Book Shelf, but it is common Rails convention to give the Rails project a
name that is lowercase with underscore word separation. You can use book_shelf as the name
of the Rails project. From your project directory, open a console window and use the rails com-
mand to generate the directory structure for the Book Shelf application:

rails -d mysgl book_shelf

Prior to version 2.0.2 of Rails, MySQL was the default database for a Rails application. However

as of Rails 2.0.2, SQLite is now the default database for a Rails application. If you run the rails
command above without the -d option, your database configuration file will contain setup for a

SQLite database. The -d mysqgl option tells Rails that you want it to setup a database configura-
tion file for use with MySQL.

Running this command will output the list of directories and files that are being created for you.
The directory structure that is created is common to all Rails applications. Inside of the directory in
which you ran the rails command you should now see a directory named book_shelf. If you
look at the drectories inside of the book_shel £ directory you should see the directory structure
shown in Figure 6.5.

From within the book_shelf directory, start the WEBrick server using the script/server
command:

ruby script/server

=> Booting WEBrick

=> Rails application started on http://127.0.0.1:3000

=> Ctrl-C to shutdown server; call with --help for options

211

Developing a Complete Rails Application

FIGURE 6.5

The Rails directory structure

% book_shelf
Fie Edt Vew Favorites Tools Help
Qs - © ¥ O search ‘ -, Folders
Address |2 1 ails_projects\book_shelf v B
Folders X Name « Size | Type Date Modified
A Dam File Folder 11/18/2007 4:16 PM
[companents File Folder 11/18/2007 %16 PM
2 components Sconfig File Folder 11/18/2007 %16 PM
®) config (=L File Folder ~ 11/18/2007 %:16 PM
=y Ddoc File Folder 11/18/2007 4:16 PM
2 doc (=] File Folder 11/18/2007 416 PM
Db Do File Folder 11/18/2007 4:16 PM
= Sopublic File Folder ~ 11/18/2007 %16 PM
@ B public Dsaript File Folder 11/18/2007 4:16 PM
@ () saipt Dtest File Folder ~ 11/18/2007 4:16 PM
— Dt File Folder 11/18/2007 4:16 PM
B0 tmp () vendor File Folder ~ 11/18/2007 %:16 PM
[I vendor [Erakefie 1KB File 11/18/2007 4:16 PM
[(i) Bookshelf v = reaome 8KB File 11/18/2007 4:16 PM
< |
14 objects (Disk free space: 2,68 GB) 8.11KB 4 My Computer

When you see feedback indicating that the WEBTrick server has been successfully started on port
3000, open a browser and navigate to http://localhost:3000. You should see a screen simi-
lar to the one in Figure 6.6.

FIGURE 6.6

The Rails Welcome page

A Ruby on Rails: Welcome aboard - Windows Internet Explore (=
Fie Edit View Favorites Tools Help
Gt - ©Q WEBAG Lo frreos @ 2- 5 B- JRUBEDTS
fccress [] hitp:focahost:3000/ G0 | links G etioous ~ o Google[[Gl- wfo> @ settnos~
——
Welcome aboard e
T Rails!
Join the community
- Ruby on Rails
Getting started rtent we
Here's how to get rolling: sl
Mailing lists
s IRC channel
1. Create your databases and edit e
config/database.yml s
Bug tracker
Rails needs to know your login and password.
Browse the
. . documentation
2. Use script/generate to create your
medels and controllers
Rails APT
To see all available options, run it without parameters Ruby standard libra
Ruby core
3. Set up a default route and remove or
rename this file
Routes are setup in config/routes.rb.
s
€] ® mnternet

212

Developing Book Shelf: The Basic Framework _

You have now successfully created the Book Shelf project directory and a skeletal framework
where all of the code you write will go. You'll continue development by setting up the application’s
databases.

Setting up the databases

For any database-backed application, Rails supports three distinct environments; production,
development, and test. Each of these environments should have their own database associated with
it. In a real application, these databases may not all be on the same server. In fact it is very likely
that your development and test databases will not exist on the same server that holds your produc-
tion database. For this application, you will create all three databases on your local development
machine.

Create the databases

Prior to Rails 2.0 you would have had to create the databases yourself using either the MySQL
command-line tool, or some other tool. However, as of version 2.0 of Rails, you can easily create
the databases using a simple Rake command. The first thing you must do is make sure the data-
bases that you want created are configured in your application’s database.yml file. This is a
database configuration file contained in the book_shelf/config directory. If you open that up,
you should see something similar to Listing 6.1.

The important things to notice in the configuration are the following:
B The adapter is set to mysql. This means you will be using MySQL as your database

application.

B The database names are a concatenation of the name of the application book_shelf
with an environment name, such as book_shelf_development.

W The username and password fields should contain the username and password of a valid
MySQL user. When you first install MySQL the root user is created with no password. If
you have changed that, make sure you update this file appropriately.

B The host for each database is set to be localhost, meaning that you will be hosting all of
the databases on your local computer.

After you've made any necessary changes to your database configuration file, you can use Rake to
create the databases. From a command prompt use the following Rake command:

rake db:create:all

This will create each of the three databases that were specified in the database.yml file. If for some
reason, you made a mistake and need to start over, you can remove all of the databases using a
similar command, rake db:drop:all will remove all of the databases specified in database.yml.

Now that you have the application skeleton generated and the databases created, it’s time to begin
building the application.

213

m Developing a Complete Rails Application

Book_shelf/config directory

development:
adapter: mysqgl
encoding: utf8
database: book_shelf_ development
username: root
password:
host: localhost

Warning:

re-generated from your development database when you run

will be erased and
'rake'.

The database defined as 'test'

Do not set this db to the same as development or production.

test:

adapter: mysqgl

encoding: utf8

database: book_shelf_ test

username: root

password:

host: localhost
production

adapter: mysqgl

encoding: utf8

database: book_shelf_production

username: root

password:

host: localhost

Create a Home Page

In the previous section, you saw that if you run the application right now, you get the Rails
Welcome default page. You will now create a home page for the Book Shelf application that the
user starts from. The end result of what you'll create in this section is shown in Figure 6.7. It’s not
yet the final home page that you saw at the beginning of this chapter, but it is a place to start from.

214

Developing Book Shelf: The Basic Framework _

FIGURE 6.7

The Book Shelf home page

3 Mozilla Firefox

Fie Edt Vew Hstory delidows Bookmarks Yshoo! Tools Help

& - 7 o fae] [P [L1 ntt:irocaihost:3000 homeindex =[] [C-]l

ST Share and Discover New Books
i Share your knowledge of books, add reviews, rate books, organize
books with tags.

| View the Books

Dore zotero 1| © | @ B vsiow =]

Now that you know what the goal is for this section, let’s talk about what you need to do to get
there. How do you display a page in a Rails application? You need to create a controller to handle
the page request coming from the browser. The controller will contain a method corresponding to
the particular action that the browser is requesting. The action method of the controller will render
a view template file that defines the page you want to display. There are three steps you need to
follow:

1. Create a controller to handle the home page request.
2. Create a method in the home controller to handle the home page request.

3. Create a view template to define the page to be rendered.

Let’s get started with a home controller.

Create the Home controller

It is a good practice to create controller classes that correspond to your model classes. For example,
if you have a user model, you would also have a user controller that would provide action methods
related to working with users. However, for the home page, there is really not a specific model

215

m Developing a Complete Rails Application

216

class that you want to work with yet. You can simply call the controller that renders the home page,
‘HomeController.’

In a command window, go to the book_shelf directory and use the Rails generate script to cre-
ate the HomeController class:

> ruby script/generate controller Home

exists app/controllers/

exists app/helpers/

create app/views/home

exists test/functional/

create app/controllers/home_controller.rb
create test/functional/home_controller_test.rb
create app/helpers/home_helper.rb

This creates a stub for your Home controller, a functional test for the controller, a helper for the
controller, and a views/home directory where you can put view templates that will be rendered
by the Home controller.

Open up the app/controllers/home_controller.rb file, and you see a currently empty
controller class like this:

class HomeController < ApplicationController
end

You need to add a method that will handle the rendering of the Book Shelf home page. It is a stan-
dard practice to name any Web site’s start page as index. If you specify a URL containing only a
controller name with no action, Rails will, by default, route to an index action. You can name the
action method to display the home page, index. Edit the HomeController to add the index
method:

class HomeController < ApplicationController
def index
end

end

Notice that you did not specify any template to render. By default, a view template with the same
name as the action method will be rendered. In this case, when the index method is called, it will
try to render a template stored in app/views/home/index.html.erb.

Now that you have a controller and an action method in place, let’s move onto creating the home
page view template.

Create a layout and view

You could put all of the HTML necessary to create the home page view into a Rails view template.
However, some of the HTML is probably reusable across many of the other views that will also be
created. If you look back at the four screen shots that were shown at the beginning of this chapter,

Developing Book Shelf: The Basic Framework _

you will notice that all four of those views had the same general layout. Rails has great support for
common layouts, so it makes sense to start with a Rails layout template.

Rails layouts let you put HTML and embedded Ruby content into an html . erb file that can be
used with multiple views. Layout files are just like other Rails view template files. Rails will look

in the app/views/layouts directory for a layout template that contains the same name as the
controller that is being requested. If a layout exists with the same name as the controller, Rails uses
that layout file. If Rails cannot find a layout template that matches a controller name, it uses the
layout file named application.html.erb. The application.html.erb template is a
global template within which you can put your default page layout. Unless you override this by
creating controller-specific layouts, Rails will always use the application.html.erb template.

You can also override the layout which will be used for any given controller by specifying a layout
inside of a controller file. For example, if you wanted to use a layout file named home . html . erb
with the methods in your home controller, you could modify the home controller adding the lay-
out specification like this:

class HomeController < ApplicationController
layout 'home'

def index
end
end

For this application, the home controller will use the default application.html .erb layout
file.

Create the app/views/layouts/application.html.erb file now and enter the code
shown in Listing 6.2.

This will set up the general layout across all of the application’s pages. The following sections break
down the various pieces of this layout template.

The HTML head
The HTML head defined in the layout looks like this:

<head>
<title><%= @title %></title>
<%= stylesheet_link_tag "style" %>

<%= javascript_include_tag :defaults %>
</head>

The page title is set using an instance variable set by the action methods of your controllers. This
allows each page to have a unique title while still using the same layout template. The second line
of the head section links a style sheet named style.css from the public/stylesheets
directory. Notice that you do not have to specify the . css extension. Just specifying the name of
the file without the extension is enough for Rails to find the CSS file, assuming that you used the
.css extension to name the file.

217

m Developing a Complete Rails Application

The Application Layout Template in app/views/layouts/application.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title><%= @title %></title>
<%= stylesheet_link_tag "style" %>

<%= javascript_include_tag :defaults %>
</head>
<body>

<div id="header">

<div id="logo_image">
<%= link_to image_tag('main_logo.png'),

{:controller=>'home', :action=>'index'} %>
</div>

<div style="clear: both; height: Opx;"></div>
</div>

<%= render :partial=>"shared/sidebar" %>

<div id="Content">

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>
<% end -%>

<% 1f flash[:error] -%>

<div id="error"><%= flash[:error] %></div>
<% end -%>

<%= yield %>

</div>

</body>

</html>

The last line of the head section includes default JavaScript files. Rails defines a standard set of
JavaScript files that are included with the framework as its defaults. The default JavaScript files that
will be included are as follows:

218

Developing Book Shelf: The Basic Framework _

application.js: This is where you write any custom JavaScript that you want to include.
controls.js: This is a part of the Scriptaculous library.

dragdrop.js: This is a part of the Scriptaculous library.

effects.js: This is a part of the Scriptaculous library.

prototype.js: This contains the Prototype library.

Prototype and Scriptaculous are powerful JavaScript libraries that make it easy for you to create
cool effects, create rich interactive features, and write well-structured JavaScript.

| For more about the Prototype and Scriptaculous libraries, see chapter 10 of this
book.

The body header section

The HTML body section of the layout includes the main_logo.png image that links to the home
page if the user clicks it.

<div id="header">
<div id="logo_image">
<%= link_to image_tag('main_logo.png'),

{:controller=>'home', :action=>'index'} %>
</div>
<div style="clear: both; height: Opx;"></div>
</div>

= You can download the main_logo.png and other image files used by this project
from the book’s Web site at www.rubyonrailsbible.com.

The link to the home page is created using the 1ink_to helper. The index action of the home
controller is specified as the link’s target. The last div in the header section is only for layout pur-
poses. This helps to achieve the correct layout. If you are familiar with laying out pages using float-
ing elements, you are probably also familiar with the technique of using a clearing div. For those of
you not familiar with this, I'd suggest a good CSS reference book.

The body sidebar section

The sidebar defines the left menu that you see in each of the application screens. This will be ren-
dered as a partial.

<%= render :partial=>"shared/sidebar" %>

You can create the sidebar partial now. In the app/views directory, create a subdirectory named
shared. The shared directory is where you will put view partials that will be used by view tem-
plates associated with more than one controller. In the app/views/shared directory, create a
file named _sidebar.html.erb. Edit the file to look the code in Listing 6.3.

219

m Developing a Complete Rails Application

LISTING 6.3

_sidebar.rhtml partial

<div id="sidebar">

<div id="Menu">
<ul id="home_menu">
<%= link_to 'Join Now',
:controller=>'user',
raction=>'signup' %>
</1li>
<1li><%= link to 'View the Books',
:controller=>"'book"',
raction=>'list"' %>
</1i>

</div>
<div style="clear:both; "> </div>

</div>

220

This creates a menu with a Join Now link and a View the Books link. Notice that the Join Now link
is pointed to the signup method of the user controller. The View the Books link is pointed to the
1list method of the books controller. These controllers and methods do not exist yet, but you can
anticipate their creation. Here again you see the use of the 1ink_to helper to create the links.

The body content section

The final section of the layout template defines the main content of the pages. This section is pretty
simple. If there are any flash notice or error messages to be displayed, those display at the top of
the content section. After those messages are printed, a yield method renders content defined in
your page view templates.

<div id="Content">
<% if flash[:notice] -%>
<div id="notice"><%= flash[:notice] %></div>
<% end -%>
<% if flash[:error] -%>
<div id="error"><%= flash[:error] %></div>
<% end -%>
<%= yield %>
</div>

Remember that the flash hash is a special collection that is built-in to Rails for the purposes of passing
simple messages from the controller to the views. The messages stored in flash will be automatically
removed after a single request/response cycle. The flash is not a place to store persistent messages that
you want to remember for long periods of time.

Developing Book Shelf: The Basic Framework _

Firefox versus Internet Explorer

Most Web developers tend to prefer the Firefox Web browser over Internet Explorer. Firefox is generally
considered more standards compliant. There is also a powerful development tool available for Firefox
called Firebug which will be very useful to you as you develop Web applications. Firefox is the browser
that was used during the development of Book Shelf. Although | have tried to make sure everything
works equally well in Internet Explorer, some of the layout and style of the application may appear
slightly different from what you see in the diagrams if you are viewing the pages using Internet Explorer.

