
35
Simula to Java and beyond: major
O-O languages and environments
nted
h. This
imula;

ges.
llotted
me of

or a
of the
books
g idea
vor. In
stead,

hem in
 they

 the
hen

dures
dure,

design
seem
nted,
ation
”. The
ets of
 few
Encouraged by the introduction of Simula in 1967, a number of object-orie
languages have appeared on the scene, highlighting various aspects of the approac
chapter reviews some of the languages that have attracted the most attention: S
Smalltalk; C++ and other O-O extensions of C; Java.

The literature still lacks an in-depth comparative study of important O-O langua
The ambition of this chapter is of necessity more modest. In particular, the space a
to each language is not an indication of the language’s practical significance, and so
the most publicized will indeed get a fairly short treatment. Our goal is to learn about issues
and concepts, finding them where we can, even if that means turning our attention f
while to one of the less hyped approaches. The risk of under-representing one
principal players is not great, since one only has to look around to pick up articles and
describing it in generous detail. The real risk would be the reverse: to miss a promisin
just because the language supporting it (say Simula) does not currently enjoy top fa
its coverage of notable languages, then, this survey is not equal-opportunity; it is in
in its choice of notable language traits, a case of affirmative action.

Even when the concepts are the same or similar, the terms used to denote t
official language descriptions can vary. The discussion will use the native terms when
reflect language peculiarities; for simplicity and consistency, however, it uses
terminology of the rest of this book (designed as an attempt at unification) w
differences are unimportant. For example you will read about Simula routines, proce
and functions, although the corresponding terms in official Simula usage are proce
untyped procedure and typed procedure.

35.1 SIMULA

The undisputed founder of the House of Classes (Object Palace) is Simula, whose
was completed (if we ignore a few later updates, entirely minor) in 1967. This may
hard to believe: a full-fledged object-oriented language was around, and impleme
before structured programming, before Parnas had published his articles on inform
hiding, many years before anyone had come up with the phrase “abstract data type
Vietnam War was still a page-4 item; barricades had not yet sprung up in the stre
Paris; a mini-skirt could still cause a stir: away by the Northern shores of the Baltic a

SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS§35.11114

 from
 other

mula 1
h not

e key
Ole-
orsk
s meant
ut an

image
ation
uage,

987.

e and
on is
ty of
n.

la will
ction,
will
w of
.

 are
Algol:
cal’s
.

d on
ing a

ever,

sses
fortunate software developers led by a handful of visionaries were already profiting
the power of classes, inheritance, polymorphism, dynamic binding and most of the
marvels of object orientation.

Background

Simula is actually a second design. In the early sixties, a language now known as Si
was developed to support the programming of discrete-event simulations. Althoug
quite object-oriented in the full sense of the term, it already showed some of th
insights. “Simula” proper is Simula 67, designed in 1967 by Kristen Nygaard and
Johan Dahl from the University of Oslo and the Norwegian Computing Center (N
Regnesentral). Nygaard has explained since how the decision to keep the name wa
to ensure continuity with the previous language and the link to its user community; b
unfortunate effect was that for a long time that name evoked for many people the
of a language meant only for discrete-event simulation — a relatively narrow applic
area — even though Simula 67 is definitely a general-purpose programming lang
whose only simulation-specific features are a handful of instructions and a SIMULATION
library class, used by a minority of Simula developers.

The name was shortened to just Simula in 1986; the current standard is from 1

Availability

Simula is often presented as a respectable but defunct ancestor. In fact it is still aliv
enjoys the support of a small but enthusiastic community. The language definiti
maintained by the “Simula Standards Group”. Compilers are available for a varie
hardware and software environments from several companies, mostly Scandinavia

Major language traits

We will take a general look at the basic properties of Simula. To some readers Simu
be passé, and the author of this book will not feel insulted if you skip to the next se
on Smalltalk. But if you do want to gain a full appreciation of object technology you
find Simula worth your time; the concepts are there in their original form, and a fe
them show possibilities that may not yet, thirty years later, have been fully exploited

Simula is an object-oriented extension of Algol 60. Most correct Algol programs
also correct Simula programs. In particular, the basic control structures are those of
loop, conditional, switch (a multiple branch instruction, low-level precursor to Pas
case instruction). The basic data types (integer, real etc.) are also drawn from Algol

Like Algol, Simula uses at the highest level a traditional software structure base
the notion of main program. An executable program is a main program contain
number of program units (routines or classes). Simula environments do support, how
a form of separate class compilation.

Simula uses full block structure in the Algol 60 style: program units such as cla
may be nested within one another.

§35.1 SIMULA 1115

mall

note
f being
type

ds

o
dures

ation

ns, the
to
 rather

clare

 new
o the

ng

ant, but

See “References and
simple values”,
page 272.
All Simula implementations support automatic garbage collection. There is a s
standard library, including in particular two-way linked lists used by the SIMULATION
class studied later in this chapter.

