Professional

Silverlight 2

for ASP.NET Developers

jorahan Swit, Uhris Badae, Dan Wahin, Sahvador Ahvarez Patun

Professional Silverlight 2 for ASP.NET Developers

Introductionttt et i XXi
Part I: Silverlight Fundamentals for ASP.NET Developers 1
Chapter 1: SilverlightinaNutshell iiiiinnn 3
Chapter 2: Silverlight Architecture it iiinnns 9
Chapter 3: XAMLCondensed rnnnnnrnnnnnnnnns 31
Chapter 4: Programming Silverlight 63
Part I1: Developing ASP.NET Applications with Silverlight 119
Chapter 5: Creating the UserInterface. i i oo oo oo n 121
Chapter 6: SilverlightControls i ittt annns 167
Chapter 7: Stylesand Templatesttt ennnns 213
Chapter8: UseriInteraction i iiiiiinneeannns 243
Chapter 9: Communicating withthe Server. 0 285
Chapter 10: WorkingwithData ¢ i 361
Chapter 11.: Creating CustomControls.ttt i i i e ennn 423
Chapter 12: Securing Your Silverlight Application 461
Chapter13: Audioand Videot nnnnnnnnnnnnns 481
Chapter 14: Graphics and Animationcan 515
Chapter 15: Troubleshooting ittt nnnnnnnnns 559
Chapter16: Performance.ttt nnnnnnannnns 589

1 L = 621

Professional

Silverlight™ 2 for ASP.NET Developers

Professional

Silverlight™ 2 for ASP.NET Developers

Jonathan Swift
Chris Barker
Dan Wahlin
Salvador Alvarez Patuel

WILEY
Wiley Publishing, Inc.

Professional Silverlight™ 2 for ASP.NET Developers

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-27775-1

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at www.wiley.com/

go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty
may be created or extended by sales or promotional materials. The advice and strategies contained herein
may not be suitable for every situation. This work is sold with the understanding that the publisher is not
engaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may
make. Further, readers should be aware that Internet Websites listed in this work may have changed or dis-
appeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. Silverlight is a trade-
mark of Microsoft Corporation in the United States and/or other countries. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

www.wiley.com
www.wiley.com/go/permissions
www.wiley.com/go/permissions

To my wife, Fay.
— Jonathan Swift

In memory of Patricia Barker.
— Chris Barker

I thank my wife, Heedy, and two boys, Danny and Jeffery, for their patience, love,
and support while I was working on this book.
— Dan Wahlin

Dedicado a Marta y a mi familia.

— Salvador Alvarez Patuel

About the Authors

Jonathan Swift worked as an Application Development Consultant for Microsoft in the United Kingdom
for a number of years and now finds himself managing the team. This means that he spends most of his
time traveling around the country helping clients utilize Microsoft developer technologies effectively.
Jonathan has been programming for more than 13 years and has worked with numerous technologies,
including but not limited to C, C++, Visual Basic, COM, COM+, SQL, ASP, and, of course, all aspects of
NET. As well as programming, Jonathan also spent part of his career working as a Microsoft Trainer,
delivering the full suite of Microsoft Official Curriculum courses and specially-designed courses also.

Jonathan tries to keep his blog (http://blogs.msdn. com/jonathanswift) up to date, but feels that
writing a book is a very good excuse for not doing so. (Other popular excuses including playing the
XBox and washing his hair.) When he’s not working, Jonathan spends all of his time with his wife and
kids, and occasionally gets to exercise his pilot’s license at the flying club.

Chris Barker works as an Application Development Consultant for Microsoft in the United Kingdom
(www.microsoft.com/uk/adc). He spends his days traveling around the country visiting customers
and consulting on development practices on the Microsoft platform. More recently, his interest has
been captured by RIA development, and as a result, he has delivered several customer workshops on
Silverlight. Away from the office, Chris likes to get out and about in his home county of Derbyshire,
riding a bike, kicking a football, and sinking a few pints of real ale.

Dan Wahlin (Microsoft Most Valuable Professional for Connected Systems) is a .NET development
instructor and architecture consultant at Interface Technical Training (www. interfacett.com). Dan
founded the XML for ASP.NET Developers web site (www.xmlforasp.net), which focuses on using
ASP.NET, Silverlight, AJAX, and XML Web Services in Microsoft’s .NET platform. He’s also on the
INETA Speaker’s Bureau and speaks at several conferences. Dan has authored/co-authored numerous
books over the years on .NET technologies with his latest being Professional ASP.NET 3.5 AJAX and
Professional Silverlight 2 for ASP.NET Developers. Dan also writes for several online technical newslet-
ters, blogs at http: //weblogs.asp.net/dwahlin, and updates what he’s up to from time to time at
www . twitter.com/danwahlin. When he’s not working with technology, he enjoys sports and writ-
ing and recording music to relax a little —http://weblogs.asp.net/dwahlin/archive/tags/
Music/default.aspx.

Salvador Alvarez Patuel has been in the industry for more than 13 years. Currently a senior application
development consultant (ADC) at Microsoft, helping customers to architect and build complex solutions
using Microsoft technologies in the United Kingdom. Salvador has also been delivering multiple tech-
nical sessions around EMEA on Windows Mobile development and has been answering questions on
many ask-the-experts events. Before joining Microsoft, he was the main technical architect for real-time
engines on popular auctions, TV channels, and the gaming industry. He holds a software engineering
degree from his native Argentina and a specialization in artificial intelligence. When Salva is not think-
ing about ones and zeroes, he enjoys climbing, windsurfing, and recently trying to learn how to play golf.

Executive Editor
Robert Elliott

Development Editor
Kelly Talbot

Technical Editor
Dave Friedel

Senior Production Editor
Debra Banninger

Copy Editor
Cate Caffrey

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Credits

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Compositor
James D. Kramer, Happenstance Type-O-Rama

Proofreader
Publication Services, Inc.

Indexer
Jack Lewis

Acknowledgments

It turns out that writing a book is a much more challenging affair than you think it’s going to be. And I
mean by a long way. For the past 18 months since this book was first conceived, there hasn’t been a single
day go by when I haven’t worried about falling behind schedule or not getting finished at all. Remember
as a kid when you had some homework to hand in or an exam to revise, and every day leading up to it
you knew you should be doing something? Well, that’s close to how taking on this book has been, but
only close!

This brings me nicely to my first acknowledgement, which is, of course, to my wife, Fay, and our two
children, Jonah and Stirling, who've put up with me being a little grumpier (just a little, mind ...) than
usual in recent times owing in the whole to the large project that this book has been. Thanks for putting
up with me, and I hope you enjoy laughing at my picture on the front cover as much as the readers will!

Secondly, I'd like to thank the other authors in this book, quite literally without whom this book would
be, well, about half as long. Chris, for listening to endless late-night and early-morning phone calls —
usually from a train so via a poor signal — and helping me correct coding errors, I thank you. Salvador,
for stepping in at short notice and lending your Silverlight expertise to this book, as well as endearing it
to the female population via your front cover photo, I thank you. And Dan, for getting through your
chapters on schedule, providing useful hints and a professional attitude, I thank you also.

Finally, I'd like to say a big thank you to my parents, Linton and Julie, without whose collective genes I
wouldn’t have become the geek I am today. This coupled with inheriting my father’s passion for reading
Sci-Fi, of course. Ta very much!

— Jonathan Swift

Contributing to this book has been quite a journey, and I am sure that those around me have felt as
though they had been writing the book themselves! With that said, I would like to show my gratitude
by giving them a mention here. First and foremost, I would like to thank my family — David Barker,
Matt Barker, and Marie Barker. In particular, I would like to thank my late mother, Patricia Barker,
whose support in my early years is greatly missed.

— Chris Barker

I'd like to thank my wife, Heedy, and two boys, Danny and Jeffery, for putting up with the long hours I
spend in the office studying new technologies and writing books and articles. I love them and sincerely
appreciate their patience with me. I'm extremely lucky to have such a great family.

I'd also like to thank my Mom and Dad, Danny and Elaine, for bringing me up in such a positive, caring
environment where succeeding in life was always encouraged. I love both of you and am forever in your

debt for the years of service you've given and the many life lessons you've taught me.

— Dan Wahlin

Acknowledgments

I'would like to dedicate this book to my wife, Marta, for supporting and loving me. She has given me
all the strength needed to embark on this adventure. Marta, I really love you. The other big important
part of my life is my family — Graciela (ma) and Daniel (pa); my grandparents, Irene, Angel, Coca, and
Hugo; my brother Rodrigo; and my sister Macarena. I want to include them in this dedication as they
have given me all their support and love no matter how far we are from each other. To them I say: I owe
you everything. Los quiero mucho!

I'want also to thank my friends Ata, Gei, Maxi, and Horacio for all the good times that we have shared
together across the distance. Also to my “local” friends Amit, Andrew, Ralf, Miguele, and Moises and
the many more that I am forgetting. Finally, a special mention to my manager Steve Leaback for all his

support.

— Salvador Alvarez Patuel

Xi

Contents

Introduction XXi
Part I: Silverlight Fundamentals for ASP.NET Developers 1
Chapter 1: Silverlight in a Nutshell 3
Uphill Struggle 3
Rich Client or Web Reach? 4
Silverlight Steps In 4
The Impact of Silverlight on Your Existing ASP.NET Real Estate 6
What You Should Still Do in ASP.NET 6
The Development Environment Overview 7
Summary 8
Chapter 2: Silverlight Architecture 9
Client/Server Architecture Overview 9
Platforms 10
The Server 11

The Client 11
Architecture 12
Presentation Core 13
.NET Framework 16
Installed Files 23
ASP.NET Integration 24
ASP.NET Composite Controls 25
Using ASP.NET Application Services 25
Communicating with ASP.NET from Silverlight 26
Dynamic Generation of XAML from the Server 26
Using the ASP.NET Server Controls for Silverlight 27
Application Life Cycle 27
Updating Silverlight 28

Summary 29

Contents

Chapter 3: XAML Condensed 31
Why All ASP.NET Developers Should Know the Basics 31
XAML Syntax and Terminology 33

Namespaces 33
White Space 34
Object and Property Elements 36
Type Converters 37
Markup Extensions 38
Attached Properties 40
Basic Drawing 41
The Code-Behind 46
Dynamically Loading XAML 49
Available Tools 56
Piecing It All Together 57
Summary 61

Chapter 4: Programming Silverlight 63

How a Silverlight Application Is Composed 63
Packaging a Silverlight Application 64
System.Windows.Application 66
Application Instantiation 69
A Basic Silverlight Page 72

JavaScript — How Much You Need to Know 76

JavaScript — The Basics 77
Object Model 77
Adding JavaScript to a Page 77
Variable Usage 78
Functions 78
Conditional Statements 79
Handling Events 80
DOM Manipulation 80

The Silverlight Object Model 84
DependencyObject, UIElement, and FrameworkElement 84
Walking the Tree 85

Events, Threading, and Browser Interaction 90
Events 90
Threading and Asynchrony 95
Browser Interaction 105

On-Demand XAP Loading 114
System.Net.WebClient 114

Summary 116

Xiv

Contents

Part 11: Developing ASP.NET Applications with Silverlight 119

Chapter 5: Creating the User Interface 121
Expression Suite — A Whirlwind Tour 121
Expression Web 122
Expression Blend 123
Expression Design 129
Expression Media 129
Expression Encoder 130
Expression Studio 130
ASP.NET versus Silverlight Layout 130
Layout Options in ASP.NET 130
Layout Options in Silverlight 131
Full-Screen Support 154
Localization 162
Summary 165
Chapter 6: Silverlight Controls 167
Introduction to Silverlight Controls 168
Defining Controls in XAML 169
Handling Control Events Declaratively 170
Handling Control Events Programmatically 171
User Input Controls 172
The TextBlock Control 173
The TextBox Control 174
The PasswordBox Control 176
The Button Control 176
The HyperlinkButton Control 177
The CheckBox Control 178
The RadioButton Control 179
The RepeatButton Control 180
The Sslider Control 182
The calendar Control 183
The DatePicker Control 186
The ToolTip Control 187
Items Controls 188
The ListBox Control 189
The DataGrid Control 191
The Scrollviewer Control 193
The ComboBox Control 195
The Popup Control 196

XV

Contents

Media Controls
The Image Control
The MediaElement Control

Displaying Download Progress with the ProgressBar Control

The MultiScaleImage Control
Silverlight Toolkit Controls
AutoCompleteBox Control
WrapPanel Control
TreeView Control
Chart Control
Summary

Chapter 7: Styles and Templates

198
199
200
202
203
205
206
207
208
210
212

213

Styles

Applying Inline Styles

Specifying Styles in a Central Location
Templating

ControlTemplate

TemplateBinding
Integrating with ASP.NET

Using the ASP.NET Profile Provider
ImplicitStyleManager
Summary

Chapter 8: User Interaction

213
214
218

224
224
232

235
235
239

242

243

The Silverlight Interaction Context
Working with UIElements Events
Interacting with Input Devices
Getting the Most from Input Devices

Navigation

Silverlight Navigation in the ASP.NET World

Single Plug-in Navigation
Multiple Plug-in Navigation
Summary

243
244
250
258
266
266
267
280

283

285

Chapter 9: Communicating with the Server

Silverlight Networking and Communication Features
What Type of Data Can Silverlight Access and Process?

Supported Domains and URLs

XVvi

285
286
286

Contents

Communication Options 286
Data-Processing Options 288
Cross-Domain Support 289
Flash Cross-Domain Policy Files 290
Silverlight Cross-Domain Policy Files 291
Creating Services for Silverlight 292
Creating a WCF Service for Silverlight 292
Creating an ASP.NET Web Service for Silverlight 301
Calling Services with Silverlight 304
Calling a WCF Service 304
Calling an ASP.NET Web Service 308
Calling REST APIs 310
Making RESTful Calls in Silverlight 310
Processing XML Data 314
Processing JSON Data 328
Working with Syndication Feeds 332
Using Sockets to Communicate over TCP 337
Using WCF Polling Duplex Services to Communicate over HTTP 347
Summary 359
Chapter 10: Working with Data 361
Data Framework 362
Exploring the Namespaces 363

Is That All? 364
Data-Binding Essentials 365
Binding 101 366
Binding in Practice 370
Conversions 382
Dependency Properties 384
Performance Considerations 386
Retrieving and Storing Data 387
Working with Data Repositories 387
Caching 401
Data Controls 401
Data Templates 402
DataGrid 403
Manipulating Data 407
Traditional Handling 407
LINQ 408
LINQ to XML 412
Validation 416

XVii

Contents

Input Validation 416
Using Dynamic Languages 418
Data-Binding Validation 419
Summary 420
Chapter 11.: Creating Custom Controls 423
User Controls 423
Understanding User Controls 424
Creating User Controls 429
Customizing Current Controls 435
Understanding Visual Customization 435
Customizing with Styles 437
Customizing with Skins 440
Putting Everything Together 443
Custom Controls 447
What Is a Custom Control? 448
Your First Custom Control 449
Parts Model 454
Summary 460
Chapter 12: Securing Your Silverlight Application 461
You’re under Attack! 461
The Security Model 463
Working in a Sandbox 466
Cross-Domain Security 470
Integrating with ASP.NET Security 470
Obfuscation 478
Cryptography 479
Summary 479
Chapter 13: Audio and Video 481
First Steps 481
Embedding Audio and Video in Your ASP.NET Application 482
Finer Control 491
Controlling Playback 491
Controlling Playback from ASP.NET 500
Timeline Markers 503
SetSource 512
Streaming 514
Summary 514

Xviii

Contents

Chapter 14: Graphics and Animation 515
Breathing Life into ASP.NET 515
Before Silverlight 516
Silverlight-Enabled Graphics and Animation 516
Graphics in Silverlight 516
The Shape Class 517
Path and Geometry Objects 521
Painting with Brush Objects 526
Transforms 535
Image Handling 540
Image and BitmapImage 540
Advanced Panning and Zooming with Deep Zoom 542
Animating Your User Interface 547
Timeline 547
From/To/By Animations 547
Key Frame Animations 553
Summary 556
Chapter 15: Troubleshooting 559
Is There a Problem? 560
Common Types of Problems 560
Your Toolkit 562
Visual Studio 563
Debugging Your Application 566
HTTP Tracers 570
Red Gate’s Reflector 575
Reducing the Likelihood of Problems 576
Unit Testing 576

Ul Testing 581
Exception Handling 586
Instrumentation 587
Summary 587
Chapter 16: Performance 589
Performance Bottlenecks 590
Developers versus Designers 590
High Processor Usage 591
Low Frame Rate 591
Unresponsive Ul 591

Xix

Contents

Instrumentation

Monitoring the Frame Rate
Manual Timing

Improving Performance

Animation

Text

Game Loops

Windowless

Transparent Backgrounds
Opacity and Visibility
Full-Screen Mode

Height and Width

XAML versus Images
Threading

JavaScript versus Managed Code
Element Reuse

Layouts

Working with Data

Reduce Chatty Applications
Runtime Performance

Summary

Index

XX

591
592
594
596
597
597
598
600
601
602
603
605
606
607
607
611
612
613
616
617
619

621

Introduction

If you're reading this, then you're about to start programming rich, immersive ASP.NET applications
with Silverlight, and you want to make sure you get it right first time. Just buying this book gives you
an enormous head start, significantly reducing the learning curve associated with Silverlight 2 develop-
ment, and saving you and your company both time and money. You're off to the right start.

Our overarching goal in writing this book was to give ASP.NET developers the power to quickly and
easily create visually stunning Internet applications, coupled with rich interactivity to fully immerse
the user in a new online experience. Silverlight gives you everything you need to do just this, and in

serious style!

For the first time ever, the power of the NET Framework has been unleashed in a plug-in that can be
embedded in multiple browsers across multiple operating systems, giving developers tremendous capa-
bility and flexibility in rich Internet applications development.

As well as taking you through each feature that ships with Silverlight, this book will make sure you're
able to debug, troubleshoot, and performance-tune your Silverlight applications, as well as seamlessly
hook into your existing ASPNET architecture and code base.

It’s fair to say that Silverlight is going to change the way that Internet applications are developed and
perceived, and this book will help ensure that both you and your applications keep up!

Who This Book Is For

This book is aimed at .NET developers and architects who want to quickly get up to speed with all that
Silverlight 2 has to offer.

As well as covering the breadth of features that Silverlight 2 provides, this book makes a point of dem-
onstrating where necessary how the particular feature can be integrated tightly with the ASP.NET host
application. An example is in Chapter 7, where the ASPNET Profile service is utilized directly from
within Silverlight to obtain user-specific data.

It’s fair to say that although this book is aimed at ASPNET developers, it covers all of the salient fea-
tures of Silverlight 2 to the degree that it’s a useful programming resource for developers not using
ASPNET also.

If you're fresh to .NET development, however, you might want to check out a beginning .NET book first,
to help you overcome the syntax and set-up queries when learning a new language. Otherwise, take a
deep breath and dive in!

Introduction

What This Book Covers

This book covers the full feature set of Silverlight 2, diving into each of the subject areas to give depth
and breadth coverage. As well as teaching you about the component parts of the Silverlight API, the book
also covers debugging, troubleshooting, and performance-tuning your Silverlight applications, arming
you with all the skills and knowledge you’ll need to create advanced Silverlight-based applications in
record time.

Importantly, this book covers the integration points between ASPNET and Silverlight, taking you through
the different techniques you can use to seamlessly augment your existing or new ASP.NET web sites
with the power of Silverlight.

If you want to program in Silverlight and potentially use ASP.NET as the host, then this book covers it all.

How This Book Is Structured

The book is split into two distinct parts. Part I is titled “Silverlight Fundamentals for ASPNET Developers,”
and Part Il is titled “Developing ASP.NET Applications with Silverlight.” Part I is intended to give you
grounding in what Silverlight is as a technology and how it fits into the Web-based landscape. The compo-
nent pieces of a Silverlight application are also laid out at a high level, and any knowledge required before
putting an application together is explained.

Part II is written to give you depth of knowledge across the Silverlight feature-set and show you how to
leverage the power of both Silverlight and ASP.NET to create compelling applications.

A brief synopsis of each chapter now follows:

Q Part I: “Silverlight Fundamentals for ASP.NET Developers”

O Chapter 1: “Silverlight in a Nutshell” — This chapter will teach you at a high level
what Silverlight is and how it can help you deliver engaging, immersive web applica-
tions. Differentiating Silverlight from other Web-based technologies is also covered here,
and a description of the required development environment is provided. In short, after
reading this chapter, you'll be able to describe Silverlight and explain why you’d want
to use it and what gives it the edge over the competition.

0 Chapter 2: “Silverlight Architecture” — Silverlight allows you to rapidly build a well-
rounded application with a great user interface, but if you encounter any problems
during development, it is going to be important for you to understand the underlying
architecture upon which you are developing. This chapter outlines the core features of
Silverlight 2 and guides you around the building blocks of this highly flexible frame-
work, paying particular attention throughout to your ASP.NET heritage.

0 Chapter 3: “XAML Condensed” — Quickly getting up to speed with XAML is what
this chapter is all about, helping you brush aside the syntax queries and get to grips
with the basics of this multi-purpose declarative language. Hooking the XAML files up
to .NET code is also shown here, helping you inject dynamic event-driven actions into
your Silverlight Ul Finally, one technique for the dynamic creation of XAML is shown
in this chapter, followed by a tour of Expression Blend.

xxii

Introduction

Qa

Chapter 4: “Programming Silverlight” — By the time you get to this chapter, you'll
be itching to start coding, and code you will as the feature-agnostic programming con-
structs that make up a Silverlight application are covered in detail. The composition of
a Silverlight application is laid bare and its constituent parts explained at length, as well
as detailing the Silverlight application lifetime and how to hook into it. The different
options for embedding the Silverlight plug-in within your application are covered, fol-
lowed by a brief overview of JavaScript and its associated DOM. This then leads onto a
discussion of the Silverlight Object Model, explaining how the visual tree is constructed
to form the Ul. Another technique for dynamically creating XAML and adding it to the
visual tree is also shown here. Finally, the Silverlight event model, browser interaction,
and threading model are covered for you.

Part II: “Developing ASP.NET Applications with Silverlight”

Q

Chapter 5: “Creating the User Interface” — You now know how to program Silverlight
and how to write XAML. This chapter shows you how to put it all together to start
laying out the user interface of your Silverlight application. Each of the layout con-
trols that ship with Silverlight is covered here — canvas, Grid, StackPanel, and
TabControl — including information on when to use which one. Information on
how to create a scalable Ul is also provided in this chapter, followed finally by a sec-
tion that details how to localize your application, thereby making it available to other
languages and cultures.

Chapter 6: “Silverlight Controls” — Silverlight 2 provides an assortment of controls
that can be used to display and capture data. In this chapter, you'll learn to work with
user input controls, items controls, and media controls and see how they can be put to
use to build interactive and rich user interfaces. You'll also learn how to use controls such
as the MultiscaleImage control to work with Silverlight’s Deep Zoom technology.

Chapter 7: “Styles and Templates” — Altering the look and feel of your application is

the crux of this chapter, with the different techniques for applying styling information

to the controls that comprise it demonstrated here. As well as this, integrating with the
ASP.NET Profile service via WCF is detailed, giving you the ability to personalize your
Silverlight application on a per-user basis.

Chapter 8: “User Interaction” — What's the point of having a great technology like
Silverlight 2 if we can’t interact with it? In this chapter, we are going to review the
different ways that you can interact with your application, understanding how the
UIElements work with input devices like the keyboard, mouse, and stylus. We also
explore the different ways to navigate around the application and present the differ-
ent options that we have and in which scenarios each one is preferred.

Chapter 9: “Communicating with the Server” — The ability to access data located at
distributed sources is key in many Silverlight 2 applications. In this chapter, you'll learn
different networking technologies that are available and see how they can be put to use.
Several different topics are covered such as creating and calling ASMX and WCF ser-
vices, calling REST APIs, working with JavaScript Object Notation (JSON) data, push-
ing data from a server to a client with sockets, and leveraging HTTP Polling Duplex
functionality.

Chapter 10: “Working with Data” — It is all about data! One of my colleagues always
says, “If you are not using data binding in Silverlight 2, you are doing something wrong!”
This chapter explains the data framework available within your applications and then

xxiii

Introduction

XXiv

dives deep into the inner workings of data binding, showing you the different approaches
that you may take. In order to understand how the data is retrieved, we explain the dif-
ferent technologies and techniques to get the most of Silverlight 2 data using the avail-
able data controls. Finally, the chapter explains how you can manipulate the data using
LINQ and LINQ to XML.

Chapter 11: “Creating Custom Controls” — This chapter will take you on a journey
in order to discover the different options that you have available to customize the
Silverlight 2 controls. We start exploring the user control model that ASP.NET develop-
ers are used to, and then we dig into the internals of visual customization. You will be
amazed by this powerful new model. Finally, for those who need to push the technol-
ogy to the limit, the chapter explains how to create a complete custom control from
scratch. This is a very dynamic chapter that will present the typical scenarios where
these options may be applied.

Chapter 12: “Securing Your Silverlight Application” — Whether you're an Enterprise
developer or a Silverlight hobbyist, you are going to want to release your application
out to the wild at some point. In doing so, you are providing a high level of exposure to
your application, and therefore security should not be an afterthought. Thankfully,
Silverlight 2 has a security framework built into the run time, which will give you the
peace of mind of working within a secure environment. This chapter introduces you to
the Silverlight security framework, but also talks you through your security responsi-
bilities as a Silverlight developer.

Chapter 13: “Audio and Video” — Embedding high-fidelity audio and video in your
Silverlight application is sure to capture your users’ imaginations, and this chapter shows
you how you can do just this using the Silverlight-provided MediaElement control and
the ASP.NET Media Server Control. Playback control is demonstrated, as is the more
advanced topic of providing synchronization points within your chosen media. This
chapter will definitely help you put the WOW factor into your web sites.

Chapter 14: “Graphics and Animation” — A detailed tour of the graphics API that
ships with Silverlight is first discussed here, including the shape-derived objects that
can be rendered to screen and also the Geometry-derived objects that can be created
and then rendered via a Path object. Brush objects are covered next, demonstrating the
SolidColorBrush, LinearGradientBrush, RadialGradientBrush, ImageBrush,
and videoBrush, and their usage. Next up is the very cool DeepZoom technology, cov-
ering the creation of DeepZoom-enabled images using the DeepZoom Composer and
their usage in your Silverlight application via the MultiScaleImage control. Finally,
the different animation techniques that you can use within your Silverlight application
are covered, ranging from the basic From/To/By type to the more advanced Key frame
types, including the different transition mechanisms within.

Chapter 15: “Troubleshooting” — Writing an application from start to finish without
any development issues is still quite some way off. This chapter introduces you to a
range of techniques and tools to help you through the hard times when your applica-
tion isn’t behaving as you would expect it to. Besides retrospectively fixing problems
within your application, this chapter concludes with the more proactive approach of
ensuring that your application hits a known quality bar before you are satisfied that it
is ready to be released. Silverlight’s testing framework is the flavor of the day here.

Introduction

Q Chapter 16: “Performance” — Silverlight is an incredibly powerful and flexible frame-
work. Its inherent flexibility often means that there are several ways to achieve your goals.
In choosing an alternative path, you will often find that the penalty is poor performance.
This chapter gives a series of best-practice advice to allow you to make an informed deci-
sion when you hit those forks in the road. In addition, you will learn how to instrument
your code in order to simply identify the bottlenecks within your application.

What You Need to Use This Book

To get the most out of this book, it’s recommended that you code along with the examples provided, either
by copying the code shown in the chapters or by downloading the samples and running them yourself.

To do this, you're going to need Visual Studio 2008, which is available to download from MSDN, pro-
vided you have a subscription. As well as this, you'll also need to download and install the Silverlight
Tools for Visual Studio 2008, which allows you to create Silverlight-based applications within Visual
Studio. This install will also take care of installing the Silverlight run time and SDK for you. You can
download this installer from www.silverlight.net/getstarted.

If you want to follow the examples that use Microsoft Expression Blend or the Deep Zoom Composer,
you can also download these from www.silverlight.net/getstarted.

As well as these software requirements, you will need a basic working development knowledge of
Microsoft .NET and have experience in Web-based development. A passion for creating rich web appli-
cations is advantageous, although not necessary!

Conventions

To help you get the most from the text and keep track of what’s happening, we've used a number of
conventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

QO We show keyboard strokes like this: Ctrl+A.
0 We show URLs and code within the text like so: persistence.properties.
O We present code in two different ways:

We use a monofont type with no highlighting for code examples.

We use gray highlighting to emphasize code that's particularly important
in the present context.

XXV

Introduction

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox . com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists), and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-27775-1.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration, and at the same time, you will be helping us provide even higher-quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click on the Book Errata link. On this page, you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list includ-
ing links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don't spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.shtml
and complete the form there to send us the error you have found. We'll check the information and, if appro-
priate, post a message to the book’s errata page and fix the problem in subsequent editions of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox. com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com you will find several different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Gotop2p.wrox.comand click the Register link.

2. Read the terms of use and click Agree.

XXVi

www.wrox.com
www.wrox.com/dynamic/books/download.aspx
www.wrox.com
www.wrox.com/misc-pages/booklist.shtml
www.wrox.com/contact/techsupport.shtml

Introduction

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the “Subscribe to This Forum” icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

XXVii

Part I: Silverlight Fundamentals
for ASP.NET Developers

Chapter 1: Silverlight in a Nutshell
Chapter 2: Silverlight Architecture
Chapter 3: XAML Condensed

Chapter 4: Programming Silverlight

Silverlight in a Nutshell

This chapter is intended to give you a clear overview of Silverlight with the aim of helping you
differentiate it from existing technologies and capabilities, as well as help you to understand when
to use Silverlight and what to use it for. An overview of the required development environment
is also shown toward the end of this chapter. If you are familiar with the general Silverlight prin-
ciples, you can skip this chapter and move onto the more in-depth architecture chapter coming

up next.

Uphill Struggle

As any ASPNET developer will tell you, delivering a rich and engaging user interface via a
browser is always a challenge when compared with doing the same thing in a classic rich-client
application. Don’t get me wrong — using ASP.NET enables you to create robust, enterprise-ready
web applications. These same applications can, if written appropriately, scale to serve enormous
numbers of users while providing a good-looking and logical user interface (with the backing of

a good design time).

But creating something more than just a functional user interface, creating a user interface that
actually excites and drives the user, creating something that leaps out and wows the user, has
always been an uphill struggle because a standard web application simply cannot take advan-
tage of the client’s processing power to support a rich and powerful user interface (UI).

Trying to develop a rich user interface using only HTML and JavaScript (DHTML) can get you
some great results, but managing and writing the amount of script required for truly advanced
scenarios is difficult in itself as the cross-platform, cross-browser disconnected environment
makes development even more error-prone and challenging. Couple this with managing thou-
sands of lines” worth of supporting JavaScript, and you've got yourself a real headache.

Part |: Silverlight Fundamentals for ASP.NET Developers

Rich Client or Web Reach?

Because of the difficult nature of producing complex, highly interactive web applications, there has
always been the trade-off of “rich versus reach.” Rich refers to a traditional client application that has full
access to the host operating system, API, and processing power and can therefore support an inherently
richer user experience. Reach refers to web-based applications that are centrally deployed to potentially
limitless numbers of users running different operating systems and software, but that cannot take
advantage of the clients’ full potentials to create a truly rich UL

So, typically, web application developers have had to contend with finding a happy medium between
rich and reach, delivering an application that can be easily deployed to many thousands or even millions
of users but that is ultimately lacking in terms of richness of Ul

Up until now, the main solution to providing richer content via the Web was to use Macromedia Flash, a
term that encompasses both the Flash Player (a cross-browser plug-in to display Flash content) and the
development environment with which to author Flash content. The big drawback with this approach is
the time needed to learn to develop in the Flash environment, including learning Flash ActionScript as
well as keeping abreast of developments with ASPNET — no mean feat. In point of fact, it’s rare to find
a single web developer who is both well-versed in Flash and well-versed in ASP.NET; therefore, when
using both technologies, multiple developers are usually required.

Java has also been the tool of choice, as well as Flash, for delivering rich Uls embedded into the browser,
but, again, this poses the same issues to an ASP.NET developer that using Flash does — inherently dif-
ferent technologies mixed together to produce the final output, requiring different skill sets and longer
development cycles.

Silverlight Steps In

Silverlight 2 is a cross-platform, cross-browser plug-in that supports a stripped-down version of the
NET Framework API for programming Rich Internet Applications (RIA). Silverlight enables you to
create visually stunning applications using a development environment and experience akin to that of
Windows Presentation Foundation: Uls can be laid out and created using the declarative programming
model provided by XAML and then brought to life using the power of the .NET Framework to drive it.

The term Rich Internet Application applies to any web application that has rich,
desktop-like functionality. In effect, the web application feels and acts like a fat-
client application. In the majority of RIA applications, this richness of functional-
ity is provided via AJAX. However, it also encompasses Java, Flash, and, moving
forward, Silverlight-enabled applications.

Some of the high-level features provided in Silverlight 2 include:

Q Cross-Platform Support — Silverlight provides true cross-browser and cross-platform support,
running in all popular web browsers (IE, Firefox, Safari, and Opera) and on both Microsoft
Windows and Apple Mac OS X platforms. A Silverlight application will run consistently across
all these browsers and platforms, leaving you free to concentrate on designing and developing

Chapter 1: Silverlight in a Nutshell

the core of your application without worrying about conversion changes to implement. A
third-party implementation named Moonlight has also been developed to allow Silverlight to
run under GNU/Linux.

(]

Mobile Support — Silverlight has initial support for Windows Mobile and Nokia S60 devices.

(]

Easy Installation — The Silverlight plug-in is supported by a lightweight download that can
install in seconds.

Streaming Media — You can stream audio and video, from mobile devices to HDTV video.
DRM — Silverlight has support for Digital Rights Management of media files.
AJAX-Style Updating — There is no need to refresh the page for changes.

[S |

WPF-Like Graphics — Access to a powerful graphics system with Windows Presentation
Foundation (WPF)-like support

(]

NET Framework — Silverlight is based on a subset of the NET Framework — therefore a
familiar development environment. Silverlight applications can be written in both C# and
Visual Basic .NET.

O Rich Control Library — Silverlight comes with a plethora of UI controls with support for data-
binding and automatic layout.

0 DLR — Support for dynamic languages like Ruby and Python has also been included, operat-
ing under the Dynamic Language Runtime (DLR).

0O LINQ — Silverlight includes support for language-integrated query, allowing you to program
your data access code using a native syntax and strongly typed objects.

Q Communications — Silverlight includes a host of communications options, allowing you full
access to any server-based resources you have via XML Web Services, WCF Services, REST, and
ADO.NET Data Services.

Q JavaScript Extensions — Silverlight provides extensions to the standard JavaScript language to
allow more control over the browser Ul and hook-ins to work with the Ul elements.

0 HTML/Managed Code Bridge — Silverlight allows interaction between HTML and Managed
Code, and vice versa.

If the features above weren't enough, another key selling point for Silverlight is that it’s primarily built
upon existing technologies and so should feel at least somewhat familiar to anyone who has used .NET,
and even more familiar to anyone who has used .NET 3.0 or 3.5. Also, as the native development envi-
ronment is Visual Studio it shouldn’t pose any problems for .NET developers either. This all adds up to
an incredibly fast ramp-up time for existing .NET developers once the initial setup and syntax queries
have been brushed aside, and therefore a potential lower initial development cost as opposed to that for
NET developers taking on Flash or Java, for instance.

All that is required to run Silverlight in your browser is the Silverlight plug-in, which is a completely
free download from Microsoft. If users do not have the plug-in installed and they navigate to a page
hosting a Silverlight application, they will be automatically prompted to install it. Because of its small
size, on most user connections this will take only seconds to complete.

Part |: Silverlight Fundamentals for ASP.NET Developers

The Impact of Silverlight on Your Existing
ASP.NET Real Estate

Silverlight is all about delivering next-generation media experiences and rich Internet applications
(RIAs) via the Web. It allows you to easily add video, animation, and improved interactivity to your
web sites, delivering a more intense and consuming experience for your users. Silverlight provides a
unified media format that scales from high definition to mobile using WMV and also supports WMA
and MP3 for audio. Vector-based graphics are also catered for out-of-the-box, allowing your graphics
and animations to scale to any size without losing quality. All this adds up to a much richer, more
immersive Ul than you can put together with DHTML alone. And to make it even easier to pick up
and run with, Silverlight streaming by Windows Media Live provides a free streaming and applica-
tion hosting solution enabling you to deliver your media-enabled RIAs with ease.

But if you decide to replace large chunks of your current real estate with Silverlight, will it affect the
discoverability of your application by search engines? As the user interface of Silverlight applications
is defined in text-based XAML, they can still be indexed and searched easily promoting their discover-
ability via search engines, so this shouldn’t be a problem.

If you currently use JavaScript heavily to create a complex UI on the client, Silverlight can be used
to replace this with one that not only performs better, but is easier to create and maintain thanks to
a XAML-defined Ul and type-safe .NET code-behind. And the same code will work cross-browser,
cross-platform, saving you the headache of writing custom code for each scenario.

And if your web site relies heavily on advertising, imagine having full ad insertion capabilities at your
fingertips, including the ability to deliver broadcast-style video and animated advertisements without
loss of motion quality or visual fidelity.

One of the overlooked capabilities that Silverlight can provide you with is a new mechanism for deliver-
ing your applications via Software as a Service (SaaS). This term basically refers to a web-native application
hosted on the Internet for use by paying customers — so they pay for using it, not owning it. As Silverlight
helps you develop incredibly rich Uls, it will make it much easier for you to develop and provide applica-
tions that can be delivered in this manner, especially with the free hosting offered via Windows Live.

In short, Silverlight will give you the ability to add the wow factor to your ASP.NET applications and
give you the ability to add it with relative ease.

What You Should Still Do in ASP.NET

As you're now aware, Silverlight brings a wealth of functionality to the table, but this isn’t to say that
every ASPNET application you write from now on should simply be a container for a Silverlight appli-
cation providing the full site content and experience (well, not yet anyway ...). The fact remains that
there are some things that you will still need to do in ASP.NET. A few high-level examples are listed
below that you can extrapolate to make your own decisions:

0 Security Consciousness — It's worth keeping in mind that Silverlight sits in the browser on the
client machine. Therefore, you most certainly wouldn’t want to consider automatically moving
highly sensitive logic and/or data over to it without good reason. Sensitive operations should

Chapter 1: Silverlight in a Nutshell

be kept and maintained on the server unless a formal threat modeling exercise has shown that
this isn’t necessary.

Q Architectural Awareness — In keeping with n-tier architecture, you should still leave your
database access code (and similar code) in ASP.NET and provide access points for Silverlight.
This also promotes abstraction of the databases, which is a good architectural decision.

0O Environmental Concerns — The Silverlight plug-in is not going to be allowed in all environments,
be they corporate, educational, or private. In situations in which it’s against someone’s policy,
you have no choice but to leave everything in ASP.NET. As well as this, as broad-reaching as
Silverlight is, currently it is not supported in every browser on every OS, so you may still need
to cater for these exceptions with ASP.NET throughout.

0 Ease of Development — There are some things that are (at the moment) going to be quicker,
easier, and more tried and tested to do in ASP.NET. One such example is form creation, including
validation for classic data entry. ASP.NET has a proven track record of allowing you to quickly
create data entry applications, thanks to the wealth of controls that can be quickly developed
against. There would be no perceived improvement in moving the data entry portions of your
application into Silverlight at the moment.

The Development Environment Overview

The development environment for Silverlight is very easy to set up. First things first: You're going to
need an Integrated Development Environment (IDE) to work with, and that IDE is Visual Studio 2008.

To provide the Silverlight project templates, developer runtime, IntelliSense, debugging support, and
other development requirements, you will also need to install the Silverlight Tools for Visual Studio 2008.
These two items will complete the setup of your development environment, so you're free to use Visual
Studio to create and edit Silverlight applications.

Once you have installed all of the above, you can fire up Visual Studio. By selecting File and then New
Project, you will have access to the Silverlight project templates as shown in Figure 1-1.

 Microsoft Visual Studio =]
File Lot view Data Teshi Test AnabyZe Window Mg
N M R

Pl ol - B el | A a B

- -0k

Fraject types: Templates HET Framework35<| 19 []
+ Vil Co ‘& visual Studio installed tempiates
it || [avernome sppiicavon T siwersgne cass Ubrary
wet
Smart Device My Templates
Cittice (3 Eeasch Dnline Templates.
Catabase
Repeding ¢l
Sihsrmght 1
Test
wee
Warkhow
menPEnan
Dutatinge Fregects
Other Lnguages
itrnited Sysdemy
& prajeet for eresting 4 Siverbgha ADDRCIGN Which Uset Net to geovide nien Web exzeriences | NET Framework 3.5)
Hamr: [re—rp—
Locatian: = Studio ol Ry e
Solution Mame: Siverigeapplicabenl | create deectony tar salitien

_ [himniie]

Figure 1-1

Part |: Silverlight Fundamentals for ASP.NET Developers

From here you can elect to create either a Silverlight application or a Silverlight Class Library (SCL),
and then you're on your way. That’s all there is to the development environment. In Chapter 3, “XAML
Condensed,” you take your first steps in actually using this development environment to create a
Silverlight application and start learning XAML.

As well as the Visual Studio IDE for Silverlight development, if you fancy yourself to be a bit of a
designer as well as a developer, you might want to consider downloading and installing Microsoft
Expression Blend, a first-class environment for designers that can be used to work on both WPF and
Silverlight applications. Chapters 3 and 5 show how Expression Blend can be used to quickly and easily
output XAML that can then be used within your Visual Studio project.

Summary

In this first chapter, you learned at a high level what Silverlight is and how it can help you deliver much
more engaging, immersive web applications without the overhead of increased development complexity.

You learned that prior to Silverlight, developing rich, immersive Uls in ASPNET was challenging for
various reasons, primarily arising from the very nature of developing in a disconnected environment
with only HTML and JavaScript. This raised the trade-off of “rich versus reach,” where you had to make
a decision between a graphically rich Ul or ease of deployment and uptake, but you couldn’t have both.

Silverlight was intended to help solve the problem of “rich versus reach” by allowing you to create visu-
ally complex, engaging web applications that can run on a variety of operating systems and browsers.
You saw how Silverlight had a simple installation from over the Web and that it provides streaming
media support, AJAX-style updating, stunning graphics, and perhaps most importantly, a stripped-
down version of the NET framework to tie it all together.

Because Silverlight was designed to deliver next-generation media experiences and improved interactivity,
it supports out-of-the-box the creation of a much more intense and consuming user experience, helping
you to give your existing web site the edge over its competitors or to create a brand-new, cutting-edge site.

Importantly, you then learned that using Silverlight doesn’t necessarily mean that all of your code,
logic, and UI from now on should be moved across from ASP.NET. Four high-level considerations were
discussed covering security, architecture, ease of development, and environment that showed what you
probably wouldn’t want to do in Silverlight and why.

Finally, you took a look at setting up the development environment to allow you to create Silverlight appli-
cations. You saw that two main components are required: Visual Studio 2008 and the Silverlight Tools for
Visual Studio 2008.

In the next chapter, “Silverlight Architecture,” you will take an in-depth look at the components that
form the building blocks of Silverlight and the touch points that exist between ASPNET and Silverlight.

S

Silverlight Architecture

The term architecture is used increasingly liberally these days. But how does it apply in the con-
text of Silverlight? Architecture in the context of Silverlight refers to the components, or building
blocks, of Silverlight itself, but also to how it connects to related technologies, namely, ASP.NET.

This chapter follows the story from client to server and gives you a solid foundation to prepare
you for going out there and developing your own Silverlight applications.

There is a pattern to how the material is presented in this chapter: we take a look at one level of the
architecture, break it down into elements, describe those elements, and repeat the process until an
adequate depth is reached. Once the architecture has been fleshed out, our attention will move to
ASP.NET integration and the application life cycle. This approach allows for you to either read
through page by page or check back later on to delve into a particular area.

The aim of this chapter is not to get deeply into the code, but rather to explain the concepts. Don't
worry, though — there will be plenty of time to get your hands dirty with coding later in the book.

Client/Server Architecture Overview

Figure 2-1 shows where Silverlight fits in the client/server architecture. As the chapter progresses,
you will find in-depth discussion of each element of this diagram and the deeper elements of it.
Once some context has been established concerning what Silverlight is and what it is composed
of, the focus will turn to the integration points between Silverlight and ASP.NET.

One key point in Figure 2-1 is that although the Silverlight resources are hosted on
the web server, they will actually be executed on the client.

Part |: Silverlight Fundamentals for ASP.NET Developers

Server
Web Server
ASP.NET

Silverlight 2
Browser

Client

Figure 2-1

There is an intentional abstraction from any particular web server technology in this diagram because
one of the great features of Silverlight is that it is server-agnostic. Despite this, the book is aimed at
ASP.NET developers, who often host their web applications within IIS.

Although one hosting option on the server has just been briefly discussed, the following section details
the support around the platform at both the client and server levels. This includes a comprehensive list
of where you can expect to see Silverlight applications being downloaded and executed.

Following the section on the platform, you will take a look inside Silverlight 2 and see how it is com-
posed. Once you have gained a high-level understanding of the Silverlight 2 framework, you will be
better positioned to establish what functionality you can harness within your application. This will
then serve as a starting point for delving deeper in subsequent chapters.

Platforms

10

As the software industry has matured, there has been more and more pressure on software vendors to
abide by standards to increase their ability to talk to other applications, but more specifically, to increase
the reach of their applications and frameworks. This drive has largely come from the development of
the Internet and the Web. One of the keys to the success of the Web has been in vendors following stan-
dards, namely, in the form of HTML. This meant that a developer could write a web application and be
fairly certain that it would run on any browser (on any platform) that could parse HTML. In order for
HTML to act as a standard, it continues to be important for vendors to work with a central authority so
that any work can be coordinated and kept in-sync. The authority, which fills this gap in the Web space,
is the W3C (World Wide Web Consortium).

Chapter 2: Silverlight Architecture

The W3C (World Wide Web Consortium) is an international consortium in which
organizations, full-time staff, and the public work together to develop Web
standards.

It is true that the W3C continues to be key to the Web’s success, but it is equally true that there is still work
to be done by vendors to conform to these standards. For example, there can be instances in which one
browser will render an HTML page differently from another vendor’s browser. To complicate matters
further, some vendors have extended the HTML standard within their browsers to add functionality.

One major limitation of HTML is the richness of the application it can provide in today’s world. There
have been various technologies over the past few years that have sought to improve this application rich-
ness, whether it be AJAX or Flash applications, or even before that, Java and Microsoft’s HTML extension,
DHTML — each successful to varying degrees. More recently, though, Microsoft has upped its game in
this area and introduced Silverlight. With Silverlight comes more than just another technology; it includes
an extensible framework in which to build much richer applications. Besides this, however, this frame-
work has been designed in such a way that it reaches out across multiple browsers and platforms. The
following two sections detail what these are.

The Server

As Silverlight code is not interpreted or compiled on the server itself, the server platform isn't of par-
ticular concern. In other words, if your web server can serve out the resources, then the platform really
doesn’t matter as far as the client is concerned. Your restriction may come when deciding on a platform
for hosting ASP.NET, but even this is more flexible than many people realize, in that you are not restricted
only to IIS, but you can also serve off an Apache web server. In fact, you can even serve your ASPNET
applications off Linux courtesy of the Mono project (www.mono-project.com/Main_Page).

The Client

To best illustrate the supported client platform for Silverlight 2, please refer to the following table:

Internet Internet
Client Platform Explorer 6 Explorer7 FireFox1.5 FireFox2.0 Safari
Windows 2000 Yes n/a No No No
Windows XP SP2+ Yes Yes Yes Yes No
Windows Server 2003 Yes Yes Yes Yes No
Windows Vista n/a Yes Yes Yes No
Mac OS 10.4.8+ (Intel only) n/a n/a Yes Yes Yes

Aside from the PowerPC platform, this list of platforms is expected to be expanded in the future as the
Silverlight platform gains momentum and newer operating systems arrive on the scene. One evolving
addition is that of the Linux client. Mentioned previously was the Mono project, which is an Open Source
community project set up to create a .NET Framework version that could run on the Linux platform.

11

Part |: Silverlight Fundamentals for ASP.NET Developers

Early in the development of Silverlight 2, this community (sponsored by Novell) decided to create a
Silverlight version that would also run on a Linux client. This project is named Moonlight. In a some-
what unprecedented step, Microsoft decided to endorse this project as the official Linux client.
However, this will remain a community-supported project.

Now that you know where you can use Silverlight, you are ready to get into the architecture of Silverlight 2.

Architecture

There are several levels at which you can analyze Silverlight’s components. Starting at the top level,
Silverlight 2 can be thought of logically as being in two parts: the presentation core and the

NET Framework. From its name, you can tell that the presentation core is largely the visual ele-
ment that provides all of the fundamental rendering ability (and more).

The .NET Framework part allows you to tap into the API from managed code in order to manipulate the
presentation core. Of course, it’s all well and good having this functionality, but it needs to be hosted
somewhere. As Silverlight is targeted to be cross-platform and cross-browser, this hosting is done via a
plug-in within the browser. Hosting within a plug-in allows for much richer content in the browser as it
allows for an extra level of abstraction from the browser, which enables you to break away from the con-
fines of traditional HTML. This level of abstraction effectively isolates some of the internals of Silverlight
from the browser, which makes life easier when producing a run time that is compatible across multiple
browsers.

Figure 2-2 will help you to visualize how each of the components sits within Silverlight 2.

Browser Hosted Control/Plug-in

.NET Framework

< Dynamic Language Runtime (DLR))
/ \ Presentation Core
Data
Windows Framework
‘ Presentation '
Foundation ~ :
: (WPF) ” N B
. Sl Networking
Framework
AN % I
; (Base Class Library (BCL)) ;
(Common Language Runtime (Core CLR))

Figure 2-2

12

Chapter 2: Silverlight Architecture

This section breaks down the presentation core and the NET Framework and looks at what they are
actually composed of.

Presentation Core

With Silverlight 1.0, you were given the presentation core and a control to host it in. As an end-user
you could receive a very rich-looking application. Behind the scenes as a developer, the only API that
was exposed to you was an unmanaged interface, which you would typically develop against using
JavaScript. Even for a very apt JavaScript developer, it had many shortcomings: historically poor IDE
support, error-prone, difficult to debug, inefficient, poor code reusability, and the list goes on.

A managed programming experience was planned for Silverlight from day one, and this is what you
get in version 2. The following sections break down the presentation core into its constituent parts,
before moving on to the managed programming environment provided by the .NET Framework.

Ul Core

The UI Core takes care of the rendering of all the UI elements, as you might expect. This includes ren-
dering images (PNG or JPEG), UI elements (shapes, paths, etc.), and also your animations.

The XAML Parser

Chapter 3 discusses XAML in more detail, but a brief description will be given now in order to explain the
function of the XAML parser. XAML, which stands for the “Extensible Application Markup Language,” is
an XML-based markup that allows you to declare the look and feel of your user interface without the
need for code or a designer (although the latter helps!).

In your Silverlight application, you will have one or more XAML files that may define a little, or all, of
your presentation to the client. Silverlight needs a way to read and interpret this markup, and it does so
via the XAML parser. There is an important word in that last sentence — interpret. That is to say, the
XAML is not compiled by Silverlight. In .NET Framework 3.0, the Windows Presentation Foundation
(WPF) XAML is, in fact, compiled (into an embedded binary resource stored in a format known as BAML).
With WPF being targeted at the Microsoft platform, it also has the added advantage of being more certain
about your machine’s hardware, and it can therefore take advantage of your graphics card in its render-
ing. With Silverlight’s XAML parser, you are given the option of software rendering only. As the tech-
nology matures, a hardware-rendering ability could be introduced.

Although the XAML Parser does not use your high-end graphics card, it does take advantage of multi-
core processors — and as many machines today have at least one dual core processor, some extra horse-
power will be given to the Parser.

Another difference between the XAML provided by WPF and that of Silverlight is also worth noting:
Silverlight uses a subset of the WPF XAML, and therefore this is all the XAML Parser knows to interpret.

Media

The media component of the core is held within the same unmanaged code library as the rest of the
presentation core (further details to come later), but you will be interfacing into this via XAML or .NET
via the MediaElement control. The media component has support for a number of codecs. The follow-
ing is a list of supported formats provided by these codecs:

13

Pa

rt I: Silverlight Fundamentals for ASP.NET Developers

Windows Media Video 7, 8, 9 (WMV1, WMV2, WMV3, respectively)
Windows Media Video Advanced Profile, non VC-1 (WMVA)
Windows Media Video Advanced Profile, VC1 (WMVC1)

Windows Media Metafiles (playlists)

Windows Media Audio 7, 8, 9 (WMA7, WMAS8, WMADJ, respectively)

L S T I I

ISO/MPEG Layer-3 in the following configurations:
QO ISO/MPEG Layer-3 compliant data stream input
Mono or Stereo channel configurations
8.11.025, 12, 16, 22.05, 24. 32. 44.1, and 44.8 kHz sampling frequencies

Qa
a
O 8-320 kilobits per second (kpbs) and variable bit rates
a

However, free format mode (ISO/IEC 11172-3, subclause 2.4.2.3) is not supported.

You should read the “Supported Media Formats and Protocols (Silverlight 2)” section of the Silverlight
2 SDK for further details concerning supported and unsupported formats as there are certain details/
caveats to be aware of (such as no support for certain playlist features, including Fallback URLs should
a reference to a piece of media fail).

In terms of getting the media playing within the application, Silverlight 2 supports progressive
downloads (from a web server), streaming media (from a dedicated streaming server), and, of course,
having the media stored as a resource within your Silverlight application package. Microsoft has also
introduced a service to their “Live” offering, which gives you a lot of free storage in which to host
your media for streaming. Further details of the streaming service can be found at
http://dev.live.com/silverlight/.

Digital Rights Management

14

The current Web climate has shown a stronger demand from users for richer content and at the fore-
front of this is the demand for audio and video content as part of the Web experience. Over previous
years, the music industry has been fighting the losing battle with music piracy, and as network band-
width has continued to improve, the concerns have started to be felt by the movie industry. While music
and video piracy will no doubt be around for a long time to come, media industries need to take steps
to protect their intellectual property, and to do this, they have turned their attention to Digital Rights
Management (DRM). DRM has been implemented in various technologies by several vendors over
recent years, but the theory remains the same — that is, a media asset should have the ability to be
restricted to a predetermined audience for a predetermined amount of time. By having such control
over the media, a service provider can introduce charging for content. This model does not have to be
the traditional pay-per-view, but could be a subscriber model whereby a service user pays a monthly
rental to gain access to an entire media library. Another key piece of this model is that a user who has
access to the assets cannot pass on the material to a user who does not.

With Silverlight being core to Microsoft’s vision of the next-generation Web experience, therefore, it
was imperative to have support not only for media, but for protected media. Microsoft has not been a
stranger to DRM technology in the past, as it already has a relatively mature following in the form of
Windows Media Digital Rights Management (WMDRM). This technology allows for a piece of media,
such as a Windows Media Video (WMYV), to be encrypted such that when a user hits the content server

Chapter 2: Silverlight Architecture

to stream or play the video, they are redirected to a Windows Media Licensing Server, which checks to
see if the user has the appropriate rights to view the content.

Given that Microsoft has this technology in place already, it may come as a surprise that Silverlight is
actually built on a different DRM technology called PlayReady — another Microsoft DRM technology.
PlayReady has set out to reach different goals from those of WMDRM in that it is designed to be lighter
weight and is intended to provide encrypted content that can be played on portable devices. With
Silverlight’s objective of being lightweight, it had a shared goal with PlayReady DRM, and as a result,
Silverlight DRM provides a cross-platform version of a PlayReady client.

Despite Silverlight DRM being built on PlayReady, there is a compatibility story for any existing WMDRM
investments — that is, if you have encrypted the content using the WMDRM SDK, this will be playable in
Silverlight DRM. However, the caveat is that the license must be supplied by a PlayReady license server,
as the license format supplied by a Windows Media license server is not understood by Silverlight DRM.
There are also licensing costs associated with developing and deploying the PlayReady content that you
should be aware of. You can find more details on the PlayReady web site at www.microsoft.com/
PlayReady/Licensing/request .mspx.

For more details on Silverlight DRM and for an architectural overview, please see the article at
www.microsoft.com/silverlight/overview/mediaDetail.aspx?index=4.

Inputs

It is very pleasing to the eyes to have a load of fancy graphics, but at some point, you are going to want
to receive some input from your users. The input component of the presentation core takes care of any
physical devices trying to talk to the user interface. These devices can include the keyboard, mouse, and
stylus, for example. As you will see on your journey through this book, you can hook up to several events
such that when a user performs an action on an input device, you are able to act accordingly within
your application. For further information on user input, please see Chapter 8, “User Interaction.”

DOM Integration

As mentioned previously, in Silverlight 1.0 you were simply given the presentation core and a control to
host it in. The presentation core was, and still is, found within the AgCore.d11 file, and the plug-in that
hosts this library is in a file called NpCtrl.d11. Both of these can be found in the Silverlight install folder.
The contents of this folder are covered after the section on the .NET Framework.

So, how was it possible to tap into the presentation core from JavaScript? The answer is — by using the
methods exposed on the host plug-in. These methods typically expose you to the root control sitting
within your XAML. As the Ul is built up in a tree-like fashion, once you have access to the root, there is
not a lot more work before you can reach every other element or control right down to the leaf level.

The ways in which these methods are exposed depend on the browser hosting technology involved. For
example, in Internet Explorer, the plug-in is hosted as an ActiveX control, whereas in the non-Microsoft
browsers, it is hosted as a Netscape standards plug-in. Either way, as a developer, you should not for the
most part need to worry about these implementation details. After all, it is one of the major features of
Silverlight that you do not have to write a browser/platform-specific implementation.

If you wanted to take a look at the NpCtrl.d11 plug-in in a little more detail, there are two tools that
you could use: 0OleView.exe and the Dependency Walker (depends . exe). These tools can be found in

15

Part |: Silverlight Fundamentals for ASP.NET Developers

many Microsoft products, such as some versions of Visual Studio, with the latter being available as part
of the Windows Resource Kit and Platform SDK. These tools are discussed in further depth in Chapter
15, “Troubleshooting.”

Talking specifically about what ActiveX controls or COM components are is outside the scope of this book,
but all you need to know is that 01eview will allow you to get a hint at what functionality a control might
emit, via something called a Type Library. If you have Silverlight installed on your machine and you open
up OleView, then you should be able to find the Silverlight control class under the name of AgControl.
If you open this up and take a look at the methods exposed by the TagControl interface, then you will
see methods such as Contents and CreateObject. These are accessible via JavaScript as part of the
DOM Integration and allow you access to the XAML objects in your Silverlight control instance.

The way this works in non-Microsoft browsers is a little different. ActiveX is not used, but, rather, the
Netscape plug-in API — you can now see where the NP in NpCtrl.d11 comes from. If you use the
depends . exe tool, then you can see a list of functions exported by this library. The functions of
interest are NP_GetEntryPoints, NP_Initialize, and NP_Shutdown. It is these functions that pro-
vide the plug-in capability into the other browsers. If you are interested in the plug-in AP, there is further
documentation available here: http://developer.mozilla.org/en/docs/Gecko_Plugin_API
_Reference:Plug-in_Side_Plug-in_API.

Here is a piece of trivia for you. If you have already started to write some Silverlight applications, you
may have noticed that a few files and references are prefixed with Ag. Why Ag? Well, that’s because it’s
the chemical symbol for silver!

.NET Framework

16

Silverlight 2 brings a massive advantage over Silverlight 1.0 in that you can use managed code (such as
C#) over JavaScript. So, why is managed code called managed code? Well, it is because your code is being
managed by “something.” That “something” is the .NET Framework (or, more specifically, the underly-
ing Common Language Runtime), and as a result, this is a required addition on the client machine. But
wait, isn’t the NET Framework (version 3.0) in excess of 50 MB? You do not want to have your users
download something of this magnitude the first time they come to access your shiny new web applica-
tion, as numbers would undoubtedly dwindle. It is for the reasons of bandwidth, client patience, and
reach that Microsoft had to look to reduce this package size when bundling it into Silverlight.

This sounds like quite a challenge. How can such a large run time and library be reduced down to
something considered quite reasonable? To answer this question, a look is required as to what the
NET Framework is actually made of. The .NET Framework, depending on where you look, can be
thought of as being broken up into the following elements:

Q Base Class Library (BCL) — This is a library of classes that provides all the typical coding
operations you might require from today’s operating systems. These range from assisting you
in writing and accessing files (from the System.I0 namespace), to holding collections of data,
to adding diagnostic support to your application.

Q ADO.NET and ASP.NET — These technologies sit on top of the BCL (although you will some-
times see these in diagrammatic form included within the BCL). They use many of the common
features provided by the BCL, but then they offer application-specific functionality such as
accessing a data store or providing dynamic content on a web server.

Chapter 2: Silverlight Architecture

Common Language Runtime (CLR) — This is the core of the .NET Framework. It takes care of
garbage-collecting resources that have gone out of scope and are no longer in use by the appli-
cation. It ensures that your code is running securely and as the developer has intended. It ensures
that the application code is running in the intended isolated way. It also takes care of many other
day-to-day housekeeping tasks that go beyond the scope of this discussion.

Windows Communication Foundation (WCF), Windows Presentation Foundation (WPF),
Windows Workflow Foundation (WF), and CardSpace — These are the key technologies
brought to you in .NET Framework 3.0 over version 2.0:

QO Windows Communication Foundation (WCF) — WCF is Microsoft’s unified communi-
cation platform for building connected applications.

0O Windows Presentation Foundation (WPF) — WPF is the graphical framework, which
looks to supersede traditional WinForms (Windows Forms applications).

QO Windows Workflow Foundation (WF) — WF is a framework for building applications
that conform to a particular kind of business or human driven process.

Q CardSpace — CardSpace is the technology used to give end-users possession of a digi-
tal identity.

Once you have separated these elements of the Framework into blocks like these, you can begin to break
down what would be required by Silverlight 2. For instance, all elements of the NET Framework sit on
the CLR, which is really the engine of the .NET Framework. This part of the .NET Framework remains
in Silverlight and has become known as the CoreCLR.

The CoreCLR is technically the CLR within the Silverlight implementation of the NET Framework. The
CLR remains largely unchanged for Silverlight 2 (when compared to the desktop version of the frame-
work). Bear in mind that you will sometimes see the entire .NET Framework for Silverlight referred to
as the CoreCLR.

The next section takes a look at the features that have survived from the desktop implementation of the
framework and live on in Silverlight’s lightweight incarnation.

What’s In and What’s Out?

There are several omissions in Silverlight 2’s implementation of the framework — some large and obvi-
ous, some small and more subtle. It is fairly obvious why some of the blocks have been dropped as they
just don't fit into the Silverlight model. A list of some of the absentees can be seen below:

Qa

System.Data — This namespace no longer exists in Silverlight. This held most of the ADO.NET
functionality and was therefore in place to allow for applications to communicate with a data-
base. A database tends to be a centralized resource for many clients, and thus from a Silverlight-
application point of view, no direct contact is required — rather, any dealings with such a data
store will be done via a web service call.

System.Deployment.* — This namespace, brought in for NET Framework 2.0, added the
Clickonce technology, which allowed for an application to be deployed in a seamless way to
the client (sometimes referred to as no-touch deployment). This overcame problems such as the user
not having permissions to run (isolation is taken care of with C1ickonce) and allowed for richer
applications to be deployed while still maintaining the maintenance benefits of a web applica-
tion. Silverlight has its own model for providing this functionality and does not use C1ickonce.

17

Part |: Silverlight Fundamentals for ASP.NET Developers

O System.Runtime.InteropServices.* — These namespaces provide interoperability
between today’s managed .NET applications and pre-.NET applications written to the COM
standard. This has not been entirely dropped for Silverlight, but, rather, stripped down. This is
because parts of the Silverlight core are still written in unmanaged code, and the Silverlight con-
trol itself (in Internet Explorer) is an ActiveX control, which is essentially a COM component. So,
although you write your Silverlight code in a managed environment, you are occasionally being
shielded from an underlying set of unmanaged components. As a Silverlight developer, this is
provided seamlessly so that you don’t have to worry about it — in fact, owing to the security
restrictions in place within Silverlight, you cannot access this functionality directly. The security
mechanisms in Silverlight are discussed in more detail in Chapter 12, “Securing Your Silverlight
Application.”

0 System.Runtime.Remoting — For all intents and purposes, this namespace is no longer acces-
sible in Silverlight. To elaborate, all but one class from the desktop version of the framework has
been removed, and the one remaining class is now labeled as internal (C#), or Friend if you
are a VB.NET developer. Essentially, this means that it is inaccessible to anybody outside of the
assembly /file.

0 System.Security — There have been some fairly big changes in the area of Security for
Silverlight. Again, please see Chapter 12 for further details.

This is by no means an exhaustive list, and the differences have largely been noted at the namespace
level. As you begin working with Silverlight, you will see some more-subtle functionality changes or
omissions — for example, the XmlDocument type is no longer available for XML document manipu-
lation, as it has been replaced by the LINQ to XML functionality (XDocument type - see Chapter 10,
“Working with Data,” for more details). These changes and omissions will not always be to your satis-
faction. In the run-up to the Silverlight 2 release, Microsoft was listening to the voices of the community
about what to include in the .NET Framework for Silverlight. At the end of the day, however, one of the
most important points to realize is that the form factor of the package to install must be as small as pos-
sible. If this were to be put in a graph, you would see functionality on one axis and package size on the
other. The goal was to try and find the optimum match.

WPF

18

When the .NET Framework 3.0 was released, there was quite a bit of confusion as to what this actually
was. The confusion came from what changed since the NET Framework 2.0. Well, rather than much
changing, this release was about adding several new features, namely, Windows Communication
Foundation (WCF), Windows Workflow Foundation (WF), Windows Presentation Foundation (WPF),
and Windows CardSpace (as described above).

WPF is the presentation framework that allows you to express your Ul either declaratively via XAML or
imperatively via code. In Silverlight 2, you are given a lightweight implementation of WPF with which
to work. The main reason for this is, again, to lower the download size.

A quick start in XAML is given in Chapter 3.

With XAML comes an accompanying object model, which, in this case, is the subset of WPFE. At the heart
of any Silverlight application is its controls. The development of these controls is discussed in Chapter
11, but for now, it is worth taking a look at the class hierarchy of Silverlight’s Presentation Foundation.
This will not be an extensive look at the whole of the object model, but rather the backbone.

Chapter 2: Silverlight Architecture

To set some context, Figure 2-3 shows a snapshot of the class hierarchy, courtesy of Red Gate’s
NET Reflector Tool: www.red-gate.com/products/reflector/.