Creating the index view template

With the layout in place, the last task left to perform before you can view the home page is to
create an index view template in the app/views/home directory. The view template is named
index.html.erb so that it matches the name of the controller action method. Create that file
now and edit it to contain the following code:

<div class="home_gquote">
Share and Discover New Books
Share your knowledge of books, add reviews, rate books,
organize books with tags.

</div>

Testing the home page

You should have all the elements necessary to get the basic home page to come up in a browser.
From a command window, start up the WEBTick server if you do not already have it running,.

> ruby script/server

Now in your browser, navigate to the index action of the home controller by typing this URL:
http://localhost:3000/home/index. If you've followed all the steps up to this point, you
should see a page similar to Figure 6.8.

Oops, it doesn’t quite look like the view that was shown in Figure 6.7, does it? The good news is
that the content looks correct — it’s just not styled the way you'd like it to be. That can be fixed by
defining some CSS styles, which you’ll do shortly.

There is one other problem with the page: There is no page title in the browser title bar. Remember
that in the template for this page, the title was set using an @title instance variable. However, in
the index action method of the home controller, you did not set the title. Go back and set the @
title instance variable in the index method to something like “Book Shelf.” You can do that

by modifying the index method of the home controller (app/controllers/home_
controller.rb) as shown below:

def index
@title = 'Book Shelf'
end

Now you can reload the page in your browser to see the title displayed in the browser title bar.

221

m Developing a Complete Rails Application

FIGURE 6.8

The basic home page without styling

£ Mozilla Firefox

fie Edt View Hgtory delidous Bookmarks Yshoo! Tools Help

€« >-¢

EEX

ﬁ E tael | | http:/focaihost:3000 homeindex -] &) ;v!

Book Shelf

+ Join Now
+ View the Books

Share and Discover New Books Share your knowledge of books, add reviews, rate books, organize books with tags.

Done

zotero % ? | @ & vsow

2,625

b4

Add some style

Remember that in the layout template, you included a link to a style sheet named style.css. Go
ahead and create that file in the public/stylesheets directory and edit it to contain the con-

tent shown in Listing 6.4. In this book, I won't get into the details of the CSS styles. If you want to
learn more about CSS and how to style a Web application, I recommend the book, HTML, XHTML,

and CSS Bible, 4th Edition, by Steven M. Schafer.

LISTING 6.4

Style.css

body {

padding: 0;

margin: O0;

background-color: white;
min-width: 700px;
background-position: left top;
background-repeat:repeat-x;

font-family: Verdana, Arial, Helvetica, sans-serif;

222

Developing Book Shelf: The Basic Framework _

font-size: 80%;

}

#header {

height: 150px;

background: url(../images/header_bg.png) repeat-x;
}

#logo_image {
float: left;
position: relative;

}

#logo_image img {
border: none;

}

#notice {
color: red;
font-weight: bold;
margin-left: 30px;
margin-bottom: 30px;

}

#error {
color: red;
font-weight: bold;
margin-left: 30px;
margin-bottom: 30px;

}

#join_now_text {
clear: both;
text-align: right;
}

#Content {
margin:75px Opx 50px 220px;
padding:5px;

}

#sidebar {
position:absolute;
top:230px;
left:20px;
width:170px;

}

#Menu {

continued

223

m Developing a Complete Rails Application

display:block;
float:left;
padding:10px;
background-color: #eee;
border:1lpx dashed #999;
line-height:17px;
width:170px;
margin-bottom: 20px;

}

#home_menu {
list-style: none;
margin: Opx;
padding: Opx;

}

#home_menu 11 {
padding-top: 20px;
padding-bottom: 20px;
font-size: 1.5em;
color: blue;

}

.home_quote {
font-family: Verdana, Arial, Helvetica, sans-serif;
float: left;
margin-left: 25px;
font-size: 12pt;

color: #777777;

border: 3px solid #0066cc;
width: 75%;

padding: 15px;
background-color: #a6cael;

}

.home_quote.quote_title {
display: block;
font-size:14pt;
font-weight:bold;
color:gray;
margin-bottom: 15px;

Now if you've done everything right up to this point, your home page should look like the home
page shown in Figure 6.7. Your first task is nearly complete. There is just one more thing to do,
and that is to add a default route to the Rails configuration.

224

Developing Book Shelf: The Basic Framework _

Set up a default route

Currently, you can navigate to the home page by specifying the home controller and action name
in the URL like this: http://localhost:3000/home/index. Since the action is named
index, you could have left the action name off. Rails will look for an action named index if no
action is specified in the URL. However, it is better to have the home page come up when the user
routes to the top level of the Web site, for example, using the URL http://localhost:3000.
In order to get that URL to navigate to your home controller, you need to set up a default route.
You can do that in this section by editing the Rails routes configuration.

Open up the config/routes.rb file. Near the top of the file, you should see these lines:

You can have the root of your site routed with map.root
-- just remember to delete public/index.html
map.root :controller => "welcome"

This defines a default or empty route that is used if there is not a controller or action specified in
the URL. You need to uncomment the line that starts with map . root. This line sets up a route to
match the empty pattern, ' ' . You also need to change the name of the controller from welcome
to home. The route definition should look like this:

map.root :controller => "home"

After making that change, you can close the routes. rb file; however, if you try going to http://
localhost:3000, you still won't get the page you are after; instead, the index.html page that
is stored in the public directory will be loaded. This is the application start page that was shown
in Figure 6.6. Any HTML files that are stored in the public directory of a Rails application will be
served directly, bypassing the Rails routing mechanism. You need to either rename or delete the
public/index.html file.

After you have either renamed or deleted the public/index.html file, go back to your browser,
and go to http://localhost:3000. Now you should see the home page that you created.
Because there was no controller or action specified in the URL, the empty route was used to map
to the home controller.

Implementing Users

Now that you have the basic framework of the Book Shelf application started, you can implement
support for users in this section. The ability to support user registration, login, and account man-
agement is a common requirement of most Web applications. This section leads you through
building a system for user registration, login, and authentication. Much of what you'll learn and
develop in this section is applicable to any Rails application that you will write.

Some developers would stop you at this point and suggest that instead of writing your own user
authentication and login, instead you should use a Rails plug-in. There are several Rails plug-ins
available that provide this functionality for you. Several of these plug-ins are described in Chapter
11 of this book. My advice is to first implement a user authentication and login system yourself at
least once so that you learn how these things work in a Rails application.

225

m Developing a Complete Rails Application

Once you feel that you understand the basics of authentication and user login, it is a good idea to
save yourself time and use one of the popular Rails plug-ins. Creating your own authentication sys-
tem in the remainder of this chapter will be valuable experience that you can apply to existing
authentication plug-ins that you want to evaluate.

The steps in this section to implement user accounts are as follows:

B Create the user model
B Implement user registration
B Implement login and logout

These steps require creating a user model, a user controller, and a few view templates. Begin with
creating the user model.

Create the user model

The first thing you need to do to add user support is create the user model. However, before you
create the user model, it’s a good idea to think about what type of information you want to be able
to store about each user. This becomes the user model design. Table 6.1 lists the fields, along with
a description and a data type for each of the fields that will be used in the user model of this
application.

These fields allow you to keep track of all that the application needs to know about users. Notice
that you take advantage of the created_at and upated_at fields that Rails will automatically
update for you each time a user record is created or updated.

TABLE 6.1

The User Model

Field Description Data Type
id Primary key integer
login User login id string
first_name User’s first name string
last_name User’s last name string
email User’s e-mail address string
password_hash Hashed password string
password_salt Salt value string
login_count Count of user logins integer
last_login Date of last login datetime
created_at Date user was created datetime
updated_at Date user was updated datetime

226

Developing Book Shelf: The Basic Framework

Securing user passwords

The password_hash and password_salt fields allow for the secure use of passwords with-
out storing any user’s password in plain-text form. When the user submits a password, a hashing
algorithm is used to create a unique hash for that password. The password hash is stored in the
database. When the hash is created, a salt value is combined with the password. The salt value
makes a type of attack known as a dictionary attack much more difficult for hackers. In a diction-
ary attack, the attacker writes a program that scans a dictionary going through every word in an
attempt to guess your password.

However, by adding a Salt value to the password, the password is no longer recognizable as any
dictionary word even if you used a common word as your password. With this strategy, user pass-
words are never stored in the database; thus, only the users know their passwords, making for a
more secure system.

Generate the user model

Now that you have a good idea of what fields are used in the user model, go ahead and use the
script/generate command to generate the user model class. Open up a command console in
the book_shelf root directory and type this:

> ruby script/generate model User
create app/models

exists test/unit

exists test/fixtures

create app/models/user.rb

create test/unit/user_test.rb

create test/fixtures/users.yml

create db/migrate

create db/migrate/001_create_users.rb

This generates the user model class, along with a unit test file, a test fixture file, and a database
migration file for the user model.

The user model class should be in the app/models directory and will have the filename user.
rb. Rails uses the Ruby convention of naming class files using lowercase, underscore-separated
names. The filename of any given class should be the lowercase, underscore-separated form of the
class name. Open up the user . rb file, and you should see your User class similar to this:

class User < ActiveRecord: :Base
end

The User class does not yet have any application-specific behavior, but don’t forget that it has a
great deal of built-in functionality as a result of extending the ActiveRecord: : Base class.
Leave the User class unchanged for now, and move onto creating a migration that creates the
users database table.

227

m Developing a Complete Rails Application

Create the user migration

Each of the model classes in a Rails application is generally mapped to a database table that holds
records corresponding to instances of that model type. Table names in a Rails application are low-
ercase and the plural form of the model class name. You need a users table to hold the Book
Shelf user data that is used by the user model.

When you generated the user model, a migration file was also generated for you and placed in the
db/migrate directory of the book_shelf application directory. Open up the 001_create_
users.rb file, and you should see code similar to this:

class CreateUsers < ActiveRecord::Migration
def self.up
create_table :users do |t
t.timestamps
end
end

def self.down
drop_table :users
end
end

This is an empty migration class that does not do anything useful yet, other than create a users table
with two timestamp columns. Remember that the t . timestamps method call in the migration will
create the updated_at and created_at columns, which Rails manages for you automatically.

The two methods, self.up and self.down, are called when the migration is applied or reversed,
respectively. The self .up method is responsible for setting up the users table completely, and
the self.down method should reverse any action taken by the self.up method.

You need to modify this migration so that it creates the users table with the fields that are speci-
fied in Table 6.1. Go ahead and modify the migration class to match this:

class CreateUsers < ActiveRecord::Migration
def self.up
create_table :users do |t|
t.string :login

.string :first_name
.string :last_name
.string :email
.string :password_hash
.string :password_salt
.integer :login_count
.datetime :last_login
.timestamps

¢ o o o o o f

end

228

Developing Book Shelf: The Basic Framework _

end

def self.down
drop_table :users
end
end

Now the migration creates a column for each of the required data fields. You do not have to specify
the 1id column, as Rails will create that automatically when the migration is run.

Apply the migration with Rake

Now that you have a completed migration that specifies how the users table is built, you can go
ahead and apply that migration using the Rake tool. In your project’s base directory, type this:

> rake db:migrate

This runs the only migration that you have so far and creates the users table. You should see out-
put, letting you know that the users table has been created. Running this command is also a good
test of your database setup. Rake reads the database configuration information that you entered in
database.yml, so if you made any mistakes when you entered that information, they will
become apparent now.

Add user model validations

Rails model validations allow you to define field validations within a model class that will be auto-
matically enforced by Rails. Using model validations, you can enforce things such as field length
limits, field length content, and field uniqueness. For the Book Shelf user model, add the following
validations:

Enforce minimum and maximum length of user login.

Enforce minimum and maximum length of user password.

Enforce presence of login and e-mail address.

Enforce uniqueness of login and e-mail address.

Make sure the user enters a password and a password confirmation that contain the same
value.

B Make sure the e-mail address entered conforms to a valid e-mail address format.

Each of these validations can be added using the Rails DSL that supports model validations. You
won't have to create any if statements or even write any methods yourself to get these validations.

Open up the app/models/user.rb file and add the following validation code to the top of the
class definition, just after the class statement.

validates_length_of :login, :within => 3..40

validates_length_of :password, :within => 5..40
validates_presence_of :login, :email

229

m Developing a Complete Rails Application

validates_uniqueness_of :login, :email
validates_confirmation_of :password
validates_format_of :email,

:with => /"~ (["@\s]+)@((?:[-a-2z0-9]1+\.)+[a-z]1{2,})S/1,
:message => "Invalid email"

A nice thing about using the Rails validation DSL is that the methods that you use to apply valida-
tions are very simple for you to read and understand what their function is. For example, even
someone not familiar with Rails could look at the first line, validates_length_of :login,
:within =>3..40, and understand that it validates the length of the 1ogin field, making sure
that it is between 3 and 40 characters in length. Similarly, the other validations are easy to read
and understand.

| If you want to learn more about the available validations, refer back to
Chapter 3.

The last validation validates the format of the e-mail field and makes sure that it conforms to the
format of a valid e-mail address. This is probably the most complex of the validations that you

are using. This validation makes use of a regular expression. Regular expressions are text pattern
strings that are used to look for matching strings or substrings. The regular expression used in the
:with element is

/M ([~@\s]+)@((?:[-a-20-9]+\.)+[a-z]{2,})S/1

This regular expression will make sure that the email address conforms to a standard email address
format, including the @ sign, and a domain name containing a period, such as yahoo. com.

Test user validations

At this point, you should have a users database in place and a user model containing a handful of
field validations. Let’s take a moment to test those validations using the Rails Console to verify that
they work as expected.

Start up the Rails Console from the book_shel £ top-level directory:
> ruby script/console

This gets you into the Rails Console environment. In the Rails Console, you have full access to all
of your application classes. Go ahead and create an instance of the user model class:

>> user = User.new

The user object echoes back to you, showing that it currently contains nil values for each of the
attributes. Before you set any of the fields, see if Rails thinks it is valid as is:

>> user.valid?

230

Developing Book Shelf: The Basic Framework _

After entering this command, you should see the output shown in Figure 6.9. Oops, it looks like
there is a problem in your user model. Ruby is complaining that there is an undefined method,
password. This is caused by the following two validations that you added to the user model:

validates_length_of :password, :within => 5..40
validates_confirmation_of :password

These two validations validate a password field, but if you remember when you defined the
model, you did not create a field named password; instead, you just had password_salt and
password_hash. This is because the password is not directly stored in the database, and so the
user model does not know about this field yet.