As in the notation of this book, the most common entities of non-basic types de
references to class instances, rather than the instances themselves. Instead o
implicit, however, this property is emphasized by the notation. You will declare the
of such an entity as ref (C), rather than just C, for some class C; and the corresponding
operations will use special symbols::– for an assignment where integer or real operan
would use:=; == rather than= for equality;=/= rather than /= for inequality. An earlier
chapter presented the rationale for and against this convention.

To create an instance, you will use, rather than a creation instruction, a new
expression:

ref (C) a; …; a :– new C

Evaluation of the new expression creates an instance of C and returns a reference t
it. A class may have arguments (playing the role of the arguments to creation proce
in our notation), as in

class C (x, y); integer x, y

begin … end;

In this case, the new expression must provide corresponding actual arguments:

a :– new C (3, 98)

The arguments may then be used in routines of the class; but unlike with cre
instructions this gives only one initialization mechanism.

Besides routines and attributes, a class may contain a sequence of instructio
body of the class; if so, the new call will execute these instructions. We will see how
use this possibility to make classes represents process-like computational elements
than just passive objects as in most other O-O languages.

No assertion mechanism is provided. Simula supports single inheritance; to de
B as an heir of A, use

A class B;

begin … end

To redefine a feature of a class in a descendant class, simply provide a
declaration; it will take precedence over the original one. (There is no equivalent t
redefine clause.)

The original version of Simula 67 did not have explicit information hidi
constructs. In more recent versions, a feature declared as protected will be unavailable to
clients; a protected feature which is further declared as hidden will also be unavailable to
proper descendants. A non-protected feature may be protected by a proper descend
a protected feature may not be re-exported by proper descendants.

SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS§35.11116

nts of a
ave

 is

ant of
hich,
ing is

. You
y be
ny of
had a
mula

ing

class is

“The C++
approach to bind-
ing”, page 514.
Deferred features are offered in the form of “virtual routines”, appearing in a virtual
paragraph at the beginning of the class. It is not necessary to declare the argume
virtual routine; this means that different effective definitions of a virtual routine may h
different numbers and types of arguments. For example, a class POLYGON might begin

class POLYGON;
virtual : procedure set_vertices

begin
…

end

allowing descendants to provide a variable number of arguments of type POINT for
set_vertices: three for TRIANGLE, four for QUADRANGLE etc. This flexibility implies
that some of the type checking must be done at run time.

C++ users should beware of a possible confusion: although inspired by Simula, C++ uses
a different meaning for the word virtual. A C++ function is virtual if it is meant to be
dynamically bound (it is, as we have seen, one of the most controversial aspects of C++
that you must specify this requirement explicitly). The C++ approximation to Simula’s
virtual procedures is called a “pure virtual function”.

Simula supports polymorphism: if B is a descendant of A, the assignment a1 :– b1 is
correct for a1 of type A and b1 of type B. (Interestingly enough, assignment attempt
almost there: if the type of b1 is an ancestor of the type of a1, the assignment will work if
the run-time objects have the proper conformance relationship — source descend
target; if not, however, the result will be a run-time error, rather than a special value w
as with assignment attempt, the software could detect and handle.) By default, bind
static rather than dynamic, except for virtual routines. So if f is a non-virtual feature
declared at the A level, a1●f will denote the A version of f even if there is a different version
in B. You can force dynamic binding by using the qua construct, as in

(a1 qua B)● f

This, of course, loses the automatic adaptation of every operation to its target
may however obtain the desired dynamic binding behavior (which may largel
considered a Simula invention) by declaring polymorphic routines as virtual. In ma
the examples that we have studied, a polymorphic routine was not deferred but
default implementation right from the start. To achieve the same effect, the Si
developer will add an intermediate class where the routine is virtual.

As an alternative to using qua, the inspect instruction makes it possible to perform
a different operation on an entity a1, depending on the actual type of the correspond
object, which must be a descendant of the type A declared for a1:

inspect a1
when A do …;
when B do …;
…

This achieves the same effect but assumes that the set of descendants of a
frozen, and runs into conflict with the Open-Closed principle

§35.1 SIMULA 1117

fromChapter 20. Com-
pare with the final
class texts in “AN
OBJECT-ORI-
ENTED ARCHI-
TECTURE”, 20.5,
page 684.

The original STATE
class appeared on
page 686.

The original APLI-
CATION class
appeared on page
690.
An example

The following class extracts illustrate the general flavor of Simula. They are drawn
the solution to the problem of full-screen entry systems.

class STATE;

virtual:

procedure display;

procedure read;

boolean procedure correct;

procedure message;

procedure process;

begin
ref (ANSWER) user_answer; integer choice;

procedure execute; begin
boolean ok;

ok := false;
while not ok do begin

display; read; ok := correct;
if not ok then message (a)

end while;
process;

end execute

end STATE;

class APPLICATION (n, m);
integer n, m;

begin
ref (STATE) array transition (1:n, 0:m–1);
ref (STATE) array associated_state (1:n);
integer initial ;

procedure execute; begin
integer st_number;

st_number:= initial ;
while st_number /= 0 do begin

ref (STATE) st;
st := associated_state (st_number); st● execute;
st_number:= transition (st_number, st● choice)

end while
end execute

…
end APPLICATION

SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS§35.11118

e is a
erating
tine; a

ter it
rithm,
 like

tric: a
t the
ues its
.

ntrol.

ts last

s own
tionship
tput
t and

 since
abstract
.
of the
e the

“Coroutines”, page
1012.