= {} System Windows.Controls
“¢ Border
Bl “% Button
= ¥} Base Types
B “¢ System.Windows.Controls.Primitives. ButtonBase
= % System Windows.Controls.ContentControl
B “% Control
= % System.Windows.FrameworkElement
= ~13 UlElement
RO cenency O
A% System.Object
5° Ms.InternalIManagedPeer
52 MSInternalIMativeCoreTypeWrapper
™ Derived Types
@ .ctor()
J ChangeVisualState(Boolean) : Void
39 OnApplyTemplate() : Void
OnClick() : Void
3@ OnCreateAutomationPeer() : AutomationPeer
“t§ Canvas
‘%3 CheckBox
=@ ClickMode
“¢ ColumnDefinition
“% ColumnDefinitionCollection
‘%S ComboBox
th ComboBoxltem
“¢ ContentControl
“t¢ ContentPresenter
‘%g Control

Figure 2-3

Before discussing Figure 2-3, there are a couple of important points to note:

Qa

Q

This does not list all of the namespaces and classes involved in the Object Model, but just a slice
through the Canvas panel to give an idea of a common class hierarchy in Silverlight 2.

These classes are held within the System.Windows assembly. (See the “Installed Files” section
below in this chapter for further details.)

It will make more sense to start with the least functional class in the hierarchy, which, of course, is the
root class, and one that should be familiar to every .NET developer, System.Object.

Q

Qa

System.Object — This is the base class of every single .NET type. It provides the most generic
of functionality.

System.Windows . DependencyObject — The DependencyObject class is central to Silverlight’s
dependency property system. It allows support in the framework for various services including
Attached Properties, Data Binding, Animations, and Styles and Templates. These services are
covered in more detail as you progress through the book. All controls within Silverlight will
ultimately derive from this class as it provides extra flexibility and decoupling from parent con-
trols. The DependencyObject class will most often be used in conjunction with the Dependency
pProperty class. The DependencyProperty class is used to register properties within your
class/control as being available to a dictionary of DependencyObject objects.

19

Part I:

Silverlight Fundamentals for ASP.NET Developers

20

System.Windows.UIElement — This class is key to hooking up any keyboard and mouse input
events and in rendering the element’s visual output (which may be subject to any transforms,
clipping, etc.). A number of dependency properties are also registered at this level of the
hierarchy.

If you are coming from a WPF development background, you will notice that there
is a class missing in this hierarchy — System.Windows .Media.Visual. This class
provides the ability to control the rendering and clipping of visual elements in WPF.
With the cut-down subset of WPF in Silverlight, any remaining System.Windows
.Media.Visual methods have been moved out into System.Windows .UIElement.
A good example of this is the Visual.TransformToVisual (Visual) method,
which now lives in Silverlight as UTElement . TransformtoVisual (UIElement).

System.Windows .FrameworkElement — This class adds another layer over its base class,
UIElement. The key pieces of functionality that this class provides over UIElement are regard-
ing layout, data binding, and for allowing the detection of object lifetime events (i.e., when your
visual element has been added to the visual tree, etc.). This class also defines the common prop-
erties you will see on all controls and panels such as MinHeight, MaxHeight, Width, and so on.
When you come to extend Silverlight, you will typically do so lower down the hierarchy, by
deriving from the Control and Panel class, in order to save yourself some further work.

The branch chosen here shows the next class in the hierarchy to be System.wWindows
.Controls.Control. There are obviously a large number of such class hierarchies
within Silverlight, but the one chosen here is chosen because it is likely to contain
the classes you face on a more regular basis within your Silverlight development.
Another common class hierarchy that you will encounter, and which branches at
this point of the tree, is the one that demonstrates the various panels that you have
at your disposal — in which case, the next class would have been System.Windows
.Controls.Panel.

System.Windows.Controls.Control — The name of this class gives you a good idea of the
functionality it provides. You will find it to be the parent of all the Silverlight controls, such as
Button (the example discussed in this tree), ListBox, DataGrid, and so on. In fact, this class is
relatively small, with its primary objective being to set up the structure of its underlying controls.
The key piece of functionality it provides is in setting up the Template property. When you come
to develop functionality in your Silverlight application, you will have three options to make with
regard to controls: (1) adjust the visual appearance of an existing control; (2) create a composite
control (which essentially uses the UserControl class, which derives from control); (3) or, you
can develop your own control, either by directly deriving from Control, or an existing control.
These options are explored in more detail in Chapter 7, “Styles and Templates,” and Chapter 11,
“Creating Custom Controls.”

System.Windows.Controls.ContentControl — Next in the chain is the ContentControl.
The purpose of this class, again, is pretty simple, and it can be thought of as a placeholder for
any content within a more complex control. In the But ton scenario being discussed, a button
may have several different states, and it may be built up of several more primitive controls —
one of those controls is the one that displays the content on the front of the control. More often

Chapter 2: Silverlight Architecture

this is a piece of text such as Click me, but the ContentControl allows for much more creative
content to be placed on the controls that derive from it. The key property that it exposes is the
Content property, which allows you to set the content to be pretty much anything you like.

0 System.Windows.Controls.Primitives.ButtonBase — This is the level at which things
start to get much more concrete, and less abstract. The team developing the control set could
have simply had the Button class as the next class in the hierarchy, but as with any good con-
trol developer, there was a common seat of functionality established across the board. That is,
for controls such as Button, HyperlinkButton, RepeatButton, and ToggleButton (and who
knows what in the future), there was a requirement for them all to change states when clicked
with the mouse, or maybe when they were hovered over by the mouse. This is the class that
defines and provides an umbrella of functionality for these controls.

0 System.Windows.Controls.Button — Finally, at the leaf of this hierarchy is the Button con-
trol/class itself. This is the class that implements the functionality and defines a default style for
the control. It also defines the various states that the control can be in.

So there you have it, a whistle stop tour of Silverlight’s “WPF” hierarchy. It will become increasingly
important for you to become familiar with this hierarchy if you are to develop your Silverlight applica-
tions in any depth. For example, if you need to extend what is provided out-of-the-box, then you will
need to know the most appropriate classes from which to derive. This architecture will fall into place
more as you progress through the book and become familiar with the Silverlight 2 SDK.

Networking

While harnessing the processing power of the client provides the ability for a rich user experience, it is
highly likely that you will need to communicate with a server from your application at some point. The
reasons you have for doing this could reach far and wide, but may include wanting to tap into a news
service, pull some data from a database via a web service, or perhaps progressively download some
images/resources to improve the user experience. Silverlight 2 takes on all of these challenges and pro-
vides you with the supporting tools in the form of classes to achieve these goals.

As web services have matured, there have been various methods developed in order to transport the
payload between the client and server, whereby some methods are deemed more suitable than others.
For example, if you are working in an Enterprise environment with business-critical applications, you
will often want to ensure some kind of reliability that those messages have been delivered correctly,
and it may be that you want to declare your intent for doing this within the message header. If you are
looking for this type of functionality, you would probably be looking at the ws-* standards, and in the
Microsoft world, this is now provided by Windows Communication Foundation (WCF). You can access
such web services from your Silverlight application simply by generating a proxy as you would do nor-
mally. The approaches you can use to do this are discussed further in this chapter, in the “ASPNET
Integration” section. Something that also comes out of this functionality is the commitment of Silverlight
to provide more than just a “mini-games” platform, and also its dedication to providing benefits to real-
world business applications.

If you don't need the added complexities of Enterprise Web Services, you can use the simpler cousin,
ASP.NET Web Services, whose messages are transported using a SOAP message (without a lot of extras
in the SOAP header). If you want to take things even further when transporting data between your cli-
ent and server, then you can use Plain Old XML (POX), which has none of the complications of a SOAP
message.

21

Part |: Silverlight Fundamentals for ASP.NET Developers

Another communications protocol that Silverlight supports is the increasingly popular Representational
State Transfer (REST) protocol. This has grown in popularity in recent years and is now a supported
protocol by many of the industry’s big service vendors (e.g., Google, Microsoft Live, etc.). In fact, the
Silverlight Streaming Service exposes its services via the REST protocol, which, by the way, can only be
used over HTTP.

These days, it’s not uncommon for people to receive their news or blog updates via some kind of infor-
mation feed. Such feeds give the impression that the data is being pushed to the client, rather than the
user having to physically browse to a web page. There are a number of applications in the form of gad-
gets (or widgets, depending on your operating system background) that allow this seamless integration
of information into your everyday life (such as the Feed Headlines gadget found in Windows Vista). The
common protocols that these syndication services operate by are RSS or ATOM. Once again, Silverlight 2
provides you with the platform on which to consume services that act under these protocols.

There have not been a lot of concrete examples of each of these protocols in this chapter, as these appear
in Chapter 9, “Communicating with the Server.”

Data

When dealing with data in Silverlight, there is quite an array of classes you can use. These classes allow
you to perform various actions, including querying data and reading and writing data; they also act as
part of the plumbing for serialization.

Some of these data classes have been around in the NET Framework for quite some time — you are
probably already familiar with classes such as the Xml1Reader, for example. Some other classes have
appeared in more recent versions of the NET Framework.

When the NET Framework 3.5 was released, a new data query mechanism was shipped in the form
of LINQ (language-integrated query). LINQ is a general-purpose data-query language that can be
embedded within your .NET code, where it allows for you to query data sources that derive from the
IEnumerable<T> or IQueryable<T> interfaces. This is a very powerful tool, but this power increases
when LINQ is extended. One such extension for LINQ that is available within Silverlight is LINQ to
XML, which is contained within the System.Xml namespace. As Silverlight applications will deal a
lot with web services, it is likely they will come into contact with XML, or perhaps you are storing
some data as XML locally. Either way, LINQ to XML will provide you with a much more intuitive way
of querying that information than the xm1Reader and XPath approaches you may be used to.

The LINQ to XML features are implemented by an assembly that comes with the Silverlight SDK,
rather than the core runtime functionality. This means that in order to use it as a developer, you will
need to reference the assembly installed into the Silverlight SDK folder (by default, this is found in
C:\Program Files\Microsoft SDKs\Silverlight\v2.0\Libraries\ Client\ System.Xml.Linq.dll). Once
the assembly has been referenced in your application, it will be downloaded to the client when the user
browses to the page hosting your application.

Dynamic Language Runtime

22

One of the new features introduced in Silverlight 2 is the Dynamic Language Runtime (DLR).

Dynamic languages are not a new thing. They have been around for years in the guises of Ruby and
Python. The new fuss around dynamic languages has come about because of the DLR layer in Silverlight
that sits on top of the .NET Framework. This essentially means that you get the best of the dynamic world,

Chapter 2: Silverlight Architecture

while still being able to harness that rich functionality provided to you by the .NET Class Library. So,
what is a dynamic language? One of the tenets of a dynamic language is that it uses a dynamic type
system. In other words, you don't have to specify what type you are using at design time as it will be
inferred at compile time. There have been debates for many years on which approach is best: dynamic
languages or static languages (which include C#, VB.NET, etc.). In truth, they are both tools good at
doing different jobs. All you need to know for now is that if you are a .NET developer, there is a new
tool in town.

Installed Files

To wrap up the architecture section, it is useful to review how this functionality is provided in the context
of the Silverlight installation folder. The following list shows the files that get installed in Silverlight 2,
along with a brief description of their roles. If you want to dig a little deeper into what these files actu-
ally do, you can review Chapter 15, which covers debugging techniques and shows off some of the tools
you can use to dig a little deeper.

0 Silverlight.Configuration.exe — This provides access to the configuration dialog. Here
you can check the version of the run time you have installed, configure the runtime update set-
tings, enable digital rights management (DRM), and delete the application storage for each
Silverlight application (or disable application storage).

QO agcore.dll — Thisis a Win32 library (i.e., not a .NET assembly), which provides the core
Silverlight functionality as represented by the inner circle of Figure 2-2. This also includes the
functionality to allow communication with the browsers object model.

QO coreclr.dll — This is another Win32 library, responsible for loading the Silverlight CLR.

0 dbgshim.dll — This is one of the debugging dlls and is used by Visual Studio to allow for
Silverlight application debugging.

0 Microsoft.VisualBasic.dll — This managed assembly contains the Visual Basic run time.

0O mscordaccore.dll — This is one of the unmanaged libraries used to debug Silverlight
applications.

0 mscordbi.dll — This is another one of the unmanaged libraries used to debug Silverlight
applications.

0 mscorlib.dll — This managed assembly contains the base class library (BCL) for Silverlight.

0 mscorrc.debug.dll — This contains resources for the .NET run time.

0 mscorrc.dll — This contains resources for the .NET run time.

QO npctrl.dll — This is the plug-in that hosts Silverlight within the browser.

0O npctrlui.dll — This contains resources used by the browser plug-in.

0 Silverlight.ConfigurationUI.dl1l — This is a resource library used by the executable of
the same name.

0 sos.dll — This is another one of the unmanaged libraries used to debug Silverlight

applications.

0O System.Core.dll — This managed assembly contains the core of the run time and includes
LINQ support.

23

Pa

rt I: Silverlight Fundamentals for ASP.NET Developers

0O system.dll — This contains more core support for the managed run time, such as support for
generics.

0 System.Net — As is quite obvious from the assembly name, this provides the managed ability
for communicating with the outside world, via HTTP, Sockets, and so on.

O System.Runtime.Serialization — This assembly provides serialization support.

a System.ServiceModel.dll — This assembly contains the WCF subset supported by
Silverlight. Silverlight only supports basicHttpBinding.

QO System.ServiceModel.Web.dll — This assembly provides JSON serialization supported.
Again, in the fully blown WCF implementation, this contains a larger number of namespaces.

0 System.Windows.Browser.dll — This assembly provides managed access to the browser
document object model (DOM). This functionality is often referred to as the HTML Bridge.

0 system.Windows.dll — This assembly contains the bulk of the managed API for Silverlight,
which largely wraps up the presentation core. It provides access to the Silverlight controls,
input elements, and media elements among other functionality.

0O System.Xml.dll — This assembly contains the cut-down XML functionality in Silverlight,
such as the Xm1Reader class. You won't find classes like XmlDocument in here as these have
been dropped in favor of classes such as xDocument (found in the System.Xml .Ling assembly
from the SDK).

0O slr.dll.managed_manifest — This file lists the platform assemblies that are located in the
runtime’s installation directory. Platform assemblies are not allowed to be packaged up in an
XAP file like the assemblies you will develop — this is for security reasons.

ASP.NET Integration

24

So, you are an ASPNET developer, and you want to learn Silverlight. It is likely that you are going to be
faced with one of two main scenarios: First, you have a nice blank canvas to work on (no pun intended),
in that you are starting a new web application from scratch. Second, you have an up-and-running web
application, and you want to transform it into a Rich Internet Application (RIA) using Silverlight 2.

One of the first things to realize here is that Silverlight doesn’t care if it is being executed as part of an
ASP.NET page, an HTML page, or even a PHP page! This is because all it needs is a container on the cli-
ent that can host the Silverlight plug-in. This may lead you to think that if Silverlight doesn’t care about
you (as an ASPNET developer), then why should you care about it? Well, the reason is that although
there is no tight coupling between the technologies, there are several touch points between the two
should you choose to embrace these in your application.

To summarize, the touch points between Silverlight and ASPNET include:

Q ASP.NET composite controls
0 Using ASP.NET Application Services

QO Communication with ASP.NET from Silverlight
Q Dynamic generation of XAML from the server
Q

Using the ASP.NET server controls for Silverlight

Chapter 2: Silverlight Architecture

The following sections provide an overview of each one of these points.

ASP.NET Composite Controls

During your ASPNET development career, you have likely created a composite control within your
web application to encapsulate some common functionality within the site. Composite controls act as
a good integration point for Silverlight and allow you to deliver the content to your site with the same
encapsulation advantages.

Please note that it is composite controls that are referred to here, rather than their cousins, custom server
controls. Custom server controls can provide an integration point as well if you are comfortable working
outside the Visual Studio Designer

All a composite control typically consists of is either server controls or static HTML content. It has pre-
viously been discussed that Silverlight will happily execute within an HTML page or an ASP.NET page,
and a composite control is no different. This gives scope for various opportunities in which to provide
richer content to your users. In other words, you can bundle a Silverlight control up into a composite
control and then reuse this throughout your web application. Perhaps you want to gain some advertis-
ing revenue from your site, and so you could quite happily host a video that sits inside a user control (or
even a web part), and you have the power to position this within your web pages. Of course, another
option in this particular example is that you could host the Silverlight control within your Master Page
(should you want that amount of reach over your site).

Using ASP.NET Application Services

ASPNET 2.0 brought with it a number of application services. These services all conformed to a pro-
vider model introduced by ASPNET 2.0 whereby all you needed to know was the type of service you
required, rather than worry about the implementation that sat behind the service. This means that you
could plug in different implementations behind the scenes; the developer could write against one API,
and it wouldn’t really matter if the data was being stored in a SQL Server database, an XML file, or
another type of data store. The services ASPNET provides you include the Role, Profile, and Member-
ship providers.

This model was so useful that JavaScript client applications wanted a piece of the action. Therefore, when
Microsoft released the ASP.NET AJAX Extensions, there was support added to allow for this. To achieve
this in a more seamless way, much of the legwork is hidden away from you in the ASPNET AJAX Client
Library.

To be able to communicate with the server in order to exchange Role or Profile information, the server had
to expose these services in a language that the JavaScript clients would understand. This was achieved by
tweaking the server application’s web.config file so that it made available a JSON (JavaScript Object
Notation) proxy for the clients. (There is more on JSON in Chapter 9, “Communicating with the Server.”)

So, if a simple JavaScript client can take advantage of these services, you would expect a Silverlight 2
application to be able to do this also, which it can. Examples of how to take advantage of these applica-
tion services are shown below. (See Chapter 12, “Securing Your Silverlight Application,” for a more in-
depth look.)

25

Part |: Silverlight Fundamentals for ASP.NET Developers

Communicating with ASP.NET from Silverlight

It is all well and good having Silverlight take advantage of the client’s processing power, but there
will be times when you want to talk back to the server — or, more specifically, ASPNET. The endpoint
being exposed by the server will typically be a web service, and thus there needs to be a way in which
Silverlight can communicate along a channel with the web service. This process will seem pretty straight-
forward to any ASPNET web developer. You can add a Service Reference through the Visual Studio
NET IDE by right-clicking “References” and selecting “Add Service Reference.” This opens a dialog
that goes on to create a proxy to that web service, which you can use for the communication. In the
desktop framework, you could use a command-line tool called svcutil.exe to generate this proxy,
although there is no specific version for Silverlight at present.

Dynamic Generation of XAML from the Server

Possibly one of the less-obvious integration points between your Silverlight application and your standard
ASP.NET web application is that you have the ability to dynamically generate and manipulate XAML on
the server before it is shipped off to the client’s machine as part of the application life cycle. The idea behind
this is that in the page where you create your Silverlight host, you add in a reference to an ASP.NET page
rather than the standard XAML file. All you have to do then is to make your ASPNET page output some
conformant XAML, and at the same time, you can use your ASP.NET page code-behind to manipulate
the XAML content.

You may be wondering why you would want to do this on the server rather than the client. After all, by
taking advantage of the client’s processing power, you are taking some of the load off the server. This is
true, but there are times when it works out more efficiently, and other times when more control over the
XAML is desired.

Consider, for example, that you wanted to provide a more personalized page to a specific user. He has
logged in to your application before and has added some buttons within the application that take him
to some favorite content within your site. You have three options here:

Q Pull down a standard XAML file (as part of your Silverlight application package) as you would
normally, check the user via a service call, and call a web service on the server to pull down any
customizations for that user.

Q Check the user when he hits your site for the first time, and provide a separate XAML/XAP
Package for that user.

Q Check the user when he hits your site for the first time, and inject some customizations into a
template XAML file.

As this is likely to be a rare request, the last option not only gets you the UI you want in one roundtrip, but
also you don't have to store multiple XAML files for different users. The subtle customization differences
could be stored in a database, which, of course, your ASPNET web page has simple, direct access to.

Besides the flexibility this approach offers, it also gives an Enterprise the opportunity to restrict the

XAML that is posted out to a client. For the most part, you could provide any restrictions on the client
in terms of the functionality that your users could take hold of, but this is a far less secure solution.

26

Chapter 2: Silverlight Architecture

Using the ASP.NET Server Controls for Silverlight

Two new ASP.NET server controls that were introduced as part of Visual Studio 2008 are the
asp:Silverlight and asp:Media controls. These controls are specifically targeted at assisting
you in integrating Silverlight into your application. Their roles are outlined below:

0 asp:Silverlight — This server control allows for a smooth integration of your Silverlight
XAP/XAML files and associated JavaScripts.

0 asp:Media — This control allows you to embed video within your page. It includes support for
adding different skins to the Silverlight media player within the page.

The controls may seem a little familiar to you if you have ever developed with Microsoft’'s ASPNET AJAX
Extensions, in that these controls use the same model for including script resources, which can be used
to hook into the respective controls to provide further functionality.

Application Life Cycle

This section concerns exactly what happens the first time you hit that Silverlight application. For the
purposes of this example, assume that you have a freshly installed client machine and that machine is
running Windows Vista. You browse to an application that hosts some Silverlight content. If this content
is hosted within an ASPNET web page, your page is still going through the same page event life cycle
as it would do at any time. If it is being hosted in a simple HTML page, you are simply asking the web
server to pass you back a static HTML page. The first time you are made aware that this is a Silverlight
application is when you receive a small notification within the page asking you to download the
Silverlight plug-in. This will look something like Figure 2-4.

Install "ﬂ
#. Microsoft*Silverlight™

Figure 2-4

The reason this is being displayed is typically due to some JavaScript files within the web page check-
ing the following criteria: (a) Do you already have the Silverlight plug-in installed? (b) Do you have the
minimum required version of the plug-in installed? You do not have to develop the JavaScript to per-
form this; the framework for this is provided either by the Silverlight for Visual Studio .NET Tools, or
as part of the Silverlight SDK.

Once you have decided to install the plug-in, you click on the image (as shown in Figure 2-4), and this
does an in-place installation of the latest Silverlight plug-in. You may have to restart your browser at
this point to complete the installation.

Upon restarting the browser and hitting the same page, a different process will be followed. Once again,
if you are using the JavaScript file given to you by the SDK, it will perform the same checks and realize
that you have the appropriate plug-in installed for the page. The code developed by the page creator
will then create an instance of the Silverlight plug-in. (In fact, the page authors could create multiple
instances on the page if they wanted to, but just assume there is one for now.)

27

Part |: Silverlight Fundamentals for ASP.NET Developers

As a developer you may want to isolate different areas of Silverlight functionality and have it appear
seamlessly within an existing web page. You can do this by hosting multiple plug-ins. Another scenario
could be if you are developing a web application within a web part framework, such that more than one
of the web parts hosts its own Silverlight plug-in.

Within their plug-in instantiation script, the developer will have specified a number of properties, but
most importantly, here is the XAP Package, or XAML page, that she wants to display to the end-user.
The Silverlight plug-in will then pull down this package that contains your page resources, along with
any other assemblies that may be referenced within the application.

The XAP Package is described in more detail later, but in short, it is a ZIP file containing the various
assets that make up your application.

You may be wondering what happens when you hit the page a second time. Does this same process
occur again? The answer is probably no. Silverlight uses the Browser cache, which means that the
package will not be pulled down every time, but, rather, at set intervals as dictated by the browser.

It was mentioned previously in the chapter that Silverlight is server-agnostic. This means that when
you hit a page with Silverlight content, the server side life cycle isn’t really that relevant (although it
becomes slightly more relevant if you are using dynamic generation of XAML from the server, as dis-
cussed previously). The plug-in requests some resources, and all that is needed on the server is a web
server that will respond to such requests and download those assemblies/resources to the client. To
the user, this is a seamless process, so you are not prompted every time a user resource is going to be
downloaded. You may think that this could result in a security hole, but as you will see in Chapter 12,
security is very much built into the core of Silverlight so that it plays nicely and isn’t allowed to get
into any mischief.

Updating Silverlight

28

The “DOM Integration” section in this chapter talks about the Silverlight plug-in in quite a bit of depth,
but there is a key area that it doesn’t cover, and that is its role in upgrading the Silverlight run time. When
you write your first Silverlight application, if you click your right-button within your browser window,
over your Silverlight application region, you'll see the Silverlight Configuration option appear. This vali-
dates that you are clicking over the Silverlight Host plug-in within the page. If you actually click on that
“Silverlight Configuration” link, you see an About dialog appear, which displays all the usual About
information, including the version number of your plug-in. If you look more closely, you can see a tab
called Updates, which looks like Figure 2-5.

What you are actually seeing here is the execution of the Silverlight.Configuration.exe file,
which is located within the Silverlight update directory (see the “Installed Files” section for a com-
plete list of files).

This data is stored within the registry in the following key:

[HKEY_CURRENT_USER\Software\Microsoft\Silverlight]
"UpdateMode"=dword: 00000000

The value of the dword maps to the option you have selected.

Chapter 2: Silverlight Architecture

« Microsoft Silverlight Configuration ==

About | Updates |Playbad< I Application Sbofagel

Choose how Silverlight installs updates

Silverlight can periodically check for, download and install updates
automatically using these settings.

() Install upd: ically ded)

(@ Check for updates, but let me choose whether to download and install
= them

() Mever check for updates

Your computer may become vulnerable to security threats, Use this setting
only if you receive Silverlight updates from Microsoft Update or another
source,

Silverlight Privacy Statement

Figure 2-5

Each of these options is fairly self-explanatory, but a brief overview of each is given below:

0 “Install updates automatically” — This will automatically update your Silverlight run time
silently in the background. There is not a Windows service constantly running to perform the
checks for the latest updates, so these will only be performed while the control is running in
your browser. An important point here is that if you are running Windows Vista with User
Access Control (UAC) enabled by default, this option will not be available. This is because, for
security reasons, the installation requires administrative privileges and therefore a user prompt
to install a new version of the plug-in, and thus cannot be done automatically in this situation.

0 “Check for updates, but let me choose whether to download and install them” — This still
performs the checks in the same fashion as above, but will prompt you before downloading and
installing. As there are two types of updates (feature-oriented and security-oriented), this does
give you a little more control over what gets installed. Please note, however, that when you visit
a site that is using the latest features, you will not be able to use the application without down-
loading the latest plug-in/run time.

Q “Never check for updates” — This (not recommended) option will not perform any checks for
updates, and therefore you will receive no prompts. The danger here is that you will not be
prompted for any security fixes, which could leave your machine vulnerable to attack.

Summary

This chapter has outlined the core elements of Silverlight for you. It has shown that much of the func-
tionality is held within an unmanaged core library, which, in Silverlight 2, is wrapped up in managed
(.NET) code. You have seen some of the technical reasons for why Silverlight is structured as it is today,
along with how you can tap into its capabilities from your more traditional ASPNET web applications.
Finally, the chapter talked you through what happens under the covers when a user first hits a Silverlight
application.

You are now set to use these concepts as a platform on which to learn more in the chapters to follow.

29

q

XAML Condensed

This chapter takes you through the basics of understanding and writing XAML and shows you
how XAML is used to concisely construct the building blocks of a Silverlight user interface. It also
discusses why you need to know XAML to a good degree to program effectively in Silverlight. This
chapter is not intended to be a XAML language reference or an exhaustive look at every property
of every object; it is intended instead to be a whirlwind tour of the 90 percent of XAML that will
matter to you as you're developing Silverlight applications.

Throughout the chapter, numerous XAML samples and snippets will be shown to you to explain
various concepts that you're free to go ahead and try out. Don’t worry if you'd rather just read
through to the end of the chapter, though, as there is a full walk-through summarizing the key
concepts to cement the knowledge.

Why All ASP.NET Developers Should Know
the Basics

Extensible Application Markup Language (XAML, pronounced zammel) is an XML-based markup
language that is used to instantiate and initialize .NET objects.

XAML first appeared with the introduction of .NET 3.0 and is used not only to construct the user
interface in Windows Presentation Foundation and Silverlight, but also to represent workflows in
Windows Workflow Foundation and in the XPS (XML Paper Specification). There will no doubt
be other technologies that take advantage of XAML moving forward thanks to its general-pur-
pose nature provided inherently by its XML base.

But is it really necessary to learn XAML in order to write Silverlight applications? Can't you just
rely on designers and design tools to do the donkey work for you? This particular question has a
lot in common with the ASPNET developer wondering if he or she really needs to bother learn-
ing HTML to a good level.

Part |: Silverlight Fundamentals for ASP.NET Developers

32

OK, so you can probably get by as an ASPNET developer without being an HTML expert. Fair enough.
But as an ASPNET developer, everything you do will ultimately result in a stream of plaintext HTML
and supporting files being sent to the user’s browser for rendering. You may well be interacting with a
mainframe to retrieve customer data and dynamically generating graphs on the fly, but in essence, the
end goal is to create and send a correctly formatted sequence of plaintext to the browser for parsing and
rendering. Nothing more.

And whether you've used the Visual Studio design interface or any other tool to create the HTML for
your site (or more likely a colleague in design has provided it for you using her tool of choice), there
will undoubtedly be instances when you have to understand at some level what the markup this plain-
text creates is trying to achieve. You have to be able to correctly place and format the dynamic data from
your mainframe within the static HTML you've been provided with, for example. And you have to be
able to work out why your program is producing HTML that “isn’t quite right” on occasion.

So, you can most certainly get by as an ASP.NET developer without being an HTML expert, but you do
require the basic skills necessary to make sure you're doing your job properly and effectively.

With XAML, acquiring this basic level of understanding becomes even more impor-
tant. Drawing comparisons between XAML and other markup languages is a bit mis-
leading, however, the main reason being that unlike other markup languages, XAML
directly represents the instantiation of objects from within the .NET libraries. In
effect, using XAML is another way to access the .NET API directly, instantiate arbi-
trary objects, and set their properties and events, albeit declaratively. This means that
XAML is at heart a programming language, albeit a declarative one (with flow-con-
trol support when mixed with code).

XAML is output by default within Visual Studio and other design tools and will continue to be the default
moving forward, for the simple reason that XML and therefore XAML are easier to construct and validate
than program code. If you want to become a Silverlight developer, you're simply not going to be able to
avoid XAML.

And don't forget: XAML is a general-purpose declarative language; it applies not just to Silverlight and
WPF but to other technologies as well. This means that the work you put into learning XAML is trans-
ferable to those other technologies and as such multiplies the benefits of learning it.

Because Visual Studio and other design tools output XAML behind the scenes and because designers
primarily use XAML to construct the user interface, XAML is in effect the common language that is
spoken between the developers and the designers. For communication to take place, both parties need
to know what the other is talking about.

Finally, as XAML is just XML, it’s hierarchical in nature, which means it’s ideally suited for represent-
ing the visual tree of a user interface. Trying to do this purely in code would take you longer and prove
more difficult.

In short, XAML is at the heart of WPF and therefore Silverlight, and in order to become a Silverlight
expert, you need to be able to work with it, understand it, and take advantage of the benefits it brings
to the table.

Chapter 3: XAML Condensed

XAML Syntax and Terminology

First things first: Start at the very top of a typical Silverlight XAML file. A XAML file can only have one
root element, and in the case of a Silverlight application file, this is a UserControl element, shown in
the following code.

<UserControl x:Class="Chapter(03.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="White">
</Grid>

</UserControl>

In this example, the width and Height properties of the UserControl are specified, and two
namespace declarations are included.

Namespaces

The xmlns attribute isn't specific to XAML — it’s standard XML and is used to qualify the element it’s
applied to and the child elements contained within it. Don’t bother trying to type these namespace val-
ues into your browser to see what’s there, as there isn’t usually anything there. XML namespace values
are nothing more than arbitrary strings to help differentiate between elements with the same name, in
much the same way as .NET namespaces are used to fully qualify the types declared within them. At
no point will any resolution of the namespace value via a network connection take place.

You will typically see URLs used, though, as they are guaranteed to be unique across companies. (Face
it: No company other than Microsoft is going to own the domain name * .microsoft.com, are they?)

Of the two namespaces in the example, the first is the default (denoted by the lack of colon and follow-
ing string) and represents all of the different Silverlight controls you might need in your Silverlight
application. Because it’s the default, all child elements that are added without a prefix to their names
will automatically be scoped to this namespace unless explicitly defined otherwise.

The : x immediately following the second xmlns (the fact that it’s the letter x is irrelevant, it could have
been g, b, ¢, or any other string) denotes that in order to qualify a type as belonging to this namespace, its
name must be prefixed by x:, as in x: SomeType. This namespace contains the required language com-
ponents that are defined in the XAML specification, such as the ability to set an object’s name like so:

<TextBlock x:Name="myButton" />
XAML, unlike other markup languages, is designed to allow for the instantiation and initialization of
.NET objects. What happens if you want to instantiate and assign values to a custom type that you've

created in XAML or an existing .NET type not scoped within the default namespaces? A special
namespace syntax exists to support just this scenario.

33

Part |: Silverlight Fundamentals for ASP.NET Developers

Consider the following example:

<UserControl x:Class="Chapter03.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:math="clr-namespace:MyCompany.Math;assembly=MyCompany.Math.dl1l"
Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="White">
<TextBox x:Name="MyTextbox" />
<math:MyObject x:Name="MyCustomObject" />
</Grid>

</UserControl>

Within the UserControl declaration, you have the two standard Silverlight namespaces, followed by a
custom namespace with a different value syntax:

xmlns:math="clr-namespace:MyCompany.Math;assembly=MyCompany.Math.dl1l"

The first thing to note is that the namespace prefix being set for this namespace is :math. This means that
any type within this namespace you want to use within XAML must be prefixed by math: in order to be
resolved correctly. The first parameter in the namespace value is c1r-namespace :MyCompany .Math;,
and as the parameter name suggests, it needs to be the value of the fully qualified namespace your
types exist within. The next parameter, assembly=MyCompany .Math.d11, needs to be the assembly
name your type is contained within. The .dll extension is required as it’s treated as a URI. With the
inclusion of this namespace declaration, you're free to use the types within with ease by using the
<prefix:ClassName> syntax.

<math:MyClassName />
This raises an interesting question, however. What if you want to use a type that needs parameters

passing into its constructor? The simple answer is, you can’t. So be aware that if you're writing a type
that you intend to use from XAML, it needs to be written with a default parameterless constructor.

White Space

34

XAML is XML. As such, XAML is bound by the rules of XML and its white-space handling (handling
of space, line feed, and tab characters). When a XAML file is being parsed, the following steps are taken
to normalize the white space contained within:

O Line-feed characters between East Asian characters are removed.

Q All white-space characters are converted into spaces.

Q All consecutive spaces are deleted and replaced with a single space.

0 A space immediately following the start tag is deleted.

Q

A space immediately before the end tag is deleted.

Chapter 3: XAML Condensed

As you can imagine, in some circumstances, this white-space normalization isn’t what you'd want to
occur. For instance, you may have defined the following control on your page:

<UserControl x:Class="Chapter03.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="White">
<TextBlock FontSize="72">
Hello
World
</TextBlock>
</Grid>

</UserControl>

When you run this page, the actual output you will get is shown in Figure 3-1.

7 E— =) — — -
‘& Test Page For Chapter03 - Windows Internet Explorer == =
OO . |ﬁ_1_hﬂ_|_x:_.lkaaltmst:355ycm!?[emj '| ‘7‘| _X_ ‘ | Live Search ﬁ v|

Wl |@TestF‘ageForChap{er03 1_| oo~ ~ i v [Page ~ {{§ Tools ~ 2

-

ﬁello World

Done €l Local intranet | Protected Mode: On H100% -

Figure 3-1

That’s not quite what you expected. The white-space normalization routine has replaced the carriage
return with a single space. To format the text within the TextBlock correctly, you can use the
LineBreak element, like so:

<UserControl x:Class="Chapter03.Page"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

35

Part |: Silverlight Fundamentals for ASP.NET Developers

Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="White">
<TextBlock FontSize="72">
Hello
<LineBreak />
World
</TextBlock>

</Grid>

</UserControl>

This will give you the result you originally wanted. See Figure 3-2.

{& Test Page For Chapter03 - Windows Internet Explorer =IE=EIE]
\./'\..) - [E] nttp:pocatnost3ss + [¢4 | x | [Live Search

T e — T ——

Hello
World

€8 Local intranet | Protected Mode: On F100% v

Figure 3-2

Object and Property Elements

You now know about the two standard namespace declarations in a Silverlight XAML file and why they
are there, and also how to include namespaces relating to other types. Now you will look at XAML ele-
ments and the supporting syntax in more detail.

An XML element within XAML is known as an object element and represents an existing type within a

NET assembly. To assign values to the properties and events contained within the type, standard XML
attribute syntax can be used.

XAML is case-sensitive and the object element and property element names must match the type name
and type members exactly. Why case-sensitive? XAML is XML, which forces case sensitivity. Another
reason is that you can use XAML to instantiate arbitrary objects, so it stands to reason you would need
to use the correct case for the type names.

36

Chapter 3: XAML Condensed

In the following example, the single line of XAML represents the instantiation of the TextBlock type,
the setting of its Text property to the string literal “Hello World,” and the assigning of its width and
Height properties.

<TextBlock Text="Hello World" Height="20" Width="100" />
This is exactly equivalent to the following C# code:

TextBlock tb = new TextBlock() ;
tb.Text = "Hello World";
tb.Height = 20;

tb.width = 100;

It's instantly apparent that expressing something like this in XAML is cleaner and more concise than
doing so in C# code. You might also have spotted a potential issue with the above: What if you need to
assign something other than a string literal to the property or event?

If the value you're attempting to set is a primitive type, the XAML loader will attempt a direct conver-
sion to this type from the string literal. In the case of an enumerated type being required, the loader
will check for a match against the names contained within the enumerated type. If a match is found,
the value fronting the matched name will be returned.

For all other cases, property element syntax must be used for values that are too complex to be expressed
as a string literal. This entails nesting an element within the object element start and end tags that fol-
lows the naming convention <TypeName . PropertyName>.

Consider the example of setting the TextBlock Foreground color to Blue. If you look in the docu-
mentation at the type expected by the Foreground property, you can see that it is expecting a type of
System.Windows.Media.Brush. By using property element syntax, you are able to express this like so:

<TextBlock>
Hello World
<TextBlock.Foreground>
<SolidColorBrush Color="Blue" />

</TextBlock.Foreground>

</TextBlock>

Type Converters

Some attributes will allow you to express property element syntax more simply thanks to an object
called a type converter. A type converter’s job is to know how to convert simple string values into an
object of the type that is actually needed by the given attribute.

So for the TextBlock.Foreground property, if you use simple attribute-based syntax and pass it the

string "Blue", a custom type converter kicks in and converts this into the appropriate System.windows
.Media.SolidColorBrush type that is expected.

37

Part |: Silverlight Fundamentals for ASP.NET Developers

For example:
<TextBlock Foreground="Blue" />
will take the string "Blue" and replace it with a new SolidColorBrush set to Colors.Blue.

If the property that is exposed to XAML is a primitive type, the XAML loader will attempt to directly
convert the given string representation to the correct primitive type.

When it comes to writing your own types that you'd like to be able to expose via XAML, you're free to
write your own type converters to allow the consumers of your type to pass simple strings in place of
property element syntax where appropriate. Doing this involves inheriting from TypeConverter and
writing the logic that checks if a value can be converted and how to perform the conversion.

Markup Extensions

38

Consider property element syntax again. If you set the Foreground property of your TextBlock to an
arbitrary LinearGradientBrush, a brand new instance of the LinearGradientBrush is always created.

This is because this:
<TextBlock>
Hello World

<TextBlock.Foreground>
<LinearGradientBrush>
<GradientStop Color="Green" Offset="0.5"/>
<GradientStop Color="Yellow" Offset="1.0"/>
</LinearGradientBrush>
</TextBlock.Foreground>

</TextBlock>
is the same as doing this:

//Construct and initialize our LinearGradientBrush
LinearGradientBrush lgb = new LinearGradientBrush() ;

GradientStop gsl = new GradientStop() ;
gsl.Color = Colors.Green;
gsl.Offset = 0.5;

GradientStop gs2 = new GradientStop() ;
gs2.Color = Colors.Yellow;
gs2.0ffset = 1.0;

lgb.GradientStops.Add(gsl) ;
lgb.GradientStops.Add (gs2) ;

//Create our TextBlock and assign our pre-created brush
TextBlock tb = new TextBlock;
tb.Foreground = lgb;

Chapter 3: XAML Condensed

Now imagine if the LinearGradientBrush was more complex and was needed on 20 TextBlock
objects on the UL In code, you would do this:

//Construct and Initialize our common LinearGradientBrush
LinearGradientBrush lgb = new LinearGradientBrush() ;

GradientStop gsl = new GradientStop() ;
gsl.Color = Colors.Green;
gsl.Offset = 0.5;

GradientStop gs2 = new GradientStop() ;
gs2.Color = Colors.Yellow;
gs2.0ffset = 1.0;

lgb.GradientStops.Add(gsl) ;
lgb.GradientStops.Add (gs2) ;

//Create first TextBlock, assign common brush
TextBlock tbl = new TextBlock() ;
tbl.Foreground = 1lgb;

//Create second TextBlock, assign common brush
TextBlock tb2 = new TextBlock() ;
tb2.Foreground = 1gb;

TextBlock tb3..

Can you replicate this behavior in XAML? The answer comes with markup extensions, which allow
you to potentially pass an object reference to a property rather than a new instance as would occur via
property element syntax. Markup extensions are not used only for this purpose, however, and you'll
see them again in areas such as DataBinding and Templates via the Binding and TemplateBinding
objects, respectively.

The following example shows how this can be done:

<UserControl x:Class="Chapter03.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="White">

<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>

<Grid.Resources>
<LinearGradientBrush x:Key="SharedBrush">
<GradientStop Color="Yellow" Offset="0.0" />
<GradientStop Color="Green" Offset="0.5" />
</LinearGradientBrush>
</Grid.Resources>

<TextBlock Text="Hello"

39

Part |: Silverlight Fundamentals for ASP.NET Developers

FontSize="48"
Foreground="{StaticResource SharedBrush}"
Grid.Column="0" />

<TextBlock Text="World"
FontSize="48"
Foreground="{StaticResource SharedBrush}"
Grid.Column="1" />

</Grid>

</UserControl>

Note the Resources property of the Grid object. This gives you the ability to define objects that are
going to be needed multiple times in the user interface and store them within this property for subse-
quent retrieval. To access the objects within this collection, you can use the staticResource markup
extension.

A markup extension is always contained within curly braces, and when the XAML parser comes across
these curly braces within a property value, it knows to do something other than treat the value as a
string literal or string convertible type.

The syntax for looking up a value in the Resources property is to enclose the attribute value in curly
braces, use the StaticResource keyword followed by a space, and then specify the x:Key value given

to the resource in question.

{StaticResource MyResourceXKeyName}

Attached Properties

40

XAML defines an interesting ability that allows certain properties (and events, for that matter) to be
specified on types, even if the property definition doesn’t actually live within the type that the prop-
erty is being utilized on. An object can obtain these extra properties when it’s added to a container
object that defines attached properties. Take adding a TextBlock control to a Canvas, for example.
As well as the standard properties that exist in the TextBlock control, three more properties are
available and provided by the canvas that contains the Button: Canvas.Top, Canvas.Left, and
Canvas.ZOrder

Attached properties are accessed in the form OwnerName . PropertyName.
<Canvas>
<TextBlock Canvas.Top="20" Canvas.Left="20" />
</Canvas>
It effectively turns the properties in question into global properties that can be set from within any

number of different types. This is a technique you’ll see commonly used for layout, as in the above
example code, as it allows child elements to notify parent elements about significant values. The

Chapter 3: XAML Condensed

Button type itself doesn’t contain a definition for the properties Top and Left, but it does need to let
its parent know about them so that it can be correctly positioned at layout time.

Basic Drawing

Silverlight 2 ships with the ability to draw three basic shapes as described here. Chapter 14 discusses
advanced drawing in more detail, including the more advanced PolyLine, Polygon, and Path shapes.

All these shapes inherit from the base class Shape, and as such share many properties including
Height, Width, Stroke, and StrokeThickness.
Ellipse

The E11ipse object allows you to draw an oval or circle on the screen by altering the width and
Height properties. The following code draws a black circle on a blue background. See Figure 3-3.

<UserControl x:Class="Chapter03.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="LightBlue">
<Ellipse Width="150"
Height="150"
Fill="Black"/>

</Grid>

</UserControl>

(& Test Page For Chapter03 - Windows Internet Explorer | = || = |[&2 |

() - [E] nttesnocainostass ~[44| X | [Live Search

»

W

& Test Page For Chapter... [_| {h b e

-

€l Local intranet | Protected Mode: On H100% -

Figure 3-3

41

Part |: Silverlight Fundamentals for ASP.NET Developers

42

You can also alter the color of the border of the ellipse by altering the Stroke property and the thick-
ness of this border by altering the StrokeThickness property. See Figure 3-4.

<UserControl x:Class="Chapter03.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="LightBlue">
<Ellipse Width="150"
Height="150"
Fill="Black"
Stroke="Red"
StrokeThickness="5"/>

</Grid>

</UserControl>

/& Test Page For Chapter03 - Windows Internet Explorer [= |[=]33]

\JLJ - [&] nttpnocamostass ~| 45 | x || Live search

¢ ek | @ TestPage For Chapter.. |7| - B -

€ Local intranet | Protected Mode: On Hi00% -

Figure 3-4

Note how the Fi11 property of the ellipse accepts a string value and uses a type converter to convert
the string into an object of the right type, which is exactly the same technique as used by the button’s
Background property.

If you wanted to assign something a more advanced color, you could do so using property element
syntax. See Figure 3-5.

<UserControl x:Class="Chapter03.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

Chapter 3: XAML Condensed

<Grid x:Name="LayoutRoot" Background="LightBlue">

<Ellipse Width="150"
Height="150"
Stroke="Black"
StrokeThickness="5">

<Ellipse.Fill>
<LinearGradientBrush>
<GradientStop Color="Green" Offset="0.0" />
<GradientStop Color="Yellow" Offset="0.5" />
</LinearGradientBrush>
</Ellipse.Fill>

</Ellipse>
</Grid>

</UserControl>

‘& Test Page For Chapter03 - Windows Internet Explorer | = |[=1 |25
OO = [mtpsnocatnost:355 +[49| x || Live Search
o5 o |.@TestFageForChapter.. [_| ﬁ z Z

»

€ Local intranet | Protected Mode: On H100% v

Figure 3-5

Rectangle

Yes, you've guessed it. The Rectangle object allows you to describe a rectangle on your display. Like
Ellipse, it has Height, Width, Stroke, StrokeThickness, and Fill properties. See Figure 3-6.

<UserControl x:Class="Chapter03.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">
<Grid x:Name="LayoutRoot" Background="LightBlue">

<Rectangle Height="100"

43

Part |: Silverlight Fundamentals for ASP.NET Developers

Width="250"
Fill="Black"
Stroke="Red"
StrokeThickness="20" />

</Grid>

</UserControl>

/& Test Page For Chapter03 - Windows Internet Explorer [— |[=12
i~

€| hitp://localhost:355 v‘ ‘?| X | | Live Search
] |@Test?age For Chapter... |_| oo . =

6‘! Local intranet | Protected Mode: On H100% -

Figure 3-6

And you can apply a more complex brush to the Stroke property, just as you can the Fill property
and any other property of a type that expects a brush. See Figure 3-7.

<UserControl x:Class="Chapter(03.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="LightBlue">

<Rectangle Height="100"
Width="250"
Fill="Red"
StrokeThickness="20">

<Rectangle.Stroke>
<LinearGradientBrush>
<GradientStop Color="Orange" Offset="0.0" />
<GradientStop Color="Yellow" Offset="0.5" />
<GradientStop Color="Red" Offset="1.0" />
</LinearGradientBrush>
</Rectangle.Stroke>

44

Chapter 3: XAML Condensed

</Rectangle>

</Grid>

</UserControl>

/& Test Page For Chapter03 - Windows Internet Explorer [= |[&][£2 |
OO - |g‘ hitp://localhost:355 v| ‘f| X | |L[veSearrb

»

e ahy [@TestFageFerChapter.. I7| - -

€l Local intranet | Protected Mode: On H1o0% -

Figure 3-7

Line
The last of the basic shapes you can draw is the Line. You use the X1, X2, Y1, and Y2 properties to con-

trol its placement on your display area. The X1 and Y1 properties control the starting point of the Line,
and the X2 and Y2 properties control the endpoint.

Although you're free to set the Fi11 property of a Line object, there really isn't much point. A Line by
its very nature has no interior and hence nothing to fill. Instead, you must be sure to set the Stroke and
StrokeThickness properties. Without doing so, your line will not be visible on screen. See Figure 3-8.

<UserControl x:Class="Chapter03.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">
<Canvas x:Name="LayoutRoot" Background="LightBlue">
<Line X1="10" X2="80" Y1="120" Yy2="150"
Stroke="Black"
StrokeThickness="20"/>

</Canvas>

</UserControl>

45

Part |: Silverlight Fundamentals for ASP.NET Developers

@Test Page For Chapter03 - Windows Internet Explorer | = || =1 || &2
() - [E] mtpsnocamostass ~[43] X || Live Search

»

w |{9§ | |@TestpageForChapter... |_| - >

-

~

€l Local intranet | Protected Mode: On H100% ~

Figure 3-8

The Code-Behind

46

As you've seen so far, constructing a user interface in XAML is a fairly simple process. You create a
xaml file, make sure there’s only one root element, and add the correct namespaces to it, before add-
ing whatever controls are needed to achieve your design.

The next step is turning this no doubt lovely, albeit static Ul into a dynamic, event-driven UL. XAML
on its own has no concept of flow control, and XAML certainly can’t be used to directly handle events.
What you need is to borrow the concept of the code-behind file from ASPNET, something you should be
intimately familiar with so that the static, purely visual code can jump into life when paired with man-
aged code behind the scenes.

To enable this interaction, you need to put the link in place between your XAML file and the code-
behind file. To do this, you use the x:Class attribute in the root element. The x: prefix tells you that
this type is contained within the http: //schemas.microsoft.com/winfx/2006/xaml namespace.
This namespace is the link to the language construct types that can be used in your XAML files. The
Class type must be placed in the root element of your XAML file and exists purely to instruct the
XAML compiler that your XAML file’s event handling and control logic can be found in the class
specified. Specifying the class is trivial. You simply need to provide the fully qualified name of the
class and the assembly location that the class is contained within.

The following example shows the usage of the x: Class attribute to link a XAML file with a code-behind
file whose class is named Chapter03 . Page.

<UserControl x:Class="Chapter03.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Loaded="UserControl_Loaded"
Width="400" Height="300">

Chapter 3: XAML Condensed

<Grid x:Name="LayoutRoot"
Background="LightBlue"
MouseLeftButtonUp="LayoutRoot_MouseLeftButtonUp">

</Grid>

</UserControl>

You'll notice the addition of the MouseLeftButtonUp attribute within the Grid element. The value of
this attribute is a string literal with the same name as the event handling method in the code-behind
file. The code within the code behind is listed below:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace Chapter03
{
public partial class Page : UserControl
{
public Page()
{

InitializeComponent () ;

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{

//init code can go in here

private void LayoutRoot_MouseLeftButtonUp (
object sender,
MouseButtonEventArgs e)
Grid grid = sender as Grid;
LinearGradientBrush lgb = new LinearGradientBrush() ;
GradientStop gsl = new GradientStop() ;
gsl.Color = Colors.Green;

gsl.Offset = 0.5;

GradientStop gs2 = new GradientStop();
gs2.Color = Colors.Yellow;

47

Part |: Silverlight Fundamentals for ASP.NET Developers

48

gs2.0ffset = 1;

1lgb.GradientStops.Add (gsl) ;
lgb.GradientStops.Add (gs2) ;

grid.Background = 1lgb;

The first thing to note in the code is the partial keyword against the class definition. The partial
keyword allows a class definition to span multiple files, typically used to separate designer-generated
code from user-written code. When hooking up a code-behind file, the partial class must inherit from
the type of class used as the root element of the document. You can, if you choose, omit the derivation
code, but the run time will assume it, and for the sake of being explicit, it’s best to include it.

Next up you have the first of two handlers that you defined in the XAML file against the UserControl
and Grid elements. UserControl_Loaded will be called when — you guessed it — the UserControl is
loaded by the run time. When you create a page using Visual Studio, no loaded event is automatically
added for you. A constructor, however, is created that takes care of calling InitializeComponent. This
is where designer-generated code will be placed that is used to construct and initialize the object, assign
field-level references to XAML objects, and kick off the initial render for the Silverlight content area.

The InitializeComponent code is physically located in an auto-generated file named [ClassName] .g.cs.
This file can be found in the obj directory of your solution following a compilation, as can be seen in
Figure 3-9.

Solution Explorer - Chapter03 >0 x

2=l 4
ﬁgo\utinn 'Chapter03’ {2 projects)
- & Chapter03
=d Properties

(53] References

Chapter03.csproj.FileListAbsoluf]
Chapterd3.dll
Chapterl3.g.resources
Chapterl3.pdb
Page.g.cs
e ResolveAssemblyReference . cach

H " [} XapCacheFilexml

1= App.xaml

- [Pagexaml

o ﬁg Page.xaml.cs

= (5 Chapterd3Web

[=d| Properties

[:3] References

i [App_Data

B 5 ClientBin

H [Chapterd3.xap
Z| Chapterd3TestPage aspx
Chapter03TestPage html
=| Default.aspx
- & Web.config

4 n 3

Figure 3-9

Chapter 3: XAML Condensed

The second event handler is one that you have to define yourself, the LayoutRoot_MouseLeftButtonUp
handler. You'll notice that it follows the standard .NET event-handling signature, with a reference to the
raising object passed as the first parameter and event arguments passed as the second. The first param-
eter, sender, is cast to an object of type Grid (the type of the element raising this event). A Linear
GradientBrush is then constructed, and two GradientStop objects are added to its GradientStops
collection. The completed LinearGradientBrush is then set as the Background property of the Grid.

If you compile and run the application, you should see a blue square with yellow text. Upon clicking the
Grid with the left mouse button, however, the square will change to a rather sickly green-and-yellow
color. See Figure 3-10.

'.(é Test Page For Chapter03 - Windows Internet Explorer [=1ErER]
O O - | £ ntipy//localhost:3553/Chapter03Testf = | ‘y___|_ .?S_.‘ | Live Search 2~ |

e ——————

»

Wl [{& Test Page For Chapter03

-

€l Local intranet | Protected Mode: On #H100% v

Figure 3-10

Dynamically Loading XAML

As an ASP.NET developer, you're aware that there are many scenarios in which the HTML that makes
up your pages can't just be created and edited at design time in Visual Studio (or your tool of prefer-
ence). For instance, providing different HTML for different users to cater for the individual look and
feel of the user interface is not possible at design time only. Runtime decisions have to be made to alter
the HTML to be output.

It’s almost certainly going to be a requirement in any advanced Silverlight application to allow for require-

ments such as this — the delivery of XAML whose content and structure aren’t completely known until a
collection of certain runtime parameters has been completed.

49

Part |: Silverlight Fundamentals for ASP.NET Developers

Luckily it’s fairly easy to accomplish the dynamic generation of XAML on the server; in fact, it should feel
very familiar to you, especially if you've written any AJAX code to return discrete portions of a page.

There are two techniques that can be employed when it comes to dynamically creating XAML: dynami-
cally creating an entire XAML page and referencing it from within the plug-in declaration, and dynam-
ically creating fragments of XAML that can be added to an in-memory Silverlight object tree previously
created. You'll look at the first approach in this chapter as it involves no Silverlight coding, and you'll
look at the second technique in Chapter 4.

Referencing a Server-Side Page That Dynamically Creates the XAML

The basic premise is this: The ASP.NET Silverlight server control has a Source property that is usually
set to the location of the Silverlight applications .xap package (more on both the control and .xap files
in Chapter 4). However, you're free to set this to the location of any arbitrary XAML file you choose.

In point of fact, you're free to set this property to the location of any file providing it returns a valid
stream of XAML.

Consider the following declaration for an ASPNET Silverlight server control in the file
LoadDynamicXAML.aspx.

<%@ Page Language="C#" AutoEventWireup="true" %>

<%@ Register Assembly="System.Web.Silverlight"
Namespace="System.Web.UI.SilverlightControls"
TagPrefix="asp" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" style="height:100%;">
<head runat="server">
<title>Load Dynamic XAML Example</title>
</head>
<body style="height:100%;margin:0;">
<form id="forml" runat="server" style="height:100%;">
<asp:ScriptManager ID="ScriptManagerl" runat="server">
</asp:ScriptManager>
<div style="height:100%;">
<asp:Silverlight ID="Xamll"
runat="server"
Source="~/DynamicXAML.ashx"
MinimumVersion="2.0.30523"
Width="100%"
Height="100%" />
</div>
</form>
</body>
</html>

You can see in this example that the Source property hasn’t been set to either a valid Silverlight pack-
age (.xap file) or, indeed, a static XAML file, but instead an arbitrary ASP.NET generic handler. This
handler will be responsible for returning a valid stream of XAML to the caller, in this case the ASPNET
Silverlight server control.

50

Chapter 3: XAML Condensed

We chose a handler in this instance rather than an .aspx file because a handler is more lightweight and
we didn’t need the benefit of the full-page life cycle provided inherently by the page object model.

Now, take a look at the contents of the file DynamicXAML.ashx:

using
using
using
using
using
using
using
using

System

System.
System.

System

System.

System

System.
System.

7

Collections;
Data;

.Ling;

Web;

.Web.Services;

Web.Services.Protocols;
Xml .Ling;

namespace Chapter03Web

{

/// <summary>
/// Summary description for Scodebehindclassname$
/// </summary>

[WebService (Namespace = "http://tempuri.org/")]
[WebServiceBinding (ConformsTo = WsiProfiles.BasicProfilel_1)]

public class DynamicXAML

{

"http://schemas.microsoft.com/client/2007" + "\"

THttpHandler

public void ProcessRequest (HttpContext context)

{

}

context.Response.ContentType = "text/xaml";

context.Response.Write("<Canvas xmlns=" + "\"" +

") g

context.Response.Write("xmlns:x=" + "\"" +
"http://schemas.microsoft.com/winfx/2006/xaml" + "\"
context.Response.Write ("Width=" + "\""
context.Response.Write ("Height=" + "\"" + "480" + "\"");
context.Response.Write(">");

a5

") g

"GAQ"

context.Response.Write ("<TextBlock Text=" +

"Hello,

AN

LA

World" +

")

AN

") g

context.Response.Write ("Foreground=" + "\"" + "Blue" + "\"

context.Response.Write("Canvas.Top=" + "\"" + "10" + "\"

context.Response.Write ("Canvas.Left="

context.Response.Write("</Canvas>") ;

public bool IsReusable

{

get
{

return false;

4e

LA

ax

"1Q"

4

m\nu

") g

)

4e

/>");

51

Part |: Silverlight Fundamentals for ASP.NET Developers

52

Aside from the boilerplate code that is generated for you by the Visual Studio IDE when you create a
new generic handler, you can see a series of calls to context .Response.Write that send the required
XAML to the output stream. Here you're free to use any logic necessary to customize the XAML that
is returned, although in this case, for the sake of example, the text Hello, World will be displayed in a
Canvas object. A more realistic scenario might see you querying a database to return specific user pref-
erence information.

Take a look at the first line of code within the ProcessRequest method — you should notice that the
default ContentType of text/plain has been replaced with text/xaml.

So what exactly will this do? Well, the contentType directive helps a browser decide how to display
the content. If you navigate using the browser directly to this .ashx page, the browser will render the
screen shown in Figure 3-11.

@ 3563/DynamicXAML.ashx - Windows Internet Explorer = |[E[E=]
@U - [] nttp://iocalnost:3553/DynamickAMLashx +| 4 | X || Live Seorch A -
m — = = ; »
e |ghrtp-fnocamostasmnamicxmLa.ahx [| - ~ deh ~ [k Page * i} Tools ~
- <Canvas xmins="http://schemas.microsoft.com/client/2007"
xmins:x="http:/ / schemas.microsoft.com/winfx/2006/xaml" Width="640"
Height="480">
<TextBlock Text="Hello, World" Foreground="Blue" Canvas.Top="10"
Canvas.Left="10" />
<f/Canvas>
Done € Local intranet | Protected Mode: On H100% ~
Figure 3-11

Notice that the browser has recognized that the content is not just plaintext and has formatted it nicely
as it would XML. Now alter the ContentType and set it back to its default of text /plain like so:

context.Response.ContentType = "text/plain";
If you navigate directly to this page now, you will see the screen shown in Figure 3-12.

It’s not that different, but having the browser display it as collapsible, color-coded XML in a complicated
file is a real bonus. If you're going to use this technique, we can guarantee that you'll spend quite a bit
of time navigating directly to the handler or web page responsible for outputting your XAML, trying to
work out where you've missed a quote or angle bracket. In addition, it’s good practice to be explicit, so
you should set the ContentType correctly.

Assume that there is a requirement to add n lines of text to this file, the content of which is not avail-
able until run time, and you want to perform this operation on the server. By stripping out the current

Chapter 3: XAML Condensed

hardcoded <TextBlock> element and replacing it with a function call, you are able to satisfy this

requirement very easily.

€

3553/Dy ICKAML.ashx - Windows Internet Explorer

i(? aflp |ghﬂpJﬂocalhosr3553nynam\cXAMLashx l_|

==

=
@U +] hitps//localnost:3553/DynamicKAM Lashx

= ‘ "_‘!‘ ‘ X | | Live Search

Biv B - B v rase ~ Qoo

2 |

E

1]

il

-

<Canvas xmlns="http://schemas.microsoft.com/client/2007" xzmlns:x="http://schemas.microsoft

Done

G'! Local intranet | Protected Mode: On

%, 100%

Figure

312

Alter DynamicXML.ashx to implement this function:

using
using
using
using
using
using
using
using
using

System

System.
System.
System.
System.
System.
System.
System.
System.

Collections;

Data;

Ling;

Web;

Web.Services;
Web.Services.Protocols;
Xml.Ling;
Collections.Generic;

namespace Chapter03Web

{

/// <summary>
/// Summary description for S$codebehindclassname$
/// </summary>

[WebService (Namespace = "http://tempuri

[WebServiceBinding (ConformsTo = WsiProfiles.BasicProfilel_1)]

public class DynamicXAML : IHttpHandler

{

publ
{

ic DynamicXAML () : base()

this.PopulateSimulationData () ;

.org/")]

public void ProcessRequest (HttpContext context)

{

context.Response.ContentType =

"text/xaml";

53

Part |: Silverlight Fundamentals for ASP.NET Developers

context.Response.Write("<Canvas xmlns=" + "\"" +
"http://schemas.microsoft.com/client/2007" + "\" ");
context.Response.Write("xmlns:x=" + "\"" +
"http://schemas.microsoft.com/winfx/2006/xaml" + "\" ");
context.Response.Write ("Width=" + "\"" + "640" + "\" ");
context.Response.Write ("Height=" + "\"" + "480" + "\"");
context.Response.Write(">");

this.WriteTextLines (context) ;

context.Response.Write("</Canvas>") ;

private void WriteTextLines (HttpContext context)
{

int canvasTop = 10;

int canvasLeft = 10;

foreach (string lineData in this.sampleData)

{
context.Response.Write ("<TextBlock Text=" + "\"" +
lineData + "\" ");
context.Response.Write("Foreground=" + "\"" + "Blue" + "\" ");
context.Response.Write("Canvas.Top=" + "\"" +
canvasTop.ToString () + "\" ");
context.Response.Write("Canvas.Left=" + "\"" +
canvasLeft.ToString () + "\"" + " />");
canvasTop += 20;
}

private List<string> sampleData = new List<string>();

private void PopulateSimulationData ()

{
sampleData.Add("This is the first line");
sampleData.Add("This is the second line");
sampleData.Add("This is the third line");
}
public bool IsReusable
{
get
{
return false;
}
}

The code is very simple. When the handler first loads, a call is made to PopulateSimulationData().
This function does nothing more than populate a private member variable of type List<String> with
some sample data for you to iterate over.

54

Chapter 3: XAML Condensed

As the handler is being processed, the WriteTextLines () method is called. Here, the sample data is
iterated over, and the correct XAML markup to be output is appended to the output stream. The canvas
.Top and Canvas . Left properties are also set for each TextBlock, with the Canvas . Top property
being incremented by 20 each time so the lines of text won’t overwrite each other on the canvas.

Browsing directly to the page will give the output shown in Figure 3-13.

é 355310 icXAML.ashx - Windows Internet Explorer =EIEE]
&) - [E] mmsmocamostssmy 45| X | [Lie seoren P -]
e [@hnp:mocalhostaa_ﬁamy._l_| - ~ = > i) Page v “

- <Canvas xmins="http://schemas.microsoft.com/client/2007"
xmins:x="http:/ / schemas.microsoft.com/winfx/2006 /xaml"
Width="640" Height="480"=>
<TextBlock Text="This is the first line" Foreground="Blue"

Canvas.Top="10" Canvas.Left="10" />
<TextBlock Text="This is the second line" Foreground="Blue"
Canvas.Top="30" Canvas.Left="10" />
<TextBlock Text="This is the third line" Foreground="Blue"
Canvas.Top="50" Canvas.Left="10" />
=/Canvas>

Do

€l Local intranet | Protected Mode: On H100% ~

Figure 3-13

Note the dynamically generated XAML to instantiate and populate three TextBlock elements. When
you access this via a Silverlight-hosted control, you get the correct output, as shown in Figure 3-14.

(& Load Dynamic XAML Example - Windows Internet Explorer [==EE]
OO - |§l By e s 355/ B '.‘ s |.>.< | |.“.V*.?..5.E‘”E“ 2 -
W [@LuadDynanchAMLEL l_| - v 8 v [Page v -
This is the first line

This is the second line
This is the third line

Do

€8 Local intranet | Protected Mode: On #100% ~

Figure 3-14

55

Part |: Silverlight Fundamentals for ASP.NET Developers

Available Tools

56

There are two integrated development environments that you can use to author Silverlight 2 applica-
tions: Microsoft Visual Studio 2008 and Microsoft Expression Blend 2. Throughout the remainder of
this book, the focus will be on using Visual Studio 2008 to author your Silverlight applications. This
book is aimed at ASPNET developers first and foremost, and the assumption is that this will be your
tool of choice. However, it’s worth taking a look at Expression Blend, as there’s a very good chance you
may use it to construct some advanced Ul or animation XAML, or that designers in your team will.

Expression Blend is Microsoft’s professional design tool for creating rich user experiences using WPF and
Silverlight. Using Expression Blend, a designer can create both Silverlight 1 and 2 applications, construct
a compelling user interface using the design-oriented IDE, and then hand the files over to a developer
who can open the project within Visual Studio to add the code. Neat. (Of course, a developer is also free
to create the application first using Visual Studio with a typical developer’s bland and tasteless UI, add
all the necessary code, and then ship the files to a designer who can open them directly in Expression
Blend to beautify them.)

Expression Blend gives designers a first-class environment for manipulating WPF and Silverlight
user interfaces, without the complexity and baggage that come with the full programming support
in Visual Studio.

Some of the features within Blend include:

Vector drawing tools, including text and three-dimensional (3D) tools
Real-time animation

3D and media support

Real-time design and markup views

The ability to import artwork from Expression Design

I Ay I I A N

Interoperability with Visual Studio

To create a rich and compelling WPF or Silverlight UI, you don’t have to use Expression Blend, but from
a pure design perspective, it certainly makes the job much easier and negates the need for designers to
wade through the hefty Visual Studio IDE for creating the Ul as they had to do previously.

Enriching your Visual Studio—created XAML file is as easy as right-clicking on the XAML file in Solution
Explorer and selecting the “Open in Expression Blend” option. Figure 3-15 shows the IDE in its default
state and gives you a good idea about the look and feel of Expression Blend.