The validation is attempting to get the value of the password field through an accessor-named
password, which causes the undefined method error. Because this field is not a column in the
users database table, Rails does not automatically create an accessor for this field. You can fix this
problem by explicitly creating an accessor for the password field. You also want an accessor for
apassword_confirmation field. The second validation looks for both the password and
password_confirmation accessors. Add these two accessors below the validations code in the
user model, app/models/user.rb:

attr_accessor :password, :password_confirmation

Now go back to the command window, where you have the Rails Console running, and type exit
to end that session. Restart the console using ruby script/console, create a user, and try the
valid? method again:

>> user.valid?
=> false

FIGURE 6.9

Undefined password method

AWINDOWS\system32\cmd.exe - ruby script/console

¥:wrails_projectsshbook_shelf >ruby script-console

Loading development environment.

>> user = User.new =
=> HKUser:BAx46a5884 Pattributes={"last_login'=>nil. "updated_at'=>nil.
rd_hash"=>nil. "first_name'=>nil. "last_name"=>nil. “login"=>nil. “cre
>>» user.valid?

rom
from
from

from
from

from
from

from

from
L

from
@allbacks?’
from
from

>>

‘|

c:/rubyslib/ruby/gems. 1
c:/rubys/lib rubys/gems 1
c:/rubyslib/ruby/gems. 1

c:/rubyslib/ruby/gems. 1
c:/ruby/lib/ruby/gems./1

c:/ruby/lib/ruby/gems./1
c:/rubyslib/ruby/gems. 1

c:/rubyslib/ruby/gems. 1
c:/ruby/lib/ruby/gems./1

c:/ruby/lib/ruby/gems.1

c:/ruby/lib/ruby/gems./1
Cirh>:2

.B/gemssactiverecord-1
.8/gemsrsactiverecord-1

.8/gemsrsactiverecord-1.
.8/gems/activerecord-1

.8/gems/activerecord-1
.8/gemsrsactiverecord-1

.8/gemsrsactiverecord-1.
.8/gems/activerecord-1

.8/gems/activerecord-1

.8/gems/activerecord-1

NoMethodError: undefined method ‘password’ for H#<{User:@x46a5884>
-8/gemsractiverecord-1.15.

.15
.15

15
.15

.15
.15

15
.15

.15
.15

3/1ihrac

-3s/librac
-3s1ibrac

-3s1lihrac
-3rlibrac

-3slibrac
-3/1ibrac

-3s1lihrac
-3s1librac

-3s1librac
-3s1librac

s

231

m Developing a Complete Rails Application

232

Now the method runs successfully and returns a value of false, indicating that the user object
is not currently valid. This is because it does not meet the validations that you programmed for it.
You can look at the problems that occurred during validation by looking at the user . errors
object.

>> Uuser.errors

You'll see error messages in the user. errors object related to the password, login, and e-mail
fields. See if you can fix the problems by setting those three fields with reasonable values:

>> user.password = 'secret'
>> user.login = 'john'
>> user.email = 'john@doe.com'

Now try testing the object’s validity again:

>> user.valid?
=> true

The user object is now valid. The values you entered for the password, login, and e-mail fields
allow the user object to pass all of the defined validations.

Implement user registration

Now that the application has a user model class and an associated database table to support users,
let’s turn our attention to implementing a mechanism that will allow users to register for an account
in the Book Shelf application. The tasks that need to be completed to accomplish this are as follows:
Create a user controller.

Handle the user password.

Create a registration view.

Create the user home view.

The second task deserves a brief explanation. Recall that the database stores a password hash and a
password salt but not the password itself. However, the user will submit a password and a password
confirmation. You need to put code somewhere to take the password and create the password hash
and salt values so that they can be saved. In the second task, you will create this code to make sure
that the appropriate password fields are set and stored.

Create a user controller

You've already created a user model, but right now there is not a user controller. You'll create a user
controller to serve as a home for the user-related requests, such as calls related to user registration,
logging in, and logging out. In the book_shelf directory, generate the user controller:

> ruby script/generate controller User
exists app/controllers/

Developing Book Shelf: The Basic Framework

exists app/helpers/

create app/views/user

exists test/functional

create app/controllers/user_controller.rb
create test/functional/user_controller_ test.rb
create app/helpers/user_helper.rb

This generates the user controller class, a functional test stub for the user controller, and a user
helper class. An empty user directory is also created under app/views in which user-related
view templates can be placed.

Open up the app/controllers/user_controller.rb file, which contains the source for
the user controller class. It should look like this:

class UserController < ApplicationController
end

This is the class definition in which youll add action methods to handle the user-related requests.
For now, add a signup action method to handle user registration requests:

def signup
@Qtitle = "Signup"
if request.post? and params]|:user]
@user = User.new(params]|[:user])
if Quser.save

session[:user] = Q@Quser
flash[:notice] = "User #{@Quser.login} created!"
redirect_to :action => "home"

else
flash[:error] = "Signup unsuccessful"
@Quser.clear_password!

end

end

end

The signup method handles both the request to display the registration page and the request to
register a user. The two types of requests are differentiated by the type of HTTP method call. A
request to display the registration page is sent as an HTTP GET request. A request to register a user
is sent as an HTTP POST request. In line 3 of the code, you check to see if the user parameter was
posted. If so, the user registration code is executed; otherwise, you assume a simple page request.

If the method is called using a GET request, only the line that sets the @title instance variable is
executed. This sets a page title for the registration page. Because there is no explicit call to render
a template, Rails will look for a template named signup.html.erb in the app/views/user
directory and attempt to render that view. You can create that view shortly. For now, look at the
code that is executed if the method receives a POST request:

@user = User.new(params]|:user])
if Quser.save

233

234

Developing a Complete Rails Application

session[:user] = @user.id
flash[:notice] = "User #{@Quser.login} created!"
redirect_to :action => "home"

else
flash[:error] = "Signup unsuccessful"
@Quser.clear_password!

end

In this code, a new user object is created from the parameters passed from the user form. The save
method of the user object is called to attempt to save the new user to the database. If the save is
successful, three operations take place:

B The user’s id is stored into the session with the :user key.
B A notice is placed in the flash message area, saying the user has been successtully created.

B The browser is redirected to the home action of the user controller.

Because no controller is specified in the redirect_to call, the current controller, UserController,
is used. The home action should display the user’s home page. Create the home method inside of
the UserController now. Edit this file app/controllers/user_controller.rb:

def home
@title = "BookShelf - User Home"
end

Right now, the home method only sets the @title instance variable and by default will also ren-
der a template located at app/views/user/home.html .erb. The home.html . erb template
should display a user home page. You will create this template shortly. Eventually, when books
are implemented in the application, this method will grow so that all of a user’s books are retrieved
prior to rendering the home template.

Handle the user password

Before you implement the signup and user home views, you need to add some code to properly
handle the password. Because the code will set and manipulate user model fields, the correct place
to put this code is in the user model, app/models/user.rb. You want code that will create the
password hash and password salt for you whenever the password field is set. You can do this by
creating a new setter method for the password field. You also create a method to generate the
password hash value. Add these methods to the user model:

attr_protected :password_salt

def password=(pass)
@password=pass
self.password_salt = User.random_string(10) if !self.password_
salt?
self.password_hash = User.hash_password(@password, self.
password_salt)
end

Developing Book Shelf: The Basic Framework

protected

def self.hash_password(pass, password_salt)
Digest: :SHAl.hexdigest (pass+password_salt)
end

def self.random_string(len)
#generate a random password consisting of strings and digits

chars = ("a".."z").to_a + ("A".."Z").to_a + ("0".."9").to_a
newpass = ""
l.upto(len) { |i| newpass << chars[rand(chars.size-1)] }
return newpass

end

The password= method is a setter method for the password field. This method creates a ran-
dom salt value and uses a hash_password method to create the password_hash field. As a
result, each time the password field is set, the password_salt and password_hash fields
are also set.

The salt value is generated using another method that is also defined above, the User . random_
string class method. The random_string method generates a random alphanumeric string,
with the length being controlled by an argument passed into the method. For the salt value, a
string length of ten is used. Notice that the salt value is generated only if the self.password_
salt value does not already exist, in other words, has a value of nil. This ensures that a new salt
value is generated only when a user is first created.

The hash_password method takes a password and a password salt value as parameters and uses
the SHA1 digesting algorithm to generate a unique hash value for the concatenation of the pass-
word and password salt values.

With these methods in place, the password will be correctly handled when a user submits a regis-
tration to the application. Next, you need to create the views that are used for registration and the
user home page.

Create a registration view

With the user controller and user model modifications in place, let’s go ahead and create the view
for the user registration process. The view is placed in the app/views/user/signup.html.
erD file to correspond to the signup method of the user controller. Create that file and type in
the code shown in Listing 6.5.

This template uses the Rails helper form_for to create an HTML form to contain all of the user
model fields. Each of the fields uses the text_field helper to generate the correct HTML for the
text input fields. The two exceptions are the password and password_confirmation fields.
These use the password_field helper to generate HTML password input fields with blocked-out
character input. Near the bottom of the form, a Submit button is created using the submit_tag
helper.

235

m Developing a Complete Rails Application

signup.html.erb

<div id="signup_content">
Sign-up for a BookShelf account...
<% form_for :user, @user, :url => {:action => "signup" } do |f| %>

<%= error_messages_for 'user' %>

<div class="signup_field">
<label for="user_login">Login:</label>
<%= f.text_field :login %$>

</div>

<div class="signup_field">
<label for="user_ first_name">First Name:</label>
<%= f.text_field :first_name %$>

</div>

<div class="signup_field">
<label for="user_ last_name">Last Name:</label>
<%= f.text_field:last_name %$>

</div>

<div class="signup_field">
<label for="user_email">Email:</label>
<%= f.text_field:email %>

</div>

<div class="signup_field">
<label for="user_password">Password:</label>
<%= f.password_field:password %$>

</div>

<div class="signup_~field">

<label for="user_password_confirmation">Password Confirmation:</
label>
<%= f.password_field:password_confirmation %>
</div>

<%= submit_tag "Signup" %>

<% end %>
</div>

236

Developing Book Shelf: The Basic Framework _

You're almost done with the signup page. The last task is to add some additional styles to the style
sheet that you created earlier in this chapter. Add the following style definitions to the bottom of
the public/stylesheets/style.css file:

// Implementing Registration
#signup_content {

}

float: left;
padding-left: 50px;
width: 400px;
text-align: right;

#signup_content.title, #login_content.title {

}

font-weight:bold;

.signup_field, .login_field {

}

white-space: nowrap;
padding-bottom: .5em;
text-align: left;

.signup_field label, .login_field label {

}

display:block;
float:left;
margin-right:0.5em;
text-align:right;
width:12em;

.signup_field input, .login_field input ({

}

text-align: left;

The registration page should now be complete, so let’s try it out. Start up the WEBrick server using
the familiar ruby script/server command in the book_shelf directory, and navigate in
your browser to http://localhost:3000. You should see the Book Shelf home page that you
created earlier. From that page, click the Join Now link, and you should see the registration page
that you just completed. It should look similar to Figure 6.10.

You can try typing some values into the text fields, but don’t submit the form yet. You still have
not created the user home page that is routed to after a successful user creation. Go ahead and cre-
ate that page now.

237

m Developing a Complete Rails Application

FIGURE 6.10

The user registration page

) Signup - Mozilla Firefox

fie Edt View Hgtory delidous Bookmarks Yshoo! Tools Help

& -

ﬂ} E a2 VT)-; [http:/flocalnost: 3000/user/signup [=[»] [[G]]cocge

Join Now Logn:| |

i | First Name: l—
| View the Books | Last Name: [
Password Cunﬁmat\un::

i Sign-up for a BookShelf account...

Done

zotero & 0 O B Son [~

238

Create user home view

The last view you need to create is the template for the user home page. For now, this view will be
relatively simple, but as you build out the application, you'll add more content and features to this
page. Create the home .html . erb template in the app/views/user directory and just put a
simple welcome message as its content for now:

Welcome <%= User.find(session|:user]).first_name %>

This displays a message that welcomes the user by first name. The user’s first name is read from the
user object stored in the session.

Assuming you still have the WEBrick server running, navigate back to the registration page by
clicking the Join Now link if you are not already there. Fill out the registration form and click the
Signup button. If all goes well, you should be taken to a user home page that looks like Figure 6.11.
You should see the welcome message and the first name of the user that you signed up as.

Developing Book Shelf: The Basic Framework _

FIGURE 6.11

The user home page

J BookShelf - User Home - Mozilla Firefox

Fie Edt Vew Hgtory delidows Bookmarks Yshoo! Tools Help

& - 7 (0 B8 e P [0 ntwiocaost:3000juser rome [=]) [Qe]coose

"~ Welcome Timothy

Join Now

' View the Books

Dore zotero | © | @ B vsw =l

This is a good start for the user home page, but notice in the sidebar menu on the left that there is
still a link that says Join Now. Because the user has already registered and has been logged into the
application, it would be nicer if this link went away. That’s not a difficult change to make, so go
ahead and do that now.

Recall that the contents of the sidebar are defined in the view partial app/views/shared/_

sidebar.html.erb. Open up that file and make the following modifications, highlighted in
bold:

<div id="sidebar">
<div id="Menu">
<ul id="home_menu">
<% if !session[:user] %>
<%= link_to 'Join Now',
:controller=>'user',
raction=>'signup' %>
</1i>
<% end %>

239

240

Developing a Complete Rails Application

<%= link_to 'View the Books',
:controller=>"'book"',
raction=>"'list' %>

</1li>

</div>
<div style="clear:both; "> </div>
</div>

You've added a snippet of Ruby to the sidebar partial which will cause the Join Now link to be
displayed only if there is no user stored in the session. This is because when a user is logged in, a
user’s id is stored in the session, so the link will never appear when a user is logged in. This is the
desired behavior. If you refresh the user home page, you should see that the Join Now link is now
gone.

The Book Shelf application now has the ability to register new users through a simple registration
form. The application also has a basic user home page, which will be extended upon in future
development. Before moving on, let’s return to our friend the Rails Console and make sure that
the user that was created is indeed in the application development database.

Start up the console from a command window by typing ruby script/console. In the console, use
the £ind method of the User class to find the first user record stored in the database. At this
point, your database should contain only the user that you created using the signup page in this
section.

>> user = User.find(:first)
>H# ..

>> puts user.login

tfisher

If the user you registered is not found, go back and check all of your code to ensure that it matches
the code in the book.

Implement login and logout

Your application now allows for users to register for an account with the Book Shelf application,
but there is still not a way for existing users to log in and log out of the application. In this section,
you'll add functionality to let users log in and log out. The tasks necessary to complete this func-
tionality are to

B Create a login action method
B Create a logout action method
B Implement a login view
You'll add the two new action methods to the user controller and implement a login box that is

displayed in the upper-right corner of the application whenever a user is not logged in. You can
see this login box in Figure 6.1 at the beginning of this chapter.

