
HI: i

Universitiit Bern
Institut fUr Informatik und
angewandte Mathematik

Langgassstrasse 51
3012 BERN

Inside
Smalltalk
Volume I

....,,----_._-----.,

WiI' R. LaLonde
School ofComputer Science
Carleton University

John R. Pugh
School ofComputer Science
Carleton University

UN1VERSITAT BERN
1t-!STITUT FUR INFORMATIK

UNO ANGEWANDTE MATHEMATIK
Bibliothek

I Signatur: 2[; 4A. !o ~ JI
~--.-...--

til Prentice-Hall International. Inc.

This edition may be sold only in those countries to which
it is consigned by Prentice-Hall International. It is not to
be re-exported and it is not for sale in the U.S.A., Mexico,
or Canada.

II (t) 1990 by PRENTICE-HALL, INC.
_ A Division of Simon & Schuster
=- Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2

ISBN 0-13-468430-3

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall, Inc., Englewood Cliffs, New Jersey

!I

~nivers;tiit Bern
Instltut fUr Informatik und
ang:wandte Mathematik

langgassstrasse 51
3012 BERN

Table of Contents

PREFACE

1 OBJECT-ORIENTED PROGRAMMING
1.1 Introduction, 1

1.2 OOP Is Programming by Simulation, 1
1.3 Traditional Versus Object-Oriented Programming, 3

1.3.1 A Traditional Approach, 3
1.3.2 An Object-Oriented Approach, 4
1.3.3 Objects Encapsulate State and Operations, 5
1.3.4 Objects Communicate via Message-Passing, 6

1.4 OOP Is Programming with Abstract Data Types, 7
1.5 OOP Is Programming via Classification, 9
1.6 OOP Is Programming with Polymorphism, 11

1.6.1 Static Versus Dynamic Binding, 12

1.7 OOP Is Programming with Inheritance, 13
1.7.1 Specialization and Generalization, 14

1.8 Summary, 18
1.9 Glossary, 18

2 SMALLTALK FUNDAMENTALS
2.1 Introduction, 21
2.2 Objects in Smalltalk, 22

2.2.1 What Is a Smalltalk Object?, 23
2.2.2 Information Hiding: Internal and External Views of an Object, 23
2.2.3 Literal Objects, 24

2.3 Sending Messages, 25
2.3.1 Unary Messages, 26
2.3.2 Binary Messages, 27
2.3.3 Keyword Messages, 27
2.3.4 Evaluation of Message Expressions, 28

XI

1

21

iii

2.3.5 Cascaded Messages, 28
2.3.6 Dynamic Binding and Overloading, 29
2.3.7 Variables and Assignments, 30
2.3.8 Allocation and Deallocation of Objects, 32

2.4 Control Structures with Message-Passing, 32
2.4.1 Conditional Selection, 33
2.4.2 Conditional Repetition, 35
2.4.3 Fixed Length Repetition, 36
2.4.4 An Example: Testing for Primes, 37
2.4.5 User-Defined Control Structures, 39

2.5 Classes, 40
2.5.1 Designing a New Class, 40
2.5.2 Class Protocol versus Instance Protocol, 41
2.5.3 Implementing a Class Description, 42
2.5.4 Describing a Class, 43
2.5.5 Describing Methods, 45
2.5.6 Variables and Scope, 46
2.5.7 The Pseudo-Variable self, 50
2.5.8 Methods Can Be Recursive, 51

2.6 Inheritance, 51
2.6.1 Method Inheritance, 53
2.6.2 An Example: Constrained Pens, 53
2.6.3 The Pseudo-Variable super, 57
2.6.4 Abstract Classes, 60

2.7 Summary, 62

2.8 Exercises, 63

2.9 Glossary, 64

3 AN INTRODUCTION TO THE SMALLTALK USER INTERFACE
3.1 Introduction, 61

3.1.1 Smalltalk Provides an Integrated Programmng Environment, 68
3.1.2 Try it Yourself, 68
3.1.3 Not All Smalltalks Are Exactly Alike, 69
3.1.4 Not All Com puters Are Alike, 69
3.1.5 Pointing Device Mechanics, 70

3.2 Getting Started, 71
3.2.1 Activating Smalltalk, 71
3.2.2 Changing the Active Window, 72
3.2.3 The 'Ideal' Smalltalk Mouse, 73
3.2.4 Using Pop-Up Menus, 75
3.2.5 Making a Menu Selection, 77
3.2.6 Restoring the Display, 77

3.3 Manipulating Windows, 77
3.3.1 Creating New Windows, 77
3.3.2 Manipulating Windows, 78
3.3.3 Relabeling Windows, 80
3.3.4 Scrolling through Windows, 81

iv

67

Inside Smalltalk

3.4 Editing Text, 85
3.4.1 Inserting Text, 86
3.4.2 Selecting Text, 86
3.4.3 Replacing Text, 87
3.4.4 Deleting Text, 88
3.4.5 Cut, Copy, and Paste, 88
3.4.6 Again and Undo, 89

3.5 Evaluating Smalltalk Expressions, 90
3.5.1 Evaluating Code in a Workspace Window, 90
3.5.2 Evaluating Existing Smalltalk Code, 91
3.5.3 Compilation Errors, 91

3.6 Quitting from Smalltalk, 93
3.7 Summary, 94
3.8 Exercises, 94

3.9 Glossary, 95

4 PROGRAMMING WITH BROWSERS 99

4.1 Introduction, 99
4.2 System Browsers, 101
4.3 Viewing Existing Classes, 102

4.3.1 Finding a Class, 104
4.3.2 Viewing Class Definitions, 104
4.3.3 Viewing the Class Hierarchy, 106
4.3.4 Viewing the Protocol Supported by a Class, 107
4.3.5 Viewing Methods, 108
4.3.6 Finding a Method, 109
4.3.7 Obtaining Explanations, 109

4.4 Evaluating Code from within a Browser, 110

4.5 Adding and Modifying Methods and Classes, 112
4.5.1 Modifying Existing Methods, 112
4.5.2 Adding New Classes, 114
4.5.3 Adding New Methods, 118
4.5.4 Adding New Class Categories, 119
4.5.5 Modifying Existing Class Definitions, 119
4.5.6 Renaming Class Categories, Classes, Method Categories, and Methods, 121
4.5.7 Removing Class Categories, Classes, Method Categories, and Methods, 122

4.6 Specialized Browsers, 123
4.6.1 Browsing by Category, Class, Message Category, and Message, 123
4.6.2 Browsing the Superclass Chain, 126
4.6.3 Browsing Selected Sets of Methods, 127

4.7 Saving Your Work, 133
4.7.1 Filing Out, 133
4.7.2 Printing, 135
4.7.3 Filing In, 135
4.7.4 Using the File List Browser, 135
4.7.5 Updating the Smalltalk Image, 139
4.7.6 Using the Changes File, 140
4.7.7 Surviving a System Crash, 141

Table of Contents v

4.8 Summary, 141

4.9 Exercises, 142

4.10 Glossary and Important Facts, 143

5 DEBUGGING WITH INSPECTORS, NOTIFIERS, AND DEBUGGERS 147
5.1 Introduction, 147

5.2 Inspecting Objects, 148
5.2.1 Inspecting the Instance Variables of an Object, 150
5.2.2 Modifying the Values of the Instance Variables of an Object, 150
5.2.3 Evaluating Expressions within an Inspector, 150
5.2.4 Inspecting the Instance Variables of an Inspected Object, 151
5.2.5 Inspecting Dictionaries, 152

5.3 Error Notification with Notifiers, 155
5.3.1 Interpreting NotifierWindows, 155
5.3.2 Continuing after an Error Notification, 157
5.3.3 User-Generated Notifiers, 158
5.3.4 Interrupting a Non-Terminating Computation, 158
5.3.5 Setting a Breakpoint, 158
5.3.6 Handling Exceptional Conditions, 159

5.4 Debuggers, 160
5.4.1 Viewing an Interrupted Computation with a Debugger, 160
5.4.2 Error Correction within a Debugger, 163

5.5 Summary, 174

5.6 Exercises, 175

5.7 Glossary, 176

6 OBJECTS 179

6.1 Introduction, 179

6.2 Class Object, 181
6.2.1 The Representation of an Object, 181
6.2.2 Bindings: Assignments and Parameter Passing, 184
6.2.3 The Inherited Representation of an Object, 186
6.2.4 Querying Operations, 188
6.2.5 Debugging, Inspecting, and Confirming, 190
6.2.6 Meta Operations for Accessing and Modifying Objects, 195
6.2.7 Copying Operations: Shallow versus Deep Copies, 198
6.2.8 Comparison Operations: Identity versus Equality, 200
6.2.9 ReadlWrite Operations: PrintStrings and StoreStrings, 201
6.2.10 Meta Operations for Indirect Execution (perform:), 206
6.2.11 Advanced Meta Operations, 208

6.3 Class UndefinedObject, 213

6.4 Class BlockContext (Blocks for Short), 214
6.4.1 Blocks Provide Facilities to Design Control Structures, 218
6.4.2 Syntactic Details and Recursive Blocks, 219

6.5 Class Boolean, 220

vi Inside Smalltalk

6.6 Designing a New Class: BinaryTree, 223
6.6.1 A Standard Design, 224
6.6.2 A Non-Standard Design, 229

6.7 Classes and Metaclasses, 233
6.7.1 Multiple Inheritance, 237

6.8 Summary, 240

6.9 Exercises, 240
6.10 Glossary and Important Facts, 241

7 THE MAGNITUDE CLASSES
7.1 Magnitudes, 245

7.1.1 Class Magnitude Simplifies the Implementation of New Magnitudes, 246

7.2 Numbers, 247
7.2.1 The Notation for Number Constants, 247
7.2.2 Converting Numbers to Strings, 248
7.2.3 Converting Strings to Numbers, 249
7.2.4 Type Conversion, 260
7.2.5 Division, Remainders, Truncation, and Rounding, 255
7.2.6 Mathematical Operations, 258
7.2.7 Creating a New Subclass of Number, 259
7.2.8 Bit Manipulation on Integers, 260

7.3 Date and Time, 265
7.3.1 Class Operations for Dates and Times, 265
7.3.2 Conversion Operations for Dates and Times, 266
7.3.3 Querying Operations for Dates and Times, 268
7.3.4 Arithmetic Operations for Dates and Times, 268
7.3.5 Designing an Absolute Time Class, 268

7.4 Characters, 274

7.5 Random Streams, 275

7.6 Summary, 276

7.7 Exercises, 277

7.8 Glossary and Important Facts, 277

8 THE COLLECTION CLASSES
8.1 Introduction, 281

8.1.1 A Logical Organization, 284
8.1.2 Creating Collections, 286
8.1.3 Comparing Collections, 290
8.1.4 Sequencing over Collections, 292

8.2 The Keyed Collections (Non-Streams), 298
8.2.1 Individual Characterizations, 299
8.2.2 Constructing New Keyed Collections, 300
8.2.3 The Dictionary Protocol, 304
8.2.4 The Array and OrderedCollection Integer-Keyed Protocol, 311
8.2.5 The String, Symbol, and Text Protocol, 317
8.2.6 The Mapped Collection and Run Array Protocol, 324
8.2.7 The Interval Protocol, 327

Table of Contents

245

261

vii

8.3 The Streamable Collections (Streams), 329
8.3.1 Individual Characterizations, 330
8.3.2 Constructing New Streamable Collections, 331
8.3.3 How Read and Write Streams Are Typically Used, 332
8.3.4 Read, Write, and ReadWrite Streams. 334
8.3.5 File Names, 340

8.4 The Ordered Classes (Non-Streams and Non-Keyed Protocol), 342
8.4.1 Individual Characterizations, 343
8.4.2 Constructing New Ordered, Sorted, and LinkedList Collections, 343
8.4.3 The Ordered Collection Protocol, 346
8.4.4 The Sorted Collection Protocol, 350
8.4.5 The Linked List Protocol, 351

8.5 The Unordered Collections, 353
8.5.1 Individual Characterizations, 353
8.5.2 Constructing New Unordered Collections, 355
8.5.3 The Unordered Collection Protocol, 355

8.6 Creating New Collection Classes, 357
8.6.1 Creating Specializations of Existing Collection Classes, 358
8.6.2 Creating a Totally New Sharable Collection Class, 363

8.7 Summary, 371

8.8 Exercises, 371

8.9 Glossary and Important Facts, 373

9 THE GRAPHICS CLASSES
9.1 Introduction, 377

9.1.1 The Smalltalk Graphical Model, 378
9.1.2 Graphic Capabilities of Smalltalk, 378

9.2 Positions and Areas: Classes Point and Rectangle, 380
9.2.1 Creating Points and Rectangles, 380
9.2.2 Printing and Storing Points and Rectangles. 383
9.2.3 Copying Points and Rectangles. 383
9.2.4 Accessing and Modifying Points and Rectangles, 383
9.2.5 Conversion Operations, 385
9.2.6 Arithmetic Operations, 385
9.2.7 Comparing Points and Rectangles, 386
9.2.8 Truncating and Rounding Points and Rectangles, 387
9.2.9 Points in Polar Coordinate Form, 388
9.2.10 Miscellaneous Point Operations, 388
9.2.11 Miscellaneous Rectangle Operations. 389
9.2.12 Transforming Points and Rectangles, 390

9.3 Creating and Manipulating Graphic Images, 392
9.3.1 Creating Images with Forms, 392
9.3.2 Manipulating Images with BitBlts, 393
9.3.3 The Full Protocol for Class BitBlt, 400

9.4 Displayable Objects, 402
9.4.1 An Overview of the Graphics Classes, 402
9.4.2 Standard Protocol for Displayable Objects. 403
9.4.3 Summary, 408

viii

377

Inside Smalltalk

9.5 Display Mediums, 408
9.5.1 Display Mediums as Canvas and Brush, 408
9.5.2 Coloring and Adding Borders to Images, 408
9.5.3 Bit Copying and Drawing Lines, 412

9.6 Forms, 412
9.6.1 Bitmaps, 413
9.6.2 Creating Forms, 414
9.6.3 Querying Forms, 415
9.6.4 Modifying Forms, 416
9.6.5 Displaying Forms, 416
9.6.6 Bit Copying and Line Drawing, 417
9.6.7 Coloring and Bordering Forms, 417
9.6.8 Storing Images, 418
9.6.9 Converting Forms to Strings, 418
9.6.10 Transforming Images, 418

9.7 Infinite and Opaque Forms, 421
9.7.1 Infinite Forms, 421
9.7.2 Opaque Forms, 421

9.8 Cursors, 424
9.8.1 Installing a New Cursor, 426
9.8.2 Additional Protocol for Cursors, 427

9.9 Classes DisplayScreen and DisplayBitmap, 427

9.10 Graphical Interaction, 428
9.10.1 Examples of Graphical Interaction, 429

9.11 Generating Graphics Paths and Trajectories, 430
9.11.1 Generating Paths, 432
9.11.2 Generating Lines, 435
9.11.3 Generating Linear Fits, 437
9.11.4 Generating Curves, 437
9.11.5 Generating Splines, 438
9.11.6 Generating Arcs and Circles, 439
9.11.7 Generating New Paths: Ellipses, 440
9.11.8 Revisions to Paths, 445

9.12 Drawing with Pens, 447
9.12.1 Creating Pens, 447
9.12.2 Scribbling and Doodling with Pens, 448
9.12.3 Turtle Graphics with Pens, 449
9.12.4 Additional Pen Operations, 451

9.13 Summary, 451

9.14 Exercises, 452

9.15 Glossary and Important Facts, 454

10 GRAPHICAL APPLICATIONS
10.1 Introduction, 457

10.2 Film Loops: Never-Ending Movies, 457
10.2.1 A Simple Film Loop Facility, 458
10.2.2 Extending Film Loops: Flicker-Free Display, 462

Table of Contents

457

ix

10.2.3 Extending Film Loops: Disk Forms, 464
10.2.4 Integrating Disk Forms with Film Loops, 467

10.3 Graphics Through the Looking Glass, 469
10.3.1 Activating the Magnifier, 472
10.3.2 Restoring and Redisplaying, 473
10.3.3 Restoration and Redisplay Details, 477
10.3.4 Displaying the Magnifier on the Merged Form, 478
10.3.5 Displaying the Magnified Image on the Merged Form, 479
10.3.6 Class Magnifying Glass, 481

10.4 The Design and Implementation of a Simple Video Game, 485
10.4.1 Designing Is Prototyping, 485
10.4.2 Getting into Details, 487
10.4.3 Taking Movement More Seriously, 488
10.4.4 Extending and Improving the Design, 489
10.4.5 Designing for Speed, 490
10.4.6 More Refinements and Further Polishing, 491
10.4.7 The Video Game: Conclusions, 492
10.4.8 The Source Code for the Video Game, 492

10.5 Summary, 504

10.6 Exercises, 504

10.7 Glossary, 504

CLASS INDEX

INDEX

x

506

508

Inside Smalltalk

ill

Preface

INTRODUcnON

In the seventies, structured programming revolutionized the way programmers constructed
software systems. Today, many are predicting that the object-oriented programming paradigm
will be the second major revolution in software engineering and that object-oriented systems
will become the predominant programming tools of the nineties. In the two volumes of
Inside 8malltalk, we take an in-depth look at the Smalltalk-80 environment - the
programming system that most consistently adheres to the object-oriented paradigm and that
has served both as a model for object-oriented extensions to existing languages and as the
basis for a new generation of languages supporting inheritance. It can be argued that
Smalltalk has had more impact on software development in the last decade than any other
programming language. Smalltalk fosters the notions of programming in the large and
programming by extension rather than by re-invention. Smalltalk provided the foundation for
window-based graphical user interfaces, for the development of truly reusable class libraries,
and for the introduction of on-line tools such as code browsers. Our objective in Inside
8malltalk is to provide a comprehensive survey of the Smalltalk environment, the
language, and the library. A secondary goal is to show how interactive graphical applications
can be constructed using object-oriented programming techniques and the unique Smalltalk
programming environment Moreover, we show how Smalltalk's underlying philosophy of
reusing and extending existing code permits the development of such applications with high
productivity.

Programming in Smalltalk is different from programming in other languages such as
Pascal, C, or Ada because of the major influence played by the object-oriented programming
paradigm, the large class library, and the interactive programming environment. Developing
programs in Smalltalk requires familiarity with all three of these components and the
learning curve for programmers is therefore longer than for more traditional languages.
Although there is no substitute for programming with the Smalltalk system itself, our

xi

objective is to reduce this learning curve by providing a comprehensive description of the
Smalltalk language, the class library and programming environment and by illustrating the
use of object-oriented programming techniques to develop interactive graphical applications.
The need for a Smalltalk guru to be close at hand when learning the system will then be
minimized. In addition, Inside Smalltalk will be a valuable reference to accomplished
Smalltalk programmers whenever they venture into uncharted territory in the class library.

Be forewarned that it will take you considerably longer to become an accomplished
Smalltalk programmer than an accomplished Pascal programmer. However, the return on
your investment will be an ability to develop interactive graphical applications with all the
features of modem user interfaces; e.g., windows, menus, mouse interaction. Indeed, a major
emphasis of the second volume is to describe the Smalltalk features that make this possible;
namely, the model-view-controller paradigm for constructing user interfaces and the graphical
and window classes in the library. At the time of this writing, and despite the fact that it is
this material that gives Smalltalk much of its appeal, no in-depth presentation of the
graphical and user interface classes was available in any other text.

Although the Smalltalk language is itself quite small, the Smalltalk system is large.
Initially this limited its use to expensive, powerful workstations. However, efficient
implementations of Smalltalk are now readily accessible to large numbers of users on the
current generation of personal computers bringing the power of Smalltalk to the classroom
and a mass audience.

ORGANIZATION OF ntE BOOK

Inside Smalltalk consists of two volumes with the first volume divided into 4 major
sections. The second volume concentrates on the window and user interface classes and
describes how Smalltalk may be used to develop applications involving WIMP-based
(Windows, Icons, Menu, and Pointer) user interfaces.

VOLUME ONE

The fIrst section of Volume One introduces the fundamentals of object-oriented programming
and Smalltalk, the second describes the Smalltalk programming environment, and the final
two sections divide the class library into basic classes (objects, magnitudes, and collections),
and graphical classes. A common thread throughout the latter two sections is to describe a
set of related classes from the class library, to explain some of the rationale behind design
decisions taken by the designers, and then to show how new classes may be added to extend
the existing classes in some useful way. In addition, Chapter 10 is devoted entirely to
extended case studies describing the implementation of graphics-based applications. Problem
sets are included at the end of each chapter; these range from simple exercises, to extensions
of examples presented in the text, and finally to major projects.

Fundamentals

In this section, we introduce the reader to the fundamental concepts of object-oriented
programming. Using a language independent approach, Chapter 1 characterizes object-

xii Inside Smalltalk

oriented programming as programming with objects, programming by simulation,
computation via message passing and programming in the presence of polymorphism.
inheritance. and a large class library.

Chapter 2 describes how these fundamental notions manifest themselves in Smalltalk.
Smalltalk is a language somewhat smaller in size than Pascal and based on a surprisingly
small set of concepts; namely objects. messages. classes, subclassing, and inheritance. Our
approach is to introduce these new concepts by relating them to their counterparts in
traditional programming paradigms and programming languages. In particular, programming
in Smalltalk is introduced by contrasting Smalltalk code with its Pascal equivalent.

The PI'ognMnming Environment

Developing Smalltalk programs is characterized by a total integration of tools and an absence
of modes. Editors, file managers, compilers, debuggers, and print utilities are all included
within the Smalltalk environment. Chapters 3, 4, and 5 provide an introduction to the
integrated collection of powerful and sophisticated tools that together form the Smalltalk
programming environment. Chapter 3 provides an introduction to basic features of the user
interface, in particular, windows and menu interaction and how to enter, edit, and evaluate
Smalltalk code. Chapter 4 describes the central role played by browsers in the programming
process both for navigating the class library and for editing and compiling additions to this
library. Chapter 5 describes the use of inspectors to investigate the internal state of objects
and the use of notifiers and debuggers to view and modify the state of a suspended
computations.

Basic Classes

In this section, we describe the basic classes - those classes that form the core of the class
library. Chapter 6 introduces the default behavior for operations such as copying, printing
and comparing that are supported by class Object - the ultimate superclass of all classes.
Chapter 7 describes the Magnitude classes including the numeric, character. date and time
classes. Chapter 8 describes the Collection and Stream classes that are as fundamental to
Smalltalk as lists are to Lisp. To provide a better understanding of the numerous and closely
related collection classes, we consider the classes from a logical perspective partitioning
them into four major logical groups.

Graphics

In this section. the classes supporting the interactive creation and manipulation of graphical
images are surveyed and their use illustrated through three case studies. Chapter 9 explains
the use of forms and the bitblt operations that serve as a base for the Smalltalk graphical
model. Interaction with the mouse and keyboard is addressed together with a description of
simple graphical interaction techniques. The chapter concludes with a review of the path or
trajectory classes (arcs, circles, curves, lines. linear fits, and splines) and the use of pens.

Chapter 10 presents three extended graphical examples: film loops. a magnifying
glass, and a simple video game. Film loops are never ending movies and show how simple
animation sequences can be developed. Techniques for obtaining flicker-free displays and for

Preface xiii

storage of graphical fonns on disk are also introduced. The latter facility illustrates the use of
object mutation - the ability for one object to mutate into another. The magnifying glass
application allows a user to move a magnifier over the display while magnifying the image
under the magnifying glass. This application illustrates advanced graphical programming
techniques and, in particular, describes how circular rather than rectangular fonns may be
manipulated. Finally, the video game illustrates the evolutionary approach that characterizes
the design and development of Smalltalk applications. The design decisions that took place
during the development of the game are described in detail along with the use of notions such
as reusability, specialization, and generalization that differentiate object-oriented design from
traditional design methodologies.

VOLUMElWO

Windows

In Volume Two, we describe the Smalltalk classes that provide (1) the familiar overlapping
windows, pop-up menus, and mouse interaction facility that characterize the Smalltalk user
interface and (2) the model-view-controller framework for the construction of user interfaces.
Chapter I provides an introduction to the model-view-controller paradigm, dependency
maintenance, the distinction between process management and window management, and the
window transfonnation protocol. Chapter 2 provides an overview of the existing window
classes and provides a detailed description of the basic views and controllers that support the
window classes described in subsequent chapters. Extensive examples are provided to show
how views and controllers can be created and used. Chapters 3 through 7 describe menu,
switch, text, fonn (graphics), and pop-up windows respectively. Each of these chapters
describes the differences between the standard classes and pluggable classes and shows (I)
how users can use the existing classes, (2) how they may be modified to provide extensions,
and (3) how new classes based on the existing ones can be created for special applications.
Finally, Chapter 8 provides an extended example to illustrate the construction of a large-scale
window application. It deals with the construction of a window maker - an editor that helps
users create user interfaces. In the process, a design for a library of switch fonns and a library
editor is developed. The existing window classes are extended to support the window maker
application and more than a dozen subwindows are designed to support the window maker
editor.

WHO SHOULD READ THIS BOOK?

Smalltalk provides a new programming paradigm and the two volumes are therefore aimed at
readers who are receptive to new ways of thinking about problem solving and new
programming language concepts. We expect that most readers will have some programming
experience in a procedural language. Programmers familiar with Pascal, C, Ada, or Fortran
will find the language easy to learn and will be pleasantly surprised at the extensive set of
support tools in the environment.

xiv Inside Smalltalk

To gain full benefit from the book, readers should have access to a Smalltalk system
and be prepared to adopt an exploratory hands-on approach to programming and problem
solving. Inside Smalltalk is for the professional programmer and serious student who wish
to use the Smalltalk system as a powerful, efficient prototyping and development
environment. The book can be effectively used in undergraduate and graduate courses in
object-oriented programming or software engineering where Smalltalk will be a language of
instruction. The book will be particularly valuable for students carrying out extensive thesis
and project work in Smalltalk.

SMALLTALK DIALECTS

Two releases of Smalltalk-SO have been licensed by the Xerox Corporation. These are known
as Smalltalk-80 Version 1 and Smalltalk-80 Version 2 respectively. Version 2 includes
several features, notably support for multiple inheritance, not supported by Version 1.
ParcPlace Systemsl now has exclusive worldwide ownership of the Smalltalk-80 system.
The Smalltalk language2 is available under royalty-free license from ParcPlace. Smalltalk-80
Version 2 is now accepted as the standard Smalltalk-80 system and it is this dialect of
Smalltalk that is described in this book. Indeed, whenever we use the term Smalltalk in this
text we are referring to Smalltalk-80. Smalltalk-80 for Sun, Macintosh, Apollo, DEC,
Hewlett Packard, and 80386 MS-DOS systems is available from ParcPlace Systems.
Smalltalk-SO code is almost entirely portable across different host platforms. The Smalltalk
80 system is now marketed by ParcPlace Systems under the name Objectworks for
Smalltalk-80.

Digitalk3 markets SmalltalkN, a dialect of Smalltalk for Macintosh and IBM PC
computers. Excluding the user interface classes, there is a great deal of commonality between
the Smalltalk V and Smalltalk-80 class libraries. Similarly, the range of programming tools
is similar, although there are distinct differences in the structure and functionality of specific
tools such as the browser, in the method of interaction with the environment and in the
degree of integration with the specific platform

ACKNOWLEDGMENTS

First and foremost, we would like to acknowledge the great contribution made to the
software community by the group of researchers at the Xerox Palo Alto Research Center
(PARC) who were responsible for the development of the Smalltalk system. In particular,
we single out Alan Kay, Adele Goldberg, and Dan Ingalls, who in 1987 received formal
recognition of their work with the 1987 ACM Software Systems Award. In recognition for
the development of a software system that has had a lasting influence, that has reflected
contributions to new and still evolving concepts, and that has resulted in commercial

lparcPlace Systems, 1550 Plymouth Street, Mountain View, CA 94043.
2Goldberg, A. and Robson, D., Smalltalk-80: The Language and its Implementation (Reading, Mass.:
Addison-Wesley, 1983).
3Digitalk, Inc. 9841 AiJpon Road Bvld. Los Angeles, CA 90045.

Preface xv

acceptance, the Xerox PARC group received the award for seminal contributions to object
oriented programming languages and related programming techniques. Smalltalk was cited as
having provided the foundation for explorations in new software methodologies, graphical
user interface designs, and forms of on-line assistance to the software development process.
Our thanks also to ParcPlace Systems for continuing to develop and market the Smalltalk-80
system.

We also thank Dave Thomas, who many years ago foresaw the potential of object
oriented programming and motivated us to become involved in research in the area. To the
many students at Carleton University in Ottawa and to others who attended our object
oriented programming and Smalltalk workshops, our sincere thanks for being such willing
guinea pigs for much of the material that now appears in this book. Our thanks also to the
reviewers and, in particular, Richard Bernat of the University of Texas at Austin and Bharot
Jayaraman of the University of North Carolina at Chapel Hill, for their helpful comments.
To Marcia Horton, Christina Burghard, and their colleagues at Prentice Hall, for their
support and patience in the development of the book. Finally, on a more personal note, we
thank our respective wives, Marla Doughty and Christine Pugh, for their support and
understanding, and our children, Brannon, Robin, Chloe, and Gareth, who have yet to
understand why their "daddies" were too often unavailable.

xvi Inside Smalltalk

7

Object-Oriented
Programming

1.1 INTRODUCnON

In terms of its influence on the programming community, object-oriented programming
(OOP) is predicted to be to the nineties what structured programming was to the seventies.
But what is it that makes a system or programming language object-oriented? What exactly
is meant by the term object-oriented? In this chapter we try to answer these and related
questions. We will introduce object-oriented concepts in a language independent manner.
However, because terminology in the field has not been standardized and since we will be
describing Smalltalk in the rest of this book, we will use the terminology adopted by
Smalltalk.

1.2 OOP IS PROGRAMMING BY SIMULAnON

Object-oriented programming is most easily described as programming by simulation. The
programming metaphor is based on personifying the physical or conceptual objects from
some real-world domain into objects in the program domain; e.g., objects are clients in a
business, foods in a produce store, or parts in a factory. We try to reincarnate objects from
the problem domain into our computer models, giving the objects in our program the same
characteristics and capabilities as their real-world counterparts. This process is often referred
to as anthropomorphic programming or programming by personification.

The power of simulation as a programming metaphor can be seen from the success of
the window-based user interfaces now common in personal workstations. The Apple
Macintosh™, for example, uses a desktop metaphor in which icons representing such

1

common office objects as documents, folders, and even trash cans appear on the desk.
Interactively, a user can open documents, copy them, store a document with other documents
in a folder, or place a document in the trash can. Operations on the desktop objects mimic
the way their real-world counterparts are manipulated. When implementation domain objects
have a direct mapping to problem domain Objects, the resulting software is far easier to
understand and use.

Consider the following problem specification for a simple video game.1 A typical
display for the game is shown in Fig. 1.1. The objective of the game is to remove all the
bricks from the wall. When the ball strikes a brick, the brick disappears. The ball can be
redirected using the paddle, which the player can move to the left or right using the mouse.
The ball bounces off the sides, bricks, and paddle in a conventional fashion. A player is
provided with at most three balls (one at a time) to remove the bricks. A ball is lost if it
passes below the paddle; Le., if the player misses it! Demolishing the bricks with the allotted
three balls is a win - failure to do so is a loss.

/Ball
•

/paddl.
-

Figure 1.1 Simple video game.

An object-oriented solution to this problem would simulate the objects in the real
video game. Software objects would be constructed to represent the paddle, the sides, the
ball, the bricks in the wall, and so on. Furthermore, operations on these objects would
represent problem-domain tasks such as moving the ball and the paddle, determining if the
paddle has struck the ball or whether the ball is lost, removing bricks from the wall, and so
on.

1Problem taken from D. H. Bell et al., Software Engineering -A Programming Approach (Englewood Oiffs.
New Jersey: Prentice-Hall International. 1987).

2 Inside Smalltalk

1.3 TRADITIONAL VERSUS OBJECT-ORIENTED
PROGRAMMING

Object-oriented programming is fundamentally different from traditional procedural or
algorithmic approaches. Object-oriented programming describes a system in terms of the
objects involved. Traditional programming approaches, on the other hand, describe systems
in terms of their functionality. We will use the video game example to illustrate the
differences between the traditional and object-oriented approaches.

1.3.1 A Traditional Approach

The classical top-down stepwise refinement approach to problem solving involves refming a
problem solution into greater levels of detail based on functional decomposition. Taking a
functional approach, we might first describe the solution to our video game in terms of the
abstract statement:

Video Game

The next step in the solution might be to decompose this statement into the following:

WHILE Someone wants to play DO
Set Initial Game Display
Playa Single Game

ENDWHILE

The design could now be refined further by taking some of the abstract functions in the
current solution such as Set Initial Game Display and Play a Single Game and
decomposing them in a similar fashion.

Set Initial Game Display
Draw Wall
Draw Sides
Initialize Paddle

Playa Single Game
Set Score to 0
Set Balls Left to 3
WHILE Balls Left > 0 DO

Playa Ball
Decrement Balls Left

ENDWHILE

The next step might be to refme the Playa Ball module.

Playa Ball
Enter new Ball into Game
WHILE Ball is in Play DO

Check Ball Position
Update Score 8r Display
Move Ball
Move Paddle

ENDWHILE
Remove Ball from Game

Chapter 1 Object-Oriented Programming 3

We are refining the solution to the problem algorithmically in a step-by-step manner,
with each step in the process describing a solution to the problem at a certain level of
abstraction. Systems refined in this way are most easily described using a diagram (see
Fig. 1.2) where major modules are hierarchically organized and where each module
represents a function or subproblem in the solution. A design produced using a functional
decomposition approach fits very nicely with the procedural approach to programming
encouraged by early languages such as Fortran, Pascal, or Cobol, where the subroutine,
procedure, or subprogram is the predominant mechanism for structuring code. There is a
direct mapping between functional modules in the design and procedures in the code.

Video
Game

Set PlayaInitial
Game Single

Display Game

•
Draw Draw •nitialize PIa~a
Wall Sides Paddle Bal

Check Update Move MoveBall Score & Ball PaddlePosition Display

Figure 1.2 Functional decomposition of the video game.

1.3.2 An Object-Oriented Approach

If we take an object-oriented approach to this problem, our first concern is to try to identify
not the functions but the objects that will be involved in the computation. The easiest objects
to identify are those with real-world counterparts. In the case of our video game example,
this leads us to think of objects such as the bricks, the wall, the sides, the paddle, the ball,
and the video game itself, as shown in Fig. 1.3.

4 Inside Smalltalk

Video Game

,·····:•••·,.·•••;·•••1.·.·.·1.··.: ••••• :

Paddle

•
Wall

•

Figure 1.3 Object-oriented decomposition of the video game.

Once the objects have been identified, the next task is to identify their characteristics
and the interrelationships between them. For example, the paddle and the ball are clearly
interrelated. When the paddle strikes the ball, the ball will change direction. Similarly there
is a relationship between the wall and the ball. Component or part-of relationships can also
be identified. This kind of relationship exists between individual bricks and the wall. The
wall is made up of bricks. In this way, we can establish how the game objects interact with
each other to achieve a simulation of the video game.

1.3.3 Objects Encapsulate State and Operations

Objects are characterized by their state and the operations that can be performed on that
state. Generally, objects have components and the state of an object is therefore
characterized by the state of its components. For example, a ball might consist of a radius
and a position. A paddle, side, or brick might be described by position, width, and height.
Similarly the state of a video game might consist of a ball, a paddle, a wall of bricks, and a
set of sides (see Fig. 1.4).

VideoGame
ball

paddle
sides
wall

Ball Brick Side Paddle

position position position position
radius width width width

height height height

Figure 1.4 Objects are characterized by their state.

Chapter 1 Object-Oriented Programming 5

Each kind of object supports a set of operations that may be applied to the object to
modify or interrogate its state. For example, a ball responds to requests to report or modify
its position. Similarly, a ball can be asked whether it is located behind the game paddle or
whether it is colliding with any of the other components in the game. We could perform
similar analyses on the other objects in the video game.

Conceptually, we can characterize objects such as the ball in our example as an
encapsulation of both state and operations (behavior), as shown in Fig. 1.5.

Position
Direction

STATE

OPERATIONS

Position?
Direction?
Modify Position
Beyond Wall?
Behind Paddle?

Figure 1.5 Conceptual view of a ball.

By encapsulation, we mean the ability to conceptually group together in an object both
the state of the object and the allowable operations on that state. For another example,
consider a stack that encapsulates both a representation, perhaps an array or a list, and the
operations push, pop, isEmpty, etc., which may be applied to the stack to modify or
interrogate its state.

1.3.4 Objects Communicate via Message-Passing

An object-oriented system can be described as a set of objects communicating with each
other to achieve some result. Each object can be thought of as a small virtual computer with
its own state (or memory) and its own set of operations (or instruction set). Computation is
achieved by sending messages to objects. When an object receives a message it determines
whether is has an appropriate operation, script, or method to allow it to respond to the
message. The definition of the method describes how the object will react upon receiving the
message. In object-oriented terminology, we refer to the collection of operations that define
the behavior of an object as the protocol supported by the object.

6

Method

Protocol

A synonym for operation. Invoked when a message is
received by an object.

The set of messages to which an object responds.

Inside Smalltalk

·.~

Rather than calling a procedure to carry out an operation, we speak of sending a
message to an object. The object receiving the message is referred to as the receiver. Thus,
we speak of sending the are you behind the paddle message to a ball (see Fig. 1.6).
Ignoring terminology, the effect of sending a message to an object can be equated to a
traditional function call, with the object receiving the message acting as an argument to the
function. The result of sending a message to an object is to invoke the appropriate method,
which then returns an object as a result. In the case of the are you behind the paddle
message, the result returned would be either the object true or the object false.

a Ball

• belUDdPaddle)

Receiver Message

Figure 1.6 Message-passing.

More generally, messages consist of a selector that uniquely identifies the operation
required of the receiver, and a set of zero or more arguments. For example, to modify the
position of a ball in the video game, we must supply the new position for the ball as part of
the message (see Fig. 1.7).

a Ball Message

Receiver Selector

Figure 1.7 Message components.

Argument

In contexts such as distributed computing, message-passing often implies concurrency.
In object-oriented programming, this is generally not the case. Message-passing is
synchronous; i.e., a standard function calVreturn mechanism is used. A second message
cannot be sent until the result of sending a first message has been returned; i.e., the sender of
a message is blocked until a response is received.

1.4 OOP IS PROGRAMMING WITH ABSTRACT DATA TYPES

The object-oriented approach to programming has much in common with the notion of
programming with abstract data types. In fact, object-oriented programming can be thought
of as subsuming this style of programming and extending it with two additional
programming notions - polymorphism and inheritance.

Chapter 1 Object-Oriented Programming 7

Objects (and abstract data types) adhere to an important fundamental principle for
structuring software systems - information hiding. The idea behind information hiding is
that uSers of an object need not have access to either the representation or the
implementation of the operations. It is useful to think of objects as providing two views of
themselves: one to potential users or clients of the object and another to implementors of the
object. Users of the object may modify its state but only indirectly by invoking the
operations supported by the object. The major advantage of this approach is that it allows an
implementor to modify the implementation of an object in a manner that is transparent to
users. Users or clients of the object do not have to be notified of the change. This separation
of the object's user interface from its implementation is essential for the production of
maintainable and reusable software.

Consider the example of a stack. The user's view of a stack is an advertised message
protocol that allows a user to create and modify stacks (see Fig. 1.8). The user has no
knowledge of, and cannot directly access, the representation of the stack. The state of the
stack can only be modified indirectly through the supported operations. The implementor's
view includes knowledge of the representation used for the stack and the detailed code used
to implement each message (see Fig. 1.9). If an implementor decides to change the
representation of the stack from an array to a list and modifies the implementation of the
operations accordingly, the user would be unaware that such a change had taken place. Any
code that made use of the old version of the stack would work equally well with the new
version.

Stack

push: anObject
"Push anObject onto the stack."

pop
"Pop an element off the stack."

top
"Return the top element of the stack."

isEmpty
"Is the stack empty?"

Figure 1.8 User's view of a stack.

The notion of using a data type without detailed knowledge of its representation is a
familiar one. Traditional programming languages all provide support for a set of basic data
types; e.g., integers, reals, characters, arrays. Each data type supports a set of well-known
operations; e.g., the arithmetic operations for integers. Users do not need to know whether

8 Inside Smalltalk

Stack

stack elements

~
top

pop
"Return the top element from the stack."
IF stack is not empty THEN .

topElement:= stack [top]
top:= top - 1
RETURN topElement

ENDIF

push: anObject

.. . .".:.."

Figure 1.9 Implementor's view of a stack.

integers are represented using a sign-magnitude or two's-complement representation. An
object can now be defined as follows:

Object An abstraction from the problem domain with private state
and characterized by the message protocol that it supports.

Earlier, we drew attention to the correspondence between the functional
decomposition approach to programming and the procedural languages such as Pascal,
Fortran, and Cobol. In a similar way, the encapsulation and information hiding required by
the data abstraction approach are provided by the modules and packages of the next
generation of languages like Modula 2 and Ada.

1.5 OOP IS PROGRAMMING VIA CLASSIFICATION

Real-world systems depend on our ability to classify and categorize. Elephants, tigers, polar
bears, horses, and cows are all mammals (see Fig. 1.10); lead, silver, and platinum are
metals; savings, checking, and term deposits are types of bank accounts; and so on. Through
classification, we are able to associate characteristics common to all members of a class. All
mammals are vertebrates (have backbones), are warm-blooded, and have hair on their
bodies; all metals have atomic weights; and all bank accounts have balances.

Chapter 1 Object-Oriented Programming 9

Figure 1.10 Object classification - animals.

In OOP, the class is the abstraction that captures the attributes and operations common
to a set of objects. A class describes the representation and message protocol followed by
each of the members, or in OOP terminology, the instances, of the class. Every object is an
instance of some class.

Class

Instance

A description of a set of objects with similar characteristics,
attributes, and behaviors. A synonym for type.

An individual object that is both described by and a
member of a particular class.

Consider the example of savings accounts in a bank. The private state associated with
each account might consist of at least an account number and a balance. The representation
of the object can be thought of as a Pascal record - a collection of heterogeneous
components or fields. The fields of an object are referred to as instance variables since they
will be present in every instance and they are changeable (variable). All savings accounts
therefore have two instance variables: account number and balance.

Instance Variable A component part or field of an object.

Operations on savings accounts might include withdrawals (withdraw: anAmount),
deposits (deposit: anAmount), and queries about the balance (queryBalance).

Logically, an object is an indivisible encapsulation of state and operations. However,
since all instances of a class support the same set of operations, the methods or operations
can be physically associated with the class. Only the state or private information relating to a
specific object resides in the instance. Consider instances of the class SavingsAccount. Each
instance has its own account number and balance. However, the operations for making
deposits, withdrawals, and balance queries can be shared by all instances and stored in the
class. When a message is sent to an instance, the system searches for the operation in the
class of the instance. Fig. 1.11 illustrates the shared operations associated with class
SavingsAccount and three instances each maintaining its own private state.

10 Inside Smalltalk

1 nt'

This physical view of classes and instances leads us to the following alternative
defmitions:

Class

Instance

A repository for methods that can be executed by all
instances belonging to that class.

A repository for data that describes the state of an
individual member of a class.

mySavingsAccount

CLASS SavingsAccount

OPERATIONS

deposit: anAmount
withdraw: anAmount
queryBalance

accountNumber
balance

accountNumber
.----~balance

accountNumber
balance

123456
1250.37

123457
507.75

123458
9.95

Instances of Class SavingsAccount

Figure 1.11 Classes versus instances.

1.6 OOP IS PROGRAMMING WITH POLYMORPHISM

One of the most important characteristics of object-oriented programming is that the
interpretation of a message is in the hands of the receiver; i.e., the same message can be
interpreted in different ways by different receivers. Operations exhibiting this property are
said to be polymorphic. Messages can be thought of as late-bound procedure calls, where
the actual method or procedure to be invoked is not determined until the message is actually
sent to a specific receiver.

Consider the following message expression:

anObject at: 1 put: 'first'

It is not possible to determine what effect this code will have until the class of object bound
to the variable anObject is known. If anObject is an array, the effect is to make string 'fIrst'
be the fIrst element of the array. However, if anObject is a dictionary, the effect is to either
add a new association to the dictionary with key I and value 'fIrst' or, if the key I previously

Chapter 1 Object-Oriented Programming 11

existed within the dictionary, to modify the value associated with the key 1. Yet another
interpretation would arise if anObject was a search tree.

One of the major advantages of polymorphism is that it allows the overloading of
names. Hence, the same name can be used throughout a system to denote a commonly used
and well-understood operation. As we shall see later, many common message selectors in
Smalltalk such as new, =, do:, and copy are redefined as many as twenty times. This
consistency in operation naming across class boundaries helps significantly reduce the name
space in large systems.

1.6.1 Static Versus Dynamic Binding

As a further example of the desirability of polymorphism, consider an application where
various kinds of geometric figures such as rectangles, triangles, squares, and circles are to be
displayed and manipulated. To capture the figure abstraction in a type definition in a
traditional language such as Pascal, we could define a variant record with a tag field that
discriminates between the different possible figure types. We could then implement a display
operation on the variant record type. To decompose the implementation into well-designed
components, we could provide one figure-specific procedure for each discriminant. In that
case, the display procedure would have to use some sort of case logic (see Fig. 1.12) to
determine the type of figure involved in order to call the correct figure-specific procedure.
Because the association between each figure-specific procedure and the type of parameter
required is known at compile-time, the coupling between the two is known as static
binding.

PROCEDURE Display (aFigure: Figure);
BEGIN

CASE aFigureJigureType OF / .i.
Rectangle: DisplayTriangle (aFigure.aRectangle)~ :
Triangle: DisplayRectangle (aFigure.aTriangle); -.c
Square: DisplaySquare (aFigure.aSquare); - ,
Circle: DisplayCircle (aFigure.aCircle)-----.f

END \
END

Figure 1.12 Static binding.

DisplayTriangle

DisplayRectangle)

DisplaySquare)

DisplayCircle)

In a similar fashion, we could define operations to move a given figure or compute its
area. These procedures would share the same case logic as the Display operation above.

In an object-oriented language, we must again implement a display method for each of
the triangle, rectangle, square, and circle figures. However, the same name is used in each
case. Consequently, it is no longer the programmer's responsibility to determine the correct
method to invoke. A programmer can send the message display to any figure; e.g., by
executing 'aFigure display'. Based on the type of aFigure, the correct display method will
be located and executed by the system. Clearly, the correspondence between the operation
display and its parameter aFigure is determined at execution-time rather than at compile
time. This run-time coupling is known as dynamic binding (see Fig. 1.13).

12 Inside Smalltalk

I til

aFigure display
Message

Dispatcher

Triangle

display

Rectangle

display

Square

display

Circle

display

Figure 1.13 Dynamic binding.

This polymorphic solution is more adaptable to change and reuse. Consider extending
our figure example to allow another object type, say Pentagon. In both solutions, we would
provide pentagons with all of the operations supported by the other figures. However, in the
traditional solution, we must also modify all operations on figures since they all contain case
logic similar to that in Fig. 1.13. In every situation, a new case must be added. In a large
system, this kind of activity is extremely error-prone. Chances are that we will fail to make
one or more of the necessary changes. In an object-oriented system, the changes required are
localized - we simply implement the necessary operations on pentagons without changing
anything else.

1.7 OOP IS PROGRAMMING WITH INHERITANCE

We often think of objects as specializations of other objects. Precious metals are
specializations of metals, sports cars are specializations of cars, romance novels are
specializations of books, and so on. All precious metals are metals but not all metals are
precious metals. Similarly, all sports cars are cars and all romance novels are books, but the
reverse is not true. Extending this notion, we can view one class of objects as a subclass of
another. Taking the argument still further, we can create hierarchies of classes based on

Savings
Account

Term
Deposit
Account

Figure 1.14 Bank Account hierarchy.

Chapter 1 Object-Oriented Programming 13

logical 'is-a' relationships. In Fig. 1.14, checking accounts, savings accounts, and term
deposit accounts are all bank accounts. Similarly, in Fig. 1.15, quadrilaterals and triangles
are polygons, and squares and rectangles are special kinds of quadrilaterals. Furthermore, a
square is a special kind of rectangle.

Polygon

Quadrilateral

Square

Triangle

Figure 1.15 Polygon hierarchy.

1.7.1 Specialization and Generalization

What does it mean to say that one class is a subclass of another? Intuitively, we mean that
the subclass has all the characteristics of the more general class but extends it in some way.
Precious metals have all the characteristics of metals but, in addition, they can be
distinguished from some metals on the basis of monetary value. Similarly, quadrilaterals are
specializations of polygons with four sides. Polygons can have any number of sides. Squares
are specializations of quadrilaterals where all four sides have equal length, and adjacent
sides are perpendicular to one another. Applying these arguments in reverse, we can describe
the superclass of a class as being a generalization of the class.

One of the best ways to describe something new to someone else is to describe it in
terms of something that is similar; Le., by describing how it differs from something known.
Quoting an example from Cox,2 a zebra is a horse with stripes! This concise definition
conveys a substantial amount of information to someone familiar with horses but not with
zebras.

2B. Cox, Object-Oriented Programming: An Evolutionary Approach (Reading, Mass.: Addison-Wesley, 1986).

14 Inside Smalltalk

ill'

Object-oriented programming languages embody these notions of specialization and
differential description. Classes are hierarchically organized in subclassing relationships.
When one class is a subclass of another, it is said to assume or inherit the representation and
behavior of its superclass. Because of the sharing achieved through inheritance, the new
class has to describe only how it is different from the superclass. Logically, a brevity of
expression is achieved. Physically, this permits a sharing of operations - an operation
provided in one class is applicable to each and every subclass.

Subclass

Superclass

A class that inherits methods and representation from an
existing class.

A class from which another class inherits representation
and methods.

To get a better feel for these ideas, consider the simple hierarchy of bank account
classes shown in Fig. 1.16. To keep the description manageable, we have reduced the
problem to bare essentials. Assume that all bank accounts, whether checking, savings, or
term deposits, have an account number and a balance and that, in addition, term deposit
accounts have a term associated with them. Class BankAccount, therefore, has two instance
variables, accountNumber and balance, and all three subclasses inherit this representation
so that all instances have at least these two fields. Subclass CheckingAccount adds no
additional instance variables; neither does subclass SavingsAccount. Class TermDeposit
Account, however, introduces an additional instance variable term, giving term deposits a
total of three instance variables. In general, subclasses can add new instance variables but
they can never remove them. The same applies for methods. Subclasses can add methods
with the same names as methods provided in a superclass but they cannot eliminate methods.
Fig. 1.16 illustrates the class hierarchy and the state of one instance for each of the three
subclasses.

All types of bank accounts support operations to query the balance of an account. If an
operation has identical implementations in each subclass, we can implement the operation
once only in the common superclass BankAccount and have the three subclasses inherit the
operation. Other operations, such as querying the term of an account, will have to be specific
to class TermDepositAccount. In some situations, a common operation that we might wish
to implement once in a superclass may have to be duplicated in the subclasses if its
implementation depends on the particular type of account. For example, it might be the case
that the operations for deposits and withdrawals can be shared by savings and checking
accounts but that a different implementation of these operations is required for term deposit
accounts. Fig. 1.17 illustrates a specific design for the placement of operations within the
bank account class hierarchy. Operations should be placed as high in the hierarchy as
possible so that they may be shared by as many subclasses as possible.

Object-oriented languages like Smalltalk support large reusable class libraries. The
Smalltalk class library, for example, is organized in a single hierarchy with the most general
class Object at the root. Class Object contains operations that can be inherited by all
objects; e.g., a default print operation that prints the receiver's class name. In all, Smalltalk
contains in excess of 250 classes with over 2,000 methods. The extensive class library
fosters the notion of programming by reuse rather than by reinvention.

Chapter 1 Object-Oriented Programming 15

Checking
Account

Object

Savings
Account

myTermDepositAccount

accountNumber
balance
term

mySavingsAccount

accountNumber
balance

myCheckingAccount

accountNumber
balance

Figure 1.16 Representation inheritance.

123456
10000.00

5.0

34278
2471.87

56921
23.37

When a message is sent to an object, the system first looks for a method with the same
selector name in the class of the object. If found, the method is executed; otherwise, the
search is continued in the superclass, and the above process is repeated. Ultimately, a
method will be found and executed or the top of the hierarchy will be reached (class Object,
for example, has no superclass). The latter situation is an error since it indicates the use of a

16 Inside Smalltalk

message for which there is no corresponding method. In this case, an error notification is
generated. To illustrate this search process, consider the following example. Fig. 1.17 should
be used to determine (and verify) which method is actually executed.

CLASS Object

operations
print

I
CLASS BankAccount

operations
deposk:an~ount

withdraw: an~ount
queryBalance

operations

CLASS SavingsAccount

operations :::

operatIOns
deposit an~ount
withdraw: an~ount
queryTerm

.... :.....:.

Meaaage Sent

~:
.:

. :1.~.......: : .

Figure 1.17 Operation inheritance.

Which Method la Executed

aTermDepositAccount queryTerm
aCheckingAccount queryBalance
aSavingsAccount queryTerm
aSavingsAccount print

use method in class TermDepoaitAccount
use inherited method in class BankAccount
error - no method in superclass chain
use inherited method in class Object

In summary, a new class may differentiate itself from its superclass in a number of
ways. In particular, the new class may

support additional operations other than those inherited.
support new implementations of operations that could otherwise be inherited.

Chapter 1 Object-Oriented Programming 17

override existing operations supported by the superclass but inappropriate for the
new class by adding an operation that signals an error.

contain only a restricted subset of the instances of the original class.

add additional state.

1.8 SUMMARY

Object-oriented programming can be characterized as:

Programming with objects. Objects have state and can answer questions about
themselves. Objects are data types. They encapsulate the state or representation of
an object together with operations on that state and support the principle of
information hiding.

Programming by simulation. Applications are designed and implemented as a
simulation or animation. Objects model entities in the real world. This style of
programming is often referred to as programming by personification or
anthropomorphic programming.

Computation by message-passing. Scripts (or methods) define how an object
will respond to a given message.

Programming in the presence of polymorphism. Messages may be interpreted
in different ways by different receivers.

Programming in the presence of inheritance. Code sharing is achieved through
the inheritance of representation and behavior from one class of object to another.
New classes are defined as specializations of existing classes.

Programming in the presence of a reusable class library. New applications are
constructed from an existing library of parts.

1.9 GLOSSARY

selected tenninology

abstract data types The style of programming
that separates the external interface (the user's
viewpoint) from the representation and im
plementation details (the implementor's view
point).

anthropomorphic programming The program
ming metaphor that embodies the objects with
intelligence to decide how to react to requests
on their own.

class A description of a set of objects with simi
lar characteristics and attributes.

18

dynamic binding A requirement that the opera
tion intended by a specific name can be de
termined from the name of the operations and
the type of parameters at run-time (as opposed
to compile-time).

information hiding The notion that a data type's
representation and implementation need not
by known by users of a data type.

inheritance A mechanism that allows one class
of objects to share the methods and represen
tation of another class of objects.

Inside Smalltalk

instance An individual object described by a
particular class.

instance variables Variables found in all in
stances of a class; components of an object.

message A request sent to an object to carry out
some task.

message pattern A method selector together
with names for any arguments required by the
selector.

message protocol The messages to which an ob
ject can respond.

method A description of how an operation on an
object is to be computed.

object A component of the Smalltalk system rep
resented by some private data and a set of
methods (operations).

polymorphism The ability to take on several
meanings. Messages are polymorphic in the
sense that the actual method invoked is de
tennined by the type of the receiver.

programming by personification A synonym
for anthropomorphic programming.

programming by reinvention The undesirable
notion that programming can be done by
unknowingly duplicating the functionality of
existing code.

programming by reuse The notion that opera
tions in a class can be used by a subclass
without reprogramming or modifying the ex
isting classes.

Chapter 1 Object-Oriented Programming

programming by simulation The programming
metaphor that is based onp~mg the
physical or conceptual objects from some real
world domain into objects in the program do
main; e.g., objects are clients in a business,
foods in a produce store, or parts in a factory.

selector The component of a message that
uniquely specifies the operation requested;
e.g., at:put: is the selector in "anArray at: 1
put: 'hi"'.

specialization The notion that one kind of object
is a special case of another; e.g., precious
metals are a specialization of metals, sports
cars a specialization of cars, and romance
novels a specialization of books.

static binding A requirement that the operation
intended by a specific name can be detennined
from the name of the operations and the type
of parameters at compile-time (as opposed to
run-time).

subclass A class that inherits methods and repre
sentation from another class.

superclass A class from which another class in
herits representation and methods.

19

ill!

2

Sma/ltalk Fundamentals

2.1 INTRODUCTION

Programming in Smalltalk is different from programming in traditional languages such as
Pascal, Fortran, or Ada. A major difference is that the language is object-oriented rather than
procedure-oriented and is based on concepts such as objects and messages rather than
procedures and functions. Although these concepts are new to many programmers, they are
often overshadowed by a more visible difference. Smalltalk is much more than a
programming language - it is a complete program development environment. It integrates
in a consistent manner such features as an editor, a compiler, a debugger, a spelling checker,
print utilities, a window system, and a source code manager. Such features are traditionally
associated with an operating system rather than a programming language. Smalltalk
eliminates the sharp boundary between application and operating system by modelling
everything as an object.

Becoming a productive Smalltalk programmer requires much more than a familiarity
with the language. You must become adept at using the development tools provided by the
Smalltalk programming environment and, perhaps most important of all, become familiar
with the extensive library of existing classes (or data types) supplied with the Smalltalk
system. Be forewarned that it takes considerably longer to become an accomplished
Smalltalk programmer than an accomplished Pascal programmer. Interactive experimentation
and on-line familiarization are essential. Smalltalk encourages an exploratory approach to
programming. The payoff, however, is well worth the extra effort. You will be able to
develop interactive graphical applications with all the features of modem user interfaces (e.g.,
windows, menus, mouse interaction) at low cost. Smalltalk applications can be developed
with high productivity because of Smalltalk's underlying philosophy of reusing and
extending existing code rather than reinventing code.

21

Programming in Smalltalk therefore requires at least a knowledge of the following:

•

•
•

•

the fundamental language concepts; namely objects, messages, classes, and
inheritance,

the syntax and semantics of Smalltalk,

how to interact with the Smalltalk programming environment to build new
Smalltalk applications (Smalltalk is an interactive language that favors a learn by
doing or exploratory approach to programming), and

the fundamental system classes, such as the numeric, collection, graphical and
user interface classes. Designing new Smalltalk applications requires a knowledge
of the existing capability of the Smalltalk system. Programming in Smalltalk is
often termed programming by extension. New applications are constructed by
extending the existing Smalltalk class library.

In this chapter, we consider the first two requirements. An introduction to the
Smalltalk programming environment is given in Chapters 3 through 5. Chapters 6 through
10 describe the numeric, collection, and graphical classes respectively.

We assume that the reader is a programmer with some experience in a traditional
language such as Pascal and is familiar with fundamental programming language concepts.
Wherever possible in this chapter we will contrast Smalltalk code with its Pascal equivalent.
In addition to the obvious benefit of drawing comparisons between Pascal and Smalltalk, we
adopt this approach to speed up the discussion by relating Smalltalk concepts to those that
the reader is already familiar with.

Smalltalk is a language somewhat smaller in size than Pascal and is based on a
surprisingly small set of concepts; namely objects, messages, classes, subclassing, and
inheritance. The sparse number of primitive concepts and the consistent manner in which
they are used make Smalltalk a language that is relatively easy to learn. The biggest problem
for beginning Smalltalk programmers is not learning the syntax and semantics of the
language but becoming familiar with the substantial Smalltalk system library and the
interactive programming environment. Familiarity with the language does not translate to
familiarity with the system.

For ease of reference, whenever we introduce a major Smalltalk concept we will
provide a short definition. A glossary of major Smalltalk terms is included at the end of this
chapter.

2.2 OBJECTS IN SMALLTALK

As we mentioned earlier, everything in Smalltalk is an object. System components (such as
the compiler and the debugger), primitive data elements (such as integers, booleans, and
characters), and graphic elements (such as rectangular areas, drawing pens, and bitmaps) are
all objects. As we shall see later in this chapter, even control structures are implemented by
passing messages to objects.

22 Inside Smalltalk

2.2.1 What Is a Smalltalk Object?

Method

Object

A synonym for operation. Invoked when a message is
received by an object.

A component of the Smalltalk system represented by some
private data and a set of methods or operations.

Conceptually, an object can be thought of as a virtual computer with a memory and a
primitive instruction or operation set. An object has memory - private data or state that is
kept within the object. An object is also capable of computation. It can respond to any of a
predefined set of messages. This message set is referred to as the message protocol
supported by the object. When an object receives a message, it must frrst decide whether it
"understands" the message, and if so what its response should be. If an object can respond to
a message directly, a method or function corresponding to the message is selected and
evaluated. The result of evaluating the method is returned to the sender of the message as the
result

Message protocol The set of messages to which an object can respond.

As a more concrete example of a Smalltalk object, suppose we have an object, say
aPoint, that represents a position on the Smalltalk display screen. The state of aPoint will
contain at least two components: frrst, an object representing the xCoordinate of the position
of the object on the screen and, second, the yCoordinate. In Pascal terms, we might think of
aPoint as a record with two fields: xCoordinate and yCoordinate.

What message protocol might be supported by the object aPoint? Assume that aPoint
allows a sender to query its x and y coordinates by supporting the protocol x and y. For
example, sending the x message to aPoint using the Smalltalk expression

aPoint x

would return an object representing its x coordinate. For the sake of discussion, assume that
aPoint also supports the protocol distanceFrom: anotherPoint. The effect of sending the
message distanceFrom: to aPoint using a Smalltalk expression of the form

aPoint diatenceFrom: anotherPoint

is to return the distance between aPoint and anotherPoint.

2.2.2 Infonnation Hiding: Intemal and External
Views of an Object

Objects in Smalltalk encapsulate both procedures and data. They support the well-accepted
software engineering concept of information hiding. To control the complexity of large
programs, we must partition programs into modules. Moreover, we should hide as much
information as possible within a module and minimize the interface presented to users.

It is useful to think of a Smalltalk object providing two different views of itself: one
for users of the object and another for implementors of the object. We will call these views

Chapter 2 Smalltalk Fundamentals 23

the external and internal views respectively. The internal view describes the representation
of the object and the algorithms that implement the methods (or operations). The external
view is the view of the object as seen by other objects.

The external view, or what we can do with an object, is described by its message
protocol- the set of messages to which the object responds. To a user, the internal view of
an object is private. It is owned by the object and may not be manipulated by other objects
unless the object specifically provides a protocol for doing so. For example, the external
view of aPoint is shown in Fig. 2.1. If aPoint did not support a protocol for accessing its
x and y coordinates, it would be impossible for any other object to gain access to this
information. The only way to ask an object to perform any computation is by sending it a
message.

distanceFrom: anotherPoint

Figure 2.1 The external view or message protocol supported by aPoint.

Contrast this approach with that of Pascal, which provides almost no support for
information hiding. If we wanted to access or modify the contents of the xCoordinate field
of aPoint, we could do so easily using an expression of the form

aPoint.xCoordinete

Moreover, in Pascal, we have no way of preventing a programmer from directly accessing
the representation of aPoint in this way. The opposite is true in Smalltalk. Unless the
programmer provides specific accessing methods as part of the message protocol for the
object, it is impossible to access the internal structure of the object.

The separation between the internal and external views of an object is fundamental to
the programming philosophy embodied in Smalltalk. To use an object, it is necessary to
understand only its protocol or external view. The fundamental advantage of this approach is
that, provided the message protocol or external view is not changed, the internal view may
be changed without impacting users of the object. Similar facilities for information hiding
are provided by the module facility in Modula 2 and the package in Ada.

2.2.3 Uteral Objects

Certain types of objects can be described literally in Smalltalk. For example, literals are used
to describe numbers, symbols, characters, strings, and arrays. We will not dwell on
syntactic issues in the examples that follow. Each of these classes of objects will be
discussed more fully in later chapters. For the moment, we will let the examples speak for
themselves.

24 Inside Smalltalk

I 'Ill' I

Sma/lta/k Pa:It:aI

34 34

-17.62 -17.62

1.56e-3 1.56E-3

'a string' 'a string'

#solutions no equivalent

CotJ'UJllIfJtaIY

The integer 34.

The floating point number -17.62.

The floating point number .00156 written
in exponential form.

A string of characters.

A symbol with the name solutions. Each
symbol is unique - two symbols with
the same name cannot co-exist.

$c

#(-25 'a string' $cl

2.3 SENDING MESSAGES

'c'

no equivalent

The character lowercase c.

An array of three objects. Unlike Pascal,
objects within an array do not have to be
homogeneous. Individual objects within
an array can be referenced using integer
indices from 1 to the size of the array.

Message expressions in Smalltalk describe who is to receive the message, which operation is
being selected, and any arguments necessary to carry out the requested operation. The
components of the message are called the receiver, the selector, and the arguments
respectively. For instance, in the Smalltalk expression

1+5

the integer 1 is the receiver of the message, + is the selector that uniquely identifies which
operation is to be selected, and 5 is the argument necessary to carry out the operation. More
important than the new terminology involved here is the manner in which this expression is
evaluated. As illustrated in Fig. 2.2, expressions in Smalltalk and Pascal are evaluated in
fundamentally different ways.

In a Pascal-like language, we might describe the evaluation in the following way. The
addition operator is applied to the two integer operands I and 5, returning the result 6. From
an object-oriented viewpoint, it should be viewed differently. The message + 5 is being sent
to the integer object 1. Integer objects know how to respond to this message and the integer
object 6 is returned as a result. Notice the change of emphasis. It is the receiver of the
message (the integer object 1) that determines how the expression is evaluated. In a Pascal
like language it is the addition operation that is dominant.

Smalltalk supports three primitive types of messages, known as unary, binary and
keyword messages.

Chapter 2 Smalltalk Fundamentals 2S

6

~operator

Operands

Receiver

6

Message

Figure 2.2 Traditional versus Smalltalk expression evaluation.

2.3.1 Unary Messages

Unary messages have no arguments, only a receiver and a selector. They are equivalent to
Pascal functions with a single argument. Examples follow.

Smalltallc

5 factorial

16.79 rounded

$a nlnleger

'abcdef' size

factorial (51

round (16.79)

ord ('a'l

size ('abcdef'l

The message consisting of the selector
factorial is sent to the integer 5. The
integer object 120 is returned as the
result.

The message consisting of the selector
rounded is sent to the float 16.79. The
integer object 17 is returned as the
result.

The message consisting of the selector
aslnteger is sent to the character 8. The
integer object representing the ordinal
value of the character is returned as the
result.

The message consisting of the selector
size is sent to the string 'abcdef'. The
integer object 6 representing the length
of the string is returned as the result.

Pascal style unary operations are not available in the traditional syntax. The following
example shows a unary minus operation.

26 Inside Smalltalk

Smalltallc

3negeted -3

I :111

Co..w..sntary

The message consisting of the selector
negated is sent to the integer 3. The
integer object -3 is returned as the
result.

no equivalent +3

2.3.2 Binary Messages

In addition to the receiver, binary messages have a single argument. They are equivalent to
Pascal binary operations. The selectors for binary messages are special single or double
characters. Single character selectors include common arithmetic and comparison operators
such as +, -, • ,/, <, >, and =. Double character selectors include such operators as ~= (not
equal), <= (less than or equal), and /I (integer division). Examples of binary messages follow.

Smalltallc

55 + 100

'abc' -- 'def

55 + 100

'abc' <> 'def'

Commenfaly

The message + 100 is sent to the integer
55. The selector is + and the argument is
100. The result is to return the integer
155.

The message -= 'def' is sent to the string
'abc'. The selector is -= and the argument
is the string 'def'. The receiver and the
argument strings are compared for
inequality. The boolean object true is
returned.

2.3.3 Keyword Messages

Keyword messages are messages containing one or more keywords, with each keyword
having a single argument associated with it The names of keywords always end in a colon
(:). The colon is part of the name - it is not a special terminator. Keyword messages are
equivalent to Pascal functions with two or more arguments. Examples follow.

Smallta/lc

28gcd: 12

#(4321) at: 4

Put:III

gcd (28,12)

no equivalent

eonwnsntary

The message gcd: 12 is sent to the integer
28. The selector is gcd: and the argument
is the integer 12. The result returned is the
greatest common divisor of the receiver 28
and the argument 12, that is, the integer
object 4.

The message at: 4 is sent to the array
containing (4 32 1). The selector is at: and
the argument is the integer 4. The result
returned is the integer object 1, the object
associated with the index (or subscript) 4
in the array.

Chapter 2 Smalltalk Fundamentals Xl

5 between: 3 and: 12 between (5,3, 12) The message between: 3 and: 12 is sent to
the integer 5. The selector is between:and:
and the arguments are the integers 3 and
12 respectively. The result returned is the
object true since 5 lies in the range 3 to 12
inclusive.

The selector in a keyword message is formed by concatenating together all of the
keywords in the message; e.g., between:and:. The same keywords may appear in different
message selectors, providing the concatenation of the keywords forms a unique selector.

2.3.4 Evaluation of Message Expressions

The receiver or argument of a message expression may itself be a message expression. This
gives· rise to complex message expressions and the need for an evaluation order. For
example, the following message expression contains unary, binary, and keyword messages.

4 factorial ged: 4 * 6

Many languages, Pascal included, base the evaluation of expressions on priorities
assigned to different operators. For instance, multiplication (*) is usually.assigned a higher
priority than addition (+). Smalltalk's evaluation rules, however, are based on the type of
messages (unary, binary, and keyword) involved in the expression. In order of application,
the evaluation order is as follows:

1. Parenthesized expressions
2. Unary expressions (evaluated from left to right)
3. Binary expressions (evaluated from left to right)

4. Keyword expressions

Note: all binary operators have the same priority level.

Fully parenthesizing a message expression removes all ambiguity about the evaluation
order. Each of the following examples is shown with its fully parenthesized form to
illustrate the order of evaluation.

2 factorial negated
3+4·6+3
15 ged: 32/1 3
2 factorial + 4
5 between: 1 and: 3 squared + 4
4 factorial gcd: 4 * 6

2.3.5 Cascaded Messages

Fully P"I'8Irthe:IizedExpreaion

(2 factorial) negated
«3 + 4) • 6) + 3
15 gcd: (32//3)
(2 factorial) + 4
5~: 1 and: «3 squared) + 4)
(4 factorial) ged: (4 * 6)

Cascaded messages are a concise way of specifying that multiple messages be sent to the
same receiver. A cascaded message consists of a series of message expressions separated
by semicolons (;), where the first message expression specifies the common receiver. For

28 Inside Smalltalk

1'11I1

example, imagine we wanted to modify the first three elements of an array anArray. The
message at: index put: aValue modifies an element of an array. We could send the same
message to anArray three times

anArray et: 1 put: 3. anArray et: 2 put: 8. anArray et: 3 put: 5

or alternatively use the cascaded message expression

anArray et: 1 put: 3; et: 2 put: 8; et: 3 put: 5

No receiver is specified for the second and third at:put: message - implicitly the
receiver is the same as the message preceding the first semicolon. The result of evaluating a
cascaded expression is the result of sending the last message in the cascade. In this case,
since at:put: returns the modified value, the result returned would be 5. To return the
modified array as a result, the message yourself could be added to the cascade.

anArray et: 1 put: 3; m: 2 put: 8; et: 3 put: 5; you...."

When a yourself message is received by any object, the object (or receiver) is returned.

2.3.6 Dynamic Binding and Message Overloading

The same message can be interpreted in different ways by different objects. For example,
consider the following examples.

5 + 100

(200 0 200) + 100

Both examples use the message + 100 but the receiving objects react to the message in
very different ways. In the first example, the receiver is the integer 5 and the selector + is
interpreted as indicating integer addition. In the second, the receiver is the point with x and y
coordinates equal to 200 (the binary selector @ when sent to an integer creates an initialized
instance of the Smalltalk class Point). In this expression, the selector + is interpreted as
indicating addition defined on points. The point with x and y coordinates equal to 300 is
returned.

As we discussed earlier, it is the receiver of the message that determines how the
message is to be interpreted. This means that the same message sent to different objects will
produce different results. For example, we could use the generic selector printString to
generate printed representations of points, rectangles, and so on. Consider

aPoint printString

aRectangle printString

Prints a point in the form x@y; e.g., lO0@200.

Prints a rectangle in the form "originPoint corner:
cornerPoint"; e.g., lOO@lOO comer: 200@200.

The actual print method invoked by an expression such as anObject printString is
determined by the type of the object receiving the message. If the receiver is a point, then the
method for printing points is selected. The decision about which print method to evaluate in
response to a printString message is delayed until run-time and is based on the type of the

Chapter 2 Smalltalk Fundamentals 29

receiver. This is called dynamic binding. Some messages in Smalltalk have as many as
twenty different implementations for different types of objects.}

When the same selector is accepted by different classes of object, we say, in
programming language terminology, that the selector is overloaded. Alternatively, if we
equate message expressions to function calls in Pascal, we can view messages as functions
that are generic in their first argument.

Smalftalk

receiver .elector
receiver selector: first
receiver .elector: first with: second

2.3.7 Variables and Assignment

selector (receiver)
selector: (receiver, first)
selector:with: (receiver, first, second)2

Variable names in Smalltalk are simple identifiers consisting of a sequence of letters and
digits beginning with a letter. Although they have the same syntax as their Pascal
counterparts, variables in Smalltalk are vastly different. All variables in Smalltalk are object
pointers or pointer variables in the Pascal sense. For example, in Pascal if we have a
variable named x and an assignment statement of the form

x := 'a String'

we refer to the value of x as the string 'a String' or to x as containing the value 'a String'.
In Smalltalk, a similar assignment would take the form:

X f- 'a String'

and we would say that the variable x is bound to (or points to) the object 'a String' (see
Fig. 2.3).

In Pascal, the equivalent would be described by the expression

xi := 'a String'

In Smalltalk, variable names are used to refer to the object pointed to by the variable.
Assignment expressions are used to change the object to which a variable is bound or points
to. Consider the following:

SmaIItaJc

x(--y x:= y

eo.•••J8nfluy

The variable x is bound to the same object
that is bound to the variable y.

}Actually, there is only one prlntStrlng method in class Object. Method prlntStrlng invokes
method prlntOn:, and it is this method that is reimplemented by subclasses to override the default
print behavior found in the prlntOn: method in class ObjecL
20f course, in Pascal, the colons would not be legitimate characters in the function name.

30 Inside Smalltalk

x

Iii··....·.a•.•.·•.·•.·•.· •..•.·.•..·8.•·•.•.·.•.•.•.•. ·.·.:.•.tt·.·.•.•.•.·•.•••..•..•m.·.·.·•.•.·•.·.•.•.•.•g••.••.••...•:.•....•.••:.•.•.••..•.•..••....••.••..•.••.•.•.....•..:....••.•....•:.•..••.......•.••.•••••.••.•..••.•.•...•.•.••••••.•...•.•.•..•.•.•••:•••......••..••..•.•.••.•.•••..•....•...••....••..•..1..••...•..•..•..••.•....fiIIII . I

x := 'a String'

11111 I

x

x~ 'a String'

Figure 2.3 Pascal versus Smalltalk assignments.

Note that there is a subtle but important difference between the Smalltalk and Pascal
versions in the previous example. An assignment such as x := y in a language such as
Pascal involves making a copy of the contents of y and placing it into the space occupied by
x. In Smalltalk no copying takes place, x is simply bound to the same object as y (see
Section 6.2.2 for an in-depth discussion of this subject). Consider the following examples:

x+-x+1 x:=x+1

table at: index put: 3 table [index) := 3

x+- 3. x +- $3 no equivalent

The message + 1 is sent to the object
bound to variable x. Variable x is then
bound to the object returned by evaluating
the message expression x+1.

The element of the array table at position
index is bound to the integer object 3. The
argument to the keyword put:, the object
3, is returned as result.

The first assignment expression binds x to
the integer object 3. The second then
rebinds x to the character object $3.
Notice that the period (.) is used as a
statement separator in exactly the same
way as the semicolon (;) in Pascal. It can
also terminate the last sentence if we
wish to add it.

The last example illustrates another important difference between Smalltalk variables
and Pascal variables. The type of a Pascal variable must be predeclared at compile-time - no
type is provided when a Smalltalk variable is declared. For instance, a Pascal variable
declared as type integer cannot subsequently take on a character value. For that reason, Pascal
is known as a strongly typed language. Smalltalk variables, on the other hand, are not
typed. Smalltalk objects are typed but not the variables that refer to them. A Smalltalk

Chapter 2 Smalltalk Fundamentals 31

variable can be bound to any object of any type. The declaration syntax and the scoping rules
pertaining to Smalltalk variables are discussed in a later section.

2.3.8 Allocation and Deallocation of Objects

Another major difference between Pascal and Smalltalk is the method of dynamically
allocating and deallocating objects. In Pascal, it is necessary to explicitly deallocate objects
when they are no longer needed - in Smalltalk this process is handled automatically. The
example below illustrates the dynamic allocation of an array of size 10 to a variable aTable.
In the Pascal case, the array element type must be specified. In both Pascal and Smalltalk,
the allocation process is carried out in a similar fashion. Pascal has a new function while
Smalltalk sends a new: message to the class Array. However, in Pascal, if we wish to
reclaim the space pointed to by variable aTable, we must explicitly ask that it be deallocated
using the dispose function. Moreover, it is the programmer's responsibility to ensure that
this space can be safely reclaimed; Le., to ensure that no other references to the deallocated
objects exist. In Smalltalk, this task is handled automatically by a garbage collector3 that
periodically reclaims all objects that are no longer referenced.

Sma/ItaJc

TYPE
table =ARRAY [1..10) OF integer;
pointerToTable = itable;

I aTable I

aTable f- Array new: 10.

VAH
aTable: pointerToTable;

new (aTable);

dispose (aTable)

2.4 CONTROL STRUCTURES WITH MESSAGE-PASSING

Unlike Pascal, no additional syntactic structures need to be added to the language to describe
control structures. Control structures are implemented in terms of objects and message
passing. In particular, Smalltalk control structures involve a class of object known as a
block. For the moment, a block can be thought of, at least syntactically, as an analog of the
Pascal begin •.• end construct; Le., simply a way of grouping together a set of statements.
A block literal consists of a sequence of expressions separated by periods and delimited by
square brackets; e.g.,

3The garbage collectors implemented in current versions of Smalltalk-80 are, unlike early garbage
collectors, extremely efficient, consuming only 2-3 per cent of available CPU time.

32 Inside Smalltalk

lillf'!

The result returned when a block is evaluated is the object returned by the evaluation of
the last expression in the block.The empty block [) returns the special object nil when
evaluated.

Fig. 2.4 contains a summary of the control structures in Smalltalk along with their
Pascal equivalents.

variable +- expression

Conditionel Selection

boolean expression
ifTrue:I

true block)
ifFelee:[

false Block)

boolean expression
ifTrue:[

true block)

boolean expression
ifF....: [

false block)

Conditionel Repetition

[boolean expression) whileTrue: [
loop body)

[boolean expression) whileF.I.e: [
loop body)

Fixed Length Repetition (integers only)

initial value to: final value do:
[loop control variable I

loop body)

repeat value timeaRepeet: [
loop body)

variable := expression

IF boolean expression THEN
statement

BSE
statement

IF boolean expression THEN
statement

IF NOT boolean expression THEN
statement

WHILE boolean expression DO
statement

WHILE not boolean expression DO
statement

FOR loop control variable :=
initial value TO final value DO

statement

FOR loop control variable :=
1 TO repeat value DO

statement

Figure 2.4 Smalltalk control structures.

2.4.1 Conditional Selection

Control structures for conditional selection are expressed using blocks as shown in the
following. In each case the Pascal equivalent is given. As in Pascal, Smalltalk allows
statements to be freely formatted by the programmer. Statements should be laid out in a

Chapter 2 Smalltalk Fundamentals 33

manner that visually enhances the logical structure of the code using indentation as
appropriate.

Sma/hale

number1 < number2
itTNe: [

maximum ~ number2.
minimum~ number1)

ifFal..:[
maximum ~ number1.
minimum ~ number2)

IF number1 < number2 THEN
BEGIN

maximum := number2;
minimum := number1

B\ID
BSE

BEGIN
maximum:= number1;
minimum := number2

The Smalltalk version of the if-then-else statement should be interpreted as follows:

1. The message < number2 is sent to the object referenced by numberl. All
numbers respond to the selector < (less than) by returning one of the boolean
objects, true or false, depending on the argument passed in the message.

2. If numberl < number2 returns true, the message iITrue: [••.] ifFalse: [...] will
be sent to the boolean object true; otherwise it will be sent to false.

The constant true responds to a message with selector iITrue:ifFalse: by
evaluating the expressions in the argument associated with the iITrue: keyword;
i.e., the block, [maximum ~ number2. minimum ~ numberl].
Similarly, false responds to a message with selector iITrue:ifFalse: by evaluating
the expressions in the argument associated with the ifFalse: keyword; Le., the
block, [maximum ~ number1. minimum ~ number2].

3. The object returned by the conditional selection is the value of the evaluated
block. In this example, the object bound to minimum will be returned since an
assignment expression of the form minimum ~ number? is the last statement in
both the iITrue: and ifFalse: blocks.

The boolean objects true and false also accept the single keyword messages iITrue:
and ifFalse:. The following are examples of their use.

Sma/hale

salesAmount < 100
ifTrue: [discount~ 0.15]

number >= 0
ifFalse: [number~ number negated)

IF salesAmount < 100 THEN
discount := 0.15

IF NOT (number >= 0) THEN
number := -number

The literal true responds to an iITrue: message by returning the value of the block
argument; false responds to the same message by returning the special object nil.

34 Inside Smalltalk

Conversely, true responds to an itFalse: message by returning nil, and false responds to the
same message by returning the value of the block argument. Note that the arguments to
message selectors irrrue:itFalse:, irrrue:, and ifFalse: must be blocks even if the block
contains only a single message expression or is empty.

Since conditional selection is implemented in terms of message expressions, a
conditional selection can itself be embedded within a message expression. For instance, the
last example could have been written as follows:

number +- number >= 0 ifFeI..: [number negeted) itTrue: (number)

2.4.2 Concltional Repetition

Smalltalk provides a conditional repetition form equivalent to the Pascal while ••• do
statement. It is again based on blocks and makes use of the fact that blocks are bonafide
objects and thus can support their own message protocol. Consider the following program
fragments to compute the sum of the fIrst 100 integers:

Smalltalk

sum +-0.
number+- 1.
[number <= 100) whileTrue: [

sum +- sum + number.
number+- number + 1).

sum

sum:= 0;
number:= 1;
WHILE number <= 100 DO

BEGIN
sum := sum + number;
number := number + 1

END

The Smalltalk version of the while ... do statement should be interpreted as follows:

1. The message whileTrue: [•••] is sent to the block [number < 100].

2. In response to the whileTrue: message, the receiver, the block [number < 100],
evaluates itself.

3. If evaluating the block returns the object true, the whileTrue: argument block is
evaluated and the whileTrue: message is again sent to the block [number < 100],
and steps I, 2, and 3 are repeated.

If evaluating the block returns the object false, the whileTrue: argument block is
not evaluated again and the wbileTrue: message returns the special object nil as
the result.

Note that the result returned by a wbileTrue: message will always be nil. To return
the required result when the fragment of Smalltalk code is evaluated, we evaluate the variable
sum on exit from the while loop.

The effect of sending a wbileTrue: message to a block is to repeatedly evaluate the
block argument while the block receiving the message evaluates to true. This provides a
conditional structure that repeats zero or more times.

Chapter 2 Smalltalk Fundamentals 35

A whileFalse: message is also understood by blocks. Its semantics are similar to the
whileTrue: semantics but are reversed; i.e.• the effect of sending a whileFalse: message to a
block is to repeatedly evaluate the block argument. while the block receiving the message
evaluates to false rather than true. The result returned by whileFalse: is always the special
object nil. The previous example could be rewritten to use whileFalse: instead of
whileTrue: as follows:

Smalltalc

sum~O.

number~ 1.
[number> 100] whiIeFel••: [

sum ~ sum + number.
number~ number + 1].

sum

2.4.3 Fixed-Length Repetition

sum :=0;
number:= 1;
WHILE NOT (number> 100) DO

BEGIN
sum := sum + number;
number := number + 1

Deterministic looping over integers is provided by the to: finalValue do: aBlock message
dermed on integers. The do: keyword argument is a single argument block. Block arguments
are declared at the head of a block and delimited from the expressions in the block by a bar
(I). Each block argument name is syntactically preceded by a colon ":". The previous
example for computing the sum of the first 100 integers could be recoded as follows:

Bn.lltalc

sum~O.

1 to: 100 do: [:index I
sum ~ sum + index].

sum

sum:= 0;
FOR index:= 1 TO 100 DO

BEGIN
sum := sum + index

The to: finalValue do: aBlock message on integers evaluates the single argument
block aBlock for each integer in the interval given by the value of the receiver up to and
including finalValue. The argument to the block takes on successive values in that interval
on each evaluation of the block. In the example above. the block is evaluated for each value
of the block argument. index. which takes on the successive values in the interval I to 100
inclusive.

Smalltalc

sum~O.

1 to: 100 by: 2 do: [:index I
sum ~ sum + indexl.

sum

sum := 0; index:=1;
WHILE index < 100 DO

BEGIN
sum := sum + index;
index := index + 2

The to: finalValue by: stepValue do: aBlock message defined on integers is a
variation of the to:do: message that specifies the amount by which the block argument is to

36 Inside Smalltalk

11111

be incremented on each evaluation. For positive step values, the repeated evaluation
terminates when the loop index is greater than the finalValue. This is illustrated above. For
negative steps, the loop terminates when it is less than finalValue.

As we will see later, it is a simple matter to add new methods to integers to support
additional control structures. For example, we might wish to add a downTo: finalValue do:
aBlock, where the block argument is decremented by 1, instead of incremented, on each
evaluation of the block.

An even simpler form of deterministic loop is provided by the timesRepeat: aBlock
protocol that evaluates a zero-argument block a fixed number of times. The number of
evaluations is specified by the receiver, an integer. For example, the expression

5 time.Repeet [...J

would evaluate the block five times.

The Pascal for statement allows fixed length iteration where the index variable of the
loop may be of any ordinal type. For example, given the following type color,

TYPE color = (red, green, yellow, blue)

we could construct a for statement to iterate over subranges of the values of the type; e.g.,

FOR hue:= red TO blue DO BEGIN ... END

The Smalltalk equivalent is the do: construct that applies to many more classes of
object For example, we can write

(1 to: 10) do: [:Iooplndex I ... code J
#(red green blue) do: [:Iooplndex I code ... J
#(5 'hi' 1.5) do: [:Iooplndex I code J
aSet do: [:Iooplndex I ... code J
anOrderedCollection do: [:Iooplndex I '" code ... J

In Smalltalk, control structures are implemented by passing messages to objects.
Consequently, we can implement the do: for each different class of object that we would like
to iterate over. This is a great advantage because control structures can be constructed not
only to iterate over simple ranges of integers, but also to traverse such data structures as
arrays, lists, trees, bank accounts, or circuit elements.

2.4.4 An ExM1ple: Testing for Primes

To illustrate the equivalent of Pascal's nested control structures in Smalltalk and to discuss a
larger example, we will consider the development of a Smalltalk fragment to test whether or
not a given integer is prime. For our purposes, a number is defined as prime if it is positive
and evenly divisible by itself and 1. The algorithm used initially rejects all even numbers
greater than 2. For odd numbers greater than 3, the integer is divided by a series of odd trial
divisors, until either the number divides evenly into one of the trial divisors in which case it
is not prime, or alternatively until the divisor becomes larger than the square root of the
number, in which case the number is prime. Pascal and Smalltalk versions of code to solve
this problem are shown below.

Chapter 2 Smalltalk Fundamentals

FUNCTION isPrime (candidate: integer): boolean;
VAH divisor: integer; prime: boolean;
BEGIN

prime := true;
IF candidate <= 0 THEN

prime := false
ELSE IF candidate> 3 THEN

IF candidate MOD 2 =0 THEN
prime := false

ELSE
BEGIN

divisor := 3;
WHILE (divisor * divisor) <= candidate) AND prime DO

IF candidate MOD divisor = 0 THEN
prime := false

ELSE
divisor := divisor + 2

END;
isPrime := prime

END;

Sma/hale

isPrime
I candidate divisor I
candidate f- self.
candidate <= 0 ifTrue: [ifalseJ.
(candidate >= 1 & (candidate <= 3)) ifTrue: [itrue].
(candidate \\2) =0 ifTrue: [ifalseJ.
divisor f- 3.
[divisor • divisor <= candidateJ whileTrue: [

(candidate \\divisor) = 0
ifTrue: [ifalseJ
ifFelse: [divisor f- divisor + 211.

itrue

Several explanatory comments are required to understand the Smalltalk code. But first
note that the Smalltalk code is more concise than the Pascal code - primarily because of
Pascal's inability to terminate evaluation of a function before the end. In Smalltalk, an
expression preceded by an up arrow (i) is termed a return expression. A return
expression indicates that the result of evaluating the expression following the up arrow is
the result to be returned and evaluation of the code is to terminate.

Two unfamiliar binary selectors are introduced: & and \\ Selector & denotes the and
operation - its result is true if both the receiver and argument are true. Selector \\ defined on
integers returns the integer remainder when the receiver is divided by the argument.

As in Pascal, variables must be declared before they can be used. But as explained
earlier, variables are untyped - hence no type declaration is necessary. The form

I candidate divisor I

declares candidate and divisor to be temporary variables. These variables exist only

38 Inside Smalltalk

while the code fragment is being evaluated. All temporary variables are initially bound to the
special object nil.

In Smalltalk, the receiver of the isPrime message is called self. Explicitly assigning
self to a local variable, as we did via assignment candidate ~ self, is actually superfluous
because self can be referenced anywhere in the method. However, it serves to make the Pascal
and Smalltalk versions easier to compare.

2.4.5 User-Defined Control Structures

No analog of the Pascal repeat ••• until or case statements is provided in the Smalltalk
system. However, since control structures are implemented by sending messages to objects,
it is possible for the programmer to add new control structures to the system. We will show
examples of how this may be done in later chapters. To whet your appetite, we will
introduce a few examples of advanced control structures that may be created in Smalltalk.
However, we will not yet discuss the details of their implementation.

Very often we want to apply a function to each element of a data structure such as an
array, a list, or a tree. For example, it is traditional to sum the elements of an array by
extracting successive elements and adding them to a running sum. Alternatively, we might
want to print out the values stored in a binary tree by traversing the nodes of the tree in
some specified order such as post-order.

Each of these tasks require us to successively generate elements from a data type and
apply a function to each generated element. Such control forms are often called generators.
Lisp programmers will recognize them as mapping functions. The do: aBlock message,
when sent to an array receiver, successively supplies the objects in the array as the argument
to the single argument block provided after keyword do:. For example, the code

sum~O.

table do: [:element I sum ~ sum + element]

sums the elements in array table. As each object from the array is generated, it is bound to
the block argument element and the message expression sum ~ sum + element is
evaluated.

Many other useful variations of this form are possible. We will give just one further
example. Rather than simply applying a function to each object of an array, we often want
to select only those objects that satisfy some constraint Perhaps we want to collect into a
new array only the nonzero elements of an existing array. This requires us to generate each
element from the original array, test whether the element is zero or not, and, if it is nonzero,
add it to the new array. The expression

#(030420 01 ••Iect: [:element I element -'" 0)

would perform this task and return the array #(3 4 2) as the result; Le., it collects the nonzero
elements into an object of the same class as the receiver. A final example is

#(1 234 SI collect: [:element I element .quared]

which returns #(1 4 9 16 25).

Chapter 2 Smalltalk Fundamentals 39

2.5 CLASSES

The class is the fundamental abstraction mechanism in Smalltalk. It groups together objects
with similar characteristics. Classes allow the programmer to abstract out the common
attributes and behaviors of a set of objects. A class describes the common protocol followed
by each object in the set; individual objects following that description are termed instances.
One class description serves to describe all instances of that class, and every object in the
Smalltalk system is an instance of some class.

Class

Instance

A description of a set of objects with similar characteristics
and attributes.

An individual object described by a particular class.

In previous sections, we have been exposed to some of the basic Smalltalk system
classes: integers, characters, strings, booleans, blocks, arrays, and so on. We have seen
examples of instances of each of these classes: 3 is an instance of class Integer, 'hello' is
an instance of class String, [x f- 4 factorial] is an instance of class Block. We have also
examined some of the protocol that instances of these classes follow. For example, the class
Integer supports the following protocol: factorial, +, ., *, I, to:do:, to:by:do:, gcd:, and
so on. The class Array supports the protocol at: and at:put:. In later chapters, we will
examine the complete protocol supported by each of these classes.

Up to this point, we have seen how messages can be sent to instances of predefined
classes. The Smalltalk environment provides an enormously rich set of such classes, but the
essence of programming in Smalltalk is identifying, creating, and manipulating new classes
of objects. To illustrate the description of classes and the creation of instances, we will
define a new class Complex to perform calculations in complex arithmetic. Note: Class
names in Smalltalk must begin with an uppercase letter.

2.5.1 Designing a New Class

The first step in designing a new class is to develop a specification for the class; i.e., to
define the message protocol or outside view of the new class. The specification should
provide all the information required by users of the class but only that information. No
information superfluous to the needs of users should be provided. The specification of the
class should be completed before any implementation issues are considered. Developing the
specification consists of the following three steps:

1. Listing the names of the operations required.

2. Fleshing out the operations by describing the parameters in detail.

3. Specifying the semantics of each operation informally.

We will assume, for brevity's sake, that we only wish to create, add, and multiply
complex numbers and also access and modify their real and imaginary parts.

40 Inside Smalltalk

I 'Ill'!

2.5.2 Class Protocol versus Instance Protocol

The message protocol for a class is described in two parts: the class protocol and the
instance protocol.

Class Protocol A description of the protocol understood by a class.

Instance Protocol A description of the protocol understood by instances of a
class.

The class protocol describes messages that are sent to the class rather than to the
instances. Typically, the class protocol contains protocol for creating and initializing new
instances of a class. Classes can be thought of as factories for creating instances. For
example, it is the responsibility of class Complex to create new instances of the class. The
expression

Complex newWithR_I: 1.0 endlmeginary: 3.5

sends the message newWithReal: 1.0 andImaginary: 3.5 to the class Complex. The intent
is to return a new instance of class Complex with real and imaginary components initialized
to 1.0 and 3.5 respectively. For class Complex, the class protocol might be specified as
follows:

instance creation

nawWithReel: realPart endlmeginery: imaginaryPart
Returns an instance of class Complex with real part reelPert and imaginary
part imeginaryPert.

Method categories are used in Smalltalk to group together methods that provide
similar functionality. For example, the class method newWithReal:andImaginary: would
be placed in a category with the name instance creation. Category names have no
semantic significance - they are used externally for documentation purposes. Internally,
category names are used by the programming environment to group related methods.

The instance protocol is the message protocol supported by instances of the class;
Le., messages that may be sent to any instance of the class. For example, the message
protocol for adding two complex numbers is part of the instance protocol. In the expression

complex1 + complex2

the receiver of the message + complex2 is the instance complex!. A subset of the instance
protocol for the class Complex might be the following:

accessing

~IPert

Returns the real component of the receiver.

imeginaryPert
Returns the imaginary component of the receiver.

Chapter 2 Smalltalk Fundamentals 41

realPart: realValue
Sets the real component of the receiver to realValue. Returns the modified
receiver.

imaginaryPart: imaginaryValue
Sets the imaginary component of the receiver to imaginaryValue. Returns
the modified receiver.

arithmetic

+ aComplex
Returns a complex number equal to the sum of the receiver and the
argument aComplex.

• aComplex
Returns a complex number equal to the product of the receiver and the
argument aComplex.

If the instance and class protocols for Complex are sufficiently complete, we should be
able to write code that manipulates complex numbers, despite the fact that we have yet to
consider how to represent complex numbers or how to implement any of the operations. For
example, the following message expressions would create two complex numbers and then
compute two more, one equal to the sum of the originals and the other equal to their product.
It is a good practice to try "programming" with a new class as soon as its protocol has been
specified. More often than not, this process reveals deficiencies in the protocol. Clearly, it is
better to discover such problems at the specification stage rather than after the class has been
implemented.

I complex1 complex2 complexSum complexProduct I
complex1 ~ Complex newWithReal: 2.5 andlmaginary: 3.1.
complex2 ~ Complex newWithReal: -1.0 andlmaginary: 0.5.
complexSum ~ complex1 + complex2.
complexProduct ~ complex1 • complex2

2.5.3 Implementing a Class Description

The inside view of a Smalltalk class description, the implementation viewpoint, can be
made more concrete by performing the following two steps:

1. Deciding on a suitable representation for instances of the class.

2. Selecting and implementing efficient algorithms for the methods or operations.

When describing the representation, we must distinguish between instance variables
and class variables. Instance variables are variables denoting the private data or state of an
individual instance of a class. Class variables, on the other hand, are variables shared by all
the instances of a class.

Suppose we have two instances of class Complex, referenced by variables complexl
and complex2. What distinguishes them from one another? They both follow the same
instance message protocol and thus can share a single copy of the method associated with
each message. Instance methods, therefore, can be stored in the class description. However,
complexl and complex2 must have their own private data - in particular, their individual

42 Inside Smalltalk

I '!II" I

real and imaginary parts. We speak of the real and imaginary parts as instance variables of
the class Complex. That is, each instance of a class will have its own instance variables.
For example, if we send the message realPart to both complexl and complex2 as in

complex1 realPert
complex2 realPert

we expect to obtain possibly different results because the method implementing the realPart
message will extract independent values for the respective real components of complex1 and
complex2.

Some variables can be shared by all the instances of a specific class. Such variables are
called class variables. For example, Pi is a class variable representing the mathematical
quantity 1t in class Float. Similarly, class Date contains class variables such as
WeekDayNames - an array of symbols representing the days of the week (Monday,
Tuesday,), MontbNames - an array representing the months of the year (January,
February,), and DayslnMonth - an array containing the number of days in each
month (31, 28, 31, ...).

2.5.4 Describing a Class

Smalltalk class descriptions consist of the following seven components:

class name A name that can be used to reference the class.

superclass name The name of the superclass (the role of superclasses will be
discussed later in this chapter).

class variables Variables shared by all instances of the class.

instance variables Variables found in all instances of the class.

pool dictionaries The names of lists of shared variables that are to be
accessible to the class and its instances (described in more
detail later). Unlike class variables, the pools can be
referenced by other unrelated classes.

class methods Operations that are understood by the class.

instance methods Operations that are understood by instances of the class.

Returning to our example, the class name is Complex, the superclass is class Object,
and there are no class variables or pool dictionaries. In general, the choice of superclass is
often critical to the implementation of a class, since it specifies what representation and
methods may be inherited automatically from other classes. For the moment, we will ignore
this issue and simply specify that the superclass of Complex is class Object. All Smallta1k
classes, except Object itself, are ultimately subclasses of class Object.

Complex numbers can be represented in at least two ways - two independent floating
point numbers or an array of two such numbers. As long as the choice does not impact the
performance of the class, it doesn't matter which representation we choose - the external
view presented to users of the class Complex is independent of the choice of representation.

Chapter 2 Smalltalk Fundamentals 43

We will choose two numbers to represent the real and imaginary parts respectively. Hence,
each complex number has two instance variables, realPart and imaginaryPart.

The full description of class Complex is shown in Fig. 2.5. Programming in
Smalltalk is carried out within an interactive program development environment. It is not
normal, therefore, to add new classes to the system by compiling a file containing the
complete class description.4 New classes are added to the Smalltalk system incrementally
using a tool known as a Browser. The class definition is first entered and compiled into the
system followed by the method definitions. Each method is compiled incrementally into the
existing system and can immediately be tested. The system provides a template to guide the
addition of new classes and methods. This process will be described in detail in succeeding
chapters. For the time being, we will present the entire listing of the class definition.

Class Complex

class name
superclass name
instance variable names

class methods

instance creation

Complex
Object
realPart imaginaryPart

newWithReal: realValue andlmaginary: imaginaryValue
"Returns an initialized instance of class Complex ."
I aComplex I
aComplex~ Complex new.
aComplex realPart: realValue; imaginaryPart: imaginaryValue.
iaComplex

examples

example
I complex1 complex2 I
complex1 ~ Complex newWithReal: 2.5 andlmaginary: 3.1.
complex2~ Complex newWithReal: -1.0 andImaginary: 0.5.
i complex1 * complex2.

"Complex example"

instance methods

accessing

realPart
"Returns the real component of the receiver."
irealPart

imaginaryPart
"Returns the imaginary component of the receiver."
iimaginaryPart

4This is often done, however, to add externally created classes to the system; for example, for porting
code across machines - this operation is referred to as "filing in" a class definition.

44 Inside Smalltalk

1:1fll'i

reeiPert: reelValue
"Modifies the real component of the receiver to realValue."
realPart +- realValue

imaginaryPart: imaginaryValue
"Modifies the imaginary component of the receiver to imaginaryValue."
imaginaryPart +- imaginaryValue

arithmetic

+aComplex
"Returns an instance of class Complex equal to the sum of the receiver and the
argument aComplex."
I realPartSum imaginaryPartSum I
realPartSum +- realPart + aComplex realPart.
imaginaryPartSum +- imaginaryPart + aComplex imaginaryPart.
iComplex nawWithR.al: realPartSum andlmaginary: imaginaryPartSum

* &Complex
"Returns an instance of class Complex equal to the product of the receiver and the
argument aComplex."
I realPartProduct imaginaryPartProduct I
realPartProduct +- (realPart * aComplex r.aIPart) -

(imaginaryPart * aComplex imaginaryPartl.
imaginaryPartProduct +- IrealPart * aComplex imaginaryPart) +

(imaginaryPart * aComplex reaIPart).
iComplex n.wWithR.al: realPartProduct andlmaginary: imaginaryPartProduct

Figure 2.5 Class Complex.

2.5.5 Describing Methods

Whenever a message is sent in Smalltalk, a method with a message pattern matching the
message is searched for in the class of the receiver. If such a method is found, it is evaiuated.
Otherwise, the search continues in the superclass. Failure to find a matching method results
in an error message. All methods in Smailtalk have the following form:

menage pattern
"A comment stating the purpose of the method"
I temporary variables I
method body

The message pattern consists of the message selector, together with names for any
arguments required. It is common practice to include a comment describing the purpose of
the method immediately following the message pattern. Comments in Smalltalk are
delimited by double quotes ("). Comments may aiso be included within the body of the
method. Temporary variables may be declared for use during the evaluation of the method.
They are declared by placing their names between vertical bars (I) following the method
comment. The body of the method is a sequence of expressions separated by periods. By
convention, the message pattern is typed at the left margin while ail other lines are indented
by at least one tab to increase the clarity of the code. We will boldface all message selectors

Chapter 2 Smalltalk Fundamentals 45

to increase the readability of the code, but note that this is our convention - message
selectors are not boldfaced within the Smalltalk system itself.

Every method must return an object as a result. The default result is the receiver of the
message. Alternatively, a return expression (an expression preceded by up arrow symbol i)
can be used to return a specific result. Evaluating a return expression terminates the
evaluation of the method.

Consider the instance method for addition: + aComplex:

+ aComplex
"Returns an instance of class Complex equal to the sum of the receiver and the
argument aComplex."
I realPartSum imaginaryPartSum I
realPartSum ~ realPart + aComplex realPart.
imaginaryPartSum ~ imaginaryPart + aComplex imaginaryPart.
iComplex newWithReal: realPartSum andlmaginary: imaginaryPartSum

This method will be invoked whenever an expression of the following form is
evaluated.

complexSum ~ complex1 + complex2.

This method has one argument, a complex number aComplex, and two temporary
variables, realPartSum and imaginaryPartSum. The method returns a complex number
equal to the sum of the receiver and the argument. The first two expressions compute the real
and imaginary components of the sum. The final expression sends the message
newWithReal:andlmaginary: to the class Complex to create the required instance
representing the sum. Note that in the expression

realPartSum ~ realPart + aComplex realPart

the fIrst occurrence of realPart refers to the instance variable realPart of the receiver
complex! in our example. A method has direct access to the instance variables of the
receiver but not to those of any other instance. To retrieve the real component of complex2,
we must send a realPart message to the argument aComplex.

2.5.6 Variables and Scope

As with traditional languages, it is important to understand what variables may be referenced
within a method and the lifetime of these variables; i.e., what scoping mechanisms the
language provides for controlling access to variables, and how and when space is allocated
and deallocated. Smalltalk provides two basic types of variables: private variables and
shared variables. Private variables are accessible only to a single object, while shared
variables may be shared by several objects. Private variables begin with a lowercase letter,
while shared variables begin with an uppercase letter.

Private Variables

Private variables include both instance variables and temporary variables (see Fig. 2.6).
The instance variables of an object are the parts or components of the object - they are

46 Inside Smalltalk

1'1111

directly accessible only by that object. Instance variables come in two varieties: named
instance variables, referenced by name, and indexed instance variables, referenced by an
integer index.

Private
Variables

Instance
Variables

TemJ)orary
Variables

Named
Instance
Variables

Indexed
Instance
Variables

Method
Temporaries

Block
Arguments

Block
Temporaries

Figure 2.6 Private variables.

The named instance variables of the receiver of a message may be referenced in any
instance method of the class of the receiver or its subclasses. Since it is impossible to
directly refer to the named instance variables of a object other than "self', access to the
named instance variables of other objects must be obtained by sending messages to the
appropriate object. It is a common mistake to attempt to refer to instance variables within a
class method - only instances have access to instance variables.5

Indexed instance variables are unnamed instance variables of the instances of a
class. They can only be accessed by sending a message to the instance with an index specify
ing which (indexed) instance variable is desired. For example, the system classes Array and
String have indexed instance variables. Each instance of a class with indexable instance
variables can have a different number of instance variables. The number is specified when the

5Actually, classes can have instance variables too but these instance variables are local to the class
and inaccessible from the instances. This is a little known feature of Smalltalk that is rarely (if ever)
used.

Chapter 2 Smalltalk Fundamentals 47

object is created by sending a new: size message to the class. Individual instance variables
can be referenced using at: and at:put: messages. Consider the following examples:

table +- Array new: 20

table at: 3 put: 'abcde'

(table at: 3) at: 2

Returns an instance of class Array of size 20; Le., an array
with 20 indexable instance variables.
The third instance variable of table is to reference the string
object 'abcde'.
The expression table at: 3 returns the object 'abede'. This
object is a string that itself has indexed instance variables
it receives the message at: 2 and the character $b is
returned.

Classes that have indexed instance variables may also have named instance variables.
For example, class Set has a size instance variable to refer to the number of objects in a set
in addition to indexed instance variables that refer to the members of the set. Most system
and user classes have only named instance variables.

Temporary variables include method arguments, method temporaries, block
arguments, and block temporaries (see Fig. 2.7). Method temporaries must be explicitly
declared below the message pattern; method arguments and block arguments are implicitly
declared - the context indicates that they are variables; block temporaries must be explicitly
declared after the block arguments (they are not permitted prior to version 2.4). The scope of
method arguments and method temporaries is limited to the method in which they are
defined. The scope of block arguments depends on the version of the system being used.
Prior to version 2.4, block arguments were unrestricted and accessible from outside the block
in the containing method; e.g., distinct blocks with the same block argument name were
actually referencing the same block argument and it could actually be explicitly declared as a
method temporary. In version 2.4 and later, block arguments (and block temporaries) are
local to the block in which they are defined. Nested blocks can refer to outer block arguments
and temporaries only if they are not locally redefined. Method and block temporaries can be
changed via assignment statements but method and block arguments may not be assigned
into. Additional details are provided in chapter 6.

...------.method argument!

variables: argument! andScopes: argument2
"Method to illustrate variable types and scoping."
I tempor!!rY1 tem~rary2 teml'orary3 I

~
method temporaries

1 to: 10 do: [:x :y :z I

... ~

block arguments

I abc I ...J,
block temporaries

48

Figure 2.7 Variable types in method definitions.

Inside Smalltalk

Shared Variables

Shared variables include global variables, class variables and pool variables (see
Fig. 2.8). They differ in the degree of sharing they each support.

Shared
Variables

Class Global Pool
Variables Variables Variables

Figure 2.8 Shared variables.

Global variables

Class variables

Pool variables

Shared by all objects.

Shared by all instances of a class. They may be referenced
within any class or instance method of the class (or its
subclasses - see the next section).

Shared by a defined subset of the classes in the system.
Pool variables are stored in dictionaries known as pool
dictionaries. The variables in a pool dictionary can be
made accessible to any class by declaring the name of the
pool dictionary in the pool dictionary list of the class
definition.

Class variables are most often used to allow constants to be accessed by all instances
of a class (and its subclasses). For example, class Float has a class variable Pi, whose value
is the mathematical constant n, and the class Date has array constants MonthNames and
WeekDayNames that contain the names of the months of the year and the days of the week
respectively.

Global variables are stored in a special instance of class Dictionary named
Smalltalk. Dictionaries are collections of associations between names (or keys) and values.
Several global variables are predefined in Smalltalk. For example, Display is a special
instance of the graphical class Form that refers to the current display screen, and Transcript
is a special instance of the class TextCollector that allows text to be displayed in a screen
window known as the System Transcript window.

To add new variables to the global dictionary Smalltalk, an at:put: expression is used
to enter the variable name as a key in the dictionary and to associate an initial value with the
name.

Smalltalk at: #ANewGlobal put: nil Adds the name ANewGlobal and its initial value
nil to the global variable dictionary Smalltalk.

Note that the global variable must be specified as a symbol rather than a string to
ensure that only one global can exist with that name; i.e., the prefix # is significant.

Chapter 2 Smalltalk Fundamentals 49

Pools are collections of variables whose scope is a defined subset of the classes in the
system. Pool variables are stored in pool dictionaries - collections of name/value
associations. Smalltalk, the dictionary of global variables, is a pool dictionary that is
globally accessible. The class variables of a class are also stored in a pool dictionary that is
accessible to the class, its subclasses, and instances of the same.

Pool dictionaries can be defined and made accessible to particular classes by declaring
the name of the pool dictionary in the pool dictionary list of a class description. This allows
the sharing of variables between classes that are not related via class/subclass relationships.
Sharing of variables is more normally accomplished through an inheritance mechanism based
on class/subclass relationships - see the next section. For example, the pool dictionary
TextConstants includes variable names such as Tab, Cr, ... , allowing unprintable ASCII
characters to be referenced by name. This dictionary is shared by many of the classes that
manipulate characters and text.

Programmers may create new pool dictionaries by declaring the name of the pool
dictionary as a global variable and associating a dictionary with the global. Variables may
then be added to the dictionary using atput:. More specifically, the steps are the following:

Smalltalk at: #ANewPoolDictionary put: Dictionary new
Creates a new global variable named
ANewPoolDictionary that references an empty
dictionary.

ANewPoolDictionary at: #ANewPoolVariable put: nil
Creates and adds a new pool variable
ANewPoolVariable to the pool dictionary
ANewPoolDictionary.

Smalltalk adopts the following stylistic conventions with respect to variable names.
Shared variables are always capitalized - private variables are not. Multi-word private
variables are written with each word except the first capitalized, with no spaces between the
words. Recall that the class name for complex numbers was written Complex, while the
selector for creating instances of class Complex was newWithReal:andlmaginary:.
Selectors and keywords within selectors start in lowercase.

2.5.7 The Pseudo-Variable self

Suppose we added the isPrime method developed earlier in the chapter to the integer instance
protocol. The actual mechanics for doing this will be discussed in the section dealing with
the SmalltaIk browser. Integers could then be tested using messages of the form

7 isPrime
256isPrime

To allow reference to the particular receiver in use when a method is evaluated,
Smalltalk provides the pseudo-variable self. As with all pseudo-variables, self cannot be
changed by assignment within a method and is bound to the receiver by the system when
evaluation of the method commences. If the isPrime instance method had been invoked with
an expression such as 7 isPrime, then self would refer to the instance 7.

50 Inside Smalltalk

isPrime
·Tests whether the receiver is a prime or not."
I divisor I
self <= 0 ifTrue: [ifalse).
(self >= 1 & self <= 3) ifTrue: [itrue).
(self \\ 2) =0 ifTrue: [ifalse).
divisor (- 3.
[divisor * divisor <= self) whileTrue: [

(self \\ divisor) =0
ifTrue: [ifalse)
ifF.lse: [divisor (- divisor + 2)).

itrue

2.5.8 Methods Can Be Recursive

The pseudo-variable self provides us with the means to refer to the receiver of a message
within a method. This implies that we can send further messages to the receiver (or more
commonly a new receiver based on the original) from within the method and consequently
invoke the same method recursively.

The following example illustrates a recursive definition of the factorial method
defined on integers.

factorial
·Returns the factorial of the receiver."
self =0

ifTrue: [i1)
ifF.lse: [iself * (self - 1) f.ctori.1)

Evaluation of the expression 4 factorial is executed by sending the multiply message
to self, in this case 4, with the result of evaluating the expression (self - 1) factorial, in
this case the result of evaluating the expression 3 factorial. Recursion in object-oriented
systems commonly follows the pattern of sending the same message to successive receivers,
each of which is closer to some simple receiver for which the result of sending the message
is known. In the preceding example, the receivers of the factorial message are 4, 3, 2, 1, and
O. The result of sending the factorial message to 0 is known to be 1.

2.6 INHERITANCE

When a class A is defined as a subclass of another class B, it is convenient if the subclass B
can use the methods defined in A. The mechanism that permits the methods in A to be used
by B is known as inheritance. Inheritance permits representation and methods to be shared
by distinct but related classes of objects. It was developed because designers typically define
new classes by saying "The new class is just like this existing class except" In
Smalltalk, a new class is described by stating how it is different from some existing class.
This gives rise to a style of programming known as differential programming or
inheritance programming. It dramatically reduces the amount of code required in large
systems, is a powerful organizational tool, and facilitates program modification, extension,
and maintenance.

Chapter 2 Smalltalk Fundamentals 51

Inheritance in Smalltalk is based on the notion of subclassing; Le., defining one class
as a subclass of another. The classes in the Smalltalk system are arranged in a single
inheritance hierarchy with the most general class Object at the top. A class may have any
number of subclasses, but each class has a single superclass. The ability to inherit from
only a single superclass is restrictive, but since the Smalltalk class library is implemented in
this manner, we will ignore the possibility of multiple superclasses or multiple
inheritance for the the moment.6

Fig. 2.9 illustrates a small subset of the hierarchy under class Object and, in
particular, describes the subclassing relationships between the numeric classes in Smalltalk.
In Smalltalk terminology, Number is the superclass of classes Float, Integer, and
Fraction. These classes are themselves subclasses of class Number. Classes Float,
Integer, and Fraction can be thought of as specializations of class Number, while classes
LargeNegativeInteger, LargePositiveInteger, and SmallInteger can be thought of as
specializations of Integer. Subclasses such as Float, Integer, and Fraction follow the
protocol for their superclass Nurn ber but also introduce protocol relevant only to
themselves. For example, integers respond to the message factorial while floats and
fractions do not.

Object

.......................................

•••••••

Yiry
••••••

<i <
~..

""
......

, .

.·_i l
Float Fraction <

a!;"" ••..••
~......·........i

..

Small I Large Large

Integer
Positive Negative

~ Integer Integer
oO'iWhYi,' 'ilM ;y;,NNoV"NNiNiN'jJ"' - .'

Figure 2.9 Numeric class hierarchy.

A class that is a subclass of another automatically inherits or shares the representation
and protocol of that class. In addition, the subclass may also

•
•
•

support additional capability by adding new methods,

augment the representation by adding additional class and instance variables, and

override methods that would otherwise be inherited by providing its own version.

6MulLiple inheritance is not used within the standard Smalltalk system release. Non-primitive support
for the concept is provided in Smalltalk-80 version 2 releases but not in version 1.

52 Inside Smalltalk

1'-1mn I

Note that a subclass automatically inherits the representation of its supcrclass. Unlike
method inheritance, this cannot be overridden.

2.6.1 Method Inheritance

To understand how methods are inherited, we need to examine the method lookup
mechanism. When a message is sent, the methods in the class of the receiver are first
searched to find a method that has a message pattern matching the selector of the message. If
the search is successful, that method is evaluated. If no match is found, the search is
continued in the superclass of the receiver, and if no match is found at that point, the search
again continues up the inheritance or superclass chain. The first method found in the
inheritance chain is always used. If no matching method exists, the search will ultimately
reach class Object (the root of the tree), and if no method is found there, an appropriate error
message will be generated.

2.6.2 An Example: Constrained Pens

To illustrate subclassing and inheritance, we will implement a specialization of thc systcm
class Pen called ConstrainedPen. A subset of the protocol for class Pen is shown in
Fig. 2.10.

Class Pen

class name
superclass
instance variables
class variables
comment

class methods

instance creation

Pen
BitBlt
frame location direction penDown
SinArray
My instances can scribble on the screen, drawing and
printing at any angle. Since I am a BitBlt, scribbling can be
done with different source forms.

IlBW

Return an initialized instance of class Pen.

class initialization

initialize
Initialize the class Pen.

instance methods

initialization

defaultNib: widthlnteger
Nib is the tip of a pen. This is an easy way to set up a default pen where the source
form is set to a black square whose sides are width Integer long.

Chapter 2 Smalltalk Fundamentals 53

accessing

direction
Answer the receiver's current direction; 0 is towards the top of the screen.

frame
Answer the rectangle in which the receiver can draw.

frame: eRectangle
Set the rectangle in which the receiver can draw.