So, Expression Blend is a great visual tool for constructing the XAML that comprises your user inter-
face, and it gives designers a much richer design-time experience for accomplishing tasks like anima-
tion and media support within your application.

If you need to add code to your WPF or Silverlight application, however, youre going to need to use
Visual Studio, as Expression Blend has only the most rudimentary support for code editing (e.g., creat-
ing event handler stubs for objects).

Chapter 3: XAML Condensed

Figure 3-15

Step in Visual Studio 2008. As well as providing native support for working with NET 3.0 (WPE, WF, and
WCE), by downloading and installing the Silverlight tools for Visual Studio, you can also create and edit
Silverlight application projects from within the IDE. The support provided by these tools includes:

Q Project templates for both Visual Basic and C# developers

0 IntelliSense and code generators for XAML

0 Debugging of Silverlight applications

QO Web reference support

0 Integration with Expression Blend

Although lacking the visual design niceties that are bundled with Expression Blend, Visual Studio
comes into its own when it’s being used for what it does best — writing code.

Piecing It All Together

You've taken a look at the XAML essentials and stepped through the odd code snippet to boot. Following
is a simple example combining everything you've learned so far. If you would rather just step through
the code, you can download the code for this chapter from www.wrox. com.

In Chapter 4, more detail is provided about the files that are generated for you, so for now, just take a
leap of faith and follow through as best you can.

57

www.wrox.com

Part |: Silverlight Fundamentals for ASP.NET Developers

The first thing you need to do is fire up Visual Studio 2008 and create a new Silverlight Project called
Chapter 03. Accept the defaults, and the IDE will generate both a Silverlight project and an ASPNET

project to host it in.

Your generated project structure should resemble Figure 3-16 (ignore the LoadDynamicXAML.aspx and
DynamicXAML.ashx files in the image, however; these were added for the previous examples), and the
XAML code editor should be open on the default Page.xaml that was created.

[Chapternd - MicrosoR Visual Studio (=
e [dt View Poje Buld Debup Dats Tooh Test Anaize Vindow Help
R RN N IR T N R LR = Amy CPU RGN - e R
RE I LI L
] Pagmer il diacal - x [SaliA B ST 3R
1K Jaeaam
g SWARTRS T00G/ XARL /pEesenTATICR™ J| | 53 saiutian ‘Chagtens’ 2 projestsy
om/uin R/ 2006/ KaRL" 3 craptros
[# Ll Properties
] W Gl References
3 t* Backgrcund=-Mnite=s W | Appaami
i i = Pagesami
i . (] Cupteowen
Ll Fropenies
e @l Meterenees
] App.Duts
W 3 Coentin
) ChasamostesEage. sz
Chactertitestiage himi
ult g
exnn sir
] LoaaDymamiceaMLasp
] uwermgne
15 Web.centig
JE ~ i X
Harme-
il 1) Cens
Fromerty mstig vt mmalabie
il '
EHAML @ Preview (3 Geid fLayoutfiool) UserControlGnd mEE|
L Larsd Lt
Figure 3-16

To display text in Silverlight, you use the TextBlock object. (More information on this and other con-
trols can be found in Chapter 6, “Silverlight Controls.”) Add a TextBlock element to the page, and set

its properties as in the following code:

<UserControl x:Class="Chapter03.Page"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="White">

<TextBlock Name="textToDisplay"
Canvas.Left="10"
Canvas.Top="10"
Text="This is our Text" />

</Grid>

</UserControl>

58

Chapter 3: XAML Condensed

If you have Expression Blend installed, try right-clicking on the Page.xaml file in Solution Explorer and
selecting “Open in Expression Blend.” Expression Blend will open the file, and any changes you now
make using Expression Blend can be saved and reloaded in the Visual Studio project. Likewise, changes
you make in Visual Studio can be saved and reloaded in Expression Blend.

You're now free to use the design-oriented features of Expression Blend to beautify your page in any
way that you see fit. For now, add a simple animation to the TextBlock. If you don’t have Expression
Blend installed, you can copy the generated XAML that is shown shortly.

By default, the Design Workspace is shown in Expression Blend. You need to open up the Animation
Workspace, so from the top-level Windows menu, select Animation Workspace. Your Blend Ul should
look something like Figure 3-17.

o] CRapIArO0aIn . MiCToRoM Exprension and 7.5 Juns J008 Pravew

his is eur Text

AEa e SE

Figure 3-17

You now need to create a new Storyboard and Timeline. In the “Objects and Timeline” panel, you should
see a white + button next to some grayed-out text that reads (No Storyboard open). Press this button to
open the Storyboard dialog, and then hit the OK button to add a new Storyboard resource. Leave the
name as Storyboard]. See Figure 3-18.

In the top left of the IDE, you should now see some red text stating that Timeline recording is on. Select the
TextBlock, and then select one of the second markers in the Timeline at the bottom of the IDE. The
second marker you select will be the length of time that this particular timeline will run for. You're
going to increase the text size. This will happen gradually over the number of seconds you select here,
so something like 10 is appropriate.

Once you've done this, all that remains to do is to select the Properties panel and change the TextBlock

text size to something larger. Try 72 (see Figure 3-19), and then save your project and close Expression
Blend.

59

Part |: Silverlight Fundamentals for ASP.NET Developers

60

o] CRapiar00ain . Micronof Expression iend 7.5 Juna J008 Pravew
Tie [View Obpec oo Window Hep

his is eur Text

B Detstape

¥ uta
« ELN Dbt

Row 0

Cokamn 0

Morontalgnment =

VerticalAlignmend

ABENe e

Figure 3-19

When you switch back to Visual Studio, you should be presented with a message box letting you know
that Page.xaml has been altered and asking if you would like to reload it. Select Yes, and the XAML should
now look like this (again, if you don’t have Expression Blend, just copy this code straight into your file):

<UserControl x:Class="Chapter03.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Chapter 3: XAML Condensed

Width="400" Height="300">
<UserControl .Resources>
<Storyboard x:Name="Storyboardl">
<DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
Storyboard.TargetName="textToDisplay"
Storyboard.TargetProperty=
" (TextBlock.FontSize) ">
<SplineDoubleKeyFrame KeyTime="00:00:10" Value="72"/>
</DoubleAnimationUsingKeyFrames>
</Storyboard>
</UserControl .Resources>

<Grid x:Name="LayoutRoot" Background="White">

<TextBlock Name="textToDisplay"
Text="This is our Text" />

</Grid>

</UserControl>

Note the use of object property syntax to allow the setting of properties that simply couldn’t be speci-
fied using string literals. Note also the use of markup extensions to bind a control property to another

property.

Chapter 14, “Graphics and Animation,” will walk you through the syntax for this animation, so don’t
concern yourself overly with it for now.

All that remains to be done is for the animation to be started. Switch to the code behind, and add this
line of code to the constructor:

Storyboardl.Begin() ;

If you hit F5 in Visual Studio, you should be rewarded with the text gradually increasing in size over
the time period you specified in the Expression Blend IDE. By now you should be starting to appreci-
ate the new-found ease with which developers and designers can work together, brought about in most
part by the ability of both Expression Blend and Visual Studio to work cleanly with the files in question.

Chapter 4 goes over the Silverlight project structure and hosting Silverlight in ASPNET in more detail.

Summary

In this chapter, you have taken your first in-depth look at XAML. You started off by learning why it’s
good to know XAML, even if your favorite editor of choice can spit it out for you. You then walked
through the building blocks of a XAML file, starting off with the essential namespace declarations
before moving on to the syntax governing the elements contained within it.

You learned about object and property syntax, to help specify parameter values that required more
than string literals, and you also learned about the Type Conversion process that exists to help with
this. You also looked at markup extensions and how they can be used to specify values that already
exist in the Resources section of your file.

61

Part |: Silverlight Fundamentals for ASP.NET Developers

62

You then walked through some basic drawing concepts and looked, albeit briefly, at three of the rudi-
mentary shape classes: E11ipse, Rectangle, and Line.

The chapter then showed how you can bring your static XAML file to life by linking it with a code-behind
file, a concept close to your ASPNET hearts, before showing how more ASPNET techniques can be used
to help dynamically generate the XAML itself.

Finally, you looked at the two major IDEs to help you build Silverlight applications — Visual Studio 2008
and Expression Blend 2.

If you have been itching to get coding, Chapter 4 will take you through the ins and outs of program-
ming against the Silverlight APL

Programming Silverlight

In this chapter, you will go through the fundamentals of programming a Silverlight application,
looking at the composition of a typical application as well as the feature-agnostic programming
constructs that are used when writing all Silverlight 2.0 applications.

You'll start by examining the file and asset structure of a default application as well as the processes
involved in actually hosting your Silverlight application within your web site. A discussion on the
required level of JavaScript knowledge is provided also, as is a look at the Silverlight object model.
Bidirectional communication between the HTML Document Object Model and your Silverlight
application is also discussed.

Continuing, various programming features are explained that are used throughout the Silverlight
framework. If you are familiar with Windows Presentation Foundation (WPF), you may feel com-
fortable enough to skim over these as you may well have seen them or something similar before.

Code samples will also be shown that will allow you to download component pieces of your
Silverlight application on demand rather than all at once, which is a necessity for producing appli-
cations that perform well over the Internet.

How a Silverlight Application Is Composed

A Silverlight application can be made up of many different components, each of which may be
needed at different times. Because of this the Silverlight team wanted to make sure that the appli-
cation model and structure could provide for richer and functionally more complex RIAs. In par-
ticular, they wanted to provide the ability to package and deploy an application with its constituent
parts, each of which can be described in a manifest file. This file would specify localization and
entry point information, among other items of information.

Part |: Silverlight Fundamentals for ASP.NET Developers

As some of the files that a Silverlight application can work with could be very large (such as audio and
video), the Silverlight application should also have the ability to lazy-load resources, which can be refer-
enced both from within its package and from outside.

Packaging a Silverlight Application

64

When you build a Silverlight application, its constituent parts are packaged together in a simple ZIP
archive for deployment. This archive is named [ProjectName].xap and is located in the ClientBin direc-
tory of the hosting web application.

To examine this in more detail, fire up Visual Studio, and create a new Silverlight application called
Chapter04. The initial dialog box that will open to take more information regarding your project is
shown in Figure 4-1.

Add Silverlight Application [Fr=]

To run a Silverlight application, it needs to be hostedin an HTML Web page. How
do youwant to hostthis Silverlight application?

(@ Add anew Web to the solution for hosting the control

() Dynamically generate an HTML test page to host Silverlight within this project

Options

Project Type: Web Site -

Name: SilverlightApplication 1Web

[Copy to configuration specificfolders

Figure 4-1

There are three options for how the Silverlight project should be created in relation to a project that
can be used to host it. The default option is for a new Web to be added to the solution that can host the
Silverlight application. When this option is selected, the Project Name and Project Type textboxes are
available for entry. Name is fairly self-explanatory. Type allows you to select whether you want a Web
Application Project or a full blown web site to be created. The former will use the ASPNET develop-
ment Web server, and the latter will opt for IIS.

The next option down will create a basic HTML test page to host your Silverlight application, and the
final option allows you to link your Silverlight control into a preexisting web site.

For this example, the first option is selected, and a Web Application Project will be created to host the
Silverlight application, named Chapter04_Web.

If you take a look at Solution Explorer, you should have a directory and file structure that resembles
Figure 4-2.

Chapter 4: Programming Silverlight

[P] solution ‘Chapter0d’ (2 projects)
B ¢ Chapteros

[=d] Properties
[+3] References
H Ei Appaxaml
7 [Pagexaml
B [Chapterdaweb
[[=d| Properties
[[zl References
(3 App_Data
- @ ClientBin
A IE Chapter04TestPage.aspx
- [#] ChapterD4TestPage.html
&= IEI Default.aspx
|_'$ ‘Web.config

Figure 4-2

Before you do anything else, build the entire solution, and you will see that contained within the
ClientBin directory in the hosting application is a file called Chapter04.xap, as shown in Figure 4-3.

Solution Explorer =]
|

m Solution 'Chapter04” (2 projects)
B & Chapteros
|=d| Properties
[id] References

[®} App.xaml
: (| Page.xaml
= E# chapterdaweb
|=d] Properties

[id] References
-+ [App_Data
- [ClientBin
[Chapterd4.xap
2| ChapterD4TestPage.aspx
[#] ChapterDaTestPage.html
Z| Default.aspx
‘Web.config

el

Figure 4-3

As previously mentioned, this file is actually a standard ZIP archive that contains the deployed version
of your Silverlight application. In order to inspect the assets within, navigate to the file, rename it from
Chapter04.xap to Chapter04.zip, and simply open it. You will see Chapter04.dll along with other refer-
enced .dlls required for your application to function and a file called AppManifest.xaml.

65

Part |: Silverlight Fundamentals for ASP.NET Developers

If you open the AppManifest.xaml file, you will see the following markup:

<Deployment xmlns="http://schemas.microsoft.com/client/2007/deployment"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
EntryPointAssembly="Chapter04"
EntryPointType="Chapter04.App"
RuntimeVersion="2.0.30523.6">
<Deployment.Parts>
<AssemblyPart x:Name="Chapter04" Source="Chapter04.dll" />
</Deployment.Parts>
</Deployment>

If you start at the top of this file, the first element you see is the Deployment element. As well as
defining the two XAML namespaces, you can see that two attributes are included for specifying both
an assembly and class to use as entry points when the application is loaded —
EntryPointAssembly and EntryPointType. The class that is specified in the EntryPointType
attribute must inherit from System.wWindows .Application and be the fully qualified type name.

Next you will see that the constituent parts of the Silverlight application are defined in the Deployment
.Parts element. Only the application assembly itself must be declared in the manifest file. Other assem-
blies are optional to allow you to lazy-load them yourself if need be. This technique uses the built-in
WebClient object and is discussed at the end of this chapter, but realize that for performance reasons,
best practice requires that only the files that are needed for the application to run should be specified
here. Files containing functionality that is either not required immediately or sometimes unused
should be lazy-loaded using the WebClient object.

System.Windows.Application

66

The System.wWindows.Application class is always the starting point for a Silverlight application and
as such encapsulates entry point information, application lifetime management, global resources, and
the ability to handle unhandled exceptions.

Within the Silverlight file structure, the App.xaml and App.cs files provide you with access to the
Application class. For instance, you have the option of handling the application’s Startup and Exit
handlers, as well as the UnhandledException handler, which are wired up for you by default in the
code behind.

<Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="Chapter04.App"
>
<Application.Resources>

</Application.Resources>
</Application>

The preceding code shows the App.xaml default markup when you create a new project. Below you can
see the code behind for this file, with the event handlers pre-wired for you in the constructor:

using System;
using System.Collections.Generic;

Chapter 4: Programming Silverlight

using
using
using
using
using
using
using
using
using

System.
System.

System

System.

System

System.
System.
System.
System.

Ling;

Net;

.Windows;
Windows.Controls;
.Windows .Documents;
Windows . Input;
Windows.Media;
Windows.Media.Animation;
Windows . Shapes;

namespace Chapter04

{

public partial class App : Application

{

publ
{

priv

{

priv.

{

}

priv

ic App()

this.Startup += this.Application_Startup;
this.Exit += this.Application_Exit;
this.UnhandledException += this.Application_UnhandledException;

InitializeComponent () ;

ate void Application_Startup (object sender, StartupEventArgs e)

this.RootVisual = new Page();

ate void Application_Exit (object sender, EventArgs e)

ate void Application_UnhandledException (object sender,
ApplicationUnhandledExceptionEventArgs e)

// If the app is running outside of the debugger then report the
// exception using

// the browser's exception mechanism. On IE this will display it a
//yellow alert

// icon in the status bar and Firefox will display a script error.
if (!System.Diagnostics.Debugger.IsAttached)

{

// NOTE: This will allow the application to continue
//running after an exception has been thrown
// but not handled.
// For production applications this error handling should
//be replaced with something that will
// report the error to the website and stop the application.
e.Handled = true;
Deployment.Current.Dispatcher.BeginInvoke (
delegate { ReportErrorToDOM(e); 1});

67

Part |: Silverlight Fundamentals for ASP.NET Developers

}
private void ReportErrorToDOM (ApplicationUnhandledExceptionEventArgs e)
{

try

{

string errorMsg = e.ExceptionObject.Message +
e.ExceptionObject.StackTrace;
errorMsg = errorMsg.Replace('"', '\'').Replace("\r\n", @"\n");

System.Windows.Browser .HtmlPage.Window.Eval (
"throw new Error (\"Unhandled Error in Silverlight 2 Application " +
errorMsg + "\");");
}
catch (Exception)
{
}

Notice in the code above how a new instance of the pPage class is instantiated and given to the
Application.RootVisual property. This line of code sets the Page class as the initial UI to load and
display. If you add another page to the Silverlight project that should display first, you should change
this line to accept an instance of this new page.

Within the Startup event, you can also capture and process any initialization parameters that have
been passed to the Silverlight application via the initParams property of the containing <OBJECT> tag.

Consider the following example, which shows the initParams property being set via the
<asp:Silverlight> element:

)

<%@ Page Language="C#" AutoEventWireup="true" %>

<%@ Register Assembly="System.Web.Silverlight"
Namespace="System.Web.UI.SilverlightControls"
TagPrefix="asp" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" style="height:100%;">
<head runat="server">
<title>Chapter04</title>
</head>
<body style="height:100%;margin:0;">
<form id="forml" runat="server" style="height:100%;">
<asp:ScriptManager ID="ScriptManagerl" runat="server"></asp:ScriptManager>
<div style="height:100%;">
<asp:Silverlight ID="Xamll"
runat="server"
Source="~/ClientBin/Chapter04.xap"
MinimumVersion="2.0.30911.0"
Width="100%"

68

Chapter 4: Programming Silverlight

Height="100%"
InitParameters="Paraml=Hello, Param2=World" />
</div>
</form>
</body>
</html>

Notice how the parameters are specified as name=value pairs within the <asp:Silverlight> element.
The following code shows how you can then extract these values at run time from within the startup
event of the Application class:

private void Application_Startup (object sender, StartupEventArgs e)
{

//Assign the root visual object, in this case the Page class
this.RootVisual = new Page() ;

//Extract init params
string paraml = e.InitParams["Paraml"];
string param2 = e.InitParams["Param2"];

Application Instantiation

A Silverlight application is embedded within the containing web page using either an <OBJECT> or an
<EMBED> tag. You can, of course, write this tag and its parameters manually. However, it’s far easier to
simply use the <asp:Silverlight> control, which takes care of emitting the relevant HTML and
JavaScript on your behalf.

Within this <asp:Silverlight> tag, as well as setting the ID and Runat attributes, you simply set the
Source value to the location of the package (or plain XAML file) that contains your Silverlight application,
and the rest is taken care of for you. Any JavaScript files that are required by the <asp:Silverlight>
control at run time are referenced dynamically with the help of the <asp: ScriptManager> control.
(This control is required on the page. If it is omitted, an error message will be raised.)

If for some reason you do still want to write out the plug-in markup manually, you can check out the
[ProjectName]TestPage.html file that is added to your project’s web host when you create a Silverlight
application and associated hosting project. This file contains the bare essential markup for embedding
your Silverlight application within a web page. Note also that this file uses the JavaScript file Silverlight.js
that is placed in the root of the hosting project automatically for you.

As an ASP.NET developer, it’s most likely that you will want to take advantage of the clean model that
<asp:Silverlight> provides rather than electing to write the hosting markup and code manually.

Regardless of which method you use, the end result is always that an appropriate <OBJECT> element is
included within the page and the relevant parameters are specified, as the following HTML shows:

<object data="data:application/x-silverlight,"
type="application/x-silverlight-2" width="100%" height="100%">
<param name="source" value="ClientBin/Chapter04.xap"/>
<param name="onerror" value="onSilverlightError" />
<param name="background" value="white" />

69

Part |: Silverlight Fundamentals for ASP.NET Developers

<param name="minRuntimeVersion" value="2.0.30911.0" />
<param name="autoUpgrade" value="true" />
<a href="http://go.microsoft.com/fwlink/?LinkID=124807"
style="text-decoration: none;">
<img src="http://go.microsoft.com/fwlink/?LinkId=108181"
alt="Get Microsoft Silverlight" style="border-style: none"/>

</object>

Note the href and image parameters are specified within the tag. These will be shown if the plug-in is
not installed and point to the installation location for the Silverlight run time.

There are certain attributes that should be set when you include the plug-in within your page. These are
shown in the following table:

Attribute Description

id This is the name that you can use to reference the plug-in from the HTML DOM.

data This should be set to the Silverlight application MIME type and is used by the
Silverlight plug-in to streamline the instantiation process.

type This should be set to the MIME type of the version of the Silverlight plug-in
that is to be loaded.

height Self-explanatory. Can be set in pixels or as a percentage of the parent container.

width Self-explanatory. Can be set in pixels or as a percentage of the parent container.

As well as these attributes, as previously mentioned, you will also need to specify the Source property,
which should point to the location of your Silverlight package.

Note that if you use the <asp:Silverlight> control, it will take care of applying the data and type
attributes for you automatically to the underlying <OBJECT> tag. Note also that the attributes and events
listed in the following tables may be named slightly differently if set via the <asp:Silverlight> con-
trol, which will ultimately set the properties listed.

There are various other attributes that can be applied against the Silverlight plug-in described in the
following table:

Attribute Description

background The background color of the Silverlight plug-in

enabledHtmlAccess Value used to specify whether the plug-in can be accessed from the
HTML DOM

initParams Allows the passing of name=value pairs to aid initialization.

maxFramerate Integer specifying the desired frame rate. This is the maximum value
and can be slower than this as it is dependent on both system load and
performance.

70

Chapter 4: Programming Silverlight

Attribute Description

splashScreenSource Can be set to an optional XAML splash screen that should be shown while
the package is loading.

windowless Determines whether the plug-in should run in windowed or windowless

mode. On a Mag, this property is ignored, and the plug-in always runs
windowless.

The Silverlight plug-in also exposes various events that you can wire up to client-side JavaScript han-
dlers if desired. The following table lists these:

Event Description

onError Occurs when an error is raised from the Silverlight appli-
cation instance.

onResize Fires when the ActualHeight or Actualwidth of the
Silverlight plug-in is altered.

onLoad Fires when the plug-in is instantiated and all content has
been loaded (full object tree generated and all XAML
parsed).

onSourceDownloadComplete Fires when the application package specified by the
Source property has been downloaded.

onSourceDownloadProgressChanged Fires when the application package specified by the
source property is downloading.

It’s worth looking briefly at the steps taken when a Silverlight application is instantiated, to help cement
your understanding of the runtime flow and application lifetime:

1.

A

The <OBJECT> tag specifies which version of Silverlight is installed (JavaScript will usually have
been used to write out the appropriate tag) and loads the plug-in.

The CLR is kicked off, and an AppDomain is created to host the application.

The main application assembly along with all other assemblies referenced within the manifest
are downloaded and loaded into the AppDomain.

The application object itself is now created using the EntryPointType information in the mani-
fest file. The Startup and Exit handlers are wired up, and any user code in the constructor is
executed.

The startup event is raised, and the Ul is constructed and added to the Application
.VisualRoot property.

The starting page is loaded, the FrameworkElement . Loaded events fire on the elements within,
and the Silverlight plug-in’s OnLoad event is then raised.

71

Part |: Silverlight Fundamentals for ASP.NET Developers

A

72

Basic Silverlight Page

Turn your attention now to the Page.xaml file that is created for you when you create a new Silverlight
application. In keeping with the ASPNET code-behind model, the presentation of the Ul is kept in one
file (the .xaml file), and the logic is coded in the .xaml.[vb or cs] file that is referenced in the root element
of the .xaml file.

<UserControl x:Class="Chapter04.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="White">
</Grid>

</UserControl>

As previously mentioned, a XAML file can contain only one root element. In this example, the root ele-
ment is a UserControl element, and the first child within it is an element used for layout, in this case, a
Grid control named LayoutRoot.

If you need to create another page in your application, this is done by simply adding another Silverlight
UserControl to your project. UserControl separates the component pieces of your application as it
allows you to break your application down into more manageable chunks independently from other
Silverlight controls. UserControl is also used for composing existing controls together that can pos-
sibly be reused later elsewhere.

The code above shows how the code-behind file is referenced using the x: class attribute, specifying
the fully qualified class name to link to. You can also provide an assembly parameter in the x:Class
value. However, if this is omitted (as in this example), the assembly is assumed to be the one that the
project is currently creating.

If you take a look in the code-behind file, you can see that the Page class inherits from UserControl,
and a call to InitializeComponent is made in the object constructor.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace Chapter04
{
public partial class Page : UserControl
{
public Page()

Chapter 4: Programming Silverlight

InitializeComponent () ;

The actual InitializeComponent code is stored in an auto-generated file. The easiest way to view

this code is to simply right-click on the method call and select “Go To Definition.” The code in this auto-
generated file is responsible for actually parsing the XAML and assigning it to the root layout control
specified, in this case, a Grid control. This file is placed in the obj/Debug/ directory, which you can see
within Visual Studio if you select the “Show All Files” icon in Solution Explorer, as shown in Figure 4-4.

Solution Explorer (=]
B2 4

[Solution ‘Chapterdd" (2 projects)
El- & Chapter)4

H [+ |=d] Properties

| B [References

Debug
TempPE
App.g.cs
Chapter04.csproj.FileListAbsolute. bt
Chapter04.dil
Chapter04.g.resources
Chapter04.pdb
Page.g.cs
H _} XapCacheFile.xml
= J.5:3-'5)\\m:l.)(aml
5 ‘E‘] App.xaml.cs
. B |l Pagesaml
! ") pagesaml.cs
B E# Chapterdaweb
- [Z] Properties
- [:3] References
- [} App_Data
& [ClientBin
- [Chapterd.xap
3 E—I Chapter04TestPage.aspx
- |#] Chapter0dTestPage.html
@Default.aspx
- E}Web‘canfig

Figure 4-4

Visual Studio uses this file to hide some of the design time complexity from you, for instance, the cre-
ation of variables within your class to provide strongly typed access to named elements. Consider the

following example XAML:
<UserControl x:Class="Chapter04.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">
<Grid x:Name="LayoutRoot" Background="White">
<Button Width="200" Height="20" Content="Click Me"></Button>

</Grid>

</UserControl>

73

Part |: Silverlight Fundamentals for ASP.NET Developers

The Button control that is contained within the root layout element does not have its x : Name property
specified. This means that to access it from the code-behind file, you have to manually walk the object
tree until you find a Button and work out somehow if this is the But ton you want.

Obviously, what is required is to give this element a unique name, which is done via the x : Name attri-
bute. When this property is set, Visual Studio automatically updates the auto-generated file in two impor-
tant ways: First, it creates an internal Button field named MyButton, and then it takes care of assigning
the actual instantiated element to this object using the following code within InitializeComponent
in the Page.g.cs generated class:

#pragma checksum "C:\Users\SampleUser\Documents\Visual Studio 2008\Projects\Chapter
04\Chapter04\Page.xaml"

"{406ea660-64cf-4c82-b6f0-42d48172a799}" "CB261A118F113240BD454ABE5816C799"

// <auto-generated>

// This code was generated by a tool.

// Runtime Version:2.0.50727.3053

//

// Changes to this file may cause incorrect behavior and will be lost if

// the code is regenerated.

// </auto-generated>

using
using
using
using
using
using
using
using
using
using
using
using
using
using
using
using
using
using
using

System;

System.Windows;
System.Windows.Automation;
System.Windows.Automation.Peers;
System.Windows.Automation.Provider;
System.Windows.Controls;
System.Windows.Controls.Primitives;
System.Windows.Data;

System.Windows .Documents;
System.Windows.Ink;
System.Windows . Input;
System.Windows.Interop;
System.Windows .Markup;
System.Windows .Media;
System.Windows.Media.Animation;
System.Windows .Media.Imaging;
System.Windows .Resources;
System.Windows . Shapes;
System.Windows .Threading;

namespace Chapter04 {

public partial class Page
internal System.Windows

internal System.Windows

System.Windows.Controls.UserControl {
.Controls.Grid LayoutRoot;

.Controls.Button MyButton;

private bool _contentLoaded;

74

Chapter 4: Programming Silverlight

/// <summary>
/// InitializeComponent
/// </summary>
[System.Diagnostics.DebuggerNonUserCodeAttribute ()]
public void InitializeComponent () {

if (_contentLoaded) {

return;

}

_contentLoaded = true;

System.Windows.Application.LoadComponent (this, new

System.Uri ("/Chapter04;component/Page.xaml", System.UriKind.Relative)) ;

this.LayoutRoot = ((System.Windows.Controls.Grid) (this.FindName (
"LayoutRoot"))) ;

this.MyButton = ((System.Windows.Controls.Button) (this.FindName (
"MyButton")));

The line to look for here is the very last one, where the FindName method is used to obtain a refer-
ence to the element, which is then cast to a But ton. This object is then assigned to the member variable
MyButton. FindName is provided by FrameworkElement, which UserControl ultimately derives from.

You're also free to handle the events exposed by the Usercontrol base class yourself, like the Loaded
event, for example. The easiest way to wire these events up is to simply add the event in the XAML file
and have Visual Studio auto-generate the appropriate code behind to create the instance method and
wire it up. Of course, you're free to wire this event up yourself purely in code if you have some decision
making that needs to occur first. The following code shows the wiring up in the XAML file:

<UserControl x:Class="Chapter04.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400"
Height="300"
Loaded="UserControl_Loaded">

<Grid x:Name="LayoutRoot" Background="White">
<Button Width="200"
Height="20"
Content="Click Me"
x:Name="MyButton"></Button>
</Grid>
</UserControl>
The following code shows the auto-generated method in the code behind:
private void UserControl_Loaded(object sender, RoutedEventArgs e)

{
MyButton.Content = "New Content";

75

Part |: Silverlight Fundamentals for ASP.NET Developers

You can see that in the Loaded event, the Content property of the Button is simply reassigned. The
Loaded event is also provided by the base FrameworkElement class and will be called when the ele-
ment in question has completed its layout passes, is rendered, and can be interacted with.

So you've seen at a high level the basic structure of a Silverlight application. It’s managed and instanti-
ated via the System.Windows.Application class, which, in turn, is accessible via the App.xaml and
App.xaml.cs files. You've also seen how pages within a Silverlight application are created by simply add-
ing Silverlight UserControls to the project and using both the XAML and code behind to control the
Ul and program logic.

There now follows a brief discussion on JavaScript and to what extent knowing this language is a
required skill for developing Silverlight applications.

JavaScript — How Much You Need to Know

76

The primary benefit that Silverlight brings to the table is that it allows you to augment your web site by
delivering rich, immersive Uls and content directly within your preexisting web pages. Although you
can choose to run your Silverlight application full-screen and have it as the main UI (more on this in
Chapter 5, “Creating the User Interface”), user permitting, of course, it’s far more likely that it will be
used to place additional content within the structure of an existing page. For example, it can be used

to deliver high-quality video for an advertisement or to render complex animations that would be dif-
ficult and time-consuming to do in DHTML.

In order to interact with and control a typical web page, JavaScript is used to examine, manipulate, and
respond to elements and events within the DOM (the tree structure representing the element hierarchy
of an HTML page). Using ASP.NET allows you to mostly ignore the JavaScript required to drive typi-
cal DOM interaction, as the server-side controls take care of writing this out for you. And the ASPNET
Silverlight and Media controls take away the need for you to include the right js files and add the right
JavaScript method calls to render the <OBJECT> or <EMBED> tag.

But this doesn’t change the underlying fact that all these frameworks and tools exist purely to abstract
away the underlying technologies. On the whole, of course, this is a very good thing, but it can lead to
difficulties in debugging and maintaining the code should (when!) problems arise.

It’s also worth noting that, like most abstractions, they help you to code 80 percent of the application
much more quickly, but the final 20 percent usually requires either working around the framework in
question or bending it to suit your project-specific requirements. This, of course, requires some knowl-
edge of the underlying technologies and components that have been hidden from you in the first place.

Going back to the original point made, which is that a Silverlight application exists within a preexist-
ing page, it’s going to be a very common requirement to access and control the Silverlight application
from the hosting page itself. With the embedded video example previously mentioned, this might be in
the form of playback commands via standard HTML elements (play, pause, stop). Another example
is HTML form elements that are used to gather and then inject user-specific data into the Silverlight
application on the page. This interaction is handled via JavaScript, and thus rudimentary knowledge of
this scripting language is needed. However, you certainly don’t need to worry about having to become
an expert in it, as the code is pretty simple.

Chapter 4: Programming Silverlight

So, much like the discussion in the previous chapter about whether you should learn XAML, you'll
probably be able to get by without worrying about learning it, but to be more proficient and code any
complex interactions, you're going to need to learn the basics at least.

JavaScript — The Basics

JavaScript, JScript, and ECMAScript are related scripting languages that run interpreted within the
browser. As mentioned above, their primary aim is to allow web developers to dynamically alter the
elements that make up an HTML page, validate form input, and be able to respond to events that occur
throughout the web page’s life cycle.

So what’s the difference between JavaScript and JScript and ECMAScript? Well, JavaScript was origi-
nally created by Netscape and announced around 1995. The language proved very successful, and this
prompted Microsoft to create their own implementation, known as JScript, which first shipped with IE
3.0 in 1996. In 1996, Netscape submitted JavaScript to ECMA International for standardization, and
this went through in 1997. ECMAScript is the name of the scripting language standardized by the
ECMA. Although JavaScript and JScript provide features that are not included in ECMAScript, they
both ultimately aim to be compatible with the base standards it specifies.

A lot of ASPNET developers out there never have had the need or the inclination to look at JavaScript.
If you are like them, the next few sections will give you a whirlwind tour of JavaScript. Feel free to skip
this section if you either are already comfortable with JavaScript or really want to try avoiding it as best
you can! This is in no way a thorough examination of JavaScript, but is intended to give you enough
knowledge to get you started should you wish to learn more.

Object Model

The main object model that is used while programming in JavaScript is the document object model
(DOM). This object model allows you to access the elements and members (methods, events, etc.) that
compose the web page being developed, both visual and not. This object model is arranged in a hier-
archical tree, with one root element representing the window working right down to individual input
elements that could appear in a form.

While the DOM is the main object model that is used in JavaScript, alongside this browser-specific object
model are the usual programming constructs required to manipulate and react to the DOM, including
variable declarations, built-in objects to allow you to work with strings and numbers, date/time han-
dling, You get the picture.

Adding JavaScript to a Page

JavaScript functions and statements are written within <script> tags inside a web page. They can also
be written in an entirely separate file with a .js extension and then included within the page using the
src attribute of the <script> tag (as per the Silverlight .js includes).

<script type="text/javascript">
//..script goes in here

</script>

<script src="test.js" />

7

Part |: Silverlight Fundamentals for ASP.NET Developers

Variable Usage

To declare a variable in JavaScript, you use the var keyword followed by the variable name (case sensi-
tive), making sure it begins with either a letter or an underscore.

var myString = "testValue";
var myInt = 42;

var myBool = true;

var myFloat = 3.32;

A variable declared within a function is local to the function that it is declared within. Global variables
can be placed outside of functions and are available following the point of declaration and up until the
page ends.

Functions

Functions are declared using the function keyword followed by a parameter list:

function SomeFunction (paraml, param?2)
{

alert (paraml) ;

alert (param2) ;

}

This function takes two parameters but doesn’t return a value. Note the lack of the void instruction
before the function keyword. Unlike in C#, this is not required in JavaScript. If the function needs to
return a value, the return keyword is used from within the function, but no return type needs to be
specified, as all variables are variants.

function SomeFunction (paraml, param?2)
{

alert (paraml) ;
alert (param?2) ;

return 0;

}
To call a function, simply specify its name followed by any required parameters:
var retVal = SomeFunction(l, 2);
If the function doesn’t return a value, simply omit the variable assignation to the left of the call:

SomeFunction(l, 2);

78

Chapter 4: Programming Silverlight

Conditional Statements

We won't explain each of these as their usage should be obvious to you as a programmer; the following

code demonstrates the main conditional operators:

function SomeFunction (paraml, param2)

{

var a = 10;
var b = 20;

//1f, else and else if
if (a > 10)

alert("a is greater than 10");

if (b == 20)
{
alert("b == 20");
if (a == 10)
{
alert("a == 10");
}
}

if (a < 5)
{

alert("a < 5");
}
else if(a <= 10)

{
alert("a <= 10");
}
else
{
alert ("none of the above");
}
//switch

switch (a)
{
case 10:
{
alert ("first branch");
break;
}
case 20:
{
alert ("second branch");
break;
}
default:

79

Part |: Silverlight Fundamentals for ASP.NET Developers

alert ("neither");
break;

//for statement
for (var 1 = 0; 1 < 10; 1i++)
{

alert(i);

}

var x = 10;

//do loop

do

{
alert (x);
x += 10;

}
while (x <= 30);

//while loop
while (x < 100)
{
x += 10;
alert (x);

Handling Events

Each element specified within the DOM has certain events that can be captured and handled (e.g.,
onclick, onblur, and onfocus). To handle the event, you wire it up in the element declaration and
give it the name of the handler.

<input type="button" value="AnyTest" onclick="SomeFunction(l,2)" />

The body element also allows you to capture and handle the onload and onunload events, onload
occurring when the page is first loaded, and onunload firing when the page is unloaded.

<body onload="PageLoad() ;" onunload="PageUnload() ;">

DOM Manipulation

Every element that exists within the DOM is treated as a node in a hierarchical tree structure, with the
document node forming the root. Consider a very basic HTML page:

<html>
<head>
<title>JavaScript Guide</title>
</head>

80

Chapter 4: Programming Silverlight

<body>
<hl>JavaScript Guide</hl>
<h2>Sibling node</h2>
</body>
</html>

You can see here that the <head> node has a single parent (the <html> node) and a single child (the
<title>node). The <html> node, though, has two direct children (the <head> and <body> nodes),
with the <body> node containing two child nodes (the <h1> element and its sibling the <h2> element).
It’s easy to see how the document is represented as a tree structure from this example.

In order to gain programmatic access to the different nodes at any level in this tree, JavaScript provides
two methods for you to use, document.getElementById and document .getElementsByTagName.

getElementById accepts a single string parameter that corresponds to the id of one of the elements
within the document tree. In the following example, the method is used to access the contents of the h2
element using the innerHTML property:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>JavaScript Guide</title>
</head>
<body>
<hl>JavaScript Guide</hl>
<h2 id="subHeading">Sibling node</h2>
<input type="button" value="click me" onclick="AccessSingleNode()"/>
</body>
<script type="text/javascript">
function AccessSingleNode ()
{
//using document.getElementById.
var element = document.getElementById ("subHeading") ;
alert (element.innerHTML) ;
}
</script>
</html>

This is useful when you want to access a single specific element. If you want to access all elements of a
particular type, you can use the getElementsByTagName method:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>JavaScript Guide</title>
</head>
<body>
<hl>JavaScript Guide</hl>
<h2 id="subHeading">Sibling node</h2>

<input type="button" value="Access Single Node"
onclick="AccessSingleNode()"/>

<h3>first item</h3>

<h3>second item</h3>

81

Part |: Silverlight Fundamentals for ASP.NET Developers

<h3>third item</h3>

<input type="button" value="Access Multiple Nodes"
onclick="AccessMultipleNodes ()" />
</body>
<script type="text/javascript">

function AccessMultipleNodes ()

{
var elements = document.getElementsByTagName ("h3");
for (var i = 0;1 < elements.length; i++)
{
alert (elements[i].innerHTML) ;
}
}
function AccessSingleNode ()
{
//using document.getElementById.
var element = document.getElementById ("subHeading") ;
alert (element.innerHTML) ;
}
</script>

</html>

Note how this method returns an array structure in which each item in the array can be accessed by
using [] syntax and specifying its ordinal.

Once you have obtained a reference to a node within the DOM, properties exist that allow you to jump to
the first child node, the last child node, or the node’s parent (firstChild, lastChild, and parentNode).
To help navigate the DOM further, nextSibling and previousSibling properties are also provided:

<table border="1" id="myTable">
<tr id="firstRow">
<td id="firstCell">this</td>
<td id="secondCell">is</td>
<td id="thirdCell">a</td>
<td id="fourthCell">test</td>
</tr>
</table>

Given the table above, the following function shows how navigation can be achieved:

function NavigateExample ()
{
var table = document.getElementById("myTable");

//reference table body, this will be included automatically if
//not found in the html
var tableBody = table.firstChild;

//reference row
var row = tableBody.firstChild;

82

Chapter 4: Programming Silverlight

alert("row id= " + row.id);

//reference first cell of first row
var firstCell = row.firstChild;
alert("firstCell id= " + firstCell.id);

//reference last cell of first row
var lastCell = row.lastChild;
alert("lastCell= " + lastCell.id);

//reference parent row of first cell
var parentRow = firstCell.parentNode;
alert ("parentRow= " + parentRow.id) ;

//reference second cell of first row
var secondCell = firstCell.nextSibling;
alert ("secondCell= " + secondCell.id);

//reference third cell of first row
var thirdCell = secondCell.nextSibling;
alert("thirdCell= " + thirdCell.id);

As well as being able to access individual nodes in the DOM in this manner, the document object also
contains shortcuts to specific collections of elements/nodes. For example, accessing the members of a
form can be achieved via a call to document . forms [0], where the number passed in to the [] is the
order the form is in the page. (There can be multiple forms in one page.)

<form id="myForm" action="">

FirstName: <input type="text" id="firstName" />

Surname: <input type="text" id="surname" />

<input type="button" value="Send Data" onclick="FormTest();" />
</form>

Given the form above, you can obtain a reference to it and then access its members like so:
//obtain a reference to the form (0 as it's a 0 based collection and this is
//the first and only form

var form = document.forms[0];

//store the value typed into the firstName input box
var firstNameValue = form.firstName.value;

//store the value typed into the surname input box
var surnameValue = form.surname.value;

The above sections are only meant to serve as an introduction to JavaScript, delivering some of the gen-

eral concepts and syntax. To learn more, we recommend that you read Beginning JavaScript, 3rd edition,
by Jeremy McPeak and Paul Wilton (2007, Wrox Press).

83

Part |: Silverlight Fundamentals for ASP.NET Developers

The Silverlight Object Model

As well as the JavaScript DOM, which you use to format and manipulate the hosting page, you also
have access to the Silverlight Object Model, which allows you to create and manipulate the objects that
collaborate to form the content of a Silverlight application.

The visual elements of a Silverlight application are arranged in a tree-like hierarchy. This is why it is
advisable and, indeed, easier to write your markup in XAML, which thanks to its XML roots is inher-
ently hierarchical in format. Although you could compose your Ul entirely in code, this would almost
certainly take you longer and is not recommended.

DependencyObject, UIElement, and FrameworkElement

84

The three base classes DependencyObject, UIElement, and FrameworkElement are the underlying
parents of most of the objects that you will use to construct your Silverlight UI, so it’s important to
appreciate what each one adds to the mix in the inheritance hierarchy.

System.Object
DependencyObject
UIElement
FrameworkElement
System.Windows.Controls.Border
System.Windows.Controls.Control
System.Windows.Controls.Image
System.Windows.Controls.ItemPresenter
System.Windows.Controls.MediaElement
System.Windows.Controls.MultiScaleImage
System.Windows.Controls.Panel
System.Windows.Controls.Primitives.Popup
System.Windows.Controls.TextBlock
System.Windows.Controls.Glyph
System.Windows . Shapes. Shape

First up at the top of the inheritance tree comes the base class of all things in .NET, System.Object.
This is immediately followed by System.Windows . DependencyObject, which provides derived classes
with the ability to take advantage of the dependency property system. Dependency properties are used
extensively in both WPF and Silverlight and allow the value of object properties to be resolved at run time
based on values that exist elsewhere. Good examples of this in action are properties that work in anima-
tions, because as their values alter at run time, they trigger other object properties to be recalculated.

Next in the derivation chain comes UIElement, which provides base information for any element that
intends to participate in the building of the U, in particular, the ability to focus and respond to user
interaction events from the keyboard and mouse.

Finally, you have the FrameworkElement class, whose job it is to extend UIElement by providing layout
abilities, hooks into the different stages of the object’s lifetime, and data binding and resource support.

As you can see from the classes that extend FrameworkElement, if you're writing your own control,
you're more likely to extend one of these (e.g., System.Windows.Controls.Control) than to extend
FrameworkElement itself.

Chapter 4: Programming Silverlight

Walking the Tree

As you saw above in this chapter, the root visual object of a Silverlight application is specified via the
Application object’s RootVisual property and is set to a UserControl instance — the basic building
block or visual component of a Silverlight application.

The Ul is then built up by progressively adding child elements to this control to form a visual tree that
is ultimately rendered by the plug-in. A common programmatic task then, as with any object tree, is to
be able to access either an individual element within this tree or to be able to step through the tree one
element at a time.

Consider the first task — accessing an individual element by name. If you have provided your XAML
elements with an x : Name attribute, accessing them programmatically is as easy as simply referencing
them in code by their x : Name value. You saw above how Visual Studio takes care of the plumbing code
required to achieve this, importantly, how the FrameworkElement . FindName command is used to
return the correct instance.

Now consider walking through the visual object tree from the root downward. This isn’t as easy as you
might at first think. Unfortunately, not all the container classes share the same programmatic API for
walking into their children, which leaves you needing to have prior knowledge of the tree beforehand
(somewhat negating the point of walking an object tree) or writing a lot of code to test if the object is of
a certain type and if so is using its API for walking its children.

Finally, imagine that you have dynamically added further objects to your object tree, perhaps using
the XxamlReader . Load command. But Visual Studio will not have generated the plumbing code for your
elements even if they have their x : Name set, and thus you will have to use the FrameworkElement
.FindName function yourself. Again, this can only be used if your elements have still been assigned
an x:Name value in the XAML that you opt to load dynamically.

Luckily, the Silverlight team was aware of the inherent difficulties in walking this tree and have (as in
WPF) provided the VisualTreeHelper class, which takes care of ascertaining for you the child contents
of a given control. An example showing its usage follows, starting with some XAML to lay out a basic UI:

<UserControl x:Class="Chapter04.VisualTreeHelperExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<StackPanel x:Name="LayoutRoot" Background="White">

<Button x:Name="btnWalkTree"
Content="Walk Tree"
Click="btnWalkTree_Click"/>

<Border CornerRadius="10" Background="Yellow">
<TextBlock x:Name="tbNamel"
Text="Santa Clause"
HorizontalAlignment="Center"
VerticalAlignment="Center"
Margin="3" />
</Border>

85

Part |: Silverlight Fundamentals for ASP.NET Developers

<Border CornerRadius="10" Background="AliceBlue">
<TextBlock x:Name="tbName2"
Text="Mickey Mouse"
HorizontalAlignment="Center"
VerticalAlignment="Center"
Margin="3" />
</Border>

<Border CornerRadius="10" Background="Green">
<TextBlock x:Name="tbName3"
Text="The Tooth Fairy"
HorizontalAlignment="Center"
VerticalAlignment="Center"
Margin="3" />
</Border>

</StackPanel>

</UserControl>

If you examine this XAML, you will see that it consists of a StackpPanel object containing five items: a
Button that is wired up to an event handler, and four TextBlock elements contained within individual
Border elements.

Now, turn your attention to the code-behind file and the Button event handler in particular:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace Chapter04
{

public partial class VisualTreeHelperExample : UserControl

{

public VisualTreeHelperExample ()

{
InitializeComponent () ;

}

private void btnWalkTree_Click (object sender, RoutedEventArgs e)

{
//Walk the current visual tree using the VisualTreeHelper
this.WalkChildren (this) ;

}

private void WalkChildren (DependencyObject depObject)
{

86

Chapter 4: Programming Silverlight

//grab hold of the name here so it can be inspected
string name = String.Empty;
FrameworkElement element = depObject as FrameworkElement;
if (element != null)
{

name = element.Name;

}

int childCount =
VisualTreeHelper.GetChildrenCount (element) ;
if (childCount > 0)
{
for (int 1 = 0; i < childCount; i++)
{
this.WalkChildren (
VisualTreeHelper.GetChild(element, i)
)5

In the handler, you can see that a call is made to a method called walkChildren, passing in the User
Control instance, which is the root of the visual tree. Within this method, the VisualTreeHelper
.GetChildrenCount and VisualTreeHelper.GetChild methods are used, along with a recursive
call to walkChildren, to allow you to inspect every item in the current visual tree. This works for
objects that have been added to the tree dynamically also.

If you compile and run the example, you may be surprised at just how many objects make up a single
control such as Button!

Dynamically Loading XAML

In Silverlight, it is possible to dynamically alter the in-memory object tree that forms the user interface.
A concrete example will help press this point home. Consider the following XAML and code, from the
file DynamicXAML.xaml and .cs in the Chapter 4 folder from this book’s web site:

<UserControl x:Class="Chapter04.DynamicXAML"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Grid x:Name="LayoutRoot"
Background="White"
ShowGridLines="True">

<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition/>

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition/>

87

Part |: Silverlight Fundamentals for ASP.NET Developers

<RowDefinition/>
</Grid.RowDefinitions>

<Button x:Name="btnOK"
Content="0K"
Grid.Column="0"
Grid.Row="0" />

<Canvas x:Name="dynamicXamlPlaceholder"
Grid.Column="1"
Grid.Row="0" />

<TextBox Text="The Text"
Grid.Column="1"
Grid.Row="1"
Height="20"
Width="200"/>
</Grid>

</UserControl>

This XAML will result in the UI shown in Figure 4-5.

/& Test Page For Chapter04 - Windows Internet Explorer [==]E=]
P~
OU - |§1 hitp://localhost:383 v| ‘f| X | | Live Search
|i:2 ‘ aty |§TestPageForChapter.. [7| 5~ v g =
oK
H
{The Text
€ Local intranet | Protected Mode: On ®io0% v
Figure 4-5

Now, consider the case in which you decide to load some XAML dynamically and insert it into the in-
memory visual tree created by the XAML you already have.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

88

Chapter 4: Programming Silverlight

using System.Windows;

using System.Windows.Controls;

using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace Chapter04
{
public partial class DynamicXAML : UserControl
{
public DynamicXAML ()
{
InitializeComponent () ;

}

private void UserControl_Loaded(object sender, RoutedEventArgs e)

{
this.AddDynamicXaml () ;
}

private void AddDynamicXaml ()
{
string xaml = "<Button
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation' " +
" Content='Test' />";

object rootNode = XamlReader.Load (xaml) ;

Canvas canvas = (Canvas)this.FindName ("dynamicXamlPlaceholder") ;
canvas.Children.Add ((UIElement)rootNode) ;

As you can see, there is a private function that is called from the UserControl.Loaded event named
AddDynamicXaml. The first thing that happens within this function is that a valid and well-formed
XAML fragment is created as a literal string and stored in a variable. Note that the root element in this
XAML needs the xmlns declaration to be considered well-formed and valid.

A call is then made to the static Load function of the System.Windows .Markup.XamlReader class.
This function simply takes a string, as in the code sample that represents the XAML to load. The return
value is of type object and is a reference to the root node of the newly created object tree.

You can see that the code then obtains a reference to the Canvas object that is in Grid posi-

tion 1, 0. To obtain this reference, a call is made to the FindName method that is provided by the
FrameworkElement class from which UserControl derives. It’s then a simple matter of hooking the
newly created object tree into the existing tree via a call to the Canvas object’s Children.Add method.

Because the XAML is dynamically loaded, even though the element within it has an x : Name specified, the

plumbing code to allow programmatic access via a member field simply hasn’t been generated. This leaves
you needing to rely on the FindName method to obtain a reference to it. Figure 4-6 shows the new UL

89

Part |: Silverlight Fundamentals for ASP.NET Developers

{& Test Page For Chapter04 - Windows Internet Explorer ===
T
() - [E] mtpsnocamostzss ~[45] X || Live searh »
o e |§Test Page For Chapter... |_| o~ v (= v [i Page v &

Test *

oK
{The Text
H
€8 Local intranet | Protected Mode: On #100% ~
Figure 4-6

Events, Threading, and Browser Interaction

The next three sections take you through the Silverlight object models that allow you to create and
respond to events, perform asynchronous as well as synchronous operations, and interact with the
hosting browser at run time, starting with Events.

Events

Silverlight is a presentation technology and, like all presentation technologies, relies heavily on user
input to drive the flow of the application. Unlike other presentation technologies, however, the Silverlight
plug-in itself is embedded within another presentation technology — a web browser. It’s worth keeping
in mind then that all input events are first and foremost handled by the browser, before being sent on to
the Silverlight plug-in to be raised as a Silverlight event.

You've already seen both in Chapter 3 and in this chapter how to wire up events. At its simplest, you
edit the XAML to assign a function name to a particular event. Visual Studio can then take care of gen-
erating an appropriate handler for you. Or you can wire up an event the old-fashioned way in code.

To ensure you're comfortable with this, take a look at EventsSample.xaml in the Chapter 4 source code.
<UserControl x:Class="Chapter04.EventsSample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

20

Chapter 4: Programming Silverlight

<Grid x:Name="LayoutRoot" Background="White">

<Gri

</Gr

<Gri

</Gr

<Tex

</Grid>

d.ColumnDefinitions>
<ColumnDefinition />
id.ColumnDefinitions>

d.RowDefinitions>
<RowDefinition />
id.RowDefinitions>

tBox x:Name="txtSomeText"
Grid.Column="0"
Grid.Row="0"
Height="20"
Width="200"

GotFocus="txtSomeText_GotFocus"
LostFocus="txtSomeText_LostFocus"/>

</UserControl>

You can see here that there is a TextBox object placed within a Grid control. As well as positioning
information, the GotFocus and LostFocus events are given the names of methods to call when their
respective events are raised.

In the code behind, you can see that there are two methods matching the names provided here, both of
which take two parameters, an object and a RoutedEventsArgs instance.

using
using
using
using
using
using
using
using
using
using
using

System

System.
System.
System.
System.
System.

System

System.
System.
System.
System.

Collections.Generic;
Ling;

Net;

Windows ;
Windows.Controls;
.Windows .Documents;
Windows . Input;
Windows.Media;
Windows.Media.Animation;
Windows . Shapes;

namespace Chapter04

{

public partial class EventsSample

{

publ
{

ic EventsSample()
InitializeComponent () ;

txtSomeText .MouseEnter +=

UserControl

new

MouseEventHandler (txtSomeText_MouseEnter) ;

}

void txtSomeText_MouseEnter (object sender, MouseEventArgs e)

{

91

Part |: Silverlight Fundamentals for ASP.NET Developers

txtSomeText.Text = "Mouse entered!";
}

private void txtSomeText_GotFocus (object sender, RoutedEventArgs e)
{

txtSomeText.Text = "I've got focus!";

}

private void txtSomeText_LostFocus (object sender, RoutedEventArgs e)

{

txtSomeText.Text = "I've lost focus!";

}

Note that not all event handlers share the same parameters. Although all will take an object parameter
that holds a reference to the object that raised the event, the actual arguments that are packaged and sent
along with the event depend very much on the object raising the event. For instance, the code above also
wires up a third event manually, the MouseEnter event. Note that the event arguments passed into this
handler are of type MouseEventArgs. This is because they provide more information specific to this
type of event — the position of the mouse at the time the event occurred, for example.

If you run this sample, the text in the TextBox will change whenever you click on it and give it focus, if
you tab out of it to lose focus, and if you move your mouse over it.

Routed Events

If you've worked with WPF before, you'll most likely be aware of routed events. Note, however, that
unlike WPE, Silverlight only supports the bubbling routing strategy, not the tunneling one.

This means that certain input events have the ability to bubble up from the element in the visual tree
that raised it and progress all the way up to the root element in the visual hierarchy. This can be a use-
ful technique that allows you to handle certain events further up the chain, no matter which descendent
element they originate from. A common scenario is a keypress occurring in an element somewhere lower
in the hierarchy that has significance to an element further up the chain (CtrI+S for Save, perhaps).

Consider the files EventBubbling.xaml and .cs in the Chapter 4 source code:

<UserControl x:Class="Chapter04.EventBubbling"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Grid x:Name="LayoutRoot"
Background="White"
KeyDown="LayoutRoot_KeyDown">

<Grid.ColumnDefinitions>
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>

92

Chapter 4: Programming Silverlight

<TextBlock x:Name="tbOutput"
Grid.Column="0"
Grid.Row="0"
FontSize="10"/>

<StackPanel x:Name="myStackPanel"
Grid.Column="0"
Grid.Row="1">

<Button x:Name="myButton">

</StackPanel>

</Grid>

<TextBox x:Name="myTextBox"

</Button>

</UserControl>

Height="20"
Width="200"
KeyDown="myTextBox_KeyDown"

/>

This contrived example builds up a visual tree with a Grid at the root, containing a TextBlock and a
Stackpanel, which contains a But ton whose content is set to a TextBox. This example will show you
how the TextBox object’s KeyDown event is bubbled all the way up the object tree until it hits the root
element, Grid. You'll notice that a handler for the KeyDown event is provided both for the TextBox and
for the Grid.

The code behind for this XAML shows the two handlers in question:

using
using
using
using
using
using
using
using
using
using
using

System

System.
System.
System.
System.
System.
System.
System.

System

System.
System.

’

Ling;

Net;

Windows;
Windows.
Windows
Windows
.Windows .
Windows.
Windows.

namespace Chapter04

{

Collections.Generic;

Controls;

.Documents;
. Input;

Media;
Media.Animation;
Shapes;

public partial class EventBubbling : UserControl

{

public EventBubbling ()

{

InitializeComponent () ;

private void myTextBox_KeyDown (object sender,

{

KeyEventArgs

93

Part |: Silverlight Fundamentals for ASP.NET Developers

tbOutput.Text += "\n\nTextBox handled; sender is "
+ sender.ToString() + ", \nsource is "
+ e.OriginalSource.ToString() + "\n\n";

}

private void LayoutRoot_KeyDown (object sender, KeyEventArgs e)
{
tbOutput.Text += "Grid handled; sender is "
+ sender.ToString() + ", \nsource is
+ e.OriginalSource.ToString() + "\n\n";

Both of the handlers write out three pieces of information to the TextBlock object named tbOutput:
the control that is handling the event, the type of object that the sender parameter is, and also the
value of the Source property, provided via the event arguments.

If you run this example and type something into the TextBox, the output will resemble the following:

TextBox handled, sender is System.Windows.Controls.TextBox, source is
System.Windows.Controls.TextBox

Grid handled, sender is System.Windows.Controls.Grid, source is
System.Windows.Controls.TextBox

Notice how the event indeed bubbles up through the hierarchy and has the opportunity to be handled at
each step along the way. This example handles it in two locations, the child TextBox and the root Grid.

Take a closer look at the output concerning the value of the sender variable and the 0riginalSource
property of the event arguments. sender is always of the type that is currently handling the event,
whereas OriginalSource must be used to find out actually which object really first raised the event.

Another interesting property provided by some of the RoutedEventArgs classes is the Handled
property, of type Boolean. You may have come across this property elsewhere, where it is used to pre-
vent the event in question from bubbling any further up the hierarchy. For example, if you altered the
myTextBox_KeyDown handler in the preceding example like so:

private void myTextBox_KeyDown (object sender, KeyEventArgs e)
{
tbOutput.Text += "\n\nTextBox handled; sender is "
+ sender.ToString() + ", \nsource is "
+ e.OriginalSource.ToString() + "\n\n";

e.Handled = true;
you'd get the following output, proving that the event was “handled” at this stage and prevented from
bubbling further up the object tree:

TextBox handled, sender is System.Windows.Controls.TextBox, source is
System.Windows.Controls.TextBox

94

Chapter 4: Programming Silverlight

Threading and Asynchrony

The threading model in Silverlight, similar to both WPF and WinForms, stipulates that only code run-
ning on the main UI thread can actually access UI components. This is important and prevents issues
arising from multiple threads attempting to access the same UI control at once.

As well as this, if long-running or computationally intensive user code is executed on the Ul thread, it
would prevent this thread from processing any Ul events, effectively freezing the application while the
long-running task executes.

Therefore, it is a common pattern in presentation code to keep the Ul thread as free as possible, leaving
it to do what it does best — handle UI messages and maintain a responsive Ul while delegating any
long-running tasks to a separate thread of execution.

As with most programming tasks, there is a multitude of ways to get any one job done, and implement-
ing the aforementioned pattern is no exception. Perhaps the easiest way is the one that is discussed first,
taking advantage of the Backgroundiworker class.

BackgroundWorker

To illustrate the issue, take a look at the following example that can be found in NoBackgroundWorker.xaml
and .cs in the Chapter 4 downloads. The Ul consists of just a TextBox and a Button. When the Button
.Click event is raised, a long-running blocking task is simulated via a call to the System. Threading
.Thread.Sleep method.

<UserControl x:Class="Chapter04.NoBackgroundWorker"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="White">

<Grid.ColumnDefinitions>
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>

<TextBox x:Name="txtEntry"
Width="200"
Height="20"
Grid.Column="0"
Grid.Row="0" />

<Button x:Name="btnStartTask"
Width="100"
Height="20"
Grid.Column="0"
Grid.Row="1"
Content="Start Task"

95

Part |: Silverlight Fundamentals for ASP.NET Developers

96

Click="btnStartTask_Click" />
</Grid>

</UserControl>
The code below shows the simulated long-running task in the code behind:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace Chapter04
{
public partial class NoBackgroundWorker : UserControl
{
public NoBackgroundWorker ()
{
InitializeComponent () ;
}

private void btnStartTask Click(object sender, RoutedEventArgs e)
{

System.Threading.Thread.Sleep (2000) ;
}

Compile and run this example, and then press the button and try typing something in the textbox
immediately afterward. You'll notice that because the UI thread is busy (well, it’s sat sleeping, but it
may as well be busy), it’s unable to process even input events, and so the UI appears unresponsive until
the UI thread is free again to catch up with its workload. In a scenario like this, what is required is a sim-
ple way to offload work to a background worker thread for processing. Silverlight provides just this, the
BackgroundWorker class, which you may already be familiar with from prior NET programming
experience.

Essentially, the Backgroundworker class gives you the ability to specify a handler for its DoWork event.
This is the place where the code will run on a background thread. As well as being able to kick work off
on this background thread, you are also given the ability to check the status of the work that is running
and also to cancel it if need be.

Take a look at the markup and code in UseBackgroundWorker.xaml and .cs:

<UserControl x:Class="Chapter04.UseBackgroundWorker"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Chapter 4:

Programming Silverlight

Width="400" Height="300">
<Grid x:Name="LayoutRoot" Background="White">

<Grid.ColumnDefinitions>
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="50" />
<RowDefinition Height="50" />
</Grid.RowDefinitions>

<StackPanel Grid.Column="0"
Grid.Row="0"
Orientation="Vertical">

<TextBox x:Name="txtEntry"
Width="200"
Height="20" />

<TextBox x:Name="txtPercentComplete"
Width="200"
Height="20" />

</StackPanel>

<StackPanel Grid.Column="0"
Grid.Row="1"
Orientation="Horizontal">

<Button x:Name="btnStartTask"
Width="100"
Height="20"
Content="Start Task"
Click="btnStartTask Click" />

<Button x:Name="btnCancelTask"
Width="100"
Height="20"
Content="Cancel Task"
Click="btnCancelTask_Click" />
</StackPanel>
</Grid>

</UserControl>

This XAML will result in a UI containing two texboxes, one for the user to type in (the top one) and
the other to report the current progress of the long-running task. As well as this, there are two buttons
available, one to actually start the task and the other to allow the user to cancel it.

using System;
using System.Collections.Generic;

97

Part |: Silverlight Fundamentals for ASP.NET Developers

98

using
using
using
using
using
using
using
using
using
using

System.
System.
.Windows;
System.
System.
System.
System.
System.
System.
System.

System

Ling;
Net;

Windows.Controls;
Windows .Documents;
Windows . Input;
Windows.Media;
Windows.Media.Animation;
Windows . Shapes;
ComponentModel ;

namespace Chapter04

{

public partial class UseBackgroundWorker : UserControl

{

private BackgroundWorker backgroundWorker =
new BackgroundWorker () ;

public UseBackgroundWorker ()

{

InitializeComponent () ;

backgroundWorker .DoWork +=
new DoWorkEventHandler (backgroundWorker_DoWork) ;

backgroundWorker .WorkerReportsProgress = true;
backgroundWorker .WorkerSupportsCancellation = true;

backgroundWorker.ProgressChanged +=
new ProgressChangedEventHandler (
backgroundWorker_ ProgressChanged

) 5

backgroundWorker .RunWorkerCompleted +=
new RunWorkerCompletedEventHandler (
backgroundiWorker_ RunWorkerCompleted

) g

void backgroundWorker_RunWorkerCompleted(object sender,

if (e.Error != null)

{

}

txtPercentComplete.Text

else if (e.Cancelled)

{

}

txtPercentComplete.Text

else

{

txtPercentComplete.Text

RunWorkerCompletedEventArgs e)

e.Error.Message;

"Task Cancelled";

"Task Completed";

Chapter 4: Programming Silverlight

}

void backgroundWorker_ ProgressChanged (object sender,
ProgressChangedEventArgs e)
{

txtPercentComplete.Text = e.ProgressPercentage.ToString() + " %";

}

void backgroundWorker_ DoWork (object sender, DoWorkEventArgs e)

{
const int SECOND = 1000;

BackgroundWorker backgroundWorker =
(BackgroundWorker) sender;

for (int 1 = 0; 1 < 20; 1i++)
{
//If user has elected to cancel at this point
if (backgroundWorker.CancellationPending)
{
e.Cancel = true;
return;
}
//else continue processing and report our progress
backgroundWorker .ReportProgress((i + 1) * 5);
System.Threading.Thread.Sleep (SECOND / 4);

}

private void btnStartTask Click(object sender, RoutedEventArgs e)
{

backgroundWorker .RunWorkerAsync () ;

}

private void btnCancelTask_Click (object sender, RoutedEventArgs e)

{

backgroundWorker.CancelAsync () ;

The first thing to note is the creation of a class-level variable of type Backgroundworker for you to use.
Within the class constructor, you can then see that the DoWork, ProgressChanged, and RuniWorker
Completed events are wired up appropriately. The ProgressChanged handler will allow you to update
the Ul to reflect how far into the work the background task is, and the RunworkerCompleted event pro-
vides you with information about the task run, for instance, if it failed or was canceled. Two properties
are also set in the constructor, allowing the component to both report its progress and to allow cancella-
tions if instructed.

Now, when the Start button is clicked in the Ul, the BackgroundWorker, RunWorkerAsync method is
called, which will result in the Dowork event firing. This means that the code within the background
Worker_DoWork handler will execute, importantly, though, on a background thread that will leave the
Ul thread free to continue processing messages.

99

Part |: Silverlight Fundamentals for ASP.NET Developers

In this example, there is no actual work carried out. To simulate a workload (processing data or such
like), a simple loop is used. At each loop iteration, a check is made against the Backgroundworker
.CancellationPending property to see if the user has requested a cancellation. If this is true, it’s up
to you as the developer to take appropriate action, namely, to set the DoWorkEventArgs.Cancel prop-
erty to True and exit the method as gracefully as possible.

If this is false, however, processing is continued, and the Backgroundworker . ReportProgress method
is called, passing in a figure representing the current task’s percentage complete.

Note also the backgroundwWorker_ProgressChanged event handler. The ProgressChangedEventArgs
contain the ProgressPercentage property, which give you access to the value you've set in the
backgroundwWorker_ DoWork handler.