For a more complete
description of a
printer process see
“Processes pro-
grammed”, page 960.

Coroutine
sequencing

(This figure
appeared originally
on page 1012.)
Coroutine concepts

Along with basic O-O mechanisms, Simula offers an interesting notion: coroutines.

The notion of coroutine was presented in the discussion of concurrency. Her
brief reminder. Coroutines are modeled after parallel processes as they exist in op
systems or real-time software. A process has more conceptual autonomy than a rou
printer driver, for example, is entirely responsible for what happens to the prin
manages. Besides being in charge of an abstract object, it has its own lifecycle algo
often conceptually infinite. The rough form of the printer process could be something

from some_initialization loop forever

“Obtain a file to be printed”; “Print it”

end

In sequential programming, the relationship between program units is asymme
program unit calls another, which will execute completely and return to the caller a
point of call. Communication between processes is more equal: each process purs
own life, interrupting itself to provide information to, or get information from another

Coroutines are similarly designed, but for execution on a single thread of co
(This sequential emulation of parallel execution is called quasi-parallelism.) A coroutine
that “resumes” another interrupts its own execution and restarts its colleague at i
point of interruption; the interrupted coroutine may itself be later resumed.

Coroutines are particularly useful when each of several related activities has it
logic; each may be described as a sequential process, and the master-slave rela
implied by routines is not adequate. A frequent example is an input-to-ou
transformation in which different constraints are placed on the structure of the inpu
output files. Such a case will be discussed below.

Simula represents coroutines as instances of classes. This is appropriate
coroutines almost always need persistent data, and often have an associated
object. As we noted earlier, a Simula class has a body, made of one or more instructions
In a class representing a passive data abstraction, it will only serve as initialization
class instances (the equivalent of our creation procedure); but in a coroutine it will b
description of a process. The body of a coroutine is usually a loop of the form

resume a resume a
resume b resume b

a

b

§35.1 SIMULA 1119

te).

tes a

 its
sm of

tive at
ove
ce to

You
umber
tput.
er line

.

olves
 every
 item;
ntrol

nts. A

On the parallel
scheme see “A
multi-launcher”,
page 988.
while continuation_condition do begin
… Actions…;
resume other_coroutine;
…Actions …

end

For some of the coroutines in a system the continuation_condition is often True to yield
the equivalent of an infinite process (although at least one coroutine should termina

A system based on coroutines generally has a main program that first crea
number of coroutine objects, and then resumes one of them:

corout1:– new C1; corout2:– new C2; …
resume corouti

The evaluation of each new expression creates an object and starts executing
body. But the quasi-parallel nature of coroutines (as opposed to the true paralleli
processes) raises an initialization problem: with processes, each new would spawn off a
new process and return control to the caller; but here only one coroutine may be ac
any given time. If the new expression started the coroutine’s main algorithm, the ab
main thread would never recapture control; for example it would never get a chan
create C2 after spawning off C1.

Simula addresses this problem through the detach instruction. A coroutine may
execute a detach to give control back to the unit that created it through a new. Coroutine
bodies almost always begin (after initialization instructions if needed) with a detach,
usually followed by a loop. After executing its detach, the coroutine will become
suspended until the main program or another coroutine resumes it.

A coroutine example

Here is an illustration of the kind of situation in which coroutines may prove useful.
are requested to print a sequence of real numbers, given as input; but every eighth n
(the eighth, the sixteenth, the twenty-fourth etc.) is to be omitted from the ou
Furthermore, the output must appear as a sequence of lines, with six numbers p
(except for the last line if there are not enough numbers to fill it). So if in denotes the n-th
input item, the output will start as

i1 i2 i3 i4 i5 i6
i7 i9 i10 i11 i12 i13
i14 i15 i17 etc.

Finally, the output should only include the first 1000 numbers thus determined

This problem is representative of coroutine use because it conceptually inv
three processes, each with its specific logic: the input, where the constraint is to skip
eighth item; the output, where the constraint is to go to the next line after every sixth
and the main program, which is required to process 1000 items. Traditional co
structures are not good at combining such processes with widely different constrai
coroutine solution, on the other hand, will work smoothly.

SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS§35.11120

e three

This scheme will not
work if the program
runs out of input
before having
printed 1000 output
items. See exercise
E35.1, page 1139.
Following the preceding analysis, we may use three coroutines: the producer
(input), the printer (output) and the controller . The general structure is:

begin

class PRODUCER begin … See next … end PRODUCER;

class PRINTER begin … See next … end PRINTER;

class CONTROLLER begin … See next … end CONTROLLER;

ref (PRODUCER) producer; ref (PRINTER) printer; ref (CONTROLLER) controller;

producer:– new PRODUCER; printer:– new PRINTER; controller:– new CONTROLLER;

resume controller
end

This is a main program, in the usual sense; it creates an instance of each of th
coroutine classes and resumes one of them, the controller. Here are the classes:

class CONTROLLER; begin
integer i;

detach;
for i := 1 step 1 until 1000 do resume printer

end CONTROLLER;

class PRINTER; begin

integer i;

detach;
while true do

for i := 1 step 1 until 8 do begin
resume producer;
outreal (producer●last_input);
resume controller

end;
next_line

end
end PRINTER;

class PRODUCER; begin
integer i; real last_input, discarded;

detach;
while true do begin

for i := 1 step 1 until 6 do begin
last_input:= inreal; resume printer

end;
discarded:= inreal

end
end PRODUCER;

§35.1 SIMULA 1121

e

tion.
s, with
idates
en to
se of
t will
on, the

cesses
t have
n the
w
h as
eans

on the
tation.
t the

 full

 of
)

t this

On the use of a con
currency mechanism
to describe corou-
tines see “Corou-
tines”, page 1012.

“Synchronization
for concurrent O-O
computation”, page
980.
Each class body begins with detach to allow the main program to proceed with th
initialization of other coroutines. Procedure outreal prints a real number; function inreal
reads and returns the next real on input; the extract assumes a procedure next_line that
goes to the next line on input.

Coroutines fit well with the other concepts of object-oriented software construc
Note how decentralized the above scheme is: each process minds its own busines
limited interference from the others. The producer takes care of generating cand
from the input; the printer takes care of the output; the controller takes care of wh
start and finish. As usual, a good check of the quality of the solution is the ea
extension and modification; it is indeed straightforward here to add a coroutine tha
check for end of input (as requested by an exercise). Coroutines take decentralizati
hallmark of O-O architectures, one step further.

The architecture could be made even more decentralized. In particular, the pro
in the above structure must still activate each other by name; ideally they should no
to know about each other except to communicate requested information (as whe
printer obtains last_input from the producer). The simulation primitives studied belo
allow this; after that, the solution is to use a full concurrency mechanism, suc
described in an earlier chapter. As you will remember, its platform-independence m
that it will work for coroutines as well as true parallelism.

Sequencing and inheritance

Even if it does not use coroutine mechanisms (detach, resume), a Simula class may have
a body (a sequence of instructions) in addition to its features, and so may take
behavior of a process in addition to its usual role as an abstract data type implemen
When combined with inheritance, this property leads to a simpler version of wha
discussion of concurrency called the inheritance anomaly, to which Simula, thanks to its
limitation to single rather than multiple inheritance and coroutines rather than
parallelism, is able to provide a language solution.

For a class C let bodyC be the sequence of instructions declared as body of C and
actual_bodyC the sequence of instructions executed for every creation of an instanceC.
If C has no parent, actual_bodyC is just bodyC. If C has a parent A (it can have at most one
then actual_bodyC is by default the sequence of instructions

actual_bodyA; bodyC

In other words, ancestors’ bodies are executed in the order of inheritance. Bu
default may not be what you want. To supersede it, Simula offers the inner instruction
which denotes the heir’s body, so that the default policy is equivalent to having an inner
at the end of the parent’s body. If instead you write the body of A as

instructions1; inner; instructions2

then (assuming A itself has no parent) the execution of C will execute not its bodyC as
written in the class but its actual_bodyC defined as

instructions1; bodyC; instructions2

-

SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS§35.11122

rd:

 their

ing

tiple

cts

 It is
ation
bject-

ernal
hip

 as

ly
stem
often a

tions.
ware
 more
 the
tical
admit

n. An
ntered
arts, a
 may
w long
ished

“Active objects
clash with inherit-
ance”, page 959.
Although the reasons for this facility are clear, the convention is rather awkwa

• In many cases descendants would need to create their instances differently from
ancestors. (Remember POLYGON and RECTANGLE.)

• Bodies of descendants, such as C here, become hard to understand: just read
bodyC does not really tell you what the execution will do.

• In addition, of course, the convention would not transpose easily to mul
inheritance, although this is not an immediate concern in Simula.

Such difficulties with inner are typical of the consequences of making obje
active, as we found out when discussing concurrency.

Almost all object-oriented languages after Simula have departed from the inner
convention and treated object initialization as a procedure.

Simulation

True to its origins, Simula includes a set of primitives for discrete-event simulation.
no accident, of course, that the first O-O language was initially meant for simul
applications; more than in any other area, this is where the modeling power of the o
oriented method can illustrate itself.