Iocetion
Answer where the receiver is currently located.

moving

cbwn
Set the state of the receiver's pen to down (drawing).

go: distance
Move the pen in its current direction a number of bits equal to the argument,
distance. If the pen is down, a line will be drawn using the receiver's source form as
the shape of the drawing brush. Otherwise, nothing is drawn.

goto: ePoint
Move the receiver to position aPoint. If the pen is down, a line will be drawn from
the current position to the new one using the receiver's source form as the shape of
the drawing brush. The receiver's set direction does not change.

honw
Place the receiver at the center of its frame.

north
Set the receiver's direction to facing the top of the display screen.

piece: ePoint
Set the receiver at position aPoint. No lines are drawn.

tum: degrees
Change the direction of the receiver by an amount equal to the argument, degrees.

Set the state of the receiver's pen to up as opposed to down (no drawing); i.e., off
the drawing frame. This is different from north which causes the pen to point
upward.

Figure 2.10 Class Pen.

Pens are the Smalltalk equivalent of turtles in Logo. A pen is an object that can draw
within a specified rectangular frame (or window) on the Smalltalk display. Class Pen
includes protocol to change the position of the pen on the screen, change the direction (in
degrees) it is facing, and set the state of the pen. If the pen is moved when the state of the
pen is down (as opposed to up), the pen draws on the display. The default drawing nib of the
pen is a single pixel. Nibs of other shapes, patterns, and sizes can be specified.

54 Inside Smalltalk

1:1111 !

To illustrate programming with pens, consider the following example method. Note
that the Smalltalk screen coordinate system has its origin at the top left comer. The x-axis
increases to the right of the screen while the y-axis increases down the screen.

example
"Draw an equilateral triangle with sides of length 200."
I crayon I
"Creates a new instance of class Pen with a black nib that is 2 pixels wide and 2
pixels high. The initial direction of the pen is north, the drawing frame is the entire
display screen, the initial location of the pen is at the center of the screen. and the
state of the pen is down."
crayon~ Pen new d.faultNib: 2. "get a pen with a medium size nib"
crayon up. "stop drawing"
crayon goto: 3500250. "move to start point"
crayon down. "start drawing"
"Draw an equilateral triangle with sides 200 units long."
3 timeeRepeat: [crayon go: 200; turn: 1201

The specialized class ConstrainedPen is to be restricted so that instances can only
move, and hence draw, in the horizontal and vertical directions. This new class of object
might be useful if we were drawing flowcharts or constructing diagrams. To share code that
already exists in class Pen, class ConstrainedPen should be a subclass of Pen.

ConstrainedPen automatically inherits the representation of all classes in the
inheritance chain (see Fig. 2.11). The inheritance chain consists of classes Pen, BitBlt, and
Object. The instance variables for Pen are frame, a rectangular area into which the pen is
constrained to draw; location, a point representing the current position of the pen;
direction, a float representing the direction the pen is pointing; and penDown, a boolean
describing the state of the pen. In addition, class variable SinArray, a table of sin values, is
also inherited by ConstrainedPen. Pen is a subclass of class BitBlt - an extremely
general class providing fundamental operations for displaying and modifying text and
graphics. Pen is a subclass of BitBIt, so that it can inherit the operations for drawing lines
on the display with different nib styles and also the operations to perform automatic
clipping to the frame of the pen. The instance variables for class BitBIt will be inherited by
class ConstrainedPen, but we will not need to access them directly. We will inherit
operations that manipulate them from class Pen. No additional instance variables are required
for class ConstrainedPen.

It is instructive to consider which methods can be inherited without modification by
ConstrainedPen. Since instances of class Pen have the same representation as instances of
ConstrainedPen, we can inherit the class method new for creating instances. Similarly, the
instance methods that access or modify the state of a pen; i.e., direction, frame, frame:
aRectangle, location, up, down, home, north, and defaultNib: widthInteger can also
be inherited.

The methods involving movement of the pen need more careful consideration. There
are three possible options for each method.

•
•
•

Inherit the method from a superclass.

Implement a modified form of the method.

The method is not appropriate for the class - make it an error to use it.

Chapter 2 Smalltalk Fundamentals 55

Object)
I

BitBlt
instance variables

destForm
sourceForm
halIToneForm
combinationRule
destX
destY
width
height
sourceX
sourceY
clipX
clipY
clipWidth
clipHeight

.. ,-
',.',"

I
Pen

instance variables
frame
location
direction

~

penDown ~
B
~

class variables ~
SinArray

:~

~

~~~~:«";'::"
.. ......:.

I
ConstrainedPen

.'

Figure 2.11 Representation inheritance for class ConstrainedPen.

The instance methods goto: aPoint and place: aPoint in class Pen allow movement
to random points. The first is clearly inappropriate for the class ConstrainedPen because it
can result in something being drawn. The second, however, is legitimate because no drawing
results. Therefore, we must ensure that mcthod goto: is not inherited. This can be achieved
by taking advantage of the error handling protocol supported by class Object. We rc
implement the method in class ConstrainedPen (see Fig. 2.12) to generate an error
mcssage; i.e., the body of the mcthod bccomes

self shouldNotlmplement

56 Inside Smalltalk



1'11I1 I

This message will eventually, through the inheritance chain, be found in class Object.
The result will be a standard error report that "although this message is appropriate for the
superclass of the receiver, it is not appropriate for the class of the receiver."

Now, consider method turn: degrees for rotating the pen direction. It must be
modified to constrain drawing in the vertical or horizontal directions. Since the pen can only
move in these two directions, we could augment the instance protocol of ConstrainedPen
with methods south, west, and east to allow the pen direction to be changed. Method north
can be inherited. We might also want to introduce special variations of turn: such as
turnLeft and turnRight. Indeed, it might be more appropriate to add these to Pen rather
than to ConstrainedPen since it is a useful generalization, but we won't pursue that here.
What to do with the method turn: is still unresolved. We cannot allow instances of
ConstrainedPen to inherit the turn: method from class Pen. We could override the
inheritance mechanism using self shouldNotlmplement, as described above. Alternatively,
we could introduce a modified turn: message that constrains its argument to a multiple of 90
degrees. For the sake of illustration, we will choose the latter option. An obvious way of
implementing the modified turn: method is to truncate the argument degrees to a multiple
of 90 and invoke the turn: method in class Pen. However, we need some way of referring to
the turn: method in the superclass. If we use the expression

self turn: degrees

the effect will be to invoke the turn: method in ConstrainedPen recursively. Smalltalk
provides the pseudo-variable super to allow references to methods higher up in the
inheritance chain.

2.6.3 The Pseudo-Variable super

Pseudo-variable super provides access to methods in the superclass chain even if the method
has been redefined in the class. Like self, super refers to the receiver of the method.
However, when super is used, the search begins in the superclass of the class containing the
method definition. Be careful - this is not always the same thing as starting the search in
the superclass of the receiver.

The modified turn: message for ConstrainedPens making use of super is shown
below.

turn: degrees
"The direction of the receiver is turned clockwise through an amount equal to the
argument degrees. The argument is automatically truncated to a multiple of 90
degrees."
super turn: (degrees roundTo: 901

Now, consider method go: distance. At first sight, we might think that it can be
inherited directly from class Pen because a pen's direction is constrained to horizontal or
vertical movement. However, examination of the method reveals that it invokes the message
goto:. The goto: message will be sent to the receiver of the go: message, a
ConstrainedPen. But this message was previously overridden for constrained pens to make
it an error. This example illustrates the fact that problems can arise with the inheritance of a
method if the inherited method itself invokes methods that have been overridden in the

Chapter 2 Smalltalk Fundamentals



subclass. To achieve the desired effect, we must re-implement go: in ConstrainedPen as a
clone of the go: in Pen, but with the self goto: reference replaced by super goto:.

go: distance
"Move the receiver in its current direction a number of bits equal to the argument,
distance. If the pen is down, a line will be drawn using the receiver's source form as
the shape of the drawing brush. Otherwise, nothing is drawn."

I angle newDirection I
angle +- direction degreesToRadians.
newDirection +- angle cos @ angle sin.
super goto: newDirection * distance + location

Pen
class methods

initialize
new :

instance methods
defaultNib: widthlnteger
direction
frame: aRecumgle
location
down
go: distance
goto: aPoint
home
north
place: aPoint
turn: degrees
up

I
ConstrainedPen ;:

:::.
instance methods ::

::

east (new protocol)
:.

~~
west (new protocol) :.

~1
south (new protocol) ::

Igo: distance (modified)
I:

turn: degrees (modified)

jgoto: aPoint (overridden)
place: aPoint (overridden)

Figure 2.12 Hierarchical inheritance of methods.

58 Inside Smalltalk



Fig. 2.12 summarizes the final method inheritance hierarchy for classes Pen and
ConstrainedPen. Note that other changes are possible. For example, we might wish to
introduce a direction: method to permit absolute settings of the direction. Methods east,
west, and south could then be implemented using this new operation. We might also want
to add additional turn operations like turnLeft, turnRight, and turnBack. Method
turnLeft, for example, could simply consist of the code "self turn: -90". Using "self'
instead of "super" would ensure that future changes (if any) to turn: in ConstrainedPen
would be reflected in the new methods. Of course, many of these operations also make sense
for standard pens. This suggests that some of the methods in ConstrainedPen ought to be
migrated up into class Pen. When the classes affected are both user defined, this is a natural
improvement to make. When system classes are affected, more deliberation is needed. Unless
the change is fundamental and important, it is generally safer to leave library classes alone
since they might change from release to release. The full definition of class
ConstrainedPen is shown in Fig. 2.13.

Class ConstrainedPen

class name
superclass

class methods

examples

ConstrainedPen
Pen

example
"Illustrates the use of constrained pens."
I quill I
quill ~ ConstrainedPen new.
quill home; place: 300@300; down.
4 timesRepeat: [quill go: 100; turnLeftJ

"ConstrainedPen example"

instance methods

moving

goto: aPoint
"This message is not appropriate for this object."
self shouldNodmplernent

go: distance
"Move the receiver in its current direction a number of bits equal to the argument,
distance. If the pen is down, a line will be drawn using the receiver's source form as
the shape of the drawing brush. Otherwise, nothing is drawn."

I angle newDirection I
angle~ direction degreesToRadians. newDirection ~ angle cos @ angle sin.
super goto: newDirection * distance + location

south
"The direction of the receiver is set to face the bottom of the screen.·
direction ~ 90

Chapter 2 Smalltalk Fundamentals 59



eest
"The direction of the receiver is set to face the right of the screen."
direction ~ 0

west
"The direction of the receiver is set to face the left of the screen."
direction ~ 180

tum: degrees
"The direction of the receiver is turned clockwise through an amount equal to the
argument degrees. The argument is constrained to a multiple of 90 degrees by
rounding."
super turn: (degrees roundTo: 90)

turnLeft
"The direction of the receiver is turned to the left 90 degrees."
super turn: -90

tumRight
"The direction of the receiver is turned to the right 90 degrees."
super turn: 90

Figure 2.13 Class ConstrainedPen.

2.6.4 Abstract Classes

The shaded classes Magnitude, Number, and Integer (see Fig. 2.9) are termed abstract
classes.

Abstract class A class that specifies protocol but is unable to implement
it fully because its subclasses may have different
representations.

Because an abstract class does not fully implement its protocol, no instances of
abstract classes may be created. The role of an abstract class is to specify the protocol
common to all of its subclasses, with the subclass providing the implementation where no
common implementation can be provided in the abstract class itself.

Class Magnitude is an abstract class used to describe objects that can be compared
along a linear dimension. The subclasses of Magnitude are classes Character, Date,
Number, and Time. The common protocol specified by the class Magnitude reflects the
fact that all instances of each of the subclasses can be compared with one another using the
relational operators. For example, we can ask a number if it is greater than another or we can
ask a date if it is less than another, and so on. The instance protocol for magnitudes includes
(among others) the operations

aMagnitude <
aMagnitude <=
aMagnitude >
aMagnitude >=

anotherMagnitude
anotherMagnitude
anotherMagnitude
anotherMagnitude

Since the representations for instances of the subclasses Character, Date, Number
and Time are clearly different, each subclass provides its own implementation for operations
that are dependent on the representation. Operations that reference their representation directly

60 Inside Smalltalk



are pnmitIve operations - if the representation were changed. they would require
modification. The implementation of primitive operations must be the responsibility of the
subclasses.

For messages where it is the responsibility of a subclass to provide the
implementation. an abstract class implements the method by generating an error message.
The subclassResponsibility protocol supported by class Object can be used to generate a
message indicating that a subclass should have overridden the implementation of this
method. This is useful when a new subclass is added and the programmer forgets to
implement the entire protocol specified by the abstract superclass. Methods in the abstract
class that must be re-implemented by subclasses should have the body

self subclassResponsibility

Non-primitive operations can be implemented in terms of other primitive and/or non
primitive operations and therefore can be implemented once in the abstract class. For exam
ple. in the case of magnitudes. only the primitive < operation is implemented by the sub
classes. Operations such as > and <= are non-primitive because they can be implemented in
terms of <. They only need to be implemented once in the abstract class. as shown below.

comparing

< aMagnitude
"Answer whether the receiver is less than the argument."

i self subclassResponsibility

<= aMagnitude
"Answer whether the receiver is less than or equal to the argument."

ilself > aMagnitudel not

> aMagnitude
"Answer whether the receiver is greater than the argument."

i aMagnitude < self

>= aMagnitude
"Answer whether the receiver is greater than or equal to the argument."

ilself < aMagnitudel not

Abstract classes have an important role to play in Smalltalk and in object-oriented
programming. As we have secn. they allow the protocol common to a collection of classes
to be identified quickly. By browsing the abstract superclasses. for example. it is easy to
determine what operations are common to all types of numbers. to all types of integers. and
so on. Another benefit is that they can be used to maximize the sharing of code through
inheritance. Consider the "Bricks" video game that was described at the beginning of
Chapter 1. An initial class hierarchy for the game is shown in Fig. 2.14.

Chapter 2 Smalltalk Fundamentals 61



Object

Video
Ball Brick Side Paddle

Game

Figure 2.14 Initial video game class hierarchy.

The problem with this class hierarchy is that it is impossible to specify a protocol
common to all game elements. A new class hierarchy incorporating two abstract classes is
shown in Fig. 2.15. The VideoGameComponent abstract class ties together the game
parts and allows subclasses to share a common representation and common operations. The
MovingGameComponent abstract class allows a distinction to be made between dynamic
and static game objects and allows the move operations to be shared by both the Ball and
Paddle classes. Container classes for the bricks - Wall and for the left, top, and right sides
- Sides, are also introduced.

Object

Video
Game

•
Sides Side

Ball Paddle

Wall Brick

2.7 SUMMARY

Figure 2.15 Class hierarchy with abstract classes.

In this chapter, we have described how the fundamental concepts of object-oriented languages
- objects, messages, classes, and inheritance, manifest themselves in Smalltalk. In
particular, we have discussed

62

•
•

the use of literals to describe numbers, symbols, characters, strings, and arrays,

the use of variables and the assignment operation in Smalltalk,

Inside Smalltalk



1'.1

• the construction of message expressions using unary, keyword, and binary
messages,

• the concepts of dynamic binding and overloading,

• storage allocation and garbage collection,

• control structures via message-passing,

• class versus instance protocols,
• named versus indexed instance variables,

• private versus shared variables,

• the pseudo-variables self and super,

• subclassing,

• representation and method inheritance, and

• the use of abstract classes.

2.8 EXERCISES

Unless you are familiar with the Smalltalk user interface, we suggest that,for the moment,
the following exercises be completed as paper exercises only.

1. Translate the following Pascal ex
pressions into Smalltalk (assume all
Pascal variables are of type Integer).

a. units:= number mod 10
b. hundreds:= number div 100
c. tens:= (number mod 100) div 10
d. number:= (hundreds * 100) +

(tens * 10) + units

The binary selector /I is the equiva
lent of the Pascal div operator.
Selector \\ is the equivalent of mod.

2 Translate the following Pascal frag
ments into Smalltalk (assume all
Pascal variables are of type Integer).

a. IF value> 5 AND value < 10
THEN

acceptable := true

b. IF value> 5 AND value < 10
THEN

acceptable := true
ELSE

acceptable := false

c. FOR i:= 1 TO rows DO
FOR j:= 1 TO columns DO

table [i. j] := i + j

Chapter 2 Smalltalk Fundamentals

d. {Compute the smallest power of
2 greater than a specified bound}

value := 2;
power := 1;
WHILE value <= bound DO

BEGIN
value := value * 2;
power :=power + 1

END

3. Add a method asLetterGrade to class
Integer that returns a character
representing the letter grade corres
ponding to an examination mark in
the range 0 to 100. Use the follow
ing table of mark-letter grade values:

<= 50 F
51-60 D
61-70 C
71-80 B
> 80 A

4. Add a method isPalindromic to class
String to determine whether or not
a string is a palindrome. A palin
drome reads the same backwards and
forwards; e.g., message expression

63



'madam' IsPalindromlc should return
true. (The message expression
string size returns the size of
string. )

5. Add a method fibonacci: n to class
Integer that returns the nth number
in the Fibonacci series. The
Fibonacci series begins with 0 and 1
and each subsequent number in the
series is the sum of the previous two
numbers. Implement the method both
nonrecursively and recursively.

Implement a new method that returns
the nth number in any Fibonacci
series. By any fibonacci series, we
mean a series that starts with any
two arbitrary successive integers;
e.g., 23, 24, 47, 71, ....

6. Add a method as English to class
Integer that returns a string repre
senting the English form of the
number. For example, the expression
139 asEngllsh returns the string 'one
hundred and thirty nine' as a result.
To make the task simpler, you may
wish to restrict the integer receiving

2.9 GLOSSARY

selected terminology

abstract class A class that specifies protocol
but is unable to implement it fully because
its subclasses may have different repre
sentations.

binary messages Messages with one argu
ment. Binary messages selectors are spe
cial single characters «) or double
characters «=).

block An object representing a sequence of
Smalltalk expressions.

cascaded messages Multiple messages sent to
the same receiver. Indicated syntactically
by a semicolon; e.g., aReceiver message1;
message2; againWith: O.

class A description of a set of objects with
similar characteristics and attributes.

64

the message to values in the range 0
to 999. (The expression String new:
size creates an instance of class
String of the specified size; aStrlng
copyFrom: startlndex to: endIndex
extracts a substring. Choose a rea
sonable maximum size for the string.
The binary selector , (comma) is the
string concatenation operator. For
example, the expression 'abc', 'def'
returns 'abcder).

7. Add methods to class Pen described
in this chapter to draw geometric de
signs such as spirals and dragon
curves.

8, Complete the definition of class
Complex given in this chapter. What
additional operations are required?
Show how they would be im
plemented.

9. If Smalltalk is consistent with the
object metaphor, a class should be an
object and hence an instance of some
class. Investigate whether or not this
is so.

class protocol The messages understood by a
class.

class variables Variables shared by a class
(and all subclasses) and their instances.

external view The view of an object required
by a user (as opposed to an implementor);
the object's interface; the object's proto
col.

global variables Variables shared by all
classes and their instances.

Indexed Instance variables Instance variables
that are referenced by an integer index
(unlike named instance variables); com
ponents of an indexable object; e.g.,
anArray referenced via anArray at: I,
anArray at: 1 put: 2.

Inside Smalltalk



information hiding The notion that we should
hide as much information as possible
(both representation and implementation
details) from a user by minimizing the
interface presented to the users.

inheritance A mechanism that allows a class
of objects to share the methods and
representation of another class of objects.

instance An individual object described by a
particular class.

instance protocol The messages understood
by instances of a class.

instance variables Variables found in all in
stances of a class; components of an ob
ject.

internal view The view of an object seen by
an implementor; the object's represen
tation and implementation.

keyword messages Messages with one or
more arguments. Each argument is preceded
by a keyword; e.g., aReceiver at: 1 put:
20.

message A request sent to an object to carry
out some task.

message pattern A method selector together
with the names of the arguments required
by the selector.

message protocol The messages that objects
respond to.

method An operation; the code implementing
an object's operation.

named instance variables Instance variables
that may be referenced by name (unlike in
dexed instance variables).

object A component of the Smalltalk system
consisting of private data and a set of
methods (operations).

pool variables Variables shared by a specified
set of classes (and their subclasses) and
their instances.

Chapter 2 Smalltalk Fundamentals

lil1l1

private variables Variables accessible only to
a single object. Examples are instance and
temporary variables.

programming by extension Programming new
applications by extending the existing
Smalltalk class library.

pseudo-variable A variable whose value may
not be changed. Examples are self and
super.

return expression An expression preceded by
an up arrow (i) indicating that the value
of the expression is to be returned as the
result of a method.

selector The component of a message that
uniquely specifies the operation requested;
e.g., at:put:.

self A predefined pseudo-variable that refers
to the receiver of a message.

shared variables Variables accessible to a
group of classes and their instances.
Examples are class variables, pool vari
ables, and global variables.

subclass A class that inherits methods and
representation from an existing class.

super A pseudo-variable that refers to the re
ceiver of a message but additionally pro
vides access to a method defined higher up
in the hierarchy. When super is used,
method lookup begins in the superclass of
the class in which the method containing
super is defined.

superclass A class from which another class
inherits representation and methods.

temporary variable A variable whose lifetime
is limited by the task for which it was
created. Method arguments, method temp
oraries, and block arguments are examples
of temporary variables.

unary messages Messages with no arguments
- only a receiver and a selector.





3

An Introduction to the
Smalltalk User Interface

3.1 INTRODUCTION

In the next three chapters, we provide an introduction to the Smalltalk-80 programming
environment - an integrated collection of powerful and sophisticated programming tools.
These tools subsume many of the roles normally provided by the operating system in more
traditional environments. The Orange book l by Goldberg, which is over 500 pages long, is
solely dedicated to describing the Smalltalk environment. Rather than provide a
comprehensive guide to this environment, our aim in these initial chapters is to describe
those features that are needed to develop simple Smalltalk applications. In particular, we
describe how to build, debug, and edit Smalltalk programs by explaining how to

•
•
•
•
•
•
•

enter and exit from the Smalltalk system,

manipulate Smalltalk menus and windows,

enter and evaluate fragments of Smalltalk code,

use browsers to navigate through the Smalltalk class library,

extend the system with new methods and classes,

file Smalltalk source files in and out, and

use notifiers and inspectors to perform simple debugging tasks.

1A. Goldberg, Sma/ltalk·80: The Interactive Programming Environment (Reading, Mass.: Addison·
Wesley, 1984).



3.1.1 Smalltalk Provides an Integrated Programming
Environment

Developing programs in Smalltalk is different from the traditional approaches typically used
to develop programs in languages such as Pascal or C. There are two major differences: the
absence of modes and the interactive, incremental style of application development.

When developing Pascal programs, programmers typically use a set of largely
independent tools: an editor for program construction and modification, a compiler for
compilation of program modules, a linker for linking component modules together, and
possibly, a run-time debugger for debugging. Together, these tools form an environment for
developing Pascal programs. Because the tools are independent, program development can be
described as modal. At any particular time, the system is in a particular mode; e.g., edit
mode or compile mode. To change modes, programmers must leave the current tool, return
to the operating system level, and invoke the new tool. More advanced systems permit mode
changes from within a tool, eliminating the need to exit to the operating system.

On the other hand, developing Smalltalk programs is characterized by a total
integration of tools and an absence of modes. Editors, file managers, compilers, debuggers,
and print utilities are all included within the Smalltalk environment. All tools are available
at all times. The Smalltalk programmer carries on a series of activities or conversations with
individual tools. These activities can be interleaved. Activities or conversations can be
interrupted and resumed at any time without loss of context or information. Switching from
one activity or conversation to another is as simple as clicking a mouse button.

The second major difference between Smalltalk and languages such as Pascal and C is
that program development is interactive and incremental. By incremental, we mean that
Smalltalk applications arc developed by piece-meal additions or changes to the Smalltalk
system. The Smalltalk system contains an extensive on-line library of classes. Moreover,
the source is written almost entirely in Smalltalk. More important, this source can be
viewed and modified by the programmer. When building an application, the programmer
automatically inherits the capabilities of this library of reusable code. Programming is by
extension - the programmer modifies and/or extends the capabilities of the existing classes
and adds new classes that inherit from existing classes. Programming is totally interactive.
New or modified source code can be recompiled and tested in a matter of seconds. Sequences
of such modifications result in working prototypes and eventually elaborate designs that can
be polished and turned into finished applications. This style of program development could
be described as programming by iterative enhancement.

3.1.2 Try It Yourself

With access to a Smalltalk system, these chapters can be used as a hands-on tutorial about
the Smalltalk environment. The material in each chapter is designed to be completed in a
single interactive session. As is the case with learning any new system, you will
undoubtedly make mistakes. Don't worry. Any changes you make to your Smalltalk system
are not permanent. Indeed, we encourage you to experiment freely and to explore the system
beyond the introductory view we provide in these chapters. For readers without access to a
Smalltalk system, screen dumps are provided at each significant step in the discussion.

68 Inside Smalltalk



3.1.3 Not All Smalltalks Are Exactly Alike

You may notice that your Smalltalk system is different in small ways from the Smalltalk
environment described in the Orange and Blue2 books and in this book. Your menus, for
example, may have slightly different entries than those illustrated. Don't worry, the basic
functionality described in this chapter will certainly be present in your system. The
implementor may have modified or added additional capability to your Smalltalk system.

3.1.4 Not All Computers Are Alike

A Smalltalk implementation requires that the host computer have a keyboard, a black and
white bit-mapped display (see Fig. 2.1), and a pointing device. Unfortunately, there are no
standard keyboards, displays, or pointing devices. Keyboards differ in the layout of their keys
and in the number of function keys available. Display screens have different resolutions and
mayor may not support color. Mice, joysticks, graphics tablets, and even keyboards can all
be used as pointing devices. Even mice corne in one-, two-, or three-buttoned varieties.

stems, Inc.

... .
System Workspace

The Sm a.llt a.lk - 8Otm System Version 2.3
System Transcript) 1981, 1988 ParcPlace Systems, Inc.
Hello world.

~ ,
, :~:~;~~,:i:~ ~~:;.nd ever \ i

System Browser
A

,:;~~~:=~~:~~t :~i!i~C::::=:::::: :.;.;...::·.:...:::j.:.••.,.::r.:~..*.:I"..; fR'erriel::.·Cil:i·e'Cts......·1 ~
: ,············..........~..·....··· ..·..·'I'1![I~rl~st~a~nc~e!!1l1~~

Figure 3.1 Typical Smalltalk display.

2A. Goldberg and D. Robson. SmaJ/lalk-80: The Language and Its Implementation (Reading, Mass.:
Addison-Wesley. 1984).

Chapter 3 An Introduction to the Smalltalk User Interface 69



Selection

This lack of a standard hardware configuration will not concern us unduly. In this
chapter, we are more concerned with the small number of functions and tasks we need to
perform than the particular screen resolution or type of pointing device that is available. For
example, selecting an object from the screen can be achieved in many ways, but all
selections involve two basic activities: pointing at the object we want to select and
confirming the selection. In Smalltalk and most other systems, pointing is achieved by
moving a graphical cursor on the display screen. In one system, this might be achieved by
attaching the movement of the cursor to the movement of a mouse or joystick. In another,
the cursor might be controlled using special keyboard function keys to incrementally move
the cursor up, down, right, and left. Confirming the selection might be done by depressing a
mouse button or, alternatively, a keyboard function key.

Consult the documentation provided with your system to find out how to achieve each
of the tasks we describe in this chapter. Most of the chapter is independent of hardware
considerations. Since a mouse is by far the most commonly available pointing device on
systems supporting Smalltalk, we will describe activities in terms of mouse interactions.
Readers who are familiar with mouse-based interactive systems may wish to skip the next
section.

3.1.5 Pointing Device Mechanics

Two fundamental interaction sequences, selection and extended selection, are carried out
with the pointing device when interacting with the Smalltalk system.

Used to indicate a position on the Smalltalk display
screen; e.g., to indicate where text, when typed from the
keyboard, should be inserted. Two activities are involved
in making a selection: (1) moving the cursor on the screen
to the desired position, and (2) confirming the position
you have selected to the Smalltalk system.

With a mouse, selection can be achieved by moving it to
position the cursor at the desired point, and confirmation
can be achieved by single clicking (briefly pressing and
releasing) a mouse button.

Extended Selection A two part selection process that delimits a region of the
screen; e.g., to select a section of text, we need to select
both the start and end points of the text. Similarly, to size
and position a rectangle on the screen, we need to select
two opposite comers of the rectangle.

With a mouse, extended selection is achieved in the
following manner. Position the cursor with the mouse to
indicate a start position, depress (but do not release) a
mouse button to begin the selection, drag (move with the
mouse button still depressed) the mouse to a final
position, and finally release the button to confirm the
final selection. Visual feedback is always provided during
the dragging operation. For example, when selecting text,
the currently selected text is complemented (white
characters on a black background) on the display.

70 Inside Smalltalk



111111 I

We will see many further examples of selection and extended selection. Find out,
by consulting your system documentation, how selection and extended selection operations
can be performed in your Smalltalk system. You may find that extended selection operations
can be performed in more than one way.

3.2 GElTING STARTED

3.2.1 Activating Smalltalk

Consult your system documentation for specific instructions on creating and activating your
Smalltalk system.

Activate your Smalltalk system.

Once activated, the display screen will be similar to that shown in Fig. 3.1. Smalltalk
is now ready for use.

A typical Smalltalk display has several windows displayed over a dark background.
Each window consists of a framed rectangular area with a small title or label in its top left
hand corner. Windows may overlap each other and can be simplistically thought of as
overlapping pieces of paper resting on a desktop. Strictly speaking, Smalltalk uses the term
view for window. We will use the more familiar window terminology. Fig. 3.2 shows four
of the most common types of windows: Workspace, System Workspace, System
Browser and System Transcript windows. The most common uses for each of these
windows are the following:

Workspace A window used as a scratchpad area where fragments of
Smalltalk code can be entered, stored, edited, and evaluated.

System Workspace A special workspace window that acts as a repository for
Smalltalk expressions (or expression templates) for
performing common Smalltalk tasks. These expressions
can be easily selected, modified, and evaluated by the
programmer. The System Workspace window avoids the
need to remember and retype often used expressions.

System Browser A window in which most programming activities are carried
out. The Smalltalk class library can be viewed, existing
classes modified, and new classes added.

System Transcript A window primarily used by the Smalltalk system and by
programmers as a notice board on which to display error
information or messages describing the progress of a
Smalltalk activity.

A unique feature of the Smalltalk environment is the ability to work on a series of
tasks in parallel and to move back and forth between these tasks without loss of context or
information. Each task (or conversation) is carried out within its own window. Though
many windows (tasks) may be visible on the desktop at any time, only one window (task) is

Chapter 3 An Introduction to the Smalltalk User Interface 71



active at any given moment. This window, known as the active window, will have its label
tag highlighted (inverted). For example, in Fig. 3.1, the Workspace window is active.

3.2.2 Changing the Active Window

To change the active window, perform a selection operation with the mouse. Move the
cursor into the window to be activated and confirm the selection; Le., click the red mouse
button - see the next section for a discussion of mouse button terminology. The activated
window will be brought to the "top" of the desktop and have its label inverted. In Fig. 3.2,
the System Browser window has been made active. This technique can be used to interrupt
one conversation, commence another, interrupt it, restart the original and so on. The saving
and restoring of the state of each conversation is handled automatically by the Smalltalk
system.

notNil

sterns, Inc.

testing

Init ial ize- relea s
accessing

Model

TrlJe
t:'::===wr-----I corn par ingIIiiiIiIJ cl.ass

Workspace

The Sma.llta.lk-80tm System Version 2.3
) 1987, 1988 Pal'cPl,3.Ce Systems, Inc.

Kernel-Objects

Graphics-Yie..... s
Graphic:s-Editors

< Graphics-SlJpport

..l,sNJI
"Coerces nil to trlJe and everything else to false. UndefinedObject
overrides with 1'trlJe"

-tfalse

~

':" . 'iI'

III
." '0' ::X:--»»»=::::' "::;.;::.x:::::-.~~;:::«.X::::::::':::'::::;:::X:-';:::'''YX?''.:::;..»-.:::::x:~:::::'«=;:::::'-:::;:;:;::::::::-:::::::::::::'.::9::::;:::::::::::::::::::::::::::::i

Figure 3.2 Display after the System Browser window is activated.

Repeatedly change the active window from one window to another.

Make all windows inactive by selecting an area of the display where no window
resides. Now. move the cursor into any window. When all windows are inactive
simply moving the cursor into a window activates that window automatically.

72 Inside Smalltalk



red or left button

blue or right button

yellow or middle button

3.2.3 The "Ideal" Smalltalk Mouse

Smalltalk systems distinguish three types of mouse interaction and traditionally describe
these activities by associating each with a different colored button on an "ideal" three
buttoned mouse (see Fig. 3.3). The ideal Smalltalk mouse has three buttons colored red,
yellow, and blue. Sometimes these buttons are referred to as the left, middle, and right
buttons respectively. The notion of red, yellow, and blue buttons is taken from the Orange
book by Goldberg. We use the terms because they are part of the terminology used by
Smalltalk programmers. Indeed, the terms are even used within the Smalltalk source code
itself.

Red Button
Yellow Button

Blue Button

Figure 3.3 "Ideal" three-buttoned colored Smalltalk mouse.

The most common activities associated with each button are the following:

Selecting information; e.g., selecting a piece of
text, selecting a menu item, or selecting a new
active window.

Activating a menu to invoke an action concerning
the contents of a window; e.g., carrying out an
editing operation on text within the window.

Activating a menu to invoke an action concerning
the manipulation of the window itself; e.g.,
moving or closing a window.

With a three-buttoned mouse, a single button can be associated with each type of
interaction. Of course, most Smalltalk systems do not have mice with three buttons, never
mind colored buttons! However, the three types of interaction can be obtained very simply
using any available pointing device. For example, both ParcPlace Systems™ and Apple
Smalltalk (see Fig. 3.4) use the following scheme for use with a single button Macintosh
mouse. The red button is obtained using the single mouse button, while the yellow and blue
buttons are obtained by depressing the Option and Command keys respectively along with
the single mouse button. On a two-buttoned mouse the following scheme is often used. The
left and right buttons are used to obtain the red and blue buttons respectively, while both
buttons are depressed to obtain the yellow button.

Chapter 3 An Introduction to the Smalltalk User Interface 73



Red Button =

Yellow Button = ( Option) +

Blue Button = ( command) +

Figure 3.4 Simulating a three-buttoned mouse.

browser

stems, Inc.

file list
file editor
terminal
project

restore display
garbage collect

exit project

"Coerces nil to true and everything
overrides with -ttrue"

System Bro......ser system transcnpt
.~ i-G....r-a-p-h":"ic-s--~V~ie-w-s.....,.~~~'l-0-i,system worksp.3.c
": Graphics-Editors n:n,·· desk top:.......J.+--------...
. Graphics-Support Tru save
: fKerrieF·6o··e·cts·· ....·! quit

,·..·..·..·..······..··J·····....·..·..·,:I"i'FrIn;;;st~a~II!!III' ...~~...opI

Figure 3.5 System Menu.

74 Inside Smalltalk



Ilrlll

3.2.4 Using Pop-Up Menus

Many Smalltalk activities are initiated by making choices from on-screen menus. These
menus are known as pop·up menus since they are not permanent fixtures on the screen but
"pop up" when you activate them. Three of the most common menus - the System,
Yellow and Blue Button menus - are described below.

System Menu Allows the programmer to choose one of several
global system actions such as quitting Smalltalk,
opening new windows, saving (or taking a snapshot of)
the current state of the Smalltalk system, and restoring
(or redrawing) the display (see Fig. 3.5). This menu is
activated by moving the cursor into an area outside of
any window (Le., in any area with the background
pattern) and pressing the yellow button.

Note that the items found in these menus and the order in which they are found may
differ from one Smalltalk system to another. For example, the entry 'desk accessories' is not
found on most systems - on a Macintosh computer, it provides access to system desk
accessories. The result of selecting each of the entries in the system menu will be discussed
in later sections.

Yellow Button Menu

Blue Button Menu

Allows the programmer to choose one of several
actions to be performed on the contents of the active
window. This menu is activated by depressing the
yellow button when the cursor is within the window.
The menu choices depend on the type of window. For
text windows. it will typically include text editing
operations such as cut, copy, and paste, and commands
to evaluate Smalltalk code (see Fig. 3.6). To refer to
the yellow button menu of a particular window. we
will simply use the name of the window; Le., the
expression Workspace Menu implies the yellow button
menu of the Workspace Window.

Allows the programmer to choose one of several
actions to be performed on the active window - an
action that is independent of the kind of window; e.g.,
moving, framing, collapsing, and closing the window
(see Fig. 3.7). This menu is obtained by depressing
the blue button when the cursor is within the active
window. We will use expressions such as the
Workspace Window Menu to refer to the blue button
menu of a particular window.

To summarize, the system menu is used to perform system operations such as leaving
Smalltalk or creating new instances of common Smalltalk windows; the yellow button
menu is used for operations on the contents of the window such as editing text in the
window; and the blue button menu is used for operations such as closing or resizing that
apply to the window itself.

Chapter 3 An Introduction to the Smalltalk User Interface 75



I:::::::I
]

again
undo
copy
cut

p.3.ste
do It

.3.ccep
O::.3.nl~el

stems, Inc.

1'talse

"Coerces nil to true and ever
overrides with of·true"

":-.'." .:-~

System Workspace

The Smalltalk-SOtm System Version 2.3
System Transcnpt ) 198?, 1988 ParcPlace Systems, Inc.
Hello world.

System Browser

".:.°,:."0

Graphics-Yiews Model
Oraphics-Editors l:~:~J.~:~:L:::::::::::
Graphics-Support True

~ fKerrieF"6o··e·cts·..····!
.~ ,·..·..·..·..·..·..·..·J·..·..·..·......,I'i![~IrI!!!!s~ta~r~lc~e~Ir-~~

Figure 3.6 Yellow Button Menu.

System Workspace

The Smalltalk-SOtm System Version 2.3
System Transcnpt ) 198?, 1988 PaxcPlace Systems, Inc.
Hello world.

stems, Inc.

System Browser

11 "Coerces nil to true and ever~·thing 1)~
I!! overrides with 1'true" :!::II

Figure 3.7 Blue Button Menu.

76 Inside Smalltalk



I' ! frill'l I

3.2.5 Making a Menu Selection

Choices are made from pop-up menus using an extended selection process. The first selection
(depressing the mouse button) activates the requested menu, and the second or confirming
selection (releasing the mouse button) chooses from the list of menu choices. Moving the
graphics cursor through the menu choices (with the mouse button still depressed) highlights
each choice in turn. For example, move is the highlighted choice in the blue button menu
shown in Fig. 3.7. The second selection confirms the current menu selection as the menu
choice selected. To exit from the menu without making a menu selection, move the cursor
outside the menu and confirm (release the mouse button).

Gain some experience activating each of the three standard menus. Activate the
System menu and exit without selecting any of the menu choices. Do the same
for the yellow and blue button menus for each of the windows open on the
display.

3.2.6 Restoring the Display

You may have noticed earlier when moving from one window to another that Smalltalk does
not always redraw windows that are deactivated. The restore display option in the System
Menu is used to update the display. Smalltalk then successively redraws each of the windows
on the display, including those that may be partially or even totally obscured.

Activate the System Menu and choose "restore display" (see Fig. 3.5).

3.3 MANIPULATING WINDOWS

Smalltalk programmers never have quite the desktop space they would like for their
Smalltalk windows. Some systems such as the Tektronix Smalltalk have a neat solution.
What is seen on the display is the contents of a viewport onto a larger logical display
window. Using a joystick or the mouse and some hardware support, we can quickly pan or
change the viewport to view a different portion of the logical display. For the majority of us
that do not have this kind of capability, we must pay more attention to the organization of
the windows on the display. Fortunately, the Smalltalk environment makes it simple to
create new windows and to close, collapse, reframe, and move existing windows.

3.3.1 Creating New Windows

New windows are most often created from the System Menu (see Fig. 3.5). Various types
of window can be opened using the project, file list, file editor, system transcript,
browser, system workspace, and workspace menu choices. For the moment, we will
consider only Workspace windows. A Workspace window is an initially empty window
in which text can be entered, edited, stored, and evaluated. It is generally used as a scratchpad
or temporary work area.

Activate the System Menu and choose Workspace.

Chapter 3 An Introduction to the Smalltalk User Interface 77



Notice that the system cursor has changed shape to look like the top left corner of a
rectangle (see Fig. 3.8). We are being asked to frame the area on the screen that the
workspace window is to occupy. An extended selection is used. Move the corner cursor to
the position where the upper left-hand corner of the window is to be located. Confirm the
selection (depress and hold down the red button). The cursor now changes shape, it looks like
the bottom right-hand corner of a rectangle. Drag the corner cursor until it is positioned
where the bottom right corner of the window is to be located. Note that as you drag the
corner, the outline of the window is displayed to provide visual feedback. Confirm the
selection by releasing the red button. A window will appear in the designated frame. Some
Smalltalk systems nash the selected rectangle rather than display the outline.

Select the left-hand corner
of the window frame

Drag the corner cursor to its
desired position

Figure 3.8 Framing a Smalltalk window.

Frame a new Workspace window. Remember - the first selection anchors the
top left-hand corner and the second anchors the bottom right.

3.3.2 Manipulating Windows

Existing windows are manipulated from the blue button menu. This menu is seen when the
blue button is held down while the cursor is within the boundary of the active window or

78 Inside Smalltalk



1''1:1111 I

when the red button is depressed while the cursor is in the label tab of the window. The most
commonly used menu choices are move, frame, collapse, close, and under.

move To relocate a window on the display. A selection operation is
required to specify the new origin or top left comer of the window.

When move is selected, the window disappears except for its label
tab. The label tab becomes the system cursor and can be dragged
around the screen by moving the mouse. Move the label to the desired
position and confirm the selection (click the red button) to anchor the
label. The window is then redrawn in its original size at this location.
In some Smalltalk systems, the outline of the window rather than the
label tab may be moved around with the cursor to determine the new
window location.

frame

collapse

To relocate and resize a window. As with opening a new window from
the system menu, an extended selection operation is required to
specify the top left and bottom right comers of the window frame.

To collapse a window so that only its label tab remains on the screen.
The label tab may be placed at any desired location on the screen. A
window that has been collapsed may be subsequently reopened and its
contents restored by selecting frame from the blue button menu. In
some Smalltalk systems, a collapsed window may be reopened by
simply clicking on the label tab.

When collapse is selected, the window disappears except for its label.
The label becomes the system cursor and can be dragged around the
screen by moving the mouse. Move the label to the desired position
and confIrm the selection (click the red button) to anchor the label.

close To remove a window from the screen completely. Closing removes all
record of the workspace window from the system. The window cannot
be subsequently restored. For that reason, if changes have been made
to the contents of a window, a confirmer menu will appear on the
screen when close is selected. The confirmer requests confirmation
that the window should be closed.

Confinner Windows

Confirmer menus are used within Smalltalk whenever a 'yes' or 'no' type of answer to a
question is required. In the example shown in Fig. 3.9, the confirmer informs the
programmer that the contents of the window that is about to be closed have not been saved;
i.e., the contents will be lost if the window is closed. The confirmer menu gives the
programmer the opportunity to cancel the close request by selecting 'no' (clicking the red
button within the 'no' menu entry) from the menu. Selecting 'yes' (clicking the red button
within the 'yes' menu entry) closes the window.

under Sometimes a window may be totally obscured by another window
under may be used to select the window under the active window
beneath the cursor. You must have some idea where the obscured
window lies. The obscured window will be made visible and will
become the active window.

Chapter 3 An Introduction to the Smalltalk User Interface 79



Contents have not l:!~i~
.::..:;.~

eort~

Figure 3.9 A Confirmer window generated when closing a Workspace window.

Become familiar with the Window Menu menu selections: move. frame.
collapse. close. and under. Experiment with a Workspace window.
Try opening a workspace. typing some text into the window. and then trying to
close it. Is it possible to leave the confirmer window without responding to the
question asked?

3.3.3 Relabelling Windows

The string in the label tab of a window may be changed by selecting new label (sometimes
label) in the blue button menu.

new label To relabel a window. When this menu item is selected, a prompter
window appears requesting the new label for the window (see
Fig. 3.10). The prompter initially contains the existing label. Typing
in the new label followed by a carriage return relabels the window.

It is sometimes useful to have different workspaces contain different information; e.g.,
different sets of test cases to be tried out during the development of an application. To be
able to easily distinguish between the workspaces, it is convenient to be able to relabel
them.

Prompter Windows

A prompter window is a "fill in the blank" type of window where the user is expected to
supply some requested information in response to a prompt. Text can be typed into the
prompter window and edited using the standard Smalltalk editing commands. Text can be
implicitly accepted by typing a carriage return or, alternatively, explicitly accepted by
selecting accept from the prompter yellow button menu.

Once a response is accepted, the prompter window disappears from the display. Some
kind of response must be given to the prompter. Moving the cursor outside the prompter
window causes the prompter to flash to indicate that a response must be given before any
other task can be undertaken. To cancel the request that generated the prompter, delete all text
from the prompter and select accept; i.e., return a null string as the response.

80 Inside Smalltalk



1'''':1

Figure 3.10 A Prompter window generated when relabelling a window.

3.3.4 Scrolling Through Windows

It is often impossible to display all of the contents of a text document within a window on
the display. Consequently, only a portion of the contents of a document may be visible at
anyone time. The portion of a text that is visible may be changed by moving or scrolling
the text up and down through the window. In this way, we can systematically view all of the
text. All windows in which text can be entered and edited, for example Workspace, System
Workspace, and System Transcript windows, arc scrollable.

Smalltalk uses scroll bars to control the portion of a text document that is visible in
a window. The scroll bar is an area to the left of the active text window. Fig. 3.11 shows
the scroll bar to the left of a Workspace window. Scroll bars are only visible when the cursor
is inside an active scrollable window.

Within the scroll bar is a gray scroll bar marker that provides visual cues about the
text being displayed. More specifically, the length of the marker indicates what proportion of
the document is visible within the window, and the position of the marker indicates which
part of the document is being displayed. For example, in Fig. 3.11, the scroll bar marker is

Chapter 3 An Introduction to the Smalltalk User Interface 81



at the top of the scroll bar, indicating that the initial part of the text document is being
displayed. The height of the scroll bar marker is only a fraction of the height of the scroll
bar, indicating that the text document is several times larger than the portion displayed in the
window.

Scroll
Bar
Marker

Scroll
Bar

Smalltalk uses to control h.'lt
portion of a text document IS visible in a ·indow,
The scroll bar is an area to the left of an active
text window, Scroll bars are only visible when the
cursor is inside an active scrollable ......indo.......

Within the scroll bar is ~ scroll bar marker,
The length and position of the scroll bar marker
provide visual cues as to the proportion of the
document visible within the window and to the part
of the document th.'lt is &;pl.3.yed,

Figure 3.11 Organization of scrollahle windows.

In Fig. 3.12, the height of the scroll bar marker is equal to the height of the scroll
bar, indicating that the visible text is all of the text document - as would be the case when
the text was initially entered.

~::lItalk u,e, ,croil'::" toco~i;~
~ portion of a text document i, vi,ible in a window. Ii

:::

I
j ~

l:.----J
Figure 3.12 Height of scroll bar marker indicates that document is

completely visible within the window.

Finally, in Fig. 3.13, the position of the scroll bar is at the bottom of the scroll bar
region, indicating that the visible portion of the text is at the end of the text document. The

82 Inside Smalltalk



'.
:~

height of the scroll bar as compared to the height of the scroll bar region indicates that the
visible text is only a small portion of the complete document.

The length and position of the scroll b·ar marker l
provide visual cues as to the proportion of the ~:k.:~~.:
document visible within the window and to the part
of the document that is displayed.

When the marker is at the top of the scroll
barJ the initial portion of the text document is
being displayed. When the marker is at the bottom
of the scroll bar J the final portion of the text
document is being displayedA,

~:

Figure 3.13 Position of scroll bar marker indicates displayed text is
at the end of the document.

Scrolling Operations

There are three possible scrolling operations. Text may either be scrolled up or down one or
more lines at a time or, alternatively, a specific section of the document can be selected. If
the cursor is moved to the vicinity of the scroll bar, three different cursor shapes can be
obtained. When the cursor is just to the right of the scroll bar marker, an upward-pointing
half arrow is seen. Moving the cursor further to the left, a horizontal-pointing arrow is
obtained. Finally, when the cursor is to the left of the scroll bar marker, a downward
pointing half arrow is seen.

Scrolling Forwards and Backwards

Scrolling text forwards and backwards is achieved with a simple selection using the
respective up and down half arrow cursors. The cursor is moved into the area necessary to
acquire the up or down arrow shaped cursor and then the selection is confirmed (by clicking
the red button). The text will scroll up or down as requested. The amount scrolled is
controlled by the vertical position of the cursor within the scroll bar region when the
selection is made. The line of text nearest the cursor becomes the top line in the window if
scrolling forwards or the bottom line if scrolling backwards. When scrolling forwards, larger
scroll increments are obtained by selecting scrolling with the cursor toward the bottom of the
scroll bar region. Note that experience is needed to familiarize yourself with scrolling. The
most obvious problem at the beginning is that the scrolling direction is usually the opposite
of that expected.

Chapter 3 An Introduction to the Smalltalk User Interface 83



Smalltalk uses • to control what
portion ot a text doclJment IS visible in a \.,..indo\.'...
The scroll bar is an area to the lett of an active
text window. Scroll bars are only visible ....·hen the
cursor is inside an active scrollable window.

In Fig. 3.14, the up arrow cursor is being displayed. Selecting in this situation will
scroll the text in the window such that the line nearest the cursor will become the top line in
the updated window - in this case, the line beginning "Within the scroll bar. ..." Note that
the text is scrolled toward the end of the file by the up arrow cursor. This is counter
intuitive.

I
:1:111

Within the scroll bar is a scroll bar marker. :m
The length and position of the scroll bar marker i:::...!:.~...~...:..
provide visual cues as to the proportion of the :

:~~~::::~~~~ ;~i~:::::=::J

Figure 3.14 Scrolling forwards through a document.

In Fig. 3.15, the down arrow cursor is being displayed. Selecting in this situation will
scroll the text in the window such that the line nearest the cursor will become the bottom
line in the updated window - in this case, the line beginning with "document visible within
...". Text is scrolled toward the beginning of the file by the down arrow cursor.

The length and position ot the scroll bar m.3.rker
provide visu.3.1 cues as to the proportion of the
document visible within the wind,)'.... and to the p.3.rt
of the document that is displayed.

When the m.3.rker is at the top of the scroll
bar, the initial portion of the text document is
being displayed. When the marker is at the bottom
of the scroll bar, the final portion ot the text
document is being displayed.

Figure 3.15 Scrolling backwards through a document.

84 Inside Smalltalk



Jumping to a Specific Section of a Document

Two techniques are provided for moving quickly to an absolute position within a text
document using the horizontal cursor. The first involves positioning the horizontal arrow
cursor at a height within the scroll bar that reflects the portion of the text document you
wish to view and selecting with the red button. For example, in Fig. 3.16, the horizontal
cursor is positioned approximately in the middle of the scroll bar. Selecting at this point
will display text from the middle of the document into the window.

When the marker is at the top of the scroll
bar I the initial portion of the text document is
being displayed. When the marker is at the bottom
of the scroll barI the final portion of the text
document is being displayed.

....
'::,
.':

..;
' ..:

Figure 3.16 Jumping to a specified position within a document.

Alternatively, the scroll bar marker can be dragged to a desired position within the
scroll bar. This is achieved using the horizontal arrow cursor and an extended selection. First,
the horizontal cursor is obtained and moved within the scroll bar. When the red button is
held down and moved up and down within the scroll bar, the scroll bar marker moves with
the cursor. The scroll bar marker can now be dragged to the desired position within the scroll
bar region. Notice that the scroll bar marker now moves up and down as the horizontal
cursor is moved up and down. As it is dragged, the text displayed in the window changes.
The scroll bar marker is dragged until the desired text is displayed within the window.
Releasing the red button confirms the selection.

Gain some experience scrolling through text documents. Activate the System
Workspace window. Move through the text using all three types of scrolling
operations.

3.4 EDmNG TEXT

Text editing operations can be applied to any window in which text may be entered and
evaluated. This includes Workspace, System Workspace, and System Transcript windows.
To illustrate the Smalltalk text manipulation facilities, we will enter and edit some text in a
workspace window.

Chapter 3 An Introduction to the Smalltalk User Interface 85



3.4.1 Inserting Text

Activate an empty Workspace window (open a new window ifnecessary). Notice
the caret (A) or text insertion point in the top left-hand corner of the window.

Text can be inserted into a document simply by typing from the keyboard. Characters will be
entered into the document at the position immediately following the caret.

Type in a series of sentences. Notice that the caret (A) or text insertion point is
always positioned after the last character inserted.

(If nothing appears on the screen when you type, the cursor has wandered out of
the Workspace window. Move it back into the window and the text you have
typed will appear.)

Notice how the caret always follows the last character typed. To insert text between
existing characters, move the text insertion point to the desired position using the cursor and
perform a selection operation (by clicking the red button). Notice that the insertion point
can be placed between characters. Once again, text typed from the keyboard will be inserted
after the text insertion point. Note that the carriage return, tab, and delete keys all
function as expected when inserting text. Many Smalltalk systems support the use of
different text styles (e.g., boldface, italic, and so on) and multiple typefaces (e.g., Helvetica,
Times Roman, and so on) in multiple character sizes. Consult your documentation for more
details.

Type several lines of text into the workspace. Now, try inserting new text
between existing words. inserting a new line of text between existing lines. and
inserting text at the beginning and end ofa line.

3.4.2 Selecting Text

A number of editing operations, for example replace and delete, require the following steps
for execution:

•
•

Select the text to be editcd.

Apply the editing operation to the selected text.

Text to which the operation is to be applied must first be selectcd using an extended
selection operation. Each selection identifies one boundary of the selected text. It does not
matter whether we select the start point first and then select the endpoint or vice versa. After
the initial selection has been made (by depressing the red button), dragging the cursor
(moving the cursor with the red button depressed) highlights the text between the initial
selection point and the current position of the cursor. When the desired text is highlighted,
confirm the selection (by releasing the red button) to anchor the endpoint of the selected text.
The selected text remains highlighted after the selection is complete.

A selection may span as many lines as required in either direction from the first
selection point. If one of the endpoints of the text to be selected is not within the visible

86 Inside Smalltalk



l·iJa'1 !

part of the document, drag the cursor outside the window (above or below) to scroll the
document. Scrolling stops when the cursor is moved back within the window.
More specialized methods for text selection are also available. These provide fast methods for
selecting words, the text between pairs of delimiter characters, or all the text in a document.
All of these selections involve double clicking the red button without moving the cursor
(clicking twice in succession).

select a word

select all the text in the
document

select the text between a pair of
delimiters

select the text just typed in

Double click the red button with the
cursor at the beginning of, in the
middle of, or at the end of a word.

Double click the red button with the
cursor at the beginning or the end of
the text in the document.

Double click the red button with the
cursor just after the left delimiter or
just before the right delimiter. Valid
delimiter pairs are parentheses (...),
square brackets [...J, single quotes •.. .'.
and double quotes"...".

Press the Escape key to select the text
typed since the last mouse click.

Type in a number of lines of text into the workspace.
Practice making text selections. Try all possibilities: forward selections,
backward selections. single word. multi-word. multi-line. text between
delimiters. all the text in a document. and so on.

3.4.3 Replacing Text

To replace text. select (highlight) the text to be replaced (see Fig. 3.17a) and then simply
type the replacement text. The selected text is replaced by the replacement text (see
Fig. 3.17b). Text typed from the keyboard always replaces currently· selected text. Insertions
can be thought of as replace operations where the text to be replaced is the empty string.

.....~

;·1
:.
:'

;I:~
;~..

• •••••• • )X•••••::•••~.:: :'j

Figure 3.17a Replacing text - select text to replace.

Chapter 3 An Introduction to the Smalltalk User Interface



1
~'l!lir::~~~~"~"~"~':~:""'~~:*lil!li1~]~I~!!I~lllll!II~!i!II~IIIIIII'IIl"IIII:IIIIIII:!I!1111~:II::I'III'IIII:li:III:I:IIl"I'II::I'~
: :::::~ Replace the word large...by large ::~

Figure 3.17b Replacing text - enter replacement text 'large'.

3.4.4 Deleting Text

To delete a section of text, select the text to be deleted (see Fig. 3.18a) and use the delete
key to perform the deletion (see Fig. 3.18b). The backspace key is also often used to
perform deletions. Note, however, that in some Smalltalk systems backspace deletes the
selected text and also deletes the character immediately before the selected text. In other
systems backspace and delete are synonymous.

Gain experience with the replace and delete operations.

3.4.5 Cut. Copy, and Paste

Cut, copy, and paste are primitive editing commands that can be applied to text that has
been previously selected. They are available in the yellow button menu of the active
window's text pane.

cut

copy

paste

Deletes the currently selected text.

Makes a copy of (or remembers) the currently selected text.

Pastes a copy of the text from the most recent cut or copy operation
so that it replaces the selected text in the active window. If there is no
selected text to replace, the text is inserted following the current
insertion point. Paste operations may be repeated to paste the same
text into a document more than once.

Copying text from one place to another requires a copy (to copy the text) followed by
a paste (to paste a copy of the text at the new position). Text may be moved from one
window to another by performing a cut in one window, selecting the new window, and
performing a paste operation.

Practice using the cut, copy. and paste operations.

Select a section of text from the Workspace window and copy it into the System
Transcript window.

88 Inside Smalltalk



·'.~

:;~.

Il
'. '.. &:." ..~' :"l:*'*<,'@>',41'

Figure 3.18a Deleting text - select text to delctc.

.:..:.::::...•. " . ~ ... . ~ .. §. ", ":-'

Figure 3.18b Dclcting selected tcxt - hit thc dclctc kcy.

3.4.6 Again and Undo

Again and undo are two more editing operations that can be activated from the yellow
button menu of a window's text pane. Operation undo is useful for recovering from editing
mistakes. It reverses the effcct of the last edit operation. Operation again is useful when the
same edit operation must be repeated many times over; e.g., replacing all occurrences of one
string by another or finding all occurrences of a string.

undo

again

Reverses the effccts of the last edit command. For example, undo can
be used after a cut to paste back the deleted text or after a paste to
delete the pasted text and restore the original text (if any).

Repeats the last replace, copy, or cut operation. Operation again can
be used after a replace to repeat the replace operation on the next
occurrence of the text that was changed. Selecting again with the shift
key depressed replaces all occurrences of the text with the replacement
text. Operation again can be used afLer a cut or copy operation to find
and select the next occurrence of the text that was cut or copied.

Chapter 3 An Introduction to the Smalltalk User Interface 89



Practice using the undo and again operations. In particular, investigate the effect
ofeach command after a replace. cut, copy, and paste operation.

The again facility is an example of a "watch what I do and then repeat it" feature. To
replace one string by another, there is no need to involve the system in a dialog that provides
the input string and the replacement string. It is simply a matter of making the change on
the first occurrence. Ifother occurrences also need replacing, the again operation can be used
to repeat it - either one step at a time, to have the opportunity to undo a candidate
replacement, or all at once (by depressing the shift key).

Many Smalltalk systems allow keyboard control sequences to be used as well as menu
selections to activate the cut, copy, paste, undo, and again operations. Consult your
documentation.

3.5 EVALUATING SMALLTALK EXPRESSIONS

Smalltalk is an interactive system - expressions can be typed in, selected, and immediately
evaluated in any text window. Smalltalk expressions are evaluated using the do it and print
it commands from the yellow button menu of the active window.

3.5.1 Evaluating Code in a Workspace Window

To evaluate a Smalltalk expression, type it into a Workspace window, select it for
evaluation (using the normal method for selecting text), and evaluate it by selccting either
the do it or print it commands.

do it

print it

Evaluates the sclected cxpression (or sequence of expressions).

Evaluates the selectcd expression (or sequcnce of expressions) and
prints a representation of the object returncd by the evaluation. The
result returned is highlighted.

Clear the Workspace window (select everything and use cut). Now type in the
following expression:

32 + 17 * 2

Select the expression and choose 'print it' from the Workspace menu.

The expccted result, 98, is printed (see Fig. 3.19). Note how thc rcsult remains
highlighted so that it is already selected to be delctcd if required. What happens if we try do
it instead of print it?

Delete the result (98) of the previous evaluation.
Reselect the expression: 32 + 17 * 2
Choose 'do it' from the Workspace menu.

90 Inside Smalltalk



I' II I tIll I

~jl
~~~:

~I'J.~::~;

":~ I.:::
":f
.:~

'.:: .:.::.
':~::

Figure 3.19 Evaluation of expression '32 + 17 * 2'.

This time no result is printed. The expression was evaluated but the resulting object
was thrown away. Operation do it is most useful in cases where an expression is evaluated
for its side-effect rather than its result. For example, a side-effect of evaluating an expression
might be a graphical operation such as drawing a spiral on the display screen with a
Smalltalk pen.

Experiment. Type in other expressions for evaluation. Suggestions include

5 factorial.

50 factorial.

Date dateAndTimeNow.

Pen new mandala: 30 diameter: 360.

Transcript show: 'this text will be written in the Transcript window'; cr.

Rectangle fromUser.

Note that if you select more than one expression for evaluation at the same time, only
the result of evaluating the last expression will be printed.

3.5.2 Evaluating Existing Smalltalk Code

The selection and evaluation of Smalltalk code is not restricted to workspace windows. These
operations can be performed from any text window. The System Workspace window (see
Fig. 3.20), for example, contains a set of commonly used Smalltalk expressions for
accessing files, system maintenance, and querying the system. By providing these in the
workspace, users can quickly select and evaluate them without having to type or remember
the rarely used messages.

3.5.3 Compilation Errors

When an expression is selected for evaluation, it is first compiled and then executed. The
compiler detects any syntactic errors in the expression. Visual feedback is provided when

Chapter 3 An Introduction to the Smalltalk User Interface 91

such errors occur by inserting an error message at the point in the expression where the error
was discovered.

Type in the following Smalltalk code and evaluate it.

I sum I

sum f- O.

1 to: 100 do: [:i I sum f- sum + il.
sum

Now, make a deliberate error - remove the period following sum f- 0 and
evaluate the code again. Note how the error message is placed at the source ofthe
error (see Fig. 3.20) and remains highlighted so that it can be removed easily.

sum ~ 0

Nothing more expected ->
sum ~ sum + iJ.

"*"""

'1 to: 10 do: [:i I

Figure 3.20 Syntax errors.

The message 'nothing more expected ~' indicates that the expression sum f- 0 was
complete and that 1 to: ••. is not a valid continuation of that expression.

For some errors, Smalltalk can help in correcting the error.

Correct the original error.
Now make the following deliberate error:

Remove the declaration of the temporary variable I sum I

Reevaluate the code.

The first occurrence of sum is highlighted to indicate where the undeclared variable
error was discovered, and a menu is displayed (as shown in Fig. 3.21). The menu contains
possible corrective actions that can be invoked. The first four entries offer the choice of
defining sum as a temp (temporary variable), class var (class variable), global (global
variable), or undeclared. In our case, the correct action would be to select temp and let the
evaluation continue. Invoking correct it invokes the Smalltalk spelling corrector.
Assuming that you have misspelled sum, the spelling corrector searches through the system

92 Inside Smalltalk

for names that bear a resemblance to sum, displays them in a menu, and allows the
programmer to select an alternative spelling.

III to O.
1 to: 100 do: [d I sum to sum + iJ.
sum,

class var
global

undeclared
correct It

abort

Figure 3.21 Undeclared variable menu.

I
~
~.

;~

I
..J~

Make other deliberate errors; e.g.,

1. Remove the closing] bracket.

2. Replace 'sum' by 'sam' in 'sum.- 0.' (Then try invoking the spel
ling corrector to change it back.)

3.6 QUmlNG FROM SMALLTALK

Activate the System Menu and choose Quit.

A menu will appear offering 3 choices (see Fig. 3.22).

Save, then quit

Quit, without sa\'ing

Continue

Takes a snapshot of the current state of the Smalltalk
system and then quits. This snapshot or Smalltalk
image can subsequently be reloaded to continue the
Smalltalk session.

Quits from the Smalltalk system without saving any
of the modifications made to the system during this
Smalltalk session.

Cancels the quit operation and continues the
Smalltalk session.

Choose Quit, without saving to exit the system and avoid saving the changes you
made; i.e., to discard all modifications made to the Smalltalk system during your session.

Choose 'Quit. without saving' from the Quit menu.

Chapter 3 An Introduction to the Smalltalk User Interface 93

I sum I
sum +- 0,

1 to: 100 do: [:i I sum +- sum + i].
sum.

......~~

~l*m:immmmmmmmmmmmmmmm!,m'I",,,,,,mlm"I:::~m:-:::.I·:::::m::@d·::~~

Figure 3.22 Quit menu.

3.7 SUMMARY

This chapter has provided a first introduction to the Smalltalk user interface. In particular, we
have discussed the following:

• the 'ideal' Smalltalk three-buttoned mouse,

• the use of pop-up menus,

• common system, yellow, and blue menu entries,

• window manipulation commands such as open, close, frame, and so on,

• prompter and confumer windows,

• text editing commands,

• commands for expression evaluation, and

• how to exit from Smalltalk.

3.8 EXERCISES

Some of the exercises that follow involve the evaluation of Smalltalk code. When a
semantic error is discovered during the evaluation of Smalltalk code, execution halts and a
notifier window is displayed. The notifier displays a message describing the cause of the
error. Ifyou are not familiar with the use ofnotifiers and debuggers to debug Smalltalk code.
we suggest that, until these topics are fully covered in Chapter 5, you simply close the
notifier window (select close from the blue button menu) and debug your code manually.

1. Type in the Smalltalk code fragments
generated from exercises 1-4 of
Chapter 2 and execute them.

2. Change the layout of the windows on
the display by resizing and moving
all visible windows.

94 Inside Smalltalk

3. Move the contents of the system
workspace into the system transcript.
Can the transcript hold it all?

4. Create several small workspaces in
side of (or on top of) a larger one.
Then activate the larger workspace.
Can you make the smaller work
spaces visible again?

5. While a piece of code is executing in
one window. can you activate a sec
ond window? Try evaluating 120 fac
torial.

6. What do the yellow button menu
commands accept and cancel do in
a Workspace window? Try typing in
some text to a workspace. selecting
accept. typing in some additional
text. and finally selecting cancel.

7. The delete key (sometimes, the
backspace key) is used to delete a
text selection. What happens if
delete is used without selecting text?

8. What happens if "do it" or "print
it" are selected when no text selec
tion has been made?

3.9 GLOSSARY

pointing device operations

selection A fundamental interaction sequence
used for many tasks within the Smalltalk
environment; e.g., to indicate the point at
which text, when typed from the keyboard,
should be inserted, or to change the active
window. Two activities are involved in
making a selection: first. moving the cur
sor on the screen to the desired position,
and second. confirming the position by
clicking the red button.

mouse interaction terminology

single clicking The process of pressing and
then immediately releasing a mouse but
ton.

double clicking The process of pressing and
then immediately releasing a mouse button
twice in quick succession.

I 'ql

9. Smalltalk systems provide alternative
"control key" sequences for perform
ing tasks such as editing, under
lining, changing fonts, and changing
emphasis, and also provide short cuts
to avoid typing often used symbols.
For example. on the Macintosh, both
ParcPlace™ and Apple Smalltalk sup
port the standard keyboard equiva
lents Ctrl x, Ctrl c, Ctrl v. and Ctrl z
for cut. copy, paste, and undo respec
tively.

Determine the effect of the control
key sequences Ctrl t and Ctrl f in
your Smalltalk system. Do the same
for the following list. In each case, a
section of text should be selected
within a text window before typing
the control key sequence.

Ctrl O. Ctrl 1. Ctrl 2, ... Ctrl 9,

Ctrl -, Ctrl b. Ctrl w,

Ctrl Shift -. Ctrl Shift b.

Ctrl [, Ctrl (. Ctrl <. Ctrl ", Ctrl •

extended selection A two part selection pro
cess used, for example. to select the start
and end points of a text selection, the top
left and bottom right-hand corners of a
frame for a window. or to activate and
choose a selection from a pop-up menu.

dragging The process of moving the mouse
with the mouse button depressed. Used to
perform an extended selection operation
where a two part selection process is re
quired.

Chapter 3 An Introduction to the Smalltalk User Interface 95

menus

System Menu Allows the programmer to
choose one of several global system ac
tions such as quitting Smalltalk, opening
new windows, saving (or taking a snap
shot of) the current state of the Smalltalk
system, and restoring (or redrawing) the
display.

Blue Button Menu A pop-up menu that al
lows the programmer to choose one of
several actions to manipulate the selected
window. These include moving, framing,
collapsing. and closing the window.

mouse buttons

red button Mouse button used to select in
formation.

yellow button Mouse button used to activate
a menu for editing the contents of a win
dow. The cursor must be within the
boundaries of the desired window when the
button is depressed.

Smalltalk windo ws

Workspace Workspace windows used as
scratchpad areas where fragments of
Smalltalk code can be entered, stored,
edited, and evaluated.

System Workspace A Workspace window that
acts as a repository for Small talk
expressions (or expression templates) that
perform common Smalltalk tasks. Prevents
the programmer from having to remember
and retype often used expressions.

System Browser A window for carrying pro
gramming activities like viewing the
Smalltalk class library, modifying exist
ing classes and methods, and adding new
classes.

blue button operations (window menu}

new label Command used to change the name
in the window's label tab. A prompter
appears to query the user about the new
name.

96

Yellow Button Menu A pop-up menu that al
lows the programmer to choose one of
several actions to be performed on the
contents of the selected window. The menu
choices depend on the type of window. For
text windows, it typically includes text
editing operations such as cut, copy. and
paste. and commands to evaluate Smalltalk
code.

blue button Mouse button used to activate a
menu for manipulating the window itself.
The cursor must be within the boundaries
of the desired window when the button is
depressed.

System Transcript A window primarily used
by the Smalltalk system and by program
mers as a notice board to display error in
formation or print messages describing the
progress of a Smalltalk activity.

Confirmer A window used to request a 'yes'
or 'no' type of answer to some question.
Confirmers are most often used to ask the
user to confirm whether or not a request
for some undoable action should be carried
out.

Prompter A window that requires a "fill in
the blank" response from a user - used to
extract textual information in response to
a user command.

under Command used to select a window that
is under the active window and the cursor.
The obscured window is made visible and
also becomes the active window.

Inside Smalltalk

move Command used to relocate a window on
the screen. A selection operation is re
quired to specify the new location of the
window. The window is not resized by this
operation.

frame Command used to relocate and resize a
window. As with opening a new window
from the system menu, an extended se
lection operation is required to specify
the top left and bottom right comers of
the window frame. Thus the window is
both resized and repositioned.

text editing terminology

text Insertion point The point (indicated by a
caret) within an active text window where
text will be inserted either by a paste op
eration or by typing characters on the
keyboard.

yellow button text editing commands

again An editing operation that repeats the
last replace, copy, or cut operation.
Can be used after a replace to repeat the
operation on the next occurrence of the
replaced text. With the shift key de
pressed, all occurrences are replaced. Can
be used after a cut or copy operation to
find and select the next occurrence of the
text that was cut or copied.

undo An editing operation that reverses the
effects of the last edit command. For ex
ample, undo can be used after a cut to
paste back the deleted text or after a
paste to delete the pasted text and restore
the original text (if any).

yellow button evaluation commands

do it Evaluates the currently selected text
without displaying the result.

collapse Command used to collapse a window
so that only its label remains on the
screen. The label may be placed at any de
sired location on the screen. A window
that has been collapsed may be subse
quently reopened by selecting frame from
the window menu.

close Command used to remove a window
from the screen permanently. All record of
the workspace window is lost from the
system. The window cannot be subse
quently restored.

text selection The process of selecting a re
gion of text for subsequent manipulation.
Carried out using an extended selection
operation.

copy Makes a copy of (or remembers) the cur
rently selected text.

cut Deletes the currently selected text.

paste Pastes a copy of the text from the most
recent cut or cop y operation so that it
replaces the selected text in the active
window. If there is no selected text to re
place, the text is inserted following the
current insertion point. Paste operations
may be repeated to paste the same text
into a document more than once.

print it Evaluates the currently selected text
and displays the result.

Chapter 3 An Introduction to the Smalltalk User Interface

4

Programming \¥iIh
Broy,sers

4.1 INTRODUCTION

Browsers (alternatively browser windows or browse windows - see Fig. 4.1) are without
a doubt the most important and most used software development tools in the Smalltalk
programmer's arsenal. Browsers are an integral part of the programming activity; they are
used to navigate through the Smalltalk class library, to view and modify existing classes and
methods, and to add new classes and methods.

class

Graphics-Display ct••••••••1
Graphics-Paths Point
Graphics-Views geometnc deSigns

SPIral:angle:

1 to: n do: [:i I self go: i; turn: a]

""plral: n angle: a
"Draw a double squiral directly on the displ.!y,"

"Display white.
Pen new spiral: 200 angle: 89; home; spiral: 200 angle: -89."

Figure 4.1 System Browser window.

99

The central role played by browsers in the programming process is more easily
appreciated by understanding how program development in Smalltalk is different from that in
languages such as Pascal and C. Programming in Smalltalk is programming in the presence
of a large reusable class library. Building an application in Smalltalk can be thought of as
extending this base library - a process termed programming by extension. Through the
mechanism of inheritance, new classes are created by describing how they differ from some
existing class of object - a process often termed differential programming.

This view of programming as extending the existing class library makes it essential
that tools be provided to navigate through the class library, and that the addition of new
classes and methods be carried out in such a way that the new functionality can be
immediately exercised within the context of the whole Smalltalk system. Adding a new
method to an existing class, for example, is achieved by simply incrementally compiling the
definition of the new method into the system. In languages such as Pascal and C, it is
necessary to recompile any changed program components and then link together every
component part of the program. For large programs consisting of many hundreds of
components, this is a slow process, especially if it must be repeated after every small change
to a program.

Many of the activities we normally associate with program development are carried out
using browsers in Smalltalk. Code is edited, listed, formatted, compiled, and tested using
browsers. In particular, browsers are used for four distinct purposes:

•
•
•
•

Viewing the source code for existing classes and methods.

Modifying existing methods and classes.

Adding new methods and classes to the library.

Extracting valuable cross reference information from the library; e.g., extracting a
list of classes that implement a particular message or displaying the hierarchical
relationships between classes.

Apart from a small number of primitive operations, all of the source code for the class
library may be viewed (and modified) by the programmer - Smalltalk is an open system.
With several thousand methods and over a hundred classes, browsers help the Smalltalk
programmer overcome the problem of information overload. They provide a tool through
which the programmer may view and modify the Smalltalk class library. They supersede the
use of static manuals and source code listings and provide a dynamically updated view of the
Smalltalk system at any moment in time. Because a Smalltalk application builds on the
existing class library, it is far more informative to be able to browse through the class
library than to study a paper listing of an individual class.

The most commonly used browser, the System Browser (see Fig. 4.1), provides
access to the entire Smalltalk class library. More specialized browsers, which provide access
to only a subset of the library, may also be created. Experienced Smalltalk programmers
typically have several browsers open on the display at anyone time. One browser might be
used to view an existing library method while another one is used to create a new method
that is a variation or extension. Multiple browsers make it possible to conveniently view
and/or modify different parts of the class library simply by switching from one browser to
another.

100 Inside Smalltalk

4.2 SYSTEM BROWSERS

System Browser windows are created by selecting browser from the system menu. A
System Browser window is divided into five scrollable panes (or subwindows) and two
switch panes labelled class and instance (see Fig. 4.2). The top four panes are termed list
panes, while the bottom pane is a text pane. List panes contain fixed lists of menu
selectors. Each item in the list is selectable but cannot be edited directly. List panes are
scrollable. To view all the available items within a list pane, it may be necessary to scroll
through the contents of the list pane. Text within a text pane may be scrolled, selected,
edited, and evaluated. The standard window operations are available through the blue button
menu; Le., browsers can be closed, collapsed, moved, and framed.

Class
Category
List Pane

Text Pane

Figure 4.2 Structure of a System Browser.

Message
Selectors
List Pane

In multi-pane windows, only one pane, known as the active pane, is active at any
time. Panes within an active browser are activated simply by moving the cursor into the
pane. Each list and text pane has a menu, accessible through the yellow button, that
contains operations to be applied within the context of currently selected items in the list
panes. Fig. 4.3 shows typical yellow button menus associated with each of the browser
panes. The actual entries in these menus will differ from system to system and will also
change depending on the selections made within the list panes of the browser at the time the
menu is activated.

To enable programmers to move around in the library quickly and easily, the library is
indexed. Related classes are grouped together into class categories, and related methods within
individual classes are grouped into message categories. The four list panes, therefore, provide
four levels of indexing into the class library. From left to right these panes are termed the
class categories pane, class names pane, message categories pane, and message
selectors pane respectively (see Fig. 4.2). In addition, to determine whether class messages

Chapter 4 Programming with Browsers 101

file out
print out

spa wn file out
spawn hierarchy print out

hierarchy file out spawn
definition print out sender s

file out comment spa wn implementors
print out protocols add protocol messages

spawn Inst var refs rename moveI'dd:~~~~TYH_C-:l~i~n~~;~~::~Sa~l~:;~~~~dJ"fS_I-.:::r:e=m:o:v=e::;~:!:;;:r:e:m:o:v=e=~~

1fl~~i~I~:' remove

Figure 4.3 System Browser - Yellow Button Menus.

or instance messages are displayed in the message categories and message selectors
panes, either class or instance is selected from the instance-class switch panes. These act
as on-off switches - selecting class deselects instance and vice versa. Selections are made
from the list pane and instance-class switches using the red button. When a browser window
is deactivated or collapsed, the current selections from the menus are remembered and restored
when the browser is reactivated or framed at some later stage.

4.3 VIEWING EXISllNG CLASSES

A system browser provides access to all the relevant information concerning classes within
the class library. For example, we can display the following information:

• The definition of a class to determine its instance and class variables.

• The class hierarchy local to a given class to determine its relationship with related
classes.

• The class and instance protocol supported by a class.

• The source code for any method.

102 Inside Smalltalk

Information relating to a class is displayed in the text pane of the browser by selecting
entries from the list panes and from the various pane menus. What is displayed in a list pane
of a browser is related to the selections previously made in neighboring list panes (to the
left). The arrows in Fig. 4.2 indicate the dependencies between the panes of the browser.
Selecting a particular class category, for example, displays the classes within that category in
the class names pane. Selecting a particular class displays a list of message categories in the
message categories pane. The list will be either a list of instance message categories or a list
of class message categories, depending on the state of the class-instance switches below the
class names pane. Next, selecting a particular message category displays the selectors of the
methods in that category in the message selectors pane. Finally, selecting a message selector
causes the code for that method to be displayed in the text pane at the bottom. Other kinds of
information may also be displayed in the text pane; e.g., the definition of a class. We will
discuss this in more detail in following sections.

The yellow button menu entries are also dependent on the selections made in the list
panes. The menu entries for each list pane in Fig. 4.4 are those displayed when an item
from that pane is selected. Fewer or different entries may be displayed if an item is not
selected in a pane. Menus in your system may differ slightly from those shown.

In Fig. 4.4, the class category Graphics.Primitives is selected. The class names
displayed in the class names pane are therefore the classes in this category. The class Pen is
selected and this, together with the fact that the instance menu item is selected, determines
that the message categories for instances of class Pen will be displayed in the message
categories pane. The message category geometric designs is selected, indicating that the
message selectors for instance methods in the category geometric designs in the class Pen
are displayed in the message selectors pane. Finally, the selector spiral:angle: is selected,
causing the Smalltalk code for this method to be displayed in the text pane.

Orap IC -Dftl~~

Oraphics-Paths
Oraphics-Views

~plral: n angle: a
"Draw a double squiral directly on the display."

"Display white.
Pen new spiral: 200 angle: 89; home; spiral: 200 angle: -89."

1 to: n do: [:i I self go: i; turn: a]

..:..-: : : .

Figure 4.4 Browser Pane dependencies.

Chapter 4 Programming with Browsers

!I~?

~:
:.'
::
l

,.>x:o:::.:.:::,~.~

103

4.3.1 Finding a Class

Although classes are organized in a hierarchy, they are displayed in a different manner in a
browser. For example, classes associated with graphics primitives are collected together
under the category Graphics·Primitives independent of their inheritance structure. From the
point of view of a user, classes are categorized into sets of functionally related classes.

Even so, finding a class within the system can be frustrating for the beginning
Smalltalk programmer. It is not likely that you will know the category of the class you are
looking for - considerable time can be spent searching through the class categories. A fast
way of finding the category for a class is to send the class a category message. For
example, evaluating the expression

Pen category

in a workspace returns the category Graphics-Primitives. This class category can be easily
found by scrolling the class category pane since the pane is sorted alphabetically.

Alternatively, some Smalltalk systems have a find class entry in the yellow button
menu of the class categories pane. Selecting this menu entry invokes a prompter that asks
for the name of the class to be located. When the class name is entered, the required class
category is automatically selected in the browser. Additionally, operation find class is useful
when the spelling or the exact name of a class is unknown. Typing a pattern string using the
character '*' as a wild card character brings up a menu of classes matching the pattern. For
example, in Fig. 4.5, the pattern p* is entered in the find class prompter. As shown in
Fig. 4.6, a menu of class names beginning with the letter P will be displayed. Selecting one
causes the browser to position itself at that class.

Activate a System Browser and browse through the class library. In particular,
lookfor each of the following classes: Date. Integer, Spline. Quadrangle. Bag,
and Character. If there is no find class facility. you will need to interrogate the
system to find the category ofeach class.

If there is afind classfacility,lookfor classes that end in "View", "Controller",
or "Collection".

4.3.2 Viewing Class Definitions

To display the definition of a class in the text pane of a browser, proceed with the following
four steps:

•
•
•
•

Select the class category from the class categories pane.

Select the class from the class names pane.

Set the instance-class switches to instance.

Select definition from the yellow button menu of the class names pane.

Fig. 4.7 shows the definition of class Pen. The definition displays the class name, the
name of the superclass, instance variables, class variables, pool dictionaries, and the class
category. Note that selecting definition when the instance-class switches are set to class

104 Inside Smalltalk

displays the definition of the metaclass1 for Pen; Le., the definition of the class for which
class Pen is an instance.

P
A

tion direction penDown '

pooIOictionarie:;;: ..
category: 'Oraphics-Primitives'

:.
::

Ii:

!~
~:

'0' x::.:.." ::; :..:.: §

Figure 4.5 Searching for class names matching the pattern ·P*'.

Oraphics-Display
Oraphios-Pa ths
Oraphios-Views

Paragraph
ParagraphEditor

ParseNode
Parser

Par;,;;,ok '"",

P.'i~~;:'~:~:~..m ~
pr:;::S:S:~:h:~~ler ction penDo..'m ' I!:!..r.ll.

Project .,.:~

~:j~:~~:~t~~I~;r III
ProjectlconControllet W

ProjectView ::1
'.> .>,,~ ,: "'X""::;: '.:.,> • Prot~.c~l~r~.w.se~ ,." .. ~>.,<'." x:::::~:::;::~:..::.·:;;;::;:.*:::::::;:·:·:••:~:·:~;m.;:;:j:N::l;1..'~'

.fItBit subolass: #Pen
instanceVariableNam
classVariableNames: '
poolDiotionaries: ..
category: 'Oraphics-

Figure 4.6 Menu of class names matching the pattern string ·P*'.

IThe role of metaclasses is described in detail in Chapter 6 - classes are objects and therefore must be
instances of some class. A class is the only instance of its own metaclass.

Chapter 4 Programming with Browsers 105

........' ':::::::::::@::~~ul'f~II!!~~111

'1

-,,---------J

;~

~\ Graphics-Display initialize-release
f Graphics-Paths accessing

!'~:,:;.:::.,:..:I-::~l~:"':=':':":'I:_i:_:",:":_:,:,,,,::_:_:s_: ",:,#,:,,:p:~:n::__:::-:::-C~-I_a:s:s:~_C_O_I_Or_i_ng__-----f:

A irlstanceVariableNarnes: 'frarne location direction penDown I

~ classVariableNarnes: II

~1 poolDictionaries: III category: 'Graphic,-Primitive.'

.:::
'~:""""'" .

Figure 4.7 Definition of class Pen.

Display the definitions of each of the following classes: Date. Integer. Spline.
Quadrangle. Bag. and Character.

4.3.3 Viewing the Class Hierarchy

To detennine the inheritance hierarchy for a class, proceed with the following four steps:

• Select the class category from the category pane.

• Select the class from the class names pane.

• Set the instance-class switches to instance.

• Select hierarchy from the yellow button menu of the class names pane.

The class hierarchy is displayed in the text pane and shows the superclass chain above
and below the class. In addition, the instance variables for each class in the hierarchy are also
displayed. Remember that instances of a class inherit the instance variables of all their
superclasses. The set of instance variables for a class consists of all the instance variables in
the class itself plus the instance variables of all the superclasses. Selecting hierarchy when
class is selected from the instance-class menu displays the hierarchy for the metaclass2 of
class Pen.

Fig. 4.8 illustrates the inheritance hierarchy for class Pen. Pen is a subclass of class
BitBlt, which is itself a subclass of class Object. In addition to its own instance variables,
class Pen inherits the instance variables of class BitBIt. Pen has no subclasses.

2 As you may discover by viewing the hierarchy when the class switch is selected. the metaclass
hierarchy actually extends above the metaclass for Object. More details are provided in Chapter 6.

106 Inside Smalltalk

Graphics-Oisplay
Graphics-Paths
Graphics-Views

Iltl! :

initialize-release
accessing

~~~='I~---I coloringIIiIIIiII class

~bject 0
BitBlt ('destForm' 'sourceForm' 'halftoneForm' 'combinationRule' 'destX'

'destY' 'width' 'height' 'sourceX' 'sourceY' 'clipX' 'clipY' 'clipWidth' 'clipHeight' )

Pen ('frame' 'location' 'direction' 'penOown' )

....... " '~" 'ii

Figure 4.8 Class hierarchy for class Pen.

," ";0' '0 ••••• "

1'lnltlahze-relea.se' def.a.ultNlb:)
1'accessing' direction frame frame: location sourceForm: width:)
('coloring' black fillln: White)
('moving' down go: goto: home north place: turn: up)
('geometric designs' dragon: filberts:side: hilbert:side: hilberts: mandal.a.:di.uoeter:
spiral:angle:)

Graphics-Oisplay
Graphics-Pa ths
Graphics-Views

Pen
Point initialize-release
Quadrangle accessing

t=::=====r-~-"" coloringIIiIIIiII class

Figure 4.9 Instance protocol for class Pen.

4.3.4 Viewing the Protocol Supported by a Class

To detennine the instance or class protocol of a class, proceed with the following four steps:

•
•

Select the class category from the category pane.

Select the class from the class names pane.

Chapter 4 Programming with Browsers 107



• Set the instance-class switches to instance to display the instance protocol or to
class to display the class protocol.

• Select protocols from the yellow button menu of the class names pane.

The instance or class protocol is displayed in the text pane (see Fig. 4.9 for the
instance protocol of Pen). Each entry in the text pane describes the protocol associated with a
particular message category and has the form

('message category name' nameOfMethodl nameOfMethod2 ...)

For each of the following classes, display the class hierarchy along with the
instance and class protocols: Date. Integer, Spline. Quadrangle. Bag, and
Character.

4.3.5 Viewing Methods

To display the source code for a method in the browser, proceed with the following five
steps:

• Select the class category from the class categories pane.

• Select the class from the class names pane.

• Set the instance-class switches to either instance or class.

• Select the method category from the method categories pane.

• Select the message selector from the message selectors pane.

Fig. 4.10 shows the instance method with selector spiral:angle: in class Pen.

"Display white.
Pen new spiral: 200 angle: 89; home; spiral: 200 angle: -89."

0" ••••••••••••

1 to: n do: [Ii I self go: i; tum: a]

splral:angle:geometnc deSigns
class

Splral: n angle: a
A • I I

"Draw a double squlral directly on the display,"

~:•.;

,
5 Ckaphics-Display
~

Figure 4.10 Displaying instance method spiral:angle: in class Pen.

108 Inside Smalltalk



4.3.6 Finding a Method

If you do not know the category of a method or are unsure of its spelling, the find method3

entry in the yellow button menu of the class names pane may be used. Operation find
method displays a menu of the messages implemented by the currently selected class. For
example, in Fig. 4.11, the messages implemented by class Pen are displayed. To view a
particular method definition, select the desired message selector from the menu.

souroeForm: width:}

turn: up}
ert:side: hilberts: mar,dala:diameter:

tialize-release
oessing
loring

blaok
defaultNib:
direction

down
dragon:

filberts:side:
fillln:

frame
frame:

go:
goto:

hilbert:side:
hilberts:
home

looation
mandala:diameter

north
plaoe:

souroeForm:

Graphics-Oisplay
Graphics-Pa ths
Graphics-Views

..!'Inltlahze-release' def
('accessing' direction f
('ooloring' blaok fillln: \.1/

('moving' down go: got
('geometric designs' dr
spiral:angle:)

Figure 4.11 Message List Menu generated by using 'find method' for class Pen.

4.3.7 Obtaining Explanations

The explain entry in the yellow button menu of the text pane can be used to display limited
explanations of the code in a method. To use the explanation facility, a token must first be
selected, then menu entry explain causes a short explanation of the token selected to be
displayed as a comment embedded in the code immediately following the token. For
example, in Fig. 4.12, the token @ has been selected and the resulting explanation
displayed. The explanation also indicates how to create a message-set browser on the selector

3Menu item find method is not available in all versions of Smalttalk.

Chapter 4 Programming with Browsers 109



(see Section 4.6.3). Tokens which can be explained include message selectors, variable
names, and even symbols such as 'j'.

Graphics-Displ.3.y
Graphics-Paths
Graphics-Yiews

POint

c1a.ss

.j + delt'~nswer a new Point that is the sum of the receiver and delta (which is
a Point or Number)," J

Ii ~~~I~~~~~t~ delta asPoint. :111

II tx + deltaPoint x @ I~

I _.. · · · ::~~
~: (y + deltaPolrlt y) ::~
1:~'li':':~':':""""':"">:':"oW',••:...•..••:.....:•.••.•,.....:.:..•:.:.,. •..• ··'.·:·:·'.:·»:·:·:·:·:·:·:·:·,:···:·:·w", '." ••••• ,•• " • :·:·:N:·.·:·:·:·:·.·'··· .'.:' ···w:···.·:·:·:·:·:·:'·:·;:;:;:::.·:·:·:<·:·:·:·:·:·w:·:·:~·:·~~*~;:;;j;~

Figure 4.12 Explanation of the message selector @.

Browse through the methods in each of the following classes: Date. Integer.
Spline, Quadrangle. Bag. and Character. Use the explanation facility to gain a
better understanding ofsome code fragment.

4.4 EVALUATING CODE FROM WITHIN A BROWSER

Any code in the text pane of a browser may be selected and evaluated as follows:

• Select or type the text to be evaluated in the text pane.

• Choose do it or print it from the yellow button menu of the text pane.

When viewing classes and methods with a browser, it is convenient to be able to
evaluate code at any time without leaving the context of the browser. For this reason, it is
common practice among Smalltalk programmers to include code that illustrates the usc of a
class or method within the class or method itself. For classes, the common convention is to
include explicit example methods under the class message category examples. For methods,
this is most often done by embedding code within a comment at the beginning or end of the
method. For example, in Fig. 4.13a, the method spiral:angle:, which draws a spiral on the
display, contains the following code embedded within a comment.

Display white.
Pen new spiral: 200 angle: 89; home; spiral: 200 angle: 89

110 Inside Smalltalk



This is an example of how the spiral:angle: method might be used. The code within
the comment can be selected and evaluated by choosing do it (or print it) from the yellow
button text pane menu. A double spiral will be drawn on a white display screen (see
Fig. 4.13b). We strongly suggest that you adopt the practice of including example methods
whenever new classes are defined.

~==~~-~ ------------_ class

Oraphics-Display
Oraphics-Paths
Oraphics-Views

Pen
Point geometnc deSigns

hilbert:side:
hilberts:
mandala:diameter: .
Splfal:angle:

splral: n angle: a
"Draw a double squiral directly on the display,"

1 to: n do: [:i I self go: ij turn: a]

Figure 4.13a Evaluation of expression to draw a double spiral.

Figure 4.13b Double spiral resulting from evaluation of code in Fig. 4.13a.

Chapter 4 Programming with Browsers 111



no

Many of the example methods in the system are called example. Evaluate the
example methods in the following classes: Pen. TextColiector, String, Arc.
Curve. Spline. and FilllnTheBlank. Make sure you read the comments stored
with the examples before you evaluate them.

4.5 ADDING AND MODIFYING METHODS AND CLASSES

4.5.1 Modifying Existing Methods

Existing methods can be modified as follows:

• Display the existing method in the text pane.

• Edit the method as required using the cut, copy, paste, again, and undo
operations available from the yellow button menu of the text pane.

• Select accept from the yellow button text pane menu to compile the new
method.

For example, we could modify the spiral:angle: method in class Pen (see Fig. 4.13)
and accept the change. Obvious cosmetic changes include changing the names of the
arguments (from "n" to "turns" and "a" to "angle") and fixing the typographical error in the
comment (the error is in the Smalltalk source).

Accepting Changes to Methods

Before a modified method can be used, it must be compiled by choosing accept in the text
pane's yellow button menu. Alternatively, choosing cancel will undo any changes made
since the last compilation. Compiling a class definition or a method permanently records the
change in the system. Smalltalk keeps track of two versions of the code for every class: a
compiled version and a source version. Accepting a modified class or method installs the
compiled version of the code in the Smalltalk environment and also ensures that the modified
source code is retrieved whenever the class or method is viewed through a browser - any
browser.

When changes are made to text in a text pane, browsing some other part of the system
(a new request) is not permitted. The user must first accept or cancel the changes.
Otherwise, a confirmer window appears (see Fig. 4.14) to determine whether the changes
made in the text pane are to be saved or discarded. It is answered by selecting the appropriate
response ('yes' or 'no') from the confirmer menu.

The text showing has been altered.

Do you wish to discard those changes"?

yes ~

Figure 4.14 Confinncr Window.

112 Inside Smalltalk



I int'l

Choosing 'yes' discards the change. Choosing 'no' cancels the new request and gives the
programmer another opportunity to do something with the changed text; e.g., to accept it.

Note that it is possible to temporarily deactivate a browser window without accepting
or cancelling a change. Simply click on some other window. When the browser is reactivated
later on, the changes will still have to be accepted or cancelled before further browsing is
possible or before the browser can be closed. Before accepting a change, it is often useful to
be able to browse some other part of the class library. If it is not possible to do so in the
current browser, the solution is to create a second browser and use it to query the class
library. This is one of the reasons why Smalltalk programmers use multiple browsers.

Edit method 'spiral:angle:' in class Pen as described earlier. Accept the new
method and test it by evaluating the comment

Display white.
Pen new spiral: 200 angle: 89; home; spiral: 200 angle: 89

that is part of the method (remove the spiral from the display by choosing
'restore display' from the System Menu). Now edit (but do not accept or cancel)
the comment to read

Display white.
Pen new dejaultNib: 2; spiral: 200 angle: 89; home; spiral: 200 angle: -89

The effect of this change is to draw the spiral using a Pen with a thicker nib or
brush shape; i.e.. with thicker lines. Evaluate the modified comment; i.e.• draw
the spiral with thick lines (see Fig. 4.15).

t::=====~~-'" ------------_ class
spIYal:angle:

fu
:>.

hilberts: ~~

rnandala:diarneter: i'
..

geometric deSignsPoint
Graphics-Display
Graphics-Paths
Graphics-Views

splral: n angle: a
"Draw a double squiral directly on the display." :=-=::..

"Display white.
Pen new IIIIiDWIIIspiral: 200 angle: 89j hornej spiral: 200 angle: -89,"

1 to: n do: [:i I self go: ij turn: a]

Figure 4.15 Evaluation of code to draw a thick double spiral.

Chapter 4 Programming with Browsers 113



Without accepting or cancelling the change. try to view the definition ofanother
method in the class. A confirmer window will appear asking you to save or
discard the changes. Choose 'no'.

4.5.2 Adding New Classes

In Chapter 2, we described the implementation of Complex - a class for manipulating
complex numbers. We will use its definition to illustrate how new classes are added to the
class library. To add a new class to the system, we must first decide whether the new class
should be included under an existing class category or whether a new category should be
added. In this situation, it is appropriate to add class Complex under the category Numeric
Numbers4. Select class category Numeric-Numbers in a browser. The class pane displays
the classes in this category and the text pane displays a template for a class definition (see
Fig. 4.16).

Numeric-Numbers
,:' ::::::~~m~~:~i~

l ~~:::~::::=~~~~: Fm,ion l::,II:.~

I
~ Collections-Sequen mIIIII '.
~: lJameOfSuperclass subclass: #~;~::OfClass II
i instanceVariableNames: 'instVarName1 im:tVarName2' ~:~

1 ~;~r~~~;~:::~:::;rN.me1 CI."V"N.me2' I
_w_. ,_, 'w_~

Figure 4.16 Class definition template.

To add a new class to an existing class category, proceed with the following three
steps:

•
•

•

Select the class category to which the new class is to be added.

Edit the class template in the text pane to contain the name of the class, the name
of the superclass of the class, any instance and class variable declarations, and any
required pool dictionaries (the class category is already correct).

Select accept from the text pane yellow button menu to compile the new class
definition. The new class appears in the class names pane and is selected.

4The addition of new class categories is discussed later in the chapter.

114 Inside Smalltalk



11111 1

For class Complex, in accordance with the definition of the class in Fig. 2.5, the
template would be edited as shown in Fig. 4.17. It is important not to change any of the
syntax of the class definition template. For instance, the list of instance variable names must
be a string ('reaIPart imaginaryPart') and the class name must be preceded by a hash mark
or sharp (#). Also remember to remove the dummy variable names from the list of instance
and class variables. To add the new class definition to the system, choose accept from the
yellow button menu for the text pane. The new class Complex now appears in the list of
classes in the class pane and is selected (see Fig. 4.17).

Alternatively, you could select and evaluate all of the code in the text pane and. Note
that the class definition template is simply the message expression required to send the

8ubcla..:instanceVariableNames:cIassVariabIeNamea:pooIDictionaries:category:

message to the superclass of the new class; i.e., tell the superclass to create a new subclass
with the desired characteristics.

Numenc-r~umbet ::;
Collections-Abstra ------------
Collections-Unorde Fraction
Collections-Sequen~

__ class

...ObJect subclass: #Complex
instanceVariableNames: 'realPart imaginaryPart'
classVariableNames: II

poolDictionaries: II

category: 'Numeric-Numbers'

r-

~
:~

I
~i
~······...... ·· ..·..·d

Figure 4.17 Addition of class definition for class Complex.

Add class Complex to the system under the class category Numeric-Numbers as
described above.

AddingIModifying Class Comments

It is a Smalltalk convention to associate a comment with each class describing the purpose
of the class. To display and/or modify the comment for a class, perform the following:

•
•

Select the class category and class.

Select comment from the yellow button class pane menu to display the class
comment in the text pane.

Chapter 4 Programming with Browsers 115



• If required, edit the comment in the text pane.

• Select accept from the yellow button text pane menu to compile the modified
comment.

Fig. 4.18 shows the comment associated with class Rectangle. A default comment
"This class has no comment" is automatically provided when a class is created.

x

~~

, Graphio,-Di,play aooming
~i~ Oraphics-Pa ths comparingr Oraphics-Yiews rectangle functions

if:I:!.:.! CI.3.sS Rectangle usu~eser~~::rectangular area on the screen.
~:: ~rithmetic functions take points as arguments and ca.rry out scaling and
~:~ tt'anslating operations to create new Rectangles. Rectangle functions createI ::~a:::~:~::I:: determining in,emo,ion, of reo,angle, wi'h rectangle,.

Ii origin <Point> upper left corner position

l~,,..~.or:e~ (Point> lower righ' oorner po,ition

Figure 4.18 Class comment for class Rectangle.

Examine the comments associated with selected Smalltalk classes.

Add a suitable comment to the class Complex.

Adding New Method Categories

To add a new message category to a class, proceed with the following four steps:

• Select the class category and class.

• Select instance or class as appropriate in the instance-class switch panes.

• Select add protocol (see Fig. 4.19) from the yellow button menu of the
message categories pane.

• Respond to the resulting prompter window by typing the new message category.
By convention, the category should be a sequence of lowercase words separated by
spaces.

To type a new category, type the successive lowercase words of the new category into
the prompter window and accept (see Fig. 4.20). The new category will be added to the list
of message categories. If no message category was selected when add protocol was
invoked, the new category will be added at the end of the list of categories. If a message

116 Inside Smalltalk



category was selected, the new category will be inserted before the selected category in the
list.

In Fig. 4.21, the instance method category accessing has been added to class
Complex. This category is selected, and the method definition template is displayed in the
text pane.

I

Collections-Abstra ------------
Collections-Unorde Fraction
Collections-Sequen _ ladd protocoll

.....----....~....-------I11~
...ObJect subclass: #Complex

instance.....ariableNames: 'real?art imaginary?art '
class.....ariableNames: II

poolDictionaries: II

jJ category: 'Numeric-Numbers'

Numenc-Numbers

0'···. ';;': ...:...:~...:..... J

Figure 4.19 Select 'add protocol' to add a new method category.

ComplexNumeric-Numbers :1
Collections-Abstra ------------ :~~

;~:::~:::::::= 01 ~~:~r.:::p~r::~~l n.me '...:!...::...:!..::..:
instance.....ariableNames: 're accesslni. ~ :

~~~r~~~~~:~::~~mbers' I
.....~ _~

Figure 4.20 Adding a new method category to a class.

Chapter 4 Programming with Browsers 117

I temporary vari.:l.ble names I
statements

",nessage selector and argument names
"comment stating purpose of message"

accessmg
COliipl~x

Collections-Abstra
Collections-Unorde Fraction ------------
Collections-Sequen~._

__ class

Num~nc-NIJmbers

:l~
.::
.:

~

1:

ii
..' ~.... :~

Figure 4.21 Method definition template.

Add the following method categories to class Complex:

class method categories:

instance method categories:

initialization

accessing arithmetic

4.5.3 Adding New Methods

A new method can be added to an existing message category as follows:

•
•

•

Select the class category, class, and message category.

Edit the method template displayed in the text pane; i.e., the method header,
comment, temporary variables, and method body.

Select accept from the text pane's yellow button menu.

In Fig. 4.22, instance method realPart (which retrieves the real part of a complex
number) has been added to the method category accessing for class Complex. Rather than
edit the method definition template, it is common to edit the definition of some already
existing method. As long as the modified method is given a new name, a new method will
beaddcd.

Add the following methods to the class Complex (see Fig. 2.5 for a listing of
the source code for the methods).

class methods
initialization

newWithReal: realValue andlmaginary: imaginaryVaiue

118 Inside Smalltalk

-
instance methods

accessing
realPart
imaginaryPart
realPart:
imaginaryPart:

arithmetic
+ aComplex
* aComplex

Collections-Abstra Float
Collections-Unorde Fraction ------------
Collections-Sequen~

__ class

realPart
"Returns the real part of the receiver,lI

-trealParlo

te.a.IP.a.rt

Figure 4.22 Addition of instance method realPart to class Complex.

4.5.4 Adding New Class Categories

A new class category can be added to the system as follows:

• Select add category from the yellow button menu of the class categories pane.

• Respond to the resulting prompter window by typing the new class category. By
convention, class categories are uppercase words separated by dashes.

• Select update from the yellow button menu of the class categories pane to display
the new class category in the class category list pane.

4.5.5 Modifying Existing Class Definitions

To modify the definition of an existing class, perform the following steps:

• Select the class category and class (if already selected, choose definition from the
yellow button menu of the class names pane to display the class definition in the
text pane).

• Edit the class definition displayed in the text pane.

Chapter 4 Programming with Browsers 119

• Select accept in the text pane's yellow button menu to compile the new class
definition.

• Depending on the nature of the change, some modifications to other pieces of code
may be required. See the discussion below for more details.

There is more to modifying a class definition than may be immediately apparent.
Although some changes, such as editing the class category of a class, do not impact the
system in any significant way, modifying the superclass or instance/class variables requires
greater care. Remember that inheritance brings advantages in terms of shared code, but as a
result, modifications to one class may impact others. We suggest that you do not change the
names, superclasses, instance variables, or class variables of classes that were provided with
your Smalltalk system. Reserve such changes, when necessary, to classes that you have
added to your system.

Modifying a Class Name

Simply editing the name of a class in the class definition and accepting the change does not
affect the name of the existing class but instead creates a copy of the old class definition with
the new class name. Note that the methods from the old class are not copied to the new class
- only the class definition is copied. To rename a class, select rename from the yellow
button menu of the class name pane (see the next section).

Edit the class definition of class Complex to create a new class NewComplex.
The old class Complex will be unaffected by this operation.

Modify class NewComplex so that it is in the new class category ComplexNum
bers.

Modifying a Superclass

Changing the superclass of a class has implications for the methods and variables that can be
inherited. Methods or variables that were previously inherited may no longer be part of the
inheritance chain and therefore are no longer accessible to the class. If the superclass of a
class is changed, all of the class's methods (and its subclasses) must be recompiled. This
takes place automatically when the superclass change is accepted into the system. A report
on the recompilation is displayed in the System Transcript window and any problems, such
as methods referring to variables that are no longer accessible, are identified. The programmer
must correct any reported problems.

Modifying Instance or Class Variables

Modifying the instance variables or class variables of a class can create similar problems to
those encountered when changing the supcrclass of a class. For example, deleting an instance
variable requires modifications to the methods, including inherited methods, that refer to that
variable. When changes to variables are accepted, methods belonging to the class and its
subclass are recompiled and the programmer notified of any problems through the System
Transcript window.

120 Inside Smalltalk

When instance variables are added to or removed from a class, all existing instances of
the class become obsolete. If accessed, they will be manipulated according to the definitions
of the old obsolete class. The obsolete class will remain in the system until all references to
it disappear. It is the responsibility of the programmer to recreate such instances under the
new class definition. This will not likely be evident unless instances are stored globally.
Global instances are typically initialized by a class method called initialize that is explicitly
executed by the programmer making the change.

Remove the instance variable realPart from the class definition of class Com
plex. Watch the System Transcript window as the class is recompiled.

Avoiding Direct References to Inherited Variables

Some of the pitfalls of class modification can be avoided by following sound object-oriented
programming practices. For example, although inherited variables may be referenced directly
by a method, it is far safer to send a message to gain access to information from a
superclass. Suppose a class A is the superclass of class B and supports an instance variable
x. Instance methods for class B can gain access to x directly without message-passing.
Alternatively, A could provide methods x and x: aValue and methods in class B could use
these. Which is better? In terms of code maintenance, the latter is preferred. If we
subsequently change class A so that x is no longer part of the representation, then as long as
class A still supports the messages x and x: aValue, the code in the subclasses does not
require modification. The important point here is that the class being changed can be
modified so that the subclasses function without change; i.e., changes are localized to the
class being modified. However, if methods in the subclasses make direct references to the
inherited variables, they will no longer function correctly and will require modification.

4.5.6 Renaming Class Categories. Classes. Method
Categories. and Methods

A class category, class name, message category, or method name can be renamed as follows:

•
•

•

Select the class category, class, message category, or method name to be renamed.

For class categories, class names, and message categories, select rename from the
yellow button menu of the selected pane. Respond to the resulting prompter
window by providing the new name.

For methods, edit the name of the method in the text pane and accept it to create a
new method with the new name. Remove the old method by selecting it and then
choosing remove from the yellow button menu of the message selectors pane.

Renaming a system class is relatively easy. However, it is not enough just to change
the name of the class, because the class may be referenced directly by any method in the
system. These methods must be located and physically modified so that references to the old
name are replaced by references to the new. This is not as difficult as it sounds, because
Smalltalk will generate a message-set browser (see Section 4.6.3) containing those methods
that reference the old name. The source code for each method can be manually edited one by

Chapter 4 Programming with Browsers 121

one to replace the old name by the new and recompiled. It is the programmer's responsibility
to ensure that every affected method is properly modified and recompiled. Fortunately, the
system greatly simplifies the task by handing the programmer all the affected methods.
Similar care must be used when renaming a method since there can be many users of that
method. However, determining if a method is actually using the removed method or is just
another one with the same name is a little more difficult to determine. The semantics of the
method must be taken into account.

4.5.7 Removing Class Categories. Classes. Method
Categories. and Methods

A class category, class, message category, or method can be removed as follows:

•
•
•

Select the class category, class, message category, or method name to be removed.

Select remove from the yellow button menu of the selected pane.

Respond to the resulting confirmer window to confirm the deletion.

When initiating a remove operation, a confirmer menu (see Fig. 4.23) will appear
asking the programmer to confirm whether or not the deletion should really be performed.
Confirmation is useful because removing a class or whole category of classes is an
irreversible operation. The confirmer is answered by selecting the appropriate response to the
query. For example, Fig. 4.23 shows a typical confirmer window generated in response to
a request to remove all the methods in a particular message category.

Remove is a potentially dangerous operation. Great care is needed when removing
classes that are used by other classes in the system. For example, you may be attempting to
remove a class that has subclasses or a class that is critical to the operation of Smalltalk
itself. Before removing any class or method from the system, be sure you understand what
the impact will be on other classes in the system.

Numenc-Numbers
realPart

t Are ~...ou certain that you ~1"',3.nt to
~I!I remove all methods in this protlx:(,I'?

J ',ealPart y_.e_s_tfl_'C-'"_..... n_o__---I

~~

Figure 4.23 Removing all methods in a method category,

122 Inside Smalltalk

Rename class NewComplex (using rename) to OldComplex.

Remove class OldComplex.

4.6 SPECIAUZED BROWSERS

System browsers provide access to the entire Smalltalk system. It is often convenient to
create browsers that provide more limited views of the system or views that are not organized
along class or message category boundaries. Specialized browsers may be created for three
reasons:

• To browse specific class categories, classes, message categories, or messages.

• To browse classes in a specific superclass or inheritance chain.

• To browse sets of related methods; e.g., those methods that send a particular
message.

4.6.1 Browsing by Category, Class, Message
Category, and Message

Category, class, message category, and message browsers are browsers that limit access
to specified categories, classes, message categories, and messages respectively. They are
simply limited access system browsers.

A category browser provides access only to the classes within a specified category. In
all other respects, they provide the same functionality as system browsers. A category
browser may be opened from a system browser as follows:

•
•

•

Select the class category to be browsed.

Select spawn (sometimes labelled browse) from the yellow button menu of the
class categories pane.

Frame the class category browser.

Fig. 4.24 illustrates a category browser on the class category Graphics-Primitives.
Notice that a category browser has the same structure as a system browser except that the
class categories pane is missing.

A class browser limits access only to a specified class. In all other respects, it
provides the same functionality as a category browser. A class browser may be opened from
a system browser or a category browser as follows:

•
•

•

Select the class to be browsed.

Select spawn (sometimes labelled browse) from the yellow button menu of the
class names pane.

Frame the class browser.

Fig. 4.25 shows a class browser on class Pen.

Chapter 4 Programming with Browsers 123

frame
coloring
moving
geometric designs

accessing
initialize-release

-t1rame

,: Point
.;! QuadI'angle

Rectangle

.::§

:~::~n I
::~~~;orm: 'I...:i..:':~m·:i~'ili~).j;f~-!gAili;=-I[~c~la~s~s:J L-:-:-:-~-~-:-:-:-:-:-:-:...------J!