Within the backgroundWorker_ RunWorkerCompleted handler, the code checks to see if there has been
an error or if the task was canceled and reports as appropriate.

If you compile and run this example and click on the Start button, you will notice that as the percentage
complete indicator increases, you are still able to type in the textbox and interact with the UL

BackgroundWorker provides a great asbtraction around some of the work that is actually occuring to
marshall calls back and forth between the main thread and the background worker thread. The next
section goes into a little more detail about how this process actually works.

System.Windows.Threading

The system.Windows . Threading namespace within Silverlight provides classes that exist purely to help
marshal work between the main Ul thread and any background threads that are running. It is quite sep-
arate from the System. Threading namespace, which provides direct access to Thread objects and syn-
chronization primitives that can be created when working with threads. A detailed examination of
threads and associated synchronization primitives is beyond the scope of this book, but can be found
in the MSDN web site. The key class within System.Windows.Threading is the Dispatcher class.

System.Windows.Threading.Dispatcher

The system.Windows.Threading.Dispatcher object is created and associated with the main thread
within a Silverlight application, and its job is to maintain a prioritized queue of work items that are
waiting to be run on the thread. This implies, then, that in order to keep the Ul responsive, the work
items queued in the Dispatcher should be small and non-blocking.

If a background thread is used to execute code, this code is not allowed access to the objects created on
the Ul thread (e.g., a Button or TextBox). In order for the background code to access objects in the Ul
thread, it must delegate the work it wants to perform to the Dispatcher object of the thread in question.

To do this, Dispatcher provides the BeginInvoke method, which will add the work item to the queue
and return execution immediately to the calling thread.

It will help to look at an example. In the Chapter 4 source code, you will find DispatcherExample.xaml
and .cs, which are shown here:

<UserControl x:Class="Chapter04.DispatcherExample"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

100

Chapter 4: Programming Silverlight

Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="White">

<Grid.ColumnDefinitions>
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>

<TextBlock x:Name="tbOutput"
Width="200"
Height="20"
Grid.Column="0"
Grid.Row="0" />

<Button x:Name="btnStart"
Width="100"
Height="20"

</Grid>

Grid.
Grid.

Column="0"
Row="1"

Content="Start"
Click="btnStart_Click" />

</UserControl>

This XAML defines a basic Ul that contains a TextBlock and a But ton. When the Button is clicked,
a long-running task will execute on a separate thread that needs to update the text block when it
completes. As you've already seen, this could be handled easily using the Backgroundworker task.
However, you can also use the Dispatcher object in the Ul thread to do this for you. The following
code behind illustrates this concept:

using
using
using
using
using
using
using
using
using
using
using
using

System;
System.
System.
System.
System.
System.
System.
System.
System.
System.
System
System.

Collections.Generic;

Ling;

Net;

Windows;
Windows.
Windows .
Windows .
Windows.
Windows.

.Windows .

Controls;
Documents;
Input;

Media;
Media.Animation;
Shapes;

Threading;

namespace Chapter04

{

public partial class DispatcherExample

{

public DispatcherExample ()

{

: UserControl

101

Part |: Silverlight Fundamentals for ASP.NET Developers

InitializeComponent () ;
}

private void btnStart_Click(object sender, RoutedEventArgs e)
{
//manually kick off a long running task
ThreadStart ts = new ThreadStart (DoLongRunningTask) ;
Thread thread = new Thread(ts);
thread.Start () ;
}

private void DoLongRunningTask ()

{
const int SECONDS = 1000;
//close approximation of a long running task :)
Thread.Sleep (2 * SECONDS) ;

//task completes, but needs to access an object on the UI thread.
Action action = new Action(MarshalToUI) ;
this.Dispatcher.BeginInvoke (action) ;

}

private void MarshalToUI ()

{
tbOutput.Text = "Task completed";

}

The btnstart_Click handler takes care of utilizing the Thread and ThreadStart classes from the
System.Threading namespace to construct and start a new thread of execution. The method to exe-
cute on this new thread is passed as a parameter to the Threadstart object.

Once this new thread of execution starts, it will simply sleep for 2 seconds, supposedly approximating a
real long-running operation. Upon completion, however, there is a need to execute code against the Ul
thread, so that an object in this thread (in this case a TextBlock) can be programmed against. To do this,
the work in question needs to be scheduled with the Dispatcher object of the UI thread, and this is
accomplished via the asynchronous BeginInvoke method. This method is overloaded and can either
accept an Action delegate (which encapsulates a void method that takes no parameters) or a custom
delegate and optional object [] parameters to pass data along with. In this example, the Action del-
egate points to the MarshalToUI method, which will execute on the Ul thread and hence have access
to the objects created in this thread.

Although not used in this example, the BeginInvoke method actually returns an object of type System
.Windows.Threading.DispatcherOperation. This object gives you the ability to communicate with
the delegate in the Dispatcher queue, allowing you to change its priorty or cancel it, for example.

DispatcherTimer

The DispatcherTimer is a high-fidelity timer that runs on the same thread as the Dispatcher object
and is reevaluated at the start of every Dispatcher loop. Usage of this object is a simple affair, with the

102

Chapter 4: Programming Silverlight

user simply providing the DispatcherTimer with a delegate to invoke at a set interval and then call-
ing the start and Stop methods as appropriate. The delegate method that is invoked at the set interval
allows direct access to objects created on the Ul thread, which makes this object very useful, indeed.

DispatcherTimerExample.xaml and .cs in the Chapter04 source demonstrate the use of this object:

<UserControl x:Class="Chapter04.DispatcherTimerExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">
<Grid.ColumnDefinitions>
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition />
</Grid.RowDefinitions>

<StackPanel Grid.Column="0"
Grid.Row="0"
HorizontalAlignment="Left">

<TextBlock x:Name="tbElapsedTime"
FontSize="10"
Text="0"/>

<Button x:Name="btnStart"
Content="Start"
Height="20"
Width="100"
Click="btnStart_Click" />

<Button x:Name="btnStop"
Content="Stop"
Height="20"
Width="100"
Click="btnStop_Click" />

<Button x:Name="btnReset"
Content="Reset"
Height="20"
Width="100"
Click="btnReset_Click" />
</StackPanel>
</Grid>

</UserControl>

This XAML constructs the basic UI shown in Figure 4-7.

103

Part |: Silverlight Fundamentals for ASP.NET Developers

{& Test Page For Chapter04 - Windows Internet Explorer [=lE=E]
U_) = | €] hitp://flocalhost:383 v| ‘?| X | ‘LfveSearfh
Wil |§Teleage For Chapter... [_| - v “
o -

start

Stop

Reset

€8 Local intranet | Protected Mode: On F100% ~
Figure 4-7

There is a TextBlock at the top of the screen, which will be used to show a second counter increment-
ing. The three buttons below it are self explanatory. The code below shows just how easy this timer is to
use. First, you need to instantiate and initialize the timer, providing it with a function to call and a set
interval to call it at. It’s then a simple matter of requesting the timer to stop and start as appropriate.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;
using System.Windows.Threading;

namespace Chapter04

{
public partial class DispatcherTimerExample : UserControl
{

DispatcherTimer timer = new DispatcherTimer () ;

public DispatcherTimerExample ()

{

InitializeComponent () ;
//init timer, set interval to 1 second and wire up handler

timer.Interval = new TimeSpan(0, 0, 1);
timer.Tick += new EventHandler (timer_Tick) ;

104

Chapter 4: Programming Silverlight

}

void timer_Tick (object sender, EventArgs e)
{
//add 1 to the current second counter
int currentElapsedSeconds = int.Parse(tbElapsedTime.Text) ;
currentElapsedSeconds++;
tbElapsedTime.Text = currentElapsedSeconds.ToString() ;
}

private void btnStart_Click(object sender, RoutedEventArgs e)
{
timer.Start () ;

}

private void btnStop_Click(object sender, RoutedEventArgs e)
{

timer.Stop () ;
}

private void btnReset_Click(object sender, RoutedEventArgs e)

{
tbElapsedTime.Text = "0";
}

Browser Interaction

Silverlight allows bidirectional interaction with the hosting HTML page, providing the ability to access
the browser document object model (DOM) from within Silverlight and the ability to access selected
methods within the Silverlight application from the browser.

Interacting with the Browser from Silverlight

In order to access the DOM of the hosting browser page and potentially manipulate its contents, you're
going to utilize some of the functionality contained within the System.Windows . Browser namespace.
The three main classes that will allow you to manipulate the DOM are HtmlPage, HtmlDocument, and
HtmlElement.

HtmlPage forms the representation of the browser page within which your Silverlight application is
hosted and gives you access to items like Cookies and the QueryString as well as the HtmlDocument
. HtmlDocument represents the root element of the DOM and is the starting point for your code to tra-
verse the HTML hierarchy. HtmlElement represents an individual element within the hierarchy and
allows you to access and manipulate it and its children.

Within the Chapter04 source code for the web application project, you will find DOMFromSL.aspx. This
contains the boilerplate code to utilize Silverlight:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="DOMFromSL.aspx.cs"
Inherits="Chapter04Web.DOMFromSL" %>

105

Part |: Silverlight Fundamentals for ASP.NET Developers

<%@ Register Assembly="System.Web.Silverlight"
Namespace="System.Web.UI.SilverlightControls"
TagPrefix="asp" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head id="Headl" runat="server">
<title>Untitled Page</title>
</head>
<body style="height:100%;margin:0;">
<form id="forml" runat="server" style="height:100%;">
<asp:ScriptManager ID="ScriptManagerl" runat="server"></asp:ScriptManager>
<div style="height:100%;">
<asp:Silverlight ID="Xamll"
runat="server"
Source="~/ClientBin/Chapter04.xap"
MinimumVersion="2.0.30911.0"
Width="100%"
Height="100%" />
</div>

<input type="text" id="txtNameInput" value="Enter your name" />
<input type="button" id="btnGetGreeting" value="Get Greeting" />
<input type="text" id="txtGreeting" size="100" />

</form>
</body>
</html>

You can see above that there is a form after the Silverlight control that contains three elements, a textbox
called txtNameInput, a button called btnGetGreeting, and another textbox called txtGreeting. Youre
not going to wire these up right away. First off, you're going to see how to go about accessing them from
Silverlight and changing their appearance.

In the Silverlight project within the Chapter04 source, you will find DOMFromSL.xaml and .cs. In order
to access the HTML DOM, the first thing that you're going to need is an object reference to the calling
page itself. You can obtain this reference via a call to the HtmlPage . Document property. You can store
this reference in a class-level variable for subsequent access and wire it up in the loaded handler.

HtmlDocument htmlDocument;
private void UserControl_Loaded(object sender, RoutedEventArgs e)

{

this.htmlDocument = HtmlPage.Document;

When the user clicks on the single button that makes up your Silverlight control, the appearance of the
HTML elements is going to be changed. So you need to wire up the Click event of the button to allow
you to do this.

106

Chapter 4: Programming Silverlight

Now comes the interesting part, obtaining a reference to the HTML elements from the Silverlight code.
To do this, you're going to use the GetElementByID method of the HtmlDocument object. This method
takes a single parameter of type string that is the ID assigned to the HTML element and returns an
HtmlElement object reference:

HtmlElement = HtmlDocument.GetElementByID("elementID") ;

Add the following code to the button-clicked handler to automatically increase the font size of the first
textbox and change the background color of the second:

private void btnChangeHTML_Click (object sender, RoutedEventArgs e)
{
//change appearance of HtmlElements in here
HtmlElement inputName =
htmlDocument .GetElementById ("txtNameInput") ;

HtmlElement btnGetGreeting =
htmlDocument .GetElementById ("btnGetGreeting") ;

HtmlElement greeting =
htmlDocument .GetElementById ("txtGreeting") ;

inputName.SetStyleAttribute ("fontSize", "20px");
greeting.SetStyleAttribute ("backgroundColor", "blue");

Note the use of the setStyleAttribute method, which takes two parameters, both of type string. The
first is the name of the style attribute, and the second is the value to give it. You might at this point notice
something a little strange about the names fontSize and backgroundColor. If you were adding these style
attributes to a normal HTML element, you would write the following:

<input type="text" style="background-color: Blue; font-size=20px" />

So why the difference? Well, if you were to access the background color, font size, or any other property
in JavaScript, you would have to use backgroundColor or fontSize rather than the hyphenated ver-
sions. This is because hyphens in class member names are not permitted in JavaScript and many other
languages. As DOM access from Silverlight is just a wrapper around a bridge to the HTML DOM, the
Silverlight team didn’t want to do extra work to convert the HTML/CSS property names into the actual
names (stripping hyphens, etc.). So these names remain the same as their JavaScript counterparts.

Once you have obtained a reference in this way, you're free to access the element using the methods of
the HtmlElement class. These include the ability to manipulate attributes, attach and remove events,
and append and remove children.

Therefore, to work with an element in the DOM, you first need to obtain a reference to it. As well as the
GetElementByID method to obtain a reference to an individually named element, you can also use the

GetElementsByTagName method to return all elements of a specific tag:

ScriptObjectCollection HtmlDocument.GetElementsByTagName (string name) ;

107

Part |: Silverlight Fundamentals for ASP.NET Developers

Edit the HTML file so that it now contains the following HTML:

<form action="">
<p>
<input type="text" id="txtNameInput" value="Enter your name" />
<input type="button" id="btnGetGreeting" value="Get Greeting" />
<input type="text" id="txtGreeting" size="100" />
</p>
<hl1>This is the first Hl</hl>

<h1>This is the second Hl</hl>

<h1>This is the third Hl</hl>
</form>

You're now going to use the GetElementsByTagName method to return a ScriptObjectCollection
containing all the H1 elements in the DOM:

private void btnChangeHTML_Click (object sender, RoutedEventArgs e)
{
//change appearance of HtmlElements in here
HtmlElement inputName =
htmlDocument.GetElementById ("txtNameInput") ;

HtmlElement btnGetGreeting =
htmlDocument.GetElementById ("btnGetGreeting") ;

HtmlElement greeting =
htmlDocument.GetElementById ("txtGreeting") ;

inputName.SetStyleAttribute ("fontSize", "20px");
greeting.SetStyleAttribute ("backgroundColor", "blue");

ScriptObjectCollection hlCollection =
htmlDocument .GetElementsByTagName ("H1") ;

foreach (HtmlElement element in hlCollection)
{
element.SetStyleAttribute ("backgroundColor", "yellow");

The code is very straightforward — once you've populated your ScriptObjectCollection, youTre
able to iterate over it, in this case, using a foreach loop, and then access the individual Htm1Element
objects within it at will.

So what about event handling? From a Silverlight application, you're able to handle events raised from
the DOM with relative ease. First off, you need to attach a handler to a specific event. You're going to add
a handler to the click event of the button btnGetGreeting. Once a reference has been obtained to the
element in question, the AttachEvent method is used to specify which event you would like to handle
and which handler to use.

private void btnChangeHTML_Click (object sender, RoutedEventArgs e)
{

108

Chapter 4: Programming Silverlight

//change appearance of HtmlElements in here
HtmlElement inputName =
htmlDocument .GetElementById ("txtNameInput") ;

HtmlElement btnGetGreeting =
htmlDocument.GetElementById ("btnGetGreeting") ;

HtmlElement greeting =
htmlDocument .GetElementById ("txtGreeting") ;

inputName.SetStyleAttribute ("fontSize", "20px");
greeting.SetStyleAttribute ("backgroundColor", "blue");

ScriptObjectCollection hlCollection =
htmlDocument .GetElementsByTagName ("H1") ;

foreach (HtmlElement element in hlCollection)

{
element.SetStyleAttribute ("backgroundColor", "yellow");

bool success = btnGetGreeting.AttachEvent (
"onclick",
new EventHandler<HtmlEventArgs> (this.OnGetGreetingClicked)) ;

//handler that will output a different greeting based on hour value
public void OnGetGreetingClicked (object sender, HtmlEventArgs e)
{
HtmlElement inputName =
htmlDocument .GetElementById ("txtNameInput") ;

string nameValue = inputName.GetProperty ("Value").ToString() ;

HtmlElement greeting =
htmlDocument .GetElementById ("txtGreeting") ;

DateTime current = DateTime.Now;
if (current.Hour <= 12)

greeting.SetProperty("Value", "Good Morning " + nameValue);
else if ((current.Hour > 12) && (current.Hour < 18))

greeting.SetProperty("Value", "Good Afternoon " + nameValue) ;
else

greeting.SetProperty("Value", "Good Night " + nameValue) ;

AttachEvent takes two parameters, a string representing the name of the event in the DOM element to
handle and an EventHandler. The HtmlEventArgs that are passed in contain lots of information about
the mouse, keyboard, and source element and so can be very useful.

As well as this, you can also write code to alter the structure of the DOM itself, appending and remov-
ing the elements within it. The following code shows how you can append an element to the final <11>
tag in the DOM. This code assumes that an input button named btnalterboM has been added to the
HTML page and a handler named OnAlterDOMClicked wired up in the XAML page load method:

109

Part |: Silverlight Fundamentals for ASP.NET Developers

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{

this.htmlDocument = HtmlPage.Document;

HtmlElement btnAlterDOM =
htmlDocument .GetElementById("btnAlterDOM") ;

btnAlterDOM.AttachEvent ("onclick", new
EventHandler<HtmlEventArgs> (this.OnAlterDOMClicked)) ;
}

public void OnAlterDOMClicked(object sender, HtmlEventArgs e)

{
ScriptObjectCollection hlCollection =
htmlDocument .GetElementsByTagName ("H1") ;

HtmlElement element = htmlDocument.CreateElement ("input") ;
element.SetAttribute("type", "text");
element.SetProperty("value", "test");

((HtmlElement)hlCollection[2]) .AppendChild (element) ;
}

Note how you first create an HtmlElement object using the HtmlDocument . CreateElement method
call, passing in the tag name to use for this element. At this point, the newly created HtmlElement is
not attached to the DOM. After setting whatever attributes and properties need setting, you then add
the element to the DOM using the HtmlElement . AppendChild method.

You can also access methods on objects that have been referenced within the DOM. For instance, you
could call the Focus method on an input field or cause the page to navigate to a new URL using the
HtmlPage.Navigate method.

HtmlElement inputName = htmlDocument.GetElementByID ("txtNameInput") ;
inputName.Focus () ;

As you can see, there is rich interaction from Silverlight to the browser, so much so that you could well
start delegating carefully selected JavaScript workloads over to Silverlight. (Because switching between
JavaScript and managed code incurs overhead, check out Chapter 16, “Performance for more informa-
tion.”) And don't forget, your Silverlight control doesn’t have to be visible to take advantage of this
functionality. You can easily set its width and height to 0.

As well as interacting with DOM elements, you can also call JavaScript functions from your Silverlight
application.

Interacting with Silverlight from the Browser

In order to allow a scripting language in the hosting page to program against your Silverlight class, you
first need to register the class in question as a scriptable object. This should be done in one of the initial-
ization steps of your class, so the UserControl_Loaded event is a natural choice.

Take a look at the code in SLFromDOM.aspx within the Chapter04 source directory, which contains the

basic code required to host a Silverlight application. A Silverlight page called SLFromDOM.xaml can also
be found in the Silverlight project.

110

Chapter 4: Programming Silverlight

The first thing you need to do is perform the registering of the class as a Scriptable object. This is done
via a call to the Htm1Page.RegisterScriptableObject method. This method accepts two parameters,
a string key and an object reference. For this example, the string key is passed in as calculator (this class

is going to perform calculations, hence the name), and the object reference is given as the instance of the
class you want to expose, referring to the calculator object instance.

public SLFromDOM ()
{

InitializeComponent () ;
Calculator calculator = new Calculator();

HtmlPage.RegisterScriptableObject ("calculator", calculator) ;

Once your Silverlight class has been registered as Scriptable, the next step involves obtaining a refer-
ence to the Silverlight control that is hosting the Scriptable managed object. This is very simple and

uses the OnPluginLoaded event exposed by the ASPNET Silverlight control. This event is wired up to a
JavaScript event handler, which takes care of assigning a global variable with the Silverlight host instance.

var hostingControl = null;
function pluginLoaded (sender)
{

hostingControl = sender.get_element();

Now that you have a reference to the hosting control, you can access its Content property, allowing
you to gain programmatic access to the underlying object instance that represents the XAML using the
string name specified in the registration step, in this case calculator:

hostingControl.Content.calculator

All that remains now is to mark the managed classes’ members as ScriptableMembers if they should
be accessible from JavaScript. Flesh out your class, and add a rudimentary calculation helper class as in
the following code sample, or open up SLFromDOM.xaml.cs in the Chapter 4 source directory:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using System.Windows.Browser;

namespace Chapter04

{
public partial class SLFromDOM : UserControl

111

Part |: Silverlight Fundamentals for ASP.NET Developers

public SLFromDOM ()
{
InitializeComponent () ;

Calculator calculator = new Calculator();
HtmlPage.RegisterScriptableObject ("calculator", calculator);

}

public class Calculator
{
//Rudimentary Calculator methods
[ScriptableMember ()]
public int Add(int opl, int op2)
{
return opl + op2;

}

[ScriptableMember ()]
public int Subtract(int opl, int op2)
{
return opl - op2;
}

[ScriptableMember ()]
public int Divide(int opl, int op2)
{
return opl / op2;
}

[ScriptableMember ()]
public int Multiply(int opl, int op2)
{

return opl * op2;

Switch your attention to the SLFromDOM.aspx file now, where you're going to provide a basic calcula-
tor interface that will utilize the managed methods within the calculator class. This will be com-
posed of a form containing four sets of two textboxes to take the opl1 and op2 values and four buttons
to execute the method corresponding to each.

<form action="">
<!-- Addition -->
<input type="text" id="addOpl" /> +
<input type="text" id="addOp2" /> =
<input type="text" id="addResult" />
<input type="button" id="btnAdd" value="Add" onclick="DoAdd();" />

<!--Subtraction -->
<input type="text" id="subOpl" /> -

112

Chapter 4: Programming Silverlight

<input type="text" id="subOp2" /> =
<input type="text" id="subResult" />

<input type="button" id="btnSub" value="Subtract" onclick="DoSubtract();"

/>

<!-- Division -->

<input type="text" id="divOpl" /> /
<input type="text" id="divOp2" /> =
<input type="text" id="divResult" />

<input type="button" id="btnDiv" value="Divide" onclick="DoDivide() ;"

/>

<!-- Multiplication -->

<input type="text" id="mulOpl" /> *
<input type="text" id="mulOp2" /> =
<input type="text" id="mulResult" />

/><br

<input type="button" id="btnMul" value="Mutliply" onclick="DoMultiply () ;"

/>

</form>

Notice the four inline calls to JavaScript functions. These functions will be responsible for obtaining
a reference to your Silverlight application and calling the necessary functions, passing in appropriate
parameters. The functions to do this are shown below. Note the standard DOM calls to access form ele-

ment contents and the actual call to the Silverlight application:

<script type="text/javascript">
var hostingControl = null;
function pluginLoaded (sender)
{
hostingControl = sender.get_element();

}

function DoAdd()
{
var opl = document.forms[0].elements["addOpl"].value;
var op2 = document.forms[0].elements["addOp2"].value;
var result = hostingControl.Content.calculator.Add (
parselnt (opl), parselnt(op2));
document. forms[0] .elements["addResult"].value = result;

}

function DoSubtract ()

{
var opl = document.forms[0].elements["subOpl"].value;
var op2 = document.forms[0].elements["subOp2"].value;

var result = hostingControl.Content.calculator.Subtract (

parselnt (opl), parselnt(op2));
document. forms[0] .elements["subResult"].value = result;
}

function DoDivide ()

{
var opl = document.forms[0].elements["divOpl"].value;
var op2 = document.forms[0].elements["divOp2"].value;

113

Part |: Silverlight Fundamentals for ASP.NET Developers

var result = hostingControl.Content.calculator.Divide (
parselnt (opl), parselnt (op2));
document.forms[0] .elements["divResult"].value = result;

}

function DoMultiply ()
{
var opl = document.forms[0].elements["mulOpl"].value;
var op2 = document.forms[0].elements["mulOp2"].value;
var result = hostingControl.Content.calculator.Multiply(
parselnt (opl), parselnt(op2));
document.forms[0] .elements["mulResult"].value = result;

}

</script>

You should now be able to run your code and try out this example. Although basic in structure, it dem-
onstrates the level of interaction that can be achieved between JavaScript and Silverlight.

As well as accessing properties and methods in this way, you can also handle managed events
from your JavaScript code. To do this, you must first decorate your managed event with the
<ScriptableMember> tag

On-Demand XAP Loading

In an Internet environment, being able to get your Silverlight application up and running as fast as pos-
sible is a must-have goal. Therefore, in the case of a rich and functionally complex Silverlight application,
having all the libraries packaged and loaded into a single XAP file will directly violate this goal, as the
entire XAP file and all functionality will need to be downloaded before the application can start.

Obviously, if not all this functionality is needed immediately (or even not at all, in most use cases), this
would be a tremendous waste of effort and will only annoy your user base as your application takes an
age to load and start.

Silverlight provides a way to negate this slow start-up and loading time, however, by allowing you to
selectively download and integrate functionality as and when it’s required. To accomplish this, the
System.Net.WebClient class is used to control the downloading of additional assemblies.

System.Net .WebClient

The Webclient class allows you to programmatically receive data from a resource that is specified via
a URLI, either as data or as a string. The two methods that you use to accomplish this are OpenReadasync
and DownloadStringAsync.

Assume that you have created a Silverlight library file called MathUtilities.dll and that this library is either
not used initially or rarely used by most users. This would make it an ideal candidate for on-demand
downloading. After creating the Silverlight library project and adding a reference to it from the original
Silverlight application, be sure to click the newly added reference, and in the Properties window, set
Copy Local to False. This will prevent the DLL from being packaged within the resulting XAP file and
being automatically downloaded when the Silverlight application is loaded by the browser.

114

Chapter 4: Programming Silverlight

The first step is to instantiate a webC1lient instance and provide it with a valid URI for the MathUtilities.dll
assembly, as well as a callback function to jump into when the DLL has been successfully downloaded.
Within the callback, you need to instantiate a new AssemblyPart instance, which represents an assembly
that is to be included within the main application package. You simply then call the Load method of this
AssemblyPart and give it the assembly that has been loaded — obtained via a call to the Result property
of the OpenReadCompletedEventArgs.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;
using System.Reflection;

namespace Chapter04
{
public partial class OnDemandXAP : UserControl
{
public OnDemandXAP ()

{

InitializeComponent () ;

}

private void btnLoadAssembly Click(object sender, RoutedEventArgs e)
{
WebClient webClient = new WebClient () ;

webClient.OpenReadCompleted +=
new OpenReadCompletedEventHandler (webClient_OpenReadCompleted) ;

webClient .OpenReadAsync (new Uri ("MathUtilities.dll",
UriKind.Relative));

}

void webClient_OpenReadCompleted (object sender,
OpenReadCompletedEventArgs e)
{
if ((e.Error == null) && (e.Cancelled == false))
{
AssemblyPart assemblyPart = new AssemblyPart();
Assembly assembly = assemblyPart.Load(e.Result);

//Use types from within loaded assembly

115

Part |: Silverlight Fundamentals for ASP.NET Developers

Summary

You kicked off this chapter by taking a look at what actually constitutes a Silverlight application, both
in terms of asset structure and code base. You learned how a Silverlight application is deployed within
a XAP file, and how this file really is nothing more than a standard ZIP archive containing assets along-
side a deployment manifest. You learned that this deployment manifest can contain localization and
entry point information as well as asset listings.

The Application class was then discussed. You learned how it controls the lifetime of the application
and about the initialization sequence when your Silverlight application is first loaded. You also took a
look at some of the events that are raised by the Application class and how you can hook up to them
via the App.xaml and App.cs files.

The different options for embedding the Silverlight plug-in within a hosting web page were then laid
bare — using the <asp:Silverlight> control, by far and away the easiest and cleanest choice; manu-
ally coding the <OBJECT> tag and supporting script; and finally, taking advantage of the JavaScript
Helper files that are shipped with the SDK to create the tag on your behalf. The benefits of sticking
with the <asp:Silverlight> option for this task are obvious.

The next step in writing a Silverlight application is the creation of pages to act as your UI, and you saw
how the UsercControl class is used as the base building block to compose your Ul The code-behind
model was explained, including the automatic generation of member variables for XAML elements that
are provided with an x:Name, a feature that can greatly improve the development experience.

There then followed a brief discussion on the merits of learning JavaScript — how it can help increase
your general understanding of Silverlight and that an appreciation for what’s happening in the hosting
page can increase your ability to find and fix bugs quickly. To get you started, a quick overview of writing
JavaScript was provided, covering aspects such as general programming techniques and HTML DOM
manipulation.

The Silverlight Object Model was then delved into, and you saw how the visual tree was constructed
to form the UL You also learned how to access the elements in the tree, either by name or by manually
walking the nodes. This section concluded by examining the XamlReader . Load method and how it
can be used to build an object tree dynamically and then append this to the existing in-memory tree.

The next section took you through the Silverlight event model and how routed events are supported but
only in bubbling mode. You found that bubbling of certain input events could be useful for helping you
support keyboard shortcuts at a level higher than the control they were raised within.

Threading and asynchrony within Silverlight were then discussed, and the different options for execut-
ing work on a background thread were demonstrated. Keeping the UI thread free to maintain a respon-
sive Ul was stressed, and taking advantage of the Dispatcher object to aid in this respect was explained.
You also saw how the DispatcherTimer object could be used to provide high-fidelity timing to your
application.

The ability to communicate bidirectionally between the HTML DOM and the Silverlight Object Model
was then explained, and code samples to illustrate communication in each direction were provided. You
saw how the HtmlPage.Document object provided you with direct access to the HTML DOM from
Silverlight and how this DOM could then be manipulated with ease.

116

Chapter 4: Programming Silverlight

Conversely, you saw how the HtmlPage.RegisterScriptableObject command is used to expose
managed functionality to JavaScript, and how the ScriptableMember attribute is then used within a
registered class to expose it directly to JavaScript.

Finally, you saw how to improve the starting time and general performance of your application by tak-
ing advantage of on-demand loading of XAP files.

The next chapter, “Creating the User Interface,” will show you the different options you have when decid-
ing how to lay out your UI, and how the different controls are then added to it. You will also take a quick
tour of the Expression suite and see how they can make Silverlight development easier. Localizing a
Silverlight application is then discussed.

117

Part II: Developing ASP.NET
Applications with Silverlight

Chapter 5: Creating the User Interface
Chapter 6: Silverlight Controls

Chapter 7: Styles and Templates

Chapter 8: User Interaction

Chapter 9: Communicating with the Server
Chapter 10: Working with Data

Chapter 11: Creating Custom Controls
Chapter 12: Securing Your Silverlight Application
Chapter 13: Audio and Video

Chapter 14: Graphics and Animation
Chapter 15: Troubleshooting

Chapter 16: Performance

H

Creating the User Interface

In Part I of this book, you looked at some of the building blocks of a Silverlight application, includ-
ing the components that make up its architecture, how XAML is used to describe the elements of
a user interface, and how code behind can be used to turn a static user interface (UI) into a living,

breathing page.
In this chapter, you'll start putting the theory you've learned so far into practice.

This chapter will take you through the ins and outs of laying out and creating your user interface
within a Silverlight application. You'll get an overview of the Expression Suite of design tools and
see how Expression Blend can be used to complement the Visual Studio development environment.
You'll also compare and contrast the differing methods of layout between ASPNET and Silverlight.

You'll then examine each of the main layout controls that are shipped with Silverlight 2 — canvas,
Grid, StackPanel, and TabControl — and work out when to use which layout control for vari-
ous scenarios, as well as how to add standard controls to them.

This chapter also discusses how to create a scalable U], that is, a UI that allows a user to resize it
at will gracefully without it becoming unusable.

Finally, localizing a Silverlight application is looked at, which is certain to be of importance to any
ASP.NET developer creating a web site with global reach.

Expression Suite — A Whirlwind Tour

Designers have always had something of a rough deal from Microsoft. The flagship develop-
ment environment for everything from ATL to web development is Visual Studio, a heavyweight
Integrated Development Environment (IDE) packed with features and commands that help
increase development speed for innumerable programming projects.

Part Il: Developing ASP.NET Applications with Silverlight

But as good as Visual Studio is at helping programmers, in terms of assisting in design (especially web
design), it’s always been far behind pure design packages that are finely tuned to the requirements of a
designer. And because of its heavyweight nature and code-focused UlI, designers have quite rightly been
put off using it for their purposes. It’s simply not the right tool for the job and contains a plethora of
menu options and task panes that can be confusing to the untrained user.

Microsoft is aware of this, of course, and has been working hard to rectify the situation by creating a
first-class suite of development environments to help designers create graphics, media, web, and
Windows applications more quickly and easily.

The result is the Expression Suite of products — dedicated IDEs for tackling the design aspects of
Windows applications, web applications, and graphics and media creation and editing. Following are
overviews of each of the applications that comprise the Expression Suite; we encourage you to down-
load and try out the applications to see what advantages they provide over Visual Studio (used
throughout the remainder of this book) — Expression Blend, in particular.

Expression Web

Expression Web is a feature-rich web design package that allows you to create CSS-based, standards-
compliant web sites by default. The ability to create .aspx files as well as standard HTML is included
right out-of-the-box and highlights the drive to bring developers and designers closer together within
the development environment.

Some of the high-level features included with Expression Web are

Q Full Standards Compliance — W3C XHTML Conformance

Q Accessibility Checker — Expression Web ships with the ability to check the web pages loaded
within it for conformance against two industry standards:

QO World Wide Web Consortium (W3C) Web Content Accessibility Guidelines (WCAG)
O Accessibility guidelines for Section 508 of the U.S. Rehabilitation Act

The results are then displayed in a dialog box with one line for each violation and further infor-
mation for correcting the violation available.

0 Real-Time Standards Validation — As you're typing HTML, standards violations are high-
lighted in real time for you.

Q Extensive CSS Support — Support is provided in terms of design surface, IDE, and rendering.

Q CSS Report Tool — This runs through all the CSS rules on a given page, whether they’re in the
header section, inline, or in an attached style sheet, and amalgamates them for easy reference in
a dialog.

QO XML Visualization Tools — These allow you to create customized views of XML data using
simple drag-and-drop techniques.

0 XSLT Support
0 Access to ASP.NET Controls — This provides for tighter integration between designers and
developers.
If you actually install and start playing with Expression Web, you'll notice immediately that it’s not just

a new version of FrontPage (which is good).

122

Chapter 5: Creating the User Interface

Expression Blend

In Chapter 3, you took a quick look at Expression Blend and the high-level features that it makes avail-
able to both designers and developers. To build on this, you're now going to see how easy it is to per-
form common operations using this tool.

After firing up Blend and selecting “New Project” from the File menu, you will be presented with the
dialog shown in Figure 5-1.

New Project

Select a project type

I

WPF G
Libr

Name WpfApplicationl
Location C: SampleUser\Documents\Expression\Expression Blend Projec Browse...
Language Visual C# ~

Target .NET Framework v3.5 b

Cancel

Figure 5-1

Enter a name for the test application (TestApp or something similar will suffice), and select the
Language and Location. Make sure you choose the Silverlight NET template, but take note of the other
template application types available to you. Upon confirming your project set-up selections, the IDE
will go ahead and create your solution and project files, including the necessary boilerplate files to
begin development. Figure 5-2 shows this.

Figure 5-2

123

Part Il: Developing ASP.NET Applications with Silverlight

The center of the screen contains a design surface for arranging elements using drag-and-drop tech-
niques; you can switch to XAML only or a split view of both Design and XAML using the tabs to the
right of this pane. Below the design surface is the Objects and Timeline panel. As you add elements to
your UJ, the hierarchical view of the objects comprising it will be shown here. From this panel, you also
have the ability to design animations that can apply to your Ul elements. Add a Rectangle to your
design surface by double-clicking on the rectangle icon on the far left of the IDE. Figure 5-3 shows the
object hierarchy once this is done.

Objects and Timeline

[UserControl]

* [UserControf]

Figure 5-3

The Rectangle will be placed with default values of 100 for width and Height and a thin black border,
as shown in Figure 5-4.

Page.xami* *

Figure 5-4

If you select the rectangle on the design surface, you are then free to alter its properties either in the
Properties window on the right-hand side or by manually editing the XAML that has been generated
for you. Figure 5-5 shows the Properties window being used to alter the rectangle’s color.

As well as being able to set common properties like color and position easily, further down the
Properties window you can alter some of the less frequently used properties, such as the ability to

124

Chapter 5: Creating the User Interface

transform the element’s position, shape and size (Translate, Rotate, Skew, Scale, etc.). Figure 5-6
shows the skew properties being altered in this way. Notice that the design surface and XAML view
reflect the property changes made.

Project o x Properties Respurces o X

Mame <No Name>

Type Rectangle
Search

Brushes

Stroke

OpacityMask No brush

| |

#FFD02727
)
Appearance
Opacity 100%
Visibility Visible
RadiusX
RadiusY

StrokeThickness

Figure 5-5

Magin * 0

o

Figure 5-6

125

Part Il: Developing ASP.NET Applications with Silverlight

Go ahead and double-click on the Text Block icon to add a Text Block to the design surface and also
have a go with the Pen tool. This tool helps you create complex Path objects on your design surface.

Blend also allows you to quickly apply animations against your Ul elements. These options can be
accessed by enabling the Animation workspace. Simply select Window and then Active Workspace @
Animation Workspace to work with this. By clicking on the plus (+) button next to the Storyboard drop-
down list, you can bring up the Create Storyboard Resource dialog, within which you can name the
timeline in use, as shown in Figure 5-7.

Create Storyboard Resource

Figure 5-7

Once this is done, you'll see an animation timeline appear next to the Objects panel, allowing you to
easily create and apply animations against your elements. You'll also notice the text “Timeline record-
ing is on” in the upper-left corner of the screen. Simply select an object in the hierarchy, alter its proper-
ties, and then move the timeline to set how long this property change should take. In Figure 5-8, the
rectangle’s position has been changed and the time for this change set to just over 2 seconds.

Objects and Timeline Common Properties

© Storyboardl = 14 41 » I» K Cursor

DataContext

[UserControl] ® 002000

52
* [UserControl] ¥ Transform

RenderTransform =
LayoutRoot
ofk " 2

etalye 50 ¥ 300

r

ZHF Relative

Miscellaneous

Figure 5-8

Once you're happy with your animations, you can stop timeline recording and you're done; a simple
animation against the Rectangle has been defined. Switch to XAML view to see the resulting markup
for this.

To add some of the more common controls to the design surface, click on the Asset Library button (the
double arrows) at the bottom of the left-hand toolbar. This will open up the Asset Library dialog box, as
shown in Figure 5-9.

This dialog (which you'll use often if you work with Blend) gives you access to the full suite of built-in

controls, custom controls, and locally specified styles. You're free to select an asset from this dialog and
then return to the design surface to draw the chosen asset on it.

126

Chapter 5: Creating the User Interface

Asset Library
Search x ® Gallery Details

Controls al Sty | Media Custom Controls Recent

Border X Image Rectangle {73 Togoles

E.R" Burton E InkPresenter {7} RepeatBumon {7 usercon

E | Canvas {7 RemsContral ScroliBar

] Cnecsox {7 IemsPresenter ontemPresenter
{7 ContentControl g i ListBox
E ContentPresenter : : ListBoudtem
Ellipse {7 MediaBlement
{7} Giyphs {7} Multiscalelmage
ﬂ Grid u; Popup

{7} HyperlinkButton O RadicButton

Figure 5-9

When you select an object on the design surface, you can use the Properties pane on the right-hand side
to access and alter the range of properties supported by the control in question. Figure 5-10 shows the
Properties pane with the Appearance and Layout subsections expanded.

Project e X Properties & X Resources o X
Mame rectangle
Type Rectangle
Search
* Brushes
Appearance
Opacity 50%
Visibility Visible
RadiusX
RadiusY

StrokeThickness

Layout
Width
Height
Row 0 RowSpan 1

Column 0 Column5p...

Horizontallignment = = [

VerticalAlignment ﬁ
Margin * 0

t 5504

Commeon Properties
» Transform

» Miscellaneous

Figure 5-10

127

Part Il: Developing ASP.NET Applications with Silverlight

As you alter the properties in the pane, the control will be redrawn in real time to show you the effect
of the change you have just made. Figure 5-11 shows the effect of changing the Opacity property for
the Rectangle that was added earlier.

Project ¢ X Properties & X Resources o X

ubisaq

Mame rectangle ﬁ i 3
Type Rectangle aid -

Search

* Brushes

uds TWWX

¥ Appearance

Opacity 30%
Visibility Visible
RadiusX 0
RadiusY 0

StrokeThickness 1

* Layout

* Common Properties
Transform

» Miscellaneous

Figure 5-11

Next, a button is added to the design surface, using the Properties window shown in Figure 5-12. The
button’s text is set to “Click Me,” and the font is altered to Webdings.

Project © x Properties & < Resources & x
Mame <No Name>
Type Button

Search

* Brushes

* Appearance

* Layout

Button * Common Properties

Text

Jds TNvX | UbEag

T
Lucida Sans Unice % =
Arial
Comic Sans M5
Courier New

Georgia

Times New Roman
Trebuchet MS

Verdana

Gets or sets the name of the spedfied font. The
default value is the system dialog font.

Figure 5-12

128

Chapter 5: Creating the User Interface

Now, in Silverlight (and WPF for that matter), the objects that comprise the user interface are drawn using
vector graphics. This means that scaling to increase or decrease the control’s size or skewing or rotating
the control about an axis are all completed without having a negative impact on the quality of the con-
trol’s appearance. Figure 5-13 shows the button created earlier following a few such transformations.

Project & X Properties & x Resources & %

Mame <No Name> ﬁ B
Type Button R

Search

TvX |Ubisag

* Brushes

Appearance
Layout

yids

* Commeon Properties
L

¥ Transform
RenderTransform =

r

2y 145

Relative

Figure 5-13

Note how the button and its “text” have been smoothly rotated and scaled without a loss in quality.

You've only explored the very basics of Blend in this short section. We encourage you to install Blend
and try it out for yourself. The ease with which XAML can be created as compared to other methods
(Visual Studio included) is a real bonus.

Expression Design

Expression Design is an advanced graphics and illustration package that allows you to create high-quality
assets for both web and Windows applications. Vector-based assets can be created with ease and then
transferred in XAML format to either Blend or Visual Studio for inclusion in your projects. As well as the
ability to work on both vector- and bitmap-based graphics, both formats can be integrated and worked
on in the same document. High-quality effects such as bevel, emboss, and Gaussian blur can be applied to
either vector- or bitmap-based assets. Changes can then be made to the effect or the asset, safe in the knowl-
edge that that these effects are nondestructive and editable. In short, if you need to create artwork for your
web/Windows applications that can be exported in XAML, Expression Design is the tool for the job.

Expression Media

Expression Media is designed with one main purpose in mind — to make digital asset management easier.
Files from more than 100 different media formats can simply be dragged and dropped to import them
into the catalog and then searched and annotated, even when the originals are offline. Expression Media
comes with advanced batch processing capabilities, allowing you to convert and edit many files at once,

129

Part Il: Developing ASP.NET Applications with Silverlight

as well as keeping track of the changes made via source control functionality. Basic video and image
editing is also provided, such as the ability to crop, resize, and adjust levels of brightness. As well as

cataloging all of your digital assets, Expression Media comes with the ability to output them in print,
via a web gallery or in a slideshow.

Expression Encoder

Expression Encoder is a feature of Expression Media that helps you quickly and easily encode your audio
and video digital assets. It includes the ability to create VC-1-encoded content that can be easily displayed
via a Silverlight application.

Expression Studio

Expression Studio contains all of the above applications, as well as a copy of Visual Studio
Standard Edition.

ASP.NET versus Silverlight Layout

ASP.NET is a programming abstraction that helps developers build complex Enterprise web applica-
tions in an object-oriented manner. Since, in reality, ASPNET does nothing more than wrap the under-
lying structure of a HTML page, the layout options available within ASP.NET are ultimately derived
from the underlying layout options of HTML.

It’s useful to quickly recap the layout options available so you can fully appreciate the differences and
similarities between the ASPNET approach and the Silverlight model.

Layout Options in ASP.NET

As ASP.NET is ultimately bound by the constraints of standard web page development, normal HTML
layout rules and techniques apply. This means that web pages can be created and arranged using a com-
bination of Cascading Style Sheets (CSS) and Tables. Typically, the layout instructions for CSS-based web
pages exist within a separate file (.css). This is what makes CSS so attractive: It enables you to cleanly
separate the structure of your HTML document from the presentation of it.

CSS

Using CSS, a combination of style attributes can be applied against the elements under its control to
ordain their placement and appearance — for example, margin settings, width, and height, as well as
various positioning strategies, listed below.

As well as being applied against elements such as textboxes and the like, CSS becomes really useful for
layout when paired with DIV tags. A DIV tag is used to denote a division/section within an HTML or
XHTML document and is used to group related UI elements together. For example, a DIV tag could be
used to denote the top navigation bar of a web site, containing various control elements grouped
together and positioned as a whole.

130

Chapter 5: Creating the User Interface

Using DIV and CSS should enable you to negate the need for Tables to construct your U, even if it’s
complex in nature. We say should because it can be a difficult task to author the correct CSS for DIVs
while supporting multiple browsers, and so some developers still tend to use Tables. In theory, the
advantage gained by separating the structure of your HTML from the presentation should point
toward the use of DIVs and CSS.

When using CSS, the following methods of positioning elements can be used:

Q Static — This is the default positioning mode and means that the element will be placed in the
position that it is defined in within the normal flow of the document.

0 Relative — Using relative positioning provides you with the ability to set the element’s top,
bottom, left, or right properties to specify where the element should be moved relative to its
default position in the document.

QO Absolute — Absolute positioning allows you to position an element in a set position using the
top, bottom, left, and right properties. The important thing to remember about absolute
positioning is that the position is applied within the containing element.

O Fixed — Fixed works in the same way as Absolute, however rather than being positioned with
regard to its container, it will be positioned with regard to the browser window.

As well as these, there are other methods to help with layout that operate within the rules above,
for example:

HTML Tables

Before CSS was used for layout, HTML tables allowed you to organize the elements of your page in a
grid-like manner, splitting the page or a portion of it into rows and columns, sized appropriately to con-
tain your user interface elements. Tables are still commonly used today thanks to their ease of use; the
downside is that they limit you to a tighter integration of structure and presentation.

Conclusion

The two broad options you have when creating an ASPNET web site — CSS and Tables — give you great
control and flexibility over the layout of the UI. However, care must be taken if you want to build a UI
that can resize gracefully when the browser window is resized or the monitor resolution is changed.
Using absolute positioning and hard-coded sizes for elements is a guarantee that your UI will suffer
when faced with variable resolutions and screen sizes. Throw in localization and therefore differing
text sizes and right-to-left reading, and your problems only get more difficult.

Using relative positioning and variable width element sizes can help alleviate these issues, but it is dif-
ficult to get right in a complex UL

Layout Options in Silverlight

Layout in Silverlight is accomplished with the aid of a selection of element containers, each of which
comes with different logic for laying out the elements that are placed within them. Consequently each
of these containers, or layout controls, is good for certain scenarios. You'll examine each of the layout
controls that ship with Silverlight shortly.

131

Part Il: Developing ASP.NET Applications with Silverlight

First of all, you need to be aware that within WPF and Silverlight, constructing your user interface by
explicitly setting element coordinates is not the recommended approach if you're trying to build a scal-
able UL The inability of fixed coordinates to take into account differing resolutions and window sizes,
changing content, and even localization means that this approach can be fundamentally flawed. This
means that the first layout element available in Silverlight — the Canvas control — shouldn’t be your
first choice when thinking about UI design, certainly for creating a scalable UI anyway (unless you like
writing lots of code).

Instead, a technique very similar to relative and flow-based layout is recommended, which means that if
you've been building your web sites using relative positioning to take into account resizing of browser
windows and the like, you won't be too confused by Silverlight’s Grid and StackPanel controls, which
support the automatic reflowing of content within them. If, however, you have always used absolute posi-
tioning or are coming at Silverlight from a WinForms background, this may take a little getting used to.

Before you step through the layout options in detail, it’s worth looking at two aspects of the layout and
rendering system in Silverlight that govern this area — the ability to create resolution-independent dis-
plays (planned for a future release) and the layout process in general. You also need to look at the top-
level factor controlling the Ul of your Silverlight application — the display settings given to the
Silverlight plug-in itself.

Resolution-Independent Rendering

The two main factors that affect the size of objects drawn on a monitor are the resolution and the DPI
(dots per inch).

The resolution refers to the number of pixels that can be displayed, for example, a resolution of 1,024 x 768
equates to 1,024 pixels horizontally and 768 pixels vertically. As the resolution of the monitor increases, the
size of the objects decreases, and vice versa. This means that although your Ul looks great at 1,024 x 768,
it might be too small to be usable on a monitor set to a much higher resolution, 1,600 X , for example.

The DPI is used to describe how large a “screen inch” is. For example, if this value is set to 96, 96 pixels
will make up 1 screen inch. This value can be higher or lower, of course, and thus a screen inch is usually
not equal to a real-world inch. Unlike resolution, when the DPI increases, so do the objects on screen, and
vice versa.

To get around the problems presented by differing values in these two areas, Silverlight, like WPF,
was intended to use device-independent pixels as the primary unit of measurement, rather than hard-
ware pixels. We say “intended” because upon release, this feature didn’t make it into Silverlight 2 and
will instead be included in a future release. This information is included to make you aware of this
functionality for when it is added in. A device-independent pixel is equal to 1/96 of an inch. This value
was chosen because 96 is the default setting for DPI on the new Vista platform. Therefore, if you have
the DPI set to 96, 1 hardware pixel will be equal to 1 WPF pixel. If you set the DPI to 120, though, WPF
will think it needs to increase the size of its device-independent pixel to compensate, and each WPF
pixel will be 1.25 hardware pixels in size. If you create a button 96 pixels wide in WPF, it will always
be 1 inch wide on screen, no matter the resolution.

Vector Graphics

There are two broad types of computer graphics used today, raster graphics (or bitmap) and vector
graphics. Raster graphics are built up pixel-by-pixel in a grid-like manner to eventually form the image,

132

Chapter 5: Creating the User Interface

where each pixel can be a different color/shade. The downside with this technique is the inability to
scale the image up or down nicely without it turning blocky. The upside is that these images can be
very high in quality, even photo-realistic.

Vector graphics, however, can be scaled up or down and maintain their quality because instead of being
made up pixel-by-pixel, they are composed of many smaller primitive objects (line, polyline, Bezier curve,
etc.), each of which can be described using mathematical statements. The upshot of this is that the image
can be scaled to any resolution without turning blocky. The downside is that vector graphics can’t cur-
rently be used for photo-realistic images and can perform more slowly than bitmaps as many more cal-
culations have to be performed.

Silverlight comes with support for both raster and vector graphics out-of-the-box, so you get the best
of both worlds. If you want to make a UI that scales well to multiple resolutions, you would be well
advised to create vector graphics for your toolbar images, for example, to prevent blocky/blurry
edges when scaled.

To conclude, if you want your image to scale smoothly if the resolution of your application changes, you
should use vector graphics, not bitmaps.

The Layout Process

The layout process in Silverlight is essentially the same as that in WPF, using a two-stage “measure-
and-arrange” algorithm to calculate the size and position of elements within the top-level parent panel
container. Whenever the user interface needs to be drawn (or redrawn), the first operation that takes
place is the “measure” operation. This involves the layout system iterating recursively through the child
elements that make up the Ul, measuring each one in turn and evaluating its desired size. This value is
exposed via the UTElement . DesiredSize property.

Next, the layout system carries out a second pass, the “arrange” pass, iterating over the elements com-
prising the Ul and finalizing their size and position. In Silverlight, every FrameworkElement is actu-
ally contained within a bounding box, which turns out to be nothing more than a simple rectangle.
Bounding boxes are the objects that are actually laid out and positioned by the layout system during
the arrange sweep. Each bounding box is a layout slot within the UI, and the rectangle object defined
in this way can be retrieved via a call to the static LayoutInformation.GetLayoutSlot method,
passing in the FrameworkElement object in question. If the element is larger than the layout slot that
has been assigned to it, it will be clipped, and so not all of it will be visible. The dimensions of the vis-
ible area of an element clipped in this manner can be obtained via a call to the LayoutInformation.
GetLayoutClip method, again passing in the FrameworkElement object in question.

If the element fits within the layout slot, it is positioned within it based on its alignment properties.

Figure 5-14 shows the relationship between a panel and a single child element contained within a
layout slot.

You can see that in this example, the TextBox is much smaller than the layout slot given to it by the lay-
out system and so is fully visible. However, if the layout system was under pressure for screen real estate
and provided a layout slot that was smaller than the TextBox, some or all of the TextBox would be
clipped, and only the layout clip portion of it would be visible, as shown in Figure 5-15.

133

Part Il: Developing ASP.NET Applications with Silverlight

Parent Panel Container

Bounding Box/Layout Slot

TextBox Element

Figure 5-14
Parent Panel Container
Bounding Box/ Bounding Box/ Bounding Box/
Layout Slot Layout Slot Layout Slot
Layout Clip
]
Figure 5-15

Displaying the Silverlight Plug-in Itself

It’s all well and good to design and create your Silverlight user interface in isolation, but you need to
remember that your Ul is constrained at the top level by the placement and sizing instructions applied
to the plug-in that will host it, not just the sizes specified against your top-level layout control. Your
nice UI won't look quite so nice when you realize that it’s twice the size of the area given to the

hosting plug-in.

There are various levels where sizing instructions can be placed to constrain your Silverlight application.
You'll look at them in order now. First, your Silverlight application is placed into a web page directly

within a DIV tag, as shown in the following example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" style="height:100%;">

<head runat="server">

<title>Test Page For Chapter05</title>
</head>
<body style="height:100%;margin:0;">

<form id="forml" runat="server" style="height:100%;">

134

Chapter 5: Creating the User Interface

<asp:ScriptManager ID="ScriptManagerl" runat="server"></asp:ScriptManager>
<div style="height:100%;">
<asp:Silverlight ID="Xamll"
runat="server"
Source="~/ClientBin/Chapter05.xap"
MinimumVersion="2.0.30523"
Width="100%"
Height="100%" />
</div>
</form>
</body>
</html>

You can see that the DIV tag has its style property set to specify a height of 100 percent, which
means the DIV tag will expand vertically to fill whatever space is provided by its parent HTML con-
tainer. Imagine in this instance if the DIV tag had its width and height properties set to 640 and 480,
respectively. If left like this, it wouldn’t matter if you set the Canvas control within the contained
Silverlight application to be 1,000 pixels by 1,000 pixels, because the remainder will effectively be
placed offscreen as it will fall outside the bounds of the containing DIV, as shown in Figure 5-16.

HTML Page
DIV Element 640
| D
i
i
i
i
i
i

480 |

i
i
i
i
j
E Canvas Region not visible
i

Figure 5-16

The next place in the chain that affects the sizing of your Silverlight application is within the OBJECT
tag itself that is output by the ASPNET Silverlight control. By default, the width and Height properties
of this control are set to 100 percent, which will be propagated to the actual 0BJECT tag rendered at run
time. If left to 100 percent each, the Silverlight control will expand to fill the entire DIV tag within which
it is contained.

135

Part Il: Developing ASP.NET Applications with Silverlight

Finally, you have the sizing attributes you pass to your top-level layout container; the following
UserControl is set to a Height of 400 and width of 300:

<UserControl x:Class="Chapter(05.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">
<Grid x:Name="LayoutRoot" Background="White">

</Grid>
</UserControl>

Be aware of these three different means of altering the size of your Silverlight application when encounter-
ing strange behavior. It’s very easy to overlook one and waste time debugging the wrong sizing problem.

The Layout Controls

Now that you're comfortable with the Silverlight layout process at a conceptual level, it’s time to turn
your attention to the controls that enable layout to take place.

In order for an element to be positioned and arranged in your Silverlight user interface, it must be placed
within a control that derives from panel. Silverlight provides the Canvas, StackPanel, Grid, and
TabPanel controls that all inherit from pPanel and as such allow child elements to be placed and
arranged within them.

If you find that none of these controls satisfy your more advanced layout requirements, you can, of course,
create your own layout controls and inherit from Panel yourself.

Each of these four main layout controls is now discussed, starting with the most basic (and also the most
efficient for this reason), Canvas.

Canvas

Canvas was the first layout control made available in Silverlight 2 and is also the simplest. Support for
absolutely positioning child elements using X and Y coordinates is provided by using two Canvas
attached properties — Canvas.Left (which controls the X coordinate) and Canvas . Top (which con-
trols the Y coordinate). Positioning of elements within the Z axis of the canvas is provided by the
Canvas . ZIndex attached property. This allows you to lay elements on top of each other if required.

Using Canvas is simple, indeed. You'll now step through a few examples that illustrate just how simple.
The examples can be seen in the Chapter 5 source code.

The following XAML shows a Rectangle added to a Canvas control with the canvas.Top and
Canvas . Left attached properties both set to 80. This will place the Rectangle 80 pixels from the
top of the Canvas and 80 pixels from the left of the Canvas.

<UserControl x:Class="Chapter(05.CanvasExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

136

Chapter 5: Creating the User Interface

<Canvas x:Name="LayoutRoot" Background="White">
<Rectangle Fill="Blue"
Canvas.Top="80"
Canvas.Left="80"
Width="100"
Height="50" />

</Canvas>

</UserControl>

The rectangle has been colored blue so that its position is evident, as shown in Figure 5-17.

/& Test Page For Chapter05 - Windows Internet Explorer [==res
)
‘\JU = |#&] hitp://localhost:114 v| ‘f| X ‘ |L(ve5ean:h

e ol ‘.@TestPageForChamer... [7‘ 5o v o

€l Local intranet | Protected Mode: On H100% -

Figure 5-17

If you omit the Canvas.Top and Canvas.Left properties, they will assume their default values of 0,
effectively placing the element in the top-left corner of the canvas.

<UserControl x:Class="Chapter(05.CanvasExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Canvas x:Name="LayoutRoot" Background="White">
<Rectangle Fill="Blue"

Width="100"
Height="50" />

137

Part Il: Developing ASP.NET Applications with Silverlight

<Rectangle Fill="Green"
Width="60"
Height="20"
Canvas.Top="80" />

</Canvas>

</UserControl>

In the above example, two rectangles are placed within the Canvas. The first rectangle will appear in
the top-left corner — 0,0 as both the Canvas. Top and Canvas.Left properties have been omitted. The
second rectangle will appear at position 0,80 as the Canvas.Left property will default to 0 because of
its omission. Figure 5-18 shows the result.

{& Test Page For Chapter05 - Windows Internet Explorer ===
pe——
Uu = [#£] hitp://localhost:114 v|‘?| X | | Live Search
- - e »
i |§TestPageFurChapter... I | o~ A
€l Local intranet | Protected Mode: On H100% ~
Figure 5-18

Thus, adding elements to the Canvas is very easy. Simply set the Canvas.Left and Canvas . Top prop-
erties accordingly. Remember, though, that these properties specify coordinates relative to the contain-
ing canvas. This becomes important when you want to nest a Canvas within a canvas. Consider the
following example:

<UserControl x:Class="Chapter(05.CanvasExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Canvas x:Name="LayoutRoot" Background="White">

<Rectangle Fill="Yellow"
Canvas.Top="30"

138

Chapter 5: Creating the

User Interface

Canvas.Left="30"
Height="10"
Width="40"/>

<Canvas Background="Green"
Canvas.Top="100"
Canvas.Left="30"
Height="200"
Width="200" >

<Ellipse Canvas.Top="10"

Canvas.Left="10"

Fill="Blue"

Height="30"

Width="30" />
</Canvas>

</Canvas>

</UserControl>

You can see that a Canvas is free to be placed as a child element within a parent Canvas just as a
Rectangle or any other element is. The Canvas . Top and Canvas . Left attached properties in the
nested Canvas declaration refer to its position within the parent canvas. Note, however, that the
Canvas.Top and Canvas . Left properties set on the innermost E11ipse are relative not to the outer-
most Canvas, but to the Canvas directly containing it, the nested one. Elements placed in a Canvas are
always placed relative to the Canvas that directly contains them. Figure 5-19 shows the resulting output.

/& Test Page For Chapter05 - Windows Internet Explorer ===

o N

() - (2] nttrnocamostns ~[44 X | | Live Search

vy ol [ETestPageForChapter,, [_‘ oo R

»

€l Local intranet | Protected Mode: On #H100% v

Figure 5-19

139

Part Il: Developing ASP.NET Applications with Silverlight

You're also free to overlap elements within a Canvas. In the following example, five rectangles have been
added to the canvas, each of which slightly overlaps the previous one. Note that none of the Rectangle
objects has its Canvas . zIndex attached property specified.

<UserControl x:Class="Chapter(05.CanvasExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Canvas x:Name="LayoutRoot" Background="White">

<Rectangle Canvas.Left="10"
Canvas.Top="10"
Width="100"
Height="30"
Fill="Red" />

<Rectangle Canvas.Left="60"
Canvas.Top="30"
Width="100"
Height="30"
Fill="Yellow" />

<Rectangle Canvas.Left="110"
Canvas.Top="50"
Width="100"
Height="30"
Fill="Green" />

<Rectangle Canvas.Left="160"
Canvas.Top="70"
Width="100"
Height="30"
Fill="Blue" />

<Rectangle Canvas.Left="210"
Canvas.Top="90"
Width="100"
Height="30"
Fill="Black" />

</Canvas>

</UserControl>

This XAML results in the output shown in Figure 5-20.

140

Chapter 5: Creating the User Interface

{€ Test Page For Chapter05 - Windows Internet Explorer ===
OO - |§‘ St/ o At 11 '| ‘?| X ‘ |n'.(veSean:h

v ol [@TestPageForChapler._ [_‘ @ = = @ -

€l Local intranet | Protected Mode: On H 100% -

Figure 5-20

By default, the order in which elements are added to the Canvas controls the order in which they overlap.
In effect, elements will be stacked one on top of the other. If this default behavior is not what you want,
you can override it by explicitly setting the Z coordinate yourself via the Canvas . ZIndex attached

property.

<UserControl x:Class="Chapter05.CanvasExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Canvas x:Name="LayoutRoot" Background="White">

<Rectangle Canvas.Left="10"
Canvas.Top="10"
Width="100"
Height="30"
Fill="Red" />

<Rectangle Canvas.Left="60"
Canvas.Top="30"
Width="100"
Height="30"
Fill="Yellow" />

141

Part Il: Developing ASP.NET Applications with Silverlight

<Rectangle Canvas.Left="110"
Canvas.Top="50"
Width="100"
Height="30"
Fill="Green"
Canvas.ZzZIndex="1" />

<Rectangle Canvas.Left="160"
Canvas.Top="70"
Width="100"
Height="30"
Fill="Blue" />

<Rectangle Canvas.Left="210"
Canvas.Top="90"
Width="100"
Height="30"
Fill="Black" />

</Canvas>

</UserControl>

The greater the Canvas . zIndex property is compared to that of the other elements, the closer to the
foreground that element will be placed. Changing the third Rectangle to a value of 1 will place it on
top of all the other rectangles that have unspecified values, as can be seen in Figure 5-21.

/& Test Page For Chapter05 - Windows Internet Explorer =
P,

UU - |ﬁ| it ot el '|‘?| A | | Live Search

o [@Test Page For Chapter... l_l fi I = . »

€ Local intranet | Protected Mode: On Hi00% v

Figure 5-21

142

Chapter 5: Creating the User Interface

There is a final point for you to take in with regard to developing against the Canvas. It’s important to
remember that although you set the Height and width properties of the Canvas control, youre ultimately
bound by the Height and width specified by the hosting page itself. Therefore if you set an element to
be displayed 200 pixels to the right within your Canvas and if the hosting page sets the width of your
Silverlight control to 100, your element will effectively be placed offscreen and will not be visible. The
ASP.NET Silverlight control below explicitly sets the Height and width to 100:

<html xmlns="http://www.w3.0rg/1999/xhtml" style="height:100%; ">
<head runat="server">
<title>Test Page For Chapter05</title>
</head>
<body style="height:100%;margin:0;">
<form id="forml" runat="server" style="height:100%;">
<asp:ScriptManager ID="ScriptManagerl" runat="server"></asp:ScriptManager>
<div style="height:100%;">
<asp:Silverlight ID="Xamll"
runat="server"
Source="~/ClientBin/Chapter05.xap"
MinimumVersion="2.0.30523"
Width="100"
Height="100" />
</div>
</form>
</body>
</html>

This results in the following Rectangle being rendered offscreen as its Canvas . Left property is greater
than the hosting page’s Width setting for the Silverlight control:

<UserControl x:Class="Chapter(05.CanvasExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Canvas x:Name="LayoutRoot" Background="White">
<Rectangle Canvas.Top="10"
Canvas.Left="100"
Height="20"
Width="20"
Fill="Blue" />

</Canvas>
</UserControl>
Grid

The Grid layout object allows you to construct your Ul by arranging it within a number of columns and
rows. This is similar to the TABLE HTML element you're already familiar with.

143

Part Il: Developing ASP.NET Applications with Silverlight

Consider the following simple example, which defines a Grid that has two columns and two rows:

<UserControl x:Class="Chapter05.GridExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Grid x:Name="LayoutRoot"
Background="White"
ShowGridLines="True">

<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>

<TextBlock Grid.Column="0"
Grid.Row="0"
Text="0,0" />

<TextBlock Grid.Column="0"
Grid.Row="1"
Text="0,1" />

<TextBlock Grid.Column="1"
Grid.Row="0"
Text="1,0" />

<TextBlock Grid.Column="1"
Grid.Row="1"
Text="1,1" />

</Grid>

</UserControl>

There are a few things worth calling out in this example. First, the ShowGridLines property of the
Grid object has been set to True. This will draw in the lines created by the rows and columns so you
can see the effect your changes are making.

Second, notice the syntax for defining the number of Column and Row objects within the Grid. Column

Definition and RowDefinition elements are placed within the Grid.ColumnDefinitions and
Grid.RowDefinitions elements. More on these shortly.

144

Chapter 5: Creating the User Interface

Finally, notice how the four TextBlock objects have been placed into their own cells using the
Grid.Column and Grid.Row attached properties.

The output is shown in Figure 5-22.

{& Test Page For Chapter05 - Windows Internet Explorer ===
Q O - |§, hitp://localhost:114 V‘ +r ‘ X | | Live Search
] | & Test Page For Chapter... [_| oo v g =
0,0 1,0 =
o, T S
€8 Local intranet | Protected Mode: On #100% ~
Figure 5-22

At present, since no sizing information has been provided, the default action is for them to be spaced
evenly according to the size of their contents. This is most likely not going to suffice, and thus you are
given the ability to set the Column element’s width property and the Row element’s Height property to
fine-tune the layout of your Grid. Therefore, if you wanted the first Column to be 30 pixels wide and the
second Column to be 70 pixels wide, the following markup could be used:

<Grid.ColumnDefinitions>
<ColumnDefinition Width="30" />
<ColumnDefinition Width="70" />

</Grid.ColumnDefinitions>

The same syntax applies for applying the Height property to your RowDefinition elements. The fol-
lowing markup will set the first Row to be 30 pixels high and the second Row to be 70 pixels high:

<Grid.RowDefinitions>
<RowDefinition Height="30" />
<RowDefinition Height="70" />

</Grid.RowDefinitions>

145

Part Il: Developing ASP.NET Applications with Silverlight

Figure 5-23 shows the result of these changes.

