Universitit Bemn ‘
Institut fiir Informatik und N
angewandte Mathematik '

Langgassstrasse 51

3012 BERN

Inside
Smallralk

Volume |

UNIVERSITAT BERN
INSTITUT FUR INFORMATIK

Wilf R. LaLlonde UND ANGEWANDTE MATHEMATIK
Bibliothek

School of Computer Science

Carleton University

Signatur: 2 ¢ 4. 2832 /I

John R. Pugh

School of Computer Science
Carleton University

Prentice-Hall International, inc.

This edition may be sold only in those countries to which
it is consigned by Prentice-Hall International. It is not to
be re-exported and it is not for sale in the U.S.A., Mexico,
or Canada.

= © 1990 by PRENTICE-HALL, INC.
A Division of Simon & Schuster

Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

0 9 87 65 4 3 2

ISBN 0-13-458430-3

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Table of Contents

PREFACE

1 OBJECT-ORIENTED PROGRAMMING

a

Universit:t Bern

Institut fir Informatik und

angewandte Mathematik
Langgassstrasse 51

3012 BERN

xi

1.1 Introduction, 1
1.2 OOP Is Programming by Simulation, 1

1.3 Traditional Versus Object-Oriented Programming, 3
1.3.1 A Traditional Approach, 3
1.3.2 An Object-Oriented Approach, 4
1.3.3 Objects Encapsulate State and Operations, 6
1.3.4 Objects Communicate via Message-Passing, 6
1.4 OOP Is Programming with Abstract Data Types, 7
1.5 OOP Is Programming via Classification, 9
1.6 OOP Is Programming with Polymorphism, 11
1.6.1 Static Versus Dynamic Binding, 12
1.7 OOP Is Programming with Inheritance, 13
1.7.1 Specialization and Generalization, 14
1.8 Summary, 18

1.9 Glossary, 18

2 SMALLTALK FUNDAMENTALS 21

2.1 Introduction, 21

2.2 Objects in Smalltalk, 22
2.2.1 What Is a Smalltalk Object?, 23
2.2.2 Information Hiding: Internal and External Views of an Object, 23
2.2.3 Literal Objects, 24
2.3 Sending Messages, 25
2.3.1 Unary Messages, 26
2.3.2 Binary Messages, 27
2.3.3 Keyword Messages, 27
2.3.4 Evaluation of Message Expressions, 28

3 AN INTRODUCTION TO THE SMALLTALK USER INTERFACE

2.4

25

2.6

2.7
2.8
2.9

3.1

3.2

33

2.3.5 Cascaded Messages, 28

2.3.6 Dynamic Binding and Overloading, 29
2.3.7 Variables and Assignments, 30

2.3.8 Allocation and Deallocation of Objects, 32
Control Structures with Message-Passing, 32
2.4.1 Conditional Selection, 33

2.4.2 Conditional Repetition, 35

2.4.3 Fixed Length Repetition, 36

2.4.4 An Example: Testing for Primes, 37

2.45 User-Defined Control Structures, 39
Classes, 40

2.5.1 Designing a New Class, 40

2.5.2 Class Protocol versus Instance Protocol, 41
25.3 Implementing a Class Description, 42
2.5.4 Describing a Class, 43

2.5.5 Describing Methods, 45

2.5.6 Variables and Scope, 46

2.5.7 The Pseudo-Variable seif, 50

2.5.8 Methods Can Be Recursive, 51
Inheritance, 51

2.6.1 Method Inheritance, 53

2.6.2 An Example: Constrained Pens, 563

2.6.3 The Pseudo-Variable super, 57

2.6.4 Abstract Classes, 60

Summary, 62

Exercises, 63

Glossary, 64

Introduction, 67

3.1.1 Smalltalk Provides an Integrated Programmng Environment, 68

3.1.2 Try it Yourself, 68

3.1.3 Not All Smalltalks Are Exactly Alike, 69
3.1.4 Not All Computers Are Alike, 69
3.1.6 Pointing Device Mechanics, 70
Getting Started, 71

3.2.1 Activating Smalltalk, 71

3.2.2 Changing the Active Window, 72
3.2.3 The ‘Ideal’ Smalltalk Mouse, 73
3.2.4 Using Pop-Up Menus, 75

3.2.6 Making a Menu Selection, 77
3.2.6 Restoring the Display, 77
Manipulating Windows, 77

3.3.1 Creating New Windows, 77

3.3.2 Manipulating Windows, 78

3.3.3 Relabeling Windows, 80

3.3.4 Scrolling through Windows, 81

67

Inside Smalltalk

3.4 Editing Text, 85
3.4.1 Inserting Text, 86
3.4.2 Selecting Text, 86
3.4.3 Replacing Text, 87
3.4.4 Deleting Text, 88
3.45 Cut, Copy, and Paste, 88
3.4.6 Again and Undo, 89

3.5 Evaluating Smalltalk Expressions, 90
3.5.1 Evaluating Code in a Workspace Window, 90
3.5.2 Evaluating Existing Smallitalk Code, 91
3.5.3 Compilation Errors, 91

3.6 Quitting from Smalltalk, 93

3.7 Summary, 94

3.8 Exercises, 94

3.9 Glossary, 95

4 PROGRAMMING WITH BROWSERS 99
4.1 Introduction, 99
4.2 System Browsers, 101

4.3 Viewing Existing Classes, 102
4.3.1 Finding a Class, 104
4.3.2 Viewing Class Definitions, 104
4.3.3 Viewing the Class Hierarchy, 106
4.3.4 Viewing the Protocol Supported by a Class, 107
4.3.5 Viewing Methods, 108
4.3.6 Finding a Method, 109
4.3.7 Obtaining Explanations, 109

4.4 Evaluating Code from within a Browser, 110

4.5 Adding and Modifying Methods and Classes, 112
4.5.1 Modifying Existing Methods, 112
45.2 Adding New Classes, 114
45.3 Adding New Methods, 118
4.5.4 Adding New Class Categories, 119
455 Modifying Existing Class Definitions, 119
4.5.6 Renaming Class Categories, Classes, Method Categories, and Methods, 121
4,5.7 Removing Class Categories, Classes, Method Categories, and Methods, 122
4.6 Specialized Browsers, 123
4.6.1 Browsing by Category, Class, Message Category, and Message, 123
4.6.2 Browsing the Superclass Chain, 126
4.6.3 Browsing Selected Sets of Methods, 127
4.7 Saving Your Work, 133
4.7.1 Filing Out, 133
4.7.2 Printing, 135
4.7.3 FilingIn, 135
4.7.4 Using the File List Browser, 135
4.7.5 Updating the Smalltalk Image, 139
4.7.6 Using the Changes File, 140
4.7.7 Surviving a System Crash, 141

Table of Contents v

4.8
49

Summary , 141
Exercises, 142

4,10 Glossary and Important Facts, 143

5 DEBUGGING WITH INSPECTORS, NOTIFIERS, AND DEBUGGERS

5.1
5.2

5.3

5.4

5.6
5.6
5.7

Introduction, 147

Inspecting Objects, 148

5.2.1 Inspecting the Instance Variables of an Object, 160

5.2.2 Modifying the Values of the Instance Variables of an Object, 150
5.2.3 Evaluating Expressions within an Inspector, 150

5.2.4 Inspecting the Instance Variables of an Inspected Object, 1561
5.2.5 Inspecting Dictionaries, 152

Error Notification with Notifiers, 155

5.3.1 Interpreting Notifier Windows, 155

5.3.2 Continuing after an Error Notification, 157

5.3.3 User-Generated Notifiers, 158

5.3.4 Interrupting a Non-Terminating Computation, 158

5.3.5 Setting a Breakpoint, 158

5.3.6 Handling Exceptional Conditions, 169

Debuggers, 160

5.4.1 Viewing an Interrupted Computation with a Debugger, 160
5.4.2 Error Correction within a Debugger, 163

Summary, 174

Exercises, 175

Glossary, 176

6 OBJECTS

vi

6.1
6.2

6.3
6.4

6.5

Introduction, 179

Class Object, 181

6.2.1 The Representation of an Object, 181

6.2.2 Bindings: Assignments and Parameter Passing, 184

6.2.3 The Inherited Representation of an Object, 186

6.2.4 Querying Operations, 188

6.2.5 Debugging, Inspecting, and Confirming, 190

6.2.6 Meta Operations for Accessing and Modifying Objects, 195
6.2.7 Copying Operations: Shallow versus Deep Copies, 198
6.2.8 Comparison Operations: Identity versus Equality, 200
6.2.9 Read/Write Operations: PrintStrings and StoreStrings, 201
6.2.10 Meta Operations for Indirect Execution {perform:), 206
6.2.11 Advanced Meta Operations, 208

Class UndefinedObiject, 213

Class BlockContext {Blocks for Short), 214

6.4.1 Blocks Provide Facilities to Design Controf Structures, 218
6.4.2 Syntactic Details and Recursive Blocks, 219

Class Boolean, 220

147

179

Inside Smalltalk

6.6 Designing a New Class: BinaryTree, 223

6.7

6.8
6.9

6.6.1 A Standard Design, 224
6.6.2 A Non-Standard Design, 229

Classes and Metaclasses, 233
6.7.1 Multiple Inheritance, 237
Summary, 240

Exercises, 240

6.10 Glossary and Important Facts, 241

7 THE MAGNITUDE CLASSES 245

7.1

7.2

7.3

7.4
1.5
7.6
7.7
7.8

Magnitudes, 245

7.1.1 Class Magnitude Simplifies the Implementation of New Magnitudes, 246
Numbers, 247

7.2.1 The Notation for Number Constants, 247

7.2.2 Converting Numbers to Strings, 248

7.2.3 Converting Strings to Numbers, 249

7.2.4 Type Conversion, 250

7.2.5 Division, Remainders, Truncation, and Rounding, 255
7.2.6 Mathematical Operations, 258

7.2.7 Creating a New Subclass of Number, 259

7.2.8 Bit Manipulation on Integers, 260

Date and Time, 265

7.3.1 Class Operations for Dates and Times, 266

7.3.2 Conversion Qperations for Dates and Times, 266
7.3.3 Querying Operations for Dates and Times, 268

7.3.4 Arithmetic Operations for Dates and Times, 268

7.3.5 Designing an Absolute Time Class, 268

Characters, 274

Random Streams, 275

Summary, 276

Exercises, 277

Glossary and Important Facts, 277

8 THE COLLECTION CLASSES 261

8.1

introduction, 281

8.1.1 A Logical Organization, 284

8.1.2 Creating Collections, 286

8.1.3 Comparing Collections, 290

8.1.4 Sequencing over Collections, 292

8.2 The Keyed Collections (Non-Streams), 298

8.2.1 Individual Characterizations, 299

8.2.2 Constructing New Keyed Collections, 300

8.2.3 The Dictionary Protocol, 304

8.2.4 The Array and OrderedCollection Integer-Keyed Protocol, 311
8.25 The String, Symbol, and Text Protocol, 317

8.2.6 The Mapped Collection and Run Array Protocol , 324

8.2.7 The Interval Protocol, 327

Table of Contents vii

8.3

8.4

8.5

8.6

8.7
8.8
8.9

The Streamable Collections (Streams), 329

8.3.1 Individual Characterizations, 330

8.3.2 Constructing New Streamable Collections, 331

8.3.3 How Read and Write Streams Are Typically Used, 332
8.3.4 Read, Write, and ReadWrite Streams, 334

8.35 File Names, 340
The Ordered Classes (Non-Streams and Non-Keyed Protocol), 342
8.4.1 Individual Characterizations, 343

8.4.2 Constructing New Ordered, Sorted, and LinkedList Collections, 343
8.4.3 The Ordered Collection Protocol, 346

8.4.4 The Sorted Collection Protocol, 350

8.45 The Linked List Protocol, 351

The Unordered Collections, 353

8.5.1 Individual Characterizations, 353

8.56.2 Constructing New Unordered Collections, 355

8.5.3 The Unordered Collection Protocol, 355

Creating New Collection Classes, 357

8.6.1 Creating Specializations of Existing Collection Classes, 358
8.6.2 Creating a Totally New Sharable Collection Class, 363
Summary, 371

Exercises, 371

Glossary and Important Facts, 373

9 THE GRAPHICS CLASSES 377

viii

9.1

9.2

9.3

9.4

Introduction, 377

9.1.1 The Smalitalk Graphica! Model, 378

9.1.2 Graphic Capabilities of Smalltalk, 378

Positions and Areas: Classes Point and Rectangle, 380
9.2.1 Creating Points and Rectangles, 380

9.2.2 Printing and Storing Points and Rectangles, 383
9.2.3 Copying Points and Rectangles, 383

9.2.4 Accessing and Modifying Points and Rectangles, 383
9.2.5 Conversion Operations, 385

9.2.6 Arithmetic Operations, 385

9.2.7 Comparing Points and Rectangles, 386

9.2.8 Truncating and Rounding Points and Rectangles, 387
9.2.9 Points in Polar Coordinate Form, 388

9.2.10 Miscellaneous Point Operations, 388

9.2.11 Miscellaneous Rectangle Operations, 389

9.2.12 Transforming Points and Rectangles, 390

Creating and Manipulating Graphic Images, 392
9.3.1 Creating images with Forms, 392

9.3.2 Manipulating Images with BitBlts, 393

9.3.3 The Full Protocol for Class BitBIt, 400

Displayable Objects, 402

9.4.1 An Overview of the Graphics Classes, 402

9.4.2 Standard Protocol for Displayable Objects, 403

9.4.3 Summary, 408

Inside Smalltalk

9.5 Display Mediums, 408
9.5.1 Display Mediums as Canvas and Brush, 408
9.5.2 Coloring and Adding Borders to Images, 408
9.5.3 Bit Copying and Drawing Lines, 412
9.6 Forms, 412
9.6.1 Bitmaps, 413
9.6.2 Creating Forms, 414
9.6.3 Querying Forms, 415
9.6.4 Modifying Forms, 416
9.6.5 Displaying Forms, 416
9.6.6 Bit Copying and Line Drawing, 417
9.6.7 Coloring and Bordering Forms, 417
9.6.8 Storing Images, 418
9.6.9 Converting Forms to Strings, 418
9.6.10 Transforming Images, 418
9.7 Infinite and Opaque Forms, 421
9.7.1 Infinite Forms, 421
9.7.2 Opaque Forms, 421
9.8 Cursors, 424
9.8.1 Installing a New Cursor, 426
9.8.2 Additional Protocol for Cursors, 427
9.9 Classes DisplayScreen and DisplayBitmap, 427
9.10 Graphical Interaction , 428
9.10.1 Examples of Graphical Interaction, 429

9.11 Generating Graphics Paths and Trajectories, 430
9.11.1 Generating Paths, 432
9.11.2 Generating Lines, 435
9.11.3 Generating Linear Fits, 437
9.11.4 Generating Curves, 437
9.11.5 Generating Splines, 438
9.11.6 Generating Arcs and Circles, 439
9.11.7 Generating New Paths: Ellipses, 440
9.11.8 Revisions to Paths, 445
9.12 Drawing with Pens, 447
9.12.1 Creating Pens, 447
9.12.2 Scribbling and Doodling with Pens, 448
9.12.3 Turtle Graphics with Pens, 449
9.12.4 Additional Pen Operations, 451
9.13 Summary, 451
9.14 Exercises, 452

9.15 Glossary and Important Facts, 454

10 GRAPHICAL APPLICATIONS 457
10.1 Introduction, 457

10.2 Film Loops: Never-Ending Movies, 457
10.2.1 A Simple Film Loop Facility, 4568
10.2.2 Extending Film Loops: Flicker-Free Display, 462

Table of Contents ix

10.2.3 Extending Film Loops: Disk Forms, 464
10.2.4 Integrating Disk Forms with Film Loops, 467

10.3 Graphics Through the Looking Glass, 469

10.3.1 Activating the Magnifier, 472

10.3.2 Restoring and Redisplaying, 473

10.3.3 Restoration and Redisplay Details, 477

10.3.4 Displaying the Magnifier on the Merged Form, 478

10.3.5 Displaying the Magnified Image on the Merged Form, 479
10.3.6 Class Magnifying Glass, 481

10.4 The Design and Implementation of a Simple Video Game, 485

10.4.1 Designing |Is Prototyping, 485

10.4.2 Getting into Details, 487

10.4.3 Taking Movement More Seriously, 488
10.4.4 Extending and Improving the Design, 489
10.4.5 Designing for Speed, 490

10.4.6 More Refinements and Further Polishing, 491
10.4.7 The Video Game: Conclusions, 492

10.4.8 The Source Code for the Video Game, 492

10.5 Summary, 504
10.6 Exercises, 504
10.7 Glossary, 504

CLASS INDEX

INDEX

506

508

Inside Smalltalk

A

Preface

INTRODUCTION

In the seventies, structured programming revolutionized the way programmers constructed
software systems. Today, many are predicting that the object-oriented programming paradigm
will be the second major revolution in software engineering and that object-oriented systems
will become the predominant programming tools of the nineties. In the two volumes of
Inside Smalltalk, we take an in-depth look at the Smalltalk-80 environment — the
programming system that most consistently adheres to the object-oriented paradigm and that
has served both as a model for object-oriented extensions to existing languages and as the
basis for a new generation of languages supporting inheritance. It can be argued that
Smalltalk has had more impact on software development in the last decade than any other
programming language. Smalltalk fosters the notions of programming in the large and
programming by extension rather than by re-invention. Smalltalk provided the foundation for
window-based graphical user interfaces, for the development of truly reusable class libraries,
and for the introduction of on-line tools such as code browsers. Our objective in Inside
Smalltalk is to provide a comprehensive survey of the Smalltalk environment, the
language, and the library. A secondary goal is to show how interactive graphical applications
can be constructed using object-oriented programming techniques and the unique Smalltalk
programming environment. Moreover, we show how Smalltalk's underlying philosophy of
reusing and extending existing code permits the development of such applications with high
productivity.

Programming in Smalltalk is different from programming in other languages such as
Pascal, C, or Ada because of the major influence played by the object-oriented programming
paradigm, the large class library, and the interactive programming environment. Developing
programs in Smalltalk requires familiarity with all three of these components and the
learning curve for programmers is therefore longer than for more traditional languages.
Although there is no substitute for programming with the Smalltalk system itself, our

objective is to reduce this learning curve by providing a comprehensive description of the
Smalltalk language, the class library and programming environment and by illustrating the
use of object-oriented programming techniques to develop interactive graphical applications.
The need for a Smalltalk guru to be close at hand when leamning the system will then be
minimized. In addition, Inside Smalltalk will be a valuable reference to accomplished
Smalitalk programmers whenever they venture into uncharted territory in the class library.

Be forewarned that it will take you considerably longer to become an accomplished
Smalltalk programmer than an accomplished Pascal programmer. However, the return on
your investment will be an ability to develop interactive graphical applications with all the
features of modern user interfaces; e.g., windows, menus, mouse interaction. Indeed, a major
emphasis of the second volume is to describe the Smalltalk features that make this possible;
namely, the model-view-controller paradigm for constructing user interfaces and the graphical
and window classes in the library. At the time of this writing, and despite the fact that it is
this material that gives Smalltalk much of its appeal, no in-depth presentation of the
graphical and user interface classes was available in any other text.

Although the Smalltalk language is itself quite small, the Smalltalk system is large.
Initially this limited its use to expensive, powerful workstations. However, efficient
implementations of Smalltalk are now readily accessible to large numbers of users on the
current generation of personal computers bringing the power of Smalltalk to the classroom
and a mass audience.

ORGANIZATION OF THE BOOK

Inside Smalltalk consists of two volumes with the first volume divided into 4 major
sections. The second volume concentrates on the window and user interface classes and
describes how Smalltalk may be used to develop applications involving WIMP-based
(Windows, Icons, Menu, and Pointer) user interfaces.

VOLUME ONE

The first section of Volume One introduces the fundamentals of object-oriented programming
and Smalltalk, the second describes the Smalltalk programming environment, and the final
two sections divide the class library into basic classes (objects, magnitudes, and collections),
and graphical classes. A common thread throughout the latter two sections is to describe a
set of related classes from the class library, to explain some of the rationale behind design
decisions taken by the designers, and then to show how new classes may be added to extend
the existing classes in some useful way. In addition, Chapter 10 is devoted entirely to
extended case studies describing the implementation of graphics-based applications. Problem
sets are included at the end of each chapter; these range from simple exercises, to extensions
of examples presented in the text, and finally to major projects.

Fundamentals

In this section, we introduce the reader to the fundamental concepis of object-oriented
programming. Using a language independent approach, Chapter 1 characterizes object-

xii Inside Smalltalk

oriented programming as programming with objects, programming by simulation,
computation via message passing and programming in the presence of polymorphism,
inheritance, and a large class library.

Chapter 2 describes how these fundamental notions manifest themselves in Smalltalk.
Smalltalk is a language somewhat smaller in size than Pascal and based on a surprisingly
small set of concepts; namely objects, messages, classes, subclassing, and inheritance. Our
approach is to introduce these new concepts by relating them to their counterparts in
traditional programming paradigms and programming languages. In particular, programming
in Smalltalk is introduced by contrasting Smalltalk code with its Pascal equivalent.

The Programming Environment

Developing Smalltalk programs is characterized by a total integration of tools and an absence
of modes. Editors, file managers, compilers, debuggers, and print utilities are all included
within the Smalltalk environment. Chapters 3, 4, and 5 provide an introduction to the
integrated collection of powerful and sophisticated tools that together form the Smalltalk
programming environment. Chapter 3 provides an introduction to basic features of the user
interface, in particular, windows and menu interaction and how to enter, edit, and evaluate
Smalitalk code. Chapter 4 describes the central role played by browsers in the programming
process both for navigating the class library and for editing and compiling additions to this
library. Chapter 5 describes the use of inspectors to investigate the internal state of objects
and the use of notifiers and debuggers to view and modify the state of a suspended
computations.

Basic Classes

In this section, we describe the basic classes — those classes that form the core of the class
library. Chapter 6 introduces the default behavior for operations such as copying, printing
and comparing that are supported by class Object — the ultimate superclass of all classes.
Chapter 7 describes the Magnitude classes including the numeric, character, date and time
classes. Chapter 8 describes the Collection and Stream classes that are as fundamental to
Smalltalk as lists are to Lisp. To provide a better understanding of the numerous and closely
related collection classes, we consider the classes from a logical perspective partitioning
them into four major logical groups.

Graphics

In this section, the classes supporting the interactive creation and manipulation of graphical
images are surveyed and their use illustrated through three case studies. Chapter 9 explains
the use of forms and the bitblt operations that serve as a base for the Smalltalk graphical
model. Interaction with the mouse and keyboard is addressed together with a description of
simple graphical interaction techniques. The chapter concludes with a review of the path or
trajectory classes (arcs, circles, curves, lines, linear fits, and splines) and the use of pens.
Chapter 10 presents three extended graphical examples: film loops, a magnifying
glass, and a simple video game. Film loops are never ending movies and show how simple
animation sequences can be developed. Techniques for obtaining flicker-free displays and for

Preface xiii

storage of graphical forms on disk are also introduced. The latter facility illustrates the use of
object mutation — the ability for one object to mutate into another. The magnifying glass
application allows a user to move a magnifier over the display while magnifying the image
under the magnifying glass. This application illustrates advanced graphical programming
techniques and, in particular, describes how circular rather than rectangular forms may be
manipulated. Finally, the video game illustrates the evolutionary approach that characterizes
the design and development of Smalltalk applications. The design decisions that took place
during the development of the game are described in detail along with the use of notions such
as reusability, specialization, and generalization that differentiate object-oriented design from
traditional design methodologies.

VOLUME TWO

Windows

In Volume Two, we describe the Smalitalk classes that provide (1) the familiar overlapping
windows, pop-up menus, and mouse interaction facility that characterize the Smalltalk user
interface and (2) the model-view-controller framework for the construction of user interfaces.
Chapter 1 provides an introduction to the model-view-controller paradigm, dependency
maintenance, the distinction between process management and window management, and the
window transformation protocol. Chapter 2 provides an overview of the existing window
classes and provides a detailed description of the basic views and controllers that support the
window classes described in subsequent chapters. Extensive examples are provided to show
how views and controllers can be created and used. Chapters 3 through 7 describe menu,
switch, text, form (graphics), and pop-up windows respectively. Each of these chapters
describes the differences between the standard classes and pluggable classes and shows (1)
how users can use the existing classes, (2) how they may be modified to provide extensions,
and (3) how new classes based on the existing ones can be created for special applications.
Finally, Chapter 8 provides an extended example to illustrate the construction of a large-scale
window application. It deals with the construction of a window maker — an editor that helps
users create user interfaces. In the process, a design for a library of switch forms and a library
editor is developed. The existing window classes are extended to support the window maker

application and more than a dozen subwindows are designed to support the window maker
editor.

WHO SHOULD READ THIS BOOK?

Smalltalk provides a new programming paradigm and the two volumes are therefore aimed at
readers who are receptive to new ways of thinking about problem solving and new
programming language concepts. We expect that most readers will have some programming
experience in a procedural language. Programmers familiar with Pascal, C, Ada, or Fortran
will find the language easy to learn and will be pleasantly surprised at the extensive set of
support tools in the environment.

xiv Inside Smalltalk

To gain full benefit from the book, readers should have access to a Smallialk sysiem
and be prepared to adopt an exploratory hands-on approach to programming and problem-
solving, Inside Smalltalk is for the professional programmer and serious student who wish
to use the Smalltalk system as a powerful, efficient prototyping and development
environment. The book can be effectively used in undergraduate and graduate courses in
object-oriented programming or software engineering where Smalltalk will be a language of
instruction. The book will be particularly valuable for students carrying out extensive thesis
and project work in Smalltalk.

SMALLTALK DIALECTS

Two releases of Smalltalk-80 have been licensed by the Xerox Corporation. These are known
as Smalltalk-80 Version 1 and Smalltalk-80 Version 2 respectively. Version 2 includes
several features, notably support for multiple inheritance, not supported by Version 1.
ParcPlace Systems! now has exclusive worldwide ownership of the Smalltalk-80 system.
The Smalltalk language? is available under royalty-free license from ParcPlace. Smalltalk-80
Version 2 is now accepted as the standard Smalltalk-80 system and it is this dialect of
Smalltalk that is described in this book. Indeed, whenever we use the term Smalltalk in this
text we are referring to Smalltalk-80. Smalltalk-80 for Sun, Macintosh, Apollo, DEC,
Hewlett Packard, and 80386 MS-DOS systems is available from ParcPlace Systems.
Smalltalk-80 code is almost entirely portable across different host platforms. The Smalltalk-

80 system is now marketed by ParcPlace Systems under the name Objectworks for
Smalitalk-80.

Digitalk?® markets Smalltalk/V, a dialect of Smalltalk for Macintosh and IBM PC
computers. Excluding the user interface classes, there is a great deal of commonality between
the Smalltalk V and Smalltalk-80 class libraries. Similarly, the range of programming tools
is similar, although there are distinct differences in the structure and functionality of specific
tools such as the browser, in the method of interaction with the environment and in the
degree of integration with the specific platform

ACKNOWLEDGMENTS

First and foremost, we would like to acknowledge the great contribution made to the
software community by the group of researchers at the Xerox Palo Alto Research Center
(PARC) who were responsible for the development of the Smalltalk system. In particular,
we single out Alan Kay, Adele Goldberg, and Dan Ingalls, who in 1987 received formal
recognition of their work with the 1987 ACM Software Systems Award. In recognition for
the development of a software system that has had a lasting influence, that has reflected
contributions to new and still evolving concepts, and that has resulted in commercial

lParcPl,twe Systems, 1550 Plymouth Street, Mountain View, CA 94043.

2Goldberg. A. and Robson, D., Smalltalk-80: The Language and its Implementation (Reading, Mass.:
Addison-Wesley, 1983).

3Digitalk, Inc. 9841 Airport Road Bvid. Los Angeles, CA 90045.

Preface

acceptance, the Xerox PARC group received the award for seminal contributions to object-
oriented programming languages and related programming techniques. Smalltalk was cited as
having provided the foundation for explorations in new software methodologies, graphical
user interface designs, and forms of on-line assistance to the software development process.
Our thanks also to ParcPlace Systems for continuing to develop and market the Smalltalk-80
system.

We also thank Dave Thomas, who many years ago foresaw the potential of object-
oriented programming and motivated us to become involved in research in the area. To the
many students at Carleton University in Ottawa and to others who attended our object-
oriented programming and Smalltalk workshops, our sincere thanks for being such willing
guinea pigs for much of the material that now appears in this book. Our thanks also to the
reviewers and, in particular, Richard Bernat of the University of Texas at Austin and Bharot
Jayaraman of the University of North Carolina at Chapel Hill, for their helpful comments.
To Marcia Horton, Christina Burghard, and their colleagues at Prentice Hall, for their
support and patience in the development of the book. Finally, on a more personal note, we
thank our respective wives, Marla Doughty and Christine Pugh, for their support and
understanding, and our children, Brannon, Robin, Chloé, and Gareth, who have yet to
understand why their “daddies” were too often unavailable.

xvi Inside Smalltatk

1.1

Object-Oriented
Programming

INTRODUCTION

In terms of its influence on the programming community, object-oriented programming
(OOP) is predicted to be to the nineties what structured programming was to the seventies.
But what is it that makes a system or programming language object-oriented? What exactly
is meant by the term object-oriented? In this chapter we try to answer these and related
questions. We will introduce object-oriented concepts in a language independent manner.
However, because terminology in the field has not been standardized and since we will be
describing Smalltalk in the rest of this book, we will use the terminology adopted by
Smalltalk.

OOP IS PROGRAMMING BY SIMULATION

Object-oriented programming is most easily described as programming by simulation. The
programming metaphor is based on personifying the physical or conceptual objects from
some real-world domain into objects in the program domain; e.g., objects are clients in a
business, foods in a produce store, or parts in a factory. We try to reincarnate objects from
the problem domain into our computer models, giving the objects in our program the same
characteristics and capabilities as their real-world counterparts. This process is often referred
to as anthropomorphic programming or programming by personification.

The power of simulation as a programming metaphor can be seen from the success of
the window-based user interfaces now common in personal workstations. The Apple
Macintosh™, for example, uses a desktop metaphor in which icons representing such

common office objects as documents, folders, and even trash cans appear on the desk.
Interactively, a user can open documents, copy them, store a document with other documents
in a folder, or place a document in the trash can. Operations on the desktop objects mimic
the way their real-world counterparts are manipulated. When implementation domain objects
have a direct mapping to problem domain objects, the resulting software is far easier to
understand and use.

Consider the following problem specification for a simple video game.! A typical
display for the game is shown in Fig. 1.1. The objective of the game is to remove all the
bricks from the wall. When the ball strikes a brick, the brick disappears. The ball can be
redirected using the paddle, which the player can move to the left or right using the mouse.
The ball bounces off the sides, bricks, and paddle in a conventional fashion. A player is
provided with at most three balls (one at a time) to remove the bricks. A ball is lost if it
passes below the paddle; i.e., if the player misses it! Demolishing the bricks with the allotted
three balls is a win — failure to do so is a loss.

Paddle

~

Figure 1.1 Simple video game.

An object-oriented solution to this problem would simulate the objects in the reai
video game. Software objects would be constructed to represent the paddle, the sides, the
ball, the bricks in the wall, and so on. Furthermore, operations on these objects would
represent problem-domain tasks such as moving the ball and the paddle, determining if the

paddle has struck the ball or whether the ball is lost, removing bricks from the wall, and so
on.

1problem taken from D. H. Bell et al., Software Engineering — A Programming Approach (Englewood Cliffs,
New Jersey: Prentice-Hall International, 1987).

2 Inside Smalitalk

1.3 TRADITIONAL VERSUS OBJECT-ORIENTED
PROGRAMMING

Object-oriented programming is fundamentally different from traditional procedural or
algorithmic approaches. Object-oriented programming describes a system in terms of the
objects involved. Traditional programming approaches, on the other hand, describe systems
in terms of their functionality. We will use the video game example to illustrate the
differences between the traditional and object-oriented approaches.

1.3.1 A Traditional Approach

The classical top-down stepwise refinement approach to problem solving involves refining a
problem solution into greater levels of detail based on functional decomposition. Taking a
functional approach, we might first describe the solution to our video game in terms of the
abstract statement:

Video Game

The next step in the solution might be to decompose this statement into the following:

WHILE Someone wants to play DO
Set Initial Game Display
Play a Single Game
ENDWHILE

The design could now be refined further by taking some of the abstract functions in the
current solution such as Set Initial Game Display and Play a Single Game and
decomposing them in a similar fashion.

Set Initial Game Display
Draw Wall
Draw Sides
Initialize Paddle

Play a Single Game
Set Score to 0
Seot Balls Left to 3
WHILE Balls Left > 0 DO
Play a Ball
Decrement Balls Left
ENDWHILE

The next step might be to refine the Play a Ball module.

Play a Ball

Enter new Ball into Game

WHILE Ball is in Play DO
Check Ball Position
Update Score & Display
Move Ball
Move Paddie

ENDWHILE

Remove Ball from Game

Chapter 1 Object-Oriented Programming 3

We are refining the solution to the problem algorithmically in a step-by-step manner,
with each step in the process describing a solution to the problem at a certain level of
abstraction. Systems refined in this way are most easily described using a diagram (see
Fig. 1.2) where major modules are hierarchically organized and where each module
represents a function or subproblem in the solution. A design produced using a functional
decomposition approach fits very nicely with the procedural approach to programming
encouraged by early languages such as Fortran, Pascal, or Cobol, where the subroutine,
procedure, or subprogram is the predominant mechanism for structuring code. There is a
direct mapping between functional modules in the design and procedures in the code.

Set
Initial
Game

Display

Initialize
Paddle

Move
Paddle

Figure 1.2 Functional decomposition of the video game.

1.3.2 An Object-Oriented Approach

If we take an object-oriented approach to this problem, our first concern is to try to identify
not the functions but the objects that will be involved in the computation. The easiest objects
to identify are those with real-world counterparts. In the case of our video game example,
this leads us to think of objects such as the bricks, the wall, the sides, the paddle, the ball,
and the video game itself, as shown in Fig. 1.3.

4 Inside Smalltalk

Video Game

Paddle

Figure 1.3 Object-oriented decomposition of the video game.

Once the objects have been identified, the next task is to identify their characteristics
and the interrelationships between them. For example, the paddle and the ball are clearly
interrelated. When the paddle strikes the ball, the ball will change direction. Similarly there
is a relationship between the wall and the ball. Component or part-of relationships can also
be identified. This kind of relationship exists between individual bricks and the wall. The
wall is made up of bricks. In this way, we can establish how the game objects interact with
each other to achieve a simulation of the video game.

1.3.3 Objects Encapsulate State and Operations

Objects are characterized by their state and the operations that can be performed on that
state. Generally, objects have components and the state of an object is therefore
characterized by the state of its components. For example, a ball might consist of a radius
and a position. A paddle, side, or brick might be described by position, width, and height.
Similarly the state of a video game might consist of a ball, a paddle, a wall of bricks, and a
set of sides (see Fig. 1.4).

VideoGame [[Ban B[Bric B[sice [radae

ball posiion || posiion E| position position
paddle radivs | width width width

sides height } height height
wall

Figure 1.4 Objects are characterized by their state.

Chapter 1 Object-Oriented Programming 5

Each kind of object supports a set of operations that may be applied to the object to
modify or interrogate its state. For example, a ball responds to requests to report or modify
its position. Similarly, a ball can be asked whether it is located behind the game paddle or
whether it is colliding with any of the other components in the game. We could perform
similar analyses on the other objects in the video game.

Conceptually, we can characterize objects such as the ball in our example as an
encapsulation of both state and operations (behavior), as shown in Fig. 1.5,

Position
Direction

OPERATIONS

Position?
Direction?
Modify Position
Beyond Wall?
Behind Paddle?

Figure 1.5 Conceptual view of a ball.

By encapsulation, we mean the ability to conceptually group together in an object both
the state of the object and the allowable operations on that state. For another example,
consider a stack that encapsulates both a representation, perhaps an array or a list, and the
operations push, pop, isEmpty, etc., which may be applied to the stack to modify or
interrogate its state.

1.3.4 Objects Communicate via Message-Passing

An object-oriented system can be described as a set of objects communicating with each
other to achieve some result. Each object can be thought of as a small virtual computer with
its own state (or memory) and its own set of operations (or instruction set). Computation is
achieved by sending messages to objects. When an object receives a message it determines
whether is has an appropriate operation, script, or method to allow it to respond to the
message. The definition of the method describes how the object will react upon receiving the
message. In object-oriented terminology, we refer to the collection of operations that define
the behavior of an object as the protocol supported by the object.

Method A synonym for operation. Invoked when a message is
received by an object.

Protocol The set of messages to which an object responds.

6 Inside Smalltalk

Rather than calling a procedure to carry out an operation, we speak of sending a
message to an object. The object receiving the message is referred to as the receiver. Thus,
we speak of sending the are you behind the paddle message to a ball (see Fig. 1.6).
Ignoring terminology, the effect of sending a message to an object can be equated to a
traditional function call, with the object receiving the message acting as an argument to the
function. The result of sending a message to an object is to invoke the appropriate method,
which then returns an object as a result. In the case of the are you behind the paddle
message, the result returned would be either the object true or the object false.,

a Ball

behindPaddle)

Receiver Message

Figure 1.6 Message-passing.

More generally, messages consist of a selector that uniquely identifies the operation
required of the receiver, and a set of zero or more arguments. For example, to modify the
position of a ball in the video game, we must supply the new position for the ball as part of
the message (see Fig. 1.7).

a Ball Message

modifyPosition: aNewPosition)

Receiver Selector Argument

Figure 1.7 Message components.

In contexts such as distributed computing, message-passing often implies concurrency.
In object-oriented programming, this is generally not the case. Message-passing is
synchronous; i.e., a standard function call/return mechanism is used. A second message
cannot be sent until the result of sending a first message has been returned; i.c., the sender of
a message is blocked until a response is received.

1.4 OOP IS PROGRAMMING WITH ABSTRACT DATA TYPES

The object-oriented approach to programming has much in common with the notion of
programming with abstract data types. In fact, object-oriented programming can be thought
of as subsuming this style of programming and extending it with two additional
programming notions — polymorphism and inheritance.

Chapter 1 Object-Oriented Programming 7

Objects (and abstract data types) adhere to an important fundamental principle for
structuring software systems — information hiding. The idea behind information hiding is
that users of an object need not have access to either the representation or the
implementation of the operations. It is useful to think of objects as providing two views of
themselves: one to potential users or clients of the object and another to implementors of the
object. Users of the object may modify its state but only indirectly by invoking the
operations supported by the object. The major advantage of this approach is that it allows an
implementor to modify the implementation of an object in a manner that is transparent to
users. Users or clients of the object do not have to be notified of the change. This separation
of the object’s user interface from its implementation is essential for the production of
maintainable and reusable software.

Consider the example of a stack. The user's view of a stack is an advertised message
protocol that allows a user to create and modify stacks (see Fig. 1.8). The user has no
knowledge of, and cannot directly access, the representation of the stack. The state of the
stack can only be modified indirectly through the supported operations. The implementor's
view includes knowledge of the representation used for the stack and the detailed code used
to implement each message (see Fig. 1.9). If an implementor decides to change the
representation of the stack from an array to a list and modifies the implementation of the
operations accordingly, the user would be unaware that such a change had taken place. Any
code that made use of the old version of the stack would work equally well with the new
version.

Stack

push: anObject
"Push anObject onto the stack.”
pop
"Pop an element off the stack.”
top
"Return the top element of the stack."
isEmpty
"Is the stack empty?”

Figure 1.8 User's view of a stack.

The notion of using a data type without detailed knowledge of its representation is a
familiar one. Traditional programming languages all provide support for a set of basic data
types; e.g., integers, reals, characters, arrays. Each data type supports a set of well-known
operations; e.g., the arithmetic operations for integers. Users do not need to know whether

8 Inside Smalltalk

Stack

stack elements

top

pop
"Return the top element from the stack."
IF stack is not empty THEN '
topElement := stack [top]
top:=top-1
RETURN topElement
ENDIF

push: anObject

cse

Figure 1.9 Implementor's view of a stack.

integers are represented using a sign-magnitude or two's-complement representation. An
object can now be defined as follows:

Object An abstraction from the problem domain with private state
and characterized by the message protocol that it supports.

Earlier, we drew attention to the correspondence between the functional
decomposition approach to programming and the procedural languages such as Pascal,
Fortran, and Cobol. In a similar way, the encapsulation and information hiding required by
the data abstraction approach are provided by the modules and packages of the next
generation of languages like Modula 2 and Ada.

1.5 OOP IS PROGRAMMING VIA CLASSIFICATION

Real-world systems depend on our ability to classify and categorize. Elephants, tigers, polar
bears, horses, and cows are all mammals (see Fig. 1.10); lead, silver, and platinum are
metals; savings, checking, and term deposits are types of bank accounts; and so on. Through
classification, we are able to associate characteristics common to all members of a class. All
mammals are vertebrates (have backbones), are warm-blooded, and have hair on their
bodies; all metals have atomic weights; and all bank accounts have balances.

Chapter 1 Object-Oriented Programming 9

o~
i d

Figure 1.10 Object classification — animals.

(o fl
-

In OOP, the class is the abstraction that captures the attributes and operations common
to a set of objects. A class describes the representation and message protocol followed by
each of the members, or in OOP terminology, the instances, of the class. Every object is an
instance of some class.

Class A description of a set of objects with similar characteristics,
attributes, and behaviors. A synonym for type.

Instance An individual object that is both described by and a
member of a particular class,

Consider the example of savings accounts in a bank. The private state associated with
each account might consist of at least an account number and a balance. The representation
of the object can be thought of as a Pascal record — a collection of heterogeneous
components or fields. The fields of an object are referred to as instance variables since they
will be present in every instance and they are changeable (variable). All savings accounts
therefore have two instance variables: account number and balance.

Instance Variable A component part or field of an object.

Operations on savings accounts might include withdrawals (withdraw: anAmount),
deposits (deposit: anAmount), and queries about the balance (queryBalance).

Logically, an object is an indivisible encapsulation of state and operations. However,
since all instances of a class support the same set of operations, the methods or operations
can be physically associated with the class. Only the state or private information relating o a
specific object resides in the instance. Consider instances of the class SavingsAccount. Each
instance has its own account number and balance. However, the operations for making
deposits, withdrawals, and balance queries can be shared by all instances and stored in the
class. When a message is sent to an instance, the system searches for the operation in the
class of the instance. Fig. 1.11 illustrates the shared operations associated with class
SavingsAccount and three instances each maintaining its own private state.

10 Inside Smalltalk

This physical view of classes and instances leads us to the following alternative

definitions:
Class A repository for methods that can be executed by all
instances belonging to that class.
Instance A repository for data that describes the state of an

individual member of a class.

mySavingsAccount

123456
1250.37

accountNumber
balance

CLASS SavingsAccount

jimsSavingsAccount

OPERATIONS

deposit: anAmount accountNumber 123457)
withdraw: anAmount : balance 507.75
queryBalance : ¢

frssenaiannns s R R

jillsSavingsAccount

accountNumber
balance

Instances of Class SavingsAccount

Figure 1.11 Classes versus instances.

1.6 OOP IS PROGRAMMING WITH POLYMORPHISM

One of the most important characteristics of object-oriented programming is that the
interpretation of a message is in the hands of the receiver; i.c., the same message can be
interpreted in different ways by different receivers. Operations exhibiting this property are
said to be polymorphic. Messages can be thought of as late-bound procedure calls, where
the actual method or procedure to be invoked is not determined until the message is actually
sent to a specific receiver.

Consider the following message expression:
anObject at: 1 put: 'first’

It is not possible to determine what effect this code will have until the class of object bound
to the variable anObject is known. If anObject is an array, the effect is to make string 'first’
be the first element of the array. However, if anObject is a dictionary, the effect is to either
add a new association to the dictionary with key 1 and value 'first' or, if the key 1 previously

Chapter 1 Object-Oriented Programming 11

existed within the dictionary, to modify the value associated with the key 1. Yet another
interpretation would arise if anObject was a search tree.

One of the major advantages of polymorphism is that it allows the overloading of
names. Hence, the same name can be used throughout a system to denote a commonly used
and well-understood operation. As we shall see later, many common message selectors in
Smalltalk such as new, =, do:, and copy are redefined as many as twenty times. This
consistency in operation naming across class boundaries helps significantly reduce the name
space in large systems.

1.6.1 Static Versus Dynamic Binding

As a further example of the desirability of polymorphism, consider an application where
various kinds of geometric figures such as rectangles, triangles, squares, and circles are to be
displayed and manipulated. To capture the figure abstraction in a type definition in a
traditional language such as Pascal, we could define a variant record with a tag field that
discriminates between the different possible figure types. We could then implement a display
operation on the variant record type. To decompose the implementation into well-designed
components, we could provide one figure-specific procedure for each discriminant. In that
case, the display procedure would have to use some sort of case logic (see Fig. 1.12) to
determine the type of figure involved in order to call the correct figure-specific procedure.
Because the association between each figure-specific procedure and the type of parameter
required is known at compile-time, the coupling between the two is known as static
binding.

PROCEDURE Display (aFigure: Figure); DlsplayTnangle
BEGIN T —————————r——
CASE aFigure.figureType OF stplayRectangle
Rectangle: DisplayTriangle (aFigure.aRectangle); T ——
Triangle: DisplayRectangle (aFigure.aTriangle);
Square: DisplaySquare (aFigure.aSquare);
Circle: DisplayCircle (aFigure.aCircle)
END
END

DisplaySquare

DlsplayClrcle

Figure 1.12 Static binding.

In a similar fashion, we could define operations to move a given figure or compute its
area. These procedures would share the same case logic as the Display operation above.

In an object-oriented language, we must again implement a display method for each of
the triangle, rectangle, square, and circle figures. However, the same name is used in each
case. Consequently, it is no longer the programmer's responsibility to determine the correct
method to invoke. A programmer can send the message display to any figure; e.g., by
executing ‘aFigure display’. Based on the type of aFigure, the correct display method will
be located and executed by the system. Clearly, the correspondence between the operation
display and its parameter aFigure is determined at execution-time rather than at compile-
time. This run-time coupling is known as dynamic binding (see Fig. 1.13).

12 Inside Smalltalk

Triangle

Rectangle

" ,.‘ display I
' . essage
aFigure display ——————» Dispatcﬁel' Sq
uare
“l display I

Circle
display I

Figure 1.13 Dynamic binding.

This polymorphic solution is more adaptable to change and reuse. Consider extending
our figure example to allow another object type, say Pentagon. In both solutions, we would
provide pentagons with all of the operations supported by the other figures. However, in the
traditional solution, we must also modify all operations on figures since they all contain case
logic similar to that in Fig. 1.13. In every situation, a new case must be added. In a large
system, this kind of activity is extremely error-prone. Chances are that we will fail to make
one or more of the necessary changes. In an object-oriented system, the changes required are
localized — we simply implement the necessary operations on pentagons without changing
anything else.

1.7 OOP IS PROGRAMMING WITH INHERITANCE

We often think of objects as specializations of other objects. Precious metals are
specializations of metals, sports cars are specializations of cars, romance novels are
specializations of books, and so on. All precious metals are metals but not all metals are
precious metals. Similarly, all sports cars are cars and all romance novels are books, but the
reverse is not true. Extending this notion, we can view one class of objects as a subclass of
another. Taking the argument still further, we can create hierarchies of classes based on

Bank
Account

Checking Savings Term
Account Account Deposit
; Account

Figure 1.14 Bank Account hierarchy.

Chapter 1 Object-Oriented Programming 13

logical ‘is-a’ relationships. In Fig. 1.14, checking accounts, savings accounts, and term
deposit accounts are all bank accounts. Similarly, in Fig. 1.15, quadrilaterals and triangles
are polygons, and squares and rectangles are special kinds of quadrilaterals. Furthermore, a
square is a special kind of rectangle.

Quadrilateral

Rectangle

Triangle

Figure 1.15 Polygon hierarchy.

1.7.1 Specialization and Generalization

What does it mean to say that one class is a subclass of another? Intuitively, we mean that
the subclass has all the characteristics of the more general class but extends it in some way.
Precious metals have all the characteristics of metals but, in addition, they can be
distinguished from some metals on the basis of monetary value. Similarly, quadrilaterals are
specializations of polygons with four sides. Polygons can have any number of sides. Squares
are specializations of quadrilaterals where all four sides have equal length, and adjacent
sides are perpendicular to one another. Applying these arguments in reverse, we can describe
the superclass of a class as being a generalization of the class.

One of the best ways to describe something new to someone else is to describe it in
terms of something that is similar; i.e., by describing how it differs from something known.
Quoting an example from Cox,2 a zebra is a horse with stripes! This concise definition
conveys a substantial amount of information to someone familiar with horses but not with
zebras.

2g, Cox, Object-Oriented Programming: An Evolutionary Approach (Reading, Mass.: Addison-Wesley, 1986).

14 Inside Smalltalk

U |

Object-oriented programming languages embody these notions of specialization and
differential description. Classes are hierarchically organized in subclassing relationships.
When one class is a subclass of another, it is said to assume or inherit the representation and
behavior of its superclass. Because of the sharing achieved through inheritance, the new
class has to describe only how it is different from the superclass. Logically, a brevity of
expression is achieved. Physically, this permits a sharing of operations — an operation
provided in one class is applicable to each and every subclass.

Subclass A class that inherits methods and representation from an
existing class.

Superclass A class from which another class inherits representation
and methods.

To get a better feel for these ideas, consider the simple hierarchy of bank account
classes shown in Fig. 1.16. To keep the description manageable, we have reduced the
problem to bare essentials. Assume that all bank accounts, whether checking, savings, or
term deposits, have an account number and a balance and that, in addition, term deposit
accounts have a term associated with them. Class BankAccount, therefore, has two instance
variables, accountNumber and balance, and all three subclasses inherit this representation
so that all instances have at least these two fields. Subclass CheckingAccount adds no
additional instance variables; neither does subclass SavingsAccount. Class TermDeposit-
Account, however, introduces an additional instance variable term, giving term deposits a
total of three instance variables. In general, subclasses can add new instance variables but
they can never remove them. The same applies for methods. Subclasses can add methods
with the same names as methods provided in a superclass but they cannot eliminate methods.
Fig. 1.16 illustrates the class hierarchy and the state of one instance for each of the three
subclasses.

All types of bank accounts support operations to query the balance of an account. If an
operation has identical implementations in each subclass, we can implement the operation
once only in the common superclass BankAccount and have the three subclasses inherit the
operation. Other operations, such as querying the term of an account, will have to be specific
to class TermDepositAccount. In some situations, a common operation that we might wish
to implement once in a superclass may have to be duplicated in the subclasses if its
implementation depends on the particular type of account. For example, it might be the case
that the operations for deposits and withdrawals can be shared by savings and checking
accounts but that a different implementation of these operations is required for term deposit
accounts. Fig. 1.17 illustrates a specific design for the placement of operations within the
bank account class hierarchy. Operations should be placed as high in the hierarchy as
possible so that they may be shared by as many subclasses as possible.

Object-oriented languages like Smalltalk support large reusable class libraries. The
Smalltalk class library, for example, is organized in a single hierarchy with the most general
class Object at the root. Class Object contains operations that can be inherited by all
objects; e.g., a default print operation that prints the receiver's class name. In all, Smalltalk
contains in excess of 250 classes with over 2,000 methods. The extensive class library
fosters the notion of programming by reuse rather than by reinvention.

Chapter 1 Object-Oriented Programming 15

accountNumber
balance

Object

Bank
Account

Term
Deposit
Account

Checking
Account

Savings
Account

myTermDepositAccount

accountNumber 123456

balance 10000.00
term 5.0
mySavingsAccount

(accountNumber 34278 |
balance 2471.87 k
myCheckingAccount

(accountNumber 56921

balance 23.37

Figure 1.16 Representation inheritance.

When a message is sent to an object, the system first looks for a method with the same
selector name in the class of the object. If found, the method is executed; otherwise, the
search is continued in the superclass, and the above process is repeated. Ultimately, a
method will be found and executed or the top of the hierarchy will be reached (class Object,
for example, has no superclass). The latter situation is an error since it indicates the use of a

16 Inside Smalltalk

I

message for which there is no corresponding method. In this case, an error notification is
generated. To illustrate this search process, consider the following example. Fig. 1.17 should
be used to determine (and verify) which method is actually executed.

CLASS Object

operations

print

CLASS BankAccount

CLASS CheckingAccount

operations

:::Wf‘ﬁ:@%:%?:%{(ﬁiié

CLASS SavingsAccount

operations

B R BB R AR BRI

operations
deposit: anAmount
withdraw: anAmount
queryBalance

S e

CLASS TermDepositAccount

operations
deposit: anAmount
withdraw: anAmount
queryTerm

B s &

Figure 1.17 Operation inheritance.

Message Sent

aTermDepositAccount queryTerm
aCheckingAccount queryBalance
aSavingsAccount queryTerm
aSavingsAccount print

Which Method Is Executed

use method in class TermDepositAccount
use inherited method in class BankAccount
error - no method in superclass chain
use inherited method in class Object

In summary, a new class may differentiate itself from its superclass in a number of

ways. In particular, the new class may

« support additional operations other than those inherited.
« support new implementations of operations that could otherwise be inherited.

Chapter 1 Object-Oriented Programming

17

override existing operations supported by the superclass but inappropriate for the
new class by adding an operation that signals an error.

contain only a restricted subset of the instances of the original class.
add additional state.

1.8 SUMMARY

Object-oriented programming can be characterized as:

Programming with objects. Objects have state and can answer questions about
themselves. Objects are data types. They encapsulate the state or representation of
an object together with operations on that state and support the principle of
information hiding.

Programming by simulation. Applications are designed and implemented as a
simulation or animation. Objects model entities in the real world. This style of
programming is often referred to as programming by personification or
anthropomorphic programming.
Computation by message-passing. Scripts (or methods) define how an object
will respond to a given message.

Programming in the presence of polymorphism. Messages may be interpreted
in different ways by different receivers.

Programming in the presence of inheritance. Code sharing is achieved through
the inheritance of representation and behavior from one class of object to another.
New classes are defined as specializations of existing classes.

Programming in the presence of a reusable class library. New applications are
constructed from an existing library of parts.

1.9 GLOSSARY

selected terminology

abstract data types The style of programming
that separates the external interface (the user's
viewpoint) from the representation and im-
plementation details (the implementor's view-
point).

anthropomorphic programming The program-
ming metaphor that embodies the objects with

intelligence to decide how to react to requests
on their own.

class A description of a set of objects with simi-
lar characteristics and attributes.