I lrame ~l
"Answer the rectangle in which the receiver can draw," II

:::::

i
:::~

-:" ••:...>••••••• '::"':'x:::g::::::::~:::~m:::::::~g::::::::::::~~t::::::::::::~::::::::::~~::~:~:::~:::::::~~:::::g~:::::::::::::::::~::::::::::::::::::::::::::::::::~:::::~~§

Figure 4.24 Category Browser on the category 'Graphics-Primitives'.

instance

go:
goto:
home

down
moving
geometric designs

accessing
coloring

--------~
~~~~~
~:i:~

lilll

u_----------------------------------t::::~
, Rown "Set the ,tate 01 the reoeiver', pen to down (drawing)." I
~...!.:::l::.:: penDown ~ true I~
~ I

!! ;<-: •••<-;.>:.;.,:•••:.:.;•••• ,. h ••• • ••,."';'>:'~~~"*"':';':"':" ..•.."" ',«' .. ,,' "',., •·..·<·"*:;:;:;:m;S~~$~l~"";Wmmx~sl;:;:::lJ

Figure 4.25 Class Browser.

Finally, there are two other seldom used types of browsers: message category
browsers, which limit access to a specified message category within a class, and message

124 Inside Smalltalk



1 Inti '

browsers, which allow only a single method to be viewed. A message category browser or
message browser may be opened from a browser as follows:

• Select the message category or message to be browsed.
• Select spawn (sometimes labelled browse) from the yellow button menu of the

message category or message selectors pane respectively.

• Frame the class browser.

Fig. 4.26 shows a message category browser on the message category moving of
class Pen. Fig. 4.27 shows a message browser for the instance message with selector go: in
class Pen.

Open the following specialized browsers:

A Category Browser on class category Nwneric-Numbers.
A Class Browser on class Fraction.
A Message Category Browser on category 'converting' in class Fraction.
A Message Browser on method 'asFloat' in category 'converting'.

movmg

go:
goto:
home
north
place:
turn:

~o: distance
"Move the receiver in its current direction a number of bits equal to
the argument, distance. If the pen is down, a line will be drawn
using the receiver's form source as the shape of the drawing brush,"

I dir I
direction = 0 ifTrue: [1'Self goto: location + (distance @ 0)].
direction = 90 ifTrue: ['tself goto: location + (0 @ distance)],
direction = 130 ifTrue: ['tself goto: location - (distance @ 0)].
direction =270 ifTrue: ['tself goto: location - (0 @ distance)].
dir ~ direction degreesToRadians.
dir ~ dir cos @ dir sin.
self goto: dir '" distance + location

'. ..' .~..

Figure 4.26 Message Category Browser.

Chapter 4 Programming with Browsers 125



go:
~:
$'
,:

j;0' dl~~:~~ the receiver in i" current direction a number of bi" equal to
::: the argument) distance. If the pen is down) a line will be drawnI using the receiver's form source as the shape of the drawing bru::;h."

,: I dir I
::: direction = 0 ifTrue: [l'self goto: location + (distance @ 0)]. !
:i: direction = 90 ifTrue: [l'self 90to: location + (0 @ distaflce)]. J
:i: direction = 180 ifTrue: [Helf 90to: location - (distance @ 0)]. !~~
:~..::1..:..1...:. direction = 270 itTrue: [of·self goto: location - (O@distance)].\11

dir ~ direction degreesToRadians. :::~

dir ~ dir cos @ dir sin. :11

i·;!:!l;..m..!.m';'ls!~.lmfm~l~m~;~m:'I~i!rm.~~.~!i.~m~,am.!~I.cm..e;m+;lm~mcm~I.~.im.~;~m. m;.m,.;..m.. ;"m.I··m·..; ..I·!.. m.. m·.·.·m.·.·!·.,·m.·,·.·;:·:·:'!!.·,:!·,.,.m·.·.,I·.,I.·.<!;.~..I"..! !d.)1
Figure 4.27 Message Browser.

4.6.2 Browsing the Superclass Chain

Class hierarchy browsers5 are organized around the class hierarchy rather than around class
categories. They are particularly useful when trying to view the full protocol supported by a
class or when adding and debugging new subclasses. They expedite the viewing of classes in
the superclass chain - remember that a class inherits both representation and methods
(unless overridden) from its superclasses. The definition of a class, therefore, should not be
viewed in isolation. To get the full picture, we must also consider its superclasses. A class
hierarchy browser simplifies browsing the classes in the superclass chain of a specified class.
In structure and functionality, class hierarchy browsers are similar to category browsers,
except that the classes displayed include only the superclasses and subclasses of a specified
class rather than the classes in the category of the class. A class hierarchy browser may be
opened as follows:

•
•
•

Select the class to be browsed.

Select spawn hierarchy from the yellow button menu of the class names pane.

Frame the class browser.

Fig. 4.28 shows a class hierarchy browser on class Integer. The class names pane
contains class Integer, superclasses Number, Magnitude, and Object, along with
subclasses LargeNegativeInteger, LargePositiveInteger, and SmallInteger.

5Note that hierarchy browsers are not supported by Version 1 Smalltalk.

126 Inside Smalltalk



Integer

Hierarchy

Smalllnteger
LargeNegativelnteger
LargePositivelnteger

g;:~N~u-m~b-e-r=====9 arithmetic
testing
comparing
truMation and round 0

enumerating
f actorization and divisi

B!!!!!!!!!!!!!!!!!!!!!!!!!!!!!_----I bit manipulation_ class

Number subclass: #Integer
instanceVariableNames: II

classVariableNames: II

poolDictionaries: ~
category: 'Numeric-Numbers'

Figure 4.28 Class Hierarchy Browser.

Use a Class Category Browser to answer thefoUowing queries:

What is the exact representation ofinstances ofclass Quadrangle?
What methods are inherited by class Quadranglefrom class Rectangle?

4.6.3 Browsing Selected Sets of Methods

Message·set browsers allow the programmer to browse a collection of methods that share
some common characteristic; e.g., methods for the set of messages sent by a specific
method. Since the messages selected cut across class boundaries, message selectors are
uniquely identified by listing them together with their respective class names. Message-set
browsers are important programming and debugging tools. We briefly describe some of their
most important uses.

Browsing the Set of Methods that Send a Particular
Message

An excellent way to understand how to use a message is to examine methods that already use
it. A message-set browser on the set of methods that send a particular message can be created
as follows:

•
•
•

Select (in a browser) the method whose use is to be examined.

Select senders from the yellow button menu of the message selectors pane.

Frame the message-set browser.

Chapter 4 Programming with Browsers 127



Fig. 4.29 shows a message set browser created on the class method with selector
from User in class Rectangle. Alternatively, the same message-set browser could have been
created by evaluating the following expression (see the System Workspace for a template).

Smalltalk browseAIICallsOn: #fromUser

Circle cl,3.SS exampleTwo
FlillnTheBlank class example3
Form class exampleSpaceFill !'
FormEditor class tormFromDisplay ji

l',: FormView cl.3.sS exampleOne ~::: ~:
", FormView class exampleTwo '"

~ll-e-x-a-rr-I'~T~le""lr~!'""""t-h-is-e-x-a-r-",,-p-le-b-y-C-h-O- o-si-n-g-m-en-u-c-o-m-m-a-n-d-p-r-in-t-j-t'-' ----II
: ~;I:::~xamPI'3." I

:-=-:-:.,,,,.:1
Figure 4.29 Message-set Browser on senders of fromUser.

Note that the message-set browser is created on the selector of the message. The
browser will therefore contain references to the use of any method with that selector. Since
the same selector may be used by any number of classes, some of the references in a
message-set browser may not be to the method under scrutiny. For example, the message-set
browser created in Fig. 4.29 contains references to the use of method fromUser in class
Form as well as class Rectangle.

Use a Message-set browser to answer the following query: which methods send
the message with selector 'go:'?

Browsing the Set of Methods that Implement a
Particular Message

It is often useful to browse through the implementations of methods with a given selector.
A message-set browser on the set of methods that implement a particular message can be
created as follows:

•

•

•

Select (in a browser) any method with the selector whose implementations you
wish to examine.

Select implementors from the yellow button menu of the message selectors
pane.

Frame the message-set browser.

128 Inside Smalltalk



Earlier in this chapter, we suggested browsing through the system to look for classes
that had examplel methods associated with them. The aim was to examine and evaluate the
examples to learn about the capabilities of the classes in the system. A more convenient
method of finding the examplel methods would be to create a message-set browser on all
implementors of examplel. An alternative way to create a message-set browser on all
classes that have examplel methods (see Fig. 4.30) would be to evaluate the following
expression (see the System Workspace for a template).

Smalltalk browaeAlllmplementoraOf: #example1

DisplayTextView class example1
FlllinThe81ank class example"1

lxample1
"Example waits for you to click red button somewhere on the screen. The
view will show where you point, Terminate by choosing menu command
accept,"

FilllnTheBlank
message: 'What is your name'?'
displayAt: Sensor waitButton
centered: true
action: [:answer I Transcript cr; show: answer]
initialAnswer: "

"FilllnTheBlank example1."

Figure 4.30 Message-set Browser on implementors of example1.

Use a Message-set browser to answer the following query: which classes
implement the message with selector 'at:put:' ?

Browsing the Set of Methods that Are Sent in a
Particular Method

When trying to understand the implementation of a method, it is often useful to browse the
methods for messages sent by the method under study. A message-set browser on the
implementors of a particular message sent within a method definition can be created as
follows:

•
•

Select (in a browser) the method whose implementation is under study.

Select messages from the yellow button menu of the message selectors pane.

Chapter 4 Programming with Browsers 129



• From the message selector menu, choose the selector to be investigated.

• Frame the resulting message-set browser on all implementors of the selector.

Suppose we were viewing method + in class Point. Selecting messages from the
yellow button menu of the message selector pane displays a menu containing the selectors
used by + (see Fig. 4.31). Selecting asPoint from the menu, for example, opens a
message-set browser on all implementors of asPoint (see Fig. 4.32).

y

arithmetic

accessing
comparing

111IIII class

I deltaPoint I
deltaPoint -Eo- delta asPoint.
'f'X + deltaPoint x @ (y + deltaPoint y)

+ delta
"Am:wer a new Point that is; the s;um of the receiver and delta (Which is;
a Point.fr Number)," +

':
.~

Figure 4.31 Message Selector Menu for messages sent in method +:in class Point.

Number asPomt

>

I;~~~~~~;~~~~
i.::I-Aa~sP~o~ll""n":"t------------------------------I

~I "Answer a new Point with the receiver as both coordinates;
" often used to supply the same value in two dimensions, as ....,ith

.i.I.: symmetrical gridding or scaling,lI

'ts;elf @ s;elf
.:

Figure 4.32 Message-set Browser on implementors of asPoint

Use a Message-set browser to investigate the messages sent by instance method
'intersects:' in class Rectangle.

130 Inside Smalltalk



Browsing the Set of Methods that Reference a
Particular Instance or Class Variable

Message-set browsers can also be created to browse methods that reference a particular
variable or literal. The method used to open the browser is dependent on the type of variable
or literal involved. If no methods are found that reference a particular variable or literal, the
string 'Nobody' is displayed in the System Transcript window (if open). A browser can be
opened on methods that reference a particular instance or class variable as follows:

• Select in a browser the class whose variables are to be studied.

• Select inst var refs or class var refs from the yellow button menu of the class
names pane.

• From the menu of variables that appears, select the instance or class variable to be
studied.

• Frame the resulting message-set browser on all methods of the class and
subclasses that reference that variable.

Fig. 4.33 shows the menu of instance variables displayed when inst var refs is
selected on class Pen. Fig. 4.34 shows the result of selecting frame from this menu - a
message-set browser on methods that reference frame is created.

Investigate the instance variables and their users in class Path; investigate the
class variables in classes Farm andDate.

destForm
sourceForm

halftoneForm
combinationRul e

destX
destY
width
height

sourceX
sourceY

clipX
clipY

clipWidtll
clipHeight

_ class

Oraphics-Oisplay
Oraphics-Pa tlls
Oraphics-Yiews

jltBlt subclass: #Pen
instanceYariabieNames: 'frame I
classYariableNames: II

poolOictionaries: II

category: 'Oraphics-Primitives'

Figure 4.33 Instance Variable Menu for class Pen.

Chapter 4 Programming with Browsers 131



-tframe

:::A~!~r~~:~j\~1111111

1
"Answer the rectangle in which the receiver can dra·.'...."

Pen frame:
Pen home

Pen frame

Figure 4.34 Message-set Browser on the instance variable 'frame'.

Browsing the Set of Methods that Reference a
Particular Class

To open a browser on methods that reference a particular class, perform the following:

• In a browser, select the class whose references are to be studied.

• Select class refs from the yellow button menu of the class names pane.

• Frame the resulting message-set browser on all methods that reference that class.

Browsing the Set of Methods that Reference a
Particular Global Variable

To open a browser on methods that reference a global variable or pool dictionary
variable, evaluate an expression of the following form:

Smalltalk browseAIICallsOn: (aSystemDictionary associationAt: #aSymboll

For example, to create a browser on methods that reference the global variable Display,
evaluate the following:

Smalltalk browseAIICallsOn: (Smalltalk associationAt: #Displayl

Use message-set browsers to answer thefollowing queries:

Which methods reference the instance variable 'hours' in class Time?

Which methods reference the class variable 'Pi' in class Float?

Which methods reference the class Interval?

Which methods reference the class Random?

Which methods reference the global variable Transcript?

Which methods reference the variable 'Tab' in pool dictionary TextConstants?

132 Inside Smalltalk



4.7 SAVING YOUR WORK

In this section, we discuss ways in which modifications and additions to Smalltalk can be
saved. We also provide a little more insight into the global organization of the Smalltalk
system. The three fundamental techniques for saving changes made to a Smalltalk system
include the following:

• Writing (or filing out) Smalltalk source code to external files in a form that can
subsequently be read back (or filed in).

• Updating the Smalltalk image.

• Using the changes file maintained by the Smalltalk system.

4.7.1 Filing Out

The simplest way to save modifications to a Smalltalk system is to file or write out those
parts that have been changed to an external file in a format that can be subsequently
recompiled into Smalltalk. This is also a simple way of transferring Smalltalk source code
to other Smalltalk users or to another machine. For example, if you wish to give a class
definition to a colleague, the class can be filed out from one Smalltalk system and filed into
the next.

Source code can be selected for filing out at four levels: class categories, classes,
message categories, or individual methods. Each of the yellow button pane menus in a
system browser has a fileOut entry corresponding to the four levels of output. Selecting the
fileOut entry in a pane writes the corresponding selected item to an external file. File names
are automatically generated according to the following convention.

Infonnation Filed Out

category
class
message category
method

FileName

categoryName.st
className.st
className-messageCategoryName.st
className-messageSelectorName.st

Files are written out in a special standard format so that they can be read back into
Smalltalk using fileln, the inverse of fileOut. It is not necessary to understand this file
format. Unless you are an experienced Smalltalk programmer, we suggest that you do not
edit files in this format before filing them back in. The format is readable but uses the !
(exclamation) character as a special delimiter and writes the source code in a form that can be
used to recreate the classes and methods when read using fileln.

Format of Filed Out Code

Each isolated executable expression ends with one exclamation mark. However, an
exclamation mark signals the beginning of a list of methods associated with a category; e.g.,
see '!ConstrainedPen methodsFor: 'moving'!' below - note that an exclamation mark also
terminates this header. Each method in the category ends with one exclamation mark. The
last one has two but there is exactly one space between them - this space is crucial. Two

Chapter 4 Programming with Browsers 133



exclamation marks in a row (without intervening characters) denote an actual exclamation
mark in the code.

Fig. 4.35 shows the file created by filing out class ConstrainedPen, the subclass of
Pen described in Chapter 2.

'From Smalltalk-80 of March 1st, 1987 on 18 June 1985 at 3:33:01 pm'!
Pen subclass: #ConstrainedPen

instanceVariableNames: 00

classVariableNames: 00

pool Dictionaries: 00

category: 'Graphics-Primitives'!

!ConstrainedPen methodsFor: 'moving'!
east

"The direction of the receiver is set to face the right of the screen."
direction f- O!

go: distance
"Move the pen in its current direction a number of bits equal to the argument,
distance. If the pen is down, a line will be drawn using the receiver's source form as
the shape of the drawing brush. If distance is zero, nothing happens."

I angle newDirection I
angle f- direction degreesToRadians.
newDirection f- angle cos @ angle sin.
super goto: newDirection * distance + location!

goto: aPoint
"This message is not appropriate for this object.'
self shouldNotlmplement!

south
"The direction of the receiver is set to face the bottom of the screen."
direction f- 90!

turn:degrees
"The direction of the receiver is turned clockwise through an amount equal to the
argument degrees. The argument is constrained to be a multiple of 90 degrees by
rounding."
super turn: (degrees roundedTo: 90).!

turnLeft
"The direction of the receiver is turned to the left 90 degrees."
super turn: -90.!

turnRight
"The direction of the receiver is turned to the right 90 degrees."
super turn: 90.!

west
"The direction of the receiver is set to face the left of the screen."
direction f- 180! !

"-- -- -- -- -- -- -- -- -- .- -- -- -- -- -- -- -- -- "!

134 Inside Smalltalk



ConstrainedPen class
instanceVariableNames: "!

!ConstrainedPen class methodsFor: 'examples'!
example

"Illustrates the use of constrained pens."
I quill I
quill +- ConstrainedPen new.
quill home; place: 300@300; down.
4 timesRepeat: [quill go: 100; turnLeftJ

"ConstrainedPen example"! !

Figure 4.35 File created by filing out class ConstrainedPen.

4"7.2 Printing

The entry printOut also appears in each of the pane menus of a system browser. It is
designed to write out class descriptions in a formatted or 'pretty printed' form suitable for
reading by a human reader. By comparison, the form produced by fileOut is designed to be
readable primarily by the system. Files generated using printOut cannot be subsequently
evaluated back into Smalltalk using fileln. The implementation of the printOut method is
system dependent. Typically, implementations take advantage of special control character
sequences to allow for different fonts and different emphasis, such as bold or italic, and may
support PostScript™ formatted output to a laser printer. In implementations that do not
support printing, printOut defaults to fileOut. Consult your system documentation for
details of the specific implementation for your system.

4.7.3 Filing In

Files created using fileOut can be subsequently read back into Smalltalk with the fileln
operation using an expression of the following form (see the System Workspace for a
template).

(FileStream oldFileNamed: 'fileName') fileln

A log of the progress of the fileln operation is displayed in the System Transcript
window. Any errors encountered during the evaluation of the file will be reported in this log.
To avoid errors of this nature, we suggest you do not edit files that have been filed out. Note
also that when new class descriptions are added to the system during the filing in process,
browsers that are already open will not automatically contain their description. Select
update from the yellow button menu in the class categories pane to update the browser.

File out class Pen. exit from Smalltalk. examine but do not modify the file with
your system editor, reenter Smalltalk andfile in the file.

4.7.4 Using the File List Browser

The preferred method of obtaining code in an external file is through a file Jist browser. A
file list browser is opened by selecting file Jist from the system menu. This browser
consists of three vertically stacked panes (see Fig. 4.36): one to select a set of candidate

Chapter 4 Programming with Browsers 135



files, one to provide feedback on which ones are available, and the final one to provide the
actual file information.

The topmost pane is used to locate a disk, directory, or file name either via mouse
interactions through pop-up menus or via keyboard interactions by typing the name. The
former is more convenient but the latter is faster and more direct if you know the file name
or if you can specify it with a pattern. A pattern can contain wild card characters ,*, to
represent any string and '#' to represent a single character. Given an accepted entry in the top
pane, the middle pane displays the files or directory names matching the selection or pattern.
For an exact match, both panes contain exactly the same name. The contents of a file or
directory are displayed in the bottom pane. Typically, this information is either filed in
(compiled and integrated with the existing library), edited and saved, or simply browsed.

File list browsers are necessarily somewhat dependent on the capabilities of the
underlying operating system. Most Smalltalk systems support hierarchical file systems but
the actual names or patterns used for files and directories will depend on the supporting
operating system; e.g., Unix, Macintosh, or MS-DOS. They also provide a subset of the
operations typically provided by the file system; e.g., operations for renaming files or
deleting them.

File list browsers have slightly different menu entries from one system to another - a
typical set of file list browser yellow button menus is shown in Fig. 4.37. In the sections
that follow, we will describe how to access, edit, save, and file in files using file list
browsers. For a brief description of the functionality of other menu selections not explicitly
discussed below, see the glossary at the end of this chapter.

File List Pattern

File/Directory Names
;;;:i~

IFile Contents orIO;,,,,lo,y Us,

(~
!m~~

~'~.~~
------------ n

~:;:~~

Figure 4.36 Structure of a File List Browser.

136 Inside Smalltalk



l,rtl~! !

demos:toothpaste,st

" ", ' ..

Figure 4.37 Typical File List Browser Menus.

Accessing a File

Most of the time, the exact location or name of a file is not known. In this case, a search for
the file in a hierarchical file system might procecd as follows. First select volumes from the
yellow button menu of the top pane. The names of the disk volumes accessible will be
displayed in a menu. Select the desired volume. This feature allows you to select from any
number of hard and floppy disk drives that may be connected to your system. The pattern

volume-name.*

will be displayed in the topmost pane. Additionally, the files and directories matching this
pattern will be displayed in the middle pane. Entries in the middle pane are selectable.
Selecting a file will display the contents of the file in the bottom pane. Selecting a directory
will list the subfiles and subdirectories. Entries in the bottom pane are not selectable. To
view entries in this list, the pattern in the topmost pane must be changed to select files in
the chosen middle pane directory. This is most simply achieved by selecting the menu entry
new pattern from the middle pane. This sequence of operations may be iterated as many
times as necessary to locate a given file.

To repeat, choosing volumes (in the top pane) provides entries in the middle pane.
Selecting one of these entries (say a directory) and choosing new pattern (in the middle
pane) causes this entry to move to the top pane. The entries for the new top pane are then

Chapter 4 Programming with Browsers 137



displayed in the middle pane. This can be repeated as long as there are subdirectories to "walk
through." Ultimately, the middle pane will contain the file you wish to manipulate. If you
are using a hierarchical file system, the complete path name of the file will be available;
e.g., instead of 'toothpaste.st', a name like 'Hard Disk:ParcPlace Smalltalk:demos:tooth
paste.st' will be provided in the middle pane. If the path name becomes too long, it will be
truncated as shown in Fig. 4.37. If the file in the middle pane is now selected, the contents
of the file can be brought into the bottom pane by selecting get contents from the middle
pane's yellow button menu. This does not compile the file, it only provides access in the
bottom pane so that you can view the contents and, for example, copy bits and pieces of it.

'~j Hard OI!:k:ParcPlace Smalltalk:demo!::" .!:!..

demos:animation.st
demos:colorExample.st
demos:counter.!:t
demos:1inar.¢iaITools.!:t
;'Frcom Smalltalk-BO, .....er:;;I.)n 2.2 co1 July 4, 1987 con 9 July 1987 at 1'1 :27:15 am'!

f','lcou:;;eMenuController subcl.3.ss: #CcounterCcontrcolier
instance.....ariablethmes: "
cl.3.ssVariableName:;;: "
pcocoIDicticon.3.Yies: "

II. C·3. tegcory: 'Demco-CoIJnter'!

t:~CO:tr°lle~:="i~:II,~-r:le.se'! .M,,-1
Figure 4.38 Selecting files matching the pattern 'Hard Disk:Smalltalk:Demos:*.st'.

When a file list browser is first opened, the file list pattern in the top pane is empty. It
is possible to avoid the protocol discussed above by entering a pattern string directly into the
top pane and choosing accept from the top pane's yellow button menu. For example, to
view those files terminating in '.st' in directory 'ParcPlace Smalltalk:demos', pallern
'Hard Disk:ParcPlace Smalltalk:demos:*.st' might be provided in the top pane. The
matching file names will appear in the middle pane as shown in Fig. 4.38. Selecting one of
these entries and choosing get contents from the middle pane's yellow button menu will
bring the file into into the bottom pane. The characters in the file are now available for
viewing or editing.

Editing a File

The text within the file contents (bollom) pane may be edited using the standard again,
undo, copy, cut and paste editing commands. It is important to realize that when you edit

138 Inside Smalltalk



1'11I'1

the text you are not changing the text in the file. Only the copy of the text in the browser is
being changed. The two commands put and get are used to store the contents of the file
contents pane back into the file and to read or reread the contents of the file into the file
browser pane respectively.

Filing In From the File List Browser

To compile the complete contents of a file, select file in from the yellow button menu of
the file/directory (middle) pane. Alternatively, if you wish to compile only a portion of the
file, select the desired part with the mouse (to highlight it) and choose file it in from the
yellow button menu of the file contents (bottom) pane. In this case, great care must be taken
to include the exclamation marks that surround the code. See Section 4.7.1, Filing In, for a
discussion of the external file format.

Experiment with File List Browsers:

File out a particular class. read the contents of the file containing the class
definition into afile list browser, make some cosmetic changes to the file. save
the updatedfile. andfile in the updated version of the file.

Try traversing thefileldirectory structure ofyour system.

What happens if you type a patternfor which no files match?

How would you open a File List Browser by evaluating a piece ofcode?

What happens ifyou try to access the contents ofa non-text file?

4.7.5 Updating the Smalltalk Image

When we enter Smalltalk, we are actually loading a snapshot of the Smalltalk environment
known as a Smalltalk image. The image is a snapshot in the sense that it recorded the
precise state of the system when it was created. The state of the system at any time includes
the compiled version of the Smalltalk class library and the state of the desktop. The system
remembers what windows are open, their location on the screen, and so on. When an image
is loaded, the state of the Smalltalk system is restored to what it was at the point when the
image was created.

If you have added new classes to the Smalltalk library, you may wish to incorporate
those classes permanently into a new Smalltalk image. A few words of caution about
making snapshots are necessary. The Smalltalk image is large - make sure you have
enough room on your disk to create the new image. Always keep a backup copy of the
original Smalltalk image that came with your system. If you share your Smalltalk system
with other programmers, be aware that they will be forced to use your new image. This may
or may not be desirable. Alternatively, each programmer can have his own image.

The Smalltalk image may be updated at any time during a session by selecting save
(sometimes relabelled snapshot) from the system menu. Alternatively, when quitting from
Smalltalk, select Save, then quit from the quit menu generated when quit is selected from
the system menu. In both cases, a prompter window will appear requesting the name of the
file in which to store the new image. The prompter initially displays the name of the current
image file. If you do not want to overwrite the old image, edit the name in the prompter

Chapter 4 Programming with Browsers 139



Sources File

Image File

Changes File

window. By convention, images have names like fileName.im or filename.image
depending on the system you are using. Another file, a changes file (see the next section),
with the name fileName.changes is also created whenever a new image is created. When an
image file is used to reload Smalltalk, the corresponding changes file must also be available.

4.7.6 Using the Changes File

Three external files are required to run Smalltalk: a sources, image, and changes file.

Contains the Smalltalk source code for the Smalltalk class
library. This file is normally not changed by the
programmer and thus represents the source code library as
delivered with your Smalltalk system.

A file representing the state of the entire Smalltalk system
at the time the image was created. Includes the compiled
versions of the class library and the state of all objects that
make up the Smalltalk environment.

A log file (in fileOut format) containing the source code for
all changes that have been made to the Smalltalk
environment. Entries are automatically logged to this file
whenever an expression is evaluated, whenever a method
definition is changed, and so on.

The sources file represents the source for the current release of Smalltalk and is
therefore shared by all programmers using the Smalltalk system. Changes made to the
Smalltalk class library do not modify the sources file - rather they are logged in the
changes file. This makes it possible to exit from Smalltalk at the end of a session without
saving any of the changes that were made. These changes remain logged in the changes file
and can subsequently be examined, edited, or filed in, if necessary. It is important to
remember that image and changes files must be coordinated - you must use the changes
files created when the image was created.

By maintaining their own personal copies of the image and changes file, many
programmers can share the same sources file. If space does not permit multiple copies of the
image file to be maintained, a single image file may also be shared. The changes file can be
used as a way of exchanging Smalltalk source code and is a valuable aid in recovering from
any kind of system crash.

The Smalltalk environment keeps an internal form of the contents of the changes file
called the change set. Modifications made to the system are recorded in both the change set
and the changes file. The change set differs from the changes file in that it only contains
modifications to the class library, not expressions that were evaluated. A simple way of
creating a changes file containing only the changes made during a single Smalltalk session is
to evaluate the expression

Smalltalk noChanges

at the beginning of the session. This empties the change set but has no effect on the changes
file. At the end of the session evaluate the expression

(FileStream fileNamed: 'changeFileName') fileOutChanges

140 Inside Smalltalk



j·.:r"ij j

If a Smalltalk system is shared by a number of users, each user can maintain a personal
changes file by evaluating 'Smalltalk noChanges' after loading Smalltalk and then filing in
the personal changes file. At the end of the session, file out the change set as shown above.

Over time, changes files can become quite large. Every evaluated expression and
changed definition is included in the log. Moreover, the changes file contains redundant
information. For example, if you have changed the definition of a method several times, each
re-definition of the method is stored in the changes file. Of course, only the latest definition
matches the compiled version of the method, and therefore all earlier versions of the method
can be removed from the changes file. Consequently, it is worth removing these redundancies
periodically by condensing the changes file. This can be done by evaluating the expression

Smalltalk condenseChanges

4.7.7 Surviving a System Crash

Since the changes file maintains a log of all the changes made to the class library, it can be
used to recover from a system crash. It is best, of course, to avoid crashing the system in the
first place. Smalltalk is a robust system but it is also an open system. The programmer has
access to the most fundamental system classes. Modifying such classes can easily render
Smalltalk inoperable! In this kind of situation it is advisable, if space permits, to save the
image before making any changes that may have catastrophic effects.

If your system has crashed, the best way to recover is to load the latest image and file
in the changes file. If the changes file is large, you can avoid filing in the complete file by
creating a file containing only those changes that have taken place since the last snapshot
was made. Each time a snapshot is made, a comment line "····SNAPSHOT····" is inserted
into the changes file.

Smalltalk provides specialized browsers for manipulating the changes file and change
set. For information on these, consult the Orange book or experiment with the expressions
in the System Workspace for manipulating changes files.

4.8 SUMMARY

This chapter has described the central role played by browsers in the Smalltalk programming
process. In particular, we have discussed the following:

• System browsers for viewing the entire Smalltalk class library.

• Adding, viewing, and modifying class and method definitions.

• Class hierarchy browsers for browsing hierarchically related classes.

• Message-set browsers for browsing collections of related methods.

• Filing out to and filing in from external files.

• File list browsers for browsing and editing external files.

• Saving the Smalltalk image.

• The role of the Smalltalk changes file.

• How to survive a system crash.

Chapter 4 Programming with Browsers 141



4.9 EXERCISES

The exercises that follow involve the evaluation ofSmalltalk code. When a semantic error is
discovered during the evaluation ofSmalltalk code, execution halts and a notifier window is
displayed. The notifier displays a message describing the cause of the error. If you are not
familiar with the use of notifiers and debuggers to debug Smalltalk code. we suggest that,
until these topics are fully covered in Chapter 5, you simply close the nOllfier window
(select close from the window menu) and debug your code manually.

1. Complete paper exercises 3 through
8 from Chapter 2 in Smalltalk.

2. In this chapter, we asked the reader
to attempt to find classes with
example methods. Explicitly
looking for a method called
example will not be sufficient 
many methods in the examples
category are called examplel, ex
ample2, and so on. Create a mes
sage browser on all methods in cate
gory examples for all classes by
evaluating the following expression
(see the System Workspace for a
template).

Smalltalk
browseAIIMethodslnCategory:

#examples

Select and evaluate the methods found
in this browser.

3. There is no menu entry for renaming
a method in the message selectors
pane menu of a browser. What is the
best method of renaming a method?

4. Suppose you wanted to move or copy
all methods in a particular category
of one class to a new category in a
different class. Moving or copying
the methods one by one is far too
slow and tedious. Browse the system
classes for a simple way of achieving
this and other similar large-scale
copy operations. Hint: see class cate
gory Kernel-Classes.

5. As previously mentioned, it is
important to understand the impact of
making changes such as removing or
renaming classes on the class
library. How would you use message
set browsers to identify the impact of
a change? For example, imagine you
are going to rename or remove one
of the instance variables of a class.

142

6. A specialized Change-management
browser can be created to browse
over the changes in a changes file by
evaluating the expression

ChangeListView recover

For safety, you should keep a back
up of the changes file before creating
the change-management browser.

To browse the change set, a message
set browser, known as a c han g e
set browser, can be created by eva
luating the expression

Smalltalk browseChangedMessages

Create change-management and
change-set browsers and experiment
with them to determine their
capabilities. In particular, identify
major differences between them.

7. Find all implementors of +.

8. Find all users of display.

9. Choose an arbitrary method and find
all implementors of one of the
message selectors it uses.

10. Create a hierarchy browser for class
Array. Use this to find out how to
make a copy of an array in which all
zeroes are replaced by -1.

11. ParcPlace™ Smalltalk includes sepa
rate source code for protocol brow
sers. Protocol browsers view the
entire protocol of a class; i.e., not
only the protocol supported directly
by the class but also protocol
inherited from superclasses. If your
system supports protocol browsers,
file in the source code and explore
their func tionali ty .

Inside Smalltalk



4.10 GLOSSARY

Smalltalk browsers

System Browser A window supporting many
programming activities; e.g., viewing the
class library, modifying existing classes
and methods, and adding new classes.

Class Category Browser A browser providing
access only to information relating to a
specific class category.

Class Browser A browser giving access only
to information relating to a specific class.

Class Hierarchy Browser A browser organized
on a class hierarchy rather than class cat
egories. Provides access only to a class,
its superclasses and subclasses.

Message Category Browser A browser provid
ing access only to information relating to
a specific message category within a class.

Message Browser A browser providing access
only to a particular method within a class.

Message-Set Browser A browser providing
access only to a related set of methods.
The set of methods share some common
characteristic; e.g., being the senders of a
particular message.

File List Browser A browser providing access
to and editing on the contents of external
text files.

yellow button menu commands for the class categories pane

print out Creates a file in 'pretty print for
mat' containing a description of the
classes in the selected class category; the
file name is system dependent; the file
created cannot be filed back in. In some
systems printout and file out are syno
nymous.

file out Creates a file in 'file out format' con
taining a description of the classes in the
selected class category. This file has the
name 'classCategoryName.st' and can be
subsequently filed back into the system.

spawn Opens a class category browser on the
selected class category.

add category Adds a new class category to
the system either before the selected class
category or at the end of the list if no
category is currently selected. A prompter
window requests the name of the new
category. Typically, class category names
are capitalized multi-word names separated
by dashes.

rename Changes a class category name. Re
quests the new name from a prompter
window.

remove Removes a selected class category
and any classes in that category from the
system. If any classes are to be deleted, a
confirmer appears to request confirmation.

update Updates the information displayed in
the browser. Changes to the class library
made external to a browser (e.g., filing in
a class definition) are not automatically
visible to the browser.

edit all Displays the class categories together
with the classes in each category in the
text pane. The list may be edited to
change the class categories or the order in
which categories are displayed. Changes
must be accepted into the system.

find class Used to locate a class in a browser.
A prompter window requests the name of
the class. If a pattern string is provided,
all classes matching the pattern string, if
any, are displayed in a list menu.

yellow button menu commands for the class names pane

print out Creates a file in 'pretty print for
mat' containing a description of the
classes in the selected class category; the
file name is system dependent; the file
created cannot be filed back in. In some
systems printout and file out are syno
nymous.

Chapter 4 Programming with Browsers

file out Creates a file in 'file out format' con
taining a description of the selected class.
This file has the name ·className.st' and
can be later filed back into the system.

spawn Opens a class browser on the selected
class.

143



spawn hierarchy Opens a class hierarchy
browser on the selected class.

hierarchy Displays the superclass/subclass
hierarchy of the selected class in the text
pane. Depending on the instance-class
switch setting, displays either a class or a
metaclass hierarchy.

definition Displays the definition of the
selected class in the text pane. Depending
on the instance-class switch setting,
displays either the class or metaclass
definition. The definition may be edited
and accepted into the system.

comment Displays the comment associated
with the selected class in the text pane.
Depending on the instance-class switch
setting, displays ei ther the class or
metaclass comment. The comment may be
edited and accepted into the system.

protocols Displays the entire message proto
col associated with the selected class in
the text pane. Depending on the instance
class switch setting, displays either the
instance or class protocol. It may be
edited and accepted into the system.

inst var refs Displays a menu of the instance
variables of the selected class and its
superclasses. Selecting from the menu
opens a message-set browser on all
methods in the system that refer to the
selected instance variable.

class var refs Displays a menu of the class
variables of the selected class and its
superclasses. Selecting from the menu
opens a message-set browser on all
methods in the system that refer to the
selected class variable.

class refs Opens a message-set browser on all
methods in the system that refer to the se
lected class.

find method Used to locate a method in a
class. A list menu of the messages
implemented by the currently selected
class is displayed, allowing the user to
select the method to be viewed.

rename Renames a selected class. Generates a
prompter window that requests the new
class name. Opens a message-set browser
on all methods that refer to the class,
enabling all such references to be manu
ally changed to the new name.

remove Removes a selected class from the
system. A notifier window appears if the
class to be removed has subclasses. Close
the notifier window to abort the remove or
select proceed from the yellow button
menu to continue.

yellow button menu commands for the message categories pane

print out Creates a file in 'pretty print for
mat' containing a description of the
classes in the selected class category; the
file name is system dependent; the file
created cannot be filed back in. In some
systems printout and file out are syno
nymous.

file out Creates a file in 'file out format' con
taining a description of the methods in the
selected class category. The name
'className.messageCategoryName.st' is
given to this file - it can subsequently be
filed back into the system.

spawn Opens a message category browser on
the selected message category.

add protocol Adds a new message category
to the selected class. A prompter window
requests the name of the new category. The
category is inserted before the selected
message category or at the end of the list
if no category is currently selected.
Typically, message category names
consist of a series of lowercase words.

rename Changes a selected message category
name. Generates a prompter window that
requests the new name.

remove Removes a selected message category
from the system. If any methods are to be
deleted as a result, a confirmer appears to
request confirmation.

yellow button menu commands for the message selectors pane

senders Opens a message-set browser on all
methods in the system that send the
selected message.

144

spawn Opens a message browser on the
selected message.

Inside Smalltalk



file out Creates a file in 'file out format' con
taining a description of the selected
method. This file has the name
'className.messageSelector.st' and can be
subsequently filed back into the system.

print out Creates a file in 'pretty print for
mat' containing a description of the
classes in the selected class category; the
file name is system dependent; the file
created cannot be filed back in. In some
systems printout and file out are syno
nymous.

implementors Opens a message-set browser
on all methods in the system that
implement the selected message.

messages Displays a menu of the message se
lectors used in the currently selected
method. Selecting from the menu opens a
message-set browser on all implementors
of the selected message selector.

move Moves a selected message from one
category to another. A prompter requests
the new destination either in the form
'className>categoryName' or 'category
Name' if in the same class. A new
category name is added if it does not
already exist.

remove Removes a selected message from the
system. A confirmer requests confirmation.

yellow button menu commands for the text pane

undo An editing operation reversing the ef
fects of the last edit command; e.g., undo
can be used after a cut to paste back the
deleted text or after a paste to delete the
pasted text and restore the original, if any.

again An editing operation that repeats the
last replace, copy, or cut operation.
Can be used after a replace to repeat the
replace operation on the next occurrence
of the text that was changed. Selecting
again with the shift key depressed
replaces all occurrences of the text with
the replacement text; again can be used
after a cut or copy operation to find and
select the next occurrence of the text to be
cut or copied.

paste Pastes a copy of the text from the most
recent cut or copy operation so that it
replaces the selected text in the active
window. If there was no selected text, the
copy is inserted after the current insertion
point. Paste operations may be repeated to
paste the same text into a document more
than once.

cut Deletes the currently selected text.

copy Makes a copy of (or remembers) the cur
rently selected text.

do it Evaluates the currently selected text.

print It Evaluates the currently selected text
and displays the result.

accep t Accepts the text in the text pane into
the system. Used to compile method def
initions and class definitions, to introduce
class and message category reorganiza
tions, and to modify class comments.

cancel Restores the text in the window to its
original state or the state immediately
after the last accept.

format Formats the code in the text pane to a
standard Smalltalk style. The text must not
have been edited since the last accept.

spawn Opens a message browser on the
selected method.

explain Displays an explanation of any
selected variable name or selector such as
'x', 'sum', '+', 'at:put:' or 'Smalltalk'.

file list browsers - file list pattern yellow button menu commands

again, undo, copy, cut, paste Standard text
editing commands.

accept Saves the current file list pattern and
displays any files matching the list
pattern in the files/directories names pane.

cancel Restores the file list pattern to its
state as of the last previous save.

Chapter 4 Programming with Browsers

volumes In systems with multiple disk
volumes, displays a list menu of available
volumes. Selecting a volume makes that
volume the default volume for subsequent
file selections.

145



file list browsers· file/directory yellow button menu commands

copy name Makes a copy of the text of the
file or directory name so that it may be
subsequently pasted.

file in Reads and evaluates the contents of the
selected text file. The text must be in the
standard format for filing in. Note that the
contents of the external file is filed in
rather than the contents of the file con
tents pane in the browser.

get contents Reads the contents of the se
lected external file into the file contents
pane of the file list browser. No
evaluation of the text takes place.

get info Lists information relating to the se
lected file in the file contents pane of the
file list browser. Typical information
listed includes the size of the file and
when the file was created and last
modified.

new pattern Copies the currently selected
directory into the topmost pane so that all
the files in the selected directory will be
shown when the new pattern is accepted.

rename Changes the name of the selected
file. Respond to the resulting prompter by
typing in the new name of the file.

remove Deletes the selected file. This opera
tion requires confirmation.

spawn Opens a new file browser on the
currently selected file. If the file is a
directory rather than a text file, a new file
browser opens and displays the files in the
directory in the file contents pane of the
browser.

file list browsers· file contents or directory list yellow button menu
commands

again, undo, copy, cut, paste Standard text
editing commands.

do it, print It, Inspect Standard evaluation
and inspection commands.

file it In Files in (i.e., reads and evaluates) the
selected text into the Smalltalk system.

put Replaces the contents of the external file
with the current contents of the file
contents pane.

146

get Replaces the contents of the file contents
pane with the contents of the currently se
lected text file.

spawn Opens a new file list browser on the
contents of the file contents pane. The
new browser reflects any changes made to
the original since it was opened. The
original browser remains open but any
changes that have been made are cancelled.

Inside Smalltalk



1 '1111 :

5

Debugging vvith
Inspectors, Notifiers,
Debuggers

5.1 INTRODUCTION

and

In this chapter, we consider how the SIDlultalk programmer can use the Smalltalk
environment to detect and correct run-time errors. In general, there is no need to understand
the intricate details of the Smalltalk run-time ~ystem to appreciate and effectively use its
debugging and development tools. Nevertheless, we can better appreciate the tools if we
understand that Smalltalk owes much of its power and integrated nature to the cohesiveness
of its underlying object-oriented philosophy.

If something can be manipulated, Smalltalk endeavors to treat it as an object. Hence
Smalltalk supports objects like collections and forms that can be potentially very large all
the way down to very small objects like integers and characters. In keeping with this
philosophy, compilers and debuggers too are objects. Indeed, even the run-time data
structures can be manipulated as objects; i.e., the environmental data structures can be sent
messages and manipulated in the normal Smalltalk fashion. This permits the compiler and
debugger, for example, to be implemented directly in Smalltalk. Programmers and designers
directly benefit from the features and facilities provided by the Smalltalk environment.

In this chapter, we discuss the intricate details associated with debugging. Six aspects
are isolated and discussed.

•
•
•
•
•
•

Viewing and modifying the internal state (instance variables) of an object.

Identifying the point in a computation where an error occurred.

Setting breakpoints to interrupt a computation at a user-selected point.

Incrementally stepping through a computation.

Viewing and modifying the state of an interrupted computation.

Restarting an interrupted computation.

147



Inspectors, notifiers, and debuggers are the main software development tools for
debugging in the Smalltalk environment.

Inspector

Notifier

Debugger

A window through which the internal state of an object can
be viewed and modified.

A window generated when a run-time error or user-generated
interrupt occurs. The window displays the state of the
computation at the point of interruption and indicates the
cause of the interruption; e.g., a message not being
understood by its receiver.

A window in which detailed debugging of an interrupted
computation takes place. Debuggers incorporate the
functionality of both inspectors and notifiers and provide
facilities for viewing the state of a computation: for single
stepping through a computation, for modifying methods to
correct errors, and for resuming a suspended computation.

It is important to note that the techniques described in this chapter are not only
applicable to the debugging process but also can be used to determine how existing code
actually works. This is particularly important in an environment where so much emphasis is
placed on the reusability of code.

5.2 INSPECTING OBJECTS

An inspector window allows the internal state of an object to be viewed and modified. For
example, inspectors allow a Smalltalk programmer to examine and modify the current
values of the instance variables of an object. In addition, the object and its components may
be interrogated by sending messages to them or evaluating expressions involving them.

An inspector window can be created on any object simply by sending it the message
inspect. For example, suppose we evaluate the following code fragment in a workspace:

I location I
location Eo- (200 @ 300).
location inspect.

The response to an inspect message is a request to frame a window for the inspector.
An inspector window (see Fig. 5.1) is then generated on the object location. Inspector
windows are always labelled with the name of the class of the object being inspected, in this
case class Point. Structurally, an inspector window is divided into two panes (see Fig. 5.2):
a variable pane and a value pane. The variable pane contains a menu list of the instance
variables of the object. The contents of the value pane are dependent on the selection made
from the list of variables in the variable pane. Selecting a variable name from the variable
pane causes the current value of that variable to be displayed in the value pane. The value
pane is a text pane in which expressions may be entered, edited, and evaluated. The value
pane may also be used to modify the values of instance variables of an inspected object.
Inspectors take us inside the object in the sense that any expression we evaluate can reference
the object and its instance variables directly; i.e., they allow the programmer to override the

148 Inside Smalltalk



r J j·!l1Iil!

normal requirement that the representation of an object can only be accessed and/or modified
using the message protocol supported by the object. Typical yellow button menus associated
with the variable and value panes are shown in Fig. 5.2. Note that the inspect entry in the
variable pane menu is only available if a variable is selected.

Workspaoe

, lIooa tionl

looa tion +- (200@300),

looa tion inspeot,

self
x

JOO

Figure 5.1 Inspector Window on 'location'.

~1~:~;:~:~:':;::~;;:'I\$.:,:l':~':;i::i~:~,'~'.~:,:",~,:~:::::::,:~;;:,l:::~,l~;l1:,:·:::.J~;X~lt~til41'.
...,

:

------------ JOO
self

again
undox
copy

------------ cut

~
paste .'

do It
" linspectl print it

.,
s ;

inspeot
aooept :-:

~:. oanoel ~t'.:-..::-.. Variable"ili ::

I· Pane Value Pane !;,.. ....:....

Figure 5,2 Structure of an Inspector Window.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 149



5.2.1 Inspecting the Instance Variables of an Object

Instances of class Point, such as the point bound to location, have two instance variables,
x and y, representing the x and y coordinates of the point. The variable pane therefore
contains menu entries labelled x and y. In addition, the first entry in the variable pane of any
inspector is self, an entry that allows reference to the object being inspected. In general, the
variable pane will contain a complete list of the instance variables of the object, including
those inherited from superclasses. In Fig. 5.1, the entry y is selected in the variable pane;
the value of y, Le., 300, is displayed in the value pane. Selecting x would display 200.
Selecting self would display 200@300, representing the point (200,300).

The string to be displayed as the value of a variable is computed internally by sending
the message printString to the variable. By default, printString simply prints the name of
the class to which the object bound to the variable belongs. Many classes provide more
specialized printed representations. Integers print as a character string of their digits (e.g.,
123), characters print as a dollar sign followed by the character (e.g., $a), strings print as
their constituent characters surrounded by single quotes (e.g., 'a string'), and so on. Other
classes, such as Point or Dictionary, have even more specialized printed representations
(e.g., 200@300, Dictionary ('hi' => bye' 'white' => 'black')).

5.2.2 Modifying the Values of the Instance Variables of
an Object

The value of any instance variable in an inspected object can be modified by selecting the
variable to be changed in the variable pane and then typing an expression into the value
pane. Selecting accept from the value pane's yellow button menu evaluates the expression
and binds the result to the selected instance variable. The new value of the instance variable
is displayed in the value pane.

Suppose we wished to change the x coordinate of location to 100. Selecting x in the
variable pane displays the current value of the x coordinate (200) in the value pane. Edit this
to read 100 and accept the changed value. Selecting self in the value pane will confirm that
the new value of location is 100@300.

Expressions in the variable pane may directly reference any instance variable of an
inspected object. In addition, they may also use pseudo-variables self and super to refer to
the object being inspected. For example, an alternative method of modifying the x-coordinate
to 100 would be to accept the expression, self x - 100, or even more simply, x - 100, as the
new value for x. Note that the value for self cannot be modified by selecting self in the
variable pane and accepting an expression in the variable pane - only instance variables
may be modified; self and super are pseudo-variables. Pseudo-variables can never be targets
of assignment statements.

5.2.3 Evaluating Expressions within an Inspector

Any expression may be typed into the value pane, selected, and evaluated using do it or
print it from the value pane's yellow button menu. Evaluation of the expression is done in
the context of the inspected object. The instance variables of the object, together with the
pseudo-variables self and super, may be directly referenced within any expression.

150 Inside Smalltalk



I illil I

Another method of modifying the point location from 200@300 to 100@300 would
be to evaluate the expression

self x: (x - 1001

in the value pane. The selector x: anArgument defined on points changes the x coordinate of
the receiver to anArgument. Select self in the variable pane to confirm that location has
been modified correctly.

5.2.4 Inspecting the Instance Variables of an Inspected
Object

Sometimes it is necessary to inspect the instance variables of an inspected object. In general,
we wish to be able to inspect an object to any level of detail by creating additional
inspectors. For example, when inspecting an array object, we might wish to create an
inspector on some individual element of the array. An inspector can be created on any
selected instance variable within an inspector by selecting inspect from the variable pane's
yellow button menu.

For example, suppose we evaluate the following code in a workspace:

I triangle I
triangle ~ Array new: 3.
triangle

at: 1 put: 100@140;
at: 2 put: 300@250;
at: 3 put: 3OO@15;
inspect

An inspector is created on the array of three points named triangle (see the leftmost
inspector in Fig. 5.3). The array has three indexed instance variables that are referenced by
indices 1,2, and 3 in the variable pane of the inspector. Selecting 3 from the list in the
variable pane displays the value stored at position 3 in the array, namely, the point
300@15. If we now select inspect from the variable pane's yellow button menu, an
inspector is created on the currently selected instance variable (see the rightmost inspector in
Fig. 5.3). We can now examine the instance variables of the third point in the array.
Selecting x from the variable pane displays the x coordinate of this point, 300.

Note that if we modify the values of the instance variables of the point within the
point inspector, the change in value will also be reflected in the inspector on the array.

Inspect the object created by evaluating each of the following expressions. For
each, inspect and modify the instance variables of the object, evaluate
expressions involving the inspected object, and open inspectors on the instance
variables (ifappropriate).

Pen new inspect
(7/21 inspect
Date today inspect
Rectangle fromUser inspect
(PopUpMenu labels: 'doit printit exit' lines: 21 inspect

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 151



Arra.y

y

self
Ii

self
1
2

r~:::::::::::::::::::::::::::::::::::::j

Figure 5.3 Nested Inspector Windows.

What happens if you try to activate the yellow button menu of the variable pane
when no variable has yet been selected?

5.2.5 Inspecting Dictionaries

It is sometimes convenient to create special inspectors for browsing certain kinds of objects.
Several specialized inspectors are already present in the Smalltalk environment. We will
limit discussion to dictionary inspectors. Dictionaries in Smalltalk are sets of key-value
associations. The user of an inspector on dictionaries should be able to browse through the
key-value associations; i.e., select a key and see the corresponding value in the value pane.
Dictionary inspectors provide this capability and, in addition, allow values to be modified
and entries (key-value associations) to be added to and removed from the dictionary.

Suppose we create a simple telephone directory, add a few entries, and then inspect it.

I telephoneNumbers I
telephoneNumbers f- Dictionary new.
telephoneNumbers

at: #John put: '564-7548';
at: #Dave put: '564-7545';
at: #Wilf put: '564-6301';
inspect.

The resulting dictionary inspector is shown in Fig. 5.4. Dictionary inspectors are
structurally identical to normal inspectors. However, rather than a list of instance variables,
the variable pane contains the names of the keys for which there are entries in the dictionary.
Selecting a key displays the value associated with that key in the value pane. In Fig. 5.4,
key Wilr is selected and his telephone number, 564·6301, is displayed.

The yellow button menu associated with the variable (or key list) pane of a dictionary
inspector (see Fig. 5.5) has entries that are different from those provided by a regular
inspector. In addition to menu entry inspect, new menu entries references, add field, and

152 Inside Smalitalk



Dictiona.ry

!'III!

remove are also provided. The full menu list appears only if a key is selected from the list
of keys in the variable pane. If not, only add field appears in the menu. A selccted key is an
implicit argument required by inspect, references, and remove.

Workspace

ItelephoneNumbersl

telephoneNumbers ~ Dictionary new.

telephoneNumbers

at: #John put: '564-7548';

at: #Dave put: '564-7545';

at: #Wilf put: '564-6301';

inspect.

Dave
John

mn

'564-6301 '
A

I
?
>
j.

Figure 5.4 A Dictionary Inspector.

inspect
references
add field
remove

again
undo
copy
cut

paste
do It

print it
inspect
accept
cancel

. ", ....~ .....

Figure 5.5 Organization of a Dictionary Inspector Window.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 153



inspect

references

add field

remove

Opens an inspector on the object (value) associated with the
selected key.

Creates a message-set browser on all references to the
selected key.

Adds a new entry to a dictionary. A prompter window will
appear and request the name of the key to be added. An entry
will then be added to the dictionary with associated value
nil. If desired, another value can be associated with the key
by entering the value in the value pane and selecting
accept.

Removes the key selected in the key list pane. A confirmer
will appear to request confirmation that this undoable
operation should be carried out.

Why is a specialized inspector for dictionaries desirable? What if we had simply created
a normal inspector on the dictionary? To create a regular inspector on the dictionary
telephoneNumbers, evaluate the expression super inspect in the variable pane of the
inspector (see Fig. 5.6). Using super instead of self will cause the search for the inspect
method to start in the superclass of Dictionary - recall that the class for telephone
Numbers is Dictionary. The effect of this will be to invoke the inspect method for normal
inspectors defined in class Object rather than the inspect method in class Dictionary.

Dictionary

Dave
John

(W!If.:::::::::::::::::}
self
tally
1
2
3
4

•
6
7
8

John- )'564-7548'

.'
~

~;.

<
:~

L
":.:..~.,;:,,::...,,J

154

Figure 5.6 A normal Inspector opened on a dictionary.

Inside Smalltalk



r ! 1'!111!1· I

The inspector on telephoneNumbers is shown in Fig. 5.6. Notice that the variable
pane now contains the indices of the indexed instance variables rather than the keys. This
view of the dictionary emphasizes the fact that a dictionary is an array of associations.
Clearly, this is a physical view of the dictionary, appropriate for an implementor, but not
the logical view required by the user. To a user, integer indices are meaningless in general.
For example, the association with key John (see Fig. 5.6) is referenced through index 5!
The instance variable, tally, keeps track of the number of entries in the array that are in use;
i.e., those entries consisting of key-value associations (as opposed to nil).

Evaluate the expression: Dictionary new inspect. Within the resulting inspec
tor. gain experience adding. setting the value of. and removing entries.

What happens ifyou try to add a newfield with a duplicate key?
What happens ifyou select accept when no key is selected?

Inspect Smalltalk - a system dictionary.

5.3 ERROR NOTIFICATION WITH NOTIFIERS

When an error is discovered during the evaluation of a Smalltalk expression, a notifier
window is automatically displayed. The label of the notifier (see Fig. 5.7) displays a
message indicating the cause of the interruption. The notifier window displays the sequence
of messages that led up to the point of interruption; i.e., those messages that have been sent
but for which no response has yet been generated.

Un de tin edO bj e 0 t (Obj e 0 t) >>do esNo tUn der stan d:
Smalll nt eger(ln t e9er»>i sPrime
Un de tinedObje 0 t >>0 01 t

Co mpi Ier»ev al uate:i n: t om 0 t ify ing:i fF a i1:
Cod eCon troller»dol t

Figure 5.7 Notifier Window.

5.3.1 Interpreting Notifier Windows

The notifier in Fig. 5.7 was generated in response to evaluating the expression 53 isPrime
in a user workspace. Two errors have been deliberately inserted into the method. At the time
of evaluation, the isPrime method on integers was defined as follows:

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 155



isPrime
"Tests whether the receiver is prime or not."
I divisor I
self <= 0 ifTrue: [ifalsel.
(self >= 1 & self <= 3) ifTrue: [itrue).
self \\ 2 = 0 ifTrue: [ifalseJ.
divisor f- 3.
[divisor * divisor < self) whileTrue: [

self \\ divisor = 0
ifTrue: [ifalse)
ifFalse: [divisor f- divisor + 2)).

itrue

The label of the notifier indicates that the interruption was caused by a message with
selector * being sent and not understood by its receiver. Although many different errors may
occur at run-time, by far the most common error is that of a message not being understood
by its receiver.

The notifier window helps identify the point at which the error occurred by listing the
last few messages that were sent but not completed prior to the error interrupt. The list of
entries represents the activation stack of the interrupted computation. The first entry
represents the last message that was sent before the interruption, the second entry is the
previous message, and so on. Each entry is said to represent a single message send and has
one of the following two forms:

ClasaOfReceiver»MessageSelector
ClasaOfReceiver(ClassOfMethodSelectedl»MessageSelector

Each entry lists the selector of the message that was sent and the class of the receiver
of the message. If a class is listed in parentheses after the class of the receiver, it indicates
the class where the associated method was found; Le., the result of looking for the method in
the superclass chain. This class is not listed if the method is found in the class of the
receiver. For example, if we examine the entries shown in the notifier window in Fig. 5.7,
we see that the last three entries are concerned with the compilation and request for
evaluation (do it) of the expression 53 isPrime. These entries are of little interest. The
second entry

Smalllnteger(lntegerl»isPrime

describes the sending of the message isPrime to the receiver 53, an object of class
SmallInteger (a subclass of class Integer). The class Integer appears in parentheses
because the isPrime method was found in class Integer.

Together with the error message, Message not understood: *, the first message-send
entry

UndefinedObject(Objectl>>doesNotUnderstand

indicates that a message with * as the selector was sent to a receiver of class
UndefinedObject. No method with selector * was found in class UndefinedObject or in
its superclass Object. Any message that is not understood by any class in the superclass
chain of the receiver will eventually be sent to class Object. This class automatically sends

156 Inside Smalltalk



Ilfl'l I

a doesNotUnderstand: aSelector message to the original receiver. If the class of the
receiver and its superclasses do not implement a doesNotUnderstand message themselves,
then the doesNotUnderstand will again reach class Object. In this case, a notifier is
generated with a label of the form Message not understood: MessageSelector. This
scheme provides a simple default error handling mechanism, while still allowing the user to
provide more specialized error handlers by implementing a doesNotUnderstand message
to override the inheritance of the default handler.

In this example, the notifier has provided enough clues to discover the cause of the
error. The only time a message with selector * is sent in the isPrime method is in the
expression divisor * divisor. However, the notifier indicates that the message was sent to
an object of class UndefinedObject. We would have expected the receiver, divisor, to refer
to an object of class Integer (or some subclass such as SmallInteger). However, notice
that no object was bound explicitly to divisor; Le., the variable divisor is an uninitialized
variable. All Smalltalk variables are initially bound to the object nil, an object of class
UndefinedObject. To correct the error, an initialization statement such as divisor f- 3
should be inserted into the method definition.

5.3.2 Continuing After an Error Notification

Fig. 5.8 shows the entries in the yellow button menu of a notifier window. The
programmer can either select one of them or none.

Un defi ne d0 bjec t (Obj ec t)>>do e sN0 tU nders tan d:
Smalllnteg er (Int eger»>is Prim e

Undefine proceed >Oolt
Compiler debug te:in:to:notifying:ifF ail:
CodeCon correct iolt

:~

~.,
~.

Figure 5.8 Notifier Yellow Button Menu.

After a notifier window has been generated, four separate scenarios are possible. We
describe each of them in turn.

• If the cause of the error was discovered:

close Close the notiner by selecting close in the notifier's blue
button menu. This has the effect of terminating the
interrupted computation. The programmer may edit the
method to correct the bug using a browser and try again.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 157



• If no problem was discovered, then execution can be continued:

proceed Select proceed from the notifier's yellow button menu.
The effect is to continue the evaluation from the point of
suspension. This action is most useful after an interrupt
explicitly caused by the programmer; i.e., a user-generated
interrupt (see the next section).

• If the probable cause is the misspelling of a message selector:

correct Select correct from the notifier's yellow button menu.
This invokes the spelling corrector that attempts to correct
the misspelled selector. The system will try to find an
alternative message selector with a spelling similar to the
original.

• If a bug exists and the cause was not discovered:

debug This is the most common case. Select debug from the
notifier's yellow button menu to generate a debugger - a
window that allows more detailed debugging.

Evaluate each of the following expressions and attempt to identify the error that
generates the notifier:

27/(33//3)
Boolean new
1 to: 5 do: [:i :j I Transcript show: i; crl
Collection new
(Pen new) dragoon: 10) "note the deliberate misspelling"
32 mod: 2 ifTrue: [Transcript show: 'divides by two'; crl

5.3.3 User-Generated Notifiers

There are times when a programmer may wish to deliberately cause an error interrupt. Three
situations are common: interrupting a nonterminating computation, setting a breakpoint, and
handling exceptional conditions.

5.3.4 Interrupting a Nontenninating Computation

A Smalltalk computation may be interrupted at any time by depressing the control and c
keys simultaneously. This generates a notifier window with the label User Interrupt. This
is most useful when a programmer suspects that a computation will not terminate. For
example, the code may contain an infinite loop or infinite recursion may be taking place.

Generate a user interrupt while a long running computation such as
"1000 factorial" is taking place.

5.3.5 Setting a Breakpoint

When debugging a Smalltalk program, it is often useful to be able to halt a computation at a
specific point, a breakpoint. The idea is to let the computation proceed normally until it
reaches a point at which the programmer wishes to examine the progress of the computation

158 Inside Smalltalk



I) I 111'1 I

more carefully. When the breakpoint is reached, the computation is interrupted and a notifier
is generated that can then be used to open a debugger window to allow more detailed
debugging.

To set a breakpoint, insert the expression self halt at the point in the code where the
computation should be interrupted. A notifier with the label Halt encountered will appear
when this expression is evaluated. Alternatively, the expression self halt: 'messageString'
can be inserted. This has exactly the same effect as self halt except that the label of the
notifier is the string messageString.

5.3.6 Handling Exceptional Conditions

It is good programming practice to notify the user of any unexpected or exceptional
condition that occurs during evaluation of code. For example, if we were processing a list
and we tried to return the first element of an empty list, the programmer should be notified
in some way that this has happened. The simplest way of achieving this in Smalltalk is to
include in the code an expression of the form self error: 'error message'. In the case of our
list example, an expression of the form self error: 'attempting to return the first
element of an empty list' would be appropriate. When an error: message is received, a
notifier is opened with the error message as the label of the notifier. The computation is
interrupted at the point at which the exceptional condition occurred, allowing the
programmer to interrogate the cause of the condition by opening a debugger window. The
error: protocol is inherited by most objects from class Object. Programmers may override
the standard error handler to provide a more specialized handler if they wish.

Another method of warning the user of some exceptional condition is to use an
expression of the form self notify: 'warning message'. This method is most often used to
request confirmation that a computation can proceed. The notifier generated has the string
Notifier' as its label and the warning message string in the message-send list pane. For
example, the notifier in Fig. 5.9 was generated by evaluating the expression

4 notify: 'confirmation message'

The computation can be continued by selecting proceed from the yellow button menu, or a
debugger can be opened by selecting debug.

Hotifier

confirmation message

Figure 5.9 Notifier generated by the 'notify:' message.

Unless you want the option of opening a debugger, a confirmer is often better than a
notifier as a method of requesting confirmation from the user. The confirmer in Fig. 5.10
was generated by evaluating the expression

4 confirm: 'warning message - continue evaluation?'

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 159



· continue evaluationwarning message -

yes f!; no

Figure 5.10 Confinner generated by the 'confirm:' message.

Depending on the response to the confirmer window, true or false is returned as the result of
sending the confirm: message.

Find out how pervasive the use of the standard error-handling mechanism is
within the system. Open a message-set browser on senders of the error:
message.

How does Smalltalk implement the shouldNotImplement and subclass
Responsibility messages in class Object?

Are there classes ofobjects that override the standard error-handling mechanism?

5.4 DEBUGGERS

Debuggers are Smalltalk windows in which detailed debugging of an interrupted computation
takes place. Debuggers incorporate the functionality of inspectors and notifiers and, in
addition, provide facilities for viewing the state of a computation, single stepping,
modifying methods to correct errors, and resuming a suspended computation.

5.4.1 Viewing an Interrupted Computation with a
Debugger

Debugger windows are created from a notifier window by selecting debug from the notifier
yellow button menu. A debugger window consists of six panes (see Figs. 5.11 and 5.12).

The top two panes resemble a message-set browser. The top pane (the message·send
list pane) contains the activation stack of message-sends from the interrupted computation.
These are the same message-sends from the notifier window except that a debugger shows
more of the partially completed message-sends. Also, unlike in a notifier window, the
message-sends in the top pane are selectable - selecting a particular message-send
determines what can be viewed in the remaining five panes. When a message-send is selected,
the source code for the method invoked by that message-send is displayed in the lower of the
top two panes (the method text pane). Within the body of the source code, the message
that caused the notifier to be generated is highlighted.

The bottom four panes are really two inspector windows. The leftmost two panes are
the variable and value panes of an inspector (the receiver inspector) on the receiver of the
message-send currently selected in the message-send list pane. The rightmost two panes are
the variable and value panes of an inspector (the method context inspector) on the
context or environment of the method invoked by the currently selected message-send. This
inspector can be used to inspect the values of variables local to a method.

160 Inside Smalltalk



ITIlI!1 i

~':I ;';.w.""" "';'o',v•• : •• ; ••••••••.;.... ;.....; .........; •• ; •••••': •• : •.•.••• :-.", "NO"";"; ....\~l1~f0~mw ....v:: ....... ~."' ."." . ".. ' . ......

: Messa.ge not ulidetstood: k···;:~::;Ar,···:·:.· '~:;::"'.' .',
• ;:.»..;;X;z,».::..:::':»'... ". .

------------
Un de fi ned 0 bj e c t (0 bj ec t)>>doesN 0 t Und e rs tan d:
Small! nteger (In teger» >isP rime

:

A

'.

-------- --------
self A -------- A

:--------
:
:. .. .;.

Figure 5.11 A Debugger Window.

Debugger Label

Message-Send List Pane

Method Text Pane

Receiver Inspector

again
undo
copy
cut

paste
do It

print it
inspect
accept
cancel
format
spawn
explain

full stack
proceed
restart
senders

implementors
messages

step
send

Method Context
Inspector

Variable
Pane

Value
Pane

to ••• , ',' ....".

Variable Value
Pane Pane ~

'y,' ..: ••~.' ••••••:.:~••:::';;.:~.Q.:.;<.:.~ ••:.:::.:::.~~;:::::::::x:::s~:t~::::~:::d.I

Figure 5.12 The structure of a Debugger Window and its Yellow Button Menus.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 161



By selecting different entries from the message-send list pane, the programmer can
follow the trail of interrupted message-sends and for each message-send can access the context
in which the message was sent.

As an illustration of the use of debugger windows, consider the following definition of
a method isPrime that is to be used to test whether an integer is prime or not. The method
contains two deliberate errors.

isPrime
"Tests whether the receiver is prime or not."
I divisor I
self <= 0 ifTrue: [ifalsel.
(self >= 1 & self <= 31 ifTrue: [itruel.
self \\ 2 = 0 ifTrue: [ifalsel.
[divisor * divisor < self] whileTrue: [

self \\ divisor =0
ifTrue: [ifalsel
ifFelse: [divisor +- divisor + 211.

itrue

Evaluating the expression S3 isPrime from a workspace generated the notifier window
shown in Fig. 5.7. Selecting debug from the notifier menu generated the debug window
shown in Fig. 5.11.

Initially, no message-send is selected from the message-send list pane. At this time
the message-send pane's yellow button menu contains only two items, full stack and
proceed.

full stack Allows the complete set of partially completed message-sends to be viewed
in the message-send list pane. Otherwise only the last nine message-sends
may be displayed. In version 2.5, full stack has been replaced by more
stack, which doubles the number of items in the viewable stack.

proceed Allows computation to proceed from the point of interruption.
Computation restarts as if the highlighted message in the method text pane
had just been completed. The result of sending the highlighted message is
taken to be the result of the last expression evaluated in the method text
pane or nil if no expression has been evaluated. Proceeding with a
computation closes the debugger.

Selecting the second message-send (see Fig. 5.13) brings method isPrime defined in
class Integer into view in the method text pane. Moreover, the point in the code at which
the interruption occurred is highlighted - in this case, the expression * divisor. Sending
this message to receiver divisor gave rise to the message not understood: * notifier.

The receiver inspector allows receiver S3 of the selected message-send isPrime to be
viewed. Selecting self in the variable pane displays S3 in the value pane. The method
context inspector allows the context or temporary variables of the method isPrime to be
viewed. The context of a method includes all arguments to the method and also temporary
variables. In this case, the method isPrime has only one temporary variable divisor.
Selecting it displays its value, nil, in the value pane. As discovered earlier, divisor was not
explicitly initialized to an integer value and hence was bound to the object nil. The receiver
of the message * divisor was therefore the object nil (the only instance of class
UndefinedObject) - hence the error.

162 Inside Smalltalk



1'111" ;

T········:·..·:· ..:· ..··"':,,····· ..··::···· ..···::·· ..:,·..:···..···· .. ·.. ·..:··:···rd::::dft1*WMtWf"'Y·:p .~:: :.... .. ::
:~ Me~~age not under~tood: >I< W'~:/¥t&jMh$:@.g1f{f ..;<· . ; .
:; «;;';».-::X0>:~"$Y...»»N.~:(.

Un de fi ned 0 bj ect ( 0 bj ec t)>>doe sNot Understan d:
Smallinteger Integer)>>I~Pt'lme

isPrime

.....

nil

"tests whether the receiver is prime or not"

I divisor I
self <= 0 ifTrue: [1'false].
(self >= 1 & self <= 3) ifTrue: [1'true].
self \\ 2 = 0 ifTrue: [1'fah:e].

[divisor" < self] whileTrue:
[self \ \ divisor =0

ifTrue: [1'false]

Figure 5.13 A Debugger Window illustrating the error point.

5.4.2 Error Correction within a Debugger

It is usually not necessary to leave the debugger to correct errors that have been discovered.
In most cases, it is possible to make the error correction and restart or complete the
computation within the debugger itself. Eliminating the need to switch to a browser just to
fix up simple and obvious problems speeds up both debugging and development time. This
is one reason the debugger provides the majority of the browser facilities.

In general, the debugger supports several kinds of activities each useful in its own
way. These activities include the following:

Modifying the Receiver or the Context of a Method.

The inspectors on the receiver and method contexts can be used to modify the
instance variables of the receiver or the local variables of an interrupted method.

Evaluating Expressions.

Expressions may be evaluated within a debugger in the context of the currently
selected message-send. Such expressions may be evaluated in the method text pane
or the value pane of either inspector. Expressions are evaluated in the current
context. This context is defined by the current state of the receiver (i.e., values of
the instance variables) and the current state of the method (i.e., value of
temporaries and arguments).

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 163



Supplying a Result for an Interrupted Message-Send and Proceeding.

A result can be supplied for an interrupted message-send and the computation
continued using that value. When proceed is selected from the message-send pane
menu, computation restarts as if the highlighted message in the method text pane
had just been completed. The result of sending the highlighted message is taken to
be the result of the last expression evaluated in the method text pane or nil if no
expression has been evaluated. Proceeding with a computation closes the
debugger.

Accepting a Modified Method Definition.

The code for an interrupted method may be edited in the method text pane of a
debugger and the modified method compiled using accept. Subsequent evaluations
of the method will use the modified method. When a method is recompiled within
a debugger, the method becomes the top of the message-send stack. Note also that
the modifications to the method will not immediately show up in any open
browsers on that method. Temporarily viewing some other method and then
switching back will provide the latest version. Alternatively, select update in the
browser to view the modified definition.

Restarting a Computation from a Selected Point.

After any of the above debugging operations, a computation can be restarted from
some suitable point. Selecting restart from the message-send pane menu has the
effect of resending the message currently selected in the message-send pane. Thus,
a computation can be restarted by resending any of the messages in the message
send stack. Restarting a computation closes the debugger.

Creating Message-set Browsers.

When debugging a Smalltalk method, the capability to browse the methods used,
to browse the implementation of a selected method, or to browse the
implementation of messages sent in the currently selected method arc important
aids to both understanding how a method works and to discovering errors. To
assist in the debugging process, message-set browsers can be created directly from
within a debugger window using the senders, implementors, and messages entries
in the message-send list pane menu. For a full discussion of the use of message
set browsers, refer to Section 4.6.3 in Chapter 4.

Consider the debugger of Fig. 5.12 generated by evaluating the expression 53
isPrime. Recall the first problem discovered - temporary variable divisor was not
initialized. One way of correcting the problem without leaving the debugger would be to
modify the context of the method isPrime so that the value of the temporary variable
divisor is 3 instead of nil and then restart the computation. To modify divisor, select it in
the variable pane of the method context inspector. The current value nil is displayed in the
value pane. Now, replace nil by 3 and choose accept from the value pane's yellow button
menu. The interrupted computation can then be restarted by selecting restart from the
message-send pane yellow button menu. Selecting restart closes the debugger and
continues evaluation from the start of the currently selected method. In this case, method
isPrime is re-evaluated in the modified context. Remember, however, that we have not

164 Inside Smalltalk



l'i'rtf!1 !

modified the definition of the method isPrime. The same error will occur if we subsequently
use isPrime again.

A more appropriate way of debugging the isPrime method is to correct the definition
of the method within the debugger. Insert the missing initialization statement, divisor ~ 3,
into the method and accept the changed definition. Once the changed method is compiled,
the currently selected message-send becomes the top of the message-send stack (see
Fig. 5.14). In addition, the first message-send in the modified method is highlighted. This is
the point at which evaluation should restart. Interrupted message-sends above the selected
message-send are discarded since they are no longer relevant. When the computation is
restarted with the modified method, new and different message-sends will result. To restart
the computation, select restart from the message-send menu. Note that any changed
method definition will not immediately appear in browsers that were open at the time the
method was modified - select update in the browser to view the modified definition.

Smailin teger In t eger '11 >1 sP time
Undefined Objec t >>Do It
Compiler»evalua te:in:to:notifying:ifF ail:

isPrime
"tests whether the receiver is prime or not"

Idiv~

self BlifTrue: [1'false].
(self >= 1 8. self <= 3) ifTrue: [-ttrue].

self \ \ 2 =0 ifTrue: [1'false].
divisor," 3.

[divisor II< divisor < self] whileTrue:

[self \ \ divisor =0

J3 nil

Figure 5.14 Single stepping through a computation.

Sometimes it is necessary to single step through a computation within a debugger
window; Le., to inspect the context of the receiver and the method as each message-send is
evaluated. This is particularly useful in the case where evaluation of an expression yields
erroneous results but does not generate an error notification. In this case, the usual
debugging strategy is to choose some suitable breakpoint, insert a self halt expression at
that point to generate an interrupt, and then to examine the evaluation on a step-by-step
basis within a debugger window.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 165



Single stepping through a computation is achieved through the step and send entries
in the message-send menu.

step Evaluates the next message-send. The effect of the message-send can thcn
be determined using the inspectors on the receiver and the method context.

send Al10ws the method involved in the next message-send to itself be viewed
and single-stepped. It "opens up" the method associated with the next
message-send. This message-send is placed at the top of the message-send
stack and selected. The code for the method is displayed in the method text
pane and the first message-send in the method is highlighted.

To illustrate the use of step, we will search for the remaining bug in the method
isPrime. Evaluating the expression 25 isPrime returns the erroneous result true. To
determine the cause of the error, assume we insert the expression self halt after the
assignment divisor f- 3 in the method for isPrime and reevaluate the expression. A halt
notifier will appear (see Fig. 5.15). Selecting debug to generate a debugger window and
choosing the isPrime message-send result in the debugger window shown in Fig. 5.16.
Evaluation of the expression is interrupted at the breakpoint. At this point, self is 25 and
divisor is 3.

Selecting step from the message-pane menu sends the highlighted message, in this
case, the message halt, to its intended receiver. The next message (* divisor) is then
highlighted (see Fig. 5.17). Selecting step performs the multiplication and then highlights
< self. Selecting step again not only performs the comparison «) but also sends the
whileTrue: message to the result. The message \\ divisor within the block argument to the
whileTrue is highlighted (see Fig. 5.18), indicating that the comparison must have returned
true. As the last step operation indicated, some message-sends, notably sends to block
receivers and assignments, are performed automatically when single stepping. If we continue
single stepping, we will eventual1y reach the situation shown in Fig. 5.19, where the
message < self is to be sent for the second time. Notice that, at this point, the temporary
variable divisor has the value 5. Single stepping once more highlights the expression itrue
(see Fig. 5.20). To reach this point the whileTrue: message must have been sent to the
object false. The second error can now be seen - the method does not corrcctly handle the

[~~E~
.: ~..:

.: Co mp iler» e v al uate:i n: to: not ify ing:i fF a il: ~;

:~ CodeController»dolt [!.
". 0:::-:' :OX" ~~:tr-::... :::...~o:.:::: ••••:.-:-;:::..' .... .:.' 'g~~~:ft.?IDj~~~~':

Figure 5.15 A Halt Notifier initiated explicitly by the IsPrlme method.

166 Inside Smalltalk



I 'f~'1

Smalllnteger Integer »1~Pt"lliie

Undefin edObj ec t >>Dolt
Compiler»evalu a te:in:to:notifying:ifF ail:

isPrime
"tests whether the receiver is prime or not"

I divisor I
self <= 0 ifTrue: [-tfalse].
(self >= 1 & self <= 3) ifTrue: [-ttrue].
self \ \ 2 = 0 ifTrue: [-tfalse].

divisor +- 3.

selfB·
[divisor * divisor < self] while True:

IIIEI--III--.--.--.-1 i 5
.m'

--------- 3

"·fig

Figure 5.16 The Debugging Window showing the halt point in the isPrime method.

Undefined Obj ec t >>Oolt
Compiler> >evalua te:in:to:notifvinQ:ifFail:

isPrime
"tests whether the receiver is prime or not"

I divisor I
self <= 0 ifTrue: [-tfalse].

(self >= 1 & self <= 3) ifTrue: [1"true].
self \\ 2 = 0 ifTrue: [-tfalse].
divisor +- 3.
self halt.

[divisor" < self] whileTrue:

,>:..
r

---------115
WI
---------1

---------1 3
m"fJol A

---------t
. ~ .'

~~:.
:'

.' .~:,.:., ..:..~~
Figure 5.17 Step 1 in detennining if 25 is prime.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 167



:'!

Undefine dOb jec t» 0 0 It I;
Compiler> >evalu a te:i n:to:notifvinq: ifF ail: ::

:td~~~:o:~ether the re.eiver is prime or not" ~
~elf <= 0 ifTrue: [·tfal~eJ. III
(~elf >= 1 & ~elf <= 3) ifTrue: (t-trueJ. :::~

.:.:-

~elf \ \ 2 = 0 ifTrue: [·tfal!:eJ. @

divi~or ~ 3. .1:1

self halt. :\:~

.I: [diVi~;:I;...~:I;J while True: IIII

.,.'J------T"'"--------r-----T""---------1J"" :::~

1
5

i f
....:-

Figure 5.18 Step 2 in determining if 25 is prime.

~
:;

i ~:~ep~il:~~ ~:~:~~:~~,~~\ 0'"0 to fy in9:i fF ail, l.i~'I~
::; self <= 0 ifTrue: [·tfal~eJ.

-::!:.f.:; (self >= 1 & self <= 3) ifTrue: [-ttrueJ. :lllil:~~~~!:~: ~ ~.o ifTrue: [-tfalseJ. 111.il

~.,~...::,::.:I:...:: ~ elf ha It. f~
[divisor >I< divisor _J whileTrue: II:ii

II [self \ \ divisor = 0 ililli ifTrue' [Halse] 1
I:~~~

Figure 5.19 Step 3 in determining if 25 is prime.

168 Inside Smalltalk



~.

--------- J
IiImlM

self halt.

[divisor * divisor < self] while True:

[self \ \ divisor = 0

ifTrue: ['tfalse]

ifF alse: [divisor +- divisor + 2]].

(self >= 1 & self <= 3) ifTrue: ['ttrue].

self \ \ 2 = 0 ifTrue: ['tfalse].

divisor of- 3.

---------- }5
ml

UndefinedObject> >Oolt
Com piIe r >>e val uate: in: to: not ify ing: ifF a iI:

--------- ---------
~....__ldIImIllllllllmdmmmll!!lm~_~

Figure 5.20 Step 4 in detennining if 25 is prime.

situation where divisor * divisor is equal to self. In this case, we should evaluate the block
argument to the whileTrue: message one more time; i.e., the comparison selector should be
<= rather than <.

To illustrate the use of send, we will show how debugger windows can be used not
only for debugging Smalltalk code but also for finding out how existing code in the
Smalltalk library actually works. For example, suppose we wished to implement a
specialized printString method for a new class of object that we had just defined. A good
way of determining how this might be done is to examine how printString is implemented
for an existing class of objects, for example, rectangles. Rectangles respond to printString
with a string of the form xl@yl corner: x2@y2. The points xl@yl and x2@y2 represent
the top left and bottom right comers of the rectangle respectively.

A convenient way of finding out how printString works for rectangles is to single
step through a sample computation. For example, suppose we defined the following
temporary class method trace in class Rectangle.

1r'ace
"Temporary method to determine how rectangles are printed:
I aRectangle I
aRectangle ~ Rectangle fromUser.
self halt.
i aRectangle printString.

"Rectangle trace"

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 169



Evaluating the expression Rectangle trace first generates a request to frame a
rectangle and then generates a user-interrupt notifier when the self halt expression is
evaluated. Opening a debugger window and selecting the message-send Rectangle
cIass»trace displays the source code for the method trace in the method text pane (see
Fig. 5.21). Choosing step advances the computation to the point where the printString
message is to be sent to the example instance (aRectangle) of class rectangle (see
Fig. 5.22).

At this point, we want to see the code for method printString. Therefore, select send
rather than step. The difference between step and send is that send evaluates the next
message-send completely while step invokes the method associated with the next message
send. The code for this method is displayed in the method text pane and the first message
send in the method is highlighted. After the send, the code for the method printString is
displayed in the method text pane (see Fig. 5.23) and the first message, new: 100, is high
lighted. The message-send at the top of the stack is now Rectangle(Object»>printString
- the actual method invoked was therefore found in class Object. This suggests that
printString is a message inherited by all objects.

We can find out if other classes implement printString by selecting implementors
from the message-send pane's yellow button menu. This confirms that only class Object
implements a printString method. Method printString creates a new write stream on a
string and adds the printed representation of the object (by sending printOn: to the object) to

O
_u_n_d_e_f_i_n_e_do_b_

j

e_c_t_>_>_D_O_I_t-----------------11:'::,·Comp iler» e v alua te:in:to:noti fying:ifF ail:
Cod eCo ntroller» dolt

~race

"method to determine how rectangles are printed"

fromUser.

"Rectangle trace"

I aRectangle I
aRectangle +- Rectangle

self 1m.
-taRectangle printString I

~

*:~
~~
,~

~I-------T--------r------.,..--------I:~
----------- #0 ----------- 69@81 corner: ~

:~~ferclass ----------- 409@354 I
methodDict ~

Figure 5.21 At the halt statement in method trace,

170 Inside Smalltalk



j'}UlIi! I

Unde fi ned Ob j e c t> >00 It
Compil er»evallJa te:in:to:notifying:ifF ail:
Cod e Con t roll er»dol t

trace
"method to determine how rectangles are printed"

I aRectangle I
aRectangle +- Rectangle fromUser.

self halt.

l'aRectangle

"Rectangle trace"

self
slJperclass
methodOict

aRectangle
19@81 corner:

409@354

self
origin
corner

Figure 5.22 About to trace method prlntStrlng.

Rectangle class»trace
Un de fi ne d0 bj e c t >>0 0 It
Com pil e r> >ev allJa te:in: t 0 :notifying:ifFail:

printString
"Answer a String whose characters are a description of
the receiver,"

I aStream I
aStream +- Write Stream on: (String _lib. r
self printOn: aStream. I

u-_-_-_-_-~-_a-_s__-~-r_e-_a.,...m-c-o-n-t-e-n-t-s--- ....._-_-_-_-_-_-_-_-_-_-_.,...---------11
A aStream A ~

i~
i
~

Figure 5.23 Having reached method printString.

Chapter 5 Debugging with Inspectors. Notifiers. and Debuggers 171



the stream. The stream's content is then returned as the result. The stream is initially created
on a string of size 16 (the character buffer) but this is automatically extended. We have
discovered that solving the original problem of implementing a specialized printString
method for a new class of object involves implementing a specialized form of printOn:
aStream method for the new class. Of course, printOn: might also be inherited by all
objects! To determine whether this is the case, step through the computation until the
printOn: aStream message is the next message to be sent (see Fig. 5.24) and then select
send to view the invoked method.

Rectangle clau»trace :I!;

UndefinedObject»Oolt ::

g..C_o_m_p_i_1e_r_>_>_e_v_a_l_u_a_t_e_:i_n_:t_o_:_n_o_t_if_Y_i_n_g_:i_fF_a_i1_:-----------1:1
prin'tS'tl"ing ~

"Answer a String whose characters are a description of :~

::·s:::::~r." I
aStream +- WriteStream on: (String new: 16). :~

::...
self ;~

~

-taStream contents ,

....-~e-~:-~g-~-:------------""A-------""I""~-~-S--!--~-~-~-~-~-~-~-~""A---------li

:~

corner i:.i
••••••';O••••~ .':. :-: •••• 0; :. .' :1','0; '. • 0;. • : •• ;0;,0;: "'

Figure 5.24 About to trace method prlntOn:.

The printOn: method in class Rectangle is invoked (see Fig. 5.25); i.e., class
Rectangle has a specialized version of printOn:. The comment for the method refers us to
the comment stored in the printOn: method of class Object. To view this method (without
leaving the debugger), again select implementors from the message-send pane's yellow
button menu. This displays a message-set browser on all printOn: methods (see
Fig. 5.26). Notice that many classes implement this method, confirming the theory that a
specialized printOn: method must be implemented for any new class we might define.
Selecting entry Object printOn: from the top message list pane displays the source for the
printOn: method in class Object (see Fig. 5.26). The default behavior for printing objects
can now be seen. If a subclass does not provide a specialized method for printing instances,
the default is to simply return a string identifying the class of the object. For example, if we
send the message printString to an instance of class Pen, the result would be the string 'a
Pen'.

172 Inside Smalltalk



1'1'1 I

I
:·»~=»::==III~~t~tm"'trt:.:r;· :':'~'." , ,., ..,. . ;

~#".->~" .. " .. :ffi:.::::::%}%.}., :

: Rectangle»pnntOn: :
Rectangl e (Ob j ec t»>pri ntS tring
Rectangle class»trace
Undefin e dOb j e c t> >Oolt

pI intOn: aSh earn

printOn: aStream
"Append to the argument aStream a sequence of

characters that identifies the receiver.

The general forma t is

originPoint corner: cornerPoint."

origin

aStream nextPutAII: ' corner: "

corner printOn: aStream

self
origin
corner

aStream

Figure 5.25 Having reached method prlntOn: in class Rectangle.

Object prlntOn:
ParseNode printOn:
Point print On:
Process printOn:
Rectangle printOn:

printOn: aStream
"Append to the argument aStream a sequence of

characters that identifies the receiver,"

~.

....... "0 '0' ;.•••••; •••••"- ', •

I title I
title ~ self class name.

aStream nextPutAII: «title at: 1) isVo ..... el

ifTrue: ['an ']

ifF alse: ['a 'J) I'i
title t

, .." ... "';'i·",~':;';'n::i'i'~';:'::l'~·,';','i':"i';'i':@:':'~~,***~::...it .
Figure 5.26 Potential implementors of method printOn:.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 173



Closing the message-set browser and returning to the definition of printOn: for class
Rectangle (see Fig. 5.25), we can see that printOn: for rectangles proceeds to

• send printOn: to instance variable origin (the top left comer of the rectangle),

• append string' corner: ' to the print stream, and finally

• send priotOn: to instance variable corner (the rectangle's bottom right comer).

Selecting send at this point invokes the printOn: message for instances of class
Point (origin is a point), and the method for generating the specialized printed
representation (x@y ) for points can be viewed (Fig. 5.27). Single stepping through this
method will eventually return us to the priotOn: method for rectangles (Fig. 5.28). At this
stage, selecting proceed allows the computation to run to completion and the printed
representation of the rectangle to be printed.

•
Rectangl e» print On:
Rec ta ngl e (0 bj e c t» >pr int S t r ing
Rectangle class»trace

printOn: aStrearn

"Append to the

nota tion."

argument aStream in terms of infix

printOn: aStream

self
x
y

x
aStream nextPut: $@.

y printOn: aStream

j9@81
aStream

Figure 5.27 Having reached the Point priotOo: method.

5.5 SUMMARY

In this chapter, we have described the use of inspector, ootifier, and debugger windows as
sophisticated aids for debugging Smalltalk programs. In particular, we have described:

174

•
•

The use of inspectors to view and modify the internal state of an object.

The use of specialized inspectors for viewing dictionaries.

Inside Smalltalk



nextPutAII: ' Gotner: .

Rec ta ngle(Object) >>print Str ing
Rectangle class»trace
Und efinedObject >>Dolt

p..intOn: aSt..eam
"Append to the argument aStream a sequence of

characters that identifies the receiver.

The general format is

originPoint corner: cornerPoint."

origin printOn: aStream.

aStream

corner printOn: aStream

69@S1 corner:
409@354 aStream

•
•

•

•

•

Figure 5.28 Back to the Rectangle prlntOn: method.

How to set breakpoints to interrupt a computation at a user-selected point.
The use of notifiers for identifying the point and cause of a run-time error or user
generated interrupt.
How debuggers incorporate the functionality of both notifiers and inspectors and
may be used to view and modify the state of a suspended computation.
How debuggers may be used to single step through a computation at any level of
detail.
How errors may be corrected within a debugger and a suspended computation
resumed.

5.6 EXERCISES

The exercises that follow provide experience with the manipulation of inspectors. notifiers.
and debuggers.

1. In this chapter, we saw that it is de
sirable to have specialized inspectors
for dictionaries. What other kinds of
objects might benefit from such spe
cialized inspectors? Are there other

inspectors present in your Smalltalk
system? Hint: What about inspectors
on Ordered Collections?

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 175



2. When a message reaches class Object
because it was not understood by its
intended receiver, why does class
Object send a doesNotUnderstand
message back to the receiver of the
original message? Why doesn't class
Object simply use its own doesNot
Understand method?

3. Each of the following expressions
generates an error notifier when eval
uated. Explain the reason for the no
tiCier in each case.

Character new
Collection new
3/0
o ifTrue: [i'Zero']
-10 sqrt

5.7 GLOSSARY

Smalltalk windows

inspector A window through which the in
ternal state of an object can be viewed and
modified.

notifier A window generated when a run-time
error or user-generated interrupt occurs.
The window displays the state of the
computation at the point of interruption
and indicates the cause of the interruption;
e.g., a message not being understood by
its receiver.

4. On occasion, we may have multiple
occurrences of the same method in
the message-send stack of a debug
ger; e.g., in a recursive method.
Open a debugger on a computation
such as 10 factorial and advance the
computation until the message-send
stack contains several factorial mes
sage-sends. Now modify the defini
tion of factorial associated with one
of the factorial message-sends. Are
all the other definitions for factorial
also modified? If not, try to under
stand why.

S. Why is evaluation of code within a
debugger much slower than normal
evaluation of the same code?

debugger A window in which detailed de
bugging of an interrupted computation
takes place. Debuggers incorporate the
functionality of inspectors and notifiers
and, in addition, provide facilities for
viewing the state of a computation, for
single stepping through a computation,
for modifying methods to correct errors,
and for resuming a suspended computation.

yellow button menu commands for the inspector variable pane

inspect Opens an inspector on the instance
variable selected in the variable pane of
the inspector. Note that this menu item is

only accessible if an item has been
selected from the list in the variable pane.

yellow button menu commands for the inspector value pane

again, undo, cut, copy, paste Standard
editing commands.

do it, print it, inspect Standard evaluation
and inspection commands.

cancel Restores the text in the value pane to
its original state or the state immediately
after the last accept.

176

accept Evaluates the text in the value pane as
a Smalltalk expression. Binds the result
returned by evaluating the expression to
the variable selected in the variable pane.
Used to modify the value of an instance
variable of an inspected object.

Inside Smalltalk



yellow button menu commands for the dictionary inspector variable pane

inspect Opens an inspector on the value
associated with the selected key.

references Creates a message-set browser on
all references to the selected key.

remove Removes the key selected in the key
list pane. A confirmer menu will appear to
request confirmation that this undoable
operation should be carried out.

add field Adds a new entry with associated
value nil to a dictionary. A prompter
window will appear and request the name
of the key to be added. Another value can
be associated with the key by entering the
value into the value pane and choosing
accept.

yellow button menu commands for the notifier window

proceed Continues the evaluation of the
computation from the point of suspension.
May not be appropriate if error correction
is required.

debug Opens a debugger window on the
interrupted computation.

correct Used in the case of a misspelled
message selector to invoke the spelling
corrector. If the system's suggestion is
confirmed by the user, the alternative
replaces the misspelled selector.

yellow button menu commands for the debugger message-send pane

full stack Allows the complete set of in
complete message-sends to be viewed in
the message-send list pane. Otherwise
only the last nine message-sends may be
displayed. In version 2.5, full stack has
been replaced by more stack. Instead of
showing the complete set of message
sends, more stack doubles the number of
items in the viewable stack.

more stack See full stack.

proceed Allows computation to proceed from
the point of interruption. Computation
restarts as if the highlighted message in
the method text pane had just been
completed. The result of sending the
highlighted message is taken to be the re
sult of the last expression evaluated in the
method text pane, or nil if no expression
has been evaluated. Proceeding with a
computation closes the debugger.

restart Resends the message currently se
lected in the message-send pane. A compu
tation can be restarted by resending any of
the messages in the message-send stack.
Restarting a computation closes the de
bugger.

senders Opens a message-set browser on the
senders of the method in the method text
pane.

implementors Opens a message-set browser
on the implementors of the method in the
method text pane.

messages Displays a menu of all the mes
sages sent by the method in the method
text pane. Selecting from the menu opens
a message-set browser on all methods that
implement the selected message selector.

step Evaluates the next message-send and
then halts. The effect of the message-send
can then be determined using the inspec
tors on the receiver and method context.

send Allows the method involved in the next
message-send to itself be viewed and
single-stepped. It invokes the method as
sociated with the next message-send. This
message-send is placed at the top of the
message-send stack and selected. The code
for the invoked method is displayed in the
method text pane and the first message
send in the method is highlighted.

Chapter 5 Debugging with Inspectors, Notifiers, and Debuggers 177



yellow button menu commands for the debugger method text pane

again, undo, cut, copy, paste Standard
editing commands.

do it, print it, inspect Standard evaluation and
inspection commands.

accept Compiles the text in the method text
pane. If successful, replaces the existing
method definition in the system. Used to
modify the definition of a method while
debugging. When a method is recompiled
within a debugger, that method is placed at
the top of the message-send stack.

cancel Restores the text in the method text
pane to its original state or the state im
mediately after the last accept.

178

format Formats the code in the text pane to
a standard Smalltalk style. The text must
not have been edited since the last accept.

spawn Opens a message browser for the se
lected message. Uses the method definition
from the method text pane. If editing has
taken place. this mayor may not be the
current saved version of the definition. A
cancel operation is automatically carried
out on the method text pane of the debug
ger.

explain Displays an explanation of any
selected variable name or selector such as
'x', 'sum', '+', 'at:put:', or 'Smalltalk'.

Inside Smalltalk



6

Objects

6.1 INTRODUCTION

Understanding Smalltalk in detail requires a basic understanding of the protocol understood
by objects in general (from class Object), along with an understanding of boolean objects
true and false, undefmed object nil, and blocks (short for block contexts).

BlockContext

Figure 6.1 Object and other related classes.

Class Object (see Fig. 6.1) is the ultimate superclass of all classes. It provides the
default behavior for such operations as copying, printing, and comparing. Class
UndefinedObject provides the protocol for its one unique instance nil, the value provided
to all uninitialized variables. Boolean objects true and faIse are the sole instances of classes
True and False respectively; True and False are subclasses of Boolean. Class Boolean

179



is an abstract class; i.e., a class with no instances, that serves as a repository for methods
common to True and False. As a user, there is no need to know about classes True and
False. However, one should be aware of their existence because they cannot be used as
substitutes for instances true and false. The difference between uppercase and lowercase is
important in Smalltalk. For example,

True ifTrue: [Transcript show: 'it was true'l ifFelse: [Transcript show: 'it was false']

is not a legal if-statement because True is not a boolean instance. Class BlockContext
provides the protocol for blocks. In the following example, [count ~ count + 1. count < 10]
is a block that is the receiver of the whileTrue: message. Parameter [Transcript show: count
printString] is also a block.

[count~ count + 1. count < 10] whileTrue: [Transcript show: count printString]

In the sections that follow, we will consider the protocol for classes Object,
UndefinedObject, BlockContext, and Boolean (with its subclasses) in that order. To
understand the Object protocol, a rudimentary knowledge of the other three classes is needed.
In particular, the following undefined object and boolean object protocol should be sufficient
for our purposes:

undefined object queries

• anObject isNil
Returns true if the receiver is nil and false otherwise.

boolean operations

•

•

•

•

•

aBooleanObject & anotherBooleanObject
Returns the 'and' of the two objects; Le., true if both are true.

aBooleanObject I anotherBooleanObject
Returns the 'or' of the two objects; i.e., true if one or both are true.

aBooleanObject not
Returns the 'not' of the object; Le., true if the receiver is false and false if it
is true.

aBooleanObject end: aBlock
Performs a short-circuit 'and'; Le., returns false if the aBooleanObject is
false; otherwise, additionally evaluates the block and returns the block
result.

aBooleanObject or: aBlock
Performs a short-circuit 'or'; Le., returns true if the aBooleanObject is true;
otherwise, additionally evaluates the block and returns the block result.

In previous chapters, we provided a syntactic interpretation of blocks as special
brackets that were required for control structures. This interpretation is neither object-oriented
nor correct but it is sufficient for understanding the basic control structures like whileTrue:
and whileFalse:. More detail, however, is needed to understand the implementation of the
boolean objects. Hence, blocks are reviewed prior to considering the boolean objects in
detail.

180 Inside Smalltalk



6.2 CLASS OBJECT

An object consists of a representation and operations (or methods) that it responds to.
It is an instance whose class can be determined by sending it the message class; e.g., 1.2e3
class will reply with Float. The class is the repository for all the information about the
instances; Le., it stores both the representation information and the operations. However, the
information in an individual class may not be complete; part of the information may reside
in another class called the superclass.

In general, a class may have a superclass, which in turn may have its own superclass,
which again has a superclass. This sequence culminates in a final class that has no superclass
- this class is Object, the ultimate superclass of all classes. In general, many classes can
have the same superclass - hence the relationship is a tree-structured hierarchy as shown in
Fig. 6.1. Actually, Smalltalk permits classes to have several superclasses, leading to a
concept called multiple inheritance. However, there are no examples in the system - we
will not consider the concept further in this section.

The representation information and the operations associated with an instance are
obtained by concatenating the partial information stored in each of the classes in the
superclass chain that starts with the object's class and culminates in Object.

In the sections that follow, we first consider the detailed representation of an object
We investigate this representation ignoring the effects of the hierarchy. Then we consider
Smalltalk's notion of bindings as it relates to parameter passing and assignments so that we
can better appreciate the power of this representation. Next, we review this representation in
the context of the hierarchy. We then investigate the operations provided by class Object, a
protocol that is inherited by all classes in the system.

6.2.1 The Representation of an Object

Since an object consists of a representation and operations, it consists of anything that can
be manipulated. In particular, any object can be inspected; e.g., 1957 inspect, #(1 234)
inspect, 'hello' inspect, Integer inspect. Objects include such things as characters,
integers, strings, arrays, ordered collections, sets, and classes themselves.

named instance variable 1

named instance variable 2

named instance variable 3

•••
indexed instance variable 1

indexed instance variable 2

indexed instance variable 3

•••
Figure 6.2 The representation of an object.

Chapter 6 Objects 181



However, there are things that are not objects. For example, a variable is not an
object. Variables cannot be manipulated as separate entities. They cannot be inspected nor
can they be stored into arrays, for example. Of course, the value bound to a variable can be
inspected and stored into an array. This is not the same thing. If variables were objects, one
would be able to store one into an array and legitimately claim "this array contains a variable
- independently, the variable also contains a value." Since variables cannot be manipulated,
they are not objects.

In more detail, an object (see Fig. 6.2) consists of zero or more fields called instance
variables partitioned into two groups: named instance variables and indexed instance
variables. The named instance variables precede the indexed instance variables.

When a class is defined, the names of all named instance variables must be specified
along with an indication as to whether or not indexed instance variables are permitted. If no
indexed instance variables are permitted, all instances of the class will be the same size.
Otherwise, distinct instances can be different sizes. Depending on the choices taken, several
combinations are possible:

CIa_ with objectll containing no inatence v.iab....
Examples include Object, True, False, UndefinedObject, and InputSensor.

CIe_ with objectll conteining only named inatence veriab....
Most classes in the system and most user created classes will fall into this
category.

Class. with objectll containing only indexed inatenc:e variebl•.
Examples include classes like Array, String, Symbol, LargePositivelnteger, and
LargeNegativelnteger.

CIe_ with objectll containing both named and indexed instance variabl•.
Examples include OrderedColiection, Dictionary, Set, and SortedCollection.

Such classes are normally created with the browser. The easiest way is to find any
class that already has the required structure and modify its definition. For example, the
following definitions were obtained by investigating the class definitions for Fraction, Array,
WordArray, String, and OrderedCollection:

Fraction (a class with only named instance variables)

Number aubela..: #Fraction
inatenceVariableNamea: 'numerator denominator'
cla..VariabIeNemea: "
poolDictionariea: "
category: 'Numeric-Numbers'

Array (a class with only indexed instance variables that can contain arbitrary objects)

ArrayedColiection variableSubclaaa: #Array
inatanceVariableNemea: "
cla..VariabIeNemea: "
poolDictionariea: "
category: 'Collections-Arrayed'

182 Inside Smalltalk



I 'ill I

WordArr.y (another class with only indexed instance variables capable of containing
only words)

ArrayedCollection v.ri.bl.WordSubcl...: #WordArray
inaUnceV.riebleNemee: "
e....V.rieb..Nemee: "
pooID~"":"

_tegory: 'Graphics-Support'

String (another class with only indexed instance variables capable of containing only
bytes)

ArrayedCollection v.riebl.Byt.Subc....: #String
inat8nceV.riebleNemee: "
e....V.riebleNemee: "
pooID~"":"

e.tegory: 'Collections-Text'

Ord.redCoII.etion (a class with both kinds of instance variables)

SequenceableCollection v.ri.bl.Subel•••: #OrderedCollection
in.tenceV.rieb"Nemea: 'firstlndex lastlndex'
e....V.riebleNemee: "
pooID~riea: "
e.tegory: 'Collections-Sequenceable'

As you can see, classes without indexed instance variables are created with a method
that begins subclass: ; the alternative uses methods variableSubclass: ... ,
variableWordSubclass: , or variableByteSubclass:... (indexed instance variables
respectively contain arbitrary objects, word-sized integers, or byte-sized integers).

Named instance variables are normally accessed by referencing the variables by name.
More specifically, when the receiver of a message is, say, an ordered collection, the
corresponding method that executes can reference firstlndex or lastlndex by name. Indexed
instance variables are accessed via the subscripting operations basicAt: and basicAt:put:.
See the section on accessing and modification operations for more details.

•

•

anObject be.ieAt: anlnteger

Returns the value of the indexed instance variable at index anlnteger. Legal

index values range between 1 and anObject b••ieSiz•. An error is reported
if the index is not an integer or if it is out of range.

anObject b••ieAt: anlnteger put: anotherObject

Changes the value of the indexed instance variable at index anlnteger to

anotherObject and returns anotherObject. Legal index values range

between 1 and anObject b••ieSiz•. An error is reported if the index is not
an integer or if it is out of range.

As a user, it is important to have this image of an object as a record with an arbitrary
number of fields, some named and some indexed. On the other hand, the low-level operations
that provide direct access to these fields should only be used for implementing higher level
facilities.

Chapter 6 Objects 183



6.2.2 Bindings: Assignments and Parameter Passing

In this section, we wish to consider the meaning of an assignment such as

af-b

since it can lead to confusion if it is not properly understood. We can explain it from two
perspectives: from the logical point of view, which concentrates on what it means, and from
the implementation point of view, which concentrates on how it is done.

In a language like Pascal, C, or Ada, an assignment like a f- b is interpreted as "copy
b into a" and implemented by "copying the contents of b into the space occupied by a."
Thus, a and b must be the same type and, most importantly, the same size. This is a very
restrictive requirement. For example, it makes it impossible for the arbitrary elements of a
set data type to be manipulated unless the element types were previously specified by the
user - it also makes it difficult to mix the element types.

In Smalltalk, a f- b is interpreted as "bind a to the same object that b is bound to."
From the logical point of view, assignments do not copy - they simply rebind. From the
implementation point of view, all variables contain pointers to objects; assignments
physically copy pointers but they do not copy the objects. Fig. 6.3 illustrates this
pictorially.

a

b

a

b

------~-{ Object!

------~, Obj·e12

Before a f- b

Object l

Object 2

After a f- b

Figure 6.3 The meaning of assignment.

]
]

]

To repeat, before the assignment, a is bound to object! and b is bound to object2.
After the assignment, a is also bound to object2 - hence a and b are bound to the same

184 Inside Smalltalk



object We often shorten the expression "x is bound to object 0" to "x is 0." With this more
concise terminology, the above can be rephrased as follows: "Before the assignment, a is
objectl and b is object2; after the assignment, both a and b are object2."

Smalltalk provides two operations for determining when two objects are the same:
operation = (identical) and operation -- (not identical).

identity determination

•

•

anObject == anotherObject
Returns true if anObject is the same as anotherObject and false otherwise,

anObject ~~ anotherObject
Returns true if anObject is not the same as anotherObject and false
otherwise,

Before the assignment in Fig. 6.3, a = b is false; afterwards, a == b is true. Note that
identity is not the same as equality. Two objects could be equal without being identical.
Equality is considered in more detail after we discuss the copying operations. As implied, it
is possible to obtain a copy of an object but this must be explicitly requested. For example,
consider the following:

a~Setnew.

b~acopy.

Here, a is fIrst bound to a new set, then b is bound to a copy of this set. Clearly, a and b are
equal; i.e., a = b is true. However, a and b are not identical; i.e., a == b is false because
they are distinct objects.

Note that the notion of variables extends to method parameters and to fields of an
object; i.e., instance variables. For example, suppose we execute the following:

a~Setnew.

b~ 'hello there',
c~ Number.
result~ Array with: a with: b with: c

Class method with:witb:with: in Array might be implemented as follows:

with: object1 with: object2 with: object3
I newArray I
newArray ~ Array new: 3.
newArray at: 1 put: object1.
newArray at: 2 put: object2.
newArray at: 3 put: object3.
inewArray

Immediately before newArray is returned, it should be clear that variable a, variable
objectl, and the first indexed instance variable of new Array are the same set.
Diagrammatically, this is illustrated in Fig. 6.4. The other cases are also shown for
comparison purposes.

Chapter 6 Objects 185



a

b

c

object2 ------~~-....,'-.. ~lfillg•• thell(l••ltel'~t.

object3 ------/~;~::~@~lli~~~)

Figure 6.4 Object bindings.

Smalltalk has no 'call by reference' mechanism. In particular, there is no way that
variable a can be modified by assignments to variables in the method. For example, if we
changed object! in the method, this would rebind object! and only object! to some new
object - it would not affect a. Actually, Smalltalk does not permit parameters like object!
to be modified but that is beside the point. Later, we will consider an operation that has
wider ranging effects, the become: operation.

6.2.3 The Inherited Representation of an Object

When a new class is defined, both a superclass and instance variables must be specified. For
example, class Fraction is defined as follows:

Number aubela..: #Fraction
instanceVariableNames: 'numerator denominator'
c1a..VariableNamee: ..
poolDictionariee: ..
category: 'Numeric-Numbers'

In this case, Number is the superclass of Fraction. All instances of fractions will have
the instance variables numerator and denominator. Additionally, they will also have the
instance variables of Number, Magnitude, and Object, since these are the classes in the
superclass chain. As it turns out, these classes have no instance variables. Hence, no
additional instance variables are included.

To provide a more relevant example, consider defining three classes Ball,
PositionedBall, and MovingBall as follows:

186 Inside Smafltalk



1 "'I i

Object aubel...: #Ball
inatenceV.riebIeNemea: 'color radius'
c....V.riebIeNemea: "
pooIDictioneriea: "
c.tegory: 'Experimental'

Ball aubcl.aa: #PositionedBall
inatenceV.riebIeNemea: 'position'
c....V.riebIeNemea: "
pooIDiction.riea: "
cetegory: 'Experimental'

PositionedBall aubel.aa: #MovingBall
inatenceV.riebleNemM: 'velocity'
c....V.riebIeNemea: "
pooIDictione....: "
cetegory: 'Experimental'

Each new class describes the instance variables that are extra to the instance variables
provided higher up in the hierarchy; Le., instance variables in superclasses cannot be
eliminated in subclasses. For example, the instance variables for instances of the above
classes are the following:

the .........ntetion for .11 inatencee of BeU:
color
radius

the repreaentetion for .11 inatencee of PoeitionedBell:
color
radius
position

the repreeentetion for .11 inatencee of MovingBeII:
color
radius
position
velocity

As you can see, instances of a class automatically inherit the representation of the
instances described by the superclass. This representation inheritance is analogous to
method inheritance; i.e., the notion that instances respond to messages that are either
defined (as methods) in the instance's class or in some superclass higher up in the hierarchy
(if at all).

'This should explain why methods for balls also work for moving balls. More
specifically, a method for balls can only access instance variables color and radius. Such a
method also works for positioned balls and moving balls precisely because they have the
color and radius instance variables in exactly the same locations.

Note that instance variables can only be added - it is not possible to create a subclass
with fewer instance variables than in a superclass. Additional subclasses that introduce
indexed instance variables can also be defined.

Chapter 6 Objects

..
187



MovingBall variabl.Subclass: #lndexableMovingBall
instanceVariebIeNem.: "
cla..VariabIeNem.: "
poolDictionaries: "
category: 'Experimental'

IndexableMovingBall subclass: #ProprietarylndexableMovingBall
instanceVariebleNenws: 'owner'
cla..VariableNem.: "
poolDictionaries: "
category: 'Experimental'

Instances of these classes appear as follows:

the representation for all instances of IndexableMovingBaIl:
color
radius
position
velocity

1
2
3

the representation for all instances of ProprietarylndexableMovingBall:
color
radius
position
velocity
owner

1
2
3

Note that individual instances can have a different number of indexed instance
variables. All named instance variables precede the indexed instance variables even if they
were added in a subclass whose superclass has indexable instances.

6.2.4 Querying Operations

General operations are provided for querying instances about class membership and legal
selectors. Special querying operations for dealing with integers and undefined objects are also
provided.

general queries

188

•

•

anObject class
Returns the receiver's class.

anObject i.KindOf: aClass

Returns true if the receiver's class is aClass or inherits from aClass; false
otherwise.

Inside Smalltalk



•

•

I 'III

anObject i.MemberOf: aClass
Returns true if the receiver's class is aClass; false otherwise.

anObject respondsTo: aSymbol
Returns true if aSymbol is a message selector for a method defined in
anObject's class or a class it inherits from; false otherwise.

specific queries

•

•

•

anObject ialnteger
Returns true if the receiver is an integer; false otherwise.

anObject iaNil
Returns true if the object is undefined; false otherwise; nil is the undefined
object.

anObject notNii
Returns true if the object is defined; false otherwise.

unusual queries

• anObject your.elf
Returns the receiver. Useful for cascading.

Normally, method i&KindOf: is used rather than isMemberOf: because it applies to
instances of all subclasses - 'anObject isMemberOf: aClass' is just short for 'anObject
class == aClass'. Note that a class may respond to a given selector without that operation
being legal. For example, intervals such as 'I to: 6 by: 2' respond to at:put: messages, but
such messages are not legal. There exists an at:put: method in class Interval but it is
defined as follows:

at: index put: anObject
self error: 'you can not store into an interval'

Messages isNii and notNii are implemented in two classes: Object and
UndefinedObject. In Object, isNii always returns false (there is no if statement deciding
what should be returned). In UndefinedObject, isNil always returns true. Clearly, this is
an optimization that takes advantage of Smalltalk's polymorphic message sending capability.

Message yourself is useful for creating and initializing complex objects. For example,
one way of creating an array with run-time computed values is to assign individual elements
using at:put:.

anArray ~ Array new: 6.
anArray at: 1 put: Form white.
anArray at: 2 put: Form veryLightGray.
anArrayat: 3 put: Form IightGray.
anArray at: 4 put: Form gray.
anArray at: 5 put: Form darkGray.
anArray at: 6 put: Form black.

Using cascading, we can shorten this code. Semicolon is interpreted as follows: "The next
message is to be sent to the same object that the previous message was sent to."

Chapter 6 Objects 189



anArray t- Array new: 6.
anArray

at: 1 put: Form white;
at: 2 put: Form veryLightGray;
at: 3 put: Form lightGray;
at: 4 put: Form gray;
at: 5 put: Form darkGray;
at: 6 put: Form black.

A final simplification merges the two statements into one. However, message
yourself is required. If it is omitted, the result returned (as expected) is the value returned by
the last at:put:. But at:put: returns the value that was inserted; in this case, Form black.
Since we want the array itself, sending a yourself message to the same object that the
previous at:put: was sent to gives us the array we want.

anArray t- (Array new: 6)
at: 1 put: Form white;
at: 2 put: Form veryLightGray;
et: 3 put: Form lightGray;
at: 4 put: Form gray;
at: 5 put: Form derkGray;
at: 6 put Form black;
yourself.

6.2.5 Debugging, Inspecting, and Confinning

Class Object provides operations notify:, bait, and baIt: for interfacing with the debugger;
basicInspect and inspect for investigating the contents of objects; and confirm: for
simple true/false request processing. Additionally, it provides the error messaging facility
error:, the handler for messages not understood, and a few well-used error messages.

interfacing with the debugger

190

•

•
•

anObject notify: aString

Creates a notifier (see Fig. 6.5) that permits the user to either invoke the

debugger or proceed as if nothing had happened. Used for inserting

breakpoints during prototyping and testing.

anObject halt

anObject halt: aString

As above but with a different style of notifier (see Fig. 6.6) that provides a

short traceback of the methods called to that point. Parameter aString

becomes the label for the notifier and debugger (if activated); when not

supplied, default 'Halt encountered' is used.

Inside Smalltalk



interfacing with the inspector

•
•

anObject basiclnapect
anObject inspect

Creates an inspector (see Fig, 6.7) in which the user can examine all of the
receiver's instance variables. Method inspect is redefined in subclasses to
provide the contents of the object in a more convenient manner;
basiclnspect is never redefined.

interfacing with the user

• anObject confinn: aString
Creates a menu (see Fig. 6.8) that requests the user to reply either yes or no
to the question posed by aString. Returns the boolean result,

interfacing with the error handler

•

•

anObject error: aString
Creates a notifier via halt:. Can be redefined in subclasses.

anObject doesNotUnderstand: aMessage
The standard handler for messages not understood by the receiver.

often-used error messages

•

•

•

•

•

•

•

anObject prirnitiveFeiled
Announces something like 'a primitive has failed'.

anObject shouldNotlmplement
Announces something like 'this message is not appropriate for this object',

anObject subclassResponsibility
Announces something like 'my subclass should have overridden one of my
messages'.

anObject conflictinglnheritBnceError
Announces something like 'conflicting methods due to multiple inheritance'

anObjecter~rl~~tore

Announces something like 'improper store into indexable object'.
anObject arrorNonintegerlndex

Announces something like 'only integers should be used as indices',
anObject errorSubscriptBounda: index

Announces something like 'subscript is out of bounds: index' where index is
appropriately substituted for.

When a notify: message is executed, a notifier window is created. The string parameter
is displayed as the contents of this notifier. A yellow button menu provides the user with
two options: proceed or debug. The first causes the notifier to disappear and execution to
continue from where it left off. The second causes a debugger to replace the notifier.

Chapter 6 Objects 191



notify: 'rea.ched test1'

8m a II In teger( Obj e c: t» >noti fy:
8mallinteger Object »te::;t'l
8m a IIlnte ger (Obje c: t» >test2:

test1
self

1"nello'

self
______ It.

Figure 6.S Using Notifiers.

Fig. 6.5 was constructed to show what happens if the following methods were
temporarily added to class Object.

1Bst1
self notify: 'reached test1'.
i'hello'

1Bst2
iselft••t1

1Bst3
iself t••t2

1Bst4
iselft••t3
"2001 test4"

When 2001 test4 is executed, the notifier in the upper left comer of Fig. 6.5 appears.
If proceed is chosen, execution proceeds and 'hello' is eventually returned. Choosing
debug, on the other hand, causes the debugger to appear.

192 Inside Smalltalk



I ''11'1 I

The halt: message is similar to the notify: message. It differs in providing a short
traceback of the messages that led to the halt:. Fig. 6.6 illustrates the traceback that results
when notify: in testl above is replaced by halt:.

reached test1

Smalllnteger(Object»>halt:
Smalllnteger(Object»>t est1

Sm alllnteger(Object»>tes t 2

Smalllnteger(Object» >t est3

Smalllnteger(Object»>t;:oes:ut~4..&-...
proceed

Figure 6.6 Using halt: instead of notify:.

The inspect (and basiclnspect) messages create inspectors on the receivers of the
messages. For example,

#(102030) inspect

would create the inspector shown at the top of Fig. 6.7. Message basiclnspect provides the
default inspector for all objects. However, special classes redefine inspect for convenience.
For example, the ordered collection

anOrderedCollection +- OrderedCollection new.
anOrderedCollection eddAII: #(10 20 30).

could be inspected either with

anOrderedCollection besielnspeet or anOrderedCollection inspect.

As can be seen in Fig. 6.7, the basic inspector provides details about the ordered
collection that would be useful to the implementor. With this inspector, we can determine
that the data occupies the central portion of the variable length object - frrstIndex and
lastIndex are used to keep track of the start and end points into this area Presumably, this is
done because data can be added to either end of the ordered collection. On the other hand, this
particular ordered collection has only three items in it. The more specialized inspector
provides us with a user's view of the data. It hides the implementation details that have to do
with the actual position of the data. Indeed, this is the more relevant view to provide. To the
user, the first element is at index 1 (independent of where it is actually stored); i.e., user
subscripts are remapped and interpreted as offsets from firstIndex (plus or minus 1). This can
be confrrmed by the following queries:

Chapter 6 Objects 193



anOrderedColiection size ~ 3
anOrderedCollection at: 1 ~ 10
anOrderedColiection at: 2 ~ 20
anOrderedColiection at: 3 ~ 30

So far, specialized inspectors are provided for classes OrderedCollection, Dictionary,
and View. Specialized inspectors also provide special yellow button menu items. Inspectors
for ordered collections, for example, additionally permit you to insert or remove items into
the collection. Inspectors for dictionaries permit new keys to be added and existing keys to be