Developing Book Shelf: The Basic Framework _

Create login action method
First implement the 1ogin method in the user controller. Open up the user controller in app/
controllers/user_controller.rb and add the 1ogin method defined here:

def login

if request.post?
user = User.authenticate(params|[:user][:login],
params [:user] [:password])

if user
session[:user] = user.id
flash[:notice] = "Login successful"
redirect_to :controller=>'user', :action=>'home'
else
flash[:error] = "Login unsuccessful"
redirect_to :controller=>'home'
end
end

end

The body of the method is executed only if the request is an HTTP POST. The 1ogin method
attempts to authenticate a user using the login and password passed in as request parameters. 1f
the authentication attempt is successful, a user id is stored in the session, a successful login notice
is placed into flash, and a redirect is sent to the browser, sending the user to the user home page. If
the authentication is not successful, a login error message is placed into flash, and a redirect back
to the application home page is sent to the browser.

The 1ogin method uses the User .authenticate method to authenticate the user. You have
not yet created this method, so go ahead and do that now. This method goes into the user model
class in the app/models/user.rb file. Add this method as defined here:

def self.authenticate(login, pass)
u=find(:first, :conditions=>["login = ?", login])
return nil if u.nil?
return u if User.hash password(pass, u.password_salt)==u.
password_hash
nil
end

The authenticate method takes two parameters: a login and a password. The first thing the
method does is attempt to find a user that matches the login that is passed in. If a user cannot be
found with a matching login, a ni1 value is returned and the method’s work is done. If a user with
a matching login is found, the next step is to create the password hash for the password that is
passed in and see if it matches the password hash value that was stored with the user record.

If the password hashes match, the user record is returned. If the hashes do not match, the last line
of the method is reached and results in the value nil being returned from the method. As a result,

241

m Developing a Complete Rails Application

242

anytime an authentication is successful, a user model object for the authenticated user is returned.
If the authentication fails for any reason, a nil value is returned.

The functionality necessary to process a user login is now complete. Next, you'll define the logout
method before creating the login view.

Create the logout action method

The logout method handles a user’s request to log out of the application. This method is very
simple in comparison with the 1ogin method. Add the 1ogout method defined below to the
app/controllers/user_controller.rb file:

def logout

session[:user] = nil

flash[:notice] = 'Logged out'

redirect_to :controller => 'home', :action => 'index'
end

To log a user out of the application, you simply have to clear the application’s memory of the user.
When a user is logged in, that user’s id is stored in the session. This is how various methods in the
application know that a user is logged in, by checking the session[:user] variable and seeing
if it contains a user id. By setting the session[:user] variable to nil, you are effectively log-
ging the user out of the application.

With login and logout methods completed, you can move on to implement a view template that
displays the login form.

Create an application login partial

The login form is displayed in the top-right corner of any of the application’s pages when a user is
not logged in. You can see this in Figure 6.1. Because the login form is not a page itself, it is imple-
mented as a partial that you can include in the application layout. Create the partial _signin.
html.erb in the app/views/user directory. The content of the partial is shown in Listing 6.6.
Type this into your _signin.html.erb partial.

The signin partial creates a form using the Rails form_tag helper. The controller and action that
handles the form submit is passed to the form_tag helper method. Requests go to the login
method of the user controller. The form contains two fields, the user login and password, and a
Submit button.

The next thing you need to do is include the signin partial in the application layout template.
Listing 6.7 shows the revised layout template from app/views/layouts/application.
html.erb with the new code in bold. The code checks to see if a user is currently logged in by
looking for a user id in the session. If a user is logged in, a link to the 1ogout action is displayed;
otherwise, the signin partial is rendered.

LISTING 6.6

Developing Book Shelf: The Basic Framework _

_signin.html.erb partial

<div id="signin_section">
<div class="signin_box">
<div id="sign_in_title">Sign-In</div>
<% form_tag ({:controller=> "user",

:action=> "login"},

{:id=>'signin_form'}) do %> <div class="signin_field">
<label for="user_login">Username:</label>
<%= text_field "user", "login", :size => 20 %>
</div>

<div class="signin_field">
<label for="user_password">Password:</label>
<%= password_field "user", "password", :size => 20 %>
</div>
<div id="signin_button">
<%= submit_tag "Login" %>
</div>

<% end %>

</div>
</div>

LISTING 6.7

application.rhtml with signin partial

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.0rg/TR/xhtmll /DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title><%= @title %></title>
<%= stylesheet_link_ tag "style" %>

<%= javascript_include_tag :defaults %>

</head>

<body>

<div id=

"header">

<div id="logo_image">

<%= link_to image_tag('main_logo.png'),
{:controller=>'home', :action=>'index'} %>

</div>
<% 1f !session[:user] %>

continued

243

m Developing a Complete Rails Application

<%= render :partial=>"user/signin" %>
<% else %>
<div id="user_menu"><%= link to 'Logout',
:controller=>"'user',
taction=>"'logout' %></div>
<% end %>
<div style="clear: both; height: Opx;"></div>
</div>

<%= render :partial=>"shared/sidebar" %>

<div id="Content">
<% if flash[:notice] -%>
<div id="notice"><%= flash[:notice] %></div>
<% end -%>
<% if flash[:error] -%>
<div id="error"><%= flash[:error] %></div>
<% end -%>
<%= yield %>
</div>
</body>
</html>

Before you attempt to view the signup form on the application home page, you need to add a few
more styles to the style.css file that you've been working with in public/stylesheets
Add the styles listed here:

// Implementing User Login
#user_menu {

float:right;

font-weight: bold;
margin-right: 35px;
margin-top: 15px;

}

#user_menu a, #user_menu a:visited {
color: orange;

}

.signin_box {

float: left;

background: #cccccc;
border: solid 1lpx #£98919;

padding-bottom: 6px;
padding-top: 8px;

244

padding-right: 10px;
margin-top: 10px;
text-align: right;
width: 250px;
height: 100px;

}

#signin_form {
margin: Opx;
padding: Opx;

}

#signin_button {
margin: Opx;
padding: Opx;

}

#sign_in_title {

padding-bottom: 5px;
text-align:left;
margin-left:20px;
color: gray;
font-weight: bold;
font-size: 12pt;

}

#signin_section {
float: right;
margin-right: 25px;

}

.signin_field {
margin-bottom: 8px;
color:gray;

}

Developing Book Shelf: The Basic Framework _

Now make sure the WEBTrick server is running and navigate to the application home page in your
browser, http://localhost:3000. You should see the login box appearing in the upper-right
corner of the page, as shown in Figure 6.12.

Test the login and logout functionality

You should now be able to successfully log into and log out of your Book Shelf application. If you
have not already created a user by following the Join Now link, do that now. Once you have created
a user make sure that you are not already logged in. When you create a new user, the user will be
automatically logged in after creation, so click the logout link to log the user out. Now you can test
the login functionality.

245

m Developing a Complete Rails Application

FIGURE 6.12

The Book Shelf home page with login box

Eile Edit View Hitory delido.us Bookmarks Yashoo! Tools Help R

- @ G B ne [P (O ntwriowhostzn0 [=]] [Cl=]cooo= &)
Sign-In
Username: | |
Password: |

Join Now

! View the Books

Share and Discover New Books

Share your knowledge of books, add reviews, rate books, organize
books with tags.

Done

zotero 45 © @ I vsow E)

246

From the Book Shelf home page, enter your login and password in the login box shown in the
upper right corner of the page. Click the login button and you should be successfully logged into
the application. Upon successful login, the login box will be replaced with a Logout link. You
should also see a welcome message and the flash text “Login successful” displayed. The Join Now
link in the left-side menu will also go away when you are logged in. If you encounter any errors
during login, double-check all of the code that you created in this section and verify that you have
not made any mistakes.

After you are logged into the application, it is very simple to test the log out functionality. You sim-
ply have to click the Logout link in the upper right corner of your screen. This should display the
flash message “Logged out” and you should be taken back to the application home page showing
the login box and the Join Now menu item again.

Using a before filter to protect pages

You have a nearly complete user implementation at this point. A user is able to register for an
account with the application, and log in and log out of the application. When a user is logged in,
they are taken to a special user home page. What would happen if a logged-in user bookmarked
that user home page in their browser and attempted to return directly to that page without logging
in? You would see an application error because the application would attempt to display the user

Developing Book Shelf: The Basic Framework _

welcome message when no user is logged in. This is not the behavior that is desired. This page and
other pages that are available only to logged-in users should be protected and only accessible to
users that have first logged into the application. You'll use a Rails filter to implement that feature.
This implementation can be broken down into the following tasks:

B Define a method in the application controller, which will be called from a filter.

B Add alogin form to the signup page.

Modify the application controller

A filter in Rails allows you to have a method that you define called automatically before any methods
that you specify. This will work for the requirements that you have for the current situation. Prior
to handling the request to display the user home page, you want to make sure that a user is logged in.
To do this, you can setup a method that will be called from a filter that will check to see if a user is
logged in. If a user is not logged in, instead of processing the request for the user home page, the
user will be redirected to a user login page.

To get started, edit the application controller located in app/controllers/application.rb
and create the login_required method shown below.

def login_required
if session|:user]
return true
end
flash[:notice]='Please login to continue'
session|:return_to]=request.request_uri
redirect_to :controller => "user", :action => "signup"
return false
end

This method will be called before any controller actions that you want to protect unlogged in users
from accessing. This method checks the session to see if it contains a user id. If not, a flash notice
of ‘Please login to continue’ is set and the user is redirected to the signup page. In just a bit, you
will modify the signup page to also contain a login form for users who are already signed up. The
login_required method is placed in the application controller class because it is not specific to
any individual controller. Methods contained in the application controller can be accessed by any
of your controllers because they extend the application controller.

The next thing you will need to do is setup the actual filter using another piece of Rail’s intelligent
Web application DSL. In this case, you will use the before_£filter method. For now, you just
want to protect the home action contained in the user controller. To do this, add the following line
somewhere near the top of the user controller in app/controllers/user_controller.rb.

before_filter :login_required, :only=>['home']

This method will result in the login_required method being called anytime the home method
is accessed. The :only parameter tells Rails to only apply the filter to the home method. Without
the : only parameter, the filter would have been applied to all methods in the controller.

247

m Developing a Complete Rails Application

248

Add login form to the signup page

The last remaining task to complete the login filter functionality is to add a login form to the
signup page. To do that, edit the signup page from app/views/user/signup.html.erb.
Add the 1ogin_content div shown below above the existing signup_content div.

<div id="login_content">
Existing users, login...
<% form_for :user, @user, :url => { :action => "login" } do
[£] %>
<div class="login_field">
<label for="user_login">Username:</label>
<%= f.text_field :login %$>

</div>

<div class="login_field">
<label for="user_password">Password:</label>
<%= f.password_field :password %$>

</div>

<%= submit_tag "Login" %>

<% end %>
</div>

This div creates a form that users can use to login from the signup page. Now if a user tries to
access a page that requires a user to be logged in for, they will be redirected to the signup page
which will allow a user to either signup if they do not have an account, or login if they already do
have an account.

In future chapters, you will apply this same method of protecting content that should only be
accessed by logged in users.

Summary

In this chapter, you started the implementation of a complete Rails application. The application
will allow users to share information about books, and contains many features common in today’s
class of Web 2.0 applications. At this point, you have generated the application skeleton, created
the database, and implemented support for user accounts for the application.

The functionality that you used to implement the user support is common to most Web applica-
tions and should be reusable by you in most other Web applications that you'll implement in Rails.
Alternatively, you could use one of the third-party authentication solutions that were described in
this chapter.

Even if you do use an existing solution for future applications, it was very worthwhile to have gone
through the steps of implementing your own authentication solution in this chapter. The function-
ality you implemented in this chapter lies at the heart of the application’s security model and is
something that I firmly believe every developer should implement from scratch at least once before
they just pull functionality from a third-party component. Having implemented your own authen-
tication system will put you in a better position to evaluate other solutions.

n this chapter, you will continue development of the Book Shelf applica-

tion that you started in Chapter 6. At this point you should have a Rails

application started, with a complete user model and user authentication
implemented. In this chapter, you will take the first steps toward making the
application useful for sharing information about a collection of books. You
will implement integration with the Amazon Web Service to look up infor-
mation about books that a user wants to add to the book shelf. You will also
implement the ability to add and remove books from a user’s book shelf.
With that functionality in place, you'll add a display of the books on a user’s
shelf to his home page. The last task of this chapter will be to implement a
detail view for a selected book. Later chapters will build upon the detail view
to add reviews and ratings.

To follow along with the development in this chapter, continue working
with the code that you started in Chapter 6.

Adding Support for Books

The tasks of this chapter all relate to the ability to add books to a user’s book
shelf. By the end of this chapter, a user will be able to search this application
for books based on keywords, add selected books to a book shelf, view books
contained on the user’s book shelf, delete books from a book shelf, and view
a book’s detail page.

The Book Shelf application gathers information about books from the Amazon
catalog of books. When a user searches for a book by keyword, it is actually
the Amazon catalog that is searched. The results from an Amazon search go
back to the user, and the user is able to select from those books the ones that

249

Adding support for books

Refactoring the sidebar code

Integrating with Amazon

Implementing a search

Implementing the addition and
deletion of books

Displaying a user’s books

Implementing the book detail
page

m Developing a Complete Rails Application

he wants to add to his shelf. If a book returned from the search is already on a user’s shelf, then that
is also indicated. Ten search results display at a time. If a search returns more than ten books, the
user is able to page through the results.

250

The user’s home page shows a paged view of all the books on his shelf. A user can select any
book from their shelf and open up a detailed view of that book that contains information about
the book. You will be adding reviews and ratings to the book detail view in the next chapter.

Just as the user support was broken down into a series of tasks for implementation, the goals of
this chapter are broken down into a series of tasks that you will complete as you read through.
Implementing the covered features is broken down into the following tasks:

Refactoring the sidebar code

Integrating with Amazon

Implementing search capability to book shelf
Implementing book addition and deletion to book shelf
Displaying a user’s books on their homepage

Implementing the book detail page

As you write the code in this chapter, feel free to stop and try things out in the Rails console any-
time you come across a piece of code that you don’t quite understand. I've done my best to try to
explain most of the code, but seeing output yourself never hurts.

Refactor the sidebar code

At the end of Chapter 6, the code contained in the sidebar view looked like this:

<div id="sidebar">

<div id="Menu">
<ul id="home_menu">

<% if !session[:user] %>
<1li><%= link_to 'Join Now',
:controller=>"'user',
raction=>'signup' %>
</1li>
<% end %>
<1i><%= 1link_to 'View the Books',
:controller=>"'book"',
:action=>'list' %>
</1li>

<div style="clear:both; "> </div>
</div>

Developing Book Shelf: Adding the Core Functionality

With this implementation, if there is not a user logged into the site the visitor will see two links,
one to Join Now, and one to View the Books. If there is a user logged in, that user will only see one
link, to View the Books. The View the Books link will show all of the books known by the applica-
tion. For logged in users, we want to add an additional link that will allow the user to see only the
books that are on his or her shelf.