18

dynamic binding A requirement that the opera-
tion intended by a specific name can be de-
termined from the name of the operations and
the type of parameters at run-time (as opposed
to compile-time).

information hiding The notion that a data type's
representation and implementation need not
by known by users of a data type.

inheritance A mechanism that allows one class
of objects to share the methods and represen-
tation of another class of objects.

Inside Smalltalk

instance An individual object described by a
particular class.

instance variables Variables found in all in-
stances of a class; components of an object.

message A request sent to an object to carry out
some task.

message pattern A method selector together
with names for any arguments required by the
selector,

message protocol The messages to which an ob-
ject can respond.

method A description of how an operation on an
object is to be computed.

object A component of the Smalltalk system rep-
resented by some private data and a set of
methods (operations).

polymorphism The ability to take on several
meanings. Messages are polymorphic in the
sense that the actual method invoked is de-
termined by the type of the receiver.

programming by personification A synonym
for anthropomorphic programming.

programming by reinvention The undesirable
notion that programming can be done by
unknowingly duplicating the functionality of
existing code.

programming by reuse The notion that opera-
tions in a class can be used by a subclass
without reprogramming or modifying the ex-
isting classes.

Chapter 1 Object-Oriented Programming

programming by simulation The programming
metaphor that is based on personifying the
physical or conceptual objects from some real-
world domain into objects in the program do-
main; e.g., objects are clients in a business,
foods in a produce store, or parts in a factory.

selector The component of a message that
uniquely specifies the operation requested;
e.g., at:put: is the selector in “anArray at: 1
put: 'hi”.

specialization The notion that one kind of object
is a special case of another; e.g., precious
metals are a specialization of metals, sports
cars a specialization of cars, and romance
novels a specialization of books.

static binding A requirement that the operation
intended by a specific name can be determined
from the name of the operations and the type
of parameters at compile-time (as opposed to
run-time).

subclass A class that inherits methods and repre-
sentation from another class.

superclass A class from which another class in-
herits representation and methods.

19

['

Smalltalk Fundamentals

2.1 INTRODUCTION

Programming in Smalltalk is different from programming in traditional languages such as
Pascal, Fortran, or Ada. A major difference is that the language is object-oriented rather than
procedure-oriented and is based on concepts such as objects and messages rather than
procedures and functions. Although these concepts are new to many programmers, they are
often overshadowed by a more visible difference. Smalltalk is much more than a
programming language — it is a complete program development environment. It integrates
in a consistent manner such features as an editor, a compiler, a debugger, a spelling checker,
print utilities, a window system, and a source code manager. Such features are traditionally
associated with an operating system rather than a programming language. Smalltalk
eliminates the sharp boundary between application and operating system by modelling
everything as an object.

Becoming a productive Smalltalk programmer requires much more than a familiarity
with the language. You must become adept at using the development tools provided by the
Smalltalk programming environment and, perhaps most important of all, become familiar
with the extensive library of existing classes (or data types) supplied with the Smalltalk
system. Be forewarned that it takes considerably longer to become an accomplished
Smalltalk programmer than an accomplished Pascal programmer. Interactive experimentation
and on-line familiarization are essential. Smalltalk encourages an exploratory approach to
programming. The payoff, however, is well worth the extra effort. You will be able to
develop interactive graphical applications with all the features of modern user interfaces (e.g.,
windows, menus, mouse interaction) at low cost. Smalltalk applications can be developed
with high productivity because of Smalltalk's underlying philosophy of reusing and
extending existing code rather than reinventing code.

21

Programming in Smalltalk therefore requires at least a knowledge of the following:

¢ the fundamental language concepts; namely objects, messages, classes, and
inheritance,

® the syntax and semantics of Smalltalk,

* how to interact with the Smalltalk programming environment to build new
Smalltalk applications (Smalltalk is an interactive language that favors a learn by
doing or exploratory approach to programming), and

* the fundamental system classes, such as the numeric, collection, graphical and
user interface classes. Designing new Smalltalk applications requires a knowledge
of the existing capability of the Smalltalk system. Programming in Smalltalk is
often termed programming by extension. New applications are constructed by
extending the existing Smalltalk class library.

In this chapter, we consider the first two requirements. An introduction to the
Smalltalk programming environment is given in Chapters 3 through 5. Chapters 6 through
10 describe the numeric, collection, and graphical classes respectively.

We assume that the reader is a programmer with some experience in a traditional
language such as Pascal and is familiar with fundamental programming language concepts.
Wherever possible in this chapter we will contrast Smalltalk code with its Pascal equivalent.
In addition to the obvious benefit of drawing comparisons between Pascal and Smalltalk, we
adopt this approach to speed up the discussion by relating Smalltalk concepts to those that
the reader is already familiar with.

Smalltalk is a language somewhat smaller in size than Pascal and is based on a
surprisingly small set of concepts; namely objects, messages, classes, subclassing, and
inheritance. The sparse number of primitive concepts and the consistent manner in which
they are used make Smalltalk a language that is relatively easy to learn. The biggest problem
for beginning Smalltalk programmers is not learning the syntax and semantics of the
language but becoming familiar with the substantial Smalltalk system library and the
interactive programming environment. Familiarity with the language does not translate to
familiarity with the system.

For ease of reference, whenever we introduce a major Smalltalk concept we will

provide a short definition. A glossary of major Smalltalk terms is included at the end of this
chapter.

2.2 OBJECTS IN SMALLTALK

As we mentioned earlier, everything in Smalltalk is an object. System components (such as
the compiler and the debugger), primitive data elements (such as integers, booleans, and
characters), and graphic elements (such as rectangular areas, drawing pens, and bitmaps) are
all objects. As we shall see later in this chapter, even control structures are implemented by
passing messages to objects.

22 Inside Smalltalk

[T

2.2.1 What Is a Smalitalk Object?

Method A synonym for operation. Invoked when a message is
received by an object.
Object A component of the Smalltalk system represented by some

private data and a set of methods or operations.

Conceptually, an object can be thought of as a virtual computer with a memory and a
primitive instruction or operation set. An object has memory — private data or state that is
kept within the object. An object is also capable of computation. It can respond to any of a
predefined set of messages. This message set is referred to as the message protocol
supported by the object. When an object receives a message, it must first decide whether it
“understands” the message, and if so what its response should be. If an object can respond to
a message directly, a method or function corresponding to the message is selected and

evaluated. The result of evaluating the method is retumed to the sender of the message as the
result.

Message protocol The set of messages to which an object can respond.

As a more concrete example of a Smalltalk object, suppose we have an object, say
aPoint, that represents a position on the Smalltalk display screen. The state of aPoint will
contain at least two components: first, an object representing the xCoordinate of the position
of the object on the screen and, second, the yCoordinate. In Pascal terms, we might think of
aPoint as a record with two fields: xCoordinate and yCoordinate.

What message protocol might be supported by the object aPoint? Assume that aPoint
allows a sender to query its x and y coordinates by supporting the protocol x and y. For
example, sending the x message to aPoint using the Smalltalk expression

aPoint x

would return an object representing its x coordinate. For the sake of discussion, assume that
aPoint also supports the protocol distanceFrom: anotherPoint. The effect of sending the
message distanceFrom: to aPoint using a Smalltalk expression of the form

aPoint distanceFrom: anotherPoint

is to return the distance between aPoint and anotherPoint.

222 Information Hiding: Intermal and External
Views of an Object

Objects in Smalltalk encapsulate both procedures and data. They support the well-accepted
software engineering concept of information hiding. To control the complexity of large
programs, we must partition programs into modules. Moreover, we should hide as much
information as possible within a module and minimize the interface presented to users.

It is useful to think of a Smalltalk object providing two different views of itself: one
for users of the object and another for implementors of the object. We will call these views

Chapter 2 Smalltalk Fundamentals 23

the external and internal views respectively. The internal view describes the representation
of the object and the algorithms that implement the methods (or operations). The external
view is the view of the object as seen by other objects.

The external view, or what we can do with an object, is described by its message
protocol — the set of messages to which the object responds. To a user, the internal view of
an object is private. It is owned by the object and may not be manipulated by other objects
unless the object specifically provides a protocol for doing so. For example, the external
view of aPoint is shown in Fig. 2.1. If aPoint did not support a protocol for accessing its
x and y coordinates, it would be impossible for any other object to gain access to this
information. The only way to ask an object to perform any computation is by sending it a
message.

distanceFrom: anotherPoim)

" aPoint |

Figure 2.1 The external view or message protocol supported by aPoint.

Contrast this approach with that of Pascal, which provides almost no support for
information hiding. If we wanted to access or modify the contents of the xCoordinate ficld
of aPoint, we could do so easily using an expression of the form

aPoint.xCoordinate

Moreover, in Pascal, we have no way of preventing a programmer from directly accessing
the representation of aPoint in this way. The opposite is true in Smalltalk. Unless the
programmer provides specific accessing methods as part of the message protocol for the
object, it is impossible to access the internal structure of the object.

The separation between the internal and external views of an object is fundamental to
the programming philosophy embodied in Smalltalk. To use an object, it is necessary to
understand only its protocol or external view. The fundamental advantage of this approach is
that, provided the message protocol or external view is not changed, the internal view may
be changed without impacting users of the object. Similar facilities for information hiding
are provided by the module facility in Modula 2 and the package in Ada.

2.2.3 Literal Objects

Certain types of objects can be described literally in Smalltalk. For example, literals are used
to describe numbers, symbols, characters, strings, and arrays. We will not dwell on
syntactic issues in the examples that follow. Each of these classes of objects will be
discussed more fully in later chapters. For the moment, we will let the examples speak for
themselves.

24 Inside Smalltalk

Smalitalk Pascal Commentary

34 34 The integer 34.

-17.62 -17.62 The floating point number -17.62.

1.66e-3 1.66E-3 The floating point number .00156 written
in exponential form.

‘a string' ‘a string’ A string of characters.

#solutions no equivalent A symbol with the name solutions. Each

symbol is unique — two symbols with
the same name cannot co-exist.

$c ‘¢! The character lowercase c.

#(-25 'a string’ $¢) no equivalent An array of three objects. Unlike Pascal,
objects within an array do not have to be
homogeneous. Individual objects within
an array can be referenced using integer
indices from 1 to the size of the array.

2.3 SENDING MESSAGES

Message expressions in Smalltalk describe who is to receive the message, which operation is
being selected, and any arguments necessary to carry out the requested operation. The
components of the message are called the receiver, the selector, and the arguments
respectively. For instance, in the Smalltalk expression

1+5

the integer 1 is the receiver of the message, + is the selector that uniquely identifies which
operation is to be selected, and § is the argument necessary to carry out the operation. More
important than the new terminology involved here is the manner in which this expression is
evaluated. As illustrated in Fig. 2.2, expressions in Smalltalk and Pascal are evaluated in
fundamentally different ways.

In a Pascal-like language, we might describe the evaluation in the following way. The
addition operator is applied to the two integer operands 1 and 5, returning the result 6. From
an object-oriented viewpoint, it should be viewed differently. The message + § is being sent
to the integer object 1. Integer objects know how to respond to this message and the integer
object 6 is returned as a result. Notice the change of emphasis. It is the receiver of the
message (the integer object 1) that determines how the expression is evaluated. In a Pascal-
like language it is the addition operation that is dominant.

Smalltalk supports three primitive types of messages, known as unary, binary and
keyword messages.

Chapter 2 Smalitalk Fundamentals -]

/ Operator Receiver

+5

Operands Message

Figure 2.2 Traditional versus Smalltalk expression evaluation.

2.3.1 Unary Messages

Unary messages have no arguments, only a receiver and a selector. They are equivalent to
Pascal functions with a single argument. Examples follow.

Smalltalk Pascal Conunentary

5 factorial factorial (5) The message consisting of the selector
factorial is sent to the integer 5. The
integer object 120 is returned as the
result.

16.79 rounded round (16.79) The message consisting of the selector
rounded is sent to the float 16.79. The
integer object 17 is returned as the
result.

$a asinteger ord (‘a’) The message consisting of the selector
asinteger is sent to the character a. The
integer object representing the ordinal
value of the character is returned as the
result.

‘abcdef* size size {'abcdef'} The message consisting of the selector
size is sent to the string ‘abedef’'. The
integer object 6 representing the length
of the string is returned as the result.

Pascal style unary operations are not available in the traditional syntax. The following
example shows a unary minus operation.

26 Inside Smalltalk

[[

Smalitalk Pascal Commentary

3 negated -3 The message consisting of the selector
negated is sent to the integer 3. The
integer object -3 is returned as the
result.

no equivalent +3
2.3.2 Binary Messages

In addition to the receiver, binary messages have a single argument. They are equivalent to
Pascal binary operations. The selectors for binary messages are special single or double
characters. Single character selectors include common arithmetic and comparison operators
such as +, -, *,/, <, >, and =. Double character selectors include such operators as ~= (not
equal), <= (less than or equal), and // (integer division). Examples of binary messages follow.

Smalltalk Pascal Commentary

55 + 100 55 + 100 The message + 100 is sent to the integer
55. The selector is + and the argument is

100. The result is to return the integer
155.

‘abc' ~= ‘def ‘abc’ <> ‘def’ The message ~= ‘def’ is sent to the string
‘abe’. The selector is ~= and the argument
is the string 'def’'. The receiver and the
argument strings are compared for
inequality. The hoolean object true is
returned.

2.3.3 Keyword Messages

Keyword messages are messages containing one or more keywords, with each keyword
having a single argument associated with it. The names of keywords always end in a colon
(2). The colon is part of the name — it is not a special terminator. Keyword messages are
equivalent to Pascal functions with two or more arguments. Examples follow.

Simalitalk Pascal Commentary

28 ged: 12 ged (28, 12) The message ged: 12 is sent to the integer
28. The selector is ged: and the argument
is the integer 12. The result returned is the
greatest common divisor of the receiver 28
and the argument 12, that is, the integer
object 4.

#4321) at: 4 no equivalent The message at: 4 is sent to the array
containing (4 3 2 1). The selector is at: and
the argument is the integer 4. The result
returned is the integer object 1, the object
associated with the index {(or subscript) 4
in the array.

Chapter 2 Smalltalk Fundamentals 27

5 between: 3 and: 12 between (5, 3, 12) The message between: 3 and: 12 is sent to
the integer 5. The selector is between:and:
and the arguments are the integers 3 and
12 respectively. The result returned is the
object true since 5 lies in the range 3 to 12
inclusive.

The selector in a keyword message is formed by concatenating together all of the
keywords in the message; e.g., between:and:. The same keywords may appear in different
- message selectors, providing the concatenation of the keywords forms a unique selector.

2.3.4 Evaluation of Message Expressions

The receiver or argument of a message expression may itself be a message expression. This
gives rise to complex message expressions and the need for an evaluation order. For
example, the following message expression contains unary, binary, and keyword messages.

4 factorialged: 4 * 6

Many languages, Pascal included, base the evaluation of expressions on priorities
assigned to different operators. For instance, multiplication (*) is usually assigned a higher
priority than addition (+). Smalltalk’s evaluation rules, however, are based on the type of
messages (unary, binary, and keyword) involved in the expression. In order of application,
the evaluation order is as follows:

Parenthesized expressions

Unary expressions (evaluated from left to right)
Binary expressions (evaluated from left to right)
Keyword expressions

halb ol o

Note: all binary operators have the same priority level.

Fully parenthesizing a message expression removes all ambiguity about the evaluation
order. Each of the following examples is shown with its fully parenthesized form to
illustrate the order of evaluation.

Expression Fully Parenthesized Expression

2 factorial negated (2 factorial) negated

3+4*6+3 ' - ((3+4)*6)+3

15ged:32//3 15 ged: (32 /f 3)

2 factorial + 4 (2 factorial) + 4

5 between: 1 and: 3 squared + 4 5 between: 1 and: ((3 squared) + 4)
4 factorialged: 4 * 6 (4 factorial) ged: (4 * 6)

2.3.5 Cascaded Messages
Cascaded messages are a concise way of specifying that multiple messages be sent to the

same receiver. A cascaded message consists of a series of message expressions separated
by semicolons (;), where the first message expression specifies the common receiver. For

28 Inside Smalltalk

example, imagine we wanted to modify the first three elements of an array anArray. The
message at: index put: aValue modifies an element of an array. We could send the same
message to anArray three times

anArray at: 1 put: 3. anArray at: 2 put: 8. anArray at: 3 put: 5
or alternatively use the cascaded message expression
anArray at: 1 put: 3; at: 2 put: 8; at: 3 put:5

No receiver is specified for the second and third at:put: message — implicitly the
receiver is the same as the message preceding the first semicolon. The result of evaluating a
cascaded expression is the result of sending the last message in the cascade. In this case,
since at:put: returns the modified value, the result returned would be 5. To return the
modified array as a result, the message yourself could be added to the cascade.

anArray at: 1 put: 3; at: 2 put: 8; at: 3 put: 5; yourself
When a yourself message is received by any object, the object (or receiver) is retumned.
2.3.6 Dynamic Binding and Message Overloading

The same message can be interpreted in different ways by different objects. For example,
consider the following examples.

5 + 100
(200 € 200) + 100

Both examples use the message + 100 but the receiving objects react to the message in
very different ways. In the first example, the receiver is the integer 5 and the selector + is
interpreted as indicating integer addition. In the second, the receiver is the point with x and y
coordinates equal to 200 (the binary selector @ when sent to an integer creates an initialized
instance of the Smalltalk class Point). In this expression, the selector + is interpreted as
indicating addition defined on points. The point with x and y coordinates equal to 300 is
retumed.

As we discussed earlier, it is the receiver of the message that determines how the
message is to be interpreted, This means that the same message sent to different objects will
produce different results. For example, we could use the generic selector printString to
generate printed representations of points, rectangles, and so on. Consider

aPoint printString Prints a point in the form x@y; e.g., 100@200.

aRectangle printString Prints a rectangle in the form “originPoint corner:
comerPoint”; e.g., 100@100 comer: 200@200.

The actual print method invoked by an expression such as anObject printString is
determined by the type of the object receiving the message. If the receiver is a point, then the
method for printing points is selected. The decision about which print method to evaluate in
response 1o a printString message is delayed until run-time and is based on the type of the

Chapter 2 Smalltalk Fundamentals 29

receiver. This is called dynamic binding. Some messages in Smalltalk have as many as
twenty different implementations for different types of objects.!

When the same selector is accepted by different classes of object, we say, in
programming language terminology, that the selector is overloaded. Alternatively, if we

equate message expressions to function calls in Pascal, we can view messages as functions
that are generic in their first argument.

Smalitalk Pascal

receiver selector selector (receiver)

receiver selector: first selector: (receiver, first)

receiver selector: first with: second selector:with: (receiver, first, second)?

2.3.7 Variables and Assignment

Variable names in Smalltalk are simple identifiers consisting of a sequence of letters and
digits beginning with a letter. Although they have the same syntax as their Pascal
counterparts, variables in Smalltalk are vastly different. All variables in Smalltalk are object
pointers or pointer variables in the Pascal sense. For example, in Pascal if we have a
variable named x and an assignment statement of the form

x :='a String’

we refer to the value of x as the string "a String’ or to x as containing the value 'a String’.
In Smalltalk, a similar assignment would take the form:

X < ‘a String'

and we would say that the variable x is bound to (or points to) the object 'a String' (see
Fig. 2.3).

In Pascal, the equivalent would be described by the expression
xT = 'a String'

In Smalltalk, variable names are used to refer to the object pointed to by the variable.

Assignment expressions are used to change the object to which a variable is bound or points
to. Consider the following:

Smallitak Pascal Commentary

Xy X:i=y The variable x is bound to the same object
that is bound to the variable y.

1Actually, there is only one printString method in class Object. Method printString invokes
method printOn:, and it is this method that is reimplemented by subclasses to override the default
print behavior found in the printOn: method in class Object.

20f course, in Pascal, the colons would not be legitimate characters in the function name.

30 Inside Smalltalk

[t (N

x :='a String’ X ¢« 'a String'

Figure 2.3 Pascal versus Smalltalk assignments.

Note that there is a subtle but important difference between the Smalltalk and Pascal
versions in the previous example. An assignment such as x := y in a language such as
Pascal involves making a copy of the contents of y and placing it into the space occupied by
x. In Smalltalk no copying takes place, x is simply bound to the same object as y (see
Section 6.2.2 for an in-depth discussion of this subject). Consider the following examples:

Smalltak Pascal Commentary

Xex+1 Xi=x+1 The message + 1 is sent to the object
bound to variable x. Variable x is then
bound to the object returned by evaluating
the message expression x+1.

table at: index put: 3 table [index] := 3 The element of the array table at position
index is bound to the integer object 3. The
argument to the keyword put:, the object
3, is returned as result.

X 3. X« $3 no equivalent The first assignment expression binds x to
the integer object 3. The second then
rebinds x to the character object $3.
Notice that the period (.) is used as a
statement separator in exactly the same
way as the semicolon (;} in Pascal. It can
also terminate the last sentence if we
wish to add it.

The last example illustrates another important difference between Smalltalk variables
and Pascal variables. The type of a Pascal variable must be predeclared at compile-time — no
type is provided when a Smalltalk variable is declared. For instance, a Pascal variable
declared as type integer cannot subsequently take on a character value. For that reason, Pascal
is known as a strongly typed language. Smalltalk variables, on the other hand, are not
typed. Smalltalk objects are typed but not the variables that refer to them. A Smalltalk

Chapter 2 Smalltalk Fundamentals 3

variable can be bound to any object of any type. The declaration syntax and the scoping rules
pertaining to Smalitalk variables are discussed in a later section.

2.3.8 Allocation and Deallocation of Objects

Another major difference between Pascal and Smalltalk is the method of dynamically
allocating and deallocating objects. In Pascal, it is necessary to explicitly deallocate objects
when they are no longer needed — in Smalltalk this process is handled automatically. The
example below illustrates the dynamic allocation of an array of size 10 to a variable aTable.
In the Pascal case, the array element type must be specified. In both Pascal and Smalltalk,
the allocation process is carried out in a similar fashion. Pascal has a new function while
Smalltaik sends a new: message to the class Array. However, in Pascal, if we wish to
reclaim the space pointed to by variable aTable, we must explicitly ask that it be deallocated
using the dispose function. Moreover, it is the programmer's responsibility to ensure that
this space can be safely reclaimed; i.e., to ensure that no other references to the deallocated
objects exist. In Smalltalk, this task is handled automatically by a garbage collector> that
periodically reclaims all objects that are no longer referenced.

Smalitak Pascal
TYPE

table = ARRAY [1..10] OF integer;
pointerToTable = Ttable;

| aTable | VAR
aTable: pointerToTable;

aTable « Array new: 10. new (aTable);

dispos:e. (aTable)

2.4 CONTROL STRUCTURES WITH MESSAGE-PASSING

Unlike Pascal, no additional syntactic structures need to be added to the language to describe
control structures. Control structures are implemented in terms of objects and message
passing. In particular, Smalltalk control structures involve a class of object known as a
block. For the moment, a block can be thought of, at least syntactically, as an analog of the
Pascal begin ... end construct; i.e., simply a way of grouping together a set of statements.

A block literal consists of a sequence of expressions separated by periods and delimited by
square brackets; e.g.,

[x ¢ 3.y « 4]

3The garbage collectors implemented in current versions of Smalltalk-80 are, unlike early garbage
collectors, extremely efficient, consuming only 2-3 per cent of available CPU time.

32 Inside Smalltalk

1 (N

The result returned when a block is evaluated is the object returned by the evaluation of
the last expression in the block.The empty block [] returns the special object nil when

evaluated.

Fig. 2.4 contains a summary of the control structures in Smalltalk along with their

Pascal equivalents.
Smalitak
Assighment
variable ¢ expression
Conditional Selection
boolean expression
ifTrue: |
true block}

ifFalso: [
false Block]

boolean expression
ifTrue: [
true blockl
boolean expression
ifFalse: [
faise block]
Conditional Repetition

[boolean expression] whileTrue: [
loop bodyl

[boolean expression] whileFalse: [
loop bodyl

Fixed Length Repetition (integers only)
initial value to: final value do:
[loop control variable |

loop bodyl

. repeat value timesRepeat: {
loop body]

Pascal

variable := expression

IF boolean expression THEN
statement
ELSE

statement

IF boolean expression THEN
statement

IF NOT boolean expression THEN
statement

WHILE boolean expression DO
statement

WHILE not boolean expression DO
statement

FOR loop control variable :=
initial value TO final value DO
statement

FOR loop control variable :=
1 TO repeat value DO
statement

Figure 2.4 Smalltalk control structures.

2.4.1 Conditional Selection

Control structures for conditional selection are expressed using blocks as shown in the
following. In each case the Pascal equivalent is given. As in Pascal, Smalltalk allows
statements to be freely formatted by the programmer. Statements should be laid out in a

Chapter 2 Smalitalk Fundamentals

33

manner that visually enhances the logical structure of the code using indentation as

appropriate.
Smalitak Pascal
number1 < number2 IF number1 < number2 THEN
ifTrue: [BEGIN
maximum <« number2. maximum := number2;
minimum < number1] minimum := number1
ifFalse: { END
maximum < number1, ELSE
minimum < number2] BEGIN

maximum := number1;

minimum := number2
END

The Smalltalk version of the if-then-else statement should be interpreted as follows:

1.

The message < number2 is sent to the object referenced by numberl. All
numbers respond to the selector < (less than) by returning one of the boolean
objects, true or false, depending on the argument passed in the message.

If numberl < number2 returns true, the message ifTrue: [...] ifFalse: [...} will
be sent to the boolean object true; otherwise it will be sent to false.

The constant true responds to a message with selector ifTrue:ifFalse: by
evaluating the expressions in the argument associated with the ifTrue: keyword;
i.e., the block, [maximum « number2. minimum « numberl].

Similarly, false responds to a message with selector if True:ifFalse; by evaluating

the expressions in the argument associated with the ifFalse: keyword; i.e., the
block, [maximum < numberl. minimum < number2].

The object returned by the conditional selection is the value of the evaluated
block. In this example, the object bound to minimum will be returned since an
assignment expression of the form minimum « number? is the last statement in
both the ifTrue: and ifFalse: blocks.

The boolean objects true and false also accept the single keyword messages ifTrue:
and ifFalse:. The following are examples of their use.

Smalitak Pascal

salesAmount < 100 IF salesAmount < 100 THEN
ifTrue: [discount « 0.15] discount := 0.15

number >= 0 IF NOT (number >= 0} THEN
ifFalse: [number <~ number negated] number := -number

The literal true responds to an ifTrue: message by returning the vatue of the block
argument; false responds to the same message by returning the special object nil.

34

Inside Smalltalk

|

Conversely, true responds to an ifFalse: message by returning nil, and false responds to the
same message by returning the value of the block argument. Note that the arguments to
message selectors ifTrue:ifFalse:, ifTrue:, and ifFalse: must be blocks even if the block
contains only a single message expression or is empty.

Since conditional selection is implemented in terms of message expressions, a
conditional selection can itself be embedded within a message expression. For instance, the
last example could have been written as follows:

number <~ number >= 0 ifFalse: [number negated] ifTrue: [number]
2.4.2 Conditional Repetition

Smalltalk provides a conditional repetition form equivalent to the Pascal while ... do
statement. It is again based on blocks and makes use of the fact that blocks are bonafide
objects and thus can support their own message protocol. Consider the following program
fragments to compute the sum of the first 100 integers:

Smalltalk Pascal
sum « 0. sum :=0;
number « 1. number := 1;
{number <= 100] whileTrue: WHILE number <= 100 DO
sum < sum + number. BEGIN
number « number + 11 sum := sum + number;
sum number := number + 1
END

The Smalltalk version of the while ... do statement should be interpreted as follows:
1. The message whileTrue: [...] is sent to the block [number < 100].

2. Inresponse to the whileTrue: message, the receiver, the block [number < 100],
evalnates itself.

3. Ifevaluating the block returns the object true, the whileTrue: argument block is
evaluated and the whileTrue: message is again sent to the block [number < 100},
and steps 1, 2, and 3 are repeated.

If evaluating the block returns the object false, the whileTrue: argument block is

not evaluated again and the whileTrue: message returns the special object nil as
the result.

Note that the result returned by a whileTrue: message will always be nil. To return
the required result when the fragment of Smalltalk code is evaluated, we evaluate the variable
sum on exit from the while loop.

The effect of sending a whileTrue: message to a block is to repeatedly evaluate the
block argument while the block receiving the message evaluates to true. This provides a
conditional structure that repeats zero or more times.

Chapter 2 Smalltalk Fundamentals 35

A whileFalse: message is also understood by blocks. Its semantics are similar to the
whileTrue: semantics but are reversed; i.e., the effect of sending a whileFalse: message to a
block is to repeatedly evaluate the block argument, while the block receiving the message
evaluates to false rather than true. The result returned by whileFalse: is always the special
object nil. The previous example could be rewritten to use whileFalse: instead of
whileTrue: as follows:

Smalltak Pascal
sum « 0. sum :=0;
number « 1. number := 1;
[number > 100] whileFalse: [WHILE NOT {(number > 100) DO
sum « sum + number. BEGIN
number ¢~ number + 1]. sum := sum + number;
sum number := number + 1
END

2.4.3 Fixed-Length Repetition

Deterministic looping over integers is provided by the to: finalValue do: aBlock message
defined on integers. The do: keyword argument is a single argument block. Block arguments
are declared at the head of a block and delimited from the expressions in the block by a bar
(). Each block argument name is syntactically preceded by a colon *“:”. The previous
example for computing the sum of the first 100 integers could be recoded as follows:

Smalitak Pascal
sum < 0. sum :=0;
1 to: 100 do: [:index | FOR index := 1 TO 100 DO
sum « sum + index]. BEGIN
sum sum := sum + index
END

The to: finalValue do: aBlock message on integers evaluates the single argument
block aBlock for each integer in the interval given by the value of the receiver up to and
including finalValue. The argument to the block takes on successive values in that interval
on each evaluation of the block. In the example above, the block is evaluated for each value
of the block argument, index, which takes on the successive values in the interval 1 to 100
inclusive.

Smalltak Pascal
sum « 0. sum := 0; index:=1;
1 to: 100 by: 2 do: [:index | WHILE index < 100 DO
sum < sum + index). BEGIN
sum sum = sum + index;
index := index + 2
END

The to: finalValue by: stepValue do: aBlock message defined on integers is a
variation of the to:do: message that specifies the amount by which the block argument is to

36 Inside Smalltalk

1Hy

be incremented on each evaluation. For positive step values, the repeated evaluation
terminates when the loop index is greater than the finalValue. This is illustrated above. For
negative steps, the loop terminates when it is less than finalValue.

As we will see later, it is a simple matter to add new methods to integers to support
additional control structures. For example, we might wish to add a downTo: finalValue do:
aBlock, where the block argument is decremented by 1, instead of incremented, on each
evaluation of the block.

An even simpler form of deterministic loop is provided by the timesRepeat: aBlock
protocol that evaluates a zero-argument block a fixed number of times. The number of
evaluations is specified by the receiver, an integer. For example, the expression

5 timesRepeat: {...]

would evaluate the block five times.

The Pascal for statement allows fixed length iteration where the index variable of the
loop may be of any ordinal type. For example, given the following type color,

TYPE color = (red, green, yellow, blue)
we could construct a for statement to iterate over subranges of the values of the type; e.g.,
FOR hue:= red TO biue DO BEGIN ... END

The Smalltalk equivalent is the do: construct that applies to many more classes of
object. For example, we can write

(1 to: 10) do: [:looplindex| ... code ...]

#{red green blue) do: [:loopindex | ... code ...]

#(5 'hi' 1.5) do: [:loopindex | ... code ...]

aSet do: [:loopindex ! ... code ...]
anOrderedCollection do: [:loopindex | ... code ...]

In Smalltalk, control structures are implemented by passing messages to objects.
Consequently, we can implement the do: for each different class of object that we would like
to iterate over. This is a great advantage because control structures can be constructed not
only to iterate over simple ranges of integers, but also to traverse such data structures as
arrays, lists, trees, bank accounts, or circuit elements.

2.4.4 An Example: Testing for Primes

To illustrate the equivalent of Pascal’s nested control structures in Smalltalk and to discuss a
larger example, we will consider the development of a Smalltalk fragment to test whether or
not a given integer is prime. For our purposes, a number is defined as prime if it is positive
and evenly divisible by itself and 1. The algorithm used initially rejects all even numbers
greater than 2. For odd numbers greater than 3, the integer is divided by a series of odd trial
divisors, until either the number divides evenly into one of the trial divisors in which case it
is not prime, or alternatively until the divisor becomes larger than the square root of the
number, in which case the number is prime. Pascal and Smalltalk versions of code to solve
this problem are shown below.

Chapter 2 Smalltalk Fundamentals 37

Pascal

FUNCTION isPrime (candidate: integer): boolean;
VAR divisor: integer; prime: boolean;
BEGIN

prime := true;
IF candidate <= 0 THEN
prime := false
ELSE IF candidate > 3 THEN
IF candidate MOD 2 = 0 THEN
prime := false

ELSE
BEGIN
divisor := 3;
WHILE ((divisor * divisor} <= candidate} AND prime DO
IF candidate MOD divisor = 0 THEN
prime := false
ELSE
divisor := divisor + 2
END;
isPrime := prime
END;
Smalltak
isPrime

| candidate divisor |
candidate « self.
candidate <= 0 ifTrue: [Tfalse].
{candidate >= 1 & {candidate <= 3}) ifTrue: [Ttruel.
{(candidate W2} = 0 ifTrue: [Tfalse].
divisor « 3.
[divisor * divisor <= candidate] whileTrue: [
(candidate \divisor) = 0
ifTrue: [Tfalse)
ifFalse: [divisor « divisor + 2]].
Ttrue

Several explanatory comments are required to understand the Smalltalk code. But first
note that the Smalltalk code is more concise than the Pascal code — primarily because of
Pascal's inability to terminate evaluation of a function before the end. In Smalltalk, an
expression preceded by an up arrow (T) is termed a return expression. A return
expression indicates that the result of evaluating the expression following the up arrow is
the result to be returned and evaluation of the code is to terminate.

Two unfamiliar binary selectors are introduced: & and \ Selector & denotes the and
operation — its result is true if both the receiver and argument are true. Selector \\ defined on
integers returns the integer remainder when the receiver is divided by the argument.

As in Pascal, variables must be declared before they can be used. But as explained
earlier, variables are untyped — hence no type declaration is necessary. The form

| candidate divisor |

declares candidate and divisor to be temporary variables. These variables exist only

38 Inside Smalltalk

while the code fragment is being evaluated. All temporary variables are initially bound to the
special object nil.

In Smalltalk, the receiver of the isPrime message is called self. Explicitly assigning
self to a local variable, as we did via assignment candidate « self, is actually superfluous
because self can be referenced anywhere in the method. However, it serves to make the Pascal
and Smalltalk versions easier to compare.

2.4.5 User-Defined Control Structures

No analog of the Pascal repeat ... until or case statements is provided in the Smalltalk
system. However, since control structures are implemented by sending messages to objects,
it is possible for the programmer to add new control structures to the system. We will show
examples of how this may be done in later chapters. To whet your appetite, we will
introduce a few examples of advanced control structures that may be created in Smalltalk,
However, we will not yet discuss the details of their implementation.

Very often we want to apply a function to each element of a data structure such as an
array, a list, or a tree. For example, it is traditional to sum the elements of an array by
extracting successive elements and adding them to a running sum. Alternatively, we might
want to print out the values stored in a binary tree by traversing the nodes of the tree in
some specified order such as post-order.

Each of these tasks require us to successively generate elements from a data type and
apply a function to each generated element. Such control forms are often called generators.
Lisp programmers will recognize them as mapping functions. The do: aBlock message,
when sent to an array receiver, successively supplies the objects in the array as the argument
to the single argument block provided after keyword do:. For example, the code

sum « 0.
table do: [:element | sum < sum + element]

sums the elements in array table. As each object from the array is generated, it is bound to
the block argument element and the message expression sum « sum + element is
evaluated.

Many other useful variations of this form are possible. We will give just one further
example. Rather than simply applying a function to each object of an array, we often want
to select only those objects that satisfy some constraint. Perhaps we want to collect into a
new array only the nonzero elements of an existing array. This requires us to generate each
element from the original array, test whether the element is zero or not, and, if it is nonzero,
add it to the new array. The expression

#(0 30 4 20 0) select: [:element | element ~= 0]

would perform this task and return the array #(3 4 2) as the result; i.e., it collects the nonzero
elements into an object of the same class as the receiver. A final example is

#(1 2 3 A 5) collect: [:element | element squared]

which returns #(1 4 9 16 25).

Chapter 2 Smalltalk Fundamentals 39

2.5 CLASSES

The class is the fundamental abstraction mechanism in Smalltalk. It groups together objects
with similar characteristics. Classes allow the programmer to abstract out the common
attributes and behaviors of a set of objects. A class describes the common protocol followed
by each object in the set; individual objects following that description are termed instances.
One class description serves to describe all instances of that class, and every object in the
Smalltalk system is an instance of some class.

Class A description of a set of objects with similar characteristics
and attributes.
Instance An individual object described by a particular class.

In previous sections, we have been exposed to some of the basic Smalltalk system
classes: integers, characters, strings, booleans, blocks, arrays, and so on. We have seen
examples of instances of each of these classes: 3 is an instance of class Integer, 'hello’ is
an instance of class String, [x < 4 factorial] is an instance of class Block. We have also
examined some of the protocol that instances of these classes follow. For example, the class
Integer supports the following protocol: factorial, +, -, *, /, to:do:, to:by:do:, ged:, and
so on. The class Array supports the protocol at: and at:put:. In later chapters, we will
examine the complete protocol supported by each of these classes.

Up to this point, we have seen how messages can be sent to instances of predefined
classes. The Smalitalk environment provides an enormously rich set of such classes, but the
essence of programming in Smalltalk is identifying, creating, and manipulating new classes
of objects. To illustrate the description of classes and the creation of instances, we will
define a new class Complex to perform calculations in complex arithmetic. Note: Class
names in Smalttalk must begin with an uppercase letter.

2.5.1 Designing a New Class

The first step in designing a new class is to develop a specification for the class; i.e., to
define the message protocol or outside view of the new class. The specification should
provide all the information required by users of the class but only that information. No
information superfluous to the needs of users should be provided. The specification of the
class should be completed before any implementation issues are considered. Developing the
specification consists of the following three steps:

1. Listing the names of the operations required.
2. Fleshing out the operations by describing the parameters in detail.
3. Specifying the semantics of each operation informally,

We will assume, for brevity's sake, that we only wish to create, add, and multiply
complex numbers and also access and modify their real and imaginary parts.

40 Inside Smalitalk

115

2.5.2 Class Protocol versus instance Protocol

The message protocol for a class is described in two parts: the class protocol and the
instance protocol.

Class Protocol A description of the protocol understood by a class.

Instance Protocol A description of the protocol understood by instances of a
class.

The class protocol describes messages that are sent to the class rather than to the
instances. Typically, the class protocol contains protocol for creating and initializing new
instances of a class. Classes can be thought of as factories for creating instances. For

example, it is the responsibility of class Complex to create new instances of the class. The
expression

Complex newWithReal: 1.0 andimaginary: 3.5

sends the message newWithReal: 1.0 andImaginary: 3.5 to the class Complex. The intent
is to return a new instance of class Complex with real and imaginary components initialized
to 1.0 and 3.5 respectively. For class Complex, the class protocol might be specified as
follows:

instance creation

newWithReal: realPart andimaginary: imaginaryPart
Returns an instance of class Complex with real part realPart and imaginary
part imaginaryPart.

Method categories are used in Smalltalk to group together methods that provide
similar functionality. For example, the class method newWithReal:andImaginary: would
be placed in a category with the name instance creation. Category names have no
semantic significance — they are used externally for documentation purposes. Internally,
category names are used by the programming environment to group related methods.

The instance protocol is the message protocol supported by instances of the class;
i.e., messages that may be sent to any instance of the class. For example, the message
protocol for adding two complex numbers is part of the instance protocol. In the expression

complex1 + complex2

the receiver of the message + complex2 is the instance complex1. A subset of the instance
protocol for the class Complex might be the following:

accessing

realPart
Returns the real component of the receiver.

imaginaryPart
Returns the imaginary component of the receiver.

Chapter 2 Smalltalk Fundamentals 41

realPart: realValue
Sets the real component of the receiver to realValue. Returns the modified
receiver.

imaginaryPart: imaginaryValue
Sets the imaginary component of the receiver to imaginaryValue. Returns
the modified receiver.

arithmetic

+ aComplex
Returns a complex number equal to the sum of the receiver and the
argument aComplex.

* aComplex
Returns a complex number equal to the product of the receiver and the
argument aComplex.

If the instance and class protocols for Complex are sufficiently complete, we should be
able to write code that manipulates complex numbers, despite the fact that we have yet to
consider how to represent complex numbers or how to implement any of the operations. For
example, the following message expressions would create two complex numbers and then
compute two more, one equal to the sum of the originals and the other equal to their product.
It is a good practice to try “programming” with a new class as soon as its protocol has been
specified. More often than not, this process reveals deficiencies in the protocol. Clearly, it is
better to discover such problems at the specification stage rather than after the class has been
implemented.

| complex1 complex2 complexSum complexProduct |
complex1 ¢« Complex newWithReal: 2.5 andlmaginary: 3.1.
complex2 « Complex newWithReal: -1.0 andimaginary: 0.5.
complexSum « complex1 + complex2.

complexProduct « complex1 * complex2

2.5.3 Implementing a Class Description

The inside view of a Smalltalk class description, the implementation viewpoint, can be
made more concrete by performing the following two steps:

1. Deciding on a suitable representation for instances of the class.
2. Selecting and implementing efficient algorithms for the methods or operations.

‘When describing the representation, we must distinguish between instance variables
and class variables. Instance variables are variables denoting the private data or state of an
individual instance of a class. Class variables, on the other hand, are variables shared by all
the instances of a class.

Suppose we have two instances of class Complex, referenced by variables complex1
and complex2. What distinguishes them from one another? They both follow the same
instance message protocol and thus can share a single copy of the method associated with
each message. Instance methods, therefore, can be stored in the class description. However,
complex1 and complex2 must have their own private data — in particular, their individual

42 Inside Smalltalk

[l .

real and imaginary parts. We speak of the real and imaginary parts as instance variables of
the class Complex. That is, each instance of a class will have its own instance variables.
For example, if we send the message realPart to both complex1 and complex2 as in

complex1 realPart
complex2 realPart

we expect to obtain possibly different results because the method implementing the realPart
message will extract independent values for the respective real components of complex1 and
complex2.

Some variables can be shared by all the instances of a specific class. Such variables are
called class variables. For example, Pi is a class variable representing the mathematical
quantity « in class Float. Similarly, class Date contains class variables such as
WeekDayNames — an array of symbols representing the days of the week (Monday,
Tuesday, ...), MonthNames — an array representing the months of the year (January,
February, ...), and DaysInMonth — an array containing the number of days in each
month (31, 28, 31, ...).

2.5.4 Describing a Class

Smalltalk class descriptions consist of the following seven components:
class name A name that can be used to reference the class.

superclass name The name of the superclass (the role of superclasses will be
discussed later in this chapter).

class variables Variables shared by all instances of the class.
instance variables Variables found in all instances of the class.

pool dictionaries The names of lists of shared variables that are to be
accessible to the class and its instances (described in more
detail later). Unlike class variables, the pools can be
referenced by other unrelated classes.

class methods Operations that are understood by the class.

instance methods Operations that are understood by instances of the class.

Returning to our example, the class name is Complex, the superclass is class Object,
and there are no class variables or pool dictionaries. In general, the choice of superclass is
often critical to the implementation of a class, since it specifies what representation and
methods may be inherited automatically from other classes. For the moment, we will ignore
this issue and simply specify that the superclass of Complex is class Object. All Smalltalk
classes, except Object itself, are ultimately subclasses of class Object.

Complex numbers can be represented in at least two ways — two independent floating
point numbers or an array of two such numbers. As long as the choice does not impact the
performance of the class, it doesn't matter which representation we choose — the external
view presented to users of the class Complex is independent of the choice of representation.

Chapter 2 Smalitalk Fundamentals 43

We will choose two numbers to represent the real and imaginary parts respectively. Hence,
each complex number has two instance variables, realPart and imaginaryPart.

The full description of class Complex is shown in Fig. 2.5. Programming in
Smalltalk is carried out within an interactive program development environment. It is not
normal, therefore, to add new classes to the system by compiling a file containing the
complete class description.# New classes are added to the Smalltalk system incrementally
using a tool known as a Browser. The class definition is first entered and compiled into the
system followed by the method definitions. Each method is compiled incrementally into the
existing system and can immediately be tested. The system provides a template to guide the
addition of new classes and methods. This process will be described in detail in succeeding
chapters. For the time being, we will present the entire listing of the class definition.

Class Complex

class name Complex

superclass name Object

instance variable names realPart imaginaryPart

class methods
instance creation

newWithReal: realValue andimaginary: imaginaryValue
*Returns an initialized instance of class Complex .”
| aComplex |
aComplex & Complex new.

aComplex realPart: realValue; imaginaryPart: imaginaryValue.

aComplex
examples

example
| complex1 complex2 |
complex1 « Complex newWithReal: 2.5 andimaginary: 3.1.
complex2 « Complex newWithReal: -1.0 andlmaginary: 0.5.
Tcomplex1 * complex2.

*Complex example”

instance methods

accessing

realPart
*Returns the real component of the receiver.”
TrealPart

imaginaryPart

“Returns the imaginary component of the receiver.”
TimaginaryPart

4This is often done, however, to add extemnally created classes to the system; for example, for porting

code across machines — this operation is referred to as “filing in™ a class definition.

44

Inside Smalltalk

il | iy

realPart: realValue
*Modifies the real component of the receiver to realValue."
realPart < realValue

imaginaryPart imeginaryValue
*Modifies the imaginary component of the receiver to imaginaryValue.”
imaginaryPart ¢« imaginaryValue

arithmetic

+ aComplex
“Returns an instance of class Complex equal to the sum of the receiver and the
argument aComplex.”
| realPartSum imaginaryPartSum |
realPartSum ¢« realPart + aComplex realPart.
imaginaryPartSum « imaginaryPart + aComplex imaginaryPart.
TComplex newWithReal: realPartSum andimaginary: imaginaryPartSum

* aComplex
"Returns an instance of class Complex equal to the product of the receiver and the
argument aComplex.”
| realPartProduct imaginaryPartProduct |
realPartProduct < {realPart * aComplex realPart) -
{imaginaryPart * aComplex imaginaryPart).
imaginaryParntProduct « (realPart * aComplex imaginaryPart) +
(imaginaryPart * aComplex realPart).
TComplex newWithReal: realPartProduct andlmaginary: imaginaryPartProduct

Figure 2.5 Class Complex.
2.5.5 Describing Methods

Whenever a message is sent in Smalltalk, a method with a message pattern matching the
message is searched for in the class of the receiver. If such a method is found, it is evaluated.
Otherwise, the search continues in the superclass. Failure to find a matching method results
in an error message. All methods in Smalltalk have the following form:

message pattem
*A comment stating the purpose of the method"
| temporary variables |
method body

The message pattern consists of the message selector, together with names for any
arguments required. It is common practice to include a comment describing the purpose of
the method immediately following the message pattern. Comments in Smalltalk are
delimited by double quotes ("). Comments may also be included within the body of the
method. Temporary variables may be declared for use during the evaluation of the method.
They are declared by placing their names between vertical bars (1) following the method
comment. The body of the method is a sequence of expressions separated by periods. By
convention, the message pattern is typed at the left margin while all other lines are indented
by at least one tab to increase the clarity of the code. We will boldface all message selectors

Chapter 2 Smalitalk Fundamentals 45

to increase the readability of the code, but note that this is our convention -— message
selectors are not boldfaced within the Smalltalk system itself.

Every method must return an object as a result. The default result is the receiver of the
message. Alternatively, a return expression (an expression preceded by up arrow symbol T)
can be used to return a specific result. Evaluating a return expression terminates the
evaluation of the method.

Consider the instance method for addition: + aComplex:

+ aComplex
“Returns an instance of class Complex equal to the sum of the receiver and the
argument aComplex.”
| realPartSum imaginaryPartSum |
realPartSum ¢ realPart + aComplex realPart.
imaginaryPartSum < imaginaryPart + aComplex imaginaryPart.
TComplex newWithReal: realPartSum andimaginary: imaginaryPartSum

This method will be invoked whenever an expression of the following form is
evaluated.

complexSum « complex? + complex2.

This method has one argument, a complex number aComplex, and two temporary
variables, realPartSum and imaginaryPartSum. The method returns a complex number
equal to the sum of the receiver and the argument. The first two expressions compute the real
and imaginary components of the sum. The final expression sends the message
newWithReal:andImaginary: to the class Complex to create the required instance
representing the sum. Note that in the expression

realPartSum «- realPart + aComplex realPart

the first occurrence of realPart refers to the instance variable realPart of the receiver —
complex1 in our example. A method has direct access to the instance variables of the
receiver but not to those of any other instance. To retrieve the real component of complex2,
we must send a realPart message to the argument aComplex.

2.5.6 Variables and Scope

As with traditional languages, it is important to understand what variables may be referenced
within a method and the lifetime of these variables; i.e., what scoping mechanisms the
language provides for controlling access to variables, and how and when space is allocated
and deallocated. Smalltalk provides two basic types of variables: private variables and
shared variables. Private variables are accessible only to a single object, while shared
variables may be shared by several objects. Private variables begin with a lowercase letter,
while shared variables begin with an uppercase letter.

Private Variables
Private variables include both instance variables and temporary variables (see Fig. 2.6).

The instance variables of an object are the parts or components of the object — they are

46 Inside Smalltalk

directly accessible only by that object. Instance variables come in two varieties: named
instance variables, referenced by name, and indexed instance variables, referenced by an
integer index.

Private
Variables

Instance
Variables

Temporar,
Val!;ablesy

Indexed
Instance
Variables

Named
Instance

Variables

Block
Arguments

Method Block

Temporaries Temporaries

Figure 2.6 Private variables.

The named instance variables of the receiver of a message may be referenced in any
instance method of the class of the receiver or its subclasses. Since it is impossible to
directly refer to the named instance variables of a object other than “self”, access to the
named instance variables of other objects must be obtained by sending messages to the
appropriate object. It is a common mistake to attempt to refer to instance variables within a
class method — only instances have access to instance variables.

Indexed instance variables are unnamed instance variables of the instances of a
class. They can only be accessed by sending a message to the instance with an index specify-
ing which (indexed) instance variable is desired. For example, the system classes Array and
String have indexed instance variables. Each instance of a class with indexable instance
variables can have a different number of instance variables. The number is specified when the

5 Actually, classes can have instance variables too but these instance variables are local to the class

and inaccessible from the instances. This is a little known feature of Smalltalk that is rarely (if ever)
used.

Chapter 2 Smalltatk Fundamentals 47

object is created by sending a new: size message to the class. Individual instance variables
can be referenced using at: and at:put: messages. Consider the following examples:

table « Array new: 20 Returns an instance of class Array of size 20; i.e., an array
with 20 indexable instance variables.

table at: 3 put: ‘abcde’ The third instance variable of table is to reference the string
object ‘abede’.

{table at: 3) at: 2 The expression table at: 3 returns the object 'abcde’. This

object is a string that itself has indexed instance variables —
it receives the message at: 2 and the character $b is
returned.

Classes that have indexed instance variables may also have named instance variables.
For example, class Set has a size instance variable to refer to the number of objects in a set
in addition to indexed instance variables that refer to the members of the set. Most system
and user classes have only named instance variables.

Temporary variables include method arguments, method temporaries, block
arguments, and block temporaries (sce Fig. 2.7). Method temporaries must be explicitly
declared below the message pattern; method arguments and block arguments are implicitly
declared — the context indicates that they are variables; block temporaries must be explicitly
declared after the block arguments (they are not permitted prior to version 2.4). The scope of
method arguments and method temporaries is limited to the method in which they are
defined. The scope of block arguments depends on the version of the system being used.
Prior to version 2.4, block arguments were unrestricted and accessible from outside the block
in the containing method; e.g., distinct blocks with the same block argument name were
actually referencing the same block argument and it could actually be explicitly declared as a
method temporary. In version 2.4 and later, block arguments (and block temporaries) are
local to the block in which they are defined. Nested blocks can refer to outer block arguments
and temporaries only if they are not locally redefined. Method and block temporaries can be
changed via assignment statements but method and block arguments may not be assigned
into. Additional details are provided in chapter 6.

method arguments

variables: argument! andScopes: argument2
"Method to illustrate variable types and scoping.”
| temporaryl temporary2 temporary3 |

method temporaries

1to: 10do: [x:y;:z) fabel..]

block arguments bleck temporaries

Figure 2.7 Variable types in method definitions.

Inside Smalltalk

Shared Variables

Shared variables include global variables, class variables and pool variables (see
Fig. 2.8). They differ in the degree of sharing they each support.

Shared
Variables

Class

Global
Variables

Pool

Variables

Variables

Figure 2.8 Shared variables.

Global variables Shared by all objects.

Class variables Shared by all instances of a class. They may be referenced
within any class or instance method of the class (or its
subclasses — see the next section).

Pool variables Shared by a defined subset of the classes in the system.
Pool variables are stored in dictionaries known as pool
dictionaries. The variables in a pool dictionary can be
made accessible to any class by declaring the name of the
pool dictionary in the pool dictionary list of the class
definition.

Class variables are most often used to allow constants to be accessed by all instances
of a class (and its subclasses). For example, class Float has a class variable Pi, whose value
is the mathematical constant 7, and the class Date has array constants MonthNames and
WeekDayNames that contain the names of the months of the year and the days of the week
respectively.

Global variables are stored in a special instance of class Dictionary named
Smalltalk. Dictionaries are collections of associations between names (or keys) and values.
Several global variables are predefined in Smalltalk. For example, Display is a special
instance of the graphical class Form that refers to the current display screen, and Transcript
is a special instance of the class TextCollector that allows text to be displayed in a screen
window known as the System Transcript window.

To add new variables to the global dictionary Smalltalk, an at:put: expression is used
to enter the variable name as a key in the dictionary and to associate an initial value with the
name,

Smalltalk at: #ANewGlobal put: nil Adds the name ANewGlobal and its initial value
nil to the global variable dictionary Smalitalk.

Note that the global variable must be specified as a symbol rather than a string to
ensure that only one global can exist with that name; i.e., the prefix # is significant.

Chapter 2 Smalltalk Fundamentals 49

Pools are collections of variables whose scope is a defined subset of the classes in the
system. Pool variables are stored in pool dictionaries — collections of name/value
associations. Smalltalk, the dictionary of global variables, is a pool dictionary that is
globally accessible. The class variables of a class are also stored in a pool dictionary that is
accessible to the class, its subclasses, and instances of the same.