removed. Finally, inspectors for views also display the associated model and controller and
permit them to be manipulated with the same ease as the view.

20
self
1

t
3

self
firstlnde
lastlnde
1
2
3
4
5

I.
7
S
9
10

inspect
Insert

194

Figure 6.7 Using inspect: on an Array; also basicInspect: and inspect:
respectively on an Ordered Collection.

Inside Smalltalk



I'!ll':

Confirmers provide a very simple facility for interactive debugging and/or querying.
Fig. 6.8 provides a simple illustration. When a confirmer appears, the user must choose
either yes or no. The choice is returned as a boolean.

Shall we meet Sa turday'?

yes t:. no

Figure 6.8 The result of executing "self confirm: 'Shall we meet Saturday?....

6.2.6 Meta Operations for Accessing and Modifying Objects

Meta operations are operations that provide information about an object as opposed to
information directly contained by the object For example, an operation that determines the
number of named instance variables in an instance is a meta operation. An operation that
permits the value of a named instance variable to be extracted without knowing the name of
the instance variable is another meta operation. Clearly, meta operations are nonstandard.
They permit things to be done that are not normally possible - they are powerful and,
consequently, dangerous.

In this section, we consider the meta operations that permit the instance variables,
both named and indexed, to be accessed. The operations are intended for sophisticated users
and sophisticated applications. The casual reader might read this section, not so much with
the intention of using these operations, but rather with the goal of understanding them so
that the subsequent section dealing with copying operations will be better understood.

Recall that an object consists of zero or more named instance variables and zero or
more unnamed indexed instance variables. Operations are provided to determine the number
of each category of variables and to access and change them.

size queries

•

•

•

anObjeet .ize
Returns the number of indexed instance variables. This is often redefined in

subclasses to mean the number of items contained in an object; e.g.,
consider sets and ordered collections.

anObject b••icSize
An alternative for .ize that is not redefined in subclasses.

aClass in.tSize
Returns the number of named instance variables. Note: must be sent to the
instance's class.

classification queries

• anObject i.V.ri.ble
Returns true if and only if the instance is a member of a class that has
indexed instance variables.

Chapter 6 Objects 195



accessing and modifying named instance variables

•

•

anObject instVarAt: anlnteger
Returns the value of the named instance variable at positIOn anlnteger.
Legal positions range between 1 and the number of named instance
variables, anObject cia•• in.tSize. An error is reported if the position is not
an integer or if it is out of range.

anObject in.tVarAt: anlnteger put: anotherObject
Changes the value of the named instance variable at position anlnteger to
anotherObject and returns anotherObject. Legal positions range between 1

and anObject cia•• in.tSize. An error is reported if the position is not an
integer or if it is out of range.

accessing and modifying indexed instance variables

•

•

•
•

anObject at: anlnteger
Returns the value of the indexed instance variable at index anlnteger. Legal
index values range between 1 and anObject basicSize. An error is reported
if the index is not an integer or if it is out of range. This method is often
redefined in subclasses.

anObject at: anlnteger put: anotherObject
Changes the value of the indexed instance variable at index anlnteger to
anotherObject and returns anotherObject. Legal index values range
between 1 and anObject b••icSiz•. An error is reported if the index is not
an integer or if it is out of range. This method is often redefined in
subclasses.

anObject b.sicAt: anlnteger
anObject b.sicAt: anlnteger put: anotherObject

Alternatives for .t: and .t:put: that are not redefined in subclasses.

As indicated, methods size, at:, and at:put: are often redefined in subclasses. The
collection classes in particular provide these operations as standard operations. Hence, for
collections, they are no longer meta operations. When the meta operations are desired,
equivalents basicSize, basicAt:, and basicAt:put: should be used instead.

With these operations, it is possible to implement a general comparison operation that
will work on arbitrary objects. The general =operation is defined to mean identity in
Smalltalk - it can be found in class Object A more conventional semantics is provided by
redefining = in all subclasses. An attempt at implementing a more flexible and more accurate
= is shown below.

Unfortunately, this method is inadequate because it gets into infinite loops with
recursive structures. A revision that takes this into account is possible but it is more
complex. One approach is to keep track of objects that are in the midst of being compared. If
they are encountered a second time, they are assumed to be equal. If they are not, two
corresponding fields will ultimately be found that are not equal.

196 Inside Smalltalk



1 '11I'1

= anObject
"An example to show how equality could be implemented in Smalltalk. This method
considers two objects to be equal if they are both instances of the same class, have
the same number of instance variables, and corresponding instance variables are
recursively equal."
self == anObject ifTrue: [itrue).
self c == anObject cl... ifF.lse: [ifalsel.
self c instSize = anObject cl... instSize ifF....: (ifalsel. "named fields"
self besicSize =anObject besicSize ifF....: (ifalsel. "indexed fields"
1 to: self cl... instSize do: (:index I "named fields"

(self instV.rAt: index) = (anObject instV.rAt: index) ifF.I..: (ifalse)).
1 to: self besicSize do: (:index I "indexed fields"

(self b.sicAt: index) =(anObject besicAt: index) ifF.I..: (ifalse)).
itrue

We will use the notion of an identity dictionary and an identity set to keep track
of the required infonnation. These classes of objects are discussed in detail in the chapter on
collections. Briefly. an identity dictionary is like an array except that the subscripts or keys
are arbitrary objects. Each key has associated with it all other objects that are candidates as
equal objects. These objects are kept in an identity set so that they can be distinguished.

=anObject
"A better example to show how equality could be implemented in Smalltalk. This
method considers two objects to be equal if they are both instances of the same
class, have the same number of instance variables, and corresponding instance
variables are recursively equal. It also takes circular structures into account."
i self priv.teComp.re: anObject using: IdentityDictionary new.

priv.teComp.re: anObject using: comparisonlnProgressDictionary
"Private method supporting the implementation of = that handles circular
structures."
I candidateslnProgress I
self == anObject ifTrue: (itruel.
self cl == anObject cl... ifF.lse: (ifalsel.
self cl instSiz. =anObject cl.ss instSize ifF....: (ifalsel. "named fields"
self b.sicSiz. =anObject besicSize ifF.I..: (ifalse). "indexed fields"

"Are we in the midst of comparing these two objects already?"
candidateslnProgress ~ comparisonlnProgressDictionary

.t: self
ifAbHnt:(

comparisonlnProgressDictionary .t: self put: Set n.w "returns the set").
(candidateslnProgress includes: anObjectl ifTru.: (itrue "consider it equal so far").
candidateslnProgress edd: anObject.

"Continue testing corresponding fields of the objects."
1 to: self cl.ss instSize do: (:index I "named fields"

«self instV.rAt: index) priv.teCompare: (anObject instV.rAt: index)
using: comparisonlnProgressDictionary) ifF.lse: lifalse)).

1 to: self b.sicSiz. do: I:index I "indexed fields"
«self b.sicAt: index) priv.teComp.re: (anObject basicAt: index)

using: comparisonlnProgressDictionary) ifF.Is.: lifalse)).
itrue

Chapter 6 Objects 197



It is important to note that the above is not the =method provided in class Object.
Smalltalk takes a more conservative approach and dictates that the default = for all objects
will be ==. Subclasses provide a more appropriate definition by redefining =when necessary.
For example, it is redefined in class ArithmeticValue and Rectangle but not in other
graphical classes like Form.

6.2.7 Copying Operations: Shallow versus Deep Copies

When an object is copied, a new instance with the same number of named and indexed
instance variables is created. A shallow copy (see Fig. 6.9) is obtained if the fields of the
new object are bound to the corresponding fields of the original; i.e., if the fields are not
copied.

anObject

shallowCopy
of

anObject

Figure 6.9 A shallow copy.

.an Empty Set

string 'hello here'

t1oaO.14

A deep copy (see Fig. 6.10) is obtained if the fields of the new object are bound to
deep copies of the corresponding fields of the original - recursion stops for immutable
objects like integers.

anObject

deepCopy
of

anObject

an Empty Set

--+---...., string'helJohere'

00aO.14

_-4-_-..-:--~tanEmpty.Set )

--+----~:_{string'bell~ here'.)

Figure 6.10 A deep copy.

As you might guess, deep copies are more expensive than shallow copies. Hence the
standard copy defaults to shallow copying.

198 Inside Smalltalk



copying

•

•

•

anObject copy
Returns a shallow copy of anObject. Subclasses typically override this class
when a shallow copy is not sufficient.

anObject deepCopy
Returns a deep copy of anObject. Gets into infinite loops for objects with
circular structures. Fails to make a copy if the class of anObject is Object.

anObject .hellowCopy
Returns a shallow copy of anObject. Fails to make a copy if the class of
anObject is Object.

As you can see, there are two deficiencies. First, you cannot make a copy of an
instance of class Object. This is likely to be historical since Object must have been an
abstract class in the past; i.e., a class which did not permit instances. However, it is now
perfectly legitimate to create instances of Object; e.g.,

object1 ~ Object new.
object2~ Object new.
object1 == object2 ~ f.l.e

is legal. We actually use this in the switch windows chapter for creating connection
objects between one-on switches (see Volume 2, Section 5.2.4). The only requirement is
that these connection objects be unique objects.

The second deficiency has to do with the deep copy operation - it does not handle
circular structures and hence can get into an infinite loop. This is not a problem in practice
because subclasses redefme this operation when problems occur.

It is instructive to examine one of these operations. We consider the deepCopy
method; shallowCopy differs only by eliminating the recursive calls. New instances are
created using basicNew or basicNew: depending on whether or not the instance is a member
of a class with indexed instance variables.

deepCopy
"Returns a copy of the receiver with its own copy of each instance variable."

I newObject class index I
class~ self cl....
(class == Object) ifTrue: Itself]. "Remove this line to make it work for Object
instances."

"First handle the indexed instance variables."
class i.V.riable

ifTrue: ["has indexed variables"
index~ self b••icSize.
newObject ~ class b••icNew: index.
[index> 01 whileTrue: [

newObject b.sicAt: index put: (self basicAt: index) deepCopy.
index ~ index - 1]J

ifF.I.e: ["does not have indexed variables· newObject ~ class b.sicNewl.

Chapter 6 Objects 199



"Second, handle the named instance variables."
index~ class in.tSize.
[index> OJ whileTrue: [

newObject instVarAt: index put: (self in.tVerAt: index) deepCopy.
index ~ index - 1).

inewObject

6.2.8 Comparison Operations: Identity versus Equality

This section summarizes the comparison operations previously mentioned above. Identity
operations (== and --) permit the user to determine whether or not two objects are the same;
equality operations (= and -=) provide a comparison based on the contents of the objects.
The identity operation is never redefined in subclasses. The default equality operation is
defined to be identity in Object. Subclasses redefine it to provide a more appropriate version
in special cases. For example, =is redefined in such classes as Character, Integer, Fraction,
Float, Date, Time, Point, Rectangle, SequenceableCollection, and String.

When =is redefined in a new class, it is also customary to provide a definition for
method hash, which is intended to return an integer unique to the object. This value is used
to speed up lookup in container classes such as sets and dictionaries. An example is provided
in the chapter on magnitudes in the context of class Complex.

Because the comparison operations are so simple, code implementing the methods is
also shown. Note that only == and hash are primitive. All other operations are implemented
in terms of these two.

identity comparisons

•

•

anObject == anotherObject

"Returns true if anObject and anotherObject are the same; otherwise false.

Not redefined in any subclass."

<primitive: 110>

self primitiveFeiled "a simple error message"

anObject -- anotherObject

"Returns true if anObject and anotherObject are not the same; otherwise

false."

i(self == anotherObjectl not

equality comparisons

200

•

•

anObject = anotherObject

"Defined as ==. If = is redefined in a subclass, also consider redefining
method hash."

i self == anotherObject

anObject -= anotherObject

"Returns the not of =."

i(self =anotherObjectl not

Inside Smalltalk



• anObject ha.h
"Returns an integer unique to the object. Used to speed up searching."

<primitive: 75>
self primitiveFailed "a simple error message"

6.2.9 ReadNVrite Operations: PrintStrings and StoreStrings

When a new class of objects is defined, one of the first objectives is to provide operations
that will enable the objects to be printed. A secondary objective might be to be able to store
the objects into a file for later retrieval. Class Object provides the default protocol for both
of these objectives.

Printing Objects Our Own Way: An Example

We can best illustrate the goals mentioned above with an example. Suppose we defined a
class of objects called Dog with a simple protocol that permits dogs to be named.

Class Dog

class name
superclass
instance variable names

instance methods

Dog
Object
name

name access and modification

..,.
tname

name: aSymbol
name +- aSymbol

It is now a simple matter to create two dogs as follows:

dog1 +- Dog new name: #Barfy.
dog2 +- Dog new name: #Woofy.

One of the first things we might do with such dogs is attempt to print one while in the
browser or in a workspace. Ifwe do, the answer will print as follows:

a Dog

A second goal might be to attempt to convert one into a string representation. We might
have seen this done elsewhere in a previous chapter. So we might try to print the following:

dog1 +- Dog new name: #Barfy' idog1 printString

Perhaps somewhat unexpectedly, the result is

'a Dog'

Chapter 6 Objects 201



Clearly, there must be a connection between the print string of an object and the
characters printed as a result of selecting print it in a browser or workspace. It is also
possible to obtain another kind of string as follows:

dog1 f- Dog new name: #Barfy. idog1 storeString

The result is

'(Dog basicNew instVarAt 1 put: #Barfy; yourself)'

This string is interesting, not so much because it contains meta operations, but
because it is executable code. If the contents were executed, the results would be an instance
of Dog containing the same information as the original. We can now define the two kinds of
strings.

A print string of an object is a string containing a textual representation of the
object. It is often (but not always) sufficiently informative that alternative instances of the
same class can be differentiated. A store string is a printable representation that can be used
to re-create an equivalent instance. For some objects, like integers, the print and store strings
are the same.

An obvious goal for our Dog class would be to provide methods that would enable
better print and store strings to be created. The obvious solution is to redefine methods
printString and storeString in class Dog. However, this turns out to be the wrong thing
to do. If we ask for all implementors of printString (e.g., type printString in the browser
and select explain), we find that there is exactly one - the same holds for storeString. It
is worth looking at them because they reveal a better solution.

printString
"Returns a string whose characters are a description of the receiver."
I aStream I
aStream f- WriteStream on: (String new: 16).
self printOn: aStream.
i aStream contents

storeString
"Returns a string representation that can be used to reconstruct the receiver."
I aStream I
aStream f- WriteStream on: (String new: 16).
self storeOn: aStream.
i aStream contents

From these methods, it should be clear that the real work is being done by printOn:
and storeOn:. Indeed, if we ask for all implementors of printOn:, we find a large number of
distinct implementations. The same applies for storeOn:.

Each method constructs a write stream, an in-core file designed to store characters into
a string that is initially sixteen characters long - the string is automatically extended if
more space is required. The printOn: and storeOn: methods append characters to this
stream. Afterwards, message contents extracts the stored characters and returns them as a
string.

202 Inside Smalltalk



To design better print and store strings for instances of Dog, we must provide our own
versions of printOn: and storeOn:. To do so, however, we need a basic understanding of
the stream protocol. A summary is provided below (the complete protocol is discussed in
depth in the chapter on collections).

•

•

aStream nextPut: aCharacter
Adds aCharacter to the end of the stream.

aStream nextPutAlI: aString
Adds each character of aString to the end of the stream.

The next step is to decide on a suitable print and store string. A reasonable print string
would be the dog's name. For the store string, we could generate the same code that was used
to construct the dog in the first place. The result would be the following:

dog1 ~ Dog new name: #Barty. idog1 printString => 'Barty'
dog1 ~ Dog new name: #Barty. idog1 storeString => '(Dog new name: #Barty)'

Additionally, simply executing dogl in a workspace would result in the print string being
printed without the brackets; i.e.,

dog1 ~ Dog new name: #Barty. i dog1 => Barty

Clearly, the workspace uses the print string to produce its result. We extend class Dog by
adding the following instance methods:

printing and storing

printOn: aStream
"Adds the receiver's name to the stream and returns the receiver."
aStream nextPutAlI: name

storeOn: aStream
"Adds the code needed to re-create the receiver to the stream and returns the
receiver."
aStream nextPutAlI: '(Dog new name: #'; nextPutAlI: name; nextPut: $)

All of this can be summarized as follows:

To create a print string unique to a c....:
Redefine method printOn:.

To create a store string unique to a cia..:
Redefine method storeOn:.

The ReacLWrite Protocol

Class Object contains the methods for operations printString and storeString, along with
the default implementation of priotOn: and storeOn: that are often redefined by subclasses.

Chapter 6 Objects 203



In addition, it provides a default class method for converting a string to an object. The
protocol is summarized as follows:

conversion from objects to strings (methods that need never be redefined)

•

•

anObject printString
Returns a string whose characters are a description of the receiver. Uses
self printOn: aStream.

anObject storeString
Returns a string representation that can be used to reconstruct the receiver.
Uses self storeOn: aStream.

writing into streams (methods normally redefined by users)

•

•

anObject printOn: aStream
Inserts a sequence of characters that identifies the receiver into aStream.
Ohen redefined in subclasses. The default provided by this method is the
class name preceded by 'a' or 'an '.

anObject storeOn: aStream
Inserts a string representation that can be used to reconstruct the receiver
into aStream. Ohen redefined in subclasses. The default provided by this
method is code constructed via meta operations basicNew (or basicNew:),
instVarAt:put:, and basicAt:put:; recursive structures are not handled.

reading from streams: i.e., converting from strings to objects

• Object readFrom: aStringOrAStreamContainingOneObject
Compiles and evaluates the contents of the argument and returns the result.
The inverse to storeString.

As can be seen, storeString and readFrom: are complementary operations; i.e.,

Object readFrom: anObject storeString

should re-create anObject. Note, however, that storeString, more specifically storeOn:,
does not handle circular structures. When classes with inherently circular structures are
defined, it is necessary to redefine storeOn: to ensure termination. To read multiple objects
from a file, they must be separated by some distinguishable character. In some
circumstances, a carriage return character is suitable; in others, a special character like $!
might do. Special stream operations can be used to extract substrings bounded by the
characters. The readFrom: method can be used on the individual substrings.

The printOn: and storeOn: methods for Object provide a useful default for new
classes. They are defined as follows:

printOn: aStream
"Inserts a sequence of characters that identifies the receiver into aStream. Ohen
redefined in subclasses. The default provided by this method is to provide the class
name preceded by 'a' or 'an '."
I title I
title ~ self class name.
aStream nextPutAII: ((title at: 1) isVowel ifTrue: ['an '] ifFalse: ['a 'J), title

204 Inside Smalltalk



storeOn: aStream
·Inserts a string representation that can be used to reconstruct the receiver into
aStream. Often redefined in subclasses. The default provided by this method is to
provide code constructed using meta operations basicNew (or basicNew:l,
instVarAt:put:, and basicAt:put:; recursive structures are not handled.·
aStream nextPut: $(.
self class isVariable

ifTrue:!
aStream

nextPutAlI: '(', self cla_ name, , basicNew: ';
stON: self basicSize; nextPutAll: ') ')

ifFalse: !aStream nextPutAll: self cla_ name, , basicNew').
1 to: self class instSize do: !:i I ·named instance variables·

aStream
nextPutAlI: ' instVarAt: '; store: i;
nextPutAll: ' put: '; stON: (self instVarAt: i); nextPut $;).

1 to: self basicSize do: [:i I ·indexed instance variables·
aStream

nextPutAll: ' basicAt: '; store: i;
nextPutAlI: ' put: '; stON: (self b..icAt il; nextPut: $;).

aStream nextPutAll: ' yourself)'

Note that 'aStrearn store: anObject' is equivalent to 'anObject storeOn: a stream'
for an object to be stored, so must the fields. The stream protocol relevant to the storeOn:
method includes

writing characters and strings into streams

•

•

aStream nextPut: aCharacter
Adds aCharacter to the end of the stream.

aStream nextPutAlI: aString
Adds each character of aString to the end of the stream.

writing other kinds of objects into streams

•

•

aStream print: anObject
Actually executes 'anObject printOn: aStream·.

aStream store: anObject
Actually executes 'anObject storeOn: aStream·.

Method readFrom: is much simpler. It is a class operation, not an instance
operation.

readFrom: aStringOrAStreamContainingOneObject
·Compiles and evaluates the contents of aStringOrAStreamContainingOneObject
and returns the result. The inverse to storeString.·
I object I
object t-- Compiler evaluate: aStringOrAStreamContainingOneObject.
(object isKindOf: self) ifFal..: [self .rror: self name, , expected'].
iobject

Chapter 6 Objects 205



Method readFrom: is redefined in classes Date and Time to permit a special syntax
to be used as input. It is also redefined in classes such as Number, Integer, Float, and
String for use by the compiler. A variation is also provided in class Form, which expects a
file name instead of the usual string or stream as first parameter. Class RunArray also
provides a variation for special run-arrays of small integers.

6.2.10 Meta Operations for Indirect Execution (perfonn:)

This section should be skipped on first reading. It is concerned with advanced Smalltalk
facilities for manufacturing messages from data and subsequently executing the manufactured
messages. We refer to the facility as indirect message passing. We document the methods
first and then we consider examples that illustrate their use.

indirect message execution

•
•
•
•
•

anObject perform: selectorSymbol
anObject perform: selectorSymbol with: object1
anObject perform: selectorSymbol with: object1 with: object2
anObject perform: selectorSymbol with: object1 with: object2 with: object3
anObject perform: selectorSymbol withArgumenta: anArrayOfObjects

Method perform:withArguments: causes the message indicated by selectorSymbol to be
sent to anObject - the array contains the parameters for the message. The value computed is
returned. The number of parameters provided must match the expected number; otherwise,
error message doesNotUnderstand: is invoked. The first four operations are efficient
variations of the last that don't require the parameters to be in an array.

Example

Trivial use of the facility is shown below to illustrate the correspondence between normal
message passing and indirect message passing.

10 factorial
<=) 10 perform: #factorial
<=) 10 perform: #factorial withArgumenta: #()

1+2
<=) 1 perform: #+ with: 2
<=) 1 perform: #+ withArgumenta: #(2)

Array new: 3
<=) Array perform: #new: with: 3
<=) Array perform: #new: withArgumenta:#(3)

1 between: 0 and: 2
<=) 1 perform: #between:and: with: 0 with: 2
<=) 1 perform: #between:and: withArguments: #(0 2)

206 Inside Smalltalk



I! i''illli! !

Using perfonn: to Simulate Case Statements

Once in a while, a method is designed with the following basic structure.

character ~ ...
('0123456789' includes: character)

ifTrue: Itself numericCaael.
('([{' includes: character)

ifTrue: Itself brecketeeael.
('+-*f includes: character)

ifTrue: Itself operatorCaael.

symbol~ ...
(symbol == #case1)

ifTrue: Itselfcaae1Processl
(symbol == #Case2)

ifTrue: Itself caae2Processl
(symbol == #case3)

ifTrue: Itself caae3Processl

One way of avoiding long sequences of special tests is to construct an array containing
the selector to be used for specific subscripts and invoke it using indirect message passing.
For instance, in the character case above, we could construct an array as follows:

specialArray ~ Array new: 256.
specialArray atAIIPut: #errorCase.
'0123456789' do: l:aCharacter I

specialArray at: (aCharacter aslnteger) + 1 put: #numericCasel.
'(l{' do: l:aCharacter I

specialArray at: (aCharacter aslnteger) + 1 put: #bracketCasel.
'+-*f do: l:aCharacter I

specialArray et: (aCharacter aslnteger) + 1 put: #operatorCasel.

Typically, this special array would be a class variable initialized in a class method such
as initialize. This technique is used, for example, by the compiler. The original method is
then modified to eliminate the series of tests as follows:

self perform: (specialArray at: character aslnteger + 1)

A second approach is to actually manufacture the required selector when required. For
the symbol case above, the method code could be replaced by the following:

self perform: (symbol. 'Process') ..symbol

Concatenating variable 'symbol' with 'Process' results in a string (rather than a
symbol). It is converted back using asSymbol.

Recall a previous example concerned with explaining how yourself was intended to be
used. The example was

anArray ~ (Array new: 6)
at: 1 put: Form white;
at: 2 put: Form veryLightGray;
at: 3 put: Form IightGray;
at: 4 put: Form gray;
at: 5 put: Form darkGray;
at: 6 put Form black;
yourself.

Chapter 6 Objects 207



An alternative using perform: and collect: can be written as follows. The collect:
operation creates an array the same size as the receiver but with elements that are computed
from the elements of the original.

anArray +- #(white veryLightGray IightGray gray darkGray black) collect: [:element I
Form perform: elementl.

6.2.11 Advanced Meta Operations

In this section, we consider operations become: and doesNotUnderstand:. The former is
a powerful object mutation operation. The latter is invoked when an inappropriate message
is sent to an object. It is provided with an instance of class Message as parameter. The first
section considers the become: operation in detail; the second reviews the protocol for
Message and how it can be used to implement doesNotUnderstand:. The final section
makes use of the two operations to implement a class of indirection objects that can be
used for monitoring messages sent to specific objects.

The become: Operation

There are several classes of objects in Smalltalk that automatically grow to accommodate an
arbitrary number of elements. For example, consider the following:

aSet +- Set new.
aBag +- Bag new.
aDictionary +- Dictionary new.
anOrderedCollection +- OrderedCollection new.

1 to: 1000 do: [:index I
aSet add: index.
aBag add: index.
aDictionary at: index put: index+1.
anOrderedCollection add: index)

Each of these instances is an object with a fixed number of indexed instance variables.
When a new set is constructed, for example, it is created with room for a maximum number
of elements. A reasonable initial size might be sufficient to hold, say, ten elements. What
happens when we attempt to add the eleventh element?

From the user's point of view, the object simply grows bigger. At the implementation
level, however, there is more to it. More specifically, a new larger object is created and
initialized with the same elements as the original; i.e., a shallow copy is created. Next
comes the more difficult task. All references to the original object are changed to refer to the
new object. Such a powerful operation is provided as a user primitive.

object mutation

208

• anObject become: anotherObject

All references to anObject are rerouted to anotherObject and vice versa.

Does not work if anObject or anotherObject is a small integer.

Inside Smalltalk



1'1'1 I

Diagrammatically, the effects of the become: operation are shown in Fig. 6.11. All
references to objectl and object2 are swapped.

•
• •

•

• •

Figure 6.11 Operation become: swaps references.

Depending on the implementation, the become: operation can be either very
inexpensive or very expensive. In particular, implementations that make use of an object
table are very efficient. In these systems, all references are typically indices into an object
table whose entries point at the actual objects. The become: operation is implemented by
swapping two pointers in the object table. Because of the overhead incurred by continual
indirection, more efficient implementations eliminate the notion of an object table in favor
of direct pointers. In these systems, a naive implementation of become: requires a global
search through all memory to change all references. More sophisticated implementations
make use of special indirection objects that redirect messages to the intended recipient. In the
worst case, both objects of the become: operation are copied into new objects and the
originals are changed into these "invisible" indirection objects. The overhead that used to
occur for all objects in implementations with object tables now occurs only for the special
objects of become:. Over time, this slight increase in indirection overhead is permanently
removed by the garbage collector - one of its tasks is to short-circuit indirection objects.
To avoid slowing down the Smalltalk interpreter, special tricks are used to make sure that
checking for indirection objects is not needed.

The become: operation is interesting because it permits virtually any object to be
mutated into another. This could have application, for example, in the design of adaptive
objects that monitor their access history. For a simpler example, suppose we intended to
unify classes Array and OrderedCollection. The former is more efficient to access because
there is no internal remapping of the subscripts. However, arrays do not automatically grow
to accommodate more elements. Ordered collections are more flexible; for example, they can
be extended by simply adding new elements. The add: operation could be added to Array as
follows:

Chapter 6 Objects 209



anArray add: anElement
I arrayAlternate I
arrayAlternate~ self asOrderedCollection.
arrayAlternate add: anElement.
self become: arrayAlternate.
ianElement

Attempts to add: to an array automatically cause it to mutate into an ordered collection.
Whether or not this is a good idea is a separate and independent issue.

Class Message and the doesNotUnderstand: Operation

When an inappropriate message is sent to an object, the message (both the selector and the
arguments) is encoded in an instance of class Message and sent back to the same receiver as
the parameter to doesNotUnderstand:.

the standard error handler

• anObject doesNotUnderstend: aMessage

The standard handler for messages not understood by the receiver.

If we wish to introduce a variation of this method for a special class of objects (as we
will in the next section), it is necessary to know the protocol for instances of Message.

instance creation

•
•
•

Message selector: aSymbol

Message selector: aSymbol argument: anObject

Message selector: aSymbol arguments: anArray

Returns a new instance of Message containing the selector and arguments.

Variations are provided for situations with 0, 1, or many arguments.

accessing

•
•

aMessage selector

aMessage arguments

Returns the selector symbol and the arguments array respectively.

printing

210

•

•

aMessage printOn: aStream

Adds a sequence of characters in the format 'a Message with selector:

selector and arguments: arguments' to aStream.

aMessage .toreOn: aStream

Adds a sequence of characters in the format '(Message selector: selector

arguments: arguments)' to aStream.

Inside Smalltalk



With this protocol, a simple version of doesNotUnderstand: can easily be written
as follows:

anObject do..NotUnd.rstend: aMessage
"First. create a notifier that will permit a debugger to be scheduled."
self halt: 'receiver does not understand ., aMessage ••Iector printString.
"Second, if the user proceeds, re-attempt the original message."
"Another doesNotUnderstand: message will result if the problem was not fixed."
self perfonn: aMessage ..lector withArgum.nts: aMessage arguments

Indirection Objects - become: and doBsNotUnderstand:

Sometimes it is useful to monitor specific messages sent to specific objects; e.g., to locate a
design error. The usual approach is to modify the method to be monitored. Another less
intrusive technique consists of creating a special indirection object for the task. To illustrate
the approach, suppose we wish to monitor global variable Smalltalk to determine how often
message size is sent to it.

We create a new class called Indirection, which can be later specialized for a specific
application. The indirection object plays the role of a gateway for another object, the
intended receiver, which it metaphorically surrounds. Using the become: operation, all
references to the intended receiver are changed to the indirection object. The indirection object
intercepts the messages meant for the intended receiver via method doesNotUnderstand:
and reroutes them using perform:withArguments:.

To ensure that the Indirection class remains generic, we will subsequently specialize
it to a subclass called IndirectionForSmalltalk.

Class Indirection

class name
superclass
instance variable names
comment

class methods

instance creation

Indirection
nil
intendedReceiver
Create this class with superclass Object; afterwards, inspect
Indirection and change the superclass to nil.

on: anObject
I anlndirection I
anlndirection +- self new initializ.PI.a••.
anObject b.come: anlndirection. "Indirections don't understand become:."
"Now the two are switched: initialize the indirection object."
anObject intend.dReceiv.rPI....: anlndirection.
ianObject

instance methods

instance initialization

initializ.PIea..
"No-op. Provided in case subclasses need to redefine it."

Chapter 6 Objects 211



intended receiver access and modification

intendedReceiwrPIee..
ii ntendedReceiver

intendedReceiverPlea..: anObject
intendedReceiver +- anObject

object redirection

doesNotUnderstand: aMessage
iintendedReceiver

perform: aMessage selector withArguments: aMessage arguments

deactivation

deactivate
self become: intendedReceiver.
inil

To ensure that a maximal number of messages are rerouted through
doesNotUnderstand:, it is essential that class Indirection not inherit from a class with
a large number of operations. One solution is to use a superclass such as
UndefinedObject. Unfortunately, it inherits a few too many operations from Object.
Another solution is to use no superclass at all; i.e., like class Object, use nil as the
superclass. Unfortunately, attempts to use nil as the superclass when defining Indirection
will always result in error messages and an unsuccessful definition. The solution is to define
Indirection with any legal superclass like Object and then change it using an inspector.
The inspector will permit the superclass field of Indirection to be changed to nil. It is
actually possible to file out this modified class although you cannot file it back in (unless it
is restored to what it what before modification by the inspector).

Once the superclass of Indirection is set to nil, only four messages are directly
understood by indirection objects: initializePlease, intendedReceiverPlease, intended
ReceiverPlease:, and deactivate - all others end up in doesNotUnderstand:, which
reroutes them to the intended receiver.

To monitor messages sent to global variable Smalltalk, we create a special subclass
of Indirection whose sole purpose is to record the number of times message size is sent to
it. Of course, this message is also rerouted to the intended receiver. Any number of messages
could be monitored this way (all of them if doesNotUnderstand: was suitably redefined).

An example method is provided to illustrate how Smalltalk can be monitored. Note
that no attempt should be made to debug such a class unless you are prepared to restart the
system because it is very easy to cause problems that result in infinite loops. For example,
the first version of the system had the arguments to become: in method on: above
switched. The indirection object of course did not understand become: since it is an
operation associated with class Object. Hence, it was rerouted to the
doesNotUnderstand: method, which sent it to the as yet uninitialized intended receiver,
causing nil and Smalltalk to "become" each other. The sequence continued through other
complications but the end result was an infinite loop that could not be stopped. The moral is
simple: be prepared.

212 Inside Smalltalk



i i~i

Class IndirectionForSrnalltalk

class name
superclass
instance variable names

class methods

examples

IndirectionForSmalltalk
Indirection
sizeReferences

.ump"1
I anlndirection count I
anlndirection +- IndirectionForSmalltalk on: Smalltalk.
10 tim••R.peat: ISmalltalk .iz.).
count +- anlndirection .iz.R.f.renc..P......
anIndirection d••ctiv.t•.
tcount
"'ndirectionForSmalltalk example1"

instance methods

special initialization

initi.lizePIeese
super initi.lizeP......
sizeReferences +- 0

special queries

.izeReferenceaPl....
t sizeReferences

monitored methods

size
sizeReferences +- sizeReferences + 1.
tintendedReceiver .iz.

After successfully monitoring variable Smalltalk, temporary class IndirectionFor
Smalltalk can be removed from the system. A useful extension to class Indirection would
be to add become: as one of the operations it understands. This would permit indirections to
be created on arbitrary objects; i.e., either ordinary objects or other indirection objects.

6.3 CLASS UNDEFINEDOBJECT

UndefinedObject is the class for object nil, its sole instance. It is the value assigned to all
uninitialized variables; i.e., both to local variables in methods and to named and indexed
instance variables in objects created via messages such as basicNew and basicNew:.

UndefinedObject is also a subclass of Object (see Fig. 6.12). Hence it inherits the
general Object protocol. For instance, it responds to = and - and equivalently to = and -=
since these default to = and -- in Object

Chapter 6 Objects 213



UndefinedObject

Figure 6.12 The UndefinedObject hierarchy.

In addition, UndefinedObject supports the following minimal protocol.

instance creation (disabled)

• UndefinedObject new
Gives an error message; new instances not allowed.

dependency maintenance (disabled)

• nil addDependent: anObject
Gives an error message; dependents not allowed.

no-ops for window management and copying

•

•
•

nil release
For window management, returns nil.

nil deepCopy
nil shallowCopy

For copying, returns nil - the receiver.

printing

•
•

nil printOn: aStream
nil storeOn: aStream

Stores and prints as 'nil'.

testing

•
•

nil isNil
nil notNil

Returns true and false respectively. Equivalent methods in class Object
return the converse.

6.4 CLASS BLOCKCONTEXT (BLOCKS FOR SHORn

In languages like Pascal, C, or Ada, square brackets would be interpreted as syntax that
merely serves to bracket certain segments of the code; e.g.,

I sum index I
sum f- O. index f- 1.
[index <= 101 whileTrue: [sum f- sum + index. index f- index + 11.
Transcript show: 'The sum from 1 to 10 is', sum printString

214 Inside Smalltalk



I 'til I

In Smalltalk, the bracketed constructs (square brackets included) are called blocks
they are objects that can be manipulated like other objects. For example, it is perfectly legal
to execute the following:

I aSet count aBlock I
"Add a block to a set."
aSet ~ Set new. count ~ O.
aSet add: [count ~ count + 1).

"Save a block in a local variable."
aBlock~ [count fectorial].
aSet add:aBlock.

The block [count ~ count + 1] is passed as a parameter to add: and inserted into the
set - the set now contains one element, a block. At first sight, this is confusing. Why
would you want to do this, or more to the point, what precisely is a block and what can you
do with one?

Technically, a block is an instance of class BlockContext (see Fig. 6.13).
Intervening classes are omitted because they are not essential to the discussion - they are
primarily of interest to compiler implementors.

(Or)
:

Figure 6.13 The partial Block hierarchy.

But functionally, a block is an unnamed function. It may have zero or more
parameters and it can be invoked with the following special protocol.

evaluating (invoking) a block

•
•
•
•
•

aBlock value
aBlock value: parameter
aBtock value: parameter1 value: parameter2
aBlock value: parameter1 value: parameter2 value: parameter3
aBlock valueWithArguments: anArrayOfParameters

Evaluates the block with the parameters provided. The number of
parameters supplied must match the number expected. Returns the last
expression computed unless an explicit i-statement is encountered; in that
case, returns the i-statement value to the sender of the method in which
the block was defined (not to the sender of the value message).

Chapter 6 Objects 215



A block is defined by executing the square bracketed construct. For example, consider
the following:

I blockO block1 block2 I

"Defining three blocks."
blockO f-- [Transcript show: 'hello'l.
block1 f-- [:name ITranscript show: namel.
block2 f-- [:firstName :lastName I

Transcript nextPutAlI: firstName; space; show: lastNamel.

"Invoking the blocks."
blockO value. "Causes 'hello' to output on the transcript."
blockO valueWithArguments: #(). "Also causes 'hello' to output on the transcript."

block1 value: 'Wi If' . "Causes 'Wilf' to output on the transcript."
block1 valueWithArguments: #(Wilf'). "Same."

block2 value: 'Wilf' value: 'lalonde'. "Causes 'Wilf lalonde' to output on the transcript."
block2 valueWithArguments: #('Wilf' 'Lalonde'). "Same"

Blocks can consist of an arbitrary number of statements. When a block is invoked, the
last expression computed is the value of the block. For example,

block f-- [1 +2. 10+20. 100+2001.
block value ~ 300

Additionally, unless constructed in a workspace, blocks are defined through the normal
course of events, while methods are executed. Where they are defined is important because
they provide access to local variables at the definition point and also permit non-local
returns. For example, suppose the following two methods were temporarily added to class
Object and that message hello was sent to some arbitrary object. The value returned is
'smile'. More interesting is the execution sequence.

hello
I count I
count f-- 20.
self helloTest: [:title I

Transcript nextPutAlI: title; show: count printString.
i'smile'.
'frown'l.

i'cry'

helloTeat: aBlock
aBlock value: 'The counter is '.
i'smirk'

When method hello is executed, we expect 'cry' to be returned unless something causes
a premature return. The block with parameter title is defined in method hello but not
invoked here. Instead. it is passed as a parameter to method helloTest:.

In method helloTest:, we expect 'smirk' to be returned unless a premature return
occurs first. How could that happen? By sending message value: to aBlock, string parameter

216 Inside Smalltalk



1 III I

'The counter is ' is bound to title and the block executes in its defining context. Thus, the
transcript displays 'The counter is 20'. Note that the block accesses variable count.
Normally, the statements in the block would execute one by one until the last one. If that
were to happen, we would expect 'frown' to be returned to the helloTest: context. However,
there is a return statement prior to string 'frown' in the block. So an immediate return with
'smile' as the answer results. But what do we return from - from hello or helloTest:? The
answer is from the method in which the block was defined - not from the method that
started the block executing. In this case, it is method hello and not helloTest:.

Since blocks are objects, they can be manipulated just like other objects. Assigning
them to variables or passing them as parameters in messages is normal. However, we don't
normally store blocks that contain imbedded return statements. The reason is clear - you
can't return twice from the same method. After storing a block for use at some arbitrary
point in the future, a return from the defining method is virtually guaranteed. Evaluating the
block after that point causes an attempt to return a second time. This error situation is
detected and signalled. The rule is simple: Blocks intended for long term storage should
not have imbedded return statements.

When blocks are not stored, imbedded return statements can be very useful. For
example, a user could easily define a method such as the following:

getPermissionFor: aPerson pessword: aString ifFeil: aBlock
·Check the security clearances of the person. If it fails. execute the block."
... code to perform the checking ...
checkingFailed ifTrue: [aBlock velueJ.
... code to record the entrance of the person into the secure area ...

The method might then be used by an interactive system that first creates a person object for
reference and performs the required checks.

c:hedctI
·Prepare to track the person entering the secure area. Returns true if entry
permission granted; false otherwise."
I person password I
... code to obtain the person's name ...
person +- Person nemed: aString.
... code to obtain the person's password ...
password +- aString.
·Verify clearances.·
self getPermissionFor: aPerson pe••word: aString ifFeil: [tfalseJ.
... code to obtain entrance location ...
ttrue

If the person fails to obtain permission, the getPermissionFor:password:ifFail:
method returns control to the sender of checkln - this occurs because executing
'aBlock value' causes 'tfalse' to be executed, which returns from checkln (not from
getPermissionFor:password:ifFail:). In other words, control never returns to execute
'code to obtain entrance location'.

In general, return statements in blocks are essential for control structures. For
example, code such as the following is pervasive.

Chapter 6 Objects 217



testSatisfied
ifTrue: I i anObjectJ
ifFalse: I ianotherObjectJ

The particular semantics chosen for blocks and their response to the value messages is
important because it permits users to define their own control structures. Even more
important is the fact that these user defined control structures are indistinguishable from the
built-in ones.

6.4.1 Blocks Provide Facilities to Design Control Structures

Blocks already respond to messages that are viewed as control structures. The following
protocol is understood by blocks.

control structures

•

•

•

•

aBlock whileFalse
Repeatedly evaluates aBlock as long as it returns false.

aBlock whileFalse: anotherBlock
Repeatedly evaluates anotherBlock as long as aBlock evaluates to false.

aBlock whileTrue
Repeatedly evaluates aBlock as long as it returns true.

aBlock whileTrue: anotherBlock
Repeatedly evaluates anotherBlock as long as aBlock evaluates to true.

Each of these methods can be implemented using value messages and the boolean
control structures. For example, the latter two can be implemented as follows:

whileTrue
"Repeatedly evaluates aBlock as long as it returns true."
ilself valueJ whileTrue: []

whileTrue: anotherBlock
"Repeatedly evaluates anotherBlock as long as aBlock evaluates to true."
i self value ifTrue: lanotherBlock value. self whileTrue: anotherBlockJ

Some control structures, like whileTrue: and those associated with boolean receivers,
are compiled inline for efficiency. But a great many are not. Examples include control
structures such as the following:

1 to: 10 do: I:index I ... J.
10 timesRepeat: I... J.
aSet do: I:element I ... J.
anOrderedCollection collect: I:element I ... J.
'hello' collect: l:aCharacter IaCharacter asUppercaseJ.

The collection classes, in particular, have a wide range of control structures defined
explicitly in terms of blocks. We will subsequently investigate the control structures
provided by class Boolean. An interesting series of control structures for sequencing over
binary trees is included at the end of this chapter.

218 Inside Smalltalk



Illli

To illustrate the power of such extensions, it is easy but not worthwhile adding
personalized variations of the basic control structures. For example, beginners often
complain about the unnaturalness of the irrrue:ifFalse: notation for if-statements. It is
easily changed, for example, by adding the following to class Boolean.

then: aBlock el_: anotherBlock
i self ifTrue: (aBlock value! ifFal_: (anotherBlock value!

Better yet, we could add it as follows:

then: aBlock el_: anotherBlock
i self ifTrue: aBlock ifFal.e: anotherBlock

It is subsequently legal to write

I n I
"For what minimum value of n does n fectorial contain at least 100 digits."
n +- 10. "Some arbitrary starting point."
(true! whileTrue: (n factorial printString .ize < 100 then: (n +- n + 1! el_: (inll

Note that the else-part has an explicit return that gets it out of the infinite while loop
- the then-part has no such return. Both parts work correctly because of the way value
messages work.

6.4.2 Syntactic Details and Recursive Blocks

Syntactically, blocks satisfy the following syntax. Note that the syntax for version 2.4 and
beyond is an upward compatible extension of the syntax provided in earlier versions. In
version 2.4, there are two intervening bars "I" between the parameters and the local
variables.

Before vereion 2A

(:parameter, :parameter2 ... :parametern I
statement,.
statement2'
...J

Veraion 2A and after

(:parameter, :parameter2 ... parametern I
I local, local2 ... localm I
statement, .
statement2'
...J

Before version 2.4, local variables are not permitted. Note that locals are indicated with
two'!, indicators - one after parametern and one before localt. A block is executed, as
discussed previously, by sending it an appropriate value message with the required number
of arguments.

All statements in a block can access block parameters in addition to variables declared
outside the block; e.g., self, super, instance variables. method parameters, method locals, and
parameters from containing blocks. Prior to version 2.4, block parameters could but need not
have been declared as local variables in the method. In the new version, block parameters are
strictly local to the block - a compiler warning will remind you. For example, the
following variation from ParcPlace Systems™ generates a warning in version 2.4 but not in
earlier versions.

Chapter 6 Objects 219



.xamp1e1
I aClass I
Object .ubcl••••• do: [:aClass I

Transcript .how: aClass n.me; cr).
Transcript .how: 'The last class was " aClass name; cr.

"aClass is nil in version 2.4"

Prior to version 2.4, method local 'aClass' and block parameter 'aClass' were the
same. In the new version, they are distinct - standard lexical scoping rules apply.
Additionally, blocks are not re-entrant prior to version 2.4; e.g., the following would not
work.

• xample2
I fibonacciBlock I
fibonacciBlock ~ [:n I

n<2
ifTru.: (1)
ifF. I••: [lfibonacciBlock v.lu.: n-1) + IfibonacciBlock v.lu.: n-2))).

IfibonacciBlock velu.: 7) =21
ifTru.: [Transcript .how: 'blocks are recursive')
ifTru.: [Transcript .how: 'blocks are not recursive')

Prior to version 2.4, the space for all block parameters resides in the containing
method context. Invoking the same block a second time would overwrite the unique
parameter n. Consequently, on return from sending the second value: message, the n would
have its most recent value rather than the value it used to have before the invocation. After
version 2.4, the space for block parameters is obtained each time a value: message is sent
the compiler optimizes those situations that don't require it. Hence, everything works as
expected.

6.5 CLASS BOOLEAN

Class Boolean provides the general protocol for true and false. For efficiency reasons, the
general protocol is specialized via subclasses True and False (see Fig. 6.14). Objects true
and false are the sole instances of True and False respectively.

Figure 6.14 The Boolean hierarchy.

220 Inside Smalltalk



The protocol provided by Boolean provides a small number of generic methods that
apply to both true and false. The protocol for True, on the other hand, applies only to
instance true. Consequently, there is no need to determine the receiver in the code for the
methods. The same holds in the protocol for False. Consequently, a method such as not is
implemented differently in each subclass.

instance creation (disabled, defined in Boo/••n)

• Boolean new
Gives an error message; new instances not allowed.

logical operations (defined in Boo/••n)

•

•

aBoolean eqv: anotherBoolean

Returns true if aBoolean and anotherBoolean are both true or both false;

false otherwise•

aBoolean xor: anotherBoolean
Returns true if either aBoolean or anotherBoolean is true but not both; false

otherwise.

logical operations (defined in T..... andF.I••)

• aBoolean not
Returns true if aBoolean is false and false otherwise.

• aBoolean & anotherBoolean
The and operation. Returns true if aBoolean and anotherBoolean are both
true; false otherwise.

• aBoolean I anotherBoolean
The or operation. Returns true if either aBoolean, anotherBoolean, or both
are true; false otherwise.

• aBoolean and: aBlock
The short circuit and operation. If aBoolean is true, computes and returns
the block result; otherwise, returns false without evaluating aBlock.

• aBoolean or: aBlock
The short circuit or operation. If aBoolean is false, computes and returns the

block result; otherwise, returns true without evaluating aBlock.

copying (disabled, defined in Boo/••n)

•

•

aBoolean de.pCopy
New instances not allowed; returns self.

aBoolean ahallowCopy
New instances not allowed; returns self.

printing (defined in Boo/••n)

• aBoolean ator.On: aStream
Defaults to printOn:.

Chapter 6 Objects 221



printing (defined in True and FBI.e)

• aBoolean printOn: aStream
Adds either 'true' or 'false' to the stream depending on whether aBoolean is
true or false respectively.

control structures (defined in True and FBI.e)

• aBoolean ifTrue: trueBlock
• aBoolean ifFal.e: falseBlock
• aBoolean ifTrue: trueBlock ifFal.e: falseBlock
• aBoolean ifFal.e: falseBlock ifTrue: trueBlock

If aBoolean is true, evaluates the true block if there is one and returns the
result; otherwise, returns nil. Similarly, if aBoolean is false, evaluates the
false block if there is one and returns the result; otherwise, returns nil.

For efficiency reasons, most of the control structures are compiled inline. Other
operations like &, I, not, and printOn: are implemented differently in True and False. For
example, consider the following summary.

In True

ifalse
& aBoolean

iaBoolean
I aBoolean

itrue
and: aBlock

i aBlock value
or: aBlock

itrue
printOn: aStream

aStream nextPutAlI: 'true'
ifTrue: trueBlock

itrueBlock value
ifFalse: falseBlock

inil
ifTrue: trueBlock ifFalse: false Block

itrueBlock value
ifFalse: falseBlock ifTrue: trueBlock

itrueBlock value

I1Dt
itrue

& aBoolean
ifalse

I aBoolean
iaBoolean

and: aBlock
ifalse

or: aBlock
i aBlock value

printOn: aStream
aStream nextPutAlI: 'true'

ifTrue: trueBlock
inil

ifFalse: falseBlock
ifalseBlock value

ifTrue: trueBlock ifFalse: falseBlock
ifalseBlock value

ifFalse: false Block ifTrue: trueBlock
ifalseBlock value

In both cases, there is no need to interrogate the identity of the receiver. For example,
the not for true simply returns false because the only way to have reached that method is
for the receiver to have been true. On the other hand, if the receiver had been false, then the
not method in class False would have been executed. This version of not simply needs to
return true. The same idea applies to each of the operations defined in subclasses True and
False.

222 Inside Smalltalk



1"'11'1 1

Because true and false are instances of two different classes, there is no need to store
data in the instances to differentiate them. Both true and false are objects without instance
variables.

The few methods that are implemented in common superc1ass Boolean are very
simple. For example, consider the following:

In Boo"""

eqv: aBoolean
"Returns true if self and aBoolean are both true or both false; otherwise, returns
false."
t self == aBoolean

xor: aBoolean
"Returns true if either self or aBoolean is true but not both; otherwise, returns
false."
t(self == aBoolean) not

6.6 DESIGNING A NEW CLASS: BINARYTREE

In this section, we consider the design of a new class of objects, binary trees. Our main
concern is to take into account all of the notions that we met in previous sections. Rather
than evolve the design in stages, we present a final result, but we enumerate the questions
and the answers we came up with in the process of developing the design. We will also
consider two design extremes: a standard design using a single class and a non-standard design
using several classes.

Typical OuatioM W. Ask8cI (W.... Anawen)

•

•

•

•

•

•

What kinds of operations are unique to binary trees?
Operations like depth,leftTree, rightTree.

Do we expect to be able to store data in binary trees?
Yes, arbitrary objects. We'll call it the tree's label - we'll access it via
label and change it via label:.

Do we want to be able to tell the difference between an empty tree and a non
empty one?

Yes, empty trees don't have subtrees nor can they be labelled (this last
point is debatable).

Should we use nil to denote an empty tree?
Bad idea - nil does not respond to typical binary tree queries like depth.
Moreover, we do not wish to modify nil so that it does.

Do we need to be able to print trees?
Yes, <'hi' -- <'there' <'you' -- --> --> is an example of the notation we
settled on.

What about store strings?
How about (BinaryTree label: 'hi' leftTree: (BinaryTree empty) rightTree:
etc.)?

Chapter 6 Objects 223



• Do we care about the semantics for copy?
Yes, it doesn't make much sense to provide a shallow copy (the default).
So we'll redefine copy to provide a deep copy. There is no need to change
shallowCopy or deepCopy.

• Should we design new control structures?
Yes, preorder, inorder, and postorder traversals on binary trees are well
known. These are control structures.

• Do we need to worry about comparison operations?
Yes, equality for binary trees should take both the structure of the trees and
their labels (the data) into account. The default inherited from object
defines equality as identity.

• Do we need to define both =and --=?
No, just =. Operation -= is defined in terms of = and not.

• Do we need to be able to modify existing trees?
Yes, destructive operations like leftTree: and rightTree: would be useful.

• Is there ever a need to mutate an empty tree into a non-empty tree?
Yes, once in a while, we could be referencing an empty tree that needs to
change but we may not be aware of all other references to it. Rather than
use become: to change it, we will extend the semantics of label:,
leftTree:, and rightTree: so that attempts to add such information to an
empty tree automatically causes it to mutate into a non-empty tree. Note:
Our initial inclination had been to make this an error.

6.6.1 A Standard Design

These deliberations lead us to the following design. A binary tree is either an empty tree or
a non-empty tree. Non-empty trees can have a label, a left subtree, and a right subtree. It is
illegal to attempt to create a binary tree with invalid subtrees. Binary trees are created in one
of two ways:

BinaryTree empty
Constructs a new empty binary tree and returns it.

BinaryTree lebel: anObject leftTree: aBinaryTree rightTree: aBinaryTree

Constructs a new non-empty binary tree with the information supplied and

returns it.

Attempts to add a label, left tree, or right tree to an empty tree automatically cause the
empty tree to mutate into a non-empty tree. This is an unusual feature that is not intended to
be the normal way that binary trees are extended, but then, how are we to predict what users
will do?

Note to implementors (please hide this fact from users): Since we don't permit non
empty trees to contain non-trees, both the left and right subtrees must be instances of class
BinaryTree. Consequently, we will interpret a binary tree with a non-tree in one of the
subtree fields as an empty tree; i.e., an empty tree is an ill-formed non-empty tree. For
simplicity, we will assume that a binary tree is empty if the left subtree is nil. This is
convenient because uninitialized trees are automatically empty.

224 Inside Smalltalk



Class BinaryTree

class name
superclass
instance variable names

class methods

instance creation

8I11Pl.Tsuper n.w

BinaryTree
Object
label leftTree rightTree

label: anObject l.ftT....: aBinaryTree rightTr..: anotherBinaryTree
tsupern.w

lab.l: anObject; l.ftTr..: aBinaryTree; rightTr..: anotherBinaryTree;
younelf

I18W

tself .rror: 'empty trees are created with empty or label:leftTree:rightTree:'

examples

example1
"Create a binary tree and see if it prints as <Hello <how -- --> <are <you -- --> --»."
tBinaryTree

label: #Hello
l.ftT,..: (BinaryTree

lab.I:#how
l.ftTre.: BinaryTree .mpty
rightT,..; BinaryTree empty)

rightT....: (BinaryTree
label: tare
leftTr..: (BinaryTree

label: #you
leftTr..: BinaryTree .mpty
rightT,..: BinaryTree empty)

rightT,..; BinaryTree empty)
"BinaryTree example1"

example2
"See if the store string is correct for example1."
t self example1 atoreString
"BinaryTree example2"

.xample3
"Construct an empty tree and see if it will mutate properly to a tree <testing -- -->."
t self .mpty Iab.l: #testing
"BinaryTree example3"

.xample4
"Test depth which should be 3.
t self .xampl.1 d.pth
"BinaryTree example4"

Chapter 6 Objects 225



226

exampleS
"Test size which should be 4."
i self example1 aize
"BinaryTree exampleS"

example6
I aTree I
"Test =and copy; should return true."
aTree ~ self example1. iaTree =aTree copy
"BinaryTree exampleS"

example7
I aTree I
"Test =again; should return false."
aTree ~ self example1.
iaTree =(aTree ahallowCopy rightTree: BinaryTree empty)
"BinaryTree example7"

exampleS
I aTree sum I
"Tryout the control structures."

aTree~ self example1.

"First, modify the labels to contain numeric data."
aTree label:'.
aTree leftTreelabel: 2.
aTree rightTree label: 3.
aTree rightTr_leftTreelabel: 4.

"Next walk it, summing the information in the labels."
sum~O.

aTree inorderDo: [:Iabell sum ~ sum + label).
isum
"BinaryTree exampleS"

instance methods

querying

depth
"The maximum distance between this tree and some subtree."
self isEmpty

ifTrue: [iOJ
ifFalse: Ii, + (IeftTree depth max: rightTree depth))

size
"The number of non-empty subtrees in all."
self isEmpty

ifTrue: liOJ
ifFalse: Ii, + (IeftTree size + rightTree size))

isEmpty
"Special ill-structured binary trees with nil left subtrees are considered to be
empty."
ileftTree isNil

Inside Smalltalk



iINon~
i self iaEmpty not

access and modification

label
self privetelyCheckForEmptyTreeAcceuingError.
ilabel

label: anObject
self isEmpty

ifTrue: [self privatelyMutatelntoNonEmptyTree label: anObject)
ifFal.a: [label +- anObject)

IaftTrea
self privetalyChackForEmptyTreeAcceuingError.
ileftTree

laftTr_: aBinaryTree
self privatelyChackForABinaryTr_: aBinaryTree.
self isEmpty

ifTrua: [self privatalyMutatelntoNonEmptyTree laftTr_: aBinaryTree)
ifFal.a: [leftTree +- aBinaryTree)

rightTrea
self privatelyChackForEmptyTreeAcceuingError.
irightTree

rightTr_: aBinaryTree
self privatelyChackForABinaryTr_: aBinaryTree.
self isEmpty

ifTrua: [self privatelyMutateintoNonEmptyTree rightTraa: aBinaryTree)
ifF_lse: [rightTree +- aBinaryTree)

comparing

= aBinaryTree
"Two binary trees are equal if they have the same structure and their labels are
equa!."
(aBinaryTree i.KindOf: BinaryTreel ifF_l.a: [ifalse).
self i.Empty ifTrua: [iaBinaryTree isEmpty).
aBinaryTree isEmpty ifTrua: [ifalse).
label = aBinaryTree I_bal ifF_I.e: (ifalse).
leftTree = aBinaryTree laftTraa ifF_I.a: [ifalse).
irightTree =aBinaryTree rightTrae

copying

copy
i self deepCopy

sequencing

do: aBlock
"Sequences through all subtrees in inorder and executes the block with the labels."
i self inorderDo: aBlock

Chapter 6 Objects 2Z7



228

inorderDo: aBlock
"Sequences through all subtrees in inorder and executes the block with the labels."
self isEmpty

ifF_lse: [
leftTree inorderDo: aBlock.
aBlock value: label.
rightTree inorderDo: aBlock]

postorderDo: aBlock
"Sequences through all subtrees in postorder and executes the block with the
labels."
self isEmpty

ifFalse: [
leftTree postorderDo: aBlock.
rightTree postorderDo: aBlock.
aBlock value: label]

preorderDo: aBlock
"Sequences through all subtrees in preorder and executes the block with the labels."
self isEmpty

ifFalse: [
aBlock value: label.
leftTree preorderDo: aBlock.
rightTree preorderDo: aBlock]

printing

printOn: aStream
"Empty trees print as '--'; non-empty tree print as '<label leftTree rightTree>'."
self isEmpty

ifTrue: [aStream nextPutAlI: '--']
ifFalse: [

aStream
nextPut: $<; print: label;
space; print: leftTree;
space; print: rightTree; nextPut: $>]

storeOn: aStream
"We can do better than the default."
self isEmpty

ifTrue: [aStream nextPutAlI: '(BinaryTree empty)']
ifFalse: [

aStream
nextPutAlI: '(BinaryTree label: '; store: label;
nextPutAlI: ' leftTree: '; store: leftTree;
nextPutAlI: ' rightTree: '; store: rightTree; nextPut: $)]

private

privatelyCheckForABinaryTree: anObject
(anObject isKindOf: BinaryTreel

ifF_lse: [self error: 'attempting to create an illegal subtree']

privatelyCheckForEmptyTreeAccessingError
self isEmpty ifTrue: [self error: 'illegal empty tree access attempted'].

Inside Smalltalk



privetelyMutetelntoNonEmptyTI'88
"For this implementation, empty trees have the same fields as non-empty trees.
Hence there is no need to change one object into another object. Of course, the
result must look like a non-empty tree."
leftTree ~ BinaryTree empty. "Now it is non-empty."
rightTree ~ BinaryTree empty. "Now it is non-empty and well-formed."

6.6.2 A Nonstandard Design

Most of the operations in the above design partition the code into two parts: what to do if
the binary tree is empty and what to do if it is not. For example, the following code
template is pervasive:

self.Empty
ifTrue: [ ]
ifFe...:[ ]

This kind of testing can be eliminated if we adopt the approach taken by the designers
of class Boolean. More specifically, we could create three classes of binary trees as shown
in Fig. 6.15.

Figure 6.15 The nonstandard BinaryTree hierarchy.

BinaryTree is designed to play the role of an abstract class; Le., a class without
immediate instances. All empty binary trees are instances of EmptyBinaryTree; non-empty
binary trees are instances of NonEmptyBinaryTree. Note that this new design is intended
to work exactly the same way as the old. Logically, we want users of binary trees to think in
terms of the simpler design. This design is purely an implementation technique to gain
efficiency.

In this design, empty binary trees have no instance variables (fields). Only non-empty
binary trees have the label, leftTree, and rightTree fields. As can be seen, almost all
operations can be specialized for the two classes of trees. Only isNonEmpty and do: are in
class BinaryTree. Of course, BinaryTree also contains all of the class methods for
creating binary trees.

Chapter 6 Objects 229



Class BinaryTree

class name
superclass
instance variable names

class methods

instance creation

BinaryTree
Object
"none·

8I11IJl.fEmptyBinaryTree basicNew

label: anObject leftTree: aBinaryTree rightTree: anotherBinaryTree
iNonEmptyBinaryTree basicNew

label: anObject; leftTree: aBinaryTree; rightTree: anotherBinaryTree;
yourself

Il9W

i self error: 'empty trees are created with empty or label:leftTree:rightTree:'

instance methods

querying

isNonEmpty
i self isEmpty not

sequencing

do: aBlock
"Sequences through all subtrees in inorder and executes the block with the labels."
i self inorderDo: aBlock

The code in each of the methods for class EmptyBinaryTree was obtained from the
corresponding code in the standard design by eliminating the isEmpty test along with the
code for the non-empty case. Even the code for =was specialized.

Class EmptyBinaryTree

class name
superclass
instance variable names
comment

instance methods

querying

EmptyBinaryTree
BinaryTree
"none"
An empty binary tree is a binary tree with no label. left
subtree. or right subtree.

230

depth
"The maximum distance between this tree and some subtree."
io

size
"The number of non-empty subtrees in all."
io

isEmpty
itrue

Inside Smalltalk



access and modification

Jebel
self privatelySignalEmptyTreeAc:cessingErTOI'

label: anObject
i self privatelyMutetelntoNonEmptyTree Jebel: anObject

..ftT...
self privatelySignalEmptyTreeAcceesingErTOI'

IeftTree: aBinaryTree
i self privatelyMutatelntoNonEmptyTree leftTree: aBinaryTree

rightTree
self privatelySignalEmptyTreeAcceesingErTOI'

rightTree: aBinaryTree
i self privatelyMutatelntoNonEmptyTree rightTree: aBinaryTree

comparing

= aBinaryTree
"Two binary trees are equal if they have the same structure and their labels are
equal."
i aBinaryTree isKindOI: EmptyBinaryTree

sequencing

inorderDo: aBlock
"Nothing to do in this case."

poatorderDo: aBlock
"Nothing to do in this case."

preorderDo: aBlock
"Nothing to do in this case."

printing

printOn: aStream
"Empty trees print as '--'."
aStream nextPutAlI: '--'

storeOn: aStream
"We can do better than the default."
aStream nextPutAlI: '(BinaryTree empty)'

private

privatelyMutetelntoNonEmptyTree
"For this implementation, empty trees are completely different from non-empty
trees. Hence a become: operation must be used."
self become: (BinaryTree

label: nilleltTr.: BinaryTree empty rightTree: BinaryTree empty)

privatelySignaEmptyTreeAcc•••ingErTOl'
self error: 'illegal empty tree access attempted'.

In the standard design, both empty and non-empty trees had the same representation.
Mutating an empty tree into a non-empty tree was done easily with traditional code; i.e., it
was as simple as changing the subtree fields to legal binary trees. With this newer design, it

Chapter 6 Objects 231



is no longer possible to use such a simple trick. The only solution is to use the become:
operation.

Class NonEmptyBinaryTree

class name
superclass
instance variable names
comment

instance methods

querying

NonEmptyBinaryTree
BinaryTree
label leftTree rightTree
A non-empty binary tree is a binary tree with a label, left
subtree, and right subtree.

232

depth
"The maximum distance between this tree and some subtree."
i1 + lIeftTree depth max: rightTree depth)

size
"The number of non-empty subtrees in all."
i1 + lIeftTree size + rightTree size)

isEmpty
ifalse

access and modification

label
ilabel

label: anObject
label ~ anObject

IeftTree
ileftTree

leftTree: aBinaryTree
self privatelyCheckForABinaryTr_: aBinaryTree.
leftTree ~ aBinaryTree

rightTree
i rightTree

rightTree: aBinaryTree
self privatelyCheckForABinaryTr_: aBinaryTree.
rightTree ~ aBinaryTree

comparing

= aBinaryTree
"Two binary trees are equal if they have the same structure and their labels are
equal."
laBinaryTree isKindOf: NonEmptyBinaryTree) ifFalse: [ifa/se).
label =aBinaryTree label ifFalse: [ifalse).
leftTree =aBinaryTree leftTree ifFalse: [ifalseJ.
i rightTree =aBinaryTree rightTree

copying

copy
i self deepCopy

Inside Smalltalk



sequencing

inorderDo: aBlock
·Sequences through all subtrees in inorder and executes the block with the labels."
leftTree inorderDo: aBlock. aBlock value: label. rightTree inorderDo: aBlock

postorderDo: aBlock
·Sequences through all subtrees in postorder and executes the block with the
labels."
leftTree postorderDo: aBlock.
rightTree postorderDo: aBlock.
aBlock value: label

preorderDo: aBlock
·Sequences through all subtrees in preorder and executes the block with the labels."
aBlock value: label. leftTree preorderDo: aBlock. rightTree preorderDo: aBlock

printing

printOn: aStream
·Non-empty tree print as '<label leftTree rightTree>'."
aStream

nextPut: $<; print: label;
space; print: leftTree;
space; print: rightTree; nextPut: $>

storeOn: aStream
·We can do better than the default."
aStream

nextPutAlI: '(BinaryTree label: '; store: label;
nextPutAlI: ' leftTree: '; store: leftTree;
nextPutAlI:' rightTree: '; sto...: rightTree; nextPut: $)

private

privatelyCheckForABinaryT....: anObject
(anObject isKindOf: BinaryTree)

ifFalse: [self error: 'attempting to create an illegal subtree')

6.7 CLASSES AND METACLASSES

A class is a repository for the information about instances. For example, the instance
methods are stored in the class. For execution purposes, sending a message to an object
results in a search process that begins by

•
•
•

•

Extracting the class from the receiver.

Looking in the class for a method with the same name.

If one is found, a suitable context for execution is established and the method
executed.

If none is found, the superclass is found and the process repeated until either a
method is found or no more superclasses exist, at which point
doesNotUnderstand: is invoked.

Chapter 6 Objects 233



Now what happens if a message is sent to a class instead of an instance? Exactly the
same thing. But doesn't the search mechanism at least have to have a special case test like
the following?

if looking fOl' an instance method
th«t

look in the spot IYISetVed fOl' instance methods
else

look in the spot IYISetVed fOl' class mflfhods

The answer is that it could have been done that way but a better way was devised.
Exactly the same mechanism can be used for both without special case tests if methods for
classes are stored in some object other than the class itself. We call this object a metaclass.
To repeat,

the methods for instances are stored in the instance's class

the methods for classes are stored in the class's class

We already know that classes are objects like instances - hence they too have a class.
For example,

100 cla.s:::) Small Integer
Smallinteger class:::) the metaclass for Small Integer

(actually prints as 'Smallinteger class')

A metacIass is a repository for information about classes - it is a class for a class.
Every class has a corresponding metaclass. For example, class Boolean, which inherits from
class Object, has a corresponding Boolean metaclass that inherits from the Object metaclass,
as shown in Fig. 6.16.

Figure 6.16 The Class and Metaclass hierarchies.

It is easiest to think of the class hierarchy as lying in the foreground; the metaclass
hierarchy is a parallel hierarchy lying in the background.

As far as users are concerned, classes maintain instance methods and metaclasses
maintain class methods. The system automatically manages the creation and removal of
metaclasses when a user creates a new class or removes an existing one. Other than being
aware of their existence, there is no need for users to do anything special about metaclasses.

234 Inside Smalltalk



Before we lay the topic to rest, we should be clear about what is not in the system. In
particular, there is no third layer in the background constituting meta-metaclasses. There are
only classes and metaclasses - the buck stops at metaclasses.

Although class Object has no superclass, it is easy to find out with the browser or
with inspectors that metaclass Object does have a superclass. In fact, there is a small
hierarchy above metaclass Object. We won't investigate this hierarchy here but it is
important to realize that it contains all of the standard operations for creating, extending,
modifying, deleting, and manipulating classes. We will present a very brief survey of these
operations but we will not go into great detail. Too many are of use only to the system
designers.

querying the structure of the instances

•

•

•

•

•

•

•

•

aClass instSize
Returns the number of named instance variables (as opposed to indexed
variables) in instances of the class.

aClass isFixed
True if instances do not have indexed instance variables.

aClass isVariable
True if instances do have indexed instance variables.

aClass isPointers
True if indexed instance variables in instances contain objects (internally
pointers); false otherwise.

aClass isBits
True if indexed instance variables in instances contain bytes or words; false
otherwise.

aClass iaBytes
True if indexed instance variables in instances contain bytes.

aClass iaWor.
True if indexed instance variables in instances contain words.

aClass kindOfSubc....
Returns one of the following strings: 'subclass: '. 'variableSubclass:',
• variableByteSubclass: " or 'variableWordSubclass: • - note the leading
and trailing space.

Each class normally has one superclass and zero or more subclasses. There are no
examples of classes with multiple superclasses but the facility is available. We discuss it
briefly below.

In descriptions that follow, information that must be accumulated by sequencing
through a series of classes, either up or down the class hierarchy, is obtained via methods
that begin with the prefix all.... For example, a method like subclasses would return only
those subclasses that are immediately below the class being queried; allSubclasses would
return the immediate subclasses in addition to their immediate subclasses, the subclasses of

Chapter 6 Objects 235



their immediate subclasses, and so on until no more are available. The latter method, for
example, would be described as returning the accumulated subclasses.

accessing the class hierarchy

•

•

•

•

•

•

•

•

aClass superelass
Returns the receiver's immediate superclass; only the first one if there are
several.

aClass superelasses
Returns a collection of the receiver's immediate superclasses.

aClass allSuperelasses
Returns a collection of the receiver's accumulated superclasses.

aClass withAlISuperelasses
Returns a collection containing the receiver in addition to all superclasses.

aClass hasMultipleSuperclasses
Returns true if the receiver has more than one immediate superclass;
otherwise, false.

aClass subclasses
Returns a collection of the receiver's immediate subclasses.

aClass allSubclasses
Returns a collection of the receiver's accumulated subclasses.

aClass withAllSubela..es
Returns a collection containing the receiver in addition to all subclasses.

accessing class information

236

•

•

•

•

•

•

•

•

•

aClass name
Returns the name of the receiver.

aClass category

Returns the system organization category for the receiver.
aClass comment

Returns the receiver's comment.
aClass definition

Returns the receiver's definition.
aClass instVarNamea

Returns a collection of immediate instance variable names.
aClass alllnstVarNames

Returns a collection of accumulated instance variable names.
aClass elassVarNames

Returns a collection of immediate class variable names.
aClass allClassVarNames

Returns a collection of accumulated class variable names.
aClass anShal'8dPools

Returns a collection of accumulated dictionaries used as shared pools.

Inside Smalltalk



•

•

aClass ..leetON
Returns a collection of message selectors (symbols) for all methods

immediately understood by the receiver's instances; i.e.• does not return
selectors for methods higher up the hierarchy.

aClass aourceCodeAt: messageSelectorSymbol
Returns the source code as a string for the specified message selector. This

selector must be immediately understood by the receiver.

accessing instances

• aClass ."nunces
Returns a collection of all instances of this class.

A large number of methods are concerned with extracting information accessible
through the browser and debugger. Many of these methods (with sample usage) are listed in
the system workspace.

6.7.1 Multiple Inheritance

Multiple inheritance is a generalization of standard inheritance that permits multiple
superclasses. It is useful for creating new objects that share behavior common to several
existing classes of objects. In Smalltalk, the facility is experimental since there are no
examples using it A standard example where it might have been used would be to define a
class of objects called ReadWriteStream by combining the behaviors of ReadStream and
WriteStream. For example, this could be done by executing the following code:

Class n.med: #ExperimentalReadWriteStream
.uperc......: 'ReadStream WriteStream'
instencaV.riebleNemee: ..
cl...V.riebleNemee: ..
category: 'Experimental'

There is no facility for pool variables nor is it possible to use superclasses with
indexed instance variables. From the implementation point of view, the first superclass plays
the role of the standard superclass - its methods are inherited in the normal way. The
methods of the other superclasses (those not shared by some class in the standard superclass
chain) are recompiled in the new context. This is required because the instance variables
introduced by secondary superclasses are no longer in the same relative positions. Compiled
methods in Smalltalk normally reference the instance variables using a fixed offset.

To prevent ambiguity, the methods found by searching along distinct superclass chains
must be the same. If they are not, a connict error results. Conflict errors are determined
when a class with multiple inheritance is defined. It is handled by creating a local method of
the same name in the new class being created. The new method is placed in a special
category called conflicting inherited methods. Its code body generates an error message
when it is used. Such conflicting methods can be rewritten by the user to eliminate the error
messages. For example, accepting the above definition causes the following class to be
created.

Chapter 6 Objects 237



Class ExperimentalReadWriteStream

class name
superclasses
instance variable names

class methods

ExperimentalReadWriteStream
WriteStream ReadStream
"none"

conflicting inherited methods

on: aColiection from: firstlndex to: lastlndex
i self conflictinglnheritanceError

instance methods

conflicting inherited methods

con1Bnls
i self conflictinglnheritanceError

next
i self conflictinglnheritanceError

nextPut: anObject
i self conflictinglnheritanceError

on: aColiection
i self conflictinglnheritanceError

on: aColiection from: firstlndex to: lastlndex
i self conflictinglnheritanceError

position: anlnteger
i self conflictinglnheritanceError

reset
i self conflictinglnheritanceError

size
i self conflictinglnheritanceError

To work properly, each of the above methods must be rewritten. Often, it is sufficient
to choose a specific variation of the method in a superclass. To enable specific methods in
distinct superclasses to be referenced, a dot notation is provided. For example, it is legal to
write

some test
ifTrue: [iself ReadStreem.size!
ifFalse: [iselfWriteStream.size!

It is also legal to use this dot notation on more complex selectors - binary or keyword
operations; e.g.,

self ReadStream.= anotherStream
self ReadStream.on: aColiection from: firstlndex to: lastlndex

Generally, multiple inheritance is most useful when used to add standalone properties
or attributes to new objects. For example, suppose we had defined three independent classes
to manipulate three distinct attributes: a name, an address, and an age as follows:

238 Inside Smalltalk



ii nil'l

Class Name

class name
superclass
instance variable names

instance methods

access and modification

..,..
iname

name: aSymOOI
name~ aSymbol

Class Address

class name
superclass
instance variable names

instance methods

access and modification

Name
Object
name

Address
Object
address

eddrea
iaddress

add.....: aSymbol
address ~ aSymbol address

Class Age

class name
superclass
instance variable names

instance methods

access and modification

ege
iage

ege: aSym 001
age~ aSymbol

Age
Object
age

It is then a simple matter to construct a class that combines these attributes and adds
additional behavior of its own.

Class Person

class name
superclasses
instance variable names

instance methods

Person
Name Address Age
"none"

=aPerson
i(name =aPerson name) & (address =aPerson addre••) & (age =aPerson age)

Chapter 6 Objects 239



6.8 SUMMARY

This chapter has described the important role played by the fundamental classes Object,
Boolean, Undefined Object, and BlockContext in Smalltalk. In particular, we have
described:

•
•
•

•
•
•
•
•

•
•
•

How objects in Smalltalk are represented.

The meaning of assignment, identity, equality, and copying in Smalltalk.

The use of meta operations (perform) to access and modify objects and for indirect
execution.

How to read and write objects.

Object mutation with the become: operation.

Blocks as unnamed functions.

The use of blocks to describe control structures.

Class Boolean and its subclasses True and False, together with their special
instances true and false.

The use of abstract classes for supporting multiple representations.

The Class and Metaclass hierarchies.

The concept of multiple inheritance.

6.9 EXERCISES

The following exercises are intended to cause some of the material presented above to be
reviewed and elaborated upon. Not all questions have the same degree ofdifficulty.

1. Determine whether or not shallow or
deep copies are made for arrays and
forms respectively. For example, in
vestigate the results of #(hello there)
copy and Form black copy re
spectively.

2. Create a more general version of
deepCopy that works in the pres
ence of circular structures. Hint: Use
the same approach that was used for
the general version of =.

3. Devise a general version of
store On: that works for circular
structures.

4. Change the implementation of
prlntOn: for both characters and
strings to make the operations uni-

240

formly applicable. After the change,
there should be no need for

aStream nextPut: aCharacter
aStream nextPutAII: aString

Users would be able to use the fol-
lowing instead:

aCharacter printOn: aStream
aString printOn: aStream

Currently, this does not work because
print strings default to store strings
for these classes of objects.

5. Investigate operations like
printOn:. storeOn:, and = for a
data type like Fraction. These could
serve as useful templates when de
signing your own classes of objects.

Inside Smalltalk



6. Are equal small integers identical?
What about equal large integers? For
example, compare 3 factorial with
3 factorial; 100 factorial with
100 factorial.

7. Create a control structure called do:
that permits sequencing over in
dividual integer digits; e.g., the
following adds 16 digits together.

I sum I
sum ~ O.
1234567890123456 do: [:aDigit I

sum ~ sum + aDigit).
isum

8. Create a repeat-until control structure
with the following form:

aBlock
repeatUntil: anotherBlock

9. Design and implement a recursive
version of factorial using blocks.

6.10 GLOSSARY AND IMPORTANT FACTS

cis....

BinaryTree An example class used to illus
trate the basic ideas of this chapter. A bi
nary tree is either an empty tree or a
non-empty tree. Non-empty trees can have
a label, a left subtree, and a right sub
tree.

BlockContext The class that provides the
protocol for blocks. An example block is
[count ~ count + 1. count < 10).

Boolean An abstract class that provides the
common protocol for true and false.

EmptyBlnaryTree A subclass of Binary.
Tree; used to illustrate a nonstandard
design that might gain in efficiency over
more standard approaches.

Indirection An example class of objects that
play the role of gateways for other
objects, Intended receivers.

Message A class of objects whose instances
are manufactured by the system when a
message is not understood by a receiver;
instances are made parameters of
doesNotUnderstand:; they respond to
messages selector and arguments.

Chapter 6 Objects

10. Can blocks be used to provide a syn
tactically elegant case-statement con
struct? Ignore efficiency issues.

n. Extend binary trees so that it is pos
sible to easily create non-empty trees
that are automatically initialized with
empty subtrees.

12. Create a subclass of BinaryTree
called BinarySearchTree that has
one additional operation

aBinarySearchTree add: aLabel

Is this extension more difficult if the
nonstandard design is used instead?

13. Design and implement a List class
in the Lisp tradition. Also, try a
variation with three classes: List,
EmptyList, and NonEmptyList.
Use the BlnaryTree example as the
model.

NonEmptyBlnaryTree A subclass of BI
naryTree; used to illustrate a nonstandard
design.

Object The ultimate superc1ass of all classes;
provides the default behavior for such
operations as copying, printing, and
comparing.

True, False Subclasses of Boolean; must
not be confused with instances true and
false.

UndefinedObJect A subclass of Object that
provides the protocol for its one unique
instance nil, the value provided to all
uninitialized variables.

241



instances

nil The sole instance of class Undefined
o b j e c t; the value assigned to all
uninitialized variables; i.e., both to local
variables in methods and to named and
indexed instance variables in objects cre
ated via messages such as basicNew and
basicNew:.

selected terminology

become: A powerful object mutation opera
tion.

block An unnamed function; a bracketed
construct (square brackets included) like
[count f- count + 1. count < 10]; defined
in the method that contains it when it is
encountered at execution-time (not com
pile-time); can be invoked with messages
like value, value:, value:value:, value:va
lue:value:, and valueWithArguments:.

class A special kind of object that serves as a
repository for information about the in
stances; i.e., it stores both the representa
tion information and the operations.
However, the information in an individual
class may not be complete; part of the in
formation may reside in another class
called the superclass.

deep copy A copy whose fields are deep
copies of the corresponding fields of the
original; recursion stops for immutable
objects like integers.

doesNotUnderstand: The default error han
dler; invoked when an inappropriate
message is sent to an object.

equality operation An operation such as =
and -= that permits users to determine
whether or not the contents of two objects
are the same; can be redefined.

hash An operation that computes a unique
integer from an object. Equal objects must
have equal hashes, but the converse need
not hold. Hashes are used in classes such
as sets and dictionaries to speed up
searches.

identity operation An operation such as ==
or -- that permits users to determine
whether or not two objects are the same;
cannot be redefined.

242

true, false The sole instances of classes True
and False respectively; inherits protocol
from class Boolean.

indexed instance variable A field of an
object that is normally referenced by an
index when the receiver is responding to a
message; i.e., referenced via at: and
at:put: .

indirect message passing A facility that
permits manufactured messages to be exe
cuted via operations perform:, per
form:with:, perform:wlth:with:, per
form:witb:wlth:with:, and finally per
form:wlthArguments: .

Instance variable A field of an object; there
are two kinds: named instance variables
and Indexed instance variables.

meta operation A somewhat magical op
eration that permits nonstandard access
and modification to objects. Examples in
clude instVarAt:, instVarAt:put:, ba·
sicAt:, and basicAt:put:.

method Inheritance The notion that an
instance of a class responds to a specific
message by executing the code associated
with the first method of the same name
that is found by traversing the class hier
archy bottom up.

multiple inheritance The mechanism that
permits classes to have several super
classes.

named Instance variable A field of an object
that is normally referenced by name when
the receiver is responding to a message.

notifier A special window created to inform
the user of some specific fact. A yellow
button menu provides the user with two
options: proceed or debug. The first
causes the notifier to disappear and execu
tion to continue from where it left off. The
second causes a debugger to replace the
notifier.

Inside Smalltalk



object Anything that can be manipulated;
consists of a representation and oper
ations (or methods) that it responds to.
It is an instance of some class that can
be determined by sending it the message
class; e.g., 1.2e3 class will reply with
Float; consists of zero or more fields
called instance variabies partitioned into
two groups: named instance variables and
indexed instance variables. The named
instance variables precede the indexed
instance variables. Objects include such
things as characters, integers, strings,
arrays, ordered collections, sets, and
classes themselves.

perform: An operation that permits execution
of a manufactured message.

print string A string which is a textual repre
sentation of an object. It is often (but not
always) sufficiently informative that alter
native instances of the same class can be
differentiated.

important lacts

Variables are not objects They cannot be
manipulated and stored.

Classes are objects They can be manipulated
and stored; try inspecting Object,
UndefinedObject, or Boolean.

a t- b This assignment is interpreted as "bind
a to the same object that b is bound to."
From the logical point of view, as
signments do not copy; they simply re
bind. From the implementation point of
view, all variables contain pointers to ob
jects; assignments physically copy point
ers but they do not copy objects.

We can output as we wish To create a print
string unique to a class, redefine method
prlntOn:. To create a store string unique to
a class, redefine storeOn:.

We can input arbitrary code Class method
readFrom: in Object compiles and evaluates
a string or stream; e.g.,

Object readFrom: '100 factorial'

become: Is powerful Executing "anObject
become: anotherObject" causes all
references to anObject to be rerouted to
anotherObject and vice versa. Does not
work if either object is a small integer.

Chapter 6 Objects

representation inheritance The notion that
an instance of a class inherits the instance
variables specified in classes higher up in
the hierarchy.

shallow copy A copy whose fields are iden
tical (not just equal) to the corresponding
fields of the original; e.g., a shallow copy
of an array shares the same elements as
the original array.

store string A printable representation that
can be used to re-create an equivalent
instance. For some objects, like integers,
the print and store strings are the same.

superclass The converse of subclass; e.g.,
Object is the superclass of Boolean.

variable Something (not an object) to which
it is possible to bind a value (an object).

yourself A message used when cascading;
useful for creating and initializing com
plex objects.

Blocks can be stored Blocks can be mani
pulated and stored; e.g., Junk ~ [1+2].
Blocks are created at execution time when
the square brackets are encountered. They
are invoked with messages such as value;
e.g., Junk value. A block executes in its
defining context. In the absence of a
return-statement, it returns the last com
puted value to the sender of the val u e
message. If a return statement is encoun
tered while executing a block, a return is
made from the method in which the block
was defined - not from the sender of the
value message. Blocks intended for long
term storage should not have imbedded
return statements.

true and false are unusual They are objects
without instance variables.

do not use True and False They are classes
- not to be confused with corresponding
instances true and false.

243





III I

7

The Magnitude Classes

7.1 MAGNITUDES

Magnitude (see Fig. 7.1) is an abstract class for objects that can be compared using
operations such as <, >, =, <=, >=, and -= (although = and -= are inherited from Object).
Magnitudes include numbers, characters, dates, and times. Because of its close
association with numeric classes, Fig. 7.1 also includes class Random, which provides a
stream of randomized floats.

Figure 7.1 Magnitudes and other related classes.

245



Classes ArithmeticValue and LimitedPrecisionReal are both abstract classes with
relatively little protocol. They are recent additions intended to anticipate future extensions.

In addition to providing the comparison operations, class Magnitude also provides the
following operations:

•
•
•
•

aMagnitude between: oneMagnitude and: anotherMagnitude (a range comparison)

aMagnitude max: anotherMagnitude (the maximum of two magnitudes)

aMagnitude min: anotherMagnitude (the minimum of two magnitudes)

aMagnitude hash (a unique integer that can be used for faster searching)

Although 'a between: band: c' is more convenient than 'a >= b and: [a <= c]',
the operation is a bit more than a convenience because it prevents a from being evaluated
twice. There is no corresponding operation such as 'a exciusivelyBetween: band: c' that
excludes the endpoints. Operations for finding the maximum and minimum are often used
and should be memorized. The last operation hash is designed to compute a unique integer
from a magnitude - equal magnitudes must have equal hashes but the converse does not
hold. Hashes are used in classes such as sets and dictionaries for speeding up searches; e.g.,
by searching only those objects with equal hashes.

7.1.1 Class Magnitude Simplifies the
Implementation of New Magnitudes

From the implementor's point of view, the existence of Magnitude simplifies the imple
mentation of new classes that permit comparisons between their instances. When a new sub
class of Magnitude is created, only methods for <, =, and hash must be provided - the
other operations are implemented in terms of these two and are inherited from Magnitude.
For example, 'a> b' is defined as 'b < a'; 'a <= b' is defined as '(a> b) not'.

To reintroduce an example partially discussed in a previous chapter, consider a revised
definition of Complex. The original version was defined as a subclass of Object. We should
now consider making it a subclass of Magnitude, and more specifically a subclass of
Number. Since it is a magnitude, it should be sufficient to define methods <, =, and hash to
satisfy the magnitude operations. To support the new methods, we also introduce an
implementation of abs specifically for complex numbers. We will ignore issues dealing with
automatic conversion until they are properly discussed in the numbers section.

abe
"The absolute value of a complex number is its length."
i(self reelPart squared + self imaginaryPart ~uared)~rt

< aComplex
aComplex isKindOf: Complex

ifTrue: Iiself abs < aComplex abs)
ifFalse: Iiself error: 'complex operation requires a complex parameter')

= aComplex
aComplex isKindOf: Complex

ifTrue: I
i self realPart = aComplex realPart and: I

self imaginaryPart =aComplex imaginaryPart II
ifFalse: Iiself error: 'complex operation requires a complex parameter')

246 Inside Smalltalk



1'1II'1 I

h••h
·Compute the absolute value of the complex number and return the integer's hash.·
iself•• hah

Although these operations are a minimum requirement for magnitudes, there is
nothing preventing a designer from redundantly implementing <=, >, and >=, for example.
Although it may not apply in this case, the usual reasons for overriding existing operations
in some superclass are

• to correct an implementation that is not correct for the new class, or
• to obtain a more efficient version specialized for the particular subclass.

7.2 NUMBERS

Numbers include integers, fractions, and noats. Unlike traditional integers, Smalltalk in
tegers are unbounded. Consequently, the notion of integer overflow does not exist. Of in
terest to implementors is the fact that integers are further partitioned into three classes: small
integers, large positive integers, and large negative integers. As users of integers,
however, there is no need to distinguish between the integer subclasses because interactions
and conversions between them are transparent. Consequently, a computation such as

100 factorial

will compute an exact result that will end in 11 zeros (1*2* ...*10*...*20* ...*30* ...
...*90*...*100). More dramatic is a computation like '1000 factorial' that can fill an entire
screen with digits.

Floating point values can be written with the traditional notations such as 1.5 or
1.5eO. Fractions are new from the point of view of traditional languages. Fractions have
both a numerator and a denominator each maintained as an integer (unbounded). Fractions
represent Smalltalk's ultimate in high precision arithmetic. Consequently, computations
such as the following are possible.

(1/2) + (1/3) ~ (5/6)
(1/4) + (1/4) ~ (1/2)

(1/3) + (2/3) ~ 1

7.2.1 The Notation for Number Constants

As is traditional, number constants are usually specified in radix 10. However, they may
optionally be specified in any radix ranging from 2 to 36. For a radix greater than 10,
alphabetic letters A through Z (lowercase or uppercase) serve as the corresponding digits.
Radix 11 numbers can contain digits 0 through 9 along with A (but not B, C, ...); radix 12
numbers can contain 0-9,A,B; and so on. Only radix 36 can use all the alphabetic letters as
digits. The facility provided is quite general. However, few users need a radix other than 2
(binary), 8 (octal), 10 (decimal), or 16 (hexadecimal). In formal detail, number constants
satisfy the following syntax (the superscript? indicates that the preceding item is optional).

integ....: Radix730igits

frections: anInteger / anlnteger

floats: Radix7]Oigits(.Oigits}7Exponent7 (a decimal point or exponent is required)

Chapter 7 The Magnitude Classes 2A7



The radix (if specified) is indicated by one of 2r, 3r, ..., 9r, ... , 16r, ... , 36r (the r must
be lowercase). Although a minus sign is optional, a + sign is not allowed. Additionally, the
minus sign is only allowed after the radix specification (if provided). If a decimal point is
used, one or more digits are required both before and after the decimal point.

For scientific notation, an exponent of the form e.?Digits (the e must be a lowercase
e) can be used - the exponent digits are always in decimal and the exponent raises the radix
to the specified power. Logically, this implies the exponent has the effect of moving the
decimal point left or right the specified amount. Finally, it is not possible to use the
scientific notation with a radix greater than 14 because the exponent e is interpreted as a
valid digit. Some examples include:

1999, -1999, 3.14159265358979, 1.0eO, -2.0e-10, 5e20
2r1111, 8r17, 10r15, 16rF
2r1111.0eO, 2r111.1e1, 2r11.11e2, 2r1.111e3, 2rO.1111e4
8r17.0eO, 8r1.7e1, 8rO.17e2, 8rO.017e3
16.0eO, 1.6e1, O.16e2
2r11.11e2, 8r1.7e1, 10r1.5e1
1/2, 2r1/2, 1/10r2

(2 integers and 4 floats)
(equivalent integer values)
(equivalent float values in binary)
(equivalent float values in octall
(equivalent float values in decimal)
(equivalent float values)
(equivalent fractional values)

Note that it is not possible to show equivalent float values in hexadecimal; e.g.
16rF.OeO has no exponent specified - the e is just another digit and does not signify an
exponent.

7.2.2 Converting Numbers to Strings

Recall that two general methods are provided for converting objects to strings:

•

•

anObject printString
Produces a compact, though not necessarily complete, string representation
of the object.

anObject atoreString
Produces a string representation that re-creates an object equal to the
original object when executed.

In the case of numbers, printString and storeString both return the same result. Some
examples include:

-1999 printString ~ '-1999'
1.2345678ge2 printString ~ '123.457' and 1.2345678ge22 printString ~ '1.23457e22'
(the actual number of significant digits depends on the specific implementation)
(1/2) printString ~ '(1/2)'

Of course, the user may wish to store and/or print integers in a radix different from the
standard decimal base. Two special methods are provided for this case (once again, these two
are equivalent):

248

•

•

anlnteger printStringRadix: aRadix
A string representation of the number in the specified radix - 2 to 36.

anlnteger atoreStringRadix: aRadix
(same as above)

Inside Smalltalk



I 'Illi

Consequently, the following result is produced:

31 printStringRadix: 2 ~ '2r11111'
31 printStringRadix: S~ 'Sr37'
31 printStringRadix: 10 ~ '10r31'
31 printStringRadix: 16~ '16r1 F'
31 printStringRadix: 36~ '36rV'

Creating Specialized printString and storeString Methods

When designing a new class, it is natural to want to provide a specialized printString and
storeString. However, if we browse through the class library, we will find that only one
printString and one storeString exist in the entire system. These are defmed as follows:

printString
I aStream I
aStream +- WriteStream on: (String n.w: 16).
self printOn: aStream.
i aStream content.

8toreString
I aStream I
aStream +- WriteStream on: (String new: 16).
self .toreOn: aStream.
i aStream contenD

Instead of individual classes providing their own version of printString and
storeString, we find them providing their own versions of printOn: and storeOn: instead.
In the case of complex numbers, for example, we could define these methods as follows:

printOn: aStream
realPart printOn: aStream.
imaginaryPart neg.tiv. ifF....: [aStream n.xtPut: $+1.
imaginaryPart printOn: aStream.
aStream n.xtPut: $i

.tor.On: aStream
aStream nextPutAlI: '(Complex new realPart: '.
realPart printOn: aStream.
aStream nextPutAlI: '; imaginaryPart: '
imaginaryPart printOn: aStream.
aStream nextPutAll: '; yourself)'

You do need to understand the stream operations nextPut: (for output of an individual
character) and nextPutAll: (for output of a string). With these methods added to class
Complex, a complex number with real part 1.0 and imaginary part -2.0 will print and store
(using printString and storeString) as '1.0-2.Oi' and '(Complex new realPart: 1.0;
imaginaryPart: -2.0; yourselt)' respectively.

7.2.3 Converting Strings to Numbers

As in the previous section, conversions from strings to numbers require streams as an
intermediary. The conversion is achieved via

• Number r••dFrom: (ReadStream on: aStringl

Chapter 7 The Magnitude Classes 249



In general, there is no facility to recover gracefully from errors of syntax. If the need
arises, a more flexible version readFrom:onError: would have to be devised. Finally, if
the remainder of the string (after the number) is desired, an alternative sequence of statements
such as the following might be used.

aStream f- ReadStream on: aString.
aNumber f- Number readFrom: aStream.
aString f- aStream upTo: nil.

See the section on streams for a more detailed discussion of associated stream operations.

7.2.4 Type Conversion

Conversion between different classes of numbers is automatic and transparent to users.
Conversion occurs in the direction (integer ~ fraction ~ float) in an attempt to maintain as
much accuracy as possible. Explicit conversion operations can also be used; e.g.,

•
•

aNumber aalnteger, aaFraction, aaFloat (for integers, fractions, or floats) .

anlnteger aaCharacter (integers only).

From the point of view of implementors, this user view is insufficient. In order to
design a new class of numbers, it is essential that the protocol used by the system for
managing type conversions be used so as to integrate the new class as much as possible with
the existing number classes.

Binary arithmetic operations in the system are designed to operate on operands of the
same class; e.g., the float + operation requires both of its operands to be of class float. To
ensure that this is the case, all binary operations check the class of the right operand. If the
right operand class is different from the left operand class, one of the operands is converted to
the class of the other and the same operation is retried. To determine which operand is to be
converted, two approaches are used. The first technique is based on generality numbers and
is used prior to version 2.5 of the system. The operand with the lowest generality number is
converted to the class of the other. The second, more recent, technique is based on double
dispatching - an efficient technique for determining the types of the two operands without
having to explicitly interrogate the operand classes. Although double dispatching supersedes
generality numbers, the latter is still used for default type conversion if the designer of a new
number class did not provide the needed type conversion from existing classes to the new
number class.

The Existing Generality Numbers

Each numeric class is provided with a generality number. Currently, the following
generality numbers are being used:

250

•
•
•
•
•

float: generality 80
fraction: generality 60
large positive integer: generality 40
large negative integer: generality 40
small integer: generality 20

Inside Smalltalk



Additionally, unless explicitly overridden, the generality number inherited by any new
subclass of number is 40 (the method returning the generality number for both large
integers was placed in number simply to avoid duplicating it).

The Existing Coercion Operations (Using Generality
Numbers)

Once the system has determined that operand A, say, has a higher generality number than B,
'A coerce: B' is invoked to convert B to a number of the same class as A (the alternative
would result in 'B coerce: A' being invoked). Method 'coerce: Operand' for the respective
classes is (or should be) defined as follows:

•
•
•

Operand ••Floet (for float)

Operand ••Fr.ction (for fraction)

Operand ••Integer (for all three specializations of integer)

For the three integer specializations, method aslnteger simply returns 'self
truncated'. Unfortunately, the coerce: method for these return 'Operand truncated'
instead of 'Operand aslnteger', presumably as a speed optimization. As we will see, this
will have to be repaired when we more fully integrate complex numbers into the number
system - truncating a complex number is not the same as converting it to an integer.

Forcing Type Conversion on a Binary Operation (Via
Generality Numbers)

If a binary operation is invoked with incompatible operands, there is no need for the method
itself to go through the determination as to which operand to convert, to explicitly perform
the conversion, and then to reinvoke the given operation. A general method has already been
provided in Numberl for this purpose:

• aLeftOperandNumber retry: anOperatorSymbol coercing: aRightOperandNumber

For an example of actual usage, method < for fractions (as it existed prior to version
2.5) is shown next:

< aFraction
(aFraction i.MemberOf: Fraction)

ifTrue: [... detailed < code for fractions ...J
ifF.I.e: [iself retry: #< coercing: aFractionJ

Note the manner in which the operator symbol is specified in the retry:coercing:
message. Also, isMemberOf: is used instead of isKindOr: to ensure that specializations are
converted to the more general type. For fractions, isMemberOf: and isKindOf: are
equivalent because there are no specializations (yet).

1Actually, the method is in abstract class ArithmeticValue. Prior to version 2.5, this abstract class did
not exist. It was introduced to document double dispatching.

Chapter 7 The Magnitude Classes 251



Fully Integrating a New Number Class With Generality
Numbers (Automatic Type Conversion)

In order to fully integrate a new number class into the generality system, care must be taken
to ensure that all the following details are attended to:

• The generality of the new number must be decided upon.

• Each binary operation must check that the right operand class is the same as the
receiver's class; if not, an explicit retry:coercing: message must be sent.

• One coerce: method must be written that simply returns 'Operand asNewNum
ber' where NewNumber is the new class of numbers.

• One asNewNumber method must be added to each existing number class to effect
the proper conversion.

• A conversion operation for each of the other classes; e.g., asFloat, asFraction,
.., must be added to the NewNumber class.

To provide a flavor for the above steps, we will follow them in the context of our
complex number example. The first step is to decide on the generality of complex numbers.
An obvious choice is to make it the most general number, as follows:

generality
i1oo.

The second step is to modify each binary operation to invoke retry:coercing:. Two
examples are shown below:

< aComplex
aComplex isKindOf: Complex

ifTrue: Iiself aba < aComplex aba]
ifFalse: Iiself retry: #< coercing: aComplex]

+ aComplex
aComplex isKindOf: Complex

ifTrue: I
iComplexNumber new

realPart: (realPart + aComplex reaIPart);
imaginaryPart: (imaginaryPart + aComplex imaginaryPart);
yourself]

ifFalse: Iiself retry: #< coercing: aComplex]
+1

The next step is to define the cOerce: method for Complex as follows:

coerce: aNumber
i aNumber asComplex

The fourth step is to define conversion operator asComplex in each of the existing
number classes. Currently, this means in float, fraction, and integer (there is no need to add
one for each specialization of integer). Actually, we could make do with one method in
Number and another in Float. However, the following organization is easier to extend when
additional number classes are added.

252 Inside Smalltalk



11'1

In Class Float
uComplex

iComplex new reelPert: self; imegineryPert: 0.0; yourMlf

In Class Fraction
esComplex

"Keep the real part as a fraction; it will convert automatically if necessary."
iComplex new reelPert: self; imegineryPert: 0; yourMlf

In Class Integer
esComplex

"Keep the real part as an integer; it will convert automatically if necessary."
iComplex new reelPert: self; imegineryPert: 0; yourMlf

The final step is to introduce all existing conversions into Complex.

uReel
iselfebs

esFl'llction
i selfe" uFrection

esInteger
i self'" eslnteger

Although complex numbers can be printed in a standard notation, they can't be
specified (so far) in an equally convenient notation. The solution is to introduce a new
operator i to numbers.

In Class Number
i

iComplex new reelPert: 0; irnegineryPert: self; yourMlf

It is now legal to write 1+3i, 5.0+7.0i, (lj3)-(l/4)i, and so on.

What the General retry:coercing: Method Looks Uke

Having written code that uses the retry:coercing: method, it might be instructive to look at
the actual method. The intuitive explanation that we gave about its functionality will
thereby be made more concrete.

retry: aSymbol coercing: aNumber
"Arithmetic represented by the symbol, aSymbol, could not be performed with the
receiver and the argument, aNumber, because of the differences in representation.
Coerce either the receiver or the argument, depending on which has the lower
generality, and try again. If the symbol is the equals sign, answer false if the
argument is not a Number. If the generalities are the same, create an error
notification."

(aSymbol == #= end: llaNumber isKindOf: Number) == false))
ifTrue: [ifalse).

self generelity < aNumber generelity
ifTrue: [i(aNumber coerce: self) perform: aSymbol with: aNumber).

self generelity > aNumber generelity
ifTrue: [iself perform: aSymbol with: (self coerce: aNumber»).

self error: 'coercion attempt failed'

Chapter 7 The Magnitude Classes 253



Invoking '1 perform: #+ with: 2' is equivalent to '1 + 2'. The difference, of course, is
that the operator can be a parameter.

Double Dispatching

Double dispatching is an efficient technique for discovering the types of both operands
without having to explicitly query them. The easiest way to describe the technique is to
show how complex numbers can be revised to incorporate double dispatching. We revise
operation - as follows:

- aNumber
i aNumber differenceFromComplex: self

Note that differenceFromComplex: is working with the operands in the reverse
order; i.e., it will have to take into account that its receiver is the right operand while its
argument is the left. Now add method differenceFromComplex: to each of the existing
numeric classes as shown next. By the time one of these methods is invoked, the classes of
both operands will be known. This additional knowledge can sometimes be used to advantage
to generate more efficient code. For example, consider the version for class float - we know
that the real part must ultimately convert to a float if it isn't already one. Is it faster to force
the conversion (as we have done) or is the automatic conversion mechanism now faster
(given that no conversion may be needed)? We'll leave that to the reader as an experiment.

In Class Complex
differenceFromComplex: aComplex

"aComplex - self (another complex)"
iComplex new

reelPart: aComplex realPart - self reelPart;
imaginaryPart: aComplex imaginaryPart - self imaginaryPart;
yourself

In Class Float
differencaFromComplex: aComplex

"aComplex - self (a float)"
iComplex new

reelPart: aComplex reelPart a.Float - self;
imaginaryPart: aComplex imaginaryPart;
yourself

In Class Fraction
differencaFromComplex: aComplex

"aComplex - self (a fraction)"
iComplex new

realPart: aComplex realPart - self;
imaginaryPart: aComplex imaginaryPart;
yourself

In Class Integer
"aComplex - self (an integer)"
iComplex new

realPart: aComplex realPart - self;
imaginaryPart: aComplex imaginaryPart;
yourself

254 Inside Smalltalk



In general, five operations have been targeted for double dispatching: +, -, *, I, and <
with corresponding operations sumFrom?:, differenceFrom?:, productFrom?:, quo·
tientFrom?:, and lessFrom?:.

If the designer of a new class of numbers chooses not to handle automatic type
conversion (at least in the initial stages of development), it is still the case that some
automatic conversion may work because class ArithmeticValue contains a default for each
of these methods. For example, it contains the following method.

In Class Arithmetic Value
differenceFromFloat: aFloat

"aFloat - self (a number)"
i aFloat retry: #- coercing: self

Consequently, "5.3 + aComplex" will use the generality system to attempt to coerce 5.3
into a complex number. This mayor may not work depending on the generality information
inherited by the new number class.

7.2.5 Division, Remainders, TNncation, and Rounding

Many programming languages provide a single operation for performing division and a
single operation for obtaining the remainder of the division. The semantics are usually very
precise for the positive case but are often imprecise or downright uncommitted for the
negative case. Not so with Smalltalk. In fact, because the semantics are precisely described
for both the positive and negative cases, the need arose to provide several alternatives to each
of these operations with slightly different semantics (or effects). This is advantageous for the
knowledgeable programmer but can be troublesome for those of us who use the operations
sparingly because it is easy to confuse them.

There are three division operations and two operations for finding the remainder after
division. The results of both of these operations can be either positive or negative. With N
and M denoting numbers, the operations can be summarized as follows:

Division operatioM.
• N / M (standard division, no rounding or truncation)
• N quo: M (integer division truncated toward zero)
• Nil M (integer division truncated toward negative infinity)

Remeinder operetiona.
• N rem: M (remainder after N quo: M)
• N \\ M (remainder after N II M)

Standard division is the more often used operation; quo: and rem: correspond to the
more usual notion of integer division; II and \\ are relatively unfamiliar. The names quo and
rem are clearly short for quotient and remainder.

Standard Division

Standard division follows the previously discussed conversion rule (integer ~ fraction ~
float) to maintain as much accuracy as possible. Consequently, 4 I 2 ~ 2, 3 I 2 ~ 3 I 2,
and 3.0 I 2 ~ 1.5. This explains why standard division is the constructor for fractions and
the usual division operation for floats.

Chapter 7 The Magnitude Classes 255



Integer Division with Truncation Toward Zero

Division via quo: can be viewed as computing a float result and then truncating that result
toward zero (this is not strictly true because the operations are not implemented with float
arithmetic unless float operands are used). If the result of the "imagined" float division were
one of the following, for example,

-5.7 -4.2 3.4 7.8

the resulting integer answer would correspondingly be

-5 -4 3 7

Thus "truncation toward zero" can be paraphrased as "locating the next integer nearest zero,"
assuming the number line extended from negative infinity on the left to positive infinity on
the right. The same effect can be achieved more simply by dropping the fractional
information.

Integer Division with Truncation Toward Negative Infinity

Division via II can be similarly viewed as computing a float result and then truncating that
result toward negative infinity (once again, this is not strictly true because the operations are
not implemented with float arithmetic unless float operands are used). If the result of the
'imagined' float division were one of the following, for example,

-5.7 -4.2 3.4 7.8

the resulting integer answer would correspondingly be

-6 -5 3 7

Thus "truncation toward negative infinity" can be paraphrased as "locating the nearest integer
on the left."

The Remainder Operations

Method rem: is the corresponding remainder operation for quo:, whereas \\ is the corres
ponding remainder operation for II. It is relatively easy to remember the association between
rem: and quo: and between II and \\ Unfortunately, it is also easy to mix up II with \\
Sporadic users of Smalltalk often find themselves performing experiments in order to recall
which is which.

Fortunately, the effects of the remainder operations are easy to describe because their
respective semantics can be provided in terms of their corresponding division operation. If we
denote the integer division operation by D and the corresponding remainder operation by R,
then R can be computed as follows:

R ¢: Numerator - (Denominator * (Numerator D Denominator))

For example, to compute -11 rem: -5, simply subtract the denominator times the quotient
(-5 * 2) from the original number (-11) to get (-11 - (-10» or (-1). Clearly, the sign of the
operands is important.

256 Inside Smalltalk



1:11"

For those who have a pen or pencil and the patience, the above formula can be verified
by examining the following short table of examples.

11 quo: 5 => 2
11 rem: 5 => 1

11//5=>2
11\\5=>1

-11 quo: 5 => -2 11 quo: -5 => -2 -11 quo: -5 => 2
-11 rem: 5 => -1 11 rem: -5 => 1 -11 rem: -5 =>-1

-11//5=>-3 11/1-5=>-3 -11//-5=>2
-11 \\ 5 => 4 11 \\ -5 => -4 -11 \\ -5 => -1

Table 7.1

Fortunately, applications that use any of the above four operations with negative
numbers are rare. When (and mostly it) the need arises, the rule can be looked up.

Tnmcation and Rounclng

Truncation is an operation that discards the fractional part (if there is one). Rounding of a
number N can be defined as the truncation of N + (N sign * 0.5); i.e., if N is positive, N
rounded is (N + 0.5) truncated; otherwise, (N - 0.5) truncated. Hence, both rounding
and truncation return integers. Computationally, the rounding operation is implemented in
such a manner that intermediate conversion to float is avoided (this prevents float overflows
from occurring for large integers). If N denotes a number and I an integer, the two operations
are summarized as follows:

• N truncated => I (the integer nearest N in the direction toward zero)

• N rounded => I (the nearest integer N + (N sign * 0.5) in the direction toward
zero)

For instance, the result of truncating the following row of numbers (e.g., by writing -1.8
truncated)

-1.8 -1.5 -1.2 0.0 1.2 1.5 1.8

is
-1 -1 -1 o 1 1

respectively. Similarly, the result of rounding the following row of numbers (e.g., by
writing -1.8 rounded)

-1.8 -1.5 -'.2 0.0 1.2 '.5 1.8

is
-2 -2 -1 o 2 2

respectively.

Another related pair of operations computes the truncation and rounding of a number
N1 as a multiple of another value N2. Formally, they can be defined as follows:

•

•

N, truncat.To: N2 => N (a multiple of N2 nearest N,
- in the direction toward zero)

N, roundTo: N2 => N (a multiple of N2 nearest N, + (N, sign * (0.5 * N2 aball
- in the direction toward zero)

Chapter 7 The Magnitude Classes



Informally, the answer must differ from Nl by no more than N2 abs (for truncation)
and 0.5 * N2 abs (for rounding). Some simple examples include

13 truncateTo: 5 => 10

13 truncateTo: -5 => 10

-13 truncat.To: 5 => -10

-13 truncat.To: -5 => -10

13 roundTo: 5 => 15

13 roundTo: -5 => 15

-13 roundTo: 5 => -15

-13 roundTo: -5 => -15

(first multiple of 5 computed by decreasing 13 toward zero)

(first multiple of -5 computed by decreasing 13 toward zero)

(first multiple of 5 computed by decreasing -13 toward zero)

(first multiple of -5 computed by decreasing -13 toward zero)

( 5 computed by decreasing 13+5/2 = 15.5 toward zero)

( -5 computed by decreasing 13+5/2 = 15.5 toward zero)

( 5 computed by decreasing -13-5/2 = -15.5 toward zero)

( -5 computed by decreasing -13-5/2 = -15.5 toward zero)

Finally, truncation toward negative and positive infinity is provided by floor and
ceiling respectively:

• N floor (truncation toward negative infinity)

• N ceiling (truncation toward positive infinity)

Where possible, these operations should replace the rounding and truncation
operations. Few people confuse their semantics even for negative numbers.

7.2.6 Mathematical Operations

Although Smalltalk does not provide a complete set of mathematical operations, it does
provide a useful subset that includes the primary trigonometric functions. All operations are
applicable to numbers although conversion (automatic) to float is performed. If N denotes a
number, F a float, and I an integer, the operations can be summarized as follows (unless
otherwise specified, assume they return float values):

258

•
•
•
•
•
•
•
•
•
•
•
•
•

N sin (the sin of a N in radians)

N cos (the cos of a N in radians)

N tan (the tan of a N in radians)

N arcSin (a value in radians whose sin is N)

N arcCos (a value in radians whose cos is N)

N arcTan (a value in radians whose tan is N)

N degreesToRadians

N radiansToDegrees

N exp (the natural logarithm base e raised to the power of the receiver; Le., eN)

N)n (the natural logarithm of N; Le., 10geN)

N log: aNumber (the logarithm ofN to base aNumber; Le.,logaNumberN)

N floorLog: radix (a faster computation for (N log: aNumber) floor)

N sqrt (the square root of N)

Inside Smalltalk



Iii

• N raisedToInteger: anInteger (returns the aNumber NanIntegeI)

• N raisedTo: aNumber (returns an integer only when aNumber is an integer)

• N squared (an alternative to N * N)

• F fractionPart (e.g., the fraction part of 12.3456e2 is .56)

• F integerPart (e.g., the integer part of 12.3456e2 is 1234)

Some more specialized operations include

• I gcd: I (the greatest common divisor; always positive)

• I Icm: I (least common multiple; negative if either, but not both, operands are
negative)

It isn't clear why gcd: should always give positive results while Icm: doesn't. One
way to successfully predict the answer for Icm: is to include the factor -1 for negative
numbers. The least common multiple can be obtained by factoring both operands and
constructing a result using a minimum number of the factors, with the proviso that the
factors of the original operands are all included in the factors for the answer. For example,

15 ged: 20 ~ 5 (largest value that divides both evenly)
15 ged: -20 ~ 5 (largest value that divides both evenly)

151em: 20 ~ 60 (15 = 1*3*5, 20 = 1*4*5, 1*3*4*5 = 60 is the answer)
15 lem: -20 ~ -60 (15 = 1*3*5,20 = -1*4*5, 1*-1*3*4*5 = -60 is the answer)

Finally, class Float knows about the mathematical constant pi; e.g.,

Float pi

returns the value 3.14159.

7.2.7 Creating a New Subclass of Number

In order to integrate a new subclass of number with the existing system, several steps are
required:

•

•

•
•

Provide the operations required of magnitudes; i.e., <, =, and hash as a
minimum.

Provide the type conversion operations to permit automatic conversions between
the new class and existing number classes (see the section on type conversion).

Provide suitable print and store operations for input and output.

Provide the standard arithmetic operations +, -, *, and /. Investigation is required
to determine if other operations need to be revised.

In the case of complex numbers, the extensions provided so far appear to satisfy the
above requirements. Indeed, that was our initial feeling. Testing, however, uncovers some

Chapter 7 The Magnitude Classes 259



problems. First, methods truncated and quo: are recursively defined in class Number as
follows:

truncatBd
"Answer an integer nearest the receiver toward zero."
iself quo: 1

quo: aNumber
"Integer quotient defined by division with truncation toward zero."
i(self / aNumberl truncated

An infinite loop results if either method is used. The reason the loop doesn't exist for
the existing specializations of Number is that each redefines truncated so that it doesn't use
quo:. Similarly, for complex numbers, one or the other (or both) must be redefined. A
simple (though perhaps incorrect approach) might be to define truncation for complex
numbers as truncating the real and imaginary parts independently. With this approach, the
method is revised as

truncatBd
"Answer aComplex with separately truncated real and imaginary parts."
iComplex new

realPart: self reelPart truncated;
imegineryPart: self irnegineryPart truncatBd;
yourself

The quotient operation above consequently performs a complex divide followed by a
complex truncation. It would have to be revised if an integer result were expected.

We previously noted that explicitly coercing a complex number to an integer would
not work correctly because of the optimization performed by the coerce: method. This
integer method is revised as follows:

coerce: aNumber
i aNumber aalnteger

Querying operations like odd, even, negative, positive, strictlyPositive, and sign
do not have an obvious intuitive meaning. Perhaps they should indicate an error; e.g.,

odd
iself error: 'I do not know what an odd complex number is?'

7.2.8 Bit Manipulation on Integers

In Sma1ltalk, all integers (not just small integers) can be manipulated as a sequence of bits.
The bits are numbered I, 2, ... from right (the least significant bit) to left (the most
significant bit). Non-negative integers are viewed as having an infinite number of 0 bits on
the left; negative integers as having an infinite number of 1 bits on the left. The traditional
bit operations like

260

•
•
•

anIntegerAsABitSequence bitAnd: anotherBitSequence

anIntegerAsABitSequence bitOr: anotherBitSequence

anIntegerAsABitSequence bitXor: anotherBitSequence

Inside Smalltalk



"II! I

• anIntegerAsABitSequence bitInvert

• anIntegerAsABitSequence bitShift: anAmountByWhichToShiftLeft

are available for bit manipulation. A negative amount for bitShift causes shifting to the
right. In left shifts, zero bits are inserted on the right. Integers are maintained in two's
complement notation; hence

(X negeted) = (X bitlnvert + 1)

This relation is important for understanding the sequence of bits represented by
negative integers. For example, consider the following positive and negative integers. The
notation ...0 indicates that all bits to the left are 0; ...1 indicates they are all 1.

2r010 represents ...010
2r11111 represents ...011111
2r-1 represents ...11111
2r-1001 represents ...10111

(see below for an explanation)
(see below for an explanation)

Note that 2r-I represents ...11111 because 2r-I =...01 negated =...01 bitInvert + 1 =
...10 + 1 = ...11. Similarly, 2r-iool represents ...10111 because 2r-iool = ...01001 negated
=...01001 bitInvert + 1 =...10110 + 1 =...10111.

Integers are always printed so that the infinite number of implied digits is 0; i.e., if the
infinite number of implied digits is 1, the integer is first negated and printed with a negative
sign. Consequently, in binary notation

...01111 prints as 2r1111

...10011 prints as 2r-I...10011 negated) = 2r-I...10011 bitlnvert + 1) = 2r-1...01100 + 1)
= 2r-01101

•..10000 prints as 2r-(...10000 negated) = 2r-I...10000 bitlnvert + 1) = 2r-1...01111 + 1)
= 2r-011111

Additional bit querying and extraction operations can be achieved with the following:

•

•

anlntegerAsABitSequence highBit (returns the index of the highest order bit; 0 if
all bits are 0; illegal if negative)

anlntegerAsABitSequence bitAt: aBitlndex (returns the bit at the specified
index)

Negative numbers do not have a highest order bit since an infinite number of bits at
the extreme left are 1. Consequently, 2r-I highBit is illegal; 2rOiooi highBit is 4; 2rO
highBit is O. There is no corresponding restriction on the bit extraction operations; e.g.,
2rloo0 bitAt: 4 is 1; 2rlooo bitAt: 3 is O. In fact, 2rI bitAt: 10000 is 0 (recall that there
is an infinite number of zeros to the left of the 1). Similarly, 2r-I bitAt: ooסס1 is 1 (recall
that 2r-I is ...11111).

There is no corresponding bitAt:put:, but it can be written easily in terms of bitShift,
bitOr:, and bitXor: as follows:

bitAt: aBitlndex put: aZeroOrOne
aZeroOrOne = 0 ifTrue: Itself bitXor: (1 bitShift: aBitlndexl).
aZeroOrOne =1 ifTrue: Itself bitOr: (1 bitShift: aBitlndexl).
self error: 'bitAt:put: needs 0 or 1 value'

Chapter 7 The Magnitude Classes 261



Note: method bitAt:put: does not modify an existing bit in the integer. Rather, it con
structs a new integer suitably modified. Finally, the following masking operations are
provided:

•

•

•

anlntegerAsABitSequence allMask: aBitSequenceMask (all ones in the mask are

also ones in the receiver)

anlntegerAsABitSequence anyMask: aBitSequenceMask (one or more ones in

the mask are also ones in the receiverl

anlntegerAsABitSequence noMask: aBitSequenceMask (all ones in the mask are

zeros in the receiver)

Method allMask: could be used to determine if one bit sequence is a subset of another.
So far, these masking operations are rarely used in Smalltalk (under a dozen times). Most of
the time, they are used in very simple tests; e.g., 'aValue allMask: 8' instead of '(aValue
bitAnd: 8) = 8', or 'aValue anyMask: 8' as an alternative to '(aValue bitAnd: 8) -= 0'.

Defining a BitString Class

Because of the flexibility of the integer bit manipulation operations, it is easy to define a
class of arbitrarily long bit strings for use in specialized set applications. Using integers for
the purpose may be inadequate if we wish to be able to modify the bit string in place.
Additionally, we may wish to view the bit string as growing to the right and provide it with
a specialized print representation that maintains this point of view. Finally, we might wish
to use booleans as the bit elements instead of l's and a's. Portions of such a class definition
are shown below:

Class BitString

class name
superclass
instance variable names

class methods

instance creation

BitString
Number
string

new
"Returns a BitString instance initialized to zero bits."
i super new privatelnitialize

private

privateNewWith: anlnteger
"Returns a BitString instance initialized to anlnteger interpreted as a bit sequence,"
i super new privatelnitialize: anInteger

instance methods

access

at: aBitlndex
i(string bitAt: aBitlndexl = 1

262 Inside Smalltalk



'11'1

.t: aBitlndex put: aBoolean
aBitlndex <= 0 ifTrue: [self error: 'subscript out of bounds in bit string'].
aBoolean =false

ifTrue: [string +- string bitAnd: (1 bitShift: aBitlndex - 1) bitlnvert. iself].
aBoolean = true ifTrue: [string +- string bitOr: (1 bitShift: aBitlndex - 1). i self).
self error: 'bitAtput: needs a boolean value'.

printing

printOn: aStream
"Examples are Ob1001 •.. and Ob10010... (. .. indicates that all remaining bits are the
same)"
I theBits I
aStream nextPutAlI: 'Ob'.
string neg.tive

ifTrue:[
theBits +- string bitlnvert printStringRadix: 2.
"The above string conversion adds '2r' that must be removed"
(theBits copyFrom: 3 to: theBits .ize) reve,.eDo: [:aCharacter I

aStream nextPut: (aCharacter = $0 ifTrue: [$1) ifF.lse: [$0))).
aStream nextPutAlI: '1 ...'.]

iff....: [
theBits +- string printStringR.dix: 2. "This adds '2r' that must be removed"
(theBits copyFrom: 3 to: theBits .ize) reve,.eDo: [:aCharacter I

aStream nextPut: aCharacter].
aStream nextPutAlI: '0...']

.to,.on: aStream
"An example is (2046772 asBitString)."
I theBits I
aStream nextPut: $(. string .toreOn: aStream. aStream nextPutAlI: ' asBitString)'

comparisons

< aBitString
(aBitString isMemberOf: BitString) ifF.I_: [iself retry: #< coercing: aBitString].
i string < aBitString ••Integer

= aBitString
(aBitString isMemberOf: BitString) ifF.I_: [iself retry: #= coercing: aBitString).
i string = aBitString ••Integer

ha.h
string hash

boolean arithmetic

or: aBitString
"Returns a BitString instance equal to the or of the receiver and the argument."
(aBitString isMemberOf: BitString) ifF.lse: liself retry: tor: coercing: aBitString].
i(string bitOr: aBitString .slnteger) ••BitString

.nd: aBitString
"Returns a BitString instance equal to the and of the receiver and the argument."
(aBitString isMemberOf: BitString) ifF.lse: [iself retry: land: coercing: aBitString).
i(string bitAnd: aBitString ••Integer) ••BitString

Chapter 7 The Magnitude Classes 263



264

xor: aBitString
·Returns a BitString instance equal to the xor of the receiver and the argument."
(aBitString isMemberOf: BitString) ifFalse: liself retry: #xor: coercing: aBitStringJ.
i(string bitXor: aBitString aslnteger) asBitString

not
"Returns an instance of class BitString equal to the complement of the receiver."
i(string bitlnvert) asBitString

ahiftLeft: aShiftAmount
"Returns a BitString instance left shifted by the Shift Amount (true or false is
discarded on the left)."
i(string bitShift: aShiftAmount negated) aaBitString

ahiftRight: aShiftAmount
·Returns a BitString instance right shifted by the Shift Amount (false is added on
the left)."
i(string bitShift: aShiftAmount) aaBitString

conversion

aalnteger
istring

private

privatelnitialize
string f-- 0

privatelnitializeWith: anlnteger
string f-- anlnteger

examples

example1
I aBitString I

"Zeros·
Transcript cr. aBitString f-- 0 asBitString.
(1 to: 60) do: [:anAmount I

Transcript show:
aBitString printString,' at:', anAmount printString, ' => "
(aBitString at: anAmount) printString; crJ.

"Ones"
Transcript cr. aBitString f-- -1 asBitString.
(1 to: 60) do: [:anAmount I

Transcript show:
aBitString printString, 'at: ',anAmount printString, '=>',
(aBitString at: anAmountl printString; crl.

"Mixed"
Transcript cr.
aBitString f-- 2r0101010101010101010101010101010101010101 aaBitString.
(1 to: 60) do: [:anAmount I

Transcript show:
aBitString printString, ' at: ',anAmount printString, '=>',
(aBitString at: anAmount) printString; crJ.

Inside Smalltalk



'Inserting into Ones (true)'
Transcript cr. aBitString ~ 0 asBitString.
(1 to: 60) do: l:anAmount I

Transcript show:
aBitString printString,' at: ',anAmount printString, ' put: true =>',
(aBitString at: anAmount put: true) printString; cr).

'Inserting into Zeros (false)'
Transcript cr. aBitString ~ -1 asBitString.
(1 to: 60) do: [:anAmount I

Transcript show:
aBitString printString, ' at:', anAmount printString, ' put: false =>',
(aBitString at: anAmount put: false) printString; crl

Finally, numbers are extended by adding one type conversion operation for all
specializations, as follows:

_BitString
iBitString privateNewWith: self

7.3 DATE AND TIME

Date and Time provide a general protocol for manipulating date and time inquiries. Date
was designed to include any year, month, and day since January 1, 1901, and time was
designed to provide the hour, minute, and second after midnight.

For the most part, the protocol is quite useful but there are some idiosyncracies. In
particular, not only do the classes construct the expected instances of date and time, but
some methods return unusual instances like (1) an array containing both a date and a time
with no special methods to manipulate the combination (dateAndTimeNow) and (2) a 4
byte array containing an unusable encoding of time (timeWords). Additionally, there are
operations to convert dates to seconds (relative to January 1, 1901) but no corresponding
operation to convert back. Some of the date operations are relative to January 1, 1901, while
others simply view dates as extending infinitely far backward. Even dates such as January 1,
oand January 1, -55 can be manipulated in some cases. In the same way, since time is
relative to midnight, it can extend arbitrarily far forward (it is maintained as seconds since
midnight) or backward (negative values). Not all methods are designed to handle such values.