Listing 7.1 shows the addition of the My Books link for logged in users. You'll also notice that the
code has been slightly refactored into a more readable form. Update your sidebar code contained in
app/views/shared/_sidebar.html.erb to match the code listing.

LISTING 7.1

Refactored _sidebar.html.erb

<div id="sidebar">
<div id="Menu">

<ul id="user_nav_menu">

<% 1f logged_in %>

<%= link_to 'My Books', :controller=>'user',
raction=>"'home',
:user_id=>session[:user].id
%>
</1li>
<1li>
<%= link_to 'All Books', :controller=>'book',
raction=>'list' %>
</1li>

<% else %>
<ul id="home_menu">

<%= link_to 'Join Now',6 :controller=>'user',
raction=>'signup' %>

</1i>

<%= link_to 'View the Books',
:controller=>"'book"',
raction=>'list' %>

</1li>

<% end %>

</div>
<div style="clear:both; "> </div>

</div>

251

m Developing a Complete Rails Application

252

If you looked at Listing 7.1 closely, you probably noticed one other significant difference that was
sneaked in. At the end of Chapter 6 the sidebar was using this line to see if a user was logged in:

<% if session]:user] %>

This checks the session to see if a : user variable is set. While this works, it is a bit too closely tied
to the implementation. It would be better if we had a helper method that we could use to see if a
user is logged in or not. You can create that helper method now. Open up the file app/helpers/
application_helper.rb. This methods contained in this file will be available to all of your
view templates. Add the following method to this helper class:

def logged_in
session|[:user]?true:false
end

Now you have a helper method that your views can use instead of directly checking the session to
see if a user is logged in. In the future, if the way you implement the user logged in status changes,
you can just update this method and not worry about any checks that you have in the view templates.

Now that the sidebar contains the links you'll need to support users, let’s look at how to integrate
with Amazon to populate the book shelf.

Integrating with Amazon

There is a wealth of information available to an application through the Amazon Web Service (AWS).
The AWS consists of a set of services that Amazon provides to Web developers. The Amazon
Associates Service (A2S) is one of those services. The A2S provides an API into Amazon’s huge
database of information about the books and other products that it sells.

The Book Shelf application uses an open source Ruby library that encapsulates and simplifies
access to the AWS. This library is called Ruby/AWS and was written by lan MacDonald. The Ruby/
AWS library hides most of the details that you need to know to use the A2S. You can read more
about this library at its home page, www.caliban.org/ruby/ruby-aws/.

The A2S provides both a REST and a SOAP interface; Ruby/AWS uses the REST interface. Ruby/
AWS uses the REXML library to parse XML responses from Amazon. You shouldn’t have to do
anything to install REXML, as it is included with Ruby 1.8.x or later, which is also the minimum
version of Ruby that you need to use Ruby/AWS. Complete RDOC documentation for Ruby/
Amazon is available at library’s home page.

For the Book Shelf application, you'll create a thin class that will be put into the application’s 1ib
directory to encapsulate access to the Ruby/AWS library. This strategy will be used rather than
making calls to Ruby/AWS directly from the Book Shelf controller or model classes. The main
reasons for taking this approach are as follows:

Developing Book Shelf: Adding the Core Functionality

1. If you embed the Ruby/AWS code into your model classes, they become more
difficult to test independently from the Amazon interface.

2. While Ruby/AWS seems like a good choice today to provide support for accessing
the AWS, you may prefer to use a different library or plug-in in the future.
Therefore, if you encapsulate all Amazon interfacing into a single component class, it
becomes easier to replace the Ruby/AWS plug-in in the future.

Now that you know how you are going to integrate the Book Shelf application with Amazon, let’s
get down to business by installing the Ruby/AWS library in your application directory.

Obtaining an Amazon Developer Token

Amazon has one of the most successful and well-known associate programs in the world. They have
opened up their entire product catalog to the world through a Web service interface. Many Web
sites and applications use the AWS to integrate the Amazon catalog for their own custom require-
ments. To use the AWS, you must sign up for an Amazon Web services account. You can sign up at
https://aws-portal.amazon.com/gp/aws/developer/registration/index.html. Itis
an easy process to sign up and does not cost you anything. Once you have signed up, you get an
Amazon Developer Token. This is the required piece of information that you need to use the Web
services from within an application that you develop.

The AWS consists of several services and tools for developing Web applications. The particular ser-
vice that you will use to develop the Book Shelf application is the A2S. This is the service that makes
the Amazon catalog available to developers. You can read more about the A2S at www. amazon . com/
E-Commerce-Service-AWS-home-page/b/ref=sc_fe_c_0_15763381_1?ie=
UTF8&node=12738641. In the past, the A2S was called ECS. So, if you see references to the Amazon
ECS, remember that this is the same as the A2S.

Another useful site that you can get help from for using the Amazon services is the Amazon Web
Services Developer Connection site. This site provides an online AWS developer community. You
can find it at http: //developer . amazonwebservices.com.

You may also want to sign up for an Amazon associates account. With an associates account, you
can earn a percentage of sales for any books that are purchased through Amazon links that your
application creates. Signing up for an associates account is also free. You can sign up for this account
athttp://affiliate-program.amazon.com/gp/associates/join.

253

m Developing a Complete Rails Application

Install Ruby/Amazon

1. Download the Ruby/Amazon library. Go to www.caliban.org/ruby/ruby-aws/ to down-
load the library. The library is available as a tarred and gzipped file.

2. Download the version with the . tar.gz extension. Depending on the version you
get, this file is named something like ruby-aws-0.3.0. tar.gz. At the time of this
writing, 0.3.0 was the current stable version of the library. Save this file to the book_
shelf/1ib directory.

3. Extract the library archive into the book_shel£f/11ib directory. If you need help
extracting the ruby-aws-0.3.0.tar.gz on Windows see the sidebar, Extracting TAR
and GZIP Files on Windows. You should see the directory structure shown in Figure 7.1
after you extract the Ruby/AWS archive.

FIGURE 7.1

The Ruby-AWS directory

B ruby-aws-0.3.0 9=
;rl'

File Edit View Faworites Tools Help
@ Back * () ‘? 7 ! Search [L Folders '
Address !\-?j D:iwileyiRailsBiblel AuthorReview|book_shelfiibiruby-aws-0.3.0 J G0
Folders x Mame - Size Type
A [Dhexample File Folder
2b File Folder
+ Iitest File Folder
@ &) config [corvimg 18KB File
® 5 b B rusTaLL 6KB File
2 doc (= news 7KB Fie
a3 = reapme 2LKB Fle
B svn =] ReADME rdoc SKB RDOC File
2.0 @ruhy-aws‘spec 4KB SPEC File
) exarnple '_'. setup.rb 28KB Ruby Program
& () amazon
1) test
(£ tasks
I leg
& i) public
~ . o
< | > < | >
10 objects (Disk free space: 6,22 GE) 85.3 KB j My Computer

4. Move the contents of ruby-aws-0.3.0/11ib to the book_shelf/1ib directory.
The Ruby/AWS library is implemented in the files contained in the ruby-aws-0.3.0/
1ib directory. Place these in the book_shel£f/1ib directory so that they are visible to
Rails and your Book Shelf application code. The ruby-aws-0.3.0/11ib directory
should contain both a file named amazon. rb and a directory named amazon. Move the
amazon.rb file and the amazon directory into the book_shelf/1ib directory.

254

Developing Book Shelf: Adding the Core Functionality

5. Verify the library installation. Now open up a Rails console and include the Ruby/AWS
library by using a require statement to verify that the library can be found. Figure 7.2
shows how you can verify that you are able to successfully see the Ruby/AWS library
from your Rails environment. The Request object that is instantiated is part of the
Ruby/AWS library. A successful instantiation of that object is a good sign that all is well
with your Ruby/AWS library installation.

FIGURE 7.2

Testing the Ruby/AWS library

e C:\WINXP\system32\cmd.exe - ruby script/console

D:\ilepailsbibleMuthorfeviewbook shelfruby script/console
Loading development environment C(Rails 2

>> require ’amazen/aus/scarch

> ["fnazan”]

b> Include Amazon::AUS

=> Dbject

b> include Amazon::AWSI:Search

C> Object

Py reavest - Requestoneut ',

E> #<Amazon: roh: Reqnast Ox405a1bh Clocale="us", Cuser_agent="Ruby/fmazon/fMS 0.3.0%, Geonn=nil, @cache=t<Amazo
TELE ahe niieatns Gpath="/tmp/amazon"?, €config=(}) Ctag="", Ekey_id="

When you perform searches with the Ruby/AWS library it returns results as pages. Typically, each
search query will return one page of results. At the time of this writing, there is a bug in the Ruby/
AWS library that will prevent you from retrieving result pages beyond the first for searches that
have more items than what is returned in a single query. Fortunately, it is very easy to fix this bug.
Open up the file /1ib/amazon/aws . rb and look at line 481. You should see this:

MinimumPrice OfferStatus Sort

Modify that line so that it also contains the keyword ItemPage. So after you modify the line, it
should look like this:

MinimumPrice OfferStatus Sort ItemPage

This line and lines above it identify valid parameters to the ItemSearch that you will use later
in this Chapter. The ItemPage is required to be able to get to result pages beyond the first. If
you want to learn more about how the Ruby/AWS library is implemented and how it works, you
should read the README file that is included with the library, and also look at the Amazon AWS
documentation.

This completes the installation of the Ruby/AWS library. Now with that library in place, you have

what you need to build an interface class that your application will use to read data from the
Amazon library.

255

m Developing a Complete Rails Application

Extracting TAR and GZIP Files in Windows

If you are developing on a Windows computer, you may not know how to extract a tarred and
gzipped archive file. The tar and gzip formats are primarily used on UNIX-based systems. UNIX
includes applications to create and extract these archives with the operating system. Windows does
not include built-in support for creating or extracting these files, but there is a free solution available
to Windows developers. The 7-Zip application is a freeware archiving utility that supports both of
these formats along with several others. You can download 7-Zip from www.7-zip.org/ as either
an .exe file or an .msi file. Once downloaded, you just have to run whichever one you've down-
loaded to install the 7-Zip application.

There are also commercial applications available that have free trial downloads that you may want
to check out. Two of the most popular applications are WinRAR, available at www.rarlab.com,
and WinZIP, available at www.winzip.com.

256

Implement the Book Shelf-Amazon interface

In this section, you can implement a class that encapsulates all of the Book Shelf’s application access
to Amazon. This class uses the Ruby/AWS API. This is also a reusable class that you can use in
other applications.

In the bookshelf/11ib directory, create a file named amazon_interface.rb. This is where
you define the AmazonInterface class. Listing 7.2 contains the code that you want to enter for
the AmazonInterface class. You want to give users the ability to search for books based on any
keyword. For now, that is the only functionality you require from the Ruby/AWS library. In the
AmazonInterface class, you'll create a method named £ind_by_keyword, which allows you
to implement that search capability. You'll also use an initialize method to set up the interface.

The initialize method

To perform a keyword search using Ruby/AWS, you have to first create a Request object. The
Request class contains the most common search methods for searching the Amazon catalog. To
create a Request object, you pass an Amazon developer token and an Amazon associate ID. Only
the developer token is required. The associate ID parameter is optional. If you do not pass an asso-
ciate ID, the Ruby/AWS library contains a hard-coded associate ID that is used. However, by using
your own associate ID, you earn credit for any books that are purchased from Amazon through links
contained in the application. If you do not have an Amazon developer token or Amazon associate
ID, see the sidebar “Obtaining an Amazon Developer Token” for information about how to get them.
Both the developer token and the associate ID are available at no cost through a simple sign-up
process on the Amazon Web site.

Now the Request object is set up and ready to use in other methods that you add to this class to
perform searches against the Amazon catalog.

Developing Book Shelf: Adding the Core Functionality

LISTING 7.2

Amazonlinterface

require 'amazon/aws/search'

class AmazonInterface
don't want to have fully qualified identifiers
include Amazon: :AWS

include Amazon: :AWS: :Search

ASSOCIATES_ID = YOUR_AMAZON_ASSOCIATE_ID
DEV_TOKEN YOUR_AWS_DEV_TOKEN

def initialize
@request = Request.new (DEV_TOKEN, ASSOCIATES_ID)
end

def find_by_keyword (keyword, page)
is = ItemSearch.new('Books', {'Keywords' => keyword })
rg = ResponseGroup.new('Medium')
resp = @request.search(is, rg)
products = resp.litem_search_response.items.item
end

end

The find_by_keyword method

The find_by_keyword method takes two parameters: a keyword to search on and a page num-
ber. In order to perform a search, you use three classes from the Ruby/AWS library. The classes are
ItemSearch, ResponseGroup, and the Request class that you instantiated in the initialize
method. The first thing you do is setup the search by creating an ItemSearch instance like this:

is = ItemSearch.new('Books', {'Keywords' => keyword })

This will tell Amazon that you want to search only for books and you want to use the keywords
that have been passed into this method. For now you will ignore the page parameter. Later in this
chapter when you add support for paging you will modify this setup to include the page number
as well.

The next step in executing the search is to create a ResponseGroup instance like this:

rg = ResponseGroup.new('Medium')

257

m Developing a Complete Rails Application

258

This tells Amazon how much information you want it to provide in the results that it returns. For
the data requirements of the book shelf application, this should be Medium. Other options that
you could specify here are Small and Large. For more details about using these parameters take

a look at the Amazon AWS documentation at http: //docs.amazonwebservices.com/
AWSECommerceService/2008-03-03/DG/.

With the ItemSearch and ResponseGroup initialized, you are now ready to execute the search
using the search method of the Request object like this:

resp = @request.search(is, rg)

You pass the TtemSearch and ResponseGroup instances that you created into the search
method. The response that contains the search results is returned from the search method.

Before explaining the last line of the £ind_by_keyword method, you should understand the
results that are returned from the search method. First consider the interface between Ruby/AWS
and Amazon. Recall that Ruby/AWS makes requests using the Amazon REST API, so your search
request might look like the following:

http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService
&Operation=ItemSearch&AWSAccessKeyId=[Access Key D]
&AssociateTag=[ID] &SearchIndex=Books&Keywords=ruby

In response to this request, Amazon will return results as XML data. Listing 7.3 is an example of
what your search results might look like coming from Amazon.

This response is for a Small response group. The Medium response group follows the same format
but contains much more data. Looking at just the smaller response however is good enough to
understand the results that Ruby/AWS returns. The important section to understand is the set of
<Item> elements. Each Item element specifies a book returned as part of the results.