A simulation software system analyzes and predicts the behavior of some ext
system — an assembly line, a chemical reaction, a computer operating system, a s…

A discrete-event simulation software system simulates such an external system
having, at any time, a state that can change in response to events occurring at discrete
instants. This differs from continuous simulation, which views the state as continuous
evolving. Which of these two modeling techniques is best for a given external sy
depends not so much on whether the system is inherently continuous or discrete (
meaningless question) as on what models we are able to devise for it.

Another competitor to discrete-event simulation is analytical modeling, whereby
you simply build a mathematical model of the external system, then solve the equa
This is a very different approach. With discrete-event simulation, you run a soft
system whose behavior simulates the behavior of the external system: to get
significant results, you will increase the length of the period that you simulate in
external system’s life, and so you will run the simulation longer. This is why analy
models are usually more efficient. But many physical systems are too complex to
realistic yet tractable mathematical models; then simulation is the only possibility.

Many external systems lend themselves naturally to discrete event simulatio
example is an assembly line, where typical events may include a new part being e
into the line, a worker or machine performing a certain operation on one or more p
finished product being removed from the line, a failure causing the line to stop. You
use the simulation to answer questions about the modeled physical systems: ho
does it take (average, minimum, maximum, standard deviation) to produce a fin

§35.1 SIMULA 1123

mum

t may
ed to

monly,
aws.

alled
h as
uch as

d time
ease

ass
tion

o

s

ther
ns that

r

uch as
able

re idle.
product? How long will a given piece of machinery remain unused? What is the opti
inventory level? How long does it take to recover from a power failure?

The input to a simulation is a sequence of events with their occurrence times. I
come from measurements on the external systems (when the simulation is us
reconstruct and analyze past phenomena, for example a system failure); more com
it is produced by random number generators according to some chosen statistical l

A discrete-event model must keep track of external system time, also c
simulated time, representing the time taken by external system operations suc
performing a certain task on a certain part, or the instants at which certain events s
equipment failure will occur. Simulated time should not be confused with the computing
time needed to execute the simulation system. For the simulation system, simulate
is simply a non-negative real variable, which the simulation program may only incr
by discrete leaps. It is available in Simula through the query time, managed by the run-
time system and modifiable through some of the procedures seen next.

Feature time and other simulation-specific features come from a library cl
SIMULATION, which may be used as parent by another class. Let us call “simula
class” any class that is a descendant of SIMULATION.

In Simula, you may also apply inheritance to blocks: a block written under the form
C begin … end has access to all the features declared in class C. SIMULATION is often
used in this way as parent of a complete program rather than just a class. So we can als
talk of a “simulation program”.

First, SIMULATION contains the declaration of a class PROCESS. (As noted earlier,
Simula class declarations may be nested.) An instance of PROCESS represents a proces
of the external system. A simulation class can declare descendants of PROCESS, which
we will call “process classes”, and their instances just “processes”. Among o
properties, a process may be linked to other processes in a linked list (which mea
PROCESS is a descendant of the Simula equivalent of class LINKABLE). A process may
be in one of the following four states:

• Active, or currently executing.

• Suspended, or waiting to be resumed.

• Idle, or not part of the system.

• Terminated.

Any simulation (that is to say, any instance of a descendant of SIMULATION)
maintains an event list, containing event notices. Each event notice is a pai
<process, activation_time>, where activation_time indicates when the process must be
activated. (Here and in the rest of this section any mention of time, as well as words s
“when” or “currently”, refer to simulated time: the external system’s time, as avail
through time.) The event list is sorted by increasing activation_time; the first process is
active, all others are suspended. Non-terminated processes which are not in the list a

SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS§35.11124

ecome
ly for

ntics of

time

ation
 to

ocess
t
r time.
ds) to

ence:

ulation
ct of
r to

An event list

Procedure hold is
part of the SIMU-
LATION class.
The basic operation on processes is activation, which schedules a process to b
active at a certain time by inserting an event notice into the event list. Apparent
syntactical reasons, this operation is not a call to a procedure of class SIMULATION, but
a specific instruction using the keyword activate or reactivate. (A procedure call would
seem to be a more consistent approach; in fact the standard defines the sema
activate through a fictitious procedure text.) The basic form of the instruction is

activate some_ process scheduling_clause

where some_ process is a non-void entity of type conforming to PROCESS. The optional
scheduling_clause is of one of

at some_time

delay some_ period

before another_ process

after another_ process

The first two forms specify the position of the new event notice by its activation
(the sorting criterion for the event list); the new activation time is max(time, some_time)
in the at form and max (time, time + some_ period) in the delay form. The new event
notice will be inserted after any other already present in the list with the same activ
time, unless you specify prior . The last two forms specify the position with reference
another process in the list. A missing scheduling_clause is equivalent to delay 0.

A process may activate itself at a later time by specifying itself as the target pr
some_ process. In this case the keyword should be reactivate. This is useful to represen
an external system task that takes some simulated time — but of course no compute
So if you want to simulate a task that a worker takes three minutes (180 secon
perform, you can let the corresponding process worker execute the instruction

reactivate worker delay 180

This case is so common as to justify a special syntax, avoiding explicit self-refer

hold (180)

with exactly the same effect.