Pool dictionaries can be defined and made accessible to particular classes by declaring
the name of the pool dictionary in the pool dictionary list of a class description. This allows
the sharing of variables between classes that are not related via class/subclass relationships.
Sharing of variables is more normally accomplished through an inheritance mechanism based
on class/subclass relationships — see the next section. For example, the pool dictionary
TextConstants includes variable names such as Tab, Cr, ..., allowing unprintable ASCII
characters to be referenced by name. This dictionary is shared by many of the classes that
manipulate characters and text.

Programmers may create new pool dictionaries by declaring the name of the pool
dictionary as a global variable and associating a dictionary with the global. Variables may
then be added to the dictionary using at:put:. More specifically, the steps are the following:

Smalltalk at: #ANewPoolDictionary put: Dictionary new
Creates a new global variable named
ANewPoolDictionary that references an empty
dictionary.

ANewPoolDictionary at: #ANewPoolVariable put: nil
Creates and adds a new pool variable
ANewPoolVariable to the pool dictionary
ANewPoolDictionary.

Smalltalk adopts the following stylistic conventions with respect to variable names.
Shared variables are always capitalized — private variables are not. Multi-word private
variables are written with each word except the first capitalized, with no spaces between the
words. Recall that the class name for complex numbers was written Complex, while the
selector for creating instances of class Complex was newWithReal:andImaginary:.
Selectors and keywords within selectors start in lowercase.

2.5.7 The Pseudo-Variable self

Suppose we added the isPrime method developed earlier in the chapter to the integer instance
protocol. The actual mechanics for doing this will be discussed in the section dealing with
the Smalltalk browser. Integers could then be tested using messages of the form
7 isPrime
256 isPrime

To allow reference to the particular receiver in use when a method is evaluated,
Smalltalk provides the pseudo-variable self. As with all pseudo-variables, self cannot be
changed by assignment within a method and is bound to the receiver by the system when

evaluation of the method commences. If the isPrime instance method had been invoked with
an expression such as 7 isPrime, then self would refer to the instance 7.

50 Inside Smalitalk

sPrime
*Tests whether the receiver is a prime or not."
| divisor |
self <= 0 ifTrue: [Tfalsel.
(self >= 1 & self <= 3) ifTrue: [Ttruel.
(self \ 2) = 0 ifTrue: [Tfalsel.
divisor « 3.
[divisor * divisor <= self] whileTrue: [
(self \ divisor) =0
ifTrue: [Talsel
ifFalse: [divisor < divisor + 2].
Ttrue

2.5.8 Methods Can Be Recursive

The pseudo-variable self provides us with the means to refer to the receiver of a message
within a method. This implies that we can send further messages to the receiver (or more
commonly a new receiver based on the original) from within the method and consequently
invoke the same method recursively.

The following example illustrates a recursive definition of the factorial method
defined on integers.

factoriel
*Returns the factorial of the receiver.”
self =0
ifTrue: [T1]
ifFalse: [Tself * (self - 1) factorial]

Evaluation of the expression 4 factorial is executed by sending the multiply message
to self, in this case 4, with the result of evaluating the expression (self - 1) factorial, in
this case the result of evaluating the expression 3 factorial. Recursion in object-oriented
systems commonly follows the pattern of sending the same message to successive receivers,
each of which is closer to some simple receiver for which the result of sending the message
is known. In the preceding example, the receivers of the factorial message are 4, 3, 2, 1, and
0. The result of sending the factorial message to O is known to be 1.

2.6 INHERITANCE

When a class A is defined as a subclass of another class B, it is convenient if the subclass B
can use the methods defined in A. The mechanism that permits the methods in A to be used
by B is known as inheritance. Inheritance permits representation and methods to be shared
by distinct but related classes of objects. It was developed because designers typically define
new classes by saying “The new class is just like this existing class except” In
Smalltalk, a new class is described by stating how it is different from some existing class.
This gives rise to a style of programming known as differential programming or
inheritance programming. It dramatically reduces the amount of code required in large

systems, is a powerful organizational tool, and facilitates program modification, extension,
and maintenance.

Chapter 2 Smalltatk Fundamentals 51

Inheritance in Smalltalk is based on the notion of subclassing; i.e., defining one class
as a subclass of another. The classes in the Smalltalk system are arranged in a single
inheritance hicrarchy with the most gencral class Object at the top. A class may have any
number of subclasses, but each class has a single superclass. The ability to inherit {from
only a single superclass is restrictive, but since the Smalltalk class library is implemented in
this manner, we will ignore the possibility of multiple superclasses or multiple
inheritance for the the moment.

Fig. 2.9 illustrates a small subsct of the hierarchy under class Object and, in
particular, describes the subclassing relationships between the numeric classes in Smalltalk.
In Smalltalk terminology, Number is the superclass of classes Float, Integer, and
Fraction. These classes are themselves subclasses of class Number. Classes Float,
Integer, and Fraction can be thought of as specializations of class Number, while classes
LargeNegativeInteger, LargePositiveInteger, and Smalllnteger can be thought of as
specializations of Integer. Subclasses such as Float, Integer, and Fraction follow the
protocol for their superclass Number but also introduce protocol relevant only to
themselves. For example, integers respond to the message factorial while floats and
fractions do not.

Object

Large
Negative
Integer

-

Large
Positive
Integer

PN

Figure 2.9 Numeric class hierarchy.

A class that is a subclass of another automatically inherits or shares the representation
and protocol of that class. In addition, the subclass may also

¢ support additional capability by adding new methods,

¢ augment the representation by adding additional class and instance variables, and

¢ override methods that would otherwise be inherited by providing its own version.

6Mulliple inheritance is not used within the standard Smalltalk system release. Non-primitive support
for the concept is provided in Smalltalk-80 version 2 releases but not in version 1.

52 Inside Smalitalk

Note that a subclass automatically inherits the representation of its supcrclass. Unlike
method inheritance, this cannot be overridden.

2.6.1 Method Inheritance

To understand how methods are inherited, we need to examine the method lookup
mechanism. When a message is sent, the methods in the class of the receiver are first
searched to find a method that has a message pattern matching the selector of the message. If
the search is successful, that method is evaluated. If no match is found, the search is
continued in the superclass of the receiver, and if no match is found at that point, the search
again continues up the inheritance or superclass chain. The first method found in the
inheritance chain is always used. If no matching method exists, the search will ultimately
reach class Object (the root of the tree), and if no method is found there, an appropriate error
message will be generated.

2.6.2 An Example: Constrained Pens

To illustrate subclassing and inheritance, we will implement a specialization of the systecm
class Pen called ConstrainedPen. A subset of the protocol for class Pen is shown in
Fig. 2.10.

Class Pen

class name Pen

superclass BitBlt

instance variables frame location direction penDown

class variables SinArray

comment My instances can scribbie on the screen, drawing and

printing at any angle. Since | am a BitBlt, scribbling can be
done with different source forms.

class methods
instance creation

new
Return an initialized instance of class Pen.

class initialization

initialize
Initialize the class Pen.

instance methods
initialization
defaultNib: widthinteger

Nib is the tip of a pen. This is an easy way to set up a default pen where the source
form is set to a black square whose sides are widthinteger long.

Chapter 2 Smalltalk Fundamentals 53

accessing

direction
Answer the receiver's current direction; 0 is towards the top of the screen.

frame
Answer the rectangle in which the receiver can draw.

frame: aRectangle
Set the rectangle in which the receiver can draw.

location
Answer where the receiver is currently located.

moving

down
Set the state of the receiver's pen to down {drawing).

go: distance
Move the pen in its current direction a number of bits equal to the argument,
distance. if the pen is down, a line will be drawn using the receiver's source form as
the shape of the drawing brush. Otherwise, nothing is drawn.

goto: aPoint
Move the receiver to position aPoint. If the pen is down, a line will be drawn from
the current position to the new one using the receiver's source form as the shape of
the drawing brush. The receiver's set direction does not change.

home
Place the receiver at the center of its frame.

north
Set the receiver's direction to facing the top of the display screen.

place: aPoint
Set the receiver at position aPoint. No lines are drawn.

turn; degrees

Change the direction of the receiver by an amount equal to the argument, degrees.
w

Set the state of the receiver's pen to up as opposed to down {no drawing); i.e., off

the drawing frame. This is different from north which causes the pen to point
upward.

Figure 2.10 Class Pen.

Pens are the Smalltalk equivalent of turtles in Logo. A pen is an object that can draw

within a specified rectangular frame (or window) on the Smalltalk display. Class Pen
includes protocol to change the position of the pen on the screen, change the direction (in
degrees) it is facing, and set the state of the pen. If the pen is moved when the state of the
pen is down (as opposed to up), the pen draws on the display. The default drawing nib of the
pen is a single pixel. Nibs of other shapes, patterns, and sizes can be specified.

Inside Smalltalk

To illustrate programming with pens, consider the following example method. Note
that the Smalltalk screen coordinate system has its origin at the top left corner. The x-axis
increases to the right of the screen while the y-axis increases down the screen.

example
*Draw an equilateral triangle with sides of length 200."
| crayon |
*Creates a new instance of class Pen with a black nib that is 2 pixels wide and 2
pixels high. The initial direction of the pen is north, the drawing frame is the entire
display screen, the initial location of the pen is at the center of the screen, and the
state of the pen is down.”
crayon < Pen new defaultNib: 2. "get a pen with a medium size nib"
crayon up. "stop drawing”
crayon goto: 3560@250. "move to start point®
crayon down. "start drawing"”
*Draw an equilateral triangle with sides 200 units long.”
3 timesRepeat: [crayon go: 200; turn: 120]

The specialized class ConstrainedPen is to be restricted so that instances can only
move, and hence draw, in the horizontal and vertical directions. This new class of object
might be useful if we were drawing flowcharts or constructing diagrams. To share code that
already exists in class Pen, class ConstrainedPen should be a subclass of Pen.

ConstrainedPen automatically inherits the representation of all classes in the
inheritance chain (see Fig. 2.11). The inheritance chain consists of classes Pen, BitBlt, and
Object. The instance variables for Pen are frame, a rectangular area into which the pen is
constrained to draw; location, a point representing the current position of the pen;
direction, a float representing the direction the pen is pointing; and penDown, a boolean
describing the state of the pen. In addition, class variable SinArray, a table of sin values, is
also inherited by ConstrainedPen. Pen is a subclass of class BitBlt — an extremely
general class providing fundamental operations for displaying and modifying text and
graphics. Pen is a subclass of BitBIt, so that it can inherit the operations for drawing lines
on the display with different nib styles and also the operations to perform automatic
clipping to the frame of the pen. The instance variables for class BitBlt will be inherited by
class ConstrainedPen, but we will not need to access them directly. We will inherit
operations that manipulate them from class Pen. No additional instance variables are required
for class ConstrainedPen.

It is instructive to consider which methods can be inherited without modification by
ConstrainedPen. Since instances of class Pen have the same representation as instances of
ConstrainedPen, we can inherit the class method new for creating instances. Similarly, the
instance methods that access or modify the state of a pen; i.e., direction, frame, frame:
aRectangle, location, up, down, home, north, and defaultNib: widthInteger can also
be inherited.

The methods involving movement of the pen need more careful consideration. There
are three possible options for each method.

¢ Inherit the method from a superclass.
¢ Implement a modified form of the method.

* The method is not appropriate for the class — make it an error to use it.

Chapter 2 Smalltalk Fundamentals 55

Object }
g

BitBIt

instance variables

destForm

sourceForm

halfToneForm

combinationRule

destX

destY

width

height

sourceX

sourceY

clipX

clipY
clipWidth
clipHeight

D B S SSSE RS S5 EE555

A R A SN S B A A B QY S A A DO Sy

Pen

instance variables
frame
location
dircction
penDown

class variables

ConstrainedPen)3
£

\,

Figure 2.11 Representation inheritance for class ConstrainedPen.

The instance methods goto: aPoint and place: aPoint in class Pen allow movement
to random points. The first is clearly inappropriate for the class ConstrainedPen because it
can result in something being drawn. The second, however, is legitimate because no drawing
results. Therefore, we must ensure that mcthod goto: is not inherited. This can be achieved
by taking advantage of the error handling protocol supported by class Object. We re-
implement the method in class ConstrainedPen (scc Fig. 2.12) to generate an error
message; i.¢., the body of the method becomes

self shouldNotimplement

56 Inside Smalltalk

This message will eventually, through the inheritance chain, be found in class Object.
The result will be a standard error report that “although this message is appropriate for the
superclass of the receiver, it is not appropriate for the class of the receiver.”

Now, consider method turn: degrees for rotating the pen direction. It must be
modified to constrain drawing in the vertical or horizontal directions. Since the pen can only
move in these two directions, we could augment the instance protocol of ConstrainedPen
with methods south, west, and east to allow the pen direction to be changed. Method north
can be inherited. We might also want to introduce special variations of turn: such as
turnLeft and turnRight. Indeed, it might be more appropriate to add these to Pen rather
than to ConstrainedPen since it is a useful generalization, but we won't pursue that here.
What to do with the method turn: is still unresolved. We cannot allow instances of
ConstrainedPen to inherit the turn: method from class Pen. We could override the
inheritance mechanism using self shouldNotImplement, as described above. Alternatively,
we could introduce a modified turn: message that constrains its argument to a multiple of 90
degrees. For the sake of illustration, we will choose the latter option, An obvious way of
implementing the modified turn: method is to truncate the argument degrees to a multiple
of 90 and invoke the turn: method in class Pen. However, we need some way of referring to
the turn: method in the superclass. If we use the expression

self turn: degrees

the effect will be to invoke the turn: method in ConstrainedPen recursively. Smalltalk
provides the pscudo-variable super to allow references to methods higher up in the
inheritance chain.

2.6.3 The Pseudo-Variable super

Pscudo-variable super provides access to methods in the superclass chain even if the method
has been redefined in the class. Like self, super refers to the receiver of the mcthod.
However, when super is used, the search begins in the superclass of the class conlaining the
method definition. Be carcful — this is not always the same thing as starting the scarch in
the superclass of the receiver.

The modified turn: message for ConstrainedPens making use of super is shown
below.

turn: degrees
“The direction of the receiver is turned clockwise through an amount equal to the

argument degrees. The argument is automatically truncated to a multiple of 90
degrees.”

super turn: (degrees roundTo: 90)

Now, consider method go: distance. At first sight, we might think that it can be
inherited directly from class Pen because a pen's direction is constrained to horizontal or
vertical movement. However, examination of the method reveals that it invokes the message
goto:. The goto: message will be sent to the receiver of the go: message, a
ConstrainedPen. But this message was previously overridden for constrained pens 1o make
it an error. This example illustrates the fact that problems can arise with the inheritance of a
method if the inherited method itsclf invokes mecthods that have been overridden in the

Chapter 2 Smalltalk Fundamentals 57

subclass. To achieve the desired effect, we must re-implement go: in ConstrainedPen as a
clone of the go: in Pen, but with the self goto: reference replaced by super goto:.

go: distance
"Move the receiver in its current direction a number of bits equal to the argument,
distance. If the pen is down, a line will be drawn using the receiver's source form as
the shape of the drawing brush. Otherwise, nothing is drawn.”

} angle newDirection |

angle « direction degreesToRadians.
newDirection « angle cos @ angle sin.

super goto: newDirection * distance + location

Pen

class methods

initialize

new
instance methods

defaultNib: widthInteger

direction

frame: aRectangle

location

down

go: distance

goto: aPoint

home

north

place: aPoint

turn: degrees

ConstrainedPen

instance methods
east (ncw protocol)

west (new protocol)
south (ncw protocol)

go: distance (modificd)
turn: degrees (modified)

place: aPoint (overridden)

;
goto: aPoint (overridden) s
%

Figure 2.12 Hierarchical inheritance of methods.

58 ' Inside Smalltalk

Fig. 2.12 summarizes the final method inheritance hierarchy for classes Pen and
ConstrainedPen. Note that other changes are possible. For example, we might wish to
introduce a direction: method to permit absolute settings of the direction. Methods east,
west, and south could then be implemented using this new operation. We might also want
to add additional turn operations like turnLeft, turnRight, and turnBack. Mecthod
turnLeft, for example, could simply consist of the code “self turn: -90”. Using “sclf”
instead of “super” would ensure that future changes (if any) to turn: in ConstrainedPen
would be reflected in the new methods. Of course, many of these operations also make scnse
for standard pens. This suggests that some of the methods in ConstrainedPen ought to be
migrated up into class Pen. When the classes affected are both user defined, this is a natural
improvement to make. When system classes are affected, more deliberation is nceded. Unless
the change is fundamental and important, it is generally safer to leave library classes alone
since they might change from release to release. The full definition of class
ConstrainedPen is shown in Fig. 2.13.

Class ConstrainedPen
class name ConstrainedPen
superclass Pen

class methods
examples

example
“lllustrates the use of constrained pens.”
I quill i
quill & ConstrainedPen new.
quill home; place: 300@300; down.
4 timesRepeat: [quill go: 100; turnLeft]

ConstrainedPen example®
instance methods
moving

goto: aPoint
*This message is not appropriate for this object.”
self shouldNotimplement

go: distance
*Move the receiver in its current direction a number of bits equal to the argument,
distance. If the pen is down, a line will be drawn using the receiver's source form as
the shape of the drawing brush. Otherwise, nothing is drawn.”

| angle newDirection |
angle « direction degreesToRadians. newDirection « angle cos @ angle sin.
super goto: newDirection * distance + location

south

“The direction of the receiver is set to face the bottom of the screen.”
direction « 90

Chapter 2 Smalltalk Fundamentals 59

east
*The direction of the receiver is set to face the right of the screen.”
direction « 0

west
*The direction of the receiver is set to face the left of the screen.”
direction ¢« 180

tumn: degrees
*The direction of the receiver is turned clockwise through an amount equal to the
argument degrees. The argument is constrained to a multiple of 90 degrees by
rounding."
super turn: (degrees roundTo: 90)

turnLeft
*The direction of the receiver is turned to the left 90 degrees.”
super turn: -90

tumRight
*The direction of the receiver is turned to the right 90 degrees.”
super turn: 90

Figure 2.13 Class ConstrainedPen.

2.6.4 Abstract Classes

The shaded classes Magnitude, Number, and Integer (seec Fig. 2.9) are termed abstract
classes.

Abstract class A class that specifies protocol but is unable to implement
it fully because its subclasses may have different
representations.

Because an abstract class does not fully implement its protocol, no instances of
abstract classes may be created. The role of an abstract class is to specify the protocol
common to all of its subclasses, with the subclass providing the implementation where no
common implementation can be provided in the abstract class itself.

Class Magnitude is an abstract class used to describe objects that can be comparcd
along a linear dimension. The subclasses of Magnitude are classes Character, Date,
Number, and Time. The common protocol specified by the class Magnitude reflects the
fact that all instances of each of the subclasses can be compared with one another using the
relational operators. For example, we can ask a number if it is greater than another or we can
ask a datc if it is less than another, and so on. The instance protocol for magnitudes includcs
(among others) the operations

aMagnitude < anotherMagnitude
aMagnitude <= anotherMagnitude
aMagnitude > anotherMagnitude
aMagnitude >= anotherMagnitude

Since the representations for instances of the subclasses Character, Date, Number
and Time arc clcarly different, cach subclass provides its own implementation for operations
that are dependent on the representation. Operations that reference their representation dircctly

60 Inside Smalltalk

are primitive operations — if the representation were changed, they would require
modification. The implementation of primitive operations must be the responsibility of the
subclasses.

For messages where it is the responsibility of a subclass to provide the
implementation, an abstract class implements the method by generating an crror message.
The subclassResponsibility protocol supported by class Object can be used to gencrate a
message indicating that a subclass should have overridden the implementation of this
method. This is useful when a new subclass is added and the programmer forgets to
implement the entire protocol specified by the abstract superclass. Methods in the abstract
class that must be re-implemented by subclasses should have the body

self subclassResponsibility

Non-primitive opcrations can be implemented in terms of other primitive and/or non-
primitive operations and therefore can be implemented once in the abstract class. For exam-
ple, in the case of magnitudes, only the primitive < operation is implemented by the sub-
classes. Operations such as > and <= are non-primitive because they can be implemented in
terms of <. They only need to be implemented once in the abstract class, as shown bclow.

comparing

< aMagnitude
*Answer whether the receiver is less than the argument.”

Tself subclassResponsibility

<= aMagnitude
“Answer whether the receiver is less than or equal to the argument.”

Tiself > aMagnitude) not

> aMagnitude
*Answer whether the receiver is greater than the argument.”

TaMagnitude < self

>= aMagnitude
Answer whether the receiver is greater than or equal to the argument.

T(self < aMagnitude) not

Abstract classes have an important role to play in Smalltalk and in objcct-oriented
programming. As we have seen, they allow the protocol common to a collection of classes
to be identificd quickly. By browsing the abstract superclasses, for example, it is easy to
determine what operations are common to all types of numbers, to all types of integers, and
so on. Another benefit is that they can be used to maximize the sharing of code through
inheritance. Consider the “Bricks” video game that was described at the beginning of
Chapter 1. An initial class hicrarchy for the game is shown in Fig. 2.14,

Chapter 2 Smalitalk Fundamentals 61

.

Paddle

Figure 2.14 Initial video game class hierarchy.

The problem with this class hierarchy is that it is impossible to specify a protocol
common to all game elements. A new class hierarchy incorporating two abstract classes is
shown in Fig. 2.15. The VideoGameComponent abstract class ties together the game
parts and allows subclasses to share a common representation and common operations. The
MovingGameComponent abstract class allows a distinction to be made between dynamic
and static game objects and allows the move operations to be shared by both the Ball and
Paddle classes. Container classes for the bricks — Wall and for the left, top, and right sides
— Sides, are also introduced.

Paddle

Figure 2.15 Class hierarchy with abstract classes.
2.7 SUMMARY

In this chapter, we have described how the fundamental concepts of object-oriented languages

— objects, messages, classes, and inheritance, manifest themselves in Smalltalk. In
particular, we have discussed

® the use of literals to describe numbers, symbols, characters, strings, and arrays,

® the use of variables and the assignment operation in Smalltalk,

Inside Smalltalk

¢ the construction of message expressions using unary, keyword, and binary

messages,

¢ the concepts of dynamic binding and overloading,

* storage allocation and garbage collection,
¢ control structures via message-passing,

class versus instance protocols,

named versus indexed instance variables,

® private versus shared variables,

¢ the pseudo-variables self and super,

* subclassing,

¢ representation and method inheritance, and

¢ the use of abstract classes.

2.8 EXERCISES

Unless you are familiar with the Smalltalk user interface, we suggest that, for the moment,
the following exercises be completed as paper exercises only.

1.

Translate the following Pascal ex-
pressions into Smalltalk (assume all
Pascal variables are of type Integer).

units := number mod 10

hundreds := number div 100

tens := (number mod 100) div 10

number := (hundreds * 100) +
(tens * 10) + units

poge

The binary selector // is the equiva-
lent of the Pascal div operator.
Selector \\ is the equivalent of mod.

Translate the following Pascal frag-
ments into Smalltalk (assume all
Pascal variables are of type Integer).

a. IF value > 5 AND value < 10
THEN
acceptable := true

b. IF value > 5 AND value < 10
THEN
acceptable := true
ELSE
acceptable := false

¢. FORi:=1TO rows DO
FOR j:=1TO columns DO
table [i, j] :=1 +j

Chapter 2 Smalltalk Fundamentals

d. {Compute the smallest power of
2 greater than a specified bound}

value := 2;
power := 1;
WHILE value <= bound DO
BEGIN
value := value * 2;
power :=power + 1
END

Add a method asLetterGrade to class
Integer that returns a character
representing the letter grade corres-
ponding to an examination mark in
the range 0 to 100. Use the follow-
ing table of mark-letter grade values:

<=50 F
51-60 D
61-70 C
71-80 B
> 80 A

Add a method isPalindromic to class
String to determine whether or not
a string is a palindrome. A palin-
drome reads the same backwards and
forwards; e.g., message expression

63

‘madam' isPalindromic should return
true. (The message expression
string size returns the size of
string.)

5. Add a method fibonacci: n to class
Integer that returns the nth number
in the Fibonacci series. The
Fibonacci series begins with 0 and 1
and each subsequent number in the
series is the sum of the previous two
numbers. Implement the method both
nonrecursively and recursively.

Implement a new method that returns
the nth number in any Fibonacci
series. By any fibonacci series, we
mean a series that starts with any
two arbitrary successive integers;
e.g., 23, 24, 47, 71, ...

6. Add a method asEnglish to class
Integer that returns a string repre-
senting the English form of the
number. For example, the expression
139 asEnglish retumns the string 'one
hundred and thirty nine' as a result.
To make the task simpler, you may
wish to restrict the integer receiving

2.9 GLOSSARY

selected terminology

abstract class A class that specifies protocol
but is unable to implement it fully because
its subclasses may have different repre-
sentations.

binary messages Messages with one argu-
ment. Binary messages selectors are spe-
cial single characters (<) or double
characters (<=).

block An object representing a sequence of
Smalltalk expressions.

cascaded messages Multiple messages sent to
the same receiver. Indicated syntactically
by a semicolon; e.g., aReceiver messagel;
message2; againWith: 0.

class A description of a set of objects with
similar characteristics and attributes.

the message to values in the range O
to 999. (The expression String new:
size creates an instance of class
String of the specified size; aString
copyFrom: startIndex to: endIndex
extracts a substring. Choose a rea-
sonable maximum size for the string.
The binary selector , (comma) is the
string concatenation operator. For
example, the expression ‘abc', 'def’
returns 'abedef").

7. Add methods to class Pen described
in this chapter to draw geometric de-
signs such as spirals and dragon
curves.

8. Complete the definition of class
Complex given in this chapter. What
additional operations are required?
Show how they would be im-
plemented.

9. If Smalltalk is consistent with the
object metaphor, a class should be an
object and hence an instance of some
class. Investigate whether or not this
is so.

class protocol The messages understood by a
class.

class variables Variables shared by a class
(and all subclasses) and their instances.

external view The view of an object required
by a user (as opposed to an implementor);
the object's interface; the object's proto-
col.

global variables Variables shared by all
classes and their instances.

indexed instance variables Instance variables
that are referenced by an integer index
(unlike named instance variables); com-
ponents of an indexable object; e.g.,
anArray referenced via anArray at: 1,
anArray at: 1 put: 2.

Inside Smalitalk

information hiding The notion that we should
hide as much information as possible
(both representation and implementation
details) from a user by minimizing the
interface presented to the users.

inheritance A mechanism that allows a class
of objects to share the methods and
representation of another class of objects.

instance An individual object described by a
particular class.

instance protocol The messages understood
by instances of a class.

instance variables Variables found in all in-
stances of a class; components of an ob-
ject.

internal view The view of an object seen by
an implementor; the object's represen-
tation and implementation.

keyword messages Messages with one or
more arguments. Each argument is preceded
by a keyword; e.g., aReceiver at: 1 put:
20.

message A request sent to an object to carry
out some task.

message pattern A method selector together
with the names of the arguments required
by the selector.

message protocol The messages that objects
respond to.

method An operation; the code implementing
an object’s operation.

named instance variables Instance variables
that may be referenced by name (unlike in-
dexed instance variables).

object A component of the Smalltalk system
consisting of private data and a set of
methods (operations).

pool variables Variables shared by a specified
set of classes (and their subclasses) and
their instances.

Chapter 2 Smalltalk Fundamentals

[N C

private variables Variables accessible only to
a single object. Examples are instance and
temporary variables.

programming by extension Programming new
applications by extending the existing
Smalltalk class library.

pseudo-variable A variable whose value may
not be changed. Examples are self and
super.

return expression An expression preceded by
an up arrow (1) indicating that the value
of the expression is to be returned as the
result of a method.

selector The component of a message that
uniquely specifies the operation requested;
e.g., at:put:.

self A predefined pseudo-variable that refers
to the receiver of a message.

shared variables Variables accessible to a
group of classes and their instances.
Examples are class variables, pool vari-
ables, and global variables.

subclass A class that inherits methods and
representation from an existing class.

super A pseudo-variable that refers to the re-
ceiver of a message but additionally pro-
vides access to a method defined higher up
in the hierarchy. When super is used,
method lookup begins in the superclass of
the class in which the method containing
super is defined.

superclass A class from which another class
inherits representation and methods.

temporary variable A variable whose lifetime
is limited by the task for which it was
created. Method arguments, method temp-
oraries, and block arguments are examples
of temporary variables.

unary messages Messages with no arguments
— only a receiver and a selector.

An Introduction to the
Smalltalk User Interface

3.1 INTRODUCTION

In the next three chapters, we provide an introduction to the Smalltalk-80 programming
environment — an integrated collection of powerful and sophisticated programming tools.
These tools subsume many of the roles normally provided by the operating system in more
traditional environments. The Orange book! by Goldberg, which is over 500 pages long, is
solely dedicated to describing the Smalltalk environment. Rather than provide a
comprehensive guide to this environment, our aim in these initial chapters is to describe
those features that are needed to develop simple Smalltalk applications. In particular, we

describe how to build, debug, and edit Smalltalk programs by explaining how to

enter and exit from the Smalltalk system,

manipulate Smalltalk menus and windows,

enter and evaluate fragments of Smalltalk code,

use browsers to navigate through the Smalltalk class library,
extend the system with new methods and classes,

file Smalltalk source files in and out, and

use notifiers and inspectors to perform simple debugging tasks.

14, Goldberg, Smalitalk-80: The Interactive Programming Environment (Reading

Wesley, 1984).

, Mass.: Addison-

3.1.1 Smalitalk Provides an Integrated Programming
Environment

Developing programs in Smalltalk is different from the traditional approaches typically used
to develop programs in languages such as Pascal or C. There are two major differences: the
absence of modes and the interactive, incremental style of application development.

When developing Pascal programs, programmers typically use a set of largely
independent tools: an editor for program construction and modification, a compiler for
compilation of program modules, a linker for linking component modules together, and
possibly, a run-time debugger for debugging. Together, these tools form an environment for
developing Pascal programs. Because the tools are independent, program development can be
described as modal. At any particular time, the system is in a particular mode; e.g., edit
mode or compile mode. To change modes, programmers must leave the current tool, rcturn
to the operating system level, and invoke the new tool. More advanced systems permit mode
changes from within a tool, eliminating the need to exit to the operating system.

On the other hand, developing Smalltalk programs is characterized by a total
integration of tools and an absence of modes. Editors, file managers, compilers, debuggers,
and print utilities are all included within the Smalltalk environment. All tools are available
at all times. The Smalltalk programmer carries on a series of activities or conversations with
individual tools. These activities can be interleaved. Activities or conversations can be
interrupted and resumed at any time without loss of context or information. Switching from
onc activity or conversation to another is as simple as clicking a mouse button.

The second major difference between Smalltalk and languages such as Pascal and C is
that program development is interactive and incremental. By incremental, we mcan that
Smalltalk applications are developed by picce-meal additions or changes to the Smalltalk
system. The Smalltalk system contains an extensive on-line library of classcs. Morcover,
the source is written almost entircly in Smalitalk. More important, this source can be
viewed and modificd by the programmer. When building an application, the programmer
automatically inherits the capabilities of this library of reusable code. Programming is by
extension —— the programmer modifics and/or extends the capabilitics of the existing classes
and adds ncw classes that inherit from cxisting classes. Programming is totally intcractive.
New or modified source code can be recompiled and tested in a matter of seconds. Scquences
of such modifications result in working prototypes and eventuaily elaborate designs that can
be polished and turned into f{inished applications. This style of program development could
be described as programming by iterative enhancement.

3.1.2 Try It Yourself

With access to a Smalltalk system, these chapters can be used as a hands-on tutorial about
the Smalltalk environment. The material in each chapter is designed to be completed in a
single interactive session. As is the case with learning any new system, you will
undoubtedly make mistakes. Don't worry. Any changes you make to your Smalltalk systcm
are not permanent. Indeed, we encourage you to experiment frecly and to explore the system
beyond the introductory view we provide in these chapters. For readers without access to a
Smalltalk system, screen dumps are provided at each significant step in the discussion,

68 Inside Smalltalk

3.1.3 Not All Smalltalks Are Exactly Alike

You may notice that your Smalltalk system is dlfferent in small ways from the Smalltalk
environment described in the Orange and Blue2 books and in this book. Your menus, for
example, may have slightly different entries than those illustrated. Don't worry, the basic
functionality described in this chapter will certainly be present in your system. The
implementor may have modified or added additional capability to your Smalltalk system.

3.1.4 Not All Computers Are Alike

A Smalltalk implementation requires that the host computer have a keyboard, a black and
white bit-mapped display (see Fig. 2.1), and a pointing device. Unfortunately, there are no
standard keyboards, displays, or pointing devices. Keyboards differ in the layout of their keys
and in the number of function keys available. Display screens have different resolutions and
may or may not support color. Mice, joysticks, graphics tablets, and even keyboards can all
be used as pointing devices. Even mice come in one-, two-, or three-buttoned varictics.

{ The Smalltalk- aﬂtm System Versmn 2.3
Systern Transcript]) 1987, 1988 ParcPlace Systems, Inc.
Hzllo world,

stems, Inc,

Workspace

] Swystern Browser

Graphics-Views

Graphics-Editors

Graphics-Support
(Rernal-Objecis

“Coerces nil to true and ever
overrides with +true®

t+talse

Figure 3.1 Typical Smalltalk display.

24, Goldberg and D. Robson, Smalltalk-80: The Language and Iis Implementation (Reading, Mass.:
Addison-Wesley, 1984).

Chapter 3 An Introduction to the Smalitalk User Interface 69

This lack of a standard hardware configuration will not concern us unduly. In this
chapter, we are more concerned with the small number of functions and tasks we need to
perform than the particular screen resolution or type of pointing device that is available. For
example, selecting an object from the screen can be achieved in many ways, but all
selections involve two basic activities: pointing at the object we want to select and
confirming the selection. In Smalltalk and most other systems, pointing is achicved by
moving a graphical cursor on the display screen. In one system, this might be achieved by
attaching the movement of the cursor to the movement of a mouse or joystick. In another,
the cursor might be controlled using special keyboard function keys to incrementally move
the cursor up, down, right, and left. Confirming the selection might be done by depressing a
mouse button or, alternatively, a keyboard function key.

Consult the documentation provided with your system to find out how to achieve each
of the tasks we describe in this chapter. Most of the chapter is independent of hardware
considerations. Since a mouse is by far the most commonly available pointing device on
systems supporting Smalltalk, we will describe activities in terms of mouse interactions.
Readers who are familiar with mouse-based interactive systems may wish to skip the next
section.

3.1.5 Pointing Device Mechanics

Two fundamental interaction sequences, selection and extended selection, are carried out
with the pointing device when interacting with the Smalltalk system.

Selection Used to indicate a position on the Smalltalk display
screen; e.g., to indicate where text, when typed from the
keyboard, should be inserted. Two activitics are involved
in making a selection: (1) moving the cursor on the screen
to the desired position, and (2) confirming the position
you have selected to the Smalltalk system.

Wilh a mouse, sclection can be achieved by moving it to
position the cursor at the desired point, and confirmation
can be achieved by single clicking (briefly pressing and
releasing) a mouse button.

Extended Selection A two part selection process that delimits a region of the
screen; e.g., to select a section of text, we necd to sclect
both the start and end points of the text. Similarly, to size
and position a rectangle on the screen, we need to select
two opposite corners of the rectangle.

With a mouse, extended selection is achieved in the
following manner. Position the cursor with the mouse to
indicate a start position, depress (but do not relcase) a
mouse button to begin the selection, drag (move with the
mouse button still depressed) the mousc to a final
position, and finally reclease the button to confirm the
final sclcction. Visual fecdback is always provided during
the dragging operation. For example, when sclecting text,
the currently sclected text is complemented (white
characters on a black background) on the display.

70 Inside Smalltalk

1 !

We will see many further examples of selection and extended selection. Find out,
by consulting your system documentation, how selection and extended selection operations
can be performed in your Smalltalk system. You may find that extended selection operations
can be performed in more than one way.

3.2 GETTING STARTED

3.2.1 Activating Smalitalk

Consult your system documentation for specific instructions on creating and activating your
Smalltalk system.

Activate your Smalltalk system.

Once activated, the display screen will be similar to that shown in Fig. 3.1. Smalltalk
is now ready for use.

A typical Smalltalk display has several windows displayed over a dark background.
Each window consists of a framed rectangular area with a small title or label in iis top left-
hand corner. Windows may overlap each other and can be simplistically thought of as
overlapping pieces of paper resting on a desktop. Strictly speaking, Smalltalk uses the term
view for window. We will use the more familiar window terminology. Fig. 3.2 shows four
of the most common types of windows: Workspace, System Workspace, System
Browser and System Transcript windows. The most common uses for each of these
windows are the following:

Workspace A window used as a scratchpad area where fragments of
Smalltalk code can be entered, stored, edited, and evaluated.

System Workspace A special workspace window that acts as a repository for
Smalltalk expressions (or expression templates) for
performing common Smalltalk tasks. These expressions
can be easily selected, modified, and evaluated by the
programmer. The System Workspace window avoids the
necd to remember and retype often used expressions.

System Browser A window in which most programming activitics are carried
out. The Smalltalk class library can be viewcd, existing
classes modified, and new classes added.

System Transcript A window primarily uscd by the Smalltalk system and by
programmers as a notice board on which to display crror
information or messages describing the progress of a
Smalltalk activity.

A unique feature of the Smalltalk environment is the ability to work on a scrics of
tasks in parallel and to move back and forth between these tasks without loss of context or
information. Each task (or conversation) is carried out within its own window. Though
many windows (tasks) may be visible on the desktop at any time, only one window (lask) is

Chapter 3 An Introduction to the Smalltalk User Interface il

active at any given moment. This window, known as the active window, will have its label
tag highlighted (inverted). For example, in Fig. 3.1, the Workspace window is active.

3.2.2 Changing the Active Window

To change the active window, perform a selection operation with the mouse. Move the
cursor into the window to be activated and confirm the selection; i.e., click the red mouse
button — see the next section for a discussion of mouse button terminology. The activated
window will be brought to the “top” of the desktop and have its label inverted. In Fig. 3.2,
the System Browser window has been made active. This technique can be used to interrupt
one conversation, commence another, interrupt it, restart the original and so on. The saving
and restoring of the state of each conversation is handled automatically by the Smalltalk
system,

The Smalltalk-80tm System Version 2.3
Systern Transonpt]) 1987, 1883 ParcPlace Systems, Inc.

Hello world,

sterms, Inc,

‘Workspace

System Browser

Model initialize-releasd ———===-===---=

Object accessing islnteger
True

comparing nothil

"Coerces nil to true and everything else to false, UndefinedObject
owverrides with ttrue"

Graphics-Views
Graphics-Editors
Graphies-Support

Kernel~Objects

‘i.sHil

: tfalse
3

3
%

S R RS0
Figure 3.2 Display after the System Browser window is activated.

Repeatedly change the active window from one window to another.

Make all windows inactive by selecting an area of the display where no window
resides. Now, move the cursor into any window. When all windows are inactive
simply moving the cursor into a window activates that window automatically.

72 Inside Smalltalk

i BT (.

3.2.3 The “ldeal” Smalitalk Mouse

Smalitalk systems distinguish thrce types of mouse interaction and traditionally describe
these activities by associating each with a different colored button on an *idcal” three-
buttoned mouse (see Fig. 3.3). The ideal Smalltalk mouse has three buttons colored red,
yellow, and blue. Sometimes these buttons are referred to as the left, middle, and right
buttons respectively. The notion of red, yellow, and blue buttons is taken from the Orange
book by Goldberg. We use the terms because they are part of the terminology uscd by
Smalltalk programmers. Indeed, the terms are even used within the Smalltalk source code
itself.

Red Button
Yellow Button
Blue Button

Figure 3.3 “Ideal” three-buttoned colored Smalltalk mouse.

The most common activities associated with each button are the following:

red or left button Selecting information; e.g., sclecting a picce of
text, selecting a menu item, or selecting a new
active window.

yellow or middle button Activating a menu to invoke an action concerning

the contents of a window; e.g., carrying out an
editing operation on text within the window.

blue or right button Activating a menu to invoke an action concerning
the manipulation of the window itsclf; ¢.g.,
moving or closing a window.

With a thrce-buttoned mouse, a single button can be associated with each type of
interaction. Of course, most Smalltalk systems do not have mice with three buttons, never
mind colored buttons! However, the three types of interaction can be obtained very simply
using any available pointing device. For cxample, both ParcPlace Systems™ and Apple
Smalltalk (sce Fig. 3.4) usc the following scheme for use with a single button Macintosh
mousc. The red button is obtained using the single mouse button, while the yellow and blue
buttons are obtained by depressing the Option and Command keys respectively along with
the single mouse button. On a two-buttoned mouse the following scheme is often used. The
left and right buttons arc used to obtain the red and bluc buttons respectively, while both
buttons are depressed to obtain the yellow button.

Chapter 3 An Introduction to the Smalltalk User Interface 73

Red Button =

Blue Button = | Command | +

Yellow Button = m +

./

Figure 3.4 Simulating a three-buttoned mouse.

restore display
garbage collect
exit project
browser Versmn 2.3
System Tra.nscrlpt]) workspace lace Systems, Inc.
file list
file editor
terminal sterms, inc.
project porkspace
systern transcript
Graphics-Views | Modsystem warkspace]

Hello wworld.

&2
Systemn Browser

Graphics-Editors [OB]{__ desktop |
Graphics-Support save
Kernel-Objects

st
"Coerces nil to true and everything
overrides with ttruz"

tfalze

Figure 3.5 System Menu.

74 Inside Smalltalk

H fimm !

3.2.4 Using Pop-Up Menus

Many Smalltalk activities are initiated by making choices from on-screen menus. These
menus are known as pop-up menus since they are not permanent fixtures on the screen but
"pop up" when you activate them. Three of the most common menus — the System,
Yellow and Blue Button menus — are described below.

System Menu Allows the programmer to choose one of several
global system actions such as quitting Smalltalk,
opening new windows, saving (or taking a snapshot of)
the current state of the Smalltalk system, and restoring
(or redrawing) the display (see Fig. 3.5). This menu is
activated by moving the cursor into an area outside of
any window (i.e., in any area with the background
pattern) and pressing the yellow button.

Note that the items found in these menus and the order in which they are found may
differ from one Smalltalk system to another. For example, the entry ‘desk accessories’ is not
found on most systems — on a Macintosh computer, it provides access to system desk
accessories. The result of selecting each of the entries in the system menu will be discussed
in later sections.

Yellow Button Menu Allows the programmer to choose one of several
actions to be performed on the contents of the active
window. This menu is activated by depressing the
yellow button when the cursor is within the window.
The menu choices depend on the type of window. For
text windows, it will typically include text cditing
operations such as cut, copy, and paste, and commands
to evaluate Smalltalk code (scc Fig. 3.6). To refer to
the yellow button mcnu of a particular window, we
will simply usc the name of the window; i.e¢., the
expression Workspace Menu implics the yellow button
menu of the Workspace Window.

Blue Button Menu Allows the programmer to choose onc of scveral
actions to be performed on the active window — an
action that is independent of the kind of window; e.g.,
moving, framing, collapsing, and closing the window
(see Fig. 3.7). This menu is obtained by depressing
the blue button whcn the cursor is within the active
window. We will use expressions such as the
Workspace Window Menu to refer to the bluc button
menu of a particular window.

To summarize, the system menu is uscd to perform system opcrations such as Icaving
Smalltalk or creating new instances of common Smalltalk windows; the yellow button
menu is used for operations on the contents of the window such as cditing text in the
window; and the blue button menu is uscd for operations such as closing or resizing that
apply to the window itself.

Chapter 3 An Introduction to the Smalltalk User Interface 75

o

{1 The Smalltalk=-80tm System Version 2.3
System Transoript]) 1987, 1988 ParcPlace Systems, Inc.
Hello world,

stems, Inc,
Workspace

ystern Browser

Graphics-Yiews - tii::
Graphics-Editors [Ob] ' copy
Graphies-Support 24

. : cut
Kernel-Qbjects paste

“Coerces nil to true and ever
overrides with t+true"

cancel
+falze

The Smalltalk-80tm System Version 2.3
Systemn Transoript]) 1987, 1988 ParcPlace Systems, Inc.
Hello world,

stems, Inc,

23 Systern Browser

Graphics~Yiews Model

Graphics-Editors [dbjact
Graphics-Support | True -
Kernel-Cibjects new labe

linstance] A under

"Coerces nil to true and everything 4
overrides with t+true"

15t

Figure 3.7 Blue Button Menu.

Inside Smalltalk

IR [

3.2.5 Making a Menu Selection

Choices are made from pop-up menus using an extended sclection process. The first sclection
(depressing the mouse button) activates the requested menu, and the second or confirming
selection (releasing the mouse button) chooses from the list of menu choices. Moving the
graphics cursor through the menu choices (with the mouse button still depressed) highlights
each choice in turn. For example, move is the highlighted choice in the blue button menu
shown in Fig. 3.7. The second selcction confirms the current menu selection as the menu
choice selected. To exit from the menu without making a menu sclection, move the cursor
outside the menu and confirm (release the mouse button).

Gain some experience activating each of the three standard menus. Activate the
System menu and exit without selecting any of the menu choices. Do the same
for the yellow and blue button menus for each of the windows open on the
display.

3.2.6 Restoring the Display

You may have noticed earlier when moving from one window to another that Smalltalk docs
not always redraw windows that are deactivated. The restore display option in the System
Menu is used to update the display. Smalltalk then successively redraws each of the windows
on the display, including those that may be partially or even totally obscured.

Activate the System Menu and choose “restore display” (see Fig. 3.5).

3.3 MANIPULATING WINDOWS

Smalltalk programmers never have quite the desktop space they would like for their
Smalltalk windows. Some systems such as the Tektronix Smalltalk have a neat solution.
What is seen on the display is the contents of a viewport onto a larger logical display
window. Using a joystick or the mouse and some hardware support, we can quickly pan or
change the viewport to view a different portion of the logical display. For the majority of us
that do not have this kind of capability, we must pay more attention to the organization of
the windows on the display. Fortunately, the Smalltalk environment makes it simple to
create new windows and to close, collapse, reframe, and move existing windows.

3.3.1 Creating New Windows

New windows are most often crcated from the System Menu (sce Fig. 3.5). Various types
of window can be opened using the project, file list, file editor, system transcript,
browser, system workspace, and workspace menu choices. For the moment, we will
consider only Workspace windows. A Workspace window is an initially empty window
in which text can be entered, edited, stored, and evaluated. It is generally used as a scratchpad
or tcmporary work area.

Activate the System Menu and choose Workspace.

Chapter 3 An Introduction to the Smalltalk User Interface 77

Notice that the system cursor has changed shape to look like the top left corner of a
rectangle (sce Fig. 3.8). We are being asked to frame the area on the screen that the
workspace window is to occupy. An extended selection is used. Move the corner cursor (0
the position where the upper left-hand corner of the window is to be located. Confirm the
selection (depress and hold down the red button). The cursor now changes shape, it looks like
the bottom right-hand corner of a rectangle. Drag the corner cursor until it is positioned
where the bottom right corner of the window is to be located. Note that as you drag the
corner, the outline of the window is displayed to provide visual feedback. Confirm the
sclection by releasing the red button. A window will appear in the designated frame. Some
Smalltalk systems {lash the selected rectangle rather than display the outline.

Workspace

SIS

Select the left-hand corner Drag the corner cursor to its
of the window frame desired position

2 Workspace

A

RS X RS

Figure 3.8 Framing a Smalltalk window.

Frame a new Workspace window. Remember — the first selection anchors the
top left-hand corner and the second anchors the bottom right.

3.3.2 Manipulating Windows

Existing windows are manipulated from the blue button menu. This menu is seen when the
blue button is held down while the cursor is within the boundary of the active window or

78 Inside Smalltalk

. [

when the red button is depressed while the cursor is in the label tab of the window. The most
commonly used menu choices are move, frame, collapse, close, and under.

move To relocate a window on the display. A selection operation is
required to specify the new origin or top left comner of the window.

When move is selected, the window disappears except for its label
tab. The label tab becomes the system cursor and can be dragged
around the screen by moving the mouse. Move the label to the desired
position and confirm the selection (click the red button) to anchor the
label. The window is then redrawn in its original size at this location.
In some Smalltalk systems, the outline of the window rather than the
label tab may be moved around with the cursor to determine the ncw
window location.

frame To relocate and resize a window. As with opening a new window from
the system menu, an extended selection operation is required to
specify the top left and bottom right corners of the window frame.

collapse To collapse a window so that only its label tab remains on the screen.
The label tab may be placed at any desired location on the screen. A
window that has been collapsed may be subscquently recopened and its
contents restored by selecting frame from the blue button menu. In
some Smalltalk systems, a collapsed window may be rcopened by
simply clicking on the label tab.

When collapse is selected, the window disappcars except for its label.
The label becomes the system cursor and can be dragged around the
screen by moving the mouse. Move the label to the desired position
and confirm the selection {click the rcd button) to anchor the labcl.

close To remove a window from the scrcen completely. Closing removes all
record of the workspace window from the systcm. The window cannot
be subsequently restored. For that reason, if changes have been made
to the contents of a window, a confirmer menu will appear on the
screen when close is sclected. The confirmer requests confirmation
that the window should be closed.

Confirmer Windows

Confirmer menus are used within Smalltalk whenever a ‘yes’ or ‘no’ type of answer to a
question is required. In the example shown in Fig. 3.9, the confirmer informs the
programmer that the contents of the window that is about to be closcd have not been saved;
i.e., the contents will be lost if the window is closed. The confirmer menu gives the
programmer the opportunity to cancel the close request by selecting ‘no’ (clicking the red
button within the ‘no’ menu entry) from the menu. Selecting ‘yes’ (clicking the red button
within the ‘yes’ menu entry) closes the window.

under Sometimes a window may be totally obscured by another window —
under may be uscd to sclect the window under the active window
beneath the cursor. You must have some idea where the obscured
window lics. The obscured window will be made visible and will
become the active window.

Chapter 3 An Introduction to the Smalltalk User Interface 79

Contents have not been saved. Are you
certain that you want to clese?

Figure 3.9 A Confirmer window generated when closing a Workspace window.

Become familiar with the Window Menu menu selections: move, frame,
collapse, close, and under. Experiment with a Workspace window.

Try opening a workspace, typing some text into the window, and then trying to
close it. Is it possible to leave the confirmer window without responding to the
question asked?

3.3.3 Relabelling Windows

The string in the label tab of a window may be changed by sclecting new label (sometimes
label) in the blue button menu.

new label To relabcl a window. When this menu item is selected, a prompter
window appears requesting the new label for the window (sce
Fig. 3.10). The prompter initially contains the existing label. Typing
in the new label followed by a carriage return relabels the window.

It is sometimes useful to have different workspaces contain different information; e.g.,
different sets of test cases to be tried out during the development of an application. To be
able to easily distinguish between the workspaces, it is convenient to be able to relabel
them.

Prompter Windows

A prompter window is a “fill in the blank” type of window where the user is expected to
supply some requested information in response to a prompt. Text can be typed into the
prompter window and edited using the standard Smalltalk editing commands. Text can be
implicitly accepted by typing a carriage return or, alternatively, explicily accepted by
sclecting accept from the prompter yellow button menu.

Once a response is accepled, the prompter window disappears from the display. Some
kind of response must be given to the prompter. Moving the cursor outside the prompter
window causes the prompter to flash to indicate that a response must be given belore any
other task can be undertaken. To cancel the request that generated the prompter, delete all text
from the prompter and select accept; i.e., return a null string as the response.

80 Inside Smalltalk

Type the new label

My Workspace

My Workspace

Figure 3.10 A Prompter window generated when relabelling a window.
3.3.4 Scrolling Through Windows

It is often impossible to display all of the contents of a text document within a window on
the display. Consequently, only a portion of the contents of a document may be visible at
any one time. The portion of a text that is visible may be changed by moving or scrolling
the text up and down through the window. In this way, we can systematically vicw all of the
text. All windows in which text can be entered and cdited, for example Workspace, System
Workspace, and System Transcript windows, are scrollable.

Smalltalk uses scroll bars to control the portion of a text document that is visible in
a window. The scroll bar is an arca to the left of the active text window. Fig. 3.11 shows
the scroll bar to the left of a Workspace window. Scroll bars are only visible when the cursor
is inside an active scrollable window.

Within the scroll bar is a gray scroll bar marker that provides visual cues about the
text being displayed. More specifically, the length of the marker indicates what proportion of
the document is visible within the window, and the position of the marker indicates which
part of the document is being displayed. For example, in Fig. 3.11, the scroll bar marker is

Chapter 3 An Introduction to the Smalltalk User Interface 31

at the top of the scroll bar, indicating that the initial part of the text document is being
displayed. The height of the scroll bar marker is only a fraction of the height of the scroll
bar, indicating that the text document is several times larger than the portion displayed in the
window.

control what
Seroll W | portionofa text docurnent 15 visible in a wind.r:-w.
Bar - The scroll bar is an area to the left of an active
Marker & text window. Scroll bars are only visible when the
cursor is inside an active scrollable window,

Within the seroll bar is 5scroll bar marker,
Scroll : The length and position of the seroll bar marker
Bar provide visual cues as to the proportion of the
document visible within the window and to the part
of the docurnent that is displayed.

Figure 3.11 Organization of scrollable windows.

In Fig. 3.12, the height of the scroll bar marker is equal to the height of the scroll
bar, indicating that the visible text is all of the text document — as would be the case when
the text was initially entered.

Workspace

Srnalltalk uses scroll bars to control what
portion of a text document is visible in a window,
The seroll bar iz an area to the left of an active
text window, Scroll bars are only visible when the
curser is inside an active scrollable window,

o

A

Figure 3.12 Height of scroll bar marker indicates that document is
completely visible within the window.

Finally, in Fig. 3.13, the position of the scroll bar is at the bottom of the scroll bar
region, indicating that the visible portion of the text is at the end of the text document. The

82 Inside Smalltalk

height of the scroll bar as compared to the height of the scroll bar region indicates that the
visible text is only a small portion of the complete document.

Workspace %g%@@g,
The length and position of the scroll bar marker
provide visual cues as to the proportion of the
document visible within the window and to the part
of the document that is displayed.

When the rmarker is at tha top of the scroll
bar, the initial portion of the text docurnent is
being displayed. When the marker is at the bottomn
of the scroll bar, the final portion of the text
document is being displayed*

Figure 3.13 Position of scroll bar marker indicates displayed text is
at the end of the document.

Scrolling Operations

There are three possible scrolling operations. Text may either be scrolled up or down one or
more lines at a time or, alternatively, a specific section of the document can be sclected. If
the cursor is moved to the vicinity of the scroll bar, three different cursor shapes can be
obtained. When the cursor is just to the right of the scroll bar marker, an upward-pointing
half arrow is seen. Moving the cursor further to the left, a horizontal-pointing arrow is
obtained. Finally, when the cursor is to the left of the scroll bar marker, a downward-
pointing half arrow is seen.