The Ruby/AWS library converts each of the XML elements into a Ruby object. So in the response
that Ruby/AWS returns, the root object will be an ItemSearchResponse instance. That instance
will contain attributes that represent its children. The names of the attributes will be operation_
request and items. When there are multiple instances of an XML element, that element is
represented as an array of objects by the Ruby/AWS library. So for example, the items attribute
of the TtemSearchResponse class is an instance of the ITtems class. The items instance will
contain an array attribute named item which is an array of all of the individual book items.

This is enough explanation to understand the final line of the £ind_by_keyword method. This
line is shown below:

products = resp.item_search_response.items.item

Developing Book Shelf: Adding the Core Functionality

LISTING 7.3

Amazon Search Results

<ItemSearchResponse>
<OperationRequest>
<HTTPHeaders>
<Header Name="UserAgent" Value="Mozilla/5.0 (X11l; U; en-US;
rv:1.8.1.13) Firefox/2.0.0.13"/>
</HTTPHeaders>
<RequestId>1TGEFS25LT11DF2222FFGT13</RequestId>
<Arguments>
<Argument Name="SearchIndex" Value="Books"/>
<Argument Name="Service" Value="AWSECommerceService"/>
<Argument Name="ResponseGroup" Value="Small"/>
<Argument Name="Operation" Value="ItemSearch"/>
<Argument Name="Version" Value="2008-03-03"/>
<Argument Name="AssociateTag" Value="your_associate_tag"/>
<Argument Name="Keywords" Value="Ruby"/>
<Argument Name="AWSAccessKeyId" Value="01234567890123456789"/>
</Arguments>
<RequestProcessingTime>0.0731353958225256</RequestProcessingTime>
</OperationRequest>
<Items>
<Request>
<IsValid>True</IsValid>
<ItemSearchRequest>
<ResponseGroup>Small</ResponseGroup>
<SearchIndex>Books</SearchIndex>
<Title>Ruby</Title>
</ItemSearchRequest>
</Request>
<TotalResults>87</TotalResults>
<TotalPages>9</TotalPages>
<Item>
<ASIN>0439943663</ASIN>
<DetailPageURL>
http://www.amazon.com/Ruby-Rails-Bible-Timothy-Fisher/dp/0470258225/
ref=pd_bbs_sr_ 1?i1ie=UTF8&s=books&gid=1212935000&sr=8-1
</DetailPageURL>
<ItemAttributes>
<Author>Timothy Fisher</Author>
<Manufacturer>Wiley</Manufacturer>
<ProductGroup>Book</ProductGroup>
<Title>Ruby on Rails Bible</Title>
</ItemAttributes>
</Item>

continued

259

m Developing a Complete Rails Application

<Item>

</Item>

</Items>

</ItemSearchResponse>

260

First, you get the root element item_search_response. From that you grab the items attri-
bute which is equivalent to the <Items> XML element. The items attribute is an instance of
Items and contains an attribute named item. The item attribute is an array of all of the book
items. This array is what you want to return from the method.

Later in the chapter, you will use the same pattern to access the data about each book. For example,
to get the ASIN value of a book, you could use this code:

asin = resp.item_search_response.items.item[0].asin

This returns the ASIN of the first book returned. To get the book title there is one more level of
indirection. You would first have to get the TtemAttributes like this:

title = resp.item_search_response.items.item([0].item_attributes.
title

With that in mind, you should know enough about the results that you are getting from Ruby/
AWS to write the rest of the Book Shelf application. Remember, to learn more about Ruby/AWS
refer to its home page.

This completes the functionality that you need to start integrating the book functionality into the
Book Shelf application.

' ‘ The Ruby/AWS library contains a rich API of features and functionality. The Book
eEuS Shelf application uses only a tiny piece of what is available to you. If you are inter-
ested in exploring all the capabilities of this library, | highly recommend looking at the APl docu-
mentation, which you can find at www.caliban.org/ruby/ruby-aws/.

Implementing a Search

After a user logs into the Book Shelf application, they are taken to a user home page. The left col-
umn of the user home page contains a text entry field in which a user can enter a keyword, and a
Search button to search for books containing that keyword, as shown in Figure 7.3. This is how
the user is able to pull up a list of books that they can add to the user’s shelf. In this section, you
implement the keyword entry box, the Search button, the search results page, and the necessary
back-end code to perform the book search using the Amazon interface that was developed in the
previous section.

Developing Book Shelf: Adding the Core Functionality

FIGURE 7.3

The User home page with a book search menu

¥ BookShelf - User Home - Mozilla Firefox

w Hstory delidous Bookmarks Yshoo! Tooks Help

-@ bt B e [P (D ntwsisocohost 000puserhome [+ B [& o]

4 . \N| - =
Hoolkt Sihels

Mﬁuuks Login successful
All Books Welcome Timothy
Add Book .

< 1 | @
Dane zotero 45 P O W vSow =l

Create the book search form

Get started by adding the search feature to the left side panel. Open up the app/views/
shared/_sidebar.html.erb file and modify it so that it looks like Listing 7.4. To implement
the book search feature, add the following code to the sidebar:

<% form_tag ({:controller=> "book", :action=> "search"}) do %>
<input type="hidden" name="page" value="1" />
Add Book
<%= text_field_tag "book_ keyword" %>
<%= submit_tag "Search", :id=>'search_button' %>
<% end %>
</1li>

The Rails helper form_tag creates a search form. The form contains a text field containing the
keyword a user types in to search on and a submit button labeled Search. The keyword text field is
created using the text_field_tag helper method. The parameter passed to the text field helper
book_keyword becomes the name of the text field, as well as the name you use in the controller
to retrieve the value of the keyword. The submit_tag helper method creates the submit button.
The submit_tag method is passed a string that becomes the button’s label, and an 1d parameter
that becomes the HTML id attribute for the submit button.

261

m Developing a Complete Rails Application

The form tag is passed a controller and action that is called when the form is submitted. In this
case, the book controller and search action are specified. Because you don’t yet have a book con-
troller or a search action, you need to implement that next (see Listing 7.4).

LISTING 7.4

The _sidebar.html.erb File with Book Search

<div id="sidebar">
<div id="Menu">

<ul id="user_nav_menu">

<% if logged_in %>

<%= link_to 'My Books', :controller=>'user',
raction=>"'home"',
:user_id=>session|:user].id
%>
</1li>

<%= link_to 'All Books', :controller=>'book',
raction=>'list' %>
</1li>
<1li>

<% form_tag ({:controller=> "book", :action=> "search"}) do %>
<input type="hidden" name="page" value="1" />
Add Book
<%= text_field tag "book_ keyword" %>
<%= submit_tag "Search", :id=>'search button' %>
<% end %>
</1i>
<% else %>
<ul id="home_menu">

<%= link_to 'Join Now',6 :controller=>'user',
:action=>'signup' %>

</1li>

<%= link_to 'View the Books',
:controller=>"'book"',
raction=>'list' %>

</1li>

<% end %>

</div>
<div style="clear:both; "> </div>

</div>

262

Developing Book Shelf: Adding the Core Functionality

You need to add a few additional styles to your application style sheet to make sure the book
search form is nicely displayed. Add these styles to the public/stylesheets/style.css file
as shown in Listing 7.5.

LISTING 7.5

Styles Added to public/stylesheets/style.css File

#user_nav_menu {
list-style: none;
margin: O0px;
padding: Opx;

}

#user_nav_menu 1i {
padding-top: 20px;
padding-bottom: 20px;
font-size: 1.5em;
color: blue;

}

#user_nav_menu input {
clear: both;
float: left;
width: 160px;

}

#user_nav_menu #search_button {
width: 100px;
}

#book_search_field {
width: 230px;
float: left;
margin-top: 5px;
margin-bottom: 5px;

}

#search_button {
float:left;
}

Now that you have the Ul complete for requesting a book search, you need to implement the
server action required to perform the search.

263

m Developing a Complete Rails Application

264

Generate the book controller and search action

So far, your application has a home controller and a user controller. This section leads you through
adding a book controller that handles requests related to book functionality. You can generate the
book controller class using the script/generate command:

> ruby script/generate controller Book

exists app/controllers/

exists app/helpers/

create app/views/book

exists test/functional/

create app/controllers/book_controller.rb
create test/functional/book_controller_test.rb
create app/helpers/book_helper.rb

As you should expect by now, this generates not only the book controller class but also a functional
test class and a view helper class. Open up the app/controllers/book_controller.rb file
to edit the BookController class and add a method to handle the book search request.

def search
@books = Book.search_amazon (params [:book_keyword],
params [: page],
session|:user])
@title = "Book Shelf Search Results"
end

The search method calls a search_amazon class method of the book model class. You can write
this method in the next section after you generate the book model. Three parameters are passed

to the search_amazon method: the keyword the user is searching on, the result page being
requested, and the currently logged-in user. The keyword and page parameters are passed into the
search action from the search form that you previously created. Finally, the search action sets the
@title instance variable so that the results page has a proper page title.

Create the book model

The book model represents a book in the Book Shelf application. As you did with the user model,
start by defining what the book model should look like. Table 7.1 shows the fields that are in the
book model.

The fields that contain information about a book are all fields that are populated from the results of
an Amazon catalog search. Instead of storing images in the database, the application stores the URL
of the book’s images that are held on Amazon. The user_id field is a foreign key into the users
table, allowing a book to be related to a particular user.

TABLE 7.1

Developing Book Shelf: Adding the Core Functionality

Book Model

Field Name Description Data Type
user_id ID of the user who added the book integer
title Title of the book string
author Author of the book string
release_date Book’s release date date
description Book description from Amazon text
image_url_small URL of small image from Amazon string
image_url_medium URL of medium image from Amazon string
image_url_large URL of large image from Amazon string
amazon_url URL of book’s page on Amazon string
isbn Book’s ISBN string
created_at Date and time the book was added to the shelf datetime
updated_at Time book record was updated datetime

Generate the book model class

Now that the fields for the book model are defined, you can generate the book model class using
the script/generate command:

> ruby script/generate model Book

exists
exists
exists
create
create
create
exists
create

app/models/

test/unit/

test/fixtures/
app/models/book.rb
test/unit/book_test.rb
test/fixtures/books.yml
db/migrate
db/migrate/002_create_books.rb

In addition to the book model class, a unit test file, a fixtures file, and a database migration class
are created for the book model. The migration class is usually a good place to start when you're
implementing a model. The migration class creates the model in your database.

Create the book migration

When you generated the book model, the generate script also created a migration for the books
table. Edit the db/migrate/002_create_books.rb file, as shown here:

265

m Developing a Complete Rails Application

266

class CreateBooks < ActiveRecord::Migration
def self.up
create_table :books do |t
t.references :user

t.string :title
t.string :author
t.date :release_date
t.text :description
t.string :image_url_small, :string
t.string :image_url_medium, :string
t.string :image_url_large, :string
t.string :amazon_url
t.string :isbn
t.timestamps
end

end

def self.down
drop_table :books
end
end

This creates a books table containing all the fields that were specified in the model’s design from
Table 7.1. Each book record also contains a primary key ID field, which is automatically created by
the migration.

Run the migration
Using the rake tool, go ahead and run the CreateBooks migration:

> rake db:migrate

This creates the books table, as specified in the CreateBooks migration class.

Associate the book model and the user model

The book model has a many-to-many relationship with the user model. In plain English, this means
that one book can belong to many users, or many users can have the same book on their shelf.
Furthermore, one user can have many books on their shelf. To implement this association in Rails,
you use the built-in association DSL language. Open up the app/models/user.rb class and
add a has_and_belongs_to_many association by adding the following line just below the class
declaration:

has_and_belongs_to_many :books

Now you have to do the same thing for the book model to implement the other side of this associa-
tion. Open up the app/models/book. rb class and add this line just below the class declaration:

has_and_belongs_to_many :users

Developing Book Shelf: Adding the Core Functionality

Because this is a many-to-many relationship, there is one more thing you need to do to make it a
valid relationship that Rails understands. A many-to-many relationship needs a new relationship
table that maps book IDs and user IDs. Following Rails requirements for this table, it is named
books_users. Recall that the table is named by using the pluralized form of each model sepa-
rated with an underscore and in alphabetical order, so the book’s name goes first. Go ahead and
manually create a migration file named 003_create_books_users.rb in the db/migrate
directory. The migration should look similar to what you see here:

class CreateBooksUsers < ActiveRecord::Migration
def self.up
create_table :books_users, :id => false do |t]|
t.references :book
t.references :user
t.timestamps
end
end

def self.down
drop_table :books_users
end
end

Now go ahead and run the migrations again so that the books_users table is created.
> rake db:migrate

By adding these associations to the book and user models, you are now able to access the books
associated with a user, or the users associated with a book through a simple instance attribute. For
example, you could use the following code to get a reference to a specific user’s books:

user = User.find(:first)
users_books = user.books

Implement search logic in the book model

Recall that when you completed the search action in the book controller, it contained a call to a
search_amazon method of the book model. You can now implement that method in the book
model. Listing 7.6 shows the implementation of the search_amazon method along with a method
that is used by the search_amazon method, convert_amazon_results. The search_
amazon method uses the AmazonInterface class that was implemented earlier in this chapter.

The £ind_by_ keyword method of the AmazonInterface class returns an array of Item
instances. Instead of returning Item instances, the search_amazon method should return an
array of Book instances. This is the purpose of the convert_amazon_results method. It
converts the Amazon search results into instances of the book model.

267

m Developing a Complete Rails Application

Implementing a Search in the Book Model

def Book.search_amazon (keyword, page, user_id)
search = AmazonInterface.new
results = search.find_by_ keyword (keyword, page)
return Book.convert_amazon_results(results, user_id)
end

def Book.convert_amazon_results (results, user_id)
user = User.find(user_id)
converted_books = Array.new
results.each do |result|
book = user.books.find by isbn(result.asin.to_s)
if (book)
book.exists = true
else
book = Book.new
book.exists = false
end
book.title = result.item_attributes[0].title[0].to_s
if result.item_ attributes[0].author
book.author = result.item_attributes[0].author.join(', ")
end
book.release_date =
result.item attributes[0] .publication_date.to_s
if result.small_image
book.image_url_small = result.small_image.url.to_s
end
if result.medium_image
book.image_url_medium = result.medium_image.url.to_s
end
if result.large_image
book.image_url_large = result.large_image.url.to_s
end
book.isbn = result.asin.to_s
book.amazon_url = result.detail_page_url.to_s
converted_books.push (book)
end
return converted_books
end

Within the convert_amazon_results method, notice that there is a call to £ind_by_ isbn
on the logged-in user’s books object. The purpose of this call is to determine whether the book is
already on the user’s shelf. If the user already has the book, an attribute of the book instance named

268

Developing Book Shelf: Adding the Core Functionality

exists isset to true. Be sure to add an accessor for the exist property to the book model. To
do that, add this line near the top of the app/models/book. rb class:

attr_accessor :exists

Also in the convert_amazon_results method you may have noticed the use of the to_s
method in several places. This is because the Ruby/AWS library actually returns the attributes that
you are interested in as instances of AWSObject. Fortunately, the AWSObject implements the
to_s method allowing you to get the actual string value of the attribute.