Nevertheless, if we stick to traditional usages; i.e., current dates and current time of day, no
special care will be needed to ensure correct usage.

Date and time are independent in the sense that time is not dated; i.e., time is the
number of seconds since midnight (no particular day is specified). Consequently, an absolute
time can be manipulated only by keeping track of both a date and a time.

7.3.1 Class Operations for Dates and Times

In addition to providing a protocol for creating new dates and times, the classes also playa
role in converting between the names of months (or days) and their corresponding integers.
They are also the recipient of many useful inquiries. In general, the instance creation opera
tions include:

• Date today
• Date newDay: aDayOfTheMonthlnteger month: aMonthName year: aYearlnteger

Chapter 7 The Magnitude Classes 265



•
•
•

Date newDev: aDayOfTheYearlnteger veer: aYearlnteger

Time now
Time fromSeconds: aSecondCountSinceMidnight

An easy mistake to make is to mix up the two simplest methods; e.g., attempting to
invoke Date now or Time today. They could be added easily. Although it is not particularly
convenient for manipulation, it is also possible to obtain an array containing both the date
and time as follows (either class returns the same result):

•
•

Date deteAndTimeNow
Time deteAndTimeNow

This is most useful for printing the current date and time. However, the user must
specifically extract the components using the array operations at: (at: 1 for the date and at:
2 for the time).

Date operations for converting day and month names to integers are provided as
follows:

•
•
•

Date devOfWeek: aDayName (returns 1.2•...• or 7)

Date indexOfMonth: aMonthName (returns 1. 2..... or 12)

Date devslnMonth: aMonthName forYeer: aYearlnteger (returns 1,2, .... or 31)

Day names must be exactly correct; e.g., Monday and not Mon, for method
dayOfWeek:. Day numbers 1, 2, ...• 7 correspond to Sunday, Monday, ... , Saturday. By
contrast, the month names can be specified by omitting trailing characters. Hence January,
Janu, Jan, and Ja are all legal (J is interpreted as January even though July would match
because it occurs first in the ordering). The last operation is the more useful of the three.
Corresponding operations are provided for converting integers to names:

•
•

Date nemeOfDev: anintegerFrom1To7

Date nemeOfMonth: anlntegerFrom1To12

Two other useful operations include:

•
•

Date devslnYeer: aYearlnteger

Date leepY.er: aYearlnteger (returns 1 for true and 0 for false)

7.3.2 Conversion Operations for Dates and nmes

Date and time are easily converted to a string with the standard print and store operations
printString and storeString. However, care must be taken when dealing with negative
dates and times - anomalous values can be printed. Converting from a string to a date or a
time is achieved via

266

•
•

Date reedFrom: (ReadStream on: aString)

Time r.edFrom: (ReadStream on: aString)

Inside Smalltalk



I '~I

As can be seen, the two readFrom: methods require a stream parameter. Date constants
must adhere to the following formats:

•

•

IntegerDay MonthName IntegerYear

(with arbitrary non-alphanumeric separators)

MonthName IntegerDay IntegerYear

(with arbitrary non-alphanumeric separators)

A year XX that is less than 100 is assumed to be 19XX. Similarly, time constants
must adhere to the following formats:

•
•

IntegerHour:lntegerMinute:lntegerSeconds am (see below for options)

IntegerHour:lntegerMinute:lntegerSeconds pm (see below for options)

The colons are required but ':IntegerMinute:IntegerSeconds' and ':IntegerSeconds' can be
omitted. Additionally, am and pm can be uppercase or lowercase; if omitted, am is assumed.
Some examples of correct constants are

25 December, 1986
5 Dec 86

5-Dec-1986
December 5,1986

5/12/86

5:30:00 am
2:40:50 pm

3am
5:44

Since dates like '5/12/86' are permitted, a date intended to be the year 0086 cannot be
specified as a constant. A date such as January 1,0 or even January 1, -55 can be constructed
using

Date newDay: 1 year: 0 or Date newDay: 1 year: -55

Finally, it is possible to convert times to seconds and back via operations

•
•

aTime asSeconcI8

Time fromSeconds: anlntegerDenotingSeconds

It is permissible to construct a time via 'Time from Seconds: -3600', for example. It
is also possible to convert dates to seconds relative to January 1, 1901, but there is no direct
conversion back. A reasonable substitute is shown.

•
•

aDate a.seconds

Date fromDays: anlntegerDenotingSeconds II 86400 "24*60*60"

Chapter 7 The Magnitude Classes 267



7.3.3 Querying Operations for Dates and Times

Date and time querying operations on instances include the following:

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•

aOate day (an integer between 1 and 366 inclusive)

aOate dayOfMonth (an integer between 1 and 31 inclusive)

aOate dayslnMonth (an integer between 28 and 31 inclusive; depends on leap years)

aOate dayslnYear (365 or 366; depends on leap years)

aOate daysLeftlnYear (an integer between 0 and 365 inclusive)

aOate firstDayOfMonth (an integer between 1 and 366 inclusive)

aOate weekday (Sunday. Monday..... or Saturday; the current day)

aOate weekdaylndex (an integer between 1 and 7 inclusive; the current day)

aOate monthName (January. February•...• or December; the current month)

aOate monthlndex (an integer between 1 and 12 inclusive; the current month)

aOate year (an integer like 1986; the current year)

aOate leap (integer 0 or 1; depends on leap years)

aTime hours (an arbitrarily large positive or negative integer denoting the current hour)

aTime minutes (an integer between 0 or 59 inclusive)

aTime seconds (an integer between 0 or 59 inclusive)

aOate previous: aOayName (the previous date with that day name)

7.3.4 Arithmetic Operations for Dates and Tmes

A few selected arithmetic operations are provided for constructing new dates and times:

•
•
•
•
•

aOate addDays: anlnteger (returns a Date)

aTime addTime: aOateOrATime (returns a Time)

aOate subtractDays: anInteger (returns a Date)

aTime subtractTime: aOateOrATime (returns a Time)

aOate subtractDate: aOate (returns the number of days as an integer!

Note that adding negative values is equivalent to subtracting a positive value. Hence, it
is legal to compute 'Date today addDays: -10' or 'Time now addTime: (Time fromSec
onds: -36(0)'. Adding or subtracting a date to a time first causes the date to be converted to
the number of seconds since January I, 1901. There is no corresponding addMonths: or
addYears: for dates.

7.3.5 Designing an Absolute Time Class

The easiest way to provide some examples using date and time is to design a new class that
uses them. Since it wasn't provided by the system, we will consider an absolute time class;
i.e., a class that maintains the current year, month, day, hour, minute, and second. The

268 Inside Smalltalk



existing time class will be viewed as a relative time class. Absolute time is defined so that
it can be extended indefinitely far back in time.

To simplify the implementation and inherit some of the existing operations, we
should make this new class a subclass of either Date or Time. Since Date has the larger
number of operations, we will choose it as the superclass. Because time is not inherited, a
new instance variable called time is added to maintain the time.

Absolute time can be created by providing a specific year, month, day, hour, minute,
and second. Correspondingly, each of these components will be referred to in the singular.
Hence, extracting a month or changing it is achieved via 'anAbsoluteTime month' and
'anAbsoluteTime month: aNewMonth' respectively. For convenience, month can be speci
fied either by name such as #January or by month index such as 1. All changes are normal
ized; e.g., changing the month to 25 actually increases the year by 2 and changes the month
to 1; similarly, changing the month to -1 actually decreases the year by 1 and changes the
month to 11 (changing it to 1 would have meant January, 0 December, -1 November).
Arithmetic is provided with add methods that are specified by constrast in the plural; e.g.,
'anAbsoluteTime addMonths: numberOfMonths' or 'anAbsoluteTime addDays:
numbetOfDays' .

The readFrom: method was obtained by combining the corresponding Date and Time
readFrom: methods. A small bug was also removed. Can you find it? It expects an
absolute time as a date, followed by a time with separators such as blanks, commas, and
semicolons; e.g., '5 April 1982; 2:23:09 pm'.

Class AbsoluteTime

class name
superclass
instance variable names

class methods

instance creation

AbsoluteTime
Date
time

I1ClW

"Returns an AbsoluteTime for today's date and time."
i self new priveteinitializeNow

tocIey
"Returns an AbsoluteTime for today's date and time."
i self new privetelnitielizeNow

yeer: aYearlnteger month: aMonthNameOrlnteger dey: aDaylnteger
hour: anHourlnteger minute: aMinutelnteger second: aSecondlnteger

"Returns an AbsoluteTime for the specified date and time."
I aMonthlnteger I
aMonthlnteger +--

(aMonthNameOrlnteger isKindOf: Symbol)
ifTrue: [Date indexOfMonth: aMonthNameOrlnteger)
ifFelse: [aMonthNameOrlnteger).

iselfnew
privetelnitielizeVeer: aYearlnteger month: aMonthlnteger dey: aDaylnteger
hour: anHourlnteger minute: aMinutelnteger second: aSecondlnteger

Chapter 7 The Magnitude Classes 269



5-APR-1982; 8AM
4/5/8"

270

readFrom: aStream
·Note: assumes the reader has previously read the section on streams"
"Reads a Date and time from the stream in the following form (non-alphanumeric
separators are allowed to substitute for spaces, when shown, between the entries):

<day> <monthName> <year> <hour>:<minute>:<second> <am/pm>
<month Name> <day> <year> <hour>:<minute>:<second> <am/pm>
<monthNumber> <day> <year> <hour>:<minute>:<second> <am/pm>

where <hour>:<minute>:<second, :<minute>:<second, :<second>, and <am/pm> may
be omitted. Some examples include:

5 April 1982 1:59:30 pm
April 5, 1982 18:53:00

I day month year hour minute second I
aStream .kipSeparato....
aStream peek i.Digit ifTrue: [day f-Integer readFrom: aStreaml.
[aStream peek isAlphaNumericl whileFal.e: [aStream .kip: 11.

aStream peek i.Letter
ifTrue: [·number/name... or name...•

month f- WriteStream on: (String new: 10).
[aStream peek isLetterl whileTrue: [month nextPut: aStream next).
month f- month contents a.Symbol.
day i.Nil ifTrue: [·name/number....

[aStream peek isAlphaNurnericl whiIeFal.e: (aStream .kip: 1I.
day f-Integer readFrom: aStreamJ)

ifFal.e: (·number/number..."
month f- Date nameOfMonth: day.
day f- Integer readFrom: aStreaml.

[aStream peek isAlphaNurnericl whileFal.e: [aStream .kip: 1I.
year f- Integer readFrom: aStream.
[aStream atEnd not and: [aStream peek isAlphaNurneric notll

whileTrue: [aStream .kip: 11.

"Now for reading the time portion·
(aStream atEnd not and: [aStream peek i.Digit))

ifTrue: [
hour f- Integer readFrom: aStream. minute f- O. second f- O.
(aStream peekFor: $:)

ifTrue:[
minute f- Integer readFrom: aStream.
(aStream peekFor: $:)

ifTrue: [second f- Integer readFrom: aStreamJlJ
ifFal.e: (hour f- O. minute f- O. second f- 01.

aStream .kipSeparato....
(aStream atEnd not and:
[aStream peek asLowerca.e =$p or: [aStream p_k asLowerca.e =$a)])

ifTrue: [
aStream next a.Lowerca.e = $p ifTrue: [hour f- hour + 12).
(aStream peekFor: $m) ifFal.e: [aStream peekFor: $MlI.

i AbsoluteTime
year: year month: month day: day hour: hour minute: minute .econd: second

"AbsoluteTime readFrom: (ReadStream on: '5APR1982;2:23:09 pm')"

Inside Smalltalk



querying

firstOayOfMonth: aMonthlnteger forY.ar: aYearlnteger
"FirstDayOfMonth is a class variable in Date..
i(FirstDayOfMonth at: aMonthlnteger) +

((aMonthlnteger > 2) ifTru.: [Date l.apY.ar: aYearlnteger) ifFals.: [On

instance methods

accessing

year
"This method could be removed (it is here for completeness)"
isuperyear

monIh
"Returns the current month."
i self monthlndex

day
"Returns the current day:
i super day - self firstOayOfMonth + 1

ho&r
"Returns the current hour:
itimehours

minute
"Returns the current minute..
itime minutes

-=and
"Returns the current second:
itime seconds

modification

y.er: aYearlnteger
"Updates the current year"
year +- aYearlnteger

month: aMonthNameOrlnteger
"Updates the current month taking normalization into account:
I aMonthlnteger oldDay newMonth newYear newDate I
aMonthlnteger +- (aMonthNameOrlnteger isKindOf: Symbol)

ifTrue: [Date indexOfMonth: aMonthNameOrlntegerl
ifFalse: [aMonthNameOrlntegerl.

oldDay +- self day.
newMonth +- (aMonthlnteger - 1 \\ 12) + 1.
newYear +- self year + (aMonthlnteger 1/12).
oldDay <= (Date davslnMonth: (Date nemeOfMonth: newMonth) forY.ar: newYear)

ifFal.e: (
self .rror: (Date nameOfMonth: newMonth) printString,

'does not have', oldDay printString, 'days'l.
"Avoid Date newDay:month:year: because it converts 0085 for example to 1985."
day +- (AbsoluteTime firstOeyOfMonth: newMonth forY.ar: newYear) + oldDay - 1.
year +- newYear

Chapter 7 The Magnitude Classes 271



day: aDaylnteger
·Updates the current day taking normalization into account.·
I newDate I
newDate ~ Date newDay: self firstDayOfMonth + aDaylnteger - 1 year: self year.
year ~ newDate yeer. day ~ newDate dey

minute: aMinutelnteger
·Updates the current minute taking normalization into account (uses some inherited
private methods)."
time hours: (time hours) minutes: aMinutelnteger seconds: (time seconds).
i self priveteNormalize

hour: anHourlnteger
·Updates the current hour taking normalization into account (uses some inherited
private methods)"
time hours: anHourtnteger. i self priveteNormalize

second: aSecondlnteger
·Updates the current second taking normalization into account (uses some inherited
private methods)."
time hours: (time hours) minutes: (time minutes) seconds: aSecondlnteger.
i self priveteNormalize

arithmetic

eddYears: aYearslnteger
·Constructs a new AbsoluteTime updated by the specified years and taking
normalization into account."
i self copy yeer: self year + aYearslnteger

addMonths: aMonthslnteger
·Constructs a new AbsoluteTime updated by the specified months and taking
normalization into account."
i self copy month: self month + aMonthslnteger

eddDeys: aDayslnteger
·Constructs a new AbsoluteTime updated by the specified days and taking
normalization into account."
iself copy dey: self day + aDayslnteger

eddHours: anHourslnteger
·Constructs a new AbsoluteTime updated by the specified hours and taking
normalization into account."
iself copy hour: self hour + anHourslnteger

eddMinutes: aMinuteslnteger
·Constructs a new AbsoluteTime updated by the specified minutes and taking
normalization into account."
iself copy minute: self minute + aMinuteslnteger

eddSeconds: aSecondslnteger
·Constructs a new AbsoluteTime updated by the specified seconds and taking
normalization into account."
i self copy second: self second + aSecondslnteger

comparing

=anAbsoluteTime
·Answer whether anAbsoluteTime precedes the absolute time of the receiver."
isuper =anAbsoluteTime end: [time =anAbsoluteTime priveteTime)

Inside Smalltalk



< anAbsoluteTime
"Answer whether anAbsoluteTime precedes the absolute time of the receiver."
"aDate day (days since January 1) ~= anAbsoluteTime day (Days since beginning of
month."
super =anAbsoluteTime "actually comparing only date portion"

ifTrue: [itime < anAbsoluteTime privateTime]
ifFal.e: [isuper < anAbsoluteTime "actually comparing only date portion"]

converting

.Seconds
"Answer the seconds between a time 24 hours before January 1 0000 and the
receiver's time."
iSecondslnDay * (self .ubtrectDate: (Date newDay: 0 year: 0)) + time a.Second.

copying

copy
i self deepCopy

printing

printOn: aStream
super printOn: aStream. aStream nextPut: $ . time printOn: aStream

private

privatelnitielizeNow
"Initializes all components."
I aDate I
aDate +- Date today. day +- aDate day. year +- aDate year. time +- Time now

privatelnitializeYear: aYearlnteger month: aMonthlnteger day: aDaylnteger
hour: anHourlnteger minute: aMinutelnteger .econd: aSecondlnteger
"Initializes all components."
"Avoid Date newDay:month:year: because it converts 0085 for example to 1985."
day +- (AbsoluteTime fir.tDayOfMonth: aMonthlnteger forYear: aYearlntegerl +

aDaylnteger - 1.
year +- aYearlnteger.
time +- Time fromSecond.: (anHourlnteger*60*60) + (aMinutelnteger*60) +

aSecondlnteger.
i self privateNormalize

privateNormelize
"Ensure that the month, day, hour, minute, and seconds are adjusted to proper
units."
I remainingSeconds convertedDate I
remainingSeconds +- time a.Second•.
convertedDate +- super addDay.: (remainingSeconds /I ("24*60*60" 86400)).
"Now effect the changes."
day +- convertedDate day. year +- convertedDate year.
time +- Time fromSecond.: (remainingSeconds \\ ("24*60*60" 86400))

privateTune
itime

Chapter 7 The Magnitude Classes 273



7.4 CHARACTERS

There are 256 unique characters corresponding to integers O. 1, ...• 255. Character constants
begin with $ and are followed by the character to be specified; e.g.,

$1, $a, $A, $+, $$, and even $ (where the blank is difficult to seel

Since the characters are unique, not only is $a =$a true but also $a == $a. Conversion
between characters and integers is achieved with methods

•
•

aCharacter aslnteger

anlnteger asCharacter

When converting an integer to a character, the integer must be in the range 0 to 255.
Additional conversion operations include:

•
•
•
•

aCharacter asCharacter (no effectI

aCharacter asLowerca..

aCharacter asUppercase

aCharacter asSymbol

Consequently, $A asLowercase is $a. $+ asLowercase is still +. $z asUppercase is $Z.
$Z asUppercase is still $Z, and $a asSymbol is #a. Non-printable characters can be
obtained by sending special messages to the class:

• Character space

• Character cr

• Character tab

• Character beckspece

• Character esc

• Character newPage

Additional missing protocol could be added to the class as follows:

formFeed
i self newPage

lineFeed
i10 asCharacter

Special querying operations include:

274

•
•
•
•
•

aCharacter isAlphaNumeric

aCharacter isDigit

aCharacter isLetter

aCharacter isLowercase

aCharacter isUppercase

(true if $a ..$z, $A..$Z, or $0..$91

(true if $0..$91

(true if $a ..$z or $A..$ZI

(true if $a..$zl

(true if $A..$Zl

Inside Smalltalk



•
•

aCharacter isSeparator

aCharacter isVowel

i'lli

(true if space, cr, tab, line feed, or form feed)

(true if $a, $e, $i, $0, $u, or $A, $E, $1, $0, $U)

For parsing purposes, the following complementary methods are provided to
manipulate extended radix digits '0123456789abcdefghijklmnopqrstuvwxyz' in both
uppercase and lowercase:

•
•

Character digitValue: anintegerBetweenOand35 (returns an extended radix digitl

aCharacter digitValue (returns an integer between 0 and 35 if it is an extended

radix digit and -1 otherwise)

For example, if aRadix contains an integer between 0 and 36, then aCharacter is a valid
digit if

aCharaeter digitValue betw_n: 0 and: aRadix-1

Alternatively, if aLetterPosition is an integer between 1 and 26 representing one of the
letters, the letter can be obtained from

Character digitValue: (aletterPosition + 10)

Finally, it is worth detailing the two lower level conversion operations that are actu
ally used for implementing asCharacter (uses value:) and asInteger (uses asciiValue).
These operations are sometimes a source of errors; e.g., asciiValue is often confused with
digitValue. It is better to avoid them unless they are needed for performance reasons.

•
•

Character value: anintegerBetweenOAnd255 (convert to character)

aCharacter asciiValue (convert to integer)

7.5 RANDOM STREAMS

Class Random provides random number generators over the interval 0.0 and 1.0 exclusive
(the endpoints are never provided). The generator is actually an infinite stream; i.e., a stream
that cannot be exhausted. The protocol to use for obtaining such a stream is

•
•

Random new (to obtain a new random number generator)

aRandom next (obtains a random number from the random number generator)

The random numbers provided by each generator are generally different. A class of random
streams, say caUed RangedRandom, that returns values between a and b exclusive could be
dermed as follows. The value returned is converted to the class of a (the lowerbound).

As defined, a generator for values between 1.0 and 100.0 exclusive would be obtained
with

RangedRandom from: 1.0 to: 100.0

A generator for values between I and 100 exclusive would be obtained with

RangedRandom from: 1 to: 100

Chapter 7 The Magnitude Classes 275



Class RangedRandom

class name
superclass
instance variable names

class methods

instance creation

RangedRandom
Random
baseValue expansionAmount

from: lowerValue to: upperValue
"Returns a RangedRandom for the specified bounds..
isuper new privatelnitializeWith: lowerValue and: upperValue

new
"Not allowed."
iself error: 'Use RangedRandom from: lowerValue to: upperValue.'

instance methods

accessing

next
ibaseValue coerce: baseValue+ (super next * expansionAmount)

private

privatelnitializeWith: lowerValue and: upperValue
baseValue ~ lowerValue. expansionAmount ~ upperValue - lowerValue.
(baseValue i.KindOf: Integer)

"This prevents the lowerbound from being returned (conversion truncates)"
ifTrue: IbaseValue ~ baseValue + 1. expansionAmount ~ expansionAmount - 11.

7.6 SUMMARY

In this chapter, we have described the Smalltalk Magnitude classes. In particular, we have
discussed the following:

• Magnitude as an abstract class with operations like <, >, =, <=, >=, and -=.

• The steps to be followed when adding new subclasses of Magnitude.

• The literal representation for constants of class Number.

• Type conversion between numbers and the concept of generality.

• The division, remainder, truncate, and round operations.

• Mathematical operations.

• The steps to be followed when adding new subclasses of Number.

• The protocol supported by classes Date and Time.

• AbsoluteTime - a new subclass of Date.

• The protocol supported by class Character.

• The class Random.

• RangedRandom - a Random subclass providing fixed range random numbers.

276 Inside Smalltalk



'Ill

7.7 EXERCISES

The following exercises may require some original thought, rereading some of the material,
and/or browsing through the system.

1. As defined, the < operation for com
plex numbers is less than ideal. For
instance, can you think of two com
plex numbers a and b such that a = b,
a < b, and a > b are all false? How
would you revise the operation?

2. Generalize methods printString
Radix: and storeStrlngRadix: so
as to apply to fractions and/or floats.

3. Investigate the library to find out
how many classes (if any) provide
operation < and yet do not inherit
from Magnitude. Is there a good
reason in each case?

4. With infinite length bit strings, it is
not possible to provide operations
that take substrings and perform
concatenations (how would you
concatenate two infinitely long
strings?). Devise a specialization
called, say FiniteBitString, that
would permit you to do this.

7.8 GLOSSARY AND IMPORTANT FACTS

c/ass.s

ArlthmeticValue An abstract class for
documenting double dispatching.

Date A class that provides a date accurate to
a specific day in a specific month of a
specific year.

Float A class that provides manipulation for
approximated values such as 1.0e-5 and
1.234.

Fraction A class providing manipulation for
fractional values such as (1/3) and (1/2).

Integer An abstract class that includes large
positive integers, large negative integers,
and small integers. Integers provide
unbounded precision arithmetic.

Chapter 7 The Magnitude Classes

S. The complex number methods
currently use a cumbersome notation
for creating new complex numbers,
namely "Complex new realPart: X;
imaginaryPart: Y; yourself".
This could be rewritten in the form
"X+Yi" but it would be much less
efficient because of the type
conversion that results in +. A more
efficient solution could make use of
the comma as an operator, enabling
you to write "X, Y"; no type
conversion would be required. Where
should this operator be placed in the
number hierarchy and what should the
code be? Would you change
printOn: and storeOn: to take
advantage of the more convenient
notation?

6. Some classes like strings have com
parison operations <, >, and =
defined on them and yet they are not
subclasses of Magnitude. Why?

LimitedPrecisionReal An abstract class for
anticipated extensions to floats; e.g.,
singie versus double precision.

Magnitude An abstract class for objects that
can be compared using operations such as
<, >, =, <=, >=, and -=.

Number An abstract class that includes
integers, fractions, and floats.

Random A class that returns a random num
ber generator for numbers between 0.0 and
1.0 exclusive.

Time A class that provides a time accurate to
a specific second relative to midnight.

271



selected terminology

bit manipulation The process of manipulating
integers as if they were a sequence of bits
(zeros and ones). Typical operations in
clude bitAnd:, bitOr:, bitXor:, bitIn
vert:, and bitShift:.

conversion The process of explicitly conver
ting an instance of one class into an
instance of another.; e.g., from an integer
into a string.

coercion The process of converting a number
from one class to another as required by
the context; e.g., converting an integer
operand to a float when the other operand
is float.

double dispatching An efficient technique for
discovering the types of both operands
without having to explicitly query them
and for performing fast automatic conver
sion.

important facts

No operator priority Hence, A + B * C ~

(A + B) * C (brackets are needed to change
the order). Additionally, A = B & C = D
(is not what you want).

No integer overflow Hence, large number +
large number ~ an even larger number.

Automatic type conversion Conversion order
is Integer ~ Fraction ~ Float - AlB
converts integers A and B to a fraction;
A coerce: B converts B to number A's
class.

Some operations renamed A quo: B ~ quo
tient (called mod in other languages).
A rem: B ~ remainder after dividing A
by B. A raisedTo: B and A raisedTo
Integer: B ~ a number or integer power
respectively.

Unary operations extensive No unary plus;
negated is unary minus; others include
exp, In, sqrt, odd, even, positive.
negative. floor, ceiling, truncated.
rounded. abs, reciprocal, factorial.
asCharacter (Integer only); fraction
Part, and integerPart (Float only).

278

generality number A conversion priority as
sociated with each number class. An opera
tion converts the operand with the lowest
generality number (if they are different) to
the class of the other. Existing generality
numbers are 80 (float). 60 (fraction). 40
(large integers). and 20 (small integers).

hash An operation computing a unique integer
from an object. Equal objects must have
equal hashes but the converse need not
hold. Hashes are used in classes such as
sets and dictionaries to speed up searches.

radix An upper bound on the digits allowed
for use in a number. For a radix between 2
and 36. the digits must have values
between 0 and radix-I. Allowed digits are
0123456789abcd...xyz (both uppercase
and lowercase letters are allowed). Digit a
represents 10. b represents 11. and so on.

Sequencing over numbers

A to: B do: aBlock; e.g.,
5.1 to: 10.1 do: [:index I

sum f- sum + index]
A to: B by: C do: aBlock; e.g.•

10.1 to: 5.1 by: -0.2 do: [:index
sum f- sum + index]

It is also legal to write
(A to: B) do: aBiock
(A to: B by: C) do: aBlock
anInterval f- (A to: B by: C).
anInterval do: aBlock.
(intervals are a special class of
collections)

Note: 1 to: 10.0 by: (1/3) do: aBlock
works (range is 1. (4/3). (5/3)•...•
note type conversion)

Range comparisons

(A <= B) & (B <= C),
(A <= B) I (B <= C)

(everything evaluated)
(A <= B) and: [B <= Cl.
(A <= B) or: [B <= Cl

(short circuit evaluation)
B between: A and: C

(everything evaluated)

Inside Smalltalk



Random (a subclass of Stream)
Random values from 0.0 to 1.0 exclusive.
seed ~ Random new
~ (an instance)

(seed next * 10) truncated + 1
~ random integer between 1 and 10

Chapter 7 The Magnitude Classes

ClaS1l Float knows about pi

sum ~ O.
1 to: 10 by: Float pi do: [:element I

sum ~ sum + element]

279





8

The Collection Classes

8.1 INTRODUcnON

Collectively, collections comprise one of Smalltalk's major work-horse data types.
Collection (see Fig. 8.1) is an abstract class for objects that are containers for other
objects. The specializations include such familiar classes as sets, strings, and arrays. Also
included are lesser known classes such as bags, dictionaries, ordered collections, and
sorted collections. There is a subtle distinction between being ordered and being sorted.
The elements of a linked list, for example containing successive elements 2, 3, 1, are ordered
but not sorted. Consequently, ordered collections are ordered but not usually sorted. Sorted
collections are always sorted according to some user-specifiable sorting criteria.

Figure 8.1 The most popular Collection classes - a physical view.

281



Figure 8.2 The most popular Stream classes - a physical view.

Logically, streams are also collections although they are implemented separately in
their own special hierarchy (see Fig. 8.2). The stream hierarchy contains several abstract
classes, notably Stream, PeekableStream, PositionableStream, InternalStream, and
ExternalStream and several specializations of which WriteStream, ReadStream, and
some version of external streams are the most used. Intuitively, streams are files that have
been generalized to permit reading and writing over collections. Corresponding external
streams are created automatically from instances of Filename when a specific kind of stream
for that fIle name is requested.

From an implementation viewpoint, the physical collection hierarchy is quite large
(see Fig. 8.3) containing four abstract classes: Collection, SequenceableColiection,
ArrayedCollection, and IntegerArray. It is important to distinguish them (and the
abstract classes for streams mentioned above) since one of the more common errors is to
attempt to construct corresponding instances - remember, there can be no instances of
abstract classes. Arrayed collections; e.g., arrays and strings, are fixed-size while ordered
collections (similar in behavior to arrays) can grow and shrink automatically. This latter
feature is also a property of sets, bags, and dictionaries. Dictionaries generalize arrays
by providing keys that are arbitrary objects. Two varieties exist, (equality) dictionaries
and identity dictionaries; the former uses equality to compare keys while the latter uses
identity. Sets are also distinguished in the same way as (equality) sets and identity sets.
Symbols are special kinds of strings that are immutable; i.e., do not permit changes, and
consequently can ensure that only one copy exists for each instance with a unique set of
characters. Hence, they can be compared for equality without considering the individual
characters. Texts are strings with emphasis information; e.g., whether or not it is in
boldface or italic.

282 Inside Smalltalk



! ill I

Several anomalies can be observed. For example, even though users consider sets and
bags to be related from an implementation point of view, there is no apparent relationship
between them in the existing hierarchy. Although there are identity sets, there are no identity
bags. Some classes like Semaphore don't seem to be containers and probably shouldn't be
viewed as special cases of collections at all. Many of the classes are also private in the sense
that they are used primarily by the system and are of little concern to typical users; e.g.;
SystemDictionary, LiteralDictionary, ByteArray, WordArray, and TextLine
Interval. Many others have not been shown in Fig. 8.3. For example, there exists several
other private dictionary classes such as DependentsDictionary, HandleDictionary, an
identity set subclass called SignalCollection, a subclass of ordered collection called
HandlerCollection, subclasses of arrays called DependentsCollection and Scanner
Table, and various string and symbol subclasses such as ByteString, ByteSymbol,
twoByteString, and twoByteSymbol.

TextLineinterval

SortedCollection

Figure 8.3 The Collection classes - a physical view.

Chapter 8 The Collection Classes 283



8.1.1 A Logical Organization

We can obtain a better understanding of collections (streams included) if we consider the
relationships from a logical perspective. From the point of view of usage, the collection
classes can be partitioned into four major logical groups: keyed classes, streamable classes,
ordered classes, and unordered classes (see Fig. 8.4). As we will see, the classes belonging to
each of these groups are not mutually exclusive. In more detail,

•
•

•
•

Keyed Classes associate elements with keys; e.g., arrays.
Streamable Classes provide access to the elements using a specialized file-like
protocol; e.g., read streams.

Ordered Classes provide an ordering on the elements; e.g., strings.

Unordered Classes provide no ordering on the elements; e.g., sets.

Keyed Classes

Streamable Classes

Ordered Classes

Unordered Classes

String

Array

Dictionary

OrderedCollection

SortedCollection

Set

Bag

ReadStream

WriteStream

Figure 8.4 The Collection (Stream) classes - a logical partitioning
with representative members.

These groups are best understood by analyzing representative members and considering
how they are typically used. For instance,

• Arrays typify the keyed classes. Keys (or subscripts) are used to access and
modify the elements contained by the array. The more general representative is an
identity dictionary that permits arbitrary objects to be used both as keys and as
elements. Typical operations include:

•
•

aKeyedCollection at: aKey

aKeyedCollection at: aKey put: aValue

(subscripting operation)

(element modification)

284

Ordered collections are part of this group since they can be manipulated just
like arrays; i.e., they contain an extensive array-like protocol. Read and write

Inside Smalltalk



, 'I.'

streams can also be considered keyed classes because random access to the stream
is possible as shown below.

•
•

aStream poaition
aStream poaition: anlntegerKey

(subscripting operation)

(element modification)

The keyed classes (exclusive of the stream classes) include: IdentityDictionary,
Dictionary, SystemDictionary, LiteralDictionary, Array, RunArray,
ByteArray, WordArray, Interval, TextLineinterval, String, Text,
Symbol. MappedCollection, OrderedCollection, SortedCollection,
ReadStream, and WriteStream.

• ReadStreams typify the streamable classes. The elements in streams are accessed
via specialized file-like operations. The more general representative is Read
WriteStream, which permits both element access and modification. Specialized
variations include Random and external variants for file accessing. Filename
provides an interface with external streams. Typical operations include:

•
•
•
•
•

aReadStream etEnd
aReadStream next
aReadStream peek

aWriteStream nextPut: anElement

aReadOrWriteStream eloae

(an interrogation)

(accessing an element; move right)

(accessing an element without moving)

(modifying or appending)

(when completed)

The streamable classes include: Stream, PeekableStream, Positionable
Stream, InternalStream, ReadWriteStream, ReadStream, WriteStream,
external variants of the previous three, ExternalStream, and Random.

• Ordered collections typify the ordered classes. The elements in the collection
are assumed to be in a specific order; access and/or modifications based on this
order is permitted. Generally, ordered collections behave like arrays but can
additionally grow or shrink at either end. Typical operations include:

• anOrderedCollection firat (accessing an element)

• anOrderedCollection leat
• anOrderedCollection et: aKey (subscripting operation)

• anOrderedCollection et: aKey put: aValue (element modification)

• anOrderedCollection do: (anElement I someCodel (accessing all elements)

• anOrderedCollection edd: anElement (adding an element)

• anOrderedCollection eddFirat: anElement

• anOrderedCollection eddLAat: anElement

• anOrderedCollection removeFirat (removing an element)

• anOrderedCollection removeLAat

Generally, the ordered classes include any of the keyed classes that require integer
keys; e.g., arrays, strings, symbols and the streamable collections since their
elements are sequentially accessible. The ordered classes (exclusive of the stream
classes) include: OrderedCollection, SortedCollection, LinkedList, Array,
RunArray, ByteArray, WordArray, Interval, String, Text, Symbol, and
MappedCollection.

Chapter 8 The Collection Classes 285



• Sets typify the unordered classes. After a set is constructed, access to the
contained elements is provided in some arbitrary order, one that is independent of
the order used to insert the elements into the set. The more general representative
is a bag that permits any number of occurrences of the same object. Typical
operations include:

•
•
•

aSetLikeColiection do: lanElement I someCodel

aSetLikeColiection edd: anElement

aSetLikeColiection remove: anElement

(accessing all elements)

(adding an element)

(removing an element)

The unordered classes include: Bag, IdentitySet, and Set.

8.1.2 Creating Collections

Even though we have not yet discussed the individual collection classes in detail, it is still
possible to provide a summary of the different methods for constructing collections. These
include

•
•
•
•

constants,
copying,
conversion from existing collections, and
explicit construction.

Constant Collections

Only three classes of collections provide a special syntactic notation for constants: symbols,
strings, and arrays. Examples include:

•
•
•

#Wilf

'Hello John'

#('hi' Dave 0 25.5)

(a symbol)

(a string)

(an array)

#(try : hello:there)
#(try :hello:there)

Empty strings and empty arrays are allowed; e.g. It (two single quotes) and #0 respectively.
However, empty symbol constants are not permitted (it is possible to create one by
executing It asSymbol, however). Strings containing single quotes can be constructed by
doubling the imbedded quotes as follows:

'you"re his best friend"s pal' ~ you're his best friend's pal

Although symbols were intended to be names (possibly imbedded with colons), it is
possible to obtain symbols such as #-, #!, #@, #$, #%, #), #[, #), #1. However, some
combinations like ##, #", #', #( are illegal. If names with unusual characters are really
desired, they should be constructed by converting a string to a symbol (using aString
asSymbol). Array constants permit nested arrays where internal sharps may be omitted.
Thus

#(the #linternal name) is deliberate) is equivalent to #(the (internal name) is deliberate)

There is an anomaly with symbols, however. For instance,

#(try :hello:there) is really the 3-element array
#(try #:hello:there) is really the 2-element array

286 Inside Smalltalk



1'111

Thus, #:hi:there is considered a single symbol although #(:hi:there) is an array with two
symbols, #: and #hi:there.

Copying CoUections
Instances of collections can be copied in the usual way (see Chapter 6 for more details about
copying - both deep and shallow copies). Additionally, there are a few more specialized
copy operations.

•
•
•

•
•

aCollection sheliowCopy
aCollection deepCopy
aCollection copy

Returns a similar collection with elements that are either the same as the
originals (shallow copy) or copies of the originals (deep copy). Operation
copy defaults to shallowCopy.

anOrderedCollection copyEmpty

aCollection copyEmpty: enintegerSize
Returns a similar collection of the specified size. The elements are not
initialized. Note that the first operation does not apply to arbitrary
collections.

Assuming, for example, that an array is already available, constructing another uninitialized
array that is larger by one can be done in two ways:

newArray +- Array new: oldArray size + 1.
newArray +- oldArray copyEmpty: oldArray size + 1.

Clearly, there is not much advantage in using copyEmpty: for this task. The advantage
comes when you have to construct another collection of the same class as some arbitrary
collection (of unknown class).

Converting Between Collections
Generally speaking, conversion operations result in new classes of collections being
constructed; i.e., the receivers of conversion operations are never modified. Additionally, the
result of the conversion generally contains the same elements as the original collection; i.e.,
the elements in the result are identical to the elements in the original. In other words,
conversion operations provide the equivalent of shallow copies but in a new class of
collection. Although many conversion operations are available, they are incomplete.

Most (but not all) instances of collections (streams excluded) can be converted to
ordered collections, sorted collections, sets, and bags. Only integer-keyed collections
can be converted to streams - either read streams or write streams. Additionally, integer
keyed collections can be converted to arrays but not conversely; e.g., a string can be
converted to an array but an array cannot be converted to a string. In general, conversion
operations are not supplied if clement compatibility must be checked. In the latter example,
conversion from an array to a string would be legal only if all the elements happened to be
characters. There are operations for converting between strings, text, and symbols. Finally,
special operations are provided for converting integer-keyed collections to streams and vice
versa - actually, they are really operations for constructing streams rather than actual type
conversion operations.

Chapter 8 The Collection Classes



The following summarizes the conversion operations applicable to the non-streamable
classes. Restrictions are supplied via the exceptions table that follows the list.

• aCollection ••OrderedCollection$$$
Returns a collection of elements; e.g., for keyed collections, the keys are
discarded.

• aCollection a.Set$$$
Returns a collection of elements; e.g., for keyed collections, the keys are
discarded.

• aCollection a.8ag$$$
Returns a collection of elements; e.g., for keyed collections, the keys are
discarded.

• aCollection asSortedCollection$$
For dictionaries and identity dictionaries, returns a collection of
associations; otherwise, a collection of elements; e.g., for integer-keyed
collections, the keys are discarded.

• aCollection a.SortedCollection: aSortBloc~
For dictionaries and identity dictionaries, returns a collection of
associations; otherwise, a collection of elements; e.g., for integer-keyed
collections, the keys are discarded.

• aCollection a.Array$
Returns a collection of elements.

• aColiection readStre.m$
• aCollection writeStream$

Returns a corresponding stream for sequencing over the collection of
elements.

• aCollection a.String***
• aColiection a.Text**
• aCollection a.Symbol*

Exceptions

$$$:

$$:
$:
***.
**.
*.

Applicable to all collections except streams.
Applicable to all collections except streams and linked lists.
Applicable only to integer-keyed collections.
Applicable only to byte arrays, strings, texts, and symbols.
Applicable only to strings, texts, and symbols.
Applicable only to strings and symbols.

When dictionaries are converted to sorted collections, the result is a collection of
associations (key-value pairs); for all other conversions of dictionaries, only the values (not
the keys) are kept. When linked lists are converted; e.g., using asSet, the result is a
collection of links (not a collection of values supplied by the links; see linked lists in the
ordered classes section).

Strings, texts, and symbols all have slightly different restrictions on the applicable
conversions. Nevertheless, you won!t go too far wrong by assuming anyone of the three can
be converted to the other.

288 Inside Smalltalk



: ,fll'

Conspicuously absent are such plausible operations as the following:

•
•
•
•
•
•
•
•

aCollection _Dictionary (note: none of these operations exist)

aCollection _ldentityDictionery

aCollection e.ldentitySet

aCollection eaMeppedColiection

aCollection ••M.ppedColiectionMeppeclSy: aMapArray

aCollection _LinkedList

aCollection ••RunArr.y

aCollection ••SyteArrey

Although we might have expected the string-like conversion operations to apply to
arbitrary collections with appropriate element checking, this is not the case. This lack of
generality and completeness is understandable in a new system and will likely change as
users extend it

Examples

#(the never ending story)e.OrderedCollection
=> OrderedCollection (the never ending story)

#(once upon a time) ••SortedColiection => SortedCollection (a once time upon)
#(when every one was happy) e.SortedColiection: (:x :y I x >= yl

=> SortedCollection (upon time once a)
#(there was an interesting) • .Arr.y => (there was an interesting)
#(never ending story) ••Set => Set (ending never story)
#(which begins as the first line above) ••S.g

=> Bag (line which first above begins as the)
(Interval from: 1 to: 10 by: 3) ••Set => Set (1 47 10)
'Will this work?' ••Arr.y => Array ($W $i $1 $1 $ $t $h $i $s $ $w $0 $r $k $?)
'try' ••Text => Text for 'try'
'also try' ••Symbol => also try
....Symbol => (nothing printed)
#hello ••String => 'hello'
#there e.Text => Text for there

Additional conversions between integer-keyed collections and streams are possible
using the following operations:

•
•
•
•
•

anlnternalStreamClass l on: anlntegerKeyedCollection

anlnternalStreamClass on: anlntegerKeyedCollection from: startKey to: endKey

aninternalWriteStreamClass2 with: anlntegerKeyedCollection

anlnternalWriteStreamClass with: anlntegerKeyedCollection from: start to: end

anlnternalStream contents

The on protocol creates streams positioned at the beginning of the collection, whereas
the with protocol creates them positioned at the end, making it convenient to append

IAn internal stream class is either ReadStream, WriteStream, or ReadWriteStream.
2We mean either WriteStream or ReadWriteStream.

Chapter 8 The Collection Classes 289



additional elements. Operation contents converts the streams back to the original class of
collections from which the streams were originally constructed. See the special section on
streams for a more detailed discussion.

Typical Methods for Creating Collections

It would be much easier to remember how to create collections if a single standard protocol
were used. On the other hand, since distinct collections were introduced for specific purposes,
it is only reasonable that differences will arise. Prior to detailing all of the individual
techniques in their respective sections, we list a sample of typical ways in which new
collections are constructed.

The Keyed Collections
• IdentityDictionary new

• Dictionary new

• Array new: 100

• RunArray runs: anArrayOfCounts values: anArrayOfPairwiseDistinctElements

• ByteArray new: 100

• aNumber to: aNumber by: aNumber "an interval"

• String new: 100

• Text string: aString emphasis: 1 "for bold, 2 for italic, 4 for underlined"

• aString a.symbol

• MappedColleetion collection: collectionOfElements map: aMappingCollection

The Streamable Collections
•
•
•
•
•

ReadStream on: anlntegerKeyedCollection

WriteStream on: anlntegerKeyedCollection

ReadWriteStream on: anlntegerKeyedCollection

(Filename named: aStringl readString

(Filename named: aStringl writeString

Other Ordered Collections
•
•
•

OrderedCollection new

SortedCollection sortBlock: [:x :y I x <= yl

LinkedList new

The Unordered Collections
• Bagnew

• IdentitySet new

• Set new

8.1.3 Comparing Collections

For comparison purposes, it is too restrictive to insist that two comparands be instances of
the same class. A less restrictive requirement is that they belong to the same collection
species. The species notion is also important when creating copies of existing collections.

290 Inside Smalltalk



Collection Species

When collection operations like the sequencing operations (to be discussed later) construct
new collections, the result is usually but not always the same class as the receiver. More
specifically, the returned collection is of the same species as the original. Except for the
following, the species of collections associated with a given instance (of a collection) is an
instance of the same class.

for anlnterval = Array.
for aMappedCollection = same species as the collection being mapped (not the map).
for aSymbol = String.

The implication is that sequencing operations do not return intervals, mapped
collections, or symbols. Instead, they return arrays, collections of the same class as the
collection being mapped, and strings respectively.

The Comparison Operations

Collections can be compared using the four comparison operations =, -, =, and -=. Since
equality comparisons (= and -=) default to identity comparisons (== and --) in class
Object, all collections that do not explicitly provide special equality comparison operations
will default to identity comparisons. Examples where this happens include sets, dictionaries,
and streams. When implemented, equality comparison operations for collections are quite
slow by comparison with the corresponding identity comparison operations since they must
consider, in the worst case, all elements of the collection.

• aCollection == anotherCollection
• aCollection ~~ anotherCollection
• aCollection =anotherCollection
• aCollection ~= anotherCollection

For sets, bags, dictionaries, mapped collections, and streams, equality com
parisons default to identity comparisons. For other classes, an equality com
parison returns true if both the receiver and parameter are (1) collections of
the same species, (2) the same size, and (3) the corresponding elements of
the collections are equal; otherwise, it returns false. For sorted collections,
the operation also requires the sort blocks to be identical.

Examples

Equality Comparisons that Default to Identity Comparisons

aTest +- Dictionary n.w .t: #hello put: #there; you....If.
aTest =aTest copy = f....
anotherTest +- MappedCollection coll.ction: #(1 2) map: #(12).
anotherTest = anotherTest copy = f.l..
(ReadStream on: #(a short stream» =(ReadStream on: #(a short stream» = f.I••
(Filename n.med: 'aTest') ,..dStre.m =(Filename n.med: 'aTest') reedStr_m = fals.
#(a big bad boy) .sS.t =#(a big bad boy) .sSet =fal••
#(one one two) ••B.g =#(one one two) ••B.g = f.I••

Specialized Equality Comparison Operations

#(a short array) =#(a short array) =true

Chapter 8 The Collection Classes 291



Examples (continued)
RunArray runa: #(10 20) v.luea: #(0 -1) =RunArray runa: #(10 20) v.luea: #(0 -1) =* true
(1 to: 10) =(1 to: 10) =* true
'Will this work?' = 'Will this work?' =* true
'try' .aText = 'try' .aText =* true
#hello = #hello =* true
#(thistoo) ..ordereclCollection =#(this too).aOrderedCollection =* true
#(and this) .aSortedCollection =#(and this) .aSort8dCollection =* true
LinkedList new =LinkedL,ist new =* true

8.1.4 Sequencing Over Collections

Because there are so many distinct collection classes, each with specialized operations and
representations, it is essential to provide a common set of operations for accessing the
elements. The following sequencing operations were designed to hide the details of the
representation and to provide a uniform facility for sequencing through the elements in a
controlled manner. The common factor with all of these operations is that a block is
provided to operate on the individual elements. Usually, this block requires one parameter for
the collection element, although some variations require zero or two.

The Sequencing Protocol

In the following, exceptionBlock requires no parameters, aBlock requires one parameter, and
aBinaryBlock requires two. The superscripted $ and * specify exceptions that are summarized
below. Although it it not a sequencing operation, reverse is included because of its
relationship to reverseDo:.

• aCollection do: aBlock $$$
Evaluates aBlock with the successive elements of the collection. Returns the
receiver.

• aCollection reveraeDo: aBlock ****
Same as do: but in reverse order.

• aCollection collect: aBlock $
Evaluates aBlock with the successive elements of the collection. Returns the
successive results in a collection of the same species as the receiver. For
dictionaries and identity dictionaries, the result is anomalous (a bag of
values; Le, keys are discarded).

• aCollection aelect: aBlock $

Returns only the elements for which aBlock was true. The elements are
returned in a collection of the same species as the receiver. For dictionaries
and identity dictionaries, the operation is anomalous - although values are
sent to the select block as the elements, the result is a dictionary of
associations (key/value pairs).

• aCollection reject: aBlock $
Same as above but returns the elements for which aBlock was false. The
same anomaly applies for dictionaries and identity dictionaries as above.

• aCollection detect: aBlock {ifNone: exceptionBlock} $$
Returns the first element for which aBlock is true. If there are none, the
exception block (no parameters) is executed; if no exception block was
provided, an error is generated.

292 Inside Smalltalk



*.
**.
***.

11111

• aCollection inject: initialValue into: binaryBlock $$
Evaluate binaryBlock with initialValue and the first element, then again
with its result and the second element, then its result with the third, and so
on. Returns the final result.

• aCollection with: aCollection do: binaryBlock ****
The receiver collection and aCollection must be the same size. Evaluates the
binaryBlock with successive elements from each of the two collections as
the parameters. Returns the receiver.

• aCollection findFi...t: aBlock ***
Returns the key of the first element which aBlock evaluates to true; returns
o if none exists. Applies only to the integer-keyed collections.

• aCollection findLa.t: aBlock ***
Returns the key of the last element which aBlock evaluates to true; returns
o if none exists. Applies only to the integer-keyed collections.

• aCollection eaocietion.Do: aBiock **
Applies only to dictionaries and identity dictionaries. Evaluates aBlock with
the successive associations of the dictionary or identity dictionary.
A••ocietion is a special class with instances that contain both the key and
the value; 'anAssociation key' provides the key while 'anAssociation velu.'
provides the value. Returns the receiver.

• aCollection k.y.Do: aBlock **
Applies only to dictionaries and identity dictionaries. Evaluates aBlock with
the successive keys of the dictionary or identity dictionary. The
corresponding value can be obtained via 'aDictionary et: aKey'. Returns the
receiver.

• aColleetion rev..... ***
Returns a collection of the same species but with the same elements and in
the opposite order; i.e., the elements are not copied.

Exceptions

$$$: Applicable to all collections including streams.
$$: Applicable to all collections except streams.
$: Applicable to all collections except streams, linked lists, and run arrays.
****. Applicable to all collections except streams, linked lists, mapped collections,

sets, bags, dictionaries, and identity dictionaries.
As above but also excludes run arrays.
Applicable to all integer-keyed collections.
Applicable only to dictionaries and identity dictionaries.

Operation do: is the most used; reverseDo:, collect:, and inject:into: are
occasionally used; the others are used only in special situations. Non-sequencing operation
reverse is used mainly for string processing. Operations select:, reject:, and detect: are
difficult to remember and properly distinguish without experience. For the occasional
situation where they might be useful, it is best to look them up. Operation inject:into:
provides a general loop summation facility, but most Smalltalk programmers (experts
excepted, of course) tend to revert to using do: for that purpose. Operations findFirst: and
findLast: are more limited since they apply only to integer-keyed collections. Moreover,

Chapter 8 The Collection Classes 293



there exists no corresponding operations like 'findNext: aBlock after: aKey' and
'findPrevious: aBlock before: aKey' for carrying out further searches.

Dictionaries and identity dictionaries enable users to obtain either keys, values, or
associations (key/value pairs). Keys and values can be extracted from associations via
'anAssociation key' and 'anAssociation value' respectively. Operation associationsDo:
sequences through associations, keysDo: through keys, and do: through values. Except for
associationsDo: and keysDo:, all of the standard sequencing operations sequence through
values for dictionaries. Consequently, we might expect the result to be a collection of
values. This is not the case. Following the usual species rule implies the result must be a
dictionary (a dictionary is a species of Dictionary). Consequently, even though the
sequencing operation provides the associated block with only the value, a dictionary is
constructed with both the correct key and value. This rule makes sense but there is an
exception. Operation collect: returns a bag of values (not associations) instead of the
expected dictionary.

Sequencing operations applied to streams have side effects on the stream. For example,
performing a do: operation sequences through the 'unread' stream elements leaving the
stream positioned at the end. A second do: would find no elements to sequence through.

Examples of Sequencing Operations

We consider an example of each of the above operations to provide a feel for the operations
and then we consider a few isolated examples dealing with dictionaries.

aSack ~ OrderedCollection new.
#(Marble Quartz Gold) do: [:word I aSack add: word).
#(Stick Frog Rock) reverseDo: [:word I aSack add: word).
aSack => OrderedCollection (Marble Quartz Gold Rock Frog Stick)

#(1 23456) collect: [:value I value squared) => (1 49 162536)

#(1 23 46 6) select: [:value I value even) => (2 46)
#(1 23466) reject: [:value I value <= 2) => (3 466)
#(1 23 4 66) detect: [:value I value> 2) ifNone: (0) => 3

#(1 23466) inject: 0 into: [:sum :element I sum + element! => 21

result ~ OrderedCollection new.
#(1 23 4667) with: #(1 234567) do: [:v1 :v2 I result add: v1 + v2!.
result => OrderedColiection (2468 10 12 14)

#(1 23 4 6 6) findFirst: [:element I element evenl => 2
#(1 23466) findLast: [:element I element even! => 6

#(a short memo) reverse => (memo short a)
(1 to: 6) rever_ => (64321)
#(one two three) asOrderedCollection reverse => OrderedCollection (three two one)
'a string' reverse => 'gnirts a'

aDictionary ~ Dictionary new
at: #Key1 put: #Value1;
at: #Key2 put: #Value2;
yourself. "This dictionary will be used several times below."

Note: when sequencing through aDictionary below, it is a coincidence that Key1 is
encountered before Key2 since there is no ordering for the keys."

294 Inside Smalltalk



1.'1"111

aSack (- OrderedCollection new.
aDictionary ••sociationaDo: [:something I aSack .dd: something).
aDictionary key.Do: [:something I aSack .dd: something).
aDictionary do: [:something I aSack .dd: something).
aSack ~ OrderedCollection (Key1->Value1 Key2->Value2 Key1 Key2 Value1 Value)

aDictionary collect: [:value I value] ~ Bag (Value1 Value2)

aDictionary .elect: [:value I value <= #Value1] ~ Dictionary (Key1->Value1)
aDictionary .elect: [:value I value <= #Value2) ~ Dictionary (Key1->Value1 Key2->Value2)

aDictionary reject: [:value I value <= #Value1) ~ Dictionary (Key2->Value2)
aDictionary reject: [:value I value <= #Value2) ~ Dictionary ()

aDictionary detect: [:value I value <= #Value1) ifNone: (0) ~ Value1

aDictionary inject: " into: [:string :value I string, value] ~ 'Value1Value2'
"Note: the comma is a concatenation operation."

We mentioned above that experts would use the inject:into: method for adding,
multiplying, or generally operating on successive elements. For some additional examples,
consider the following. Note that the comma message; i.e., "," is a string (and more
generally a collection) concatenation operator. We fIrst present the novice approach (using
do:) and then the expert approach (using injeet:into:). Note that the expert approach
eliminates the need to defme a temporary variable.

The novice approach
I product I
product (- 1.
(1 to: 6) do: [element I product (- product * element).
product ~ 720 (note: this is equivalent to 6 f.ctori.1)

I string I
string (- ".
(Collection ...bcl.....) do: [element I

string (- string = " ifTr...: [element n.me) ifF.I..: [string, ' " element n.mell.
string ~ 'Set Bag Dictionary OrderedCollection ...'

I count I
count (- O.
aCollection do: [element I

(element iaKindOf: Collection) ifTrue: [count (- count + 1]].
count ~ 7 "The number of elements that are themselves collections."

The expert approach
(1 to: 6) inject: 1 into: [:product :element I product * element)

~ 720 (note: this is equivalent to 6 f.ctori.1)

(Collection .ubcl....) inject: " into: [:string :element I
string =" ifTrue: [element n.me) ifF....: [string, • '. element namell
~ 'Set Bag Dictionary OrderedCollection ...'

aCollection inject: 0 into: [:count :element:
(element iaKindOf: Collection) ifTrue: count + 1) ifF.I..: count
~ 7 "The number of elements that are themselves collections."

Chapter 8 The Collection Classes 295



Designing Your Own Sequencing Operations

In order to provide corresponding sequencing operations, it is sufficient to understand how to
invoke blocks; namely,

• aBlock value

• aBlock value: aParameter

• aBlock value: aParameter value: anotherParameter

The sequencing operation is implemented by considering the individual elements and then
invoking the block with each element in turn. When implementing new sequencing
operations, care must be taken to ensure that the elements are passed to the block in the
proper order.

As a simple example, consider extending integers by adding do: and reverseDo:
operations that sequence through the individual digits:

do: aBlock
"Evaluate aBlock with each of the receiver's digits as parameter; process the digits
from left to right. The sign is ignored. The receiver is returned."
I value rightmostOigit I
self < 0 ifTrue: [iself negated do: aBlockl.
self < 10 ifTrue: [aBlock value: selfl.
rightmostOigit r self \\ 10. "The remainder"
(self 1110) do: aBlock. "Do the leftmost digits first"
aBlock value: rightmostOigit "Do the rightmost digit last"

reverseDo: aBlock
"Evaluate aBlock with each of the receiver's digits as parameter; process the digits
from right to left. The sign is ignored. The receiver is returned."
I value rightmostOigit I
self < 0 ifTrue: [iself negated do: aBlockl.
self < 10 ifTrue: [aBlock value: self).
rightmostDigit r self \\ 10. "The remainder"
aBlock value: rightmostOigit. "Do the rightmost digit first"
(self II 10) reverseDo: aBlock "Do the leftmost digits last"

On a grander scale, it is easy to define new sequencing operations. For instance,
consider defining a more specific operation collect:when: with two blocks, a block for
constructing new values and a block for determining whether or not to construct new values.
We will define it as an operation in class Array. Had we decided to add it to class Integer
instead, we would have additionally had to define the method species for Integer to return the
class Array.

collect: aValueConstructingBlock when: aTestingBlock
"Evaluates aTestingBlock with each of the receiver's elements as the argument. If
the result is true, it computes a new value using aValueConstructingBlock. The new
values are collected together and returned as an array."
I newCollection I
newCollection r OrderedColiection new.
self do: [:element I

(aTestingBlock value: element)
ifTrue: [newColiection add: (aValueConstructingBlock value: element)Jl.

i newCollection asArray

296 Inside Smalltalk



j·:HII

In order to generalize collectwben: for all collections, we need a technique for con
verting 'newCollection' to the receiver's species. This is difficult with the existing tech
niques for type conversion. What would be needed is the ability to write

self .peeie. convert: newCollection

The alternative is to provide this method everywhere that collect: is now provided. In
abstract class ArrayedCollection, the last line of the above method is replaced by

convertedCollection ~ self .pecie. new: newCollection .ize
Additional code to copy the elements from newColiection into convertedCollection.

In OrderedCollection, it is replaced by

convertedColiection ~ self .peei.. new
Additional code to copy the elements from newColiection into convertedCollection.

One of the reasons Smalltalk is so powerful is that it permits (and generally en
courages) users to generalize. This flexibility often provides alternative (and usually simpler)
techniques for reimplementing existing methods.

For instance, having provided collect:wben: to all classes that already provide do:, it
is tempting to look for a small subset of the sequencing operations that can be used to
implement the others. If we refer to the subset as primitives and to the others as
nonprimitives, we could implement the nonprimitives once, say in Object - with the
understanding that they are valid only if the primitives are valid. When defining new classes
that require sequencing operations, designers would only need to provide the primitive
sequencing operations (assuming they were not already inherited). The only reason for
providing alternative definitions for the nonprimitives would be efficiency considerations.

For example, we could postulate that do:, reverseDo:, and collect:wben: are
suitable primitives and attempt to defme the others in terms of these three. Actually, a more
careful analysis would likely also provide a reverseCollect:wben:, keysDo:, and perhaps
even reverseKeysDo: as primitives.

As an exercise in implementing sequencing operations, consider the following selected
operations, implemented solely in terms of do:, reverseDo:, and collect:wben:.

collect: aBlock
"Evaluates aBlock with each of the receiver's elements as the argument. Collects
the resulting values into a collection like the receiver. Returns the new collection."
tself collect: aBlock when: [:value I true). "All elements are collected."

..Ieet: aBlock
"Evaluates aBlock with each of the receiver's elements as the argument. Collects
into a new collection like the receiver only those elements for which aBlock
evaluates to true. Returns the new collection."
t self collect: l:element I element) when: aBlock "Only the true subset is collected."

reject: aBlock
"Evaluates aBlock with each of the receiver's elements as the argument. Collects
into a new collection like the receiver only those elements for which aBlock
evaluates to false. Returns the new collection."
tself _Iect: l:element I laBlock velue: element) == falsel "The false subset ."

detect: aBlock
"Evaluates aBlock with each of the receiver's elements as the argument. Returns
the first element for which aBlock evaluates to true."
t self detect: aBlock ifNone: [self error: 'no elements detected')

Chapter 8 The Collection Classes 297



detect: aBlock ifNone: exceptionBlock
"Evaluates aBlock with each of the receiver's elements as the argument. Returns
the first element for which aBlock evaluates to true. If none evaluate to true, then
evaluates the argument, exceptionBlock."
self

collect: [:unused I I
when: [:value I (aBlock value: value) ifTrue: [ivaluel ifFalse: [falseJl.

"The collect block is never invoked since the when block either returns from this
method with a value or returns false indicating the element is not to be collected."
i exceptionBlock value

inject: thisValue into: binaryBlock
"Accumulates a running value associated with evaluating the argument,
binaryBlock, with the current value of the argument, thisValue, and the receiver as
block arguments. For instance, to sum the numeric elements of a collection, use

aColiection inject: 0 into: [:subTotal :next I subTotal + nextl"
I nextValue I
nextValue ~ thisValue.
self do: [:each I nextValue ~ binaryBlock value: nextValue value: eachl.
inextValue

with: aCollection do: aBlock
"Evaluates aBlock with each of the receiver's elements along with the
corresponding element from aCollection."
I aStreamOnACollection I
self .ize ~= aCollection size ifTrue: [iself error: 'unequal-sized coliections'l.
aStreamOnAColiection ~ ReadStream on: aCollection.
self do: [:receiverElement I

aBlock value: receiverElement value: aStreamOnAColiection nextl

8.2 THE KEYED COLLEcnONS (NON-STREAMS)

The keyed collections (excluding streams) are characterized by the array-like operations for
accessing and modifying elements associated with individual keys; e.g.,

•
•

aKeyedColiection at: aKey

aKeyedCollection at: aKey put: aValue

(subscripting operation)

(element modification)

Streams are logically also keyed collections since they provide direct access to the elements
via corresponding methods; e.g.,

•
•
•

aStream position: anlntegerKey

aStream next

aKeyedColiection nextPut: aValue

(subscript specification)

(su bscripting)

(element modification)

Streams are considered in detail in a separate section. The keyed classes (exclusive of
streams) are members of collection classes - they can be partitioned into two groups: the
arbitrary-keyed classes and the integer-keyed classes. Those classes that permit arbitrary
objects to be keys are dictionaries and those that permit only integer keys include arrays,
ordered collections, and strings (and their variations). All keyed collections associate
exactly one element with each key. However, not all keyed collections use the same
operation for comparing keys - the key matching operation. Two distinct key matching
operations are used: equality and identity. All integer-keyed classes use equality for

298 Inside Smalltalk



string2 +- string1 copy.
string1 == string2 ~ fel..
anldentityDictionary +- IdentityDictionary new
anldentityDictionary et: string1 put: 1
anldentityDictionary et: string2 put: 2
anldentityDictionary et: string1 ~ 1
anldentityDictionary et: string2 ~ 2

1'1111

matching keys. However, dictionaries use equality while identity dictionaries use identity.
Thus instances of Dictionary are actually equality dictionaries (although the class name
does not make this explicit). Instances of IdentityDictionary are clearly identity
dictionaries.

An equality dictionary permits a new value to be associated with an old key if the new
key is equal to the old; an identity dictionary permits it only if the keys are identical. In
either case, associating a value with a key that does not already exist causes that key and
value to be inserted. Integer keyed collection, on the other hand, will associate a new value
with the key only if that key already exists. If it doesn't exist, a subscript out of bounds error
will result. Thus neither arrays, strings, or even ordered collections can subscript out of
bounds - the latter in particular can be made to grow with special operations like
addFirst: and addLast: but not with the at:put: operation.

Additionally, there exists a specialization of Dictionary called LiteralDictionary,
which uses both value equality and class identity for the key matching operation; e.g.,
even though they are equal, keys 1 and 1.0 would be distinct keys since they are not of the
same class. For examples that distinguish between dictionaries and identity dictionaries,
consider the following:

string1 +- 'a string with these characters'.
string1 =string2 ~ true
anEqualityDictionary +- Dictionary new
anEqualityDictionary et: string1 put: 1
anEqualityDictionary et: string2 put: 2
anEqualityDictionary et: string1 ~ 2
anEqualityDictionary et: string2 ~ 2

For the equality dictionary, both string1 and string2 represent the same key since they
are equal. Hence, the second at:put: actually changes the value associated with string2 (and
therefore stringl) to 2 - the old value 1 is modified. For the identity dictionary, stringl and
string2 represent distinct keys since they are not identical - hence, two values are
maintained. A similar distinction can be made between dictionaries and literal dictionaries.
We leave it to the reader to come up with the corresponding example.

Dictionaries tend to be accessed via the sequencing operations since the keys are so
general and typically unknown. With integer-keyed collections like arrays and ordered
collections, on the other hand, accessing is more key-based. Subscripts for all integer-keyed
collections start at 1 and are bounded by the size of the collection; i.e., the number of
elements they actually contain. Recall that arrays are fixed-size while ordered collections can
grow and shrink automatically.

8.2.1 Individual Characterizations

The keyed collections are distinguishable along several dimensions (see Fig. 8.5). Identity
dictionaries are more general than dictionaries (actually equality dictionaries) 
logically, every dictionary can be converted to an identity dictionary but not the other way
around (physically, the hierarchy is actually reversed). Literal dictionaries are a
specialization of dictionaries. Mapped collections maintain two collections, one that
maps an input set of keys to an intermediate set (the mapping collection) and the other that
maps the intermediate keys to their associated values. Dictionaries grow automatically to

Chapter 8 The Collection Classes 299



accommodate new entries. Arrays and run arrays do not, although a special grow operation
is provided for explicitly growing the collections. Strings, text, and symbols are
specialized character arrays. Intervals are special integer arrays specifying an arithmetic
sequence. They are primarily used for looping control.

Arbitrary == Keys

Arbitrary Elements
Automatic Expansion

Keyed Classes
(non-streams)

Mapped Keys

Arbitrary Elements
Automatic not Expansion

Figure 8.5 The keyed classes - a logical view.

8.2.2 Constructing New Keyed Collections

We consider increasingly sophisticated techniques for constructing keyed collections (other
than streams): those that construct empty collections (where allowed), those that construct
small collections (one message send is sufficient), and, finally, those that construct large
collections (multiple message sends are required). The conversion operations discussed
previously are omitted.

300 Inside Smalltalk



1·'[11!

The keyed collections are constructed differently depending on whether or not the keys
are integers. A summary follows:

General keys (all Dictionary Classes)

• aDictionaryClass new
• aDictionaryClass new: anlnitialSize (power of 2 for ldentityDictionery)

• (anyCodeForCreatingANewDictionary)

at: aKey, put: aValue,;

at: aKeY2 put: aValue2;

at: aKevn put: aValuen;

you....H

Integer keys (all Array classes except those shown below)

• anlntegerKeyedClass new

• anlntegerKeyedClass new: aMaximumSize

• anlntegerKeyedClass new: aMaximumSize withAlI: anObject

• anlntegerKeyedClass with: object,

• anlntegerKeyedClass with: object, with: object2

• anlntegerKeyedClass with: object, with: object2 with: object3

• anlntegerKeyedClass with: object, with: object2 with: object3 with: object4

• (anyCodeForCreatingALargeEnoughlntegerKeyedCollection)

at: aKey, put: aValue,;

at: aKeY2 put: aValue2;

at: aKeYn put: aValuen;

you....H

Integer keys (ordered collection classes - see ordered classes for more details)

• anOrderedCollectionClass new

• anOrderedCollectionClass with: object,

• anOrderedCollectionClass with: object, with: object2

• anOrderedCollectionClass with: object, with: object2 with: object3

• anOrderedCollectionClass with: object, with: '''2 with: ".3 with: object4

• (anyCodeForCreatingALargeEnoughOrderedCollection)

add: aValue,;

add: aValue2;

add: aValuen;

you....H

Interval
•
•
•
•

Interval from: aNumber to: aNumber

Interval from: aNumber to: aNumber by: aNumber

aNumber to: aNumber

aNumber to: aNumber by: aNumber

Chapter 8 The Collection Classes 301



Symbol and Text
• aString asSymbol (symbols are almost always created this way)

• Text string: aString emphasis: 1 ·for bold, 2 for italic, 4 for underlined·

• Text
string: aString

runs: (RunArray runs: anArrayOfCounts values: anArrayOfEmphasis)

RunArray and MappedCollection
• RunArray runs: anArrayOfCounts values: anArrayOfPairwiseDistinctElements

• MappedCollection collection: collectionOfElements map: aMappingCollection

• anArray mappedBy: aMappingCollection

We mentioned above that dictionaries grow automatically as needed when space in the
collection is exhausted. However, integer-keyed collections do not. Consequently, inserting
elements outside the bounds of an integer-keyed collection will result in a subscript out of
bounds error. This can only be guarded against by explicit testing in the usual way; e.g.,
as follows:

aKey between: 1 and: anlntegerKeyedCollection size

If the collection is too small, it can be grown by executing the following:

anlntegerKeyedCollection grow
anlntegerKeyedCollection growToAtLeast: anlnteger

In the first case, the collection usually grows by a percentage of the existing size. Hence
there is no way of ensuring that the collection has grown large enough to accommodate the
new key. The first method makes sense only if you need to grow by 1 element; e.g., if you
were using an array as a stack and you could tolerate or take advantage of the fact that it
might grow by more than one element.

On the other hand, if integer-keyed collections need to be grown explicitly, you are
probably using the wrong kind of collection. Perhaps you should be using an ordered
collection which can grow or shrink automatically when new elements are added or old
elements removed. But beware - as we mentioned previously, for ordered collections, using
a subscript out of bounds is not interpreted as a request to grow the collection. It is an error
- just as it is for arrays. The ordered collection will only grow if new elements are added
using messages like add:, addFirst:, and addLast:.

An easy mistake to make when creating integer-keyed collections is to make one too
small. In fact, the more common mistake is to create an empty one; e.g., by executing
"Array new" and then proceeding to add elements to the array. An immediate subscript out of
bounds error occurs. Note that such arrays must not be forbidden since they are useful. For
example, selecting all elements of an array which are strings beginning with a capital letter
will result in an array containing the results (assuming sequence operation select: was used).
If there are no such strings, then the array will be empty.

When fixed-size integer-keyed collections are created, all clements from 1 to the
maximum size are specially initialized with a default element. For arrays, this default
element is nil, for byte arrays it is 0, and for strings it is the character blank. For varying
sized integer-keyed collections like ordered collections, the collection itself keeps track of the

302 Inside Smalltalk



, 'II'

actual number of elements used since it grows itself automatically when new elements are
added. Hence there are no default uninitialized elements. The ordered collection contains only
what has been explicitly added.

Although it is not specifically mentioned above, it is also possible to create initialized
dictionaries using the integer-keyed methods with:, with:with:, with:with:with:, and
with:with:with:with: as long as the elements are associations. See the section on dictionaries
for a more complete discussion of associations. An example is

Dictionary
with: (Association key: #One velue: #A)
with: (Association key: #Two velue: #An)

Text strings are usually obtained by converting standard strings. For special
applications, however, it is necessary to emphasize parts of the string; e.g., to bold face or
italicize some of the characters. Text string emphasis is currently specified with an integer: I
for bold, 2 for italic, 4 for underlined, and so on. This can also be mixed; e.g., 1 bitAnd:
2 (producing 3) gives bold italic.

Some examples involving the creation of keyed collections include:

General keys
• anEmptyDictionary +- Dictionary new.

• anEmptyldentityDictionaryWithAnlnitialSize +- IdentityDictionary new: 128.

• aSmallDictionary +- Dictionary new
et: #Jack put: #Jill; et: 'John' put: 'Wilf'; et: 1 put: #Dave; yourself.

Integer keys
• notAVeryUsefulArray +- Array new.

• anArrayOf100Nils +- Array new: 100.

• anArrayOnOOZeros +- Array new: 100 withA": O.
• anArrayWithOneElement +- Array with: #OneElement.

• anArrayWithTwoElements +- Array with: 1 with: 2.

• anArrayWithThreeElementsOneOfWhichlsltselfAnArray +-
Array with: #Apple with: 'pear' with: (Array with: 'Internal potato').

• anArrayWithFourElements +- Array with: 1 with: 1.2 with: (1/3) with: 'four' size.

• anArrayWithFiveElements +- (Array new: 5)

et: 1 put: 'one hot dog'; et: 2 put: 'two hamburgers';

et: 3 put: 'three soft drinks'; et: 4 put: 'four candies';

et: 5 put: 'five gum sticks'; yourself.

• anOrderedCollectionWithOneElement +- OrderedCollection with: #soup.

• anOrderedCollectionWithTwoElements +- OrderedCollection with: 1 with: 2.

• anEmptyCollection +- OrderedCollection new: 10. "10 is only an initial guess"

• aUsefulOrderedCollection +- OrderedCollection new.

• aUsefulOrderedCollection edd: 1; edd: 2; edd: 3.

• anotherUsefulOrderedCollection +- OrderedCollection new

edd: 'one hot dog';

edd 'two hamburgers';

yourself.

Chapter 8 The Collection Classes 303



Exceptional keyed collections
• 'Santa' ..symbol
• aBoldKing~ Text string: 'king' emphasis: 1. "for bold"

• twoBoldKings ~ Text

string: 'the first king said hello to the second king'

runs: (RunArray runs: #(10 4264) values: #(0 1 0 1)). "0 normal, 1 bold"

• oneHundredXsFollowedByThreeVs ~ RunArray runs: (1003) values: #(X V).

• aMappedCollection ~ MappedCollection

collection: aSmallDictionary "See General Keys above"

map: (Array with: #Jack with: 'John' with: 1).

aMappedCollection at: 1 => Jill. (1 maps to #Jack with associated value #Jill)

aMappedCollection at: 2 => 'WiIf' . (2 maps to 'John' with associated value 'Wilf')

aMappedCollection at: 3 => Dave. (3 maps to 1 with associated value #Dave)

• aMappingCollection ~ #(231). (maps 1 to 2, 2 to 3, and 3 to 1; Le., rotates)

anotherView ~ #(Ieft middle right) mappedBy: aMappingCollection

anotherView at: 1 => middle. (1 maps to 2 with associated value #middle)

anotherView at: 2 => right. (2 maps to 3 with associated value fright)

anotherView at: 3 => left. (3 maps to 1 with associated value #Ieft)

• interval1 ~ (Interval from: 1 to: 2). interval1 do: ["nothing").

interval2 ~ Interval from: 1 to: 10 by: 3. interval3 ~ 1 to: 10 by: 3.

Ordered collections and sorted collections have many of the same instance creation
operations as the keyed collections.

8.2.3 The Dictionary Protocol

IdentityDictionaries and Dictionaries are array-like containers for objects that are
associated with arbitrary keys. Only one object is associated with each key. Two different
rules are used for deciding when two keys match. For identity dictionaries, two keys
match if they are identical; for dictionaries, they match if they are equal. Hence, a more
descriptive term for dictionary would have been equality dictionary. Alternatively,
identity dictionaries and dictionaries can be viewed as unordered collections of associations.
Associations are key/value pairs with a very simple creation and accessing protocol.
Corresponding to this unordered collection view, there exists some (but not many)
operations for accessing the associations. These operations are provided indirectly as a side
effect of the chosen implementation strategy. Identity dictionaries and dictionaries are not
provided with the string-like protocol that their integer-keyed variations, arrays, strings, and
ordered collections are provided with. To summarize:

• Dictionaries and identity dictionaries can be viewed as arrays with subscripts of
arbitrary type or unordered collections of associations.

• When viewed as arrays, dictionaries and identity dictionaries are provided with the
usual array-like protocol, but they are also provided with some extensions for
dealing with associations directly.

• Although integer-keyed collections have string-like operations for operations like
concatenations and taking subcollections, the dictionary classes do not.

304 Inside Smalltalk



• When viewed as unordered collections, dictionaries and identity dictionaries are
provided with a limited set-like protocol. However, this protocol is more
appropriately viewed as private and is provided primarily as a side effect of this
particular implementation.

• IdentityDictionary uses = for key comparisons whereas Dictionary uses =. We
refer to = and =for the respective dictionaries as the key matching operation.

The Association Protocol

Associations are key/value pairs - they are a specialization of magnitudes whereby
comparisons are based only on keys. Consequently, they are provided with all the usual
comparison operations in addition to the following specialized operations for accessing and
changing both the key and value parts.

•
•
•
•
•
•

Association key: key value: aValue

anAssociation key

anAssociation value

anAssociation key: anObject

anAssociation value: anObject

anAssociation key: anObject value: anObject

(to obtain a new association)

(to extract the association

components)

(to modify the association

components)

Although dictionaries and identity dictionaries can be viewed as collections of associa
tions, this viewpoint need not be reflected in the implementation. In particular, it is not nec
essary to actually store associations as long as they can be materialized when required.
Whether or not this is done, however, can result in small but noticeable differences in the
semantics of the operations. For example, if associations are physically stored, operations
like associationAt: and associationsDo: can be designed to provide either the actual asso
ciation contained or a copy. If they are not physically stored, the same operations must
provide newly manufactured associations - they appear to users as copies. The same
semantics can be maintained for two implementations of dictionaries (one for dictionary and
another for identity dictionary) if either (a) both classes physically store the associations,
(b) both avoid physically storing the associations, or (c) both use copy semantics.

In Smalltalk, dictionaries physically store associations and provide them without
copying, but identity dictionaries store keys and values separately and consequently
materialize associations when required (copying semantics). The semantic differences are
subtle and usually (but not always) inconsequential. For example, the following sequencing
operations provide the receiver's associations in the case of dictionaries but only copies of
the receiver's associations in the case of identity dictionaries.

aDictionary a..ociationsDo: [:anAssociation I ...J
provides the dictionary's associations.

anldentityDictionary associationsDo: [:anAssociation I ...J
provides copies of the dictionary's associations.

The semantic differences above are obvious. However, the implications may not be so
clear cut. When problems arise, it may be necessary to understand the subtle differences in
order to isolate the cause of the difficulty. For an example of a more subtle problem,

Chapter 8 The Collection Classes 305



consider the following. An observant user rightfully observes that anOldDictionary is being
unexpectedly modified by the last modification to aNewDictionary.

anOldDictionary~ Dictionary new et: #Test put: #Value; your.elf.
aNewDictionary ~ anOldDictionary .elect: [:aValue I true). ·Select all the associations·
aNewDictionary et: #Test put: #SomethingElse.
anOldDictionary printString ~ 'Dictionary ITest->SomethingElse)'

Somehow, modifying aNewDictionary is affecting anOldDictionary! Why? The select:
operation is provided with those associations in anOldDictionary that satisfy the select block
- the same associations (not copies) are used to construct the new dictionary. The new
dictionary actually shares the same associations as the old. Changing an existing
association in the new dictionary actually results in modification to the association (only the
value part is modified). Hence, both dictionaries are changed. Asking for a copy of the
select: result doesn't help because the new dictionary constructed also shares the same
associations. One solution is to ask for a deepCopy of the dictionary. Of course, this is
unsatisfactory if we don't want copies of the values. A better alternative is to explicitly
create a new dictionary with copies of the associations but without copies of the keys or
values. Equivalently, we could add a special copy operation for Dictionary as follows:

copy
I aDictionary I

aDictionary ~ Dictionary new.
self e••ocietion.Do: [:anAssociation I

aDictionary et: anAssociation key put: anAssociation velue).
i aDictionary

The fact that the existing copy operation does not work this way may be just an
oversight (the existing copy operation simply produces a shallow copy - a new dictionary
with identical associations). Another alternative might be to revise the select: operation.

On the other hand, the above problems are not encountered very often because most
dictionaries are explicitly created by users for their specific application.

The Array-like Protocol

Viewed as arrays, identity dictionaries and dictionaries have the standard operations for
accessing and changing the values associated with the keys. Because the keys can be arbitrary
objects, special operations must also be provided for determining whether or not values are
associated with specific keys and for obtaining all the keys. Additionally, operations are
provided for accessing both keys and values simultaneously as associations. Accessing
successive elements of a dictionary is usually done via the sequencing operations (repeated
later for completeness).

size determination

306

•

•

aDictionary .ize
Returns the number of associations in the dictionary.

aDictionary i.Empty
Returns whether or not the size is zero.

Inside Smalltalk



liTfll

traditional subscripting operations

•

•

aDictionary at: key {ifAb..nt: aBlock}
The value associated with a key that matche•. If no match is found, returns
the result of evaluating aBlock (if there is one); otherwise, an error is
reported.

aDictionary at: key put: anObject
Associates anObject with the key that matche•. If no previous value was
associated, creates a new association; otherwise, modifies the existing
association. Returns anObject.

•

•

•

additional key-value operations

• aDictionary include.Key: key
Returns whether or not the receiver has a key that matches the specified
key.

• aDictionary includeaAuociation: anAssociation
Returns whether or not the receiver has a key that matches the specified
association's key.

• aDictionary removeKey: key {ifAbaent: aBlock}
If the receiver has an association with a matching key, removes it and re
turns the value associated with the key. If the receiver has no corresponding
association, returns the result of evaluating aBlock (if there is one); other
wise, an error is reported.

• aDictionary removeAuociation: association {ifAbaent: aBlock}
Same as above except that an association is provided instead of a key and
the association is returned.

• aDictionary ...ociationAt: key {ifAb..nt: aBlock}
An association whose key matches the specified key. If no match is found,
returns the result of evaluating aBlock (if there is one); otherwise, an error
is reported. More specifically, dictionaries return a unique contained
association whereas identity dictionaries return a copy.

• aDictionary keyAtV.lue: aValue {ifAb..nt: exceptionBlock}
Returns any key whose value is identical to aValue. If there is none, the
result of evaluating exceptionBlock is returned (if there is one); otherwise,
an error is reported.

aDictionary key.
Returns a set containing the receiver's keys.

aDictionary valu..
Returns a Bag containing the receiver's values.

aDictionary aHOCiation.
Returns an ordered collection containing the receiver's associations. More
specifically, dictionaries return the unique contained associations whereas
identity dictionaries return copies.

The keyAtValue: methods are designed for obtaining the key associated with a given
value. Unfortunately, it is of limited utility since the same value could be associated with
different keys. The method could be used to implement a more sophisticated query method.

Chapter 8 The Collection Classes 307



For example, we could introduce

includesValue: value
iself keyAtValue: value ifAbsent: [ifalsel. itrue

which returns whether or not the receiver has an association whose value is identical to the
specified value.

More general methods that return all keys and that use equality instead of identity could
be designed; e.g.,

keysAtValue: aValue ifAbsent: exceptionBlock
"Returns a set containing the keys whose associated values are equal to aValue."
I aSet I
aSet ~ Set new.
self associationsDo: [:anAssociation I

anAssociation value = aValue ifTrue: [aSet add: anAssociation key]].
iaSet

Examples
dictionary1 ~ Dictionary new.
dictionary2 ~ Dictionary new at: lOne put: #Red; at: #Two put: #Blue; yourself.

dictionary1 printString ~ 'Dictionary 0'
dictionary2 printString ~ 'Dictionary (One->Red Two->Blue)'

dictionary1 size ~ 0
dictionary2 size ~ 2
dictionary1 isEmpty ~ true
dictionary2 isEmpty ~ false

dictionary1 includesKey: lOne ~ false
dictionary2 includesKey: lOne ~ true
dictionary1 includesAssociation: (Association key: lOne value: #Yellow) ~ false
dictionary2 includesAssociation: (Association key: lOne value: #Yellow) ~ true
dictionary1 at: lOne ~ (error)
dictionary1 at: lOne ifAbsent: I#NotFoundl ~ NotFound
dictionary2 at: lOne ~ Red
dictionary2 associationAt: lOne ~ One->Red
dictionary2 associationAt: #Two ~ Two->Blue

dictionary1 at: lOne put: #Green
dictionary2 at: lOne put: #Green
dictionary1 printString ~ 'Dictionary (One->Green)'
dictionary2 printString ~ 'Dictionary (One->Green Two->Blue)'

dictionary1 removeKey: lOne ~ Green
dictionary2 removeKey: lOne ~ Green
dictionary1 printString ~ 'Dictionary 0'
dictionary2 printString ~ 'Dictionary (Two->Blue)'

dictionary1 at: lOne put: #Blue
dictionary2 at: lOne put: #Blue
dictionary1 printString ~ 'Dictionary (One->Blue)'
dictionary2 printString ~ 'Dictionary (Two->Blue One->Blue)'
dictionary1 keyAtValue: #Blue ~ One
dictionary2 keyAtValue: #Blue ~ Two (which key you get is arbitrary)

308 Inside Smalltalk



1'1111

Examples (continued)
dictionary1 keya ~ Set (One)
dictionary2 key. ~ Set (Two One)
dictionary1 valu.. ~ Bag (Blue)
dictionary2 value. ~ Bag (Blue Blue)
dictionary1 a..ociation. ~ OrderedCollection (One->Blue)
dictionary2 a••ociation. ~ OrderedCollection (Two->Blue One->Blue)

dictionary2 printString ~ 'Dictionary lTwo->Blue One->Blue)'
dictionary2 removeAaociation: (Association key: #One value: #Red)

~ One->Blue Note: only the key was used for comparison purposes.
dictionary2 printString ~ 'Dictionary (Two->Blue)'

lbe Set-like Protocol

Since dictionaries can be viewed as collections of associations, they have a corresponding
protocol that is set-like in nature. On the other hand, the "collections of associations" view
point is not meant so much for the user as it is for the implementor of the dictionary class
- they might have been better categorized as private. Consequently, the protocol provided
is rather minimal. Additionally, some of the inherited operations may not even be intended.

construction operations

•
•
•
•

•

•

aDictionaryClass with: association1
aDictionaryClass with: association1 with: association2
aDictionaryClass with: association1 with: association2 with: association3
aDictionaryClass with: association1 with: "'2 with: "'3 with: association4

Returns a new dictionary with 1 through 4 associations respectively (assum
ing none have keys that match).

aDictionary add: anAssociation
Either adds the new association if no other association with matching key
was there or modifies the existing one by changing its value to the new
value. Returns anAssociation - this is not necessarily the same association
contained by the dictionary.

aDictionary addAlI: anlntegerKeyedOrUnorderedCollectionOfAssociations
Adds each element of the collection to the receiver. Returns the collection.

testing operations

•

•

aDictionary include.: anAssociation
Returns true if it contains an association with a matching key.

aDictionary occurrence.Of: anAssociation
Returns the number of associations with matching keys.

Examples
dictionary1 +- IdentityDictionary new.
dictionary2 +- IdentityDictionary

with: (Association key: lOne value: #Red)
with: (Association key: #Two value: #Blue).

dictionary1 printString ~ 'ldentityDictionary (I'
dictionary2 printString ~ 'ldentityDictionary (One->Red Two->Blue)'

Chapter 8 The Collection Classes 309



Examples (continued)
dictionary1 include.: (Association key: #One value: #Green) =* fal_
dictionary2 include.: (Association key: #One value: #Green) =* true

dictionary1 add: (Association key: #One value: #Green)
dictionary2 add: (Association key: #One value: #Greenl
dictionary1 printString =* 'ldentityDictionary (One->Green)'
dictionary2 printString =* 'ldentityDictionary (One->Green Two->Blue)'

dictionary1 addAII: (dictionary2 a..ociation.)
dictionary1 printString =* 'ldentityDictionary (One->Green Two->Bluel'
dictionary2 printString =* 'ldentityDictionary (One->Green Two->Blue)'

(only keys
are matched)

The Sequencing Protocol

The sequencing protocol for dictionaries is repeated in this section both for completeness and
because it does not follow the same conventions as other classes of collections. Examples
can be looked up in the general section on sequencing operations.

In the following, exceptionBlock requires no parameters, aBlock requires one
parameter, and aBinaryBlock requires two.

sequencing operations

310

•

•

•

•

•

•

•

•

aDictionary do: aBlock
Evaluates aBlock with the successive value. in the dictionary. Returns the
receiver.

aDictionary collect: aBlock
Evaluates aBlock with the successive value. in the dictionary. Returns the
successive results in a bag.

aDictionary .elect: aBlock
Returns a new dictionary (of the same class as the receiver) containing
copies of all associations for which aBlock returns true when sent only the
association's value.

aDictionary reject: aBlock
Same as above but the resulting dictionary contains only those associations
for which aBlock returns false.

aDictionary detect: aBlock {ifNone: exceptionBlock}
Returns the first value for which aBlock is true. If there are none, the
exception block (no parameters) is executed; if no exception block was
provided, an error is generated.

aDictionary inject: initialValue into: binaryBlock
Evaluates binaryBlock with initialValue and the first value, then again with
its result and the second value, then its result with the third, and so on.
Returns the final result.

aDictionary associationsDo: aBlock
Evaluates aBlock with the successive associations of the dictionary or
identity dictionary. Returns the receiver.

aDictionary keysDo: aBlock

Evaluates aBlock with the successive keys of the dictionary or identity
dictionary. The corresponding value can be obtained via 'aDictionary at:
aKey'. Returns the receiver.

Inside Smalltalk



I "III

8.2A The Array and OrderedCollection Integer-Keyed Protocol

Arrays and their specializations along with ordered collections are integer-keyed collections
with the usual operations for accessing and changing values associated with the integer keys.
Additionally, they provide a string-like protocol that permits users to concatenate integer
keyed collections, extract and modify subcollections, and search for special information.

The An'ay-like Protocol

This protocol provides the usual operations for accessing and modifying elements of arrays
and ordered collections. Additionally, special methods are provided for determining the size of
an integer-keyed collection, for accessing the fIrst and last elements, and for initializing
multiple elements. When initializing an entire integer-keyed collection (or a subcollection)
with an initial value, the targetted elements are bound to the same initial value; i.e., distinct
elements will be identical (not just equal) since no copy is made of the initial value.

size determination

•

•

anlntegerKeyedCollection aize
Returns the number of elements in the collection; i.e., the maximum
subscript if fixed-size like an array. The minimum subscript is 1.

anlntegerKeyedCollection iaEmpty
Returns whether or not the .ize is zero.

traditional subscripting operations

•

•

anlntegerKeyedCollection et: key

Returns the value associated with the integer key. An error is reported if
the key is outside the bounds 1 through the collection size.

anlntegerKeyedCollection et: key put: anObject

Associates anObject with the integer key. Returns anObject.

specialized operations

•

•

•

•

anlntegerKeyedCollection firat
Returns the first element of the receiver; Le., 'et: 1'. An error is reported if

the receiver contains no elements.
anlntegerKeyedCollection leat

Returns the last element of the receiver; i.e., 'et: Iself aize)'. An error is
reported if the receiver contains no elements.

anlntegerKeyedCollection etAlI: anInterval put: anObject

Associates anObject with every key specified by the integer elements of
anlnterval. Note: does not make a copy of anObject.

anlntegerKeyedCollection etAlIPut: anObject

Associates anObject with everyone of the receiver's integer keys. Note:
does not make a copy of anObject.

Examples
array1 r Array new. ·Something that is not usually intended·
array2 r Array new: 100.
array3 r #IRed Blue)

Chapter 8 The Collection Classes 311



Examples (continued)

array1 size ~ 0
array2 size ~ 100
array3 size ~ 2

array1 isEmpty ~ true
array2 isEmpty ~ false
array3 isEmpty ~ false

array1 at: 1 ~ (error)
array2 at: 1 ~ nil
array3 at: 1 ~ Red

array3 first ~ Red
array3 last ~ Blue

·Subscript out of bounds·
·AII array elements are initialized to nil"

array1 at: 1 put: #Green ~ (error) ·Subscript out of bounds·
array2 at: 1 put: #Green ~ Green
array3 at: 1 put: #Green ~ Green

array2 at All: (1 to: 3) put: #Black ~ Black
array2 ~ (Black Black Black nil nil ... nil)

array3 atAlIPut: #Yellow ~ Yellow
array3 ~ (Yellow Yellow)

orderedColiection1 +- OrderedColiection new.
orderedColiection2 +- OrderedColiection new: 100.

"Ensures room for 100 elements before growing; 100 is just a hint to help minimize
automatic growing. It's not a limit nor an initial size."

orderedColiection3 +- #(Red Blue) asOrderedCollection.

orderedColiection1 size ~ 0
orderedColiection2 size ~ 0
orderedColiection3 size ~ 2

orderedColiection1 isEmpty ~ true
orderedColiection2 isEmpty ~ true
orderedColiection3 isEmpty ~ false

orderedColiection1 at: 1 ~ (error)
orderedCollection2 at: 1 ~ (error)
orderedColiection3 at: 1 ~ Red

orderedColiection3 first ~ Red
orderedColiection3 last ~ Blue

"Note: same size as orderedCollection1."

"Subscript out of bounds·
"Here too."

312

orderedColiection3 at: 1 put: #Green ~ Green
orderedCollection3 ~ (Green Blue)

orderedCoilection3 add: #Red.
orderedColiection3 at All: (1 to: 2) put: #Black ~ Black
orderedCollection2 ~ (Black Black #Red)

orderedCollection3 atAlIPut: #Yellow ~ Yellow
orderedCoilection3 ~ (Yellow Yellow Yellow)

Inside Smalltalk



The String-like Protocol
This protocol provides the operations for searching, extracting, and modifying subcollections
(subarrays), and for concatenating subcollections. The destructive replacement operations
begin with replace... whereas the nondestructive versions begin with copyReplace•••.

searching operations

•

•

•

•

anlntegerKeyedCollection indexOf: anElement {ifAb.ent: exceptionBlock}
Returns the key (index) of the first element in the receiver equal to
an Element. If there isn't any. returns the result of evaluating the
exceptionBlock (if one is provided); otherwise. returns O.

anlntegerKeyedCollection nexdndexOf: anElement from: start to: stop
Returns the key (index) of the first element in the receiver between the
specified bounds that is equal to an Element. If there isn't any. returns nil

anlntegerKeyedCollection prevlndexOf: anElement from: startto: stop
As above but processes in the reverse direction.

anlntegerKeyedCollection identitylndexOf: anElement
{ifAb.ent: exceptionBlock}

Returns the key (index) of the first element in the receiver identical to
anElement. If there isn't any. returns the result of evaluating the
exceptionBlock (if one is provided); otherwise. returns O.

anlntegerKeyedCollection indexOfSubCollection: aCollection
.tertingAt: startlndex {ifAbsent: exceptionBlock}

Returns the key (index) of the first element in the receiver such that a
portion of the remaining elements is equal to aCollection. The search
actually starts at position startlndex. If no equal subcollection is found.
returns the result of evaluating the exceptionBlock (if one is provided);
otherwise, returns O. Parameter aCollection must be a collection with
integer keys (even dictionaries are allowed if the keys are all consecutive
integers starting at 1). Always fails to find an empty collection.

anlntegerKeyedCollection include.: anElement
Returns true if it contains an element equal to anElement; otherwise false.

anlntegerKeyedCollection occurrence.Of: an Element
Returns the number of elements equal to anElement.

destructive replacement operations

•

•

•

•

•

anlntegerKeyedCollection replaceElement: oldElement
withElement: newElement

Destructively replaces all elements identical to oldElement by newElement.
Returns the receiver.

anlntegerKeyedCollection replaceFrom: start to: stop
with: aReplacementCollection {atertingAt: startlndex}

Destructively replaces all elements in the receiver between start and stop
inclu.ively by an equal length prefix of that portion of aReplacement
Collection starting at startlndex. An error results if the replacement is too
short; it is truncated if too long. The replacement collection must be a
collection with integer keys (even dictionaries are allowed if the keys are all
consecutive integers starting at 1). Returns the receiver.

Chapter 8 The Collection Classes 313



non-destructive replacement operations

•

•

•

•

•

anlntegerKeyedCollection copyFrom: start to: stop
Returns a copy of a portion of the receiver starting from key start to key
stop incluaively. If start is greater than stop by exactly 1, an empty
collection is returned.

anlntegerKeyedCollection copyReplaceAlI: oldCollection with: newCollection
Returns a copy of the receiver in which all occurrences of oldCollection have
been replaced by newCollection. Does not scan the replacement. The two
collections must be a collection with integer keys (even dictionaries are
allowed if the keys are all consecutive integers starting at 1).

anlntegerKeyedCollection copyReplaceFrom: start to: stop with: newCollection
Returns a copy of the receiver in which the portion from key start to key
stop incluaively is replaced by newCollection. After the replacement, the
elements of the new collection begin at key start. The new collection need
not be the same size as the portion being replaced. If stop = start -1, i.e., to
the left of start, an empty portion is being replaced by the new collection,
i.e., an insertion. Interesting special cases occur when start = 1 and stop = 0
(inserts before first element) and when start = self size + 1 and stop = self
size (inserts after last element). The same restrictions as above apply to the
classes of allowable collections.

anlntegerKeyedCollection copyWith: newElement
Returns a copy of the receiver that is grown by one element and that has
newElement as the last element.

anlntegerKeyedCollection copyWithout: oldElement
Returns a copy of the receiver in which all elements equal to oldElement
have been left out.

•
specialized operations

anlntegerKeyedCollection , aCollection
Returns a new collection that is the concatenation of the receiver and
aCollection. The elements of the new collection are identical to the
elements in the receiver and aCollection; i.e., there are no copies of the
elements made. Parameter aCollection must be a collection with integer
keys (even dictionaries are allowed if the keys are all consecutive integers
starting at 1).

The searching operations could be better organized. For instance, there is no method
called indexOfSubCollection: or indexOfSubCollection:ifAbsent:. Most of them return
owhen a searched for element is not found - exceptions are the methods nextlndexOf:
from:to: and prevlndexOf:from:to: which return nil.

On the other hand, the operations are quite general; e.g., the subcollection being
searched for need not be of the same class as the receiver. As long as its elements are equal
(or identical- depending on the operation) to corresponding receiver elements, the search
will succeed. Intuitively, one would therefore expect that an empty collection would satisfy
this description for any starting point; i.e., an empty collection should always match.
However, in the current design, the empty collection fails to match any subcollection.

314 Inside Smalltalk



j '.ill!

There are three operations that perform destructive changes to the receiver: re
placeElement:withElement:, replaceFrom:to:with:, and replaceFrom:to:with:start
ingAt:. The last two are not as general as the corresponding non-destructive operations
that construct new collections. For instance, the destructive variety only permits individual
elements to be replaced. It does not permit elements to be inserted or removed. Hence, care
must be exercised to ensure that replacements are exactly the same size as the portion to be
replaced. The nondestructive operations such as copyReplaceAU:with: and copyReplace
From:to:with: permit the replacement to have a size totally different from the portion being
replaced. The reason for the difference is that the destructive operations are much more
heavily used than the nondestructive variety - the restrictions ensure a much more efficient
implementation. In hindsight, an alternative solution can be easily devised:

• Rename replaceFrom:to:with: to inPlaceReplaceFrom:to:with: (or some
better choice of name) so that the functionality is still provided. The same applies
to replaceFrom:to:with:startingAt:.

• Change the implementation of replaceFrom:to:with: to something like:

replaceFrom: start to: end with: aNewCollection
tself become:

lself copyR.placeFrom: start to: end with: aNewCollection)

Intuitively, 'X become: Y' means "for all objects in the system. change all X
references to Y references (and vice versa)". This solution assumes that the become:
operation is efficient This is not true of every implementation.

The concatenation operator (comma) is very general and convenient. Moreover. it is a
nondestructive operation. Consequently, long series of concatenations can be expensive. For
example, 'A, B. C, D' constructs three successive collections with only the last returned 
it is 0(n2) for collections of size n. In general, any operation that results in the creation of
objects of different sizes are expensive in Smalltalk.

As users of both destructive and nondestructive operations, the important point to
remember is the difference in generality between the two varieties. The nondestructive
versions are easily distinguishable from the destructive variety because they all start with
copy•••.

Examples

anArray (- #(The little red fox has a little red foot)
anArray indexOf: #The => 1
anArray indexOf: #the => 0
anArray ind.xOf: #little => 2
anArray ind.xOf: #foot => 9
anArray indexOf: #rabbit ifAb••nt: [anArray .ize + 1) => 10

anArray nextlnd.xOf: #Iittle from: 3 to: 9 => 7
anArray prevlnd.xOf: #little from: 1 to: 5 => 2
anArray n.xtlnd.xOf: #hot from: 3 to: 9 => nil

aString (- 'hello'.
anArray (- Array with: aString copy with: aString.
anArray id.ntitylnd.xOf: aString => 2

Chapter 8 The Collection Classes 315



Examples (continued)

anArray t- #(The little red fox has a little red foot>
anArray ind.xOfSubColI.ction: #0 atartingAt: 1 ~ 0 "Not found"
anArray ind.xOfSubCollection: #(The) aurtingAt: 1 ~ 1
anArray ind.xOfSubCollection: #(Iittle red) atartingAt: 1 ~ 2
anArray ind.xOfSubCollection: #(Iittle red) atartingAt: 3 ~ 7
anArray ind.xOfSubCollection: #(Iittle red) atartingAt: 8 ifAb..nt: [anArray aiz. + 1j ~ 10

anArray t- #(The little red fox has a little red foot>
anArray ind.xOfSubCollection: (OrderedCollection with: Ired) atertingAt: 1 ~ 3
anArray indexOfSubCollection: (Dictionary new at: 1 put: Ired; you....lf) .tertingAt: 1~ 3
anArray ind.xOfSubCollection: (Array with: Ired) atertingAt: 1 ~ 3

anArray t- #(The little red fox has a little red foot>
anArray includ_: #the ~ fal..
anArray includ.a: #The ~ true
anArray includ_: #little ~ true
anArray occurrenc••Of: #the ~ 0
anArray occurrence.Of: #The ~ 1
anArray occurr.nc.aOf: #little ~ 2

aString t- 'hello'.
anArray t- Array with: aString with: aString with: aString copy with: 'there'.
anArray ~ ('hello' 'hello' 'hello' 'there')

anArray replec.Element: aString withElernent: 'hi'.
anArray ~ ('hi' 'hi' 'hello' 'there')

anArray t- Array with: 1 with: 2 with: 3 with: 4.
anArray ~ (1 234)
(1 to: 3) collect: [:position I

(anArray
repleceFrom: 2 to: 3
with: (Array with: 10 with: 20 with: 30 with: 40)
atertingAt: position) printStringj.

~ 1'(1 10 20 4)' '(1 20 30 4)' '(1 3040 4)')

anArray t- Array with: 1 with: 2 with: 3 with: 4.
anArray ~ (1 2 3 4)
(1 to: 3) collect: [:position I

(anArray
repleceFrom: 2 to: 3
with: (OrderedCollection with: 10 with: 20 with: 30 with: 40)
atartingAt: position) printString).

~ ('(1 10 20 4)' '11 20 30 4)' '(1 30 40 4)')

anArray t- Array with: 1 with: 2 with: 3 with: 4.
anArray ~ (1 2 3 4)
11 to: 4) collect: [:position I lanArray copyFrom: position to: 3) printString).

~ I'll 23)' '(23)' '(3)' '0')

aString t- 'abccabc',
aString copyReplaceAII: 'abc' with: 'ab'. ~ 'abcab'

aString t- 'awo seasaws'.
aString copyReplaceAII: 'aw' with: 'hell' a.Array. ~ 'hello seashells'

316 Inside Smalltalk



Examples (continued)

anArray ~ #(Once upon a long long timel.
aDictionary~ Dictionary new at: 1 put: lin; at: 2 put: #Iong; at: 3 put: #ago; your.elf.
anArray copyReplaceFrom: 2 to: 5 with: aDictionary. ~ (Once in long ago time)
anArray copyReplaceFrom: 1 to: 0 with: #(NOT). ~ (NOT Once upon a long long time)
anArray copyReplaceFrom: 4 to: 3 with: lIvery). ~ (Once upon a very long long time)
anArray copyReplaceFrom: 7 to: 6 with: #(ago). ~ (Once upon a long long time ago)

#(1 am here) copyWith: #now. ~ (I am here now)
#(1 see I can be I) copyWithout: #1. ~ (see can be)

#(Try again). #(for fun). ~ (Try again for fun)
#0. #0. ~ 0
#0. #(ls this OK). ~ (Is this OK)
#(ls this OK). #0. ~ (Is this OK)

#(Mix this). (OrderedCollection with: #up with: #now). ~ (Mix this up now)
#(or). (Dictionary new at: 1 put: 'this'; you....If). ~ (or 'this')
#(and). 'this'. ~ (and $t $h $i $s)
#(or). #this. ~ (or $t $h $i $s)
'or'. 'th is'. ~ 'or this'

8.2.5 The String. Symbol, and Text Protocol

Strings, symbols, and texts are a family of related classes that manipulate collections of
characters. Symbols are variations of strings that have been made unique; texts are variations
that have attached font information. Since each is a specialization of array, they are provided
with all of the array-like and string-like operations that arrays have; e.g., copyFrom:to:,
size, and "," (the concatenation operator).

Since string constants are surrounded by single quotes, quotes are themselves
represented by doubling the quotes. Consequently,

'he"s' a.Array ~ ($h $e $' $s)
......,eaArray ~ (S' $')
String with: $' ~ ....
'aUb' at: 2~ $'

As a general rule, symbols cannot be modified. Consequently, destructive
modifications like at:put: and replaceFrom:to:witb:startingAt: are not allowed. Addition
ally, all string-like operations on symbols return strings rather than the expected new
symbol. For one example, both string and symbol concatenation return strings (the comma
is the concatenation operator); Le.,

'string1'. 'string2' ~ 'string1string2'
#symboI1. #symbol2 ~ 'symboI1symboI2'
'string1'. #symbol2 ~ 'string1symbol2'

Collections that serve as parameters to messages sent to strings and symbols need not
be as specialized as strings and symbols themselves. In general, such collections are
reasonably general. First of all, the elements must be characters. Second, the collections
themselves must be integer-keyed collections - even dictionaries are allowed if the keys are
all consecutive integers starting at 1.

Chapter 8 The Collection Classes 317



Collection parameters to text receivers are not as general. In fact, only text is pennitted
(not even strings or symbols). This is not usually of any consequence since few users
actually make use of text in new applications. Its primary use is restricted to the existing
text browsers.

The Magnitude Protocol

As implemented, strings and symbols are magnitudes3 but texts are not. Consequently,
strings and symbols are provided with the usual comparison operations: ==, --, <, <=, >,
>=, =, and -=. Texts are only provided with ==, -, =, and -=. String and symbol operations
<, <=, >, >= treat corresponding uppercase and lowercase characters as equivalent. Operations
=and -= distinguish all characters. Strings and symbols provide an additional operation
sameAs: that ignores case differences.

Comparisons between instances of different classes are allowed but not consistently
across the three classes. However, comparisons are consistent between strings and symbols.
Comparison between unequal length strings or symbols uses null-padding semantics; i.e.,
the shorter string is assumed to be padded with '0 asCharacter'. In other words, a proper
prefix of a string is less than the string itself.

• aStringOrSymbolOrText == aStringOrSymbolOrText



I i~1

Examples (continued)

#hello ='hello' ~ f....
#hello ='hello' ••Text ~ f....

'hello' ••Text ='hello' ~ true "Opposite of the above"
'hello' ••Text =#hello ~ true

'a'<'A' ~ f ...
'a' > 'A' ~ f .
'a'='A' ~ f ...

'hell' < 'hello' ~ true
'hell' > 'hello' ~ f.l..
'hell' ='hello' ~ f.l..
'aMan' < 'aWoman' ~ true
'aMan' < 'aBoy' ~ f.l..

Note that comparisons between texts and strings give different results depending on the
choice of receivers. Text receivers explicitly extract the string parts and compare them.
Hence, texts compared with strings work as expected. Strings inherit the =operation - this
inherited version insists that both operands be of the same species. Hence, strings compared
with texts are never equal (they are different species). The solution is either to not cross
compare or to extend the system.

The String-like Protocol

Because this family of classes inherits from Array, all of its string-like protocol is inherited.
For completeness, we list them all without comment. However, new protocol special to this
family is described in more detail.

Parameter Restrictions: Unless otherwise noted, collections that serve as
parameters to the following methods must contain characters and be integer
keyed collections (dictionaries are allowed if the keys are all consecutive integers
starting at 1).

searching operations

•
•
•
•

•

•

aStringOrSymbolOrText include.: anElement

aStringOrSymbolOrText occurrence.Of: anElement
aStringOrSymbolOrText indexOf: anElement {ifAb..nt: exceptionBlock}

aStringOrSymbolOrText ind.xOfSubCollection: aCollection .tartingAt: aStart
{ifAb.ent: exceptionBlock}

aStringOrSymbolOrText findString: aCollection .tartingAt: aStart

A better name for the previous method.
aStringOrSymbol match: aStringOrSymbolOrText *

Compares aStringOrSymbolOrText with the receiver ignoring case differ
ences and returns true or false. Additionally, * in the receiver denotes 0 or
more characters; # denotes 1 character. Hence, the following all return true:
'(*)' match: '(hello)', '*: #' match: 'try: 1', and 'why *7' match: WHY TRV7'.

Chapter 8 The Collection Classes 319



• aStringOrSymbol match: aStringOrSymbolOrText ignoreCase: aBoolean*
As above but can additionally prevent case differences from being ignored.

• aStringOrSymbol spellAgainst: aStringOrSymbolOrText *
Returns an integer between 0 and 100 indicating how similar
aStringOrSymbolOrText is to the receiver. Does not perform case
conversions.

destructive replacement operations

• aStringOrSymbol replaceElement: oldElement withElement: newElement *
• aStringOrSymbol replaceFrom: start to: stop with: aReplacementCollection

{startingAt: aStart} *
• aStringOrSymbol replaceFrom: start to: stop withByteArray: aByteArray

startingAt: aStart *
A specialized version that works for byte arrays. The standard version only
works for collections of characters (a byte array is a collection of very small
integers).

non-destructive replacement operations

• aStringOrSymbolOrText copyFrom: start to: stop **
• aStringOrSymbolOrText copyUpTo: aCharacter

Returns a copy of a portion of the receiver starting from key 1 up to but
excluding the specified character.

• aStringOrSymbolOrText copyReplaceAII: oldColiection with: newCollection
• aStringOrSymbolOrText copyReplaceFrom: start to: stop with: newCollection
• aStringOrSymbolOrText copyWith: newElement **
• aStringOrSymbolOrText copyWithout: oldElement **

specialized operations

• aStringOrSymbolOrText. aCollection **
Comma is the concatenation operator.

Exceptions
**.

*.

Applicable to strings. symbols. and text with the following restrictions:
a. Returns strings for both string and symbol receivers.
b. Returns text for text receivers but requires the collection

parameters to be text.
Although these operations are inherited for text. they are applicable only to
strings and symbols.

First we consider examples of operations that are not inherited. Inherited operations are
considered last.

Examples
'thethethe' findString: 'the' startingAt: 1 ~ 1
'thethethe' findString: 'the' startingAt: 2 ~ 4
'thethethe' findString: 'the' startingAt: 8 ~ 0 "Not found"
'if*then*endif#' match: 'if a> b then run. play. eat endif7' ~ true

320 Inside Smalltalk



Examples (continued)
'*;*' m.tch: 'OrderedCollection new add: #test; add #anotherTest' ::} true
'#+11' match: 'a+b' ::} true
'#+#' match: '10+5' ::} f.l..

'help* match: 'help me' ::} true
'help* match: 'Help me' ::} true
'help* match: 'Help me' ignoreCaa.: false::} f....

'interesting' copyFrom: 5 to: 'interesting' aiz. ::} 'resting'

'Smalltalk' apellAg.inat: 'Smalltalk' ::} 100
'Smalltalk' apellAgainat: 'smalltalk' ::} 88
'Smalltalk' sp.IIAg.inst: 'Stalk' ::} 33
'Smalltalk' sp.UAg.inst: 'Bigtalk' ::} 11

'hello. goodbye' copyUpTo: ': ::} 'hello'
'hello. goodbye' copyUpTo: ';' ::} 'hello. goodbye'

The match:, match:ignoreCase:, and copyUpTo: methods provide a poor man's ap
proach to parsing. The match: method is used to verify the form, and copyUpTo: is used to
extract the components. For instance, if a user is prompted with a string of the form
'Name!Age', the answer could be verified and components extracted as follows:

'*/*' match: result
ifTrue:[

name~ result copyUpTo: $/.
age~ result copyFrom: result aiz. + 2 to: result aiz.)

ifF.I..: [... error ...)

Examples
'once upon a time' ind.xOf: $0 ::} 1
'once upon a time' ind.xOf: (Character sp.c.) ::} 5
'once upon a time' ind.xOf: $u ::} 6
'once upon a time' ind.xOf: $U ::} 0
'once upon a time' ind.xOf: $x ifAb..nt: (-1) ::} -1

'the happening' ind.xOfSubCollection: " atartingAt: 1 ::} 0 "Not found"
'the happening' indexOfSubCollection: 'the' atartingAt: 1 ::} 1
'the happening' indexOfSubCollection: 'pen' atartingAt: 1 ::} 8
'the happening' indexOfSubCollection: 'pen' atartingAt: 9 ::} 0
'the happening' ind.xOfSubCollection: 'penny' atartingAt: 8 ifAbaent: [-1) ::} -1

redlnOrderedCollection ~ OrderedCollection new .dd: $r; .dd: $e; .dd: $d; yours.lf.
redlnDictionary ~ Dictionary n.w.t: 1 put: $r; .t: 2 put: $e; .t: 3 put: $d; your..lf.
redlnArray~ Array with: $r with: $a with: $d.
'Freddy' indexOfSubCollection: 'red' atartingAt 1 ::} 2
'Freddy' indexOfSubCollection: redlnOrderedCollection atartingAt: 1 ::} 2
'Freddy' ind.xOfSubCollection: redlnDictionary atartingAt: 1 ::} 2
'Freddy' indexOfSubCollection: redlnArray atartingAt: 1 ::} 2

'Saturday' includes: $b ::} f .
'Saturday' includ..: $A ::} f ...
'Saturday' includes: $a ::} true
'Saturday' occurrenceaOf: $b ::} 0
'Saturday' occurrenc.aOf: $S ::} 1
'Saturday' occurrenceaOf: $a ::} 2

Chapter 8 The Collection Classes 321



Examples (continued)

'sing song' replaceElement: $s withElement: $p ~ 'ping pong'

(1 to: 3) collect: [:position I 'test' repleceFrorn: 2 to: 3 with: 'ooar' .tartingAt: position!.
~ ('tart' 'tart' 'tart') "successively changes 'ar' to '00', 'oa', 'ar' but since the same

string is changed, only the last change is visible."

(1 to: 3) collect: [:place I ('test' repleceFrom: 2 to: 3 with: 'ooar' .tartingAt: place) copy!.
~ ('toot' 'toat' 'tart') "as above but collects copies, so all changes are visible."

(1 to: 'hi you' size+1) collect: [:position I 'hi you' copyFrom: position to: 'hi you' .ize!.
~ ('hi you' 'i you' , you' 'you' 'ou' 'u' ")

'the yum yum tree' copyReplaceAII: 'yum' with: 'happy' ~ 'the happy happy tree'
'ratattattatman' copyReplaceAII: 'tat' with:" ~ 'raman'
'abccabc' copyRepl.ceAlI: 'abc' with: 'ab' ~ 'abcab'

'awo seasaws' copyReplaceAII: 'aw' with: 'hell' ••Array. ~ 'hello seashells'

'method' copyReplaceFrom: 4 to: 6 with: 'aphor' asArray ~ 'metaphor'
'method' copyReplaceFrorn: 1 to: 4 with: 'r' ~ 'rod'
'method' copyReplaceFrom: 2 to:4 with:" ~ 'mod'
'method' copyReplaceFrorn: 7 to: 6 with: 'ological' ~ 'methodological'
'method' copyReplaceFrom: 1 to: 0 with: 'another' ~ 'another method'

'brow' copyWith: $n ~ 'brown'
'mississippi' copyWithout $i ~ 'msssspp'

'Try a', 'gain f', 'or fun'. ~ 'Try again forfun'
"," :::) II

", 'Is this OK' ~ 'Is this OK'
'Is this OK'," ~ 'Is this OK'

'Mix', (OrderedCollection with: $u with: $p) ~ 'Mixup'
'bat', (Dictionary new at: 1 put: $s; your.elf) ~ 'bats'

Type Conversion

The following list summarizes the conversion operations applicable to the string, symbol,
and text classes. The general conversions discussed previously are shown ftrst. Specialized
operations follow.

322

•
•
•
•
•
•
•
•
•
•
•
•

aStringOrSymbolOrText ••SortedCollection

aStringOrSymbolOrText ••SortedCollection: aSortBlock

aStringOrSymbolOrText ••OrderedCollection

aStringOrSymbolOrText ••Set

aStringOrSymbolOrText ••B.g

aStringOrSymbolOrText • .Arr.y

aStringOrSymbolOrText ••String

aStringOrSymbolOrText ••Text

aStringOrSymbol ••Symbol*

aStringOrSymbolOrText ••Upperc••e **

aStringOrSymbolOrText ••Lowerc••e **

aStringOrSymbolOrText ••Number

Inside Smalltalk



*

**

III

Exceptions

Returns strings for both string and symbol receivers. Returns text for text

receivers.
Although these operations are inherited for text, they are applicable only to

strings and symbols.

In keeping with the earlier general remarks, asUppercase and asLowercase return
strings for both string and symbol receivers. They return text for text receivers. Operation
asNumber converts a prefix (that portion which is a correct number) of the receiver to a
number. In the simplest case, when no prefix is a number, 0 is returned.

There is no operation for converting individual characters to strings. This would be
useful for the special unprintable characters

• Character newPege
• Character beckspace

• Character cr
• Character esc

• Character .p.ce

• Character tab

It would be simple to add the following character to string conversion method to class
Character:

..string
t(String with: self

Examples
'singing' ••Upperca.. ~ 'SINGING'
'SINGing' ••Lowerca.. ~ 'singing'
#Columbus ••Uppercaee ~ 'COLUMBUS'
#CRUSOE ••Lowerca.. ~ 'crusoe'
'Cream' ••Text ••Upperca.. ~ Text for 'CREAM'
'Powder' ••Text ••Lowerca.. ~ Text for 'powder'

'2000' ••Number ~ 2000
'2000' • .symbol • .Number ~ 2000
'2000' ••Text _Number ~ 2000
'100+200' ••Number ~ 100
'junk' aNumber ~ 0
'1.5e10' ••Number ~ 1.5e10
'·40' ••Number ~ -40
'1/3' ••Number ~ 1 "There is no such thing as a fraction constant"

Special Purpose Operations

There are few specialized operations. Special text operations deal with text emphasis.
Emphasis codes include the following:

•
•
•

basal ~ 0 (the standard emphasis)

bold ~ 1

italic ~ 2

Chapter 8 The Collection Classes 323



•
•
•
•
•
•
•

boldltalic ~ 3

underlined ~ 4

overStruck ==> 8

subscripted ==> 16

superscripted ==> 32

subscriptedUnderlined ==> 20

superscriptedUnderlined ==> 36

Operation withCRs is used for constructing menu items; e.g., 'red\blue\yellow'
withCRs is equivalent to 'red
blue
yellow' where we have deliberately started a new line after red and blue. Operation
contractTo: is used in displays.

•

•

•

•

•

aText allBold
Returns text in boldface.

aText emphaaiaAt: characterlndex

Returns the integer code for the emphasis at the specified index.

aText emphaaizeFrom: start to: stop with: anEmphasisCode

Changes the emphasis of the indicated portion of the receiver.

aStringOrSymbol witheRa
Returns a new string with backslashes replaced by carriage returns.

aStringOrSymbol contr.ctTo: aMaximumSize

Shortens strings longer than the specified maximum by replacing the middle
portion by ....'.

Examples

'hello' aaText .IIBold ~ (only displays in bold)
'test' aaText allBold emphaaisAt 2 ==> 1
'a hot potatoe aaText emphaaiazeFrom: 3 to: 5 with: 1 ==> (displays as 'a hot potato')
'Iongwinded' contractTo: 9 ==> 'Ion...ded'

8.2.6 The Mapped Collection and Run Array Protocol

Mapped collections (arbitrary keys) and run arrays (integer keys) provide access to their
elements indirectly through a subscript map; i.e., a mapping that converts a user's subscript
into a more appropriate internal subscript. For mapped collections, the map is an arbitrary
keyed collection; for run arrays, it is a specially designed integer-keyed collection that maps
sequences of consecutive values into the same internal subscript. Mapped collections are
intended for general mapping purposes, while run arrays are intended for use as space-efficient
sparse arrays. Neither can be automatically grown or explicitly grown with the built-in grow
command, but special methods are provided for explicitly growing run arrays.

To be more specific, a mapped collection or a run array A has both a map M and an
internal array B associated with it (the mappee). Access to A results in an indirect access to
B through M; i.e.,

Ai means BM(i)

324 Inside Smalltalk



, 1 111ft

where M(i) maps i to some intermediate subscript actually used by B as follows:

M(j) is M .t: i
(for mapped collections)

Mlil is the smallest j such that the sum of the first j elements of M is >= i
(for run arrays)

The run array situation is much easier to explain with an example that efficiently
represents a 170-element array A using two 3-element arrays M and B where

M is '(100 20 SO) and B is '(-1 -2 -3)

In this case, the first 100 subscripts (1, 2, ..., 1(0) map to ·1, the next 20 subscripts (101,
102, ..., 120) map to -2, and the remaining 50 subscripts (121, 122, ..., 170) map to -3.
Thus

A.t: 20 maps to B .t: 1
A .t: 80 maps to B .t: 1
A.t: 110 maps to B .t: 2
A.t: 150 maps to B .t: 3

An equivalent mapped collection could also be constructed to have the same effect, but
the space efficiency would be lost. The map would have to be an array with one hundred l's,
followed by twenty 2's, in turn followed by fifty 3's.

It is clear that run arrays are a special case of mapped collections optimized for space.
However, the two notions were developed independently. Consequently, the terminology
imbedded in the methods for constructing them is not compatible. Fortunately, there are few
special purpose methods and therefore they are easily differentiated.

The term rUD array itself comes from the observation that each entry in the map
describes a series of consecutive subscripts with the same property (in this case, the same
mapping - the entry position). Such a sequence is often called a rUD.

mapped collection operations

•

•

•

MappedCollection collection: collectionOfElements map: aMappingCollection
Returns a new mapped collection with the specified mappee and map.

aMappedCollection contenb
Returns a collection like the map (the same species) that collapses the map
and mappee. The result is not a mapped collection.

anArray meppedBy: aMappingCollection
Returns a collection like the map (the same species) that collapses the map
and mappee (the receiver). The result is not a mapped collection.

run array operations

•

•

RunArray runs: anArrayOfCounts v.lues: anArrayOfSuccessivelyDistinctElements
Returns a new run array with the specified elements conceptually repeated
the number of times indicated by the corresponding entry in anArrayOf
Counts. The information is kept in a sparse space-efficient manner.

aRunArray runLengthAt: index
Returns the length remaining in the run beginning at the specified index.

Chapter 8 The Collection Classes 325



•

•

aRunArray .ddFir.t: an Element
Grows the run array by adding a new element at the front. Returns the
element. Does not work if the map is a dictionary.

aRunArray .ddL••t: an Element
Grows the run array by adding a new element at the rear. Returns the
element. Does not work if the map is a dictionary.

text operations

• Text .tring: aString run.: aRunArrayOfEmphasisCodes
This is the only method in the system associated with a class other than
RunArray that explicitly requires a run array. This array could of course be
constructed using

<RunArray run.: anArrayOfCounts v.lue.: anArrayOfEmphasisl.

Although the contents of a mapped collection is the same species as the map,
sequencing operations like select: return collections that are the same species as the mappee.
For example, consider

aDictionary f- Dictionary new .t: 1 put: 1; .t: 2 put: 1; .t: 3 put: 1; your.elf.
aMappedColiection f- MappedColiection collection: #(-11 m.p: aDictionary.

aMappedColiection content. => Dictionary (1->-12->-13->-11
aMappedColiection collect: I:element I elementl => (-1 -1 -11 "an array"

In specific cases, either the map or the mappee could itself be a mapped collection. In
general, the species represented by a mapped collection is the species of the mappee
(recursively applicable to arbitrary depth). Thus it is operation contents above that is not
conforming to the usual standard.

The problem does not arise with run arrays because sequencing operations like
collect: are not permitted (yet). It also does not have an operation like contents. The
contents of a run array can be obtained by executing the conversion operation asArray.

Examples
aClothingHeatMap f- (Dictionary new .t: #black put: #hot; .t: #White put: #cool; your.elfl.
aClothingHeatMaplnFrench f-

MappedColiection
collection: aClothingHeatMap
I1l8p: (Dictionary new .t: #noire put: #black; .t: #blanc put: #White; youreelfl.

aClothingHeatMaplnFrench .t: #noire => hot. (#noire maps to #black with value #hot)
aClothingHeatMaplnFrench .t: #blanc => cool. (#blanc maps to #White with value #cool)

aMappingFromlntegersToHeatlnEnglish f-

MappedColiection
collection: aClothingHeatMaplnFrench
I1l8p: (Array with: #noire with: #blanc with: #noirel.

aMappingFromlntegersToHeatlnEnglish .t: 1 => hot. (1 maps to #noire with value #hot)
aMappingFromlntegersToHeatlnEnglish .t: 2 => cool. (2 maps to #blanc with value #cooll
aMappingFromlntegersToHeatinEnglish .t: 3 => hot. (3 maps to #noire with value #hot)

aClothingHeatMaplnFrench content. => Dictionary (noire->hot blanc->cooll
aMappingFromlntegersToHeatlnEnglish contents => (hot cool hotl

326 Inside Smalltalk



I I I!g

• anlnterval et: anlndex
Returns the element at the specified position in the interval. If there is no

such element; e.g., when the interval is empty, an error is reported.

searching operations

• anlnterval includ_: aValue
Returns true if it contains an element _que I to aValue; otherwise false.

• anlnterval occurrence.Of: aValue
Returns the number of elements &queI to aValue.

construction operations

•

•

•
•

Interval from: aStartNumber to: anEndNumber
Returns a nondecreasing interval; i.e., the interval is empty if anEndNumber

is less than aStartNumber.
Interval from: aStartNumber to: anEndNumber by: aStepSizeNumber

Returns a nonincreasing or nondecreasing interval depending on whether or

not the step size is negative or positive respectively. A zero step-size leads

to infinite loops.
aStartNumber to: anEndNumber

aStartNumber to: anEndNumber by: aStepSizeNumber
Same as corresponding class methods in Interval (see above).

In general, intervals are created by specifying start and end points along with an
optional step-size. Without the step-size, the interval must be nondecreasing as in (I to: 1)
or (1 to: 10). Otherwise, it denotes an empty interval; i.e., an interval without elements;
e.g., (1 to: -10).

Intervals are more general than corresponding facilities in other programming
languages because they can be constructed with arbitrary numbers. Consequently, it is legal
to have intervals such as

1 to: 10
(1/3) to: (8/3) by: (1/3)
(1.5 to: 9.5 by: 0.5
1 to: 5.0 by: (1/3)

When accessed sequentially via the sequencing operations do:, collect:, ..., the elements
obtained are not always of the same class. For instance, for the last example above, the
elements accessed include 1 (an integer), (4/3) (a fraction), (5/3),2, (7/3), ..., (14/3), 5.

Since an interval is logically an array with an efficient representation for the elements,
it is possible to access (but not modify) the elements using the standard at: method. In this
case, the elements obtained are not necessarily the same as the elements obtained via the se
quencing operations, since each and every single element is computed on demand from the
same algorithm. By contrast, the sequencing operations begin with the start point and con
tinually add the step-size until all elements are exhausted. The difference is small but notice
able. For example, consider

anInterval r (1 to: 5.0 by: 0.5)

The sequencing operations provide 1 (an integer) as the first element followed by 1.5, while
anInterval at: 1 returns 1.0 (a real) and anInterval at: 2 returns 1.5.

328 Inside Smalltalk



Examples (continued)

aMappingCollection +- #(2 31). (maps 1 to 2,2 to 3, and 3 to 1; Le., rotates left)
aDifferentViewOfArray +- #(Ieft middle right> mappedBy: aMappingCollection
aDifferentViewOfArray at: 1 ~ middle. (1 maps to 2 with associated value #middle)
aDifferentViewOfArray at: 2 ~ right. (2 maps to 3 with associated value fright)
aDifferentViewOfArray at: 3 ~ left. (3 maps to 1 with associated value #Ieft)
aDifferentViewOfArray ~ #(middle right left).

#(Ieft middle right> mappedBy: #(2 3 1) ~ (middle right left). (left rotation, see above)
#(Ieft middle right) mappedBy: #(3 1 2) ~ (right left middle). (right rotation)
#(Ieft middle right) mappedBy: #(3 2 1) ~ (right middle left). (switch ends)

aFullHouse +- RunArray runa: (32) valuea: #(King Ten).

aFullHouse runlengthAt: 1 ~ 3.
aFullHouse runlengthAt: 2 ~ 2.
aFullHouse runlengthAt: 3 ~ 1.
aFullHouse runlengthAt: 4 ~ 2.
aFullHouse runlengthAt: 5 ~ 1.

aFullHouse eddFirat: #Ace ~ Ace.
aFullHouse eddFirat: #Ace ~ Ace.
aFullHouse addLe.t: #Two ~ Two.
aFullHouse ~ a run array like RunArray runa: (2321) valuea: #(Ace King Ten Two).

aDictionary +- Dictionary new at: 1 put: #big; at: 2 put: #small; your..lf.
tenBigsAndTwentySmalls +- RunArray runa: (1020) valuea: aDictionary.

aVeryShortStory +-
Text

atring: '"What a bold statement" said the bold boy.'
run.: (RunArray runa: #(8 4 21 45) valuea: #(0 1 0 1 0». "0 normal, 1 bold"

8.2.7 The Interval Protocol

Interval is a special kind of collection that describes an arithmetic sequence. The sequence
is specified at creation time and may not be changed or grown. Thus, it is logically a special
class of array with a particularly efficient representation for the elements. Hence the usual at:
method (but not the at:put: method) is available. Typically, intervals are used for looping
control. However, they can be manipulated as independent objects. In addition to providing
the usual comparison operations, the following specialized methods are provided:

array-like operations

•
•
•

•

•

anlnterval aize
anlnterval iaEmpty
anlnterval fir.t

Returns the first element in the interval if it is non-empty; otherwise,
returns the starting value.

anInterval laat
Returns the last element in the interval if it is non-empty; otherwise,
returns an undefined value.

anlnterval increment
Returns the interval step-size.

Chapter 8 The Collection Classes 327



EJaMnples
(1 to: 10 by: 3) • .Arr.y ~ (1 47 10)
(1 to: 10 by: 3) .t: 1 ~ 1, (1 to: 10 by: 3) .t: 2 ~ 4, (1 to: 10 by: 3) .t: 3 ~ 7
(1 to: 10 by: 3) .iz. ~ 4
(1 to: 10 by: 3) ampty ~ ..Ise
(1 to: 10 by: 3) first ~ 1
(1 to: 10 by: 3) I••t ~ 10
(1 to: 10 by: 3) increment ~ 3

(1 to: -10 by: -3) • .Arr.y ~ (1 -2 -5-8)
(1 to: 10 by: -3) .t: 1 ~ 1, (1 to: 10 by: -3) .t: 2 ~ -2, (1 to: 10 by: -3) .t: 3 ~ -5
(1 to: ·10 by: -3) .ize ~ 4
(1 to: ·10 by: ·3) isEmpty ~ f....
(1 to: -10 by: ·3) fir.t ~ 1
(1 to: ·10 by: -3) Ie.t ~ -8

(1 to: ·1) • .Arrey ~ ()
(1 to: -1) .t: 1 ~ (error)
(1 to:·1).ize ~ 0
(1 to: ·1) isEmpty ~ true
(1 to: ·10 by: 2) first ~ 1 "Even though the interval is empty"
(1 to: -10 by: 2) I••t ~ - 11 "Even though the interval is empty"

(1 to: 3 by: 0.5) ••Arr.y ~ (1.01.52.02.53.0)
(1 to: 3 by: 0.5) collect: (:aValue I aValuel ~ (1 1.52.02.53.0) "Note first element"
(1 to: 3 by: 0.5) .t: 1 ~ 1.0, (1 to: 10 by: 3) .t: 2 ~ 1.5, (1 to: 10 by: 3) .t: 3 ~ 2.0
(1 to: 3 by: 0.5) fir.t ~ 1 "Note: an integer"
(1 to: 3 by: 0.5) I••t ~ 3.0 "Note: a real"

(1 to: 3 by: 0.5) include.: 2.0 ~ true
(1 to: 3 by: 0.5) includ..: 2.1 ~ f....
(1 to: 3 by: 0.5) occurrence.Of: 2.5 ~ 1
(1 to: 3 by: 0.5) occurrencesOf: 2.6 ~ 0

(1 to: 10) do: (:aValue I ... code accessing 1. 2, 3, 4, 5, 6, 7, 8, 9, 10 ...1.
(1 to: 10) rever.eDo: (:aValue I ... code accessing 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ...1.

8.3 THE STREAMABLE COLLEC11ONS (STREAMS)

The streamable collections (streams) provide a mechanism for viewing and modifying a
secondary collection - an integer-keyed collection or an external stream (a file). Unlike the
traditional sequencing operations provided for collections, the stream operations permit
interruptible sequencing; i.e., not only can successive elements be obtained on demand but
repositioning is possible. It is even possible to have shared access (multiple positioning) to
the same collection. External streams (files) are provided as a special case; they are created
automatically from instances of FileName when an associated stream is requested.

ReadStreams and WriteStreams typify the streamable classes. The elements in the
stream (arbitrary objects) are accessed via specialized file-like operations. The more general