Scrolling Forwards and Backwards

Scrolling text forwards and backwards is achieved with a simple selection using the
respective up and down half arrow cursors. The cursor is moved into the arca necessary to
acquire the up or down arrow shaped cursor and then the sclection is confirmed (by clicking
the red button). The text will scroll up or down as requested. The amount scrolled is
controlled by the vertical position of the cursor within the scroll bar region when the
selection is made. The line of text nearest the cursor becomes the top line in the window if
scrolling forwards or the bottom line if scrolling backwards. When scrolling forwards, larger
scroll increments are obtaincd by sclecting scrolling with the cursor toward the bottom of the
scroll bar region. Note that experience is nceded to familiarize yoursclf with scrolling. The
most obvious problem at the beginning is that the scrolling dircction is usually the opposite
of that expected.

Chapter 3 An Introduction to the Smalltalk User Interface 83

In Fig. 3.14, the up arrow cursor is being displayed. Selecting in this situation will
scroll the text in the window such that the line nearest the cursor will become the top line in
the updated window — in this case, the line beginning "Within the scroll bar...." Note that
the text is scrolled toward the end of the file by the up arrow cursor. This is counter
intuitive.

portion of a text document I wisible in 2 windowe,
The scroll bar is an area to the left of an active
text window, Scroll bars are only wvisible when the
cursor is inside an active scrallable window,

Within the scroll bar is a scroll bar marker,
The length and position of the seroll bar marker
provide wvisual cues as to the proportion of the
docurnent visible within the window and to the part
of the docurnent that is displayed.

Figure 3.14 Scrolling forwards through a document.

In Fig. 3.15, the down arrow cursor is being displayed. Sclecting in this situation will
scroll the text in the window such that the line ncarest the cursor will become the bottom
line in the updated window — in this case, the linc beginning with "document visible within

"

..". Text is scrolled toward the beginning of the file by the down arrow cursor.

R %
The length and position of the zcroll bar marker
provide wisual cues as to the propertion of the
docurnent visible within the window and to the part
of the document that is displayed.

When the marker iz at the top of the zoroll
bar, the initial portion of the text docurment is
being displayed. When the marker is at the bottom
of the scroll bar, the final portion of the text
document is being displayed.

Figure 3.15 Scrolling backwards through a document.

84 Inside Smalltalk

Jumping to a Specific Section of a Document

Two techniques are provided for moving quickly to an absolute position within a text
document using the horizontal cursor. The {irst involves positioning the horizontal arrow
cursor at a height within the scroll bar that reflects the portion of the text document you
wish to view and selecting with the red button. For example, in Fig. 3.16, the horizontal
cursor is positioned approximately in the middle of the scroll bar. Sclecting at this point
will display text from the middle of the document into the window.

s s i

0 il
d positio bar marker
provide visual cues as to the proportion of the
docurnent visible within the window and to the part
of the document that is displayed,

When the marker is at the top of the scroll
bar, the initial portion of the text docurnent is
being displayed, When the marker is at the bottom
of the scroll bar, the final portion of the text
document is being displayed.

S S R
Figure 3.16 Jumping to a specified position within a document.

Alternatively, the scroll bar marker can be dragged to a desired position within the
scroll bar. This is achieved using the horizontal arrow cursor and an extended sclection. First,
the horizontal cursor is obtaincd and moved within the scroll bar. When the red button is
held down and moved up and down within the scroll bar, the scroll bar marker moves with
the cursor. The scroll bar marker can now be dragged to the desired position within the scroll
bar region. Notice that the scroll bar marker now moves up and down as the horizontal
cursor is moved up and down. As it is dragged, the text displayed in the window changes.
The scroll bar marker is dragged until the desired text is displayed within the window.
Releasing the red button confirms the selection.

Gain some experience scrolling through text documents. Activate the System
Workspace window. Move through the text using all three types of scrolling
operations.

3.4 EDITING TEXT

Text editing operations can be applied to any window in which text may be entered and
evaluated. This includes Workspace, System Workspace, and System Transcript windows.
To illustrate the Smalltalk text manipulation facilitics, we will enter and cdit some text in a
workspace window.

Chapter 3 An Introduction to the Smalltalk User Interface 85

3.4.1 Inserting Text

Activate an empty Workspace window (open a new window if necessary). Notice
the caret (™ or text insertion point in the top left-hand corner of the window.

Text can be inserted into a document simply by typing from the keyboard. Characters will be
entered into the document at the position immediately following the caret.

Type in a series of sentences. Notice that the caret (™) or text insertion point is
always positioned after the last character inserted.

(If nothing appears on the screen when you type, the cursor has wandered out of
the Workspace window. Move it back into the window and the text you have
typed will appear.)

Notice how the caret always follows the last character typed. To insert text between
existing characters, move the text insertion point to the desired position using the cursor and
perform a selection operation (by clicking the red button). Notice that the insertion point
can be placed between characters. Once again, text typed from the keyboard will be inserted
after the text insertion point. Note that the carriage return, tab, and delete keys all
function as expected when inserting text. Many Smalltalk systems support the use of
different text styles (e.g., boldface, italic, and so on) and multiple typefaces (e.g., Helvetica,
Timcs Roman, and so on) in multiple character sizes. Consult your documentation for more
details.

Type several lines of text into the workspace. Now, try inserting new text
between existing words, inserting a new line of text between existing lines, and
inserting text at the beginning and end of a line.

3.4.2 Selecting Text

A number of editing operations, for example replace and delete, require the following steps
for execution;

® Select the text to be edited.
* Apply the editing operation to the selected text.

Text to which the operation is to be applied must first be sclected using an extended
selection operation. Each selection identifics one boundary of the sclected text. It does not
matter whether we select the start point first and then select the endpoint or vice versa. After
the initial selection has been made (by depressing the red button), dragging the cursor
(moving the cursor with the red button depressed) highlights the text between the initial
selection point and the current position of the cursor. When the desired text is highlighted,
confirm the sclection (by releasing the red button) to anchor the endpoint of the sclected text.
The selected text remains highlighted after the selection is complete.

A sclection may span as many lines as required in either direction from the first
sclection point. If one of the endpoints of the text to be selected is not within the visible

86 Inside Smalltalk

part of the document, drag the cursor outside the window (above or below) to scroll the
document. Scrolling stops when the cursor is moved back within the window.

More specialized methods for text selection are also available. These provide fast methods for
selecting words, the text between pairs of delimiter characters, or all the text in a document.
All of these selections involve double clicking the red button without moving the cursor
(clicking twice in succession).

select a word Double click the red button with the
cursor at the beginning of, in the
middle of, or at the end of a word.

select all the text in the Double click the red button with the

document cursor at the beginning or the end of
the text in the document.

select the text between a pair of Double click the red button with the

delimiters cursor just aflter the left delimiter or

just before the right delimiter. Valid
delimiter pairs are parentheses (...),
square brackets [...], single quotes '...",
and double quotes "...".

select the text just typed in Press the Escape key to sclect the text
typed since the last mouse click.

Type in a number of lines of text into the workspace.
Practice making text selections. Try all possibilities: forward selections,

backward selections, single word, multi-word, multi-line, text between
delimiters, all the text in a document, and so on.

3.4.3 Replacing Text

To replace text, select (highlight) the text to be replaced (see Fig. 3.17a) and then simply
type the replacement text. The selected text is replaced by the replacement text (see
Fig. 3.17b). Text typed from the keyboard always replaces currently sclected text. Insertions
can be thought of as replace operations where the text to be replaced is the empty string.

R e A R A AR R R IR RS

Figure 3.17a Replacing text — seclect text to replace.

Chapter 3 An introduction to the Smalltalk User Interface 87

S350

Workspace

Feplace the word Iarge‘kby large

X

Figure 3.17b Replacing text — enter replacement text ‘large’.
3.4.4 Deleting Text

To dclete a section of text, select the text to be deleted (see Fig. 3.18a) and usc the delete
key to perform the deletion (sce Fig. 3.18b). The backspace key is also often used to
perform deletions. Note, howcver, that in some Smalltalk systecms backspace deletes the
selected text and also deletes the character immediately before the selected text. In other
systems backspace and delete are synonymous.

Gain experience with the replace and delete operations.
3.4.5 Cut, Copy, and Paste
Cut, copy, and paste are primitive editing commands that can be applied to text that has

been previously sclected. They are available in the yellow button menu of the active
window's text panc.

cut Deletes the currently selected text.
copy Makes a copy of (or remembers) the currently sclected text.
paste Pastes a copy of the text from the most recent cut or copy operation

so that it replaces the selected text in the active window. If there is no
sclected text to replace, the text is inserted following the current
insertion point. Paste operations may be repeated to paste the same
text into a document more than once.

Copying text from one place to another requires a copy (to copy the text) followed by
a paste (to paste a copy of the text at the new position). Text may be moved from one
window to another by performing a cut in one window, sclecting the new window, and
performing a paste operation.

Practice using the cut, copy, and paste operations.

Select a section of text from the Workspace window and copy it into the System
Transcript window.

88 Inside Smalltalk

Workspage

The word (XL is to be deleted

3

The word*is to be deleted

\

Figure 3.18b Deleting selected text — hit the delete key.

3.4.6 Again and Undo

Again and undo are two more editing operations that can be activated from the yellow
button menu of a window's text pane. Operation undo is uscful for recovering from editing
mistakes. It reverses the effect of the last cdit operation. Operation again is uscful when the
same edit operation must be repeated many times over; ¢.g., replacing all occurrences of one
string by another or {finding all occurrences of a string.

undo Reverses the effects of the last edit command. For cxample, undo can
be used after a cut to paste back the deleted text or after a paste to
delcte the pasted text and restore the original text (if any).

again Repeats the last replace, copy, or cut opcration. Operation again can
be used after a replace to repeat the replace operation on the next
occurrence of the text that was changed. Selecting again with the shift
key depressed replaces all occurrences of the text with the replacement
text. Operation again can be used afler a cut or copy operation (o find
and select the next occurrence of the text that was cut or copied.

Chapter 3 An Introduction to the Smalltalk User Interface 89

Practice using the undo and again operations. In particular, investigate the effect
of each command after a replace, cut, copy, and paste operation.

The again facility is an example of a “watch what I do and then repeat it” feature. To
replace one string by another, there is no need to involve the system in a dialog that provides
the input string and the replacement string. It is simply a matter of making the change on
the first occurrence. If other occurrences also need replacing, the again operation can be used
to repeat it — either one step at a time, to have the opportunity to unde a candidate
replacement, or all at once (by depressing the shift key).

Many Smalltalk systems allow keyboard control sequences to be used as well as menu
selections to activate the cut, copy, paste, undo, and again operations. Consult your
documentation.

3.5 EVALUATING SMALLTALK EXPRESSIONS

Smalltalk is an interactive system — expressions can be typed in, sclected, and immediately
evaluated in any text window. Smalltalk expressions are evaluated using the do it and print
it commands from the yellow button menu of the active window.

3.5.1 Evaluating Code in a Workspace Window

To evaluate a Smalltalk expression, type it into a Workspace window, select it for
evaluation (using the normal method for selecting text), and evaluate it by sclecting either
the do it or print it commands.

do it Evaluates the selected expression (or sequence of expressions).
print it Evaluates the selected expression (or sequence of expressions) and

prints a representation of the object returned by the evaluation. The
result returned is highlighted.

Clear the Workspace window (select everything and use cut). Now type in the
Jollowing expression:

32+17*2
Select the expression and choose ‘print it’ from the Workspace menu.
The expected result, 98, is printed (see Fig. 3.19). Note how the result remains
highlighted so that it is already selected to be deleted if required. What happens if we try do

it instcad of print it?

Delete the result (98) of the previous evaluation.
Reselect the expression: 32 + 17 * 2
Choose ‘do it' from the Workspace menu.

90 Inside Smalltalk

X (15 [

32 + 17 * 2H

Figure 3.19 Evaluation of expression ‘32 + 17 * 2°,

This time no result is printed. The expression was evaluated but the resulting object
was thrown away. Operation do it is most useful in cases where an expression is evaluated
for its side-effect rather than its result. For example, a side-effect of cvaluating an expression
might be a graphical operation such as drawing a spiral on the display screen with a
Smalltalk pen.

Experiment. Type in other expressions for evaluation. Suggestions include

5 factorial.

50 factorial.

Date dateAndTimeNow.

Pen new mandala: 30 diameter: 360.

Transcript show: 'this text will be written in the Transcript window'; cr.
Rectangle fromUser.

Note that if you select more than one expression for evaluation at the same time, only
the result of evaluating the last expression will be printed.

3.5.2 Evaluating Existing Smalitalk Code

The sclection and evaluation of Smalltalk code is not restricted to workspace windows. These
operations can be performed from any text window. The System Workspace window (sce
Fig. 3.20), for example, contains a set of commonly used Smalltalk expressions for
accessing files, system maintenance, and querying the system. By providing these in the
workspace, users can quickly select and evaluate them without having to type or remember
the rarely used messages.

3.5.3 Compilation Errors

When an expression is selected for evaluation, it is first compiled and then executed. The
compiler detects any syntactic errors in the expression. Visual feedback is provided when

Chapter 3 An Introduction to the Smalitaik User Interface 9

such errors occur by inserting an error message at the point in the expression where the crror
was discovered.

Type in the following Smalltalk code and evaluate it.

fsum |

sum « 0.

1to: 100 do: [:i | sum « sum + 1.
sum

Now, make a deliberate error — remove the period following sum « 0 and
evaluate the code again. Note how the error message is placed at the source of the
error (see Fig. 3.20) and remains highlighted so that it can be removed easily.

Workspace g

|sum|
sum < 0

Nothing more expected ~>yIROEREEEREN

sum € sum + i].
Tum,

Figure 3.20 Syntax errors.

The message ‘nothing more expected —’ indicates that the expression sum « 0 was
complete and that 1 to: ... is not a valid continuation of that expression.

For some errors, Smalltalk can help in correcting the error.

Correct the original error.
Now make the following deliberate error:

Remove the declaration of the temporary variable | sum
Reevaluate the code.

The first occurrence of sum is highlighted to indicate where the undeclared variable
error was discovered, and a menu is displayed (as shown in Fig. 3.21). The menu contains
possible corrective actions that can be invoked. The first four entries offer the choice of
defining sum as a temp (temporary variable), class var (class variable), global (global
variable), or undeclared. In our case, the correct action would be to sclect temp and let the
evaluation continue. Invoking correct it invokes the Smalltalk spelling corrector.
Assuming that you have misspelled sum, the spelling corrector searches through the system

€R Inside Smalltalk

for names that bear a resemblance to sum, displays them in a menu, and allows the
programmer to select an alternative spelling.

1 to: 100 do: [t | sum « sum + i].

sum.

declare surn as

classwar
global
undeclared

LR SRR R R
correct it
abort

Figure 3.21 Undeclared variable menu.

Make other deliberate errors; e.g.,
1. Remove the closing] bracket.

2. Replace ‘sum’ by ‘sam’ in ‘sum « 0." (Then try invoking the spel-
ling corrector to change it back.)

3.6 QUITTING FROM SMALLTALK

Activate the System Menu and choose Quit.

A menu will appear offering 3 choices (see Fig. 3.22).

Save, then quit Takes a snapshot of the current state of the Smalltalk
system and then quits. This snapshot or Smalltalk
image can subscquently be reloaded to continue the
Smalltalk session.

Quit, without saving Quits from the Smalltalk systcm without saving any
of the modifications madc to the system during this
Smalltalk scssion.

Continue Cancels the quit opcration and continucs the
Smalltalk scssion.

Choose Quit, without saving to exit the system and avoid saving the changes you
madc; i.e., to discard all modiflications made to the Smalltalk system during your scssion.

Choose ‘Quit, without saving' from the Quit menu.

Chapter 3 An Introduction to the Smalltalk User Interface 93

oY

sum € 0,
1 to: 100 do: [:i | sum € sum + i].

sum.

Sawve, then quit

Figure 3.22 Quit menu.

3.7 SUMMARY

This chapter has provided a first introduction to the Smalltalk user interface. In particular, we
have discussed the following:

¢ the ‘ideal’ Smalltalk three-buttoned mouse,

¢ the use of pop-up menus,

* common system, ycllow, and blue menu entries,

¢ window manipulation commands such as open, close, frame, and so on,
® prompter and confirmer windows,

¢ text editing commands,

¢ commands for expression evaluation, and

¢ how to exit from Smalltalk.

3.8 EXERCISES

Some of the exercises that follow involve the evaluation of Smalltalk code. When a
semantic error is discovered during the evaluation of Smalltalk code, execution halts and a
notifier window is displayed. The notifier displays a message describing the cause of the
error. If you are not familiar with the use of notifiers and debuggers to debug Smalltalk code,
we suggest that, until these topics are fully covered in Chapter 5, you simply close the
notifier window (select close from the blue button menu) and debug your code manually.

1. Type in the Smalltalk code fragments 2. Change the layout of the windows on
generated from exercises 1-4 of the display by resizing and moving
Chapter 2 and execute them. all visible windows.

99

Inside Smalltalk

Move the contents of the system
workspace into the system transcript.
Can the transcript hold it all?

Create several small workspaces in-
side of (or on top of) a larger one.
Then activate the larger workspace.
Can you make the smaller work-
spaces visible again?

While a piece of code is executing in
one window, can you activate a sec-
ond window? Try evaluating 120 fac-
torial.

What do the yellow button menu
commands accept and cancel do in
a Workspace window? Try typing in
some text to a workspace, selecting
accept, typing in some additional
text, and finally selecting cancel.

The delete key (sometimes, the
backspace key) is used to dclete a
text selection. What happens if
delete is used without selecting text?

What happens if “do it” or “print
it” are selected when no text selec-
tion has been made?

3.9 GLOSSARY

pointing device operations

selection A fundamental interaction sequence

used for many tasks within the Smalltalk
environment; e.g., to indicate the point at
which text, when typed from the keyboard,
should be inserted, or to change the active
window. Two activities are involved in
making a selection: first, moving the cur-
sor on the screen to the desired position,
and second, confirming the position by
clicking the red button.

mouse interaction terminology

single clicking The process of pressing and

then immediately releasing a mouse but-
ton.

double clicking The process of pressing and

then immediately releasing a mouse button
twice in quick succession.

1h8

Smalltalk systems provide alternative
"control key" sequences for perform-
ing tasks such as editing, under-
lining, changing fonts, and changing
emphasis, and also provide short cuts
to avoid typing often used symbols.
For example, on the Macintosh, both
ParcPlace™ and Apple Smalltalk sup-
port the standard keyboard equiva-
lents Ctrl x, Ctrl ¢, Ctrl v, and Curl z
for cut, copy, paste, and undo respec-
tively.

Determine the effect of the control
key sequences Ctrl t and Ctrl f in
your Smalltalk system. Do the same
for the following list. In each case, a
scction of text should be selected
within a text window before typing
the control key sequence.

Ctrl 0, Ctrl 1, Curl 2, ... Curl 9,
Ctrl -, Ctrl b, Ctrl w,

Ctrl Shift -, Cirl Shift b,

Ctrl [, Cul (, Ctrl <, Curl *, Ctrl *

extended selection A two part selection pro-

cess used, for example, to sclect the start
and end points of a text selection, the top
left and bottom right-hand corners of a
frame for a window, or to activate and
choose a sclection from a pop-up menu.

dragging The process of moving the mouse

with the mouse button depressed. Used to
perform an extended sclection operation
where a two part sclection process is re-
quired.

Chapter 3 An Introduction to the Smalltalk User Interface 95

menus

System Menu Allows the programmer to
choose one of several global system ac-
tions such as quitting Smalltalk, opening
new windows, saving (or taking a snap-
shot of) the current state of the Smalltalk
system, and restoring (or redrawing) the
display.

Blue Button Menu A pop-up menu that al-
lows the programmer to choose one of
several actions to manipulate the selected
window. These include moving, framing,
collapsing, and closing the window.

mouse buttons

red button Mouse button used to select in-
formation.

yellow button Mouse button used to activate
a menu for editing the contents of a win-
dow. The cursor must be within the
boundaries of the desired window when the
button is depressed.

Smalitalk windows

Workspace Workspace windows used as
scratchpad arecas where fragments of
Smalltalk code can be entered, stored,
edited, and evaluated.

System Workspace A Workspace window that
acts as a repository for Smalltalk
expressions (or expression templates) that
perform common Smalltalk tasks. Prevents
the programmer from having to remember
and retype often used expressions.

System Browser A window for carrying pro-
gramming activities like viewing the
Smalltalk class library, modifying exist-
ing classes and mecthods, and adding new
classes.

blue button operations (window menu)

new label Command used to change the name
in the window's label tab. A prompter
appears to query the user about the new
name.

96

Yellow Button Menu A pop-up menu that al-
lows the programmer to choose one of
several actions to be performed on the
contents of the selected window. The menu
choices depend on the type of window. For
text windows, it typically includes text
editing operations such as cut, copy, and
paste, and commands to evaluate Smalltalk
code.

blue button Mouse button used to activate a
menu for manipulating the window itself.
The cursor must be within the boundarics
of the desired window when the button is
depressed.

System Transcript A window primarily used
by the Smalltalk system and by program-
mers as a notice board to display error in-
formation or print messages describing the
progress of a Smalltalk activity.

Confirmer A window used to request a ‘yes’
or ‘no’ type of answer to some question.
Confirmers are most often used to ask the
user to confirm whether or not a request
for some undoable action should be carried
out.

Prompter A window that requires a “fill in
the blank™ response from a user — used to
extract textual information in response to
a user command.

under Command used to sclect a window that
is under the active window and the cursor.
The obscured window is made visible and
also becomes the active window.

Inside Smalltalk

move Command used to relocate a window on
the screen. A selectlon operation is re-
quired to specify the new location of the
window. The window is not resized by this
operation.

frame Command used to relocate and resize a
window. As with opening a new window
from the system menu, an extended se-
lection operation is required to specify
the top left and bottom right comers of
the window frame. Thus the window is
both resized and repositioned.

text editing terminology

text insertion point The point (indicated by a

caret) within an active text window where
text will be inserted either by a paste op-
eration or by typing characters on the
keyboard.

yellow button text editing commands

again An editing operation that repeats the
last replace, copy, or cut operation.
Can be used after a replace to repeat the
operation on the next occurrence of the
replaced text. With the shift key de-
pressed, all occurrences are replaced. Can
be used after a cut or copy operation to
find and select the next occurrence of the
text that was cut or copied.

undo An editing operation that reverses the
effects of the last edit command. For ex-
ample, undo can be used after a cut to
paste back the deleted text or after a
paste to delete the pasted text and restore
the original text (if any).

yellow button evaluation commands

do it Evaluates the currently sclected text
without displaying the result.

iRl [{

collapse Command used to collapse a window
so that only its label remains on the
screen. The label may be placed at any de-
sired location on the screen. A window
that has been collapsed may be subse-
quently reopened by selecting frame from
the window menu.

close Command used to remove a window
from the screen permanently. All record of
the workspace window is lost from the
system. The window cannot be subse-
quently restored.

text selection The process of selecting a re-
gion of text for subsequent manipulation.
Carried out using an extended selection
operation.

copy Makes a copy of (or remembers) the cur-
rently selected text.

cut Deletes the currently sclected text.

paste Pastes a copy of the text from the most
rccent cut or copy operation so that it
replaces the selected text in the active
window. If there is no selected text to re-
place, the text is inserted following the
current insertion point. Paste operations
may be repeated to paste the same text
into a document more than once.

print it Evaluates the currently sclected text
and displays the result.

Chapter 3 An Introduction to the Smalltalk User Interface 97

e

4

Programming with
Browsers

4.1 INTRODUCTION

Browsers (alternatively browser windows or browse windows — see Fig. 4.1) are without
a doubt the most important and most used software development tools in the Smalltalk
programmer’s arsenal. Browsers are an integral part of the programming activity; they arc
used to navigate through the Smalltalk class library, to view and modify existing classes and

methods, and to add new classes and methods.
Systern Browser

Graphics-Frimitive, IREEeed accessing

Graphics-Display coloring

Graphics-Paths Point mowing

Graphics-Yiews

‘Epiral: n angle: a
"Oraw a double squiral directly on the display.”

“Display whita,
Pen new spirali 200 angle: 89; home; spiral 200 angle: -29."

1 to: n do: [ii | self goi i; turn: 3]

Figure 4.1 System Browser window.

29

The central role played by browsers in the programming process is more easily
appreciated by understanding how program development in Smalltalk is different from that in
languages such as Pascal and C. Programming in Smalltalk is programming in the presence
of a large reusable class library. Building an application in Smalltalk can be thought of as
extending this base library — a process termed programming by extension. Through the
mechanism of inheritance, new classes are created by describing how they differ from some
existing class of object — a process often termed differential programming.

This view of programming as extending the existing class library makes it essential
that tools be provided to navigate through the class library, and that the addition of new
classes and methods be carried out in such a way that the new functionality can be
immediately exercised within the context of the whole Smalltalk system. Adding a new
method to an existing class, for example, is achieved by simply incrementally compiling the
definition of the new method into the system. In languages such as Pascal and C, it is
necessary to recompile any changed program components and then link together every
component part of the program. For large programs consisting of many hundreds of
components, this is a slow process, especially if it must be repeated after every small change
to a program.

Many of the activities we normally associate with program development are carried out
using browsers in Smalltalk. Code is edited, listed, formatted, compiled, and tested using
browsers. In particular, browsers are used for four distinct purposes:

* Viewing the source code for existing classes and methods.
* Modifying existing methods and classes.
* Adding new methods and classes to the library.

* Extracting valuable cross reference information from the library; e.g., extracting a
list of classes that implement a particular message or displaying the hierarchical
relationships between classes.

Apart from a small number of primitive operations, all of the source code for the class
library may be viewed (and modified) by the programmer — Smalitalk is an open system.
With several thousand methods and over a hundred classes, browsers help the Smalltalk
programmer overcome the problem of information overload. They provide a tool through
which the programmer may view and modify the Smalltalk class library. They supersede the
use of static manuals and source code listings and provide a dynamically updated view of the
Smalltalk system at any moment in time. Because a Smalltalk application builds on the
existing class library, it is far more informative to be able to browse through the class
library than to study a paper listing of an individual class.

The most commonly used browser, the System Browser (see¢ Fig. 4.1), provides
access to the entire Smalltalk class library. More specialized browsers, which provide access
to only a subset of the library, may also be created. Experienced Smalltalk programmers
typically have several browsers open on the display at any one time. One browser might be
used to view an existing library method while another one is used to create a new method
that is a variation or extension. Multiple browsers make it possible to conveniently view
and/or modify different parts of the class library simply by switching from one browser to
another.

100 Inside Smalltalk

rem

4.2 SYSTEM BROWSERS

System Browser windows are created by selecting browser from the system menu. A
System Browser window is divided into five scrollable panes (or subwindows) and two
switch panes labelled class and instance (see Fig. 4.2). The top four panes are termed list
panes, while the bottom pane is a text pane. List panes contain fixed lists of menu
selectors. Each item in the list is selectable but cannot be edited directly. List panes are
scrollable. To view all the available items within a list pane, it may be necessary to scroll
through the contents of the list pane. Text within a text pane may be scrolled, selected,
edited, and evaluated. The standard window operations are available through the blue button
menu; i.e., browsers can be closed, collapsed, moved, and framed.

Systern Browser

—»- —

Class Class Names Message Message

Category List Pane Categories Selectors
List Pane List Pane List Pane

| 5t rD&
l instan l l

v

Text Pane

Figure 4.2 Structure of a System Browser.

In multi-pane windows, only one pane, known as the active pane, is active at any
time. Panes within an active browser are activated simply by moving the cursor into the
pane. Each list and text pane has a menu, accessible through the yellow button, that
contains operations to be applied within the context of currently selected items in the list
panes. Fig. 4.3 shows typical yellow button menus associated with each of the browser
panes. The actual entries in these menus will differ from system to system and will also
change depending on the selections made within the list panes of the browser at the time the
menu is activated.

To enable programmers to move around in the library quickly and easily, the library is
indexed. Related classes are grouped together into class categories, and related methods within
individual classes are grouped into message categories. The four list panes, therefore, provide
four levels of indexing into the class library. From left to right these panes are termed the
class categories pane, class names pane, message categories pane, and message
selectors pane respectively (see Fig. 4.2). In addition, to determine whether class messages

Chapter 4 Programming with Browsers 101

file out

print out
spawn
spawn hierarchyfi ot print out
Systern Browser hierarchy % file out spawn
definition § print out senders
file out comment spawn implementors
print out protocols add protocol messdges
spawn inst var refs rename move
add category] | class var refs remove rermove
rename class refs
remove find method again
update repname undo
edit all remove copy
find class cut
paste
do It
print it
inspect
accept
cancel
Mformat
spawn
explain

Figure 4.3 System Browser — Yellow Button Menus.

or instance messages are displayed in the message categories and message selectors
panes, either class or instance is selected from the instance-class switch panes. These act
as on-off switches — selecting class deselects instance and vice versa. Selections are made
from the list pane and instance-class switches using the red button. When a browser window
is deactivated or collapsed, the current selections from the menus are remembered and restored
when the browser is reactivated or framed at some later stage.

4.3 VIEWING EXISTING CLASSES

A system browser provides access to all the relevant information concerning classes within
the class library. For example, we can display the following information:

* The definition of a class to determine its instance and class variables.

* The class hierarchy local to a given class to determine its relationship with related
classes.

¢ The class and instance protocol supported by a class.
* The source code for any method.

102 Inside Smalltalk

Information relating to a class is displayed in the text pane of the browser by selecting
entries from the list panes and from the various pane menus. What is displayed in a list pane
of a browser is related to the selections previously made in neighboring list panes (to the
left). The arrows in Fig. 4.2 indicate the dependencies between the panes of the browser.
Selecting a particular class category, for example, displays the classes within that category in
the class names pane. Selecting a particular class displays a list of message categories in the
message categories pane. The list will be either a list of instance message categorics or a list
of class message categories, depending on the state of the class-instance switches below the
class names pane. Next, selecting a particular message category displays the selectors of the
methods in that category in the message selectors pane. Finally, selecting a message selector
causes the code for that method to be displayed in the text pane at the bottom. Other kinds of
information may also be displayed in the text pane; e.g., the definition of a class. We will
discuss this in more detail in following sections.

The yellow button menu entries are also dependent on the selections made in the list
panes. The menu entries for each list pane in Fig. 4.4 are those displayed when an item
from that pane is selected. Fewer or different entries may be displayed if an item is not
selected in a pane. Menus in your system may differ slightly from those shown.

In Fig. 4.4, the class category Graphics-Primitives is selected. The class names
displayed in the class names pane are therefore the classes in this category. The class Pen is
selected and this, together with the fact that the instance menu item is selected, detcrmines
that the message categories for instances of class Pen will be displayed in the message
categories pane. The message category geometric designs is selected, indicating that the
message sclectors for instance methods in the category geometric designs in the class Pen
are displayed in the message selectors pane. Finally, the selector spiral:angle: is selected,
causing the Smalltalk code for this method to be displayed in the text pane.

dccessing

x j coloring mandala:diameter:
Graphics-Faths) moving spirakangle:
Graphics-Views geornetric designs

‘Epirah n angle: a

“Draw a double squiral directly on the display.”

"Display white,

Pen new spiral: 200 angle: 89; home; spiral: 200 angle: -89."

1 to: n dot [| self got i; turn: a]

Figure 4.4 Browser Pane dependencies.

Chapter 4 Programming with Browsers 103

4.3.1 Finding a Class

Although classes are organized in a hicrarchy, they are displayed in a different manner in a
browser. For example, classes associated with graphics primitives are collected together
under the category Graphics-Primitives independent of their inheritance structure. From the
point of view of a user, classes are categorized into sets of functionally related classes.

Even so, finding a class within the system can be frustrating for the beginning
Smalltalk programmer. It is not likely that you will know the category of the class you are
looking for — considerable time can be spent searching through the class categories. A fast
way of finding the category for a class is to send the class a category message. For
example, evaluating the expression

Pen category

in a workspace returns the category Graphics-Primitives. This class category can be easily
found by scrolling the class catcgory pane since the pane is sorted alphabetically.

Alternatively, some Smalltalk systems have a find class entry in the yellow button
menu of the class categories pane. Sclecting this menu entry invokes a prompter that asks
for the name of the class to be located. When the class name is entered, the required class
category is automatically selected in the browser. Additionally, operation find class is uscful
when the spelling or the exact name of a class is unknown. Typing a pattern string using the
character ‘** as a wild card character brings up a menu of classes matching the pattern. For
example, in Fig. 4.5, the pattern P* is entered in the find class prompter. As shown in
Fig. 4.6, a menu of class names beginning with the letter P will be displayed. Selecting one
causes the browser to position itself at that class.

Activate a System Browser and browse through the class library. In particular,
look for each of the following classes: Date, Integer, Spline, Quadrangle, Bag,
and Character. If there is no find class facility, you will need to interrogate the
system to find the category of each class.

If there is a find class facility, look for classes that end in “View”, “Controller”,
or “Collection” .

4.3.2 Viewing Class Definitions

To display the definition of a class in the text pane of a browser, proceed with the following
four steps:

* Sclect the class category from the class categorics pane.
® Sclect the class from the class names pane.
¢ Set the instance-class switches to instance.

¢ Seclect definition from the ycllow button menu of the class names pane.
Fig. 4.7 shows the definition of class Pen. The definition displays the class name, the

name of the superclass, instance variables, class variables, pool dictionaries, and the class
category. Note that sclecting definition when the instance-class switches are set to class

104 Inside Smalltalk

displays the definition of the metaclass! for Pen; i.e., the definition of the class for which
class Pen is an instance.

R RIS SRR
Systern Browser

i | Gr aphlcs-—Prlmltwe-—
200 4| Pen initialize-relzase

ceessing
oloring

Find clazs:

\ i tion direction penDown
poolDictionaries: *
category: ‘Graphics-Primitives'

aragraph
ParagraphEditor
ParseMNode
Parser
ParseStack

Graphics-Display
Graphics-Paths :
Point

Graphics-Yiews
I instanc PopUpMenu
PositionableStream

‘pltE-lt subclass: #Pen
instanceVariableNam Process botion penDown '

ProcessHandle
ProcessorSchedular
Project
ProjectBrowser
ProjectControlier
ProjecticonController
ProjectView
ProtocolBrowser

classVariableNames: *
poolDictionaries: "
category: ‘Graphics-H

SNSRI

Figure 4.6 Menu of class names matching the pattern string ‘P*’.

1The role of metaclasses is described in detail in Chapter 6 — classes are objects and therefore must be
instances of some class. A class is the only instance of its own metaclass.

Chapter 4 Programming with Browsers 105

s

System Browser

Graphics-Primitive;
Graphics-Dizplay O Point initialize-release
Graphics-Paths Guadrangle accessing
Graphics-Yiews coloring

A.EntE:lt subclass: #FPen

instanceVariableMarmas: ‘frame location direction penDown '
classVariableNames: "

poclDictionaries: "

category: 'Graphics=-Primitives'

Figure 4.7 Definition of class Pen.

Display the definitions of each of the following classes: Date, Integer, Spline,
Quadrangle, Bag, and Character.

4.3.3 Viewing the Class Hierarchy

To determine the inheritance hierarchy for a class, proceed with the following four steps:

¢ Select the class category from the category pane.

® Select the class from the class names pane.

* Set the instance-class switches to instance.

¢ Select hierarchy from the yellow button menu of the class names pane.

The class hierarchy is displayed in the text pane and shows the superclass chain above
and below the class. In addition, the instance variables for each class in the hierarchy are also
displayed. Remember that instances of a class inherit the instance variables of all their
superclasses. The set of instance variables for a class consists of all the instance variables in
the class itself plus the instance variables of all the superclasses. Selecting hierarchy when
class is selected from the instance-class menu displays the hierarchy for the metaclass? of
class Pen.

Fig. 4.8 illustrates the inheritance hierarchy for class Pen. Pen is a subclass of class
BitBIlt, which is itself a subclass of class Object. In addition to its own instance variables,
class Pen inherits the instance variables of class BitBIt. Pen has no subclasses.

2As you may discover by viewing the hierarchy when the class switch is selected, the metaclass
hierarchy actually extends above the metaclass for Object. More details are provided in Chapter 6.

106 Inside Smalitalk

i oo

initialize-release
Graphics-Paths accessing
1 Graphics-Views coloring

BitElt ('destForm’ 'sourceForm’ 'halftoneForm' ‘combinationFule’ 'dest’
'destY" 'width' ‘height' ‘sourceX' ‘'source" ‘clipX' 'clipy” 'clipWidth' 'clipHeight')

Pen (‘frame' focation' ‘direction’ 'penDown’)

Graphlcs-Dlsplay O Pomt initialize-release

Graphics-Paths Quadrangle accessing

Graphics-Views coloring
initialize-release’ defaultMib:)

‘é'accessing' direction frame frame: location sourceForm: width:)

{‘coloring’ black fillln: white)

{'moving' down go: goto: horne north place: turn: up)

(‘geometric designs' dragon: filberts:side: hilbert:side: hilberts: mandala:diameter:
spiraliangle:)

Figure 4.9 Instance protocol for class Pen.

4.3.4 Viewing the Protocol Supported by a Class

To determine the instance or class protocol of a class, proceed with the following four steps:

¢ Select the class category from the category pane.
¢ Select the class from the class names pane.

Chapter 4 Programming with Browsers 107

* Sct the instance-class switches to instance to display the instance protocol or to
class to display the class protocol.

* Seclect protocols from the yellow button menu of the class names pane.
The instance or class protocol is displayed in the text pane (see Fig. 4.9 for the

instance protocol of Pen). Each entry in the text pane describes the protocol associated with a
particular message category and has the form

(*message category name' name(QfMethodl nameOfMethod?2 ...)

For each of the following classes, display the class hierarchy along with the
instance and class protocols: Date, Integer, Spline, Quadrangle, Bag, and
Character.

4.3.5 Viewing Methods

To display the source code for a method in the browser, proceed with the following five
steps:

* Sclect the class category from the class categories pane.

* Sclect the class from the class names pane.

* Set the instance-class switches to either instance or class.

* Select the method category from the method categories pane.

* Select the message selector from the message sclectors pane.

Fig. 4.10 shows the instance method with selector spiral:angle: in class Pen.

- accessing hilbar tiside:
Graphics-Display coloring hilberts:
Graphics-Paths Quadrangle rnoving mandala:diameter:

Graphics-Yiews geornetric designs {| spiral:angle:

"Draw a double squiral directly on the display."

{ spiralin angle: a

"Dizplay white,
Pen new spiral 200 angle: 89; horne; spirak 200 angle: -89."

1 tot n dot [ii | self got i; turn: a)]

Figure 4.10 Displaying instance method spiral:angle: in class Pen.

108 Inside Smalltalk

L i LR B ’

4.3.6 Finding a Method

If you do not know the category of a method or are unsure of its spelling, the find method3
entry in the yellow button menu of the class names pane may be used. Operation find
method displays a menu of the messages implemented by the currently selected class. For
example, in Fig. 4.11, the messages implemented by class Pen are displayed. To view a
particular method definition, select the desired message selector from the menu.

black
def aultNib:
direction
down
Graphics—-Primitive:| Pe dragon:
Graphics=Display © filberts:side: ftialize-release
Graphics-Paths fillln: cessing
Graphics-Views frame loring
frame:
‘initialize-release’ def goi
{'accessing' direction fr goto: h sourceForrn: width:)
{‘coloring’ black fillln: w{ hilbert:side:
(‘moving' down go! got hilberts: turn: up})
(‘'geometric designs' dr3 home ertizide: hilberts: rnandalatdiarnster:
spirakangle:) location
mandala:diameter
north
place:
sourceFarm:

System Browser

up

width:

Figure 4.11 Message List Menu generated by using ‘find method’ for class Pen.
4.3.7 Obtaining Explanations

The explain entry in the ycllow button menu of the text pane can be used to display limited
explanations of the code in a method. To use the explanation facility, a token must {irst be
selected, then menu entry explain causes a short explanation of the token sclected to be
displayed as a comment embedded in the code immediately following the token. For
example, in Fig. 4.12, the token @ has been selected and the resulting explanation
displayed. The explanation also indicates how to create a message-set browser on the sclector

3Menu item find method is not available in all versions of Smalltalk.

Chapter 4 Programming with Browsers 109

(see Section 4.6.3). Tokens which can be explained include message selectors, variable
names, and ¢ven symbols such as ‘T,

accessing
Graphics-Display comparing
Graphics-Paths Quadrangle

Graphics-Yiews truncation and rou

+ delta

"“fnswer a new Point that is the sum of the receiver and delta (which is

a Point or Nurnber)."

| deltaPuint |

deltaPoint < delta asPaint.

1x + deltaPoint x @ EHELE D A T S A R
classes (Nurnber), To see the definitions, go to the message list subview and
use yellow button to select 'messages’.”
(y + deltaFaint v)

Figure 4.12 Explanation of the message selector @.

Browse through the methods in each of the following classes: Date, Integer,
Spline, Quadrangle, Bag, and Character. Use the explanation facility to gain a
better understanding of some code fragment.

4.4 EVALUATING CODE FROM WITHIN A BROWSER
Any code in the text pane of a browser may be selected and evaluated as follows:

¢ Seclect or type the text to be evaluated in the text pane.

¢ Choose do it or print it from the yellow button menu of the text pane.

When viewing classes and methods with a browser, it is convenient to be able to
evaluate code at any time without leaving the context of the browser. For this reason, it is
common practice among Smalltalk programmers to include code that illustrates the use of a
class or method within the class or method itself. For classes, the common convention is to
include explicit example mcthods under the class message category examples. For methods,
this is most often donc by embedding code within a comment at the beginning or end of the
method. For cxample, in Fig. 4.13a, the method spiral:angle:, which draws a spiral on the
display, contains the following code embedded within a comment.

Display white.
Pen new spiral: 200 angle: 89; home; spiral: 200 angle: 89

110 Inside Smalltalk

LR

This is an example of how the spiral:angle: method might be used. The code within
the comment can be selected and evaluated by choosing do it (or print it) from the yellow
button text pane menu. A double spiral will be drawn on a white display screen (see

Fig. 4.13b). We strongly suggest that you adopt the practice of including example methods
whenever new classes are defined.

coormg ' hilks H
Graphics-Display moving hilberts: :
Graphics-Paths el mandaladiameterg;

Graphics-Views spirakangle: :
|

spirali n angle: a
“Draw a double squiral directly on the display."

splay white,
Fen new spirali 200 angle; 89; horne; spiral 200 angle: -89§

1 to: n do: [| self go: i; turn: a]

7 M
R, et
: g;f} i#,\. -}ij\f

T ARG
AR e i ot ()
T gl
-:;;.'&Qg § RS
‘ Ah
X

Figure 4.13b Double spiral resulting from evaluation of code in Fig. 4.13a.

Chapter 4 Programming with Browsers 111

Many of the example methods in the system are called example. Evaluate the
example methods in the following classes: Pen, TextCollector, String, Arc,
Curve, Spline, and FilllnTheBlank. Make sure you read the comments stored
with the examples before you evaluate them.

4.5 ADDING AND MODIFYING METHODS AND CLASSES

4.5.1 Modifying Existing Methods
Existing methods can be modified as follows:

¢ Display the existing method in the text pane.

* Edit the method as required using the cut, copy, paste, again, and undo
operations available from the yellow button menu of the text pane.

¢ Select accept from the yellow button text pane menu to compile the new
method.

For example, we could modify the spiral:angle: method in class Pen (sce Fig. 4.13)
and accept the change. Obvious cosmetic changes include changing the names of the

arguments (from “n” to “turns” and “a” to “angle”) and fixing the typographical error in the
comment (the error is in the Smalltalk source).

Accepting Changes to Methods

Before a modified method can be used, it must be compiled by choosing accept in the text
panc's yellow button menu. Alternatively, choosing cancel will undo any changes made
since the last compilation. Compiling a class definition or a method permanently records the
change in the system. Smalltalk keeps track of two versions of the code for every class: a
compiled version and a source version. Accepting a modified class or method installs the
compiled version of the code in the Smalltalk environment and also ensures that the modificd
source code is retrieved whenever the class or method is viewed through a browser — any
browser.

When changes are made to text in a text pane, browsing some other part of the system
(a new request) is not permitted. The user must first accept or cancel the changes.
Otherwise, a confirmer window appears (see Fig. 4.14) to determine whether the changes
made in the text pane are to be saved or discarded. It is answerced by sclecting the appropriate
response (‘yes’ or ‘no”) from the confirmer menu.

The text showing has been altered.
Do you wish to discard those changes?

yes %'}. no

Figure 4.14 Confirmer Window.

112 Inside Smalltalk

o N]

Choosing ‘yes’ discards the change. Choosing ‘no’ cancels the new request and gives the
programmer another opportunity to do something with the changed text; e.g., to accept it.
Note that it is possible to temporarily deactivate a browser window without accepting
or cancelling a change. Simply click on some other window. When the browser is rcactivated
later on, the changes will still have to be accepted or cancelled before further browsing is
possible or before the browser can be closed. Before accepting a change, it is often uscful to
be able to browse some other part of the class library. If it is not possible to do so in the
current browser, the solution is to create a second browser and use it to query the class
library. This is one of the reasons why Smalltalk programmers use multiple browsers.

Edit method ‘spiral:angle.’ in class Pen as described earlier. Accept the new
method and test it by evaluating the comment

Display white.
Pen new spiral: 200 angle: 89; home; spiral: 200 angle: 89

that is part of the method (remove the spiral from the display by choosing
‘restore display’ from the System Menu). Now edit (but do not accept or cancel)
the comment to read

Display white.
Pen new defaultNib: 2; spiral: 200 angle: 89; home; spiral: 200 angle: -89

The effect of this change is to draw the spiral using a Pen with a thicker nib or
brush shape; i.e., with thicker lines. Evaluate the modified comment; i.e., draw
the spiral with thick lines (see Fig. 4.15).

Graphics-Primitive coloring

Graphics-Display © moving hilberts: :
Graphics-Paths Point rnandala:diarneter:fs

Graphics-Views spirakiangle:
:

spiral n angle: a
"Oraw a double squiral directly on the display.”

“Display whita.
Pen new BESEMIFER=pirak 200 angle: 89; horne; spiral: 200 angle: -59."

1 to: n do: [] self got i; turn: a]

R

Figure 4.15 Evaluation of code to draw a thick double spiral.

Chapter 4 Programming with Browsers 113

Without accepting or cancelling the change, try to view the definition of another
method in the class. A confirmer window will appear asking you to save or
discard the changes. Choose ‘no’.

4.5.2 Adding New Classes

In Chapter 2, we described the implementation of Complex — a class for manipulating
complex numbers. We will use its definition to illustrate how new classes are added to the
class library. To add a new class to the system, we must first decide whether the new class
should be included under an existing class category or whether a new category should be
added. In this situation, it is appropriate to add class Complex under the category Numeric-
Numbers?. Select class category Numeric-Numbers in a browser. The class pane displays
the classes in this category and the text pane displays a template for a class definition (see
Fig. 4.16).

o
Systern Browser

Nurneric-Numbers

class

IlarneOfSuperclass subclass: #MNameOfClass
instanceVariableMames: instVardame? instVarMame2'

classVariableMarmes: 'ClassVarHared ClassVarMare2'
poolDictionaries: *
category: ‘Humeric-Murnbers'

Figure 4.16 Class definition template.

To add a new class to an existing class category, proceed with the following three
steps:

* Seclect the class category to which the new class is to be added.

¢ Edit the class template in the text pane to contain the name of the class, the name
of the superclass of the class, any instance and class variable declarations, and any
required pool dictionaries (the class category is already correct).

® Select accept from the text pane yellow button menu to compile the new class
definition. The new class appears in the class names pane and is selected.

4The addition of new class categories is discussed later in the chapter.

114 Inside Smallitalk

1

For class Complex, in accordance with the definition of the class in Fig. 2.5, the
template would be edited as shown in Fig. 4.17. It is important not to change any of the
syntax of the class definition template. For instance, the list of instance variable names must
be a siring (‘realPart imaginaryPart'") and the class name must be preceded by a hash mark
or sharp (#). Also remember to remove the dummy variable names from the list of instance
and class variables. To add the new class definition to the system, choose accept from the
yellow button menu for the text pane. The new class Complex now appears in the list of
classes in the class pane and is sclected (see Fig. 4.17).

Alternatively, you could select and evaluate all of the code in the text pane and. Note
that the class definition template is simply the message expression required to send the

subclass:instanceVariableNames:classVariableNames:poolDictionaries:category:

message to the superclass of the new class; i.e., tell the superclass to create a new subclass
with the desired characteristics.

Collections-Unorded Fraction
Collections-Sequen

Instance

Object subclass: #Complex
A . * » ,
instanceVariableMames: 'realPart imaginaryPart '

classVariableNames: "
poolDictionaries: "
category: 'Numeric-Numbers'

Figure 4.17 Addition of class definition for class Complex.

Add class Complex to the system under the class category Numeric-Numbers as
described above.

AddingModifying Class Comments

It is a Smalltalk convention to associate a comment with each class describing the purpose
of the class. To display and/or modify the comment for a class, perform the following:

¢ Select the class category and class.

* Select comment from the yellow button class pane menu to display the class
comment in the text pane.

Chapter 4 Programming with Browsers 115

* Ifrequired, edit the comment in the text pane.
Sclect accept from the yellow button text pane menu to compile the modified
comment.

Fig. 4.18 shows the comment associated with class Rectangle. A default comment
"This class has no comment" is automatically provided when a class is created.

Z Systern Browser B

Graphics-Primitive IS T

Graphizs-Display < Quadrangle accessing

Graphics-Paths ||EESEUCCEE| corparing

Graphics-Views rectangle functions
o

E:Iasﬂ‘:eotangle uzually represents a rectangular area on the screen,
“hrithroetic functions take points as argurents and carry out scaling and
translating operations to create new Ractangles. Rectangle functions create
new Fectangles by determining intersections of rectangles with rectangles.

Instance Variables:

origin <Point> upper left corner position
corner <Paoint> lower right corner position

I —,

SRR

Figure 4.18 Class comment for class Rectangle.

Examine the comments associated with selected Smalltalk classes.
Add a suitable comment to the class Complex.

Adding New Method Categories
To add a new message category to a class, proceed with the following four steps:

® Select the class category and class.

Select instance or class as appropriate in the instance-class switch panes.

Sclect add protocol (see Fig. 4.19) from the yellow button menu of the
message categories pane.

Respond to the resulting prompter window by typing the new message category.

By convention, the category should be a sequence of lowercase words scparated by
spaces.

To type a new category, type the successive lowercase words of the new category into
the prompter window and accept (sce Fig. 4.20). The new category will be added to the list
of mcssage categories. If no message category was selected when add protocol was
invoked, the new category will be added at the end of the list of categories. If a message

116 Inside Smalltalk

LS A

category was selected, the new category will be inserted before the selected category in the
list.

In Fig. 4.21, the instance method category accessing has been added to class
Complex. This category is selected, and the method definition template is displayed in the
text pane.

Jurneric-Humbers [1 Complax
Collections-Abstrad
Collections-Unorded Fraction

Collections~Sequen add protocol

Ob ject subclass: #Complex \
instanceVariableNames: 'realPart imaginaryPart '
classVariableNames: "
poolDictionaries: *
category: 'Numeric-Numbers'

Collections-ﬁbstra Float
Collections-Unordaq Fraction

Collections-Sequen - Enter new protocol name
then accept or CR
Ob ject subclass: #Complax
instanceVariableMames: 're3 \
classVariableMarmes: *
poolDictionaries: "
category: ‘Nurnaric-Humbers'

accessirn_l

Figure 4.20 Adding a new method category to a class.

Chapter 4 Programming with Browsers 117

Jnessage selector and argument names
1 "cornment stating purpose of message"

| termporary wvariable names |
statements

Figure 4.21 Method definition template.

Add the following method categories to class Complex:

class method categories: initialization
instance method categories: accessing arithmetic

4.5.3 Adding New Methods

A new method can be added to an existing message category as follows:

* Select the class category, class, and message category.

* Edit the method template displayed in the text pane; i.e., the method header,
comment, temporary variables, and method body.

¢ Select accept from the text pane's yellow button menu.

In Fig. 4.22, instance mecthod realPart (which retrieves the real part of a complex
number) has been added to the method category accessing for class Complex. Rather than
cedit the method definition template, it is common to edit the definition of some alrcady
existing method. As long as the modified method is given a new name, a new method will
be added.

Add the following methods to the class Complex (see Fig.2.5 for a listing of
the source code for the methods).

class methods
initialization
newWithReal: realValue andlmaginary: imaginaryValue

118 Inside Smalltalk

instance methods
accessing
realPart
imaginaryPart
realPart:
imaginaryPart:
arithmetic
+ aComplex
* aComplex

Collections-Unordeq Fraction

realPart

“Returns the real part of the receiver."

*rrealPari

Figure 4.22 Addition of instance method realPart to class Complex.

4.5.4 Adding New Class Categories

A new class category can be added to the system as follows:

* Sclect add category from the yellow button menu of the class categories pane.

® Respond to the resulting prompter window by typing the new class category. By
convention, class categories are uppercase words separated by dashes.

¢ Select update from the yellow button menu of the class categories pane to display
the new class category in the class category list pane.

4.5.5 Modifying Existing Class Definitions
To modify the definition of an existing class, perform the following steps:

¢ Select the class category and class (if already selected, choose definition from the
yellow button micnu of the class names pane to display the class definition in the
text pane).

¢ Edit the class definition displayed in the text pane,

Chapter 4 Programming with Browsers 119

* Select accept in the text pane's yellow button menu to compile the new class
definition.

* Depending on the nature of the change, some modifications to other pieces of code
may be required. See the discussion below for more details.

There is more to modifying a class definition than may be immediately apparent.
Although some changes, such as editing the class category of a class, do not impact the
system in any significant way, modifying the superclass or instance/class variables requires
greater care. Remember that inheritance brings advantages in terms of shared code, but as a
result, modifications to one class may impact others. We suggest that you do not change the
names, superclasses, instance variables, or class variables of classes that were provided with
your Smalltalk system. Reserve such changes, when necessary, to classes that you have
added to your system.

Modifying a Class Name

Simply editing the name of a class in the class definition and accepting the change does not
affect the name of the existing class but instcad creates a copy of the old class definition with
the new class name. Note that the methods from the old class are not copied to the ncw class
— only the class definition is copied. To rename a class, select rename from the yellow
button menu of the class name pane (sce the next section).

Edit the class definition of class Complex to create a new class NewComplex.
The old class Complex will be unaffected by this operation.

Modify class NewComplex so that it is in the new class category ComplexNum-
bers.