Let me take a moment to say a bit more about the exists attribute before you move on. An
instance of the book class can represent a book in either of these two states:

B A book that is contained in the Book Shelf application database

B A book that has been read from the Amazon catalog, but does not yet exist in the applica-
tion database

The exists attribute allows you to differentiate between these types of book instances. As you
will see a bit later in this Chapter, it is important to know whether or not a book is in the database
when rendering views. If a book instance is created as the result of any of the Active Record methods
that load data, such as the £ind methods, the exists attribute should always be set to true. To
accomplish that, you can add an Active Record observer to the book model.

Observers are callbacks that are called by Rails when a specific action occurs. The particular observer
method that helps you out here is the after_find method. If a model implements the after_
find method, it is called immediately after any record is found using one of the Rails finder meth-
ods. Edit the app/models/book. rb file and add the after_find implementation shown here:

def after_ find
self.exists = true
end

The instance being created is passed to the after_find method. This implementation just sets the
exists attribute to true for all records created as a result of an Active Record £ind method.

The converted array of book instances is what is returned from the search_amazon method. The
controller action can then set this array as an instance variable to make it visible to the search results
view template.

Create the search results page

With the search results action implemented in the BookController class, the next thing you
should do is implement the search results page. This is the page that is rendered after the search
results action is complete. Because the search action of the book controller does not specifically
render a template, a template with the name search.html . erb in the app/views/book
directory is rendered by default. The search action creates an instance variable named @books,
which contains an array of all the books found. This instance variable is accessed {rom the
search.html.erb template to display the search results.

269

m Developing a Complete Rails Application

Listing 7.7 shows what your search.html.erb template should look like. The outer if-else
block checks to see if there are any books in the @books array. If the array is empty or null, a
message saying “No matching books found” appears. If the @books array contains one or more
books, the array is stepped through using the each method of the array. Before the @books array
is stepped through, a variable named first is set to true. This is used as a flag to indicate the
first book in the list. The first book in the list is differentiated with a different class name on the
div that wraps the book. This allows the first book in the list to be styled slightly differently than
the other books. This is useful, for example, if you want a different top margin or different pad-
ding, perhaps on the first element.

LISTING 7.7

The app/views/book/search.html.erb File

<% if @books && @books.size > 0 %>

<% first = true %>
<% @books.each do |book| %>
<% if (first == true) %>
<% first = false %>

<div class="book_data_first">
<% else %>
<div class="book_data">
<% end %>
<%= render :partial=>"book detail",
:locals => { :book => book, :search => true } %>
</div>
<% end %>
<% else %>
<%= "No matching books found." %>
<% end %>

After the opening div statement for a book is created, a partial named book_detail is called to
render the details of the current book of the iteration. You pass the current book and a flag named
search as locals to the partial. The book_detail partial is implemented in app/views/
book/_book_detail.html.erb. Create that file and enter the code shown in Listing 7.8.

The first line of the partial displays an image of the book. This uses the image URL that was
obtained from the Amazon search. The next section of the partial shown below displays the book’s
title, author, release date, and ISBN. Remember that in the book model during the search, the
exists flag is set to true for a book if it is also found on the user’s shelf. The partial uses that flag
to determine whether to display the title as a link to the book’s record, or just text.

270

Developing Book Shelf: Adding the Core Functionality

LISTING 7.8

The app/views/book/_book_detail.html.erb Partial

<div class="book_image"><img src="<%= book.image_url_small %>" /></div>

<div class="book_info">

<% if book.exists %>
<%= link_to book.title, { :controller => "book",
raction => "show",
:1id => book.id } %>
<% else %>
<%= book.title %>
<% end %>

Author(s): <%= book.author %>

Release Date: <%= book.release_date %$>

ISBN: <%= book.isbn %>
</div>
<% if search %>
<div class="add_control" id="add_control_<%= book.isbn %>">
<% 1if !book.exists %>

<%= link_to_remote "Add to Shelf",
:update => 'add_control_' + book.isbn,

:url => { :controller => 'book',
raction => 'add',
:isbn => book.isbn } %>

<div id="shelf_ status_<%= book.isbn %>"></div>
<% else %>
<%= render :partial=>'book exists',
:locals => { :book => book } %>
<% end %>
</div>
<% else %>
<div class="add_control">
<% 1f session[:user] %>
<%= link_to_remote "Delete from Shelf",
:url => { :controller => 'book',
raction => 'delete',
:isbn => book.isbn } %>
<% end %>
<div id="shelf_status_<%= book.isbn %>">
<%= book.users.size %> Users</
span>
</div>
</div>
<% end %>

271

m Developing a Complete Rails Application

272

1f the book is on the user’s shelf, the title appears as a link to the book’s detail page.

<div class="book_info">

<% if book.exists %>
<%= link_to book.title, { :controller => "book",
raction => "show",
:1d => book.id } %>
<% else %>
<%= book.title %>
<% end %>

Author(s): <%= book.author %>

Release Date: <%= book.release_date %>

ISBN: <%= book.isbn %>
</div>

The following portion of the partial is shown next. Recall that from the search results page, the flag
search was passed with the value true to the partial. This section of the partial displays a link to
add the book to the user’s shelf if the search flag is true. The search flag allows you to reuse this
partial when you want to display the books on a user’s shelf. In that case, you do not want to show
the add control, and so the search flag is set to false to indicate that the partial is not being called
as a result of a search (see Listing 7.9).

The add control only appears if the book is not already on the user’s shelf. In the third line of the
above code, an 1f statement checks the exists field to determine if the book is already on the
user’s shelf. The add control consists of a remote link that uses the 1ink_to_remote Ajax helper
method. The 1ink_to_remote method results in an Ajax request to the add action of the book
controller.

The book’s ISBN is also passed as a parameter. The 1ink_to_remote method is also passed an
update parameter that tells the method to update the add control div after the Ajax method is
complete. Because the page will most often contain multiple books and multiple add controls,
the add control div is given an id attribute that consists of the string add_control_ with the
book’s ISBN appended.

If the book already exists on the user’s shelf, instead of showing the add control, another partial
called book_exists appears. The book record is passed along to that partial. You'll see details of
that partial shortly.

Below the outermost else statement of this code block is the template that is rendered if the par-
tial is not being called as a result of a search being performed. Instead of displaying a remote link
allowing the user to add the book to her shelf, a link appears which allows the user to delete the
book from her shelf. This uses the 1ink_to_remote method, which creates an Ajax request, just
as you use to add a book to the user’s shelf. To delete a book, the delete action of the book con-
troller is called, with the book’s ISBN also being passed to the action.

Developing Book Shelf: Adding the Core Functionality

LISTING 7.9

<% 1if search %>
<div class="add_control" id="add_control_<%= book.isbn %>">
<% if !book.exists %>
<%= link_to_remote "Add to Shelf",
:update => 'add_control_' + book.isbn,
:url => { :controller => 'book',
raction => 'add',
:isbn => book.isbn } %>

<div id="shelf_status_<%= book.isbn %>"></div>
<% else %>
<%= render :partial=>'book_exists',
:locals => { :book => book } %>

<% end %>
</div>
<% else %>
<div class="add_control">
<% if session[:user] %>
<%= link_to_remote "Delete from Shelf",
:url => { :controller => 'book',
raction => 'delete’',
:isbn => book.isbn } %>
<% end %>
<div i1d="shelf_ status_<%= book.isbn %>">
<%= book.users.size %>
Users

</div>
</div>
<% end %>

Now let’s create the partial that appears if the book already exists on the user’s shelf. You should
create this partial, called book_exists, in app/views/book/_book_exists.html.erb.
Create that file and enter the code shown in Listing 7.10.

LISTING 7.10

The _book_exists Partial

<%= link_to_remote "Delete from Shelf",
:url => { :controller => 'book',
raction => 'delete',
:isbn => book.isbn } %>

<div id="shelf_status_<%= book.isbn %>">
0On Shelf
<%= book.users.size %> Users
</div>

273

m Developing a Complete Rails Application

FIGURE 7.4

This book_exists partial displays a remote link allowing the user to delete the book from their
shelf, along with a message indicating that the book is on the shelf, and a count of the number of
users who have this same book on their shelves. The delete function is implemented using the
link_to_remote helper method again to create an Ajax request to the delete action of the
book controller. You will implement the delete action later in this Chapter.

Stop for a moment and take a look at the progress you've made so far to make sure everything is
working as planned. If you do not have the WEBrick server running, go ahead and start it using the
ruby script/server command and go to the application’s home page by navigating in your
browser to http://localhost:3000. Log into the application or create a new user, and you
should be taken to the user home page, which at this point should look similar to what is shown in
Figure 7.3. From that page, enter a search term, such as “ruby programming,” into the text field

in the left column. Press the Search button to use the functionality you just completed in order to
perform the search and display its results. You should see a search results page similar to what is
shown in Figure 7.4.

The results of your search appear, but the display isn't styled quite as nicely as it could be. You
need to add a few more styles to your style sheet. Go ahead and add the styles in Listing 7.11 to
your public/stylesheets/style.css file.

Search results

) Book Shelf Search Results - Mozilla Firefox

Eile Edit Vew History delido.us Bookmarks Yahoo! Tools Help

@& -

- @ ﬁ E o 23 M'_| http:/flocalhost:

| |] - A
) L L)) 5 :JIJ-;JJJ“

My Books ‘

- All Books ‘

f | The Rails Way (&ddison-Wesley Professional Ruby Series)
. Add Book | Author(s): Obie Fernandez

' 7‘ | Release Date: 2007-11-26

; | ISBN: 0321445619

i | add to shalf

L i

Agile web Development with Rails, 2nd Edition

Author(s): Dave Thomas,David Hansson,Leon Breedt,Mike Clark, James Duncan
Davidson, Justin Gehtland, Andreas Schwarz

Release Date: 2006-12-14

ISBMN: 0977616630

Add to Shelf

L

Done

zotero ! P @ [§ Ysow =]

274

Developing Book Shelf: Adding the Core Functionality

LISTING 7.11

Styles Added to public/stylesheets/style.css

.book_data_first {
float:left;

margin-bottom: 25px;
border: 1px solid #cccccec;
padding: 15px;

width: 80%;

.book_data {

float:left;

clear:both;

margin-bottom: 25px;
border: 1px solid #cccccec;
padding: 15px;

width: 80%;

}

.book_image {
float:left;
}

#book_image {
float: left;
padding: 20px;
background-color: lightblue;
width: 130px;
}

#book_view {
margin-left: 25px;
}

.book_info {

float: left;
padding-left: 15px;
text-align: left;
width: 70%;

}

.book_name {
font-weight: bold;
}

.add_control {
color: green;

continued

275

m Developing a Complete Rails Application
LISTING 7.11 |(eeliialtCre)]

}

float: right;
text-align: right;

#book_keyword {

}

margin-top: 10px;
margin-bottom: 10px;

.on_shelf {

}

display: block;
color: green;
font-weight: bold;
margin-top: 20px;

.not_on_shelf {

276

display: block;
color: red;
margin-top: 20px;

With those styles added to your style sheet and the style. css file saved, reload the search results
page; it should now look like Figure 7.5. I think you'll agree that this is a much nicer display of the
results.

Now go ahead and try to add a book to your shelf by clicking the Add to Shelf link. Oops, you'll
notice that it doesn’t quite work as expected. Remember that when you created this link, you used
the 1ink_to_remote helper and specified the add action of the book controller to handle this
request. However, you have not yet implemented the add action. That’s okay for now, though,
because your goal for this section is to get the search functionality working. In the next section,
you'll complete the implementation of being able to add and remove books from a user’s shelf.

If you use the suggested keywords of “ruby programming” for your search, and you scroll down on
the search results page, you can count a total of ten books displayed. The problem is that this search
actually finds more items, but you have not implemented results paging yet. Let’s do that next.

Implement search results paging

Recall that a book search returns only the first ten results from the Amazon catalog. Currently, if a
search finds more than ten books, there is no way to display those results beyond the first ten. The
find_by_keyword method of the AmazonInterface class that you created earlier accepts a
page parameter that allows you to get results beyond the first page of results. You just need to

Developing Book Shelf: Adding the Core Functionality

implement a way of passing a page parameter from the Web page down to this search method.
Modify the search action of the book controller so that it looks like this:

def search
@prev_page = params|[:page].to_i - 1
@next_page = params|[:page]l.to_i + 1
@books = Book.search_amazon (params|[:book_keyword],
params [:page],
session|[:user])
@title = "Book Shelf Search Results"
end

The lines in bold print are new. These lines set two new instance variables that will be available

to the search results view. The @prev_page variable holds the page number of the page previous to
the one currently being viewed. The @next_page variable holds the page number of the next page
of results. You use these two variables in the results view to display paging controls above the results.

FIGURE 7.5

Search results styled

) Book Shelf Search Results illa Firefox

Ele Edt View History delido.us Bookmarks Yashoo! Tools Help

@ - ﬁ} E ael [P [0 http:ffocainost

The Rails Way (Addison-Wesley
Professional Ruby Series)
Author(s): Obie Fernandez
Release Date: 2007-11-26

ISBN: 0321445619

Add to Shelf

Agile Web Development with Rails, 2nd
Edition
.g._{ . Author{s): Dave Thomas,David

M Hanssan,Leon Breedt,Mike Clark,James

Duncan Davidson, Justin Gehtland, Andreas

Schwarz

Release Date: 2006-12-14

ISBN: 0977616630

Add to Shelf
-

& | @
Done zotero &) P @ B vsow 567 U

277

m Developing a Complete Rails Application

LISTING 7.12

Now you need to make some small changes to the search results view contained in app/views/
book/search.html.erb. Open that file and add this code to the very top of the template:

<% if @prev_page > 0 %>
<%= link_to "Prev page", :controller=>'book',
raction=>'search',
:book_keyword=>@keyword,
:page=>@prev_page %>

<% end %>
<% if @books && @books.size == 10 %>
<%= link_to "Next page", :controller=>'book',

raction=>'search',
:book_keyword=>@keyword,
:page=>@next_page %>

This creates a paging control that allows a user to navigate to the next page of results or back to a
previous page. Notice that the @prev_page and the @next_page variables are used as the page
parameter that is sent to the search action.

Also modify the final else block at the bottom of the search.html.erb template to display a
slightly different message if you're displaying an empty page as a result of the user trying to display
a next page beyond the available results.

<% else %>
<%= "No matching books found." unless @prev_page > 0 %>
<%= "No additional matching books found." unless @prev_page =
0 %>

<% end %>

Listing 7.12 shows what your search.html . erb file should look like, complete with the paging
functionality.