/& Test Page For Chapter05 - Windows Internet Explorer (===
- —
() - [E] nttmnocamostars ~[49| X |[Live search
vy i [@TestPaganrChamH, |_| o - - v &
0,01,0 =
o171

H

H

€ Local intranet | Protected Mode: On H100% -
Figure 5-23

In addition to explicitly setting the width and Height of the Row and Column elements, you can also
instruct them to size automatically by specifying Auto. This will size them based purely on the size of
the content within them. The markup for this is as follows:

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="Auto"/>

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>

</Grid.RowDefinitions>

Finally and perhaps most usefully, you have the ability to size your Row and Column elements using
Star sizing. Star sizing allows you to distribute the space available within your Grid object using
weighted proportions. In practice, this means that you can create a Grid that resizes gracefully as the
screen size changes around it because the sizes are not fixed/absolute. This also allows the Grid to
automatically adjust (within boundaries that you can set) to ranges of content size. An example will
help hammer this point home:

<UserControl x:Class="Chapter05.GridExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="400">

146

Chapter 5: Creating the User Interface

<Grid x:Name="LayoutRoot"
Background="LightBlue"
ShowGridLines="True">

<Grid.ColumnDefinitions>
<ColumnDefinition Width="2*"/>
<ColumnDefinition Width="*"/>

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition Height="2*"/>
<RowDefinition Height="*"/>

</Grid.RowDefinitions>

<TextBlock Grid.Column="0"
Grid.Row="0"
Text="0,0" />

<TextBlock Grid.Column="0"
Grid.Row="1"
Text="0,1" />

<TextBlock Grid.Column="1"
Grid.Row="0"
Text="1,0" />

<TextBlock Grid.Column="1"
Grid.Row="1"
Text="1,1" />

</Grid>
</UserControl>

In this example, you can see that the values for the Column wWidth properties have been set to 2* and *,
respectively. This means that the first Column will be given two times the available space, and the sec-
ond Column will receive one times the available space. The same proportions are set against the Row
elements, and the resulting output is shown in Figure 5-24.

The benefit of this approach really becomes clear when the Grid is asked to resize and effectively
reflow the content within it. In order to achieve this, the plug-in needs to be sized at 100 percent for
both width and Height, and the width and Height for the container controls within your XAML
need to be omitted. These steps ensure that the content will always expand to fill the available space
provided to the plug-in.

<div style="height:100%;">
<asp:Silverlight ID="Xamll"

runat="server"
Source="~/ClientBin/Chapter05.xap"
MinimumVersion="2.0.30523"
Width="100%"
Height="100%" />

</div>

147

Part II: Developing ASP.NET Applications with Silverlight

] nttpriocathostiita +| ¢7] X || Live search

- o»

|
-

" S Localintranet| Protected Mode: On TR

Figure 5-24

By doing this, you can see that as the browser window is resized, the Grid and its contents resize
according to the weighted proportions assigned in the Column and Row definitions. Figure 5-25
illustrates this point.

G Local et pra K 100%

Figure 5-25

148

Chapter 5: Creating the User Interface

You can also fine-tune this behavior further, by specifying maximum and minimum values for both the
Column wWidth and the Row Height — in effect, providing a range within which the column and Row
can resize. The following XAML shows this in action:

<Grid.ColumnDefinitions>
<ColumnDefinition Width="2*"/>
<ColumnDefinition Width="*" MinWidth="30"/>
</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition Height="2*" MaxHeight="400"/>
<RowDefinition Height="*"/>
</Grid.RowDefinitions>

This technique allows you to create a scalable UI that isn't rendered useless when the browser window
is resized.

Now turn your attention back to the controls that are placed within the Grid itself. As well as the attached
properties to define which Row and Column they should sit within, there are two more properties that
allow the control to span multiple Column and Row elements, the Grid.ColumnSpan and Grid.RowSpan
attached properties, respectively. These can be set to a number that specifies exactly how many of the rows
or columns they are allowed to span. Consider the following example in which the first TextBlock in the
previous examples has been set to span two columns:

<TextBlock Grid.Column="0"
Grid.Row="0"
Grid.ColumnSpan="2"
Text="This text will span more than one column" />

Figure 5-26 shows how this change has affected the UL

{& Test Page For Chapter05 - Windows Inte... | = || & |[22
i -

vy i |@TestPageFmChapter,, I_ o= =

This text will span more than &in@ column &

£ htip://locathost:114 ~| 44 | X || Live Searc

€l Local intranet | Protected Mode: On 0% -

Figure 5-26

149

Part Il: Developing ASP.NET Applications with Silverlight

StackPanel

The stackpPanel allows you to do exactly what its name suggests — stack elements, either vertically or
horizontally within it (vertical being the default). The elements are positioned relative to the preceding
element in the stack, and so you don’t have to concern yourself with positioning. The following example
shows four elements stacked vertically:

<UserControl x:Class="Chapter05.StackPanelExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<StackPanel x:Name="LayoutRoot" Background="White">
<TextBlock Text="Item 1" />
<Button Content="Item 2" />
<Ellipse Fill="Blue"
Height="20"
wWidth="30" />
<TextBox Text="Item 4" />
</StackPanel>

</UserControl>

Figure 5-27 shows the output of this XAML. To change the items to be stacked horizontally rather than
vertically, you can set the StackPanel.Orientation property to Horizontal.

/& Test Page For Chapter05 - Windows In... = |[=1'|[52|
U _) - [E] nttpnocainostita =45 [x || Live seo

Sk |.§TestPageForcnapter... I:IM

ltem 1 i

Item 2]

Item 4 |

€l Local intranet | Protected Mode: O~ H.100% ~

Figure 5-27

<StackPanel x:Name="LayoutRoot"
Background="wWhite"
Orientation="Horizontal">

<TextBlock Text="Item 1" />

<Button Content="Item 2" />

<Ellipse Fill="Blue"
Height="20"
Width="30" />

150

Chapter 5: Creating the User Interface

<TextBox Text="Item 4" />

</StackPanel>

This will render the Ul in Figure 5-28.

& Test Page For Chapter05 - Winde... [= || = |52 |
U_) ~ | &] nttp:/nocaihost:114 v|+,| x |[Li
T ———

Item 1 Item 4 | -

ltem 2 .

\—

€ig Local intranet | Protected Mode: F100% ~

Figure 5-28

Each control that is stacked within the StackPanel can set its own alignment via the Horizontal
Alignment and VerticalAlignment properties. These do not affect in any way the stack order or
orientation, only how the individual control will be placed within its assigned stack slot.

Margin

Before moving on to the TabControl and associated TabPanel objects, it’s worth discussing how the
Margin property of individual elements can affect their placement within the layout controls. In order
to position an element within a layout container precisely, in addition to the techniques you've already
seen, you can also use HorizontalAlignment, VerticalAlignment, and the Margin property pro-
vided by the base FrameworkElement class. The Margin property warrants further examination as it’s
not simply a matter of providing a single value.

Margin accepts a value of type System.Windows.Thickness and is used to specify the amount of space
between the object it’s set against and the surrounding objects in the layout. By default, this value is set
to 0; however, it’s rare that your Ul will require all the objects being tightly packed in this manner.

There are a variety of ways to specify the Margin size, as you can set it both uniformly for all sides of
the element or individually for different Margin sizes on different sides.

The following example illustrates the concept:
<UserControl x:Class="Chapter05.MarginExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

151

Part Il: Developing ASP.NET Applications with Silverlight

<StackPanel x:Name="LayoutRoot" Background="LightBlue">

<!-- Uniform Margin of 30 pixels all the way around -->
<Button Content="Click Me"
Margin="30" />

<!-- Left + Right margin = 20, top + bottom margin = 30 -->
<TextBox Text="Some Text"
Margin="20, 30" />

<!-- left, right, top, bottom values -->
<TextBlock Text="More Text"
Margin="10, 10, 5, 5" />

</StackPanel>

</UserControl>

The three elements within the StackpPanel have each had their Margin property set in different
ways. The first element has been given a uniform Margin 30 pixels wide all the way around it. The
second element has been given a Margin thickness of 20 to share between the left and right sides, so
each receives 10. The top and bottom sides share 30, so each receives 15. Finally, in the third element,
each side (left, right, top, and bottom) has had its Margin size set explicitly.

One important point to consider regarding the Margin setting is that it acts additively. If you have two
elements next to each other, each with a Margin of 10, the total space between them will be 20.

As you can imagine, combining margin and alignment settings within the layout controls provides you
with fine-grained control over the placement of elements within your UL

TabControl

TabControl allows you to organize a complex Ul by breaking it apart into related groups and placing
the grouped elements in an arbitrary number of TabItem objects within the containing TabControl.

For each TabItem that you place within the TabControl, you add Ul elements via its Content property,
and thus you will typically create a layout control directly within the Content property to facilitate the
layout of the individual TabItem elements. As you may have inferred from the preceding statement, the
TabItem itself is not a layout control. Every TabControl has a single TabPanel object that acts as a lay-
out container. It is this container that actually controls how the TabItems within it will be displayed.

The following C# code sample shows how you can programmatically create a TabControl and populate
it with two TabItem controls, each with their Content set to a Ul tree with a layout control at the top.
(We thought you might be bored with looking at XAML by now.)

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

152

Chapter 5: Creating the User Interface

using
using
using
using
using
using
using

System.
System.

System

System.

System

System.
System.

Windows.Controls;

Windows .Documents;

.Windows. Input;
Windows.Media;
.Windows.Media.Animation;
Windows . Shapes;
Windows.Controls.Primitives;

namespace Chapter05

{

public partial class TabControlExample : UserControl

{

publ
{

ic TabControlExample ()
InitializeComponent () ;

//instantiate the TabControl
TabControl tabControl = new TabControl () ;

//Add the first tab, and populate it with
//a Grid containing a TextBlock

TabItem tabl = new TabItem() ;

tabl.Header = "Tab 1";

TextBlock textblockl = new TextBlock() ;
textblockl.Text = "Text Block 1";

Grid grid = new Grid();

grid.Children.Add (textblockl) ;
tabl.Content = grid;

//Add this TabItem to the TabControl
tabControl.Items.Add (tabl) ;

//Add the second tab, and populate it with
//a StackPanel containing a Button
TabItem tab2 = new TabItem() ;

tab2.Header = "Tab 2";

Button buttonl = new Button();
buttonl.Content = "Click Me!";

StackPanel stackPanel = new StackPanel () ;
stackPanel.Children.Add (buttonl) ;
tab2.Content = stackPanel;

//Add this TabItem to the TabControl
tabControl.Items.Add(tab2) ;

//Add the TabControl to the UI
LayoutRoot.Children.Add (tabControl) ;

Figure 5-29 shows the resulting UI with the second tab selected.

153

Part Il: Developing ASP.NET Applications with Silverlight

| Test Page For Chapter05 - Windows Internet Explorer [SIEE]
Uu - |§, hitp://localhost:114 v|‘1| X | | Live Search

A Test Page For Chapter... — > B v o= =

W | g i =
Tz | i
Click Me!
€ Local intranet | Protected Mode: On #100% -
Figure 5-29

Full-Screen Support

There are two display modes that a Silverlight plug-in can support. The Embedded mode is the default
mode and is fairly simple to deal with. Full-Screen mode is a little trickier and warrants a more detailed
exploration in this section.

Embedded Mode

In Embedded mode, the plug-in is always contained within the hosting browser window. Position and
size are dictated by the containing DIV tag. This is the default display mode for a Silverlight application.
It is practical for most common scenarios.

Full-Screen Mode

Sometimes displaying your application within the confines of the browser window is not desirable, a
couple of good examples being a kiosk application or a game. In these situations, you can switch the
display mode to Full-Screen, which will place your application on top of all other applications
(browser included) and resize it to the display’s current resolution.

Because of the aggressive nature of this feature — it takes over the entire desktop — it cannot simply be
activated from anywhere in code. Imagine if an inconsiderate developer forced their Silverlight applica-
tion to Full-Screen mode in the page loaded event. That would be very frustrating for users navigating
to the hosting page of this application.

Instead, it can only be activated in response to specific user-initiated actions: MouseLeftButtonDown,
MouseLeftButtonUp, KeyDown, and KeyUp. This prevents a forceful takeover of the desktop by a
Silverlight application.

154

Chapter 5: Creating the User Interface

To toggle between Embedded and Full-Screen mode, you need to set the Application.Current.Host
.Content.IsFullScreen property to true for Full-Screen or false for Embedded mode.

The following example shows this behavior in action and also demonstrates some of the nuances of this
technique. The source code can be found in the Chapter 5 source code directory.

First off, you should create a

XAML page that will be shown in either Embedded or Full-Screen mode.

For the purposes of the example, the following XAML file simply creates a button that when clicked

toggles between Full-Screen

and Embedded mode:

<UserControl x:Class="Chapter(05.FullScreenExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<Grid x:Name="LayoutRoot" Background="White">
<Button Content="Toggle Full Screen Mode"
Click="Button_Click" />

</Grid>

</UserControl>

Note the event handler that has been wired up on the Button object. The following code behind shows
how this Button handler method toggles between the two modes:

using System;

using System.Collections.Generic;

using System.Ling;

using System.Net;

using System.Windows;
using System.Windows.
using System.Windows.
using System.Windows.
using System.Windows
using System.Windows.
using System.Windows.

namespace Chapter05

{

Controls;
Documents;
Input;

.Media;

Media.Animation;
Shapes;

public partial class FullScreenExample : UserControl

{

public FullScreenExample ()

{

InitializeComponent () ;

}

private void

{

Button_Click(object sender, RoutedEventArgs e)

Application.Current.Host.Content.IsFullScreen =
!|Application.Current.Host.Content.IsFullScreen;

155

Part II: Developing ASP.NET Applications with Silverlight

When you first run this page, you will see the application hosted within the browser as normal (see
Figure 5-30). Try clicking the Button, though, and the screen shown in Figure 5-31 will appear.

%v [nttpnocainost114 + | 44| x | [Live Search £

Toggle Full S5creen Mode

€ Localintranet| Protected Mode: On | ®io0% v

Figure 5-30

Figure 5-31

156

Chapter 5: Creating the User Interface

Note the “Press Esc to exit full-screen mode” instruction that appears briefly once entering Full-Screen
mode. This gives all users the information needed to cancel this behavior if it was unintentional or not
required. As well as pressing the Esc key to exit Full Screen for both Windows and Macintosh, on
Windows, Alt+F4 can be used to return to Embedded mode.

The application will also automatically revert back to Embedded mode from Full Screen if it loses focus.
How can it lose focus when it has taken over the desktop? In a multi-monitor setup, simply selecting
another application in a different monitor will do the trick, or using Alt+Tab to switch between running
applications on Windows, for example.

When in Full-Screen mode, the Application.Current.Host.Content.ActualWidth and
Application.Current.Host.Content.ActualHeight properties can be used to ascertain the true
screen size, which is useful for the scaling of your controls if necessary. The width and Height prop-
erties will not change when entering Full-Screen mode.

To see this in action, a TextBlock to show the screen dimensions can be added to your page:

<Grid x:Name="LayoutRoot" Background="White">
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>

<Button Content="Toggle Full Screen Mode"
Click="Button_Click"
Grid.Row="0"/>

<TextBlock Grid.Row="1"
x:Name="information" />

</Grid>

You can then take advantage of the Application.Current.Host.Content.FullScreenChanged
event to write out the current screen size to this TextBlock:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace Chapter05

{
public partial class FullScreenExample : UserControl

157

Part Il: Developing ASP.NET Applications with Silverlight

{
public FullScreenExample ()
{
InitializeComponent () ;
this.DisplayBrowserSize() ;
Application.Current.Host.Content.FullScreenChanged +=
new EventHandler (Content_FullScreenChanged) ;
}
void Content_FullScreenChanged (object sender, EventArgs e)
{
this.DisplayBrowserSize() ;
}
private void DisplayBrowserSize ()
{
information.Text = String.Format ("Width: {0}, Height {1},
Actualwidth {2}, ActualHeight {3}",
this.width,
this.Height,
Application.Current.Host.Content.ActualWidth,
Application.Current.Host.Content.ActualHeight) ;
}
private void Button_Click(object sender, RoutedEventArgs e)
{
Application.Current.Host.Content.IsFullScreen =
IApplication.Current.Host.Content.IsFullScreen;
}
}

Note how the FullScreenChange event is wired up in the Page_Loaded handler. A private method
has been added — DisplayBrowserSize (), which writes the UserControl .Height, UserControl.
Width, Application.Current.Host.Content.ActualHeight, and Application.Current.Host.
Content.ActualwWidth properties to the TextBlock-named information in the XAML.

Try running your application now. At first, the width and Height standard properties will be correct (pos-
sibly NaN if they haven’t been explicitly set), and the Actualwidth and ActualHeight will be correct.

Once switching to Full-Screen mode, however, the width and Height remain unchanged, but the
Actualwidth and ActualHeight show the true browser size (see Figure 5-32).

If you have put together a Ul that is absolutely sized (say, using a Canvas) and want this Ul to scale up
when entering Full-Screen mode, there is a quick trick you can use to accomplish this. Consider the fol-
lowing Ul a Button and a TextBox positioned within a Canvas:

<UserControl x:Class="Chapter(05.ScaleUpExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

158

Chapter 5: Creating the User Interface

<Canvas x:Name="LayoutRoot" Background="White">

<Button Canvas.Left="20"
Canvas.Top="20"
Content="Toggle Full Screen"
Click="Button_Click" />

<TextBlock Canvas.Left="20"
Canvas.Top="60"
Text="Some Text" />
</Canvas>

</UserControl>

|\E_ mv‘armmrwm |ty |,¥ |||.n Search P~

W | TestPags For Crapiens J Bios B - o Page s ook =

Teggle Full Screen Mode

Figure 5-32

Now, when the Button is clicked, the screen is scaled up and Full-Screen mode is entered; however, the
Canvas and its contents remain at the same size, which looks odd and leaves plenty of full-screen real
estate bare. What is more likely to be needed is for the application to recognize that it’s in Full-Screen
mode and to scale the UI up accordingly. To do this, you can take advantage of the ScaleTransform
class as shown in the following code sample. More on this subject can be found in Chapter 14.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

159

Part Il: Developing ASP.NET Applications with Silverlight

using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace Chapter05

{
public partial class ScaleUpExample : UserControl
{
public ScaleUpExample ()
{
InitializeComponent () ;
Application.Current.Host.Content.FullScreenChanged +=
new EventHandler (Content_FullScreenChanged) ;
}
void Content_FullScreenChanged (object sender, EventArgs e)
{
//if full screen, scale UI
if (Application.Current.Host.Content.IsFullScreen)
{
double scaleX =
Application.Current.Host.Content.ActualHeight / this.Height;
double scaleY =
Application.Current.Host.Content.ActualWidth / this.Width;
ScaleTransform transformUI = new ScaleTransform() ;
transformUI.ScaleX = scaleY;
transformUI.ScaleY = scaleX;
this.RenderTransform = transformUI;
}
else
{
this.RenderTransform = null;
}
}
private void Button_Click(object sender, RoutedEventArgs e)
{
Application.Current.Host.Content.IsFullScreen =
IApplication.Current.Host.Content.IsFullScreen;
}
}
}

Figures 5-33 and 5-34 show the difference between an unscaled Ul in Full-Screen mode and a scaled Ul
in Full-Screen mode. Note, however, that you only need to do this if you haven’t allowed for resizing
your U, via a Grid control, for example.

160

Chapter 5: Creating the User Interface

{Tenpte Fom seraen

Some Text

Press ESC to exit lull-screen mode.
hittge: | [localivast

Figure 5-33

[Toggle Full Screen]

Some Text

Press ESC to exit full-screen mode.
hiig

Figure 5-34

161

Part Il: Developing ASP.NET Applications with Silverlight

Localization

Localization is the act of creating an application that changes its presentation of text at run time based on
the current user’s locale settings. This means that a German-speaking user would open the application
and the text in the application would be written entirely in German, and a French user would view the
application in French, and so on.

Localizing your Silverlight application involves creating resource files, one per locale that you want to
support, and populating them with all the string content that exists in your application in the appropri-
ate language, with a key to differentiate them. The resource files are named using a special format that
includes the locale-specific code of the language resources they contain. For example, the locale code for
German is de, and therefore the resource file would be named in the format FileName.de.resx. If there
may be regional variances in the language (English Great Britain and English U.S.), the formats would
be en-GB and en-US, respectively.

The key thing to take away is that all of the text within your application that would usually be hard-
coded is stripped out and isolated into region-specific resource files, ready to be imported and used as
needed.

Open the SilverlightLocalizationExample solution in the Chapter 5 source directory. In the Silverlight
project, you will notice that two resource files have been created within it, one named LocalizedStrings.
de.resx, which will be the catch-all German resource container, and one named LocalizedStrings.resx,
which will be the default fallback resource container, in this example containing the English text.
Figure 5-35 shows the project structure in its entirety.

ion Explorer - ion *SilverlightLocalizationEx... |
ReEEE
D Solution 'SilverlightLocalizationExample' (2 projects)

= 3 SilverlightLocalizationExample
+- [Edl Properties

==l References

&5 Resources

(53 LocalizedStrings.de.resx
__a LocalizedStrings.resx
1= Appxaml

[Page.xaml

-

BORSRH -)

=d| Properties

== References

5 App_Data

{23 bin

3 ClientBin

obj

Default.aspx
SilverlightLocalizationExampleTestPage.aspx
|ﬂ SilverlightLocalizationExampleTestPage.html
Q ‘Web.config

B s o e e

Figure 5-35

If you open up either of these two resource files, you will notice that they each contain two entries with
the names TextBlockl and TextBlock2. These are the unique names that will be used to obtain the associ-
ated value against them. Notice how the values are in English in the catch-all fallback file, and that the
values should be in German in the German resource file.

162

Chapter 5: Creating the User Interface

If you take a look in Page.XAML, you will see the following markup:

<UserControl x:Class="SilverlightLocalizationExample.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:Localized="clr-namespace:SilverlightLocalizationExample.Resources"
Width="400" Height="300">

<UserControl .Resources>
<Localized:LocalizedStrings x:Name="LocalizedStrings" />
</UserControl.Resources>

<StackPanel x:Name="LayoutRoot" Background="LightBlue">

<TextBlock Text="{Binding TextBlockl,
Source={StaticResource LocalizedStrings}}" />

<TextBlock Text="{Binding TextBlock2,
Source={StaticResource LocalizedStrings}}" />

</StackPanel>

</UserControl>

The first item of interest is the new namespace we have specified in the top-level UserControl element
definition to bring into scope the class that backs the resource file:

xmlns:Localized="clr-namespace:SilverlightLocalizationExample.Resources"

Next, you can see that an instance of the Localizedstrings object has been placed into the
Resources section of the UserControl, ready for subsequent use.

Finally, the two TextBlock controls within the stackPanel have their Text properties bound to the
relevant name/value pair in the resource file via the special staticResource binding syntax.

Now, if you open up App.xaml.cs, you will see that some code has been added to the class constructor to
manually force the application into German as its CurrentUICulture. This is so you can test whether
the system is working for German users and you can comment it out to check for English.

using
using
using
using
using
using
using
using
using
using
using

System;
System.
System.
System.
System.
System.
System.
System.
System
System.
System.

Collections.Generic;

Ling;
Net;
Windows;
Windows.
Windows.
Windows.

.Windows .

Windows .
Windows.

Controls;
Documents;
Input;

Media;
Media.Animation;
Shapes;

163

Part Il: Developing ASP.NET Applications with Silverlight

namespace SilverlightLocalizationExample

{
public partial class App : Application
{

public App()

{
System.Threading.Thread.CurrentThread.CurrentUICulture =

new System.Globalization.CultureInfo("de");
this.Startup += this.Application_Startup;
this.Exit += this.Application_Exit;
this.UnhandledException += this.Application_UnhandledException;

InitializeComponent () ;

}
private void Application_Startup (object sender, StartupEventArgs e)
{
this.RootVisual = new Page();
}

private void Application_Exit (object sender, EventArgs e)

{

}
private void Application_UnhandledException (object sender,
ApplicationUnhandledExceptionEventArgs e)
{
if (!System.Diagnostics.Debugger.IsAttached)
{

e.Handled = true;

try
{

string errorMsg = e.ExceptionObject.Message +

e.ExceptionObject.StackTrace;
errorMsg = errorMsg.Replace('"', '\'').Replace("\r\n", @"\n");

System.Windows.Browser .HtmlPage.Window.Eval ("throw new
Error (\"Unhandled Error in Silverlight 2 Application " + errorMsg + "\");");
}

catch (Exception)
{
}

Compile and run the application — you should be presented with the screen shown in Figure 5-36.

164

Chapter 5: Creating the User Interface

{& Test Page For Silverlightl ocalizationExample - Windows Internet Ex...[= | = |52 |
Uu = |§| http://localhost:387 v|‘?| X | | Live Search £
o e |§TestFaga For Silverlig... |_| o~ v (= v [ir Page v =
German 1
German 2
€l Local intranet | Protected Mode: On Hoo% v
Figure 5-36

Now, comment out the line of code that sets the CurrentUICulture to German, and compile and run
the application again. Notice how the text is now obtained from the default resource file, which is our
English one. In this manner, you can create and add the appropriate resource files to your application
and have them automatically picked up and used based on the user’s settings.

If you're going to use this technique, take a look in the post-build event for the Silverlight project (it con-
tains code to move the resource DLLs into the correct directory) and also in the csproj file as it contains
the <SupportedCultures> element. You need to ensure that this element contains a list of all the cul-
tures your Silverlight application is going to support.

Summary

In this chapter, you learned about the capabilities of the new Microsoft Expression Suite of design
packages, with the emphasis on Expression Blend. You saw how the close integration between Blend
and Visual Studio can help smooth the boundaries between designers and developers and offer for
the first time a seamless development experience between the two disciplines.

You also saw how the advanced design time capabilities of Blend enabled you to quickly put together

complex Uls without having to manually code by hand a single line of XAML, offering a clear advan-
tage over Visual Studio, which only provides design time support for basic XAML creation.

165

Part Il: Developing ASP.NET Applications with Silverlight

You then looked at the layout options that are available to you within your Silverlight applications,
comparing them to the techniques you're already familiar with in ASP.NET. You saw that the differ-
ences are not that great and that building a scalable UI within Silverlight is not a difficult task when
using Grid or StackPanel.

You then walked in detail through each of the layout/container controls that shipped with this first
release and explored the reasons for choosing one over the other.

Finally, you looked at the steps involved in localizing your application, allowing your rich, engaging
application to interact with multiple languages and cultures.

In the next chapter, you will take a detailed look at each of the controls that ship with Silverlight 2.

166

Silverlight Controls

Today’s web and desktop development frameworks provide robust support for capturing and dis-
playing data using built-in controls. ASP.NET is a prime example of such a framework. It offers a
rich set of controls capable of capturing end-user input using TextBox and Button controls, dis-
playing data in multiple formats using Gridview or DetailsView controls, querying databases
and parsing XML files using SglDataSource and XmlDataSource controls, and even showing
advertisements using the AdRotator control. It goes without saying that by using controls you
can minimize the amount of custom code that has to be written for an application and increase
overall productivity.

When Silverlight 1 was released, it provided a solid framework for animating objects and displaying
media but included only a minimal set of controls for displaying data. Controls such as TextBlock
could be used to display text, and Canvas could be used to arrange text on a user interface. No con-
trols were available for showing lists of items, capturing user input, or performing more advanced
layout functionality, which led to the rise of clever hacks and coding techniques to fill in the holes.

Silverlight 2 provides a robust set of controls that can be used to capture and display data, show
media files, provide flexible layout options, display calendars, and even zoom in and out of images.
The controls that are available in Silverlight 2 are quite different from controls found in other frame-
works such as ASPNET because they provide extreme flexibility when it comes to the look, feel,
and size of controls on a user interface. Silverlight 2 controls can be animated, styled, and trans-
formed in ways that many other application frameworks can only dream of. Imagine a TextBox
control getting larger or wobbling as a user types in invalid data; or a dynamic grid wherein rows
fall in from top to bottom as a search is performed. While that type of functionality may be over-
kill for applications that you’'ll build with Silverlight, the sky’s the limit when it comes to creative
ways of showing and using controls.

This chapter introduces you to many of the controls that are available in Silverlight 2 and shows
how they can be defined in XAML and accessed through code. A sampling of controls available in
the Silverlight Toolkit are also shown and discussed. Subsequent chapters will discuss different
ways that Silverlight controls can be styled, customized, transformed, and even animated.

Part Il: Developing ASP.NET Applications with Silverlight

Introduction to Silverlight Controls

Silverlight 2 provides more than 25 controls that can be grouped into four general categories including
user input controls, layout controls (see Chapter 5), items controls, and media controls. Figure 6-1 shows
what some of these controls look like in the Visual Studio Toolbox.

El Silverlight XAML Controls ~
& Pointer Ml
[Tl Border

Button

Calendar

Ed Canvas
CheckBox
ComboBox

4 DataGrid

T2 DatePicker

(O Ellipse

{17 Grid

i GridSplitter

A HyperlinkButton
[Image

Line

EE ListBox

i#] MediaElement
& MultiScalelmage

[## PasswordBox

m

@ ProgressBar
() RadicButton
[Rectangle
[ScrollViewer
0— Slider

[5] StackPanel
[TabControl
[A] TextBlock
TextBox B
[G] ToggleButton -

Iﬂ Solution Explurerbp:'roulhox |7

Figure 6-1

User input controls include common controls found in many other frameworks such as TextBox, Button,
and CheckBox, as well as some nonstandard controls such as ToggleButton and RepeatButton. Layout
controls include Canvas, Border, Grid, and StackPanel, and item controls (used to show collections
of items) include DataGrid, ListBox, and ComboBox. Finally, media controls include MediaElement,
Image, and MultiScaleImage. Additional supporting controls such as GridviewSplitter and
ScrollViewer exist as well.

All of the controls available in Silverlight 2 can be defined declaratively in XAML or dynamically in
code like ASPNET controls. In fact, if you come from an ASPNET or WPF background, you will find
the concept of defining controls in XAML very straightforward. If you're new to the concept of defin-
ing controls declaratively, you'll see that it’s simple once you know the fundamentals.

168

Chapter 6: Silverlight Controls

Defining Controls in XAML

In Chapter 3, you were provided with an introduction to Extensible Application Markup Language
(XAML) and shown how XML elements and attributes could be defined in XAML files. If youre used
to defining controls in ASPNET Web Forms, you'll quickly discover that XAML isn't quite as forgiving
with syntax issues. When you're defining controls in XAML, there are three key points to keep in mind.
First, XAML is case-sensitive, so it’s important that you case your control names and associated attributes
properly. Visual Studio allows you to drag and drop controls from the toolbox; thus in many cases, you
can avoid manually typing controls into XAML files. Second, attribute values must be quoted. ASPNET
doesn’t have this requirement (although you should quote your attributes there as well when defining
controls) and is quite forgiving when you don’t include quotes around attribute values. Finally, open-
ing tags must always have corresponding closing tags. If you forget to close a tag, you'll have compila-
tion issues.

Short-cut close tags are allowed when a particular control has no content defined. By using short-cut tags
where appropriate, you can minimize typing as well as the size of the XAML file. Here’s an example of a
short-cut close tag for a TextBlock control. Notice that no closing </TextBlock> tag is required since
the control has no content between the start and end tags and only defines attributes.

<TextBlock x:Name="tbName" Text="Name: " />
With those rules in mind, here’s an example of defining a Grid control inside a UserControl using XAML:

<UserControl x:Class="SilverlightApplicationl.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="White">
</Grid>

</UserControl>

Looking at the code, you'll notice that the control defines a Name attribute, which is prefixed with the
x namespace prefix and sets the Background to a value of white. The x prefix is defined on the User
Control element and points to a unique Uniform Resource Identifier (URI) value of http: //schemas
.microsoft.com/winfx/2006/xaml. You'll use x:Name rather than id when defining a control name
that you may want to access through code. As with ASP.NET controls, all control names within a XAML
file must be unique, start with an alphabetic character or underscore, and contain only alphanumeric
characters or underscores.

Silverlight controls that derive from FrameworkElement expose a Name property
that provides a convenient way to set the XAML-defined x : Name attribute. You can
use x:Name or Name to define the name of a control in a XAML file.

In addition to the attributes defined on the Grid element, you'll see that the beginning Grid control
element has a matching ending element defined and that the case of both elements matches exactly.

169

Part Il: Developing ASP.NET Applications with Silverlight

Failure to match up the tags or case controls properly will result in an error when you try to build the
application.

Handling Control Events Declaratively

Events are a critical part of the NET framework and Silverlight. By hooking events to event handlers,
you can be notified when a user performs an action such as clicking a button, resizing the user inter-
face, or moving the mouse in or out of an object, plus more. Fortunately, the event syntax used to build
ASPNET applications can also be applied to Silverlight in many cases.

ASP.NET allows events to be hooked to event handlers declaratively or through code. For example, to
hook a Button control’s Click event to an event handler, the onCc1ick attribute can be added to the
Button control:

<asp:Button id="btnSubmit" runat="Server" OnClick="btnSubmit_Click" Text="Go" />
The btnSubmit_Click event handler can then be defined in the code file:

private void btnSubmit_Click (object sender,EventArgs e)
{
//Handle event here

}

Silverlight provides a similar declarative mechanism for defining control events. Each Silverlight control
has a core set of events that are inherited from a base class as well as additional events defined that are
specific to the control. For example, Silverlight’s But ton control exposes several different events such as
Loaded, MouseEnter, and MouseLeave that are inherited from UTElement as well as a Click event
that is inherited from a base class named ButtonBase.

Hooking a Silverlight control’s event to an event handler can be done declaratively in XAML. Here’s an
example of attaching the Button control’s C1ick event to an event handler:

<Button x:Name="btnSubmit" Content="Go" Click="btnSubmit_Click" />

Looking at the C1ick event definition, you'll notice that onC1lick isn’t used in Silverlight as it is in
ASP.NET. Instead, the name of the event is added directly to the XAML element without prefixing it
with “On”.

As you type an event name on a XAML element, Visual Studio IntelliSense will let you choose to auto-
matically generate a corresponding event handler in the code file. By selecting New Event Handler
from the IntelliSense prompt, the event-handler code will be created. Visual Studio also provides sup-
port for navigating directly to the event-handler code by right-clicking on the event name in the XAML
file and selecting Navigate to Event Handler from the Menu.

Multiple events can be added to a control that’s defined in XAML. For instance, to know when a user
moves the mouse over a But ton control (in cases in which you want to animate the control or perform
another action), you can use the MouseEnter event while also handling the c1ick event. Here’s an
example of defining the MouseEnter and Click events together on a Button control:

<Button x:Name="btnSubmit" Content="Go" Click="btnSubmit_Click"
MouseEnter="btnSubmit_MouseEnter" />

170

Chapter 6: Silverlight Controls

As mentioned above, when you define events in XAML, Visual Studio IntelliSense will show an option
to automatically add event handlers in the code file. However, the code that’s generated may look a little
different from what you're used to seeing when working with ASP.NET pages. The btnSubmit_Click
event handler referenced in the XAML for the Button control accepts a different parameter type from
the standard Eventargs type used in .NET. It accepts a RoutedEventArgs type for the second param-
eter, as shown next:

private void btnSubmit_Click(object sender, RoutedEventArgs e)

{
//Handle event

}

The Button control’s Click event is an example of a routed event (an event typically triggered by the
mouse or keyboard that bubbles up to parents), which is why RoutedEventArgs is passed to the event
handler instead of Eventargs. Child controls collectively used to create the Button control can raise
events — as users interact with them — that are routed up to the But ton and handled.

Why does Silverlight substitute EventArgs for RoutedEventArgs, and what’s a
routed event, anyway? To answer these questions, a brief discussion of control trees
is needed. Silverlight relies on control trees behind the scenes to organize and man-
age parent and child controls. A root control acts as the start of the tree, and child
controls are nested under it. The root control’s children can also have children of
their own, which ultimately creates an object hierarchy or control tree.

Controls defined within a control tree may themselves be composed of other child
controls as well. For example, the Button control provided by Silverlight is com-
posed of Grid, Border, and other content controls behind the scenes that when
combined render the look and feel of a button. If a user interacts with one of these
building block controls using the mouse or keyboard, the event needs to be routed
up to the parent Button control so that it can be handled properly. The process of
notifying a parent of an action that occurred on a child is referred to as a routed
event since mouse or keyboard events triggered by a control are “routed” up the
tree so that a parent can be notified when an event occurs. Routed events are simi-
lar to event bubbling found in other languages.

An example of a non-routed event is the LayoutUpdated event exposed by Silverlight controls. This
event occurs when the layout of objects changes in a Silverlight application owing to properties changing
or resizing of the user interface. Because it’s not a routed event in Silverlight, the standard Eventargs
type is passed to methods that handle the LayoutUpdated event:

private void someControl_LayoutUpdated(object sender, EventArgs e)
{

//Handle event

}

Handling Control Events Programmatically

In addition to declaring events declaratively, you can also hook events to event handlers dynamically in
code using the C# += operator or the VB.NET AddHandler keyword. This won't come as news to NET

171

Part Il: Developing ASP.NET Applications with Silverlight

developers since it’s the standard way to programmatically work with events. An example of hooking
up a Silverlight UserControl’s Loaded event and a Button control’s Click event to event handlers is
shown next:

public partial class Page : UserControl
{
public Page()
{
InitializeComponent () ;
this.Loaded += new RoutedEventHandler (Page_Loaded) ;
this.btnSubmit.Click += new RoutedEventHandler (btnSubmit_Click) ;
}

private void Page_Loaded (object sender, RoutedEventArgs e)

{
tbDate.Text = DateTime.Now.TolLongDateString() ;
}

private void btnSubmit_Click (object sender, RoutedEventArgs e)
{
//Handle button event here

}

As the constructor for the Page class is called, the Loaded and C1ick events are attached to their respec-
tive event handlers. The Loaded event is useful when you'd like to perform a task after all of the con-
trols in a Silverlight application have been loaded and are ready to use. It’s similar to the Load event
exposed by the ASPNET pPage class. This example locates a TextBlock control named tbbate and
assigns the current date to its Text property.

Now that you've seen the general syntax and rules for declaring controls and learned about how events
can be wired to event handlers declaratively and programmatically, let’s examine some of the different
controls available in Silverlight 2. As each control is covered, you'll see different ways it can be used along
with key features that it provides. A complete listing of each control’s properties, methods, and events will
not be shown, however, since the Silverlight SDK provides all of the necessary details, and duplicating
them here only adds unnecessary filler pages. Let’s start by taking a look at user input controls.

User Input Controls

Silverlight provides several different controls that can be used to collect user input. A list of the controls
in this general category include:
QO TextBlock control
TextBox control
PasswordBox control
Button control

HyperLinkButton control

U U uUJ 0o

Checkbox control

172

Chapter 6: Silverlight Controls

RadioButton control
RepeatButton control
Slider control
Calendar control

DatePicker control

I R T I

ToolTip control

This section discusses each of the controls in this category and shows how they can be defined in XAML.

The TextBlock Control

Label controls are used frequently in development frameworks such as ASP.NET and Windows Forms.
Although Silverlight doesn’t provide a control named Label, it does provide a TextBlock control that
performs the same function as a Label control. You can’t use a TextBlock control to capture data, but
it’s frequently used with other user input controls such as TextBox, which is why it’s included in the
user input controls category.

The TextBlock control defines a Text property that can be used to define the text value that should be
displayed in the user interface. Defining a TextBlock control in XAML is similar to defining a Label
control in ASPNET. Here’s a simple example of a TextBlock control:

<TextBlock x:Name="tbFirstName" Text="First Name: " />

The text to be displayed can also be set as the TextBlock control’s content by placing the text between
the start and end tags:

<TextBlock x:Name="tbFirstName">First Name</TextBlock>

In cases in which the text output by the TextBlock may be cut off because of the size of a parent container
(such as a Grid row/column) not accommodating the text’s size, the control’s TextWrapping property
can be set to a value of Wrap. Margins can be added around the left, top, right, or bottom of the control
by assigning four values to the Margin property separated by commas. If only a single value is defined
for Margin, then all margins (left, top, right, and bottom) share the same value. The Margin property is
available on all Silverlight controls that derive from the FrameworkElement base class.

An example of using the TextWrapping and Margin properties is shown next:

<TextBlock Text="Receive Newsletter?"
TextWrapping="Wrap" Margin="7,5,0,0" />

Font characteristics of a TextBlock can be changed using properties such as FontFamily, FontStyle,
and FontSize. The color can be changed using the Foreground property:

<TextBlock x:Name="tbFirstName" Text="First Name: " FontFamily="Arial"
FontSize="14" FontStyle="Bold" Foreground="Maroon" />

When you need to format multiple lines of text (in a paragraph, e.g.), you can add multiple TextBlock con-
trols to an interface. However, the TextBlock control also supports Run and LineBreak child elements

173

Part Il: Developing ASP.NET Applications with Silverlight

that can be used to apply custom formatting to specific lines of text. An example of using the Run and
LineBreak elements is shown next. This example adds a margin around the control to give it some space
by using the Margin property. Ten pixels will be added to the left, top, right, and bottom margins.

<TextBlock x:Name="tbStyledText" Margin="10,10,10,10" FontFamily="Arial"
Width="500" Text="Using the TextBlock with runs..">
<LineBreak/>
<Run Foreground="Navy" FontFamily="Verdana" FontSize="34">
Second Line with Verdana
</Run>
<LineBreak/>
<Run Foreground="Teal" FontFamily="Times New Roman" FontSize="18"
Text="3rd line with Times New Roman" />
</TextBlock>

The output generated using the Run and LineBreak elements is shown in Figure 6-2.

| & restpage for siverigntapplication! - Windows Intemet Explorer (= | =I5
()~] twsocamostssssss +] 45 |[Live Scorcn 2 -]
®-
o [@TestpageForsuverng..] | Q- v sh v [} Page v -

Using the TextBlock with runs.

Second Line with Verdana

3rd line with Times New Roman

Dc @ Internet | Protected Mode: Off H100% ~

Figure 6-2

The TextBlock control extends the FrameworkElement class and has several standard events such as
MouseEnter, MouseLeave, and MouseLeftButtonDown as a result that can be used to change the
appearance of the control as users interact with it.

The TextBox Control

Silverlight’s TextBox control acts much like the TextBox control found in ASP.NET. It provides a way
to capture unformatted text entered by an end-user while also allowing data that’s entered to be fil-
tered or selected using different properties and events. An ASPNET TextBox can be defined in the
following manner:

<asp:TextBox id="txtName" runat="Server" Font-Names="Arial" />
Silverlight TextBox controls can be defined in much the same way:

<TextBox x:Name="tbName" FontFamily="Arial" Width="100" Height="20" />
Figure 6-3 shows an example of a Silverlight TextBox. Out-of-the-box, it’s not overly impressive and

looks like nearly every other textbox you may have encountered before. However, since it’s a Silverlight
textbox, it’s much more flexible and can be animated and transformed.

174

Chapter 6: Silverlight Controls

Phoenix

Figure 6-3

A TextBox’s font styles can be set using properties such as FontFamily, FontSize, and FontWeight,
and the positioning of a TextBox control within a parent container can be set using properties such as
HorizontalAlignment, VerticalAlignment, and Margin.

Like the ASPNET TextBox control, the Silverlight version supports different types of textboxes including
regular and multi-line. To create a multi-line TextBox, set AcceptsReturn to True and VerticalScroll
BarVisibility toVisible and assign values to the Height and width properties as shown next:

<TextBox x:Name="tbComments" AcceptsReturn="True"
VerticalScrollBarVisibility="Visible" FontFamily="Arial"
Width="300" Height="100" Margin="5" />

Figure 6-4 shows an example of a multi-line TextBox control.

Figure 6-4

The Silverlight TextBox control provides additional features not found in the ASPNET TextBox such
as the ability to retrieve text that is selected (highlighted) by a user. Although this same type of task
can be done with the ASPNET TextBox using JavaScript on the client side, the Silverlight TextBox
can access selected text directly through properties such as SelectedText, SelectionLength, and
SelectionStart. Text within a TextBox can be selected programmatically using the Select ()
method, and focus can be set by calling the Focus () method.

An example of selecting all of the text in a TextBox named txtCity and setting focus to the control
when a validation method is called is shown next:

private bool Validate()
{
if (this.txtCity.Text.Length < 3) //Simulate a simple validation rule

{
this.txtCity.Select (0, this.txtCity.Text.Length);
this.txtCity.Focus() ;
return false;

}

return true;

175

Part Il: Developing ASP.NET Applications with Silverlight

This example selects all of the text in the TextBox starting from position 0 to the end of the text. The
colors of the selected text can be changed by setting the SelectionForeground and Selection
Background properties programmatically or in XAML. An example of changing these properties in
XAML is shown next:

<TextBox x:Name="txtCity" Text="Phoenix" SelectionForeground="White"
SelectionBackground="Navy" FontFamily="Arial" Width="200" Height="20" Margin="5" />

The PasswordBox Control

Silverlight provides a specialized type of textbox called PasswordBox that can be used to capture pass-
words in a Silverlight application. The PasswordBox control looks like a standard TextBox control but
doesn’t allow cut, copy, or paste operations to be performed in the textbox. It also stores the data that’s
entered more securely in memory.

The PasswordBox control provides a PasswordChar property that allows you to control the characters
that are displayed in the box as a user types his or her password. The maximum length allowed for the
password can also be set using the MaxLength property. An example of defining a PasswordBox con-
trol in XAML is shown next:

<PasswordBox x:Name="pbPassword" MaxLength="64" PasswordChar="*"
PasswordChanged="PasswordChangedHandler"

/>

Text entered into a PasswordBox control can be accessed through the Password property. The
PasswordBox control does not expose the standard Text property found in the TextBox control.

The Button Control

Button controls have been around since user interfaces were first created and haven’t changed a lot over
the years. Silverlight’s But ton control is no exception, as shown in Figure 6-5.

Submit

Figure 6-5

The Button control acts like the standard Button found in ASPNET (and many other frameworks) and
allows developers to easily know when a user clicks it by exposing a C1ick event. The Button control
derives from a base class named ButtonBase that supplies the core properties, methods, and events for
all Button controls in Silverlight.

The Silverlight But ton control is different from buttons found in other frameworks because it automati-
cally fills the bounds of its parent container if no height or width values are defined on the control. This
can be used to your advantage when a user interface can be resized or displayed in Full-Screen mode
since the button will automatically resize itself based on changes in its parent container’s size. In cases
in which you want the button to stay the same size, you can supply Height and width property values
to constrain a But ton control’s bounds.

176

Chapter 6: Silverlight Controls

An example of defining a Button control in XAML is shown next:

<Button x:Name="btnSubmit" Click="btnSubmit_Click" Content="Submit"
Height="30" Width="75" HorizontalAlignment="Left" VerticalAlignment="Top"
Margin="7,5,0,0" />

Looking through the XAML, you'll see that the button’s x : Name, Height, and width attributes are
assigned values, and the button is aligned within its parent container by setting the Horizontal
Alignment, VerticalAlignment, and Margin properties. The text content of the button is set using
the content attribute. This is different from the way you assign text to an ASP.NET Button control
and is a result of the Silverlight Button being a subset of the But ton contained in Windows Presentation
Foundation (WPF). In addition to the other attributes that are assigned on the But ton element, the XAML
code also defines a C1ick attribute that attaches the control’s C1ick event to an event handler.

Earlier in the chapter, you saw that Silverlight events such as the But ton control’s C1ick event pass a
RoutedEventArgs object to the event handler. Recall that the But ton control is internally composed of
several child controls that route the C1ick event up to the parent Button control as a user clicks on them.
An example of a click event handler for a button is shown next. Notice that the event handler accepts a
RoutedEventsArgs parameter as opposed to the standard EventArgs parameter found in .NET.

private void btnSubmit_Click(object sender, RoutedEventArgs e)

{
this.tbOutput.Text = "Your data has been submitted";

}

The HyperlinkButton Control

ASP.NET includes a LinkButton control that emulates the behavior of a standard button but looks like
a hyperlink. It’s used in several controls such as the Gridview and DetailsView controls to select,
insert, update, and delete data and can be used in custom scenarios as well.

Silverlight provides a control that’s similar to the ASPNET LinkButton called HyperlinkButton.
HyperlinkButton looks like a regular hyperlink, but because it derives from ButtonBase, it exposes
properties and events found on standard Button controls such as Content and click. An example of
using the HyperlinkButton control is shown next:

<HyperlinkButton x:Name="hlClear" Content="Clear Text Boxes" Foreground="Navy"
Click="hlClear_Click" Margin="10"/>

This code assigns the foreground color of the control to navy blue and hooks the click event to an event
handler named hlClear_click that clears text from textboxes:

private void hlClear_Click(object sender, RoutedEventArgs e)
{
this.txtCity.Text = String.Empty;
this.txtComments.Text = String.Empty;
this.txtName.Text = String.Empty;
this.pbPassword.Password = String.Empty;

177

Part Il: Developing ASP.NET Applications with Silverlight

HyperlinkButton exposes a NavigateUri and TargetName property that can be used to link to web
pages and display them in new windows much as you can do with the standard anchor tag in HTML:

<HyperlinkButton x:Name="hlSilverlight" Content="Silverlight.net"
NavigateUri="http://www.silverlight.net" TargetName="Blank" />

The CheckBox Control

Silverlight’s CheckBox control derives from a base class named ToggleButton (which, in turn, derives
from ButtonBase) that allows different states of a control to be tracked. Although a CheckBox is nor-
mally used to track True or False values as in ASPNET, three states are supported in the Silverlight
control including checked, unchecked, and indeterminate. CheckBox provides an IsChecked property
(of type Nullable<bool>) that can be used to set the state of the control and determine if it’s checked
or not as a user interacts with it. In cases in which the control needs to be checked when an application
initially loads the IsChecked property can be set to True in the XAML file or programmatically in a
code file.

An example of defining a CheckBox in XAML that is automatically checked as the application loads is
shown next:

<CheckBox x:Name="chkNewsletter" IsChecked="True"
Content="Check to receive newsletter" Margin="5" />

When the user submits the form by pressing a button, the state of the CheckBox control can be deter-
mined using the IsChecked property, as shown next:

private void btnSubmit_Click (object sender, RoutedEventArgs e)

{
this.tbOutput.Text = String.Format (
"Your data has been submitted. You have{0}chosen to receive the " +

"newsletter.",
(this.chkMeeting.IsChecked.HasValue &&
this.chkMeeting.IsChecked.Value == true)?" ":" not ");

The CheckBox control derives from ToggleButton, which allows it to track three states rather than
only two (the ASPNET checkBox can only track two states because of limitations in the various HTML
specifications). This is useful when you have On, Off, or unknown values that need to be tracked in a
Silverlight application. To allow the CheckBox to track three states, the IsThreeState property must
be set to True:

<CheckBox x:Name="chkNewsletter" IsThreeState="True"
Content="Will you attend the annual meeting?" Margin="5" />

When IsThreeState is set to True, the first click on a CheckBox will show a checkmark (IsChecked
will be True), the second click will put the control in the indeterminate stage and gray-out the back-
ground (IsChecked will be null), and the third click will uncheck the control (IsChecked will be
False). Figure 6-6 shows an example of the checked, indeterminate, and unchecked stages that a
CheckBox control can have when its IsThreeState property is set to True.

178

Chapter 6: Silverlight Controls

v =) L

Figure 6-6

If you'd like to know when the user toggles between CheckBox states, you can handle the Checked,
Indeterminate, and Unchecked events by attaching them to event handlers:

<CheckBox x:Name="chkMeeting" IsThreeState="True" Checked="chkMeeting_ StateChanged"
Unchecked="chkMeeting_ StateChanged" Indeterminate="chkMeeting_StateChanged"
Content="Yes" Margin="5" />

This example attaches all three events to a single event handler named chkMeeting_StateChanged.
The event handler changes the background and foreground colors of the CheckBox as well as the con-
tent as a user toggles through the different states:

private void chkMeeting StateChanged(object sender, RoutedEventArgs e)
{

SolidColorBrush brush = null;

string text = null;

if (this.chkMeeting.IsChecked == true)

{
brush = new SolidColorBrush (Colors.Green) ;
text = "Yes";

if (this.chkMeeting.IsChecked == null)

{
brush = new SolidColorBrush(Colors.Black);
text = "Don't Know";

if (this.chkMeeting.IsChecked == false)
{
brush = new SolidColorBrush (Colors.Red) ;
text = "No";
}
this.chkMeeting.Background = brush;
this.chkMeeting.Foreground = brush;
this.chkMeeting.Content = text;

The RadioButton Control

Radio buttons are another common user input control found in desktop and web applications alike.
Silverlight’s RadioButton control acts like other radio buttons you've seen before; users can select one
item at a time from a list of items. Like Silverlight’s CheckBox control, the RadioButton control derives
ToggleButton, which gives it the ability to track checked, indeterminate, and unchecked states when
the IsThreeState property is set to True.

179

Part Il: Developing ASP.NET Applications with Silverlight

If you've worked with radio buttons before in ASPNET, then you'll find that they’re very similar in
Silverlight. ASPNET provides two different ways to group radio buttons together. First, a Radio
ButtonList control can be used, and individual items can be defined within the list control:

<asp:RadioButtonList id="RadioButtonListl" runat="server">
<asp:ListItem>Male</asp:ListItem>
<asp:ListItem>Female</asp:ListItem>
</asp:RadioButtonList>

Second, individual RadioButton controls can be added into a page and grouped together by assigning
the same value to the GroupName property of each control:

Gender:

<asp:RadioButton id="rdoMale" GroupName="Gender" runat="server" Text="Male" />
<asp:RadioButton id="rdoFemale" GroupName="Gender" runat="server" Text="Female" />

Silverlight provides similar functionality for RadioButton controls. Controls can be grouped by plac-
ing them in a parent container or by setting the GroupName property on each control. The following
XAML code shows how RadioButton controls can be grouped inside a parent StackPanel control.
The GroupName property doesn’t need to be set in this example since the controls are automatically
grouped by the parent:

<StackPanel Orientation="Horizontal" Grid.Row="2" Grid.Column="1">
<RadioButton x:Name="rdoMale" Content="Male" Margin="5" />
<RadioButton x:Name="rdoFemale" Content="Female" />
</StackPanel>

Radio buttons can also be grouped together so that a user can only select one item at a time by assign-
ing the same value to the GroupName property on each stand-alone control:

<RadioButton x:Name="rdoMale" Content="Male" Margin="5" GroupName="Gender" />
<RadioButton x:Name="rdoFemale" Content="Female" GroupName="Gender" />

The label associated with individual RadioButton controls can be defined using the control’s Content
property rather than the Text property used in ASP.NET. Figure 6-7 shows how RadioButton controls
look in Silverlight.

) Male |_! Female
Figure 6-7

The RepeatButton Control

The RepeatButton control looks like a standard Button (it also inherits from ButtonBase), but acts
quite differently under the covers. A standard Button raises a C1ick event once per mouse click,
whereas the RepeatButton raises the Click event over and over on a timed basis when a user holds
the mouse button down. Most people use the functionality found in the RepeatButton every day
when they click on the top or bottom of a scrollbar or click the + (zoom in) or — (zoom out) buttons in a

180

Chapter 6: Silverlight Controls

Microsoft Office product. By raising the c1ick event on a timed basis, users can change values quickly
without having to physically click the button multiple times.

The RepeatButton control provides Delay and Interval properties that determine how often to
raise a Click event. The Delay property controls how long the RepeatButton waits before starting to
raise Click events, while the Interval property controls the amount of time between Click events.
As events fire, a normal Click event handler can be written to capture the clicks and programmati-
cally scroll a window or increment a value.

In addition to being able to set Delay and Interval values, the RepeatButton also allows you to con-
trol how Click events are raised. This is controlled by using the C1ickMode property, which accepts
one of three values defined in a C1ickMode enumeration, as shown in the following table:

Member Name Description

Release The click event will be raised when the RepeatButton is pressed and released
(default value).

Press The click event will be raised as soon as the RepeatButton is pressed and the

mouse pointer is over the control.

Hover The click event will be raised when the mouse pointer hovers over the
RepeatButton control.

An example of using two RepeatButton controls that have their belay, Interval, and ClickMode
properties set to provide a quick and easy way for a user to increment or decrement a value is shown in
the following XAML code:

<RepeatButton x:Name="rptBtnDown" Click="RepeatButton_ Click" ClickMode="Press"
Delay="200" Interval="200" Height="20" Width="30" Content=" - "
Margin="5,0,5,0" />

<TextBlock x:Name="tbYearsOfSchool" Text="12" Margin="5,0,5,0" />

<RepeatButton x:Name="rptBtnUp" Click="RepeatButton_ Click" ClickMode="Press"
Delay="200" Interval="200" Height="20" Width="30" Content=" + "
Margin="5,0,5,0" />

As the Click event is raised [every 200 milliseconds (ms) in this example], the following code updates
the tbYearsOfSchool TextBlock control:

private void RepeatButton_Click(object sender, RoutedEventArgs e)

{
int val = int.Parse(tbYearsOfSchool.Text) ;

RepeatButton btn = sender as RepeatButton;
switch (btn.Name)
{
case "rptBtnUp":
val++;
break;

181

Part Il: Developing ASP.NET Applications with Silverlight

case "rptBtnDown":
val--;
break;

}

if (val < 0)

val = 0;
else if (val > 20)
val = 20;

this.tbYearsOfSchool.Text = val.ToString() ;

Figure 6-8 shows what the previous XAML code renders when the Silverlight application is run. As the
user clicks on the buttons (and holds the mouse button down), the value will automatically increase or
decrease depending on which button was clicked.

=] 16 =)

Figure 6-8

The slider Control

ASP.NET doesn’t have a S1ider control built into the framework, but with a little help from the
ASP.NET AJAX Toolkit, you can easily add sliders into your web applications. Fortunately, Silverlight
does have a built-in s1ider control that users can slide up and down to change values. Although Radio
Button controls are often used when an application needs to allow users to select a single value from a
list of items, a slider can be very effective for picking a value as well. Figure 6-9 shows an example of
the default s1ider control in Silverlight.

8

Figure 6-9

The slider control provides Minimum and Maximum properties to control the range of the S1ider as well
as a ValueChanged event that is called as the user moves the slider control’s thumb. The orientation of
the slider can also be changed by setting the Orientation property to Horizontal (the default) or
Vertical.

An example of defining a s1ider control in XAML is shown next:

<Slider x:Name="slider" Minimum="0" Maximum="3"
Margin="5" Width="150" ValueChanged="slider_ValueChanged" />

The slider in this example allows a value between 0 and 3 to be selected. Changes to the thumb posi-
tion cause an event handler named slider_valueChanged to be called when the VvalueChanged event
fires, which updates the text value of a TextBlock named tbSliderval. The ValueChanged event
passes a RoutedPropertyChangedEventArgs<double> object as shown next:

182

Chapter 6: Silverlight Controls

private void slider_ValueChanged (object sender,
RoutedPropertyChangedEventArgs<double> e)

{
int rating = (int)Math.Round(e.NewValue) ;
this.tbSliderVal.Text = Convert.ToString((Rating)rating) ;

This example rounds the value in the event argument parameter’s Newvalue property using the Math
.Round () method (note that the 01dvalue property can also be accessed in cases in which you need to
know the previous value). It then converts the value to a Rat ing enumeration member and displays the
result in a TextBlock. The Rating enumeration is shown next:

public enum Rating
{
Bad,
Average,
Good,
Excellent

Figure 6-10 shows how the TextBlock control’s Text property changes as the user slides the thumb
(the Average value displayed in the figure represents the TextBlock). Two TextBlocks containing
Bad and Excellent text values, respectively, are also added around the slider so that the user knows
the range of potential values.

Website Rating Bad —[h Excellent Average

Figure 6-10

The Calendar Control

Silverlight provides a built-in Calendar control that provides the ability to add calendars into an appli-
cation with little to no coding on your part. The Calendar control is similar to the ASPNET calendar,
although it allows years and months to be selected much more easily.

As a quick refresher, you can define a basic Calendar control in an ASPNET page using syntax similar
to the following:

<asp:Calendar ID="calBizWeek" runat="server"></asp:Calendar>
A calendar can be added into a Silverlight application in much the same way:

<basics:Calendar x:Name="calBizWeek" SelectionMode="SingleRange"
HorizontalAlignment="Left" />

Looking at this code, you may wonder where the basics namespace prefix came from, especially since
none of the controls discussed to this point had it. The calendar control is in the System.Windows
.Controls assembly, which isn't referenced by default in Silverlight XAML files since many applica-
tions won't need it and can load faster by not including the assembly. If you add the calendar control
into a XAML file, you'll also need to add the namespace and assembly reference to the root element of

183

Part Il: Developing ASP.NET Applications with Silverlight

the file as shown next with the basics namespace definition on the UserControl element. It’s impor-
tant to note that the line should not wrap and only wraps in the code sample because of space con-
straints in this page.

<UserControl
xmlns:basics="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls"
x:Class="UserInputControls.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Background="Black" Width="800" Height="800">

</UserControl>

If you drag the Calendar control into the XAML file from the Toolbox, the namespace
and assembly reference will automatically be added for you by Visual Studio.

Although basics is used for the namespace prefix in this example, you can use any namespace prefix
you want as long as the name adheres to standard XML naming conventions.

Once the calendar control has been added into the XAML, there are several different options you can
leverage to control how dates are selected by the end-user. The calendar control allows single dates to
be selected as well as date ranges. Switching between date selection modes is accomplished by using
the SelectionMode property, which accepts a CalendarSelectionMode enumeration. Members of
the CalendarselectionModel enumeration are shown in the following table:

Member Name Description

MultipleRange Allows multiple, noncontiguous dates to be selected on the calendar.
None No selections can be made on the calendar.

SingleDate Allows a single date to be selected on the calendar.

SingleRange Allows a contiguous range of dates to be selected on the calendar.

The calendar control’s display mode can also be changed to month or year displays by setting the
DisplayMode property, which accepts one of the following members defined in the CalendarMode

enumeration:
Member Name Description
Decade Shows the calendar in decade mode.
Month Shows the calendar in month mode.
Year Shows the calendar in year mode.

Users can change calendar modes as well by clicking the date shown at the top of the calendar.
Figure 6-11 shows the default, month, and year modes that are available.

184

Chapter 6: Silverlight Controls

4 December, 2008 » 4 2008 b 4 2000-2009 »

Sa Mo Tu We Th Fr Sa
Jan Feb Mar Apr 1593 2000 2001 2002
30 1 = 3 4 5 6
7 8 9 10 11 12 13
14 15 18 |17|18 19 20 May Jun Jul Aug 2003 2004 2005 2006
21 22 23 24 25 26 27

Sep Oct Now Dec 2007 2008 2009 2010

Figure 6-11

When the Calendar control loads, it highlights the current date (DateTime. Today) if no values are
assigned to the DisplayDate or SelectedDate properties. You can prevent the current day from
being highlighted by setting the IsTodayHighlighted property to False, as shown next:

<basics:Calendar x:Name="calBizWeek" IsTodayHighlighted="False" />

Dates that are displayed can also be controlled by assigning values to the DisplayDateStart and
DisplayDateEnd properties. Dates not in the start and end range are hidden. A range of selected dates
can also be set programmatically through the Calendar control’s SelectedDates property (of type
SelectedDatesCollection) which exposes an AddRange () method. An example of using the
AddRange () method to highlight business days for the current week is shown next:

protected void Page_Loaded(object sender, RoutedEventArgs e)

{
SetSelectedDateRange (DateTime.Today) ;

}

//Highlight entire business week
private void SetSelectedDateRange (DateTime date)

{
this.cal.SelectedDates.AddRange (date, date.AddDays (7)) ;

When one or more dates selected by a user must be processed by an application you handle the calender
COHUDYSSelectedDatesChangedeventSelectedDatesChangedwasesaSelectionChangedEventArgs
object as a parameter, which provides access to dates the user added or removed.

protected void Page_Loaded(object sender, RoutedEventArgs e)
{
this.cal.SelectedDatesChanged +=
new EventHandler<SelectionChangedEventArgs> (cal_SelectedDatesChanged) ;

void cal_SelectedDatesChanged(object sender, SelectionChangedEventArgs e)

{
foreach (DateTime dt in e.AddedItems)

{
//process date object

185

Part Il: Developing ASP.NET Applications with Silverlight

The DatePicker Control

The calendar control can be useful any time a user needs to select or view dates. However, when a
user needs to pick a single date from a calendar or type it directly, Silverlight’s DatePicker control can
be used. The DatePicker control is composed of a DatePickerTextBox and a Calendar control. A user
can press a button on the end of the DatePicker control’s textbox to view a calendar and select a date.
Figure 6-12 shows the DatePicker control as a user is picking a date from a calendar as well as after
the date has been chosen.

4 October, 2008 »

Su Mo Tu We Th Fr Sa
28 29 30 1 2 3 4

5 6 7 8 9 10 11
12 12 14 15 16 17 1%
15 20 21 22 23 24 25
26 27 28 29 30 31|} x:

2 2 4 5 & 778

Figure 6-12

Like the calendar control, the DatePicker control is located in the System.Windows.Controls
assembly and requires the namespace and assembly to be defined in the XAML file. The example that
follows (which was also shown in the Calendar control portion of the chapter) associates the namespace
and assembly where the control lives with the basics namespace prefix:

<UserControl
xmlns:basics="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls"
x:Class="UserInputControls.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Background="Black" Width="800" Height="800">

</UserControl>

Once the appropriate namespace and assembly reference have been added, the control can be used in a
XAML file:

<basics:DatePicker x:Name="dpBirthDate" Width="100" Margin="5" />

The DatePicker control has many of the same properties found on the Calendar control such as
IsTodayHighlighted, DisplayDateStart, and DisplayDateEnd. It does add an IsDropDownOpen
property that can be used to check if the calendar is open as well as a CalendarStyle property that
can be used to define the style to apply to the calendar.

DatePicker also adds additional events such as CalendarOpened and CalendarClosed to determine
when the user is interacting with the calendar component and DatevalidationError, which is raised

186

Chapter 6: Silverlight Controls

when a date entered into the textbox isn't valid. Here’s an example of handling the batevalidation
Error event:

private void dpBirthDate_DateValidationError (object sender,
DatePickerDateValidationErrorEventArgs e)
{
//Pop-up an alert (or do something better like show a Canvas with a message)
System.Windows.Browser.HtmlPage.Window.Alert ("Invalid date entered: " +
e.Text) ;

The DatePickerDateValidationErrorEventArgs object passed to the event-handler method provides
access to an Exception object and the text entered by the end-user, as well as a boolean ThrowException
property that can be used to throw the exception. The ThrowException property is set to False by default.

The ToolTip Control

It goes without saying that providing help for users is something every application should do. In reality,
very few web-based applications provide help to let users know how to use different parts of an appli-
cation. HTML controls provide a title attribute that can be used to show how a particular textbox or
button can be used, but providing more engaging help isn’t built directly into the HTML standard. As a
result, many developers write custom JavaScript code to show and hide div elements containing help
information.