As you may have guessed, processes are implemented as coroutines; the sim
primitives internally use the coroutine primitives that we have reviewed. The effe
hold (some_ period), for example, may be approximately described (in syntax simila
the notation of this book but extended with resume) as

p1

7:26

p7

8:32

p2

9:57

p4

9:57

§35.1 SIMULA 1125

:

n will
d, if its
.

utine
o use
view
m

deling
 to do
quires
job.

Exercise E35.2,
page 1139.

The Simula notation
this C, used within a
class C, is the equiv-
alent of Current as
used in the rest of
this book.
-- Insert new event notice into event list at position determined by its time
my_new_time:= max (time, time + some_ period)
!! my_reactivation_notice●make (Current, my_new_time)
event_list● put (my_reactivation_notice)

-- Get first element of event list and remove it:
next:= event_list● first; event_list● remove_first

-- Activate chosen process, advancing time if necessary:
time := time● max (next● when); resume next● what

assuming the following declarations:

my_new_time: REAL; my_reactivation_notice, next: EVENT_NOTICE

class EVENT_NOTICE creation make feature
when: REAL -- i.e. time

what: PROCESS

make (t: REAL; p: PROCESS) is

do when:= t; what:= p end
end

If a process becomes suspended by reactivating itself at a later time, executio
resume the first suspended process (the one with the earliest reactivation time) an
reactivation time is after the current time, correspondingly advance the current time

As this example shows, the simulation primitives, although based on the coro
primitives, belong to a higher level of abstraction; whenever possible it is preferable t
them rather than relying directly on coroutine mechanisms. In particular you may
hold (0) as a form of resume through which you let the underlying event list mechanis
pick the process to be resumed, rather than specifying it explicitly.

A simulation example

Process classes and the simulation primitives provide an elegant mechanism for mo
external-world processes. Consider as an illustration a worker who may be asked
either one of two tasks. Both may take a variable amount of time; the second re
switching on a machine m, which takes 5 minutes, and waiting for the machine to do its

PROCESS class WORKER begin
while true do begin

“Get next task type i and task duration d”;

if i = 1 then
activate m delay 300; reactivate this WORKER after m;

end;

hold (d)

end while

end WORKER

SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS§35.21126

sted
ution.
 type
f

cess
tract
hildren
ess, a

able as
gh a
, the

these

Kay,
, when
rtment
l and
. The
 Palo
sion of
to the
alls.

ere
try-

urces.

yle of
trast
ay be

ed a
e” to
The operation “get next task type and task duration” will usually obtain the reque
value from a pseudo-random number generator, using a specified statistical distrib
The Simula library includes a number of generators for common statistical laws. The
of m is assumed to be some process class MACHINE representing the behavior o
machines. All actors of a simulation will be similarly represented by process classes.

Simula: an assessment

Like Algol 60 before it, Simula has made its contribution less by its commercial suc
than through its intellectual influence. The latter is everywhere; both in theory (abs
data types) and in practice, most of the developments of the past twenty years are c
or grandchildren of the Simula ideas. As to the lack of widespread commercial succ
number of reasons can be invoked, but the most important one by far is as regrett
it is obvious: like a few major inventions before it, Simula came too soon. Althou
significant community immediately recognized the potential value of the ideas
software field as a whole was not ready.

Thirty years later, as should be clear from the preceding overview, many of
ideas are as timely as ever.

35.2 SMALLTALK

The ideas for Smalltalk were laid out around 1970 at the University of Utah by Alan
then a graduate student and part of a group that was particularly active in graphics
he was asked to look at an Algol 60 compiler that had just been delivered to the depa
from Norway. Poring over it, he realized that the compiler actually went beyond Algo
implemented a set of notions that seemed directly relevant to Kay’s other work
supported Algol extension was, of course, Simula. When Kay later joined the Xerox
Alto Research Center (PARC), he used the same principles as the basis for his vi
an advanced personal computing environment. The other two principal contributors
early development of Smalltalk at Xerox PARC were Adele Goldberg and Daniel Ing

Smalltalk-72 evolved into Smalltalk-76, then Smalltalk-80, and versions w
developed for a number of machines — initially Xerox hardware but later indus
standard platforms. Today Smalltalk implementations are available from several so

Language style

As a language, Smalltalk combines the influence of Simula with the free, typeless st
Lisp. The emphasis is on dynamic binding. No type checking is performed: in con
with the approach emphasized in this book, the determination of whether a routine m
applied to an object only occurs at run time.

This, by the way, is not the standard Smalltalk terminology. A routine is call
“method” in Smalltalk; applying a routine to an object is called “sending a messag
the object (whose class must find the appropriate method to handle the message).