representative is a ReadWriteStream that permits both element access and modification.
The above stream classes are subclasses of InternalStream. As implied above,
corresponding subclasses of ExternalStream also exist. Because streams provide direct
positioning, they can be viewed as integer-keyed collections since subsequent next or
nextPut: operations behave like the corresponding keyed operations at: and at:put:.

Chapter 8 The Collection Classes 329



Consequently, they are also one of the many members of the ordered classes. Typical
operations include:

•
•
•
•
•
•
•

aReadStream .tEnd

aReadStream next

aReadStream p_k

aWriteStream nextPut: an Element

aReadOrWriteStream elos.

aReadStream position

aReadStream position: anlnteger

(an interrogation)

(accessing an element; move right)

(accessing an element without moving)

(modifying or appending)

(when completed)

(getting position)

(setting position)

From the implementation point of view, a large number of stream classes are abstract;
e.g., Stream, PeekableStream, PositionableStream, InternalStream, and External
Stream (see Fig. 8.2). Hence, users should not attempt to create corresponding instances.
There are also a large number of external streams (not shown in Fig. 8.2) including
BufferedExternalStream, ExternalReadStream, ExternalReadAppendStream, Ex
ternalReadWriteStream, and ExternalWriteStream. There is no need to remember
these streams explicitly since they are created automatically when the stream requesting
protocol for FileName is used. See the section on file names for more details.

8.3.1 Individual Characterizations

The stream classes (Fig. 8.6) are distinguished primarily by their intended usage; Le. by
whether or not the elements are to be read (accessed) or written (changed or added). Internal
streams providing read access include ReadStream, WriteStream, ReadWriteStream and
Random - only WriteStream and ReadWriteStream provide write access.

A second dimension that can be used to distinguish streams is whether or not they are
finite or infinite. Random is the only example so far of an infinite stream. It is infinite in
the sense that there is no limit to the number of elements in the stream; e.g., it is not even
legal to ask what the stream size is for random streams. All other streams are finite streams.

At the moment, only character file streams are supported. More general file streams
like object file streams are the subject of future extensions.

TextStream

WriteAccess
Finite

Read and Write Access
Finite

330

Figure 8.6 The Stream classes - a logical view.

Inside Smalltalk



, I III

8.3.2 Constructing New Streamable Collections

Streams cannot be constructed with the usual messages like new and new:. A more
specialized protocol is required. The protocol for external (file) streams requires an instance of
FileName. Random streams also have a unique protocol.

The ReadStream, WriteStream, ReadWriteStream protocol

•

•

•

•

aReadOrWriteStreamClass on: anlntegerKeyedCollection
Returns a stream capable of streaming over anlntegerKeyedCollection and

initially positioned at the beginning.
aReadOrWriteStreamClass on: anlntegerKeyedCollection from: firstlndex to: lastlndex

Returns a stream capable of streaming over a portion of anlntegerKeyed

Collection starting at firstlndex and ending at lastlndex. The stream is

initially positioned at the beginning (firstIndex). Additionally, ReadStreams

will stream over the original collection, whereas WriteStreams stream over

a copy of the subcollection.
aWriteStreamClass with: anlntegerKeyedCollection

Returns a stream capable of streaming over anlntegerKeyedCollection and

initially positioned at the end. Applies only to WriteStreams.

aWriteStreamClass with: anlntegerKeyedCollection from: firstlndex to: lastlndex
Returns a stream capable of streaming over a copy of a portion of

anlntegerKeyedCollection starting at firstlndex and ending at lastlndex. The
stream is initially positioned at the end. Consequently, this method applies
only to WriteStreams.

The FiIeIIItune protocol

•
•

FileName named: aString

aString a.FileName
Returns a file name with characters specified by aString.

• Random new
Returns a new random number generator (a stream).

• aRandom next
Returns a new random number from the random number generator. See the
magnitudes chapter for an additional example.

The on protocol creates streams positioned at the beginning of the collection, whereas
the with protocol creates them positioned at the end, making it convenient to append
additional elements. The distinction is easily forgotten because there is no convenient way to
remember that on: means atBeginningOf: and with: means atEndOf:.

The on:from:to: and with:from:to: variations should be interpreted as a request for a
copy of a subcollection to stream over. Since read streams do not modify their collections,
the copy request is optimized out.

A file name is specially created by indicating the external name of the file as a string
or by using the special string conversion operation.

Chapter 8 The Collection Classes 331



Examples
ReadStream on: #(Give me a break)
WriteStream on: (String new: 10)
WriteStream with: 'Append to this'
ReadWriteStream on: (Array new: 100)

Filename named: 'Sample.st'
'aTest.st' asFileName

"A stream of symbols at the beginning"
"A stream of characters at the beginning"
"A stream of characters at the end"
"A stream of objects at the beginning"

"A file name"
"Another file name"

8.3.3 How Read and Write Streams Are Typically Used

Before considering the operations in detail, it is best to have an informal working knowledge
of streams. The paradigm that it supports is that of a one-element window on a collection
with access provided only to the element in the window. If the beginning of the collection is
on the left and the end of the collection is on the right, the window is viewed as moving
sequentially from left to right providing access to the successive elements. In the extreme
case, the window can ultimately be moved beyond the rightmost element, at which point no
element is accessible. At this point, it is at the end of the stream.

Typical operations permit reading (extracting the object from the window and moving
right), writing (modifying the object in the window, even if at the end, and moving right),
and peeking (extracting the object from the window without moving it). Thus it makes
sense to speak of the objects previously read and those yet to be read.

Operations for determining whether or not a stream is at the end, for repositioning the
window more dramatically, e.g., to the extreme left end, and for terminating access to the
stream, are also provided.

The typical operations (shown below) will be used to illustrate the manner in which
streams are normally used. Operation close is usually used only for file streams; Le., when
internal streams are used, they are typically discarded after they are no longer needed 
closing them is superfluous.

•
•
•
•
•
•
•
•
•

aReadOrWriteStream atEnd

aReadOrWriteStream next

aReadOrWriteStream peek

aWriteStream nextPut: anElement

aWriteStream nextPutAlI: aCollection

aReadOrWriteStream contents

aReadOrWriteStream reset

aReadOrWriteStream setToEnd

aReadOrWriteStream close

(an interrogation)

(accessing an element; move right>

(accessing an element without moving)

(modifying or appending)

(provides nextPut: for each element>

(includes both read and unread portions)

(repositions at the beginning)

(repositions at the end)

(when completed)

For the first example, consider methods printString and storeString provided in
object, along with one of the many printOn: methods, in particular, one for collections.

Example
printString

I aStream I
aStream t- WriteStream on: (String new: 16).
self printOn: aStream.
i aStream contents

332 Inside Smalltalk



I ill

Example (continued)
atoreString

I aStream I
aStream to- WriteStream on: (String new: 161.
self storeOn: aStream.
i aStream contents

"Generic printOn: for all collections ~ 'CollectionName (...1'"
printOn: aStream

aStream nextPutAlI: self c.... name.
aStream nextPutAlI: ' ('. "blank and left bracket."
self do: (:element I element printOn: aStream. aStream spece).
self naxtPut: $1

Both printString and storeString create new character streams; Le., streams
positioned (via on:) at the left end of a string of initial size 16. The stream operations will
ensure that the string will grow if more space is needed. Alternatively, if not all characters
are overwritten (because the result takes fewer than 16 characters), only the part actually
written will be returned by contents. The methods invoke printOn: and storeOn:
respectively to get a printable representation of the receiver. Finally, the entire contents of
the stream is returned.

The printOn: method shown prints collections as 'CollectionName (...r. Notice that
all elements are followed by a blank. Consequently, even though an empty ordered collection
would print as

OrderedCollection ()

one containing a sequence of numbers would print as
OrderedCollection (6 3 4 )

with a blank preceding the right bracket For another example, consider adding an operation
for comparing streams.

Example
aStream

«aStream iaKindOf: Stream) end: «aStream iaKindOf: Random) not))
ifFel.e: (iself error: 'Streams must be compared with streams').

self reaet. aStream r...t.
(self etEnd I aStream etEnd] whileF....:

((self next ~= aStream next] ifTrue: (ifalsen.
i self etEnd & aStream etEnd

After checking that the right operand of =is legal (this implementation will not work
for random streams since they are infinite), both streams are repositioned at the beginning
and then compared element by element. If the elements are not equal or if one stream is
shorter than the other, false is returned; otherwise, true. A better implementation might
record the initial stream positions and later reposition them to what they were.

Since comparing streams for equality is a rare task, it is understandable that no such
method exists in class Stream. Indeed, if you needed to compare two streams (assuming they
were not large external files), it is as simple as comparing their contents; e.g.,

aStream1 contents =aStream2 contents

We now consider streams in more detail.

Chapter 8 The Collection Classes 333



8.3.4 Read, Write, and ReadWrite Streams

ReadStreams, WriteStreams, and ReadWriteStreams provide the ability to stream over
finite collections of arbitrary objects. They are the Smalltalk equivalent to memory resident
files. A useful special case is a corresponding stream of characters. Operations could be
partitioned into two major groups: interrogation and positioning operations along with
accessing and modification operations.

Interrogating and Positioning Streams

The interrogation and positioning operations include

interrogation operations

•

•

•

aStream size
Returns the number of elements in the stream.

aStream isEmpty
Returns true if the stream is at the beginning; should be called atBeginning.

aStream atEnd
Returns true if no more elements can be read; false otherwise.

positioning operations

•

•

•

•

aStream reset
Repositions the stream to indicate that no objects have been read or
written.

aStream setToEnd
Repositions the stream to indicate that all objects have been read (or
written).

aStream position
Returns the current position of the stream. Position is the index of the last
object read or written by the stream (0 indicates nonel.

aStream position: anlnteger
Sets position to anlnteger as long as it is within the bounds of the stream;
i.e., between 0 and the size of the collection being streamed over. It is an
error to position the stream outside the bounds. Position is the index of the
last object read or written by the stream (0 indicates none). Returns the
receiver.

termination operations

• aStream close
Indicates that the stream is no longer required. Provides compatibility with
files that require the operation.

As noted above, isEmpty is misnamed. It should have been called atBeginning. For
example,

(ReadStream on: 'This stream is not empty') isEmpty ~ true

334 Inside Smalltalk



J J IJ~

As an example that should help to clarify the direct positioning operations, consider the task
of adding methods at: and at:put: to stream. We are not suggesting that streams ought to be
made to look like keyed collections although this would be a reasonable goal. In keeping
with the existing operations, a check for subscripts out of bounds is perfonned.

at: anlndex
(anlndex between: 1 and: self aize) ifFal..: Iiself error: 'out of bounds').
self poaition: anlndex-1.
iselfnext

at: anlndex put: anObject
(anlndex between: 1 and: self aize) ifFal..: liself error: 'out of bounds').
self poaition: anlndex-1.
i self nextPut: anObject

Notice, in particular, that the stream must be positioned at the element prior to the
position of the intended element; Le., at position anIndex-l. Additional examples follow
below.

ExMIples

seeTheCatRack ~ ReadWriteStream on: #(see the cat rack).
seeTheCatRack aize => 4
seeTheCatRack iaEmpty "atBeginning" => true
seeTheCatRack atEnd => fal..
seeTheCatRack next => see

seeTheCatRack reaet
seeTheCatRack aize => 4
seeTheCatRack iaEmpty "atBeginning" => true
seeTheCatRack atEnd => f.l..
seeTheCatRack next => see

seeTheCatRack ..tToEnd
seeTheCatRack aize => 4
seeTheCatRack iaEmpty "atBeginning" => fal..
seeTheCatRack .tEnd => true
seeTheCatRack next => (error)

seeTheCatRack poaition: 0
seeTheCatRack next => see
seeTheCatRack poaition: 2
seeTheCatRack next => rack

seeTheCatRack poaition: 1
seeTheCatRack nextPut: that => hat
seeTheCatRack contenta => (see the hat rack)
seeTheCatRack next => rack

seeTheCatRack poaition: 4
seeTheCatRack nextPut: #now => now
seeTheCatRack contenta => (see the hat rack now)
seeTheCatRack aize => 5

Chapter 8 The Collection Classes 335



Accessing and Modifying Streams
Although modification operations have been included with the accessing operations, it
should be clear that instances of ReadStream cannot be modified.

extraction operations

336

•

•

•

•

•

•

•

•

•

•

•

•

aStream next
Returns the next object in the stream and positions the stream to the right
of the object; i.e., reads the next object. It is an error to request an object if
none exists.

aStream next: aCount
Returns the specified number of successive elements in the stream as a
species-correct collection and positions the stream to the right of the
elements; Le., reads aCount elements. It is an error to request more
elements than actually exist.

aStream nextAveileble: anlnteger
Returns as many remaining elements as possible (up to the maximum
specified by anlnteger) in a species-correct collection.

aStream nextMetchFor: anObject
Reads and discards the next object in the stream. Returns whether or not
the object was equal to anObject.

aStream through: anObject
Returns a species-correct collection containing all remaining elements up to
and including the first element equal to anObject. The stream is left
positioned after the equal element. If no such element is found, returns the
remaining elements and the stream is positioned at the end.

aStream upTo: anObject
Similar to above but excludes (yet erroneously reads past) the first element
equal to anObject.

aStream upToEnd
Returns all remaining elements in a species-correct collection.

aStream throughAIJ: aCollection
Returns a species-correct collection containing all remaining elements up to
and including the first subcollection equal to aColiection. The stream is left
positioned after the equal subcollection. If no such subcollection is found,
returns the remaining elements and the stream is positioned at the end.

aStream upToAIJ: aCollection
Similar to above but excludes (and does not read past) the start of the first
subcollection equal to aCollection.

aStream peek
Returns the next object without reading it; Le., without changing the stream
position. If the stream is at the end, returns nil.

aStream peekFor: anObject
Either reads and returns the next element if it is equal to anObject; or,
returns false without affecting the stream.

aStream contents
Returns a copy of the entire contents of the stream independent of the
number of objects read or written.

Inside Smalltalk



I I~

modification operations

•

•

•

aWriteStream nextPut: anObject
Inserts anObject at the current position in the stream and positions the
stream to the right of the inserted object; Le., writes anObject into the
stream. Returns anObject.

aWriteStream next: aCount put: anObject
Writes anObject into the stream as many times as specified by aCount.
Returns anObject.

aWriteStream nextPutAlI: aCollection
Writes the successive elements of aCollection into the stream. Returns
aCollection.

repositioning operations

•

•

•

•

aStream .kip: anInteger
Repositions the stream by either going right, not moving, or going left the
specified amount depending on whether anlnteger is positive, zero, or
negative respectively; i.e., positive indicates reading, negative unreading.
Returns the receiver.

aStream .kipUpTo: anObject
Repositions the stream to the left of the next element equal to anObject. If
none is found, repositions at the end of the stream and returns nil;
otherwise, returns self.

aStream .kipThrough: anObject
Repositions the stream to the right of the next element equal to anObject. If
none is found, repositions at the end of the stream and returns nil;
otherwise, returns self.

aStream .kipToAII: aCollection
Repositions the stream to the left of the subcollection equal to aColiection.
If none is found, repositions at the end of the stream and returns nil;
otherwise, returns self.

sequencing operations

• aStream do: aBlock
Evaluates aBlock for each of the remeining elements of the stream.

In general, the operations are quite flexible.The major operations are next, peek,
nextPut:, nextPutAll, and contents. Operations such as nextMatchFor:, through:,
upTo:, peekFor:, next:, skip:, and skipTo: are useful for simple search and parsing
applications. Methods throughAll:, upToAll: and skipToAll: permit searching for entire
subcollections rather than individual objects. However, there is one discrepancy:
"aStream upTo: $7" and "aStream upToAll: '7'" both return the same string but they have
different side-effects. The former reads past the "7" but the latter doesn't. Also notice that
there is only one sequencing operation; i.e., do:. Moreover, it does not sequence through
all elements in the stream. Instead, it only sequences through the remaining elements.

A large example that exercises many of the above operations can be found in the
chapter on magnitudes. In particular, refer to method readFrom: in class AbsoluteTime.
Other less comprehensive examples follow:

Chapter 8 The Collection Classes 337



Examples
sentenceFirstPart ~ ReadWriteStream on: lIthe whale began to blow). "At beginning"
sentenceSecondPart ~ ReadWriteStream with: #(over). "At end"
sentenceFirstPart nextPut: #the; nextPut: #dust; nextPut: #started.
sentenceSecondPart nextPut: #the; nextPut: #Iand.
sentenceFirstPart contenta ~ (the dust started to blow)
sentenceSecondPart contenta ~ (over the land).

humptyDumpty ~ ReadStream on: #(Humpty Dumpty sat on the wall) "At beginning"
humptyDumpty next ~ Humpty
humptyDumpty next: 3 ~ (Dumpty sat on)
humptyDumpty nextMatchFor: #Wall ~ falae "The next object was #the; moved right"
humptyDumpty nextMatchFor: #Wall ~ true "The next object was #Wall; moved right"
humptyDumpty atEnd ~ true

aStream ~ ReadStream on: 'Yodelling: little old lady who?' "At beginning"
aStream through: $: ~ 'Yodeling:' "Now, the next character is a space"
aStream upTo: (Character apace) ~ ""We were already there; moved right, though"
aStream upTo: (Character apace) ~ 'little' "To next space; moved right past it"
aStream upTo: $! ~ 'old lady who?' "Returns the rest since no 'I'M

theBrackets ~ ReadStream on: 'Let us pick out <the bracketed stuff>, OK?'.
theBrackets akipThrough: $< ~ aStream "Yes, '<' exists; now past it"
theBrackets upTo: $> ~ 'the bracketed stuff' "also moved right past it"
theBrackets peek ~ $,

theBrackets ~ ReadStream on: 'Let us pick out <the bracketed stuff>. OK?'.
"Try it again but this time assume the brackets might not be there."
«theBrackets akipUpTo: $<) notNil and: [(theBrackets akipUpTo: $» notNil ))

ifTrue: [
theBrackets reset.
theBrackets akipUpTo: $<.
result ~ theBrackets akipUpTo: $>1.

help ~ ReadWriteStream on: 'help'.
help peekFor: $h ~ $h
help peekFor: $a ~ $e
help peekFor: $1 ~ $1
help peekFor: $x ~ falae
help nextPutAlI: '10 there. hey' ~ '10 there, hey'
help contents ~ 'hello there. hey' "The first character overwrote the p'
help next: 5 put: $! ~ $!
help contents ~ 'hello there. hey!!!!!'
help skip: -8; nextPutAlI: 'you'; contents ~ 'hello there, you!!!!!'

aStream ~ ReadStream on: 'I live at 531 Yellow Road Street."
aStream throughAII: 'live at '~ 'I live at "We wish to pick up the address"
address ~ aStream upToAII: '.' ~ '531 Yellow Road Street' "Could have used upTo:"

remainder~ WriteStream on: (String new).
help do: [:aCharacter I remainder nextPut: aCharacterl.
remainder contenta ~ 'Ill!!' "Notice that do: did not reset the stream"

remainder~ WriteStream on: (String new).
help do: [:aCharacter I remainder nextPut: aCharacterl.
remainder contents ~ " "There was nothing left to read"

338 Inside Smalltalk



I I I 'In

Character Streams

Although the following operations apply to arbitrary write streams, they are generally most
useful for streams on strings (character collections). It is noteworthy that all of the following
operations return the stream (the receiver).

special print and store operations

•

•

aWriteStream print: anObject
Equivalent to 'anObject printOn: aWriteStream' but returns the stream.

aWriteStream ator.: anObject
Equivalent to 'anObject ator.On: aWriteStream' but returns the stream.

special repositioning operations

• aStream akipSeperetora
Reads and discards any separators that are next in the stream. Separators
include space, cr, tab, line feed, and form feed. Returns the stream.

special character writing

•

•

•

•

•

aWriteStream cr
Writes a return character into the stream and returns the stream.

aWriteStream crteb
Writes both a return character and a tab character into the stream and
return's the stream.

aWriteStream crteb: aCount
Writes a return character, followed by aCount tab characters, into the
stream and returns the stream.

aWriteStream apec.
Writes a space character into the stream and returns the stream.

aWriteStream teb
Writes a tab character into the stream and returns the stream.

Operations print: and store: are useful because they permit more cascading (see
below) but they are not often used by novices. The skipSeparators operation is used in read
methods that perform some degree of parsing; e.g., the date and time readFrom: operations.
The remaining operations are used for special formatting requirements. Tabs, in particular,
are used extensively in browsers; e.g., to layout comments in a tabular manner. However,
they are little used internally. Print strings, for example, genrally do not use tabs or carriage
returns at all.

aStream nextPutAlI: 'The answer is '. anObject printOn: aStream.

versus

aStream nextPutAlI: 'The answer is '; print: anObject.

Although it is hardly worth mentioning, the fact that each operation returns the
receiver enables some cascaded expressions to be avoided. For example, the following state
ments are equivalent:

aStream crtab; print: anObject.
aStream crt.b print: anObject.

Chapter 8 The Collection Classes 339



Text Streams

Text streams are write streams on strings with additional emphasis codes provided during the
process of writing characters into the stream. The actual codes include (0) basal, (I) bold,
(2) italic, (3) boldItalic, (4) underlined, (8) overStruck, (16) subscripted, (32) super
scripted, (20) subscriptedUnderlined, and (36) superscriptedUnderlined. When the
contents of a text stream is requested, text as opposed to a string is returned.

special emphasis operations

•

•

aTextStream .mph••i.
Returns the current emphasis code (as an integer)

aTextStream emph.sis: anlnteger

Sets the current emphasis code so that all subsequent characters written

(until the next change of emphasis) will be provided with this emphasis

code.

Examples
aStream +- TextStream on:" "Any string would do"
aStream emph.sis: 0 "basal"; nextPutAlI: 'The author"s name is '.
aStream emph.sis: 1 "bold"; nextPutAlI: 'Frank Fiala'.
aStream emph.sis: 0 "basal"; nextPutAlI:', OK7'.

aStream contents => Text that prints like 'The author"s name is Fr.nk Fi.I., OK7'

8.3.5 File Names

Filename is an an interface class for interpreting strings as file names. Files can either
contain byte information - typically characters, or other files in which case they are called
directories. A string is typically a path name; i.e., a sequence of directories each
containing the next followed by a specific character file in the last directory. Depending on
the operating system supporting Smalltalk-80, directories may be omitted to default them to
the currently active directory. Whether or not a string is a legal file name is system specific.
Some examples are 'directoryl'directory2\sample.st', or 'Hard Disk:ParcPlace:sample.st', or
just simply 'sample.st'.

Instances of Filename provide operations (among many others) that will construct an
appropriate external stream for reading or writing a file.

fife name creation

•
•

aString ••Fileneme
Filename n.med: aString

Returns a file name for the specified string.

fife name interrogation

• aFilename = anotherFileName

Compares the corresponding strings for equality.

conversion

340

• aFilename .sString
Returns the corresponding string.

Inside Smalltalk



I I I ilN

file querying and setting

•
•
•
•
•
•
•
•

aFilename exi.ts
aFilename fileSize
aFilename iaReedeble
aFilename i.Writable
aFilename iaDirectory
aFilename mekeWritsble
aFilename mekeUnwritable
aFilename mekeDirectory

Test or set the attributes of the corresponding file.

directory query and manipulation

•

•

•

aFilename directory
Returns the directory portion of the path name for the file as another file

name.
aFilename directoryContents

Returns an array of strings each the name of a file in the directory. The file

name must already exist and be a directory.

aFilename fil..Metching: aPatternString

Searches the file (which must be a directory) for files with names matching

the pattern string - recall "#" denotes any character and "*" denotes any

sequence of characters. Returns an ordered collection of strings (not
instances of Filename).

external stream creation

•
•
•
•
•
•
•

aFilename raedStraem "creation not allowed"
aFilename reedAppendStraem "creation allowed"

aFilename raedWriteStraem "creation allowed"

aFilename writetr..m "truncate or create"

aFilename newRudAppendStraem "truncate or create"

aFilename newRudWriteStraem "truncate or create"
aFilename eppendStr..m "creation allowed"

Creates and returns corresponding external streams. An error is reported if
an illegal activity is attempted; e.g., attempting to get a write stream on a
read-only file. The append variety positions the stream at the end of the file
if it exists; otherwise, an empty file is created (and positions the stream at
the end too).

utilities

•
•
•
•

aFilename edit
aFilename fileln
aFilename delete
aFilename copyTo: anotherFilename

Chapter 8 The Collection Classes 341



• aFilename moveTo: anotherFilename

• aFilename renameTo: anotherFilename

• aFilename contentsOfEntireFile
Operation edit creates and schedules an editing window on the file, fileln
causes the contents of the file to be compiled, delete permanently removes

the file, copyTo: makes a copy. moveTo: makes a copy and then deletes the

original, and contentsOfEntireFile is equivalent to asking for the contents of

an associated read stream.

Examples
(Filename named: 'MyNewGame.Smalitalk') fileln
(Filename named: 'Job.Application') edit

aFilename f- Filename named: 'NormaIFile'.
aFilename isDirectory

ifFalse: I
aStream f- aFilename readWriteStream.
data f- aStream contents.
aStream close]

SA THE ORDERED CLASSES (NON-STREAMS AND NON
KEYED PROTOCOU

The ordered classes are characterized by element sequences that are ordered in some user
controllable manner. Consequently it makes sense to refer to the ith or nth element. Arrays,
for example, provide that capability and so do random-access streams. The more general
representative is an ordered collection that permits arbitrary objects as elements and
flexible operations for changing and manipulating the sequence. Typical operations include

•
•
•
•
•
•
•
•

anOrderedColiection first

anOrderedColiection last

anOrderedCollection do: IanElement I someCode]

anOrderedCollection add: anElement

anOrderedCollection addFirst: anElement

anOrderedColiection addLest: anElement

anOrderedCollection removeFirst

anOrderedCollection removeLast

(accessing an element)

(accessing all elements)

(adding an element)

(removing an element)

The ordered classes include OrderedCollection, SortedCollection, and Linked
List along with the other integer-keyed collections like Array and String and the stream
classes like ReadStream and WriteStream. We have already considered the detailed
integer-keyed protocol in Sect. 8.2 and the detailed stream protocol in Sect. 8.3. In this
section, we only consider the detailed protocol for the first three classes.

OrderedCollection, the most general class, is capable of containing arbitrary objects
and has operations for adding and removing elements anywhere in the sequence. It is a
generalization of Array that permits automatic (transparent) growing and shrinking when
additions and removals are performed. SortedCollection is a specialization that maintains a

342 Inside Smalltalk



i I '[I~

sorted order for the elements. In general, being ordered is not as restrictive as sorted;
e.g., the consecutive elements in array #(1 523 I) are ordered but not sorted. LinkedList
is a special kind of ordered collection primarily designed for use in process management by
the system. Its elements must be instances of class Link.

8.4.1 Individual Charact8rizations

The OrderedCollection, SortedCollection, and LinkedList classes are distinguishable
along three dimensions (see Fig. 8.7). With respect to generality of the elements, ordered
and sorted collections are the most general permitting arbitrary objects. Linked lists
permit only elements of type Link. With respect to restrictions on adding and removing
elements, ordered and sorted collections have the least restrictions permitting elements
to be added or removed anywhere in the sequence. Linked lists permit elements to be added
and removed at the ends with one operation although multi-operation splicing is also
possible. Finally, the collections can be categorized by the manner in which the elements are
ordered. The ordering for ordered collections and linked lists is dictated externally by
users; e.g., by suitably choosing the insertion and modification operations. The ordering for
sorted collections is dictated internally by the sorted collection itself; i.e., the sorted order
is independent of the order in which users insert the elements.A more detailed description of
the individual classes follows.

Ordered Classes
(subset only)

add and remove anywhere

Arbitrary Elements

Ordering Externally Dictated

add and remove at ends

Link Elements

Ordering Externally Dictated

Ordering Dictated By
Internal Sort Criterion

SortedCoUection

Figure 8.7 The ordered classes - a logical view (subset only).

8A.2 Constructing New Ordered, Sorted, and
UnkedUst Collections

We consider increasingly sophisticated techniques for constructing ordered collections, sorted
collections, and linked lists: those that construct empty collections (where allowed), those
that construct small collections (one message-send is sufficient), and, finally, those that

Chapter 8 The Collection Classes 343



construct large collections (multiple message-sends are required). The conversion operations
discussed in Sect. 8.1.2 are omitted. A summary follows:

OrderedCollections and SortedCollections

•
•
•
•
•
•
•
•

anOrderedOrSortedCollectionClass new

anOrderedOrSortedCollectionClass new: anlnitialSize

SortedCollection 8ortBlock: aTwoParameterBlock

anOrderedOrSortedCollectionClass with: object,

anOrderedOrSortedCollectionClass with: object, with: object2

anOrderedOrSortedCollectionClass with: object, with: object2 with: object3

anOrderedOrSortedCollectionClass with: object, with: "'2 with: '''3 with: '''4

(anyCodeForCreatingAnOrderedOrSortedCollection)

add: aValue,;

add: aValue2;

add: aValuen;

yourseH

Linked Lists

(an empty linked list)

(a one element linked list)

•
•
•

LinkedList new

LinkedList nextLink: aLink

(LinkedList new)

add: (aSubclassOfLink new your/nitialization; yourself);

add: (aSubclassOfLink new your/nitialization; yourself);

add: (aSubclassOfLink new your/nitialization; yourself);

add: (aSubclassOfLink new your/nitialization; nextUnk: nil; yourself);

yourseH

Ordered collections and sorted collections have many of the same instance creation
operations as the typical keyed collections. Since they are not fixed-size, however, operation
new: does not have the typical array semantics. In particular, it does not mean "construct a
collection pre-initialized with the specified number of nil elements." Rather, the initial size
is interpreted as a hint about how large the collection is expected to get some time in the
future. The system can then obtain an instance that is sufficiently large to ultimately contain
this number of elements. If this estimate is totally wrong, it doesn't matter. The collection
reorganizes itself transparently to handle any number of elements.

Linked lists are quite different from ordered collections or from any other kind of
collection for that matter. They have their own special protocol. In particular, LinkedList
differs from the other classes by requiring instances of class Link. Moreover, class Link
must be viewed as an abstract class from the user's perspective because it only contains
storage facilities and operations for linking with other links but neither linked lists nor links
have any facilities for storing data. Users must explicitly construct a new class of links as
follows, for example, in order to be able to store information with the linked list. Currently,
there are very few subclasses - only one called Process.

344 Inside Smalltalk



Class ValueUnk

class name
superclass
instance variable names

instance methods

access

value
idataValue

ValueLink
Link
dataValue

modification

velue: aNewValue
dataValue ~ aNewValue

Examples
0rdenNIC0I1ections end Sor1IedCoIIections

anEmptyOrderedCollection ~ OrderedCollection new.
anEmptySortedCollectionWithTheDefaultSortBlock ~ SortedCollection new.
a nEm ptySortedCollectionWithTheDefau ItSortBlockExplicitlyGiven ~

SortedCollection .ortBlock: (:x:y I x <= yl.

anEmptyOrderedCollectionWithAnlnitialSize ~ OrderedCollection new: 100.
anEmptySortedCollectionWithTheDefaultSortBlockAndAnlnitialSize ~

SortedCollection new: 100.

aCollectionWithOneElement ~ OrderedCollection with: #Gold.
aCollectionWithTwoElements ~ OrderedCollection with: #Meat with: #Potatoes.
aCollectionWithThreeElements~ OrderedCollection with: 1 with: 2 with: 10.
aCollectionWithFourElements~ OrderedCollection with: 1 with: 1.0 with: (3/2) with: $1.
aCollectionWithFiveElements ~

OrderedCollection new
edd:#Once;
edd: 'upon';
edd:$a;
edd: 'midnight' _Text;
edd: 'clear' esArrey;
you....lf.

Linked Lists
anEmptyLinkedList~ Linkedlist new.
aLinkedListWithOneElement ~

LinkedList nextLink: <Valuelink new velue: #Hi; your.elf).
aLinkedListWithThreeElements ~

Linkedlist new
edd: (ValueLink new velue: #How; your.elf);
edd: (ValueLink new velue: #Are; yourselfl;
edd: <Valuelink new velue: #You; yourselfl;
you....lf.

aLinkedListWithFourElements ~
LinkedList

with: (ValueLink new velue: #1; yourselfl
with: (ValueLink new velue: #Am; yourselfl
with: (Valuelink new velue: #Fine; you....lf)
with: (Valuelink new velue: #Thanks; yourself).

Chapter 8 The Collection Classes 345



8.4.3 The Ordered Collection Protocol

OrderedCollection provides protocol for inserting, removing, and accessing elements of an
ordered sequence. Elements are arbitrary objects. The ordered collections can be viewed in two
ways: as arrays generalized to grow and shrink transparently or as a generalization of stacks,
queues, and deques. Correspondingly, there are two entirely different protocols for
manipulating ordered collections: a sequence-like protocol that is representation independent
and an array-like protocol that acknowledges the underlying keyed implementation.

The Sequenc&-like Protocol
As sequences, the primary capability provided by ordered collections is controlled growing
and shrinking. Related operations include

querying and search operations

•

•

•

• anOrderedCollection isEmpty
anOrderedCollection size

Queries about the number of elements actually contained.

anOrderedCollection first
anOrderedCollection lest

Returns the first (correspondingly last) element in the sequence. If the

sequence is empty, an errror is reported.

anOrderedCollection includes: anElement

Returns true if it contains an element equel to anElement; otherwise false.

anOrderedCollection occurrencesOf: anElement

Returns the number of elements equel to anElement.

anOrderedCollection before: oldObject
Returns the element before oldObject; Le.• locates an element equal to
oldObject and returns the object immediately preceding it in the sequence.
If the sequence does not contain an element equal to oldObject. or if the
sequence contains no elements after oldObject, an error is reported.

anOrderedCollection efter: oldObject

Returns the element after oldObject; i.e .• locates an element equal to

oldObject and returns the object immediately following it in the sequence. If

the sequence does not contain an element equal to oldObject. or if the

sequence contains no elements after oldObject, an error is reported.

operations for adding

•

•

•

•

•

•

•

•

anOrderedCollection edd: newObject

Adds newObject to the end of the sequence. Returns newObject.
anOrderedCollection eddFirst: newObject

Adds newObject to the beginning of the sequence. Returns newObject.

anOrderedCollection eddLest: newObject

Adds newObject to the end of the sequence. Returns newObject.

anOrderedCollection edd: newObject efter: oldObject

Adds newObject after oldObject; Le.. locates an element equal to

newObject and inserts newObject immediately after it in the sequence. If

the sequence does not contain an element equal to oldObject. an error is
reported. Returns newObject.

346 Inside Smalltalk



•

•

•

•

•

I IN

anOrderedCollection add: newObject beforelndex: anlnteger
Adds newObject before the specified index which must be between 1 and
the size of the receiver + 1. If the index is exactly one more than the size of
the receiver, newObject is inserted at the end. It is an error to attempt to
insert outside those bounds. Returns the modified receiver.

anOrderedCollection add: newObject before: oldObject
Adds newObject before oldObject; Le., locates an element equal to
newObject and inserts newObject immediately before it in the sequence. If
the sequence does not contain an element equal to oldObject, an error is
reported. Returns newObject.

anOrderedCollection addAlI: aCollection
Adds each element of aCollection at the end of the sequence. Returns
aCollection.

anOrderedCollection addAliFirst: aCollection
Adds each element of aCollection at the beginning of the sequence. Returns
aCollection.

anOrderedCollection addAIiLast: aCollection
Adds each element of aCollection at the end of the sequence. Returns
aCollection.

operations for removing

•

•

•

•

•

•

•

•

anOrderedCollection removeFirst
Removes the first element of the sequence and returns it. If the sequence is
empty, an error is reported.

anOrderedCollection removeFirst: anlnteger
As above but anlnteger specifies how many elements to remove. The
removed elements are returned in an array. If the sequence contains fewer
elements than requested, an error is reported.

anOrderedCollection removeLast
Removes the last element of the sequence and returns it. If the sequence is
empty, an error is reported.

anOrderedCollection removeLast: anlnteger
As above but anInteger specifies how many elements to remove. The
removed elements are returned in an array. If the sequence contains fewer
elements than requested, an error is reported.

anOrderedCollection removeAtlndex: anlnteger
Removes the element at the specified index and returns it. If the index is
out of bounds, an error is reported.

anOrderedCollection remove: oldObject {ifAb..nt: absentBlock}
Removes oldObject; i.e., locates an element equal to oldObject and removes
it from the sequence. If the sequence does not contain an element equal to
oldObject, either absentBlock is executed (if provided) and its result
returned or an error is reported. Otherwise, it returns oldObject.

anOrderedCollection removeAII: aCollection
Removes each element of aCollection from the sequence. If any element
fails to be located, an error is reported. Otherwise, it returns aCollection.

anOrderedCollection repla_Element: oldElement withElement: newElement
Destructively replaces all elements identical to oldElement by newElement.
Returns the receiver.

Chapter 8 The Collection Classes 347



• anOrderedCollection r.mov.AIlSuchThat: aBooleanBlock
Evaluates aBooleanBlock for each element of the sequence. Removes each

element for which aBooleanBlock evaluates to true. Returns an ordered

collection of the same species containing all elements that were removed.

Generally, the operations for adding and removing elements in a content independent
way are well designed and complete. Users, however, must be careful with those operations
that search, insert, and remove based on content (as opposed to key); e.g., before:, after:,
add:before:, add:after:, and remove:ifAbsent:. The reason is that ordered collections can
contain multiple entries. It is impossible, for example, to add an element after the second
occurrence of an element with these operations alone. On the rare occasion where this is
desirable, operations removeAtlndex: and add:beforelndex: must be used.

Users should not be attempting to explicitly modify collections while in the process of
sequencing through their elements - the results can be unpredictable because the bounds of
the loop are generally computed at the start of the loop - not every time through.

Operations addAII:, addAIIFirst:, and addAIILast: are more general than might be
expected. In particular, addAll: and addAIILast: can accommodate any class of parameters
that has a corresponding do: operation. Similarly, addAIIFirst: can handle any parameter
with a reverseDo: operation. Thus, it is perfectly reasonable to execute

anOrderedCollection .ddAII: aSet

On the other hand, addAll: above could not be substituted by addFirst: since sets do not
have a reverseDo: operation - a quirk of the implementation.

Examples
anEmptyCollection +- OrderedCollection n.w: 100.
redAndBlue +- #(Red Blue) a.OrderedCollection.

anEmptyCollection .ize ~ 0
redAndBlue .iz. ~ 2
anEmptyCollection i.Empty ~ true
redAndBlue i.Empty ~ f.l..

anEmptyCollection first ~ (error)
redAndBlue fir.t ~ Red
redAndBlue l••t ~ Blue
redAndBlue includes: #Red ~ true
redAndBlue includes: #Yellow ~ f....
redAndBlue occurrence.Of: #Yellow ~ 0

redAndBlue before: #Blue = Red
redAndBlue .fter: #Red = Blue
redAndBlue .dd: #Yellow = Yellow.
redAndBlue ~ OrderedCollection (Red Blue Yellow)

aTongueTwister +- OrderedCollection new.
aTongueTwister .ddFirst: #rubber. "Now contains (rubber)"
aTongueTwister .ddLe.t: #bumpers. "Now contains (rubber bumpers)"
aTongueTwister .dd: #baby after: #rubber. "Now contains (rubber baby bumpers)"
aTongueTwister .dd: #buggy befor.: #bumpers.
aTongueTwister ~ OrderedCollection (rubber baby buggy bumpers)

348 Inside Smalltalk



1 'Ig

Examples (continued)
aTongueTwister add: #phew beforelnd.x: 5
aTongueTwister ~ OrderedCollection (rubber baby buggy bumpers phew)
aTongueTwister add: #two befor.lnd.x: 1
aTongueTwister ~ OrderedCollection (two rubber baby buggy bumpers phew)

counts +- OrderedCollection n.w.
counts addAII: Set new. "Nothing actually added"
counts addAlIFirat: lIonel "Now contains (one)"
counts addAIlLe.t: #(two two) 'Now contains (one two two)"
counts addAlI: '333' "Now contains (one two two $3 $3 $3)"
counts r.rnov.Firat: 3 ~ (one two two) "Now contains ($3 $3 $3)"
counts r.mov.....t: 3 ~ ($3 $3 $3) "Now contains 0"

aSong +- #(Now go away Johnny fly very quickly away) a.Ord.redCollection.
aSong r.rnov.Fint "Now contains (go away Johnny fly very quickly away)"
aSong r.mov.....t "Now contains (go away Johnny fly very quickly)"
aSong r.mov.: #away ifA"'nt: () "Now contains (go Johnny fly very quickly)"
aSong r.moveAlI: #(quickly very) "Now contains (go Johnny fly)"
aSong replaceEI.ment: #fly withElement: #go "Now contains (go Johnny go)"
aSong rernoveAtlnd.x: 2 "Now contains (go go)"

anotherSong +- #($7 Rock $a a bye $# $$ baby $*) a.Ord.redColI.ction.
whatDidlGet +- anotherSong r.rnoveAIISuchThat: I:element I

element i.KindOf: Character).
whatDidlGet ~ OrderedCollection ($7 $a $# $$ $*)
anotherSong +- OrderedCollection (Rock a bye baby)

story +- OrderedCollection with: #once with: #upon.
story, #(a time) ~ OrderedCollection (Once upon a time)

Operations for copying and concatenation include the following:

copying and concatenation operations

•

•

•

•

•

anOrderedCollection copyEmpty
Returns a copy of the sequence without elements.

anOrderedCollection copyWith: newElement

Returns a copy differing from the original by containing newElement at the

end.
anOrderedCollection copyWithout: oldElement

Returns a copy that does not contain any elements equal to oldElement.

anOrderedColiection copyR.plac.AII: oldCollection with: newCollection
Returns a copy of the receiver in which all occurrences of oldColiection have

been replaced by newColiection. Does not scan the replacement. The two
collection parameters must be either keyed collections with integers keys

(dictionaries are allowed if the keys are all consecutive integers starting
at 1) or ordered collections.

anOrderedColiection, aColiection

Returns a new collection that is the concatenation of the receiver and
aColiection. Parameter aColiection must be a collection with integer keys
(even dictionaries are allowed if the keys are all consecutive integers
starting at 1).

Chapter 8 The Collection Classes 349



Examples
canYouBelievelt ~ #(can you believe itl ••Ord....dColI.ction.
canYouBelievelt copyEmpty ~ OrderedCollection ()
canYouBelievelt copyWith: #now ~ OrderedColiection (can you believe it now)
canYouBelievelt copyWithout: lit ~ OrderedColiection (can you believe)
canYouBelievelt copyR.pl.c.AII: lit with: lIthe man)

~ OrderedCollection (can you believe the man)
story~ #(Once upon) • .orderedCollection
story, #(a time) ~ OrderedCollection (Once upon a time)

The Array-like and Strin~likeProtocol

Ordered collections can also be manipulated as arrays. Consequently, the traditional array op
erations at: and at:put: are available along with all of the string-like operations for search
ing, replacing, and destructively modifying the ordered collection. See Sect. 8.2.4 for details.

Ordered collections are implemented using the notion of a 'floating' array. Adding
elements in front of a sequence can cause the entire sequence of elements to be shifted right
to accommodate the insertion. In anticipation of further insertions, a reasonably large gap of
unused space is left at the beginning (and the end). These end-gaps are totally invisible to
users of ordered collections - even inspectors hide them (unless a basic inspector is used).

Ordered collections always maintain the illusion that the first and last elements are at
subscript positions 1 and s where s is the size of the collection. If a new element is added to
the left, for example, the subscripts are shifted over so that the new element is at subscript
position 1. This is achieved efficiently, not by moving the elements, but by keeping track of
the first and last element positions. The fact that implementation details for growing,
shrinking, and shifting are totally hidden is what makes ordered collections so useful.

8.4.4 The Sorted Collection Protocol

SortedCollection is a subclass of ordered collection in which the elements are sorted. The
sorting criterion is provided by means of a sort block, a two-parameter boolean-returning
block for comparing successive pairs of elements in a partially sorted sequence. The sort
block can be specified explicitly at creation time or the following default sort block used. If
the sort block is changed, the entire collection is re-sorted according to the new sort block.

defaultBlock ~ [:x :y I x <= yl

This default block indirectly requests that the elements be sorted in nondecreasing order. Note
also that this default sort block is not applicable to arbitrary elements. For example, you
cannot create a sorted collection of classes with the default sort block because classes cannot
be compared using <=. Of course, a specially devised sort block can be created for this task.

Sect. 8.4.2 discusses the creation of sorted collections in detail; examples are provided
below. Once a collection is created, the following methods (in addition to all of those already
available for ordered collections) are available for use:

350

•

•

8OI1BIock

Returns the sort block used for sorting the elements of the sorted collection.
aortBlock: aBlock

Changes the sort block used for sorting the elements of the sorted collection
and re-sorts the collection. Returns the new sort block.

Inside Smalltalk



I HN'

Examples
theDigits +- #(3 7 9 0 2 1 6 4 8 5).
theDigits e.SortedColiection => SortedCollection (0 1 23 4567 89)
theDigits e.sortedColiection: (:x :y I x <= vI => SortedCollection (0 1 23456789)
theDigits e.sortedColiection: (:x :v I x >= vI => SortedCollection (987 65 432 1 0)

aWordList +- SortedCollection sortBlock: (:x :v I
(x .ize < V size) I (x size = V size end: x <= V)).

aWordList eddAII: #(its the one that is small itself).
aWordList => SortedCollection (is its the one that small itself)
aWordList sortBlock: (:x:V I x <= vI
aWordList => SortedCollection (is its itself one small that the)

8.4.5 lbe Unked Ust Protocol

LinkedList is a special sequence in which the elements are subclasses of Link. Currently,
linked lists are used only for process management In particular, the only existing specializa
tion of Link is class Process. Since LinkedList cannot be used without a specialization of
Link, we will assume that class ValueLink has been added (see the section on constructing
new ordered, sorted, and LinkedList collections for a definition of class ValueLink). All
linked lists are terminated by nil. The linked list protocol is a subset of the ordered
collection protocol.

querying and search operations

•
•
•

•

•

•

aLinkedList .ize
aLinkedList isEmpty

aLinkedList first
Returns the first link in the sequence. If the sequence is empty, an error is

reported.

aLinkedList lest
Returns the last link in the sequence. If the sequence is empty, an error is

reported.

aLinkedList includes: aLink

Returns true if it contains a link equel to aLink; otherwise false.

aLinkedList occurrenceaOf: aLink

Returns the number of links equel to aLink.

operations for adding

•

•

•

•

aLinkedList edd: aLink

Adds aLink to the end of the sequence. Returns aLink.

aLinkedList eddFirst: aLink

Adds aLink to the beginning of the sequence. Returns aLink.
aLinkedList eddLest: aLink

Adds aLink to the end of the sequence. Returns aLink.

aLinkedList eddAII: aCollectionOfLinks

Adds the successive links in aCollectionOfLinks to the end of the sequence.

Returns aCollectionOfLinks.

Chapter 8 The Collection Classes 351



operations for removing

•

•

•

•

aLinkedList remov.Firat
Removes the first link in the sequence and returns it. If the sequence is

empty, an error is reported.

aLinkedList r.mov.Le.t
Removes the last link in the sequence and returns it. If the sequence is

empty. an error is reported.

aLinkedList remov.: aLink {ifAb••nt: absentBlock}

Removes aLink; i.e., locates an element id.ntical to aLink and removes it

from the sequence. If the sequence does not contain an element identical to

alink, absentBlock (if provided) is executed and its result returned or an

error is reported. Otherwise, it returns aLink.

aLinkedList r.mov.AII: aCollectionOfLinks

Removes the successive links in aCollectionOfLinks from the sequence. If it

fails to locate any link (using id.nticall, an error is reported. Otherwise, it

returns aCollectionOfLinks.

In addition to the above, the usual sequencing operations like do:, collect:, ... are
available (see the section on sequencing over collections for a more complete discussion).
However, the above protocol is not complete without the Link protocol.

Link manipulation operations

•

•

•

aLink nextLink
Returns the link that comes after the current link.

aLink n.xtLink: anotherLink

Modifies aLink so that anotherLink comes after aLink. Returns anotherLink.

aLinkClass n.xtLink: anotherLink

Constructs a new uninitialized link and modifies it so that anotherLink

comes after it. Returns anotherLink.

Examples

anEmptyLinkedList f- LinkedList n.w.
aLinkedListWithOneElement f-

LinkedList n.xtLink: NalueLink new valu.: #Hi; your.elf).

aLinkedListWithThreeElements f-

(LinkedList new)
add: IValueLink new value: #How; your••lf);
add: (ValueLink n.w valu.: #Are; youraelf);
add: IValueLink new value: #You; youraelf);
you....If.

aLinkedListWithFourElements f-

LinkedList
with: (ValueLink new value: #1; youraelf)
with: (ValueLink n.w valu.: #Am; youraelf)
with: IValueLink n.w valu.: #Fine; your••lf)
with: IValueLink new valu.: #Thanks; yours.lf).

352 Inside Smalltalk



! I I HN'

"Constructing a value list with integers 1 2 3 4 from right to left."
aLink +- ValueLink new value: 4; your.elf. aLink nextLink: nil. "Note: nil is default."
aLink +- ValueLink new value: 3; nextLink: aLink; youraelf.
aLink +- ValueLink new value: 2; nextLink: aLink; youraelf.
aLink +- ValueLink new value: 1; nextLink: alink; youraelf.
aLinkedList +- LinkedList new edd: aLink; your..lf.

8.5 THE UNORDERED COLLEC11ONS

By far the simplest protocol is associated with collections of unordered elements: sets,
identity sets, and bags. The unordered collections are characterized by the specialized
behavior of their element insertion operation add: (although other operations are provided)
and by the fact that no specific order is maintained for the elements. Consequently, the
standard sequencing operations are the normal operations for accessing the elements. Typical
operations include the following:

•
•
•
•

anUnorderedcCollection add: anObject

anUnorderedcCollection includ..: anObject

anUnorderedcColiection remove: anObject

anUnorderedcColiection do: l:anElement I someCodel

(adding an element)

(testing for an element>

(removing an element)

(element accessing)

The unordered collections consist of bags, sets, and identity sets. Bags permit
arbitrary elements to be inserted independent of the previous contents of the bag. However,
equal elements are not maintained individually. Rather, they are counted and only one
representative element (the first) is kept. Sets and identity sets, on the other hand, do not
permit duplicates to be added. The duplicates are simply ignored; i.e., it is not considered to
be an error to attempt to add a duplicate. For sets, a candidate for insertion is considered to
be a duplicate if the set already contains an element equal to it. For identity sets, the
candidate is a duplicate if the identity set already contains an element identical to it.

The unordered collections do not provide the protocol expected by most users. In
general, users might expect more traditional operations like union:, intersection:, and
subtraction: (set subtraction)4. As indicated above, what distinguishes these classes from
the other collection classes is the insertion behavior and the fact that the elements are
maintained in some arbitrary order.

8.5.1 Individual Characterizations

The unordered collections are distinguishable by three characteristics: (1) by the
matching operation used to compare elements (either operation equal or identical), (2) by
their willingness to admit duplicates (new elements that match existing elements), and (3)
by their treatment of the duplicates so admitted (see Fig. 8.8).

Bags should more properly be called equality bags since they use equal as the
matching operation, admit all duplicates, and maintain only one member of the duplicates
(the first inserted) with a count. The corresponding class of bags that uses identity as the

4Actually, version 2.5 now includes set subtraction as the operation "-"0

Chapter 8 The Collection Classes 353



Automatic Expansion
Matches on identity

No Duplicates

matching operation, identity bags, is not provided in Smalltalk. Sets and identity sets
respectively use equal and identical as the matching operation and do not admit duplicates.
Thus, sets should more properly be called equality sets.

None of these classes are interchangeable - reflecting the fact that an (equality) set is
not an identity set, for example, or vice versa. Of course, an (equality) set is like an identity
set - it differs only in the matching operation used.

Automatic Expansion
Matches on identity

Duplicates OK
Duplicates Counted

Automatic Expansion
Matches on equality

Duplicates OK
Duplicates Counted

Automatic Expansion
Matches on equality

No Duplicates

denotes similarity (like) relationship

Figure 8.8 The unordered collections - a logical view.

The unordered collections do have a few restrictions associated with their use. In
particular, object nil is not allowed as an element of an unordered collection. Attempts to
insert or remove nil do not result in an error report - insertions simply result in the value
disappearing while retrievals always fail to find it.

Although bags permit equality duplicates, the fact that only the first instance is kept is
quite apparent. For example, a bag newly constructed by adding 2 and 2.0 (in that order)
prints as Bag (2 2). Note that 2.0 is equal to 2. Conversely, if the elements are added in the
order 2.0 and 2 instead, the bag would print as Bag (2.0 2.0).

Additionally, unordered collections are implemented using a hashing technique. A
consequence of the implementation is an anomaly that is sometimes disturbing. In
particular, equal elements with different hashes are sometimes not distinguished. This is not
really a fault of the ordered collections implementation. Rather it is a problem with the
design of the hash method for certain classes of values. For example, '2 hash => 2' while
'2.0 hash => 0' - the hash method is supposed to be designed in such a way that equality
implies equal hashes (but not necessarily vice versa). The consequence is that adding 2 and
2.0 to a set actually adds both (not an expected result).

354 Inside Smalltalk



I !tN

8.5.2 Constructing New Unordered Collections

There is only one way to construct empty unordered collections; i.e., via new (new:
initialSize also works for sets but not for bags). Non-empty unordered collections can be
constructed in two ways: using the standard add: protocol and using the with: protocol.

Bag, Set, or IdentitySet

•
•
•
•
•
•
•

anUnorderedCollectionClass new

aSetClass new: anlnitialSize

anUnorderedCollectionClass new add: anObject; add: anObject; ...; your..lf

anUnorderedCollectionClass with: object1

anUnorderedCollectionClass with: object, with: object2

anUnorderedCollectionClass with: object1 with: object2 with: object3

anUnorderedCollectionClass with: object, with: object2 with: object3 with: object4

Examples

Bag new ~ Bag ()
Bag with: 1 with: 2 with: 2~ Bag (1 22)
Bag new add: ,; add: 2; add: 2.0; add: 2; add: 1.0; your.elf ~ Bag (1 1 222)

IdentitySet new ~ IdentitySet ()
IdentitySet new: 10~ IdentitySet ()

me~ 'Me'. meCopy~ me copy.
IdentitySet with: me with: 'You' with: me ~ IdentitySet ('Me' 'You')
IdentitySet with: me with: 'You' with: meCopy ~ IdentitySet ('Me' 'Me' 'You')
IdentitySet new add: 1; add: 2; add: 2.0; add: 2; add: 1.0; yournlf

~ IdentitySet (1 22.0 1.0)

Set new ~ Set ()
Set new: 10~ Set ()

me~ 'Me'. meCopy~ me copy.
Set with: me with: 'You' with: me ~ Set ('Me' 'You')
Set with: me with: 'You' with: meCopy~ Set ('Me' 'You')
Set new add: 1; add: 2; add: 2.0; add: 2; add: 1.0; add: 1; yournH

~ Set (1 22.0) "2 hash ~= 2.0 hash (see discussion in previous section)"

8.5.3 The Unordered Collection Protocol

Unordered collections provide one of the simplest protocols for inserting, removing, and
accessing elements of an unordered sequence. The matching operation for bags and sets is
equal; for identity sets, it is identical.

querying operations

•
•
•

•

anUnorderedCollection i.Empty
anUnorderedCollection .ize
anUnorderedCollection include.: anElement

Returns true if it contains an element matching anElement ; otherwise false.
anUnorderedCollection occurrence.Of: anElement

Returns the number of elements matching anElement.

Chapter 8 The Collection Classes 355



insertion operations

•

•

anUnorderedCollection add: newObject

Adds newObject to the unordered collection. Returns newObject.

anUnorderedCollection addAII: aCollection

Adds each element of aCollection to the unordered collection. Returns

aCollection.

removal operations

•

•

anUnorderedCollection remove: oldObject {ifAbs.nt: absentBlock}

Removes oldObject; i.e., locates an element matching oldObject and

removes it from the unordered collection. If no matching object is found,

either absentBlock is executed (if provided) and its result returned, or an

error is reported. Otherwise, oldObject is returned.

anUnorderedCollection rernoveAII: aCollection

Removes each element of aCollection from the sequence. If any element

fails to be located. an error is reported. Otherwise, aCollection is returned.

special operations

•

•

•

aSet • anotherSet

Returns a new set containing those elements in aSet that are not in

anotherSet.

aBag sortedCounts
Returns a sorted collection of associations (count of matching elements with

associated matching elements) sorted by decreasing counts.

aBag sortedElements
Returns a sorted collection of associations (matching element with
associated count) sorted by decreasing elements.

In addition to these, the standard sequencing operations like do:, collect:, ... are
provided (see the section on sequencing operations for a more detailed discussion).

Examples
anEmptySet +- Set new. aNonEmptySet +- Set with: 'the' with: 'short' with: 'statement'.
anEmptySet isEmpty ~ true. aNonEmptySet isEmpty ~ fels•.
anEmptySet size ~ O. aNonEmptySet size ~ 3.
anEmptySet includes: 'short' ~ false. aNonEmptySet includes: 'short' ~ true.
anEmptySet occurrencesOf: 'short' ~ O. aNonEmptySet occurrencesOf: 'short' ~ 1.

aNonEmptySet +- Set with: 'the' with: 'short' with: 'short' with: 'story'.
aNonEmptyBag +- Bag with: 'the' with: 'short' with: 'short' with: 'story'.
aNonEmptySet ~ Set ('the' 'short' 'story')
aNonEmptyBag ~ Bag ('the' 'short' 'short' 'story')
aNonEmptySet size ~ 3. aNonEmptyBag size ~ 4.
aNonEmptySet includes: 'short' ~ true. aNonEmptyBag includes: 'short' ~ true.
aNonEmptySet occurrencesOf: 'short' ~ 1. aNonEmptyBag occurrencesOf: 'short' ~ 2.

Bag new
addAII: #(the boy and the man went to the railroad station);
occurrencesOf: #the ~ 3

Bag new addAII: 'mississippi'; occurrencesOf: $s ~ 4

356 Inside Smalltalk



Examples (continued)
'aeiou' ••Set remove: $u; your.elf ~ Set ($e $i $0 $a) "Order is not predictable (ever)"
'aeiou' ••Set remove: $x ifAbsent: [#What] ~what
'hippopotamus' ••Set removeAII: 'aeiou'; yourself ~ (error)"$e is not in the set"
'hippopotamus' .aSet removeAlI: 'aiou'; yourself ~ Set I$h $m $p $s $1)
'hippopotamus' ••Beg removeAII: 'aiou'; yourself ~ Set ($h $m $0 $p $p $p $s $1)

aNonEmptyBag +- Set with: 'the' with: 'short' with: 'short' with: 'story'.
aNonEmptyBag .ortedCount. ~ SortedCollection (2->'short' 1->'story' 1->'the')
aNonEmptyBag sortedElementa ~ SortedCollection ('short'->2 'story'->1 'the'->1)

#(1 23) ••Set· #(2 34) ••Set ~ Set (1)

So as not to leave the impression that set-like operations cannot be added, consider the
following extensions added to Bag and Set. Operation subtract: is a substitute for u_";
alternatively, we might have used u+" for union: and U&" for intersect:.

union: aCollection
t self copy .ddAlI: aCollection; yourself

intersect: aCollection
1selfCopy finalResult I
selfCopy +- self copy. finalResult +- self .peci.. new.
aCollectiondo: [:anElement I

(selfCopy includ..: anElement)
ifTrue: [selfCopy remove: anElement. finalResult .dd: anElementll.

tfinalResult

.ubtrect: aCollection
t self· aCollection

Example
bag1 +- Bag with: #Iittle with: #Iittle with: #old with: #Iady.
bag2 +- Bag with: #little with: #young with: #Iady.
bag1 union: bag2 ~ Bag (#Iady #Iady #little #little #little #young #old)
bag1 intersect: bag2 ~ Bag (#Iady #little)
bag1 .ubtr.ct: bag2 ~ Bag (#little #old)

8.6 CREAllNG NEW COLLEcnON CLASSES

Creating new collection classes can be difficult if the new class is designed to inherit from an
existing collection class. Part of the difficulty has to do with deciding which methods should
be inherited and which should be overridden. A specific method might not apply in the new
context or it might have to be modified slightly. This generally requires careful study of the
superclass to be resolved. Another problem has to do with the difficulty of ensuring that the
specialization will work properly. This is much more difficult, as we will see. To underscore
the difficulty, we will consider the design of two new collection classes; UselessStack (a
pedagogic exercise only) and List. The former will be designed so as to inherit from an
existing collection class. The latter, on the other hand, will be totally new - inheriting
from Object and thereby avoiding some of the problems that will be encountered by the
former.

Chapter 8 The Collection Classes 357



8.6.1 Creating Specializations of Existing Collection
Classes

Creating new specializations of existing collection classes is not an easy matter because
there are many small issues that conspire to break the implementation. The more important
issue, however, has to do with the problems that arise as a consequence of creating a
subclass with additional instance variables.

Before we consider some of the details, suppose we wish to create a class called
UselessStack. We could easily create a specialization of OrderedColiection for the
purpose without introducing additional instance variables. To ensure that complications do
arise (for didactic purposes only), suppose further that the instances are designed to

1. monitor the number of pushes and pops; i.e., we introduce an instance variable
such as pushesDone. The number of pops done or the total number of operations
executed can be computed from pushesDone.

2. be colored; e.g., such stacks might be associated with region growing algorithms
that start off with different colors but which adopt a single unique color when they
merge. The color, for our purposes, can be any arbitrary user-specific information.

Creating the specialization is usually done through the browser by choosing a class
that has the desired relationship (or a similar one). The class creation method displayed by
the browser is then modified and executed by having the modification accepted through a
menu command. The only reason for mentioning this is to highlight the fact that the class
creation code can be different for different collections and to emphasize that this aspect is not
shown in the description of class UselessStack below.

The first issue is the need to initialize pushesDone at the time the stack is created. In
fact, arbitrary collections will also have such initialization requirements themselves. Hence it
is essential that we do not bypass this initialization code. With the browser, we can find
many class methods designed for initializing the class and a few isolated instance methods for
initializing instances. Sometimes (especially for class initialization), these methods are
called initialize. At other times, they are give more private names but there is no
consistency between the names.

We might have expected all creation operations like new or new: to automatically
invoke initialize. This would work well if the default initialize method for Object were to
do nothing. Adding a new class with special initialization requirements would simply require
an instance method such as the following:

initialize
super initialize.
special initialization code for this instance

This strategy was not pursued in Smalltalk. Consequently, the instance creation
operations must be rewritten to perform the initialization themselves. For our stack
example, it is not sufficient to include new. We also must provide new: independently. If we
were considering a specialization of stream, for example, we would instead have to provide
new versions of on: and with:. As implementors, we have to be careful to get all the
primitive constructors. A preliminary implementation such as the following would be easily

358 Inside Smalltalk



I 'ill'

devised. Although it seems unnecessary to parameterize initialization, we will use it later
when we can take advantage of it. We have chosen to inherit from OrderedCollection
since this class already can be used in a stack-like fashion; it should therefore be easy to
extend.

Class UselessStaek

class name
superclass
instance variable names

class methods

creation

UselessStack
OrderedCollection
pushesDone color

nMN

i super new privateSUCklnitialize: 0
new: anlnitialSize

i(super new: anlnitialSize) priveteStecklnitielize: 0

instance methods

accessing

push: anObject
pushesDone +- pushesDone + 1
t self eddLast: anObject

pap
i self removeLast

tap
iselflest

monitoring tests

~
ipushesDone

popeDone
ipushesDone - self size
~

i2 * pushesDone - self size

color manipulation

color
icolor

color: aNewColor
i color +- aNewColor

private

priveteStecklnitielize: anlnitialValue
pushesDone +- anlnitialValue

The above seems sufficient but experimentation will conftrm that it is not adequate.
For example, suppose we create a stack and associate color #red with it. After pushing and
popping for a while, inspecting the stack will show that pushesDone has an incorrect value
and that color has been reset to nil. Debugging can be used to locate the culprit, in this case

Chapter 8 The Collection Classes 3S9



the grow operation. Once the stack grows in size beyond its initial space requirements, the
addLast: operation automatically grows it. However, the grow method appears as follows:

'ICNII
I newSelf I
newSelf f- self species new: self size + self growSize.
self do: [:each I newSelf .ddL.st: eachl.
self become: newSelf

The problem is that newSelf above is a new stack. Because we specifically designed
new: for stacks to initialize pushesDone, it is reset to zero and left at that value (addLast:
does not modify pushesDone). In this new stack, color is untouched and therefore contains
the default value nil. A solution is to provide our own grow as follows:

'ICNII
I savedPushesDone savedColor I
savedPushesDone f- pushesDone. savedColor f- color.
super grow.
pushesDone f- savedPushesDone. color f- savedColor

By now you should have guessed the general problem. Any operation that creates a
new version of an existing stack instance will fail to properly initialize the additional fields.
It is not that easy to find all such methods. Some that immediately come to mind include
reverse, collect:, select:, reject:, and copy. Also, inherited operations like copyEmpty,
copyWith:, copyWithout:, copyReplaceAll:, concatenation (operation •,'), and
removeAllSuchThat: can also be a problem.

There are generally two solutions open to Smalltalk programmers: redefinition or
generalization. We will consider both independently.

•

•

The redefinition approach: Redefine the methods that are incorrect by inheriting
the incorrect behavior and initializing the new instance variables (usually, this just
means copying them).

The generalization approach: Generalize the methods to avoid the problem in
the future. Only Smalltalk is powerful enough to permit users the generalization
luxury.

For the redefinition approach, each misbehaving method must be locally redefined as
we have done for grow. Two additional examples include

collect: aBlock
I result I
result f- super collect: aBlock.
result priv.teSt.cklniti.lize: self size. "It is a new stack"
result color: self color.
iresult

select: aBlock
I result I
result f- super select: aBlock.
result priv.teSmcklniti.lize: self size. "It is a new stack"
result color: self color.
iresult

360 Inside Smalltalk



1111I

For the generalization approach, we need to find a technique that can make the
introduction of new collection subclasses relatively easy; e.g., by requiring the user to
provide a pre-specified number of special methods. A simple technique is suggested by an
instance method already provided for OrderedCollection and SortedCollection; i.e.,
copyEmpty, which can be interpreted as "create me a copy with the same fields as the
receiver but without elements" (for subsequent addition). For simplicity, we can actually
permit this operation on arbitrary objects. We add instance methods copyEmpty and
copyEmpty: corresponding to class methods new and new: respectively to class Object.

copyEmpty
iselfe.... new

copyEmpty: anlnitialSize
iself cia•• new: anlnitialSize

All methods explicitly creating new collections for the purposes of transferring
elements (possibly modified) from an old collection are modified to use copyEmpty and
copyEmpty: instead. For example, method collect: in Collection is modified as follows:

OId.,...ion

collect: aBlock
"Evaluates aBlock with each of the receiver's elements as the argument. Collects
the resulting values into a collection that is like the receiver. Returns the new
collection."
I newColiection I
newColiection +- self .peci.. new.
self do: [:each I newCollection add: (aBlock value: each»).
i newColiection

collect: aBlock
"Evaluates aBlock with each of the receiver's elements as the argument. Collects
the resulting values into a collection that is like the receiver. Returns the new
collection."
I newColiection I
newColiection +- self eopyEmpty.
self do: [:each I newCollection add: (aBlock value: each)).
i newCollection

Although finding such methods is difficult in general, the problem is not so difficult
in this situation - the majority of the methods can be found using the browser by locating
all users of species. Note that the modification actually eliminates the need for the species
concept discussed in Sect. 8.1.4. For instance, there are currently four species methods
implemented in Smalltalk. Consider the species instance method in class Inverval, for
example - it simply returns the Array class. We can remove the species method and
replace it by

copyEmpty: anlnitialSize
i Array new: anlnitialSize

Chapter 8 The Collection Classes 361



For our UselessStack, we need to provide initialize, copyEmpty, and copyEmpty:.
However, the addition of a history dependent variable pushesDone complicates the issue.
Normally, copyEmpty and copyEmpty: would be designed to simply copy all new fields.
At the very least, when a new stack is constructed, we would like pushesDone to
correspond to the number of pushes required to construct the stack manually (independent of
the number actually used in the source stack). The easiest solution is to modify addLast:
rather than push: to perform the counting and to reimplement grow to preserve the value in
pushesDone as follows:

Class UselessStack

class name
superclass
instance variable names

class methods

creation

UselessStack
OrderedCollection
pushesDone color

362

IlIiIW

i super new initialize
new: anlnitialSize

i(super new: anlnitialSizel initialize

instance methods

accessing

addLest: anObject
pushesDone +- pushesDone + 1
isuper addLest: anObject

addFirat: anObject
i self error: 'cannot add elements to bottom of a stack'

push: anObjeet
i self addLest: anObject

pop
i self rernoveLest

tap
iself last

monitoring tests

pushesDone
ipushesDone

popsDone
ipushesDone. self size

.-t-AndPopeDone
i2 * pushesDone . self size

color manipulation

color
ieolor

color: aNewColor
ieolor +- aNewColor

Inside Smalltalk



! I 'I "'Ill"

subclass extension operations

initialize
super initialize "To initialize fields inherited from the hierarchy"
pushesDone ~ 0
color ~ #grey "or any other default color"

~
I aCopy I
aCopy ~ self cia.. new. "Now pushesDone is 0 but color is grey"
aCopy color: self color.
iaCopy

copyEmpty: anlnitialSize
I aCopy I
aCopy ~ self cia•• new: anlnitialSize. "Now pushesDone is 0 but color is grey"
aCopy color: self color.
iaCopy

WfNI
I savedPushesDone savedColor I
savedPushesDone ~ pushesDone. savedColor ~ color.
super grow.
pushesDone ~ savedPushesDone. color ~ savedColor

We can also further generalize new (and new:) to initialize by default by providing a
nonlnitializingNew (and nonInitializingNew:). New subclasses would no longer have to
provide their own special version of new since the task would be subsumed by initialize.
See exercise 16 for a short discussion.

To summarize, creating a subclass of collection with its own instance variables will
usually require attention to the following considerations:

1. Determining which methods in the superclass can be inherited unchanged, which
need to be modified to report an error, and which need to be modified to behave
slightly differently.

2. Determining if the object constructors (usually new and new:) need to be written
locally to provide for special initialization requirements.

3. Determining which operations create new versions of existing collections and
redefming them locally so as to copy the instance variables from the old versions
to the new. Operations like grow, copy, select are typical methods needing
special treatment.

In general, problems (if any) will begin to surface only after extensive use of the new
class. It is even more crucial than usual to extensively test the new implementation.

8.6.2 Creating a Totally New Sharable Collection Class

One way to avoid the problems associated with the inheritance of methods that fail to work
for specializations is to avoid them by creating a totally new subclass of Object. The
challenge in this case is to provide enough of the traditional collection operations so that the
new class is still viewed logically as a member of Collection. We will consider doing this
for a class of collections that is well known to the Lisp and Prolog community; i.e., Lists.
By comparison with the existing collection classes, Lists provide a property that is lacking:

Chapter 8 The Collection Classes 363



sharability. A sharable data type is a class of objects satisfying the property that part of an
instance is itself a separate instance of the same class as the original and independently
manipulated as such by design. In Fig. 8.9, for example, lists LI and L3 share the common
suffix L2; LI' L2' and L3 are all independent lists.

Ll--~
"--".....

logically denotes sharing links
but physically denotes pointers

Figure 8.9 The Lisp sharing model.

List instances can be partitioned into two classes: empty lists and non-empty lists. We
would like to be able to differentiate them without introducing a special instance variable for
the purpose. We also would like to provide multiple empty lists (by contrast with Lisp,
which provides only one empty list) to avoid special-cased semantics; e.g., copy will always
provide a new list independent of whether or not it is empty. Additionally, we would like to
provide a design that avoids the pervasive use of code that matches the following template:

receiver is empty
itTrue: [Do the empty list case]
ifF.'.e: [Do the non-empty list case]

One solution is to adopt a design based on prototypes or exemplars; i.e., create two
specializations of lists, one for handling empty lists and another for handling non-empty
lists. Intuitively, we design as if we were implementing two sample lists: an empty sample
and a non-empty sample. This is exactly the same approach taken to implement class
Boolean with its two specializations True and False, each designed for its one instance
true and false respectively. Instead of having boolean operations that perform the
distinguishing test of the previous template, they are instead implemented differently for each
sample boolean or examplar as follows:

"for true" "for fal••"
and: anotherBoolean and: anotherBoolean

ianotherBoolean ifalse

In our case, we design specializations EmptyList and NonEmptyList as shown in
Fig. 8.10. Non-empty lists are constructed via operation precede: (the object-oriented
equivalent to the Lisp cons operation), which simply encapsulates its two parameters. This
information can be subsequently retrieved using first and rest.

Because of the examplar-based design, first for empty lists reports an error whereas,
first for non-empty lists simply returns the first element of the list. Similarly, rest for
empty lists reports error, while rest for non-empty lists returns the remaining elements

364 Inside Smalltalk



--.
c::J
« .. )

denotes instance relationships
denotes inheritance relationships
denotes classes
denotes instances

Figure 8.10 A design using exemplars.

(uncopied). Another example would be operation size, which returns 0 for empty lists and 1
more than the size of the rest of the list for non-empty lists. In all cases, the need to perform
an explicit test to distinguish the two cases is avoided.

Rather than analyze the design in detail, we will simply present it and leave it for the
reader to discover the design issues underlying the implementation.

Class List

class name
superclass
instance variable names

class methods

creation

List
Object
"none"

from: aCollection
I aList I
aList~ self empty.
aCollection rever.eDo: [:anObject I aList ~ aList precede: anObjectl.
i aList.

empty list creation

empty
iEmptyList new

non-empty list creation

nonEn1Jty
iNonEmptyList new

Chapter 8 The Collection Classes 365



of: aCollection
I result I
result r self empty.
aCollection reverseDo: I:element I result r result precede: elementl.
iresult

with: element
i self empty precede: element

with: element1 with: element2
i(self empty precede: element2) precede: element1

with: element1 with: element2 with: element3
i«self empty precede: element3) precede: element2) precede: element1

with: element1 with: element2 with: element3 with: element4
i«(self empty precede: element4) precede: element3) precede: element2) precede: element1

instance methods

converting

a&Arrey
I anArray nextElement I
anArray r Array new: self size. nextElement r 1.
self do: I:element I anArray at: nextElement put: element. nextElement r
nextElement + 11.
ianArray

asOrderedCollection
I collection I
collection r OrderedCollection new.
self do: I:element I collection add: elementl.
icollection

..List
iselfcopy

constructing

precede: anObject
"Works for both empty and non-empty lists."
i(self class nonEmpty replaceFirst: anObject) replaceReat: self

Class EmptyUst

366

class name
superclass
instance variable names

instance methods

querying

isEmpty
itrue

EmptyList
List
"none"

Inside Smalltalk



I fill

length
io..
io

comparing

=aList
i aList i.KindOf: EmptyList

accessing

.IButUat
iself error: 'allButLast is not legal on empty lists'

element: position
i self error: 'position outside bounds of list'

first
tself error: 'first is not legal on empty lists'

Iut
t self error: 'last is not legal on empty lists'

prefix: newlength
newlength =0 ifF.I.e: [iself error: 'illegal prefix length'l.
i self cl••• empty "Must make a copy"

rest
i self error: 'rest is not legal on empty lists'

re.t: anlnteger
anlnteger = 0

ifTrue: [iself)
ifF....: [

iself error: 'rest: anlnteger on an empty list is legal only if anlnteger =0'1

.ubli.t: start for: size
size =0 ifF.I_: [iself error: 'illegal sublist length'l.
iself cl••• empty "Must make a copy"

aubli.t: start to: end
(start >= (end + 1» ifF.I.e: [tselferror: 'illegal sublist length'l.
t self cl••• empty "Must make a copy"

.uffix: newlength
newlength =0 ifF.I.e: Itself error: 'illegal suffix length'l.
tself "Must not make a copy"

constructing

copy
t self c.... empty

Chapter 8 The Collection Classes 367



eppend: list
(list i.KindOf: List) ifFel.e: Itself error: 'cannot append a nonlist to a list').
tlist

follow: element
t(self cl... empty) precede: element

reve....
t self cle•• empty "Must make a copy"

destructive modifications

repleceFir.t: element
tself error: 'replaceFirst is not legal on empty lists'

repleceRest list
tself error: 'replaceRest is not legal on empty lists'

printing

printOn: aStream
aStream nextPutAll: '0'

.toreOn: aStream
aStream nextPutAlI: '(List empty)'

sequencing

collect block
t self cle•• empty

collect: block when: testBlock
t self cle.. empty

do: block
"Nothing to do; return self·

inject: value into: binaryBlock
tself error: 'inject is not legal on empty lists'

reve....Do: block
"Nothing to do; return self"

Class NonEmptyList

368

class name
superclass
instance variable names

instance methods

querying

isEmpty
tfalse

NonEmptyList
List
firstPart restPart

Inside Smalltalk



I fill

IIIngIh
i1 + self rest length

me
i1 + self rest length

comparing

=aUst
i(aUst isKindOf: NonEmptyUst) .nd:

(self first =aUst first .nd: (self rest =self rest])

accessing

.11ButI..nt
self rest iRmpty

ifTrue: (iself c.... empty)
ifF....: (i(self rest .IIButLast) precede: (self first))

element: position
position = 1 ifTrue: (iself first).
position < 1

ifTrue: (iself error: 'illegal element position')
ifF.I..: (iself rest element: position - 11

first
ifirstPart

last
self rest isEmpty ifTrue: (iself first) ifF....: (iself rest lest)

prefix: newlength
newlength <= 0 ifTrue: (iself cl... empty).
i (self rest prefix: newlength - 1) precede: (self first)

rest
irestPart

rest: anlnteger
anlnteger < 0 ifTrue: (

iself error: 'rest: anlnteger is legal only if anlnteger >= 0 and <= list length').
anlnteger = 0 ifTrue: (iselfl.
anlnteger = 1 ifTrue: (irestPartl ifF.lse: (irestPart reat: anlnteger - 1)

subliat: start for: size
i(self auffix: self length - start + 1) prefix: size

aubliat: start to: end
i(self suffix: self length - start + 1) prefix: end - start + 1

auffix: newlength
I result size I
result +- self. size +- self length.
(newlength < 0) I (newlength > size) ifTrue: (iself error: 'illegal suffix length').
1 to: (size - newlength) do: (:i I result +- result reat).
iresult

Chapter 8 The Collection Classes 369



370

constructing

copy
i self rest copy precede: self first

append: list
(list isKindOf: List) ifFal_: Iiself error: 'cannot append a non-list to a list'l.
i(self rest append: list) precede: (self first)

follow: element
i(self rest follow: element) precede: (self first)

reve~

iself inject: self cla.s empty into: I:result :element I result precede: elementl

destructive modifications

replaceFirst: element
firstPart ~ element

replaceRest: list
(list isKindOf: List) ifFalse: liself error: 'cannot replace the rest of a list by a non-Iist'l.
restPart ~ list

printing

printOn: aStream
aStream nextPut: $(. self first printOn: aStream.
self rest do: I:element IaStream nextPut: $ . element printOn: aStreaml.
aStream nextPut: $)

storeOn: aStream
aStream nextPutAll: '(List empty precede: '. self first printOn: aStream.
self rest do: I:element I

aStream nextPutAlI: '; precede: '. element printOn: aStreaml.
aStream nextPut: $)

sequencing

collect block
i(self rest collect: block) precede: (block value: self first)

collect: block when: testBlock
(testBlock value: self first)

ifTrue: I
i(self rest collect: block when: testBlock) precede: (block value: self first))

ifFal.e: li(self rest collect: block when: testBlockll

do: block
block value: self first. self rest do: block

inject: value into: binaryBlock
I lastValue I
lastValue ~ value.
self do: I:element IlastValue ~ binaryBlock value: lastValue value: elementl.
ilastValue

rev_Do: block
self rest reverseDo: block. block value: self first

Inside Smalltalk



11'111

8.7 SUMMARY

In this chapter, we have described the Collection classes - Smalltalk's workhorse data
types. In particular, we have discussed the following notions:

• The physical and logical organization of the Collection and Stream classes.

• Approaches for creating, comparing, and sequencing over collections.

• The protocol supported by the keyed collection classes.

• Dictionaries as array-like containers for objects associated with arbitrary keys.

• The association, array, and set protocol supported by dictionaries.

• The array and string protocol supported by arrays, ordered collections, strings and
their subclasses.

• The magnitude, string, and conversion protocol supported by classes String,
Text, and Symbol.

• The protocol supported by classes MappedCollection, RunArray, and In
terval.

• Streams as mechanisms for accessing and modifying collections through inter-
ruptible sequencing.

• Read, write, read-write, and character streams.

• Filename as the interface with external streams (files).

• Classes OrderedCollection, SortedCollection, and LinkedList as members
of the ordered classes and their detailed protocol.

• Set, IdentitySet, and Bag as unordered collections.

• Defining a new stack class - a pedagogic example illustrating possible pitfalls.

• An exemplar-based approach to the implementation of a shared List type.

8.8 EXERCISES

The following exercises may require some original thought, rereading some of the material,
and/or browsing through the system.

1. Define some of the missing conver
sion operations; e.g., asDlction·
ary.

2. Where should the methods bold,
italic. and underlined be added to
facilitate users? Define one of these
methods.

3. Some classes, like strings, have
comparison operations <. >, and =
defined on them, and yet they are not
subclasses of Magnitude. Why?

Chapter 8 The Collection Classes

4. In the section on adding your own
sequencing operations, we introduced
a do: for sequencing through the
digits of an integer. In this version,
the sign was ignored. Show what
changes are needed to associate the
sign with the leftmost digit.

5. Operations flndFlrst: and find
Last: are defined either in abstract
class SequenceableCollectlon or
ArrayedCollectlon. First, decide

371



which class is logically correct for
the operation and then find out
whether or not this is the choice used
in the current system.

6. Devise an alternate strategy for type
conversion based on the notion that
all collections have a do: operation.
As a suggestion, consider adding
class methods like the following to
abstract classes Collection and
Stream (or to Object):

convert: aCollection
I newColiection I
newCollection ~ self new:

aCollection size.
aCollection do: l:element I

newColiection
edd: elementl.

'tnewColiection

Note that users would now make con
version requests to the class; e.g.,
Dictionary convert: #(1 2 3) or Set
convert: #(1 2 2 3 3 3). How many
variations need to be added to permit
conversions between all classes?

7. Transform the existing find First:
method into 'findNext: aBlock
after: aKey'. Similarly, transform
the findLast: method into 'find
Previous: aBlock before: aKey'.

8. Generalize associationsDo: and
keysDo: so that they also work for
arrayed collections.

9. Perform an experiment to determine
whether or not methods includes:,
includesAssociation:, and oc
currencesOf: work correctly for
IdentityDictionaries. Performing such
experiments is a useful technique for
determining undocumented semantics
or verifying documented semantics.

10. Design additional operations for
OrderedCollection that eliminate
the first-occurrence bias of the basic
operations.

11. Provide alternative stream construc
tion operations atBeginningOf:
and atEndOf: for on: and with: re
spectively. Additionally, design a
variation positionedA t: that per
mits more general initial position-

372

ing. None of these should make a
copy of the collection being
streamed over. Investigate the feasi
bility of removing on: and with:
from the system.

12. Investigate the idea of changing the
semantics of the stream operation
contents so that it returns the orig
inal collection rather than a copy.
One requirement, for instance, would
be the need to truncate the as yet un
written parts of the collection; e.g.,
consider the prlntString method.

13. Locate and modify stream methods
through: and upTo: so that the
elements returned for 'as tream
through: anObject' include anObject
whereas those returned for 'aStream
upTo: anObject' exclude anObject.
Additionally, change the operations
so that they return all remaining
elements in the situation where no
element equal to anObject is found.

14. Design and implement a stream oper
ation 'upToAII: aCollection' that
searches for the next occurrence of
aCollection and returns a collection
of the elements up to that point. The
stream is repositioned at the begin
ning of the portion that matches
aCollection. If no such matching col
lection is found, return the remain
ing elements.

15. Redesign (and complete) the sequenc
ing operations for streams so that
they have no side effects; i.e., once
complete they reposition the stream
to its original position.

16. Perform an experiment on the =
method for intervals by executing
the following:

I anlnterval I
anlnterval ~ 1 to: 10.
anlnterval = anlnterval copy

If there is a problem, decide on a so
lution and fix it.

17. Design method = for selected collec
tions that lack it. In particular, de
sign an = for streams that has no
side effects.

Inside Smalltalk



18. Since most objects need to be initial
ized to work properly, it is reason
able to extend (or modify) the system
so that both class methods unlnl·
tlallzedNew (the old new) and an
initializing version (the new version)
be provided along with a default in
stance method Initialize as fol
lows:

aClassnew
tself uninitializedNew initialize

anObject initialize
tself "default is to do nothing"

When designing a new specializa
tion, implementors would have to
provide their own version of Ini
tialize (when necessary) as follows:

anObject initialize
super initialize
specialization specific
initializations
helf

There should be no need to provide a
special version of new. However, if
a version such as the following were

8.9 GLOSSARY AND IMPORTANT FACTS

The Abstract Collectio,..

ArrayedCollectlon An abstract class for the
integer-keyed collections. Does not
include ordered collections.

Collection The most general abstract class. It
does not include streams as a subclass.

ExternalStream The most general abstract
class for streams that permit access to
files.

IntegerArray An abstract class for ByteArray
and WordArray.

InternalStream An abstract class for finite
streams on integer-keyed collections.

Chapter 8 The Collection Classes

1 IIQ

inadvertently provided, would its use
lead to infinite loops or simply be
inefficient?

aClassnew
tsuper new initialize

19. Design and implement additional set
and bag operations.

20. Design a variation of Interval that
can handle a geometric progression
(intervals currently handle an arith
metic progression).

11. Investigate the correctness and feasi
bility of providing the following
copyEmpty instance method in
Object.
copyEmpty

I aCopy I
aCopy Eo- self c.... new.
1 to: self c .... in.tSize
do: (:component I

aCopy
in.tV.rAt: component
put: (self inatV.rAt:

component)).
taCopy

PosltlonableStream An abstract class for all
finite read and write streams that can
provide random access to arbitrary
locations in the stream.

PeekableStream An abstract class for all
fmite read and write streams that can peek
at least one object ahead.

SequenceableCollection An abstract class for
the ordered classes (excluding streamable
classes and mapped collections).

Stream An abstract class for all streamable
collections.

373



The Keyed Collection.

Array A class that maintains a set of associa
tions between integer keys and elements.
The keys must be integers in the range I.
2. .... anUpperBound where the upper
bound is determined at creation time. The
elements can be arbitrary objects. Arrays
do not expand automatically (hence. sub
scripting out of bounds is a possible er
ror). However. Arrays may be specifically
grown if desired.

ByteArray A special kind of array in which
the elements are integers restricted to the
range 0 to 255.

Dictionary An array-like class that maintains
a set of associations between keys and
elements. Both keys and elements can be
arbitrary objects. It differs from Identity
Dictionary in that two keys match iff they
are equal; i.e .• if keYI = keY2'
Dictionaries expand automatically as re
quired. Specializations include System
Dictionary. which has only one
instance named Smalltall containing all
global variables. and LiteralDiction
a ry. which permits constants as keys
without allowing type conversion (thus.
keys 1 and 1.0 would be distinct - this is
not the case for Dictionary).

IdentityDictionary An array-like class that
maintains a set of associations between
keys and elements. Both keys and ele
ments can be arbitrary objects. Two keys
match iff they are identical; i.e.. if
key 1 == keY2' Identity dictionaries ex
pand automatically as required. A special
ization is MethodDictionary. used by
Smalltalk to maintain compiled code.

Interval A special kind of integer array that
specifies an arithmetic sequence. The se
quence is determined at the time the in
stance is created and may not be changed
or grown. It is usually used for looping
control. Specialization TextLineInter·
val is used for managing paragraphs of
text and is not intended for public use.

374

MappedCollectlon A special kind of array
that provides access to another array via a
subscript map. For example. if maPI maps
subscript i to subscript j (say) and arraYI
contains elements accessible by subcript i.
then a mapped collection testl can be
constructed from maPI and arraYI such
that accessing testl with i is equivalent to
accessing arraYI with maPI of i. For ex
ample. in a Pascal-like syntax. testl [i] ==
arraYI [maPI [in. MappedCollections may
not be grown.

OrderedCollection A container for arbitrary
objects. The sequence used for entering the
elements determines the order - typical
operations are provided for adding at the
beginning or the end of the collection.
Ordered collections are automatically ex
panded when more room is needed.

RunArray A special kind of array that is
space efficient if it contains long runs of
equal values. RunArrays may not be
grown.

SortedCollection A special kind of ordered
collection that sorts its elements accord
ing to a predefined sort block. The default
sort block bases the sort on comparison
operation <=.

String A special kind of array in which the
elements are characters. It is also logically
a Magnitude; i.e.. it permits comparisons
using <. >. =. <=. >=. and -=. Strings may
be grown if explicitly requested.

Symbol A special kind of string that denotes
a name. All symbols with the same charac
ters are identical; i.e.. if symbol I =
symbol2. then symbol I == symbol2'
Symbols cannot be grown.

Text A special kind of string with associated
font information. Texts may be grown if
explicitly requested.

WordArray A special kind of array in which
the elements are integers restricted to the
range 0 to 65.535.

Inside Smalltalk



The Streemable Collections

Filename A special interface class for
keeping track of a file via a name provided
as a string; provides access to external
streams for manipulating the file contents.

Random An infinite stream of reals in the
range 0.0 to 1.0 exclusive of the end
points.

ReadStream A finite stream that permits
elements of an arbitrary collection to be
read (accessed). Repositioning within the
stream is also possible.

Remeining Ordered Collections

LinkedList A special kind of ordered collec
tion in which the elements must be of

The Unordered Collections

Bag (logically an equality bag) An arbitrary
collection of objects with equality dupli
cates allowed; an element is an equality
duplicate if it is equal (operation =) to an
other element. The elements in a bag are
normally accessible in some arbitrary
order. Duplicates are maintained by keep
ing only one representative element along
with a count. Bags are automatically ex
panded when more room is needed.

IdentltySet An arbitrary collection of ob
jects in which identity duplicates are dis
carded; an element is an identity duplicate
if it is identical (operation ==) to another
element. The elements in an identity set
are normally accessible in some arbitrary
order. Identity sets are automatically ex
panded when more room is needed.

selected terminology

becoming An operation that transforms one
object A into another object B by redirect
ing all A-references to B (and vice versa).

container An object that can contain many
other objects.

Chapter 8 The Collection Classes

ReadWrlteStream A fmite stream that per
mits both access and modification to the
elements (including addition) in a sequen
tial fashion and additionally provides
repositioning capabilities.

WriteStream A finite stream that permits
elements to be overwritten (or added) to an
arbitrary collection. Repositioning within
the stream is also possible.

type Link. It is currently used only by the
system for process management.

Set (logically an equality set) A variation of
an identity set (or bag) in which equality
duplicates are discarded. Sets are also auto
matically expanded when more room is
needed.

destructive Having side-effects on (modify
ing) the receiver.

375



emphasis Additional text information such as
bold, underlined, and Italic. The actual
codes include (0) basal, (1) bold, (2) italic,
(3) boldltalic, (4) underlined, (8) over
Struck, (16) subscripted, (32) superscrip
ted, (20) subscriptedUnderlined, and (36)
superscriptedUnderlined.

growing The act of extending a collection so
that it can accommodate additional ele
ments.

map A keyed collection that is used to trans
form a user subscript into a more appro
priate internal subscript.

mappee The collection accessed indirectly via
the map.

matching A term used to describe the opera
tion used to compare elements - the
matching operation for identity sets is
identity, and for sets it is equality. Also a
specific string operation matchFor:.

important fact.

Experts use inject:into: Novices tend to
overuse sequencing operation do: even
when more appropriate operations like In
ject:into: are available.

Most applicable conversions X asOrdered
Collection, X asSet, X asArray.

No abstract class Instances One of the more
common errors is to attempt to create an
instance of an abstract class; e.g.,
Collection new.

Stream on: versus with: Executing 'aStream
Class on: aCollection' creates a stream
positioned at the beginning whereas
'aStreamClass with: aCollection' creates a
stream positioned at the end.

376

ordered Position dependent values; e.g., #(4
724 1).

sequencing operation An operation like do:,
collect:, and inject:into: that provides
access to all elements in a collection.

sorted An ordered sequence in which adjacent
elements satisfy a sort criterion; e.g., #(1
2 4 4 7) with sort criterion nondecreas
ing.

species The class to be used when creating a
modified copy of a collection.

Most common mistake Getting an empty ar
ray (or string) using Array new or String
new and then attempting to insert an ele
ment into it (a subscript out of bounds er
ror).

Another common mIstake Attempting to get
an instance of an abstract class; e.g., via
Collection new.

Inside Smalltalk



'Ili'l

9

The Graphics Classes

9.1 INTRODUCTION

When the Macintosh computer was introduced in 1983 by Apple Computer, it was loudly
praised as the "personal computer for the rest of us." The implication was that now there was
a computer that was so friendly and easy to use that it could be used by non-programmers.
How was this achieved? Applications no longer required users to type complicated command
line sequences from the keyboard. Instead, most user interaction became graphics-based and
used a simulation metaphor that was familiar to users. For example, the Macintosh adopted
the desktop metaphor as its primary interface to the user. Iconic representations of
applications and documents sit on a virtual desktop (the display screen). Tasks are carried out
interactively and intuitively. For example, a document is deleted simply by dragging its
iconic representation to the icon that looks like a garbage can. User interfaces built on the
use of icons, overlapping windows, pull-down menus, dialog boxes, and so on have now
become the standard for personal computers and are often referred to as WIMP (Window-Icon
Menu-Pointer) interfaces.

What is not so well known is that much of the research work that led to the
development of systems like the Macintosh was done as part of the Smalltalk research effort
at Xerox PARC (palo Alto Research Center). Alan Kay, Adele Goldberg, and Dan Ingalls
and others foresaw that inexpensive personal computers would soon be able to support high
resolution bit-mapped displays and that, together with interactive devices such as mice, a
new style of programming and user interface was required. The key realization was that
graphics and graphical interaction would form the core of all future computer systems. In
this chapter, we discuss the Smalltalk classes that support the interactive creation and
manipulation of graphical images. We devote all of the second volume to a discussion of the
model-view-controller metaphor and the user-interface classes used to support the
development of interactive graphical applications in Smalltalk.

377



9.1.1 The Smalltalk Graphical Model

Smalltalk is implemented on workstations that support a high resolution bit-mapped
display. The term bit·mapped originates from the fact that display images are (at least
logically) thought of as two-dimensional arrays of bits, where the value of each bit (e.g., 1
for black, 0 for white) indicates the color of the corresponding pixel in the image. Smalltalk
adopts this model for describing graphical images; e.g., the normal Smalltalk cursor is
shown in Fig. 9.1 both in an expanded form to show the individual bits that make up the
image and in standard size.

Figure 9.1 An expanded view of the bits in a cursor.

9.1.2 Graphic Capabilities of Smalltalk

The Smalltalk system provides support for a wide range of graphic functions. We can isolate
five distinct applications.

Painting pictures

Simple animation

Graphical images may be constructed and edited by electron
ically "painting" pictures on the display - the display
screen becomes an artist's canvas and the mouse becomes a
paintbrush. Images may be constructed freehand using
brushes of different textures, shapes, and sizes. In particular,
Smalltalk provides two tools, a form editor and a bit edi·
tor, for creating pictures. The form editor is the predecessor
of the paint programs now commonly found on personal
computers (e.g., MacPaint on the Macintosh). Editing of an
image at the individual bit level is performed using the bit
editor (the equivalent of Fat Bits in MacPaint).

Simple animation sequences can be constructed by cycling
through a sequence of predetermined frames, by dynamically
modifying a single frame, or by displaying one frame while
constructing the next (double buffering). I

I Chapter 10 discusses the implementation of film loops - a primitive animation facility.

378 Inside Smalltalk



Turtle graphics

Displaying text

Images may also be created algorithmically. Pens are the
Smalltalk equivalent of the turtles found in the
programming language LOGO. Pens are objects whose
heading and position can be manipulated using simple
"robot-like" commands such as tum through 90 degrees
or go forward 100 units. When a pen is moved with its
nib in the down position, a trail follows its path. The
notions of turtle graphics, turtle geometry, and of using the
computer as a medium for mathematical discovery,
originate from the work of Seymour Papert et al.2 at MIT.

Text in Smalltalk may be displayed in a variety of different
fonts (e.g., serif, sans serif, ...), sizes (e.g., 10 point, 12
point, ...), and styles (e.g., italic, bold, underlined, ...).
Fig. 9.2 illustrates some of the available text styles.

. " . ':'. . '.' : :.. ':' " ..:.:.: :.. ::.. ::-::: :..:\:::;::;\(~}
......

: '.. :.:: ".. ..:..' :" : ::~: :.:' ,': ::..::~~:~~ ~~:.~.;:')){
Workspace

This is 10 point text
This is bold f ace text
Thz's z's z'talz'c text
This is 12 point text
This is bold 12 point
This is italic: 12 Doint

.. ... . . . . " .. . ' .

Figure 9.2 Smalltalk text styles.

Constructing paths Geometric objects such as arcs, circles, lines, curves, and
splines may be displayed also. These objects are displayed
by storing or computing the points that lie on the path or
trajectory of the object. Fig. 9.3 shows a cubic spline
curve drawn through five control points.

Figure 9.3 Cubic spline.

2papert• S., Mindstonns: Children, Computers, and Powerful Ideas (New York; Basic Books, 1980).

Chapter 9 The Graphical Classes 379



Before we can describe the Smalltalk graphical classes in detail, we must describe the
spatial classes Point and Rectangle, which are heavily used by the graphical classes, and
also discuss classes Form and BitBIt, which are the key to understanding how all images
are represented and displayed in Smalltalk.

9.2 POSmONS AND AREAS: CLASSES POINT AND RECTANGLE

The classes Point and Rectangle are used to represent spatial information. Individual pixels
within a graphic image or on the display screen can be located by instances of class Point
Similarly, rectangular areas of pixels within a graphic image or on the display screen can be
located by instances of class Rectangle.

As illustrated in Fig. 9.4, Smalltalk adopts a coordinate system for images (and the
display screen) that has the origin in the top left-hand comer with the x-axis increasing to the
right and the y-axis increasing downwards. A point is a single x-y integer pair in this
system, while a rectangle is a rectangular region specified by two points representing the top
left and bottom right comers of the region.

r--------------------...~ x

• (x,y)
(originX, origin¥)

y (cornerX, cornerY)

Figure 9.4 Smalltalk coordinate system.

Note that points and rectangles are not displayable objects - they represent spatial
quantities only. There are no operations provided by Smalltalk to display a point or a
rectangle.

9.2.1 Creating Points and Rectangles

Creating Points

Points may be created in two different ways: using the binary operator @ defined on integers
or by using the class method x:y: .

380

• anlnteger • anotherlnteger
Returns a point with x and y coordinates set to anlnteger and anotherlnte
ger respectively.

Inside Smalltalk



• Point x: xCoordinate y: yCoordinate
Returns a point with x and y coordinates set to xCoordinate and
yCoordinate respectively.

For example, the expressions

100.150
Point x: 100 y: 150

both return the point with x coordinate 100 and y coordinate 150. Note that points are
really pairs since any two objects can be supplied for x and y - no run-time checks are
implemented. Programmers should be aware that this may cause difficulties; e.g., the
expression Point x: -5.6 y: l00@l00 returns a 'point' whose y coordinate is another point.

Creating Rectangles

Rectangles can be created in a variety of ways. The most common method is by sending an
extent: aPoint or corner: aPoint message to a point. For example, both of the following
expressions return a rectangle with origin (top left comer) at l00@l00 and bottom right
corner at 300@300.

100@1oocorner: 3OO@300
100@100 extent: 200@200

10 general, the protocol is the following:

• aPoint corner: cornerPoint
Returns a rectangle whose origin is aPoint and whose corner is cornerPoint.

• aPoint extent: extentPoint
Returns a rectangle whose origin is aPoint and whose width and height are
provided by extentPoint.

As with points, rectangles are really simply pairs, and any two objects can be supplied
for the origin and corner. In the case of rectangles. it is also important to ensure that the
bottom right comer really is below and to the right of the top left comer; e.g., Rectangle
origin: l00@l00 corner: 50@50 is not a valid rectangle.

Alternatively. rectangles may be created by sending the following messages to class
Rectangle:

•

•

•

Rectangle origin: originPoint corner: cornerPoint
Returns a rectangle whose top left and bottom right corners are originPoint
and cornerPoint respectively.

Rectangle origin: originPoint extent: extentPoint
Returns a rectangle whose top left corner is originPoint and whose width
and height are provided by extentPoint.

Rectangle left: leftX right: rightX top: topY bottom: bottomY
Returns a Rectangle with left, right, top, and bottom coordinates as given.

Chapter 9 The Graphical Classes 381



For example, the expressions

Rectangle origin: 100@100 corner: 300@300
Rectangle origin: 100@100 extent: 200@200
Rectangle left: 100 right: 300 top: 100 bottom: 300

all return the same rectangle.

Creating Rectangles Interactively

Alternatively, the user can create a rectangle by interactively selecting a rectangular area on
the display.

•

•

Rectangle fromUser
Returns a rectangle whose top left and bottom right corners are designated
interactively by the user. This is achieved in the same manner as framing a
window.

Rectangle originFromUser: extentPoint
Returns a rectangle with the top left corner selected interactively by the
user and width and height determined from extentPoint.

Creating Rectangles Using Grids and Aspect Ratios

In addition, class methods are provided that constrain a rectangle specified interactively to
have either comer points that must lie on some user-specified grid or a width and height that
must satisfy some given aspect ratio. Grids and aspect ratios are specified as points. For
example, a grid specified as 5@ 10 constrains the x coordinates of the comers of the rectangle
to be a multiple of 5 and the y coordinates of the comers to be a multiple of 10. Gridding is
useful for accurate positioning of rectangles. An aspect ratio specified as 2@3 constrains the
width and height of a rectangle to have the ratio 2 to 3. Note that any gridding and aspect
ratios are to assist in the initial creation of rectangles only. They are not maintained by
rectangles; i.e., subsequent modifications to any existing rectangle will not satisfy any
originally specified constraints.

382

•

•

•

Rectangle fromUser: gridPoint
Returns a rectangle whose top left and bottom right corners are designated
interactively by the user and where the x and y coordinates of the corners
are constrained to be multiples of the x and y coordinates of gridPoint
respectively.

Rectangle fromUserAspectRatio: aspectPoint
Returns a rectangle whose top left and bottom right corners are designated
interactively by the user and where the rectangle is constrained so that the
ratio of width to height is determined by aspectPoint.

Rectangle originFromUs.r: extentPoint grid: scaleFactor
Returns a rectangle whose top left corner is designated interactively by the
user and where the width and height are determined by extentPoint. The
gridding for user selection is scaleFactor. Assumes that the sender has
determined an extent that is a proper multiple of scaleFactor; if not, the
bottom right corner will not lie on the grid.

Inside Smalltalk



9.2.2 Printing and Storing Points and Rectangles

Classes Point and Rectangle both implement specialized methods for the printing and storing
of points and rectangles. The standard printString and storeString protocol for all objects
calls the printOn: aStream and storeOn: aStream methods associated with each class.

Points print in infix notation, for example, '100@100', and store using the form
'Point x: 100 y: 100'. Rectangles print in the form '100@100 comer: 300@300' and store
in the form 'Rectangle origin: l00@ 100 comer: 300@300'.

•
•
•
•
•
•
•
•

aPoint printString

aPoint atoreString

aPoint printOn: aStream

aPoint atontOn: aStream

aRectangle printString

aRectangle atoreString

aRectangle printOn: aStream
aRectangle atoreOn: aStream

9.2.3 Copying Points and Rectangles

Deep and shallow copy operations are reimplemented in class Point purely for efficiency
reasons. Note that the default copy operation for rectangles is a deep rather than a shallow
copy.

•
•
•

aPoint deepCopy

aPoint ahellowCopy

aRectangle copy
Returns a deep copy rather than a shallow copy.

9.2.4 Accessing and Modifying Points and Rectangles

Accessing and Modifying Points

The x and y coordinates of a point may be accessed and modified using the x, y, x:, and y:
instance methods.

•
•
•
•

aPointx
aPoint y

aPoint x: anlnteger
aPoint y: anlnteger

It is very unusual to use the x: and y: methods to modify a point. Points are normally
thought of as immutable.

Accessing and Modifying Rectangles

A wide variety of rectangle components may be accessed and modified. Fig. 9.5 describes the
terminology used in describing the parts of a rectangle.

Chapter 9 The Graphical Classes 383



Top CenterTop Left
or Origin

~r----.l-_--r

Top Right

Left
Center

Bottom Left

" Center

Bottom Center

Right
....1---- Center

Bottom Right
or Corner

Figure 9.S Rectangle class tenninology.

Additionally, the terms left and right are used to refer to the x values of the left and
right sides of the rectangle. Similarly, top and bottom are used to refer to the y values of
the top and bottom of the rectangle.

• aRectangle width

• aRectangle width: width Integer

• aRectangle height

• aRectangle height: heightlnteger

• aRectangle left

• aRectangle left: anlnteger

• aRectangle right

• aRectangle right: anlnteger

• aRectangle top

• aRectangle top: anlnteger

• aRectangle bottom

• aRectangle bottom: anlnteger

• aRectangle topLeft

• aRectangle topLeft: topLeftPoint
• aRectangle topRight

• aRectangle bottomLeft

• aRectangle bottomRight

• aRectangle bottomRight: bottomRightPoint

• aRectangle leftCenter

• aRectangle rightCenter
• aRectangle topCenter

• aRectangle bottomCenter

384- Inside Smalltalk



•
•
•
•
•
•
•
•
•

aRectangle origin
aRectangle origin: originPoint corner: cornerPoint

aRectangle origin: originPoint extent: extentPoint

aRectangle center
aRectangle comer
aRectangle comer: cornerPoint

aRectangle extent
aRectangle extent: extentPoint

aRectangle .re.

Note that, of the comers of a rectangle, only the top left and bottom right comers may
be modified directly.

9.2.5 Conversion Operations

The method asPoint supported by integers converts an integer to a point For example, the
expression 150 asPoint returns the point 150@150.

•

•

anlnteger ..Point
Returns a new point with both x and V values set to anlnteger.

aPoint ..Point
Returns aPoint (self).

No conversion operations are supported by class Rectangle.

9.2.6 Arithmetic Operations

The standard arithmetic operators are supported on points. For each of the binary operators,
+, ., *, I, and /I, the argument may be a point or a number. Note that since the methods
coerce: aNumber and generality are implemented for class Point, the argument for the
binary aritlimetic operators can be a point or any number. Indeed, binary arithmetic messages
may be sent to the numeric classes with points as arguments; i.e., messages such as 3 *
(50@50) are valid. Points have a generality of 90 - greater than any other number class.
When coerced, numbers are converted to points with x and y values both equal to the
number.

Arithmetic operations are carried out by independently applying the operation to the
corresponding x and y coordinates; e.g.,

100@150 + (200@1001
3@2 • (100@1001
100@1001!(10@51

~ 300@250
~ 300@200
~ 10@20

More generally, the protocol is the following:

• aPoint • aPointOrNumber
Returns a new point that is the product of aPoint and aPointOrNumber.

Chapter 9 The Graphical Classes 385



•

•

•

•

•

aPoint + aPointOrNumber
Returns a new point that is the sum of aPoint and aPointOrNumber.

aPoint· aPointOrNumber
Returns a new point that is the difference of aPoint and aPointOrNumber.

aPointl aPointOrNumber
Returns a new point that is the quotient of aPoint and aPointOrNumber.

aPoint /I aPointOrNumber
Returns a new point that is the result of applying integer division to aPoint
and aPointOrNumber and truncating the result toward negative infinity.

aPointabs
Returns a new point whose x and y coordinates are the absolute values of
the x and y coordinates of aPoint.

No arithmetic operations are supported on rectangles.

9.2.7 Comparing Points and Rectangles

Comparing Points

The relational operators are defined on points as follows. A point is said to be less than
another if both its x and y values are less than the other. Alternatively, this can be expressed
spatially by stating that one point is less than another if it is above and to the left of the
other. Similar mathematical or spatial interpretations can be given to each of the relational
operators.

You might expect that, since arithmetic operators successfully coerce numbers to
points when one of the arguments is a number, the relational operators would behave in the
same way. Unfortunately, this is not the case. Binary operators on points must have a point
as argument. On the other hand, numbers will accept relational operators where a point is
given as the argument; e.g.,

100@100 < (50@501
100@100 < 50
100 < (50@501

~ false
~ error
~ false

The relational operators include the following:

386

•

•

•

•

•

•

aPoint < anotherPoint
Returns true if aPoint is above and to the left of anotherPoint.

aPoint > anotherPoint
Returns true if aPoint is below and to the right of anotherPoint.

aPoint <= anotherPoint
Returns true if aPoint is neither above nor to the left of anotherPoint.

aPoint >= anotherPoint
Returns true if aPoint is neither below nor to the right of anotherPoint.

aPoint = anotherPoint
Returns true if the x and y coordinates of each point are equal.

aPoint hash
Implemented because"" is reimplemented.

Inside Smalltalk



Additionally, the maximum and minimum of any pair of points can be found with
respect to the relational operators defined earlier.

• aPoint max: anotherPoint
Returns the lower right corner of the rectangle defined by aPoint and
anotherPoint.

• aPoint min: anotherPoint
Returns the upper left corner of the rectangle defined by aPoint and

anotherPoint.

Comparing Rectangles

Rectangles may only be compared for equality.

•

•

aRectangle • anotherRectangle
Returns true if the origin and corner points of aRectangle and
anotherRectangle are equal.

aRectangle he.h
Implemented because =is reimplemented.

9.2.8 Truncating and Rounding Points and Rectangles

Protocol is supported for rounding and truncating points in two ways. The x and y
coordinates can be rounded using rounded. In addition, points can be rounded or truncated to
lie on some specified grid using grid:, truncatedGrid:, and truncateTo:.

• aPoint rounded
Returns a new point with x and y values derived by independently rounding
the x and y values of aPoint.

(126.5@120.41 rounded ~ 126@120

•

•

•

aPoint grid: aGridPoint
Returns a new Point that is the nearest rounded point to aPoint on the grid
specified by aGridPoint.

126@133 grid: 6@6 ~ 126@136

aPoint truncatedGrid: aGridPoint
Returns a new Point that is the nearest truncated point to aPoint on the grid
specified by aGridPoint.

126@133truncetedGrid: 6@6 ~ 126@130

aPoint trunceteTo: integerGridValue
Like truncatedGrid except that the argument must be a number rather than
a point. The comment in the Smalltalk system suggests that the argument
should be a point. Note that this method fails if given a point for the
argument.

126@133 trunceteTo: 6 ~ 125@130

Chapter 9 The Graphical Classes 387



In the case of rectangles, protocol is supported to round a rectangle by rounding the
origin and comer points.

• aRectangle rounded
Returns a new rectangle with origin and corner derived by rounding the
origin and corner points of aRectangle.

(12S.S@120.4 corner: 4S.8@32.1) rounded => 126@120 corner: 46@32

9.2.9 Points in Polar Coordinate Fonn

Information about a point can also be returned to the programmer in polar coordinates. In the
polar coordinate system (see Fig. 9.6), a point is represented by the distance from the origin
to the point (radius) and the angle a line joining the origin to the point makes with the
positive x-axis. Angles are measured clockwise from the x-axis; right is 0, down is 90
degrees or Tt/2 radians. A point in the polar coordinate system is commonly referred to by its
(r, e) components; e is measured in radians.

~-----"""r------"'~ X

(r, e)
y

Figure 9.6 Polar coordinate system.

•

•

aPoint r
Returns the radius (the distance from the origin) of the receiver.

aPoint theta
Returns the ecomponent (the angle a line joining the x-axis makes with the
positive x-axis) of the receiver.

9.2.10 Miscellaneous Point Operations

Methods are provided to compute the distance between two points and the distance between a
point and a line.

388

•

•

aPoint diat: anotherPoint
Returns the distance between aPoint and anotherPoint.

aPoint pointNe.restLine: point1 to: point2
Returns a new Point nearest to aPoint that is on a line from point1 to point2.

Inside Smalltalk



l'llll .

The normal and unit vector of a point and the dot product of two points can also be
computed.

• aPoint dotProcIuct: anotherPoint
Returns the dot product of aPoint and anotherPoint.

• aPoint nol'l1Ull
Returns a new point representing the unit vector rotated 90 degrees toward
the y-axis.

• aPoint unitVector
Returns aPoint scaled to unit length.

9.2.11 Miscellaneous Rectangle Operations

Three methods deal with testing for spatial relationships between points and rectangles. They
answer the following queries: Is a rectangle contained within another? Is a point within a
rectangle? Do two rectangles intersect? These operations are particularly important since
some of the later methods work successfully only in prescribed situations. These testing
methods can be used to test the applicability of a message before it is sent

•

•

•

aRectangle contain.: anotherRectangle
Returns true if anotherRectangle is equal to or is contained within
aRectangle.

aRectangle contaiMPoint: aPoint
Returns true if aPoint is within aRectangle.

aRectangle int.....cta: anotherRectangle
Returns true if aRectangle and anotherRectangle intersect.

The methods expandBy:, insetBy:, and insetOriginBy:cornerBy: are concerned
with expanding and contracting rectangles by given amounts. Each method can take scalars,
points, or rectangles as arguments except for insetOriginBy:cornerBy: which allows only
scalars and points as arguments. The method amountToTranslateWithin: calculates the
amount by which one rectangle must be moved to lie within another. The method areaOut
side: returns a collection of rectangles that lie inside one rectangle but not within its inter
section with a second rectangle. The intersection of two rectangles is found through in
tersect:, while the smallest rectangle that contains two rectangles is found using merge:.

Note that any message sent must be appropriate for the rectangles involved. For
example, intersect: only returns a valid result if the two rectangles do intersect. In the
examples that follow, assume the following:

rectangle1 ~ 100@100 corner: 200@200
rectangle2 ~ 150@150 corn.r: 250@250

• aRectangle .xpandBy: delta
Returns a new rectangle that expands aRectangle by delta - delta is a
rectangle, point, or number.

rectangle1 expandBy: 10 => 90@90 corner: 210@210
rectangle1 expandBy: 10@10 => 90@90 corner: 210@210
rectangle1 expandBy: (10@10 corner: 20@20) => 90@90 corner: 220@220

Chapter 9 The Graphical Classes 389



•

•

•

•

•

•

aRectangle insetBy: delta
Returns a new rectangle that contracts aRectangle by delta - delta is a
rectangle, point, or number.

rectangle1 insetBy: 10 ~ 110@110 corner: 190@190
rectangle1 insetBy: 10@10 ~ 110@110 corner: 190@190
rectangle1 insetBy: (10@10 corner: 20@20) ~ 110@110 corner: 180@180

aRectangle insetOriginBy: originDelta cornerBy: cornerDelta
Returns a new rectangle that contracts aRectangle by independently
contracting the origin and corner by specified amounts. Arguments can be
points or scalars.

rectangle1 insetOriginBy: 10 cornerBy: 10 ~ 110@110 corner: 190@190
rectangle1 insetOriginBy: 10@10 ~ 110@110 corner: 190@190

aRectangle ernountToTrenaleteWithin: anotherRectangle
Returns a point, delta, such that aRectangle + delta is forced to be inside
anotherRectangle.

aRectangle ereesOutside: anotherRectangle
Returns an ordered collection of rectangles made up of the parts of
aRectangle that lie outside anotherRectangle. If the rectangles do not
intersect, aRectangle is returned as the result.

rectangle1 ereesOutside: rectangle2 ~
OrderedCollection (100@100 corner: 200@150 100@150 corner: 150@200)

aRectangle intersect: anotherRectangle
Returns a rectangle equal to the intersection of aRectangle and
anotherRectangle. The rectangles must intersect for a valid response.

rectangle1 intersect: rectangle2 ~ 150@150 corner: 200@200

aRectangle merge: anotherRectangle
Returns the smallest rectangle that contains both aRectangle and
anotherRectangle.

rectangle1 merge: rectangle2 ~ 100@100 corner: 250@250

9.2.12 Transfonning Points and Rectangles

Transfonning Points

Points may be translated, scaled, and transposed to produce a new point. Note that scaleBy:
must have a point as argument, while translateBy: accepts either a point or a number.

390

• aPoint sceleBy: scalePoint
Returns a new point whose x and y values are derived by scaling the x and
y values of aPoint by scalePoint.

100@100 sceleBy: 3 ~ error
100@100 sceleBy: 2@3 ~ 200@300

Inside Smalltalk



•

•

aPoint tranalateBy: deltaAmount
Returns a new point whose x and y values are derived by translating the x
and y values of aPoint by deltaAmount (a point or a number).

1OO@100 tranalat.By: 50 ~ 150@150

100@1oo tranalat.By: 5O@-50 ~ 150@50

aPoint trenapoee
Returns a new point whose x and y coordinates are those of aPoint but

interchanged.

200@100 tranapo.. ~ 100@200

Transfonning Rectangles

Rectangles support scaling and a number of ways of moving and translating. It is important
to note which methods return new points and which return the modified receiver. Note also
that some methods will accept numbers as arguments where a point is normally accepted
while others do not. In the examples that follow. assume the following:

rectangle1 ~ Rectangle origin: 100@1oo corner: 200@200

•

•

•

•

aRectangle acal.By: scaleFactor
Returns a new rectangle formed by scaling aRectangle by scaleFactor (a
point or a number).

rectangle1 acal.By: 3 ~ 300@300 corner: 600@600

rectangle1 acal.By: 2@3 ~ 200@200 corner: 400@600

aRectangle tranalateBy: deltaAmount

Returns a new rectangle formed by translating aRectangle by deltaAmount

(a point or a number).

rectangle1 tranalat.By: 50 ~ 150@150 corner: 250@250
rectangle1 tranalat.By: 5O@1oo ~ 150@200 corner: 250@300

aRectangle align: aPoint with: anotherPoint

Returns a new rectangle formed by translating aRectangle by an amount
equal to 'anotherPoint - aPoint' - as a result, aPoint in the rectangle is

displaced so as to be at anotherPoint after the alignment.

rectangle1 align: 150@150 with: 200@200 ~ 150@150 corner: 250@250

aRectangle mov.By: aPointOrNumber
Modifies aRectangle so that it is translated by aPointOrNumber.

rectangle1 moveBy: 50 ~ 150@150 corner: 250@250
rectangle1 moveBy: 50@50 ~ 150@150 corner: 250@250

Chapter 9 The Graphical Classes 391



• aRectangle moveTo: aPoint
Modifies aRectangle so that its top left corner is aPoint. The argument must
be a point.

rectanglel moveTo: 50 ~ error
rectanglel moveTo: 50@50 ~ 50@50 corner: 150@150

9.3 CREATING AND MANIPULATING GRAPHIC IMAGES

The two fundamental classes for creating and manipulating graphical images in Smalltalk are
classes Form and BitBlt. Forms are used to represent images, while instances of class
BitBlt represent operations on forms. At this point it may seem contradictory to say that
instances of BitBlt represent operations. We will explain the rationale behind this design
decision in a moment. The name BitBlt is derived from a powerful bit-boundary block
transfer instruction of that name found on one of the ftrst machines to support Smalltalk, the
Xerox Alto. RasterOp is a synonym for BitBlt in many graphics systems. All text and
graphical operations in Smalltalk can be described in terms of copying some source form to
a destination form. For example, displaying a path involves copying a form onto the display
at each point on the path. Similarly, displaying a text string involves copying the form
representing each character in the string onto the display in sequence. In both of these
examples, the destination form is the display. It is important to note that BitBlt makes no
distinction between internal (memory-based) forms and external (display-based) forms.

9.3.1 Creating Images with Fonns

Forms consist of a height, a width, an offset, and a bitmap that stores the image. For
example, suppose we wished to construct an iconic form resembling a bug (see Fig. 9.7).

The following expression creates a form with width and height 16, an array of bits to
display the required iconic shape, and an offset -7@-7. For further details on the creation of
forms see Sec. 9.6.2.

bugt- Form
extent: 16@16
fromArrey: #(

2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO
2r000100000000l000
2r0001000ll000l000
2rOOOll00ll00ll000
2rOOOOllllllll0000
2rOOOllllllllll000
2rOOOllllllllll000
2rOOOllllllllll000
2rOOOllllllllll000
2rOOOOllllllll0000
2rOOOll000000ll000
2r000100000000l000
2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOOl

offset: -7@-7.

392 Inside Smalltalk



normal view

111!lll'

expanded view

Figure 9.7 A bug fonn.

The offset of a form is the amount by which the form should be offset when it is
displayed or when its position is tested. Every form has an assumed origin at the top left
hand comer of the image. When a form is sent a message to display itself, for example,

bug displayAt: ISO@1S0

the form is displayed with its origin at the specified point plus the offset; i.e., 143@143.
The bug is therefore displayed so that its center is located at the point ISO@IS0. The ability
to specify an offset is particularly useful when defining cursors that have logical origins or
"hot spots." For example, the logical origin of the crosshairs cursor is at the center of the
crosshairs.

9.3.2 Manipulating Images with BitSlts

Instances of class BitBlt describe a single graphical operation. As we mentioned earlier, it
may seem contradictory to say that graphical images are manipulated by instances of class
BitBit. Operations on objects are normally described as methods, not by instances of a class.
Fundamentally, an instance of BitBlt specifies a modification to some destination form based
on some source form. In the simplest case, the source form may simply be copied to the
destination form. However, many other useful operations are special cases of the copy
operation. For example, clearing the display screen, inverting a rectangular area of the
display to provide feedback to a user operation, or moving a graphics cursor on the display
while retaining the original contents of the display can all be described in terms of copy
operations. For a very general copy operation, the number of parameters that must be
specified to fully describe the operation is large. However, very often, large numbers of copy
operations are carried out in a context where most of these parameters remain the same. As a
result, it was decided to use instances of a class (BitBlt) rather than a method to represent
copy operations. The protocol for BitBlt supports modification of individual parameters to
the copy operation. The copy operation is carried out when a copyBits message is sent to an
initialized instance of class BitBIt. Method copyBits is a primitive operation that can be
optimized to take advantage of any special bit copying hardware that may be available on the
host computer. Operation copyBits is so fundamental that small increases in its performance
have dramatic effects on the responsiveness of the Smalltalk user interface as a whole.

The parameters involved in specifying a BitBlt operation are

source form The source form - all or part of which is to be copied.

Chapter 9 The Graphical Classes 393



destination form

halftone form

combination rule

source origin

extent

destination origin

The destination form - all or part of which is to be
modified by the copy operation.

A 16 by 16 mask or halftone form used to fill areas with
textures or patterns.

A rule (an integer) that dictates how pixels in the modified
destination form are to be produced from the source form
and the original contents of the destination form. There are
sixteen possible combination rules.

Together with the extent, the source origin specifies the
part of the source form to be copied.

See above.

Together with the extent, the destination origin specifies
the part of the destination form to be modified.

clipping rectangle Notwithstanding the specification for the destination form,
the clipping rectangle specifies a rectangular region outside
of which no modification of the destination form can take
place.

Fig. 9.8 illustrates the use of these parameters to carry out a simple copy operation
from a source form to a destination form. No halftone form is required for a simple copy.
The area of the source form to be copied is specified by the source form, the source origin
(a point), and extent (a point) parameters. A combination rule (an integer) is chosen to
specify that pixels in the source are to replace (or be copied over) corresponding pixels in the
destination. The area of the destination form to be modified is the same size as the source to
be copied and is described by providing the destination origin (a point). As well as
performing a copy operation, BitBlt also performs clipping. The area of the destination form
modified by a copy operation is the intersection of the clipping rectangle (a rectangle) and
the area specified by the destination origin.

A primitive copy is carried out in Smalltalk by creating an instance of class BitBlt and
sending it a copyBits message. For example, an alternative method of displaying the form
bug on the display at location 150@150 would be

(BitBlt
deatForm: Display
eourceFonn: bug
halftoneFonn: nil
combinetionRule: Form over
de.tOrigin: 150@150
aourceOrigin: O@O
extent: bug extent
clipRect: Display boundingBox

lcopyBi1s

The message Form over selects combination rule 3, the replace or "copy over" mode
of copying. The message extent to a form returns the size (a point) of the form. The

394 Inside Smalltalk



1 I !I~II

message boundingBox, sent to Display, returns a rectangle specifying the size of the
display. The resulting copy operation is therefore clipped (if necessary) to the display screen.
Note that there is a subtle difference between using copyBits to display the bug and using
the form message displayAt:. The display message for forms handles the form offset while
the copyBits operation for class BitBlt does not.

Source Formr---7.-;:======::::;-----,

Portion or Source Form to be copied specified
by Source Origin and Extent

Destination Form

Portion or Destination Form to be modified
specified by Destination Origin and Extent

Modifications to the Destination Form are only
performed within the Clipping Rectangle

Figure 9.8 Copying from a source form to a destination form.

Chapter 9 The Graphical Classes 395



Using Halftone Fonns

Halftone fonns are most commonly used to fill fonns with textures or patterns. They are 16
by 16 fonns that, when used in place of the source fonn for a BitBlt, replicate themselves to
fill the destination fonn with the halftone pattern. For example, the standard Smalltalk
display background could be fonned by replicating a gray halftone pattern with Display as
the destination fonn.

The 7 common halftone fonns (see Fig. 9.9) are stored as class variables of class
Fonn and may be accessed using the class messages black, veryDarkGray, darkGray,
gray, IightGray, veryLightGray, and white.

II II II II
Figure 9.9 Halftone forms.

Combining Source and Halftone Fonns

Nonnally, either a source fonn or a halftone fonn is used in a BitBlt operation. However, if
both are supplied then the two fonns are "anded' together to fonn the composite source fonn
for the BitBlt operation. For example, if we supply a bug as the source fonn and a gray
halftone as the halftone form, the composite fonn will be a halftone bug, as illustrated in
Fig. 9.10.

II

Figure 9.10 Adding texture to the bug.

Halftones used in this way are often known as masks, since only those pixels in the
source that correspond to black pixels in the halftone appear in the composite source fonn;
i.e., the halftone acts as if it were a mask placed on top of the source fonn. The effects of the
four possible combinations of source and halftone fonns are shown below.

Parameters Supplied

Source form only
Halftone form only
Source and halftone forms

NO source or halftone form

Using Combination Rules

Compoeite Source Supplied to BitBIt

Source Form
Halftone Form
Source AND Halftone

(source bits masked by halftone pattern)
Black Form

(a black halftone form is used as the source)

Most BitBlt operations are simple copies where the source pixels (sometimes masked)
replace the corresponding pixels in the destination form. This kind of copy operation makes
use of only the pixels in the source to determine the modified destination pixels. Other

396 Inside Smalltalk



'IQ'

useful graphical operations are obtained if we allow the original contents of the destination
form to be included in determining how the destination form is to be modified; i.e., in the
general case the copy operation is a function of the corresponding pixels in the source form
and the original destination form. Several useful combinations and their uses are described
below. In each case, we show the results of applying the combination using a double size
bug as the source form and a very light gray background form as the destination form.

Mode

and

erase

Description

A copy operation where corresponding pixels in the source and destina
tion forms are 'anded' together to produce the modified destination form.

................................