Silverlight simplifies the process of adding help for users in an application as they interact with different
controls. By using the built-in Too1Tip control, you can easily shows tips as users mouse over a TextBox,
Button, or Calendar, plus much more. Tool tips can be defined directly on a control in cases where sim-
ple text should be shown or can be made much more robust and stylish by nesting a Too1Tip control
inside a control and applying a custom style. Here’s an example of defining a tool tip directly on a
TextBlock control:

<TextBlock Text="Name" ToolTipService.ToolTip="Enter your name" Margin="7,5,0,0" />

The ToolTip control relies on a parent ToolTipService object that works behind the scenes to regis-
ter ToolTips and show help information as the user moves his or her mouse in and out of a control.
Figure 6-13 shows what the Too1Tip looks like as the user moves the mouse over the TextBlock
control.

Narrfy ' '
ﬂ Enter your name | | FE— |

Figure 6-13

While adding ToolTip help information directly to controls will get the job done in many situations,
you can also create enhanced ToolTips that are composed of other Silverlight controls. This is accom-
plished by nesting the ToolTip control inside the target control as opposed to defining it directly on

187

Part Il: Developing ASP.NET Applications with Silverlight

the control. An example of nesting ToolTipService and ToolTip controls within a TextBox is
shown next:

<TextBox x:Name="txtName" FontFamily="Arial" Width="200" Height="20" Margin="5">
<ToolTipService.ToolTip>

<ToolTip>
<StackPanel>
<Border Background="Navy" BorderBrush="Gray" BorderThickness="1">
<TextBlock Text="Help" Foreground="White" Margin="2"/>
</Border>
<Border Background="Beige" Padding="5" BorderBrush="Gray"
BorderThickness="1">
<TextBlock Text="Enter your first and last name" />
</Border>
</StackPanel>
</ToolTip>
</ToolTipService.ToolTip>
</TextBox>

This example uses the StackPanel and Border controls along with TextBlock controls to display a
more robust tool tip. Figure 6-14 shows what the Too1Tip looks like as the user interacts with the
TextBox control.

Name | M |
b
City [Poenix |
Gender) Male () Female | Enter your first and last name
Figure 6-14

While you can define a ToolTip control directly within a parent control as in the
previous example, creating a reusable style is generally preferred. By creating a
style, you can define the look and feel for all Too1Tip controls in one place and even
remove the box that Silverlight adds around the ToolTip by default. Additional
information about creating and applying styles is provided in Chapter 7.

The ToolTip control provides properties such as HorizontalOffset and VerticalOffset to control
how the ToolTip is displayed as well as an IsOpen property that can be used to check if a ToolTip is
showing. Open and Closed events can also be used to track if a Too1Tip is showing or not.

Items Controls

ASP.NET provides several different controls that can be used to display a collection of items such as
Gridview, Repeater, DataList, and ListView. Silverlight also offers several controls that are capable
of displaying items in a variety of ways. Controls covered in this section include:

0 ListBox control

a ItemsControl control

188

Chapter 6: Silverlight Controls

DataGrid control
ScrollViewer control
ScrollBar control

ComboBox control

L R T I I

Popup control

This section introduces you to these controls and discusses how they can be used in Silverlight applica-
tions. Additional information about how to bind data and define templates for the controls is discussed
in following chapters.

The ListBox Control

The ListBox control provides a flexible way to display a collection of items vertically or horizontally
within an application. Like many controls found in ASP.NET, the ListBox control relies on templates to
determine how items are rendered. You'll typically use the ListBox control in data-binding scenarios. This
section provides a quick introduction to the control and demonstrates how templates can be used. Later in
the book, you'll see how items controls such as the ListBox can be bound to a variety of data sources.

Templates provide a way to define how each item in a collection should be rendered. If you have a list of
Customer objects each with Name, Address, and Phone properties, a template can be created to output
the property values in a custom manner. Templates are quite common in ASP.NET, and several different
controls support templates such as item templates, alternating item templates, edit item templates, and
others. Here’s an example of using templates with a Repeater control:

<asp:Repeater ID="rptCustomers" runat="server">
<HeaderTemplate>

</HeaderTemplate>
<ItemTemplate>
<%# Eval ("Name") %>

<%# Eval ("Address") %>

<%# Eval ("Phone") %>
</ItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:Repeater>

Silverlight’s ListBox control provides a single template named ItemTemplate that can be used much
like the Repeater control’s ITtemTemplate shown in the previous example. However, the ListBox’s
ItemTemplate requires a DataTemplate to be placed inside it so that data binding can occur.

The ItemTemplate property and a few others exposed by the ListBox control are
inherited from a class named ItemsControl. Although you can use ItemsControl
in place of the ListBox, the ListBox control contains additional functionality such
as the ability to retrieve the index of an item (inherited from the Selector class)
that a user clicked.

189

Part Il: Developing ASP.NET Applications with Silverlight

An example of defining an ItemTemplate capable of displaying data from a collection of Customer
objects is shown next:

<ListBox x:Name="lbCustomers" Background="#efefef" Height="150"
BorderBrush="Black" BorderThickness="1" FontFamily="Arial" Margin="10">
<ListBox.ItemTemplate>
<DataTemplate>
<Grid width="600">
<Grid.ColumnDefinitions>
<ColumnDefinition Width=".20*" />
<ColumnDefinition Width=".20*" />
<ColumnDefinition Width=".30*" />
<ColumnDefinition Width=".30*" />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="40" />
</Grid.RowDefinitions>
<Image Grid.Column="0" Source="/Images/blue.jpg" Margin="2"
VerticalAlignment="top" Height="35" Width="25" />
<TextBlock Grid.Column="1" Text="{Binding Name}" FontSize="14"
Foreground="Navy" />
<TextBlock Grid.Column="2" Text="{Binding Address}" FontSize="14"
Foreground="Red" />
<TextBlock Grid.Column="3" Text="{Binding Phone}" FontSize="14"
Foreground="Green" />
</Grid>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>

The data-binding syntax (e.g., {Binding Name}) shown in the code sample tells the
control which property of the data context object to bind to in the template as each
object in the collection is iterated through. Additional details about data binding
are provided in Chapter 9.

The ItemTemplate shown in this example contains a DataTemplate, which, in turn, contains a Grid
used to arrange an Image control and three TextBlock controls in the ListBox. Each TextBlock con-
trol is bound to a Customer object property. If 50 Customer objects are in the collection that is being
bound to the ListBox, the ItemTemplate will be processed 50 times. Figure 6-15 shows an example of
what the ListBox looks like once it’s rendered.

5’ Elaine 1234 Anywhere Si. 1231231234 A

a Danny 45 S. Code Way 555-555-1234 H

s Heedy 45 S_Code Way 335-123-1234

- Jeffery 8739 Lego St 999-123-1234 3
Figure 6-15

190

Chapter 6: Silverlight Controls

All of the data shown in Figure 6-15 is displayed vertically in the ListBox control, which is the default
orientation. The ListBox also supports displaying data horizontally when an application requires that
type of format. To display controls horizontally, you can leverage the ListBox control’s ItemPanel,
which allows a wrapper control such as a StackPanel to be placed around controls output by the
ItemTemplate to change their orientation. An example of using the ListBox control’s ItemPanel in
conjunction with the ITtemTemplate is shown next:

<ListBox x:Name="lbCustomersHorizontal" Background="#efefef" Height="150"
BorderBrush="Black" BorderThickness="1" FontFamily="Arial" Margin="10">
<ListBox.ItemTemplate>
<DataTemplate>
<StackPanel Margin="10,0,10,0">
<Image Grid.Column="0" Source="/Images/blue.jpg" Margin="2"
VerticalAlignment="top" Height="35" Width="25" />
<TextBlock Text="{Binding Name}" HorizontalAlignment="Center"
FontSize="14" Foreground="Navy" Margin="5" />
<TextBlock Text="{Binding Address}" HorizontalAlignment="Center"
FontSize="14" Foreground="Red" Margin="5" />
<TextBlock Grid.Column="3" HorizontalAlignment="Center"
Text="{Binding Phone}" FontSize="14" Margin="5"
Foreground="Green" />
</StackPanel>
</DataTemplate>
</ListBox.ItemTemplate>
<ListBox.ItemsPanel>
<ItemsPanelTemplate>
<StackPanel Orientation="Horizontal" />
</ItemsPanelTemplate>
</ListBox.ItemsPanel>
</ListBox>

As each object in the collection is bound, a StackPanel control with its Orientation property set to
Horizontal is wrapped around controls defined in the ItemTemplate. The result of placing the
Stackpanel around each item is shown in Figure 6-16.

é é é S é é
Todd Michelle Bill Spike Michael Simon
st 234 Durango St. 234 Fulton Way 555 Cycle Way 234 Happy St 564 Test St 44 Main St.
234 887-123-1234 658-123-1234 975-123-1234 965-123-1234 098-123-1234 T77-123-1234
1 ¢ 1
Figure 6-16

As a user selects an item in a ListBox, the index can be retrieved using the control’s SelectedIndex
property. Data bound to the selected item can be accessed through the SelectedItem property.

The DataGrid Control

Grids are popular in desktop and web applications since they provide a simple way to display rows of
columnar data. ASP.NET’s Gridview control is arguably one of the most frequently used controls in

191

Part Il: Developing ASP.NET Applications with Silverlight

web applications because of its ability to bind data from a variety of data sources. Silverlight doesn’t
include a Gridview control, but does provide a DataGrid control that can be used to display, filter, sort,
and edit columnar data.

The DataGrid control is located in the System.Windows.Controls.Data assembly, which must be
referenced using a namespace prefix before the DataGrid can be used. Here’s an example of referenc-
ing the assembly in the root element of the XAML file and assigning it to a data namespace prefix:

<UserControl
xmlns:data="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Data" =x:Class="ItemsControls.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
FontFamily="Trebuchet MS" FontSize="11"
Width="800" Height="800">

</UserControl>

Once the namespace prefix has been defined, the DataGrid control can be added into the XAML file.
An example of using a DataGrid that auto-generates columns is shown next:

<data:DataGrid x:Name="dgCustomers" AutoGenerateColumns="True" />

DataGrid columns can also be customized much like ASPNET Gridview control columns. Several dif-
ferent column types are available including;:

0 DataGridCheckBoxColumn
a DataGridTemplateColumn

] DataGridTextColumn

To use custom columns, set the DataGrid control’s AutoGenerateColumns to False and define the
custom columns inside the DataGrid.Columns element:

<data:DataGrid x:Name="dgCustomers" GridlinesVisibility="All"
HeadersVisibility="Column" RowBackground="BlanchedAlmond"
AlternatingRowBackground="White" IsReadOnly="True"
CanUserResizeColumns="True" Margin="10" HorizontalAlignment="Left"
AutoGenerateColumns="False" Width="300">
<data:DataGrid.Columns>
<data:DataGridTextColumn Header="Name"
DisplayMemberBinding="{Binding Name}" />
<data:DataGridTextColumn Header="Address"
DisplayMemberBinding="{Binding Address}" />
<data:DataGridTextColumn Header="Phone"
DisplayMemberBinding="{Binding Phone}" />
</data:DataGrid.Columns>
</data:DataGrid>

This example defines three DataGridTextColumn controls that bind to properties of a Customer object.
It also sets several DataGrid properties such as GridlinesVisibility, RowBackground, Alternating

192

Chapter 6: Silverlight Controls

RowBackground, IsReadOnly, and CanUserResizeColumns. Figure 6-17 shows how the columns are
rendered once data has been bound to the grid.

Name Address Phone

Elaine 1234 Anywhere St. 123-123-1234
Danny 45 5. Code Way 555-555-1234
Heedy 45 S. Code Way 335-123-1234
Jeffery 8739 Lego St. 999-123-1234
Todd 234 Durango St. BB7-123-1234
Michelle 234 Fulton Way 6558-123-1234

Bill 555 Cycle Way 975-123-1234
Spike 234 Happy St. 965-123-1234
Michael 564 Test St. 098-123-1234
Simon 44 Main St 777-123-1234
Figure 6-17

Additional details about using the DataGrid control are provided in Chapter 9.

The Scrollviewer Control

The ListBox and DataGrid controls have built-in support for scrolling. There may be times, however,
when other controls used in an interface need to have horizontal or vertical scrollbars added. For exam-
ple, you may have a StackPanel that contains several Border controls inside it that need to have a ver-
tical scrollbar added to fit into a particular area of the screen.

Silverlight’s scrollviewer control provides a way to add scrolling features to controls with minimal
effort on your part. By using the control, you can define whether or not horizontal or vertical scrollbars
are allowed, set the height of the scrolling area (called the viewport), add background colors, and so on.
An example of using the Scrollviewer control to add vertical scrolling functionality to child controls
contained in a StackPanel is shown next:

<ScrollViewer Width="300" Height="175" HorizontalScrollBarVisibility="Disabled"
VerticalScrollBarVisibility="Visible" HorizontalAlignment="Left">
<StackPanel Margin="10">

<Border CornerRadius="10" Background="Navy">
<TextBlock Text="Walk Dog" Foreground="White"
Margin="10" FontSize="16" />

</Border>

<Border CornerRadius="10" Background="Black">
<TextBlock Text="Get Gas" Foreground="White"
Margin="10" FontSize="16" />

</Border>

<Border CornerRadius="10" Background="Yellow">
<TextBlock Text="Buy Groceries" Foreground="Black"
Margin="10" FontSize="16" />

</Border>

<Border CornerRadius="10" Background="Green">
<TextBlock Text="Sleep" Foreground="White"
Margin="10" FontSize="16" />

</Border>

<Border CornerRadius="10" Background="Gray">

193

Part Il: Developing ASP.NET Applications with Silverlight

<TextBlock Text="Learn Silverlight" Foreground="White"
Margin="10" FontSize="16" />
</Border>
</StackPanel>
</ScrollViewer>

This example sets the height and width of the viewport, disables the horizontal scrollbar, enables the
vertical scrollbar, and aligns the control to the left. Figure 6-18 shows an example of the Scrollviewer
control in action.

Walk Dog

Get Gas

Buy Groceries

_

Figure 6-18

The HorizontalScrollBarVisibility and VerticalScrollBarVisibility properties of the
ScrollViewer accept one of four values defined in a Scrol1BarVisibility enumeration. Each of
the enumeration members are described in the following table:

Member Name Description

Auto The scrollbar appears when the content can’t be fit into the viewport’s dimen-
sions. If the content fits into the viewport, then no scrollbar is visible.

Disabled The scrollbar will not appear even if the content doesn't fit into the viewport’s
dimensions. The dimension of the parent is applied to the content.

Hidden The scrollbar is hidden even if the content doesn’t fit into the viewport. The con-
tent may appear to be clipped when this value is used since the scrollbar is avail-
able but hidden from view. Although the mouse cannot be used to scroll, the
arrow keys can be used. This is the default value.

Visible The scrollbar appears even if it’s not needed.

Controls such as the ListBox that have scrolling capabilities built in by default can use the Scroll
Viewer to enable or disable scrollbars. In cases in which a scrollbar should not be shown (owing to
space constraints potentially) but users can still scroll using the arrow keys, the Scrollviewer
.HorizontalScrollBarVisibility and ScrollViewer.VerticalScrollBarVisibility
attached properties can be defined on the ListBox:

<ListBox x:Name="lbCustomersScrollHidden" Background="#efefef" Height="150"
Scrollviewer.HorizontalScrollBarVisibility="Disabled"
ScrollViewer.VerticalScrollBarVisibility="Hidden"
BorderBrush="Black" BorderThickness="1" FontFamily="Arial" Margin="10">
<ListBox.ItemTemplate>
<DataTemplate>

194

Chapter 6: Silverlight Controls

<Grid Width="600">

<Grid.ColumnDefinitions>
<ColumnDefinition Width=".20*" />
<ColumnDefinition Width=".20*" />
<ColumnDefinition Width=".30*" />
<ColumnDefinition Width=".30*" />

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition Height="40" />

</Grid.RowDefinitions>

<Image Grid.Column="0" Source="../../Images/blue.jpg" Margin="2"

VerticalAlignment="top" Height="35" Width="25" />

<TextBlock Grid.Column="1" Text="{Binding Name}" FontSize="14"

Foreground="Navy" />

<TextBlock Grid.Column="2" Text="{Binding Address}" FontSize="14"

Foreground="Red" />

<TextBlock Grid.Column="3" Text="{Binding Phone}" FontSize="14"

Foreground="Green" />

</Grid>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>

This example disables the horizontal scrollbar and hides the vertical scrollbar, as shown in Figure 6-19.
Because the vertical scrollbar is hidden, users can still navigate through the items with the arrow keys.

3 Elaine 1334 Anywhere 5L 1331551934
; 5 l Danny 45S.CodeWay 555-555-1234
5 Heedy 45 S. Code Way 335-123-1234
“ Jeffery 8739 Lego SL 999-123-1234
Figure 6-19

The ComboBox Control

ASP.NET provides a DropDownList control that can be used to display items that an end-user can select
a single item from. Although Silverlight doesn’t expose a DropDownList control, it does provide similar
functionality through the ComboBox control. ComboBox items can be added by binding the control to a
data source, by hard-coding items into the control using the ComboBoxItem XAML element or by pro-
grammatically adding items. An example of displaying states using the ComboBox and ComboBoxItem
XAML elements is shown next:

<ComboBox x:Name="cbStates" Width="150" Height="20"
SelectionChanged="cbStates_SelectionChanged">
<ComboBoxItem Content="Arizona" />
<ComboBoxItem Content="California" />
<ComboBoxItem Content="Utah" />
</ComboBox>

195

Part Il: Developing ASP.NET Applications with Silverlight

As a user selects an item in a ComboBox, the SelectionChanged event is fired. An example of handling
this event is shown next:

private void cbStates_SelectionChanged (object sender, SelectionChangedEventArgs e)

{
this.tbState.Text =
"Selected " + ((ComboBoxItem)this.cbStates.SelectedItem).Content;

Once the event fires, the selected ComboBoxItem can be accessed through the selectionChangedEventarg
object’s AddedItems property or through the ComboBox control’s SelectedItem property. AddedItems and
SelectedItemboth return an Object type that must be cast to a ComboBoxItem type in order to access the
item’s Content property.

The Popup Control

Showing a list of items is key in many applications, but at some point users will want to see additional
details about a DataGrid row or ListBox item. The Popup control allows additional details to be shown
for items displayed in ListBox, DataGrid, or custom controls. Although you can write custom code to
show or hide data details, the Popup control was designed for that type of task and makes the process
simpler. Figure 6-20 shows an example of using the Popup control to show additional details about a
row in a DataGrid.

Using the DataGrid Control:

A e Customer Details

Elaine 1234 Anywhere St 123-123-12: R, 3
Danny 45 5. Code Way 3

e ‘ o
Jeffery (G739 LegaSt.
Todd 234 Durango 5t. ¢ Address 8739 Lego St.

Michelle 2234 Fulton Way
Bill B55 Cycle Way -123-123 999-123-1234
Spike 234 Happy 5t.
Michael 564 Test St.
Simon 44 Main 5t

Figure 6-20

Silverlight’s Popup control can be used in similar ways to ASP.NET’s Panel control. Both controls
allow child controls to be shown dynamically or hidden in an application. The Popup control exposes a
Visibility property (like all controls that derive from FrameworkElement), but you'll use its IsOpen
property to show or hide its contents. An example of using the Popup control to display details as a
user clicks a row in a DataGrid is shown next:

<Popup x:Name="popUp">
<Border CornerRadius="10" Width="350" Height="250" Background="Navy"
BorderBrush="Black" BorderThickness="2">
<Grid>
<Grid.ColumnDefinitions>

196

Chapter 6: Silverlight Controls

<ColumnDefinition Width=".25*" />

<ColumnDefinition Width=".35*" />

<ColumnDefinition Width=".40*" />
</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
<RowDefinition />
<RowDefinition />
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>

<TextBlock Text="Customer Details" FontSize="20" Foreground="White"
Margin="10" Grid.ColumnSpan="3" Grid.Row="0" Grid.Column="0" />

<Image Source="/Images/blue.png" Grid.RowSpan="4" Grid.Row="1"
Grid.Column="2" />

<TextBlock Text="CustomerID" Margin="10" Foreground="White"
Grid.Row="1" Grid.Column="0" />

<TextBlock Text="{Binding Path=CustomerID}" Margin="10"
Foreground="White" Grid.Row="1" Grid.Column="1" />

<TextBlock Text="Name" Margin="10" Foreground="White" Grid.Row="2"
Grid.Column="0" />

<TextBlock Text="{Binding Path=Name}" Margin="10" Foreground="White"
Grid.Row="2" Grid.Column="1"/>

<TextBlock Text="Address" Margin="10" Foreground="White" Grid.Row="3"
Grid.Column="0" />

<TextBlock Text="{Binding Path=Address}" Margin="10"
Foreground="White" Grid.Row="3" Grid.Column="1"/>

<TextBlock Text="Phone" Margin="10" Foreground="White" Grid.Row="4"
Grid.Column="0" />

<TextBlock Text="{Binding Path=Phone}" Margin="10" Foreground="White"
Grid.Row="4" Grid.Column="1"/>

<Button x:Name="btnPopUpClose" Click="btnPopUpClose_Click" Width="50"
Content="Close" Margin="10" Grid.ColumnSpan="3" Grid.Row="5"
Grid.Column="0"/>
</Grid>
</Border>
</Popup>

A Popup control can also display controls contained within a Silverlight user con-
trol, which is recommended when you’d like more modularity and reuse in your
applications. Chapter 11 provides additional details about creating and using user
controls. The data binding code shown is discussed in more detail in Chapter 9.

197

Part Il: Developing ASP.NET Applications with Silverlight

As a user selects a row in the DataGrid, its SelectionChanged event is fired, which handles calculat-
ing where the Popup control should be shown on the screen. Once the calculations are completed, the
code sets the control’s HorizontalOffset and VerticalOffset properties to the appropriate values
and sets its IsOpen property to True to display it:

bool gridRowSelected = false;

private void dgCustomers_SelectionChanged (object sender,
SelectionChangedEventArgs e)
{
if (gridRowSelected) //Don't show popup when grid first loads
{
double x = (this.wWidth / 2) -
(((FrameworkElement) this.popUp.Child) .wWwidth / 2);
this.popUp.IsOpen = true;
this.popUp.HorizontalOffset = x;
this.popUp.VerticalOffset = -300;
this.popUp.DataContext = (Customer)this.dgCustomers.SelectedItem;
}

else
{
gridRowSelected = true;
}
}

private void btnPopUpClose_Click (object sender, RoutedEventArgs e)
{

this.popUp.IsOpen = false;
}

As the user clicks on the close Button within the Popup control, the btnPopUpClose_Click event is
fired, which sets the Popup’s IsOpen property to false to close it.

Media Controls

Silverlight provides several controls that can be used to capture and display data. Applications that
require more than simply data capture and display can leverage a rich set of media controls that are
capable of playing audio and displaying images and video. Controls included in the media controls
category include:

a Image control

0 MediaElement control

d MultiScaleImage control

This section introduces you to the media controls and gets you started using them. Subsequent chapters
provide additional details and dig deeper into their capabilities.

198

Chapter 6: Silverlight Controls

The Image Control

The Image control included in Silverlight can be used to display images much like the Image control
found in ASPNET. Image types supported by the control include JPEG and PNG with indexed color
(1-, 4-, or 8-bit) and truecolor (24- or 32-bit) color depths. Gray scale and 64-bit truecolor PNG color
depths are not supported.

Images can be retrieved from within Silverlight XAP files or from remote HTTP locations. The location
of the image to be displayed by the Image control is defined using the Source property, which relies on
the BitmapImage class to handle loading JPEG or PNG images. Here’s an example of using the Image
control to display an image named blue.png that’s included in a Silverlight project within a folder
named Images. The image file has its Build Action setto Content in the Visual Studio Properties

window.

<Image x:Name="image" Source="/Images/blue.png" Margin="10"
HorizontalAlignment="Left"/>

Because the blue.png file is part of the Silverlight project and marked with a Build
Action of Content in the Visual Studio Properties window, it’s included in the
XAP file that’s placed in the web site’s ClientBin folder. The / character preceding
the path in the Source property instructs the Image control to locate the image by
starting at the root of the XAP file. If the image file’s Build Action was marked as a
Resource, it would be embedded in the assembly file as a resource and could be
accessed by assigning a value of Images/blue.png to the Source property.

Images located on a remote web site can be displayed by assigning an HTTP path to the Source property:

<Image Source="http://www.xmlforasp.net/images/headerRight.jpg"
Margin="10" HorizontalAlignment="Left"/>

In cases in which you want control over whether or not the image fills its parent container, the Image
control’s Stretch property can be assigned one of the following Stretch enumeration values:

Stretch Value

Description

None

Fill

Uniform

UniformToFill

The content does not stretch to fill the parent container’s dimensions.

The content is scaled to fit the output dimensions. Because the content’s height
and width are scaled independently, the original aspect ratio of the content might
not be preserved. That is, the content might be distorted in order to completely fill
the output area.

The content is scaled to fit the parent container’s dimensions. However, the aspect
ratio of the content is preserved. This means that if the dimensions of the image
don’t match the dimensions of the parent control (e.g., the target control is wider),
then extra space will show in the dimension that doesn’t match. In other words,
the image won't try to stretch to fit into the non-matching dimension.

The content is scaled so that it completely fills the output area but preserves its
original aspect ratio. Using this value may result in the image being clipped.

199

Part Il: Developing ASP.NET Applications with Silverlight

Figure 6-21 shows the effect of changing the Stretch property value on an image.

Image Control with Stretch = None Image Control with Stretch = Fill

g ™

9 =2
Jr-

J

Image Control with Stretch = Uniform Image Control with Stretch = UniformToFill

s ™\

e
e Aa

Figure 6-21

The Image control provides a Loaded event that can be used to know when an image has loaded and an

ImageFailed event that can be used to know when an image failed to load. An example of handling
these events is shown next:

private void Image_lLoaded (object sender, RoutedEventArgs e)

{

//Image has loaded. Perform animation or other action

}

private void Image_ImageFailed(object sender, ExceptionRoutedEventArgs e)

{

System.Windows.Browser .HtmlPage.Window.Alert ("Image failed to load: " +
e.ErrorException.Message) ;

The ExceptionRoutedEventArgs object passed to the Image_ImageFailed event handler contains an
ErrorException object that provides access to the error message, stack trace, and inner exception.

The MediaElement Control

Silverlight has provided robust support for different media formats since its initial release, and many
sites around the world have leveraged its media capabilities. Applications needing to play various types
of audio or video can leverage the built-in media support by adding a MediaElement tag into a XAML
file and defining a file source. Different types of audio and video files can be played and interacted with
through events exposed by the MediaElement control including WMA, MP3, and WMV files.

200

Chapter 6: Silverlight Controls

The MediaElement control supports the following audio formats:

(]

WMA 7 — Windows Media Audio 7

WMA 8 — Windows Media Audio 8

WMA 9 — Windows Media Audio 9

WMA 10 — Windows Media Audio 10

MP3 — ISO/MPEG Layer-3

Input — ISO/MPEG Layer-3 data stream

Channel configurations — mono, stereo

Sampling frequencies — 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, and 48 kHz
Bit rates — 8-320 kbps, variable bit rate

U U000 0uU U UJdOo

Limitations — “Free format mode” (see ISO/IEC 11172-3, sub clause 2.4.2.3) is not supported.
The MediaElement control supports the following video formats:

Q WMV1— Windows Media Video 7
WMV2 — Windows Media Video 8
WMV3 — Windows Media Video 9
WMVA — Windows Media Video Advanced Profile, non-VC-1

a
a
a
O WMVC1 — Windows Media Video Advanced Profile, VC-1

Several tools are available to convert audio or video files to the formats listed above including
Microsoft’s Expression Encoder. Expression Encoder makes it easy to add watermarks into video,
add leaders or trailers, and add markers that can be used to sync video with other actions that may
occur in a Silverlight application.

MediaElement provides attributes such as Source, Height, Width, Stretch, and more to control what
media file is shown and how it’s shown. It also provides several different events that can be used to know
when the state of a media object has changed such as Buf feringProgressChanged, MarkerReached,
and MediaOpened. An example of using the MediaElement control is shown next:

<MediaElement x:Name="mediaElement" Source="/Video/Sandwich_Thief .wmv"
AutoPlay="True" Stretch="None" />

Although you can assign values to the Height and Wwidth properties of the
MediaElement control when using it to display video, it’s generally recommended
that you let the media fill its container. If you need the media to be smaller, re-
encoding it to a different size will lead to a better overall viewing experience.

This example defines the location of the video file using the MediaElement control’s Source property
and automatically starts the video file playing by setting the AutoPlay property to True.

201

Part Il: Developing ASP.NET Applications with Silverlight

Audio and video files can also be started, stopped, and paused by calling the Play (), Stop (), and
Pause () methods, respectively. An example of calling these methods as an end-user clicks different
buttons is shown next:

private void MediaButton_Click (object sender, RoutedEventArgs e)
{
Button btn = (Button)sender;
switch (btn.Content.ToString())
{
case "Play":
this.mediaElement.Play () ;
break;
case "Pause":
this.mediaElement.Pause() ;
break;
case "Stop":
this.mediaElement.Stop() ;
break;

There are many more features available in the MediaElement control that are discussed in Chapter 13,
“Audio and Video.”

Displaying Download Progress with
the ProgressBar Control

It goes without saying that audio and video files can be large. The speed at which they download can vary
greatly depending on the end-user’s network connection, network latency, and other factors. Although you
can write custom code to handle displaying the progress of a media file being downloaded, Silverlight
provides a ProgressBar control that can be used to visually notify the user without writing a lot of code.
The ProgressBar control acts much like the ProgressBar found in Windows Forms exposing Minimum
and Maximum properties, as shown next:

<ProgressBar x:Name="pbBar" Height="20" Width="100"
Minimum="1" Maximum="100" Margin="10" />

The value shown in the ProgressBar control can be incremented by changing its Value property as
shown in the following code. This code handles the MediaElement control’s DownloadProgress
Changed event:

private void mediaElement_DownloadProgressChanged (object sender, RoutedEventArgs e)

{

int val = (int) (mediaElement.DownloadProgress * 100);

if (val > 99)

{
this.pbBar.Visibility = Visibility.Collapsed;
this.tbProgress.Text = "Download Complete!";
return;

202

Chapter 6: Silverlight Controls

this.pbBar.Value = val;
this.tbProgress.Text = val.ToString() + "%";

}

Figure 6-22 shows how the ProgressBar control looks as its Value property is incremented.

:

Figure 6-22

The MultiScaleImage Control

Zooming in and out of images has always been difficult to achieve on the Web. A handful of technologies
can accomplish this task without image pixelation, but web browsers can’t do it natively without help from
a plug-in. Fortunately, Silverlight provides the MultiScaleImage control, which can be used to zoom
in and out of images quickly without pixelation. The Hard Rock Café’s Memorabilia web site located at
http://memorabilia.hardrock.comis an excellent example of using the MultiScaleImage control
for this purpose. Figure 6-23 shows an example of zooming into images displayed on the site.

Figure 6-23

The MultiScaleImage controls works by showing different layers of an image from high level (zoomed
out) to low level (zoomed in) and only loads the actual pixels that need to be displayed rather than parts
of the image that don't fit into the bounds of the viewport. It reads image data from a special file with an
xml extension that can be created using Microsoft’s Deep Zoom Composer tool. Images can be arranged
in the Deep Zoom Composer and then exported for inclusion into a Silverlight application that uses the
MultiScaleImage control to display them.

203

Part Il: Developing ASP.NET Applications with Silverlight

Figure 6-24 shows how the Deep Zoom Composer can be used to arrange images.

Figure 6-24

Once images have been arranged in the Deep Zoom Composer, they can be exported for use in a
Silverlight application. A sample application is created by the tool that you can run immediately after
the export process completes. An example of the XAML code created by the tool is shown next:

<UserControl x:Class="DeepZoomProject.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="1024" Height="768">
<Grid x:Name="LayoutRoot" Background="#FFFFFFFF">
<Border BorderThickness="1,1,1,1" Margin="10,10,10,10"
BorderBrush="#FF9F9FI9F" >
<MultiScaleImage x:Name="msi" MinHeight="480" MinWidth="640"
Height="768" Width="1024"/>
</Border>
</Grid>
</UserControl>

While this code defines Height and width properties on the MultiScaleImage control, it doesn’t assign
the XML source file that contains image information. This is handled in the code file, as shown next:

this.msi.Source = new DeepZoomImageTileSource (
new Uri ("GeneratedImages/dzc_output.xml", UriKind.Relative)) ;

this.msi.Loaded += new RoutedEventHandler (msi_Loaded) ;

Additional information about using the Deep Zoom Composer and the MultiScaleImage controlis
provided in Chapter 14, “Graphics and Animation.”

204

Chapter 6: Silverlight Controls

Silverlight Toolkit Controls

If you've used ASPNET AJAX, you've likely used or heard about controls from toolkits such as the
ASP.NET AJAX Control Toolkit. Microsoft has also released a Silverlight Toolkit with new controls and
functionality that can be used in Silverlight 2 applications. The controls are grouped into “quality bands”
with most of the controls fitting into either the “preview” or “stable” bands. This allows Microsoft to
develop and release controls more quickly based on feedback from the community. The status of the
controls will change over time as bugs are fixed and new features are added, and many controls will
eventually be moved into the Release Phase or “mature” band. Additional information about control
quality bands can be found at www . codeplex.com/Silverlight/Wiki/View.aspx?title=Quality
%$20Bands&referringTitle=Home&ANCHOR#Preview.

Controls included in the initial release of the Silverlight Toolkit include the following (note that additional
controls will likely be added in the future):
AutoCompleteBox
ButtonSpinner

Chart

DockPanel

Expander
HeaderedItemControl
HeaderedContentControl
ImplicitStyleManager

Label

NumericUpDown

TreeView

ViewBox

| T I S AR S N S AN S S N

WrapPanel

The majority of the controls live in the Microsoft.Windows.Controls.dll assembly, which contains
several namespaces such as Microsoft.Windows.Controls. Other controls for theming and charting
exist as well in separate assemblies. Multiple assemblies were created so that Silverlight 2 applications
only download what they need as opposed to downloading larger assemblies containing unused classes
and controls.

To get started using the Toolkit controls, you need to reference the appropriate assembly (such as
Microsoft.Windows.Controls) provided in the toolkit and then add the controls to your Visual Studio
2008 Toolbox by right-clicking on them and selecting “Choose Items.” Select the Silverlight Components
tab, browse to the Toolkit assembly, and then check the checkbox next to the controls you'd like to add.

205

Part Il: Developing ASP.NET Applications with Silverlight

Once the controls are added, you can drag them into a XAML file, which will automatically add the
proper namespace onto the UserControl root element, as shown next:

<UserControl
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:controls="clr-namespace:Microsoft.Windows.Controls;
assembly=Microsoft.Windows.Controls"
x:Class="..">
</UserControl>

In the remainder of the chapter, you'll be introduced to some of the controls found in the Silverlight
Toolkit and see how they can be used to enhance Silverlight 2 applications.

AutoCompleteBox Control

The AutoCompleteBox control acts much like the AutoCompleteExtender control found in the
ASP.NET AJAX Control Toolkit. It allows data to be displayed under a textbox as users type charac-
ters. The XAML code that follows defines an AutoCompleteBox control named acCountries that
displays data after a user types a single character:

<controls:AutoCompleteBox x:Name="acCountries"
MinimumPopulateDelay="200"
MinimumPrefixLength="1"
Width="260"
HorizontalAlignment="Left" />

You can bind auto-complete data to the control using the ItemsSource property (note that data can be
retrieved from any source that Silverlight has access to):

private void BindData ()
{
acCountries.ItemsSource = new List<string>() { "USA", "Spain", "Mexico",
"Canada", "Costa Rica" };

Figure 6-25 shows what the end-user would see as they type c into the textbox.

g |

Canada
Costa Rica

Figure 6-25

The AutoCompleteBox control supports filtering auto-complete data using lambdas, exposes a rich set
of properties and events, and allows templates to be defined. Figure 6-26 shows an example of applying
a custom template to the control’s ItemTemplate property to display pictures and text as the user types.

206

Chapter 6: Silverlight Controls

fo

s Forest Flowers.jpg
s
nForest. jpg

Figure 6-26

The ItemTemplate property and the subject of styles and templates are covered in
more detail in Chapter 7.

WrapPanel Control

The WwrapPanel control is one of those controls that you'll find yourself using frequently — especially if
you need to display a collection of objects in a user interface without resorting to a grid-style layout.
Although the standard Stackpanel provides a way to display controls in a horizontal or vertical man-
ner, any content that exceeds the bounds of the control will be clipped. This presents a problem with
images or any other type of data that need to be wrapped rather than clipped. Although there are a few
third-party wrapPanel controls floating around on the Web, the one available in the Silverlight Toolkit
gets the job done quickly and efficiently. Here’s an example of using the WwrapPanel control within an
ItemsControl (a control that items controls like ListBox and ComboBox derive from) to define the par-
ent container for images retrieved from Flickr:

<ItemsControl x:Name="icPhotos" Grid.Row="1" VerticalAlignment="Top">
<ItemsControl.ItemsPanel>
<ItemsPanelTemplate>
<controls:WrapPanel x:Name="wpImages" Margin="10"
Orientation="Horizontal" VerticalAlignment="Top" />
</ItemsPanelTemplate>
</ItemsControl.ItemsPanel>
<ItemsControl.ItemTemplate>
<DataTemplate>
<Rectangle Stroke="LightGray" Tag="{Binding Url}"
Fill="{Binding
ImageBrush}" StrokeThickness="2"
RadiusX="15" RadiusY="15" Margin="15"
Height="75" Width="75" Loaded="Rectangle_Loaded"
MouseLeave="Rectangle_MouseLeave"
MouseEnter="Rectangle_ MouseEnter"
MouseLeftButtonDown="rect_MouseLeftButtonDown">
<Rectangle.RenderTransform>
<TransformGroup>
<ScaleTransform ScaleX="1" ScaleY="1" CenterX="37.5"
Centery="37.5" />
</TransformGroup>
</Rectangle.RenderTransform>
</Rectangle>
</DataTemplate>
</ItemsControl.ItemTemplate>
</ItemsControl>

207

Part Il: Developing ASP.NET Applications with Silverlight

The XAML code shown here provides a sneak peek into the world of Silverlight
data binding and custom data templates. Additional information about data bind-
ing is provided in Chapter 10.

An example of using the WrapPanel control to display a series of images in a “wrapped” manner is
shown in Figure 6-27.

[hetpittocatnost22548/SitvertightRESTCHentTest/Sibver] (42| K| [Live Search

& Corvert ~ [Select
Ur < 8 Siverlight Project Test Page | \ I f v B - # v [rPage v £ Tooks v 7
| lttle big planet Getlmages | *) UseWebClient | Use WebRequest () Use XmiSerializer "‘

Done [1 i Local intranet | Protected Made: O e - .

Figure 6-27

TreeView Control

The Silverlight Toolkit’s Treeview control looks and acts much like any standard tree view that you've
seen, although it can be styled and customized just about any way you'd like. An example of using the
TreeView control is shown next:

<controls:TreeView Margin="5">
<controls:TreeViewItem Header="ACME Corporation Employees">
<controls:TreeViewItem Header="Mike James">
<controls:TreeViewItem Header="Fred Stel" />
<controls:TreeViewItem Header="Heedy Taft" />
<controls:TreeViewItem Header="Seth Johnson" />
<controls:TreeViewItem Header="Dan Williams" />
<controls:TreeViewItem Header="Ted Thompson">
<controls:TreeViewItem Header="Daine Rivers" />
<controls:TreeViewItem Header="Gillian Pierson" />
</controls:TreeViewItem>
</controls:TreeViewItem>
</controls:TreeViewItem>
</controls:TreeView>

If you've ever used the TreeView control built into ASP.NET, then the code will look familiar. Figure 6-28
shows what the Treeview control looks like once rendered in Silverlight.

208

Chapter 6: Silverlight Controls

4 ACME Corporation Employees
4 Mike James
Fred Stel
Heedy Taft
Seth Johnson
Dan Williams
4 Ted Thompson
Daine Rivers

Gillian Pierson

Figure 6-28

The sample code included in the Silverlight Toolkit also provides an example of binding a Treeview to
an ObjectCollection instance (a new object also available in the toolkit) to display a hierarchy. Here’s
what the ObjectCollection looks like. The Domain, Kingdom, and other related elements are based on
custom classes included in the Toolkit samples. They can, of course, be substituted with your own data

classes and built up dynamically.

<controls:0ObjectCollection x:Key="TreeOfLife"
xmlns="http://schemas.microsoft.com/client/2007">
<common:Domain Classification="Bacteria">
<common:Kingdom Classification="Eubacteria" />
</common : Domain>
<common:Domain Classification="Archaea">
<common:Kingdom Classification="Archaebacteria" />
</common : Domain>
<common:Domain Classification="Eukarya">
<common:Kingdom Classification="Protista" />
<common:Kingdom Classification="Fungi" />
<common:Kingdom Classification="Plantae" />
<common:Kingdom Classification="Animalia">
<common: Phylum Classification="Arthropoda">
<common:Class Classification="Insecta">
<common:Order Classification="Diptera">
<common:Family Classification="Drosophilidae">
<common:Genus Classification="Drosophila">
<common:Species Classification="D. melanogaster"
</common : Genus>
</common : Family>
</common : Order>
</common:Class>
</common : Phylum>
<common : Phylum Classification="Chordata">
<common:Class Classification="Mammalia">
<common:Order Classification="Primates">
<common:Family Classification="Hominidae">
<common:Genus Classification="Homo">
<common:Species Classification="H. sapiens" />
</common : Genus>
</common : Family>
</common:Order>
</common:Class>
</common : Phylum>
<common: Phylum Classification="Ctenophora" />

/>

209

Part Il: Developing ASP.NET Applications with Silverlight

<common:Phylum Classification="Porifera" />
<common:Phylum Classification="Placozoa" />
</common : Kingdom>
</common : Domain>
</controls:0ObjectCollection>

The Treeview can be bound to the TreeOfLife ObjectCollection using the TreevView’s

ItemsSource property, as shown next (additional information about data binding can be found in
Chapter 10, “Working with Data”):

<controls:TreeView x:Name="tvTreeOfLife" Margin="5"
ItemsSource="{StaticResource TreeOfLife}" >
<controls:TreeView.ItemTemplate>
<controls:HierarchicalDataTemplate ItemsSource="{Binding Subclasses}">
<StackPanel>
<TextBlock Text="{Binding Rank}" FontSize="8" FontStyle="Italic"
Foreground="Gray" Margin="0 0 0 -5" />
<TextBlock Text="{Binding Classification}" />
</StackPanel>
</controls:HierarchicalDataTemplate>
</controls:TreeView.ItemTemplate>
</controls:TreeView>

Notice that the ItemsSource property is bound to the Tree0fLife key defined in the ObjectCollection
and that each value in the tree view is generated by using a HierarchicalDataTemplate that binds to
Rank and Classification properties and displays them using a StackPanel. Figure 6-29 shows what
the Treeview looks like once the different life classifications are rendered:

Domain

4 Eukarya
Kingdom
Protista
Kingaam
Fungi
Kingaerm
Plantae

Kingaom
Animalia

Y

Phyhurn
4 Arthropoda
Ciass
4 Insecta
Orper
4 Diptera

Famay
4 Drosophilidae

[
4 Drosophila

Figure 6-29

Chart Control

Charting is an important part of many applications. In the past, developers have relied on custom
code, reporting solutions, or third-party controls when they needed to embed different types of charts
in applications. The Silverlight Toolkit includes a Chart control that can be used to display different

210

Chapter 6: Silverlight Controls

types of data. It’s located in the Microsoft.Windows.Controls.DataVisualization assembly and
Microsoft.Windows.Controls.DataVisualization.Charting namespace. By using it, you can
display line charts, pie charts, and scatter charts and even animate the charts. Here’s an example of
defining a bar chart that binds to an 0ObjectCollection filled with PugetSound objects:

<charting:Chart Title="Typical Use">
<charting:Chart.Series>
<charting:ColumnSeries
Title="Population"
ItemsSource="{Binding PugetSound, Source={StaticResource City}}"
IndependentValueBinding="{Binding Name}"
DependentValueBinding="{Binding Population}"/>
</charting:Chart.Series>
</charting:Chart>

The ObjectCollection thatis bound to the chartis shown next:

ObjectCollection pugetSound = new ObjectCollection() ;
pugetSound.Add (new City { Name = "Bellevue", Population 112344 1});
pugetSound.Add (new City { Name = "Issaquah", Population 11212 3});
pugetSound.Add (new City { Name = "Redmond", Population = 46391 });
pugetSound.Add (new City { Name = "Seattle", Population = 592800 });

The output generated by the chart is shown in Figure 6-30.

Figure 6-30

An example of defining a pie chart that binds to the same ObjectCollection data is shown next:

<charting:Chart Title="Typical Use">
<charting:Chart.Series>
<charting:PieSeries
ItemsSource="{Binding PugetSound, Source={StaticResource City}}"
IndependentValueBinding="{Binding Name}"
DependentValueBinding="{Binding Population}"/>
</charting:Chart.Series>
</charting:Chart>

Figure 6-31 shows what the pie chart looks like.

211

Part Il: Developing ASP.NET Applications with Silverlight

Typical Use

" Bellevue
Issaquah
Redmond
Seattle

Figure 6-31

There is a lot more that can be done with the Silverlight Toolkit controls discussed in this section, and
there are several other controls available that weren’t covered. Visit www.codeplex.com/Silverlight
to download additional documentation and samples. Also, Chapter 7 includes information about the
ImplicitStyleManager control.

Summary

Silverlight provides a variety of built-in controls that can be used to capture user input, display data
items, and play media files. Many of the controls are similar to web controls available in ASP.NET,
which should allow you to put them to use more quickly.

The chapter started by showing how controls can be defined in XAML and how events can be hooked to
event handlers. It then delved into controls in the user input controls category such as TextBox, Button,
and Checkbox and showed how items controls can be used to display collections of data in different
ways. Available items controls include ListBox, DataGrid, and ComboBox. Media controls that can be
used to show images and play audio and video files were also covered. Available media controls include
Image, MediaElement, and MultiScaleImage. Finally, several controls in the Silverlight Toolkit such
as AutoCompleteBox and WrapPanel were discussed.

Several other features can be used with Silverlight controls including styles and templates. In Chapter 7,
“Styles and Templates,” you’'ll learn how to create and apply styles and develop custom control templates.

212

Styles and Templates

As you've seen so far, Silverlight comes with a whole host of layout and input controls to build your
user interface from. However, all Silverlight applications would look pretty much the same without
a sprinkling of individuality, provided through extensive styling and templating support.

In this chapter, you'll start by looking at how different styles can be applied to the elements of
your Ul inline quickly and easily. In fact, this is something you've already done in the previous
chapters. You'll then look at providing some measure of separation between the style definition
itself and the controls it’s to be applied against, both locally within the page in question and
globally across the entire application.

Following this, you'll take a look at the concept of lookless controls and how you can completely
redefine the skin of a control (including the built-in ones) without altering its functionality — a
technique called templating. This section will also show you how to propagate user-provided val-
ues through to the individual elements of your new template, a technique called template binding.

Finally, you'll see how it’s possible to hook into the ASP.NET Profile Provider to implement per-
sonalization in your Silverlight application.

Styles

When you talk about applying a style to an element within an ASPNET web site and/or a Silverlight
application, you are referring to the ability to alter the control’s look and feel — altering its size,
alignment, and so on. It is hoped that you are either a gifted designer or have the backing of a tal-
ented design team.

In order to affect the properties that denote look and feel, you can either set them on a control by
control basis (termed inline), reapplying the information each and every time, or you can opt to
define the styles in a central location and then apply the predefined style information to your con-
trols. This is a model you've seen many times before. In HTML, you can use Style Sheets to store
style information that can then be applied against your HTML elements, and you can elect to apply

Part Il: Developing ASP.NET Applications with Silverlight

information directly to the HTML elements if need be. In ASPNET, you have the concept of themes, which
are defined in skin files and then applied to the server controls. So this model should at least feel famil-
iar. The next sections, “Applying Inline Styles” and “Specifying Styles in a Central Location,” will take
you through the ins and outs of both approaches.

Applying Inline Styles

The quickest and easiest way to style a control is to directly set the properties on it inline, which means
within the element definition itself.

You've already seen this technique used probably without thinking about it. Simply setting the Height
and width properties of a control constitutes altering its style.

The following XAML defines TextBlock, TextBox, and Button elements that comprise a simple login
form, arranged within a parent Canvas. Notice, however, that only the elements’ x : Name, Text /Content,
and Canvas attached properties have been set. With regard to style, nothing has been specified, so each
control will use its default settings for appearance.

<UserControl x:Class="Chapter07.InlineExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Canvas x:Name="LayoutRoot" Background="White">

<!-- STEP 1, NO STYLE -->

<TextBlock x:Name="usernameLabel"
Text="Enter your Username: "
Canvas.Top="10"
Canvas.Left="10" />

<TextBox x:Name="username"
Canvas.Top="10"
Canvas.Left="150"/>

<TextBlock x:Name="passwordLabel"
Text="Enter your password: "
Canvas.Top="40"
Canvas.Left="10"/>

<TextBox x:Name="password"
Canvas.Top="40"
Canvas.Left="150"/>

<Button x:Name="loginButton"
Content="Login"
Canvas.Top="70"
Canvas.Left="10"/>
<!-- END STEP 1 -->
</Canvas>

</UserControl>

214

Chapter 7: Styles and Templates

Figure 7-1 shows the output of this XAML.

/& Test Page For Chapter07 - Windows Internet Explorer =Rich)
o) |@TestPaganrChapter,, [_| i R - e v

£ http:/Alocalhost:600 ~| ¢4 | X || Live Search

Enter your UsemamD

Enter your passwoni:\

E" Local intranet | Protected Mode: On H100% v ;

Figure 7-1

Not the best login form in the world, you'll agree. Although the controls are positioned properly, the
default width for TextBox is a little too short. So the next step in designing this form is to increase the
default width of the TextBox elements to something more appropriate, and also to increase the width
of the But ton to make it stand out more.

<TextBlock x:Name="usernamelLabel"
Text="Enter your Username: "
Canvas.Top="10"
Canvas.Left="10" />

<TextBox x:Name="username"
Canvas.Top="10"
Canvas.Left="150"
Width="150" />

<TextBlock x:Name="passwordLabel"
Text="Enter your password: "
Canvas.Top="40"
Canvas.Left="10" />

<TextBox x:Name="password"
Canvas.Top="40"
Canvas.Left="150"
width="150" />

<Button x:Name="loginButton"
Content="Login"
Canvas.Top="70"
Canvas.Left="10"
width="80" />

215

Part Il: Developing ASP.NET Applications with Silverlight

Figure 7-2 shows the form with its new size settings for the TextBox and Button objects. Things are

getting better.
{& Test Page For Chapter07 - Windows Internet Explorer = 3
() - [E] nttpstocamostsnoe] 43 [X | [Live searcr 2 -
‘i{.‘? afip |@Te5tPage For Chapter... |_| ﬁ X x @ - i:'_;}’Page it &
Enter your Username: ‘ i
Enter your password: ‘ ‘
€ Local intranet | Protected Mode: On H100% -
Figure 7-2

Now assume that your company has strict rules on branding, meaning that the text used in this and all
other forms must match or closely match the company standard of Times New Roman in size 12. This

requirement entails setting both the FontFamily and FontSize properties of each control on your form
that will display text content, as shown in the following XAML:

<TextBlock x:Name="usernameLabel"
Text="Enter your Username: "
Canvas.Top="10"
Canvas.Left="10"
FontFamily="Times New Roman"
FontSize="12"/>

<TextBox x:Name="username"
Canvas.Top="10"
Canvas.Left="150"
Width="150"
FontFamily="Times New Roman"
FontSize="12"/>

<TextBlock x:Name="passwordLabel"
Text="Enter your password: "
Canvas.Top="40"
Canvas.Left="10"
FontFamily="Times New Roman"
FontSize="12"/>

<TextBox x:Name="password"
Canvas.Top="40"
Canvas.Left="150"
Width="150"

216

Chapter 7: Styles and Templates

FontFamily="Times New Roman"
FontSize="12"/>

<Button x:Name="loginButton"
Content="Login"
Canvas.Top="70"
Canvas.Left="10"
Width="80"
FontFamily="Times New Roman"
FontSize="12"/>

So up to now you've increased the default size of some of the elements and implemented your company’s
standard font and size. Throw design caution to the wind now — change the label text to be colored
green, and add a heading to finish the form off. Your XAML should resemble the following;:

<TextBlock x:Name="headingText"
Text="Please Login"
Canvas.Top="10"
Canvas.Left="10"
FontFamily="Times New Roman"
FontSize="18" />

<TextBlock x:Name="usernameLabel"
Text="Enter your Username: "
Canvas.Top="40"
Canvas.Left="10"
FontFamily="Times New Roman"
FontSize="12"
Foreground="Green" />

<TextBox x:Name="username"
Canvas.Top="40"
Canvas.Left="150"
Width="150"
FontFamily="Times New Roman"
FontSize="12"/>

<TextBlock x:Name="passwordLabel"
Text="Enter your password: "
Canvas.Top="70"
Canvas.Left="10"
FontFamily="Times New Roman"
FontSize="12"
Foreground="Green" />

<TextBox x:Name="password"
Canvas.Top="70"
Canvas.Left="150"
Width="150"
FontFamily="Times New Roman"
FontSize="12"/>

<Button x:Name="loginButton"
Content="Login"

217

Part Il: Developing ASP.NET Applications with Silverlight

Canvas.Top="100"
Canvas.Left="10"

Width="80"

FontFamily="Times New Roman"
FontSize="12"/>

Figure 7-3 shows the final result, which is beautiful, we think you'll agree.

{& Test Page For Chapter07 - Windows Internet Explorer [==]E=]

u_)~ |§l"ﬂpwm'm '|‘?|X||Lwe$earch -
W |@Te3tPage For Chapter... |7| o - ~ b v [page ¥ »
Please Login

Enter your Usemame: ‘ ‘

Enter your password: ‘

Login

€l Local intranet | Protected Mode: On % 100% ~

Figure 7-3

Take a moment now to consider some problems with the “inline” approach. Even with this small exam-
ple, reapplying the same settings to the different controls was a tedious task and in anything much big-
ger would become time-consuming, not to mention error-prone as complexity really increases.

Also, it’s very rare that something doesn’t change after it is created, very rare, indeed. For example, more
likely than not a company standard will change, which will require you to go through your lovely form

and alter style properties to reconform. Not a pleasant thought on a complex form, never mind on a
number of them!

Finally, inline styles make it difficult to maintain the same look and feel throughout an entire applica-
tion, especially when multiple designers and developers are thrown into the mix.

What's needed, then, is the ability to define set styles in a central location that can then be applied to the
controls within your application automatically.

Specifying Styles in a Central Location

The ability to define and then reuse set styles is provided by the Style object. In order to apply a pre-
defined style to a control or several controls, you first need a way of specifying which controls should
take the set style. In Silverlight, you do this by setting the Style.TargetType property to the type of
element that can use the style and then giving the Style object a unique key via the x:Key property.
x:Key can be applied to elements that are defined with a Resources section, and thus Style objects
must be defined in a Resources section of your XAML for use.

218

Chapter 7: Styles and Templates

You learned in Chapter 4 about the FrameworkElement class, whose job it is to provide controls further
down the derivation chain with layout abilities, object lifetime hooks, and data-binding and resource
support. It transpires that every FrameworkElement-derived control in Silverlight has a Style prop-
erty that defaults to null. To set this property to one of your predefined styles in XAML, you use the
string name provided by the x: Key value. Type conversion then takes place to set the actual style
object being referenced.

Setters

As well as being able to apply a style to set elements, you also need to be able to define within the style
itself what property values it will actually set on the controls that use it. To do this, the style object comes
with a Setter property that allows you to specify several Setter objects. A Setter object allows you to
specify the name of the property that will be set and the value that should be given to it via the Property
and Value properties, respectively, FontSize and 12, for example. Creating multiple Setter objects
allows you to predefine any style settings you choose.

The following XAML shows how you could define a Style object for TextBox elements that sets the
FontFamily, FontSize, and Wwidth properties.

<Style x:Key="StandardTextBox" TargetType="TextBox">
<Setter Property="FontFamily"
Value="Times New Roman" />

<Setter Property="FontSize"
Value="12" />

<Setter Property="Width"
Value="150" />
</Style>

Specifying Styles at the Page Level

Specifying styles at the page level offers numerous advantages over inline styling of your UI elements.
First, it aids with style maintenance as it negates the need for style information to be duplicated across
multiple changes. Second, it makes it easier to enforce common guidance throughout pages rather than
ad hoc styles being applied throughout. Finally, because theyre declared only once and then used
many times, it reduces the chance of error.

A Style object needs to be specified in a Resources section of your application. If you have styles
that only apply to a single page, you can simply place these in the Resources section of the parent
container — the UserControl. If you want your styles to apply only to the elements within a container
further down the hierarchy, you're free to do so, in the canvas, for example. For all of the elements
within the page (or other container) that then want to use the style, their Style property should be
set to the name given to the Style in the x:Key property.

With this in mind, alter your XAML to include the TextBox style definition and application, as
shown below:

<Canvas.Resources>
<Style x:Key="StandardTextBox" TargetType="TextBox">
<Setter Property="FontFamily"
Value="Times New Roman" />

219

Part Il: Developing ASP.NET Applications with Silverlight

<Setter Property="FontSize"
Value="12" />

<Setter Property="Width"
Value="150" />
</Style>
</Canvas.Resources>

<TextBlock x:Name="headingText"
Text="Please Login"
Canvas.Top="10"
Canvas.Left="10"
FontFamily="Times New Roman"
FontSize="18" />

<TextBlock x:Name="usernameLabel"
Text="Enter your Username: "
Canvas.Top="40"
Canvas.Left="10"
FontFamily="Times New Roman"
FontSize="12"
Foreground="Green" />

<TextBox x:Name="username"
Canvas.Top="40"
Canvas.Left="150"
Style="{StaticResource StandardTextBox}"/>

<TextBlock x:Name="passwordLabel"
Text="Enter your password: "
Canvas.Top="70"
Canvas.Left="10"
FontFamily="Times New Roman"
FontSize="12"
Foreground="Green" />

<TextBox x:Name="password"
Canvas.Top="70"
Canvas.Left="150"
Style="{StaticResource StandardTextBox}" />

<Button x:Name="loginButton"
Content="Login"
Canvas.Top="100"
Canvas.Left="10"
Width="80"
FontFamily="Times New Roman"
FontSize="12"/>

Note how the Style property is set to {StaticResource StandardTextBox} for the TextBox elements

in question. If you compile and run the application, you should still get the same result as before, mean-
ing your new style definition has worked.

220

Chapter 7: Styles and Templates

Now extract the remaining styles and define them for use as shown below:

<Canvas.Resources>
<Style x:Key="StandardTextBox" TargetType="TextBox">
<Setter Property="FontFamily"
Value="Times New Roman" />

<Setter Property="FontSize"
Value="12" />

<Setter Property="Width"
Value="150" />
</Style>

<Style x:Key="TextBlockHeader" TargetType="TextBlock">
<Setter Property="FontFamily"
Value="Times New Roman" />

<Setter Property="FontSize"
Value="18" />
</Style>

<Style x:Key="StandardLabel" TargetType="TextBlock">
<Setter Property="FontFamily"
Value="Times New Roman" />

<Setter Property="FontSize"
Value="12" />

<Setter Property="Foreground"
Value="Green" />
</Style>

<Style x:Key="StandardButton" TargetType="Button">
<Setter Property="FontFamily"
Value="Times New Roman" />

<Setter Property="FontSize"
Value="12" />

<Setter Property="Width"
Value="80" />
</Style>
</Canvas.Resources>

<TextBlock x:Name="headingText"
Text="Please Login"
Canvas.Top="10"
Canvas.Left="10"
Style="{StaticResource TextBlockHeader}"/>

<TextBlock x:Name="usernameLabel"
Text="Enter your Username:
Canvas.Top="40"

221

Part Il: Developing ASP.NET Applications with Silverlight

Canvas.Left="10"
Style="{StaticResource StandardLabel}"/>

<TextBox x:Name="username"
Canvas.Top="40"
Canvas.Left="150"
Style="{StaticResource StandardTextBox}"/>

<TextBlock x:Name="passwordLabel"
Text="Enter your password: "
Canvas.Top="70"
Canvas.Left="10"
Style="{StaticResource StandardLabel}"/>

<TextBox x:Name="password"
Canvas.Top="70"
Canvas.Left="150"
Style="{StaticResource StandardTextBox}" />

<Button x:Name="loginButton"
Content="Login"
Canvas.Top="100"
Canvas.Left="10"
Style="{StaticResource StandardButton}"/>

Notice how it’s possible to define more than one Style object that targets the same type. This enables
you to create multiple styles for objects such as a TextBox and then specify exactly which style to use
with the x:Key value.

Overriding Set Styles

You can now use the Style object to predefine your desired styles and apply them to one or many con-
trols. As well as applying a style to a given control, you can also provide inline style information that
can potentially clash with information given by the specified Style object. When this happens, the val-
ues provided “inline” will override those defined in the Style object. The Style object does not change,
however, and will continue to apply the properties that don’t clash to the elements in question.

This mechanism allows you to take part or most of a Style, but then to tweak it for a particular control.
The following XAML shows a TextBlock overriding the Foreground setter with a selection of its own,
while still retaining the remaining FontSize setter:

<Canvas.Resources>
<Style x:Key="DefaultTextBlock" TargetType="TextBlock">
<Setter Property="Foreground"
Value="Green" />

<Setter Property="FontSize"
Value="26" />
</Style>
</Canvas.Resources>

<TextBlock Text="Hello, World!"

Style="{StaticResource DefaultTextBlock}"
Foreground="Blue" />

222

Chapter 7: Styles and Templates

To reiterate, overriding part or all of a Style setting does not alter the Style object in any way, and the
other controls that use it will continue to do so.

Specifying Styles at the Application Level

The examples thus far have assumed that you have styles that only need to propagate from either the
top-level Usercontrol element or a container within it to their children. In the real world, it’s much
more likely that you will create styles that should be applied across the entire application, potentially
spanning many pages.

To do this, you simply promote your style definitions to the Resources section of the Application
object, within the App.xaml page.

<Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="Chapter07.App"
>
<Application.Resources>
<Style x:Key="StandardTextBox" TargetType="TextBox">
<Setter Property="FontFamily"
Value="Times New Roman" />

<Setter Property="FontSize"
Value="12" />

<Setter Property="Width"
Value="150" />
</Style>

<Style x:Key="TextBlockHeader" TargetType="TextBlock">
<Setter Property="FontFamily"
Value="Times New Roman" />

<Setter Property="FontSize"
Value="18" />
</Style>

<Style x:Key="StandardLabel" TargetType="TextBlock">
<Setter Property="FontFamily"
Value="Times New Roman" />

<Setter Property="FontSize"
Value="12" />

<Setter Property="Foreground"
Value="Green" />
</Style>

<Style x:Key="StandardButton" TargetType="Button">
<Setter Property="FontFamily"

Value="Times New Roman" />

<Setter Property="FontSize"
Value="12" />

223

Part Il: Developing ASP.NET Applications with Silverlight

<Setter Property="Width"
Value="80" />
</Style>
</Application.Resources>
</Application>

Templating

Up to now, you've seen how to implement styles by simply setting control properties with certain values,
either directly within the element itself or via predefined style objects. These techniques will normally
be used the vast majority of the time and provide a good level of control over the appearance of your
Silverlight application. There are some instances, however, where you will need more control than this.
For example, say you want to change the actual shape of a control rather than just altering its size or color.
You may decide that you would like a star-shaped Button, for example. Clearly this would not be pos-
sible by simply setting properties on the Button class.

ControlTemplate

To enable you to achieve more power over customizing a control’s appearance, the ControlTemplate
class is provided. All objects that inherit from Control can have their appearance defined in a Control
Template (note that all objects that inherit from FrameworkElement can have a Style set), which is
defined in XAML. This definition can then be passed to the Control.Template property to be
implemented.

“Lookless” Controls

Crucially, this complete separation of visual appearance and behavior from actual implementation
allows you to create lookless controls. All the functionality can be written and implemented, but the
actual appearance and how it behaves visually can be effectively skinned and swapped out and
replaced as is necessary.

Of course, in order to re-skin a control, you need to have a good idea about how the control expects to
interact with its skin. More often than not, code within the control may expect all skins applied to it to
have certain elements that it can manipulate. To cater to this expectation, the control developer can cre-
ate a control contract, which specifies three important pieces of information:

Q A definition of any public properties that can be set to change the visual appearance of the control
Q A definition of all UIElement objects that the control expects to have in a skin
O A definition of VisualState objects that control the different states the control can assume in

response to user actions

This “contract” of sorts is defined using the TemplatePart attribute in the control’s code-behind file.

VisualState Object

Notice from the preceding list that a control can define several visualState objects. But what exactly
are these? A VisualState represents the appearance of a control when in a specific state. For example,
your Button control might be in a “pressed” state, and as such its appearance might need to be changed
to reflect this fact (e.g., to look indented).

224

Chapter 7: Styles and Templates

VisualState objects allow you to alter the control’s appearance by letting you apply a Storyboard to
the control when it is in the specified state.

These states themselves are managed and contained within a VisualStateManager for each control
and a collection of VisualStateGroup objects within it. Being able to group the different control states
allows you to take into account the fact that some states can be mutually exclusive. For example, a con-
trol cannot be focused and unfocused at the same time.

More detail on these objects is given in Chapter 11, “Creating Custom Controls.”

Next, you'll see how to use a ControlTemplate to re-skin the built-in But ton object to become star-shaped.

Using Templates

As it turns out, creating a new ControlTemplate is done by following the same process as creating a
predefined style: You use a Setter object to pass your ControlTemplate value to the Template prop-
erty. The following XAML uses a PathGeometry object to describe a star shape and uses this as the
new shape for the Button:

<UserControl x:Class="Chapter07.BasicTemplateExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">
<Grid x:Name="LayoutRoot" Background="White">
<Grid.Resources>
<Style TargetType="Button" x:Key="StarButton">
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="Button">
<Grid>
<Path Fill="Yellow">
<Path.Data>

<PathGeometry>
<PathFigure>
<LineSegment Point="100,100" />
<LineSegment Point="200, 100" />
<LineSegment Point="250, 0" />
<LineSegment Point="300, 100" />
<LineSegment Point="400, 100" />
<LineSegment Point="320, 200" />
<LineSegment Point="400, 300" />
<LineSegment Point="250, 270" />
<LineSegment Point="100, 300" />
<LineSegment Point="180, 200" />
<LineSegment Point="100, 100" />
</PathFigure>
</PathGeometry>
</Path.Data>
</Path>
</Grid>

</ControlTemplate>
</Setter.vValue>
</Setter>
</Style>

225

Part Il: Developing ASP.NET Applications with Silverlight

</Grid.Resources>
<Button Style="{StaticResource StarButton}" Content="Click Me" />

</Grid>
</UserControl>

Note how a new Style object is defined, and the Setter object is declared to act on a property named
Template. The ControlTemplate instance is then passed in via the Setter.Value element. Figure 7-4
shows the output of this XAML.