§35.2 SMALLTALK 1127

have
jects.
 class
e class
is the
the

tates
n-time

han to
ns for

ches,

unary,
s in

turn

h as
e is

la or

ook,
etic

object
rm
e. The
 re-
sages, so

“Metaclasses”,
page 168.
Another important feature that distinguishes the Smalltalk style from what we
studied in this book is the lack of a clear-cut distinction between classes and ob
Everything in the Smalltalk system is an object, including the classes themselves. A
is viewed as an instance of a higher-level class called a metaclass. This allows th
hierarchy to encompass all elements in the system; at the root of the hierarchy
highest-level class, called object. The root of the subtree containing only classes is
metaclass class. The arguments for this approach include:

• Consistency: everything in Smalltalk follows from a single concept, object.

• Environment effectiveness: making classes part of the run-time context facili
the development of symbolic debuggers, browsers and other tools that need ru
access to class texts

• Class methods: it is possible to define methods that apply to the class rather t
its instances. Class methods may be used to provide special implementatio
standard operations like new which allocates instances of the class.

An earlier discussion considered the arguments for other, more static approa
showing different ways to obtain the same results.

Messages

Smalltalk defines three main forms of messages (and associated methods):
keyword and binary. Unary messages express calls to routines without parameters, a

acc1 balance

which sends the message balance to the object associated with acc1. This is equivalent to
the notation acc1● balance used in Simula and this book. Messages may, as here, re
values. Keyword messages represent calls to routines with arguments, as in

point1 translateBy: vector1
window1 moveHor: 5 Vert: –3

The use of upper-case letters in the middle of a word, giving identifiers suc
translateBy, is part of the established Smalltalk style. Note how the message nam
collapsed with the keyword for the first argument. The corresponding syntax in Simu
our notation would have been point1● translate (vector1) and window1● move (5, –3).

Binary messages, similar to the infix functions of Ada and the notation of this b
serve to reconcile the “everything is an object” approach with more traditional arithm
notations. Rather than

2 addMeTo: 3

most people, at least from the older generations who learned arithmetic before
technology, still prefer to write 2+3. Smalltalk’s binary messages permits this latter fo
as essentially a synonym for the former. There is a snag, however: precedenc
expression a + b ✳ c means (a + b) ✳ c. Smalltalk developers can use parentheses to
establish standard precedence. Unary messages take precedence over binary mes
that window1 height + window2 height has the expected meaning.

SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS§35.21128

 only
gives

ethod

ome
fined
bject

ding
 cause

lier in
neric

erence
all
e a
class
appear
d

Exercise E35.5,
page 1140. See
“Keeping the origi-
nal version of a
redefined feature”,
page 555.
In contrast with Simula and the language of this book, Smalltalk classes may
export methods (routines). To export an attribute, you must write a function that
access to its value. A typical example is

x | |

↑ xx

y | |

↑ yy

scale: scaleFactor | |

xx <– xx ∗ scaleFactor

yy <– yy ∗ scaleFactor

Methods x and y return the values of the instance variables (attributes) xx and yy. The
up arrow ↑ means that the following expression is the value to be returned by the m
to the sender of the corresponding message. Method scale takes an argument, scaleFactor.
The vertical bars | | would delimit local variables if there were any.

Inheritance is an important part of the Smalltalk approach, but except for s
experimental implementations it is limited to single inheritance. To enable a rede
method to call the original version, Smalltalk allows the developer to refer to the o
viewed as an instance of the parent class through the name super, as in

aFunction: anArgument |…|

… super aFunction: anArgument …

It is interesting to compare this approach with the techniques based on Precursor and
repeated inheritance.

All binding is dynamic. In the absence of static typing, errors resulting from sen
a message to an object that is not equipped with a proper method to handle it will
run-time failure, rather than being caught by a compiler.

Dynamic typing also renders irrelevant some of the concepts developed ear
this book: Smalltalk does not need language support for genericity since a ge
structure such as a stack may contain elements of any type without any static coh
checks; neither are deferred routines meaningful, since if the software includes a cx f
(the equivalent of x● f) there is no static rule requiring any particular class to provid
method f. Smalltalk provides, however, a run-time mechanism to raise an error if a
C receives a message corresponding to a method whose effective definitions only
in proper descendants of C. (In the rest of this book, C would be a deferred class, an
instances would only be created for non-deferred descendants of C.) For example, we
could implement rotate in a class FIGURE by

rotate: anAngle around: aPoint | |

self shouldNotImplement

The method shouldNotImplement is included in the general class object and returns
an error message. The notation self denotes the current object.

§35.2 SMALLTALK 1129

ents,
d by
hich
and
. Such
uggers

ion.
ies of
ries”,

y of
s, no
, the
mber
ped
onstant-
. Not
 the
an be

ts of
came
ressed
h the

ercial
to two

 to
ybrid
cepts,
sented
eone

long
side
 the

ally
Environment and performance

Much of Smalltalk’s appeal has come from the supporting programming environm
among the first to include innovative interaction techniques (many of them devise
other Xerox PARC projects around the time of the original Smalltalk development) w
have now become commonplace: multiple windows, icons, integration of text
graphics, pull-down menus and use of the mouse as a pointing and selecting device
staples of current O-O environment tools such as browsers, inspectors and O-O deb
trace some of their roots to Smalltalk environments.