Assuming your server is still running, reload the Book Shelf application in your browser and navi-
gate back to the search results page. You should now see the paging links at the top of the book
results display. Perform a keyword search again using a fairly common keyword and try out the
paging links. You should be able to page forward and backward through the results.

The app/views/book/search.html.erb file with Paging

<% if @prev_page > 0 %>

<%= link_to "Prev page", :controller=>'book',

raction=>"'search',
:book_keyword=>@keyword,
:page=>@prev_page %>

Developing Book Shelf: Adding the Core Functionality

<% if @books.size = 10 %>
<%= link_to "Next page", :controller=>'book',
raction=>'search',
:book_keyword=>@keyword,
:page=>@next_page %>

A
oe

end %>

if @books && @books.size > 0 %>

<% count = 0 %>

<% @books.each do |book| %>

<% if (count == 0) %>

<% count = 1 %>

<div class="book_data_first">
else %>

<div class="book_data">
end %>
<%= render :partial=>"book_ detail",

:locals => { :book => book, :search => true } %>

A
o0

A
oe

A
oe

</div>
<% end %>
else %>
<%= "No matching books found." unless @prev_page > 0 %>
<%= "No additional matching books found." unless @prev_page = 0 %>
end %>

A
o

A
oe

Implementing the Addition
and Deletion of Books

Now the users have the ability to perform book searches based on any keyword. The results of the
search are pulled up on a list page from which they can select a book to add to their shelf. This
section guides you through implementing the functionality that allows the user to actually add a
book from the results page to their shelf. After they are able to add a book, you'll continue the
development by adding the capability to remove a book from a user’s shelf.

Adding a book

In the previous section, when you created the book search results page, a link to add a new book
to a user’s shelf was added for every book found that is not currently on the user’s shelf. The link
uses the 1ink_to_remote helper method.

<%= link_to_remote "Add to Shelf",
:update => 'add_control_' + book.isbn,
:url => { :controller => 'book',
raction => 'add',
:isbn => book.isbn } %$>

279

m Developing a Complete Rails Application

This results in an Ajax call to the add action of the book controller. You have not yet implemented
the add action, so let’s go ahead and implement that now. Open up the app/controllers/
book_controller.rb file and create an add method using this code:

def add
isbn params [:isbn]
book = Book.find_or_create_from amazon(isbn, session[:user])
if book.save

render :partial=>'book_exists', :locals => { :book =>
book }
else
render :text => 'Failed to add book'
end

end

The add method uses the isbn parameter and passes that along with the id of the current logged-
in user to a new method of the book model, find_or_create_from_amazon. The method
find_or_create_from_amazon is responsible for either looking up the book’s details from
the application’s database in the case when the same book is already on another user’s shelf, or
looking up the book’s details from Amazon when it cannot be found in the application’s database.
In either case, a book object is returned. The book is then saved.

If the save is successful, the book_exists partial is rendered back to the search results page from
which the Ajax call originated. If the save is not successful, a failure message is rendered back to
the search results page.

Now, open up the app/models/book. rb file and implement the find_or_create_from_
amazon method. Type in the following code for this method:

def Book.find_or_create_from_amazon(isbn, user_id)
book = Book.find or_create_by_ isbn (isbn)
if book.title
book.users << User.find(user_id)
else
search = AmazonInterface.new
books = search.find_by_ isbn (isbn)
book.set_from_amazon_result (books[0])
book.users << User.find(user_id)
end
return book
end

The goal of this method is to perform one of the following tasks:

B Find the book in the application database. If found, add the current user to the book’s
users attribute.

B Find the book in the Amazon catalog. Create a book model object from the Amazon
Item record that is returned.

280

Developing Book Shelf: Adding the Core Functionality

The first line of the method looks up the book in the application database using the £ind_or_
create_by_isbn method. This is one of the dynamic £ind methods created as a result of the
book model extending ActiveRecord: : Base. Because you are using a £ind_or_create
method, the book model instance is created whether or not the book is found in the database, so
you cannot simply check to see whether or not the returned record exists.

The find_or_create_by_isbn method is used because you need an instance of the book
model class in either case. So this single line of code creates the book instance that will either be
populated from the application database or later on from the result of an Amazon lookup.

To determine whether the book was found in the local database, the book’s title attribute is
checked. Because every book must have a non-blank title, this attribute is not null if the book was
found in the application database. However, if the book was not found, the title attribute is null.

Remember that books and users share a many-to-many relationship. A user can be related to a
book by adding the user instance to the book’s users attribute. This is done if the book is found
in the application database. If the book is not found in the database, the AmazonInterface class
looks up the book in the Amazon catalog. This returns an array of Item records. The book with
the matching ISBN is the first item in the resulting array.

Now you need to map the Item instance to your instance of the book class. This is done using the
set_from_amazon_result method. After mapping the result to the book instance, the current
user is associated with the book and the book is returned.

The set_from_amazon_result method used in the previous method is also a new method
that you have to add to the Book model class. This is a relatively simple method that takes fields
from the Item object and sets equivalent fields on the book instance object. Listing 7.13 shows
the code for this method.

If you looked at the code in Listing 7.13, you probably recognized that it is very similar to code that
you used in the convert_amazon_results method earlier in this Chapter. It would be a bad
programming practice to keep both of these two nearly identical chunks of code. Code duplication
is almost always a bad thing. It can often be the source of defects, and maintenance problems. In
this case, there is a simple refactoring that you can perform on the convert_amazon_results
method to remove the duplication.

Below is the refactored convert_amazon_results method. Notice that the duplicate code has
been replaced with a call to your new set_from_amazon_result method.

def Book.convert_amazon_results (results, user_id)

user = User.find(user_id)

converted_books = Array.new

results.each do |result|
book = user.books.find by isbn(result.asin.to_s)
if (book)

book.exists = true

else

281

m Developing a Complete Rails Application

book = Book.new
book.exists = false
end
book.set_from_ amazon_result (result)
converted_books.push (book)
end
return converted_books
end

LISTING 7.13

The set_from_amazon_result method

def set_from amazon_result (result)
self.title = result.item attributes.title.to_s
if result.item attributes[0].author
self.author = result.item_attributes[0].author.join (', ")
end
self.release_date =
result.item_attributes|[0] .publication_date.to_s

if result.small_image

self.image_url_small = result.small_image.url.to_s
end
if result.medium_image

self.image_url_medium = result.medium_image.url.to_s
end
if result.large_image

self.image_url_large = result.large_image.url.to_s
end

self.isbn = result.asin.to_s
self.amazon_url = result.detail_page_url.to_send

You are nearly finished with the add functionality. You have only one more method to add. In the
find_or_create_from_amazon method, you called a f£ind_by_isbn instance method on
the AmazonInterface class. This method has not been implemented yet, so create that now.

Open up the AmazonInterface classin 1ib/amazon_interface.rb and add this method
as shown here:

def find_by_isbn (isbn)

il ItemLookup.new('ASIN', { 'ItemId' => isbn })
rg = ResponseGroup.new('Medium')

282

FIGURE 7.6

Developing Book Shelf: Adding the Core Functionality

resp = @request.search(il, rg)
products = resp.item_lookup_response.items.item
end

In the £ind_by_keyword method, you used the ItemSearch class from Ruby/AWS. For this
method, you use the ItemLookup class. The ItemLookup class is useful for when you have the
ASIN or ISBN of a book and want to retrieve that exact book. ASIN is equivalent to an ISBN for
books. However, Amazon gives every product an ASIN identifier, not just books; this why they call
this field an ASIN instead of an ISBN. The ASIN is passed using the ITtemId hash key. The rest of
the method is identical to the £ind_by_keyword method. You create a ResponseGroup, per-
form the search, and return the results.

This completes the functionality required to add a book to a user’s shelf. Make sure your server is
running (start it if necessary), and navigate back to the search results page. Select a book returned
from a search you performed and attempt to add that book to your bookshelf. If all goes well, you
should see the book’s listing updated, indicating that the book is now on your shelf. The results
screen should look similar to Figure 7.6 after adding the book.

Instead of a link to add the book to your shelf, the link is changed to Delete from Shelf. This is also
a new message indicating that the book is on your shelf, along with a count of users who have that
book on their shelf.

Search results after adding the book

2 Book Shelf Search Results - Mozilla Firefox

fle Edt Vew Hgtory delicous Bookmarks Yshoo! Tools Help

’u'} E ‘nel | | htip:/flacaihost: 3000 book/search [~[&] [&-]

i S | MNext page

. My Books ;

; i The Rails Wav (Addison-Wesley ional Ruby Series) Delete from Shelf
: All Books] Author(s): Obie Fernandez

i i Release Date: 2007-11-26 On Shelf
| Add Book i ISBN: 0321445619 1 Users
H || [Agile Web Development with Rails, 2nd Edition Add to Shelf

Author(s): Dave Thomas,David Hansson,Leon Breedt,Mike

s Clark,James Duncan Davidson, Justin Gehtland, Andreas Schwarz
i Release Date: 2006-12-14

ISBN: 0977616630

v

Done

zotero & © © B vsow 3885

283

m Developing a Complete Rails Application

284

At this point, if you click on the My Books link, you'll still just see a blank page. That is because
you have not yet implemented the code to display a user’s books on their home page. You will do
that after you implement the ability to delete a book from a user’s shelf.

Deleting a book

In the previous section, you gave users the ability to add books to a personal bookshelf. In this sec-
tion, you will give users the ability to delete books from their book shelf.

Earlier in this chapter, you added a delete link for books that a user adds to his shelf. That code is
shown here:

<%= link_to_remote "Delete from Shelf",
:url => { :controller => 'book',
raction => 'delete',
:isbn => book.isbn } %>

This link is shown when the user performs a book search, and a book contained in the results is
already on the user’s shelf. Later in this chapter this link will also be used within the book list dis-
played on the user’s home page.

Before you implement the functionality to delete a book, think about what should happen when
the user clicks the Delete from Shelf link. From the :url parameter in the code above, you can
assume that the delete method of the book controller class will be called, and the ISBN number
of the book that you want to delete is passed to that action. Should you delete the book from the
database in that method? Remember that the same book might also be on another user’s shelf. So
you would only want to delete the book from the books table if it is no longer on any user’s shelf.

However, you do need to break the association between the selected book and the current user. To
do that, you will delete the book from the books array attribute of the current user. Remember

that the books array attribute contains the books that are associated with the user. By deleting the
book from that array, the association record stored in the books_users table will also be deleted.

After you've deleted the book from the user’s books association and deleted the book record if it is
no longer associated with any other users, you need to tell the Web page to replace the Delete from
Shelf link with the Add to Shelf link, so that the user is able to add the book again if she chooses
to. It is also a good idea to give the user a message indicating that the delete happened successfully.
You will perform the web page updates using RJS.

Add the delete action

Start the implementation now by adding the delete method to the book controller. Edit the app/
controllers/book_controller.rb file to add the delete method shown below:

def delete
@book = Book.find_by_ isbn (params[:isbn])
current_user = User.find(session[:user])

Developing Book Shelf: Adding the Core Functionality

current_user.books.delete (@book)
if @book.users.size ==
Book.delete (@book.1d)
end
end

In this method, you look up the book to be deleted using the £ind_by_isbn finder method.
This is one of the dynamic finders that is automatically created for you by ActiveRecord. You also
look up the current user using the user id stored in the session. Once you have those two items,
you can break the association between the book and the user by deleting the book from the user’s
books array. Finally, in the last three lines of the method, you check to see if any other users are
associated with the book. If the users count for that book is zero, you delete the book from the
database using the Book .delete method.

Update the page with RJS

In the delete action, you performed the necessary server-side operations, now you have to make
sure that the Web page is updated to reflect the current state of the book. Since it has been deleted,
the user should see a link allowing him to add it again if he chooses. You also want to show the
user an indication that the delete action was successful. Right now, the code that displays the Add
to Shelf link is embedded within the book_detail.html.erb partial. The specific section of
interest is shown here:

<%= link_to_remote "Add to Shelf",
:update => 'add_control_' + book.isbn,
:url => { :controller => 'book',
raction => 'add',
:isbn => book.isbn } %>

<div id="shelf_ status_<%= book.isbn %>"></div>

So that you do not have to duplicate that block of code, it is a good idea to move it into a partial
of its own. Create a partial and name it _book_not_exists.html.erb. Make sure it is in the
app/views/book directory. After you have created that partial, go ahead and replace that block
of code in the _book_details.html.erb partial with these two lines:

<%= render :partial=>'book_not_exists',
:locals => { :book => book } %>

Now, you have the partial that you will display after you have deleted a book from a user’s shelf.
As I said a bit earlier, you will use RJS to perform the necessary page updates after the delete
action. RJS allows you to perform page manipulations that you would normally do with JavaScript
code. RJS actually results in JavaScript being generated.

Start by creating an RJS template in the file app/views/book/delete.rjs. Since this RJS
template has the same name as the delete action, and there are no other templates with the same
name, this template will be rendered automatically by the book controller. Type the code shown
below into the RJS template:

285

m Developing a Complete Rails Application

286

display book not exists partial
page['add_control_' + @book.isbn].replace_html
:partial=>'book_not_exists', :locals => { :book => @
book 1}

display book deleted message and highlight it
page['shelf_status_' + @book.isbn].replace_html 'Book Deleted'
page['shelf_status_' + @book.isbn].visual_effect :highlight

You can tell from the comments, this template performs two page manipulations. First it displays
the book_not_exists partial which contains the Add to Shelf link. That is done using what is called
an element proxy. The code, page ['add_control_' + @book.isbn], is an element proxy
for the div element with the id equal to ‘add_control_’ followed by the isbn number of the book for
which this is being displayed. That div element currently contains the Delete from Shelf link along
with the On Shelf message and the user count for that book.

The second half of the template displays a Book Deleted message and uses a Scriptaculous visual
effect to highlight it.

Once you have this code in place, go ahead and try adding and then deleting a book. If you have
followed along closely, it should work as expected. In the next section, you'll implement a page
that will display all of the book’s on a user’s shelf.

Displaying a User’s Books

Now that users have the ability to add and remove books from a bookshelf, go ahead and modify
the user’s home page so that the books from the user’s shelf appear on the page. The user home
page template is in app/views/user/home.html.erb. Open the file and add this line follow-
ing the welcome message line:

<%= render :partial=>'book/list_books', :locals=>{:books=>@books}
%>

This line uses a partial to render a list of the books that are on the user’s shelf. The partial 1ist_
books is also new and you'll implement that shortly. First, however, you have to modify the home
action of the user controller so that it reads in the books on the user’s shelf and sets them in

an array instance variable named @books. Edit the home action of the user controller, app/
controllers/user_controller.rb:

def home
current_user = User.find(session|[:user])
@books = current_user.books
@title = "BookShelf -