~~~ff~I
Figure 9.11 And mode.

A copy operation where black pixels in the source erase (or set to white)
corresponding pixels in the destination form.

over

under

Figure 9.12 Erase mode.

The standard and most used copy operation where source form pixels
replace or copy over the corresponding destination form pixels.

Figure 9.13 Over mode.

Under mode is so called because it allows a source form to be painted
"underneath" a destination form. Black pixels in the source form are
painted into the corresponding pixels in the source form; i.e., it is an or
operation applied to the source and the destination forms to produce the
modified destination form. This is useful when painting a character onto
a display background where any white pixels surrounding the character in
the source form are not to be copied.

reverse
Figure 9.14 Under mode.

Reverse mode is so called because it allows reversible changes. It is most
often used to display temporary images such as cursors over an already

Chapter 9 The Graphical Classes 397

existing image. In this mode, the modified destination is formed by
taking the exclusive-or of the source (the temporary image) and the
destination. The effect is to superimpose the temporary image on top of
the existing image. Pixels in the temporary image appear black or white
in the modified destination depending on the underlying pixel in the
original destination form. If the operation is repeated, the temporary
image is removed leaving the original destination form unaltered. This
mode provides an efficient way of moving a cursor across a display
screen, although it has the disadvantage that the underlying screen image
distorts the image of the cursor.

.:.~.:

mm(
Figure 9.15 Reverse mode.

There are sixteen possible combination rules or different ways of stating how each
pixel in a source form is to be combined with each pixel in the destination form to produce a
new destination pixel. Each of the diagrams in Fig. 9.17 illustrates a different combination
rule. For each rule, the integer representing that rule is given together with the common
name (if any) for the rule. To avoid having to remember rule numbers, numbers for common
combination rules can be obtained by sending messages and, erase, over, reverse, and
under to class Form. As an illustration of how to interpret each diagram, consider the
example of mode reverse shown below. The top two rectangles depict the source and
destination forms before the BitBlt operation is carried out. The bottom rectangle depicts the
destination form after the operation has been carried out. Notice that the bottom rectangle is
formed by taking the exclusive-or of the source form and the original destination form.
Fig. 9.17 was created by modifying class method exampleOne in Form to ignore halftone
forms.

Inverting a Fonn

It is often useful to be able to invert or complement a form as shown in Fig. 9.16. For
example, this is often a convenient way of providing feedback to the user. Smalltalk uses
this technique for highlighting selected text, selected menu items, the label of the active
window, and so on. The invert operation may be efficiently achieved by using a black
halftone mask, no source and reverse mode. In the example below, a black halftone mask is
used with a bug as the destination form.

II

398

Figure 9.16 Inverting a fonn.

Inside Smalltalk

I lUll'

Source Form Destination Form Before

~~/

t
Destination Form After For Mode

Reverse

~~~~
o 1 2 3

and over

~~~T
4 5 6 7

erase reverse under

~~~~
8 9 10 11

~~~~
12 13 14 15

Figure 9.17 BitBlt combination rules.

Chapter 9 The Graphical Classes 399

Painting

Paint mode (or mode 16) is an additional mode used for painting on the display with brushes
of different shapes, sizes, and textures. The brush shape and size is supplied through the
source form, with the halftone form supplying the brush texture. In the general case, this
mode requires two BitBlt operations. The first cuts (or erases) a hole in the destination in the
shape and size of the brush and the second fills the hole with the desired texture pattern. In
Fig. 9.18, a round brush shape is selected with a gray texture pattern. The brush is painted
onto a black destination form. The first stage cuts a circular hole in the result while the
second stage fills the hole with the brush texture.

Source Destination Result

•Brush shape
and size

.0
Halftone

-.41>0'•..,.....

Brush
texture

Destination

o
Figure 9.18 The paint mode.

Result

9.3.3 The Full Protocol for Class BitBlt

In this section, we describe the full protocol supported by class BitBIt. Smalltalk
programmers do not often have to consider operations at the individual BitBlt operation
level. All graphical classes provide high level implementations of fundamental operations
that indirectly call the primitive BitBlt copyBits operation.

Creating Instances of Class BitBlt

Instances of class BitBlt are created using a method that supplies each of the eight parameters
required to describe a BitBlt operation.

400

• BitBlt
deatForm: destinationForm
aourceForm: sourceForm
helftoneForm: aHalfToneForm
combinationRule: rulelnteger
deatOrigin: destinationOrigin
aourceOrigin: sourceOrigin
extent: extent
clipRect: aClippingRectangle

Inside Smalltalk

II ~II'

Copying and Une Drawing

The copyBits operation was described at length in Section 9.3.2. It is important to realize
that many graphic entities are displayed as repeated calls to the basic copyBits operation on a
BitBlt. Many of these entities, for example graphics paths and text, are described in higher
level graphical classes. BitBlt also provides the basic protocol for drawing lines on the
display. Lines are drawn by repeatedly sending the copyBits message to a BitBlt. The
destination origin of the BitBlt is modified before each copyBits message is sent, so that the
destination takes on the values of points lying on the line between the specified start and
endpoints. The points at which the copyBits operation is to take place are calculated using
the line drawing algorithm of Bresenham (IBM Systems Journal, Vol. 4, No.1, 1965). By
modifying the parameters of the BitBlt instance, lines of different thicknesses and textures
may be generated easily.

•

•

aBitBIt eopyBits
For a full description of this operation. see Section 9.3.2.

aBitBlt drewFrom: startPoint to: endPoint
Draws a line from startPoint to endPoint by repeatedly sending the copyBits
message to aBitBlt. Bresenham's algorithm is used to determine points
along the line at which the copyBits operation should be applied. The style
of line is governed by the parameters of aBitBlt.

Accessing and Modifying

Class BitBlt allows modification of all the variables that make up the specification for a
BitBlt operation. For each of the source and destination forms, the form along with its origin
and the x and y coordinates of the origin may be individually set. The clipping rectangle may
also be modified. The operations sourceRect: aRectangle and destRect: aRectangle provide
a shorthand way of setting the height and width of the extent parameter and the source or
destination origins respectively.

Note that the only parameters of a BitBlt that can be directly accessed are the
destination and clipping rectangles.

• aBitBlt d••tForm: aForm

• aBitBlt destOrigin: aPoint

• aBitBlt destReet

• aBitBlt d••tReet: aRectangle

• aBitBlt de.tX: anlnteger

• aBitBlt de.tV: anlnteger

• aBitBlt .0ureeForm: aForm

• aBitBlt .0ureeOrigin: aPoint
• aBitBlt soureeReet: aRectangle
• aBitBlt .0urc.X: anlnteger

• aBitBlt .0urceV: anlnteger

• aBitBlt clipHeight: anlnteger

• aBitBlt clipWidth: anlnteger

Chapter 9 The Graphical Classes 401

•
•
•
•

•
•
•
•

aBitBlt clipRect

aBitBlt clipRect: aRectangle

aBitBlt clipX: an Integer

aBitBlt clipY: anlnteger

aBitBlt combinetionRule: anlnteger

aBitBlt mesk: aForm

aBitBlt height: anlntegerHeightForExtent

aBitBlt width: anlntegerWidthForExtent

9.4 DISPLAYABLE OBJECTS

9.4.1 An Overview of the Graphics Classes

The abstract class DisplayObject describes the protocol supported by objects that can
display themselves. Fig. 9.19 displays the major Smalltalk graphical classes and their
inheritance relationships.

The five immediate subclasses of class DisplayObject are

402

DisplayMedium

DisplayText

Path

InfiniteForm

OpaqueForm

Supports protocol for objects that can both act as a canvas
on which images can be painted and that can also paint
themselves onto a medium. In addition, DisplayMedium
supports protocol for coloring (or texturing) images and for
bordering images with textures. Class Form, the most used
class for graphic images, is a subclass of DisplayMedium
and inherits its protocol for coloring and bordering. Form
has two subclasses, Cursor and DisplayScreen.

Used in two different ways by the system: as a container for
textual characters managed by a ParagraphEditor and as a
container for cached forms that can be used to display the
characters efficiently. The use of display text in the context
of text windows is discussed in Volume Two.

The basic superclass for the classes that generate trajectories
or paths like lines and circles. The instance variable 'form'
is the "brush" used for displaying the Path. The image is
displayed by copying the form at each point in the path.
Path has subclasses Are, Curve, Line, LinearFit, and
Spline. Circle is defined as a subclass of Arc.

A form obtained by replicating a pattern indefinitely in all
directions.

A form that includes a shape form as well as a figure form.
The shape form indicates what part of the background
should get occluded during display so that patterns other
than black in the figure form will still appear opaque.

Inside Smalltalk

I I nil::

Figure 9.19 The major Smalltalk graphical classes.

9.4.2 Standard Protocol for Displayable Objects

The abstract class DisplayObject describes displayable objects that are able to:

• display themselves on a display medium with and without transfonnations

• compute a containing bounding box

• display themselves on a display medium with and without transfonnations

• support scaling and translation operations, and support an offset.

Subclasses of DisplayObject actually divide themselves into two groups: those that
when asked to transfonn themselves create a new object (e.g., class Path and its subclasses)
and those that modify themselves by maintaining an explicit offset (e.g., class Form)
Because of this dichotomy, the default implementations of some methods in DisplayObject
are overridden by some subclasses.

The Generic Display Operation

Every subclass of DisplayObject must support the generic display message:

• aDisplayObject displayOn: aDisplayMedium at: aDisplayPoint
clippingRectangle: clipRectangle rule: rulelnteger mask: aForm

Displays aDisplayObject at aDisplayPoint on aDisplayMedium using
combination rule rulelnteger, halftone mask aForm, and clipping rectangle
clipRectangle.

Chapter 9 The Graphical Classes 403

The link to the underlying BitBlt copyBits operation is clear. Earlier, we used the
copyBits operation directly to display the fonn bug on the display at location 150@150
using the expression

bug displayAt: 150@150

An alternative expression using the generic display operation implemented in class
Fonn (a subclass of DisplayObject) would be

bug
displayOn: Display
at: 150@150
clippingRectengle: Display boundingBox
rule: Form over
inial<: Form bleck

Display Protocol with Default Specifications

The standard copy operation is so common that alternative protocol is supported to provide
default values for selected arguments. When arguments are omitted, defaults are O@O for the
point at which the object should be displayed, the entire display screen for the clipping
rectangle, over for the combination rule, and a nil or black mask for the halftone mask.

The display protocol supported requires the programmer to override only those
arguments that are different from the default values.

•

•

•

•

aDisplayObject displayOn: aDisplayMedium
Displays aDisplayObject at the top left corner of aDisplayMedium.

aDisplayObject displayOn: aDisplayMedium at: aDisplayPoint

Displays aDisplayObject at aDisplayPoint on aDisplayMedium.
aDisplayObject displayOn: aDisplayMedium at: aDisplayPoint
clippingRectengle: clipRectangle

Displays aDisplayObject at aDisplayPoint on aDisplayMedium with clipping
rectangle clipRectangle.

aDisplayObject displayOn: aDisplayMedium at: aDisplayPoint rule: rulelnteger
Displays aDisplayObject at aDisplayPoint on aDisplayMedium with rule
rulelnteger.

The following commonly used protocol assumes that the display medium is the global
variable Display.

•

•

aDisplayObject display
Displays aDisplayObject at the top left corner of the display screen.

aDisplayObject displayAt: aDisplayPoint
Displays aDisplayObject at aDisplayPoint on the display screen.

Display Protocol with Transfonnations

Class DisplayObject also supports protocol for displaying objects where a transfonnation is
to be applied as part of the display process. Display transformations consist of a scale and a
translation and are instances of class WindowingTransformation (see Volume 2).

404 Inside Smalltalk

The most general display message which involves a display transformation is shown
below:

• aDisplayObject displeyOn: aDisplayMedium trensformetion: displayTransformation

clippingRecungle: clipReetangle elign: alignmentPoint with: relativePoint

rule: rulelnteger mesk: aForm

Displays aDisplayObject on aDisplayMedium using combination rule

rulelnteger. halftone mask aForm. and clipping rectangle clipRectangle.

What is displayed is determined by the scale and translation of the

displayTransformation and the alignment and relative points.

The actual implementation of the method depends on the particular subclass of
DisplayObject involved. As an example of a display operation involving a transformation,
consider the following. Suppose we have a 100 by 100 form, aForm, that is to be doubled in
size and translated by the amount 100@ 100. Suppose also that the alignment point is
150@150 and the relative point is 200@200.

aForm
displeyOn: Display
trensformetion: IWindowingTransformation seele: 2@2 trensletion: 100(100)
clippingRectangle: Display comput8BoundingBox
elign: 150@150
with:5O@50
rule: Form over
me_: Form bleck

A display transformation effects a transformation from one coordinate system (the
source coordinate system) to another (the destination coordination system). Fig.9.20(a)
shows the coordinate system of the source form. Note that the relativePoint, 50@50, is
specified in the source coordinate system. Fig. 9.20(b) shows the transformed form in the
destination coordinate system. The form has been scaled by a factor of two and translated by
100 in both x and y. The final display position of the transformed form is determined by
translating by an amount equal to the difference between the alignment point 150@150and
the transformed relative point 200@200. Note that the alignment point is specified in the
destination coordinate system. Fig. 9.20(c) shows the final displayed form.

We have described the display with transformation operation supported by class Form.
The default implementation for this method provided in class DisplayObject assumes that
the object involved cannot be scaled. Otherwise, the implementation is identical. This
method could well have been made the responsibility of subclasses.

Alternative methods are available that support default values for particular arguments.
They are listed below.

•

•

aDisplayObject displeyOn: aDisplayMedium trensformetion: displayTransformation
clippingRectengle: clipRectangle

aDisplayObjeet displeyOn: aDisplayMedium trensformetion: displayTransformation
clippingRectengle: clipRectangle elign: alignmentPoint with: relativePoint

Chapter 9 The Graphical Classes 405

(a) Source Coordinate System (b) Destination Coordinate System

x
300

alignmentPoint

100

y

(0,0)

100

relativePoint

100

y

_....................---.~x(0,0)

transformed relativePoint

(c) Destination Coordinate System

(0,0) 50

50

250

250
x

y

Figure 9.20 Display transformations.

• aDisplayObject displayOn: aDisplayMedium transformation: displayTransformation
clippingRectangle: clipRectangle fixedPoint: aPoint

No translation is involved with this method.

• aDisplayObjeet displayOn: aDisplayMedium transformation: displayTransformation
clippingRectangle: clipRectangle rule: rulelnteger mask: aForm

No translation is involved with this method.

406 Inside Smalltalk

Offsets, Bounding Boxes, and Transfonnations on
Display Objects

As mentioned earlier, class DisplayObject assumes that instances of any subclass will
support an offset, be able to compute a bounding box, and scale and translate themselves.
All existing subclasses support the following protocol relating to the bounding box of a
displayable object. A bounding box is a rectangle that completely encompasses the object.
Bounding boxes can be used to make fast decisions concerning the intersection of objects;
e.g., for clipping purposes. Each subclass must provide an implementation for the method
computeBoundingBox. The complete protocol for manipulating bounding boxes is

•

•

•

•

•

aDisplayObject computeBoundingBox
Must be implemented by all subclasses.

aDisplayObject boundingBox
Returns the bounding box of the object.

aDisplayObject extent
Returns the extent (a point> of the bounding box of the object.

aDisplayObject height
Returns the height of the bounding box of the object.

aDisplayObject width
Returns the width of the bounding box of the object.

Class DisplayObject supports the notion of storing an offset with the object. The
offset represents the amount by which the object should be moved when it is displayed or
when its position is tested. Display objects that maintain offsets, for example forms and
cursors, add the offset to any specified display position before displaying themselves. The
following protocol is supported.

•

•

•

•

aDisplayObject off..t

The amount by which aDisplayObject should be offset when it is displayed
or its position tested. This method must be supplied by all subclasses.

aDisplayObject off..t: aPoint
Sets the offset associated with aDisplayObject to aPoint.

aDisplayObject rounded
Modifies the offset of aDisplayObject to consist of integer coordinates only.

aDisplayObject reletiveRectangle
Returns a rectangle with origin equal to the offset of aDisplayObject and
extent equal to the extent of the bounding box of aDisplayObject.

In addition, opemtions are supported to scale and translate the offset of a display object.

•

•

•

aDisplayObject eceleBy: aPoint
Scales the offset of aDisplayObject by aPoint.

aDisplayObjeet trenaleteBy: aPoint
Translates the offset of aDisplayObject by aPoint.

aDisplayObject elign: alignmentPoint with: relativePoint
Translates the offset of aDisplayObject by an amount equal to relativePoint
- alignmentPoint.

Chapter 9 The Graphical Classes 407

Simple Path Animation

Class DisplayObject also supports protocol for creating very simple animation sequences.
The basic capability provided is to be able to move an image around on the display while
continuously restoring the background. See class method example in OpaqueForm for an
example. The method follow: 10cationBlock while: durationBlock continuously displays an
image at locations supplied by evaluating locationBlock as long as durationBlock evaluates
true. For example, the code below attaches the object named anImage to the position of the
cursor. As the cursor moves (the cursor itself is not displayed since its image has been made
blank), anImage is displayed at the cursor point. Whenever the image is displayed at a new
position, the previous background is restored. The process continues until a mouse button is
depressed (details of classes Cursor and InputSensor are provided later in this chapter).

Cursor blank showWhile: [
anlmage follow: [Sensor curaorPointl while: [Sensor noButtonPreuedll

•

•

•

aDisplayObject follow: locationBlock while: durationBlock

See above.

aDisplayObject backgroundAt: location

Returns a form containing the background if aDisplayObject were to be

displayed at location (a point). The form remembers location in its offset.

aDisplayObject moveTo: newLocation restoring: backgroundForm

Moves aDisplayObject from its current location on the display to a new

location (a point) restoring the original background when the object is

moved; backgroundForm must contain the background to be restored and

have the current location stored as its offset.

9.4.3 Summary

In summary, any subclass of class DisplayObject must implement the generic display
operations, a method to compute the bounding box, and a method to return the offset of the
object.

9.5 DISPLAY MEDIUMS

9.5.1 Display Mediums as Canvas and Brosh

As we have seen earlier, objects of class DisplayMedium are display objects that act as a
canvas for painting images. The display primitives of display objects have a display medium
as their canvas. However, objects of class DisplayMedium can also paint themselves onto a
medium; Le., they support the display object display protocol themselves.

9.5.2 Coloring and Adding Borders to Images

Class DisplayMedium distinguishes itself from class DisplayObject by providing support for
coloring (or texturing) images and for bordering images with textures. Class Form, the most
used class for graphic images, is a subclass of DisplayMedium and inherits its protocol for
coloring and bordering.

408 Inside Smalltalk

! I II.'

Coloring Images

Class DisplayMedium allows an image to be filled with a textured pattern. Methods for six
standard textures are directly provided. For example, if we have a 100 by 100 form named
testForm, sending the message darkGray will propagate a dark gray texture pattern across the
whole form (see Fig. 9.21(a». Cases (b) and (c) are discussed below.

testForm darkGray

(a) (b)

Figure 9.21 Coloring images.

(c)

•
•
•
•
•
•
•

aDisplayMedium black

aDisplayMedium veryDarkGray

aDisplayMedium darkGray

aDisplayMedium gray

aDisplayMedium lightGray

aDisplayMedium veryLightGray

aDisplayMedium white

Coloring Part of an Image

Alternatively, a specified rectangular area of a form can be filled with the following protocol.
For example, to fill only the top quarter of the form with a dark gray texture (see
Fig. 9.21(b», use the expression

testForm darkGray: (O@O corner: 5O@SOI

•
•
•
•
•
•
•

aDisplayMedium black: aRectangle

aDisplayMedium veryDarkGray: aReetangle

aDisplayMedium darkGray: aRectangle

aDisplayMedium gray: aRectangle

aDisplayMedium IightGray: aRectangle

aDisplayMedium veryLightGray: aRectangle

aDisplayMedium white: aRectangle

Chapter 9 The Graphical Classes 409

The primitive method for coloring an image is fill: aRectangle rule: anlnteger mask:
aHalIToneForm. This allows an image to be filled with any halftone mask and any BitBlt
combination rule. This method must be provided by all subclasses of DisplayMedium. The
methods fill: aRectangle and fill: aRectangle mask: aHaIIToneForm are also provided. For
example, to fill the top left quarter of testForm with the form bug (see Fig. 9.21(c)), use the
expressions

testForm darkGray.
testForm fill: (O@O extent: 5O@SO) mask: bug

The fill protocol consists of the following:

•

•

•

aDisplayMedium fill: aRectangle
Fills the rectangular region of aDisplayMedium specified by aRectangle

with the default background. gray.
aDisplayMedium fill: aRectangle mask: aHalfToneForm

Fills the rectangular region of aDisplayMedium specified by aRectangle
with the halftone pattern given by aHalfToneForm.

aDisplayMedium fill: aRectangle rule: rulelnteger mesk: aHalfToneForm
Fills the rectangular region of aDisplayMedium specified by aRectangle

with the halftone pattern given by aHalfToneForm according to the
combination rule rulelnteger. This method must be provided by all

subclasses.

Inverting Allor Part of an Image

Methods are also supported to invert or complement bits in an image. For example. to fill
testForm with the form bug and then reverse only the bottom right quarter of the form (see
Fig. 9.22), use the expression

testForm fill: (O@O) extent: (100@100) mask: bug.
testForm reverse: (SO@50extent: 5O@501

Figure 9.22 Reversing images

The reverse protocol consists of the following.

410

•

•

aDisplayMedium rever_
Inverts or complements all bits in aDisplayMedium.

aDisplayMedium reverse: aRectangle

Inverts or complements all bits in the rectangular area of aDisplayMedium
specified by aRectangle.

Inside Smalltalk

•

r I 'f WII'

aDisplayMedium reverse: aRectangle mask: aHalfToneForm
Inverts or complements all bits in the rectangular area of aDisplayMedium

specified by aRectangle with mask aHalfToneForm.

Adding Borders to Images
The second major contribution of class DisplayMedium is to support protocol for placing a
rectangular patterned border into an image. The border is specified by a rectangle that
describes the external boundary of the border and a width for each of the four sides of the
border. For borders with equal width on all sides, use border: aRectangle width: borderWidth
and border: aRectangle width: borderWidth mask: aHalIToneMask. For example, the
following expression places a black border of width 16 into testForm, where the external
boundary of the border is given by the rectangle with origin 20@20 and extent 60@60 (see
Fig.9.23(a».

testForm veryLightGray; border: (20@20extent: 6O@601 width: 16 mask: Form black

For unequal border widths, use border: aRectangle widthRectangle: insets mask:
aHalIToneMask. In this case, the left border width is given by the x coordinate of the origin
of the rectangle insets, the top border width by the y coordinate. The right border width and
bottom border width are given by the x and y coordinates of the corner point of the rectangle
insets. The following example specifies a left width of 20, a top width of 10, a right width
of 10, and a bottom border width of 20 (see Fig. 9.23 (b».

testForm veryLightGray
testForm

border: (20@20 extent: 6O@601
widthRectengle: (20@10 corner: 10@201
me8k: Form bleck

The bordering protocol consists of the following:

•

•

•

•

aDisplayMedium border: aRectangle width: borderWidth
Modifies aDisplayMedium to have a black border where the external
boundary of the border is given by aRectangle and the width of the border

is borderWidth.

aDisplayMedium border: aRectangle width: borderWidth mask: aHalfToneForm

Modifies aDisplayMedium to have a border where the external boundary of

the border is given by aRectangle and the width of the border is

borderWidth. The color of the border is given byaHalfToneForm.
aDisplayMedium border: aRectangle widthRectengle: insets mask: aHalfToneForm

Modifies aDisplayMedium to have a border where the external boundary of

the border is given by aRectangle and the color of the border is given by
aHalfToneForm. The left, top, right, and bottom widths of the border are
given by the left, top, right, and bottom of widthRectangle.

aDisplayMedium border: aRectangle widthRectengle: insets
mask: aHalfToneForm clippingBox: clipRectangle

Modifies aDisplayMedium to have a border where the external boundary of

the border is given by aRectangle and the color of the border is given by
aHalfToneForm. The left. top, right. and bottom widths of the border are

given by the left. top, right, and bottom of widthRectangle. Modifications
occur only within the clipping rectangle clipRectangle.