Modifying a Superclass

Changing the superclass of a class has implications for the methods and variables that can be
inherited. Mcthods or variables that were previously inherited may no longer be part of the
inheritance chain and thercfore are no longer accessible to the class. If the superclass of a
class is changed, all of the class's methods (and its subclasses) must be recompiled. This
takes place automatically when the superclass change is accepted into the system. A report
on the recompilation is displayed in the System Transcript window and any problems, such
as methods referring to variables that are no longer accessible, are identificd. The programmer
must correct any reported problems.

Modifying Instance or Class Variables

Modifying the instance variables or class variables of a class can create similar problems to
those encountered when changing the superclass of a class. For example, deleting an instance
variable requires modifications to the mcthods, including inherited methods, that refer to that
variable. When changes to variables are accepted, methods belonging to the class and its
subclass are recompiled and the programmer notificd of any problems through the System
Transcript window.

120 Inside Smalltalk

When instance variables are added to or removed from a class, all existing instances of
the class become obsolete. If accessed, they will be manipulated according to the dcfinitions
of the old obsolete class. The obsolete class will remain in the system until all references to
it disappear. It is the responsibility of the programmer to recreate such instances under the
new class definition. This will not likely be evident unless instances are stored globally.
Global instances are typically initialized by a class method called initialize that is explicitly
executed by the programmer making the change.

Remove the instance variable realPart from the class definition of class Com-
plex. Watch the System Transcript window as the class is recompiled.

Avoiding Direct References to Inherited Variables

Some of the pitfalls of class modification can be avoided by following sound object-oriented
programming practices. For example, although inherited variables may be referenced directly
by a method, it is far safer to send a message to gain access to information from a
superclass. Suppose a class A is the superclass of class B and supports an instance variable
x. Instance methods for class B can gain access to x directly without message-passing.
Alternatively, A could provide methods x and x: aValue and methods in class B could use
these. Which is better? In terms of code maintenance, the latter is preferred. If we
subsequently change class A so that x is no longer part of the representation, then as long as
class A still supports the messages x and x: aValue, the code in the subclasses docs not
require modification. The important point here is that the class being changed can be
modified so that the subclasses function without change; i.e., changes are localized to the
class being modified. However, if methods in the subclasses make direct refercnces to the
inherited variables, they will no longer function correctly and will require modification.

4.5.6 Renaming Class Categories, Classes, Method
Categories, and Methods

A class category, class name, message category, or method name can be renamed as follows:

* Select the class category, class, message category, or method name to be renamed.

* For class categories, class names, and message categories, select rename from the

yellow button menu of the selected pane. Respond to the resulting prompter
window by providing the new name.

¢ For methods, edit the name of the method in the text pane and accept it to create a
new method with the new name. Remove the old method by selecting it and then
choosing remove {rom the yellow button menu of the message sclectors pane.

Renaming a system class is relatively easy. However, it is not enough just to change
the name of the class, because the class may be refercnced directly by any mcthod in the
system. These methods must be located and physically modificd so that references to the old
name are replaced by refercnces to the new. This is not as difficult as it sounds, because
Smalltalk will gencrate a message-set browser (see Section 4.6.3) containing thosc methods
that reference the old name. The source code for each method can be manually edited one by

Chapter 4 Programming with Browsers 121

one to replace the old name by the new and recompiled. It is the programmer's responsibility
to ensure that every affected method is properly modified and recompiled. Fortunately, the
system greatly simplifies the task by handing the programmer all the affected methods.
Similar care must be used when renaming a method since there can be many users of that
method. However, determining if a method is actually using the removed method or is just
another one with the same name is a little more difficult to determine. The semantics of the
method must be taken into account.

4.5.7 Removing Class Categories, Classes, Method
Categories, and Methods

A class category, class, message category, or method can be removed as follows:

* Seclect the class category, class, message category, or method name to be removed.
* Select remove from the yellow button menu of the selected pane.

* Respond to the resulting confirmer window to confirm the deletion.

When initiating a remove operation, a confirmer menu (see Fig. 4.23) will appear
asking the programmer to confirm whether or not the deletion should really be performed.
Confirmation is useful because removing a class or whole category of classes is an
irreversible operation. The confirmer is answered by selecting the appropriate responsc to the
query. For example, Fig. 4.23 shows a typical confirmer window generated in response to
arequest to remove all the methods in a particular message category.

Remove is a potentially dangerous operation. Great care is nceded when removing
classcs that are used by other classes in the system. For example, you may be attempting to
remove a class that has subclasses or a class that is critical to the operation of Smalltalk
itself. Before removing any class or method from the system, be sure you understand what
the impact will be on other classes in the system.

System Browser §

Nurmeric~Numbers || Complex

Collections-Abstrad Float
Collections-Unorded Fraction

Collections-Sequen
rstance) IR

Are you certain that you want to
ermove all methods in this protocol?

;ealﬁ'art
"Returns the real pan

t+realPart

Figure 4.23 Removing all methods in a method category.

122 Inside Smalltalk

! 14

Rename class NewComplex (using rename) to OldComplex.

Remove class OldComplex.

4.6 SPECIALIZED BROWSERS

System browsers provide access to the entire Smalltalk system. It is often convenient to
create browsers that provide more limited views of the system or views that are not organized
along class or message category boundaries. Specialized browsers may be created for three
reasons:

* To browse specific class categories, classes, message categories, or messages.
* To browse classes in a specific superclass or inheritance chain.

* To browse sets of related methods; e.g., those methods that send a particular
message.

4.6.1 Browsing by Category, Class, Message
Category, and Message

Category, class, message category, and message browsers are browsers that limit access
to specified categories, classes, message categories, and messages respectively. They are
simply limited access system browsers.

A category browser provides access only to the classes within a specified category. In
all other respects, they provide the same functionality as system browsers. A category
browser may be opened from a system browser as follows:

¢ Select the class category to be browsed.

® Select spawn (sometimes labelled browse) from the yellow button menu of the
class categories pane.

* Frame the class category browser.

Fig. 4.24 illustrates a category browser on the class category Graphics-Primitives.
Notice that a category browser has the same structure as a system browser exccpt that the
class categories pane is missing.

A class browser limits access only to a specified class. In all other respects, it
provides the same functionality as a category browser. A class browser may be opencd from
a system browser or a category browser as follows:

® Sclect the class to be browsed.

* Seclect spawn (sometimes labelled browse) from the yellow button menu of the
class names pane.

¢ Frame the class browser.

Fig. 4.25 shows a class browser on class Pen.

Chapter 4 Programming with Browsers 123

phics-Primitives Category Browser

Graphlcs—Prln‘utwes |

initialize-release direction

:
coloring frame:

Guadrangle rnoving location

Rectangle geornetric designs sourceForm:

width

frarne
"Answer the rectangle in which the receiver can draw."

+frame

Figure 4.24 Category Browser on the category ‘Graphics-Primitives’.

accessing

1 coloring
geornetric designs goto:

............ home

"Set the state of the receiver's pen to down {drawing)."

penbown € true

.

Figure 4.25 Class Browser.

Finally, there are two other seldom uscd types of browsers: message category
browsers, which limit access to a specified message calegory within a class, and message

124 Inside Smalltalk

11

browsers, which allow only a single method to be viewed. A message category browser or
message browser may be opened from a browser as follows:

* Select the message category or message to be browsed.
* Select spawn (sometimes labelled browse) from the yellow button menu of the
message category or message selectors pane respectively.

¢ Frame the class browser.

Fig. 4.26 shows a message category browser on the message category moving of
class Pen. Fig. 4.27 shows a message browser for the instance message with sclector go: in
class Pen.

Open the following specialized browsers:

A Category Browser on class category Numeric-Numbers.

A Class Browser on class Fraction.

A Message Category Browser on category ‘converting’ in class Fraction.
A Message Browser on method ‘asFloat’ in category ‘converting’ .

gotot
homa
north
place:
turn:

eIz distance

"Mowve the raceiver in its current direction a number of bits equal to
the argument, distance, If the pen is down, a line will be drawn
using the receiver's form source as the shape of the drawing brush."

| dir |

direction = 0 ifTrue: [+self goto: location + (distance @ 0)].
direction = 90 ifTrue: [tself goto: location + (0 @ distance}].
direction = 180 ifTrue: [tself goto: location - (distance @ 0],
direction = 270 ifTrue: [tself goto: location - {0 @ distance)],
dir « direction degreesToRadians,

dir « dir cos @ dir sin,

self goto: dir ™ distance + location

R R SR O RO AR LILLLANRS '::'

R A AR RS R BRSPS G RS0 n

Figure 4.26 Message Category Browser.

Chapter 4 Programming with Browsers 125

Spssctenmatnne

Meth . vser on Pen o

o diztance
“MWove the receiver in its current direction a number of bits equal to
the argurnent, distance. If the penis down, a line will be drawn
using the receiver's form source as the shape of the drawing brush."

dir
!ﬂirecltion = 0 ifTrue: [tself goto: location + (distance @ 0)]
direction = 90 ifTrue: [+celf goto: location + (0 @ distance)].
direction = 120 ifTrue: [tzelf goto! location - {(distance @ 0)]
direction = 270 ifTrue: [+self goto! location - {0 @ distance)],
dir ¢ direction degreesToRadians,
dir ¢ dir cos @ dir =in,
self gote: div ™ distance + location

Figure 4.27 Message Browser.
4.6.2 Browsing the Superclass Chain

Class hierarchy browsers? arc organized around the class hierarchy rather than around class
categories. They are particularly useful when trying to view the full protocol supported by a
class or when adding and debugging new subclasses. They expedite the viewing of classes in
the superclass chain — remember that a class inherits both representation and methods
(unless overridden) from its superclasses. The definition of a class, therefore, should not be
viewed in isolation. To get the full picture, we must also consider its superclasses. A class
hierarchy browser simplifies browsing the classes in the superclass chain of a specified class.
In structure and functionality, class hierarchy browsers are similar to category browsers,
except that the classes displayed include only the superclasses and subclasses of a specificd
class rather than the classes in the category of the class. A class hierarchy browser may be
opened as follows:

* Sclect the class to be browsed.

¢ Sclect spawn hierarchy from the yellow button menu of the class names pane.
¢ Frame the class browser.

Fig. 4.28 shows a class hierarchy browser on class Integer. The class names panc
contains class Integer, superclasses Number, Magnitude, and Object, along with
subclasses LargeNegativeInteger, LargePositiveInteger, and Smalllnteger.

5Note that hierarchy browsers are not supported by Version 1 Smalltalk.

126 Inside Smalltalk

| il

#¥Hierarchy** Category Browser

Number arithmetic

Integer testing '

Smallinteger cornparing
LargeNegativelnteger truncation and round o1

{ LargePositiveinteger | &numerating -
factorization and divisi

5 | bit manipulation
Number subclass: #integer
instanceVariableNames: *
classVariableNames: *
poolDictionaries: "
category: ‘Numeric-Humbers'

Figure 4.28 Class Hierarchy Browser.

Use a Class Category Browser to answer the following queries:

What is the exact representation of instances of class Quadrangle?
What methods are inherited by class Quadrangle from class Rectangle?

4.6.3 Browsing Selected Sets of Methods

Message-set browsers allow the programmer to browse a collection of methods that share
some common characteristic; e.g., methods for the set of messages sent by a specific
method. Since the messages selected cut across class boundaries, message selectors are
uniquely identified by listing them together with their respective class names. Message-set
browsers are important programming and debugging tools. We briefly describe some of their
most important uses.

Browsing the Set of Methods that Send a Particular
Message

An excellent way to understand how to use a message is to examine methods that already use
it. A message-set browser on the set of methods that send a particular message can be created
as follows:

¢ Sclect (in a browser) the method whose use is to be examined.

® Select senders from the yellow button menu of the message selectors pane.

* Frame the message-set browser.

Chapter 4 Programming with Browsers 127

Fig. 4.29 shows a message sct browser created on the class method with selector
fromUser in class Rectangle. Alternatively, the same message-set browser could have been
created by evaluating the following expression (see the System Workspace for a template).

Smalltalk browseAllCallsOn: #fromUser

Senders of fromUser

S
Circle class exampleTwo
'
Form ¢lass exampleSpaceFill
FormEditor elass farmFrorDisplay
FormView clazs exampleOne
ForrnView class exampleTwo

exarmplad
"Try this exarnple by choosing menu command print it"

| e (OET

"FillnTheBlank exampla3.”

z

0t B R SR B 00 R0

Figure 4.29 Message-set Browser on senders of fromUser.

Note that the message-set browser is created on the sclector of the message. The
browser will therefore contain references to the use of any method with that sclector. Since
the same selector may be uscd by any number of classes, some of the references in a
message-set browser may not be to the method under scrutiny. For example, the message-set
browser created in Fig. 4.29 contains references to the use of method fromUser in class
Form as well as class Rectangle.

Use a Message-set browser to answer the following query: which methods send
the message with selector ‘go.’?

Browsing the Set of Methods that Implement a
Particular Message

It is often useful to browse through the implementations of methods with a given selector.
A message-set browser on the set of methods that implement a particular message can be
created as follows:

¢ Sclect (in a browscr) any method with the selector whose implementations you
wish to examine.

® Sclect implementors from the ycllow button menu of the message selectors
pane.

¢ Frame thec message-set browser.

128 Inside Smalltalk

Earlier in this chapter, we suggested browsing through the system to look for classes
that had examplel methods associated with them. The aim was to examine and evaluate the
examples to learn about the capabilities of the classes in the system. A more convenient
method of finding the examplel methods would be to create a message-set browser on all
implementors of examplel. An alternative way to create a message-set browser on all
classes that have examplel methods (see Fig. 4.30) would be to evaluate the following
expression (see the System Workspace for a template).

Smalltalk browseAlllmplementorsOf: #examplel

Implementors of examplet §

Display TextView class examplet
FilllnTheBlank class example

fxample1
"Example waits for you to click red button somewhere on the screen, The
view will show where you point. Terminate by choosing menu cornrnand
accept.”

FilllnTheBlank
message: "What is your name?'
displayAt: Sensor waitButton
centered: true
action: [:answer | Transcript cr; show: answer]
initialdnswer: "

“FilllnTheBlank example1."

Figure 4.30 Message-set Browser on implementors of examplel.

Use a Message-set browser to answer the following query: which classes
implement the message with selector ‘at:put.’?

Browsing the Set of Methods that Are Sentin a
Particular Method

When trying to understand the implementation of a method, it is often useful to browse the
methods for messages sent by the method under study. A message-set browser on the
implementors of a particular message sent within a method definition can be created as
follows:

* Select (in a browser) the method whose implementation is under study.
* Select messages from the yellow button menu of the message selectors pane.

Chapter 4 Programming with Browsers 129

* From the message sclector menu, choose the selector to be investigated.
* Frame the resulting message-set browser on all implementors of the selector.

Suppose we were viewing method + in class Point. Selecting messages from the
yellow button menu of the message selector pane displays a menu containing the selectors
used by + (see Fig. 4.31). Selecting asPoint from the menu, for example, opens a
message-set browser on all implementors of asPoint (see Fig. 4.32).

: Swstemn Browser

Graphics-Primitive: i

Graphics-Display © accessing

Graphics-Paths Quadrangle comparing

Graphics-Vieves
+ delta

“Ainswer a new Point that is the sum of the receiver and delta (which is
a Point or Nurmber)."

+

| deltaPoint |
deltaPoint € delta asPoint.
tx + deltaPaint x @ {y + deltaPoint y)

Paint asPoint

"Answer a new Point with the receiver as both coordinates;
often used to supply the same value in two dimensions, as with
syraretrical gridding or sealing,”

t+eelf @ self

Figure 4.32 Message-set Browser on implementors of asPoint

Use a Message-set browser to investigate the messages sent by instance method
‘intersects:’ in class Rectangle.

130 Inside Smalltalk

1w 1

Browsing the Set of Methods that Reference a
Particular Instance or Class Variable

Message-set browsers can also be created to browse methods that reference a particular
variable or literal. The method used to open the browser is dependent on the type of variable
or literal involved. If no methods are found that reference a particular variable or literal, the
string 'Nobody' is displayed in the System Transcript window (if open). A browser can be
opened on methods that reference a particular instance or class variable as follows:

* Select in a browser the class whose variables are to be studied.

¢ Seclect inst var refs or class var refs from the yellow button menu of the class
names pane.

* From the menu of variables that appears, select the instance or class variable to be
studied.

* Frame the resulting message-set browser on all methods of the class and
subclasses that reference that variable.

Fig. 4.33 shows the menu of instance variables displayed when inst var refs is
selected on class Pen. Fig. 4.34 shows the result of selecting frame from this menu — a
message-set browser on methods that reference frame is created.

Investigate the instance variables and their users in class Path; investigate the
class variables in classes Form and Date.

destForm
sourceForm
halftoneForrn
combina tionRule®
dest¥
nstance destY

idth

*BIIBH subclass: #Pen ;;: light
instanceYariableNames: ‘frame I o

lassVariableNames: * source
classvar e sourceY

poolDictionaries: clip¥

category: 'Graphics-Priritives’ elipY
clipwidth
clipHzight

Graphics-Display ¢} Point
Graphics-Paths Quadrangle
Graphics-Views

location
direction

Figure 4.33 Instance Variable Menu for class Pen.

Chapter 4 Programming with Browsers 131

"Answer the rectangle in which the receiver can drawe"”

+frame

Figure 4.34 Message-set Browser on the instance variable ‘frame’.

Browsing the Set of Methods that Reference a
Particular Class

To open a browser on methods that refcrence a particular class, perform the following:

* In a browser, select the class whose references are to be studied.
¢ Select class refs from the yellow button menu of the class names pane.
* Frame the resulting message-set browser on all methods that reference that class.

Browsing the Set of Methods that Reference a
Particular Global Variable

To open a browser on methods that reference a global variable or pool dictionary
variable, evaluate an expression of the following form:

Smalltatk browseAllCallsOn: (aSystemDictionary associationAt: #aSymbol)

For example, to create a browser on methods that reference the global variable Display,
evaluate the following:

Smalltalk browseAllCallsOn: (Smalltalk associationAt: #Display)
Use message-set browsers to answer the following queries:

Which methods reference the instance variable ‘hours’ in class Time?

Which methods reference the class variable ‘Pi’ in class Float?

Which methods reference the class Interval?

Which methods reference the class Random?

Which methods reference the global variable Transcript?

Which methods reference the variable ‘Tab’ in pool dictionary TextConstants?

132 Inside Smallitalk

4.7 SAVING YOUR WORK

In this section, we discuss ways in which modifications and additions to Smalltalk can be
saved. We also provide a little more insight into the global organization of the Smalltalk
system. The three fundamental techniques for saving changes made to a Smalltalk system
include the following:

* Writing (or filing out) Smalltalk source code to external files in a form that can
subsequently be read back (or filed in).

* Updating the Smalltalk image.
* Using the changes file maintained by the Smalltalk system.

4.7.1 Filing Out

The simplest way to save modifications to a Smalltalk system is to file or write out those
parts that have been changed to an external file in a format that can be subsequently
recompiled into Smalltalk. This is also a simple way of transferring Smalltalk source code
to other Smalltalk users or to another machine. For example, if you wish to give a class
definition to a colleague, the class can be filed out from one Smalltalk system and filed into
the next.

Source code can be selected for filing out at four levels: class categories, classes,
message categories, or individual methods. Each of the yellow button pane menus in a
system browser has a fileOut entry corresponding to the four levels of output. Selecting the
fileOut entry in a pane writes the corresponding selected item to an external file. File names
are automatically generated according to the following convention.

Information Filed Out File Name

category categoryName.st

class className.st

message category className-messageCategoryName.st
method className-messageSelectorName.st

Files are written out in a special standard format so that they can be read back into
Smalltalk using fileIn, the inverse of fileOut. It is not nccessary to understand this file
format. Unless you are an experienced Smalltalk programmer, we suggest that you do not
edit files in this format before filing them back in. The format is rcadable but uses the !
(exclamation) character as a special delimiter and writes the source code in a form that can be
used to recreate the classes and methods when read using fileIn.

Format of Filed Out Code

Each isolated exccutable expression ends with one exclamation mark. However, an
exclamation mark signals the beginning of a list of methods associated with a category; e.g.,
see ‘!ConstrainedPen methodsFor: 'moving'!’ below — notc that an exclamation mark also
terminates this header. Each method in the category ends with one exclamation mark. The
last one has two but there is exactly one space between them — this space is crucial. Two

Chapter 4 Programming with Browsers 133

exclamation marks in a row (without intervening characters) denote an actual exclamation
mark in the code.

Fig. 4.35 shows the file created by filing out class ConstrainedPen, the subclass of

Pen described in Chapter 2.

134

'From Smalltalk-80 of March 1st, 1987 on 18 June 1985 at 3:33:01 pm'!
Pen subclass: #ConstrainedPen

instanceVariableNames: "

classVariableNames: "'

poolDictionaries: "

category: 'Graphics-Primitives'!

IConstrainedPen methodsFor: 'moving'!

east
*The direction of the receiver is set to face the right of the screen.”
direction «- 0!

go: distance
"Move the pen in its current direction a number of bits equal to the argument,
distance. If the pen is down, a line will be drawn using the receiver's source form as
the shape of the drawing brush. If distance is zero, nothing happens.”

| angle newDirection |

angle « direction degreesToRadians.
newDirection « angle cos @ angle sin.

super goto: newDirection * distance + location!

goto: aPoint
“This message is not appropriate for this object."
self shouidNotlmplement!

south
*The direction of the receiver is set to face the bottom of the screen."
direction « 90!

turn:degrees
“The direction of the receiver is turned clockwise through an amount equal to the

argument degrees. The argument is constrained to be a multiple of 90 degrees by
rounding.”
super turn: {degrees roundedTo: 90).!

turnleft

*The direction of the receiver is turned to the left 90 degrees."
super turn: -90.!

turnRight
“The direction of the receiver is turned to the right 90 degrees."
super turn: 90.1

west

"The direction of the receiver is set to face the left of the screen.”
direction « 180! !

Inside Smalltalk

[[

ConstrainedPen class
instanceVariableNames: **!

IConstrainedPen class methodsFor: ‘examples'!
example

*lllustrates the use of constrained pens.”

| quill |

quill < ConstrainedPen new.

quill home; place: 300@300; down.

4 timesRepeat: [quill go: 100; turnLeft]

*ConstrainedPen example™! !
Figure 4.35 File created by filing out class ConstrainedPen.
4.72 Printing

The entry printOut also appears in each of the pane menus of a system browser. It is
designed to write out class descriptions in a formatted or ‘pretty printed’ form suitable for
reading by a human reader. By comparison, the form produced by fileOut is designed to be
readable primarily by the system. Files generated using printOut cannot be subsequently
evaluated back into Smalltatk using fileIn. The implementation of the printOut method is
system dependent. Typically, implementations take advantage of special control character
sequences to allow for different fonts and different emphasis, such as bold or italic, and may
support PostScript™ formatted output to a laser printer. In implementations that do not
support printing, printOut defaults to fileOQut. Consult your system documentation for
details of the specific implementation for your system.

4.7.3 FilingIn

Files created using fileOut can be subsequently read back into Smalltalk with the fileIn
operation using an expression of the following form (see the System Workspace for a
template).

(FileStream oldFileNamed: ‘fileName') fileln

A log of the progress of the fileIn operation is displayed in the System Transcript
window. Any errors encountered during the evaluation of the file will be reported in this log.
To avoid errors of this nature, we suggest you do not edit files that have been filed out. Note
also that when new class descriptions are added to the system during the filing in process,
browsers that are alrcady open will not automatically contain their description. Select
update from the yellow button menu in the class categories pane to update the browser.

File out class Pen, exit from Smalltalk, examine but do not modify the file with
your system editor, reenter Smalltalk and file in the file.

4.7.4 Using the File List Browser
The preferred method of obtaining code in an external file is through a file list browser. A

file list browser is opened by selecting file list from the system menu. This browscr
consists of three vertically stacked panes (see Fig. 4.36): one to sclect a set of candidate

Chapter 4 Programming with Browsers 135

files, one to provide feedback on which ones are available, and the final one to provide the
actual file information.

The topmost pane is used to locate a disk, directory, or file name ¢ither via mouse
interactions through pop-up menus or via keyboard intcractions by typing the name. The
former is more convenient but the latter is faster and more direct if you know the file name
or if you can specify it with a pattern. A pattern can contain wild card characters ‘*’ to
represent any string and ‘#’ to represent a single character. Given an accepted entry in the top
pane, the middle pane displays the files or directory names matching the selection or pattern.
For an exact match, both panes contain exactly the same name. The contents of a file or
directory are displayed in the bottom pane. Typically, this information is either filed in
{compiled and integrated with the existing library), edited and saved, or simply browsed.

File list browsers are necessarily somewhat dependent on the capabilitics of the
underlying operating system. Most Smalltalk systems support hierarchical file systems but
the actual names or patterns used for files and directories will depend on the supporting
operating system; ¢.g., Unix, Macintosh, or MS-DOS. They also provide a subsect of the
operations typically provided by the file system; e.g., operations for renaming files or
deleting them.

File list browsers have slightly different menu entrics from one system to another — a
typical set of file list browser yellow button menus is shown in Fig. 4.37. In the sections
that follow, we will describe how to access, edit, save, and file in files using file list
browsers. For a brief description of the functionality of other menu selections not explicitly
discussed below, see the glossary at the end of this chapter.

File List Pattern

File/Directory Names

File Contents or
Directory List

Figure 4.36 Structure of a File List Browser.

136 Inside Smalltalk

1

Adernos.

dermosishowHand.st get contents
demositextiMenuExamplest | get jnfo
demositextStyleChangeExar file in

accept

dernositoothpastest copy name
dernosiworkspacest rename
{ 2From Smalltalk-80, version| remove o7 on d Julv 1947 at 11:27:15 am" |
spawn again

IForm class methodsFor: 'exanipres: unde
toothpaste cut -
"Forrn toothpaste" paste z
“Draw spheres ala Ken Knowlton, Computer 'd.O lt. 15 nd p352, ;g
Draws while red is held, terminated by yello{Print It ?
inspect .

| facade outliner filter point queue cursorPoiffile It in
facade « Form put
extent: 20@20 get i

ORI

fromérray: #(65471 61440 63191 614] SPawn K440 57453 61440

ERAES SRR RIS $o%8 SRR R RL IR0 ED0 0000

Figure 4.37 Typical File List Browser Menus.

Accessing a File

Most of the time, the exact location or name of a file is not known. In this case, a search for
the file in a hierarchical file system might proceed as follows. First sclect volumes from the
yellow button menu of the top pane. The names of the disk volumes accessible will be
displayed in a menu. Select the desired volume. This feature allows you to select from any
number of hard and floppy disk drives that may be connected to your system. The pattern

volume-name.*

will be displayed in the topmost pane. Additionally, the filcs and directories matching this
pattern will be displayed in the middle pane. Entries in the middle pane are sclectable.
Selecting a file will display the contents of the file in the bottom pane. Sclecting a directory
will list the subfiles and subdircctorics. Entries in the bottom pane are not sclectable. To
view entries in this list, the pattern in the topmost pane must be changed to select files in
the chosen middle pane directory. This is most simply achieved by selecting the menu entry
new pattern from the middle pane. This sequence of operations may be itcrated as many
times as necessary to locate a given file.

To repeat, choosing volumes (in the top panc) provides entries in the middle pane.
Selecting onc of these entries (say a directory) and choosing new pattern (in the middle
pane) causcs this entry to move to the top pane. The entries for the new top pane are then

Chapter 4 Programming with Browsers 137

displayed in the middle pane. This can be repeated as long as there are subdirectories to “walk
through.” Ultimately, the middle pane will contain the file you wish to manipulate. If you
are using a hierarchical file system, the complete path name of the file will be available;
e.g., instead of ‘toothpaste.st’, a name like ‘Hard Disk:ParcPlace Smalltalk:demos:tooth-
paste.st’ will be provided in the middle pane. If the path name becomes too long, it will be
truncated as shown in Fig. 4.37. If the file in the middle pane is now selected, the contents
of the file can be brought into the bottom pane by selecting get contents from the middle
pane's yellow button menu. This does not compile the file, it only provides access in the
bottom pane so that you can view the contents and, for example, copy bits and pieces of it.

dernosianimation.st
dernosicolorExamplast
dernosicounter.st
dernosifinancialTools.st

'Frorm Smalltalk-20, Yersion 2.2 of July 4, 1937 on 9 July 1057 at 112715 anm"

MouzelenuController subclass: #CounterController
instanceVariableMarmes: ¥
class¥ariableMarnes:
poolDistionaries: ¥
category: ‘Derno-Counter'!

CounterController methodsFor: 'initialize-release!

R s

Figure 4.38 Selecting files matching the pattern ‘Hard Disk:Smalltalk:Demos:*.st’.

When a file list browser is first opened, the file list pattern in the top pane is empty. It
is possible to avoid the protocol discussed above by entering a pattern string directly into the
top pane and choosing accept from the top pane's yellow button menu. For example, to
vicw thosc files terminating in ‘.st’ in dircctory ‘ParcPlace Smallialk:demos’, pattern
‘Hard Disk:ParcPlace Smalltalk:demos:*.st” might be provided in the top pane. The
malching filc names will appcar in the middle pane as shown in Fig. 4.38. Sclecting one of
these entries and choosing get contents from the middle pane's yellow button menu will
bring the file into into the bottom pane. The characters in the file are now available for
viewing or cditing.

Editing a File

The text within the file contents (bottom) pane may be edited using the standard again,
undo, copy, cut and paste cditing commands. It is important to realize that when you edit

138 Inside Smualltalk

iRt

the text you are not changing the text in the file. Only the copy of the text in the browser is
being changed. The two commands put and get are used to store the contents of the file
contents pane back into the file and to read or reread the contents of the file into the file
browser pane respectively.

Filing In From the File List Browser

To compile the complete contents of a file, select file in from the yellow button menu of
the file/directory (middle) pane. Alternatively, if you wish to compile only a portion of the
file, select the desired part with the mouse (to highlight it) and choose file it in from the
yellow button menu of the file contents (bottom) pane. In this case, great care must be taken
to include the exclamation marks that surround the code. See Section 4.7.1, Filing In, for a
discussion of the external file format.

Experiment with File List Browsers:

File out a particular class, read the contents of the file containing the class
definition into a file list browser, make some cosmetic changes to the file, save
the updated file, and file in the updated version of the file.

Try traversing the file/directory structure of your system.

What happens if you type a pattern for which no files match?

How would you open a File List Browser by evaluating a piece of code?
What happens if you try to access the contents of a non-text file?

4.7.5 Updating the Smalitalk Image

When we enter Smalltalk, we are actually loading a snapshot of the Smalltalk environment
known as a Smalltalk image. The image is a snapshot in the sense that it recorded the
precise state of the system when it was created. The state of the system at any time includes
the compiled version of the Smalltalk class library and the state of the desktop. The system
remembers what windows are open, their location on the screen, and so on. When an image
is loaded, the state of the Smalltalk system is restored to what it was at the point when the
image was created.

If you have added new classes to the Smalltalk library, you may wish to incorporate
those classes permanently into a new Smalltalk image. A few words of caution about
making snapshots are nccessary. The Smalltalk image is large — make surc you have
enough room on your disk to create the new image. Always keep a backup copy of the
original Smalltalk image that came with your system. If you share your Smalltalk system
with other programmers, be aware that they will be forced to use your new image. This may
or may not be desirable. Alternatively, each programmer can have his own image.

The Smalltalk image may be updated at any time during a session by selecting save
(sometimes relabelled snapshot) from the system menu. Alternatively, when quitting from
Smalltalk, select Save, then quit from the quit menu generated when quit is sclected from
the system menu. In both cases, a prompter window will appear requesting the name of the
file in which to store the new image. The prompter initially displays the name of the current
image file. If you do not want to overwrite the old image, edit the name in the prompter

Chapter 4 Programming with Browsers 139

window. By convention, images have names like fileName.im or filename.image
depending on the system you are using. Another file, a changes file (see the next section),
with the name fileName.changes is also created whenever a new image is created. When an
image file is used to reload Smalltalk, the corresponding changes file must also be available.

4.7.6 Using the Changes File
Three external files are required to run Smalltalk: a sources, image, and changes file.

Sources File Contains the Smalltalk source code for the Smalltalk class
library. This file is normally not changed by the
programmer and thus represents the source code library as
delivered with your Smalltalk system.

Image File A file representing the state of the entire Smalltalk system
at the time the image was created. Includes the compiled
versions of the class library and the state of all objects that
make up the Smalltalk environment.

Changes File A log file (in fileOut format) containing the source code for
all changes that have been made to the Smalltalk
environment. Entries are automatically logged to this file
whenever an expression is evaluated, whenever a method
definition is changed, and so on.

The sources file represents the source for the current release of Smalltalk and is
therefore shared by all programmers using the Smalltalk system. Changes made to the
Smalltalk class library do not modify the sources file — rather they are logged in the
changes file. This makes it possible to exit from Smallialk at the end of a session without
saving any of the changes that were made. These changes remain logged in the changes file
and can subsequently be examined, cdited, or filed in, if necessary. It is important to
remember that image and changes files must be coordinated — you must use the changes
files created when the image was created.

By maintaining their own personal copies of the image and changes file, many
programmers can share the same sources file. If space does not permit multiple copies of the
image file to be maintained, a single image file may also be shared. The changes file can be
uscd as a way of exchanging Smalltalk source code and is a valuable aid in recovering from
any kind of system crash.

The Smalltalk environment keeps an internal form of the contents of the changes file
called the change set. Modifications made to the system are recorded in both the change sct
and the changes file. The change sct differs from the changes file in that it only contains
modifications to the class library, not expressions that were evaluated. A simple way of
creating a changes file containing only the changes made during a single Smalltalk session is
to cvaluate the expression

Smalltalk noChanges

at the beginning of the scssion. This emptics the change sct but has no cffect on the changes
file. At the end of the scssion cvaluate the expression

(FileStream fileNamed: 'changeFileName') fileOutChanges

140 Inside Smalltalk

If a Smalltalk system is shared by a number of users, each user can maintain a personal
changes file by evaluating ‘Smalltalk noChanges’ after loading Smalltalk and then filing in
the personal changes file. At the end of the session, file out the change sct as shown above.
Over time, changes files can become quite large. Every evaluated expression and
changed definition is included in the log. Moreover, the changes file contains redundant
information. For example, if you have changed the definition of a method several times, each
re-definition of the method is stored in the changes file. Of course, only the latest definition
matches the compiled version of the method, and therefore all earlicr versions of the method
can be removed from the changes file. Consequently, it is worth removing these redundancics
periodically by condensing the changes file. This can be done by evaluating the expression

Smalltalk condenseChanges

4.7.7 Surviving a System Crash

Since the changes file maintains a log of all the changes made to the class library, it can be
used to recover from a system crash. It is best, of course, to avoid crashing the system in the
first place. Smalltalk is a robust system but it is also an open system. The programmer has
access to the most fundamental system classes. Modifying such classes can easily render
Smalltalk inoperable! In this kind of situation it is advisable, if space permits, to save the
image before making any changes that may have catastrophic effects.

If your system has crashed, the best way to recover is to load the latest image and file
in the changes file. If the changes file is large, you can avoid filing in the complcte file by
creating a file containing only those changes that have taken place since the last snapshot
was made. Each time a snapshot is made, a comment ling "----SNAPSHOT----" is inscricd
into the changes file.

Smalltalk provides specialized browsers for manipulating the changes file and change
set. For information on these, consult the Orange book or experiment with the expressions
in the System Workspace for manipulating changes files.

4.8 SUMMARY
This chapter has described the central role played by browsers in the Smalltalk programming
process. In particular, we have discussed the following:
* System browsers for viewing the entire Smalltalk class library.
¢ Adding, viewing, and modifying class and method definitions.
¢ Class hierarchy browsers for browsing hierarchically related classes.
* Message-sct browsers for browsing collections of related methods.
¢ Filing out to and filing in from external files.
® File list browsers for browsing and editing external files.
* Saving the Smalltalk image.
* The role of the Smalltalk changes file.

* How to survive a system crash,

Chapter 4 Programming with Browsers 141

4.9 EXERCISES

The exercises that follow involve the evaluation of Smalltalk code. When a semantic error is
discovered during the evaluation of Smalltalk code, execution halts and a notifier window is
displayed. The notifier displays a message describing the cause of the error. If you are not
familiar with the use of notifiers and debuggers to debug Smalltalk code, we suggest that,
until these topics are fully covered in Chapter 5, you simply close the notifier window
(select close from the window menu) and debug your code manually.

1.

142

Complete paper exercises 3 through
8 from Chapter 2 in Smalltalk.

In this chapter, we asked the reader
to attempt to find classes with
example methods. Explicitly
looking for a method called
example will not be sufficient —
many methods in the examples
category are called examplel, ex-
ample2, and so on. Create a mes-
sage browser on all methods in cate-
gory examples for all classes by
evaluating the following expression
(sce the System Workspace for a
template).

Smalitalk
browseAllMethodsInCategory:
#examples

Select and evaluate the mecthods found
in this browser.

There is no menu entry for renaming
a method in the message selectors
pane menu of a browser. What is the
best method of renaming a method?

Suppose you wanted to move or copy
all methods in a particular category
of one class to a new category in a
different class. Moving or copying
the methods one by one is far too
slow and tedious. Browse the system
classes for a simple way of achieving
this and other similar large-scale
copy operations. Hint: see class cate-
gory Kernel-Classes.

As previously mentioned, it is
important to understand the impact of
making changes such as removing or
renaming classes on the class
library, How would you use message-
set browsers to identify the impact of
a change? For example, imagine you
are going to rename or remove one
of the instance variables of a class.

6.

10.

11.

A specialized change-management
browser can be created to browse
over the changes in a changes file by
evaluating the expression

Changel.istView recover

For safety, you should keep a back-
up of the changes file before creating
the change-management browser.

To browse the change set, a message-
set browser, known as a change-
set browser, can be created by eva-
luating the expression

Smalltalk browseChangedMessages

Create change-management and
change-set browsers and experiment
with them to determine their
capabilities. In particular, identify
major differences between them.

Find all implementors of +.
Find all users of display.

Choose an arbitrary method and find
all implementors of one of the
message sclectors it uses.

Create a hierarchy browser for class
Array. Use this to find out how to
make a copy of an array in which all
zeroes are replaced by -1.

ParcPlace™ Smalltalk includes sepa-
rate source code for protocol brow-
sers. Protocol browsers view the
entire protocol of a class; i.e., not
only the protocol supported directly
by the class but also protocol
inherited from superclasses. If your
system supports protocol browsers,
file in the source code and explore
their functionality.

Inside Smalltalk

4.10 GLOSSARY

Smalltalk browsers

System Browser A window supporting many
programming activities; e.g., viewing the
class library, modifying existing classes
and methods, and adding new classes.

Class Category Browser A browser providing
access only to information relating to a
specific class category.

Class Browser A browser giving access only
to information relating to a specific class.

Class Hierarchy Browser A browser organized
on a class hierarchy rather than class cat-
egories. Provides access only to a class,
its superclasses and subclasses.

BT

Message Category Browser A browser provid-
ing access only to information relating to
a specific message category within a class.

Message Browser A browser providing access
only to a particular method within a class.

Message-Set Browser A browser providing
access only to a related set of methods.
The set of methods share some common
characteristic; e.g., being the senders of a
particular message.

File List Browser A browser providing access
to and editing on the contents of external
text files.

yellow button menu commands for the class categories pane

print out Creates a file in ‘pretty print for-
mat’ containing a description of the
classes in the selected class category; the
file name is system dependent; the file
created cannot be filed back in. In some
systems printout and file out are syno-
nymous.

file out Creates a file in ‘file out format’ con-
taining a description of the classes in the
selected class category. This file has the
name ‘classCategoryName.st’ and can be
subsequently filed back into the system.

spawn Opens a class category browser on the
selected class category.

add category Adds a new class category to
the system either before the selected class
category or at the end of the list if no
category is currently selected. A prompter
window requests the name of the new
category. Typically, class category names
are capitalized multi-word names separated
by dashes.

rename Changes a class category name. Re-
quests the new name from a prompter
window.

remove Removes a selected class category
and any classes in that category from the
system. If any classes are to be deleted, a
confirmer appears to request confirmation.

update Updates the information displayed in
the browser. Changes to the class library
made external to a browser (e.g., filing in
a class definition) are not automatically
visible to the browser.

edit all Displays the class categories together
with the classes in each category in the
text pane. The list may be edited to
change the class categories or the order in
which categories are displayed. Changes
must be accepted into the system.

find class Used to locate a class in a browser.
A prompter window requests the name of
the class. If a pattern string is provided,
all classes matching the pattern string, if
any, are displayed in a list menu.

yellow button menu commands for the class names pane

print out Creates a file in ‘pretty print for-
mat’ containing a description of the
classes in the selected class category; the
file name is system dependent; the file
created cannot be filed back in. In some
systems printout and file out are syno-
nymous.

Chapter 4 Programming with Browsers

file out Creates a file in ‘file out format’ con-
taining a description of the selected class.
This file has the name ‘className.st’ and
can be later filed back into the system.

spawn Opens a class browser on the sclected
class.

143

spawn hierarchy Opens a class hierarchy
browser on the selected class.

hierarchy Displays the superclass/subclass
hierarchy of the sclected class in the text
pane. Depending on the instance-class
switch setting, displays either a class or a
metaclass hierarchy.

definition Displays the definition of the
selected class in the text pane. Depending
on the instance-class switch setting,
displays either the class or metaclass
definition. The definition may be edited
and accepted into the system.

comment Displays the comment associated
with the selected class in the text pane.
Depending on the instance-class switch
setting, displays either the class or
metaclass comment. The comment may be
edited and accepted into the system.

protocols Displays the entire message proto-
col associated with the selected class in
the text pane. Depending on the instance-
class switch setting, displays either the
instance or class protocol. It may be
edited and accepted into the system.

inst var refs Displays a menu of the instance
variables of the selected class and its
superclasses. Selecting from the menu
opens a message-set browser on all
methods in the system that refer to the
selected instance variable.

class var refs Displays a menu of the class
variables of the selected class and its
superclasses. Selecting from the menu
opens a message-set browser on all
methods in the system that refer to the
selected class variable.

class refs Opens a message-set browser on all
methods in the system that refer to the se-
lected class.

find method Used to locate a method in a
class. A list menu of the messages
implemented by the currently selected
class is displayed, allowing the user to
select the method to be viewed.

rename Renames a selected class. Generates a
prompter window that requests the new
class name. Opens a message-set browser
on all methods that refer to the class,
enabling all such references to be manu-
ally changed to the new name.

remove Removes a selected class from the
system. A notifier window appears if the
class to be removed has subclasses. Close
the notifier window to abort the remove or
select proceed from the yellow button
menu to continue.

yellow button menu commands for the message categories pane

print out Creates a file in ‘pretty print for-
mat’ containing a description of the
classes in the selected class category; the
file name is system dependent; the file
created cannot be filed back in. In some
systems printout and file out are syno-
nymous.

file out Creates a file in ‘file out format’ con-
taining a description of the methods in the
selected class category. The name
‘className.messageCategoryName.st” is
given to this file — it can subsequently be
filed back into the system.

spawn Opens a message category browser on
the selected message category.

add protocol Adds a new message category
to the sclected class. A prompter window
requests the name of the new category. The
category is inserted before the selected
message category or at the end of the list
if no category is currently selected.
Typically, message category mnames
consist of a series of lowercase words.

rename Changes a selected message category
name. Generates a prompter window that
requests the new name.

remove Removes a selected message category
from the system. If any methods are to be
deleted as a result, a confirmer appears to
request confirmation.

yellow button menu commands for the message selectors pane

senders Opens a message-set browser on all
methods in the system that send the
sclected message.

144

spawn Opens a message browser on the
selected message.

Inside Smalltalk

file out Creates a file in ‘file out format’ con-
taining a description of the selected
method. This file has the name
‘className.messageSelector.st’ and can be
subsequently filed back into the system.

print out Creates a file in ‘pretty print for-
mat’ containing a description of the
classes in the selected class category; the
file name is system dependent; the file
created cannot be filed back in. In some
systems printout and file out are syno-
nymous.

implementors Opens a message-set browser
on all methods in the system that
implement the selected message.

L.

messages Displays a menu of the message se-
lectors used in the currently selected
method. Selecting from the menu opens a
message-set browser on all implementors
of the selected message selector.

move Moves a selected message from one
category to another. A prompter requests
the new destination either in the form
‘className>categoryName’ or ‘category-
Name’ if in the same class. A new
category name is added if it does not
already exist.

remove Removes a selected message from the
system. A confirmer requests confirmation.

yellow button menu commands for the text pane

undo An editing operation reversing the ef-
fects of the last edit command; e.g., undo
can be used after a cut to paste back the
deleted text or after a paste to delete the
pasted text and restore the original, if any.

again An editing operation that repeats the
last replace, copy, or cut operation.
Can be used after a replace to repeat the
replace operation on the next occurrence
of the text that was changed. Selecting
again with the shift key depressed
replaces all occurrences of the text with
the replacement text; again can be used
after a cut or copy operation to find and
select the next occurrence of the text to be
cut or copied.

paste Pastes a copy of the text from the most
recent cut or copy operation so that it
replaces the selected text in the active
window. If there was no selected text, the
copy is inserted after the current insertion
point. Paste operations may be repeated to
paste the same text into a document more
than once.

cut Deletes the currently selected text.

copy Makes a copy of (or remembers) the cur-
rently selected text.

do it Evaluates the currently selected text.

print it Evaluates the currently sclected text
and displays the result.

accept Accepts the text in the text pane into
the system. Used to compile method def-
initions and class definitions, to introduce
class and message category rcorganiza-
tions, and to modify class comments.

cancel Restores the text in the window to its
original state or the state immediately
after the last accept.

format Formats the code in the text pane to a
standard Smalltalk style. The text must not
have been edited since the last accept.

spawn Opens a message browser on the
selected method.

explain Displays an explanation of any
selected variable name or selector such as

‘X', ‘sum’, ‘+’, ‘atiput:’ or ‘Smalltalk’.

file list browsers - file list pattern yellow button menu commands

again, undo, copy, cut, paste Standard text
cditing commands.

accept Saves the current file list pattern and
displays any files matching the list
pattern in the files/dircctories names pane.

cancel Restores the file list pattern to its
state as of the last previous save.

Chapter 4 Programming with Browsers

volumes In systems with multiple disk
volumes, displays a list menu of available
volumes. Selecting a volume makes that
volume the default volume for subsequent
file selections.

145

file list browsers - file/directory yellow button menu commands

copy name Makes a copy of the text of the
file or directory name so that it may be
subsequently pasted.

file in Reads and evaluates the contents of the
selected text file. The text must be in the
standard format for filing in. Note that the
contents of the external file is filed in
rather than the contents of the file con-
tents pane in the browser.

get contents Reads the contents of the se-
lected external file into the file contents
pane of the file list browser. No
evaluation of the text takes place.

get info Lists information relating to the se-
lected file in the file contents pane of the
file list browser. Typical information
listed includes the size of the file and
when the file was created and last
modified.

new pattern Copies the currently selected
directory into the topmost pane so that all
the files in the selected directory will be
shown when the new pattern is accepted.

rename Changes the name of the selected
file. Respond to the resulting prompter by
typing in the new name of the file.

remove Deletes the selected file. This opera-
tion requires confirmation.

spawn Opens a new file browser on the
currently selected file. If the file is a
directory rather than a text file, a new file
browser opens and displays the files in the
directory in the file contents pane of the
browser.

file list browsers - file contents or directory list yellow button menu

commands

again, undo, copy, cut, paste Standard text
editing commands.

do it, print it, inspect Standard evaluation
and inspection commands.

file it in Files in (i.e., reads and evaluates) the
sclected text into the Smalltalk system.

put Replaces the contents of the external file
with the current contents of the file
contents pane.

146

get Replaces the contents of the file contents
pane with the contents of the currently se-
lected text file.

spawn Opens a new file list browser on the
contents of the file contents pane. The
new browser reflects any changes made to
the original since it was opened. The
original browser remains open but any
changes that have been made are cancelled.

Inside Smalltalk

5

Debugging with
Inspectors, Notifiers, and
Debuggers

5.1 INTRODUCTION

In this chapter, we consider how the Smalltalk programmer can use the Smalltalk
environment to detect and correct run-time errors. In general, there is no need to understand
the intricate details of the Smalltalk run-time system to appreciate and effectively use its
debugging and development tools. Nevertheless, we can better appreciate the tools if we
understand that Smalltalk owes much of its power and integrated nature to the cohesiveness
of its underlying object-oriented philosophy.

If something can be manipulated, Smalltalk endeavors to treat it as an object. Hence
Smalltalk supports objects like collections and forms that can be potentially very large all
the way down to very small objects like integers and characters. In keeping with this
philosophy, compilers and debuggers too are objects. Indeed, even the run-time data
structures can be manipulated as objects; i.e., the environmental data structures can be sent
messages and manipulated in the normal Smalltalk fashion. This permits the compiler and
debugger, for example, to be implemented directly in Smalltalk. Programmers and designers
directly benefit from the features and facilities provided by the Smalltalk environment.

In this chapter, we discuss the intricate details associated with debugging. Six aspects
are isolated and discussed.

* Viewing and modifying the internal state (instance variables) of an object.
¢ Identifying the point in a computation where an error occurred.

* Setting breakpoints to interrupt a computation at a user-sclected point.

¢ Incrementally stepping through a computation.

* Viewing and modifying the state of an interrupted computation.

* Restarting an interrupted computation.

147

Inspectors, notifiers, and debuggers are the main software development tools for
debugging in the Smalltalk environment.

Inspector A window through which the internal state of an object can
be viewed and modified.
Notifier A window generated when a run-time error or user-generated

interrupt occurs. The window displays the state of the
computation at the point of interruption and indicates the
cause of the interruption; e.g., a message not being
understood by its receiver.

Debugger A window in which detailed debugging of an interrupted
computation takes place. Debuggers incorporate the
functionality of both inspectors and notifiers and provide
facilities for viewing the state of a computation: for single
stepping through a computation, for modifying methods to
correct errors, and for resuming a suspended computation.

It is important to note that the techniques described in this chapter are not only
applicable to the debugging process but also can be used to determine how existing code
actually works. This is particularly important in an environment where so much emphasis is
placed on the reusability of code.

5.2 INSPECTING OBJECTS

An inspector window allows the internal state of an object to be viewed and modificd. For
example, inspectors allow a Smalltalk programmer to examine and modify the current
values of the instance variables of an object. In addition, the object and its components may
be interrogated by sending messages to them or evaluating expressions involving them.

An inspector window can be created on any object simply by sending it the message
inspect. For example, suppose we evaluate the following code fragment in a workspace:

| location |
location « {200 @ 300).
location inspect.

The response to an inspect message is a request to frame a window for the inspector.
An inspector window (see Fig. 5.1) is then generated on the object location. Inspector
windows are always labelled with the name of the class of the object being inspected, in this
case class Point. Structurally, an inspector window is divided into two panes (see Fig. 5.2):
a variable pane and a value pane. The variable pane contains a menu list of the instance
variables of the object. The contents of the value pane are dependent on the selection made
from the list of variables in the variable pane. Selecting a variable name {rom the variable
pane causes the current value of that variable to be displayed in the value pane. The value
pane is a text pane in which expressions may be entered, edited, and evaluated. The value
panc may also be used to modify the values of instance variables of an inspected object.
Inspectors take us inside the object in the sense that any expression we evaluate can reference
the object and its instance variables directly; i.e., they allow the programmer to override the

148 Inside Smalltalk

normal requirement that the representation of an object can only be accessed and/or modificd
using the message protocol supported by the object. Typical yellow button menus associated
with the variable and value pancs are shown in Fig. 5.2. Note that the inspect entry in the
variable pane menu is only available if a variable is selected.

| |location|
location ¢ (200@300).
location inspect.

Figure 5.1 Inspector Window on ‘location’.

Paoint

again
undo
copy
cut
paste
do it
print it
inspect
accept
cancel

o

RS

S

Variable
Pane Value Pane

Figure 5.2 Structure of an Inspector Window.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 149

5.2.1 Inspecting the Instance Variables of an Object

Instances of class Point, such as the point bound to location, have two instance variables,
x and y, representing the x and y coordinates of the point. The variable pane therefore
contains menu entries labelled x and y. In addition, the first entry in the variable pane of any
inspector is self, an entry that allows reference to the object being inspected. In general, the
variable pane will contain a complete list of the instance variables of the object, including
those inherited from superclasses. In Fig. 5.1, the entry y is selected in the variable pane;
the value of y, i.e., 300, is displayed in the value pane. Selecting x would display 200.
Selecting self would display 200@300, representing the point (200,300).

The string to be displayed as the value of a variable is computed internally by sending
the message printString to the variable. By default, printString simply prints the name of
the class to which the object bound to the variable belongs. Many classes provide more
specialized printed representations. Integers print as a character string of their digits (e.g.,
123), characters print as a dollar sign followed by the character (e.g., $a), strings print as
their constituent characters surrounded by single quotes (e.g., 'a string'), and so on. Other
classes, such as Point or Dictionary, have even more specialized printed representations
(e.g., 200@300, Dictionary ('hi" => 'bye' 'white’' => 'black’)).

5.2.2 Modifying the Values of the Instance Variables of
an Object

The value of any instance variable in an inspected object can be modified by sclecting the
variable to be changed in the variable pane and then typing an expression into the value
pane. Selecting accept from the value pane's yellow button menu evaluates the expression
and binds the result to the selected instance variable. The new value of the instance variable
is displayed in the value pane.

Suppose we wished to change the x coordinate of location to 100. Selecting x in the
variable pane displays the current value of the x coordinate (200) in the value pane. Edit this
to read 100 and accept the changed value. Selecting self in the value pane will confirm that
the new value of location is 100@300.

Expressions in the variable pane may directly reference any instance variable of an
inspected object. In addition, they may also use pseudo-variables self and super to refer to
the object being inspected. For example, an alternative method of modifying the x-coordinate
to 100 would be to accept the expression, self x - 100, or even more simply, x - 100, as the
new value for x. Note that the value for self cannot be modified by selecting self in the
variable pane and accepting an expression in the variable pane — only instance variables
may be modified; self and super are pseudo-variables. Pseudo-variables can never be targets
of assignment statements.

5.2.3 Evaluating Expressions within an Inspector
Any expression may be typed into the value pane, selected, and evaluated using do it or
print it from the value pane's yellow button menu. Evaluation of the expression is done in

the context of the inspected object. The instance variables of the object, together with the
pseudo-variables self and super, may be directly referenced within any expression.

150 Inside Smalltalk

Another method of modifying the point location from 200@300 to 100@300 would
be to evaluate the expression

self x: (x - 100)

in the value pane. The selector x: anArgument defined on points changes the x coordinate of
the receiver to anArgument. Select self in the variable pane to confirm that location has
been modified correctly.