{& Test Page For Chapter07 - Windows Internet Explorer [=EER]
Qu - [EE] nttpssocanost:soo [43 | x |[Live search e
o oo |§TestPageFurChapter... |_| o~ v (= v |i Page v t
€ Local intranet | Protected Mode: On H100% -
Figure 7-4

Behold, our best attempt at a star. It might not win awards, but a star it is, nonetheless. You might notice
a few problems with the current implementation of this starButton. First off, the Content property
that is set to the string “Click Me” hasn’t been honored. This text has simply been ignored. Also, there
are no effects when the mouse is rolled over the Button. Clearly, you have some more work to do.

At this point in time, the “contract” specified by the Button class to denote what every skin should
have so it can interact with it hasn’t been honored. If you look in the documentation for the Button
class, you will see that it expects certain named elements and “VisualStates” (implemented as
Storyboards) to exist.

In terms of elements, it expects two:

d RootElement — The root element of the control

0 FocusVisualElement — The element with this name will get focus for the control.

226

Chapter 7: Styles and Templates

The Button class also defines six states that it can be in:

O Normal State — the default state of the button

MouseOver State — The state of the button when the mouse is over it
Pressed State — The state of the button when it is pressed

Disabled State — The state of the button when it is disabled

Focused — The state of the button when it has focus

U U0 0o

Unfocused — The state of the button when it does not have focus

To implement the required elements, you simply need to name the appropriate elements within your
ControlTemplate. For the StarButton example, the Grid container will be named RootElement, and
a TextBlock will be added that you will use to display the string content. In addition, the different states
that this button should be in need to be implemented via VisualState and Storyboard objects. These
VisualState objects should be named as per the state names for the control in question (in the case of
the StarButton, these should be Normal, MouseOver, Pressed, Disabled, Focused, and Unfocused).

Generic.xaml

Now, when it comes to altering a control’s template, you will generally want to start with the existing
definition and make changes to it, rather than starting completely from scratch. These definitions are
stored within the control’s assembly in a resource named generic.xaml. Although you can get at this if
you really want to, you might as well just check out the MSDN documentation that lists template
requirements for all controls and even the default template itself; you can find the documentation at
http://msdn.microsoft.com/en-us/library/cc278069 (VS.95) .aspx. The default XAML for the
Button control that shows you how to go about implementing the different states and named elements
for your own template is shown in the following. Don’t be frightened by the amount of XAML — work
your way through it from top to bottom, and you'll see there isn't actually that much to it.

<Style TargetType="Button"
xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows">

<Setter Property="IsEnabled" Value="true" />

<Setter Property="IsTabStop" Value="true" />

<Setter Property="Background" Value="#FF003255" />

<Setter Property="Foreground" Value="#FF313131" />

<Setter Property="MinWidth" Value="5" />

<Setter Property="MinHeight" Value="5" />

<Setter Property="Margin" Value="0" />

<Setter Property="HorizontalContentAlignment" Value="Center" />

<Setter Property="VerticalContentAlignment" Value="Center" />

<Setter Property="Cursor" Value="Arrow" />

<Setter Property="TextAlignment" Value="Left" />

<Setter Property="TextWrapping" Value="NoWrap" />

<!-- Cannot currently parse FontFamily type in XAML

so it's being set in code -->

<!-- <Setter Property="FontFamily" Value="Trebuchet MS" /> -->

<Setter Property="FontSize" Value="11" />

<!-- Cannot currently parse FontWeight type in XAML

so it's being set in code -->
<!-- <Setter Property="FontWeight" Value="Bold" /> -->
<Setter Property="Template">

227

Part Il: Developing ASP.NET Applications with Silverlight

228

<Setter.vValue>
<ControlTemplate TargetType="Button">
<Grid>
<Grid.Resources>
<!-- Visual constants used by the template -->
<Color x:Key="LinearBevelLightStartColor">#FCFFFFFF</Color>
<Color x:Key="LinearBevelLightEndColor">#FAFFFFFF</Color>
<Color x:Key="LinearBevelDarkStartColor">#EQOFFFFFF</Color>
<Color x:Key="LinearBevelDarkEndColor">#B2FFFFFF</Color>
<Color
x:Key="MouseOverLinearBevelDarkEndColor">#7FFFFFFF</Color>
<Color
x:Key="HoverLinearBevelLightStartColor">#FCFFFFFF</Color>
<Color
x:Key="HoverLinearBevellLightEndColor">#EAFFFFFF</Color>
<Color
x:Key="HoverLinearBevelDarkStartColor">#D8FFFFFF</Color>
<Color
x:Key="HoverLinearBevelDarkEndColor">#4CFFFFFF</Color>
<Color x:Key="CurvedBevelFillStartColor">#B3FFFFFF</Color>
<Color x:Key="CurvedBevelFillEndColor">#3CFFFFFF</Color>
<SolidColorBrush x:Key="BorderBrush" Color="#FF000000" />
<SolidColorBrush x:Key="AccentBrush" Color="#FFFFFFFF" />
<SolidColorBrush x:Key="DisabledBrush" Color="#ASFFFFFF" />
<LinearGradientBrush
xX:Key="FocusedStrokeBrush" StartPoint="0.5,0" EndPoint="0.5,1">
<GradientStop Color="#B2FFFFFF" Offset="0" />
<GradientStop Color="#51FFFFFF" Offset="1" />
<GradientStop Color="#66FFFFFF" Offset="0.325" />
<GradientStop Color="#1EFFFFFF" Offset="0.325" />
</LinearGradientBrush>
</Grid.Resources>
<vsm:VisualStateManager.VisualStateGroups>
<vsm:VisualStateGroup x:Name="CommonStates">
<vsm:VisualStateGroup.Transitions>
<vsm:VisualTransition To="MouseOver"
Duration="0:0:0.2" />
<vsm:VisualTransition To="Pressed"
Duration="0:0:0.1" />
</vsm:VisualStateGroup.Transitions>
<vsm:VisualState x:Name="Normal" />
<vsm:VisualState x:Name="MouseOver">
<Storyboard>
<ColorAnimation
Storyboard.TargetName="LinearBevelDarkEnd"
Storyboard.TargetProperty="Color"
To="{StaticResource MouseOverLinearBevelDarkEndColor}"
Duration="0" />
</Storyboard>
</vsm:VisualState>
<vsm:VisualState x:Name="Pressed">
<Storyboard>
<DoubleAnimation
Storyboard.TargetName="LinearBevelLightEnd"
Storyboard.TargetProperty="0ffset" To=".2"

Chapter 7: Styles and Templates

Duration="0" />
<ColorAnimation
Storyboard.TargetName="LinearBevelLightStart"
Storyboard.TargetProperty="Color"
To="{StaticResource HoverLinearBevelLightEndColor}"
Duration="0" />
<ColorAnimation
Storyboard.TargetName="LinearBevelLightEnd"
Storyboard.TargetProperty="Color"
To="{StaticResource HoverLinearBevelLightEndColor}"
Duration="0" />
<ColorAnimation
Storyboard.TargetName="LinearBevelDarkStart"
Storyboard.TargetProperty="Color"
To="{StaticResource HoverLinearBevelDarkStartColor}"
Duration="0" />
<ColorAnimation
Storyboard.TargetName="LinearBevelDarkEnd"
Storyboard.TargetProperty="Color"
To="{StaticResource HoverLinearBevelDarkEndColor}"
Duration="0" />
<DoubleAnimation
Storyboard.TargetName="DownStroke"
Storyboard.TargetProperty="0Opacity"
To="1" Duration="0" />
</Storyboard>
</vsm:VisualState>
<vsm:VisualState x:Name="Disabled">
<Storyboard>
<DoubleAnimation
Storyboard.TargetName="DisabledVisual"
Storyboard.TargetProperty="0Opacity"
To="1" Duration="0" />
</Storyboard>
</vsm:VisualState>
</vsm:VisualStateGroup>
<vsm:VisualStateGroup x:Name="FocusStates">
<vsm:VisualState x:Name="Focused">
<Storyboard>
<ObjectAnimationUsingKeyFrames
Storyboard.TargetName="FocusVisual"
Storyboard.TargetProperty="Visibility"
Duration="0">
<DiscreteObjectKeyFrame KeyTime="0">
<DiscreteObjectKeyFrame.Value>
<Visibility>Visible</Visibility>
</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>
</ObjectAnimationUsingKeyFrames>
</Storyboard>
</vsm:VisualState>
<vsm:VisualState x:Name="Unfocused">
<Storyboard>
<ObjectAnimationUsingKeyFrames
Storyboard.TargetName="FocusVisual"

229

Part Il: Developing ASP.NET Applications with Silverlight

Storyboard.TargetProperty="Visibility"
Duration="0">
<DiscreteObjectKeyFrame KeyTime="0">
<DiscreteObjectKeyFrame.Value>
<Visibility>Collapsed</Visibility>
</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>
</ObjectAnimationUsingKeyFrames>
</Storyboard>
</vsm:VisualState>
</vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>

<Rectangle x:Name="Background"
RadiusX="4" RadiusY="4" Fill="{TemplateBinding Background}" />
<Rectangle x:Name="BackgroundGradient"
RadiusX="4" RadiusY="4" StrokeThickness="1"
Stroke="{StaticResource BorderBrush}">
<Rectangle.Fill>
<LinearGradientBrush StartPoint="0.7,0"
EndPoint="0.7,1">
<GradientStop
x:Name="LinearBevelLightStart"
Color="{StaticResource LinearBevelLightStartColor}"
Offset="0" />
<GradientStop x:Name="LinearBevelLightEnd"
Color="{StaticResource LinearBevelLightEndColor}"
Offset="0.35" />
<GradientStop x:Name="LinearBevelDarkStart"
Color="{StaticResource LinearBevelDarkStartColor}"
Offset="0.35" />
<GradientStop x:Name="LinearBevelDarkEnd"
Color="{StaticResource LinearBevelDarkEndColor}"
Offset="1" />
</LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>
<Grid x:Name="CurvedBevelScale" Margin="2">
<Grid.RowDefinitions>
<RowDefinition Height="7*" />
<RowDefinition Height="3*" />
</Grid.RowDefinitions>
<Path x:Name="CurvedBevel" Stretch="Fill"
Margin="3,0,3,0"
Data="F1 M 0,0.02 v 0.15 C 0.15,0.22 0.30,0.25 0.50,
0.26 C 0.70,0.26 0.85,0.22 1,0.15 Vv 0.02 L 0.97,0 H 0.02
L 0,0.02 z">
<Path.Fill>
<LinearGradientBrush StartPoint="0.5,0"
EndPoint="0.5,1">
<GradientStop x:Name="CurvedBevelFillStart"
Color="{StaticResource CurvedBevelFillStartColor}"
Offset="0" />
<GradientStop x:Name="CurvedBevelFillEnd"
Color="{StaticResource CurvedBevelFillEndColor}"

230

Chapter 7: Styles and Templates

Offset="1" />
</LinearGradientBrush>
</Path.Fill>
</Path>
</Grid>
<Rectangle x:Name="Accent" RadiusX="3"

RadiusY="3" Margin="1"
Stroke="{StaticResource AccentBrush}"
StrokeThickness="1" />

<Grid x:Name="FocusVisual" Visibility="Collapsed">
<Rectangle RadiusX="3" RadiusY="3" Margin="2"
Stroke="{StaticResource AccentBrush}"
StrokeThickness="1" />
<Rectangle RadiusX="3" RadiusY="3"
Stroke="{TemplateBinding Background}"
StrokeThickness="2" />
<Rectangle RadiusX="3" RadiusY="3"
Stroke="{StaticResource FocusedStrokeBrush}"
StrokeThickness="2" />
</Grid>
<Grid x:Name="DownStroke" Opacity="0">
<Rectangle Stroke="{TemplateBinding Background}"
RadiusX="3" RadiusY="3"
StrokeThickness="1" Opacity="0.05"
Margin="1,2,1,1" />
<Rectangle Stroke="{TemplateBinding Background}"
RadiusX="3" RadiusY="3" StrokeThickness="1"
Opacity="0.05" Margin="1,1.75,1,1" />
<Rectangle Stroke="{TemplateBinding Background}"
RadiusX="3" Radiusy="3"
StrokeThickness="1" Opacity="0.05"
Margin="1,1.5,1,1" />
<Rectangle Stroke="{TemplateBinding Background}"
RadiusX="3" RadiusY="3" StrokeThickness="1"
Opacity="0.05" Margin="1,1.25,1,1" />
<Rectangle Stroke="{TemplateBinding Background}"
RadiusX="3" RadiusY="3" StrokeThickness="1"
Opacity="1" Margin="1" />
<Rectangle RadiusX="4" RadiusY="4"
StrokeThickness="1" Margin="1">
<Rectangle.Stroke>
<LinearGradientBrush EndPoint="0.5,1"
StartPoint="0.5,0">
<GradientStop Color="#ASFFFFFF" Offset="0" />
<GradientStop Color="#FFFFFFFF" Offset="1" />
</LinearGradientBrush>
</Rectangle. Stroke>
</Rectangle>
</Grid>
<ContentPresenter
Content="{TemplateBinding Content}"
ContentTemplate="{TemplateBinding ContentTemplate}"
HorizontalContentAlignment=
"{TemplateBinding HorizontalContentAlignment}"
Padding="{TemplateBinding Padding}"

231

Part Il: Developing ASP.NET Applications with Silverlight

TextAlignment="{TemplateBinding TextAlignment}"
TextDecorations="{TemplateBinding TextDecorations}"
TextWrapping="{TemplateBinding TextWrapping}"
VerticalContentAlignment=
"{TemplateBinding VerticalContentAlignment}"
Margin="4,5,4,4" />
<Rectangle x:Name="DisabledVisual" RadiusX="4"
RadiusY="4" Fill="{StaticResource DisabledBrush}" Opacity="0"
IsHitTestVisible="false" />
</Grid>
</ControlTemplate>
</Setter.vValue>
</Setter>
</Style>

Notice that this code starts by setting a selection of default values for any button using this template,
including Foreground, Background, Margin, and TextAlignment, to name just a few.

Next, within the ControlTemplate itself, you will see the selection of VisualState elements and their
associated Storyboards that take care of altering the button’s appearance in response to a state change.
These are accompanied with a set of predefined colors for use within the different states. More informa-
tion on managing the visual state of controls is provided in Chapter 11.

Finally, notice within the XAML that defines the actual button and its content a technique called
TemplateBinding, which you'll examine next.

TemplateBinding

Looking at the default button template in the previous section, you can see a special syntax called
TemplateBinding. This syntax can only be used within the XAML of a ControlTemplate and allows
you to bind the value of an arbitrary property in your template directly to a property on the control itself.
This technique is what allows you to make sure that when a developer or designer provides Content
for your Button, you can propagate this value into your own representation of the Content, for example.

A simple example will demonstrate this concept. Consider again creating your own template for the
Button class. Assume that you need an elliptical shape, rather than the standard rectangle. Your XAML
will most probably start off looking like this:

<UserControl x:Class="Chapter07.TemplateBindingExample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="White">
<Grid.Resources>
<Style x:Key="NewButton" TargetType="Button">
<Setter Property="Template">
<Setter.vValue>

<ControlTemplate TargetType="Button">

<Grid>

232

Chapter 7: Styles and Templates

<Ellipse Width="150" Height="100" Fill="Green" />
<TextBlock Text="Click"
HorizontalAlignment="Center"
VerticalAlignment="Center" />
</Grid>

</ControlTemplate>
</Setter.Value>
</Setter>
</Style>
</Grid.Resources>

<Button Style="{StaticResource NewButton}" Content="The Content" />
</Grid>

</UserControl>

If you run this, you will see the output shown in Figure 7-5.

{€ Test Page For Chapter07 - Windows Internet Explorer ==
QU - |§‘ fitig/ /o Swial GO0E '|‘_r_| x | | Live Search 2 -
T e T — —

-

€ Local intranet | Protected Mode: On H100% -

Figure 7-5

Again, the issue here is that the control is not honoring the Content value set by the user of the Button
class, in this case, the string “The Content.” In order to honor this setting, you need a way of binding the
TextBlock in the template to the value the user has provided. This is where TemplateBinding comes in.

The following XAML shows how TemplateBinding can be used to allow the user’s settings for width,
Height, and Content to be bound to properties within the custom template. Notice how the TextBlock
has been replaced with a ContentPresenter control. As a Button can accept Content that may well
not be string-based, this needs to be catered to in the custom template and thus the ContentPresenter
can be used to fill this need.

233

Part Il: Developing ASP.NET Applications with Silverlight

<Style x:Key="NewButton" TargetType="Button">
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="Button">

<Grid>
<Ellipse Width="{TemplateBinding Width}"
Height="{TemplateBinding Height}"
Fill="Green" />

<ContentPresenter Content="{TemplateBinding
Content}"
HorizontalAlignment="Center"
VerticalAlignment="Center" />
</Grid>

</ControlTemplate>
</Setter.vValue>
</Setter>
</Style>

If you run this example now, you will see the screen shown in Figure 7-6.

/& Test Page For Chapter07 - Windows Internet Explorer (= [=TE=])
(I - (] mwnocamostoon - 49 | x | e searcn 2 -
w o IgTestPageForcnapter._.]7| o ~ &~ b Page »

€M Local intranet | Protected Mode: On #100% v

Figure 7-6

As you can see, the Height, Width, and Content values have, indeed, been honored now, thanks to the
TemplateBinding functionality.

For more information on templating of controls, see Chapter 11.

234

Chapter 7: Styles and Templates

Integrating with ASP.NET

You should now have a good working knowledge of styling your Silverlight application, both inline
and shared, as well as customizing individual controls via ControlTemplates. It’s more than likely
that your Silverlight application is needed to augment an existing or new ASPNET application, and
because of this, it may need to either share a common “look and feel” or be altered to reflect a user’s
personalization settings.

Unfortunately, in terms of maintaining a common look and feel, there is no simple way of translating
any of your existing CSS or ASP.NET Themes information over to Silverlight other than by hand. If you
do need to make sure that textboxes in Silverlight have the same style as their ASPNET or HTML coun-
terparts, you're going to have to duplicate the style information over to Silverlight and most likely put it
in a global location like App.xaml.

This isn’t the end of the world. Although you might want to share some style information, it’s unlikely
that your Silverlight application will need to look exactly like your ASP.NET application (or there would
be little point in using it). Providing you add the styling information to a global central location, it’s easy
to find and maintain.

Using the ASP.NET Profile Provider

If, as is more likely, you'd like your Silverlight application to take into account a user’s ASP.NET profile
information, you need not worry. Silverlight enables you to hook into ASP.NET’s built-in Profile proper-
ties system to retrieve information stored on a per-user basis if required.

To do this, it’s simply a matter of exposing access to the Profile Provider within your ASP.NET site via
ASP.NET Application Services, which shipped as part of the NET 3.5 release. Don’t worry if you haven't
exposed these services before — we’ll step through the process briefly now (the Chapter 7 source code
contains the completed example).

In order to expose the Profile service, you need to start by creating a WCF service to front it. Add a new
text file to the web project, and name it something appropriate, finishing with the .svc extension. In this
case, the name is ProfileService.svc, as highlighted in Figure 7-7.

Solution Explorer - ChapterdTWeb - X
2 2E& 9
i ;g, BasicTemplateExample xaml -

@Inlme&cample.xaml
H (=] Pagexaml
i (=] TemplateBindingExample.xaml
£ A ChapteroTweb —
[=d Properties
[%3] References
- [App_Data
[d ClientBin
- [chapteroTTestPage aspx
- [#] Chapterd7TestPage html
|E] Defautt.aspx
- B profileservice svc
|:;| TestProfiles.aspx
‘- [Eb Web.config L

i

Figure 7-7

235

Part Il: Developing ASP.NET Applications with Silverlight

Within this .svc file, add the following code to denote the application service you want to work with:

<%@ ServiceHost Language="C#"
Service="System.Web.ApplicationServices.ProfileService" %>

And that’s it for this file. Save it and close it, and then open the Web.config file, as youre going to need to
alter the configuration to actually turn this Profile service on. The config you need to include is shown in
the following code:

<system.serviceModel>
<services>
<service name="System.Web.ApplicationServices.ProfileService"
behaviorConfiguration="ProfileServiceTypeBehaviors">
<endpoint contract="System.Web.ApplicationServices.ProfileService"

binding="basicHttpBinding" bindingConfiguration="userHttp"
bindingNamespace="http://asp.net/ApplicationServices/v200"/>

</service>

</services>
<bindings>
<basicHttpBinding>
<binding name="userHttp">
<security mode="None" />
</binding>
</basicHttpBinding>
</bindings>
<behaviors>
<serviceBehaviors>
<behavior name="ProfileServiceTypeBehaviors">
<serviceMetadata httpGetEnabled="true"/>
</behavior>
</serviceBehaviors>
</behaviors>
<serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>
</system.serviceModel>

<system.web.extensions>
<scripting>
<webServices>
<profileService enabled="true"
readAccessProperties="SampleDatal"
writeAccessProperties="Sampledatal" />
</webServices>
</scripting>
</system.web.extensions>

This configuration code sets up a WCF endpoint within the system. serviceModel section and then
actually switches the Profile Service on from within the system.web. extensions section.

That concludes the required steps for exposing the ASP.NET Profile Service and effectively switching it
on. Now turn your attention back to the Silverlight project, as you need to add a service reference to it to
enable you to consume the profile service. To do this, right-click on the project, and select “Add Service
Reference.” This will open the dialog shown in Figure 7-8.

236

Chapter 7: Styles and Templates

Address:

Add Service Reference

FE]

To see a list of available services on a specific server, enter a service URL and click Go, To browse
for available services, click Discover.,

Services:

http://localhost:60067 /ProfileService, sve

Operations:

- | Discover |~

-3 @ ProfileService.svc

Mamespace:

1 service(s) found in the solution.

ProfileService

Figure 7-8

Be sure to set the Namespace parameter to something useful rather than the default ServiceReferencel; in
this example, it’s been set to ProfileService. Click OK, and leave it to whir for a couple of seconds. Once
it’s finished, your project structure will contain a new service reference named ProfileService, as shown

in Figure 7-9.

2 & E[4

D Solution 'Chapterd7?" (2 projects)

6 & EEE

[Properties

- [x3] References

—}- [Service References

E ‘j ProfileService

@ Appxaml

. ﬁ BasicTemplateExample xaml

- m InlineExample.xaml

@ Page.xaml

| ServiceReferences.ClientConfig
m’ TemplateBindingExample.xam!
Chapter0TWeb

[=dl Properties

Bl [References

- (3 App_Data

Gl 3 fliantRi

m

Figure 7-9

S0, you now have a server-side WCF service configured to expose the ASPNET Profile Service, and you
have a proxy on the Silverlight client capable of communicating with it. All that remains is to utilize the
proxy to retrieve the information required. In Page.xaml, you will see a very basic UI consisting of a

Grid with two child elements, a Button and a TextBlock.

<UserControl x:Class="Chapter07.Page"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">

237

Part Il: Developing ASP.NET Applications with Silverlight

<Grid x:Name="LayoutRoot" Background="White">
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>

<Button x:Name="btnGetData"
Content="Get Data"
Click="btnGetData_Click"
Grid.Column="0"/>

<TextBlock x:Name="tbShowData"
M= "
Grid.Column="1" />
</Grid>

</UserControl>

The button has been wired up to an event handler, within which the ProfileService proxy has been used
to call the ASP.NET application service, as shown in the following code:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace Chapter07
{

public partial class Page : UserControl

{
public Page()
{
InitializeComponent () ;
}

private string _sampleDatal = String.Empty;

private void btnGetData_Click (object sender,
RoutedEventArgs e)

ProfileService.ProfileServiceClient client
= new Chapter07.ProfileService.ProfileServiceClient () ;

client.GetAllPropertiesForCurrentUserAsync (false) ;
client.GetAllPropertiesForCurrentUserCompleted +=

new EventHandler<Chapter07.ProfileService.
GetAllPropertiesForCurrentUserCompletedEventArgs> (

238

Chapter 7: Styles and Templates

client_GetAllPropertiesForCurrentUserCompleted) ;
}

void client_GetAllPropertiesForCurrentUserCompleted (
object sender,
Chapter07.ProfileService.
GetAllPropertiesForCurrentUserCompletedEventArgs e)

this._sampleDatal = e.Result["SampleDatal"].ToString() ;

In the But ton event handler, you can see that a new instance of the ProfileServiceClient is instan-
tiated and then the GetAllPropertiesForCurrentUserAsync method is called, passing in the value
false. This method returns all the property values stored for the current user, and the false param-
eter allows unauthenticated users to access their properties also.

Next up, the GetAllPropertiesForCurrentUserCompleted event is wired up, which will fire when,
you've guessed it, the properties for the current user have been retrieved and stored in memory.

Within this handler, you can see that it’s extremely simple to interrogate the GetAllPropertiesFor
CurrentUserCompletedEventArgs variable to retrieve the property value you want. Note, in order to
actually extract a value, you need to have put one in there first either in ASPNET or by using the
SetPropertiesForCurrentUserAsync method on the ProfileServiceClient class

Pretty cool, you'll agree, and if you look back through the steps involved in doing this, both from an
ASP.NET and Silverlight perspective, there really isn't much to it.

ImplicitStyleManager

While the default technique of defining and applying styles that you've seen so far works, it certainly
can be a pain to add Style="{StaticResource YourStyleKey}" to all of the controls needing to
pick up a specific style in an application. WPF provides a way to “implicitly” apply styles to controls,
but unfortunately this functionality isn't available in Silverlight 2. Enter ImplicitStyleManager pro-
vided by the Silverlight Toolkit (freely available for download from www.silverlight.net). By using
ImplicitStyleManager, you can apply styles that target a specific control type without manually add-
ing a Style attribute to each control. The class is in the Microsoft.Windows.Controls.Theming
namespace (Microsoft.Windows.Controls assembly). You reference the namespace in the XAML
file as shown here:

<UserControl x:Class=".."
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:controls=

"clr-namespace:Microsoft.Windows.Controls;

assembly=Microsoft.Windows.Controls"

xmlns:theming="clr-namespace:Microsoft.Windows.Controls.Theming;

assembly=Microsoft.Windows.Controls.Theming"

>

239

Part Il: Developing ASP.NET Applications with Silverlight

Following is an example of using ImplicitStyleManager within a control that has styles defined
locally within its Resources section:

<StackPanel>
<Border BorderBrush="Green" BorderThickness="2" Padding="5"
Margin="5" theming:ImplicitStyleManager.ApplyMode="0OneTime">
<Border.Resources>
<Style TargetType="Button">
<Setter Property="Foreground" Value="Green" />
</Style>
<Style TargetType="TextBox">
<Setter Property="FontSize" Value="10.5"/>
<Setter Property="FontFamily" Value="Trebuchet MS"/>
<Setter Property="Foreground" Value="#FFO00FFO0" />
</Style>
</Border .Resources>
<StackPanel>
<Button Content="Button inside border" />
<TextBox Text="TextBox inside border"></TextBox>
</StackPanel>
</Border>
<Button Content="Button outside border" />
</StackPanel>

This example automatically applies the styles to the appropriate controls (a Button and a TextBox, in
this case). The theming: ImplicitStyleManager .ApplyMode attribute makes this possible. Looking
at the control definitions in the StackPanel, you can see that no Style attribute is added. Instead, the
styles are “implicitly” applied based on the Style element’s TargetType. Also, it is not necessary to
define x:Key on the Style elements.

ImplicitStyleManager can also be used to apply styles defined in a theme file (a XAML file contain-
ing a ResourceDictionary section):

<Border
BorderBrush="Green"
BorderThickness="2"
Padding="5"
Margin="5"
theming:ImplicitStyleManager.ApplyMode="0OneTime"
theming: ImplicitStyleManager.ResourceDictionaryUri="Theming/CustomTheme .xaml">
<StackPanel>
<Button Foreground="White" Content="This is a button" Width="200" />
<CheckBox></CheckBox>
<TextBox Text="Are you hungry?" />
<ListBox Height="40">
<ListBoxItem Content="This is an item" />
<ListBoxItem Content="This is an item" />
<ListBoxItem Content="This is an item" />
<ListBoxItem Content="This is an item" />

240

Chapter 7: Styles and Templates

<ListBoxItem Content="This is an item" />
<ListBoxItem Content="This is an item" />
<ListBoxItem Content="This is an item" />
<ListBoxItem Content="This is an item" />
</ListBox>
</StackPanel>

</Border>

A portion of the CustomTheme.xaml file referenced by the preceding code is shown next:

<ResourceDictionary

xmlns="http:

//schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:vsm="clr-namespace: System.Windows;assembly=System.Windows"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxml formats.org/markup-compatibility/2006"
mc: Ignorable="d">

<Style TargetType="Button">

<Setter
<Setter
<Setter
<Setter
<Setter
<Setter
<Setter
<Setter
<Setter
<Setter
<Setter
<Setter

Property="IsEnabled" Value="true"/>
Property="IsTabStop" Value="true"/>
Property="Background" Value="#FF003255"/>
Property="Foreground" Value="#FF313131"/>
Property="MinWidth" Value="5"/>

Property="MinHeight" Value="5"/>

Property="Margin" Value="0"/>
Property="HorizontalContentAlignment" Value="Center"/>
Property="VerticalContentAlignment" Value="Center"/>
Property="Cursor" Value="Arrow"/>
Property="FontSize" Value="11"/>
Property="Template">

<Setter.Value>

<ControlTemplate TargetType="Button">
<!-- Template Code -->
</ControlTemplate>

</Setter.vValue>

</Setter>
</Style>
<!-- Additional Control Styles ->

</ResourceDictionary>

You can see that by using the ImplicitStyleManager, you can more easily create different themes
that can be applied to controls without having to explicitly declare a Style attribute on each control.
This allows for much greater flexibility than is available out-of-the-box in Silverlight 2.

More Silverlight Toolkit controls are discussed in Chapter 6.

241

Part Il: Developing ASP.NET Applications with Silverlight

Summary

In this chapter, you learned how to change the look and feel of controls in Silverlight. First off, you saw
how individual controls could be restyled inline, setting style-related properties directly within the ele-
ment declaration itself. While this provided a quick and convenient mechanism for adding style infor-
mation to elements, you saw that in the long run this mechanism causes maintenance issues, because
style information is duplicated across different pages and so changes are hard to propagate and com-
mon guidance is difficult to enforce.

You then looked at a solution to the problems of extracting style information from individual ele-
ments and encapsulating it into Style objects. You saw how these Style objects allowed you to cre-
ate named, predefined styles for assigning against the elements that make up your user interface. These
objects could then be scoped to the page or container level to improve maintainability locally, or in the
Application.Resources section of your App.xaml to provide common styles across an entire application.

Even when using Style objects to enforce consistency of design and improve maintainability, you saw
that individual elements could be set to override set styles or portions of styles if required.

You then looked at a more advanced styling technique within Silverlight — completely re-skinning a
built-in or custom control by replacing its ControlTemplate. You saw how this enabled controls to main-
tain their functionality while having their visual behavior and appearance swapped out as required. All
the built-in controls that ship with Silverlight maintain their default appearance in a generic.xaml file
that is embedded as a resource in the containing assembly. You learned that although it’s possible to get
at this, the full specification and listings are available online in the MSDN documentation.

The propagation of user-provided values through to your template elements was covered next, and you
saw how to bind the two together using the TemplateBinding syntax. In this section, you also took a
look at the ContentPresenter to bind to values provided for Content other than simple strings.

Finally, you saw how it’s possible to hook into the ASP.NET Profile Provider via ASPNET Application
Services to make your Silverlight application aware of user settings, in effect personalized for each user
of your site. You saw how the process of doing this involved two main steps — exposing the ASP.NET
Profile Service and consuming it from within Silverlight — both of which were fairly simple and didn’t
involve large amounts of code.

In the next chapter, you'll examine the different ways in which your Silverlight application can accept

input from the user, and you'll learn about the rich object model supporting this. You'll also look at how
you can implement navigation into your application.

242

User Interaction

There is no real point in having an amazing technology like Silverlight if you are not able to inter-
act with it. For this fundamental reason, in this chapter you explore how you can exploit the flex-
ible programming model that Silverlight offers in this area. In order to understand how you can
approach the model, you explore the interaction context with the different approaches that you
can take in order to interact with the plug-in.

This chapter is divided into two main sections that contribute to the user interaction, bringing a
richer user experience into the Silverlight applications. The first section covers the interaction
context and describes how you can handle events triggered by the user using different inputs,
understanding the functional chain that can take you deeper into the object model available. This
understanding will allow you to explore the further functionality that is common in the ASPNET
world, as well as new features that can extend the application behavior. With those basics, you
explore the different input devices to understand how they internally work and the special con-
siderations. If you are an experienced ASPNET developer, you can jump directly into the section,
“Getting the Most from Input Devices,” where you see how you can get the most from the Ink
feature and how to simulate common functionality like drag-and-drop.

In the second section, you explore Silverlight’s ability to navigate between user controls, using
screen libraries locally as well as remotely, using the current web application as well as using WCF
services. The section explains the advantages and the limitations that every ASPNET developer
should know when it comes to designing applications that interact with the plug-in.

The Silverlight Interaction Context

As you are now developing in the Silverlight world, you need to understand the differences and
similarities that the model offers. During the previous chapters, you have learned about the archi-
tecture and controls that are published from the plug-in. Now you are going to use that knowledge
in order to explore the interaction between the application and the ASPNET world. Silverlight

Part Il: Developing ASP.NET Applications with Silverlight

applications run in a sandbox environment, but this does not prevent you from interacting with the
external world using familiar ASP.NET techniques. As you have seen before, the object model will pub-
lish properties and events that you will be able to interact with using managed code or interpreted
unmanaged languages like JavaScript, opening an interesting window when you consider migrating
traditional ASPNET applications into Silverlight. As you will discover, there is not a drastic shift in the
programming model from what you are used to. You can see the rich interaction in Figure 8-1.

4 N
Web Page
<html>...
A Ul Events <py\--1>
i Silverlight Plug-in <script>...
T </script>
vy Managed Code </html>
) A
\ |
[Services A A]

Figure 8-1

The events interaction can be divided into two categories: input events and non-input events. Input events,
which are the main focus of this chapter, are primarily handled by the browser and then diverted to the
Silverlight application. The second type of events is those raised by the objects instead of the browser.
These are commonly used to notify changes in the state. This is a quite common pattern in the NET
programming world.

During this exploration, you are going to find some special behaviors (particularly if you have some
WPF experience), like the lack of double-click events, but the idea is to explore the reasons and the
work-arounds that will help you deal with these differences.

Working with UIElements Events

A Silverlight-based application uses a declarative programming model in which you can define how
the user control will behave. If you define the class that is behind the XAML code, you will have a
compiled object that includes the managed code behind. But this is not the only story. As you have
seen in Silverlight 1.0, you can have XAML code that is not compiled wherein all the functionality
relies on the unmanaged code that the ASPNET application contains. Later in this chapter, you will
explore how the users can use interpreted languages like JavaScript.

Handling User Interaction

In order to work with events, you need to use event handlers, which actually will be called when the
event is fired. If you have been working with managed code or writing scripts for your web sites, you
should be familiar with this concept. The Silverlight model always exposes at least two parameters, the

244

Chapter 8: User Interaction

sender and the e parameters. The first parameter provides you with a reference to the object that has
raised the event; the second one varies depending on the type of event, but usually provides you with
extra information about it (e.g., the X/Y position of a mouse move event). If you are consuming these
parameters using managed code, the compiler will check if these exist as it uses a delegate behind the
scenes, but this will not be the case in unmanaged code because it is inherently looser.

A routed event is a special type of event that can invoke multiple handlers on different listeners. In other
words, when your control raises an event, this can “bubble” upward through the element tree (e.g., a but-
ton raises the Click event and then is also raised by its parent control), or it can be “tunneled” downward
through the element tree, also known as preview (i.e., when you click a button, the event is first raised at
the container and then is raised by the button). Silverlight supports bubbling routed events but only for
a small subset of events, and does not support tunneling events. The other important difference is the use
of the Handled parameter. In WPF, you can stop the routing by altering this parameter. This behavior is
ignored in Silverlight, but it is recommended that you change the value once an object has handled the
event, not only so that developers working on parent elements can query the status of it as an informa-
tive parameter but for possible future versions of Silverlight that may introduce this behavior.

In this chapter, you are going to use these events in order to trap the user interaction. Just to review the
concepts, you can add a new event handler using XAML if you are linking the control with the x:Class
entry in order to include the code behind:

<UserControl x:Class="Chapter8.MyControl" ...
<Button x:Name="cmdAccept" Click="Accept_Click"/>

In this case, the button named "cmdaAccept " will route the Click event to the method published in the
code behind, as follows:

private void Accept_Click(object sender, RoutedEventArgs e){}

If necessary, you can also add the handler using managed code with the same handling model that
NET developers are used to:

cmdAccept.Click += cmdAccept_Click;

Remember that if you multiply subscribe handlers into events, all of them will be fired, so make sure
that you don’'t add handlers to methods that can be executed multiple times. If you do need to do so,
remember to unsubscribe the handler using the operator -=.

So now that you know how to write handlers, it is time to interact with the Silverlight objects. If you
are using managed code, you will be familiar with the interaction. You can write code behind that
actually fires remote communication, starts background processes, or alters the current objects. You
will be delighted to know that this is executing at the client side (unless you are accessing remote ser-
vices), which will enhance performance. This is one of the areas where you need to shift your mindset
when you interact with your plug-in, which is executed locally. In the ASP.NET world, you interact
similarly with the objects; the difference is that the code is executed on the server side and then ren-
dered to the client.

245

Part Il: Developing ASP.NET Applications with Silverlight

Consuming Properties

Now that you understand how the event handlers can be constructed in Silverlight, it is time to start
making some noise and see how you can interact with the object properties from managed code. The
example that you are going to explore is a simple terms and conditions acceptance, wherein checking
the checkbox will enable the Continue button.

Create a quick Silverlight project. Focusing on the main user control, add a checkbox and a button into
the grid. Take this opportunity to explore your design abilities working with the power of WPF. After
years of working with HTML and ASP.NET controls, you will find the experience quite appealing. You
can use tools like Expression Blend 2 to extend the out-of-the-box functionality that comes with Visual
Studio 2008. An example of a simple design is shown in Figure 8-2.

[lﬂ Welcome to our service

Figure 8-2

The first attempt will be the simple one: You are going to use the code behind in order to interact with
the traditional properties in the same way that you are used to in the ASPNET world. The first thing
that you need is to reference the handler in the XAML object:

<UserControl x:Class="Chapter8.MyControl" ... >

<CheckBox Height="26"
Margin="25,0,185,14"
VerticalAlignment="Bottom"
Content="Accept Terms and Conditions"
x:Name="chkTerms"
Checked="ConfirmTerms" />

As this component compiles, the x: Class entry is included. (Note that the rest of the properties are
omitted for simplicity.) In the code behind, you can add the event handler as previously explained:

private void ConfirmTerms (object sender, RoutedEventArgs e)
{

btnAccept.IsEnabled = true;
}

If you are interacting with the properties using a background thread, you will need to interact with the
properties using the Dispatcher object (explained in Chapter 4) as you cannot change user interface
properties from the non-user interface thread. In order to reproduce the example, you should use:
this.Dispatcher.BeginInvoke (
delegate { btnAccept.IsEnabled = true; }
)i

You can find this example and the rest of the demos in the code samples for Chapter 8 at www .wrox . com.

246

www.wrox.com

Chapter 8: User Interaction

Working with Dependency Properties

You can also interact with dependency properties in the same way that you interact with standard
properties and attached properties. The advantage of using dependency properties to extend the func-
tionality has been welcomed by the community, as they provide a lightweight model to dynamically
extend and interact with XAML objects. This is a new concept introduced by WPF that may look strange
at first to the traditional ASPNET developer; if you don’t remember how to use these properties, you can
refer to Chapter 10. You can explore how you can transform this simple example and interact with a
dependency property.

public static readonly DependencyProperty TermsAcceptedProperty =
DependencyProperty.Register (
"TermsAccepted", typeof (Boolean),
typeof (MyControl),
new PropertyMetadata (new PropertyChangedCallback (Notification))
) 7

public bool TermsAccepted
{
get { return (bool)GetValue (TermsAcceptedProperty); }

set { SetValue(TermsAcceptedProperty, value);}
}

private void ConfirmTerms (object sender, RoutedEventArgs e)
{
TermsAccepted = true;

}

The example is now changed, and you are interacting with one of the registered dependency proper-
ties. Now changing the property will allow you to notify the change to those objects that are bound to
the property in a single operation. You can use the methods Getvalue () and Setvalue() to alter them
as presented in previous chapters. We have also included in the example a notification call-back to exe-
cute a special method when the value changes (extending the magic of dependency properties). As you
can see, this is an elegant solution that can de-couple the XAML code from the code behind, as you don't
refer the objects directly. This model is emphasized throughout the book to help you transition from a
strongly coupled model in ASP.NET into the power of Silverlight and the WPF engine.

Interacting with Properties from Scripts

Just as you have explored how easy it is to use the current ASP.NET knowledge in managed code, it
is equally important to understand how to interact with objects with programming languages like
JavaScript.

Following the previous example, you are going to modify the code to change the Button property using
JavaScript. The first thing you need to do is publish an object that you want to share between the man-
aged world and the unmanaged one. At first, this may look like a lot of work, but you will quickly real-
ize the potential of it, as it allows you to control and properly define what is callable from HTML. In
this scenario, you want to expose only the IsEnabled property. Start defining the object that you want
to share:

public class HtmlBridge
{

247

Part Il: Developing ASP.NET Applications with Silverlight

private Button source;

public HtmlBridge (Button source)
{

this.source = source;

}

[ScriptableMember ()]
public bool IsEnabled
{

set { this.source.IsEnabled = value; }

}

In the code you can appreciate that you are defining a new class called Htm1Bridge that accepts a
Button as parameter (this will be the object to expose). Then you can expose properties and methods

to the unmanaged world using the attribute [ScriptableMember]. Now you are ready to link this
new object with your main application.

It is a pity that common controls like the But ton control are not decorated with the scriptable attribute
by default, as that would save you from writing the bridging class in certain scenarios.

public partial class Page : UserControl
{

public Page()

{

InitializeComponent () ;

HtmlPage.RegisterScriptableObject ("MyApp",
new HtmlBridge (cmdButton)) ;

The code is registering a new HtmlBridge object under the "Myapp" key using your button as the source.
This code is now exposing the object to your HTML page. Now that your application is ready to share,
let’s see how you consume this interface in your ASPNET page:

<script type="text/javascript">

var SLCtrl = null;

function OnLoaded (sender)

{
SLCtrl = sender.get_element();
}
function OnClick()
{
SLCtrl.Content.MyApp.IsEnabled = false;
}
</script>

248

Chapter 8: User Interaction

You are adding two methods. The first one will be executed when the Silverlight plug-in is initialized to
obtain the reference to the application. The second one will be executed by the standard ASP.NET but-
ton using JavaScript. You can see how the onClick () method is accessing the scriptable dictionary and
executing the property set.

Now you need to add the proper objects that will run these two methods. The first one will be called
from your Silverlight plug-in during the onPluginLoaded event:

<asp:ScriptManager ID="ScriptManagerl" runat="server"></asp:ScriptManager>

<div style="height:100%;">
<asp:Silverlight ID="Xamll"
runat="server"
OnPluginLoaded=" OnLoaded"
Source="~/ClientBin/S12.xap"
Width="100%" Height="100%" />
</div>

Now you can add a standard JavaScript call from an HTML button or ASP.NET button depending on
your preference:

<button id="cmdASPButton" runat="server" onclick="return OnClick()" />

You can also use the FindName method to search the Silverlight tree for the specific control name. You
can use this technique in order to interact with the plug-in. Note that in this case, JavaScript is not case-
sensitive, but XAML objects are, so it is a recommended good practice to stick to the Pascal casing in
order to avoid problems in the future.

The AJAX Story in the User Interaction World

This is an interesting area, as you are constantly trying to optimize the performance and the respon-
siveness of the ASPNET applications. During the last few years, different technologies came into the
environment in order to help with streaming the Web content. As you are aware, the AJAX story is still
hot and will continue to serve the Web community as a way of improving the user experience. While
Microsoft is investing in the Silverlight stream, it is also constantly working on the ASPNET side. A great
example of this is the AJAX support for ASPNET. This technology allows you to post back requests that
perform partial rendering on the client side, improving the user experience and optimizing the web site
performance. Microsoft has released a set of new user controls that require zero code to implement AJAX,
making ASPNET developers’ work 10 times less tedious. Silverlight introduces new options to optimize
the communication between the server and the client that leaves ASP.NET developers with the dilemma
of which direction to go. Migration and integration can be challenging when you start working with
Silverlight.

The good news is that Silverlight integrates with the Microsoft AJAX library using the JavaScript model
that was presented earlier, therefore reusing the existing infrastructure that your ASPNET project has,
which is a big advantage. Now, if you have a green field scenario, you should start looking into the WCF
extensibility that Silverlight supports, as this can use JSON to interact with your AJAX endpoints and
other protocols that allow you call other services beyond the server of origin.

249

Part Il: Developing ASP.NET Applications with Silverlight

Figure 8-3 shows how a XAML button can call your existing methods in order to retrieve information
from the server, a very powerful feature that will help with integrating Silverlight components with

your current web sites.
[Get Server Data]

SPEERE =
R

ASPNET
[AJAX] [WCF]

I,
I,

[Services]

Figure 8-3

Interacting with Input Devices

After the overview regarding how Silverlight uses the event model to address the user interaction and
the analogies with ASP.NET, you are now ready to explore the different input devices and how to inter-
act with them.

The Silverlight team has been working hard in order to expand the different interactive scenarios. You
need to shift from the traditional point-and-click methodology that you are used to in the ASP.NET
world and plan applications for the future. Recent presentations on the Microsoft Surface technologies
and Windows 7 user experience are showing that multi-point devices are here to stay. The hardware is
also advancing in this area. For the last seven years, manufacturers have been delivering tablet PCs
with touch-screen surfaces. What is more, technologies in the gaming industry are contributing with
new interaction ideas like motion detectors, which can be applied not only to the entertainment indus-
try, but also to help people with disabilities interact with the devices. But don’t get overly excited about
the future. Not all of these features are included in the current version of Silverlight, but it is designed
with these concepts in mind. This will be another shift from the ASPNET world that will bring new
functionality to empower new, brilliant ideas.

The Mouse

In the Silverlight world, the mouse has a more important role than in the ASP.NET world, as it is not
merely a simple device that only performs point-and-click operations in order to fire events. You can
have a richer interaction with the mouse using the different events that UTElements publishes and
the Silverlight functionality that captures the mouse. It has always been a challenge to interact with
the mouse beyond the common patterns because of the internals of how Windows handles messages.
In the Silverlight world, there is no magic in handling mouse events, but it does provide functionality
that makes the capturing a pleasant experience.

250

Chapter 8: User Interaction

Mouse Events

Let’s analyze the different events that you can capture using the mouse:

Q

Q

a

MouseLeftButtonDown — This event is fired when the left button of the mouse is held down. It
will be fired only once when the action has been triggered.

MouseLeftButtonUp — This event is fired when the left button of the mouse is released. The
actions of these events can be related to the actions from the MouseLeftButtonDown, as they
happen one after another.

MouseMove — This event is fired when the mouse moves around the control boundaries. Every
time that the position changes, it will be fired. It is important to understand that this event is not
related to the previous two events (MouseLeftButtonDown and MouseLeftButtonUp) but is
related to the next two events (MouseEnter and MouseLeave). Why is this important? Because
it is a common place for performance-related bugs to occur when developers try to put inten-
sive work into this handler, believing that this event will be fired only when they keep the
mouse button pressed (drag mode).

MouseEnter — This event is fired when the mouse enters the control boundaries area. This
event is fired every time the mouse pointer enters the area and will not be executed again until
after a MouseLeave event is raised.

MouseLeave — This event is fired when the mouse leaves the control boundaries area.

The event handler argument not only includes the sender but also the mouse-specific arguments
MouseEventArgs and the derived MouseButtonEventArgs that will allow you to query the position
of the mouse and retrieve stylus information (more on this later in this chapter).

When you see the MouseLeftButtonUp and MouseLeftButtonDown arguments, you
might wonder what happened to the right-click arguments. Well, there are two dif-
ferent considerations regarding this. The first one takes into account the difficulties
of capturing the right-click event when the plug-in is hosted in the browser (as the
browser will handle the event before the Silverlight application). The other con-
sideration is regarding cross-device compatibility, as this may run in nonstandard
devices in the near future.

Now look at an example applying the concepts reviewed in the previous section, combining them to

interact with the XAML objects:

<Grid X :Name="MyGrid"
Background="White"
MouseLeftButtonDown="ParentAction"
MouseEnter="ShowCircle"
MouseLeave="HideCircle" >

<Ellipse Height="32.889"
HorizontalAlignment="Stretch"
Margin="83,53,86,51"
VerticalAlignment="Stretch"
Fill="#FF49D131"
Stroke="#FF000000"

Part Il: Developing ASP.NET Applications with Silverlight

x:Name="MyCircle"

MouseLeftButtonDown="ColorBlue"

MouseLeftButtonUp="ColorGreen"

Visibility="Collapsed"/>
</Grid>

As you can see in the code, you can mix and match the events within the objects. In this case, the
MouseLef tButtonDown is handled twice; this will respect the event bubbling and allow you to take
action if the children objects have not handled the event. This can be very useful in scenarios wherein
you need to protect the application. Be aware that MouseEnter and MouseLeave will not follow this
pattern (routed events) and can only be handled by the control used. The code to control MyCircleis
the following one:

private void ShowCircle(object sender, MouseEventArgs e)
{

MyCircle.Visibility = Visibility.Visible;
}

private void HideCircle(object sender, MouseEventArgs e)

{
MyCircle.Visibility = Visibility.Collapsed;
}

private void ColorBlue (object sender, MouseButtonEventArgs e)
{
MyCircle.Fill = new SolidColorBrush (
Color.FromArgb (0xFF, 0x00, 0x00, OXFF));
e.Handled = true; // Best practice

private void ColorGreen (object sender, MouseButtonEventArgs e)

MyCircle.Fill = new SolidColorBrush (
Color.FromArgb (0xFF, 0x00, OxFF, 0x00));
e.Handled = true; // Best practice

}

private void ParentAction(object sender, MouseButtonEventArgs e)
{

if (!e.Handled) { /* Special action */ }
}

Triggering Storyboards

The elegance of the model allows you to access the resources that you may have in the user control in
the same way as if you were coding the standard handles. This means that you can create a richer inter-
action (e.g., such as when the mouse hovers over the objects). The following sample shows a small pic-
ture browser where you can highlight the picture that you want to use with your storyboard (see
Figure 8-4):

<UserControl.Resources>
<Storyboard x:Name="ShowPicture">

252

Chapter 8: User Interaction

<DoubleAnimationUsingKeyFrames
X :Name="MovePicture"
Storyboard.TargetName="Image2"
Storyboard.TargetProperty=" (UIElement .RenderTransform) "
BeginTime="00:00:00">
<SplineDoubleKeyFrame KeyTime="00:00:00" Value="0"/>
<SplineDoubleKeyFrame KeyTime="00:00:01" Value="-68.334"/>
</DoubleAnimationUsingKeyFrames>
<.. extra animation details ..>
</Storyboard>
</UserControl .Resources>

My Photo Picker

Figure 8-4

Some details about the animation have been omitted for simplicity. If you want to explore more, please
refer to the Chapter 14. The interesting model that you can apply here when you move the mouse over
the picture is to trigger the animation and change the target on the handler as follows:

private void Image_MouseEnter (object sender, MouseEventArgs e)

{
// We stop it if the storyboard is running

ShowPicture.Stop() ;

// We set the new target on the animation
MovePicture.SetValue (Storyboard.TargetNameProperty,
((Image) sender) .Name) ;

// We restart the storyboard
ShowPicture.Begin() ;

As you can see, you are putting all the concepts together regarding how to get the most from the mouse.
It really expands the boundaries of the previous experience in ASP.NET with the rich features of WPF.
Now let’s explore some details of mouse handling.

Getting Relative Positions

If you have been playing with the arguments in the handling method, you probably have been using
GetPosition. This method will return the mouse pointer in a Point structure; this contains the X and
Y positions that you can use in the event. Note that this call is not asynchronous, which means that if

253

Part Il: Developing ASP.NET Applications with Silverlight

the mouse continues moving, the values will remain the same during the execution of the method. It
works like a snapshot of the position when the event was fired.

The position received will be calculated based on what the object passes as a parameter to the method.
If you use a null object, the values will be related to the plug-in. If you want to change this behavior,
you need to pass the relative object, and the Point structure will be calculated accordingly. You can
change the previous example to retrieve the position and maybe alter the animation with that data:

Point CurrentPosition = e.GetPosition((Image)sender) ;

It is tempting to read the last position of the mouse when you leave an object, but
the MouseLeave event will not include the position information when you handle
this event. Therefore, don’t be surprised if the position is null.

Capturing the Mouse

An interesting feature is the ability to capture the mouse beyond the control boundaries. This is a really
helpful feature that will allow you to extend the functionality of the MouseMove event. The idea behind
it is to retain the event chain from the mouse in the control when the left button is still pressed, only
stopping when the user releases the button. This has many implications that you will explore later in
this chapter when you see how to get the most out of these devices. In order to capture the mouse, you
need to invoke CaptureMouse () as follows:

private void Canvas_MouseLeftButtonDown (object sender, MouseButtonEventArgs e)
{

MyCanvas.CaptureMouse () ;

}

Now that you have the mouse’s attention, you can use the MouseMove handler to process the position of
the mouse, allowing you, for example, to create a Path that can be used during the dragging until the
button is released. If the user releases the button, the mouse capturing will be automatically re-set, but
it is considered good practice to call the release method in your code.

private void Canvas_MouseLeftButtonUp (object sender, MouseButtonEventArgs e)

{

MyCanvas.ReleaseMouseCapture() ;

}

Any UIElement object is able to capture and release the mouse. Note that while the mouse is captured,
no other element will receive the MouseMove event; this is a common place for bugs to occur.

Using the Mouse Wheel

There is no support for the mouse wheel in Silverlight 2, as you have seen in the events list. This is based
on the compatibility model that the plug-in tries to fit. But as using the wheel is a very cool feature when
you are zooming pictures, there are many different web sites that explain how to do it and even provide
helper classes that support it.

254

Chapter 8: User Interaction

The trick is intercepting the events at the browser level, as the browser supports it. The following exam-
ple shows how to capture the mouse wheel consuming the event. First, for this example, you transform
the rendering of a textbox using the ScaleTransform object. The XAML code looks like this:

<TextBlock
HorizontalAlignment="Center"
VerticalAlignment="Center"
FontFamily="Verdana"
FontSize="20"
Foreground="DarkBlue"
Text="Use the wheel now!">
<TextBlock.RenderTransform>

<ScaleTransform x:Name="MyZoom" />

</TextBlock.RenderTransform>

</TextBlock>

Now that you have the XAML support, you need to add the event handler. For this, you can use the
HtmlPage class exposed by the namespace System.Windows.Browser. The event will be handled by
the custom method that captures the information from the browser regarding the mouse wheel
movement.

using System.Windows.Browser;
using System.Windows.Controls;
using System;

namespace Chapter8
{
public partial class Zoom : UserControl
{
public Zoom()
{
InitializeComponent () ;
HtmlPage.Document.AttachEvent ("onmousewheel", ChangeZoomLevel) ;

private void ChangeZoomLevel (Object sender, HtmlEventArgs args)

{
ScriptObject EventData = args.EventObject;
if (EventData.GetProperty ("wheelDelta") != null)
{
double Offset =
Convert.ToDouble (EventData.GetProperty ("wheelDelta")) ;
MyZoom.ScaleX += (Offset > 0 2 0.1 : -0.1);
MyZoom.ScaleY += (Offset > 0 2 0.1 : -0.1);
}
}

255

Part Il: Developing ASP.NET Applications with Silverlight

You need to get the ScriptObject in order to retrieve the event information for the wheel movement.
This is represented as an offset from the previous position. With this information, you can now alter the
scale of the object directly.

Note that this example has been tested using IE 7. If you are targeting different
browsers, you may consider checking the event and property naming specifically
for those browsers.

Other Platform Considerations

One thing that the Microsoft team noticed while testing the mouse-handling properties of Silverlight is
that during the Safari test, if an unhandled exception is detected in the event handler code, no further
events are received at the plug-in. Microsoft is working with other third parties to try to standardize
the behavior.

Remember that Silverlight is just a plug-in hosted by a browser, so the application really relies on how
the browser interacts with the events. Solid advice is to test your application on different browsers and
platforms in order to understand the different behaviors.

The Stylus and Touch Screens

Silverlight 2 supports a new concept in the ASPNET world, which is the interaction with the stylus/pen
and touch screen commonly found in Tablet PCs. The interaction with them is very similar to the mouse
interaction, but there are new elements that play an important role in the interaction. If you explore the
event arguments, you will find the property StylusDevice that will provide information about the
points captured by the stylus and the Inverted property.

Q Inverted — This is an interesting option. When the user is interacting with a stylus, you can
detect if it is inverted and is behaving as an eraser. Note that if you use inputs that cannot be
inverted, like a mouse, the value will be always false.

These types of inputs are very common in the Ink scenario that you explore later in this chapter, but in
the meantime, let’s take a look at the output of these devices. If you continue exploring the arguments,
you will find GetStylusPoints (UIElement element). This method returns a cloned collection of
stylus point locations relative to the reference element passed as an argument. This collection contains
all the points since the last mouse event, but if you are using a mouse as an input device, this collec-
tion will contain a single point. The content stored in the collection is a number called StylusPoint,
a dependency property that will return the X and Y positions based on the relative object (as discussed
in “The Mouse” section). The stylus point information will be very useful when discussing strokes. In
the meantime, is important to understand the significance of the basic objects and how they are filled.

In Silverlight 1, there was no support for high DPI inputs when using high-resolution
monitors. Silverlight 2 takes into consideration the resolution when returning the
point values.

256

Chapter 8: User Interaction

The Keyboard

The keyboard is another common input device in the ASPNET world. There is no big difference in using
the keyboard with Silverlight as you deal with the browser. Therefore, you will have some limitations
regarding what you can capture as the messages flow depending on the focused object.

Keyboard Events

You have a couple of basic events available in the keyboard world:

0O KeyDown — This event is fired when you press a key in your keyboard while there is focus on
the object (sender).

O KeyUp — This event is fired when the key is released. It should always come after a KeyDown
event. Again, this is only applicable to focused objects.

As these events need the focus of the object, it is important to highlight that you may have focus on the
Silverlight plug-in as well as the individual object, as both of them are considered focused when you
work with a UIElement.

The event handlers now receive the KeyEventArgs object, which exposes specific information about
the key (or keys) involved in the event. The first property to explore is the Key property. It will return
the key in the form of an enumerator. In a globalized world that has different keyboards, it becomes a
problem when you try to read the key using the enumerator. For this reason, only portable codes are
listed in this enumerator — if the code is not portable, it will return Unknown. The same story applies
to Plat formKeyCode, where only the code is returned.

private void KeyPressed_ Prank (object sender, KeyEventArgs e)
{
if (e.Key == Key.Tab)
((UIElement) sender) .Focus (); // Trust me, this will annoy a user

Interacting with TextBox

There are some controls like TextBox that already handle the keyboard input. You can still register an
event handler in these controls, and it will be executed. What is internally happening is that the new
handler is subscribing to the event handling collection. Note that this will happen in the ASPNET world,
and there is no guarantee regarding the execution order, so do not rely on a particular execution order.

Figure 8-5 shows an example using a TextBox and a watermark style TextBox, where you can add
your own handlers in order to copy the information from one place to another and perform changes
to the output.

First Name: |John |

Last Name: [< enter your last name here > J

Figure 8-5

257

Part Il: Developing ASP.NET Applications with Silverlight

Special Considerations

As mentioned before, you have some limitations regarding what you can capture with the event handler
when it comes to the keyboard world. As the browser sends these messages, it may capture some of them,
like special keys to make the screen full screen or special combinations to control the browser function-
ality. Key and PlatformKeyCode do not provide a modifiers list (modifiers meaning keys like Ctrl or Alt).
In order to explore them, you must use the static object Keyboard and the Modifiers property, as the
following example shows:

private void KeyPressed(object sender, KeyEventArgs e)
{
if (e.Key == Key.A &&
((Keyboard.Modifiers & ModifierKeys.Apple) == ModifierKeys.Apple))
txtLastName.Text = "You pressed the right keys!";
}

As ModifiersKeys is a flag enumerator, you can combine each single modifier using binary operations.
As you might imagine, being an ASPNET developer and seeing the Apple entry is an excellent first step
in the multi-platform story.

Getting the Most from Input Devices

Now that you have seen the different input devices and the necessary considerations when you use them
in the context of Silverlight, it is time to put them into practice. If you have been skipping sections and
have some questions regarding the following concepts, please feel free to jump back to them in order to
get the full benefit of this section.

There has been a lot of emphasis by the Silverlight team on the user experience and how you can extend
what the Web can do for developers and users. One of the most impressive features is the Ink function-
ality, which we explore next.

Ink

This is one of our favorite features in the user interaction world. The ability to add handwriting and
free-hand drawing into your Silverlight application really fulfills the missing features in the web-based
application world. As you have seen, the introduction of stylus and touch-screen devices is pushing the
software boundaries and introducing new technologies. The need for fast-input devices to complement
the screen’s content or transform the free input into data is still increasing, and with Silverlight applica-
tions, you are on the right track.

An interesting example of how an Ink solution may work very well is in the documents approval process
in an organization. Just imagine that you are implementing a workflow system, wherein documents are
generated and different people in the company need to review and finally approve them. Today, most of
these processes are still manual owing to signing limitations. Although some companies are implementing
passwords and certificates in order to continue the workflow, this is not widely accepted in the industry.

If you are trying to solve this problem using ASP.NET skills in conjunction with Silverlight, you can use

the Ink features to implement an elegant solution. Let’s assume that the application has generated a
financial report and the plug-in reads the content and renders it on the screen. See Figure 8-6.

258

Chapter 8: User Interaction

Financial Report for 2008 I:[u

We are very happy to report that during the fiscal year
2007/2008 we had an excellent contribution margin,
accomplishing the targets suggested by the board.

[Enter your name here] [approve

Figure 8-6

The plug-in has rendered the content and presented an option to approve the document that the user
can check. Also, for security reasons, you use the text block control to provide a signature space and to
inform the users that they need to write their name in the section.

In order to use the handwriting features, you need to have an InkPresenter object. You place the object
near the signature space and allow the user to directly sign the document using his or her Tablet PC
while traveling to an important meeting. The application now looks like Figure 8-7.

| Financial Report for 2008 [[u

We are very happy to report that during the fiscal year
20072008 we had an excellent contribution margin,
accomplishing the targets suggested by the board.

g

[Jahn Doe] [approve

Figure 8-7

The strokes can be retrieved and attached to the document, allowing the distributor to send the final
copy with the signatures attached. Perhaps you have recognized the signature model applied, as it is
similar to the method commonly used for signing credit card purchases. Now with Inkpresenter,
you have the ability to quickly add this functionality to applications.

Using InkPresenter

Now that you have seen a practical example, it is time to start exploring how you can include the pre-
senter in your ASP.NET applications and the implications of it. One of the first things to notice is that
InkPresenter derives from the Canvas class:

259

Part Il: Developing ASP.NET Applications with Silverlight

System.Object
System.Windows.Controls.Panel
System.Windows . DependencyObject
System.Windows .FrameworkElement
System.Windows .UIElement
System.Windows.Controls.Canvas
System.Windows.Controls.InkPresenter

The canvas offers the Background property to display strokes and the Children property to include
new UIElements. There is an important thing to remember: The strokes collection is not included in the
Children collection and is stored separately in the Strokes dependency property. This is a common
question when developers alter the Z order of the Canvas children using Canvas.zIndex and don’t
see the strokes reacting.

If you explore the presenter, you will be very familiar with all the properties and methods, as they are
inherited from the parent classes; the changes included in the presenter are the Strokes dependency
property and an overloaded version of HitTest () to check if the strokes have been hit by the point or
rectangle used. The strokes property is indeed a StrokeCollection object, and as you can imagine,
it contains all the strokes that InkPresenter is rendering. This topic relates to the Stylus Points concept
explained in the “The Stylus and Touch Screens” section, as a stroke is a collection of these points repre-
sented in a StylusPointsCollection object. These points can be captured while you are handling the
mouse events, specifically the MouseMove event. But since as a developer, you might understand the
concepts better if you see code, explore the implementation:

<InkPresenter x:Name="MyInk"
Background="Transparent"
MouseLeftButtonDown="MyInk_ MouseLeftButtonDown"
MouseMove="MyInk_ MouseMove"
MouseLeftButtonUp="MyInk_MouseLeftButtonUp"
Width="330" Height="260">

< .. Other UIElement children that we want to render .. >

</InkPresenter>

This is the XAML code to add an InkPresenter in the application. In this case, you are calling it MyInk,
and you are setting the Background to transparent. Note that you have added the event handlers to sup-
port the input devices. Now in the code behind, you add the MouseLeftButtonDown handler to start
capturing the stroke:

// We need to add the Ink reference
using System.Windows.Ink;

// We use a single stroke object for our active stroke
private Stroke signatureStroke;

private void MyInk MouselLeftButtonDown (object sender, MouseButtonEventArgs e)

{

// We capture the mouse to own the MouseMove event
MyInk.CaptureMouse() ;

// We create a new stroke for our signature
signatureStroke = new Stroke();

260

Chapter 8: User Interaction

// Adds this stroke to the collection
MyInk.Strokes.Add (signatureStroke) ;

The first thing that you are doing is capturing the mouse, as has been previously explained; this method
will allow you to “hijack” the mouse movement event. You create a new stroke object, which will be used
to render the handwritten path. Finally, in order to consider the stroke, you need to add it to the stroke
collection in InkPresenter. Now it is time to read the user’s handwriting:

private void MyInk_ MouseMove (object sender, MouseEventArgs e)

{
if (signatureStroke != null)

{
// We add the stylus points to my current stroke
signatureStroke.StylusPoints.AddStylusPoints (
e.GetStylusPoints (MyInk)) ;

In this second method, you are querying whether you have an active stroke. Remember that this han-
dler will be called regardless of whether the left button is pressed. You can use other conditions here,
but the important consideration is to keep it as lightweight as possible. Once you know that you have an
active stroke, you can query the mouse arguments, in this particular case, retrieving the collection of
stylus points in reference to the MyInk instance. These stylus points are added to the current stroke.
Now, in order to finish the task, you need to release it:

private void MyInk MouseLeftButtonUp (object sender, MouseButtonEventArgs e)

{
// We clear the stroke
signatureStroke = null;

// We release the capture
MyInk.ReleaseMouseCapture() ;

The first thing that you are doing is removing the class stroke reference so that further mouse moves
are not considered in the stroke. Finally, you release the mouse capture in order to allow other objects
to receive the mouse movement events.

When the left mouse click is fired again, a new stroke will be created, and the process is repeated.
Straightforward, isn't it?

Playing with the Stroke
In the previous example, you created a new stroke and used it directly in InkPresenter. The program-
ming model also offers the ability to change the stroke, creating a richer output if you need it.