Chapter 9 The Graphical Classes 411

I·::::::·:::::::::::::::::::::::::::::::':·:":.:

~~~~~~~~~~ ~~;~~~~~
:::::::::: ::::::::.......... . ........... . ..................................................................................." ...................................................:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.

(a) (b)

Figure 9.23 Bordering images.

9.5.3 Bit Copying and Drawing Unas

All subclasses of DisplayMedium must implement the following two fundamental opera
tions: the bit copying operation copyBits:from:at:clippingBox:rule:mask: and the line
drawing operation drawLine:to:clippingBox:rule:mask:.

•

•

aDisplayMedium copyBita: sourceRectangle from: sourceForm et: destOrigin
clippingBox: clipRectangle rule: rulelnteger rneak: aHalfToneForm

Must be implemented by all subclasses.

aDisplayMedium drewLine: beginPoint to: endPoint clippingBox: clipRectangle

rule: rulelnteger rneak: aHalfToneForm
Must be implemented by all subclasses.

9.6 FORMS

As described in Section 9.3 .1, instances of class Form represent basic graphical images in
Smalltalk. Forms extend abstract classes DisplayObject and DisplayMedium by providing a
concrete representation for a graphic image. As shown in Fig. 9.24, forms inherit the ability
to display themselves from class DisplayObject and to color and border themselves from
class DisplayMedium. Forms themselves add protocol for creating, editing, and transforming
images. Every form has an assumed origin at the top left-hand comer of the image.

The instance variables associated with a form are

412

height

width

offset

bits

The height (in pixels) of the form.

The width (in pixels) of the form.

The amount (a point) by which a form should be offset
when it is displayed or when its position is tested.

Representation for the graphic image. In implementations
prior to version 2.5, bits was an instance of class
WordArray. In version 2.5, bits is an instance of class
FormBitmap.

Inside Smalltalk



I· I 1111[11'

Class
DisplayObject

Class
DisplayMedium

Class
Form

displaying protocol
display with transformations
compute a bounding box
scanng and translation
support an offset,
coloring images
bordering images
bit copying
drawing nnes,
image creation
editing images
storage of images
image transformations

Figure 9.14 Method inheritance hierarchy for class Form.

9.6.1 Bitmaps

In implementations prior to version 2.5, the representation (bits) of a graphical image was
visible; bits was an instance of class WordArray3, a subclass of ArrayedCollection. The
bitmap associated with a fonn was represented as a WordArray with height rows, where each
row consists of the smallest integral number of 16 bit words required to represent the width
pixels in each row. Thus, the physical bitmap was often larger than the logical size of the
bitmap. For example, suppose we create a form with width 187 and height 69. The physical
bitmap will be an instance of WordArray of length 828. To store each row of 187 bits
requires 12 16-bit words (192 bits); with 69 rows this gives 828 (12 * 69) words. Bitmaps
are stored row by row (or, in graphics terminology, scan line by scan line) with a set bit (1)
indicating a black pixel and an off bit (0) representing a white pixel. The most significant bit
of each word represents the pixel at the least x-coordinate.

In version 2.5, bits are represented as an instance of class FormBitmap. The actual rep
resentation of a FormBitmap is implementation dependent and differs from platform to plat
form. It is not necessary for a user to understand the internal representation. Ifa user accesses
the bitmap of a form by seuding the bits message, the bitmap will be returned as an instance
of class WordArray as was the case with versions prior to 2.5. Additional protocol
(bitsWordat:, bitsWordAt:put: and bitsWordSize) has been added to class Form to al
low manipulation of FormBitmap instances in the same manner as was previously possible
with instances of class WordArray. The bitmap for the form displayed on the screen (an in
stance of DisplayScreen) is an instance of class DisplayBitmap (a subclass of FormBitmap).

3Class WordArray was originally called Bitmap in both version 1 of Smalltalk and in the Orange and
Blue Books.

Chapter 9 The Graphical Classes 413



Instances of class WordArray provide an implementation independent representation for
bitmaps and are used for creating bitmaps from a user supplied array and also for saving and
restoring bitmaps where the restoration may be performed on a different platform.

9.6.2 Creating Fonns

Forms may be created in two basic ways. By specifying the width, height, and bitmap
explicitly or by capturing a form from a rectangular area of the display.

•

•

Form extent: extentPoint

Returns a blank (or whitel form with width and height specified by

extentPoint. The offset is O@O.

Form extent: extentPoint fromArray: anArray offset: offsetPoint

Returns a form with width and height specified by extentPoint, offset

specified by offsetPoint, and bitmap initialized from anArray (a WordArrayl.

It is now possible to elaborate on the creation of the 'bug' form - an example given
earlier in the chapter (see Fig. 9.7). The following expression creates a form with width 16
and height 16, an array of bits to display the required iconic shape, and an offset -7@-7. In
this case, the bitmap is specified using an array of 16 16-bit words with the first word
specifying the bits of the first row or scan line of the bug. Each word is specified as a 16-bit
integer of radix 2. The offset (-7@-7) ensures that when the bug is displayed at a specific
point the bit the eighth bit of the eighth word will be aligned with the display point.

bug+- Form
extent: 16@16
fromArray: #(

2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO
2r0001000000001000
2r0001000110001000
2r0001100110011000
2r0000111111110000
2r0001111111111000
2r0001111111111000
2r0001111111111000
2r0001111111111000
2r0000111111110000
2r0001100000011000
2rOOO1000000001000
2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOOl

off.et: -7@-7.

Alternatively, a Form may be created from the display screen by explicitly specifying
the rectangle from which to generate the form or by interactively using the mouse to frame
the desired rectangular area (with or without a gridding constraint).

414

• Form fromDisplay: aRectangle

Returns a form with width, height, and bitmap obtained from the area of the
display screen specified by aRectangle. The offset is O@O.

Inside Smalltalk



• Form fromUser
Returns a form with width, height,and bitmap specified by the size and
contents of the area of the display screen designated by the user. The offset
isO@O.

• Form fromUaer: aGridPoint
Returns a form with width, height. and bitmap specified by the size and
contents of the area of the display screen designated by the user. The grid
for selecting an area is specified by aGridPoint. The offset is O@O.

Finally, a method is provided to create forms consisting of circular black dots of any
diameter. The offset is calculated so that when a dot is displayed at a particular point, its
center will lie at that point. For example, for a dot ofdiameter 8, the offset would be -4@-4.

• Form dotOfSize: diameter
Returns a form that contains a round black dot with the given diameter. The
offset is such that the form displays with the center of the dot at the
specified display position.

9.6.3 Querying Fonns

The offset, bitmap, and the size of the bitmap associated with a form can all be accessed.
Methods for querying the extent (extent), width (width), and height (height) of a form are
inherited from class DisplayObject. The implementation of these methods in DisplayObject
returns the extent, width, and height of the bounding box of the object. In the case of forms,
the extent of the bounding box is identical to the extent of the form allowing the methods to
be inherited. Additionally, the color of a bit in the bitmap can be queried (valueAt:).

•

•

•

•

•

•

•

•

aForm offaet
Returns the point representing the offset of aForm.

aForm bita
Returns the word array corresponding to the bitmap of aForm.

aForm bitaWordAt: index
Returns the 16-bit word with the given index from the bitmap of aForm
when viewed as an array of 16-bit words.

aForm bitaWordAt: index put: value
Modifies the 16-bit word with the given index in the bitmap of aForm (when
'viewed as an array of 16-bit words) to be aValue (a 16-bit word).

aForm bitaWordSize
Returns the size of the bitmap of aForm viewed as an array of 16-bit words.

aForm size
Same as bitsWordSize

aForm computeBoundingBox
Returns a rectangle representing the bounding box of the form. In the case
of a form, this rectangle has origin O@O and an extent equal to the extent
of the form.

aForm velueAt: aPoint
Returns the color (0 = white. 1 = black) of the bit at aPoint in the form
aForm. The bit at the origin is at O@O; Le., O-based indexing is used.

Chapter 9 The Graphical Classes 415



9.6.4 Modifying Fonns

High-level Modification of Fonns

Forms may be modified using a protocol similar to that used to create them; i.e., by specify
ing the modified width, height, offset, and bit pattern (as a WordArray) or by specifying a
rectangular area on the display from which to extract the modified data for the form.

•

•

•

•

•

•

aForm extent: extentPoint
Changes aForm to a blank (or white) form with width and height specified
by extentPoint and offset O@O.

aForm offset: offsetPoint
Changes the offset of aForm to offsetPoint.

aForm bits: aWordArray
Changes the bitmap of aForm to aWordArray. The size of aWordArray must
be compatible with the size of the bitmap of aForm

aForm extent: extentPoint offset: offsetPoint
Changes aForm to a blank (or white) form with width and height specified
by extentPoint and with offset offsetPoint.

aForm extent: extentPoint offset: offsetPoint bits: aBitmap
Changes aForm to a width and height specified by extentPoint, an offset
specified by offsetPoint, and a bitmap initialized from aBitmap.

aForm fromDisplay: aRectangle
Changes aForm to a have a width, height and bitmap initialized from the
area of the display screen specified by aRectangle. The offset is O@O.

Modifying Fonns at the Bit Level

Additionally, individual bits in the bitmap of a form may be modified.

• aForm valueAt: aPoint put: zeroOrOne
Modifies the bit in the bitmap of aForm specified by aPoint to either zero or
one as specified by zeroOrOne. The bit at the origin is at O@O; i.e., O-based
(rather than 1-based) indexing is used.

9.6.5 Displaying Fonns

Class Form inherits the family of protocol for displaying images (see Section 9.4.2) from
class DisplayObject. Form provides an implementation for the basic display message.

• aForm displayOn: aDisplayMedium at: aDisplayPoint clippingRectangle: clipRectangle
rule: rulelnteger mask: aForm

Displays aDisplayObject at aDisplayPoint on aDisplayMedium using
combination rule rulelnteger, halftone mask aForm, and clipping rectangle
clipRectangle.

Since forms have offsets, the form is actually displayed with its origin at a point given
by the sum of aDisplayPoint and the offset of the form. The protocol for displaying images
with transformations is also inherited from DisplayObject. For details see Section 9.4.2.

416 Inside Smalltalk



'I ~II"

Class Fonn Supports Methods for Common Combination Rules

Methods that return the integers representing commonly used combination rules for BitBlt
and displaying operations are provided as class methods in class Form.

• Form end

• Formera..

• Form over

• Form paint

• Form reverse

• Form under

Class Form Supports Common Halftone Masks

Methods that return the 16 * 16 forms representing commonly used halftone masks for
BitBlt and displaying operations are provided as class methods in class Form. These masks
are stored as class variables (constants) of the class.

• Formbleck

• Form veryDerkGrey

• Form derkGrey

• Form gray

• Form lightGrey

• Form veryLightGrey

• Form white

9.6.6 Bit Copying and Une Drawing

In addition to implementing the protocol for the basic bit copy and line drawing operations
(see Section 9.5.3), forms support the convenient message copy:from:in:rule:, which is a
useful shorthand method for modifying a rectangular region of a form by copying a similar
sized region from some source form. For example, the following expression copies one
region of the display screen to another.

Display copy: (100@100 extent: 200@200) from: 200@200 in: Display rule: Form over.

Notice that in this case the source and destination forms are identical and that the
source and destination regions overlap.

• aForm copy: destinationRectangle from: sourcePoint in: sourceForm rule: rule
Modifies aForm (the destination form) by copying a region of the source
form with extent given by destinationRectangle and origin sourcePoint to a
region of aForm specified by destinationRectangle, using the specified
combination rule and default clipping rectangle given by aForm's boundary.

9.6.7 Coloring and Bordering Fonns

Class Form inherits the protocol for coloring and bordering images from class
DisplayMedium (see Section 9.5.2). Form supplies an implementation for the primitive

Chapter 9 The Graphical Classes 417



coloring method fiU:rule:mask: and provides the following additional protocol for placing a
border around the perimeter of a form.

•

•

aForm borcierWidth: anlnteger
Modifies aForm to have a black border where the external boundary of the
border is the perimeter of aForm and the width of the border is anlnteger,

aForm borderWidth: anlnteger maak: aForm
Modifies aForm to have a border with color specified by aForm and where

the external boundary of the border is the perimeter of aForm and the width
of the border is anInteger,

9.6.8 Storing Images

Forms can be filed out to an external file and subsequently filed back in again in the same
fashion as Smalltalk code is filed in and out. This permits the external storage of forms and
the exchange of forms between users, A standard file format is used.

• aForm writeOn: aFile
Saves aForm on the file aFile in the format: fileCode, extent, offset, bits.

• Form ,.adFrom: aFile
Returns the form stored on the file aFile in the format: fileCode, extent,

offset bits.

9.6.9 Converting Forms to Strings

No specialized print string representation for forms is provided; forms respond to print
String messages by printing fa Form', Forms respond to storeString by creating a compact
representation of a form that can subsequently be executed to recreate the original form,

9.6.10 Transforming Images

Forms support protocol for transforming images by scaling them up or down, obtaining
reflections and rotations, and for filling enclosed regions within a form, We will not give

Figure 9.25 Magnifying and shrinking images.

418 Inside Smalltalk



If~!.

detailed descriptions of the algorithms used to implement these methods but it is important
to realize that fundamentally, they are all implemented as repeated calls to the primitive
BitBlt operation.

Magnifying and Shrinking Images

Forms may be magnified and shrunk using the messages magnifyBy: and shrinkBy:. For
example, Fig. 9.25 was produced by displaying the form elephant, magnifying the form by
a factor of 2 in both x and y and displaying the result, and finally shrinking the original ele
phant (not the large one) by a factor of 2 in x and y and displaying the result.

The algorithms used to shrink and magnify are fairly primitive. Magnify blows up
each bit in the original form by an amount equal to the scale. For example, if scale were
2@2, then each bit in the original is represented by four bits of the same color in the
magnified form. As can be seen from the magnified elephant, this algorithm gives rise to
increased "staircase" effects on the edges of images. Shrink works in exactly the opposite
way. If we imagine a rectangular grid placed on the original form with the size of the grid
specified by scale, then each bit in the shrunken form is produced by taking the upper left bit
within each of the grid rectangles. If the scale is nonintegral, it will be rounded. This makes
it difficult to magnify 'picture' forms in windows that can be resized arbitrarily by users.

•

•

aForm magnifyBy: scale

Returns a new form that is a scaled up version of aForm as specified by the

argument scale.

aForm ahrinkBy: scale

Returns a new form that is a scaled down version of aForm as specified by

the argument scale.

Reflecting Images

Forms may be reflected horizontally or vertically using the message reflect:. For a vertical
reflection, argument O@l should be provided; for a horizontal reflection, it should be l@O.
Fig. 9.26 shows the original elephant form, its vertical reflection, and its horizontal
reflection.

•

Figure 9.26 Reflecting images.

aForm reflect: specification Point

Returns a new form that is a reflection of aForm as specified by the

argument specificationPoint; vertical reflection is specified by O@1,
horizontal reflection by 1@O.

Chapter 9 The Graphical Classes 419



Rotating Images

Forms may be rotated clockwise in units of 90 degrees using the method rotateBy:
angleSpecification. The argument angleSpecification is an integer where 0 is no rotation, 1
is rotate clockwise by 90 degrees, 2 is rotate clockwise by 180 degrees, and so on. Fig. 9.27
shows the original elephant form and the two forms obtained by rotating clockwise 90 and
180 degrees respectively.

• aForm rotat.By: angleSpecification

Returns a new form that is aForm rotated clockwise in units of 90 degrees

by an amount specified by angleSpecification; angleSpecification specifies

the integral number of 90 degree units to rotate by. Thus, 1 '" 90 degrees, 2

'" 180 degrees, and so on.

Figure 9.27 Rotating Images.

Scaling and Translating Images

Protocol for scaling (scaleBy:) and translating (translateBy:) fonns are inherited from class
DisplayObject. These operations simply scale or translate the offset of the fonn. In the case
of scaling, this does not usually give the desired display effect - use the operations for
magnifying and shrinking images described earlier.

Region Filling

An enclosed region within a fonn may be filled with any halftone mask using the message
shapeFiII:interiorPoint:. The arguments to the message are the required mask and a point
that lies within the interior region. The example below shows a fonn before and after filling
with a gray mask. An interior region is a region of white pixels that is surrounded by a
boundary of black pixels. Algorithms that fill regions in this manner are often called flood
fill algorithms because they "flood' a specified region with a texture or pattern. It is impor
tant to ensure that the desired region is completely enclosed, since the flood fill will escape
through any gaps in the boundary and fill surrounding areas of the fonn. Similarly, the fill
algorithm will not fill "islands" within a specified region that are themselves enclosed re
gions.

420

• aForm .hap.FiII: aMask int.riorPoint: interiorPoint

Modifies the interior of some outlined region within aForm by filling it with

a pattern specified by aMask. The argument interior point specifies a point
within the interior region.

Inside Smalltalk



Figure 9.28 Region filling.

9.7 INFINITE AND OPAQUE FORMS

You might expect that classes with names such as InfiniteFonn and OpaqueFonn would be
specializations of class Fonn. In fact. they are direct subclasses of DisplayObject. Therefore,
they inherit the displaying protocol of all displayable objects, but since they are not display
mediums they do not inherit protocol for bordering or coloring.

9.7.1 Infini18 Fonns

Infinite forms are patterned forms with an infinite extent. They have a single instance
variable, patternFonn, which is a 16 by 16 bit fonn that replicates itself to fill an infinite
fonn when it is displayed. Within the existing Smalltalk system, infinite fonns are used
only once to represent the gray background that fonns the backdrop to the windows on the
Smalltalk display screen.

Creating an Infinite Fonn

Infinite fonns are created using the protocol with: where the argument specifies the pattern
fonn; e.g., InfiniteForm with: Fonn gray~ an infinite fonn filled with gray

• InfiniteForm with: patternForm

Creates an infinite form that when displaved is filled with patternForm.

Other Supported Protocol

Infinite forms do not add any additional instance protocol to class DisplayObject. They
simply implement the methods required of all subclasses of DisplayObject. The primitive
display method fills the display medium onto which the infinite fonn is to be displayed with
the pattern fonn. The method computeBoundingBox returns a rectangle whose origin is
O@O and whose comer is maximumSmallInteger@maximumSmallInteger. The offset of an
infiniteFonn is O@O.

9.7.2 Opaque Fonns

Unlike standard fonns, opaque forms actually consist of two fonns - a shape form and a
figure form. The shape fonn can be thought of as providing coverage infonnation for the
figure fonn. The composite opaque fonn is obtained by combining the figure and shape
fonns. The composite fonn is equal to the figure fonn except that those bits in the figure

Chapter 9 The Graphical Classes 421



that correspond to white bits in the shape form are considered transparent bits rather than
black or white.

In Fig. 9.29, only the bits in the figure form that correspond to bits in the black
square of the shape form are identical in the composite opaque fonn. Consequently, the circle
and triangle are white, the surrounding square is black, and the surrounding bits are all
transparent.

Shape Form Figure Form

Transparent

Opaque Form

____~-White

Black

Figure 9.29 Opaque fonns.

An alternative way of viewing an opaque fonn is as a two-bit map; i.e., we store two
bits of infonnation at each point (or pixel) in the image. This multiple bits per pixel view is
the manner in which color bits might be stored in a red-green-blue color system. For each
pixel in the two-bit map, there are four possible combinations. Fig. 9.30 shows the
resulting pixel color in the opaque fonn for each combination. Note that the result of one of
the possible states is undefined.

Shape Figure Meaning

422

0 0 Transparent
0 1 Undefined
1 0 White
1 1 Black

Figure 9.30 Viewing opaque Conns as two-bit maps.

Inside Smalltalk



I I Bill

Figure 9.31 Opaque fonn displayed over a pattern background.

When an opaque form is displayed on a display medium, transparent bits in the opaque
form leave the corresponding destination bits untouched. Otherwise bits from the opaque
form will replace corresponding bits in the destination. For example, Fig. 9.31 shows the
result of displaying the opaque form described earlier over a patterned background fonn.

The advantage of opaque forms is that they allow the user to work with black, white
and transparent colors simultaneously. For example, opaque forms allow cursors to be
defined where white bits can be made distinct from transparent bits and hence display as
white bits. An example of this notion can be found by evaluating OpaqueForm example,
which also illustrates the use of opaque forms in creating simple animation sequences.

Creating an Opaq.. Fonn

Two methods are supplied for creating opaque forms figure:shape: and shape:. In the latter
case, both the figure and shape forms are the same.

•

•

OpaqueForm figure: figureForm aile..: shapeForm
Creates an opaque form with figure and shape given by figureForm and
shapeForm respectively. White in both forms denotes transparent•

OpaqueForm aile..: aSolidShapeForm

Creates an opaque form with both figure and shape given by
aSolidShapeForm; i.e.. the opaque form is black where the
aSolidShapeForm is black and transparent elsewhere.

Displaying an Opaque Fonn

The primitive display method for opaque forms requires two bitblt operations. First, the
shape form is displayed on the display medium using the erase rule and then the figure form
is displayed using mode under.

displeyOn: aDisplayMedium at: aDisplayPoint clippingBox: clipRectangle
rule: rulelnteger mask: aForm.

"Displays an opaque form."

shape displayOn: aDisplayMedium at: aDisplayPoint clippingBox: clipRectangle
rule: Form ...... mask: nil.

figure displeyOn: aDisplayMedium at: aDisplayPoint clippingBox: clipRectangle
rule: Form under mask: aForm.

Chapter 9 The Graphical Classes



Other Protocol

Instances of class OpaqueForm support additional protocol to access the shape and figure
forms and to access and modify individual pixels within an opaque form. In addition,
specialized implementations of storeOn: and bitEdit are defined for opaque forms.

•
•
•

•

anOpaqueForm figure
anOpaqueForm shape
anOpaqueForm valueAt: aPoint

Returns the value at location aPoint within anOpaqueForm - 0 for white, 1
for black, and 2 for transparent.

anOpaqueForm valueAt: aPoint put: aValue
Modifies the value at location aPoint within anOpaqueForm - 0 for white, 1
for black, and 2 for transparent. The bit at the origin is at O@O; Le., O-based
(rather than 1-basedl indexing is used.

9.8 CURSORS

Graphical cursors are represented in Smalltalk by instances of class Cursor. Cursors are used
in Smalltalk to provide important graphical feedback to the user. The shape of the cursor is
changed to reflect the activity that the system is carrying out. For example, a pair of reading
glasses is displayed when Smalltalk is reading from an external file while a pen is displayed
when writing to a file. Cursors are also used in conjunction with the mouse to indicate a
location on the display screen. Movement of the mouse is coordinated with movement of the
graphical cursor on the display. Confirmation of a particular location is achieved using the
buttons on the mouse. Together with the mouse, cursors form the basis for the
implementation of many interactive graphical operations; e.g., framing a window, selecting
from a menu, changing the active window, selecting a section of text, or selecting the start
and endpoints of a line.

Cursor is a subclass of Form that restricts the extent of a form to a 16 by 16 area,
maintains class variables for most of the common cursors used by the system, and supports
additional protocol to access and modify the currently active cursor. Most cursors used by
Smalltalk are stored in class variables of class Form. These class variables include
ReadCursor, WriteCursor, CrossHairCurscr, and so on. Rather than accessing the names of
the class variables directly, class methods are provided. Some of the more important
predefined cursors accessible through class Cursor are shown in Fig. 9.32. Note that the first
cursor is blank.

blank

r
origin

42A

..J + ~ ~* ... ~
corner crosshair down execute marker normal

td' • t :i: 6
read square up wait write

Figure 9.32 Smalltalk cursors.

Inside Smalltalk



The class methods used to access these cursors are shown below. Additional system
cursors include the bulls-eye, caret, garbage and hand icons. See the class method category
constants in class Cursor for a full list.

•

•

•

•

•

•

•

•

•

•

•

•

•

Cursor blank
No cursor shape - used to make cursor invisible.

Cursor comer
Bottom right corner shape - displayed when framing rectangular areas.

Cursor croaaHeir
Used in the Bit Editor.

Cursor down
Half down arrow shape - displayed when scrolling to view previous text.

Cursor execute
Displayed by the system when execution is taking place.

Cursor I118rker
Right arrow shape - displayed when jumping to a specific piece of a

document.

Cursor nonnel
The regular Smalltalk cursor.

Cursor origin
Top left corner shape - displayed when framing rectangular areas.

Cursorre8d
Reading glasses shape - displayed when reading from a file.

Cursor aqu8re
A 4 x 4 square shape - not used by the Smalltalk system.

Cursor up
Half up arrow shape - displayed when scrolling to view subsequent text.

Cursorw8it
Hour glass shape - displayed when a slow file operation is being
performed.

Cursor write
Pen shape - displayed when writing to a file.

In early versions of Smalltalk, other cursors, such as the thumbs up and thumbs down
cursors, were not accessible through class Cursor but rather were defined in the classes in
which they were used. Thumbs up and down, for example, were defined in
BinaryChoiceView - a class for constructing query windows that require a boolean answer
to a 'yes' or 'no' question. In later versions of the system, all system cursors have been
collected together in class Cursor.

•
•

Cursor thumbaUp
Cursor thuma-Down

Figure 9.33 Thumb cursors.

Chapter 9 The Graphical Classes 425



Note that the offset associated with a cursor is often very important. The offset ensures
that the hot spot of the cursor is displayed at the correct position. For example, the hot
spot of the normal Smalltalk cursor is the pixel representing the tip of the arrowhead; for
the crosshairs it is the pixel where the hairs cross.

9.8.1 Installing a New Cursor

It is relatively simple to add a new cursor to the system. Suppose we want to define a new
cursor in the shape of the bug used earlier in this chapter. First, install the name of the new
cursor as a class variable in class Form. Next, define the required cursor shape and offset
using the instance creation protocol inherited from class Form. The bitmap should be
provided as an array of 16-bit words as described earlier. Although the protocol is inherited,
the Cursor subclass ensures that the extent of the cursor is 16 by 16. Add a private class
method initializeBug to initialize the class variable bugCursor as shown below.

initielizeBug
BugCursor~ Cursor

extent: 16@16
fromArray: #(

2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO
2rOOO1000000001 000
2r0001000110001000
2r0001100110011000
2r0000111111110000
2r0001111111111000
2r0001111111111000
2r0001111111111000
2r0001111111111000
2r0000111111110000
2rOO01100000011000
2r0001000000001000
2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO)

offset: -8@-9.

Now, include a call to this method, for example, self initializeBug, in the code for
class method initialize and evaluate the expression Cursor initialize to install the new
cursor. Finally, provide a convenient way of referring to the cursor by adding a bug class
method to class Cursor.

bug
tBugCursor.

Successful installation of the new cursor can be tested using an expression such as

Cursor bug ahowWhile: [(Delay forSeconda: 15) wait)

which replaces the current cursor with the bug and displays the bug while the block
argument to showWhile: is evaluated. In this case, the new cursor will appear for fifteen
seconds at which point the original cursor will be reinstalled.

426 Inside Smalltalk



9.8.2 Additional Protocol for Cursors

At any time, only one cursor is active. Sensor, a global variable of class InputSensor,
keeps track of which cursor is currently being used and also its position on the display. In
general, class InputSensor provides an interface to the user-input devices, the pointing device
(mouse), and the keyboard. Protocol for class InputSensor as it relates to simple graphical
interaction with the pointing device will be discussed in greater detail in the next section.
Class Cursor also contains protocol that, through messages sent to Sensor, allows the
current cursor to be manipulated.

•

•

•

•

•

•

aCursor show
Makes aCursor the current cursor.

aCursor ahowGricided: gridPoint

Makes aCursor be the current cursor and forces the location of the cursor to

the nearest point on a grid specified by gridPoint.

aCursor ahowWhile: aBlock

Makes aCursor the current cursor while aBlock is evaluated. The original

cursor is restored after the block is evaluated.

Cursor currentCunor
Returns the currently displayed cursor.

Cursor currentCuraor: aCursor

Makes aCursor the current cursor and displays it.

Cursor curaorLink: aBoolean

If aBoolean is true, causes the cursor to track the pointing device location;

otherwise, tracking is disabled.

9.9 CLASSES DISPLAYSCREEN AND DISPLAYBITMAP

Class DisplayScreen is a subclass of class Form. The Smalltalk system contains one
distinguished global instance of class DisplayScreen named Display, which represents the
image on the display screen. Instances of class DisplayScreen differ from normal forms in
that their bitmap is represented by an instance of class DisplayBitmap rather than class
FormBitmap (previously WordArray). This makes it possible to distinguish the particular
bitmap that is being displayed. Various implementations can then treat this bitmap
specially. Class DisplayBitmap is a subclass of class FormBitmap and supports no additional
protocol. It is possible to have more than one instance of class DisplayScreen. For example,
this might be useful in an animation context where screens are double buffered; i.e., where
one screen is displayed while the next is being computed.

Class DisplayScreen provides additional protocol that allows manipulation of the
whole display screen.

•

•

DisplayScreen currentDiapley: aDisplayScreen

Makes aDisplayScreen be the current display image.

DisplayScreen diapleyExtent: aPoint

Sets the extent (horizontal and vertical resolution) of the display image

from aPoint. The logical screen size may differ from the physical screen size.

Chapter 9 The Graphical Classes



•

•

DisplayScreen displayHeight: height
Sets the height (vertical resolution) of the display image to height. The
logical screen height can differ from the physical screen height.

aDisplayScreen flash: aRectangle

Flashes the area of the display screen defined by the rectangle aRectangle.

9.10 Graphicallnteraetion

When we think of graphics applications, we tend to think of the display process; i.e., graph
ical output. However, in the case of interactive graphics, graphical input is also vitally im
portant. Smalltalk is one of the finest examples of an interactive graphical programming en
vironment. Many operations require graphical interaction; e.g., framing a window, selecting
from a menu, changing the active window, selecting a section of text, or selecting the start
and endpoints of a line. In this section, we explore, describe, and illustrate with examples
how Smalltalk code can be developed involving simple interactive graphics sequences. The
chapter on windows deals with the issues of how to write complete interactive graphical ap
plications.

For some graphical operations, such as choosing the endpoints of a line, the user
wishes to indicate a physical point on the screen. In others, such as selecting from a menu,
the user wishes to logically select some on-screen item. All of these higher-level interactive
operations are built on two fundamental capabilities: selecting a position on the display and
confirming such a selection to Smalltalk. When a mouse is used as the primary input device,
the selection of a position on the display is achieved by moving a cursor on the display to
coincide with physical movement of the mouse. Confirmation of a chosen position is
achieved using the buttons on the mouse.

Class InputSensor, a subclass of class Object, provides an interface to the user in
put devices - Smalltalk assumes a keyboard and a three-buttoned mouse is available. Access
to the input devices is provided through the global variable Sensor, a default instance of
class InputSensor. For instance, we can detect whether a mouse button has been pressed
using the message Sensor anyButtonPressed.

Protocol is supported to interrogate the state of the three mouse buttons (named red,
yellow, and blue) and the location of the mouse as well as methods to wait for a certain kind
of mouse activity before returning the location of the cursor.

428

•

•

•

•

•

•

redButtonPrened
Is the red mouse button being pressed?

blueButtonPressed
Is the blue mouse button being pressed?

yellowButtonPressed
Is the yellow mouse button being pressed?

anyButtonPrell8ed

Is any mouse button being pressed?
noButtonPreaecI

Is no mouse button being pressed?
~

Returns a point indicating the coordinates of the current mouse location.

Inside Smalltalk



II ~II'

• mouMPointNext
Returns the mouse point if the red button is down; false otherwise.

• w.itButton
Waits for the user to press any mouse button and then answer with the

current location of the cursor.

• weitCIickButton
Waits for the user to click (press and then release) any mouse button and

then answers with the current location of the cursor.

• weitNoButtGn
Waits for the user to release any mouse button and then returns the current
location ofthe cursor.

Sensor also keeps track of which cursor is currently in use and the position of the
cursor on the display. Both of these attributes may also be modified using the protocol
shown below.

• c~
Returns the cursor currently in use.

• currentCul'8Ol': newCursor
Sets newCursor to be the displayed cursor form.

• cwworPoint
Returns a point indicating the location of the cursor 'hot spot'.

• cunorPoint aPoint
Sets aPoint to be the current location of the cursor 'hot spot'.

9.10.1 Examples of Graphical Interaction

The following examples of Smalltalk code illustrate the use of Sensor in constructing
simple examples of graphical interaction.

Magnifying an Area on the Display

In the Form class method exampleMagnify, a form with origin at the cursor point and
extent 50@50 is captured interactively from the display and redisplayed at the left comer of
the display (O@O) magnified by a scale factor of 3@3. The position of the origin of the form
to be magnified can be changed by moving the mouse.

exampleMegnify
[Sensor redButtonPreaed) whil.F....: [

((Form fromDispley: (Sensor cul'8Ol'Point extent: 5O@50ll
rnegnifyBy: 3@3)

displeyAt: O@OJ

Animating a Form by Attaching It to the Cursor

An example given earlier can now be fully understood. The following method below attaches
the receiving form to the cursor position. As the cursor moves (the cursor itself is not
displayed since its image is blank), aForm is displayed at the cursor point. Whenever the

Chapter 9 The Graphical Classes



image is displayed at a new position, the previous background is restored. The process
continues until a mouse button is depressed. The method follow: locationBlock while:
durationBlock continuously displays an image at locations supplied by evaluating
10cationBlock as long as durationBlock evaluates to true.

animateFonn
Cursor blank ahowWhile: [

self follow: [Sensor cursorPointl while: [Sensor noButtonPrasedll

Drawing a Sequence of Connected Lines on the Display

The method connectedLines (implemented as a class method for class Form) shown below
allows a user to interactively display a sequence of connected line segments.

connectedLines
"Displays a sequence of connected line segments where the endpoint of each line is
interactively selected by pressing the red (or selection) mouse button. To terminate
the method press any other mouse button."

I aForm endOfLineSegments startPoint endPoint oldCursor I
aForm ~ Form new extent: 5@ 5; black. "creates a black 5 by 5 form"
oldCursor~ Sensor currentCursor.
Display white. "clear the display screen"
Cursor croaHair showWhile: [

startPoint~ Sensor waitButton. "get start point for first line"
endOfLineSegments ~ f.la•.
[endOfLineSegmentsl whileFalae: [

endPoint~ Sensor waitButton.
Sensor redButtonPreaaed

ifTrue:[
Display drawLine: aForm from: startPoint to: endPoint

clippingBox: Display boundingBox rule: Form over mask: nil.
startPoint~ endPoint. Sensor waitNoButtonl

ifFalae: [endOflineSegments~ trueJ)].

The example illustrates how a different cursor may be used within a method by saving
and restoring the existing cursor. Endpoints of the lines are specified using the red (or
selection) button of the mouse. Pressing any other button terminates the method.

9.11 GENERATING GRAPHICS PATHS AND TRAJECTORIES

The graphical class Path, a subclass of DisplayObject, provides the basic functionality for
classes that represent trajectories. Specializations of class Path include Are, Circle, Curve,
Line, LinearFit, and Spline (see Fig. 9.34).

The graphical representation of any path is generated by displaying some graphical
form at a collection of points on the display. The collection of points is chosen to best
approximate the selected path or trajectory. For example, for a line, the points are chosen to
approximate a continuous line drawn between the two endpoints. Clearly, since the selected
points must be restricted to pixel positions on the display, the displayed line may not be
smooth.

430 Inside Smalltalk



Figure 9.34 The graphics path classes.

Instances of class Path and its subclasses can be logically thought of as consisting of
an ordered collection of points and a form. The ordered collection of points are those required
to uniquely specify the selected path. In the case of class Path, this collection consists of all
the points at which the form is to be copied onto the display to generate the path. For most
subclasses, only a few points are needed to specify the path - all other points are computed
when the path is displayed. For example, for a line, only the endpoints of the line need to be
specified. The choice of form governs the actual displayed representation. For example, a
thin line can be generated by selecting a form consisting of a single black pixel or a thick
line by selecting a form that is a 4 by 4 black square.

The basic functionality of class Path and its subclasses is described below. Examples
of each class are shown in Fig. 9.35 - a 10 by 10 black form is used in each case.

Path

Line

LinearFit

A path is specified by an ordered collection of points. When
displayed, the path is generated by copying a given form
onto the display at each point in the collection. No forms
are displayed between the points.

A line is specified by two endpoints. A line is displayed as
a collection of points that generate a path approximating
the actual line between the endpoints.

A linear path is specified by an ordered collection of points.
When displayed, it computes a piece-wise linear approxima
tion by generating lines between successive points in the
collection.

Chapter 9 The Graphical Classes 431



Curve

Spline

Arc

Circle

A curve is specified by three points: pI, p2, and p3. When
displayed, a continuous hyperbola or conic section is fitted
through the points that interpolate pI and p3 and is tangent
to the lines joining (a) pI and p2 at pI, and (b) p2 and p3 at
p3.

A spline is specified by an ordered collection of points.
When displayed, a smooth continuous curve is fitted
through the points.

A quadrant of a circle is specified by a center, a radius, and a
quadrant number (l through 4). When displayed, computes a
collection of points that generate a continuous quarter circle
approximating the specified quadrant.

A circle is specified by a center and a radius. Displayed by
generating a continuous circular curve representing the four
quadrants of the circle.

9.11.1 Generating Paths

Instance Creation

Paths support the class protocol new and new: anlnteger for creating uninitialized instances
of class Path. The latter message specifies the initial size of the path; i.e., how many points
in the path. The default form is a I by I black form (a black dot). All subclasses except
Curve and Line inherit these messages.

•
•

Path new

Path new: numberOtPoints

•• •
•
•

432

Path, LinearFit, and Spline drawn through same 5 points

~ ~ J 0
Curve drawn given Line Arc of a circle drawn Circle

3 points in the 4th quadrant

Figure 9.35 Examples of graphics paths.

Inside Smalltalk



A subset of the protocol for ordered collections is supported for accessing, testing,
adding to, removing from, transforming, and enumerating over the ordered collection of
points associated with a path. Strangely, paths do not currently support do: although they
do support collect: and select:. The do: method may easily be added by refining the
collect: method.

Accessing and Modifying the Points on a Path

The protocol at: index and at: index put: aPoint allow points to be retrieved and modified by
position. In addition, paths support protocol for directly accessing and/or modifying the first,
second, third, and last elements of the collection of points.

• aPath et: index

• aPath et: index put: aPoint

• aPath fint

• aPath firstPoint

• aPath fintPoint: aPoint

• aPath secondPoint

• aPath .econdPoint: aPoint

• aPath thirdPoint

• aPath thirdPoint: aPoint

• aPath Ie.t

• aPath le.t: aPoint

Detennining the Size of a Path

The size of a path may be tested using the protocol size and isEmpty.

•
•

aPath .ize
aPath isEmpty

Adding Points to or Removing Points from a Path

Points may be added to or removed from a Path using the protocol add: aPoint and
removeAllSuchThat: aBlock.

•
•

aPath edd: aPoint

aPath removeAIISuchThet aBlock

Sequencing over the Points on a Path

A subset of the familiar enumeration protocol from collections, namely collect: aBlock and
select: aBlock, is also supported by paths.

•
•

aPath collect: aBlock

aPath .elect: aBlock

Chapter 9 The Graphical Classes 433



Scaling and Transfonning the Points on a Path

There are basically two kinds of display objects in the Smalltalk system - those that when
asked to transform themselves and create a new object and those that modify themselves by
maintaining a record of the transformation request (typically an offset). Paths, like rectangles
and points, are display objects of the first kind. A scaled or translated version of some
existing path may be created using scaleBy: aPoint and translateBy: aPoint.

•

•

aPath sc.leBy: aPoint
Returns a new path with a collection of points equal to those of aPath
scaled by aPoint.

aPath translateBy: aPoint
Returns a new path with a collection of points equal to those of aPath
translated by aPoint.

Accessing and Modifying the Fonn Associated with a Path

The form associated with a path may be accessed and modified using the protocol form and
form: aForm. If no form has been associated explicitly with a path, a default I by I black
form (a black dot) is returned by form.

• aPath fonn
• aPath form: aForm

Displaying a Path

All subclasses of DisplayObject (the superclass of Path) must provide their own protocol
for graphically displaying themselves and for computing a display bounding box
(computeBoundingBox). Class Path and its subclasses each implement specialized
methods for displaying. Class Path provides an implementation for computing the display
bounding box based on computing the smallest rectangle that encloses all points on the
given path. This method is inherited by all existing subclasses of class Path, although it is
not appropriate for use with arcs and circles.

•

•

•

aPath displayOn: aDisplayMedium at: aDisplayPoint clippingBox: clipRectangle
rule: rulelnteger mask: aForm

aPath displayOn: aDisplayMedium transformation: displayTransformation
clippingBox: clipRectangle rule: rulelnteger mask: aForm

aPath computeBoundingBox

Note that it is usually unnecessary to specify all the parameters to the display
operations. In most cases the simplified displaying protocol, displayOn: aDisplayMedium,
is sufficient.

To illustrate the use of paths, suppose we want to create and display a path with a
given form where individual positions on the path are interactively specified using the
mouse. The following example class method for class Path would accomplish this task.

434 Inside Smalltalk



pethDrawingExal11J1e
"Creates a path from points interactively selected with the mouse and displays the
path on the display. A path is generated by pressing the red mouse button to
indicate each point on the path; pressing any other mouse button terminates the
example."

"display the path"

"add the new point to the path"

"creates a 3 by 3 black form"
"create a new path"
"use the form for displaying the path"

Display white. "clear the display screen"
laPoint~ Sensor waitButton. Sensor redButtonP.....edl

whileTrue: I
aPath add: aPoint.
Sensor waitNoButtonl.

aPath di.playOn: Display
1'aPath

I aPath aForm endOfPath aPoint I
aForm ~ (Form new extent: 3 @ 3) black.
aPath ~ self new form: aForm.

"Path pethDrawingExaI11J""

9"11.2 Generating Unes

Instance Creation

Lines can be thought of as paths with a path length of 2 where the two points indicate the
beginning and end of the line respectively. Instances of class Line are best created using the
protocol from: beginPoint to: endPoint withForm: aFonn. Line overrides new to return a
line with both endpoints initialized to be the point O@O.

•

•

aline from: beginPoint to: endPoint withForm: aForm
Returns a new line with endpoints beginPoint and endPoint and form aForm.

aline new
Returns a new line with endpoints O@O and a single black pixel as the
default form.

Accessing and Modifying a Une

In addition to the protocol inherited from class Path, class Line supports additional protocol
for accessing and modifying the beginning and endpoints of the line.

•
•
•
•

aline beginPoint

aline beginPoint: aPoint

aline endPoint

aline endPoint: aPoint

Displaying a Une

Many algorithms have been devised for displaying an approximation to a straight line on a
bit-mapped display. The displayOn family of messages for lines uses an efficient line
drawing algorithm developed by Bresenham [IBM Systems Journal, Vol. 4, No. I, 1965]
that involves only integer arithmetic.

Chapter 9 The Graphical Classes 435



An Example: Rubber-Band Unes

Rubber-banding is a common technique for interactively positioning a line. One end point
of the line is fixed while the other is "attached" to the position of the cursor. Whenever the
cursor moves, a new line is drawn from the start point to the current cursor location and any
previous line is erased. This process is repeated, providing the user with a view of the cur
rently selected line at all times. The process terminates when the fmal end point is selected.
Using a mouse, the initial start point can be selected by depressing a mouse button, interme
diate lines will be displayed as long as the button remains depressed, and the final line will
be selected when the button is released. Similar rubber-banding techniques can be used to in
teractively create other graphic objects, for example, rectangles and circles.

The class method rubberBandLineFromUser below returns a line created using a
rubber banding technique. Note that intermediate lines drawn on the display should not mod
ify the original contents of the display. This is achieved by displaying and erasing the lines
using exclusive-or (reverse) mode.

class methods

instance creation

rubberBancLineFromU-
"Creates a line using rubber-banding techniques. Depress the red button to indicate
the start point of the line. As long as the button is kept depressed, a line will be
drawn between the start point and the current cursor position. As the cursor moves,
so does the line. When the button is released, the final line is drawn and returned ..

I firstPoint endPoint aForm I
aForm ~ (Form new extent: 1(1)black.
firstPoint ~ Sensor waitButton.
endPoint~

self rubberBanciFrom: firstPoint until: (Sensor noButtonPre..edl with: aForm.
i(Line from: firstPoint to: endPoint with: aForm)

private

rubberBandFrom: startPoint until: aBlock with: aForm
"While aBlock evaluates to true, displays a line in reverse mode from startPoint to
the current cursor point. If the cursor point changes then remove the line and draw
a new line from the startPoint to the new location of the cursor. When aBlock
evaluates to false, erase the final line and return the final end point."

I line endPoint I
line ~ Line from: startPoint to: startPoint withForm: aForm.
line displayOn: Display at: O@O clippingBox: Display boundingBox

rule: Form reverse mask: nil. "display first line"
laBlock valuel whileFalse: (

(endPoint~ Sensor waitButton) =line endPoint ifFalse: I
line displayOn: Display at: O@O clippingBox: Display boundingBox

rule: Form reverse mask: nil. "erase existing line"
line endPoint: endPoint. "change the end point"
line displayOn: Display at: O@O clippingBox: Display boundingBox

rule: Form reverse mask: nil. "display new line")).
line displayOn: Display at: O@O clippingBox: Display boundingBox

rule: Form reverse mask: nil. "erase final line"
iline endPoint

436 Inside Smalltalk



9.11.3 Gen..ting Unear Fits

Instances of class LinearFit are paths that are displayed as piece-wise linear approximations
on an ordered collection of points. They support no additional protocol - all protocol is
either inherited from Path or is a redefinition of some part of the display protocol from class
Path. A linear fit is displayed as a connected sequence of line segments drawn between each
pair of adjacent points in the ordered collection of points. The line drawing algorithm from
class Line is used to draw each line segment

To test class LinearFit, use the example methods in class Path and send them to class
LinearFit instead. The previous examples would also work if tested on class LinearFit.

9.11.4 Generating Curves

Instances of class Curve are paths specified by an ordered collection of three points. They
support no additional instance protocol - all protocol except for specialized display protocol
is inherited from class Path. A curve specified by three points pi, p2, and p3 is displayed as
an approximation to a hyperbola that interpolates pi and p3 and is tangent to the lines
joining pi and p2 at pi and p2 and p3 at p3 (see Fig. 9.36).

Curve reimplements new so that the three points specifying the curve are all initialized
to O@O. Use firstPoint: aPoint, secondPoint: aPoint, and thirdPoint: aPoint to specify
the points from which the curve is to be generated.

Example

An example class method for intemctively creating and displaying instances of class Curve is
shown below.

curveDr8wingEumple
"Designate three points on the screen by clicking any mouse button. A 10 by 10
black form will be displayed at each selected point. A hyperbolic curve based on the
three selected points will be displayed using the same form."

I aCurve aForm I
aForm E- (Form new extent: 104» 1 black.
Display white.
aCurve E- Curve new form: aForm.

"create a 10 by 10 black form"
·clear the display·
"use the black form for display·

·Collect and display three points on which to base the curve."

aCurve firstPoint: Sensor waitButton. Sensor waitNoButton.
aForm displayOn: Display at: aCurve beginPoint.
aCurve secondPoint: Sensor waitButton. Sensor waitNoButton.
aForm displayOn: Display at: aCurve beginPoint.
aCurve thirdPoint: Sensor waitButton. Sensor waitNoButton.
aForm diaplayOn: Display at: aCurve beginPoint.

aCurve diaplayOn: Display.

"Curve curveDrawingExample"

Chapter 9 The Graphical Classes

"display the curve·



pI

p2

Figure 9.36 Curve specified by the points pl. p2. and p3.

9.11.5 Generating Splines

Splines are used extensively in graphics applications for generating approximations to
smooth curves through a given collection of control points. Class Spline inherits protocol
from class Path but reimplements its own display protocol. The cubic spline display method
must compute first. second. and third derivatives. These derivatives may be accessed using
the protocol derivativePointsAt.

• aSpline derivativePointsAt

If the first and last points in the collection are coincident, a closed spline curve will be
generated.

• aSpline isCyclic

"compute derivatives"

"create a 10 by 10 black form"
"clear the display"

438

The following method interactively creates and displays instances of class Spline.

splineDrawingExample
·Designate points on the Path by clicking the red button. Terminate by pressing any
other button. A 10 by 10 black form will be displayed at each selected point. A cubic
spline curve will then be displayed through the selected points, using the same
form."

I splineCurve aForm endOfPath I
aForm ~ (Form new extent: 10 @ 10) black.
Display white.
splineCurve~ Spline new form: aForm.
endOfPath ~ false.
[endOfPath] whileFalse: [

Sensor waitButton.
Sensor redButtonPressed

ifTrue: [
splineCurve add: Sensor waitButton. "add point to spline"
Sensor waitNoButton.
"display point on spline"
aForm displayOn: Display at: splineCurve last]

ifFalse: [endOfPath ~ truell.
splineCurve computeCurve.
"display spline"
splineCurve isEmpty ifFalse: [splineCurve displayOn: Display].
isplineCurve

"Spline splineDrawingExample"

Inside Smalltalk



You may have noticed that the pathDrawingExample method can be inherited by
Spline. Instead of the above we could write 'Spline pathDrawingExample;
computeCurve; displayOn: Display'.

9.11.6 Generating Arcs and Circles

Although class Arc inherits representation from Path, it also introduces additional instance
variables to specifically maintain the quadrant, radius, and circle of an arc. Arcs should
perhaps be renamed quadrants since only quadrants of a circle, rather than arcs, can be
represented. Arcs require the quadrant of the circle to be specified as well as the radius and
center. Quadrants are labelled 1 through 4, as shown in Fig. 9.37.

+
1

3 4

Figure 9.37 Quadrant labels for class Arc.

Instance Creation

Arcs (and circles) are best created by invoking the inherited method new from class Path and
then explicitly initializing the radius, center, and quadrant of the arc.

Accessing and Modifying an An:: or Circle

Arcs (and circles) support additional protocol to access and modify the radius, center, and
quadrant (arc only). Other arc protocol allows concurrent modification of the center, radius,
and quadrant

•
•
•
•
•
•
•
•

anAreOrCirele radius
anAreOrCirele radius: aPoint

anArcOrCirele center
anAreOrCirele center: aPoint

anAre quadrant
snAre quadrant: quadrantNumber

anAreOrCirele centar: aPoint radius: aPoint

anArc center: aPoint radius: sPoint quadrant: quadrantNumber

It is important to note that although the protocol for the points on a path (e.g., at:
index, rJrstPoint, and so on) is inherited by arcs and circles, it is clearly inappropriate to use
it. Classes Arc and Circle do not override these methods. Similarly, it is inappropriate to use
the protocol involving quadrants when sending messages to circles.

Boundng Boxes for Arcs and Circles

Arcs and circles inherit operation computeBoundingBox from class Path. However, the
inherited method operates on the inherited representation not the additional instance variables

Chapter 9 The Graphical Classes 439



introduced by arcs and circles. The operation must be reimplemented for both classes to work
properly.

Example

The following example illustrates the creation of a Moire pattern (see Fig. 9.38) using
concentric circles. Moire patterns are patterns generated by viewing similar patterns at
different angles or distances. The pattern shown was generated by displaying a set of
concentric circles, then displacing the center of the circle to the left, and displaying the same
set of concentric circles again.

moirePattemExemple
"Click any button somewhere on the screen. This point will be the center of a set of
closely spaced concentric circles. The center will be shifted to the left and a similar
set of concentric circles drawn to construct a Moire pattern."

I aCircle aForm maximumRadius leftShift I
Display white.
maximumRadius t- 75. leftShift t- 20.
aForm t- (Form new extent: 1@1) black.
aCircle t- Circle new form: aForm; radius: 4; center: Sensor waitButton.
laCircle radius < maximumRadiusl whileTrue: I

aCircle displayOn: Display; radius: aCircle radius + 21.
aCircle center: aCircie center - (IeftShift @ 0) radius: 4.
laCircle radius < maximumRadiusl whileTrue: I

aCircle displayOn: Display; radius: aCircie radius + 21

"Circle moirePatternExample"

Figure 9.38 Moire pattern.

9.11.7 Generating New Paths: Ellipses

What must be done to add new path classes to Smalltalk? For example, suppose we wished
to add a new subclass of Path to represent ellipses. All subclasses of DisplayObject (the
superclass of Path) must provide their own protocol for graphically displaying themselves
and for computing a display bounding box. They must at least implement the two primitive

440 Inside Smalltalk



displaying operations (displayOn: aDisplayMedium at: aPoint c1ippingBox: clipRectangle
rule: anInteger mask: aForm, and displayOn: aDisplayMedium transformation:
aTransformation c1ippingBox: clipRect rule: anInteger mask: aForm) and the operation
computeBoundingBox.

As with classes Arc and Circle, we will adopt the approach of augmenting the
representation inherited from class Path. Additional protocol will also be needed to access and
modify this extension. To simplify discussion of the display algorithms, we will limit the
implementation to ellipses whose axes are parallel to the x and y axes. Such ellipses can be
specified in terms of the lengths of the semimajor and semiminor axes lengths and a center
point (see Fig. 9.39).

SemiMinor Axis

Center~"----------f

Figure 9.39 Specification of an Ellipse.

Accessing and Moclfying an Ellipse

Ellipses support additional protocol to access and modify the center, semiMajorAxis and
semiMinorAxis.

•
•
•

•
•
•
•

anEllipse center

anEllipse center: aPoint

anEllipse center: aPoint aemiMejorAxis: majorLength

aemiMinorAxis: minorLength

anEllipse serniMejorAxis

anEllipse semiMejorAxis: aLength

anEllipse serniMinorAxis

anEllipse .emiMinorAxi.: aLength

The following is an example method illustrating the use of the class Ellipse.

ellipseDrewingExample
"Click the button somewhere on the screen. The designated point will be the center
of an ellipse with semimajor axis of length 60 and semiminor axis of length 30."

I aForm I
aForm ~ (Form new extent: 5@ 51 bleck. "make a black Form for display"
Ellipse new

form: aForm; "set the form for display"
center: (Sensor weitButtonl semiMejorAxis: 60 semiMinorAxis: 30;
displeyOn: Display.

"Ellipse ellipseDrewingExemple"

Chapter 9 The Graphical Classes 441



How is the path followed by an ellipse to be generated in a form suitable for display?
Since an ellipse is a conic section just like a circle, we might investigate how a circle is
displayed. A circle is generated by displaying the four quadrants (arcs) of the circle. Each arc
or quadrant is generated using the following method.

displaying

displayOn: aDisplayMedium .t: aPoint clippingBox: clipRect rule: anlnteger m.sk: aForm

I nSegments line angle sin cos xn yn xn1 yn1 I
nSegments +- 12.0.
line +- Line new. line form: self form. angle +- 90.0/ nSegments.
sin +- (angle * (2 * Float pi /360.0» sin. cos +- (angle * (2 * Float pi /360.0» cos.
quadrant = 1 ifTrue: [xn +- radius .sFlo.t. yn +- 0.01.
quadrant = 2 ifTrue: [xn +- 0.0. yn +- 0.0 - radius .sFlo.tl.
quadrant = 3 ifTrue: [xn +- 0.0 - radius .sFlo.t. yn +- 0,0).
quadrant = 4 ifTrue: [xn +- 0.0. yn +- radius .sFlo.tl.
nSegments trunceted timesRepeet: [

xn1 +- xn * cos + (yn * sin). yn1 +- yn * cos - (xn * sin).
line beginPoint: center + (xn trunceted 0 yn trune.ted).
line endPoint: center + (xn1 trunceted Oyn1 trunceted).
line displ.yOn: aDisplayMedium .t: aPoint clippingBox: clipRect rule: anlnteger

mesk: aForm.
xn +- xn1. yn +- yn1)

The quadrant is generated using an algorithm based on the parametric form of a circle.
In parametric form, each coordinate of a point on a circle centered at the origin is represented
as a function of e:

x=rcose
Y= rsine

where r is the radius of the circle and eis the angle in radians. Choosing equal increments of
efrom 0 to 21t generates equally spaced points on the circle. An approximation to the circle
can be displayed by drawing lines between adjacent points on the circumference. Only values
of e in the range 0 to 1t/2 need be considered since by symmetry each point in this range
generates .one point in each of the other three quadrants. Choosing a smaller amount by
which to increment egenerates more points and hence more lines and a better approxima
tion. However, for each point, two costly trigonometric functions must be evaluated.

Fortunately, the recalculation of the trigonometric functions can be avoided. If de is
the amount by which to increment e between the generation of adjacent points, then using
the parametric form

X n = r cose and xn+l= r cos (e + de)
Yn = r sine and Yn+1= r sin (e + de)

and
cos (e + de) = cose cos de • sine sinde
sin (e + de) = cose sin de + sine cosde

442 Inside Smalltalk



it follows that
Xn+l = xn cosda • Yn sinda
Yn+l = xn sinda + Yn cosda

Since de is constant, the values of sin da and cos de need be computed only once. The
points generated can be translated to allow the center of the circle to lie at points other than
the origin. Note that in Smalltalk the y-axis is the inverse of a normal coordinate system;
i.e., y is 0 at the top of the display. In the method for displaying an arc of a circle the para
metric equations are modified to allow for this; i.e., y is scaled by a factor of -1.

A similar parametric form based approach can be adopted to generate ellipses. For an
ellipse with semimajor axis a and semiminor axis b centered at the origin, the parametric
form is

x=acosa
Y=b sina

If da is again the amount by which to increment a between the generation of adjacent
points, using the parametric form

Xn = a cose and xn+l= a cos (a + de)
Yn = b sine and Yn+l= b sin (a + de)

reduces the computation for each point on the ellipse to the following:

xn+l = xn cos de - (alb) Yn sin da)
Yn+l = (b/a) xnsin da + Yn cos da)

Class Ellipse is shown below. We leave it to the reader to modify the class to permit
ellipses with axes that are not parallel to the x and y-axes.

Class Ellipse

class name
superclass
instance variables

class methods

examples

Ellipse
Path
semiMajorAxisLength
semiMinorAxisLength
center

ellipseDrewingExample
·Click the button somewhere on the screen. The designated point will be the center
of an Ellipse with semimajor axis of length 60 and semiminor axis of length 30."

I aForm I
aForm~ (Form new extent: 5 @ 5) black. "make a Form for display"
Ellipse new

form: aForm; ·set the form for display·
center: (Sensor weitButton) aemiMejorAxis: 60 aemiMinorAxis: 30;
displeyOn: Display

"Ellipse ellipaeDrewingExemple"

Chapter 9 The Graphical Classes 443



444

instance methods

accessing

centBr
icenter

center: aPoint
center ~ aPoint

..miMajorAxi8
i semiMajorAxisLength

..miMajorAxis: aLength
semiMajorAxisLength ~ aLength

..miMinorAxi8
isemiMinorAxisLength

..miMinorAxis: aLength
semiMinorAxisLength ~ aLength

center: aPoint ..miMajorAxis: majorLength semiMinorAxis: minorLength
center ~ aPoint. semiMajorAxisLength ~ majorLength.
semiMinorAxisLength ~ minorLength

display box access

computeBoundingBox
icenter - (semiMajorAxisLength 0 semiMinorAxisLength) + form offset

extent: form extent + (2 * (semiMajorAxisLength 0 semiMinorAxisLength»

displaying

diaplayOn: aDisplayMedium at: aPoint clippingBox: clipRectangle rule: anlnteger
mask:aForm

I nSegments line angle sin cos xn yn xn1 yn1 ratio inverseRatio quadrant I

nSegments~ 48.0. line ~ Line new form: self form. angle~ 360.0 / nSegments.
sin ~ (angle * (2 * Float pi /360.0» ain. cos ~ (angle * (2 * Float pi /360.0» coa.
ratio ~ semiMajorAxisLength / semiMinorAxisLength.
inverseRatio ~ semiMinorAxisLength / semiMajorAxisLength.
xn ~ semiMajorAxisLength aaFloat. yn ~ 0.0.
nSegments trunceted timeaRepeat: (

xn1 ~ xn * cos + (ratio * yn * sin). yn1 ~ yn * cos - (inverseRatio * xn * sin).
line beginPoint: center + (xn truncat8d Oyn truncated).
line endPoint: center + (xn1 truncated Oyn1 truncated).
line diaplayOn: aDisplayMedium at: aPoint clippingBox: clipRect rule: anlnteger

maak: aForm.
xn ~ xn1. yn ~ yn1)

diaplayOn: aDisplayMedium transformation: aTransformation clippingBox: clipRectangle
rule: anlnteger mask: aForm

InewCenter I

newCenter~ aTransformation applyTo: self center.
Ellipse new center: newCenter x truncated 0 newCenter y truncated;

..miMajorAxia: (self ..miMajorAxia * aTransformation acele x) truncated;

..miMinorAxia: (selfaemiMinorAxia * aTransformation acele y) truncated;
fonn: self form;
di8playOn: aDisplayMedium at: 0 @ 0 clippingBox: clipRect rule: anlnteger

mask:aForm

Inside Smalltalk



9.11.8 Revisions to Paths

Class Path and its subclasses Arc, Line, Circle, ... have a number of minor problems which
should be identified and rectified.

Class Path and its specializations Arc, Circle, Line, Curve, LinearFit, and Spline each
have method displayOn:translormation:clippingBox:rule:mask: specially implemented
to properly handle the transformation. On the other hand, displayOn:transformation:
clippingBox:align:with: was not redefined and is therefore inherited from DisplayObject
This method does not work with paths because the scaling information is ignored; i.e., the
method assumes the graphical object is fixed-size. For example, if a line from O@O to
10@10 were to be displayed using a transformation of the form 'scale: 10 translation:
5@5', the latter method simply offsets the display by 5@5 so that the line actually displayed
begins at 5@5 and ends at 15@15. The correct version requires more than a simple offset;
the entire line must be transformed and in this case magnified. It should display the line from
5@5 (O@Otransformed) to 105@105 (10@10transformed).

A correct version of displayOn:translormation:clippingBox:align:with:rule:mask:
can be created by adding the additional parameters 'align: destinationPointl with:
destinationPoint2' to the existing displayOn:transformation:clippingBox:rule:mask:
method in Path and each of its subclasses (7 classes in all).

For all classes except Circle, 'at: O@O' in the code body is replaced by the difference
of the alignment points. More specifically, if the method is of the following form, 'O@O' is
replaced by '(destinationPoint2 - destinationPointl)'.

aPathOrArcOrCurveOrSplineOr...
diapleyOn: aDisplayMedium trenaformetion: displayTransformation
clippingBox: clipRectangle elign: destinationPoint1 with: destinationPoint2
rule: rulelnteger meak: aForm

aTransformedCopy
diapleyOn: aDisplayMedium
et: O@O
clippingBox: aClippingRectangle
rule: aRulelnteger
meak: aMaskForm

For class Circle, 'super displayOn: ...translormation:...clippingBox: ...rule: .
mask:...' in the code body is replaced by 'super displayOn: ...translormation: .
clippingBox:...align: destinationPoint1 with: destinationPoint2 rule: ...mask: ...'.

Note that method displayOn:translormation:clippingBox:rule:mask: can be
removed from each of the subclasses since the version inherited from DisplayObject makes
use of the new corrected methods.

The generic displayOn:translormation:clippingBox: method inherited from
DisplayObject fails for Path and its subclasses. A copy of the DisplayObject version can be
added to Path (all subclasses can inherit from this one) and modified as follows: "change the
align:?with:? portion of the displayOn:translormation:ciippingBox:align:with:rule:
mask: message to contain any point constants that are identical; e.g., align: O@O with:
O@O".

Chapter 9 The Graphical Classes 445



The Spline displayOn:transforrnation: ... method constructs a new transformed
spline prior to displaying it. However, it fails to compute the curve using cornputeCurve.
Simply add 'newSpline cornputeCurve' after the code that constructs it.

Example

The following can serve as a test of the above modifications. The intent is to draw 6 special
paths in 2 rows of 3 squares. The squares should be adjacent to each other without
overlapping.

I aDot aline aCircle aCurve aPath aLinearFit aSpline aTransformation aBox d t I

aDot f- (Form extent: 4@4) black.

"Create display objects intended for display on a 10 by 10 area."

aline f- Line from: 2@2 to: 8@8withForm: aDot.
aCircle f- Circle new

form: aDot; radius: 4; center: S@S; yourself.
aCurve f- Curve new

form: aDot; firstPoint: 2@8; secondPoint: S@2;thirdPoint: 8@8;yourself.
aPath f- Path new

form: aDot; add: 2@8; add: 2@2; add: S@8; add: 8@2; add: 8@8; yourself.
aLinearFit f- LinearFit new

form: aDot; add: 2@8; add: 2@2; add: S@8; add: 8@2; add: 8@8; yourself.
aSpline f- Spline new

form: aDot; add: 2@8; add: 2@2; add: S@8; add: 8@2; add: 8@8; yourself.
aSpline computeCurve. "Otherwise, the spline cannot be displayed"

"Display them in two rows of three squares each 113 by 113 units (just to pick an odd
size):

aTransformation f- WindowingTransformation
window: (O@Ocomer: 10@10)viewport: (O@Ocorner: 113@113).

aBox f- Display boundingBox. "The rectangle for the entire display"

Display white. "Start with a nice display"

d f- Display. t f- aTransformation. "Just to fit subsequent statements into one line:
aline displayOn: d transformation: t clippingBox: aBox align: O@O with: 100@100.
aCircle displayOn: d transformation: t clippingBox: aBox align: O@O with: 213@100.
aCurve diaplayOn: d transformation: t clippingBox: aBox align: O@O with: 326@100.
aPath displayOn: d transformation: t clippingBox: aBox align: O@O with: 100@213.
aLinearFit displayOn: d transformation: t clippingBox: aBox align: O@O with: 213@213.
aSpline displayOn: d transformation: t clippingBox: aBox align: O@O with: 326@213.

"By aligning O@O with 213@100, for example, we are causing the display to shift right
by 213 pixels. Clearly, 213 must be in destination coordinates. If it were in source
coordinates, the actual amount shifted would be "t applyTo: 213"; to get exactly 213, we
would have to actually supply "t applylnverseTo: 213" (the display method would then
transform it to cancel out the inverse operation; i.e., "t applyTo: (t applylnverseTo: 213)"
is 213:

ScheduledControllers restore. "To place the display into its previous state"

446 Inside Smalltalk



! ;111

9.12 DRAWING WITH PENS

Class Pen, a subclass of class BitBIt, extends the line drawing capabilities of BitBlt in two
directions. Pens may be used as tools for scribbling or doodling on the display and may also
be used to emulate the notion of turtles and turtle graphics found in the programming
language LOGO.

Pens inherit the representation and methods of class BitBlt. Recall that instances of
class BitBlt represent the parameters required to carry out the fundamental bit copying
operation (copyBits). Within the context of class Pen, several of the inherited BitBlt
attributes play an important role.

source form The tip or nib of a pen.

mask The color of a pen.

destination form The canvas on which a pen writes - usually but not
necessarily the display.

clipping rectangle The size of the canvas.

Additionally, pens support the following attributes:

drawing frame

pen state

location

direction

9.12.1 Creating Pens

A frame within which a pen can draw - equivalent to the
clipping rectangle of the bitblt associated with the pen.

The state of a pen - up or down. The pen only writes on
the display when its state is down.

The position of a pen on the display screen.

The direction (in degrees) the pen would move if asked to do
so; 0 degrees is equivalent to a heading of north or up the
display screen. Positive directions are measured clockwise
from this heading.

The class method new returns an instance of class Pen with the following default attributes:

source form

halftone form

destination form

combination rule

clipping rectangle

frame

pen state

location

direction

Chapter 9 The Graphical Classes

1 by 1 black dot

black

display screen

paint

display bounding box

display bounding box

down

display screen center

north

447



Note that in early versions of the system, the default combination rule for a pen was
paint. While this mode allows for additional functionality, in the general case it requires two
BitBlt copy opemtions mther than the one required for other modes. For most applications of
pens, such as drawing a geometric design like a spiral, a better combination rule and the one
used in the current system is under; i.e., pixels from the source form are "or-ed" with pixels
from the display to produce the modified display.

9.12.2 Scribbling and Doodling with Pens

Pens are often used for scribbling or doodling. BitBlt provides the method drawFrom:to:
for drawing lines between two points, but pens provide a higher level and friendlier protocol.
More specifically, a pen can be moved from its current location to any new location. If the
pen is moved with the pen down, a line is drawn between the two points using the source
form (or nib) associated with the pen.

•

•

•

•

aPendown
Sets the drawing state of aPen to down (the pen will draw when it is
moved).

aPen up
Sets the drawing state of aPen to up (the pen will not draw when it is
moved).

aPen goto: aPoint
The pen is moved from its current location to aPoint. If the pen is down a
line will be drawn between the two points.

aPen place: aPoint
The pen aPen is moved to the point aPoint. No lines are drawn irrespective
of the state of the pen.

Example: Pens as Sketching Tools

The following method illustrates how pens may be used as a sketching tool.

doodle
"A simple method that facilitates interactive sketching using a pen. Use the mouse
to move the cursor to a desired starting position. Depress the red button on the
mouse to start drawing. Moving the mouse with the red button still depressed
displays a trail on the display using a black pen. Releasing the red button causes
drawing to cease. This procedure may be repeated as many times as desired. To
exit the method, depress any other mouse button."

I aPen I
aPen f- Pen new combinationRule: Form under.

[Sensor waitButton. truel whileTrue: [
SensorredButtonP~sed

ifTrue: [
aPen place: Sensor cursorPoint.
[Sensor redButtonPressedl whileTrue: [aPen goto: Sensor cursorPointll

ifFalse: [tself]]

"Pen doodle"

448 Inside Smalltalk



9.12.3 Turtle Graphics with Pens

Smalltalk pens emulate the turtle graphics capabilities found in the programming language
LOGO. Pens facilitate the construction of images algorithmically rather than by painting. In
LOGO, turtles are robot-like creatures whose domain is the display screen. Turtles maintain
a position and a heading and respond to simple commands such as move forward a certain
amount, tum left through a certain number of degrees, and so on. Turtle graphics visualizes
the notions of turtle geometry, a unique explorative approach to the teaching of geometry
and mathematical concepts developed by Seymour Papert and his colleagues at the
Massachusetts Institute of Technology.

In addition to the protocol introduced earlier, pens support the following turtle-oriented
operations:

•

•

•

•

aPenhome
Places aPen at the center of its frame.

aPen north
Sets the direction of aPen to be facing toward the top of the display screen.

aPen go: distance
Moves aPen in its current direction a number of bits equal to the argument,

distance. If the pen is down, a line will be drawn using the source form of
aPen as the shape of the drawing brush.

aPen turn: degrees
Changes the direction that aPen faces by an amount equal to the argument,
degrees. Positive degree values result in clockwise changes in direction.

For example, the following code draws an equilateral triangle with sides of length 200
on the display.

I aPen I
aPen t- Pen new.
3 time.Repe.t: [:count I aPen go: 200 turn: 120)

This code can be extended to produce any regular polygon by modifying the number of
times the iteration is repeated and the angle through which the pen is turned. For example, to
draw an octagon with sides of length 50, modify the change in direction to be 45 degrees (Le.
360 divided by the number of sides).

I aPen I
aPen t- Pen new.
S time.Repeat: [: count I aPen go: 50 turn: 45)

Extending the idea one step further, we can produce a primitive circle drawing
algorithm by drawing a 36O-gon. This is a very poor way to draw a circle - see class Circle
for a better algorithm

I aPen I
aPen t- Pen new.
360 time.Repeat: [:count I aPen go: 1 turn: 1)

Chapter 9 The Graphical Classes 449



Constructing Geometric Designs Using Pens

Class Pen contains several instance methods that illustrate how pens may be used to con
struct interesting geometric designs. These include spirals, dragon curves, and hilbert curves.

•

•

•

•

aPen dragon: order

Draws a dragon curve of order 'order' in the center of the screen using

aPen.

aPen hilbert: index side: sideLength

Uses aPen to draw a space-filling curve with the given index where the

length of each side is given by sideLength.

aPen mandala: numberOfPoints diameter: diameter

On a circle of diameter 'diameter', places numberOfPoints points, and then

draws all possible connecting lines using aPen.

aPen spiral: n angle: angle

Draws a double spiral using aPen.

Example: CCurves

The following example illustrates how another attractive geometric figure, a c-curve, may be
drawn. C-curves are described recursively as follows. A c-curve of level 0 is a straight line of
a given length. A c-curve of level n consists of two c-curves of level n-l that are drawn at
right angles to each other, followed by a final 90 degree tum to restore the original heading.
Fig. 9.40 shows a c-curve of level 10 where each line in the curve is of length 4.

Figure 9.40 Level 10 C-curve.

450 Inside Smalltalk



cCurve: level .ide: sideLength
"Draw a c-curve with the specified level and side length."

level = 0 ifTrue: [iself go: sideLengthl.
self cCurve: level - 1 .ide: sideLength. self turn: 90.
self cCurve: level - 1 .ide: sideLength. self turn: -90.

"Pen new home; turn: -90; cCurve: 10 .ide: 4."

9.12.4 Additional Pen Operations

Pens have a number of useful attributes that can be interrogated and changed; e.g.,

•

•

•

•

•

•

aPen black
Sets the halftone or mask form of aPen to black.

aPenwhite
Sets the halftone or mask form of aPen to white.

aPen direction
Returns the current direction of aPen in degrees. 0 is toward the top of the
screen, positive is clockwise, and negative is anticlockwise.

aPen frame
Returns the rectangle in which aPen can draw.

aPen frame: aRectangle
Sets the rectangle in which aPen can draw to be aRectangle.

aPen location
Returns a point that is the location of aPen.

9.13 SUMMARY

In this chapter, we have surveyed the classes that support the interactive creation and
manipulation of graphical images. In particular, we have discussed the following:

•
•

•
•
•

•
•
•
•
•

The underlying Smalltalk graphical model.

The protocol supported by the classes Point and Rectangle that are used to
represent spatial information.

The use of forms and bitblts to create and manipulate images.

The standard protocol supported by objects that can display themselves.

The transformation of images through magnification, scaling, reflection, rotation,
translation, and fill operations.

The use of infinite and opaque forms.

Graphical cursors.

Simple interactive graphical interaction techniques using the mouse and keyboard.

Graphical paths including arcs, circles, curves, lines, linear fits, and splines.

The use of pens.

Chapter 9 The Graphical Classes 451



9.14 EXERCISES

The following exercises may require some original thought, rereading some of the material,
and/or browsing through the system.

1. Implement an interactive, graphical
solution to the 'eight-square puzzle'
in Smalltalk. Eight square tiles
numbered from 1 to 8 are located
within a frame that will hold exactly
nine tiles, as shown in Fig. 9.41.
The objective of the game is to
rearrange the tiles within the frame
from some initial configuration (such
as that shown on the left) to a target
configuration where the numbered
tiles are arranged in order around the
edge of the frame (as shown on the
right). Tiles can only be moved one
at a time and can only move by
sliding into the currently open tile
position within the frame. Tiles
cannot be lifted. For example, from

1 4 2

8 3

7 6 5

the starting configuration shown on
the left, only the tiles numbered I, 8
and 7 may be moved.

The user should indicate that a
particular tile is to be moved by
moving the cursor inside the tile and
clicking the red button. Provided the
tile movement is legal, the tile will
be moved to occupy the vacant tile
position within the frame. Think of a
way of "sliding" a tile when it is
moved; i.e., display the tile in
intermediate positions between its
original and final position. The game
should be terminated by clicking on
the yellow button.

1 2 3

8 4

7 6 5

Figure 9.41 Eight square puzzle.

2. Create a Smalltalk animation system
that emulates the turtle microworlds
as described in [H. Abelson, and A.
Di Sessa, "Turtle Geometry: The
Computer as a Medium for Exploring
Mathematics," MIT Press, 1980]. The
basic idea is to give turtles "animal
like" characteristics and to study
their movements and interactions in
particular environments. For exam
ple, a simple microworld might sim
ply allow turtles to roam randomly
on the display screen. Interesting
problems to consider here are how
turtles should behave when they hit
the edge of the display screen or

452

when they collide with each other. A
variation might introduce directed
rather than random motion where the
movement of the turtles is governed
by some instinct or desire. For ex
ample, predatory animals such as
foxes could be introduced into the
simulation. The natural instinct of a
fox is to chase the nearest turtle. The
natural instinct of a turtle is to avoid
being caught by a fox. An interest
ing problem to consider is how tur
tles and foxes should "see" each
other; Le., how is sight to be mod
elled?

Inside Smalltalk



'Ill

North

West

South

Figure 9.42 Direction indicator.

East

3. In interactive graphical applications,
it is often convenient to input nu
meric values graphically rather than
simply typing them in. For example,
angular input could be achieved
through a rotary dial (see Fig. 9.42)
where the user drags the indicator of
the dial to indicate the desired direc
tion. Implement Smalltalk classes
that emulate rotary dials as described
above.

4. There are several other approxi
mations to smooth curves that are
useful in graphics applications.
Implement new classes Bezler and
BSpline to represent Bezier curves
and B-splines (most graphics texts
will have a section on curve
generation).

s. Modify class Ellipse given in this
chapter so that the major and minor
axes of the ellipse do not have to be
parallel to the x- and y-axes.

6. Potentiometers or scales are useful
for obtaining values within some
predetermined range. For example, a
graphical potentiometer (see
Fig. 9.43) allows the user to
interactively select a real value
between 0.0 and 1.0 by dragging the
slider horizontally across the scale.
As the slider moves, the number
displayed beneath it changes to
indicate the currently selected value.
Implement Smalltalk classes that
emulate gauges and scales as
described above.

flo e as tr]
...

0.35

Figure 9.43 Graphical potentiometer.

7. Generalize the Smalltalk class
OpaqueForm to provide a full set
of operations on two-bitmaps
(opaque forms). Refer to the paper
"Two-Bit Graphics" by Saliesin and

Chapter 9 The Graphical Classes

Barzel in the June 1986 issue of
IEEE Computer Graphics and
Applications for a full discussion
of two-bit compositing. painting,
and region filling operations.

453



8. Class Arc and Circle use a display
algorithm that approximates the arc
or circle by a sequence of connected
straight line segments drawn between
sample points on the arc. For arcs of
large radii and/or a small selection of
points on the arc, this approxima
tion is poor. A better approximation
can be achieved using the point plot
ting algorithm of Bresenham. [J. E.

9.15 GLOSSARY AND IMPORTANT FACTS

classes

Arc A subclass of class Path. Arcs are spec
ified by a center, a radius and a quadrant
number (1 through 4). When displayed,
they compute a collection of points that
generate a path approximating a quadrant
of a circle - it is not possible to generate
an arbitrary arc.

B itB It Instances of class BitBlt represent
fundamental graphical operations described
in terms of copying some source form to a
destination form in a particular way.

Circle A subclass of class Arc. A circle is
specified by a center and a radius.
Displayed by generating paths represent
ing the four quadrants of the circle.

Cursor A subclass of Form that restricts the
extent to 16 by 16 and is used to represent
small icons or cursors. Cursors are used in
Smalltalk to indicate the activity that the
system is carrying out; e.g., a pair of read
ing glasses is displayed when Smalltalk is
reading from an external file, while a pen
is displayed when writing to a file.

Curve A subclass of class Path. Curves are
specified by three points pI, p2, and p3.
When displayed, a hyperbola is fitted
through the points that interpolate pI and
p3 and is tangent to the lines joining (a)
pI and p2 at pI, and (b) p2 and p3 at p3.

DlsplayObject An abstract class describing
the protocol supported by objects that can
display themselves. Subclasses include
DisplayMedium, DlsplayText, Path,
Form, InfiniteForm, and Opaque
Form.

454

Bresenham, "A Linear Algorithm for
the Incremental Digital Display of
Circular Arcs," Communications of
the ACM, Vol. 20, No.2, February
1977, pp. 100-106]. Implement
classes NewArc and NewClrcle
based on Bresenham's algorithm.
Class NewArc should represent arbi
trary arcs rather than only quadrants,
as in class Arc.

DisplayMedlum A class that supports proto
col for objects that can act as a canvas on
which images can be painted and that can
also paint themselves onto a medium.
DisplayMedium supports protocol for
coloring images and for bordering images
with textures. Class Form is a subclass of
DisplayMedium and inherits its protocol
for coloring and bordering.

Form Instances of class Form are used to
represent graphical images. Forms may be
internal (memory-based) or external
(display-based). Forms inherit the ability
to display themselves from class
DlsplayObject and to color and border
themselves from class DlsplayMedlum.
Forms themselves add protocol for creat
ing, editing, and transforming images.

For m Bit map A subclass of Object
(FormBitmap was originally called Word
Array in earlier versions of Smalltalk).
Instances of class FormBitmap are used to
store the bits making up a form.

InfiniteForm Forms that are obtained by
replicating a pattern indefinitely in all di
rections. Within the existing Smalltalk
system, infinite forms are used only once
to represent the gray background that
forms the backdrop to the windows on the
Smalltalk display screen.

InputSensor A class providing an interface
to the keyboard and the mouse. Access to
the input devices is provided through the
global variable Sensor, a default instance
of class InputSensor.

Inside Smalltalk



Line A subclass of class Path. Lines are
specified by two endpoints and are dis
played as a continuous collection of
points that generate a path approximating
the actual line between the endpoints.

LinearFit A subclass of class Pat h .
LinearFits are specified by an ordered col
lection of points and displayed as a piece
wise linear approximation by generating
lines between successive points in the col
lection.

OpaqueForm Forms that include a shape as
well as a figure form. The shape form indi
cates what part of the background should
get occluded while displaying - black is
opaque, white is transparent.

Path The basic superclass of classes such as
Line and Circle that generate trajecto
ries. Paths are specified by an ordered col
lection of points. A path is displayed by
copying a given form onto the display at
each of the points in the collection. For
most subclasses, only a few points are
needed to specify the path; all other
points are computed when the path is
displayed.

• e/ected terminology

and mode A combination rule used for a
copy operation in which corresponding
pixels in the source and destination forms
are 'anded' together to produce the
modified destination form.

bit editor The Smalltalk bit editor allows
editing of forms at the bit or individual
pixel level. The bit editor is normally used
in conjunction with the form editor.

bounding box A bounding box is a rectangle
that completely encompasses a displayable
object. Bounding boxes can be used to
make fast decisions concerning the inter
section of displayable objects; e.g., for
clipping purposes.

clipping rectangle A parameter to a BitBlt
operation. Notwithstanding the specifica
tion for the destination form, the clipping
rectangle specifies a rectangular region
outside of which no modification of the
destination form can take place.

Chapter 9 The Graphical Classes

Pen A subclass of class BitBlt. Pens are used
as tools for scribbling or doodling on the
display and to emulate the notion of tur
tles and turtle graphics as found in the
programming language WGO.

Point Class Point is used to represent posi
tions in an x-y coordinate system. Most
often used to specify pixel positions
within a form or on the display.

Rectangle Class Rectangle is used to repre
sent rectangular areas. Most often used to
specify rectangular areas within a form or
the display screen.

Spline A subclass of class Path. Splines are
specified by an ordered collection of
points. When displayed, a smooth contin
uous curve is fitted through the points.

WordArray A subclass of ArrayedCollection,
WordArray provides an external representa
tion for the manipulation and storage of
the bitmap of a form. In earlier versions
of the system, instances of WordArray
were used to represent the bits of a form.
In the current version, instances of class
FormBitmap are used for this purpose.

combination rule A parameter to a BitBlt
operation. A rule (an integer) that dictates
how pixels in the modified destination
form are to be produced from the source
form and the original contents of the des
tination form. There are sixteen possible
combination rules including and, over,
under, and erase.

destination form A parameter to a BitBlt
operation. Specifies the destination form;
all or part of which is to be modified by
the copy operation.

destination origin A parameter to a BitBlt
operation. Together with the extent, the
destination origin specifies the part of the
destination form to be modified.

display transformation A transformation
from one coordinate system to another
that is to be applied as part of the display
process.

455



erase mode A combination rule used for a
copy operation in which black pixels in
the source erase (or set to white) corre
sponding pixels in the destination form.

extent A parameter to a BitBlt operation.
Together with the source and destination
origins, the extent parameter specifies the
part of the source form to be copied and
the part of the destination form to be mod
ified in a copy operation.

form editor The Smalltalk form editor pro
vides 'MacPaint' style facilities for creat
ing and editing forms- graphical pictures.

halftone form A parameter to a BitBlt opera
tion. A 16 by 16 mask used to fill areas
with textures or patterns. Combining a
halftone and a source form is often used to
place a texture or pattern on a form.

offset The amount by which a displayabie
object should be moved when displayed or
when its position is tested. Forms and cur
sors maintain offsets and add the offset to
any specified display position before dis
playing themselves.

over mode The most popular combination
rule used with the copy operation - the
source form pixels replace or copy over
the corresponding destination form pixels.

important facts

bitblt The name bitblt is derived from a
powerful bit-boundary block transfer in
struction of the same name found on the
Xerox Alto, an early machine supporting
Smalltalk.

nondisplayable objects Points and rectangles
are not displayable objects - they repre
sent spatial quantities only. There are no
operations to display points or rectangles.

456

paint mode A combination rule used for pain
ting on the display with brushes of
different shapes, sizes, and textures. The
brush shape and size are supplied through
the source form, with the halftone form
supplying the brush texture.

reverse mode A combination rule that allows
reversible changes. It is most often used
to display temporary images such as
cursors over an already existing image or
for rubber-banding.

source form A parameter to a BitBlt opera
tion. Specifies the source form; all or part
of which is to be copied.

source origin A parameter to a BitBlt opera
tion. Together with the extent, the source
origin specifies the part of the source form
to be copied.

under mode A combination rule that allows
a source form to be painted "underneath" a
destination form. This is useful when
painting a character onto a display
background where any white pixels
surrounding the character in the source
form are not to be copied.

hot spot When some graphical cursors are to
be displayed at a certain location, it is the
cursor's "hot spot" rather than its origin
that should be displayed at that position.
For example, the "hot spot" of the normal
Smalltalk cursor is the pixel representing
the tip of the arrowhead; for the crosshairs
it is the pixel where the hairs cross.

Inside Smalltalk



10

Graphical Applications

10.1 INTRODUcnON

To illustrate the use of the Smalltalk graphical classes and how simple graphical
applications are developed in Smalltalk, we present three graphics-oriented examples:1 a film
loop facility, a magnifying glass, and a simple video game. Film loops are never-ending
movies and show how simple animation sequences can be developed. Techniques for
obtaining flicker-free displays and for storage of graphical forms on disk are also introduced.
The latter technique illustrates the use of object mutation - the ability of one object to
mutate into another. The magnifying glass application allows a user to move a magnifier
over the display magnifying the image under the glass of the magnifier. This application
illustrates advanced graphical programming techniques and, in particular, describes how
circular rather than rectangular forms may be manipulated. Finally, the simple video game
illustrates the evolutionary approach that characterizes the design and development of
Smalltalk applications. The design decisions that took place during the development of the
game are described in detail along with the use of notions such as reusability, specialization,
and generalization that differentiate object-oriented design from more traditional design
methodologies.

10.2 FILM LOOPS: NEVER-ENDING MOVIES

A film loop is a never-ending movie in which the end is spliced with the beginning; i.e., a
circular sequence of frames repeatedly displayed at a fast enough rate to provide the illusion

1Earlier versions of these examples appeared in issues of the Journal of Object-Oriented
Programming. This material is republished by kind permission of SIGS Publications, Inc., New
York, NY.



of motion. Film loops are used in VideoWorks n2, for example, to provide rudimentary
animated objects with a simple recurring behavior; e.g., a bird flapping its wings in flight or
the flames in a fire. The speed at which the film loop is displayed is called the frame rate.
For typical animation purposes, a frame rate of at least twenty-four frames per second is
required to avoid flicker. Faster frame rates result in speeded up motion; e.g., a fast flying
bird.

The basic idea is to create a collection of frames as shown in Fig. 10.1. Each frame is
a form. In the ideal situation, the forms are constructed by a sophisticated animation system.
More typically, they are hand-constructed from some kind of paint program. A base picture
is first constructed and then modifications are obtained by perturbing it by small amounts.
The forms are then read into Smalltalk using some suitable utility. The details will vary
from system to system. In our case, we constructed MacPaint3 images and read them into
Smalltalk.

v V
•

Figure 10.1 A sequence of frames in a simple animation.

On the other hand, forms can also be created from within Smalltalk, either by
obtaining them directly from the screen (see class method example! below), by computing
them (see example2), or by using the form and bit editors.

10.2.1 A Simple Film Loop Facility

To begin with, consider the SimpleFilmLoop class definition. Instances keep track of a
name, the forms in a collection called frames, and how long each frame is to be displayed.
The latter is needed because the processor is generally too fast for small forms. An extra
delay is required to slow it down.

Each example has a comment that can be executed to test it Method examplel could
be used, for example, to extract the sequence of skull or bird pictures shown in Fig. 10.1
(assuming the entire collection of pictures was first displayed on the screen). In addition to
framing each picture, the user is also prompted for a hot spot; i.e., a point that is to be
considered the center of the picture. In the case of the birds, the center would always be the
middle of the body. This hot spot is recorded by providing an offset to the form. When the

2VideoWorks II is a trademark of MacroMind Inc.
3MacPaint is a trademark of Oaris Inc.

458 Inside Smalltalk



i'RI

form is later displayed at aPoint, it is offset by the stored amount, usually a negative
amount, although there is no limitation on the actual value of the offset. Once a film loop is
constructed, the film loop can be made to track the mouse by sending it a followMouse
message.

Method example2 starts with a white form and progressively darkens it by adding
random black dots. To ensure that the film loop doesn't make an abrupt change when the
switch from the last form to the first occurs, a copy of the original sequence (in reverse
order) is appended to the film loop.

Method example3 uses the film loop's follow:while: control structure, a
generalization of the corresponding instance method in class Form.

Although the user provides the frame rate in frames per second, it is converted
internally to the number of milliseconds per frame since the latter is more convenient for
computing the required delay (see method follow:while:). For didactic purposes, we will
consider methods followMouse, follow:while:, and display:at:restoring:at: in that order.

Method followMouse changes the current cursor to a crosshair. Note that showWhile
is not a loop - it ensures that the new cursor is in effect while the code in the block
executes and it restores the cursor to its previous state when the block code terminates.

Class SimpleFilmLoop

class name
superclass
instance variables
comment

class methods

instance creation

.-
i super new initialize

examples

SimpleFilmLoop
Object
name frames millisecondsPerFrame
A simple film loop provides the capability form displaying a
sequencing of frames at the mouse point. Each frame is a
form with a negative offset if the interior of the form is to
be at the mouse point; i.e., a zero offset implies the top left
corner of the form will display at the mouse point.

example'
·Create a film loop using forms specified by the user. The first prompt is to specify a
rectangle for an area of the screen to make up a frame. The second prompt, with a
caret, waits for you to specify the frame's hot spot."
·SimpleFilmLoop example1 foliowMouse·

I aLoop answer size I
aLoop +- self new name: 'Film'.
answer +-

FillinTheBlank request: 'How many forms in the loop?' initialAnswer: '5'.
size +- Integer readFrom: (ReadStream on: answer).
size timesRepeat: [aLoop add: self formFromUserl.
iaLoop

Chapter 10 Graphical Applications 459



460

example2
"Create a film loop of increasing haze."
"SimpleFilmLoop example2 followMouse"

I aLoop aCollection aForm aRandom nextRandom I
aLoop~ self new name: 'Haze'.
aColleetion ~ OrderedCollection naw.
aForm ~ Form extent: 6O@60. aRandom ~ Random naw.
nextRandom ~ [aRandom next * 60 truncated + 1).
30 timesRepeat: [

30 timesRepeat: [
aForm

valueAt: nextRandom value @ nextRandom value
put: 1).

aCollection add: (aForm deepCopyoffset: -30@-301).
aColleetion do: [:form I aLoop add: form).
aCollection reverseDo: [:form I aLoop add: form deepCopy).
iaLoop

exemple3
"Display a film loop in the center of the screen for a fixed period."
"FilmLoop example3"

I startTime endTime I
startTime~ Time millisecondClockValus.
(self example21

follow: [Display boundingBox center)
while: [

endTime~ Time millisecondClockValue
(endTime - startTimel /1000 < 30 "seconds")

form creation

formF'tomUser
"Prompt the user for a rectangle from which the underlying form is copied and wait
for the user to indicate the hot spot; i.e.• the spot which later becomes the center of
the form for display purposes. In other words, when the form is later displayed at
aPoint, the form's hotspot will be located at aPoint."

I aRectangle aForm I
aRectangle~ Rectangle fromUser.
aForm ~ Form fromDisplay: aRectangle.
Cursor caret showWhile: [

aForm offset: aRectangle origin - Sensor waitButton.
Sensor waitNoButton).

iaForm

instance methods

instance initialization

initialize
"Clear the film loop and set the default delay between frames."

frames ~ OrderedCollection new.
self frameRate: 24 "frames per second"

Inside Smalltalk



: 'IfI

access and modification

add:aForm
"Add a form to the film loop."

frames add: aForm

frameRa.
i(1oo0 "milliseconds per second" I millisecondsPerFramel rounded

frameRa.: framesPerSecond
millisecondsPerFrame +-

(1000 "milliseconds per second" I framesPerSecondl rounded.

name:aName
"Set the name of the film loop."

name +- aName

tracking

follow: positionBlock while: conditionBlock
"While conditionBlock is true, animate the receiver at the position specified by
positionBlock."

I oldLocation background startTime framelndex newLocation endTime I

"Handle the special case that almost never happens."
frames iaEmpty ifTrue: llconditionBlock value) whileTrue: n. i self).

"The usual situation."
oldLoc.ation +- positionBlock value.
background +- (Form extent: O@Ol ofhat: oldLocation.
startTime +- Time milliaecondClockValue.
framelndex +- O.

IconditionBlock value) whileTrue: [
framelndex +- (framelndex \\ frames aizel + 1.
newLocation +- positionBlock value.
background +- self diaplay: (frames at: framelndex)

at: newLocation
replacing: background
at: oldLocation.

oldLocation +- newLocation.
endTime +- Time milliMcondClockValue.
self delayToMatchFrameRate: endTime - startTime.
startTime +- endTime).

background diaplayAt: oldLocation

foIlowMou..
"Continue showing the film loop until the mouse is released."

Cursor croaHair 8howWhile: I
Sensor waitButton.
self follow: [Sensor curaorPoint) while: [Sensor redButtonPr••••dll

Chapter 10 Graphical Applications 461



private

delayToMatchFrameRate: millisecondsUsedSoFar
I delayAmount I

delayAmount +- millisecondsPerFrame - millisecondsUsedSoFar max: O.
delayAmount > 0 ifTrue: [(Delay forMilliseconds: delayAmountl wait]

display: frame at: location replacing: background at: oldLocation
"Place the background back at oldLocation, copy the new background from location
and place the frame on the screen. Note: both frame and background may have
offsets. "

I newBackground newRectangle I
background displayAt: oldLocation.
newRectangle +- location + frame offset extent: frame extent.
newBackground +- Form fromDisplay: newRectangle.
newBackground offset: frame offset. "remember the offset"
frame displayAt: location.
inewBackground

Method follow:while: cycles through the frames as long as the condition block result
is true. Variable framelndex is used to keep track of the frame to be displayed. When it
reaches value 'frame size', its next value is 1. The position block result indicates where the
next frame should be displayed.

Before a frame can be displayed, the picture beneath the previously displayed frame (the
background) must be restored. Hence the need for a method that (1) displays the old
background, (2) saves the part of the screen that will become the new background, and
(3) displays the new frame. To avoid special case code, we start off with an old background
that is an empty frame; i.e., a frame with extent O@O. At the end, we also have to restore
the very last background that was saved. Fig. 10.2 illustrates the three step sequence used by
method display:at:restoring:at:.

10.2.2 Extending Film Loops: Flicker-Free Display

There is a limitation to the display algorithm shown in Fig. 10.2 - flicker is observed
whenever the old background and the new frame intersect. This can be solved with a slightly
more complex display algorithm. When the frame to be displayed and the background to be
restored overlap, the simple display algorithm results in flicker due to the two separate
display operations. Because the first display gets undone by the second, the eye easily
discerns the discrete steps. This is not apparent without the overlap because the eye simply
perceives them as being done in parallel.

The solution is to ensure that only one display step is used rather than two. This can
be achieved by constructing the final image offscreen. More specifically, a copy of that part
of the screen that contains both the frame and background areas is updated and this updated
form is displayed in one step (see the revised display:at:restoring:at: method).

One complication arises from an inadequacy in all Smalltalk systems. Although a
form with an offset can be displayed on another form without an offset, the converse is not

462 Inside Smalltalk



(a) display: frame at: '!
restoring: background at: ?

(b2) get new background

ill

restore background

•
new

background

(!l3) display frame

Figure 10.2 The three steps used by method 'dlsplay:at:restoring:at:·.

properly handled; Le.• attempts to display an object on a form with an offset result in the
offset being completely ignored. Were this not the case. the code in the
display:at:restoring:at: method could be simplified by judiciously adding offsets to the
forms used.

displey: frame et: location replecing: background et: oldLocation
·Place the background back at oldLocation. copy the new background from location
and place the frame on the screen. To prevent flickering. only one bitblt operation
to the screen is performed."

I combinedRegion aForm newBackground I

Chapter 10 Graphical Applications 463



"Make a copy of that part of the screen that contains both the background area and
the frame area."
combinedRegion +- (oldLocation + background offset extent: background extent)

merge: (location + frame offset extent: frame extent).
aForm +- Form fromDisplay: combinedRegion.

"Restore the combined region to its original state."
background displayOn: aForm at: oldLocation - combinedRegion origin.

"Save the area to become the new background."
newBackground +- Form extent: frame extent.
aForm displayOn: newBackground at: combinedRegion origin - (location + frame
offset).
newBackground offset: frame offset.

"Display the new frame in the combined region."
frame displayOn: aForm at: location - combinedRegion origin.

"Finally, perform the one display operation to the screen."
aForm displayAt: combinedRegion origin.
inewBackground

10.2.3 Extending Film Loops: Disk Fonns

A complication with the simple film loop facility is that associated forms take up
considerable space if substantial use is made of them. We can envisage large libraries of
these pictures being kept. Only a small part of this library, however, will be available in
main memory; the majority will have to reside on disk. This will be all the more evident
when high quality color is an integral part of our workstations. To provide an idea about the
space requirements, consider one 24·bit color picture on a 1024 by 1024 screen. The space
requirements are 3*1024*1024, or 3 megabytes. Lower quality 8·bit pictures still require I
megabyte. Lower resolution screens might divide these numbers by a factor of 2, 3, or
perhaps 4. Just displaying two seconds of high quality animation at 24 pictures per second
would require 144 megabytes. It's easy to conjecture that 100 megabytes of main memory
will be a minimum configuration for personal machines a decade from now. One solution to
this problem is to make use of disk forms. Very briefly, disk forms are variants of forms in
which the data resides in a file. However, they have one very important property. They
automatically read themselves into main memory from disk and mutate into normal forms
when they are used.

Currently, Smalltalk forms are black and white but extensions to color are currently
being designed. So we can ignore the color aspects of the problem. With a large library of
forms, some facility will be needed to manage and distinguish between those forms that are
in main memory and those that are on disk. We also won't consider the complications of a
form manager. Instead, we'll focus primarily on the disk form itself - a variant of a form
in which the data resides in a file. Intuitively, we might expect a disk form to maintain a file
name, an offset into the file, and a size - permitting many pictures to be stored in the
same file.

Designing Disk Fonns

Should a disk form have the same protocol as a normal form; i.e., should we be able to use
it as if it were a normal form and have it take care of the discrepancy? It would be nice if that

464 Inside Smalltalk



I TIll

were the case, because all software that currently works with normal forms would then also
work with disk forms. How do we achieve this goal?

The obvious approach would have us define DiskForm as a subclass of Form. But
there are two problems: (1) the form's representation is no longer needed (since it is
automatically inherited, the best we can do is nil each instance variable), and (2) we need to
override every single form method to ensure that it pages the picture's bits from disk, as
illustrated below for method extent.

extent
self pageFromDiskIfNecesury.
tsuperextent

A simpler solution is to forget about subclassing altogether; i.e., to design disk forms
independently of forms but with a special property - the ability to change or mutate into a
normal form as soon as a message is received.

The idea is simple: ensure that few form messages are understood by disk forms and
provide a doesNotUnderstand: method for handling them. This method's task is to read in
the required data from disk, construct a normal form containing it, and change the receiver
into this form using the powerful become: operation.

Background for the Proposed Design

To understand how this works, we need a quick review of the become: operation, the
perform operations, class Message, and the behavior of doesNotUnderstand:.

To begin with, when an attempt is made to execute an illegal message such as

123456 copyFrom: 3 to: 5

the system manufactures an instance of Message containing the selector copyFrom:to: and
an argument array containing 3 and 5 and then sends the message 'doesNotUnderstand:
aMessage' to 123456.

The doesNotUnderstand: method inherited from Object displays an error message
and prompts with a debugging window. However. we can write our own version that does
something different. For the example above. we could resend the message to a print string of
the receiver. To do this, the specialized variation could be

donNotUn....t8nd: aMessage
I selector arguments I
selector +- aMessage ..lector.
arguments +- aMessage arguments.
t self printString perform: selector withArguments: arguments

For disk forms, we would like to do something a little more sophisticated. More
specifically, we want to mutate it into some other object - a normal form. The become:
operation can be used as follows for that purpose.

object1 become: object2

The proper way to read this is to say "objectl is changed into object2 and
simultaneously object2 is changed into objectl." This happens quite literally; any object that

Chapter 10 Graphical Applications 465



used to reference objectl in the system now references object2 and vice versa. For more
details on the become: operation, refer to the meta-operations in Chapter 6.

Class DiskFonn

class name
superclass
instance variables

class methods

class initialization

OiskForm
Object "should be nil"
filename offset size

466

initialize
"OiskForm initialize"
self confirm: ('You must change the superclass of \',

'OiskForm to nil using an inspector') witheRs.
OiskForm inspect

instance methods

modification

name: aFileName
"Set the name of the receiver."
filename t- aFileName

offset: anlnteger
"Set the file offset of the receiver."
offset t- anlnteger

size: an Integer
"Set the form size of the receiver."
size t- anlnteger

error handling

doesNotUnd....tand: aMessage
"Mutate the receiver into a normal form and try the message again."

self asForm become: self.
t self perform: aMessage selector withArguments: aMessage arguments

conversion

esFonn
"Answer the receiver as a normal form."

I form file I
Cursor read showWhile: (

file t- FileStream fiteNamed: filename.
file reaciOnly; position: offset.
form t- Object readFrom: (ReadStream on: (file next: size)).
filecloseI.

tform

Inside Smalltalk



i 1ftl

There are two interesting points about class DiskForm. First, it is not possible to
directly create a class with no superclass. It is necessary to define it initially as inheriting,
say, from Object. Then you can inspect class DiskForm and change the superclass to nil.
Why do we want the superclass to be nil? So that any message we send to a disk form will
cause it to mutate. This includes messages inherited by all objects, such as

aDiskForm printString
aDiskForm inspect
aDiskForm =anotherDiskForm
aDiskForm copy

There are at least two messages that slip through the net, however - message class
and message '==' because they are hard-wired to bypass method lookup. Can you find any
more?

The other important point is that the order of the parameters to message become: is
crucially important; e.g., only the second case below works.

self become: self esForm (1)
self.sForm become: self (2)

The reason is simple. Disk forms do not understand become: although normal forms
oo!

10.2.4 Integrating Disk Fonns with Film Loops

One nice thing about object-oriented languages is that a more functional class can be created
by inheriting from a less powerful version and extending it with the additional functionality.
In our case, we don't even need to change the representation. It's sufficient to replace the
collection of normal forms with disk forms since disk forms have the same behavior. The
disk form facility is integrated with the film loop via three methods: build, load, and
unload.

Method unload stores a complete film loop in a file in the format 'startOtFrameRate
form-l form-2 ... form-n frameRate offsets'. To get this information back later, method
build constructs a film loop containing disk forms that reference the file information - the
disk forms maintain only the file name, the offset into the file, and the size in bytes of the
form information; i.e., there is no need to actually read in the information unless it is
needed. Method load is used to force a film loop that was previously built to be totally in
main memory; Le., to mutate its disk forms to normal forms.

Method build needs access to the offset information to reconstruct the individual disk
forms associated with a file name- actually an ordered collection of offsets, one offset per
form. It would be ideal if the offsets could be first in the file. However, unload can't
determine what the offsets will be until it actually outputs the forms into the file. Since the
offset information is a collection and therefore arbitrarily long, it can't leave a fIxed amount
of space at the beginning (it could estimate an upper bound and waste a bit of space,
however; e.g., it could assume a maximum of ten characters per offset multiplied by the
number of entries - integers are converted to characters in the file). The alternative strategy
we adopted was to store the offset information after the forms. However, enough room for
the start of the offset information can be reserved at the beginning of the file. Since the

Chapter 10 Graphical Applications 467



frame rate is also needed, it might as well be stored at the end too. This should explain why
startOfFrameRate was used - it permits us to locate the non-form information.

Method examples contains a series of comments that use the inherited examples. By
constructing a film loop named 'Film' from example! and then unloading it, it is possible
to later retrieve it by sending message 'new: 'Film" to FilmLoop. The film loop so obtained
actually consists of disk forms. These get read in on demand when foliowMouse is
executed. There is a noticeable delay as the disk forms get mutated to normal forms - this,
of course, only happens on the first pass of the loop.

Class FilmLoop

class name
superclass
instance variables
comment

class methods

instance creation

FilmLoop
SimpleFilmLoop
"none"
A more sophisticated class of film loops that avoids
flickering and permits the loop to be stored on disk.

468

new: aFileName
"Create a new film loop from disk information."

i(self new name: aFileName) build

examples

exampl_
"FilmLoop1 ~ FilmLoop example1"
"FilmLoop1 unload"
"FilmLoop1 followMouse"
"(FilmLoop new: 'Film') followMouse"

"FilmLoop2 ~ FilmLoop example2"
"FilmLoop2 unload"
"FilmLoop2 followMouse"
"(FilmLoop new: 'Haze') followMouse"

"FilmLoop example3"

instance methods

caching

build
"Re-create the film loop from disk."
I file startOfFrameRate offsets sizes I

Cursor read ahowWhile: [
"startOfFrameRate form-1 form-2 ... form-n frameRate space offsets"
file ~ FileStream tileNamed: name.

startOfFrameRate ~ Integer readFrom: file.
file poaition: startOfFrameRate.
self trameRate: (Integer readFrom: file!.

Inside Smalltalk



1'1

file next. "discard the space"

offsets +- Object r_dFrom: file.

sizes +- OrderedCollection new.
2 to: offsets size do: (:index I sizes add: (offsets at: index) - (offsets at: index-1)).
sizes add: startOfFrameRate - offsets last.

frames +- OrderedCollection naw.
1 to: offsets size do: (:index I

frames add: (DiskForm new
name: name; off..t: (offsets at: index); size: (sizes at index))).

file cIoN).

load
"Force the film loop into main memory."

frames do: (:frame I frame extent "any query operation would do")

unIoed
"Save the film loop to disk."

I offsets file offset end I

Cursor write showWhile: (
"Make sure all forms are in main memory since file is about to be rewritten."
self load.

"Leave room to store the position of the film loop information."
"File format: startOfFrameRate form-1 form-2 ... form-n frameRate space offsets."
(file +- FileStream fileNamad: name) writeShorten; naxtPutAll: • '; cr.
"File out the film loop's frames."
offsets +- OrderedCollection new.
frames do: (:frame I

offset +- file position. offsets add: offset. "save it"
file etore: frame; cr.
frame

become: (DiskForm new
name: name; off..t: offset; size: file position - offset)).

"File out the header information."
offset +- file position. "save it"
file etore: self frameRate; space; etore: offsets.
end +- file position.
file reNt; etore: offset; position: end; cr; cIoN)

10.3 GRAPHICS THROUGH THE LOOKING GLASS

In this section, we consider the implementation of a magnifying glass that can be attached
to the mouse for close examination of a graphical image, as shown in Fig. 10.3. More
specifically, we consider a magnifying glass in which it is possible to change the size of the
viewing glass and also the amount of magnification (subject to limitation imposed by the
implementation). Once a magnifying glass is created, it can be activated at any time.
Activating a magnifying glass causes it to be attached to the mouse and to operate in the

Chapter 10 Graphical Applications 469



following manner: The area under the magnifying glass is magnified and displayed over the
magnifier as long as the red mouse button is depressed. The magnified view stops being
displayed when the red (normal) mouse button is released. The magnifying glass is
deactivated when the yellow button is depressed. The magnifier can be moved whether or not
it is magnifying. Of course, if it is moved while magnifying, the area viewed will change.

Figure 10.3 Using the magnifying glass for detailed study (magnified area displaced
from actual position over the magnifier for comparison purposes).

To allow magnifying glasses with arbitrary radius and magnification, we can introduce
instance variables and class protocol as shown in the following:

Class MagnifyingGlass

class
superclass
instance variables

class methods

instance creation

MagnifyingGlass
Object
radius magnification

470

new
·Creates a default magnifying glass."
i selfradius: 20 magnification: 4

Inside Smalltalk



'I"

radiua: anlnteger ....gnificetion: anotherlnteger
"Creates a magnifying glass of a specified size and magnification."
tsuper new radiua: anlnteger magnificetion: anotherlnteger

instance methods

instance initialization

radiua: anlnteger ....gnificetion: anotherlnteger
"Initializes the magnifying glass instance."

"Save the radius and magnification."
radius +- anlnteger. magnification +- anotherlnteger.

What should the magnifying glass look like? Fig. 10.4 shows a possible design.
Given that the glass itself is of radius radius, we derme magnifierForm as a square form of
size 3 * radius. The handle is defined to be of thickness radius //4. It will be too slow to
construct the magnifier on the spot, so we precompute it, storing the result in the instance
variable magnifierForm.

radius *3

_---~.-A-.._---_

radius * 3

Figure 10.4 The magnifying glass.

The instance method makeMagnifierForm creates and initializes the form containing
the magnifying glass and handle. First. a solid black handle is displayed on magnifierForm
using an instance of class Line. Note that we initially draw the handle from the center of the
glass to a point off the form. The bottom of the handle will automatically be clipped to the
form. We must clip the top left part of the handle ourselves. This is achieved by drawing a
solid white circle where the magnifying glass will eventually reside. To do this we create a
solid black circle of the required size and then display it on the form using the erase mode to
erase or set to white corresponding pixels in the magnifier form. Instances of class Circle and
Line are then used to add the glass and crosshairs to the magnifier form.

Chapter 10 Graphical Applications 471



Class MagnifyingGlass

class
superclass
instance variables

instance methods

instance initialization

MagnifyingGlass
Object
radius magnification magnifierForm

radius: anlnteger magnification: anotherlnteger
"Initializes the magnifying glass instance."

"Save the radius and magnification."
radius +- an Integer.
magnification +- anotherlnteger.

"Create the magnifier form."
self makeMagnifierForrn.

private form initialization

makeMegnifierForrn
"Creates and initializes the form containing the magnifying glass and handle."

I diameter center dot I

"Compute often used values."
diameter +- 2*radius. center +- radius@radius.
magnifierForm +- Form new extent: (radius@radius)*3.
dot +- (Form extent: 3@3) black.

"Draw a solid black handle."
(Line from: center to: center*4 "off the form!!"

withForm: (Form new extent: (radius //4) @ (radius 1/ 4); black))
displayOn: magnifierForm.

"Draw a solid white circle over the top left part of the handle."
(Form dotOfSize: 2 * radius + 1)

offset: O@O; displayOn: magnifierForm at: O@O rule: Form erase.

"Create the circle for the magnifying glass."
(Circle new form: dot; radius: radius; center: center) displayOn: magnifierForm.

"Create the horizontal line across the magnifying glass."
(Line

from: O@radius to: diameter@radius withForm: dot) displayOn: magnifierForm.

"Create the vertical line across the magnifying glass."
(Line

from: radius@O to: radius@diameter withForm: dot) displayOn: magnifierForm.

10.3.1 Activating the Magnifier

Now that we have an image of the magnifying glass, we can look at how to activate the
magnifier and the overall algorithm to track the movement of the mouse displaying either

472 Inside Smalltalk



the magnifier or the magnified area, depending on the status of the red button. We want to be
able to activate a magnifier using code of the form

MagnifyingGlass new activate

Whenever the mouse moves, we must restore the original area occupied by the magnifying
glass and redraw the magnifying glass at the new location. If the red button is depressed, the
magnified image rather than the magnifier must be displayed. Depressing the yellow button
deactivates the mouse and restores everything to its former state.

The basic strategy to be employed is described in pseudo code form in the following:

After hiding the cursor
magnifying := false.
while yellow button not pressed do

if red button pressed then magnifying := true
if red button released then magnifying := false
if magnifying then

restoreBackgroundAndDisplayMagnifiedArea
.1•• restoreBackgroundAndDisplayMagnifier

endwhile
restoreBackgroundAndDisplayNothing

restore the cursor

10.3.2 Restoring and Redisplaying

To be able to restore the background successfully (see Fig. 10.5) we must ensure that before
displaying the magnifying glass at a new location we save the background area for future
restoration. Remember that if the red button is depressed the magnified image is displayed
instead of the magnifier. Note that this means that, in general, the old and the new area could
either be the magnifier or the magnified area.

A further problem arises if the old and new forms overlap. If the background form were
restored in one step, followed by a display of the new information (either the magnifier or a
circular magnification area) in a second step, flickering would occur when the two areas over
lap. We can avoid this by first displaying the information on a temporary form called the
merged form and then displaying this merged form on the screen using one display message
(see Fig. 10.6).

The merged form is a copy of the screen that contains both the background and display
areas. However, if the background and/or display forms partially reside off the screen, we
may need a larger merged form to avoid information loss by clipping (see Fig. 10.7).

Constantly creating new forms is slow, which suggests creating two forms, back
groundForm and mergedForm, at initialization time. Is the sized of mergedForm
bounded by the size of the display? Unfortunately, the answer is no, as the scenario in
Fig. 10.7 illustrates. The size of the background form is the maximum of the magnifier or
the magnified image, while the size of the merged form is the rectangle that contains both
the background form and the new display rectangle. We could compute a size that takes into
account the situation shown in Fig. 10.7. However, this would have to be a function of the
magnifier's radius. Even then, there are cases that would not be handled. For example, in
Macintosh systems with multiple screens, it is possible to move the mouse outside the
display area used by Smalltalk. In those cases, the merged form would have to be even larger

Chapter 10 Graphical Applications 473



Old New

Figure 10.5 Restoring the old fonn and displaying the new fonn.

Old New

474

Figure 10.6 Avoiding flicker by using a merged fonn.

Inside Smalltalk



~ of~ 'of. ~

~"""""""""""""""""""""""""",""""""""",;""""""",;~

Figure 10.7 Background and display areas may partially reside off-screen.

than computed in order to work properly. A simple strategy is to start with a reasonable size
and extend it when (and only when) needed. Three instance variables, backgroundRectangle,
mergedRectangle, and displayRectangle, are needed to keep track of the extents of their corre
sponding forms. Revisions to the class MagnifyingGlass so far are shown in the following:

Class MagnifylngGlass

class
superclass
instance variables

instance methods

instance initialization

MagnifyingGlass
Object
radius magnification magnifierForm
backgroundForm mergedForm backgroundRectangle
displayRectangle mergedRectangle

radius: anlnteger magnification: anotherlnteger
"Initializes the magnifying glass instance."

"Save the radius and magnification."
radius to- anInteger. magnification to- anotherlnteger.

"Create the utility forms."
self mekeMagnifierFonn. self mekeBeckgroundAndMergedForms

Chapter 10 Graphical Applications 475



private form initialization

makeBackgroundAndMergedFonns
"Creates forms for keeping track of the background and merged forms."

I size extent I
size f- radius * magnification * 2 max: radius * 3.
extent f- size@size.
backgroundForm f- Form new extent: extent.
mergedForm f- Form new extent: Display extent.

instance activation

activate
"Make the magnifier track the mouse and display a magnified version of the area
underneath it if the mouse bunon is depressed; otherwise. display the magnifier
itself. Depressing the yellow button (option + mouse down) deactivates the mouse
and restores everything to its former state."

I magnifying newCenter I

"Initialize. "
magnifying f- false. backgroundRectangle f- Sensor cursorPoint extent: O@O.

"Hide the cursor."
Cursor blank showWhila:[

"Quit when a yellow button is pressed."
[Sensor yellowButtonPr_edJ whileFalse: [

"Determine if magnification status has changed."
magnifying f- Sensor redButtonPressed.

"Display either the magnifier or the magnified area."
newCenter f- Sensor curaorPoint.
magnifying

ifTrue: [
displayRectangle f- newCenter - (radius@radius*magnification)

extent: radius * magnification * 2.
self restoreBeckgroundAndDisplayUsing:

#displayMagnifiedAreaOnMergedForml
ifFalse: [

displayRectangle f- newCenter - (radius@radius)
extent: magnifierForm extent.

self restoreBeckgroundAndDisplayUsing:
#displayMagnifierOnMergedFormll.

self restoreBeckgroundAndDisplayUsing: #isNill

There are several things to note about the activate method. The instance method
'showWhile: aBlock' is used to hide the cursor (to make it blank) while aBlock is evaluated.
The original cursor is restored afterwards. In addition, note that one method
restoreBackgroundAndDisplayUsing: handles the restore and redisplay process. We
distinguish between the three cases by computing the new display rectangle and passing a

476 Inside Smalltalk



! lKi

different method as argument to restoreBackgroundAndDisplayUsing: in each case. For
the case where the magnified image will be displayed, the code is:

displayRectangle t- newCenter - (radius@radius*magnificationl
extent: radius * magnification * 2.

self reatoreBeckgroundAndDiapleyUaing: #displayMagnifiedAreaOnMergedForm

The method displayMagnifiedAreaOnMergedForm will deal with the computation
specific to the magnified image. When the magnifier is to be displayed, the code is

displayRectangle t- newCenter - (radius@radiusl extent: magnifierForm extent.
self r..toreBeckgroundAndDiapleyUaing: #displayMagnifierOnMergedForm

For the final case, where the background must be restored but no redisplay is required,
method isNii is passed - isNil is simply a nice way of specifying a null operation; it is
understood by all objects and simply returns true or false depending on whether or not the
receiver is nil.

self reatoreBeckgroundAndDiapleyUaing: #isNil

10.3.3 Restoration and Redisplay Details

The restore and redisplay process can be decomposed into five basic steps.

1. Obtain a screen copy containing both background and display areas.

The size of the merged rectangle is first computed taking into account the
possibility that the rectangle may need to be extended if either the background or
display rectangle lies partially off screen. The merged form is then extracted from
the display using the copyBits:from:at:clippingBox:extent:rule:mask: message.

mergedRectangle t- backgroundRectangle merge: displayRectangle.

mergedRectangle extent x > mergedForm extent x I
(mergedRectangle extent y > mergedForm extent yl

ifTrue: ImergedForm t- Form new
extent: (mergedRectangle extent mex: mergedForm extentll.

mergedForm copyBita: mergedRectangle from: Display et: 0 @ 0
clippingBox: (0 @ 0 extent: mergedRectangle extentl
rule: Form over muk: nil.

2. Compute background and display rectangles relative to merged form origin.

The background and display rectangles will ultimately be extracted from or
displayed on the merged form. Hence, it is convenient to translate the background
rectangle in display coordinates into coordinates that are relative to the origin of
the merged rectangle - the relative background rectangle. The same applies for
the relative display rectangle.

relativeBackgroundRectangle t-
backgroundReetangle trensleteBy: 0 @ 0 - mergedRectangle origin.

relativeDisplayRectangle t-

displayRectangle trenaleteBy: 0 @ 0 - mergedRectangle origin.

Chapter 10 Graphical Applications



3. Restore merged form and save the display area as the new background.

The next step is to restore the merged form to what it used to be.

backgroundForm displ.yOn: mergedForm
.t: relativeBackgroundRectangle origin
clippingBox: relativeBackgroundRectangle
n.tle: Form over meak: nil.

Next, the display area is retrieved from the merged form and saved as the new
background.

backgroundForm
copyBits: relativeDisplayRectangle from: mergedForm
.t: O@O clippingBox: (0 @ 0 extent: relativeDisplayRectangle extent)
rule: Form over m.sk: nil.

backgroundRectangle ~ displayRectangle.

4. Copy the display form onto the merged form (in-place modify).

The next step copies the display form onto the merged form. If the red button is
pressed (for magnification), method displayMagnifiedAreaOnMergedForm is
invoked. If no magnification is taking place, method displayMagnifierOn
MergedForm is invoked. These methods are described in more detail in the next
section.

Either
self perform: #displayMagnifiedAreaOnMergedForm

Or
self perform: #displayMagnifierOnMergedForm

5. Display the merged form on the screen.

Finally, we can display the merged form on the screen. Note that we have taken
great care to ensure that at most one display operation is used to paint the screen.

mergedForm displ.yOn: Display
.t: mergedRectangle origin
clippingBox: mergedRectangle
rule: Form over mesk: nil.

10.3.4 Displaying the Magnifier on the Merged Fonn

The method displayMagnifierOnMergedForm displays the magnifier form on the merged
form. Note that the combination rule used is Form under so that we can see through the
magnifier.

displ.yM.gnifierOnMergedForm
magnifierForm

diapl.yOn: mergedForm .t: relativeDisplayRectangle origin
clippingBox: relativeDisplayRectangle rule: Form under meak: nil

478 Inside Smalltalk



10.3.5 Displaying the Magnified Image on the Merged Fonn

If the magnified image were rectangular, it would be relatively easy to display the image on
the merged form. However, the magnified image is circular, and this makes the problem con
siderably more interesting. Fig. 10.8 illustrates the steps necessary to display the circular
magnified image. Five major stages may be identified and we will discuss each in detail.
First, however, note that a black circular mask is used twice in the display process. The form
IargeBlackHole for the mask can be precomputed once and then used whenever required. We
introduce a new method makeLargeBlackHole to create the black hole and save it in the
instance variable largeBlackHole. Method radius:magnification: must be modified to
invoke makeLargeBlackHole whenever the radius or magnification factor is modified.

malcel..ergeBleckHole
"Create a black hole (a large black dot) and save it in the instance."
I magnifiedDiameter I

magnifiedDiameter +- radius * magnification * 2.
largeBlackHole +- (Form dotOfSize: magnifiedDiameter) offset: O@O

Five steps are needed:

1. Obtain a magnifaed square image.

The first step is to take the image under the magnifying glass and magnify it to
the size it will appear in the magnified image. At this stage, we simply ignore the
fact that the magnifying glass is round and extract and magnify a rectangular
image from underneath the glass.

I imageRectangle imageForm magnifiedlmage I

"First, obtain a magnified square image of the area."
imageRectangle +- relativeDisplayRectangle center - (radius@radius)

extent: (radius@radius)*2.
imageForm +- Form new extent: imageRectangle extent.
imageForm copyBits: imageReetangle from: mergedForm et: O@O

clippingBox: (O@O extent: imageRectangle extent)
rule: Form over mesic: nil.

magnifiedlmage +- imageForm megnifyBy: magnification@magnification.

2. Obtain a circular image.

We can obtain the required magnified image in circular form by "anding" the
magnified rectangular image with a large circular black mask of the required size.
Note that "anding" is achieved using a display operation with the proper rule.

"Second, AND it with the black hole."
largeBlackHole displeyOn: magnifiedlmage et: O@O

clippingBox: magnifiedlmage boundingBox rule: Form end rnuk: nil.

3. Create a white circular hole in which to display the magnified image.

Next we create a white circular hole at the point where the circular magnified
image is to be displayed. The large circular black mask can again be used but in
this case we use combination rule erase to cut out the required white circular hole.

"Third, create a white hole in the magnified area (erase changes black to white)"
largeBlackHole displeyOn: mergedForm et: relativeDisplayRectangle origin

clippingBox: relativeDisplayRectangle rule: Form erese mesk: nil.

Chapter 10 Graphical Applications 479



blackHolemagnifying area

_II

..... ~>

whiteHole

image under magnifying glass

Figure 10.8 Displaying the magnified image on the merged form.

480 Inside Smalltalk



III

4. Place the magnified image into the white circular hole.

The magnified image can now be copied into the white hole using the "or" or
under rule to ensure that only the circular portion of the magnified image form is
copied.

"Fourth, OR the magnified image onto the magnification area with the white hole."
magnifiedlmage displayOn: mergedForm at: relativeDisplayRectangle origin

clippingBox: relativeDisplayRectangle rule: Form under mask: nil.

S. Outline the circular hole.

Finally. to make the magnified image stand out more clearly. we create a black
circle around the display rectangle on the merged form.

"Fifth, draw a circle around the magnified section to make it stand out."
dot +- (Form extent: 3@3) bleck.
(Circle new form: dot; radius: radius * magnification - 1;

center: relativeDisplayRectangle center - (1@1))
displayOn: mergedForm at: O@O
clippingBox: refativeDisplayRectangle rule: Form over mask: nil.

10"3.6 Class MagnifyingGlass

For completeness. we include the final class definition for class MagnifyingGlass.

class
superclass
instance variables

comment

class methods

instance creation

MagnifyingGlass
Object
radius magnification magnifierForm
backgroundForm largeBlackHole
backgroundForm mergedForm
backgroundRectangledisplayRectangle
mergedRectangle relativeBackgroundRectangle
relativeDisplayRectangle

A magnifying glass (magnifier for short) of specified radius
and magnification can be created and subsequently
activated. When activated, the cursor is replaced by the
magnifying glass. As long as the red (standard) mouse
button is depressed, the area under the magnifying glass is
magnified and displayed over it. Depressing the yellow
(option+mouse) button deactivates the magnifying glass and
restores the cursor to what it was. Note that the magnifier
has a round (as opposed to square) glass.

For speed. two forms are initialized at creation time: (1)
magnifierForm which contains the magnifier icon and, (2)
largeBlackHole, a circular mask to capture the portion of the
magnified picture to be displayed.

new
·Creates a default magnifying glass.·
i self radius: 20 magnification: 4

Chapter 10 Graphical Applications 481



482

radius: anlnteger magnification: anotherlnteger
"Creates a magnifying glass of a specified size and magnification."
i super new radius: anlnteger magnification: anotherlnteger

examples

example1
"MagnifyingGlass new activate"
"(MagnifyingGlass radius: 40 magnification: 5) activate"

instance methods

instance initialization

radius: anlnteger magnification: anotherlnteger
"Initializes the magnifying glass instance."

"Save the radius and magnification."
radius ~ anlnteger. magnification ~ anotherlnteger.

"Create the utility forms."
self makeMagnifierForm.
self makeLargeBlackHole.
self makeBackgroundAndMergedForms

instance activation

activate
"Make the magnifier track the mouse and display a magnified version of the area
underneath it if the mouse button is depressed; otherwise, display the magnifier
itself. Depressing the yellow button (option + mouse down) deactivates the mouse
and restores everything to its former state."
I magnifying newCenter I

"Initialize. "
magnifying ~ false. backgroundRectangle ~ Sensor cursorPoint extent: O@O.

"Hide the cursor."
Cursor blank showWhile:[

"Quit when a yellow button is pressed."
[Sensor yellowButtonPr-.d1 whilaFalse: [

"Determine if magnification status has changed."
magnifying~ Sensor redButtonPre••ed.
"Display either the magnifier or the magnified area."
newCenter~ Sensor curaorPoint.
magnifying

ifTrue:[
displayRectangle ~ newCenter - (radius@radius*magnification)

extent: largeBlackHole extent.
self restoreBeckgroundAndDisplayUsing:

#displayMagnifiedAreaOnMergedForml
ifFalse: [

displayRectangle ~ newCenter - lradius@radiusl
extent: magnifierForm extent.

self restoreBackgroundAndDisplayUsing:
#displayMagnifierOnMergedFormll.

self restoreBackgroundAndDisplayUsing: #isNill

Inside Smalltalk



displaying

displeyMagnifieclA....OnMergedFonn
"In-place Magnifies a circular area centered at newCenter in aForm..
I imageRectangle imageForm magnifiedlmage dot I

"First, obtain a magnified square image of the area"
imageRectangle +-

relativeDisplayRectangle center - (radius@radius) extent: (radius@radius)*2.
imageForm +- Form new extent: imageRectangle extent.
imageForm copyBits: imageReetangle from: mergedForm at: O@O

clippingBox: (O@O extent: imageRectangle extent) rule: Form over mesk: nil.

magnifiedlmage +- imageForm megnifyBy: magnification@magnification.

"Second, AND it with the black hole."
largeBlackHole displayOn: magnifiedlmage at: O@O

clippingBox: magnifiedlmage boundingBox rule: Form and mesk: nil.

"Third, create a white hole in the magnified area (erase changes black to white)"
largeBlackHole displayOn: mergedForm at: relativeDisplayRectangle origin

clippingBox: relativeDisplayRectangle rule: Form erase mesk: nil.

"Fourth, OR the magnified image onto the magnification area containing the white
hole."
magnifiedlmage displayOn: mergedForm at: relativeDisplayRectangle origin

clippingBox: relativeDisplayRectangle rule: Form under mesk: nil.

"Fifth, draw a circle around the magnified section to make it stand out,"
dot +- (Form extent: 3@3) bleck.
(Circle new form: dot; radius: radius * magnification - 1;

center: relativeDisplayRectangle center - (1@1»
displayOn: mergedForm at: O@O clippingBox: relativeDisplayRectangle

rule: Form over mask: nil

displeyMegnifierOnMergedForm
magnifierForm

displayOn: mergedForm at: relativeDisplayRectangle origin
clippingBox: relativeDisplayRectangle rule: Form under mesk: nil

,.storeBeckgroundAndDispleyUsing: displayOnMergedFormSymbol
"If the background form were restored in one step followed by a display of the new
information (either the magnifier or a circular magnification area) in a second step,
flickering would occur when the two areas overlap. We can avoid this by first
displaying the information on a temporary form called the merged form and then
displaying this merged form on the screen using one display message."

"First, obtain a copy of the screen that contains both the background and display
areas. Note: if the background and/or display forms partially reside off the screen,
we may need a larger merged form to avoid information loss by clipping."

mergedRectangle +- backgroundRectangle merge: displayRectangle.

mergedRectangle extent x > mergedForm extent x I
(mergedRectangle extent y > mergedForm extent y)

ifTrue: ImergedForm +-
Form new

extent: (mergedRectangle extent mex: mergedForm extent)).

Chapter 10 Graphical Applications 483



484

mergedForm copyBita: mergedRectangle from: Display at: 0 @ 0
clippingBox: (0 @ 0 extent: mergedRectangle extent)
nale: Form over mask: nil.

·Second, compute background and display rectangles relative to the merged form
origin.·
relativeBackgroundRectangle ~

backgroundRectangle translateBy: 0 @ 0 . mergedRectangle origin.
relativeDisplayRectangle ~

displayRectangle translateBy: 0 @ 0 - mergedRectangle origin.

·Third, restore the merged form to what it used to be and save the display area for
later use."
backgroundForm displayOn: mergedForm

at: relativeBackgroundRectangle origin
clippingBox: relativeBackgroundRectangle
rule: Form over mask: nil.

backgrou ndForm
copyBits: relativeDisplayRectangle from: mergedForm
at: O@O clippingBox: (0 @ 0 extent: relativeDisplayRectangle extent)
nale: Form over mask: nil.

backgroundRectangle ~ displayRectangle.

·Fourth, display the display form onto the merged form (in-place modify)."
self perform: displayOnMergedFormSymbol.

·Finally, display the merged form onto the screen."
mergedForm displayOn: Display at: mergedRectangle origin

clippingBox: mergedRectangle rule: Form over mask: nil

private form initialization

mekeMagnifierForm
·Creates and initializes the form containing the magnifying glass and handle."
I diameter center dot I

·Compute often used values."
diameter ~ 2*radius. center ~ radius@radius.
magnifierForm ~ Form new extent: (radius@radius)*3.
dot~ (Form extent: 3@3) black.

"Draw a solid black handle."
(Line from: center to: center*4 ·off the form!!·

withForm: (Form new extent: (radius // 41 @ (radius //4); black))
displayOn: magnifierForm.

·Draw a solid white circle over the top left part of the handle."
(Form dotOfSize: 2 * radius + 1)

offset: O@O; displayOn: magnifierForm at: O@O rule: Form erase.

·Create the circle for the magnifying glass."
(Circle new form: dot; radius: radius; center: center) displayOn: magnifierForm.

·Create the horizontal line across the magnifying glass."
lLine from: O@radius to: diameter@radius withForm: dot) displayOn: magnifierForm.

"Create the vertical line across the magnifying glass."
lLine from: radius@O to: radius@diameter withForm: dot) displayOn: magnifierForm

Inside Smalltalk



mekeLargeBlackHole
·Create a black hole (a large black dot) and save it in the instance.·
I magnifiedDiameter I

magnifiedDiameter ~ radius * magnification * 2.
largeBlackHole~ (Form dotOfSize: magnifiedDiameter) off.et: O@O

·Creates forms for keeping track of the background and merged forms.·
I size extent I

size ~ radius * magnification * 2 max: radius * 3.
extent ~ size@size.
backgroundForm ~ Form new extent: extent.
mergedForm~ Form new extent: Display extent

10.4 THE DESIGN AND IMPLEMENTATION OF A SIMPLE VIDEO GAME

Designing applications is not made easier by object-oriented languages - in fact, it's harder.
The goal of writing down a good design on paper in one pass is rarely achieved - it is
possible only with hindsight; i.e., if you've done it before. More likely, your design, if it's
any good, will have undergone an extensive evolution. To do this properly, a desktop 
even an electronic desktop with diagramming tools - is inadequate. An interactive design
tool is needed. We claim that the Smalltalk environment (not the language) is in fact such a
tool.

In this case study, we focus not so much on the tool but on the notion that design is
an interactive process. We present a design history for a simplified version of the Brickles4

game. Working code for the end product is provided, but the important issue is the ongoing
evolution of the design. Because of space limitations, it will not be possible to detail
everything that transpired during the evolution, much less show all the discarded code.
Nevertheless, we will attempt to provide a condensed but reasonable idea.

At the very least, we hope to convey the notion that designing is hard. A secondary
goal is to show that designing must include programming to be properly evaluated and that
most of what we do in an environment like Smalltalk's is design.

A typical display for the game is shown in Fig. 10.9. The objective of the game is to
remove all the bricks from the wall. When the ball strikes a brick, the brick disappears. The
ball can be redirected using the paddle, which the player can move to the left or right using
the mouse. The ball bounces off the sides, bricks, and paddle in a conventional fashion. The
player has three balls with which to remove all the bricks. A ball is lost if it passes below
the paddle; i.e., if the player misses it!

10A.1 Designing Is Prototyping

We started off by finding the objects; i.e., attempting to determine the object classes and
their representation - the object fields (see Fig. 10.10). Next we introduced an abstract

4Shareware distributed by Ken Winograd.

Chapter 10 Graphical Applications 4S5



Ball

/
•

/paddl.
-

Figure 10.9 The video game.

class VideoGameComponent to tie together the game elements. This also led to an
abstract class MovingGameComponent to tie together the Ball and Paddle classes. For
the moment, it was to contain only a direction (actual contents undecided).

The VideoGame fields suggest the creation of a container class for the bricks called
Wall (the notion brick wall comes to mind), and another one, called Sides, to contain the
left, top, and right side of the game.

We considered creating an abstract superclass for Wall and Sides, because they are
examples of components with parts, but put it on hold for later. We decided instead to
temporarily add a field parts to VideoGameComponent with the understanding that only
Wall and Sides would really use them.

Object

VideoGame Ball Brick Side Paddle
ball position position position position

padille radius width width width
sides height height height
wall

Figure 10.10 Initial class hierarchy.

486 Inside Smalltalk



".

VideoGame
Component

parts
boundingBox

Sides Side MovingGame Wall Brick
Component

direction

I

Ball Paddle

Figure 10.11 Next class hierarchy.

The resulting design so far (ignore field changes for the moment) is summarized in
Fig. 10.11. It suggested that we might be able to move the radius and width/heigbt fields
into the superclass if a more general notion was used. We decided on the concept of a
boundingBox.

With respect to operations, we introduced new at the top level for creating initialized
instances, protocol for accessing and changing the fields, an addPart: at the top level, and
both an initialize and display method unique to each class at the bottom of the hierarchy.
Since the display methods for Sides and Wall were the same (they just displayed the parts),
it was moved up to the superclass. The reader could glance ahead to the end of the chapter for
a look at the ball, brick, paddle, and side initialization code - most of it came from this
early stage.

We also introduced protocol for determining and changing the position of an object
(position and position:) and changing the size of the bounding box without moving it
(extent:). Soon afterward, we replaced the position concept by a center notion to
eliminate confusion (the position of a rectangle is usually understood to be the top comer;
for a circle, it's usually the center). Finally, we added play to VideoGame so that it could at
least display the sides, wall, ball, and paddle. We now had a prototype without moving
objects.

10.4.2 Getting into Details

We deliberated over whether direction should be an angle that would ultimately require the
use of sin and cos or a quantized direction - we chose the latter because we suspected a
potential future speed problem, but we were prepared to change our minds (see
directionIndex). Anticipating bouncing objects, we added method reverseDirection.

We added move methods to classes Ball and Paddle - using a fixed step size of 5
pixels in x and/or y to begin with. VideoGame method play was extended so that the ball
started in the center and moved upward in a loop (for testing).

Chapter 10 Graphical Applications



The move methods give a flavor of the quantization and the distinction between a ball
and a paddle.

Moving Methods

aMovingGameObject directionlndex
j#Oeft right up down leftUp rightUp ...1 indexOf: direction

aBall move
I delta aPoint I

delta r #(
(-501 "'eft" (501 "right"
(0 -5) "up" (051 "down"
(-5 -51 "leftUp" (5 -5) "rightUp"
(-5 5) "leftDown" (5 5) "rightDown"
) at: self directionlndex.

aPoint r (delta at: 1)@(delta at: 2).
self center: self center + aPoint

aPaddle move
self center: Sensor cursorPoint x @ self center y

Now the ball could "climb up" the screen and the paddle could track the mouse but old
images remained on the screen.

10.4.3 Taking Movement More Seriously

To prevent flicker, we modified the design to avoid displaying individual objects directly on
the screen; i.e., we replaced the display methods by 'displayOn: aForm' and displayed the
form only after both the ball and paddle had been displayed on it.

When a moving object changes location, the old location must be restored to its
former state - only then is the object displayed at the new location. To simplify the use of
moving objects, we decided to have the moving object do this as part of the displayOn: pro
tocol. We introduced fields underneath and underneathOrigin for this purpose. Note that
after restoring the old background and before displaying the object, the new background is
saved in the new fields.

To properly distribute the new functionality, we decided to have method displayOn: in
MovingGameComponent restore the old and save the new. Existing methods displayOn:
in Ball and Paddle were extended with an initial super displayOn:.

We introduced a naive collision handling method, 'bounceOff: aGameObject', in Ball.
It needs to do two things: detect a collision (required a top-level query method 'intersect:
aGameObject') and determine a rebound direction ('pushOff: aGameObject'). For composite
objects, the intersect: method is relayed to the parts; for the others, a test for intersecting
bounding boxes is used. For an explanation of the heuristic used in pushOff:, see class
ObstacleSet.

Finally, we extended play to create a form the size of the display, repeat 'self
playOneBallOn: aForm' three times, and finally display a "game over" message. Most of
the work was done by method playOneBaIlOn:.

488 Inside Smalltalk



The Playing Algorithm

aVideoGame playOneBallOn: aForm
ball center: Display center; direction: MovingGameComponent randomDirection.
[self ballOutOfPlay) whileFalse: [

ball
bounceOff: sides;
bounceOff: wall;
bounceOff: paddle;
move;
displayOn: aForm.

paddle move; displayOn: aForm.
aForm displayl

The next stage was to make the bricks vaporize. We extended bounceOff: to return the
obstacles it intersected with (there could be more than one; e.g., two bricks at a time). Then
if the obstacle was a brick, we removed it from the wall - we added a removePart: method
to complement addPart:.

We also attempted to generalize the intersects: method at the top level so that we
could eliminate the ones in the non-composite object subclasses. It ended up being too
complex and we rejected it.

A Method That Was Too Complex

intersects: anObject
self == anObject ifTrue: [tfalsel.
(boundingBox intersects: anObject boundingBoxl ifFalse: [tfalsel.
self hasNoParta & anObject hasNoParta ifTrue: [ttruel.
self hasNoParta ifTrue: [tanObject intersects: self).
parts do: [:aPart I (aPart intersects: anObjeetlifTrue: [ttrueJl.
tfalse

We felt confident it was time to try out the game again. We found the rebound
heuristic worked most of the time but it failed when hitting the side of a brick (as opposed to
the bottom) - a new version worked better. On occasion, the ball escaped through the sides.
The problem was the timing for the intersection test. It was performed when the ball was on
one side of the barrier (before moving) and also when it was on the other side (after moving).
It wasn't designed to consider the intermediate positions - the side was only 1 pixel wide
and the ball jumped in increments of five.

10.4.4 Extending and Improving the Design

We next introduced an interaction abstraction to enable us to better understand how to
control moving objects. More specifically, we defined moveOn: to mean the sequence
'hideOn:, move, showOn:', where hideOn! restores overwritten background and showOn:
saves the new one about to be written and displays it. It's now possible to hide for long
periods of time while other intervening displays are performed.

We also had to develop a more sophisticated collision detector that projected the
receiver's bounding box from the start point to the end point.

Chapter 10 Graphical Applications 489



Next, we replaced the notion of direction by a velocity vector of the form
deltaX@deltaY, where each delta could be a floating point value. This also permitted
directions at arbitrary angles to be specified. We introduced a corresponding protocol
direction, direction:, velocity, velocity:. On a minor note, we tired of the name
GameComponent and changed it to GameObject.

Finally, we decided to reorganize the hierarchy by (1) adding CompositeGameObject
as a superclass of Wall and Sides and (2) BasicGameObject as a superclass of Ball,
Brick, and Paddle (see Fig. 10.12). However, there were now two ways of classifying
objects: composite/non-composite and moving/nonmoving - a multiple inheritance issue?
No matter how we did it, we decided we didn't want to consider all combinations. The simple
solution was to assume all objects could be moving - for our game, most would have
velocity zero.

Game
Object

boundingBox
underneath

undemeathOrigin
velocity

•
Basic Composite
Game Game
Object Object

parts

Ball Brick Paddle Side Wall Sides

Figure 10.12 Final class hierarchy.

Finally, we had a working system (but see the conclusions). However, it was slow.

10.4.5 Designing for Speed

To speed up the game, we decided to precompute pictures of the basic objects and cache them
into a new field picture. Since this would have to be recomputed if the size of the object
changed, we introduced a method relnitialize to do this. We added this message at the end
of methods that changed the receiver's bounding box size. We also decided that the bounding
box for a composite object should automatically be recomputed if one of its parts was
removed. Moreover, it was to be the union of the bounding boxes of its parts. Not
unexpectedly, this slowed down the system.

Another possibility was to decompose the bricks into a hierarchy of composite
objects, providing an O(log n) search path to the bricks rather than O(n). This helped a

490 Inside Smalltalk



"'I

little, but removing a brick from the wall became slower because a more complex search was
needed to find it.

To avoid drawing the complete form (the same size as the display) when little changed,
we decided to maintain a rectangle that is the union of all the areas modified. When the form
is written, only the area inside the rectangle is displayed and then the rectangle is reset to nil
(unused). To isolate the changes, we created GameForm, a subclass of Form, which
maintained this additional rectangle. All messages of the form 'displayOn: aGameForm'
ultimately result in a copyBits: ... message to aGameForm. It simply merges the size of the
form being copied with the existing rectangle it maintains and relays the message to the
superclass. A display is also introduced to display only the portion specified by the
rectangle. This extension was particularly interesting because it was a transparent change;
i.e., no existing code had to be modified.

We finally decided to speed up the brick removal operation by ensuring that all
contained objects kept track of their container; i.e., the addition of a container field to all
game objects. We resisted this for a long time but it paid off - removing a brick was now
0(1). With little additional overhead, we also provided a facility to recompute the bounding
boxes covered by composite objects higher up (see release and superRelease in class
GameObject). This sped up the system as the number of bricks decreased.

10.4.6 More Refinements and Further Polishing

Every now and then, bits and pieces of the code failed to be object-oriented; i.e., it
considered the object types to determine what to do. Eliminating such code generally required
high-level abstractions and usually caused the design to improve. A specific example is
shown below- it led to the higher-level recoil abstraction. Now it was up to individual
objects to decide what to do when they were hit; e.g., bricks hid and then released themselves
from their containers; all other objects stayed put.

Obs1acle Handling

UOld approach u

". determine all obstacles ".
obstacles do: [:obstacle I

(obstacle isKindOf: Brick)
ifTrue:[obstacle hid.On: aForm. wall removePart: obstacleJl

." determine all obstacles '"
obstacles do: [:obstacle I obstacle recoilOn: aForml

The above statement suggested another abstraction to simplify the design - a
complementary 'obstacle pushOff: approachingObject' operation. This made it simple to
extend the paddle so that it imparts spin to the ball; all other objects push off by deflection.

Additionally, much of the collision detection code was designed to ask questions of a
bounding box as opposed to a game object. Thus, some methods had the flavor of
'anyGameObject queryAbout: boundingBox using: additionallnformation'. We were able to

Chapter 10 Graphical Applications 491



remove about half of such methods by introducing a virtual ball, one that starts off as a
copy of the original ball and then is successively modified as simulated movement is
performed. We didn't want to use the original ball because alternative scenarios were
successively tried.

Finally, we abandoned the field underneathOrigin since it occurred to us that we
could store it in the underneath form's offset. In hindsight, we should have thought of this
right at the beginning - did you? Various cosmetic name changes were also made.

And just when we thought we were finished, we tried it and 'the last bug' appeared. It
was introduced by the pushOtT: abstraction, which tried to distribute computation that was
previously performed as a unit. More specifically, the heuristic used to determine the bounce
direction could not be applied by having successive obstacles modify the approaching
object's velocity. The solution required a new abstraction, ObstacieSet, which could
perform this computation as a unit. It also enabled us to integrate at least one Set method
that we placed in GameObject so as not to modify the system class.

Additional improvements to the collision detection algorithm then obviated the need or
use for virtual balls and they were eliminated. The source code for the classes making up the
video game application is listed at the end of this chapter.

10.4.7 The Video Game: Conclusions

We started this case study with the thesis that object-oriented software design is hard. We
hope the case study has shown you some of the extra dimensionality that exists when
designing in an OOP environment. In all, we produced eighteen variations of the game, each
differing from the other in some major way. In many cases, the code size increases in one
variation only to subsequently decrease in the next - something we couldn't explicitly
show. The design process is clearly interactive and involves notions that don't exist using
conventional methodologies; e.g., reusability, specialization, generalization, and so on.
Designing with OOP cannot be done on paper. It requires an OOP environment with OOP
tools that support exploratory programming, class reorganization, and protocol migration.
The Smalltalk system is the best and perhaps the only system so far to support this process
well.

But are we done? We don't believe so. There are still issues that haven't been properly
abstracted, code that is too complex, and in fact bugs to eliminate. Perhaps some of you will
wish to continue the design!

10.4.8 Source Code for Video Game

Class VideoGame

class
superclass
instance variables
class methods

instance creation

VideoGame
Object
ballObstacles sides wall paddle ball

492

-- ·Create a new video game."
i super new initialize

Inside Smalltalk



examples

eumple1
·VideoGame example1·
VideoGame new pley

instance methods

instance initialization

initialize
·Obtain an instance of each game component."
ballObstacles +- CompositeGameObject new

ecldPert: (sides +- Sides new);
eddPert: (wall +- BrickWall with: Brick new);
ecldPert: (paddle +- Paddle new); relnitielize.

ball +- Ball new rediu.: 8

playing

pIey
·Play an entire game."
I aForm farewell magnifiedFarewell I
·Prepare to play.·
ball center: Display boundingBox center.
aForm +- GameForm extent: Display extent.
self .howOn: aForm.
aForm di.pley.

·Hide the cursor and play."
Cursor blenk _owWhile: (3 timnRepeet: (self pleyOneBellOn: aFormll.

·Quit."
farewell +- ' Game Over' e.DiepleyText form.
magnifiedFarewell +- farewell megnifyBy: 8@8.
magnifiedFarewell

di.pleyOn: Display
et: Display boundingBox center - magnifiedFarewell boundingBox center.

(Delay forSecond.: 10) weit.
ScheduledControllers re.tore

pleyOneBellOn: aForm
·Play until the ball is lost."
I obstacles I
ball

center: Display boundingBox center;
velocity: GameObject defeultVelocity;
direction: GameObject rendomUp.

(self bellOutOfPley Iwall perm ieNiI) whileFel..: (
ball hideOn: aForm.
paddle move. ·if the mouse moves after this, it will have velocity·
obstacles +- ball moveUpTo: ballObstacles.
obstacles pu.hOff: ball; .pin: ball; recoilOn: aForm.
paddle mov.on: aForm.
ball .howOn: aForm.
aForm diepleV).

aForm di.pleV. 4 time-Repeet: (Display reve,.e; rev.,...]

Chapter 10 Graphical Applications 493



querying

ballOutOfPlay
iball boundingBox corner y > paddle boundingBox corner y

displaying

showOn: aForm
"Show all components of the game."
"We want the sides to be above the wall of bricks but when a brick is removed, we
want it to appear as if were underneath the sides. We can achieve this by showing
the sides twice (see below)."
sides showOn: aForm.
wall showOn: aForm.
sides showOn: aForm.
paddle showOn: aForm.
ball showOn: aForm

Class GameObjeet

class
superclass
instance variables

class methods

instance creation

GameObject
Object
container boundingBox underneath velocity

494

new
"Create a new video game component."
i super new initialize relnitialize

querying

defaultVelocity
i20@20

randomUp
"Returns a random vertical direction as an angle. Vertical is 180 through 360
degrees exclusive (use 200 through 340)."
i200 + (141 * (Random new next)) rounded

instance methods

instance initialization

initialize
"Initialize so that there is nothing underneath and not moving."
boundingBox ~ O@Ocorner: -1@-1.
underneath ~ Form extent: O@O.
velocity ~ O@O

relnitialize
"No-op unless redefined by a subclass."

query/modification

center
iboundingBox center

Inside Smalltalk



ill

center: aPoint
boundingBox moveTo: aPoint - (boundingBox extent II 2)

boundingBox
iboundingBox

boundingBox: aRectangle
boundingBox +- aRectangle.
self relnitielize

ext8nt
iboundingBox extent

extent: aPoint
I oldCenter I
oldCenter +- boundingBox center.
boundingBox +- oldCenter - (aPoint 112) extent: aPoint.
self relnitielize

copying

copy
i self ....UowCopy boundingBox: self boundingBox copy

container

contain.'
icontainer

container: aGameObject
container +- aGameObject

,......
"Makes the receiver no longer a part of some container and returns the container."
I myContainer I
(myContainer +- container) i.NiI ifTrue: [inil).
container removePart: self.
container +- nil.
imyContainer

.uperRe.....
"Releases objects bottom-up as long as the containers have no parts (after the
change). Also, causes the bounding boxes higher up to be adjusted. Returns self."
I myContainer I
(myContainer +- self rei....) isNil ifTrue: [inil).
myContainer pens isEmpty

ifTrue: [myContainer .uper......)
ifFal..: [myContainer .uperRelnitialize)

superRelnitielize
"Relnitialize bottom-up as long as changes occur."
I save I
save +- boundingBox.
self reinitielize.
save =boundingBox

ifFal.e: [container i.Nil ifFaI.e: [container .uperRelnitializen

careless moving

direction
ivelocity theta radian.ToDegr...

Chapter 10 Graphical Applications 495



496

direction: angle
I radians I
radians ~ angle degreeaToRadiana.
velocity ~ (radians coa@radians ain) * velocity r

reveraeXDirection
"Negate the x-component of the velocity."
velocity ~ velocity x negated@velocity y

reveraeYDirection
"Negate the y-component of the velocity."
velocity ~ velocity x@velocity y negated

velocity
ivelocity

velocity: aPoint
velocity ~ aPoint

move
"Advance in the current direction."
self center: self center + velocity rounded

moveOn: aForm
self hideOn: aForm.
self move.
self ahowOn: aForm

recoilOn: aForm
"React graphically to having been bumped (default is to do nothing)."
iself

careful moving

projectedBoundingBox
iboundingBox translateBy: velocity rounded

projectedBoundingBoxesDo: aBlock
"Poor man's Bresenham's algorithm."
I size offset previous current roundedCurrent repetitions increment I
size ~ boundingBox extent. offset ~ size //2.
previous ~ current~ roundedCurrent ~ self center.
repetitions~ velocity x aba max: velocity yaba.
increment ~ velocity / repetitions.
repetitions rounded + 1 timesRepeat: [

roundedCurrent =previous
ifFalse: [aBlock value: (roundedCurrent - offset extent: sizel].

previous ~ roundedCurrent.
current ~ current + increment. roundedCurrent ~ current rounded]

moveUpTo: potentialObstacles
"Performs a standard move if possible and returns an empty obstacle set.
Otherwise, determines which potential obstacles (a composite object) are first hit,
moves to the obstacles, and returns the non-empty obstacle set. Generally, more
than one obstacle can be encountered; e.g. at a corner or between two objects."
I roughObstacles I
rough Obstacles ~ self roughObstacles: potentialObstacles.
rough Obstacles isEmpty ifTrue: [self move. i roughObstaclesl.
i self moveToExactObstaclea: roughObstacles.

Inside Smalltalk



roughObstec'es: candidatesGameObject
"Determine which candidates are in the path from the start to the end point of the
receiver's next movement using a simple but fast technique."
I roughObstacles box I
roughObstacles ~ ObstacleSet new.
box~ boundingBox merge: self projectedBoundingBox.
(candidatesGameObject intersects: box) ifF.'se: [lroughObstacles!.
candidatesGameObject addTo: roughObstacies ifTouching: box.
i roughObstacles

moveToExactObatee"': candidates
"Determine which candidates are in the path from the start to the end point of the
receiver's next movement using an exact but slower technique. We permit starting
on an obstacle."
I onObstacles exactObstacles I
"Eliminate the obstacles we are currently on."
onObstacles ~ ObstacleSet new.
candidates addTo: onObstacles ifTouching: boundingBox.
candidates removeAII: onObstacles.
candidates isEmpty ifTrue: [self move. i candidates!.

exactObstacles ~ ObstacleSet new.
self projectedBoundingBoxeaDo: [:box I

candidates addTo: exactObstacles ifTouching: box.
exactObstacles isEmpty ifFa',,: [self center: box center. i exactObstaclesll.

self move. i exactObstacles "none after all"

colliding

conteinaPoint aPoint
"The containsPoint: method in Rectangle considers points on the bottom to be
outside:
iboundingBox origin <= aPoint and: [aPoint <= boundingBox corner!

intersects: aRectangle
"The standard Rectangle intersects: uses < instead of <="
i(boundingBox origin max: aRectangle origin)

<= (boundingBox corner min: aRectangle corner)

spin: gameObject
"Add spin to the approaching object. Generally does nothing."
iself

Class BasicGameObject

class
superclass
instance variables

instance methods

colliding

BasicGameObject
GameObject
picture

addTo: aSet ifTouching: aRectangle
(self intersects: aRectangle) ifTrue: [aSet add: self]

Chapter 10 Graphical Applications 497



displaying

displayOn: aForm
"Display the picture."
picture displayOn: aForm at: boundingBox origin

hideOn: aForm
"Restores the background of the receiver."
underneath displayOn: aForm.
underneath f- Form extent: O@O

showOn: aForm
"Previously hidden, become visible."
"First, save the background of the object for later restoration."
underneath f- Form extent: boundingBox extent.
aForm displayOn: underneath at: O@O - boundingBox origin.
underneath offset: boundingBox origin.
"Second, display it."
self displayOn: aForm

Class Ball

class
superclass
instance variables

instance methods

instance initialization

Ball
BasicGameObject
"none"

initialize
super initialize.
boundingBox f- Display extent II 2 extent: 8@8

relnitialize
picture f- (Form dotOfSize: self extent xl offset: O@O

query/modification

radius
i self extent II 2

radius: anlnteger
self extent: 2*anlnteger

boundingBox: aRectangle
"Make sure it's square."
I diameter I
diameter f- aRectangle width roundTo: 2.
super boundingBox: (aRectangle origin extent: diameter@diameterl

Class Brick

498

class
superclass
instance variables

Brick
BasicGameObject
tl none"

Inside Smalltalk



"I

instance methods

instance initialization

initialize
"Create a reasonably sized brick."
I width I
super initi.liz•.
width (- Display .xtent x 1/20.
boundingBox (- O@O .xt.nt: width@(width//3)

relniti.lize
"Create a black outline with a gray interior"
picture (- (Form .xt.nt: boundingBox .xtent) black.
(Form .xtent: boundingBox extent - (4@4ll gr.y

di.pl.yOn: picture .t: 2@2 clippingBox: picture boundingBox
rula: Form over mask: nil

moving

recoilOn: aForm
"React graphically to having been bumped (default is to do nothing)"
self hid.On: aForm; .uperRel••••

Class Paddle

class
superclass
instance variables
instance methods

instance initialization

Paddle
BasicGameObject
"none"

initializ.
"Initialize the paddle."
super initialize.
boundingBox (- O@O comer: <Display extent 1/ (10@30ll.
self c.nter: (Display extent x //2) @(Display .xtent y - SO)

relnitialize
"Create a black rectangle."
picture (- (Form .xt.nt: boundingBox .xtent) black

moving

velocity
i(Sensor cursorPoint x - self center x)@ self cent.r y

InOII8

"Move to the mouse location (horizontally only)."
self center: Sensor cursorPoint x @ self center y

colliding

.pin: gameObject
"Add spin to the game object."
I speed I
(speed (- self v.locity x) > 0

ifTrue: [gameObject dir.ction: gameObject direction + 10).
(speed < 0) ifTrue: [gameObject direction: gameObject direction - 10)

Chapter 10 Graphical Applications 499



Class Side

class
superclass
instance variables

instance methods

instance initialization

Side
BasicGameObject
"none"

relnitielize
·Create a gray rectangle."
picture f- (Form extent: boundingBox extent) grey

Class CompositeGameObject

class
superclass
instance variables

class methods

instance creation

CompositeGameObject
GameObject
parts

500

withAlIPerts: aCollection
"Constructs a composite object with the given elements as parts."
i self new eddAIIPerts: aCollection; relnitielize

hiererchicellyWithAlIPerts: aCollection
"Constructs a composite object with the given elements hierarchically decomposed
into a binary tree of composite game objects parts."
aCollection .ize <= 2 ifTrue: [iself withAIIParta: aCollectionJ.
i self withAlIPerts: (Array

with: (self hierarchicellyWithAlIParts:
(aCollection copyFrom: 1 to: aCollection size 1/2))

with: (self hiererchicellyWithAlIParts:
(aCollection copyFrom: aCollection size //2 + 1 to: aCollection size)))

instance methods

instance initialization

initielize
"Initialize to no parts,"
super initialize.
parts f- Set new.

relnitielize
"Recompute the bounding box for the whole as the unions of those for the parts."
boundingBox f- parts isEmpty

ifTrue: [O@O corner: O@OJ
ifFelse: [parts

inject: (parts detect: [:part Itrue)) boundingBox
into: [:box :part I box merge: part boundingBoxlJ

Inside Smalltalk



"I

part manipulation

perta
iparts

eddPert: part
"Adds the new part to the existing collection of parts."
parts edd: part. part conteiner: self

removePert: part
"Removes the old part from the existing collection of parts.·
parts remove: part. part conteiner: nil

acIcIAlIPerte: aCollection
"Adds the new parts to the existing collection of parts."
parts eddAII: aColleetion.
parts do: [:anObject I anObject conteiner: selfl

colliding

acIdTo: aSet ifTouching: aReetangle
(self interNeD: aReetanglel ifTrue: [

parts do: [:part I part eddTo: aSet ifTouching: aReetanglell

displaying

diapleyOn: aForm
"Display all its parts."
parts do: [:part I part diapleyOn: aForml.

hideOn: aForm
"Hide all its parts."
parts do: [:part I part hideOn: aForml.

ahowOn: aForm
·Show all its parts."
parts do: [:part I part lIhowOn: aForml.

Class BrickWall

class
superclass
instance variables

class methods

instance creation

BrickWall
CompositeGameObject
"none"

with: aSampleBrick
I rowsOfBricks bricksPerRow I
rowsOfBricks +- 5.
bricksPerRow +- (Display extent x /I aSampleBrick extent xl + 1. "to handle
truncation"
iselfnew

relnitielizeAt: O@50 extent: bricksPerRow@rowsOfBricks with: aSampleBrick

Chapter 10 Graphical Applications 501



instance methods

instance initialization

relnitializeAt: wall Base extent: aPoint "xBricks@yBricks" with: aSampleBrick
"Initialize a wall."
I brickSize bricksPerRow rowsOfBricks xOffset yOffset delta start I
"Initialize the wall parameters."
brickSize +- aSampleBrick extent.
bricksPerRow +- aPoint x.
rowsOfBricks +- aPoint V.

"Create the wall out of properly positioned bricks."
self addAllParts:

((0 to: rowsOfBricks-1) collect: [:brickRow I
xOffset +- brickRow odd ifTrue: [(brickSize xJ/2) negatedI ifFalee: [01.
yOffset +- brickRow*brickSize V.
delta +- brickSize x@O. start +- waliBase + (xOffset@yOffsetl - delta.
CompositeGameObject hierarchicallvWithAIIParts:

((1 to: bricksPerRow+1) collect: [:bricklndex I
sta rt +- sta rt + delta.
Brick new boundingBox: (start extent: brickSize)])]).

"Determine the overall wall boundaries."
self relnitialize

Class Sides (a composite of side elements)

class
superclass
instance variables

instance methods

instance initialization

Sides
CompositeGameObject
"none"

initialize
"Create three sides (no bottom)."
I thickness I
super initialize.
thickness +- 10.
self

addPart: (Side new "left side"
boundingBox: (O@O corner: thickness@Display extent V»;

addPart: (Side new "top"
boundingBox: (O@Ocorner: Display extent x@thickness»;

addPart: (Side new "right side"
boundingBox: (Display extent x - thickness@O corner: Display extent));

relnitialize.

Class ObstacleSet

502

class
superclass
instance variables

ObstacleSet
Set
"none"

Inside Smalltalk



instance methods

collision

eddTo: anObstacleSet ifTouching: aRectangle
self do: [:aGameObject I

aGameObject addTo: anObstacleSet ifTouching: aRectangle)

pushOff: approachingObject
"A simple test is used to determine the direction in which to push off an
approaching object. Consider one of the possible four cases: that the bottom left
corner of the object has met (is inside) the receiver; e.g., a wall. Then we will push
it towards its center (more specifically, to the right and up; i.e., +1@-1). We do this
for all corner points and then sum up the contributions. If it is opposite to the
direction of the approaching object, we reverse its direction."
I delta box I
delta to- O@O. box to- approachingObject boundingBox.
self do: [:obstacle I

(obstacle conteinaPoint: box origin) ifTrue: [delta to- delta + (1@1n.
(obstacle containaPoint: box bottomLeft) ifTrue: [delta to- delta + (1@-1».
(obstacle conteinaPoint: box topRight) itTrue: (delta to- delta + (-1@1»).
(obstacle conteinaPoint: box com.) ifTrue: (delta to- delta + (-1@-1))).

(delta x * approachingObject velocity x) negative
ifTrue: (approachingObject re".....XDirection).

(delta y * approachingObject velocity y) negetive
ifTrue: (approachingObject reveraeYDirection)

recoilOn: aForm
self do: (:obstacle I obstacle recoilOn: aForm).

spin: gameObject
"Add spin to the approaching object."

, self do: (:obstacle I obstacle spin: gameObject)

Class GameForm

class
superclass
instance variables

instance methods

GameForm
Form
modifiedArea

displaying

copyBite: aRectangle from: aDisplayObject at: aPoint clippingBox: clipRectangle
rule: rulelnteger mesk: aForm

I newArea I
newArea to- aPoint extent: aRectangle extent.
modifiedArea to- modifiedArea i.NiI

ifTrue: (newArea) ifFalse: [modifiedArea merge: newArea].
super copyBits: aRectangle from: aDisplayObject at: aPoint

clippingBox: clipRectangle rule: rulelnteger mesk: aForm

display
modifiedArea isNii

ifTrue: [super display]
ifFal_: (self displayOn: Display at: O@O clippingBox: modifiedAreal.

modifiedArea to- nil

Chapter 10 Graphical Applications 503



10.5 SUMMARY

This chapter has focused on the use of graphics and graphics-oriented techniques. Examples
focused on three major examples:

• A film loop facility that integrates simple animation, flicker-free displays, storage
of graphical forms on disk, and object mutation.

• A magnifying glass that illustrates mouse control, bitblt rule selection, and
techniques for displaying circular rather than rectangular forms.

• A simple video game that illustrates the evolutionary approach characterizing the
design and development of Smalltalk applications.

10.6 EXERCISES

The following exercises are intended to cause some of the material presented in this chapter
to be reviewed and elaborated upon. Not all questions have the same degree ofdifficulty.

1. Extend the film loop facility so that
speed can be controlled with mouse
buttons; e.g., speeding up with the
red button and slowing down with the
yellow button.

2. Extend the magnifying glass applica
tion so that magnification can be ei
ther increased or decreased while the
magnifier is being used. More specif
ically, during magnification, if the
user types the + key, magnification
is to be increased by 1 unit; con
versely, if the user types the - key,
magnification is to be decreased by
1. Alternatively, use the technique
suggested for Problem 1.

10.7 GLOSSARY

selected terminology

disk form A form variant in which the data
resides in a file.

film loop A never ending movie in which the
end is spliced with the beginning; i.e., a
circular sequence of frames repeatedly dis
played at a fast enough rate to provide the
illusion of motion.

504

3. Create a class of forms calIed
CircularForm that captures the func
tionality of the magnifying glass.
Optionally, reimplement the magni
fying glass with this more flexible
form.

4. Generalize the CircularForm class to
arbitrary shape. How does this gener
alization compare with opaque forms?

5. Extend the video game to allow any
number of balls to be in play simul
taneously. Alternatively, permit a
grid of paddles to be used; i.e., what
appears to be a larger paddle with
rectangular holes.

frame rate The speed at which a film is dis
played.

hot spot A point that is considered to be the
center of a picture.

Inside Smalltalk



magnifying glass A facility that permits a cir
cular area under the mouse to be magnified
when the red button is down; illustrates
processing required to draw circular forms.

Chapter 10 Graphical Applications

Ijl

object-oriented design A methodology for
software development; much more powerful
when integrated with a prototyping facil
ity.

505



Class Index

SYSTEM CLASSES

Are, 430-432, 439-440

ArithmeticValue, 246, 255

Array, 281-282

ArrayedCollection, 281-283

Association, 305-306

Bag, 353-357

Bitblt, 392-402

BlockContext (Blocks), 214-220

Boolean, 220-223

Character, 274-275

Circle, 430-432, 439-440

Cursor, 424

Curve, 430-432, 437-438

Date, 265-273

Dictionary, 304-310

DisplayBitmap, 427

DisplayMedium, 402, 408-412

DisplayObject, 402-408
DisplayScreen, 427-428

DisplayText, 402,

ExternalStream, 282
False, 180,220-223

Filename, 340-342

Float, 247-260

Form, 402, 412-421

506

FormBitmap, 427

Fraction, 247-260

IdentityDictionary, 304-310

IdentitySet, 353-357

InfiniteForm, 402, 421

InputSensor, 427

Integer, 247-265

InternalStream, 282

Interval,327-329

LimitedPrecisionReal,246

Line, 430-432,435-436

LinearFit, 430-432, 437

LinkedList, 343,351-353

List, 363-370

Magnitude, 245-276

MappedCollection, 324-327

Message, 210-211

Number 247-265
Object, 181-188

OpaqueForm, 392, 421-424

OrderedCollection, 343-350

Path, 402, 430-439

PeekableStream, 282

Pen, 447-451

Point, 380-392



PositionableStream, 282

Random, 275-276, 330

ReadStream, 334-340

ReadWriteStream, 334-340

Rectangle, 380-392

RunArray,324-327
SequenceableCollection,281-283

Set, 353-357

SortedCollection, 343, 350-351

Spline, 430-432, 438-439

DEMONSTRATION CLASSES

AbsoluteTime,269-273

Binary Tree, 223-233

BitString, 262-265

Complex, 44-45

ConstrainedPen, 59-60

DiskForm, 464-469

GLOBAL VARIABLES

Display, 49, 427

Sensor, 427

Class Index

;i11

Stream, 329-342

String, 317-324

Symbol, 317-324

SystemDictionary,283

Text, 317-324

TextStream, 340

Time, 265-273

True, 180, 220-223

UndefinedObject,213-214

WriteStream, 334-340

Ellipse, 440-444

Indirection, 211-213

MagnifyingGlass,469-485

RangedRandom, 275-276

SimpleFilmLoop,457-462

VideoGame,485-503

Smalltalk, 49-50

Transcript, 49,71

507

____________________---J,'



Index

A

Abstract class, 60

Abstract data type, 8

Abstraction
abstract data type, 8
information hiding, 8, 23-24
representation, 24, 42-43, 51-53,181,186-188

Animation, 408, 429-430

Anthropomorphic programming, 1

Assignment, 30

B

Binding
dynamic binding, 12-13,29-30
shallow versus deep copying, 198-200, 287
static binding, 12
variable binding, 30, 184-186

Bit manipulation, 260-265

Bitblt (see Forms)

Block, 32-39, 179,214-220
block arguments, 48
block temporaries, 48

Borders, 408-412

Browsers, 71, 99-132
kind,

category browsers, 123-124
class browsers, 123-124
class hierarchy browsers, 126-127
file-list browsers, 135-139
message browsers, 125-126
message category browsers, 124-125
message-set browsers, 127-132
system browsers, 101-123

using,
adding a class, 114

508

adding and modifying class
comments, 115

adding class categories, 119
adding method categories, 116-118
adding methods, 118-119
determining class references, 132
determining class variable

references, 131-132
determining implementers, 128-129
determining instance variable

references, 131-132
determining global references, 132
determining senders, 127-128
finding a class, 104
finding a method, 109
getting explanations, 109-110
modifying a method, 112-114
modifying class definitions, 119-120
removing classes, categories, and

methods, 122-123
renaming classes and

categories, 121-122
viewing a class definition, 104-106
viewing methods, 107-108
viewing the class hierarchy, 106-107

c

Categories, 41
class, 119
method, 41,116-118

Class, 10-11,40,43,233-237
abstract, 60
categories, 41,119
meta class, 233-237
subclass, 15, 51
superclass, 15,43

Class variables, 42-43



Coercion (see converting)

Collections
characterization (overview), 281, 299-300, 330,

343, 353-354
comparing collections, 291-292
converting, 287-290,322-323
creating collections, 286, 290, 300-304,

331-332,343-345,355
creating collection subclasses, 357-370
keyed classes, 284, 298-329
ordered classes, 284, 342-353
sequencing, 292-298,310
streamable classes, 284, 329-342
unordered classes, 284,353-357

Colors, 408-412
Conditional expressions, 33-35

Confirmers, 79-80
Control Structures, 32-39

assignment, 30
blocks, 32-39,179,214-220
comparison with Pascal, 32-37

conditional expressions, 33-35
looping expressions, 35-37

return expressions, 38
user-defined, 39, 218-219, 296-298

Converting, 201-206, 248-255, 266-267,

274-275,287·290

Copying
shallow versus deep copying, 198-200,287
variable binding, 30,184-186

Cursors
creating, 426
existing, 424-426

D

Debuggers, 148, 160-174
breakpoints, 158
single stepping, 165-174

Differential programming, 51,100

Double dispatching, 254-255
Dynamic binding, 12-13,29-30

E

Encapsulation, 5-6

Index

"I

F

Files, 282,284-285, 329-332, 340-342
filing in, 135
filing out, 133-135
printing, 135

Forms, 390, 398-421
borders and colors, 417-418
combination rules, 396-400, 417
converting, 418
creating, 400, 414-415
displaying, 416-417
halftones, 396, 417
region filling, 420-421
transforming, 418-421

G

Garbage collection, 32
Generality number, 250-254

Generalization, 14

Graphics
animation, 408, 429-430
characterization (overview), 402-403
cursors

creating, 426
existing, 424-426

display medium
borders and colors, 408-412
displaying, 412

displayable object
displaying, 403-407

forms and bitblt, 390, 398-400, 414-421
graphical interaction, 428-430
graphical model, 378
opaque forms, 423
paths, 432-439
pens, 447-451
points, 380-391
rectangles, 380-392
rubber-banding, 436

Graphical Applications
disk forms, 464-469
film loops, 457-469
magnifying glasses, 469-485
video games, 485-503

509

---------------_/



H

Hashing, 200-201, 246-247

Identity versus equality, 200-201

Image
image file, 140
updating the image, 139-141

Information hiding, 8, 23-24

Inheritance, 13,51-62
multiple, 237-239

Inspectors, 148-155, 193-195
dictionary inspectors, 152-155

Instance, 10-11,40

Instance variables, 10,42-43,46-47, 182
indexed, 47,182-183
named, 47,182-183

K

Keyed classes, 284, 298-329

L

Literal, 24-25
collections, 286-287
introduction, 24-25
numbers, 247-248

Looping expressions, 35-37

M

Magnitudes
bit manipulation, 260-265
characterization (overview), 245-246
comparing, 246-247
converting, 248-255, 266-267, 274-275
creating number subclasses, 259-260
dividing, 255-258
double dispatching, 254-255
generality number, 250-254
mathematical operations, 258-259
truncating, 255-258

Mathematical operations, 258-259

510

Menus, 75
blue button menu, 75
quit menu, 93-94
red button menu, 72-73, 78-79, 83, 85-87,102
system menu, 75
yellow button menu, 75

Message-passing, 6, 25
Method, 6, 23, 43, 45

categories, 41, 116-118
method arguments, 48
method lookup, 53
method temporaries, 48

Messages, 7, 25-29
binary, 26
cascaded, 28-29
keyword,26-27
priority, 28
receiver, 7, 25
selector, 7,25
unary, 25-26

Meta class, 233-237
Meta operations, 195-198

perform:, 206-208
become:, 208-210,465-467
doesNotUnderstand:, 210-211

Mouse, 73
double clicking, 87, 95
dragging, 86, 95
selection, 70, 72

extended selection, 70
single clicking, 70, 95

N

Notifiers, 148, 155-160

o
Objects

coercion (see converting)
converting, 201-206,248-255,266-267,

274-275, 287-290
hashing, 200-201,246-247
identity versus equality, 200-201
meta-operations, 195-198

perform:, 206-208
become:, 208-210, 465-467
doesNotUnderstand:, 210-211

Inside Smalltalk



printing and storing, 201-206, 248-249,
332-333

reading, 203-206
representation, 24, 42-43, 51-53, 181, 186-188
shallow versus deep copying, 198-200, 287

Object-Oriented Terminology
arguments, 7,25
class, 10-11,40,43,233-237

abstract, 60
meta class, 233-237

dynamic binding, 12-13,29-30
encapsulation, 5-6
garbage collection, 32
generalization, 14
inheritance, 13, 51-62

multiple, 237-239
instance, 10-11,40
message, 7, 25-29
message-passing, 6, 25
method, 6, 23, 43, 45

method lookup, 53
object, 9, 23
overloading, 29
polymorphism, 11
protocol, 6, 23, 41

class, 41
instance, 41

receiver, 7, 25
selector, 7, 25
specialization, 14
static binding, 12
subclass, 15, 51
superclass, 15,43
variable binding, 30, 184-186

Opaque forms, 423
creating, 423
displaying, 423

Ordered classes, 284, 342-353
Overloading, 29

p

Paths, 432-439
creating, 432, 435,437-439
displaying, 434-435
sequencing, 433
transforming, 434

Pens, 447-451
creating, 447-448

Index

'II'

scribbling and doodling, 448
turtle graphics, 449-451

Points, 380-391
arithmetic, 385-386
comparing, 386-387
converting 383, 385
creating, 380-381
polar coordinates, 388
transforming, 390-391
truncating and rounding, 387-388

Polymorphism, 11
Pool dictionaries, 43, 49
Printing and storing, 201-206, 248-249,

332-333
Private variables, 46
Programming Styles

anthropomorphic programming, 1
differential programming, 51,100
programming by classification, 9
programming by extension, 100
programming by personification, 1
programming by simulation, 1
programming with inheritance, 13
programming with polymorphism, 11
programming with specialization and

generalization, 14

Prompters, 80

Protocol, 6, 23, 41
class, 41
instance, 41

Pseudo-variables, 50
self,50
super, 57-58

R

Receiver, 7, 25

Recovery
surviving a crash, 141

Rectangles, 380-392
comparing, 387
converting 383
creating, 380-382
transforming, 390-392
truncating and rounding, 388

Return expressions, 38

511

--'----------- J-



S

Selector, 7, 25

self, 50

Sequencing, 292-298, 310, 433

Shallow versus deep copying, 198-200,287

Shared, 46, 49-50
global,49
pool,49-50

Specialization, 14

Streamable classes, 284,329-342

Subclass, 15,51

super, 57-58

Superclass, 15,43

System files,
changes file, 140-141
image file, 140

updating the image, 139-141
sources file, 140

T

Temporary variables, 38, 46-48
method arguments, 48
method temporaries, 48
block arguments, 48
block temporaries, 48

Text editing, 85-93
cutting, copying, and pasting, 88
deleting text, 88
evaluating text, 90-91

do it, 90-91
print it, 90-91
syntax error, 91-93

inserting text, 86
repeating commands (again), 89-90
replacing text, 87-88
selecting text, 86-87
undoing, 89-90

Transcript, 71

u
Unordered classes, 284, 353-357

v

Variables
class variables, 42-43

512

instance variables, 10,42-43,46-47, 182
indexed, 47,182-183
named, 47,182-183

pool dictionaries, 43, 49
private, 46
pseudo-variables, 50

self,50
super, 57-58

scope, 46-50
shared, 46, 49-50

global,49
pool,49-50

temporary variables, 38, 46-48
block arguments, 48
block temporaries, 48
method arguments, 48
method temporaries, 48

w

Window Types
browsers, 71, 99-132

kind, 101-132, 135-139
using, 104-123, 127-132

confirmers, 79-80
debuggers, 148, 160-174

breakpoints, 158
single stepping, 165-174

inspectors, 148-155, 193-195
dictionary inspectors, 152-155

notifiers, 148, 155-160
prompters, 80
transcript, 71
workspace, 71

system workspace, 71

Window Usage
closing, 79
collapsing, 79
creating 77
framing, 79
making active, 72
moving, 79
relabelling, 80
scrolling, 81-85
selecting under, 79

Workspace, 71
system workspace, 71

Inside Smalltalk