5.2.4 Inspecting the Instance Variables of an Inspected
Object

Sometimes it is necessary to inspect the instance variables of an inspected object. In general,
we wish to be able to inspect an object to any level of detail by creating additional
inspectors. For example, when inspecting an array object, we might wish to create an
inspector on some individual element of the array. An inspector can be created on any
selected instance variable within an inspector by selecting inspect from the variable pane's
yellow button menu.

For example, suppose we evaluate the following code in a workspace:

| triangle |

triangle « Array new: 3.

triangle
at: 1 put: 100@140;
at: 2 put: 300@250;
at: 3 put: 300@15;
inspect

An inspector is created on the array of three points named triangle (see the leftmost
inspector in Fig. 5.3). The array has three indexed instance variables that are referenced by
indices 1, 2, and 3 in the variable pane of the inspector. Selecting 3 from the list in the
variable pane displays the value stored at position 3 in the array, namely, the point
300@15. If we now select inspect from the variable pane's yellow button menu, an
inspector is created on the currently selected instance variable (see the rightmost inspector in
Fig. 5.3). We can now examine the instance variables of the third point in the array.
Selecting x from the variable pane displays the x coordinate of this point, 300.

Note that if we modify the values of the instance variables of the point within the
point inspector, the change in value will also be reflected in the inspector on the array.

Inspect the object created by evaluating each of the following expressions. For
each, inspect and modify the instance variables of the object, evaluate
expressions involving the inspected object, and open inspectors on the instance
variables (if appropriate).

Pen new inspect

(7/2) inspect

Date today inspect

Rectangle fromUser inspect

(PopUpMenu labels: 'doit printit exit' lines: 2) inspect

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 151

NIRRT RS

Figure 5.3 Nested Inspector Windows.

What happens if you try to activate the yellow button menu of the variable pane
when no variable has yet been selected?

5.2.5 Inspecting Dictionaries

It is sometimes convenient to create special inspectors for browsing certain kinds of objects.
Several specialized inspectors are already present in the Smalltalk environment. We will
limit discussion to dictionary inspectors. Dictionaries in Smalltalk are sets of key-value
associations. The user of an inspector on dictionaries should be able to browse through the
key-value associations; i.e., select a key and see the corresponding value in the value pane.
Dictionary inspectors provide this capability and, in addition, allow values to be modified
and entries (key-value associations) to be added to and removed from the dictionary.

Suppose we create a simple telephone directory, add a few entries, and then inspect it.

| telephoneNumbers |
telephoneNumbers « Dictionary new.
telephoneNumbers

at: #John put: '564-7548";

at: #Dave put: '564-7545';

at: #Wilf put: '564-6301";

inspect.

The resulting dictionary inspector is shown in Fig. 5.4. Dictionary inspectors are
structurally identical to normal inspectors. However, rather than a list of instance variables,
the variable pane contains the names of the keys for which there are entries in the dictionary.
Sclecting a key displays the value associated with that key in the value pane. In Fig. 5.4,
key Wilf is selected and his telephone number, 564-6301, is displayed.

The yellow button menu associated with the variable (or key list) pane of a dictionary
inspector (seec Fig. 5.5) has entries that are different from those provided by a regular
inspector. In addition to menu entry inspect, new menu entrics references, add field, and

152 Inside Smalltalk

[2

remove are also provided. The full menu list appears only if a key is selected from the list
of keys in the variable pane. If not, only add field appears in the menu. A selected key is an
implicit argument required by inspect, references, and remove.

[telephoneMumbers|

telephoneNumbers ¢ Dictionary new.
telephoneMumbers

at: #John put: 564-7548%
at: #Dave put: ’564-7545%;
at: #Wilf put: *564-63017%

inspect. IR
pe Dictionary

Figure 5.4 A Dictionary Inspector.

Dictionary

’:564-5301’

inspect
references
add field
remove

Figure 5.5 Organization of a Dictionary Inspector Window.

Chapter 5

a:5!:3'!'&-!:1301’

again
undo

copy
cut

paste

do it
print it
inspact

accept

cancel

Debugging with Inspectors, Notifiers, and Debuggers

153

inspect Opens an inspector on the object (value) associated with the

selected key.

references Creates a message-set browser on all references to the
selected key.

add field Adds a new entry to a dictionary. A prompter window will

appear and request the name of the key to be added. An entry
will then be added to the dictionary with associated value
nil. If desired, another value can be associated with the key
by entering the value in the value pane and selecting
accept.

remove Removes the key selected in the key list pane. A confirmer
will appear to request confirmation that this undoable
operation should be carried out.

Why is a specialized inspector for dictionaries desirable? What if we had simply created
a normal inspector on the dictionary? To create a regular inspector on the dictionary
telephoneNumbers, evaluate the expression super inspect in the variable pane of the
inspector (see Fig. 5.6). Using super instead of self will cause the search for the inspect
method to start in the superclass of Dictionary — recall that the class for telephone-
Numbers is Dictionary. The effect of this will be to invoke the inspect method for normal
inspectors defined in class Object rather than the inspect method in class Dictionary.

super inspect

John-3>’564-7548°

Figure 5.6 A normal Inspector opened on a dictionary.

154 Inside Smalltalk

The inspector on telephoneNumbers is shown in Fig. 5.6. Notice that the variable
pane now contains the indices of the indexed instance variables rather than the keys. This
view of the dictionary emphasizes the fact that a dictionary is an array of associations.
Clearly, this is a physical view of the dictionary, appropriate for an implementor, but not
the logical view required by the user. To a user, integer indices are meaningless in general.
For example, the association with key John (see Fig. 5.6) is referenced through index 5!
The instance variable, tally, keeps track of the number of entries in the array that are in use;
i.e., those entries consisting of key-value associations (as opposed to nil).

Evaluate the expression: Dictionary new inspect. Within the resulting inspec-
tor, gain experience adding, setting the value of, and removing entries.

What happens if you try to add a new field with a duplicate key?
What happens if you select accept when no key is selected?

Inspect Smalltalk — a system dictionary.

5.3 ERROR NOTIFICATION WITH NOTIFIERS

When an error is discovered during the evaluation of a Smalltalk expression, a notifier
window is automatically displayed. The label of the notifier (see Fig. 5.7) displays a
message indicating the cause of the interruption. The notifier window displays the sequence

of messages that led up to the point of interruption; i.c., those messages that have been sent
but for which no response has yet been generated.

lessage not understooad:

UndefinedObject{Cbject)>>doesMotUnderstand:
Smallinteger{Iinteger)>>isPrime

UndefinedObject>>Dolt
Compiler>>evaluateiinitoinotifying:ifFail:
4 CodeController>>dolt

Figure 5.7 Notifier Window.

5.3.1 Interpreting Notifier Windows

The notifier in Fig. 5.7 was generated in response to evaluating the expression 53 isPrime
in a user workspace. Two errors have been deliberately inscrted into the method. At the time
of evaluation, the isPrime method on integers was defined as follows:

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 155

isPritme
“Tests whether the receiver is prime or not.”
| divisor |
self <= 0 ifTrue: [Tfalsel.
(self >= 1 & self <= 3) ifTrue: [Ttruel,
self \ 2 = 0 ifTrue: [Tfalsel.
divisor « 3.
[divisor * divisor < self] whileTrue: [
self \ divisor = 0

ifTrue: [Tfalsel

ifFalse: [divisor « divisor + 2]l
Ttrue

The label of the notifier indicates that the interruption was caused by a message with
selector * being sent and not understood by its receiver. Although many different errors may
occur at run-time, by far the most common error is that of a message not being understood
by its receiver.

The notifier window helps identify the point at which the error occurred by listing the
last few messages that were sent but not completed prior to the error interrupt. The list of
entrics represents the activation stack of the interrupted computation. The first entry
represents the last message that was sent before the interruption, the second entry is the
previous message, and so on. Each entry is said to represent a single message send and has
one of the following two forms:

ClassOfReceiver>>MessageSelector
ClassOfReceiver{ClassOfMethodSelected)>>MessageSelector

Each entry lists the selector of the message that was sent and the class of the receiver
of the message. If a class is listed in parentheses after the class of the receiver, it indicates
the class where the associated method was found; i.e., the result of looking for the method in
the superclass chain. This class is not listed if the method is found in the class of the
receiver. For example, if we examine the entries shown in the notifier window in Fig. 5.7,
we see that the last three entries are concerned with the compilation and request for
evaluation (do it) of the expression 53 isPrime. These entries are of little interest. The
second entry

Smallinteger{integer)>>isPrime

describes the sending of the message isPrime to the receiver §3, an object of class
Smalllnteger (a subclass of class Integer). The class Integer appears in parentheses
because the isPrime method was found in class Integer.

Together with the error message, Message not understood: *, the first message-send
entry

UndefinedObject(Object)>>doesNotUnderstand
indicates that a message with * as the selector was sent to a receiver of class
UndefinedObject. No method with selector * was found in class UndefinedObject or in

its superclass Object. Any message that is not understood by any class in the superclass
chain of the receiver will eventually be sent to class Object. This class automatically sends

156 Inside Smalltaik

R |

a doesNotUnderstand: aSelector message to the original receiver. If the class of the
receiver and its superclasses do not implement a doesNotUnderstand message themselves,
then the doesNotUnderstand will again reach class Object. In this case, a notifier is
generated with a label of the form Message not understood: MessageSelector. This
scheme provides a simple default error handling mechanism, while still allowing the user to
provide more specialized error handlers by implementing a doesNotUnderstand message
to override the inheritance of the default handler.

In this example, the notifier has provided enough clues to discover the cause of the
error. The only time a message with selector * is sent in the isPrime method is in the
expression divisor * divisor. However, the notifier indicates that the message was sent to
an object of class UndefinedObject. We would have expected the receiver, divisor, to refer
to an object of class Integer (or some subclass such as SmallInteger). However, notice
that no object was bound explicitly to divisor; i.e., the variable divisor is an uninitialized
variable. All Smalltalk variables are initially bound to the object nil, an object of class
UndefinedObject. To correct the error, an initialization statement such as divisor « 3
should be inserted into the method definition.

5.3.2 Continuing After an Error Notification
Fig. 5.8 shows the entries in the yellow button menu of a notifier window. The
programmer can either select one of them or none.

essage not understoond

UndefinedObject{Object)>>doesNotUnderstand:
Smalllnteger(Integer)>>isPrime

1 Compiler| tesinitoinotifying:ifFail:
] CodeCon{82rrectholt

Figure 5.8 Notifier Yellow Button Menu.

After a notifier window has been generated, four separate scenarios are possible. We
describe each of them in turn.

¢ If the cause of the error was discovered:

close Close the notifier by selecting close in the notifier's blue
button menu. This has the effect of terminating the
interrupted computation. The programmer may edit the
method to correct the bug using a browser and try again.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 157

¢ If no problem was discovered, then execution can be continued:

proceed Select proceed from the notifier's yellow button menu.
The effect is to continue the evaluation from the point of
suspension. This action is most useful after an interrupt
explicitly caused by the programmer; i.e., a user-generated
interrupt (see the next section).

* If the probable cause is the misspelling of a message selector:

correct Select correct from the notifier's yellow button menu.
This invokes the spelling corrector that attempts to correct
the misspelled selector. The system will try to find an
alternative message selector with a spelling similar to the
original.

* If a bug exists and the cause was not discovered:

debug This is the most common case. Select debug from the
notifier's yellow button menu to generate a debugger — a
window that allows more detailed debugging.

Evaluate each of the following expressions and attempt to identify the error that
generates the notifier:

27 /(33//3)

Boolean new

1to: 5 do: [ii ;j | Transcript show: i; cr]

Collection new

(Pen new) dragoon: 10) "note the deliberate misspelling”
32 mod: 2 ifTrue: {Transcript show: ‘divides by two’; ¢r]

5.3.3 User-Generated Notifiers

There are times when a programmer may wish to deliberately cause an error interrupt. Three
situations are common: interrupting a nonterminating computation, setting a breakpoint, and
handling exceptional conditions.

5.3.4 Interrupting a Nonterminating Computation

A Smalltalk computation may be interrupted at any time by depressing the control and ¢
keys simultaneously. This generates a notifier window with the label User Interrupt. This
is most useful when a programmer suspects that a computation will not terminate. For
example, the code may contain an infinite loop or infinite recursion may be taking place.

Generate a user interrupt while a long running computation such as
“1000 factorial” is taking place.

5.3.5 Setting a Breakpoint
When debugging a Smalltalk program, it is often useful to be able to halt a computation at a

specific point, a breakpoint. The idea is to let the computation proceed normally until it
reaches a point at which the programmer wishes to examine the progress of the computation

158 Inside Smalltalk

B]

more carefully. When the breakpoint is reached, the computation is interrupted and a notifier
is generated that can then be used to open a debugger window to allow more detailed
debugging.

To set a breakpoint, insert the expression self halt at the point in the code where the
computation should be interrupted. A notifier with the 1abel Halt encountered will appear
when this expression is evaluated. Alternatively, the expression self halt: 'messageString’
can be inserted. This has exactly the same effect as self halt except that the label of the
notifier is the string messageString.

5.3.6 Handling Exceptional Conditions

It is good programming practice to notify the user of any unexpected or exceptional
condition that occurs during evaluation of code. For example, if we were processing a list
and we tried to return the first element of an empty list, the programmer should be notified
in some way that this has happened. The simplest way of achieving this in Smalltalk is to
include in the code an expression of the form self error: 'error message'. In the case of our
list example, an expression of the form self error: ‘attempting to return the first
element of an empty list' would be appropriate. When an error: message is received, a
notifier is opened with the error message as the label of the notifier. The computation is
interrupted at the point at which the exceptional condition occurred, allowing the
programmer to interrogate the cause of the condition by opening a debugger window. The
error: protocol is inherited by most objects from class Object. Programmers may override
the standard error handler to provide a more specialized handler if they wish.

Another method of warning the user of some exceptional condition is to use an
expression of the form self notify: 'warning message'. This method is most often used to
request confirmation that a computation can proceed. The notifier generated has the string
‘Notifier' as its label and the warning message string in the message-send list pane. For
example, the notifier in Fig. 5.9 was generated by evaluating the expression

4 notify: 'confirmation message’

The computation can be continued by selecting proceed from the yellow button menu, or a
debugger can be opened by selecting debug.

confirmation message

Figure 5.9 Notifier generated by the ‘notify:’ message.

Unless you want the option of opening a debugger, a confirmer is often better than a
notifier as a method of requesting confirmation from the user. The confirmer in Fig. 5.10
was generated by evaluating the expression

4 confirm: 'warning message - continue evaluation?’

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 159

warning message - continue evaluation

yes é no

Figure 5.10 Confirmer generated by the ‘confirm:’ message.

Depending on the response to the confirmer window, true or false is returned as the result of
sending the confirm: message.

Find out how pervasive the use of the standard error-handling mechanism is
within the system. Open a message-set browser on senders of the error:
message.

How does Smalltalk implement the shouldNotImplement and subclass-
Responsibility messages in class Object?

Are there classes of objects that override the standard error-handling mechanism?

5.4 DEBUGGERS

Debuggers are Smalltalk windows in which detailed debugging of an interrupted computation
takes place. Debuggers incorporate the functionality of inspectors and notifiers and, in
addition, provide facilities for viewing the state of a computation, single stepping,
modifying methods to correct errors, and resuming a suspended computation.

5.4.1 Viewing an Interrupted Computation with a
Debugger

Debugger windows are created from a notifier window by selecting debug from the notifier
yellow button menu. A debugger window consists of six panes (see Figs. 5.11 and 5.12).

The top two panes resemble a message-set browser. The top pane (the message-send
list pane) contains the activation stack of message-sends from the interrupted computation.
These are the same message-sends from the notifier window except that a debugger shows
more of the partially completed message-sends. Also, unlike in a notifier window, the
message-sends in the top pane are selectable — selecting a particular message-send
determines what can be vicwed in the remaining five panes. When a message-send is selected,
the source code for the method invoked by that message-send is displayed in the lower of the
top two panes (the method text pane). Within the body of the source code, the message
that caused the notifier 10 be generated is highlighted.

The bottom four panes are really two inspector windows. The leftmost two panes are
the variable and value panes of an inspector (the receiver inspector) on the receiver of the
message-send currently selected in the message-send list pane. The rightmost two panes are
the variable and value panes of an inspector (the method context inspector) on the
context or environment of the method invoked by the currently selected message-send. This
inspector can be used to inspect the values of variables local to a method.

160 Inside Smalltalk

UndefinedObject{Object)>>doesNotUnderstand:
Smallinteger{integer)>>isPrime

A

Figure 5.11 A Decbugger Window.

Debugger Label

Message-Send List Pane

again
undo

R 5
full stack
proceed
restart
senders

messages

Method Text Pane

Receiver Inspector

Copy
cut

paste

step
sand

do it
print it
inspect

accept
cancel

format
spawn
axplain

Method Context
Inspector

Value

Variable

Value

Figure 5.12 The structure of a Debugger Window and its Yellow Bution Menus.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers

161

By selecting different entries from the message-send list pane, the programmer can
follow the trail of interrupted message-sends and for each message-send can access the context
in which the message was sent.

As an illustration of the use of debugger windows, consider the following definition of
a method isPrime that is to be used to test whether an integer is prime or not. The method
contains two deliberate errors.
wPri
*Tests whether the receiver is prime or not."
| divisor |
self <= 0 ifTrue: [Tfalse).
(self >= 1 & self <= 3) ifTrue: [Ttruel.
self \\ 2 = 0 ifTrue: [Tfalsel.
[divisor * divisor < self] whileTrue: |
self \ divisor =0
ifTrue: [Tfalse]
ifFalse: [divisor « divisor + 2]].
Ttrue

Evaluating the expression 53 isPrime from a workspace generated the notifier window
shown in Fig. 5.7. Selecting debug from the notifier menu generated the debug window
shown in Fig. 5.11.

Initially, no message-send is selected from the message-send list pane. At this time
the message-send pane's yellow button menu contains only two items, full stack and
proceed.

full stack Allows the complete set of partially completed message-sends to be viewed
in the message-send list pane. Otherwise only the last nine message-sends
may be displayed. In version 2.5, full stack has been replaced by more
stack, which doubles the number of items in the viewable stack.

proceed Allows computation to proceed from the point of interruption.
Computation restarts as if the highlighted message in the method text pane
had just been completed. The result of sending the highlighted message is
taken to be the result of the last expression evaluated in the method text
pane or nil if no expression has been evaluated. Proceeding with a
computation closes the debugger.

Selecting the second message-send (see Fig. 5.13) brings method isPrime defined in
class Integer into view in the method text pane. Moreover, the point in the code at which
the interruption occurred is highlighted — in this case, the expression * divisor. Sending
this message to receiver divisor gave rise to the message not understood: * notificr.

The receiver inspector allows receiver 53 of the selected message-send isPrime to be
viewed. Selecting self in the variable pane displays 53 in the value pane. The method
context inspector allows the context or temporary variables of the method isPrime to be
viewed. The context of a method includes all arguments to the method and also temporary
variables. In this case, the method isPrime has only one temporary variable divisor.
Selecting it displays its value, nil, in the value pane. As discovered earlicr, divisor was not
explicitly initialized to an integer value and hence was bound to the object nil. The receiver
of thc message * divisor was therefore the object nil (the only instance of class
UndefinedObject) — hence the error.

162 Inside Smalltalk

i ‘ i)

Message not understood:

UndefinedObject{Object)>>doesNotUnderstand:
mallinteger(integer)>>isPrime

isPrime
"tests whether the receiver is prime or not"
| divisor |
self <= 0 ifTrue: [tfalse].
{self >= 1 & self <= 3) ifTrue: [ttrue).
self \\ 2 = 0 ifTrue: [+false].
[divisor RETIYY < self] whileTrue:
[self \\ divisor = 0
ifTrue: [tfalse]

Figure 5.13 A Debugger Window illustrating the error point.
5.4.2 Error Correction within a Debugger

It is usually not necessary to leave the debugger to correct errors that have been discovered.
In most cases, it is possible to make the error correction and restart or complete the
computation within the debugger itself. Eliminating the need to switch to a browser just to
fix up simple and obvious problems speeds up both debugging and development time. This
is one reason the debugger provides the majority of the browser facilities.

In general, the debugger supports several kinds of activities each useful in its own
way. These activities include the following:

* Modifying the Receiver or the Context of a Method.

The inspectors on the receiver and method contexts can be used to modify the
instance variables of the receiver or the local variables of an interrupted method.

» Evaluating Expressions.

Expressions may be evaluated within a debugger in the context of the currently
selected message-send. Such expressions may be evaluated in the method text pane
or the value pane of either inspector. Expressions are evaluated in the current
context. This context is defined by the current state of the receiver (i.e., values of
the instance variables) and the current state of the method (i.e., value of
temporaries and arguments).

Chapter 5 Debugging with inspectors, Notifiers, and Debuggers 163

» Supplying a Result for an Interrupted Message-Send and Proceeding.

A result can be supplied for an interrupted message-send and the computation
continued using that value. When proceed is selected from the message-send pane
menu, computation restarts as if the highlighted message in the method text pane
had just been completed. The result of sending the highlighted message is taken to
be the result of the last expression evaluated in the method text pane or nil if no
expression has been evaluated. Proceeding with a computation closes the
debugger.

» Accepting a Modified Method Definition.

The code for an interrupted method may be edited in the method text pane of a
debugger and the modified method compiled using accept. Subsequent evaluations
of the method will use the modified method. When a method is recompiled within
a debugger, the method becomes the top of the message-send stack. Note also that
the modifications to the method will not immediately show up in any open
browsers on that method. Temporarily viewing some other method and then
switching back will provide the latest version. Alternatively, select update in the
browser to view the modified definition.

» Restarting a Computation from a Selected Point.

After any of the above debugging operations, a computation can be restarted from
some suitable point. Sclecting restart from the message-send pane menu has the
effect of resending the message currently selected in the message-send pane. Thus,
a computation can be restarted by resending any of the messages in the message-
send stack. Restarting a computation closes the debugger.

* Creating Message-set Browsers.

When debugging a Smalltalk method, the capability to browse the methods used,
to browse the implementation of a selected method, or to browse the
implementation of messages sent in the currently selected method are important
aids to both understanding how a method works and to discovering errors. To
assist in the debugging process, message-set browsers can be created directly from
within a debugger window using the senders, implementors, and messages entrics
in the message-send list pane menu. For a full discussion of the use of message-
set browsers, refer to Section 4.6.3 in Chapter 4.

Consider the debugger of Fig. 5.12 generated by evaluating the expression 53
isPrime. Recall the first problem discovered — temporary variable divisor was not
initialized. One way of correcting the problem without leaving the debugger would be 10
modify the context of the method isPrime so that the value of the temporary variable
divisor is 3 instead of nil and then restart the computation. To modily divisor, sclect it in
the variable pane of the method context inspector. The current value nil is displayed in the
value pane. Now, replace nil by 3 and choose accept from the value pane's yellow button
menu. The interrupted computation can then be restarted by selecting restart from the
message-send pane yellow button menu. Selecting restart closcs the debugger and
continues evaluation from the start of the currently selected method. In this case, method
isPrime is re-cvaluated in the modificd context. Remember, however, that we have not

164 Inside Smalltalk

[

modified the definition of the method isPrime. The same error will occur if we subsequently
use isPrime again.

A more appropriate way of debugging the isPrime method is to correct the definition
of the method within the debugger. Insert the missing initialization statement, divisor « 3,
into the method and accept the changed definition. Once the changed method is compiled,
the currently selected message-send becomes the top of the message-send stack (see
Fig. 5.14). In addition, the first message-send in the modified method is highlighted. This is
the point at which evaluation should restart. Interrupted message-sends above the selected
message-send are discarded since they are no longer relevant. When the computation is
restarted with the modified method, new and different message-sends will result. To restart
the computation, select restart from the message-send menu. Note that any changed
method definition will not immediately appear in browsers that were open at the time the
method was modified — select update in the browser to view the modified definition.

fMessage not understood:

Smalilnteger{integer’iz>isFrime
UndefinedObject>>Dolt
Compiler>>evaluatetinitoinotifying:iffF ail:

isPrime

“tests whether the receiver is prime or not"

| divisor
self ifTrue: [tfalse].

(self >= 1 & self <= 3) ifTrue: [ttrue].

self \\ 2 = 0 ifTrue: [tfalse].

divisor € 3,

[divisor * divisor < self] whileTrue;
[self \\ divisor = 0

divisor

Figure 5.14 Single stepping through a computation.

Sometimes it is necessary to single step through a computation within a debugger
window; i.e., to inspect the context of the receiver and the method as each message-send is
evaluated. This is particularly useful in the case where evaluation of an expression yields
erroneous results but does not generate an error notification, In this case, the usuval
debugging strategy is to choose some suitable breakpoint, insert a self halt expression at
that point to generate an interrupt, and then to examine the evaluation on a step-by-step
basis within a debugger window.

Chapter 5 Debugging with inspectors, Notifiers, and Debuggers 165

Single stepping through a computation is achieved through the step and send entries
in thc message-send menu.

step Evaluates the next message-send. The effect of the message-send can then
be determined using the inspectors on the receiver and the method context.

send Allows the method involved in the next message-send to itself be viewed
and single-stepped. It “opens up” the method associated with the next
message-send. This message-send is placed at the top of the message-send
stack and selected. The code for the method is displayed in the method text
pane and the first message-send in the method is highlighted.

To illustrate the use of step, we will search for the remaining bug in the method
isPrime. Evaluating the expression 25 isPrime returns the erroneous result true. To
determine the cause of the error, assume we insert the expression self halt after the
assignment divisor « 3 in the method for isPrime and recvaluate the expression. A halt
notifier will appear (see Fig. 5.15). Selecting debug to generate a debugger window and
choosing the isPrime message-send result in the debugger window shown in Fig. 5.16.
Evaluation of the expression is interrupted at the breakpoint. At this point, self is 25 and
divisor is 3.

Selecting step from the message-pane menu sends the highlighted message, in this
case, the message halt, to its intended receiver. The next message (* divisor) is then
highlighted (sec Fig. 5.17). Sclecting step performs the multiplication and then highlights
< self. Selecting step again not only performs the comparison (<) but also sends the
whileTrue: message to the result. The message \\ divisor within the block argument to the
whileTrue is highlighted (see Fig. 5.18), indicating that the comparison must have returned
true. As the last step operation indicated, some message-sends, notably sends to block
receivers and assignments, are performed automatically when single stepping. If we continue
single stepping, we will eventually reach the situation shown in Fig. 5.19, where the
message < self is to be sent for the second time. Notice that, at this point, the temporary
variable divisor has the value 5. Single stepping once more highlights the expression Ttrue
(see Fig. 5.20). To reach this point the whileTrue: message must have been sent to the
object false. The second error can now be seen — the method does not correctly handle the

Halt encountered,

{ Smallinteger(Object)>>halt
Smalllnteger(lnteger)>>isPrime

{ UndefinedObject>>Dolt .
Compiler>>evaluatedin:tornotifying:ifFail: §
CodeController>>dolt

Figure 5.15 A Halt Notifier initiated explicitly by the isPrime method.

166 Inside Smalltalk

| HE

RS o

Halt encountered. &

Smalllnteger(integer)>>isPrime
UndefinedObject>>Dolt
Compiler>>evaluateiinitoinotifying:ifFail:

isPrime
"tests whether the receiver is prime or not"
| divisor |
self <= 0 ifTrue: [tfalse].
(self >= 1 & self <= 3) ifTrue: [ttrue].
self \\ 2 = 0 ifTrue: [tfalse].
divisor € 3,
self QEYN
[divisor * divisor < self] whileTrue:

UndefinedObject>>Dolt
Compiler>>evaluatetinitotnotifying:ifFail:

isPrime
"tests whether the receiver is prime or not"
| divisor |
self <= 0 ifTrue: [tfalse].
(self >= 1 & self <= 3) ifTrue: [ttrue].
self \\ 2 = 0 ifTrue: [tfalse].
divisor « 3,
self halt,

[divisor < self] whileTrue:

Figure 5.17 Step 1 in determining if 25 is prime.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 167

168

evee i

UndefinedObject>>Dolt
Compiler>>evaluateiinitoinotifyinag:iffF ail:

"tests whether the receiver is prime or not"
| divisor |

self <= 0 ifTrue: [tfalse].

{self >= 1 & self <= 3) ifTrue: [ttrue].

self \\ 2 = 0 ifTrue: [+falze].

divisor « 3.

self halt,
[diviser * divisor < self] whileTrue:

E divisor B

UndefinedObiect>>Dolt
Compiler>>evaluateiinitoinotifying:ifFail:

self <= 0 ifTrue: [tfalse],
{self >= 1 & self (= 3) ifTrue: [+true].
self \\ 2 = 0 ifTrue: [tfalse].
divisor « 3,
self halt.
[divisor * divisor] whileTrue:
[self \\ divisor = 0
ifTrue: [tfalse]
ifFalse: [divisor € divisor + 2]].

DOy I

divisor A

Figure 5.19 Step 3 in determining if 25 is prime.

Inside Smalltalk

[(.

Halt encountered

SRR A AR RRAR GRS
;| Smalllnteger{Integer)>>isPrime
{ UndefinedObject>>Dolt

(self >= 1 & self <= 3) ifTrue: [ttrue].
self \\ 2 = 0 ifTrue: [t+false].
divisor « 3,
self halt,
[divisor * divisor < self] whileTrue:
[self \\ divisor = 0
ifTrue: [tfalse]
ifFalse: [divisor ¢ divisor + 2]].

divisor

Figure 5.20 Step 4 in determining if 25 is prime.

situation where divisor * divisor is equal to self. In this case, we should evaluate the block
argument to the whileTrue: message one more time; i.e., the comparison selector should be
<= rather than <.

To illustrate the use of send, we will show how debugger windows can be used not
only for debugging Smalltalk code but also for finding out how existing code in the
Smalltalk library actually works. For example, suppose we wished to implement a
specialized printString method for a new class of object that we had just defined. A good
way of determining how this might be done is to examine how printString is implemented
for an existing class of objects, for example, rectangles. Rectangles respond to printString
with a string of the form x1@y1 corner: x2@y2. The points x1@y1 and x2@y2 represent
the top left and bottom right corners of the rectangle respectively.

A convenient way of finding out how printString works for rectangles is to single
step through a sample computation. For example, suppose we defined the following
temporary class method trace in class Rectangle.

trace

"Temporary method to determine how rectangles are printed.”
| aRectangle |

aRectangle « Rectangle fromUser.

self halt.

TaRectangle printString.

“Rectangle trace”

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 169

Evaluating the expression Rectangle trace first generates a request to frame a
rectangle and then generates a user-interrupt notifier when the self halt expression is
evaluated. Opening a debugger window and selecting the message-send Rectangle
class>>trace displays the source code for the method trace in the method text pane (see
Fig. 5.21). Choosing step advances the computation to the point where the printString
message is to be sent to the example instance (aRectangle) of class rectangle (see
Fig. 5.22).

At this point, we want to sece the code for method printString. Therefore, select send
rather than step. The difference between step and send is that send evaluates the next
message-send completely while step invokes the method associated with the next message-
send. The code for this method is displayed in the method text pane and the first message-
send in the method is highlighted. After the send, the code for the method printString is
displayed in the method text pane (see Fig. 5.23) and the first message, new: 100, is high-
lighted. The message-send at the top of the stack is now Rectangle(Object)>>printString
— the actual method invoked was therefore found in class Object. This suggests that
printString is a message inherited by all objects.

We can find out if other classes implement printString by selecting implementors
from the message-send pane's yellow button menu. This confirms that only class Object
implements a printString method. Method printString creates a new write stream on a
string and adds the printed representation of the object (by sending printOn: to the object) to

SRR AR

UndefinedObject>>Dolt
Compiler>>evaluateiinitoinotifying:ifFail:
CodeController>>dolt

trace
; "method to determine how rectangles are printed"
.

. | aRectangle |

X

aRectangle « Rectangle fromUser.

é t+aRectangle printString t
"Rectangle trace” ;
§ ___________________ 69@81 corner:
409@354 :
] superclass | 0 |----------- |
] methodDict g

3 N A 3y D Ty 0 B O S e O 2 SO0 000 0300 IOHITOOOOBEOHIBAD L

Figure 5.21 At the halt statement in method trace.

170 Inside Smalltalk

[L

Halt encountered.

Rectangle class>>trace
UndefinedObject>>Dolt
Compiler>>evaluatesinitoinotifying:ifFail;
CodeController>>dolt

trace
"method to determine how rectangles are printed"
| aRectangle |
aRectangle ¢« Rectangle fromUser.
self halt.

+aRectangle

"Rectangle trace"

{ superclass
{ methodDict

Rectangle class>>trace
UndefinedObject>>Dolt

Compiler>>evaluateiinitoinotifying:ifFail:

printString

"Answer a String whose characters are a description of
the receiver.”

| aStream |

aStream ¢« WriteStream on: (String).
self printOn: aStream.

t+aStream contents

Figure 5.23 Having reached method printString.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 7

the stream. The stream's content is then returned as the result. The stream is initially created
on a string of size 16 (the character buffer) but this is automatically extended. We have
discovered that solving the original problem of implementing a specialized printString
method for a new class of object involves implementing a specialized form of printOn:
aStream method for the new class. Of course, printOn: might also be inherited by all
objects! To determine whether this is the case, step through the computation until the
printOn: aStream message is the next message to be sent (see Fig. 5.24) and then select
send to view the invoked method.

e R AR AR

Halt encountered. o

1| Rectangle Object)>>printString
| Fectangle classd>trace
4 UndefinedObject>>Dolt
Compiler>>evaluateiinito:notifying:iffF ail:

] printString
“Answer a String whosa characters are a description of
the receiver."

| aStream |
aStream ¢ WriteStream on: (String new: 16).

Ak lprinton: aStreamy

t+aStream contents

SO8Ee0n000000
o
-

(=}
=4
1
I
)

I
i
!
I
I
]
1
i

corner

!

R P R R P

AR AR

Figure 5.24 About to trace method printOn:.

The printOn: method in class Rectangle is invoked (see Fig. 5.25); i.e., class
Rectangle has a specialized version of printOn:. The comment for the method refers us to
the comment stored in the printOn: method of class Object. To view this method (without
leaving the debugger), again sclect implementors from the message-send pane's yellow
button menu. This displays a message-set browser on all printOn: methods (see
Fig. 5.26). Notice that many classes implement this method, confirming the theory that a
specialized printOn: method must be implemented for any new class we might define.
Selecting entry Object printOn: from the top message list pane displays the source for the
printOn: method in class Object (see Fig. 5.26). The default behavior for printing objects
can now be seen. If a subclass does not provide a specialized method for printing instances,
the default is to simply return a string identifying the class of the object. For example, if we

send the message printString to an instance of class Pen, the result would be the string 'a
Pen’.

172 Inside Smalltalk

Proo o

Halt encountered.

RectangleX>printOn:
Rectangle(Object)>>printString
Rectangle class>>trace
UndefinedObject>>Dolt

printOn: aStream

"Append to the argument aStream a sequence of
characters that identifies the receiver.

The general format is

originPoint corner: cornerPoint."

APl intOn: aStream)

aStream nextPuthll: > corner: ’,

corner printOn: aStream

4 ParseNode printOn:

{ Point printOn:
Process printQOn:
Rectangle printOn:

printOn: aStream

“Append to the argument aStream a sequence of
characters that identifies the receiver.”

| title |

title ¢ self class name,.

aStream nextPutAll: {(title at: 1) isVowel
ifTrue: ["an 7]
ifFalse: [7a ')

Figure 5.26 Potential implementors of method printOn:.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 173

Closing the message-set browser and returning to the definition of printOn: for class
Rectangle (see Fig. 5.25), we can see that printOn: for rectangles proceeds to

* send printOn: to instance variable origin (the top left corner of the rectangle),
® append string * corner: ' to the print stream, and finally
* send printOn: to instance variable corner (the rectangle's bottom right corner).

Selecting send at this point invokes the printOn: message for instances of class
Point (origin is a point), and the method for generating the specialized printed
representation (x@y) for points can be viewed (Fig. 5.27). Single stepping through this
method will eventually return us to the printOn: method for rectangles (Fig. 5.28). At this
stage, selecting proceed allows the computation to run to completion and the printed
representation of the rectangle to be printed.

MRS

Halt encountered,

Point>>printQn:
Fectangle>>printOn:
Rectangle(Object)>>printString
Rectangle class>>trace

printOn: aStream

"Append to the argument aStream in terms of infix
notation."

FRprintCn: aStream]

asStream nextPut: $@.
y printOn: aStream

Figure 5.27 Having reached the Point printOn: method.

5.5 SUMMARY

In this chapter, we have described the use of inspector, notifier, and debugger windows as
sophisticated aids for debugging Smalltalk programs. In particular, we have described:

* The use of inspectors to view and modify the internal state of an object.

* The use of specialized inspectors for viewing dictionaries.

174 Inside Smalltalk

| 4R !

Halt encounterad,

Rectangle>>printOn:
Rectangle{Object)>>printString
Rectangle class>>trace
UndefinedObject>>Dolt

printOn: aStream
"Append to the argument aStream a sequence of
characters that identifies the receiver,
The general format is
originPoint corner: cornerPoint."

R O O 0N

origin printOn: aStream.
aStream REEALNCURREYIS - 140N
corner printOn: aStream

69@81 corner:
409@3454

Figure 5.28 Back to the Rectangle printOn: method.

How to set breakpoints to interrupt a computation at a user-selected point.

¢ The use of notifiers for identifying the point and cause of a run-time error or user-
generated interrupt.

¢ How debuggers incorporate the functionality of both notifiers and inspectors and
may be used to view and modify the state of a suspended computation.

* How debuggers may be used to single step through a computation at any level of
detail.

¢ How errors may be corrected within a debugger and a suspended computation
resumed.

5.6 EXERCISES

The exercises that follow provide experience with the manipulation of inspectors, notifiers,

and debuggers.

1. In this chapter, we saw that it is de- inspectors present in your .Smalltalk
sirable to have specialized inspectors system? Hint: What about inspectors
for dictionaries. What other kinds of on Ordered Collections?

objects might benefit from such spe-
cialized inspectors? Are there other

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 175

2. When a message reaches class Object 4,

because it was not understood by its
intended receiver, why does class
Object send a doesNotUnderstand
message back to the receiver of the
original message? Why doesn't class
Object simply use its own doesNot-
Understand method?

3. Each of the following expressions
generates an error notifier when eval-
uated. Explain the reason for the no-
tifier in each case.

Character new

Collection new 5.
3/0
0 ifTrue: [T'Zero']
-10 sqrt
5.7 GLOSSARY

Smalitalk windows

On occasion, we may have multiple
occurrences of the same method in
the message-send stack of a debug-
ger; e.g., in a recursive method.
Open a debugger on a computation
such as 10 factorial and advance the
computation until the message-send
stack contains several factorial mes-
sage-sends. Now modify the defini-
tion of factorial associated with one
of the factorial message-sends. Are
all the other definitions for factorial
also modified? If not, try to under-
stand why.

Why is evaluation of code within a
debugger much slower than normal
evaluation of the same code?

inspector A window through which the in- debugger A window in which detailed de-

ternal state of an object can be viewed and
modified.

notifier A window generated when a run-time
error or user-generated interrupt occurs.
The window displays the state of the
computation at the point of interruption
and indicates the cause of the interruption;
e.g., a message not being understood by
its receiver.

bugging of an interrupted computation
takes place. Debuggers incorporate the
functionality of inspectors and notifiers
and, in addition, provide facilities for
viewing the state of a computation, for
single stepping through a computation,
for modifying methods to correct errors,
and for resuming a suspended computation.

vellow button menu commands for the inspector variable pane

inspect Opens an inspector on the instance
variable selected in the variable pane of
the inspector. Note that this menu item is

only accessible if an item has bcen
selected from the list in the variable pane.

yellow button menu commands for the inspector value pane

again, undo, cut, copy, paste Standard accept Evaluates the text in the value pane as

editing commands.

do it, print it, inspect Standard evaluation
and inspection commands.

cancel Restores the text in the value pane to
its original state or the state immediately
after the last accept.

176

a Smalltalk expression. Binds the result
returned by evaluating the expression to
the variable sclected in the variable pane.
Used to modify the value of an instance
variable of an inspected object.

Inside Smualltalk

k]

yellow button menu commands for the dictionary inspector variable pane

inspect Opens an inspector on the value
associated with the selected key.

references Creates a message-set browser on
all references to the selected key.

remove Removes the key selected in the key
list pane. A confirmer menu will appear to
request confirmation that this undoable
operation should be carried out.

add field Adds a new entry with associated
value nil to a dictionary. A prompter
window will appear and request the name
of the key to be added. Another value can
be associated with the key by entering the
value into the value pane and choosing
accept.

yellow button menu commands for the notifier window

proceed Continues the evaluation of the
computation from the point of suspension.
May not be appropriate if error correction
is required.

debug Opens a debugger window on the
interrupted computation.

correct Used in the case of a misspelled
message selector to invoke the spelling
corrector. If the system's suggestion is
confirmed by the user, the alternative
replaces the misspelled sclector.

yellow button menu commands for the debugger message-send pane

full stack Allows the complete set of in-
complete message-sends to be viewed in
the message-send list pane. Otherwise
only the last nine message-sends may be
displayed. In version 2.5, full stack has
been replaced by more stack. Instead of
showing the complete set of message-
sends, more stack doubles the number of
items in the viewable stack.

more stack See full stack.

proceed Allows computation to proceed from
the point of interruption. Computation
restarts as if the highlighted message in
the method text pane had just been
completed. The result of sending the
highlighted message is taken to be the re-
sult of the last expression evaluated in the
method text pane, or nil if no expression
has been evaluated. Proceeding with a
computation closes the debugger.

restart Resends the message currently se-
lected in the message-send pane. A compu-
tation can be restarted by resending any of
the messages in the message-send stack.
Restarting a computation closes the de-
bugger.

senders Opens a message-sct browser on the
senders of the method in the method text
pane.

implementors Opens a message-set browser
on the implementors of the method in the
method text pane.

messages Displays a menu of all the mes-
sages sent by the method in the method
text pane. Selecting from the menu opens
a message-set browser on all methods that
implement the selected message selector.

step Evaluates the next message-send and
then halts. The effect of the message-send
can then be determined using the inspec-
tors on the receiver and method context.

send Allows the method involved in the next
message-send to itself be viewed and
single-stepped. It invokes the method as-
sociated with the next message-send. This
message-send is placed at the top of the
message-send stack and sclected. The code
for the invoked method is displayed in the
method text pane and the first message-
send in the method is highlighted.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 177

yellow button menu commands for the debugger method text pane

again, undo, cut, copy, paste Standard
editing commands.

do it, print it, inspect Standard evaluation and
inspection commands.

accept Compiles the text in the method text
pane. If successful, replaces the existing
method definition in the system. Used to
modify the definition of a method while
debugging. When a method is recompiled
within a debugger, that method is placed at
the top of the message-send stack.

cancel Restores the text in the method text
pane to its original state or the state im-
mediately after the last accept.

178

format Formats the code in the text pane to
a standard Smalltalk style. The text must
not have been edited since the last accept.

spawn Opens a message browser for the se-
lected message. Uses the method definition
from the method text pane. If editing has
taken place, this may or may not be the
current saved version of the definition. A
cancel operation is automatically carried
out on the method text pane of the debug-
ger.

explain Displays an explanation of any
selected variable name or selector such as

‘x’, ‘sum’, ‘+’, ‘at:put:’, or ‘Smalltalk’.

Inside Smalltalk

ERREL]

Objects

6.1 INTRODUCTION

Understanding Smalltalk in detail requires a basic understanding of the protocol understood
by objects in general (from class Object), along with an understanding of boolean objects
true and false, undefined object nil, and blocks (short for block contexts).

(UndefinedObject)

BlockContext

Figure 6.1 Object and other related classes.

Class Object (see Fig. 6.1) is the ultimate superclass of all classes. It provides the
default behavior for such operations as copying, printing, and comparing. Class
UndefinedObject provides the protocol for its one unique instance nil, the value provided
to all uninitialized variables. Boolean objects true and false are the sole instances of classes
True and False respectively; True and False are subclasses of Boolean. Class Boolean

179

is an abstract class; i.e., a class with no instances, that serves as a repository for methods
common to True and False. As a user, there is no need to know about classes True and
False. However, one should be aware of their existence because they cannot be used as
substitutes for instances true and false. The difference between uppercase and lowercase is
important in Smalltalk. For example,

True ifTrue: [Transcript show: ‘it was true'] ifFalse: [Transcript show: ‘it was false'}

is not a legal if-statement because True is not a boolean instance. Class BlockContext
provides the protocol for blocks. In the following example, [count « count + 1. count < 10]
is a block that is the receiver of the whileTrue: message. Parameter [Transcript show: count
printString] is also a block.

[count « count + 1. count < 10] whileTrue: [Transcript show: count printString]

In the sections that follow, we will consider the protocol for classes Object,
UndefinedObject, BlockContext, and Boolean (with its subclasses) in that order. To
understand the Object protocol, a rudimentary knowledge of the other three classes is needed.
In particular, the following undefined object and boolean object protocol should be sufficient
for our purposes:

undefined object queries

¢ anObject isNil
Returns true if the receiver is nil and false otherwise.

boolean operations

* aBooleanObject & anotherBooleanObject

Returns the ‘and’ of the two objects; i.e., true if both are true.
aBooleanObject | anotherBooleanObject

Returns the ‘or’ of the two objects; i.e., true if one or both are true.
aBooleanObject not

Returns the ‘not’ of the object; i.e., true if the receiver is false and false if it

is true.

aBooleanObject and: aBlock
Performs a short-circuit ‘and’; i.e., returns false if the aBooleanObject is
false; otherwise, additionally evaluates the block and returns the block
result.

aBooleanObject or: aBlock
Performs a short-circuit ‘or’; i.e., returns true if the aBooleanObject is true;
otherwise, additionally evaluates the block and returns the block resulit.

In previous chapters, we provided a syntactic interpretation of blocks as special
brackets that were required for control structures. This interpretation is neither object-oriented
nor correct but it is sufficient for understanding the basic control structures like whileTrue:
and whileFalse:. More detail, however, is needed to understand the implementation of the
boolean objects. Hence, blocks are reviewed prior to considering the boolean objects in
detail.

180 Inside Smalitalk

6.2 CLASS OBJECT

An object consists of a representation and operations (or methods) that it responds to.
It is an instance whose class can be determined by sending it the message class; e.g., 1.2¢3
class will reply with Float. The class is the repository for all the information about the
instances; i.e., it stores both the representation information and the operations. However, the
information in an individual class may not be complete; part of the information may reside
in another class called the superclass.

In general, a class may have a superclass, which in turn may have its own superclass,
which again has a superclass. This sequence culminates in a final class that has no superclass
— this class is Object, the ultimate superclass of all classes. In general, many classes can
have the same superclass — hence the relationship is a tree-structured hierarchy as shown in
Fig. 6.1. Actually, Smalltalk permits classes to have several superclasses, leading to a
concept called multiple inheritance. However, there are no examples in the system — we
will not consider the concept further in this section.

The representation information and the operations associated with an instance are
obtained by concatenating the partial information stored in each of the classes in the
superclass chain that starts with the object's class and culminates in Object.

In the sections that follow, we first consider the detailed representation of an object.
We investigate this representation ignoring the effects of the hierarchy. Then we consider
Smalitalk's notion of bindings as it relates to parameter passing and assignments so that we
can better appreciate the power of this representation. Next, we review this representation in
the context of the hierarchy. We then investigate the operations provided by class Object, a
protocol that is inherited by all classes in the system.

6.2.1 The Representation of an Object

Since an object consists of a representation and operations, it consists of anything that can
be manipulated. In particular, any object can be inspected; e.g., 1957 inspect, #(1 2 3 4)
inspect, 'hello’ inspect, Integer inspect. Objects include such things as characters,
integers, strings, arrays, ordered collections, sets, and classes themselves.

named instance variable 1

named instance variable 2

named instance variable 3

indexed instance variable 1

indexed instance variable 2

indexed instance variable 3

Figure 6.2 The representation of an object.

Chapter 6 Objects 181

However, there are things that are not objects. For example, a variable is not an
object. Variables cannot be manipulated as separate entities. They cannot be inspected nor
can they be stored into arrays, for example. Of course, the value bound to a variable can be
inspected and stored into an array. This is not the same thing. If variables were objects, one
would be able to store one into an array and legitimately claim “this array contains a variable
— independently, the variable also contains a value.” Since variables cannot be manipulated,
they are not objects.

In more detail, an object (see Fig. 6.2) consists of zero or more fields called instance
variables partitioned into two groups: named instance variables and indexed instance
variables. The named instance variables precede the indexed instance variables.

When a class is defined, the names of all named instance variables must be specified
along with an indication as to whether or not indexed instance variables are permitted. If no
indexed instance variables are permitted, all instances of the class will be the same size.
Otherwise, distinct instances can be different sizes. Depending on the choices taken, several
combinations are possible:

Classes with objects containing no instance variables.
Examples include Object, True, False, UndefinedObject, and InputSensor.

Classes with objects containing only named instance variables.
Most classes in the system and most user created classes will fall into this
category.

Classes with objects containing only indexed instance variables.
Examples include classes like Array, String, Symbol, LargePositivelnteger, and
LargeNegativelnteger.

Classes with objects containing both named and indexed instance variables.
Examples include OrderedCollection, Dictionary, Set, and SortedCollection.

Such classes are normally created with the browser. The easiest way is to find any
class that already has the required structure and modify its definition. For example, the
following definitions were obtained by investigating the class definitions for Fraction, Array,
WordArray, String, and OrderedCollection:

Fraction (a class with only named instance variables)

Number subclass: #Fraction
instanceVariableNames: 'numerator denominator’
classVariableNames: "
poolDictionaries: "
category: 'Numeric-Numbers’

Array (a class with only indexed instance variables that can contain arbitrary objects)

ArrayedCollection variableSubclass: #Array
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'Collections-Arrayed’

182 Inside Smalltalk

WordArray {another class with only indexed instance variables capable of containing
only words)

ArrayedCollection variableWordSubclass: #WordArray
instanceVariableNames: "
classVariableNames: “
pooiDictionaries: "
category: 'Graphics-Support’

String {another class with only indexed instance variables capable of containing only
bytes)

ArrayedCollection variableByteSubclass: #String
instanceVariableNames: *
classVariableNames: *
poolDictionaries: "
category: 'Collections-Text'

OrderedCollection (a class with both kinds of instance variables)

SequenceableCollection variableSubclass: #OrderedCollection
instanceVariableNames: ‘firstindex lastindex’
classVariableNames: "
poolDictionaries: "
category: ‘Coliections-Sequenceable’

As you can see, classes without indexed instance variables are created with a method
that begins subclass:...; the alternative uses methods variableSubclass:...,
variableWordSubclass:..., or variableByteSubclass:... (indexed instance variables
respectively contain arbitrary objects, word-sized integers, or byte-sized integers).

Named instance variables are normally accessed by referencing the variables by name.
More specifically, when the receiver of a message is, say, an ordered collection, the
corresponding method that executes can reference firstindex or lastIndex by name. Indexed
instance variables are accessed via the subscripting operations basicAt: and basicAt:put:.
See the section on accessing and modification operations for more details.

® anObject basicAt: aninteger

Returns the value of the indexed instance variable at index aninteger. Legal
index values range between 1 and anObject basicSize. An error is reported
if the index is not an integer or if it is out of range.
® anObject basicAt: aninteger put: anotherObject
Changes the value of the indexed instance variable at index aninteger to
anotherObject and returns anotherObject. Legal index values range
between 1 and anObject basicSize. An error is reported if the index is not
an integer or if it is out of range.

As a user, it is important to have this image of an object as a record with an arbitrary
number of fields, some named and some indexed. On the other hand, the low-level operations
that provide direct access to these fields should only be used for implementing higher level
facilities.

Chapter 6 Objects 183

6.2.2 Bindings: Assignments and Parameter Passing
In this section, we wish to consider the meaning of an assignment such as
a<b

since it can lead to confusion if it is not properly understood. We can explain it from two
perspectives: from the logical point of view, which concentrates on what it means, and from
the implementation point of view, which concentrates on how it is done.

In a language like Pascal, C, or Ada, an assignment like a « b is interpreted as “copy
b into a” and implemented by “copying the contents of b into the space occupied by a.”
Thus, a and b must be the same type and, most importantly, the same size. This is a very
restrictive requirement. For example, it makes it impossible for the arbitrary elements of a
set data type to be manipulated unless the element types were previously specified by the
user — it also makes it difficult to mix the element types.

In Smalltalk, a « b is interpreted as “bind a to the same object that b is bound t6.”
From the logical point of view, assignments do not copy — they simply rebind. From the
implementation point of view, all variables contain pointers to objects; assignments
physically copy pointers but they do not copy the objects. Fig. 6.3 illustrates this
pictorially.

(. e
e

b > Object, }
_ e : 8

Before a < b

a [~ Object;
) . ‘ ™
b Object :
Aftera «b

Figure 6.3 The meaning of assignment.

To repeat, before the assignment, a is bound to object; and b is bound to object;.
After the assignment, a is also bound to objecty — hence a and b are bound to the same

184 Inside Smalltalk

object. We often shorten the expression “x is bound to object 0” to *x is 0.” With this more
concise terminology, the above can be rephrased as follows: “Before the assignment, a is
object; and b is objecty; after the assignment, both a and b are objectp.”

Smalltalk provides two operations for determining when two objects are the same:
operation == (identical) and operation ~~ (not identical).
identity determination
® anObject == anotherObject
Returns true if anObject is the same as anotherObject and false otherwise.
® anObject ~~ anotherObject

Returns true if anObject is not the same as anotherObject and false
otherwise.

Before the assignment in Fig. 6.3, a == b is false; afterwards, a == b is true. Note that
identity is not the same as equality. Two objects could be equal without being identical.
Equality is considered in more detail after we discuss the copying operations. As implied, it
is possible to obtain a copy of an object but this must be explicitly requested. For example,
consider the following:

a « Set new.
b « a copy.

Here, a is first bound to a new set, then b is bound to a copy of this set. Clearly, a and b are
equal; i.e., a=b is true. However, a and b are not identical; i.e., a==b is false because
they are distinct objects.

Note that the notion of variables extends to method parameters and to fields of an
object; i.e., instance variables. For example, suppose we execute the following:

a « Set new.

b « ‘hello there'.

¢ « Number.

result < Array with: a with: b with: ¢

Class method with:with:with: in Array might be implemented as follows:

with: object1 with: object2 with: object3
| newArray |
newArray <— Array new: 3.
newArray at: 1 put: object1.
newArray at: 2 put: object2.
newArray at: 3 put: object3.
TnewArray

Immediately before newArray is returned, it should be clear that variable a, variable
objectl, and the first indexed instance variable of newArray are the same set.
Diagrammatically, this is illustrated in Fig. 6.4. The other cases are also shown for
comparison purposes.