You can modify the drawing properties of the stroke in order to modify the output. For example, from
the previous example, you can add functionality to correct the text sent by the workflow. See the line
marked through the text in Figure 8-8.

261

Part Il: Developing ASP.NET Applications with Silverlight

Financial Report for 2008 I:m

We are very happy to report that during the fiscal year
2007/2008 we had an excellent contribution margin,

w.

[John Doe | Oaprove

Figure 8-8

In order to implement this type of feature, you need to alter the previous code, altering the brawing
Attributes property on the current stroke as follows:

Eraser Mode

private void MyInk MouseLeftButtonDown (object sender, MouseButtonEventArgs e)

{

// We capture the mouse to own the MouseMove event
MyInk.CaptureMouse() ;

// We create a new stroke for our signature
signatureStroke = new Stroke();

// Defines the attributes
signatureStroke.DrawingAttributes.Width = 2;
signatureStroke.DrawingAttributes.Height = 5;
signatureStroke.DrawingAttributes.Color =
Color.FromArgb (0xFF, OxFF, 0, 0);
signatureStroke.DrawingAttributes.OutlineColor =
Color.FromArgb (0xFf, 0, 0, OxFF);

// Adds this stroke to the collection
MyInk.Strokes.Add (signatureStroke) ;

In case the input device has the ability to detect inverted modes or you simply implement the feature
using the user interface, you can simulate an eraser. An eraser will be implemented by you in this case,
as there is no automatic feature to delete the strokes that you have added in your collection.

Here is where a developer’s ability to interpret what needs to be removed comes in handy. As was
explained before, the strokes are stored in the stroke collection exposed by InkPresenter. Let’s imple-
ment it in the previous example. For this, you need to add some way of informing the application that it
is in “erase mode.” If you have an input device with this ability, remember to check the Inverted prop-
erty (don’t overlook this feature!). In the document approval application, a checkbox has been added
that changes the stylus behavior. Now, when you move the mouse, you need to check in which mode
you are and act accordingly:

262

Chapter 8: User Interaction

private void MyInk MouseMove (object sender, MouseEventArgs e)
{
if (signatureStroke != null)
{
// Gets the current points
StylusPointCollection Points =
e.StylusDevice.GetStylusPoints (MyInk) ;

// Check if we are in erase mode
if (chkEraser.IsChecked == true)
{
// Select the strokes affected
StrokeCollection ErasedStrokes =
MyInk.Strokes.HitTest ((Points) ;

if (ErasedStrokes != null)

{
// Remove the strokes from the collection
for (int 1 = 0; 1 < ErasedStrokes.Count; i++)
{
MyInk.Strokes.Remove (ErasedStrokes[i]) ;

}
else
// We add the stylus points to my current stroke

signatureStroke.StylusPoints.Add (
e.StylusDevice.GetStylusPoints (MyInk)) ;

In the example, you are removing the strokes that are returned by the HitTest method. This returns a
collection of the strokes intersected. Once you have these strokes, you can directly manipulate them.

You may be wondering why you are explicitly using the statement "IsChecked ==
true". The reason is that most of these properties are nullable values, and there-
fore a Boolean type can store true, false, or null.

Drag and Drop

Another interesting use of the input devices is the ability to drag and drop objects within the Silverlight
plug-in. This is a feature that ASPNET developers are starting to use in their Web 2.0 applications. Popular
web-based e-mail applications are constantly using and sometimes overusing this feature. One thing to
keep in mind before you jump from your seat and start using the feature is a security limitation that
prevents the plug-in from dragging objects from other applications; therefore, you can drag and drop
within the Silverlight application only.

263

Part Il: Developing ASP.NET Applications with Silverlight

Dragging Objects
As you have seen in Chapter 7, you can use a Canvas in order to position the objects using the
well-known Top and Left properties (in the canvas context, these are called Canvas . TopProperty
and Canvas . LeftProperty). These properties are really useful when you want to start dragging
objects around the application. But this is not the only way to drag and move objects around. You can
use any other positioning method.

In the example, you are going to simulate dragging an item from a container to other containers. This
helps show the different functionality of the drag-and-drop options that you can use in your applica-
tions. The application looks like Figure 8-9.

The containers in this case are Border objects to simplify the example, but you can use any other object,
for example, a ListBox, in order to add and remove items. The item is another Border object that con-
tains an Image and a TextBlock.

-

[Available Items E]

[Con[ainer 1 J [Comamer.’.]

Figure 8-9

The containers in this case are Border objects to simplify the example, but you can use any other object,
for example, a ListBox, in order to add and remove items. The item is another Border object that con-
tains an Image and a TextBlock.

In order to implement the drag-and-drop application, you need to use the mouse events concepts of the
item, handling the mouse click and the movement to trace the original location and the offset values.
With this information, you can alter the Top and Left properties of the canvas.

<Border Height="19"
HorizontalAlignment="Stretch"
Margin="0,0,0,0"
VerticalAlignment="Top"
RenderTransformOrigin="1,3"
Background="#FF0798FF"
BorderBrush="#FF000000"
CornerRadius="10,10,10,10"
x:Name="MyItem"
MouseLeftButtonDown="MyItem MouseLeftButtonDown"
MouseLeftButtonUp="MyItem_MouseLeftButtonUp"
MouseMove="MyItem_ MouseMove"
Canvas.Left="140"
Canvas.Top="39"
Width="95">

<.. Contents are placed here ..>
</Border>

264

Chapter 8: User Interaction

For the event handlers implementation, you define a couple of private objects that can help you track the
position and the dragging status, as follows:

private bool isDragging;
private Point itemPosition;

Now you introduce the implementations, capturing the current position, altering the item position, and
releasing the mouse:

private void MyItem MouseLeftButtonDown (object sender, MouseButtonEventArgs e)
{

// The item captures the mouse events

MyItem.CaptureMouse() ;

// We set up the dragging flag and the current position
this.isDragging = true;
this.itemPosition = new Point (

e.GetPosition(null) .X, e.GetPosition(null).Y);

private void MyItem_MouseLeftButtonUp (object sender, MouseButtonEventArgs e)
{

// We remove the flag and the mouse events

this.isDragging = false;

MyItem.ReleaseMouseCapture() ;

private void MyItem_MouseMove (object sender, MouseEventArgs e)

{
if (this.isDragging)

{
// Calculates the deltas based on the new position
double VerticalDelta = e.GetPosition(null).Y -
this.itemPosition.Y;
double HorizontalDelta = e.GetPosition(null).X -
this.itemPosition.X;
// Sets the new item position
MyItem.SetValue (Canvas.TopProperty, VerticalDelta +
Convert.ToDouble (MyItem.GetValue (Canvas.TopProperty)));
MyItem.SetValue (Canvas.LeftProperty, HorizontalDelta +
Convert.ToDouble (MyItem.GetValue (Canvas.LeftProperty)));
// Update position global variables.
this.itemPosition.Y = e.GetPosition(null).Y;
this.itemPosition.X = e.GetPosition(null) .X;
}

You can add special effects when the item is selected, like changing the background color to help the
user identify the movement. If you want to play with the example to enhance your knowledge and
improve it, a nice challenge would be to “ghost” the item and drag a duplicate item until you release
it in the other container. Once released, it should remove the ghosted one. (This is a very common
behavior in drag-and-drop applications and is always considered best practice to provide a familiar
experience to your users.)

265

Part Il: Developing ASP.NET Applications with Silverlight

One thing that you may be tempted to do is to use MouseEnter and MouseLeave on the containers in
order to detect when the user is dragging the item over the container objects. The problem is that you
have to consider the mouse capture model that will prevent your application from receiving events
from other objects. You may also consider moving the mouse capturing to the canvas, but this means
that you will need further filtering on the mouse move that will give you some headaches. For this rea-
son, you should analyze the dragging position against the container locations or use the HitTest func-
tionality on the MouseLeftButtonUp.

You may notice the lack of drag-and-drop events in Silverlight. That’s why you are
analyzing different work-arounds. Security limitations prevent the application from
using the clipboard to transfer information. Therefore, drag and drop needs to be
simulated.

Navigation

If you are looking to create an application using Silverlight that does more than streaming a video, you
will need to include several user interaction models. Unless you are a great user interface designer who
can fit all the information in a single page and have it still be functional, you will need multiple screens.
These screens should help you design an application style component that can be intuitive for the user,
delivering a richer experience. You have hundreds of examples of this model, as you have been dealing
with wizards, pages, and workflow applications that deal with the navigation object all the time. If you
are introducing a Silverlight application in your ASPNET pages, you want to understand how you can
address this challenge.

This section describes different approaches to dealing with the navigation aspect of the user interac-
tion. Silverlight 2 does not have extensive support for multiple screens because this was not one of the
main objectives in this version. Therefore, you are going to explore different alternatives that can help
you to simulate this behavior. The methods presented here are not exhaustive but can give you an idea
of the different approaches that developers are taking in order to meet this challenge. As Silverlight
grows and develops, further support will be built into this area.

Silverlight Navigation in the ASP.NET World

For the experienced ASP.NET developer, the navigational model is a commodity, as the HTML technol-
ogy heavily relies on hyperlinks to transit around web pages. Constant challenges that break this navi-
gational pattern are usually thrown at these developers, and they have been bravely fighting to create
amazing work-arounds. During the last 10 years, web developers have been integrating different tech-
nologies (such as ActiveX controls, Flash plug-ins, and server side extensions like Web Services) on
their pages, which has made the navigation a little more complicated.

Now it is time for a new challenge — Silverlight. Since the beginning of the book, you have been read-
ing that the application runs in a sandboxed plug-in. This means that there is little interaction with the
navigation services and components that ASP.NET and the web browser offer. Let’s explore some of
those challenges and the approach that WPF is taking in the desktop world that may come into the
Silverlight world in the future.

266

Chapter 8: User Interaction

Navigation Challenges

One of the first challenges that you have when interacting with ASPNET is the standard page transi-
tion. As each page is treated as an independent entity, the plug-in execution will be lost if you navigate
to a new page. The Silverlight application runs independently on the previous page, but as soon as the
user leaves that page, the content is disposed. When the user presses the back button on the browser
history or another link to return to the previous page, the Silverlight application will be reloaded and
restarted, losing the previous state.

Figure 8-10 shows a classic problem in web applications using the page navigation buttons when the page
hosts a plug-in. In the case of Silverlight, the sandboxed application model will trigger a completely new
initialization, losing the previous state.

e Test Page For Chapter8.Web - Windows Internet Exploren

(,}-vi @] http//localhost:48481/Chapter8. WebTe ~
o |§Test Page For Chapter8.Web] -

Registration Wizard - Page 1

First Name: |Juhn

Last Name: I Doe

Figure 8-10

During this section, you'll see how you can keep the state on the server side in order to simulate the same
patterns that you are used to with the ASPNET world. What is more interesting is the flexibility of the
Silverlight components to expand the limitations that you currently have in the Web environment.

Differences with WPF

If you have previous experience developing applications with XAML and WPF, you may be familiar
with the navigational services that the technology provides. These services have been widely accepted
as an elegant way to navigate across pages, delivering a seamless experience for developers when they
develop applications for the desktop using .NET 3.0 and for the Web using the XBAP model.

Silverlight 2 does not provide the navigation service’s objects. Several reasons have been highlighted,
but the most compelling is the integration with the browser journal, as some thought needs to be given
to this area to figure out the best way to integrate functionality and provide a compelling user and
developer experience.

Single Plug-in Navigation

The first approach to navigation that you are going to embark on is using a single Silverlight application
in order to simulate the navigation. Although not many applications have been written yet, there is a lot
of desire among the early adopters to use this model, as it reduces the deployment complexity and satis-
fies most user requirements. Having said this, there are some complex scenarios for which a single plug-in
will not be enough, and you may need to recur to multiple applications.

267

Part Il: Developing ASP.NET Applications with Silverlight

As an ASP.NET developer, you are probably thinking about integrating the Silverlight component in your
application to complement a specific functionality that can still be sandboxed and is not related with any
other web page. If this is the case, using a single plug-in will make your life much easier. If you are plan-
ning to integrate it at the web application level, you may consider the following section, in which you
explore the use of multiple components.

User Control Transition

One of the most natural ways to navigate across the application is transitioning user controls. This model
simulates normal desktop applications, in which the forms are constructed and shown on the screen. The
natural difference that you can appreciate is regarding how the screen is hosted, as the form is using the
Windows GDI system to render the contents. In the Silverlight world, you don’t even have Windows
running outside the application.

If you analyze how the application is initialized, you can see that you define the RootVisual property
with the first control that you want to render on the screen.

public partial class App : Application
{
public App ()
{
// Event handling
this.Startup += this.Application_Startup;
InitializeComponent () ;

}

private void Application_Startup (object sender,
StartupEventArgs e)

{
// Load the main control
this.RootVisual = new RemoteContainer () ;

Many developers believe that as the root visual property can be set, you can use it as the container ref-
erence to change the main screen. The problem is that this property can only be set during this event.
The only flexibility that you have at this stage is using the InitParams dictionary in order to read the
parameters sent by the HTML initialization and then decide which user control you render:

<asp:Silverlight

ID="MyXamlControl"

runat="server"

Source="Chapter8.xap"

Version="2.0"

Width="720"

Height="480"

InitParameters = "LoadingMode=Remote" >
</asp:Silverlight>

268

Chapter 8: User Interaction

Read the initialization parameters using Application_Startup:

if (e.InitParams != null && e.InitParams.ContainsKey ("LoadingMode"))
{
if (e.InitParams|["LoadingMode"].ToUpper () == "REMOTE")
{
this.RootVisual = new RemoteContainer () ;
return;
}
}
else

this.RootVisual = new Container();

With this in mind, you need to look for alternatives for rendering different screens.

An interesting feature in XAML is the ability to have children objects. Most of the components have
that ability, and this is an area that you will exploit in order to simulate the navigation. The first thing
that you need is to create a container control; this can be a brand-new user control that may contain
some objects or just a transparent one that is completely invisible. In this example, you will use a con-
tainer with a header, so you can quickly identify which control is rendered.

<Grid x:Name="LayoutRoot" Background="White">
<Border Margin="8,8,8,8"
BorderBrush="#FFO00B5FF"
BorderThickness="1,1,2,2"
CornerRadius="10,10,10,10">
<Grid>
<TextBlock Height="24"
Margin="8,8,165,0"
VerticalAlignment="Top"
Text="This is the header of the local container"
TextWrapping="Wrap" />
<Border Margin="8,42,8,8"
BorderBrush="#FF7D7CFO0"
BorderThickness="1,1,1,1"
CornerRadius="10,10,10,10"
x:Name="MainContainer">
<Grid x:Name="MainContainerGrid"
HorizontalAlignment="Left">
<!-- here goes the dynamic content-->
</Grid>
</Border>
</Grid>
</Border>
</Grid>

269

Part Il: Developing ASP.NET Applications with Silverlight

You are using a couple of borders and grids in order to position the internal screens; the important
element in this case is the "MainContainerGrid" that actually will render the dynamic content. The
sample looks like Figure 8-11:

. 7

Figure 8-11

The blank space will be filled with the new child that you are going to update dynamically. Now that
you have the control, it is time to change the RootVisual property to render the control. You do this
changing the App.cs file in the project.

From this point, you need to decide the first screen. There are multiple options regarding how to con-
struct your application architecture, and this will be based on the type of application and how the state
is transferred between the screens (in the same way that you do it using Windows Forms). In this exam-
ple, you have only two screens, and the container will be responsible for coordinating the presentation.
For these reasons, the screens will provide events that will be handled by the container in order to decide
which is the next action.

The first screen will contain several controls; some of them will capture the first and last name of the
user. You are going to send this information to the next screen. The content of the first user control looks
like this:

<Grid x:Name="LayoutRoot" Background="White">
<Border Height="56.888" Margin="8,8,8,0" VerticalAlignment="Top"
Background="#FF0082D0" CornerRadius="10,10,10,10"
d:LayoutOverrides="Height" />

<TextBlock Height="21 " Margin="23,21,35,0" VerticalAlignment="Top"
FontSize="20" Foreground="#FFFFFFFF" Text="Registration Wizard -
Page 1" TextWrapping="Wrap" d:LayoutOverrides="Height"/>

<TextBlock Height="21" HorizontalAlignment="Left" Margin="15,82,0,0"

VerticalAlignment="Top" Width="97.778" Text="First Name:"
TextWrapping="Wrap" d:LayoutOverrides="Height"/>

270

Chapter 8: User Interaction

< .. More controls here .. >

<Button Height="40" HorizontalAlignment="Right" Margin="0,0,19,17"
VerticalAlignment="Bottom" Width="145.778" Content="Next"
FontSize="14" x:Name="cmdNext" Click="cmdNext Click"/>
</Grid>

You have a single button that will call the cmdNext_C1ick method to handle the event; on the code side,
you handle the event firing the action event in order to notify the container:

public partial class MyFirstForm : UserControl

{
/// <summary>
/// This event is raised when the next button is pressed

/// </summary>
public event Action<string> NextButton;

public MyFirstForm()
{

InitializeComponent () ;

}

private void cmdNext_Click (object sender, RoutedEventArgs e)

{
if (NextButton != null)
NextButton (string.Format ("{0} {1}",
txtFirstName.Text, txtLastName.Text)) ;

You can now build the second screen that will present the user’s full name and will provide the func-
tionality to go back to the previous screen using the same model. Create a new user control with a
TextBlock (you use it to render the full name). This time, you will alter the constructor in order to
receive the name before rendering.

As you can see, you are decoupling the screens from the container using the event
model. This is a recommended practice that you may use to rapidly extend the
application using new screens. Indeed, what is a little more elegant is implement-
ing a common interface, like IScreen, so the container does not even know which
screen type it is.

With both screens completed, you can now move to the container code. The first thing that you need is to
render the initial screen on the grid. Let’s handle the user control load event and add the loading method:

private void UserControl_Loaded(object sender, RoutedEventArgs e)

{
LoadFirstPage () ;

271

Part Il: Developing ASP.NET Applications with Silverlight

The LoadFirstPage () method initializes the new user control and assigns the event handler associ-
ated with the Next button. The object can now be associated to the grid’s children collection:

private void LoadFirstPage ()
{
// Initializes the new screen
MyFirstForm FirstPage = new MyFirstForm() ;
FirstPage.NextButton += new Action<string>(FirstPage_NextButton) ;

// Adds the new screen
this.MainContainerGrid.Children.Add (FirstPage) ;

If you execute the code, the Silverlight component will render the container and the screen at the same
time, as it is shown in Figure 8-12.

Let’s go back to the container to add the code for the next button handler. You are going to alter the
first method a little as well as remove the current screen from the grid and add the new one, calling
the children.Clear () method. The Previous button on the new screen will take you back to the
first screen.

Registration Wizard — Page 1
First Name: || |
Last Name: [J
Gender: © Male © Female
Click here to receive further information: =]
N »
Figure 8-12

void FirstPage_NextButton (string fullName)

{
MySecondForm SecondPage = new MySecondForm(fullName) ;
SecondPage.PreviousButton += new Action (SecondPage_PreviousButton) ;

// Clears the previous screen
this.MainContainerGrid.Children.Clear () ;

// Adds the new screen
this.MainContainerGrid.Children.Add (SecondPage) ;

272

Chapter 8: User Interaction

void SecondPage_PreviousButton ()
{

LoadFirstPage () ;
}

Figure 8-13 shows the result when you execute the application. From the user’s point of view, it is still
the same application, but internally, you are decoupling each of the screens into individual controls.

Registration Wizard - Page 1

First Name: [john J
Last Name: | Doe |

Gender: @ Male © Female

Click here to receive further information: &

v &

Registration Wizard - Page 2

Your full name is: John Doe
Select your favourite

Dominican Republic
Barbades

Figure 8-13

The example shown should give you an idea of how to navigate through user controls quickly. At this
stage of the book, you may have many different implementation ideas. The important thing to under-

stand is how easily you can manipulate child objects in XAML, not only with grids but with any other
container controls. Many developers are starting to build custom controls that handle the navigation

container for you; nothing stops you from grabbing the code that you have started in this book and
transforming it into a reusable framework.

Adding Effects

Now that you understand how you can simulate navigation in Silverlight 2, you'll add a nice effect to

enhance the user experience. In order to do this, you are going to use the animation properties of WPF
out-of-the-box because you don’t want to reinvent the wheel.

Because of our space limitations, you are only going to see how to add fading into the transition here,
but you can expand the effects library using 3D objects to rotate and animate your screens. This is an
addition that can be accomplished with your existing ASP.NET knowledge.

273

Part Il: Developing ASP.NET Applications with Silverlight

Let’s build some generic code to fade a screen using the code behind. If you are not sure about using the
animation object, please refer to Chapter 14.

voild FadeScreen (UserControl screen, bool fade)
{
// Animation duration
Duration FadingLenght = new Duration(new TimeSpan(0, 0, 3));

// Type of animation

DoubleAnimation MainAnimation = new DoubleAnimation();
MainAnimation.Duration = FadingLenght;
MainAnimation.To = 0;

// Main Storyboard

Storyboard MyFadingStory = new Storyboard() ;
MyFadingStory.Duration = MainAnimation.Duration;
MyFadingStory.Children.Add (MainAnimation) ;

// We change the targets
Storyboard.SetTarget (MainAnimation, screen);
Storyboard.SetTargetProperty (MainAnimation, "Opacity");

// We add the resource into the screen
screen.Resources.Add (MyFadingStory) ;

// We trigger the animation
MyFadingStory.Begin() ;

As you can see in the code, you are creating a double type animation in order to decrease a double value
based on duration. Then you create the main storyboard that will contain the animation. Remember
that you can have multiple animations in the same storyboard. On the next lines, you change the tar-
gets, in other words, on which objects the animation will be applied. Finally, you add the resource to
the screen so that it is executed.

If you go back to the previous example, you can add the animation to the previous button event handler.
See Figure 8-14.

void SecondPage_PreviousButton ()
{
// We create the new page
MyFirstForm FirstPage = new MyFirstForm() ;
FirstPage.NextButton += new Action<string> (FirstPage_NextButton) ;

// We insert it behind
this.MainContainerGrid.Children.Insert (0, FirstPage);

// We fade the current screen
FadeScreen ((UserControl) this.MainContainerGrid.Children[1l], true);

274

Chapter 8: User Interaction

Registration Wizard - Page 1

First Name: mL is

LabtcNamer 15{-’0_ulte destination: | Ibiza

Gender: 0) Male ©) Female

Click here to receive further information: @

priNext; s

Figure 8-14

Simulating a Modal Screens

If you have developed desktop applications, you should be used to controlling certain functionality
using modal screens. This feature has been cloned in the ASPNET AJAX world with special controls
that simulate its behavior. Silverlight comes with very limited, common dialog boxes in order to interact
with the local computer, like System.Windows.Controls.OpenFileDialog, because of browser and

security limitations.

You can easily simulate the behavior using the current navigation knowledge, and you can play with
the rendering in order to present a modal style screen to the user like the one presented in Figure 8-15.

Registration Wizard - Page 1

First Name: |John

Last Name:

Are you sure that you want to register?

Gender:

Click here to re

Figure 8-15

You can create a common modal screen that can be reused across your application. For this, you use a
new user control, where the size covers the application surface as a background object. This background
object should have a solid brush but with the alpha level below 100. This will make it transparent. (If

275

Part Il: Developing ASP.NET Applications with Silverlight

you set no brush, you will be able to use the main screen’s controls, breaking the navigation!) When you
have the look and feel, just add an event on the dialog box that publishes the DialogResult enumera-
tor, so that you can read the output of it.

You can modify the previous example in order to show a dialog screen when you press the Next button:

private void cmdNext_Click(object sender, RoutedEventArgs e)
{
// we show the dialog box
DialogBox Question = new DialogBox() ;
Question.Result += Process_Result;
MainGrid.Children.Add (Question) ;
}

void Process_Result (DialogResult result)

{
// We remove the references
MainGrid.Children.RemoveAt (MainGrid.Children.Count - 1);

// we analyze the result
if (result == DialogResult.Yes)
{
if (NextButton != null)
NextButton (string.Format ("{0} {1}",
txtFirstName.Text, txtLastName.Text)) ;

Screens on Demand

Using a single plug-in control as a container and shifting the different user controls seems to work in
most of the scenarios. But what if your screen’s library is just too large to be deployed in a single XAP
file or your application happens to customize screens based on a workflow return? For this, you will
need to consider loading screens on demand from the server.

There are different flavors for this model that you will examine. Some are easier to implement but come
with longer loading times; others are really fast but require more plumbing work. The balance is up to
you and will be based on your application requirements. One thing to notice in this section is that you
are going to use the web site to interact with the Silverlight application with the native web client and
WCEF services. If you are not familiar with these concepts do not worry as we discuss communication
techniques in Chapter 9.

The first option to review is the ability to have multiple screen libraries stored on the server (see
Figure 8-16). These libraries can be downloaded on demand by the user depending on the functionality
that he or she wants to access. Some ASP.NET developers are opting for a model wherein the ASPNET
page decides how the plug-in is initialized using the initialization parameters, then the application
automatically downloads the correct libraries; this can really help reduce the size of the original
application.

This option has the advantage of downloading a wide set of objects only one time. Once the assembly is

loaded locally, you can create new instances of the screens stored on the library. Let’s explore a quick
example.

276

Chapter 8: User Interaction

4 I
Web Applicati
eb Application Web Page

Screens Library 1 ' Siveright App
(sorsens Lirary2 Jep— Saroons vy
(Screens Library 3) e

N
Figure 8-16

The first thing that you need to do is to define the web client object and the storage for the remote
assembly:

using System.Net;
using System.Reflection;

namespace Chapter8
{
public partial class RemoteContainer : UserControl

{
// Initializes the web client
private WebClient serverConnection = new WebClient () ;
private Assembly remoteScreens;

Now that you have the objects in place, you need to start the asynchronous remote loading. For this,
you use the WwebClient component and configure the completion handler to finish the load:

private void UserControl_Loaded (object sender, RoutedEventArgs e)
{
// We only can download one item at the time
if (!this.serverConnection.IsBusy)
{
this.serverConnection.OpenReadAsync (
new Uri("Chapter8.Screens.dll", UriKind.Relative)) ;

this.serverConnection.OpenReadCompleted += new
OpenReadCompletedEventHandler (ServerConnection_
OpenReadCompleted) ;

You first check if the web client is busy, as it can only handle one request at a time. If the client is avail-
able, you start reading the component. This assembly is deployed on the ClientBin folder of the web site.

void ServerConnection_OpenReadCompleted
(object sender, OpenReadCompletedEventArgs e)
{
// Loads the assembly in our application
AssemblyPart RemoteAssembly = new AssemblyPart();

277

Part Il: Developing ASP.NET Applications with Silverlight

this.remoteScreens = RemoteAssembly.Load(e.Result) ;

// We load the user control
UserControl RemoteScreen =
(UserControl) this.remoteScreens.CreateInstance
("Chapter8.Screens.RemoteScreen") ;

// We render the control on our grid
this.MainContainerGrid.Children.Add (RemoteScreen) ;

}

With the assembly fully read, you can load the assembly into the application and then create the user
control instance that will represent the remote screen.

The second option can be more suitable for a large system in which the screens are completely dynamic
and are based on the current application state. For this reason, you may not use a pre-compiled assem-
bly with all the screens. Instead, you can have the objects dynamically generated and exposed through
a service to your Silverlight application. Figure 8-17 shows the model.

e ™
Web Application

Dynamic Screen '

Web Page

L Silverlight App
(soeenn Jqz TR
(Screen B) """""""""" z
"
Figure 8-17

For this option, you are going to prepare a WCF service using the basic HTTP binding (you may choose
a standard ASMX web service as well). This service will be hosted on the same web application, as for
security reasons you should follow this pattern, keeping a single service contract (or interface if you are
using standard web services) at the server of origin. The contract or interface that you use will expose a
method to request the next screen, returning a user control to the Silverlight application and sending
the current screen as a parameter, which contains the result of the current screen. This behavior is very
similar to the one that you are used to using in ASPNET, implementing GET and POST.

With this model, the service can process the next request based on the current screen data. This infor-
mation can be used by the application or diverted to another internal service within the architecture.
The request will be processed, and a new screen will be prepared for the application. Once the screen is
ready, you send the results back using the service layer.

namespace Chapter8.Web
{
[ServiceContract]
public interface IScreens
{
[OperationContract]
string GetScreen (object currentData) ;

278

Chapter 8: User Interaction

You define the interface for the service where the Get Screen method receives the current data and
returns the XAML string from the generated page. The implementation of the service will use a pre-
created XAML file, but you can add functionality here to create the file dynamically.

namespace Chapter8.Web
{

public class Screens : IScreens

{
public string GetScreen(object currentData)

{
// We load our XAML file, but this can be replaced with

// a dynamic generated screen

XmlDocument Doc = new XmlDocument () ;

Doc.Load (AppDomain.CurrentDomain.BaseDirectory +
"RemoteScreen.xaml") ;

return Doc.OuterXml;

To generate the link to your Silverlight application, just right-click on References and click on “Add
Service Reference” (or “Add Web Reference” for traditional ASMX web services) to generate the dynamic
proxy classes. The next step is to create the service initialization to associate the asynchronous call.

public static class Remote

{
/// <summary>
/// Event raised when a new screen has been received

/// </summary>
public static event Action<UserControl> ScreenReceived;

/// <summary>
/// Screen client created with the Add Web reference

/// </summary>
private static RemoteScreens.ScreensClient _Server;

public static void Connect ()
{

// WCF service initialization
_Server = new Chapter8.RemoteScreens.ScreensClient () ;

_Server.Open() ;

// Delegate to address the screen completition
_Server.GetScreenCompleted += new
EventHandler<Chapter8.RemoteScreens.GetScreenCompletedEventArgs>

(_Server_GetScreenCompleted) ;

private static void _Server_GetScreenCompleted(object sender,
Chapter8.RemoteScreens.GetScreenCompletedEventArgs e)

if (e.Error == null)
{

279

Part Il: Developing ASP.NET Applications with Silverlight

string XamlPage = e.Result;

// Creates the user control from the XAML string
UserControl Screen =
(UserControl)XamlReader.Load (XamlPage) ;

if (ScreenReceived != null)
(ScreenReceived (Screen) ;

throw e.Error;

public static void GetNextScreen (object currentData)
{
// Calls the WCF service asynchronicly
_Server.GetScreenAsync (currentData) ;

}

The service returns the raw XAML string that needs to be parsed and loaded by the XxamlReader class
in order to create the user control. With this information, you can pass back the new screen using the
ScreenReceived event.

Remember when you started this section that you were planning to find ways to simulate the naviga-
tion. Although several options were explored, these are not exhaustive. You can put together the model
that fits your application and responds to the user requirements. Future versions of Silverlight might
include navigation services that might change these models, but for the time being, these are effective
methods.

Multiple Plug-in Navigation

So far you have seen the different ways to render screens using a single plug-in. Although that model
may work in most applications, if you need integration with current ASPNET applications, you might
need multiple Silverlight applications somehow linked to each other.

Because each plug-in hosts a single application, you need to link independent applications and transfer
the state from one application to the other in order to keep the consistency necessary to support naviga-
tion. In this section, you are going to see different alternatives to achieve this behavior, using concepts
already learned in this book and other ones that will be complemented with your current ASPNET
knowledge.

Integration with ASP.NET

As soon as the Silverlight application running in the page is posted back to the server, you are likely to
lose the current state, as in theory, the application should not be aware of what is going on at the page
level. If you are planning to navigate to a new page, it is necessary to use the ASPNET features in order
to transfer that information from one application to the other one.

280

Chapter 8: User Interaction

Luckily, the object model contains a wide range of functions to interact with the browser that will help
you to manage that navigation and to trigger some HTML actions from the managed code. If you add
the namespace System.Windows.Browser, you can see that a wide range of classes (most importantly,
HTMLPage) is available to help you query and control the current web page.

You can see in Figure 8-18 that you can interact with the HTMLPage object in order to post the page back
to the server or even navigate to the new screen passing a query string.

4 N
Web Page Web Page

Silverlight App Silverlight App

Hello World! QueryString Hello World!

Post

Web Application (State)

Figure 8-18

Now look at an example of how you can communicate using these methods. For this example, you'll
use two different web pages hosting different Silverlight applications. The first application contains a
textbox (txtFullName) and a button (cmdPost). You handle the C1ick event on the button as follows:

private void cmdPost_Click(object sender, RoutedEventArgs e)
{
if (txtFullName.Text.Length > 0)

{
// We format the destination using a query string
string FormatDestination =
string.Format (@"SecondPage.aspx?FullName={0}",
txtFullName.Text) ;

// Sets the new URI with a query string entry
Uri SourceUri = new Uri (HtmlPage.Document.DocumentUri,

FormatDestination) ;

// Navigates to the next page
HtmlPage.Window.Navigate (SourceUri) ;

}

First, you need to format the destination resource; in this case, you are adding a parameter to the query
string list. Once you have the destination formatted, you create a URI based on the current document

281

Part Il: Developing ASP.NET Applications with Silverlight

URLI. Finally, you use the HTML navigation model to swap pages. Now look at how the other applica-
tion reads the value:

private void UserControl_Loaded(object sender, RoutedEventArgs e)

{
// We read the query string
Dictionary<string, string> QueryString = (Dictionary<string, string>)
System.Windows.Browser .HtmlPage.Document .QueryString;

// We validate it
if (!QueryString.ContainsKey ("FullName"))

{
// Alert the user
HtmlPage.Window.Alert ("The request has been corrupted!");

// Navigate to the first scren
Uri SourceUri = new Uri (HtmlPage.Document.DocumentUri,
"FirstPage.aspx") ;

HtmlPage.Window.Navigate (SourceUri) ;

else

txtFullName.Text = QueryString["FullName"];

In the example, you can also see how you can integrate further HTML functionality like the alert to
inform the user that the new application cannot be initialized.

Using query strings is not the only option; if you explore the different functionality, you can set prop-
erties from Silverlight and then post the form using the Submit functionality as follows:

HtmlPage.Document.Submit () ;

Using Services
As you can see in Figure 8-19, this behavior is quite similar to the patterns that ASPNET developers are
used to, but in order to expand on the possibilities, you can also use services to transfer information
back to the system. This model can be more suitable for full Silverlight deployments, where you need to
partition the application in several pages, perhaps because of deployment size requirements or further
integration with HTML, like using HTTPHandlers and HTTPModules. You can find all the details
about service communication in Chapter 9, “Communicating with the Server.”

282

Chapter 8: User Interaction

e ™ e ™
Web Page Web Page 2

Silverlight App 2

Hello World!

Silverlight App

Hello World!

M M

h _
Services)

N 7 A

[Web Application
S Z N
Application/Process Layer
(State)
Figure 8-19
Summary

The user interaction architecture really shapes the final user experience, which is the main reason that
this chapter is so important. You have seen some best practices used in the community regarding how
to solve the common challenges and how to get the most of the current features.

You have been exploring the different input alternatives that a common Silverlight user may use, taking
into consideration all the latest devices. A lot of exciting opportunities can still be pursued in this field,
and Silverlight definitely is on the right track. One of the great features is the Ink controls, perhaps the
real solution to a paperless process in the near future.

As every ASPNET developer knows, it is hard to create a compelling story using a single web page.
The Silverlight world is no different. For that reason, you have seen the different options that you may
use in order to navigate around the application, enhancing the content presentation. With time, new
practices will be developed as the industry fully adopts the technology, but in the meantime, the con-
tent of this chapter can give you the right techniques to start exploring this fascinating world.

283

Communicating
with the Server

Integrating data into applications has always been a key part of the development process. The rise
of the Internet has resulted in many new options for accessing and storing data since data can live
in distributed locations ranging from a database to an XML file to a remote Web Service. The good
news is that the techniques used to access distributed/remote data have matured year after year,
and we now have many viable methods at our disposal.

In this chapter, you'll see how Silverlight networking and communication features can be used to
access distributed data. This includes a discussion of how to create services that Silverlight can
call, different ways of handling cross-domain issues, and built-in Silverlight classes that can be
used to process data. You'll also see how built-in Silverlight classes can be used to send and receive
data from REST services, how RSS and ATOM syndication feeds can be parsed, and how direct
socket-to-socket communications can be created and used to push data from a server to a client.

Silverlight Networking and
Communication Features

Silverlight provides many built-in networking features that can be used to communicate with
local and remote servers to send and receive data. Some of the features can be leveraged visually
inside Visual Studio, while others rely on custom code and configuration files. This section pro-
vides a high-level look at supported networking features so that you get a feel for the options that
are available. Later in the chapter, each feature will be discussed more in-depth so that you can
see how to put various networking and communication technologies to use in your Silverlight
applications.

Part Il: Developing ASP.NET Applications with Silverlight

What Type of Data Can Silverlight Access and Process?

It goes without saying that there are a lot of different ways in which data can be stored in today’s
technology-centric world. New techniques are being released on what seems to be a daily basis at
times. Fortunately, Silverlight is capable of accessing and processing virtually any type of text-based
data in existence including popular formats such as Extensible Markup Language (XML), Simple
Object Access Protocol (SOAP), HyperText Markup Language (HTML), and JavaScript Object
Notation (JSON), as well as other formats that may be released in the future.

By learning how to work with common data storage formats, you can access data, convert it into a
custom object type, and bind the type or collection of types to one or more Silverlight controls. In
many cases, you can use built-in Silverlight classes to convert data into custom objects. For example,
the DataContractJsonSerializer class can be used to serialize/deserialize JSON data, while the
XmlSerializer class can be used to serialize/deserialize XML data. When you're working with a
custom text format such as a fixed-length flat file, you can always resort to creating specialized classes
to perform the parsing operation.

Supported Domains and URLs

Silverlight is extremely flexible when it comes to the types of data you can use in an application. However,
you can’t necessarily access data at any location out-of-the-box. Silverlight restricts the types of URLs
that can be called. If a URL begins with http:// or https:// you can call it but URLs beginning with
ftp:// or file:// will be rejected. Calls back to the origin server that initially served up the Silverlight
application are fair game, but calls to other servers with different domains (referred to as cross-domain
calls) may fail with a security exception. A more complete discussion of cross-domain pitfalls and issues
is certainly warranted and will be provided later in this chapter.

Communication Options

There are four main options for performing asynchronous calls between a Silverlight application and a
data repository, including Web Services, Representational State Transfer (RESTful) calls, sockets, and
HTTP polling duplex calls. Web Services provide a way to exchange messages using Simple Object Access
Protocol (SOAP) (although some services can work with alternate formats as well), and RESTful calls can
exchange a variety of data formats such as XML and JSON, while sockets and HTTP polling duplex
calls allow virtually any type of data to be passed between a Silverlight client and a server.

As an ASPNET developer, you've more than likely heard about the benefits that Web Services offer.
After all, Web Services and Service Oriented Architectures (SOAs) have ranked toward the top of the
technology buzzword list along with XML and AJAX for years now. If youre new to Web Services, they
provide a platform-neutral way to exchange data between disparate systems using an XML format called
SOAP. Web Services expose a contract defined using Web Service Description Language (WSDL) that a
client can use to understand how to communicate with a service. Having a simple XML parser available
allows data to be transferred relatively transparently between interested parties without relying on a
specific platform, framework, or object model.

Using Visual Studio or a command-line tool, you can create a Silverlight-specific proxy object that can
be used to call a Web Service much the same way you'd call a service using a proxy object in ASPNET.
This results in minimal code being written and abstracts the SOAP serialization/deserialization pro-
cess away from the developer. No XML knowledge is required to call a Web Service using Silverlight,

286

Chapter 9: Communicating with the Server

so once the process of creating and using proxy objects is understood, the code is quite straightforward.
Standard Web Services can be called whether theyre written using ASP.NET, Windows Communication
Foundation (WCEF), or even using another language such as Java or Python.

Several Web Service alternatives have also become popular on the Web. These alternatives typically focus
on more straightforward ways to exchange data and eliminate some of the complexities associated with
Web Services. For example, many popular sites such as Flickr, MySpace, Digg, and eBay allow data to
be accessed using REST APIs, and some sites exchange data back and forth using Plain Old XML (POX).
RESTful calls don’t have many of the contract benefits available to Web Service consumers, but they do
tend to simplify the overall process of exchanging data. Other sites may rely on JSON rather than XML
for data exchange. JSON provides a compact way to serialize and deserialize object graphs into a text-
based format easily transported over protocols such as HTTP. It’s often used in other technologies as
well such as ASPNET AJAX.

The concept of REST is credited to Roy Fielding, who outlined different network architecture principles
that can be used to define and access resources using a Uniform Resource Identifier (URI). To put it
another way, REST allows data to be retrieved using simple URLs with actions defined directly in the
URL path segments or through defining query string parameters. RESTful calls can be made using
built-in Silverlight classes such as WwebClient and HttpllebRequest /HttpllebResponse

The simplest way to describe REST is through an example. Flickr provides a REST API (in addition to
XML-RPC and SOAP APIs) that developers can use to retrieve photos and other information from their
web site. An example of what a RESTful call to the Flickr REST API looks like is shown next:

http://www.flickr.com/services/rest/?method=flickr.test.echo&format=rest
&foo=bar&api_key=YourKey

As with any URL, the previous one and those that follow are subject to change.

Notice that a standard URL is used and that the method or action that the server should perform is added
using a query string parameter. Calling this URL results in the following POX response:

<?xml version="1.0" encoding="utf-8" ?>

<rsp stat="ok">
<method>flickr.test.echo</method>
<format>rest</format>
<foo>bar</foo>
<api_key>YourKey</api_key>

</rsp>

Digg also provides a REST API that allows data to be accessed in a similar manner. If you'd like to
retrieve a list of stories from Digg.com, you can make the following RESTful call:

http://services.digg.com/stories/topic/microsoft?count=3&
appkey=http://www.smartwebcontrols.com

This call results in the following XML response (the response data has been edited for the sake of brevity):
<?xml version="1.0" encoding="utf-8" ?>

<stories timestamp="1206485104" min_date="1203893100" total="3209"
offset="0" count="3">

287

Part Il: Developing ASP.NET Applications with Silverlight

<story i1d="5850098"
link="http://www.downloadsquad.com/2008/03/25/could-windows-
xXp-get-another-stay-of-execution/" submit_date="1206484576"
diggs="2" comments="0" status="upcoming" media="news"
href="http://digg.com/microsoft/Could_Windows_XP_get_another..">
<title>Could Windows XP get another stay of execution?</title>
<description> Description..</description>
<user name="spamspankerl23"
icon="http://digg.com/users/spamspankerl123/1.png"
registered="1202407633" profileviews="135" />
<topic name="Microsoft" short_name="microsoft" />
<container name="Technology" short_name="technology" />
<thumbnail originalwidth="200" originalheight="152"
contentType="1image/jpeg"
src="http://digg.com/microsoft/Could_Windows_XP /t.jpg" width="80"
height="80" />
</story>

<!— More story elements follow —>

</stories>

In addition to calling Web Services and REST APIs, Silverlight also has built-in support for socket-to-socket
communication in cases in which a more low-level communication mechanism is needed or you need to
get data from a server without constantly polling it. This option opens up the ability to have Silverlight
applications talk directly with servers, which can be useful when data such as stock quotes need to be
pushed to a client. Web Services, RESTful calls, and sockets will be discussed in more detail throughout
this chapter.

Now that you've seen the main options for accessing data using Silverlight, let’s take a quick look at
options that are available to process data once it’s received.

Data-Processing Options

Silverlight has excellent support for parsing and serializing/deserializing data retrieved from distrib-
uted servers. Because Silverlight contains a subset of the overall NET Framework, you have access to
powerful features such as language integrated query (LINQ) and reader and writer classes that can be
used to parse, process, and map data to CLR objects. Silverlight provides several mechanisms for work-
ing with XML data retrieved from a service, RESTful call, or a socket.

Support for working with SOAP services is built directly into Silverlight as mentioned earlier. SOAP
messages are typically parsed and mapped to CLR objects (the process of deserialization) using a ser-
vice proxy object. By using a proxy object, you can avoid writing custom code to process data contained
in SOAP messages. In rare cases in which you need to manually call a service and process the raw data
yourself, Silverlight provides the classes you need to get the job done.

XML data can be parsed several different ways including using LINQ to XML, the Xm1Reader class, or
the xmlSerializer class. LINQ to XML provides a mechanism for parsing XML data using query syn-
tax, the XmlReader class offers a streaming API that is fast and efficient, and the xml1Serializer class
makes it straightforward to map XML data to custom CLR types. XML data can also be generated within
Silverlight when you need to send it to a server by using an Xxmlwriter class.

288

Chapter 9: Communicating with the Server

In cases in which you need to parse XML syndication feeds such as RSS or ATOM, the xm1Reader and
XmlSerializer classes can be used, but a simpler strategy is to use the built-in Silverlight syndication
classes such as SyndicationFeed and SyndicationItem that minimize the amount of code you have
to write. By learning to use these and other related classes, you can download, parse, and process syn-
dication feeds efficiently and with minimal effort.

Aside from XML data, JSON data can also be serialized or deserialized using a class named
DataContractJsonSerializer. Open Source JSON reader and writer classes are also available
at sites such as www.codeplex.com/Json.

These data-processing options provide different alternatives for working with data in a way that is
compatible with how you like to build applications. If you're an ASPNET developer, then you'll more
than likely be familiar with many of the available classes.

Cross-Domain Support

Before jumping into the different networking features, it’s important to discuss issues that may crop up
from making networking calls from a Silverlight application to a server. Calling from one web site domain
to another (referred to as cross-domain calls) is common in applications that grab data from distributed
sources. This is especially true in mash-up applications that retrieve data from multiple sites and services.
If you've worked with Web technologies like Asynchronous JavaScript and XML (AJAX), then you know
that making cross-domain calls from a client browser isn't always as straightforward as it should be.

AJAX uses an Xm1Ht tpRequest object that requires all calls to go back to the server that originally
served up the AJAX-enabled page to start with. The Xm1Ht tpRequest object prevents calls to other
Internet domains since different types of security hacks such as cross-site forgery attacks can poten-
tially be used to steal a user’s data. Because of this limitation, AJAX applications normally call back to
an intermediate service located on the origin server, which, in turn, calls the remote service to retrieve
cross-domain data. While this technique works and is used by many sites, it requires extra work and
introduces a middleman into the equation (although it does allow different caching techniques to be
used that can increase the reliability of data consumed by an application).

Unlike AJAX, Silverlight supports cross-domain calls but can only call back to the same domain
(sometimes called the site of origin) by default. This means that you can safely call a service hosted at
www.site.com/MyService from a Silverlight client hosted at www. site.com without any additional
work on your part. However, the Silverlight client would not be able to call a service located at
www.site.com:9090/MyService by default since the port is different. Silverlight performs the
following checks to see if a server is in the same domain as a Silverlight client:

Q The protocol is the same.

0O The domain name is the same.

Q The port number is the same.
You won't normally have to worry about cross-domain calls if you have full control over the client applica-
tion and the server application. However, you'll encounter cross-domain problems in situations in which a

Silverlight client needs to consume a service exposed by a vendor such as Amazon or Google, or a service
hosted in the same domain as the Silverlight client but on a different port or protocol.

289

Part Il: Developing ASP.NET Applications with Silverlight

You can simulate the behavior of making a cross-domain call by adding a new Web Service project to
an existing Silverlight 2 project in Visual Studio. Any attempts to call the service from the Silverlight
client will result in a rather confusing error message that states, “The remote server returned an unex-
pected response: (404) Not Found.” At first glance, you may think that the Service Reference is set up
incorrectly and that the service’s URL needs to be fixed. This isn’t the cause of the error in most cases.
The error is raised by Silverlight as it realizes that a cross-domain call is being attempted.

Cross-domain calls can be made only if the target server has a special XML cross-domain policy file
placed at its root. If Silverlight detects that the file isn’t present or that the domain that the call initiated
from is denied access, then an exception will be raised. Two types of cross-domain policy files are sup-
ported in Silverlight 2: Flash crossdomain.xml files and Silverlight clientaccesspolicy.xml files. Silverlight
first checks for the presence of a clientaccesspolicy.xml file on a server when a cross-domain call is initi-
ated. If the file isn’t found, it checks for a crossdomain.xml file. Let’s take a closer look at both types of
cross-domain policy files.

Flash Cross-Domain Policy Files

Cross-domain policy files were first made popular with Flash, which allows data to be aggregated from
multiple sites and services. Many of today’s popular web sites include a Flash cross-domain policy file
named crossdomain.xml at their root to allow external Flash applications to talk with them. Silverlight
supports a subset of the crossdomain.xml file format. Examples of supported files are shown here:

<?xml version="1.0"?>
<cross-domain-policy>

<allow-http-request-headers-from domain="*" headers"*"/>
</cross-domain-policy>

<?xml version="1.0"?>

<cross-domain-policy>
<allow-access-from domain="*" />

</cross-domain-policy>

The first example allows any header to be sent from any domain to a server. This is useful when headers
such as sSoAPAction (used with Web Services) must be allowed. Specific header values can be added to
the headers attribute which is more secure than using *. The second example allows access to a server
from any domain which works well for RESTful calls. Silverlight only supports a domain attribute
value of *.

Additional information about crossdomain.xml files can be found at http: / /www.adobe . com/devnet/
articles/crossdomain_policy_file_spec.html

If you're hosting a service that Flash clients can access, then you'll want to add the crossdomain.xml file
into the site root. If only Silverlight clients can access the service, then you can add a file named clientac-
cesspolicy.xml into the site root as discussed next.

You may come across crossdomain.xml files that define a Document Type Definition (DTD) at the top

of the file that includes a reference to www.macromedia.com or www.adobe . com. Silverlight 2
doesn’t look at the DTD since different versions may be present in the crossdomain.xml file.

290

Chapter 9: Communicating with the Server

Silverlight Cross-Domain Policy Files

The Flash cross-domain policy file format works well for restricting access to a server by domain, but it
doesn’t allow specific resources on a server to be locked down. In today’s “security comes first” mental-
ity, having more control over what resources can be accessed is a desirable feature. After all, if callers

don’t need access to every folder on a server, then why give them that level of access in the first place?

To help reduce the attack surface exposed to cross-domain callers, Microsoft released a Silverlight-specific
cross-domain policy file called clientaccesspolicy.xml. This file provides additional control over which
domains can call a server using cross-domain calls, what resources those domains can access, and
which HTTP request headers are allowed. An example of a clientaccesspolicy.xml file is shown next:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
<cross-domain-access>
<policy>
<allow-from http-request-header="*">
<domain uri="*"/>
</allow-from>
<grant-to>
<resource path="/Services" include-subpaths="true"/>
</grant-to>
</policy>
</cross-domain-access>
</access-policy>

This file allows cross-domain calls made from any domain access to resources located in the Services
directory off the server root. The allow-from element provides a way to define which domains are
allowed access to a service much like Flash’s crossdomain.xml file. However, Silverlight’s policy file goes
a step further by allowing a server to control what resources domains can access using the grant-to
element as well as which HTTP request headers can be passed using the http-request-header attri-
bute. The http-request-header attribute accepts a wildcard (*) character as well as non-blacklisted
headers. Additional details on current blacklisted headers can be found in the Silverlight SDK or at
http://msdn.microsoft.com Multiple request headers can be defined in the http-request-header
attribute by providing a comma-separated list.

Multiple policy elements can be added in cases in which different domains can access different resources:

<?xml version="1.0" encoding="utf-8"7?>
<access-policy>
<cross-domain-access>
<policy>
<allow-from http-request-headers="*">
<domain uri="*"/>
</allow-from>
<grant-to>
<resource path="/Services" include-subpaths="false"/>
</grant-to>
</policy>
<policy>
<allow-from http-request-headers="*">
<domain uri="*.domainName.com" />

291

Part Il: Developing ASP.NET Applications with Silverlight

</allow-from>
<grant-to>
<resource path="/SpecialServices" include-subpaths="true"/>
</grant-to>
</policy>
</cross-domain-access>
</access-policy>

This cross-domain policy file allows the domainName.com domain to access the SpecialServices direc-
tory as well as subpaths under that directory. In cases in which Silverlight clients can access everything
from the root of the server down, the resource element’s path attribute can be given a value of /, and

the include-subpaths attribute can be given a value of true.

When Flash or Silverlight clients of a server can access any resource, a simple Flash crosspolicy.xml
file placed at the server root will get the job done. When specific resources need to be locked down for
Silverlight clients, a clientaccesspolicy.xml file can be placed at the root. If Flash clients won't be calling
your server, it’s recommended that you use clientaccesspolicy.xml files, since they provide the most
robust security owing to their ability to restrict resources and HTTP request headers.

Creating Services for Silverlight

To this point, you've seen that Silverlight is capable of making cross-domain calls to access data located
on different servers. This is a great feature if you need to aggregate data from distributed services and
display it in your Silverlight application. However, in many cases, an application will access data located
on the origin server, so understanding how to create services is an important part of Silverlight
development.

In the remainder of this section, you'll see how to create Windows Communication Foundation (WCF)
services as well as ASPNET Web Services that can be consumed by Silverlight. Many books have been
written covering WCF and ASPNET Web Service development features and principles, and this chapter
can’t do the technologies justice on its own. The goal of the sections that follow is to provide an over-
view of using the technologies to help jump-start the service development process.

Creating a WCF Service for Silverlight

Let’s walk through the process of creating WCF data contracts and service contracts. Once contracts are
created, you'll then see how service contracts can be implemented to create a cross-platform service and
how a service can be configured to be Silverlight-compatible.

Windows Communication Foundation (WCF) was first released with .NET 3.0 and is an integral part of
NET 3.5. It provides a robust and flexible framework for building different types of services that can be
consumed by clients using virtually any language, platform, or object model. WCF is based on key tech-
nology standards such as XSD schemas, WSDL, SOAP, and WS-* standards (security, addressing, mes-
saging reliability, etc.) and follows key SOA (Service Oriented Architecture) principles such as loosely
coupled contracts, bindings (ways to call a service), and discoverable services. If you're already familiar
with building classes and implementing interfaces, then building WCF services will be a natural exten-
sion of what you're already doing.

292

Chapter 9: Communicating with the Server

WCF has its own set of ABCs: Address, Binding, and Contract. The Address part represents the location
of the physical service, the Binding part represents how you'll bind or talk to the service (will it be over
HTTP, TCP, or another binding?), and the Contract part defines what operations a service can perform
as well as details about those operations such as data types passed back and forth.

To create a WCF service, there are prescribed steps you can walk through to ensure that you adhere to
the ABCs. Start by creating a WCF Service Library or WCF Service Application project in Visual Studio.
This adds a reference to WCF assemblies such as System. ServiceModel that house key classes used
by a service. Once the project is created, you can create data contract classes, service interfaces, WCF
configuration code, plus more.

The topics that follow provide details on creating WCF services that Silverlight clients can consume.
While you can certainly create WCF services by hand or by using Visual Studio’s WCF Service Library
or WCF Service Application project templates, the Silverlight 2 tools for Visual Studio 2008 also pro-
vide a Silverlight-enabled WCF Service item that can be selected to help jump-start the pro-
cess. Once you've created a web site or ASP.NET Web Application project in Visual Studio, right-click
on the project, select Add New Item, and choose Silverlight-enabled WCF Service. Doing this
will add a .svc file into the project along with starter code for the service. WCF configuration code will
also be added into web.config.

Defining a WCF Data Contract

A data contract defines the data that will be passed between a client and a service. Different attributes
can be used to define a data contract such as DataContract and DataMember. The DataContract attri-
bute applies to a class, whereas the DataMember attribute applies to a field or property. Public properties
are recommended over public fields especially when you'll be data-binding classes to Silverlight controls.

An example of creating a simple contract to allow a Product object to be exchanged between a service
and a client is shown next:

namespace Model
{
[DataContract]
public partial class Product

{
[DataMember]
public int ProductID { get; set; }

[DataMember]
public int CategoryID { get; set; }

[DataMember]
public string ModelNumber { get; set; }

[DataMember]
public string ModelName { get; set; }

[DataMember]
public string ProductImage { get; set; }

[DataMember (Order=6)]

293

Part Il: Developing ASP.NET Applications with Silverlight

public decimal UnitCost { set; get; }

[DataMember]
public string Description { get; set; }

Although you can always type this class and its members yourself, LINQ to SQL provides a nice designer
surface that can be used to create data contract classes visually and tie them to a database table for sim-
plified O/R mapping. The sample code provided for this chapter uses LINQ to SQL. If you go this route,
you'll need to ensure that you change the Serialization Mode to Unidirectional in the LINQ to SQL
designer so that the generated classes can be serialized and deserialized when used with WCF services.
You can change the Serialization Mode value by right-clicking on the LINQ to SQL design surface and
selecting Properties from the menu.

Data entity classes used in services can also be generated using XML schemas (.xsd files) and command-line
tools. By doing this, messages exchanged between the client and service will be based on global standards
that help to minimize interop issues across different platforms. With .NET you can use the xsd. exe tool
with the /classes switch to generate classes from an XSD schema:

xsd.exe /classes schemaName.xsd

While this will generate the appropriate class and member properties for you, it won’t decorate the class
with the DataContract attribute and the properties with the bataMember attribute, unfortunately.

WCF’s svcutil.exe tool can be used to convert an XSD schema into a class and add the appropriate
DataContract and DataMember attributes for you. For example, to automatically generate a data contract
class from an existing XSD schema, the following can be run using the Visual Studio command prompt:

svcutil.exe /dconly schemaName.xsd

The /dconly switch says to create the data contract class from the types defined in the schema.
Running this command-line tool will auto-generate a class based on the schema types.

Defining a WCF Service Contract

Once the data contract(s) used by the service is defined, the service contract can be created. Service con-
tracts rely on .NET interfaces and WCF attributes. In its most basic form, a service contract defines what
operations a service will perform using an interface. Services that implement the contract must, of
course, implement all of the members defined in the contract/interface.

The following code demonstrates how to create a service contract and use the ServiceContract
and OperationContract attributes to mark the interface as a WCF contract and the methods as
WCEF operations:

[ServiceContract ()]
public interface IProductService
{
[OperationContract]
Model.Product[] GetProducts() ;

294

Chapter 9: Communicating with the Server

[OperationContract]
Model .Product GetProduct (int prodID) ;

This example defines a service contract named IProductService and two operations named GetProducts
and GetProduct. Both operations return the Product data contract discussed earlier.

Creating a WCF Service

Once the service contract has been defined, it must be implemented in order to be useful. When a class
implements an interface, it must define all of the members in the interface. The same logic holds true for
services that implement service contracts.

WCEF Services can be exposed using IIS or can be self-hosted in Console applications, Windows Services,
or other types of .NET applications. When hosting services on IIS, the service file will have a .svc file
extension rather than the .asmx extension used with standard ASPNET Web Services. The .svc file con-
tains a ServiceHost attribute that points to a code file containing the actual service code:

<% @ServiceHost Language=C# Service="ProductService"
CodeBehind="~/App_Code/Service.cs" %>

The code file must implement the appropriate service contract and fulfill all of the contract’s requirements
in order to compile successfully. An example of implementing the IProductService contract defined ear-
lier on a class named ProductService is shown next:

public class ProductService : IProductService
{ public Model.Product[] GetProducts()

{
return Biz.BAL.GetProducts();

}

public Model.Product GetProduct (int prodID)

{
return Biz.BAL.GetProduct (prodID) ;

}

The ProductService class implements the two methods defined in the IProductService class and
adds code to call into a business layer. The business layer, in turn, calls a data layer class to communi-
cate with the database. The following code shows the data contract, service contract, service, business
layer, and data layer interfaces and classes so that you can see how they related to each other:

namespace Model

{
[DataContract]
public partial class Product

{

[DataMember]
public int ProductID { get; set; }

[DataMember]

295

Part Il: Developing ASP.NET Applications with Silverlight

public int CategoryID { get; set; }

[DataMember]
public string ModelNumber { get; set; }

[DataMember]
public string ModelName { get; set; }

[DataMember]
public string ProductImage { get; set; }

[DataMember (Order=6)]
public decimal UnitCost { set; get; }

[DataMember]
public string Description { get; set; }

[ServiceContract (Namespace="http://www.smartwebcontrols.com/samples")]
public interface IProductService

{

[OperationContract]
Model .Product[] GetProducts() ;

[OperationContract]
Model .Product GetProduct (int prodID) ;

public class ProductService : IProductService

{
public Model.Product[] GetProducts/()

{
return Biz.BAL.GetProducts() ;
}
public Model.Product GetProduct (int prodID)
{
return Biz.BAL.GetProduct (prodID) ;
}

//Business Layer
namespace Biz

{
public class BAL

{
public static Model.Product[] GetProducts ()

{
return Data.DAL.GetProducts () ;

296

Chapter 9: Communicating with the Server

public static Model.Product GetProduct (int prodID)

{
return Data.DAL.GetProduct (prodID) ;

//Data Layer
namespace Data

{

public class DAL

{

static string _ProductImageUrlBase;
private static string ProductImageUrlBase
{
get
{
if (_ProductImageUrlBase == null)
{
IncomingWebRequestContext context =
WebOperationContext.Current.IncomingRequest;
_ProductImageUrlBase =
String.Format ("http://{0}/ProductImages/thumbs/",
context.Headers [HttpRequestHeader.Host]) ;
}

return _ProductImageUrlBase;

public static Product[] GetProducts ()

{
using (GolfClubShackDataContext context =
new GolfClubShackDataContext ())

return (from p in context.Products

let imageUrl = ProductImageUrlBase + p.ProductImage

select new Product

{
CategoryID = p.CategoryID,
Description = p.Description,
ModelName = p.ModelName,
ModelNumber = p.ModelNumber,
ProductID = p.ProductID,
ProductImage = imageUrl,
UnitCost = p.UnitCost,

}) .ToArray<Product> () ;

public static Product GetProduct (int prodID)

Part Il: Developing ASP.NET Applications with Silverlight

{
using (GolfClubShackDataContext context =
new GolfClubShackDataContext ())
{
return (from p in context.Products
where p.ProductID == prodID
let imageUrl = ProductImageUrlBase + p.ProductImage
select new Product
{
CategoryID = p.CategoryID,
Description = p.Description,
ModelName = p.ModelName,
ModelNumber = p.ModelNumber,
ProductID = p.ProductID,
ProductImage = imageUrl,
UnitCost = p.UnitCost,
}) .SingleOrDefault<Product> () ;
}
}

Configuring a WCF Service

Visual Studio handles adding WCF-specific configuration entries into the web.config file when you ini-
tially create a WCF Service web site. The configuration information defines how clients will bind to the
service, the contract that the service exposes, and behaviors that the service can perform. A sample
WCEF system. serviceModel configuration entry added into web.config to support the
ProductService class is shown next:

<system.serviceModel>
<services>
<service name="ProductService" behaviorConfiguration="serviceBehaviors">
<endpoint contract="IProductService" binding="basicHttpBinding"/>
</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior name="serviceBehaviors">
<serviceDebug includeExceptionDetailInFaults="false"/>
<serviceMetadata httpGetEnabled="true"/>
</behavior>
</serviceBehaviors>
</behaviors>
</system.serviceModel>

Although Visual Studio generates the initial XML configuration code used by a service, you will have to
modify the configuration code as you change your interface and service names to ensure that the names
defined in your code match up with the names in web.config. This WCF service configuration code ref-
erences the ProductService using the name attribute, defines what behaviors the service performs
using the behaviorConfiguration attribute, and defines the contract IProductService exposed by the
service endpoint using the contract attribute. It also defines that clients binding to the service can use
standard HTTP bindings. This binding is required for Silverlight clients to call the service successfully.

298

Chapter 9: Communicating with the Server

Bindings such as wsHttpBinding won’t work because they allow for message encryption, digital signa-
tures, and so on that Silverlight couldn’t support without adding to the downloadable plug-in file size.
If you're unable to call a WCF service using Silverlight, one of the first things you'll want to check is that
the basicHttpBinding is being used.

Self-Hosted WCF Services and Cross-Domain Policy Files

The WCEF service discussed up to this point would be hosted using Internet Information Services (IIS).
However, WCF services can be hosted in Windows Services, Console applications, Windows Forms, or
other .NET applications without relying on IIS. Silverlight clients trying to hit a self-hosted service from
a different domain will encounter security issues unless they're able to retrieve a crossdomain.xml or
clientaccesspolicy.xml file as discussed earlier in this chapter.

The solution to this problem is solved by new WCF Web features and attributes available in .NET 3.5
that allow a cross-domain policy file to be retrieved by a Silverlight client even when the WCF service
isn't hosted in IIS. This solution was originally created by Microsoft’s Carlos Figueira on his blog at
http://blogs.msdn.com/carlosfigueira/default.aspx.

By using WCF’s webGetAttribute class (located in the System. ServiceModel .Web), a self-hosted
service can serve cross-domain policy files to a Silverlight client much like IIS would serve a static pol-
icy file located at its root. Here’s an example of using the WCF webGetAttribute class to allow a ser-
vice operation to use the Web programming model:

[ServiceContract]

public interface ICrossDomainPolicyRetriever

{
[OperationContract]
[WebGet (UriTemplate = "/clientaccesspolicy.xml")]
Stream GetSilverlightPolicy();

[OperationContract]
[WebGet (UriTemplate = "/crossdomain.xml")]
Stream GetFlashPolicy () ;

The webGetAttribute class’s UriTemplate property specifies that any calls to /clientaccesspolicy.xml
should call the GetSilverlightPolicy method, while calls to /crossdomain.xml should call the
GetFlashPolicy method. By using this technique, a self-hosted service can still be used by a
Silverlight client in another domain.

A WCEF service class that implements the ICrossDomainPolicyRetriever service contract is shown next
along with code for the GetsilverlightPolicy and GetFlashPolicy methods:

using System;

using System.ServiceModel;

using System.ServiceModel .Web;

using System.IO;

using System.Text;

using System.ServiceModel .Description;

[ServiceContract]
public interface ITest

299

Part Il: Developing ASP.NET Applications with Silverlight

[OperationContract]
string Echo(string text);

[ServiceContract]

public interface ICrossDomainPolicyRetriever

{
[OperationContract]
[WebGet (UriTemplate = "/clientaccesspolicy.xml")]
Stream GetSilverlightPolicy () ;

[OperationContract]
[WebGet (UriTemplate = "/crossdomain.xml")]
Stream GetFlashPolicy () ;

public class SelfHostedService : ITest, ICrossDomainPolicyRetriever

{
public string Echo(string text) { return text; }

Stream StringToStream(string result)

{

WebOperationContext.Current.OutgoingResponse.ContentType =
"application/xml";
return new MemoryStream(Encoding.UTF8.GetBytes (result)) ;

public Stream GetSilverlightPolicy ()
{

string result = @"<?xml version=""1.0"" encoding=""utf-8""?>
<access-policy>
<cross-domain-access>
<policy>
<allow-from http-request-headers=""*"">
<domain uri=""*""/>
</allow-from>
<grant-to>
<resource path=""/"" include-subpaths=""true""/>
</grant-to>
</policy>
</cross-domain-access>
</access-policy>";
return StringToStream(result) ;
}
public Stream GetFlashPolicy ()
{
string result = @"<?xml version=""1.0""?>
<cross-domain-policy>
<allow-http-request-headers-from domain=""*"" headers=""*"" />
</cross-domain-policy>";
return StringToStream(result) ;

300

Chapter 9: Communicating with the Server