Chapter 6 Objects 185

— '::i;i)

‘hello here')

objectl

object2

object3

(class Number)

result

yd
/7

i
7

Figure 6.4 Object bindings.

Smalltalk has no ‘call by reference’ mechanism. In particular, there is no way that
variable a can be modified by assignments to variables in the method. For example, if we
changed objectl in the method, this would rebind objectl and only objectl to some new
object — it would not affect a. Actually, Smalltalk does not permit parameters like objectl
to be modified but that is beside the point. Later, we will consider an operation that has
wider ranging effects, the become: operation.

6.2.3 The Inherited Representation of an Object

When a new class is defined, both a superclass and instance variables must be specified. For
example, class Fraction is defined as follows:

Number subclass: #Fraction
instanceVariableNames: ‘numerator denominator’
classVariableNames: "
poolDictionaries: "
category: 'Numeric-Numbers'

In this case, Number is the superclass of Fraction. All instances of fractions will have
the instance variables numerator and denominator. Additionally, they will also have the
instance variables of Number, Magnitude, and Object, since these are the classes in the
superclass chain. As it turns out, these classes have no instance variables. Hence, no
additional instance variables are included.

To provide a more relevant example, consider defining three classes Ball,
PositionedBall, and MovingBall as follows:

186 Inside Smalltalk

Object subclass: #Ball
instanceVariableNames: ‘color radius’
classVariableNames: "
pooiDictionaries: "
category: 'Experimental’

Ball subclass: #PositionedBall
instanceVariableNames: 'position’
classVariableNames: "
poolDictionaries: "
category: 'Experimental’

PositionedBall subclass: #MovingBall
instanceVariableNames: 'velocity'
classVariableNames: "
poolDictionaries: "
category: 'Experimental’

Each new class describes the instance variables that are extra to the instance variables
provided higher up in the hierarchy; i.e., instance variables in superclasses cannot be
eliminated in subclasses. For example, the instance variables for instances of the above
classes are the following:

the representation for all instances of Ball:
color
radius

the representation for all instances of PositionedBall:
color
radius
position

the representation for all instances of MovingBall:
color
radius
position
velocity

As you can see, instances of a class automatically inherit the representation of the
instances described by the superclass. This representation inheritance is analogous to
method inheritance; i.e., the notion that instances respond to messages that are either
defined (as methods) in the instance's class or in some superclass higher up in the hierarchy
(if at all).

“This should explain why methods for balls also work for moving balls. More
specifically, a method for balls can only access instance variables color and radius. Such a
method also works for positioned balls and moving balls precisely because they have the
color and radius instance variables in exactly the same locations.

Note that instance variables can only be added — it is not possible to create a subclass

with fewer instance variables than in a superclass. Additional subclasses that introduce
indexed instance variables can also be defined.

Chapter 6 Objects 187

MovingBall variableSubclass: #IndexableMovingBall

instanceVariableNames: "
classVariabloNames: "
poolDictionaries: "
category: 'Experimental’

IndexableMovingBall subclass: #ProprietarylndexableMovingBall

instanceVariableNames: 'owner’
classVariableNames: "
poolDictionaries: "

category: 'Experimental’

Instances of these classes appear as follows:

the representation for all instances of IndexableMovingBall:

the representation for all instances of ProprietaryindexableMovingBall:

color
radius
position
velocity

1

2

3

color
radius
position
velocity
owner

1

2

3

Note that individual instances can have a different number of indexed instance
variables. All named instance variables precede the indexed instance variables even if they
were added in a subclass whose superclass has indexable instances.

6.2.4 Querying Operations

General operations are provided for querying instances about class membership and legal
selectors. Special querying operations for dealing with integers and undefined objects are also

provided.

188

general queries

anObject class
Returns the receiver's class.
anObject isKindOf: aClass

Returns true if the receiver's class is aClass or inherits from aClass; false

otherwise.

Inside Smalltalk

1

® anObject isMemberOf: aClass
Returns true if the receiver's class is aClass; false otherwise.

anObject respondsTo: aSymbol
Returns true if aSymbol is a message selector for a method defined in
anObject's class or a class it inherits from; false otherwise.

specific queries

¢ anObject isinteger

Returns true if the receiver is an integer; false otherwise.
® anObject isNil
Returns true if the object is undefined; false otherwise; nil is the undefined
object.
® anObject notNil
Returns true if the object is defined; false otherwise.

unusual queries

® anObject yourself

Returns the receiver. Useful for cascading.

Normally, method isKindOf: is used rather than isMemberOf: because it applies to
instances of all subclasses — ‘anObject isMemberOf: aClass’ is just short for ‘anObject
class == aClass’. Note that a class may respond to a given selector without that operation
being legal. For example, intervals such as ‘1 to: 6 by: 2’ respond to at:put: messages, but
such messages are not legal. There exists an at:put: method in class Interval but it is
defined as follows:

at: index put: anObject
self error: ‘you can not store into an interval’

Messages isNil and notNil are implemented in two classes: Object and
UndefinedObject. In Object, isNil always retumns false (there is no if statement deciding
what should be returned). In UndefinedObject, isNil always returns true. Clearly, this is
an optimization that takes advantage of Smalltalk's polymorphic message sending capability.

Message yourself is useful for creating and initializing complex objects. For example,
one way of creating an array with run-time computed values is to assign individual elements
using at:put:.

anArray « Array new: 6.

anArray at: 1 put: Form white.

anArray at: 2 put: Form verylightGray.
anArray at: 3 put: Form lightGray.
anArray at: 4 put: Form gray.

anArray at: 5 put: Form darkGray.
anArray at: 6 put: Form black.

Using cascading, we can shorten this code. Semicolon is interpreted as follows: “The next
message is to be sent to the same object that the previous message was sent to.”

Chapter 6 Objects 189

anArray < Array new: 6.
anArray
at: 1 put: Form white;
at: 2 put: Form verylLightGray;
at: 3 put: Form lightGray;
at: 4 put: Form gray;
at: 5 put: Form darkGray;
at: 6 put: Form black.

A final simplification merges the two statements into one. However, message
yourself is required. If it is omitted, the result returned (as expected) is the value returned by
the last at:put:. But at:put: returns the value that was inserted; in this case, Form black.
Since we want the array itself, sending a yourself message to the same object that the
previous at:put: was sent to gives us the array we want.

anArray « (Array new: 6)
at: 1 put: Form white;
at: 2 put: Form veryLightGray;
at: 3 put: Form lightGray;
at: 4 put: Form gray;
at: 5 put: Form darkGray;
at: 6 put: Form black;
yourself.

6.2.5 Debugging, Inspecting, and Confimming

Class Object provides operations notify:, halt, and halt: for interfacing with the debugger;
basicInspect and inspect for investigating the contents of objects; and confirm: for
simple true/false request processing. Additionally, it provides the error messaging facility
error:, the handler for messages not understood, and a few well-used error messages.

interfacing with the debugger
* anObject notify: aString
Creates a notifier (see Fig. 6.5) that permits the user to either invoke the
debugger or proceed as if nothing had happened. Used for inserting
breakpoints during prototyping and testing.

® anObject halt

¢ anObject halt: aString
As above but with a different style of notifier (see Fig. 6.6) that provides a
short traceback of the methods called to that point. Parameter aString
becomes the label for the notifier and debugger (if activated); when not
supplied, default 'Halt encountered' is used.

190 Inside Smalltalk

[

interfacing with the inspector

® anObject basicinspect

® anObject inspect
Creates an inspector (see Fig. 6.7) in which the user can examine all of the
receiver's instance variables. Method inspect is redefined in subclasses to
provide the contents of the object in a more convenient manner;
basiclnspect is never redefined.

interfacing with the user
® anObject confirm: aString ‘
Creates a menu (see Fig. 6.8) that requests the user to reply either yes or no
to the question posed by aString. Returns the boolean resuilt.

interfacing with the error handler
® anObiject error: aString
Creates a notifier via halt:. Can be redefined in subclasses.
® anObject doesNotUnderstand: aMessage
The standard handler for messages not understood by the receiver.

often-used error messages

® anObject primitiveFailed
Announces something like ‘a primitive has failed’.
® anObject shouldNotimplement
Announces something like ‘this message is not appropriate for this object’.
® anObject subclassResponsibility
Announces something like ‘my subclass should have overridden one of my
messages’.
¢ anObject conflictinginheritanceError
Announces something like ‘conflicting methods due to multiple inheritance’
® anObject errorimproperStore
Announces something like ‘improper store into indexable object’.
® anObject errorNonintegerindex
Announces something like ‘only integers should be used as indices’.
® anObject errorSubscriptBounds: index
Announces something like ‘subscript is out of bounds: index’ where index is
appropriately substituted for.

When a notify: message is executed, a notifier window is created. The string parameter
is displayed as the contents of this notifier. A yellow button menu provides the user with
two options: proceed or debug. The first causes the notifier to disappear and execution to
continue from where it left off. The second causes a debugger to replace the notifier.

Chapter 6 Objects 191

Notifier

debug

Notifier

reached testt r

bt

Smallinteger(Object)>>notify:
Smallinteger{Cbject)>>test1
Smalllnteger{Object)>>test2

test1
- lnotify: reached test1)
*+*hello’

Figure 6.5 Using Notifiers.

Fig. 6.5 was constructed to show what happens if the following methods were
temporarily added to class Object.

test1

self notify: 'reached test1’.
Thello’

tost2
Tself tost1

tost3
Tself test2

testd
Tself test3
*2001 test4”

When 2001 test4 is executed, the notifier in the upper left comer of Fig. 6.5 appears.
If proceed is chosen, execution proceeds and ‘hello’ is eventually returned. Choosing
debug, on the other hand, causes the debugger to appear.

192 Inside Smalltalk

vy !

The halt: message is similar to the notify: message. It differs in providing a short
traceback of the messages that led to the halt:. Fig. 6.6 illustrates the traceback that results
when notify: in testl above is replaced by halt:.

reached testt

Smalllnteger(Object)>>halt:
Smallinteger{Object)>>test1
Smallinteger{Object)>>test2
Smalllnteger{Object)>>test3

Smalllnteger{Object)>>testd
proceed

Figure 6.6 Using halt: instead of notify:.

The inspect (and basicInspect) messages create inspectors on the receivers of the
messages. For example,

#(10 20 30) inspect

would create the inspector shown at the top of Fig. 6.7. Message basicInspect provides the
default inspector for all objects. However, special classes redefine inspect for convenience.
For example, the ordered collection

anOrderedCollection « OrderedCollection new.
anOrderedCollection addAll: #{10 20 30).

could be inspected either with

anOrderedCoflection basiclnspect or anOrderedCollection inspect.

As can be seen in Fig. 6.7, the basic inspector provides details about the ordered
collection that would be useful to the implementor. With this inspector, we can determine
that the data occupies the central portion of the variable length object — firstIndex and
lastIndex are used to keep track of the start and end points into this area. Presumably, this is
done because data can be added to either end of the ordered collection. On the other hand, this
particular ordered collection has only three items in it. The more specialized inspector
provides us with a user's view of the data. It hides the implementation details that have to do
with the actual position of the data. Indeed, this is the more relevant view to provide. To the
user, the first element is at index 1 (independent of where it is actually stored); i.e., user
subscripts are remapped and interpreted as offsets from firstIndex (plus or minus 1). This can
be confirmed by the following queries:

Chapter 6 Objects 193

anOrderedCollection size = 3

anOrderedCollection at: 1 = 10
anOrderedCollection at: 2 = 20
anQOrderedCollection at: 3 = 30

So far, specialized inspectors are provided for classes OrderedCollection, Dictionary,
and View. Specialized inspectors also provide special yellow button menu items. Inspectors
for ordered collections, for example, additionally permit you to insert or remove items into
the collection. Inspectors for dictionaries permit new keys to be added and existing keys to be
removed. Finally, inspectors for views also display the associated model and controller and
permit them to be manipulated with the same ease as the view.

OrderedCollection OrderedCallection

firstindes
lastindex

Figure 6.7 Using inspect: on an Array; also basicInspect: and inspect:
respectively on an Ordered Collection.

194 Inside Smalltalk

Confirmers provide a very simple facility for interactive debugging and/or querying.
Fig. 6.8 provides a simple illustration. When a confirmer appears, the user must choose
either yes or no. The choice is returned as a boolean.

Shall we meet Saturday?

no

Figure 6.8 The result of executing “self confirm: ‘Shall we meet Saturday?'”.

6.2.6 Meta Operations for Accessing and Modifying Objects

Meta operations are operations that provide information about an object as opposed to
information directly contained by the object. For example, an operation that determines the
number of named instance variables in an instance is a meta operation. An operation that
permits the value of a named instance variable to be extracted without knowing the name of
the instance variable is another meta operation. Clearly, meta operations are nonstandard.
They permit things to be done that are not normally possible — they are powerful and,
consequently, dangerous.

In this section, we consider the meta operations that permit the instance variables,
both named and indexed, to be accessed. The operations are intended for sophisticated users
and sophisticated applications. The casual reader might read this section, not so much with
the intention of using these operations, but rather with the goal of understanding them so
that the subsequent section dealing with copying operations will be better understood.

Recall that an object consists of zero or more named instance variables and zero or
more unnamed indexed instance variables. Operations are provided to determine the number
of each category of variables and to access and change them.

size queries

¢ anObject size

Returns the number of indexed instance variables. This is often redefined in
subclasses to mean the number of items contained in an object; e.g.,
consider sets and ordered collections.

anObject basicSize
An alternative for size that is not redefined in subclasses.

aClass instSize

Returns the number of named instance variables. Note: must be sent to the
instance's class.

classification queries

® anObject isVariable

Returns true if and only if the instance is a member of a class that has
indexed instance variables.

Chapter 6 Objects 195

accessing and modifying named instance variables

® anObject instVarAt: aninteger
Returns the value of the named instance variable at position aninteger.
Legal positions range between 1 and the number of named instance
variables, anObject class instSize. An error is reported if the position is not
an integer or if it is out of range.

anObject instVarAt: aninteger put: anotherObject
Changes the value of the named instance variable at position aninteger to
anotherObject and returns anotherObject. Legal positions range between 1
and anObject class instSize. An error is reported if the position is not an
integer or if it is out of range.

accessing and modifying indexed instance variables

® anObject at: aninteger
Returns the value of the indexed instance variable at index aninteger. Legal
index values range between 1 and anObject basicSize. An error is reported
if the index is not an integer or if it is out of range. This method is often
redefined in subclasses.

anObject at: aninteger put: anotherObject
Changes the value of the indexed instance variable at index aninteger to
anotherObject and returns anotherObject. Legal index values range
between 1 and anObject basieSize. An error is reported if the index is not
an integer or if it is out of range. This method is often redefined in
subclasses.

anObject basicAt: aninteger
anObject basicAt: aninteger put: anotherObject
Alternatives for at: and at:put: that are not redefined in subclasses.

As indicated, methods size, at:, and at:put: are often redefined in subclasses. The
collection classes in particular provide these operations as standard operations. Hence, for
collections, they are no longer meta operations. When the meta operations are desired,
equivalents basicSize, basicAt:, and basicAt:put: should be used instead.

With these operations, it is possible to implement a general comparison operation that
will work on arbitrary objects. The general = operation is defined to mean identity in
Smalltalk — it can be found in class Object. A more conventional semantics is provided by
redefining = in all subclasses. An attempt at implementing a more flexible and more accurate
= is shown below.

Unfortunately, this method is inadequate because it gets into infinite loops with
recursive structures. A revision that takes this into account is possible but it is more
complex. One approach is to keep track of objects that are in the midst of being compared. If
they are encountered a second time, they are assumed to be equal. If they are not, two
corresponding fields will ultimately be found that are not equal.

196 Inside Smalltalk

= anObject
*An example to show how equality could be implemented in Smalitalk. This method
considers two objects to be equal if they are both instances of the same class, have
the same number of instance variables, and corresponding instance variables are
recursively equal.”
self == anObject ifTrue: [Ttrue).
self class == anObject class ifFaise: [Tfalsel.
self class instSize = anObject class instSize ifFalse: [Ttalsel. "named fields"
self basicSize = anObject basicSize ifFalse: [Ttalsel. “indexed fields"
1 to: self class instSize do: [:index | "named fields"
{self instVarAt: index) = (anObject instVarAt: index) ifFalse: [Tfalse]l.
1 to: seif basicSize do: [:index | "indexed fields"
N (self basicAt: index) = (anObject basicAt: index) ifFalse: [Tfalsel].
true

We will use the notion of an identity dictionary and an identity set to keep track
of the required information. These classes of objects are discussed in detail in the chapter on
collections. Briefly, an identity dictionary is like an array except that the subscripts or keys
are arbitrary objects. Each key has associated with it all other objects that are candidates as
equal objects. These objects are kept in an identity set so that they can be distinguished.

= anObject
*A better example to show how equality could be implemented in Smalltalk. This
method considers two objects to be equal if they are both instances of the same
class, have the same number of instance variables, and corresponding instance
variables are recursively equal. It also takes circular structures into account.”
self privateCompare: anObject using: IdentityDictionary new.

privateCompare: anObject using: comparisoninProgressDictionary
"Private method supporting the implementation of = that handles circular
structures.”
| candidatesinProgress |
self == anObject ifTrue: [Ttruel.
self class == anObject class ifFalse: [Tfalsel.
self class instSize = anObject class instSize ifFalse: [Tfalse]. “named fields"
self basicSize = anObject basicSize ifFalse: [Tfalse]. “indexed fields*

“Are we in the midst of comparing these two objects already?"
candidatesInProgress <~ comparisoninProgressDictionary
at: self
ifAbsent: (
comparisoninProgressDictionary at: self put: Set new "returns the set"].
{candidatesinProgress includes: anObject) ifTrue: [Ttrue "consider it equal so far"].
candidatesinProgress add: anObject.

*Continue testing corresponding fields of the objects."
1 to: self class instSize do: [:index | "named fields”
({self instVarAt: index) privateCompare: (anObject instVarAt: index)
using: comparisoninProgressDictionary) ifFalse: [Tfalse)).
1 to: self basicSize do: [:index | “indexed fields"
((self basicAt: index) privateCompare: (anObject basicAt: index)
N using: comparisoninProgressDictionary) ifFalse: [Tfalsel).
true

Chapter 6 Objects 197

It is important to note that the above is not the = method provided in class Object.
Smalltalk takes a more conservative approach and dictates that the default = for all objects
will be ==, Subclasses provide a more appropriate definition by redefining = when necessary.
For example, it is redefined in class ArithmeticValue and Rectangle but not in other
graphical classes like Form.

6.2.7 Copying Operations: Shallow versus Deep Copies

When an object is copied, a new instance with the same number of named and indexed
instance variables is created. A shallow copy (see Fig. 6.9) is obtained if the fields of the
new object are bound to the corresponding fields of the original; i.e., if the fields are not
copied.

anObject —
‘an Empty Set)
N
string 'hello here')
shallowCopy - — —
of . foat314)
anObject —

Figure 6.9 A shallow copy.

A deep copy (see Fig. 6.10) is obtained if the fields of the new object are bound to
deep copies of the corresponding fields of the original — recursion stops for immutable

objects like integers,
__.___—-——b(an Empty Set)
anObject ——D(string 'hello here!)
“DC float 3.14)

deepCopy — ——f———>{(an Empty Set)
of ______’(string"hello here')

anObject . =
—T——»(fNoat3id4)

Figure 6.10 A deep copy.

As you might guess, deep copies are more expensive than shallow copies. Hence the
standard copy defaults to shallow copying.

198 Inside Smalltalk

copying

® anObject copy

Returns a shallow copy of anObject. Subclasses typically override this class
when a shallow copy is not sufficient.

® anObject deepCopy
Returns a deep copy of anObject. Gets into infinite loops for objects with
circular structures. Fails to make a copy if the class of anObject is Object.

¢ anObject shallowCopy
Returns a shallow copy of anObject. Fails to make a copy if the class of
anObject is Object.

As you can see, there are two deficiencies. First, you cannot make a copy of an
instance of class Object. This is likely to be historical since Object must have been an
abstract class in the past; i.e., a class which did not permit instances. However, it is now
perfectly legitimate to create instances of Object; e.g.,

object1 « Object new.
object2 « Object new.
object1 == object2 = false

is legal. We actually use this in the switch windows chapter for creating connection
objects between one-on switches (see Volume 2, Section 5.2.4). The only requirement is
that these connection objects be unique objects.

The second deficiency has to do with the deep copy operation — it does not handle
circular structures and hence can get into an infinite loop. This is not a problem in practice
because subclasses redefine this operation when problems occur.

It is instructive to examine one of these operations. We consider the deepCopy
method; shallowCopy differs only by eliminating the recursive calls. New instances are
created using basicNew or basicNew: depending on whether or not the instance is a member
of a class with indexed instance variables.

deepCopy

“Returns a copy of the receiver with its own copy of each instance variable.”

| newObject class index |
class « self class.

{class == Object) ifTrue: [Tseif]. “Remove this line to make it work for Object
instances.”

*First handle the indexed instance variables.”
class isVariable
ifTrue: (“has indexed variables”
index « self basicSize.
newObject « class basicNew: index.
[index > 0] whileTrue: {
newObject basicAt: index put: {self basicAt: index) deepCopy.
index ¢« index - 1]
ifFalse: ["does not have indexed variables* newObject « class basicNew].

Chapter 6 Objects 199

“*Second, handle the named instance variables.”

index ¢ class instSize.

[index > 0} whileTrue: [
newObiject instVarAt: index put: (self instVarAt: index) deepCopy.
index « index - 1].

ThewObiject

6.2.8 Comparison Operations: Identity versus Equality

This section summarizes the comparison operations previously mentioned above. Identity
operations (== and ~~) permit the user to determine whether or not two objects are the same;
equality operations (= and ~=) provide a comparison based on the contents of the objects.
The identity operation is never redefined in subclasses. The default equality operation is
defined to be identity in Object. Subclasses redefine it to provide a more appropriate version
in special cases. For example, = is redefined in such classes as Character, Integer, Fraction,
Float, Date, Time, Point, Rectangle, SequenceableCollection, and String.

When = is redefined in a new class, it is also customary to provide a definition for
method hash, which is intended to return an integer unique to the object. This value is used
to speed up lookup in container classes such as sets and dictionaries. An example is provided
in the chapter on magnitudes in the context of class Complex.

Because the comparison operations are so simple, code implementing the methods is
also shown. Note that only == and hash are primitive. All other operations are implemented
in terms of these two.

identity comparisons

® anObject == anotherObject

“Returns true if anObject and anotherObject are the same; otherwise false.
Not redefined in any subclass."
<primitive: 110>
self primitiveFailed "a simple error message"”
® anObject ~~ anotherObject
“Returns true if anObject and anotherObject are not the same; otherwise
false."
T(self == anotherObject) not

equality comparisons
®* anObject = anotherObject
“Defined as ==. If = is redefined in a subclass, also consider redefining
method hash.”
Tself == anotherObject
® anObject ~= anotherObject
“Returns the not of =."
T(self = anotherObject) not

200 Inside Smalltalk

® anObject hash
"Returns an integer unique to the object. Used to speed up searching.”
<primitive: 75>
self primitiveFailed "a simple error message"

6.2.9 Read/MWrite Operations: PrintStrings and StoreStrings

When a new class of objects is defined, one of the first objectives is to provide operations
that will enable the objects to be printed. A secondary objective might be to be able to store
the objects into a file for later retrieval. Class Object provides the default protocol for both
of these objectives.

Printing Objects Our Own Way: An Example

We can best illustrate the goals mentioned above with an example. Suppose we defined a
class of objects called Dog with a simple protocol that permits dogs to be named.

Class Dog
class name Dog
superclass Object

instance variable names name
instance methods
name access and modification

name
Tname

name: aSymbol
name « aSymbol

It is now a simple matter to create two dogs as follows:

dog1 < Dog new name: #Barfy.
dog2 « Dog new name: #Woofy.

One of the first things we might do with such dogs is attempt to print one while in the
browser or in a workspace. If we do, the answer will print as follows:

a Dog

A second goal might be to attempt to convert one into a string representation. We might
have seen this done elsewhere in a previous chapter. So we might try to print the following:

dog1 « Dog new name: #Barfy. Tdog1 printString

Perhaps somewhat unexpectedly, the result is

‘a Dog’

Chapter 6 Objects 201

Clearly, there must be a connection between the print string of an object and the
characters printed as a result of selecting print it in a browser or workspace. It is also
possible to obtain another kind of string as follows:

dog1 « Dog new name: #Barfy. Tdog1 storeString

The result is

'(Dog basicNew instVarAt: 1 put: #Barfy; yourself)’

This string is interesting, not so much because it contains meta operations, but
because it is executable code. If the contents were executed, the results would be an instance
of Dog containing the same information as the original. We can now define the two kinds of
strings.

A print string of an object is a string containing a textual representation of the
object. It is often (but not always) sufficiently informative that alternative instances of the
same class can be differentiated. A store string is a printable representation that can be used
to re-create an equivalent instance. For some objects, like integers, the print and store strings
are the same.

An obvious goal for our Dog class would be to provide methods that would enable
better print and store strings to be created. The obvious solution is to redefine methods
printString and storeString in class Dog. However, this turns out to be the wrong thing
to do. If we ask for all implementors of printString (e.g., type printString in the browser
and select explain), we find that there is exactly one — the same holds for storeString. It
is worth looking at them because they reveal a better solution.

printString
*Returns a string whose characters are a description of the receiver."
| aStream |
aStream « WriteStream on: {String new: 16).
self printOn: aStream.
TaStream contents

storeString
"Returns a string representation that can be used to reconstruct the receiver."
| aStream |
aStream « WriteStream on: (String new: 16).
self storeOn: aStream.
TaStream contents

From these methods, it should be clear that the real work is being done by printOn:
and storeOn:. Indeed, if we ask for all implementors of printOn:, we find a large number of
distinct implementations. The same applies for storeOn:.

Each method constructs a write stream, an in-core file designed to store characters into
a string that is initially sixteen characters long — the string is automatically extended if
more space is required. The printOn: and storeOn: methods append characters to this
stream. Afterwards, message contents extracts the stored characters and returns them as a
string.

202 Inside Smalitalk

To design better print and store strings for instances of Dog, we must provide our own
versions of printOn: and storeOn:. To do so, however, we need a basic understanding of
the stream protocol. A summary is provided below (the complete protocol is discussed in
depth in the chapter on collections).

® aStream nextPut: aCharacter

Adds aCharacter to the end of the stream.

® aStream nextPutAll: aString

Adds each character of aString to the end of the stream.

The next step is to decide on a suitable print and store string. A reasonable print string
would be the dog's name. For the store string, we could generate the same code that was used
to construct the dog in the first place. The result would be the following:

dog1 < Dog new name: #Barfy. Tdog1 printString = 'Barfy’
dog1 « Dog new name: #Barfy. Tdog1 storeString = '(Dog new name: #Barfy)’

Additionally, simply executing dogl in a workspace would result in the print string being
printed without the brackets; i.e.,

dog1 « Dog new name: #Barfy. Tdog1 = Barfy

Clearly, the workspace uses the print string to produce its result. We extend class Dog by
adding the following instance methods:

printing and storing
printOn: aStream
*Adds the receiver's name to the stream and returns the receiver."
aStream nextPutAll: name
storeOn: aStream
*Adds the code needed to re-create the receiver to the stream and returns the
receiver.”
aStream nextPutAll: '(Dog new name: #'; nextPutAll: name; nextPut: $)

All of this can be summarized as follows:

To create a print string unique to a class:
Redefine method printOn:.

To create a store string unique to a class:
Redefine method storeOn:.

The ReadMWrite Protocol

Class Object contains the methods for operations printString and storeString, along with
the default implementation of printOn: and storeOn: that are often redefined by subclasses.

Chapter 6 Objects 203

In addition, it provides a default class method for converting a string to an object. The
protocol is summarized as follows:

conversion from objects to strings (methods that need never be redefined)

anObject printString
Returns a string whose characters are a description of the receiver. Uses
self printOn: aStream.

anObject storeString
Returns a string representation that can be used to reconstruct the receiver.
Uses self storeOn: aStream.

writing into streams {methods normally redefined by users)

anObject printOn: aStream
Inserts a sequence of characters that identifies the receiver into aStream.
Often redefined in subclasses. The default provided by this method is the
class name preceded by 'a* or ‘an '.

anObject storeOn: aStream
Inserts a string representation that can be used to reconstruct the receiver
into aStream. Often redefined in subclasses. The default provided by this
method is code constructed via meta operations basicNew (or basicNew:),
instVarAt:put:, and basicAt:put:; recursive structures are not handled.

reading from streams; i.e., converting from strings to objects

Object readFrom: aStringOrAStreamContainingOneObject
Compiles and evaluates the contents of the argument and returns the result.
The inverse to storeString.

As can be seen, storeString and readFrom: are complementary operations; i.¢.,

Object readFrom: anObject storeString

should re-create anObject. Note, however, that storeString, more specifically storeOn:,
does not handle circular structures. When classes with inherently circular structures are
defined, it is necessary to redefine storeOn: to ensure termination. To read multiple objects
from a file, they must be separated by some distinguishable character. In some
circumstances, a carriage return character is suitable; in others, a special character like $!
might do. Special stream operations can be used to extract substrings bounded by the
characters. The readFrom: method can be used on the individual substrings.

The printOn: and storeOn: methods for Object provide a useful default for new

classes. They are defined as follows:

204

printOn: aStream

"Inserts a sequence of characters that identifies the receiver into aStream. Often
redefined in subclasses. The default provided by this method is to provide the class
name preceded by 'a ' or ‘an'."

{ title |

title « self class name.

aStream nextPutAll: ((title at: 1) isVowel ifTrue: 'an '] ifFalse: ['a ')), title

Inside Smalltalk

storeOn: aStream
*Inserts a string representation that can be used to reconstruct the receiver into
aStream. Often redefined in subclasses. The default provided by this method is to
provide code constructed using meta operations basicNew (or basicNew:),
instVarAt:put:, and basicAt:;put;; recursive structures are not handled.”
aStream nextPut: $(.
self class isVariable
ifTrue: [
aStream
nextPutAll: '(, self class name, ' basicNew: *;
store: self basicSize; nextPutAll: ') '}
ifFalse: [aStream nextPutAll: self class name, ‘' basicNew'].
1 to: self class instSize do: [:i | "named instance variables”
aStream
nextPutAll: ’ instVarAt: ’; store: i;
nextPutAll: ' put: '; store: (self instVarAt: i); nextPut: $;].
1 to: self basicSize do: [:i | "indexed instance variables”
aStream
nextPutAll: ' basicAt: *; store: i;
nextPutAll: ' put: *; store: (self basicAt: i); nextPut: $;].
aStream nextPutAll: ' yourself)'

Note that ‘aStream store: anObject’ is equivalent to ‘anObject storeOn: a stream’ —
for an object to be stored, so must the fields. The stream protocol relevant to the storeOn:
method includes

writing characters and strings into streams
® aStream nextPut: aCharacter

Adds aCharacter to the end of the stream.
aStream nextPutAll: aString

Adds each character of aString to the end of the stream.

writing other kinds of objects into streams

® aStream print: anObject
Actually executes ‘anObject printOn: aStream’.
aStream store: anObject

Actually executes ‘anObject storeOn: aStream’.

Method readFrom: is much simpler. It is a class operation, not an instance
operation.

readFrom: aStringOrAStreamContainingOneObject
"Compiles and evaluates the contents of aStringOrAStreamContainingOneObiject
and returns the result. The inverse to storeString."
| object |
object &~ Compiler evaluate: aStringOrAStreamContainingOneObject.
(object isKindOf: self) ifFalse: [self error: self name, ' expected'].
Tobject

Chapter 6 Objects 205

Method readFrom: is redefined in classes Date and Time to permit a special syntax
to be used as input. It is also redefined in classes such as Number, Integer, Float, and
String for use by the compiler. A variation is also provided in class Form, which expects a
file name instead of the usual string or stream as first parameter. Class RunArray also
provides a variation for special run-arrays of small integers.

6.2.10 Meta Operations for Indirect Execution {perform:)

This section should be skipped on first reading. It is concerned with advanced Smalltalk
facilities for manufacturing messages from data and subsequently executing the manufactured
messages. We refer to the facility as indirect message passing. We document the methods
first and then we consider examples that illustrate their use.

indirect message execution

anObject perform: selectorSymbol

anObject perform: selectorSymbo! with: object1

anObject perform: selectorSymbol with: object1 with: object2

anObject perform: selectorSymbol with: object1 with: object2 with: object3
anObject perform: selectorSymbol withArguments: anArrayOfObjects

* o & ¢ o

Method perform:withArguments: causes the message indicated by selectorSymbol to be
sent to anObject — the array contains the parameters for the message. The value computed is
returned. The number of parameters provided must match the expected number; otherwise,
error message doesNotUnderstand: is invoked. The first four operations are efficient
variations of the last that don't require the parameters to be in an array.

Example

Trivial use of the facility is shown below to illustrate the correspondence between normal
message passing and indirect message passing.

10 factorial
< 10 perform: #factorial
< 10 perform: j#factorial withArguments: #()

1+2
& 1 perform: #+ with: 2
< 1 perform: #+ withArguments: #(2)

Array new: 3
< Array perform: #new: with: 3
< Array perform: #new: withArguments:i#(3)

1 between: 0 and: 2

< 1 perform: #between:and: with: 0 with: 2
< 1 perform: #between:and: withArguments: #(0 2)

206 Inside Smalltalk

Using perform: to Simulate Case Statements

Once in a while, a method is designed with the following basic structure.

character « ... symbol « ...
('0123456789' includes: character) (symbol == #case1)

ifTrue: [Tself numericCasel. ifTrue: [Tself case1Process]
({[{’ includes: character) {symbol == #case2)

ifTrue: [Tself bracketCase). ifTrue: [Tself case2Process]
('+-*/" includes: character) (symbol == #case3)

ifTrue: {Tself operatorCase]. ifTrue: Tself case3Process]

One way of avoiding long sequences of special tests is to construct an array containing
the selector to be used for specific subscripts and invoke it using indirect message passing.
For instance, in the character case above, we could construct an array as follows:

specialArray « Array new: 256.
specialArray atAliPut: #errorCase.
0123456789 do: [:aCharacter |

specialArray at: (aCharacter asinteger) + 1 put: #numericCase].
‘({{' do: [:aCharacter |

specialArray at: {aCharacter asinteger) + 1 put: #bracketCasel.
‘+-*/ do: [:aCharacter |

specialArray at: (aCharacter asinteger) + 1 put: #operatorCasel.

Typically, this special array would be a class variable initialized in a class method such
as initialize. This technique is used, for example, by the compiler. The original method is
then modified to eliminate the series of tests as follows:

self perform: (specialArray at: character asinteger + 1)

A second approach is to actually manufacture the required selector when required. For
the symbol case above, the method code could be replaced by the following:

self perform: (symbol, 'Process’) asSymbol

Concatenating variable ‘symbol’ with Process' results in a string (rather than a
symbol). It is converted back using asSymbol.

Recall a previous example concerned with explaining how yourself was intended to be
used. The example was

anArray « (Array new: 6)
at: 1 put: Form white;
at: 2 put: Form veryLightGray;
at: 3 put: Form lightGray;
at: 4 put: Form gray;
at: 5 put: Form darkGray;
at: 6 put: Form black;
yourself.

Chapter 6 Objects 207

An alternative using perform: and collect: can be written as follows. The collect:
operation creates an array the same size as the receiver but with elements that are computed
from the elements of the original.

anArray « #(white veryLightGray lightGray gray darkGray black) collect: [:element |
Form perform: element].

6.2.11 Advanced Meta Operations

In this section, we consider operations become: and doesNotUnderstand:. The former is
a powerful object mutation operation. The latter is invoked when an inappropriate message
is sent to an object. It is provided with an instance of class Message as parameter. The first
section considers the become: operation in detail; the second reviews the protocol for
Message and how it can be used to implement doesNotUnderstand:. The final section
makes use of the two operations to implement a class of indirection objects that can be
used for monitoring messages sent to specific objects.

The become: Operation

There are several classes of objects in Smalltalk that automatically grow to accommodate an
arbitrary number of elements. For example, consider the following;:

aSet « Set new.

aBag « Bag new.

aDictionary « Dictionary new.
anOrderedCollection « OrderedCollection new.

1 to: 1000 do: [:index |
aSet add: index.
aBag add: index.
aDictionary at: index put: index+1.
anOrderedCollection add: index]

Each of these instances is an object with a fixed number of indexed instance variables.
When a new set is constructed, for example, it is created with room for a maximum number
of elements. A reasonable initial size might be sufficient to hold, say, ten elements. What
happens when we attempt to add the eleventh element?

From the user's point of view, the object simply grows bigger. At the implementation
level, however, there is more to it. More specifically, a new larger object is created and
initialized with the same elements as the original; i.e., a shallow copy is created. Next
comes the more difficult task. All references to the original object are changed to refer to the
new object. Such a powerful operation is provided as a user primitive,

object mutation

® anObject become: anotherObject
All references to anObject are rerouted to anotherObject and vice versa.

Does not work if anObject or anotherObject is a small integer.

208 Inside Smalitalk

Diagrammatically, the effects of the become: operation are shown in Fig. 6.11. All
references to object] and object2 are swapped.

Figure 6.11 Operation become: swaps references.

Depending on the implementation, the become: operation can be either very
inexpensive or very expensive. In particular, implementations that make use of an object
table are very efficient. In these systems, all references are typically indices into an object
table whose entries point at the actual objects. The become: operation is implemented by
swapping two pointers in the object table. Because of the overhead incurred by continual
indirection, more efficient implementations eliminate the notion of an object table in favor
of direct pointers. In these systems, a naive implementation of become: requires a global
search through all memory to change all references. More sophisticated implementations
make use of special indirection objects that redirect messages to the intended recipient. In the
worst case, both objects of the become: operation are copied into new objects and the
originals are changed into these “invisible” indirection objects. The overhead that used to
occur for all objects in implementations with object tables now occurs only for the special
objects of become:. Over time, this slight increase in indirection overhead is permanently
removed by the garbage collector — one of its tasks is to short-circuit indirection objects.
To avoid slowing down the Smalltalk interpreter, special tricks are used to make sure that
checking for indirection objects is not needed.

The become: operation is interesting because it permits virtually any object to be
mutated into another. This could have application, for example, in the design of adaptive
objects that monitor their access history. For a simpler example, suppose we intended to
unify classes Array and OrderedCollection. The former is more efficient to access because
there is no internal remapping of the subscripts. However, arrays do not automatically grow
to accommodate more elements. Ordered collections are more flexible; for example, they can

be extended by simply adding new elements. The add: operation could be added to Array as
follows:

Chapter 6 Objects 209

anArray add: anElement
| arrayAlternate !
arrayAlternate « self asOrderedCollection.
arrayAlternate add: anElement.
self become: arrayAlternate.
TanElement

Attempts to add: to an array automatically cause it to mutate into an ordered collection.
Whether or not this is a good idea is a separate and independent issue.

Class Message and the doesNotUnderstand: Operation

When an inappropriate message is sent to an object, the message (both the selector and the
arguments) is encoded in an instance of class Message and sent back to the same receiver as
the parameter to doesNotUnderstand:.

the standard error handler
[2

anObject doesNotUnderstand: aMessage
The standard handler for messages not understood by the receiver.

If we wish to introduce a variation of this method for a special class of objects (as we
will in the next section), it is necessary to know the protocol for instances of Message.

instance creation

Message selector: aSymbol

Message selector: aSymbol argument: anObject

Message selector: aSymbol arguments: anArray
Returns a new instance of Message containing the selector and arguments.
Variations are provided for situations with 0, 1, or many arguments.

accessing

aMessage selector
aMessage arguments
Returns the selector symbol and the arguments array respectively.

printing
hd aMessage printOn: aStream
Adds a sequence of characters in the format ‘a Message with selector:
selector and arguments: arguments’ to aStream.
aMessage storeOn: aStream

Adds a sequence of characters in the format ‘(Message selector: selector
arguments: arguments)’ to aStream.

210 Inside Smalltalk

L

With this protocol, a simple version of doesNotUnderstand: can easily be written
as follows:

anObject doesNotUnderstand: aMessage
“First, create a notifier that will permit a debugger to be scheduled.”
self halt: 'receiver does not understand ', aMessage selector printString.
"Second, if the user proceeds, re-attempt the original message.”
*Another doesNotUnderstand: message will result if the problem was not fixed.”
self perform: aMessage seloector withArguments: aMessage arguments

Indirection Objects — become: and doesNotUnderstand:

Sometimes it is useful to monitor specific messages sent to specific objects; e.g., to locate a
design error. The usual approach is to modify the method to be monitored. Another less
intrusive technique consists of creating a special indirection object for the task. To illustrate
the approach, suppose we wish to monitor global variable Smalltalk to determine how often
message size is sent to it.

We create a new class called Indirection, which can be later specialized for a specific
application. The indirection object plays the role of a gateway for another object, the
intended receiver, which it metaphorically surrounds. Using the become: operation, all
references to the intended receiver are changed to the indirection object. The indirection object
intercepts the messages meant for the intended receiver via method doesNotUnderstand:
and reroutes them using perform:withArguments:.

To ensure that the Indirection class remains generic, we will subsequently specialize
it to a subclass called IndirectionForSmalltalk.

Class Indirection

class name Indirection

superclass nil

instance variable names intendedReceiver

comment Create this class with superclass Object; afterwards, inspect

Indirection and change the superclass to nil.

class methods
instance creation

on: anObject
| anindirection |
anindirection «- self new initializePlease.
anObject become: anindirection. *Indirections don't understand become:.”
"Now the two are switched: initialize the indirection object.”
anObject intendedReceiverPlease: anindirection.
TanObiect

instance methods

instance initialization

initializePlease
"No-op. Provided in case subclasses need to redefine it."

Chapter 6 Objects 21

intended receiver access and modification

intendedReceiverPloase
TintendedReceiver

intendedReceiverPlease: anObject
intendedReceiver « anObject

object redirection

doesNotUnderstand: aMessage
TintendedReceiver
perform: aMessage selector withArguments: aMessage arguments

deactivation

deactivate
self become: intendedReceiver.
Thil

To ensure that a maximal number of messages are rerouted through
doesNotUnderstand:, it is essential that class Indirection not inherit from a class with
a large number of operations. One solution is to use a superclass such as
UndefinedObject. Unfortunately, it inherits a few too many operations from Object.
Another solution is to use no superclass at all; i.e., like class Object, use nil as the
superclass. Unfortunately, attempts to use nil as the superclass when defining Indirection
will always result in error messages and an unsuccessful definition. The solution is to define
Indirection with any legal superclass like Object and then change it using an inspector.
The inspector will permit the superclass field of Indirection to be changed to nil. It is
actually possible to file out this modified class although you cannot file it back in (unless it
is restored to what it what before modification by the inspector).

Once the superclass of Indirection is set to nil, only four messages are directly
understood by indirection objects: initializePlease, intendedReceiverPlease, intended-
ReceiverPlease:, and deactivate — all others end up in doesNotUnderstand:, which
reroutes them to the intended receiver.

To monitor messages sent to global variable Smalltalk, we create a special subclass
of Indirection whose sole purpose is to record the number of times message size is sent to
it. Of course, this message is also rerouted to the intended receiver. Any number of messages
could be monitored this way (all of them if doesNotUnderstand: was suitably redefined).

An example method is provided to illustrate how Smalitalk can be monitored. Note
that no attempt should be made to debug such a class unless you are prepared to restart the
system because it is very easy to cause problems that result in infinite loops. For example,
the first version of the system had the arguments to become: in method on: above
switched. The indirection object of course did not understand become: since it is an
operation associated with class Object. Hence, it was rerouted to the
doesNotUnderstand: method, which sent it to the as yet uninitialized intended receiver,
causing nil and Smalltalk to “become” each other. The sequence continued through other
complications but the end result was an infinite loop that could not be stopped. The moral is
simple: be prepared.

212 Inside Smalltalk

Class IndirectionForSmalitalk

class name IndirectionForSmalltalk
superclass Indirection
instance variable names sizeReferences

class methods
examples

example1
| anindirection count |
anindirection « IndirectionForSmalltalk on: Smalltalk.
10 timesRepeat: [Smalitalk size].
count < anindirection sizeReferencesPloase.
anindirection deactivate.
Teount
*IndirectionForSmalitalk example1”

instance methods
special initialization

initializePlease
super initializePlease.
sizeReferences ¢« 0

special queries

sizeRoferencesPlease
TsizeReferences

monitored methods

size
sizeReferences ¢« sizeReferences + 1.
TintendedReceiver size

After successfully monitoring variable Smalltalk, temporary class IndirectionFor-
Smalltalk can be removed from the system. A useful extension to class Indirection would
be to add become: as one of the operations it understands. This would permit indirections to
be created on arbitrary objects; i.e., either ordinary objects or other indirection objects.

6.3 CLASS UNDEFINEDOBJECT

UndefinedObject is the class for object mil, its sole instance. It is the value assigned to all
uninitialized variables; i.e., both to local variables in methods and to named and indexed
instance variables in objects created via messages such as basicNew and basicNew:.

UndefinedObject is also a subclass of Object (see Fig. 6.12). Hence it inherits the
general Object protocol. For instance, it responds to == and ~~ and equivalently to = and ~=
since these default to == and ~~ in Object.

Chapter 6 Objects 213

(UndefinedObjecQ

Figure 6.12 The UndefinedObject hierarchy.

In addition, UndefinedObject supports the following minimal protocol.

instance creation (disabled)
d UndefinedObject new

Gives an error message; new instances not allowed.

dependency maintenance (disabled)
hd nil addDependent: anObject

Gives an error message; dependents not allowed.

no-ops for window management and copying

* nil release
For window management, returns nil.
nil deepCopy
b nil shallowCopy
For copying, returns nil — the receiver.
printing

hd nil printOn: aStream

nil storeOn: aStream
Stores and prints as ‘nil’.

testing
hd nil isNil
i nil notNil

Returns true and false respectively. Equivalent methods in class Object
return the converse.

6.4 CLASS BLOCKCONTEXT (BLOCKS FOR SHORT)

In languages like Pascal, C, or Ada, square brackets would be interpreted as syntax that
merely serves to bracket certain segments of the code; e.g.,

| sum index |

sum « 0. index « 1.

[index <= 10] whileTrue: [sum < sum + index. index « index + 11.
Transcript show: 'The sum from 1to 10 is’, sum printString

214 Inside Smalltalk

In Smalltalk, the bracketed constructs (square brackets included) are called blocks —
they are objects that can be manipulated like other objects. For example, it is perfectly legal
to execute the following:

| aSet count aBlock |

*Add a block to a set.”

aSet « Set new. count « 0.
aSet add: [count « count + 1].

*Save a block in a local variable."
aBlock « [count factorial].
aSet add:aBlock.

The block [count « count + 1] is passed as a parameter to add: and inserted into the
set — the set now contains one element, a block. At first sight, this is confusing. Why
would you want to do this, or more to the point, what precisely is a block and what can you
do with one?

Technically, a block is an instance of class BlockContext (see Fig. 6.13).
Intervening classes are omitted because they are not essential to the discussion — they are
primarily of interest to compiler implementors.

[3

®

®
BlockContext

Figure 6.13 The partial Block hierarchy.

But functionally, a block is an unnamed function. It may have zero or more
parameters and it can be invoked with the following special protocol.

evaluating (invoking) a block

aBlock value

aBlock value: parameter

aBlock value: parameter1 value: parameter2

aBlock value: parameter1 value: parameter2 value: parameter3

aBlock valueWithArguments: anArrayOfParameters
Evaluates the block with the parameters provided. The number of
parameters supplied must match the number expected. Returns the last
expression computed unless an explicit T-statement is encountered; in that
case, returns the T-statement value to the sender of the method in which
the block was defined {(not to the sender of the value message).

Chapter 6 Objects 215

A block is defined by executing the square bracketed construct. For example, consider
the following:

| block0 block? block2 |

"Defining three blocks."
block0 « [Transcript show: ‘hello’'].
block1 « [:name | Transcript show: namel.
block2 « [:firstName :lastName |
Transcript nextPutAll: firstName; space; show: lastName].

"Invoking the blocks."
block0 value. "Causes 'hello ' to output on the transcript.”
block0 valueWithArguments: #(). "Also causes 'hello ' to output on the transcript.”

block1 value: 'Wilf'. "Causes 'Wilf' to output on the transcript.”
block1 valueWithArguments: #{'Wilf'}. "Same."

block2 value: 'Wilf' value: ‘Lalonde’. "Causes ‘Wilf LalLonde' to output on the transcript.”
block2 valueWithArguments: #{'Wilf' ‘LaLonde'). "Same"”

Blocks can consist of an arbitrary number of statements. When a block is invoked, the
last expression computed is the value of the block. For example,

block « [1+2. 10+20. 100+200].
block value = 300

Additionally, unless constructed in a workspace, blocks are defined through the normal
course of events, while methods are executed. Where they are defined is important because
they provide access to local variables at the definition point and also permit non-local
returns. For example, suppose the following two methods were temporarily added to class
Object and that message hello was sent to some arbitrary object. The value returned is
‘smile’. More interesting is the execution sequence.

hello
| count |
count « 20.
self helloTest: [:title |
Transcript nextPutAll: title; show: count printString.
Tsmile’.
‘frown'].
‘ery’
helloTest: aBlock
aBlock value: 'The counter is .
Tsmirk’

When method hello is executed, we expect 'cry’ to be returned unless something causes
a premature return. The block with parameter title is defined in method hello but not
invoked here. Instead, it is passed as a parameter to method helloTest:.

In method helloTest:, we expect 'smirk’ to be returned unless a premature return
occurs first. How could that happen? By sending message value: to aBlock, string parameter

216 Inside Smalltalk

"The counter is ' is bound to title and the block executes in its defining context. Thus, the
transcript displays 'The counter is 20'. Note that the block accesses variable count.
Normally, the statements in the block would execute one by one until the last one. If that
were to happen, we would expect 'frown' to be returned to the helloTest: context. However,
there is a return statement prior to string 'frown’ in the block. So an immediate return with
'smile’ as the answer results. But what do we return from — from hello or helloTest:? The
answer is from the method in which the block was defined — not from the method that
started the block executing. In this case, it is method hello and not helloTest:.

Since blocks are objects, they can be manipulated just like other objects. Assigning
them to variables or passing them as parameters in messages is normal. However, we don't
normally store blocks that contain imbedded return statements. The reason is clear — you
can't return twice from the same method. After storing a block for use at some arbitrary
point in the future, a return from the defining method is virtually guaranteed. Evaluating the
block after that point causes an attempt to return a second time, This error situation is
detected and signalled. The rule is simple: Blocks intended for long term storage should
not have imbedded return statements.

When blocks are not stored, imbedded return statements can be very useful. For
example, a user could easily define a method such as the following:

getPermissionFor: aPerson password: aString ifFail: aBlock
*Check the security clearances of the person. If it fails, execute the block.”
... code to perform the checking ...
checkingFailed ifTrue: [aBlock value).
... code to record the entrance of the person into the secure area ...

The method might then be used by an interactive system that first creates a person object for
reference and performs the required checks.

chockdn
“Prepare to track the person entering the secure area. Returns true if entry
permission granted; false otherwise.”
| person password |
... code to obtain the person’s name ...
person « Person named: aString.
... code to obtain the person's password ...
password « aString.
*Verify clearances.”
seif getPormissionFor: aPerson password: aString ifFail: [Tfalsel.
... code to obtain entrance location ...
Ttrue

If the person fails to obtain permission, the getPermissionFor:password:ifFail:
method returns control to the sender of checkIn —- this occurs because executing
‘aBlock value’ causes ‘Tfalse’ to be executed, which returns from checkIn (not from
getPermissionFor:password:ifFail:). In other words, control never returns to execute
‘code to obtain entrance location’ .

In general, return statements in blocks are essential for control structures. For
example, code such as the following is pervasive.

Chapter 6 Objects 217

testSatisfied
ifTrue: [... TanObject]
ifFalse: [... TanotherObject}

The particular semantics chosen for blocks and their response to the value messages is
important because it permits users to define their own control structures. Even more
important is the fact that these user defined control structures are indistinguishable from the
built-in ones.

6.4.1 Blocks Provide Facilities to Design Control Structures

Blocks already respond to messages that are viewed as control structures. The following
protocol is understood by blocks.

control structures

d aBlock whileFalse

Repeatedly evaluates aBlock as long as it returns false.
aBlock whileFalse: anotherBlock
Repeatedly evaluates anotherBlock as long as aBlock evaluates to false.

aBlock whileTrue
Repeatedly evaluates aBlock as long as it returns true.
aBlock whileTrue: anotherBlock
Repeatedly evaluates anotherBlock as long as aBlock evaluates to true.

Each of these methods can be implemented using value messages and the boolean
control structures. For example, the latter two can be implemented as follows:

whileTrue
“Repeatedly evaluates aBlock as long as it returns true.”
Tiself value] whileTrue: i]

whileTrue: anotherBlock
“Repeatedly evaluates anotherBlock as long as aBlock evaluates to true.”
Tself value ifTrue: [anotherBiock value. self whileTrue: anotherBlock]}

Some control structures, like whileTrue: and those associated with boolean receivers,
are compiled inline for efficiency. But a great many are not. Examples include control
structures such as the following:

1 to: 10 do: [:index | ...].

10 timesRepeat: [...].

aSet do: [:element ! ...].

anOrderedCollection collect: [:element ! ...}

‘hello’ collect: [:aCharacter | aCharacter asUppercase].

The collection classes, in particular, have a wide range of control structures defined
explicitly in terms of blocks. We will subsequently investigate the control structures
provided by class Boolean. An interesting series of control structures for sequencing over
binary trees is included at the end of this chapter.

218 Inside Smalltalk

1209

To illustrate the power of such extensions, it is easy but not worthwhile adding
personalized variations of the basic control structures. For example, beginners often
complain about the unnaturalness of the ifTrue:ifFalse: notation for if-statements. It is
casily changed, for example, by adding the following to class Boolean.

then: aBlock else: anotherBlock
Tself ifTrue: [aBlock value] ifFalse: [anotherBlock value]

Better yet, we could add it as follows:

then: aBlock else: anotherBlock
Tself ifTrue: aBlock ifFalse: anotherBlock

It is subsequently legal to write

Inl

*For what minimum value of n does n factorial contain at least 100 digits.”
n « 10. "Some arbitrary starting point.”
[true} whileTrue: [n factorial printString size < 100 then: [n «— n + 1] else: {Tn]]

Note that the else-part has an explicit return that gets it out of the infinite while loop
— the then-part has no such return. Both parts work correctly because of the way value
messages work.

6.4.2 Syntactic Details and Recursive Blocks

Syntactically, blocks satisfy the following syntax. Note that the syntax for version 2.4 and
beyond is an upward compatible extension of the syntax provided in earlier versions. In

version 2.4, there are two intervening bars “I” between the parameters and the local
variables.

Before version 2.4 Version 2.4 and after

[:parameterq :parameter; ... :parametery | [:parameterq :parametery ... parameterp, |
statement;. I localy locals ... localy, |
statement,. statementy.
o) statement;.

Before version 2.4, local variables are not permitted. Note that locals are indicated with
two ‘I’ indicators — one after parametery and one before localy. A block is executed, as
discussed previously, by sending it an appropriate value message with the required number
of arguments.

All statements in a block can access block parameters in addition to variables declared
outside the block; e.g., self, super, instance variables, method parameters, method locals, and
parameters from containing blocks. Prior to version 2.4, block parameters could but need not
have been declared as local variables in the method. In the new version, block parameters are
strictly local to the block — a compiler warning will remind you. For example, the

following variation from ParcPlace Systems™ generates a warning in version 2.4 but not in
earlier versions.

Chapter 6 Objects 219

example1
| aClass |
Object subclasses do: {:aClass |
Transcript show: aClass name; erl.
Transcript show: 'The last class was ’, aClass name; cr.
*aClass is nil in version 2.4"

Prior to version 2.4, method local ‘aClass’ and block parameter ‘aClass’ were the
same. In the new version, they are distinct — standard lexical scoping rules apply.
Additionally, blocks are not re-entrant prior to version 2.4; e.g., the following would not
work.

example2
I fibonacciBlock |
fibonacciBlock « [:n |
n<2
ifTrue: [1]

ifFalse: [(fibonacciBlock value: n-1) + {fibonacciBlock value: n-2)11.
(fibonacciBlock value: 7) = 21

ifTrue: [Transcript show: ‘blocks are recursive']
ifTrue: [Transcript show: ‘blocks are not recursive’)

Prior to version 2.4, the space for all block parameters resides in the containing
method context. Invoking the same block a second time would overwrite the unique
parameter n. Consequently, on return from sending the second value: message, the n would
have its most recent value rather than the value it used to have before the invocation. After
version 2.4, the space for block parameters is obtained each time a value: message is sent —
the compiler optimizes those situations that don't require it. Hence, everything works as
expected.

6.5 CLASS BOOLEAN

Class Boolean provides the general protocol for true and false. For efficiency reasons, the
general protocol is specialized via subclasses True and False (sec Fig. 6.14). Objects true
and false are the sole instances of True and False respectively.

Figure 6.14 The Boolean hierarchy.

220 Inside Smalltalk

The protocol provided by Boolean provides a small number of generic methods that
apply to both true and false. The protocol for True, on the other hand, applies only to
instance true. Consequently, there is no need to determine the receiver in the code for the
methods. The same holds in the protocol for False. Consequently, a method such as not is
implemented differently in each subclass.

instance creation (disabled, defined in Boolean)

hd Boolean new

Gives an error message; new instances not allowed.

logical operations (defined in Boolean)

hd aBoolean eqv: anotherBoolean

Returns true if aBoolean and anotherBoolean are both true or both false;
false otherwise.

aBoolean xor: anotherBoolean
Returns true if either aBoolean or anotherBoolean is true but not both; false
otherwise.

logical operations (defined in True and False)

i aBoolean not

Returns true if aBoolean is false and false otherwise.

aBoolean & anotherBoolean
The and operation. Returns true if aBoolean and anotherBoolean are both
true; false otherwise.

aBoolean | anotherBoolean
The or operation. Returns true if either aBoolean, anotherBoolean, or both
are true; false otherwise.

aBoolean and: aBlock
The short circuit and operation. If aBoolean is true, computes and returns

the block result; otherwise, returns false without evaluating aBlock.
aBoolean or: aBlock

The short circuit or operation. If aBoolean is false, computes and returns the
block result; otherwise, returns true without evaluating aBlock.

copying (disabled, defined in Boolean)

aBoolean deepCopy

New instances not allowed; returns self.
aBoolean shallowCopy

New instances not allowed; returns self.

printing (defined in Boolean)
i aBoolean storeOn: aStream

Defaults to printOn:.

Chapter 6 Objects 221

printing (defined in True and False)

® aBoolean printOn: aStream

Adds either ‘true’ or ‘false’ to the stream depending on whether aBoolean is

true or false respectively.

control structures (defined in True and False)

aBoolean ifTrue: trueBlock
aBoolean ifFalse: falseBlock

aBoolean ifTrue: trueBlock ifFalse: falseBlock
aBoolean ifFalse: falseBlock ifTrue: trueBlock

If aBoolean is true, evaluates the true block if there is one and returns the
result; otherwise, returns nil. Similarly, if aBoolean is false, evaluates the
false block if there is one and returns the result; otherwise, returns nil.

For efficiency reasons, most of the control structures are compiled inline. Other
operations like &, |, not, and printOn: are implemented differently in True and False. For

example, consider the following summary.

In True

not
Tralse
& aBoolean
TaBoolean
| aBoolean
Ttrue
and: aBlock
TaBlock value
or: aBlock
Ttrue
printOn: aStream
aStream nextPutAll: 'true’
ifTrue: trueBlock
TtrueBlock value
ifFalse: falseBlock
Thil
ifTrue: trueBlock ifFalse: falseBlock
TtrueBlock value
ifFalse: falseBlock ifTrue: trueBlock
TtrueBlock value

In False

not
Ttrue
& aBoolean
Ttatse
| aBoolean
TaBoolean
and: aBlock
Tfalse
or: aBlock
TaBlock value
printOn: aStream
aStream nextPutAll: ‘true’
ifTrue: trueBlock
Tnil
ifFalse: falseBlock
TtalseBlock value
ifTrue: trueBlock ifFalse: falseBlock
TtalseBlock value
ifFalse: falseBlock ifTrue: trueBlock
TtalseBlock value

In both cases, there is no need to interrogate the identity of the receiver. For example,
the not for true simply returns false because the only way to have reached that method is
for the receiver to have been true. On the other hand, if the receiver had been false, then the
not method in class False would have been executed. This version of not simply needs to
return true. The same idea applies to each of the operations defined in subclasses True and

False.

Inside Smalltalk

Because true and false are instances of two different classes, there is no need to store
data in the instances to differentiate them. Both true and false are objects without instance
variables.

The few methods that are implemented in common superclass Boolean are very
simple. For example, consider the following:

In Boolean

eqv: aBoolean

*Returns true if self and aBoolean are both true or both false; otherwise, returns
false."

Tself == aBoolean

xor: aBoolean

"Returns true if either self or aBoolean is true but not both; otherwise, returns
faise."

T(self == aBoolean) not

6.6 DESIGNING A NEW CLASS: BINARYTREE

In this section, we consider the design of a new class of objects, binary trees. Our main
concern is to take into account all of the notions that we met in previous sections. Rather
than evolve the design in stages, we present a final result, but we enumerate the questions
and the answers we came up with in the process of developing the design. We will also
consider two design extremes: a standard design using a single class and a non-standard design
using several classes.

Typical Questions We Asked (With Answers)

* What kinds of operations are unique to binary trees?
Operations like depth, leftTree, rightTree.

* Do we expect to be able to store data in binary trees?
Yes, arbitrary objects. We'll call it the tree's label — we'll access it via
label and change it via label:.

* Do we want to be able to tell the difference between an empty tree and a non-
empty one?

Yes, empty trees don't have subtrees nor can they be labelled (this last
point is debatable).

¢ Should we use nil to denote an empty tree?
Bad idea — nil does not respond to typical binary tree queries like depth.
Moreover, we do not wish to modify nil so that it does.

* Do we need to be able to print trees?

Yes, <'hi’ -- <'there' <'you' -- --> --> is an example of the notation we
settled on.

* What about store strings?

How about (BinaryTree label: 'hi’ leftTree: (BinaryTree empty) rightTree:
etc.)?

Chapter 6 Objects 223

* Do we care about the semantics for copy?
Yes, it doesn't make much sense to provide a shallow copy (the default).
So we'll redefine copy to provide a deep copy. There is no need to change
shallowCopy or deepCopy.

¢ Should we design new control structures?
Yes, preorder, inorder, and postorder traversals on binary trees are well
known. These are control structures.

* Do we need to worry about comparison operations?
Yes, equality for binary trees should take both the structure of the trees and
their labels (the data) into account. The default inherited from object
defines equality as identity.

¢ Do we need to define both = and ~=?
No, just =. Operation ~= is defined in terms of = and not.

* Do we need to be able to modify existing trees?
Yes, destructive operations like leftTree: and rightTree: would be useful.

* s there ever a need to mutate an empty tree into a non-empty tree?
Yes, once in a while, we could be referencing an empty tree that needs to
change but we may not be aware of all other references to it. Rather than
use become: to change it, we will extend the semantics of label:,
leftTree:, and rightTree: so that attempts to add such information to an
empty tree automatically causes it to mutate into a non-empty tree. Note:
Our initial inclination had been to make this an error.

6.6.1 A Standard Design

These deliberations lead us to the following design. A binary tree is either an empty tree or
a non-empty tree. Non-empty trees can have a label, a left subtree, and a right subtree. It is
illegal to attempt to create a binary tree with invalid subtrees. Binary trees are created in one
of two ways:

. BinaryTree empty
Constructs a new empty binary tree and returns it.

. BinaryTree label: anObject leftTree: aBinaryTree rightTree: aBinaryTree
Constructs a new non-empty binary tree with the information supplied and
returns it.

Attempts to add a label, left tree, or right tree to an empty tree automatically cause the
empty tree to mutate into a non-empty tree. This is an unusual feature that is not intended to
be the normal way that binary trees are extended, but then, how are we to predict what users
will do?

Note to implementors (please hide this fact from users): Since we don't permit non-
empty trees to contain non-trees, both the left and right subtrees must be instances of class
BinaryTree. Consequently, we will interpret a binary tree with a non-tree in one of the
subtree fields as an empty tree; i.e., an empty tree is an ill-formed non-empty tree. For
simplicity, we will assume that a binary tree is empty if the left subtree is nil. This is
convenient because uninitialized trees are automatically empty.

224 Inside Smalltalk

[E. [

Class BinaryTree

class name BinaryTree
superclass Object
instance variable names label leftTree rightTree

class methods

instance creation

mﬁ*super new

label: anObject leftTree: aBinaryTree rightTree: anotherBinaryTree
Tsuper new

label: anObject; leftTree: aBinaryTree; rightTree: anotherBinaryTree;
yourself

new
Tself ervor: 'empty trees are created with empty or label:leftTree:rightTree:'

examples

example1
*Create a binary tree and see if it prints as <Hello <how -- --> <are <you -- --> -->>."
TBinaryTree
label: #Hello
leftTree: (BinaryTree
label: #how
leftTree: BinaryTree empty
rightTree: BinaryTree empty)
rightTree: (BinaryTree
iabel: #are
leftTree: (BinaryTree
label: #you
leftTree: BinaryTree empty
rightTree: BinaryTree empty)
rightTree: BinaryTree empty)
“BinaryTree example1”

example2
*See if the store string is correct for example1.”
Tself example1 storeString
*BinaryTree example2”

example3

“Construct an empty tree and see if it will mutate properly to a tree <testing -- -->."
Tself empty label: #testing
"BinaryTree example3"

exampled
*Test depth which should be 3."
Tself example1 depth
“BinaryTree example4”

Chapter 6 Objects

226

example5
“Test size which should be 4."
Tself example1 sizeo
“BinaryTree exampleb”

example6
| aTree |
"Test = and copy; should return true.”
aTree « self example1. TaTree = aTree copy
*BinaryTree example6”

example?
i aTree !
"Test = again; should return false.”
aTree « self example1.
TaTree = (aTree shallowCopy rightTree: BinaryTree empty)
“BinaryTree example7"

example8
| aTree sum |
“Try out the control structures.”

aTree « self examplet.

*First, modify the labels to contain numeric data.”
aTree label: 1.

aTree leftTree label: 2.

aTree rightTree label: 3.

aTree rightTree leftTree label: 4.

“Next walk it, summing the information in the labels.”
sum « 0.
aTree inorderDo: [:label | sum « sum + label].
sum
*BinaryTree example8"

instance methods

querying
depth
"The maximum distance between this tree and some subtree.”
self isEmpty
ifTrue: [T0]
ifFalse: [T1 + (left Tree depth max: rightTree depth)]
size
*The number of non-empty subtrees in all."
self isEmpty
ifTrue: [T0]
ifFalse: [T1 + (leftTree size + rightTree size)]
isEmpty
“Special ill-structured binary trees with nil left subtrees are considered to be
empty.”

TleftTree isNil

Inside Smalltalk

sNonEmpty
Tself isEmpty not

access and modification

label

%elf privatelyCheckForEmptyTreeAccessingError.
label

label: anObject
self isEmpty
ifTrue: [self privatelyMutateintoNonEmptyTree label: anObject]
ifFalse: [label < anObject]

leftTree
self privatelyCheckForEmptyTreeAccessingError.
TleftTree

leftTree: aBinaryTree
self privatelyCheckForABinaryTree: aBinaryTree.
self isSEmpty
ifTrue: [self privatelyMutateintoNonEmptyTree leftTree: aBinaryTree]
ifFalse: [leftTree « aBinaryTree]

rightTree
self privatelyCheckFForEmptyTreeAccessingError.
TrightTree

rightTree: aBinaryTree
self privatelyCheckForABinaryTree: aBinaryTree.
self isEmpty
ifTrue: [self privatelyMutateintoNonEmptyTree rightTree: aBinaryTree)
ifFalse: [rightTree ¢« aBinaryTreel

comparing

= aBinaryTree
*Two binary trees are equal if they have the same structure and their labels are
equal.”
(aBinaryTree isKindOf: BinaryTree) ifFalse: [Tfalse).
self isEmpty ifTrue: [TaBinarvTree isEmptyl.
aBinaryTree isEmpty ifTrue: [Tfalse).
label = aBinaryTree label itFalse: [Tfalsel.
leftTree = aBinaryTree loftTree ifFalse: {Tfalse).
TrightTree = aBinaryTree rightTree

copying

copy
Tself deepCopy

sequencing
do: aBlock

"Sequences through all subtrees in inorder and executes the block with the labels."
Tself inorderDo: aBlock

Chapter 6 Objects 227

inorderDo: aBlock
Sequences through all subtrees in inorder and executes the block with the labels.
self isEmpty
ifFalse: [
leftTree inorderDo: aBlock.
aBlock value: label.
rightTree inorderDo: aBlock]

postorderDo: aBlock
*Sequences through all subtrees in postorder and executes the block with the
labels.”
self isEmpty
ifFalse: [

leftTree postorderDo: aBlock.

rightTree postorderDo: aBlock.

aBlock value: label]

preorderDo: aBlock
*Sequences through all subtrees in preorder and executes the block with the labels.”
self isEmpty
ifFalse:
aBlock value: label.
leftTree preorderDo: aBlock.
rightTree preorderDo: aBlock]

printing

printOn: aStream
*Empty trees print as "--'; non-empty tree print as ‘<label leftTree rightTree>'."
self isEmpty
ifTrue: [aStream nextPutAll: '--'}
ifFalse: [
aStream
nextPut: $<; print: label;
space; print: leftTree;
space; print: rightTree; nextPut: $>)]

storeOn: aStream
"We can do better than the default.”
self isEmpty
ifTrue: [aStream nextPutAll: '(BinaryTree empty)']
ifFalse: [
aStream
nextPutAll: '(BinaryTree label: '; store: label;
nextPutAll: ' leftTree: ’; store: leftTree;
nextPutAll: ' rightTree: '; store: rightTree; nextPut: $)]

private
privatelyCheckForABinaryTree: anObject
(anObject isKindOf: BinaryTree)

ifFalse: [self error: 'attempting to create an illegal subtree']

privatelyCheckForEmptyTreeAccessingError
self isEmpty ifTrue: [self error: 'illegal empty tree access attempted'].

Inside Smalltalk

privatelyMutatelntoNonEmptyTree
*For this implementation, empty trees have the same fields as non-empty trees.
Hence there is no need to change one object into another object. Of course, the
result must look like a non-empty tree.”
leftTree «— BinaryTree empty. "Now it is non-empty.”
rightTree & BinaryTree empty. "Now it is non-empty and well-formed.”

6.6.2 A Nonstandard Design

Most of the operations in the above design partition the code into two parts: what to do if
the binary tree is empty and what to do if it is not. For example, the following code
template is pervasive:

seif isEmpty
ifTrue: [...]
ifFalse: [...]

This kind of testing can be eliminated if we adopt the approach taken by the designers
of class Boolean. More specifically, we could create three classes of binary trees as shown
in Fig. 6.15.

CEmptyBinaryTree) Q\IonEmptyBinaryTree)

Figure 6.15 The nonstandard BinaryTree hierarchy.

BinaryTree is designed to play the role of an abstract class; i.e., a class without
immediate instances. All empty binary trees are instances of EmptyBinaryTree; non-empty
binary trees are instances of NonEmptyBinaryTree. Note that this new design is intended
to work exactly the same way as the old. Logically, we want users of binary trees to think in
terms of the simpler design. This design is purely an implementation technique to gain
efficiency.

In this design, empty binary trees have no instance variables (fields). Only non-empty
binary trees have the label, leftTree, and rightTree fields. As can be seen, almost all
operations can be specialized for the two classes of trees. Only isNonEmpty and do: are in
class BinaryTree. Of course, BinaryTree also contains all of the class methods for
creating binary trees.

Chapter 6 Objects 229

Class BinaryTree

class name BinaryTree
superclass Object
instance variable names *none"

class methods

instance creation

lEmptyBinaryTree basicNew

label: anObject leftTree: aBinaryTree rightTree: anotherBinaryTree
TNonEmptyBinaryTree basicNew
label: anObject; leftTree: aBinaryTree; rightTree: anotherBinaryTree;
yourself

new
Tself error: 'empty trees are created with empty or label:leftTree:rightTree:'

instance methods
querying

isNonEmpty
Tself isEmpty not

sequencing

do: aBlock

“Sequences through all subtrees in inorder and executes the block with the labels."
Tself inorderDo: aBlock

The code in each of the methods for class EmptyBinaryTree was obtained from the

corresponding code in the standard design by eliminating the isEmpty test along with the
code for the non-empty case. Even the code for = was specialized.

230

Class EmptyBinaryTree

class name EmptyBinaryTree

superclass BinaryTree

instance variable names “none”

comment An empty binary tree is a binary tree with no label, left

subtree, or right subtree.

instance methods
querying
depth

*The maximum distance between this tree and some subtree.”
To
size
"The number of non-empty subtrees in all.”
To
isEmpty

true

Inside Smalltalk

1w

access and modification

label
self privatelySignalEmptyTreeAccessingError
label: anObject

Tself privatelyMutateintoNonEmptyTree label: anObject
leftTroe

self privatelySignalEmptyTreeAccessingError
leftTree: aBinaryTree

Tself privatelyMutateintoNonEmptyTree leftTree: aBinaryTree
rightTree

self privatelySignalEmptyTreeAccessingError
rightTree: aBinaryTree

Tself privatelyMutateintoNonEmptyTree rightTree: aBinaryTree

comparing

= aBinaryTree

*Two binary trees are equal if they have the same structure and their labels are
equal.”
TaBinaryTree isKindOf: EmptyBinaryTree

sequencing

inorderDo: aBlock

"Nothing to do in this case."
postorderDo: aBlock

*Nothing to do in this case.”
preorderDo: aBlock

"Nothing to do in this case.”

printing

printOn: aStream
*Empty trees print as '--'."
aStream nextPutAll: '--'
storeOn: aStream
"We can do better than the default."
aStream nextPutAll: ‘(BinaryTree empty)

private

privatelyMutateintoNonEmptyTree
*For this implementation, empty trees are completely different from non-empty
trees. Hence a become: operation must be used.”
self become: (BinaryTree

label: nil leftTree: BinaryTree empty rightTree: BinaryTree empty)

privatelySignalEmptyTreeAccessingError
self error: ‘'illegal empty tree access attempted'.

In the standard design, both empty and non-empty trees had the same representation.

Mutating an empty tree into a non-empty tree was done easily with traditional code; i.e., it
was as simple as changing the subtree fields to legal binary trees. With this newer design, it

Chapter 6 Objects 231

is no longer possible to use such a simple trick. The only solution is to use the become:
operation.

Class NonEmptyBinaryTree

class name NonEmptyBinaryTree

superclass BinaryTree

instance variable names label leftTree rightTree

comment A non-empty binary tree is a binary tree with a label, left

subtree, and right subtree.
instance methods
querying

depth
“The maximum distance between this tree and some subtree.”
T1 + lleftTree depth max: rightTree depth)
size
"The number of non-empty subtrees in all."
T1 + (leftTree size + rightTree size)
isEmpty
Tralse

access and modification

label
Tlabel
label: anObject
label «- anObject
leftTree
TleftTree
leftTree: aBinaryTree
self privatelyCheckForABinaryTree: aBinaryTree.
leftTree ¢ aBinaryTree
rightTree
TrightTree
rightTree: aBinaryTree
self privatelyCheckForABinaryTree: aBinaryTree.
rightTree « aBinaryTree

comparing

= aBinaryTree
“Two binary trees are equal if they have the same structure and their labels are
equal.”
{aBinaryTree isKindOf: NonEmptyBinaryTree) ifFalse: [Tfalse].
label = aBinaryTree label ifFalse: [Tfalsel.
leftTree = aBinaryTree leftTree ifFalse: [Tfalsel.
TrightTree = aBinaryTree rightTree

copying
copy
Tself deepCopy

232 Inside Smalltalk

sequencing

inorderDo: aBlock
*Sequences through all subtrees in inorder and executes the block with the labels.”
leftTree inorderDo: aBlock. aBlock value: label. rightTree inorderDo: aBlock
postorderDo: aBlock
“Sequences through all subtrees in postorder and executes the block with the
labels.”
leftTree postorderDo: aBlock.
rightTree postorderDo: aBlock.
aBlock value: label
preorderDo: aBlock
"Sequences through all subtrees in preorder and executes the block with the labels.”
aBlock value: label. leftTree preorderDo: aBlock. rightTree preorderDo: aBlock

printing

printOn: aStream
“Non-empty tree print as ‘<label leftTree rightTree>'."
aStream
nextPut: $<; print: label;
space; print: leftTree;
space; print: rightTree; nextPut: $>
storeOn: aStream
"We can do better than the default.”
aStream
nextPutAll: '(BinaryTree label: *; store: label;
nextPutAll: ’ leftTree: '; store: leftTree;
nextPutAll: ' rightTree: '; store: rightTree; nextPut: $)

private

privatelyCheckForABinaryTree: anObject
{anObject isKindOf: BinaryTree)
ifFalse: [self error: 'attempting to create an illegal subtree’)

6.7 CLASSES AND METACLASSES

A class is a repository for the information about instances. For example, the instance
methods are stored in the class. For execution purposes, sending a message to an object
results in a search process that begins by

* Extracting the class from the receiver.
* Looking in the class for a method with the same name.

¢ If one is found, a suitable context for execution is established and the method
executed.

If none is found, the superclass is found and the process repeated until either a
method is found or no more superclasses exist, at which point
doesNotUnderstand: is invoked.

Chapter 6 Objects 233

Now what happens if a message is sent to a class instead of an instance? Exactly the
same thing. But doesn't the search mechanism at least have to have a special case test like
the following?

if looking for an instance method
then

look in the spot reserved for instance methods
olse

fook in the spot reserved for class methods

The answer is that it could have been done that way but a better way was devised.
Exactly the same mechanism can be used for both without special case tests if methods for
classes are stored in some object other than the class itself. We call this object a metaclass.
To repeat,

the methods for instances are stored in the instance's class

the methods for classes are stored in the class's class

We already know that classes are objects like instances — hence they too have a class.
For example,

100 class = Smallinteger
Smallinteger class = the metaclass for Smalllnteger
(actually prints as ‘Smallinteger class’)

A metaclass is a repository for information about classes — it is a class for a class.
Every class has a corresponding metaclass. For example, class Boolean, which inherits from
class Object, has a corresponding Boolean metaclass that inherits from the Object metaclass,
as shown in Fig. 6.16.

Boolean

Figure 6.16 The Class and Metaclass hierarchies.

It is easiest to think of the class hierarchy as lying in the foreground; the metaclass
hierarchy is a parallel hierarchy lying in the background.

As far as users are concerned, classes maintain instance methods and metaclasses
maintain class methods. The system automatically manages the creation and removal of
metaclasses when a user creates a new class or removes an existing one. Other than being
aware of their existence, there is no need for users to do anything special about metaclasses.

234 Inside Smalltatk

T

Before we lay the topic to rest, we should be clear about what is not in the system. In
particular, there is no third layer in the background constituting meta-metaclasses. There are
only classes and metaclasses — the buck stops at metaclasses.

Although class Object has no superclass, it is easy to find out with the browser or
with inspectors that metaclass Object does have a superclass. In fact, there is a small
hierarchy above metaclass Object. We won't investigate this hierarchy here but it is
important to realize that it contains all of the standard operations for creating, extending,
modifying, deleting, and manipulating classes. We will present a very brief survey of these

operations but we will not go into great detail. Too many are of use only to the system
designers.

querying the structure of the instances
¢ aClass instSize

Returns the number of named instance variables (as opposed to indexed
variables) in instances of the class.

® aClass isFixed

True if instances do not have indexed instance variables.
aClass isVariable

True if instances do have indexed instance variables.

aClass isPointers
True if indexed instance variables in instances contain objects {internally
pointers); false otherwise.

aClass isBits
True if indexed instance variables in instances contain bytes or words; false
otherwise.

aClass isBytes
True if indexed instance variables in instances contain bytes.

¢ aClass isWords

True if indexed instance variables in instances contain words.

® aClass kindOfSubclass
Returns one of the following strings: 'subclass: ', * variableSubclass: ',

' variableByteSubclass: ', or ' variableWordSubclass: ' — note the leading
and trailing space.

Each class normally has one superclass and zero or more subclasses. There are no
examples of classes with multiple superclasses but the facility is available. We discuss it
briefly below.

In descriptions that follow, information that must be accumulated by sequencing
through a series of classes, either up or down the class hierarchy, is obtained via methods
that begin with the prefix all.... For example, a method like subclasses would return only
those subclasses that are immediately below the class being queried; allSubclasses would
return the immediate subclasses in addition to their immediate subclasses, the subclasses of

Chapter 6 Objects 235

their immediate subclasses, and so on until no more are available. The latter method, for
example, would be described as retumning the accumulated subclasses.

236

accessing the class hierarchy

aClass superclass
Returns the receiver's immediate superclass; only the first one if there are
several.
aClass superclasses
Returns a collection of the receiver's immediate superclasses.
aClass allSuperclasses
Returns a collection of the receiver's accumulated superclasses.
aClass withAllSuperclasses
Returns a collection containing the receiver in addition to all superclasses.
aClass hasMuitipleSuperclasses
Returns true if the receiver has more than one immediate superclass;
otherwise, faise.

aClass subclasses
Returns a collection of the receiver's immediate subclasses.
aClass allSubclasses
Returns a collection of the receiver's accumulated subclasses.
aClass withAliSubclasses
Returns a collection containing the receiver in addition to all subclasses.

accessing class information

aClass name

Returns the name of the receiver.
aClass category

Returns the system organization category for the receiver.
aClass comment

Returns the receiver's comment.
aClass definition

Returns the receiver's definition.
aClass instVarNames

Returns a collection of immediate instance variable names.
aClass allinstVarNames

Returns a collection of accumulated instance variable names.
aClass classVarNames

Returns a collection of immediate ciass variable names.
aClass sliClassVarNames

Returns a collection of accumulated class variable names.
aClass aliSharedPools

Returns a collection of accumulated dictionaries used as shared pools.

Inside Smalitalk

® aClass selectors
Returns a collection of message selectors (symbols) for all methods
immediately understood by the receiver's instances; i.e., does not return
selectors for methods higher up the hierarchy.

aClass sourceCodeAt: messageSelectorSymbol
Returns the source code as a string for the specified message selector. This
selector must be immediately understood by the receiver.

accessing instances

® aClass allinstances
Returns a collection of all instances of this class.

A large number of methods are concerned with extracting information accessible
through the browser and debugger. Many of these methods (with samplc usage) are listed in
the system workspace.

6.7.1 Multiple Inheritance

Multiple inheritance is a generalization of standard inheritance that permits multiple
superclasses. It is useful for creating new objects that share behavior common to several
existing classes of objects. In Smalltalk, the facility is experimental since there are no
examples using it. A standard example where it might have been used would be to define a
class of objects called ReadWriteStream by combining the behaviors of ReadStream and
WriteStream. For example, this could be done by executing the following code:

Class named: #ExperimentalReadWriteStream
superclasses: 'ReadStream WriteStream'
instanceVariableNames:
classVariableNames: "
category: 'Experimental’

There is no facility for pool variables nor is it possible to use superclasses with
indexed instance variables. From the implementation point of view, the first superclass plays
the role of the standard superclass — its methods are inherited in the normal way. The
methods of the other superclasses (those not shared by some class in the standard superclass
chain) are recompiled in the new context. This is required because the instance variables
introduced by secondary superclasses are no longer in the same relative positions. Compiled
methods in Smalltalk normally reference the instance variables using a fixed offset.

To prevent ambiguity, the methods found by searching along distinct superclass chains
must be the same. If they are not, a conflict error results. Conflict errors are determined
when a class with multiple inheritance is defined. It is handled by creating a local method of
the same name in the new class being created. The new method is placed in a special
category called conflicting inherited methods. Its code body generates an error message
when it is used. Such conflicting methods can be rewritten by the user to eliminate the error
messages. For example, accepting the above definition causes the following class to be
created.

Chapter 6 Objects 237

Class ExperimentalReadWriteStream

class name ExperimentalReadWriteStream
superclasses WriteStream ReadStream
instance variable names “none”

class methods
conflicting inherited methods

on: aCollection from: firstindex to: lastindex
Tself conflictinginheritanceError

instance methods
conflicting inherited methods

contents

Tself contflictinglnheritanceError
next

Tself conflictinginheritanceError
nextPut: anObject

Tself conflictinglnheritanceError
on: aCollection

Tself conflictinglnheritanceError
on: aCollection from: firstindex to: lastindex

Tself conflictinglnheritanceError
position: aninteger

Tself confilictinginheritanceError
reset

Tself conflictinglnheritanceError
size

Tself conflictinglnheritanceError

To work properly, each of the above methods must be rewritten. Often, it is sufficient
to choose a specific variation of the method in a superclass. To enable specific methods in
distinct superclasses to be referenced, a dot notation is provided. For example, it is legal to
write

some tost
ifTrue: [Tself ReadStream.size]
ifFalse: [Tself WriteStream.size]

It is also legal to use this dot notation on more complex selectors — binary or keyword
operations; e.g.,

seif ReadStream.= anotherStream
self ReadStream.on: aCollection from: firstindex to: lastindex

Gencrally, multiple inheritance is most useful when used to add standalone properties
or attributes to new objects. For example, suppose we had defined three independent classes
to manipulate three distinct attributes: a name, an address, and an age as follows:

238 Inside Smalltalk

Class Name

class name
superclass
instance variable names

instance methods
access and modification

name
Tname
name: aSymbol
name « aSymbol

Class Address

class name
superclass
instance variable names

instance methods
access and modification

address
Taddress
address: aSymbol

T |

Name
Object
name

Address
Object
address

address « aSymbol address

Class Age

class name
superclass
instance variable names

instance methods

access and modification

age
Tage
age: aSymbol
age « aSymbol

Age
Object
age

It is then a simple matter to construct a class that combines these attributes and adds

additional behavior of its own.

Class Person

class name
superclasses
instance variable names

instance methods

= aPerson

T(name = aPerson name} & (address = aPerson address) & (age = aPerson age)

Chapter 6 Objects

Person
Name Address Age
"none"

239

6.8 SUMMARY

This chapter has described the important role played by the fundamental classes Object,
Boolean, Undefined Object, and BlockContext in Smalltalk. In particular, we have
described:

* How objects in Smalltalk are represented.

* The meaning of assignment, identity, equality, and copying in Smalltalk.
¢ The use of meta operations (perform) to access and modify objects and for indirect

execution.
* How to read and write objects.

®* QObject mutation with the become: operation.

¢ Blocks as unnamed functions.

¢ The use of blocks to describe control structures.

* (Class Boolean and its subclasses True and False, together with their special

instances true and false.

¢ The use of abstract classes for supporting multiple representations.

®* The Class and Metaclass hierarchies.
* The concept of multiple inheritance.

6.9 EXERCISES

The following exercises are intended to cause some of the material presented above to be
reviewed and elaborated upon. Not all questions have the same degree of difficulty.

240

Determine whether or not shallow or
deep copies are made for arrays and
forms respectively. For example, in-
vestigate the results of #(hello there)
copy and Form black copy re-
spectively.

Create a more general version of
deepCopy that works in the pres-
ence of circular structures. Hint: Use
the same approach that was used for
the general version of =.

Devise a general version of
storeOn: that works for circular
structures.

Change the implementation of
printOn: for both characters and
strings to make the operations uni-

formly applicable. After the change,
there should be no need for

aStream nextPut: aCharacter
aStream nextPutAll: aString

Users would be able to use the fol-
lowing instead:

aCharacter printOn: aStream
aString printOn: aStream

Currently, this does not work because
print strings default to store strings
for these classes of objects.

Investigate operations like
printOn:, storeOn:, and = for a
data type like Fraction. These could
serve as useful templates when de-
signing your own classes of objects.

Inside Smalltalk

6. Are equal small integers identical?
What about equal large integers? For
example, compare 3 factorial with
3 factorial; 100 factorial with
100 factorial.

7. Create a control structure called do:
that permits sequencing over in-
dividual integer digits; e.g., the
following adds 16 digits together.

| sum |

sum « 0.

1234567890123456 do: [:aDigit |
sum ¢ sum + aDigit].

Tsum

8. Create a repeat-until control structure
with the following form:

aBlock
repeatUntil: anotherBlock

9. Design and implement a recursive
version of factorial using blocks.

6.10 GLOSSARY AND IMPORTANT FACTS

classes

BinaryTree An example class used to illus-
trate the basic ideas of this chapter. A bi-
nary tree is either an empty tree or a
non-empty tree. Non-empty trees can have
a label, a left subtree, and a right sub-
tree.

BlockContext The class that provides the
protocol for blocks. An example block is
[count « count + 1. count < 10].

Boolean An abstract class that provides the
common protocol for true and false.

EmptyBinaryTree A subclass of Binary-
Tree; used to illustrate a nonstandard
design that might gain in efficiency over
more standard approaches.

Indirection An example class of objects that
play the role of gateways for other
objects, intended receivers.

Message A class of objects whose instances
are manufactured by the system when a
message is not understood by a receiver;
instances are made parameters of
doesNotUnderstand:; they respond to
messages selector and arguments.

Chapter 6 Objects

10. Can blocks be used to provide a syn-
tactically elegant case-statement con-
struct? Ignore efficiency issues.

11. Extend binary trees so that it is pos-
sible to easily create non-empty trees
that are automatically initialized with
empty subtrees.

12. Create a subclass of BinaryTree
called BinarySearchTree that has
one additional operation

aBinarySearchTree add: aLabel

Is this extension more difficult if the
nonstandard design is used instead?

13. Design and implement a List class
in the Lisp tradition. Also, try a
variation with three classes: List,
EmptyList, and NonEmptyList.
Use the BinaryTree example as the
model.

NonEmptyBinaryTree A subclass of Bi-
naryTree; used to illustrate a nonstandard
design.

Object The uitimate superclass of all classes;
provides the default behavior for such
operations as copying, printing, and
comparing.

True, False Subclasses of Boolean; must

not be confused with instances true and
false.

UndefinedObject A subclass of Object that
provides the protocol for its one unique
instance mnil, the value provided to all
uninitialized variables.

241

instances

nil The sole instance of class Undefined-
Object; the value assigned to all
uninitialized variables; i.e., both to local
variables in methods and to named and
indexed instance variables in objects cre-
ated via messages such as basicNew and
basicNew:.

selected terminology

become: A powerful object mutation opera-
tion.

block An unnamed function; a bracketed
construct (square brackets included) like
[count « count + 1. count < 10]; defined
in the method that contains it when it is
encountered at execution-time (not com-
pile-time); can be invoked with messages
like value, value:, value:value:, value:va-
lue:value:, and valueWithArguments:.

class A special kind of object that serves as a
repository for information about the in-
stances; i.e., it stores both the representa-
tion information and the operations.
However, the information in an individual
class may not be complete; part of the in-
formation may reside in another class
called the superclass.

deep copy A copy whose fields are deep
copies of the corresponding fields of the
original; recursion stops for immutable
objects like integers.

doesNotUnderstand: The default error han-
dler; invoked when an inappropriate
message is sent to an object.

equality operation An operation such as =
and ~= that permits users to determine
whether or not the contents of two objects
are the same; can be redefined.

hash An operation that computes a unique
integer from an object. Equal objects must
have equal hashes, but the converse need
not hold. Hashes are used in classes such
as sets and dictionaries to speed up
searches.

identity operation An operation such as ==
or ~~ that permits users to determine
whether or not two objects are the same;
cannot be redefined.

true, false The sole instances of classes True
and False respectively; inherits protocol
from class Boolean.

indexed instance variable A field of an
object that is normally referenced by an
index when the receiver is responding to a
message; i.e., referenced via at: and
at:put:.

indirect message passing A facility that
permits manufactured messages to be exe-
cuted via operations perform: per-
form:with:, perform:with:with:, per-
form:with:with:with:, and finally per-
form:withArguments:.

instance variable A field of an object; there
are two kinds: named instance variables
and indexed instance variables.

meta operation A somewhat magical op-
eration that permits nonstandard access
and modification to objects. Examples in-
clude instVarAt: instVarAt:put:;, ba-
sicAt:, and basicAt:put:.

method inheritance The notion that an
instance of a class responds to a specific
message by executing the code associated
with the first method of the same name
that is found by traversing the class hier-
archy bottom up.

multiple inheritance The mechanism that
permits classes to have several super-
classes.

named instance variable A field of an object
that is normally referenced by name when
the receiver is responding to a message.

notifier A special window created to inform
the user of some specific fact. A yellow
button menu provides the user with two
options: proceed or debug. The first
causes the notifier to disappear and execu-
tion to continue from where it left off. The
second causes a debugger to replace the
notifier.

Inside Smalltalk

object Anything that can be manipulated;
consists of a representation and oper-
ations (or methods) that it responds to.
It is an instance of some class that can
be determined by sending it the message
class; e.g., 1.2¢3 class will reply with
Float; consists of zero or more fields
called instance variables partitioned into
two groups: named instance variables and
indexed instance variables. The named
instance variables precede the indexed
instance variables. Objects include such
things as characters, integers, strings,
arrays, ordered collections, sets, and
classes themselves.

perform: An operation that permits execution
of a manufactured message.

print string A string which is a textual repre-
sentation of an object. It is often (but not
always) sufficiently informative that alter-
native instances of the same class can be
differentiated.

important facts

Varlables are not objects They cannot be
manipulated and stored.

Classes are objects They can be manipulated
and stored; try inspecting Object,
UndefinedObject, or Boolean.

a « b This assignment is interpreted as “bind
a to the same object that b is bound to.”
From the logical point of view, as-
signments do not copy; they simply re-
bind. From the implementation point of
view, all variables contain pointers to ob-
jects; assignments physically copy point-
ers but they do not copy objects.

We can output as we wish To create a print
string unique to a class, redefine method
printOn:. To create a store string unique to
a class, redefine storeOn:.

We can input arbitrary code Class method
readFrom: in Object compiles and evaluates
a string or stream,; e.g.,

Object readFrom: '100 factorial’

become: is powerful Executing “anObject
become: anotherObject” causes all
references to anObject to be rerouted to
anotherObject and vice versa. Does not
work if either object is a small integer.

Chapter 6 Obijects

representation inheritance The notion that

., an instance of a class inherits the instance
variables specified in classes higher up in
the hierarchy.

shallow copy A copy whose fields are iden-
tical (not just equal) to the corresponding
fields of the original; e.g., a shallow copy
of an array shares the same elements as
the original array.

store string A printable representation that
can be used to re-create an equivalent
instance. For some objects, like integers,
the print and store strings are the same.

superclass The converse of subclass; e.g.,
Object is the superclass of Boolean.

variable Something (not an object) to which
it is possible to bind a value (an object).

yourself A message used when cascading;
useful for creating and initializing com-
plex objects.

Blocks can be stored Blocks can be mani-
pulated and stored; e.g., Junk « [1+2].
Blocks are created at execution time when
the square brackets are encountered. They
are invoked with messages such as value;
e.g., Junk value. A block executes in its
defining context.In the absence of a
return-statement, it returns the last com-
puted value to the sender of the value
message. If a return statement is encoun-
tered while executing a block, a return is
made from the method in which the block
was defined — not from the sender of the
value message. Blocks intended for long
term storage should not have imbedded
return statements.

true and false are unusual They are objects
without instance variables.

do not use True and False They are classes
— not to be confused with corresponding
instances true and false.

243

/

The Magnitude Classes

7.1 MAGNITUDES

Magnitude (see Fig. 7.1) is an abstract class for objects that can be compared using
operations such as <, >, =, <=, >=, and ~= (although = and ~= are inherited from Object).
Magnitudes include numbers, characters, dates, and times. Because of its close
association with numeric classes, Fig. 7.1 also includes class Random, which provides a
stream of randomized floats.

(Large I_NIegative Integer)

(Float)

(Small Integer)

(Large Positive Integer)

Figure 7.1 Magnitudes and other related classes.

Classes ArithmeticValue and LimitedPrecisionReal are both abstract classes with
relatively little protocol. They are recent additions intended to anticipate future extensions.

In addition to providing the comparison operations, class Magnitude also provides the
following operations:

® aMagnitude between: oneMagnitude and: anotherMagnitude (a range comparison)

¢ aMagnitude max: anotherMagnitude (the maximum of two magnitudes)
® aMagnitude min: anotherMagnitude (the minimum of two magnitudes)
®* aMagnitude hash (a unique integer that can be used for faster searching)

Although ‘a between: b and: ¢’ is more convenient than ‘a>=band: [a <=c]’,
the operation is a bit more than a convenience because it prevents a from being evaluated
twice. There is no corresponding operation such as ‘a exclusivelyBetween: b and: ¢’ that
excludes the endpoints. Operations for finding the maximum and minimum are often used
and should be memorized. The last operation hash is designed to compute a unique integer
from a magnitude — equal magnitudes must have equal hashes but the converse does not
hold. Hashes are used in classes such as sets and dictionaries for speeding up searches; e.g.,
by searching only those objects with equal hashes.

7.1.1 Class Magnitude Simplifies the
Iimplementation of New Magnitudes

From the implementor's point of view, the existence of Magnitude simplifies the imple-
mentation of new classes that permit comparisons between their instances. When a new sub-
class of Magnitude is created, only methods for <, =, and hash must be provided — the
other operations are implemented in terms of these two and are inherited from Magnitude.
For example, ‘a>b’ is defined as ‘b < a’; ‘a<=Db’ is defined as ‘(a > b) not’.

To reintroduce an example partially discussed in a previous chapter, consider a revised
definition of Complex. The original version was defined as a subclass of Object. We should
now consider making it a subclass of Magnitude, and more specifically a subclass of
Number. Since it is a magnitude, it should be sufficient to define methods <, =, and hash to
satisfy the magnitude operations. To support the new methods, we also introduce an
implementation of abs specifically for complex numbers. We will ignore issues dealing with
automatic conversion until they are properly discussed in the numbers section.

abe

*The absolute value of a complex number is its length.”
Tself realPart squared + seif imaginaryPart squared) sqrt

< aComplex
aComplex isKindOf: Complex
ifTrue: [Tself abs < aComplex abs]
ifFalse: [Tself error: ‘complex operation requires a complex parameter']

= aComplex
aComplex isKindOf: Compiex
ifTrue: |
Tself realPart = aComplex realPart and: |
self imaginaryPart = aComplex imaginaryPart]
ifFalse: [Tself error: ‘complex operation requires a complex parameter']

246 Inside Smalltalk

(k[N

hash
"Compute the absolute value of the complex number and return the integer's hash."”
Tself abs hash

Although these operations are a minimum requirement for magnitudes, there is
nothing preventing a designer from redundantly implementing <=, >, and >=, for example.
Although it may not apply in this case, the usual reasons for overriding existing operations
in some superclass are

to correct an implementation that is not correct for the new class, or
* to obtain a more efficient version specialized for the particular subclass.

7.2 NUMBERS

Numbers include integers, fractions, and floats. Unlike traditional integers, Smalltalk in-
tegers are unbounded. Consequently, the notion of integer overflow does not exist. Of in-
terest to implementors is the fact that integers are further partitioned into three classes: small
integers, large positive integers, and large negative integers. As users of integers,
however, there is no need to distinguish between the integer subclasses because interactions
and conversions between them are transparent. Consequently, a computation such as

100 factorial

will compute an exact result that will end in 11 zeros (1*2*.. . *10%*.. *20%. . *30*...
.. *90*..*100). More dramatic is a computation like ‘1000 factorial’ that can fill an entire
screen with digits.

Floating point values can be written with the traditional notations such as 1.5 or
1.5¢0. Fractions are new from the point of view of traditional languages. Fractions have
both a numerator and a denominator each maintained as an integer (unbounded). Fractions
represent Smalltalk’s uitimate in high precision arithmetic. Consequently, computations
such as the following are possible.

(1/2) + (1/3) = (5/6)
(1/4) + (1/8) = (1/2)
(1/3) + (2/3) = 1

7.2.1 The Notation for Number Constants

As is traditional, number constants are usually specified in radix 10. However, they may
optionally be specified in any radix ranging from 2 to 36. For a radix greater than 10,
alphabetic letters A through Z (lowercase or uppercase) serve as the corresponding digits.
Radix 11 numbers can contain digits 0 through 9 along with A (but not B, C, ...); radix 12
numbers can contain 0-9,A,B; and so on. Only radix 36 can use all the alphabetic letters as
digits. The facility provided is quite general. However, few users need a radix other than 2
(binary), 8 (octal), 10 (decimal), or 16 (hexadecimal). In formal detail, number constants
satisfy the following syntax (the superscript ? indicates that the preceding item is optional).

integers: Radix7-7Digits
fractions: aninteger / aninteger
floats: I:(adix7-?Digits(.Digits)"Exponent7 (a decimal point or exponent is required)

Chapter 7 The Magnitude Classes 247

The radix (if specified) is indicated by one of 2r, 3r, ..., 9r, ..., 16r, ..., 36r (the r must
be lowercase). Although a minus sign is optional, a + sign is not allowed. Additionally, the
minus sign is only allowed after the radix specification (if provided). If a decimal point is
used, one or more digits are required both before and after the decimal point.

For scientific notation, an exponent of the form e-’Digits (the e must be a lowercase
¢) can be used — the exponent digits are always in decimal and the exponent raises the radix
to the specified power. Logically, this implies the exponent has the effect of moving the
decimal point left or right the specified amount. Finally, it is not possible to use the
scientific notation with a radix greater than 14 because the exponent e is interpreted as a
valid digit. Some examples include:

1999, -1999, 3.14159265358979, 1.060, -2.0e-10, 5e20 (2 integers and 4 floats)

2r1111, 8r17, 10r15, 16rF (equivalent integer values)
2r1111.0e0, 2r111.1e1, 2r11.11e2, 2r1.111e3, 2r0.1111e4 (equivalent float values in binary)
8r17.0e0, 8r1.7e1, 8r0.17e2, 8r0.017e3 {equivalent float values in octal)
16.0e0, 1.6e1, 0.16e2 (equivalent float values in decimal)
2r11.11e2, 8r1.7e1, 10r1.5e1 (equivalent float values)

1/2, 2r1/2, 1/10r2 {equivalent fractional values)

Note that it is not possible to show equivalent float values in hexadecimal; e.g.
16rF.0c0 has no exponent specified — the e is just another digit and does not signify an
exponent,

7.2.2 Converting Numbers to Strings

Recall that two general methods are provided for converting objects to strings:

anObject printString
Produces a compact, though not necessarily complete, string representation
of the object.

anObject storeString
Produces a string representation that re-creates an object equal to the
original object when executed.

In the case of numbers, printString and storeString both return the same result. Some
examples include:

-1999 printString = '-1999'

1.23456789¢2 printString = '123.457' and 1.23456789¢e22 printString = '1.23457e22'
{the actual number of significant digits depends on the specific implementation)
{1/2) printString = '(1/2)'

Of course, the user may wish to store and/or print integers in a radix different from the
standard decimal base. Two special methods are provided for this case (once again, these two
are equivalent):

® anlnteger printStringRadix: aRadix

A string representation of the number in the specified radix — 2 to 36.
aninteger storeStringRadix: aRadix
(same as above)

248 Inside Smalltalk

Consequently, the following result is produced:

31 printStringRadix: 2 = '2r11111"
31 printStringRadix: 8 = '8r37"

31 printStringRadix: 10 = '10r31’
31 printStringRadix: 16 = ‘16r1F'
31 printStringRadix: 36 = '36rV'

Creating Specialized printString and storeString Methods

When designing a new class, it is natural to want to provide a specialized printString and
storeString. However, if we browse through the class library, we will find that only one
printString and one storeString exist in the entire system. These are defined as follows:
printString
| aStream |
aStream « WriteStream on: (String new: 16).

self printOn: aStream.
TaStream contents

storeString
| aStream |
aStream ¢ WriteStream on: (String new: 16).
self storeOn: aStream.
aStream contents

Instead of individual classes providing their own version of printString and
storeString, we find them providing their own versions of printOn: and storeOn: instead.
In the case of complex numbers, for example, we could define these methods as follows:

printOn: aStream

realPart printOn: aStream.
imaginaryPart negative ifFalse: [aStream nextPut: $+].

imaginaryPart printOn: aStream.
aStream nextPut: $i

storeOn: aStream
aStream nextPutAll: ‘(Complex new realPart: ‘.
realPart printOn: aStream.
aStream nextPutAll: ’; imaginaryPart:’
imaginaryPart printOn: aStream.
aStream nextPutAll: '; yourself)

You do need to understand the stream operations nextPut: (for output of an individual
character) and nextPutAll: (for output of a string). With these methods added to class
Complex, a complex number with real part 1.0 and imaginary part -2.0 will print and store
(using printString and stereString) as '1.0-2.0i' and '(Complex new realPart: 1.0;
imaginaryPart: -2.0; yourself)' respectively.

7.2.3 Converting Strings to Numbers

As in the previous section, conversions from strings to numbers require streams as an
intermediary. The conversion is achieved via

® Number readFrom: (ReadStream on: aString)

Chapter 7 The Magnitude Classes 249

In general, there is no facility to recover gracefully from errors of syntax. If the need
arises, a more flexible version readFrom:onError: would have to be devised. Finally, if
the remainder of the string (after the number) is desired, an alternative sequence of statements
such as the following might be used.

aStream « ReadStream on: aString.
aNumber « Number readFrom: aStream.
aString « aStream upTo: nil.

See the section on streams for a more detailed discussion of associated stream operations.
7.2.4 Type Conversion

Conversion between different classes of numbers is automatic and transparent to users.
Conversion occurs in the direction (integer = fraction = float) in an attempt to maintain as
much accuracy as possible. Explicit conversion operations can also be used; e.g.,

aNumber asinteger, asFraction, asFloat (for integers, fractions, or floats).

® aninteger asCharacter (integers only).

From the point of view of implementors, this user view is insufficient. In order to
design a new class of numbers, it is essential that the protocol used by the system for
managing type conversions be used so as to integrate the new class as much as possible with
the existing number classes.

Binary arithmetic operations in the system are designed to operate on operands of the
same class; e.g., the float + operation requires both of its operands to be of class float. To
ensure that this is the case, all binary operations check the class of the right operand. If the
right operand class is different from the left operand class, one of the operands is converted to
the class of the other and the same operation is retried. To determine which operand is to be
converted, two approaches are used. The first technique is based on generality numbers and
is used prior to version 2.5 of the system. The operand with the lowest generality number is
converted to the class of the other. The second, more recent, technique is based on double
dispatching — an efficient technique for determining the types of the two operands without
having to explicitly interrogate the operand classes. Although double dispatching supersedes
generality numbers, the latter is still used for default type conversion if the designer of a new
number class did not provide the needed type conversion from existing classes to the new
number class.

The Existing Generality Numbers

Each numeric class is provided with a generality number. Currently, the following
generality numbers are being used:

float: generality 80

fraction: generality 60

large positive integer: generality 40
large negative integer: generality 40
small integer: generality 20

e & & & o

250 Inside Smalltalk

Additionally, unless explicitly overridden, the generality number inherited by any new
subclass of number is 40 (the method returning the generality number for both large
integers was placed in number simply to avoid duplicating it).

The Existing Coercion Operations (Using Generality
Numbers)

Once the system has determined that operand A, say, has a higher generality number than B,
‘A coerce: B’ is invoked to convert B to a number of the same class as A (the alternative
would result in ‘B coerce: A’ being invoked). Method ‘coerce: Operand’ for the respective
classes is (or should be) defined as follows:

Operand asFloat (for float)
Operand asFraction (for fraction)
Operand asinteger (for all three specializations of integer)

For the three integer specializations, method asInteger simply returns ‘self
truncated’. Unfortunately, the coerce: method for these return ‘Operand truncated’
instead of ‘Operand asInteger’, presumably as a speed optimization. As we will see, this
will have to be repaired when we more fully integrate complex numbers into the number
system — truncating a complex number is not the same as converting it to an integer.

Forcing Type Conversion on a Binary Operation (Via
Generality Numbers)

If a binary operation is invoked with incompatible operands, there is no need for the method
itself to go through the determination as to which operand to convert, to explicitly perform
the conversion, and then to reinvoke the given operation. A general method has already been
provided in Number! for this purpose:

® aleftOperandNumber retry: anOperatorSymbol coercing: aRightOperandNumber

For an example of actual usage, method < for fractions (as it existed prior to version
2.5) is shown next:

< aFraction
(aFraction isMemberOf: Fraction)
ifTrue: [... detailed < code for fractions ...]
ifFalse: [Tself retry: #< coercing: aFraction]

Note the manner in which the operator symbol is specified in the retry:coercing:
message. Also, isMemberOf: is used instead of isKindOf: to ensure that specializations are
converted to the more general type. For fractions, isMemberOf: and isKindOf: are
equivalent because there are no specializations (yet).

lActually, the method is in abstract class ArithmeticValue. Prior to version 2.5, this abstr