As with Simula, all commercial implementations support garbage collect
Smalltalk-80 and subsequent implementations are also renowned from their librar
basic classes, covering important abstractions such as “collections” and “dictiona
and a number of graphical concepts.

The lack of static typing has proved a formidable obstacle to the efficienc
software systems developed in Smalltalk. Although modern Smalltalk environment
longer solely interpretative, provide some mechanisms for compiling methods
unpredictability of run-time target types deprives most Smalltalk developers of a nu
of crucial optimizations that are readily available to compilers for statically ty
languages (such as setting up arrays of functions references and hence ensuring c
time resolution of dynamic binding, as discussed in the chapter on inheritance)
surprisingly, many Smalltalk projects have reported efficiency problems. In fact,
common misconception that object technology carries a performance penalty c
attributed in part to experience with Smalltalk environments.

Smalltalk: an assessment

Smalltalk was instrumental in associating interactive techniques with the concep
object technology, turning the abstract objects of Simula into visual objects that be
suddenly comprehensible and appealing to a larger audience. Simula had imp
programming language and programming methodology experts; Smalltalk, throug
famous August 1981 issue of Byte, dazzled the masses.

Considering how dated the concepts of Smalltalk appear today, the comm
success that it enjoyed in the early nineties is remarkable. It can be partly attributed
independent a contrario phenomena:

• The “try the next one on the list” effect. Many people who were initially drawn
object technology by the elegance of the concepts were disappointed with h
approaches such as C++. When looking for a better embodiment of the con
they often went to the approach that the computer press has consistently pre
as the pure O-O approach: Smalltalk. Many a Smalltalk developer is indeed som
who “just says no” to C or C-like development.

• The decline of Lisp. For a long time, many companies relied on Lisp variants (a
with Prolog and a few other approaches grounded in Artificial Intelligence) for
projects involving quick development of prototypes and experiments. Starting in
mid-eighties, however, Lisp largely faded from the scene; Smalltalk natur
occupied the resulting vacuum.

SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS§35.31130

oach.
isual
land’s
ater
f static
all of
oper
ance

ny to

bject-
alltalk
tions
bject-
ream

d its

ing.

 than
O-O
 in the

ke
They
nd the
ional
time
g the
ing

 do not
en the
The last observation provides a good idea of the scope of the Smalltalk appr
Smalltalk is an excellent tool for prototyping and experimentation, especially when v
interfaces are involved (it competes in this area with more recent tools such as Bor
Delphi or Microsoft’s Visual Basic). But it has largely remained uninfluenced by l
developments in software engineering methodology, as attested by the absence o
typing, assertion mechanisms, disciplined exception handling, deferred classes,
which are important for mission-critical systems — or simply any system whose pr
run-time behavior is important to the organization that has developed it. The perform
problems noted above do not help.

The lesson is clear: it would not in my opinion be reasonable today for a compa
entrust a significant production development to Smalltalk.

35.3 LISP EXTENSIONS

Like many other pre-O-O languages, Lisp has served as the basis for several o
oriented extensions; in fact many of the earliest O-O languages after Simula and Sm
were Lisp-based or Lisp-like. This is not surprising, since Lisp and its implementa
have for many years offered mechanisms that directly help the implementation of o
oriented concepts, and have taken much longer to find their way into mainst
languages and their environments:

• A highly dynamic approach to the creation of objects.

• Automatic memory management with garbage collection.

• Ready implementation of tree-like data structures.

• Rich development environments, such as Interlisp in the seventies an
predecessors in the previous decade.

• Run-time selection of operations, facilitating the implementation of dynamic bind

The conceptual distance to O-O concepts is, then, shorter if you start from Lisp
if you start from C, Pascal or Ada, so that the term “hybrid” commonly used for
extensions of these languages, such as the C-based hybrids which we will review
next sections, is less appropriate for extensions of Lisp.

Artificial Intelligence applications, the prime application of Lisp and Lisp-li
languages, have found in O-O concepts the benefits of flexibility and scalability.
have taken advantage of Lisp’s uniform representation for programs and data to exte
object-oriented paradigm with notions such as “meta-object protocol” and “computat
reflection” which apply some of the O-O principles not just to the description of run-
structures (objects) but also to the software structure itself (classes), generalizin
Smalltalk concept of metaclass and continuing the Lisp tradition of self-modify
software. For most developers, however, these concepts are a little far-off, and they
blend too well with the software engineering emphasis on a strict separation betwe
static and dynamic pictures.

§35.4 C EXTENSIONS 1131

 the

ng”,
 of the
ssed
ards

ject
 Lisp

ctive
ndous
le stem
read

m of
se of

d on
s the

rts as

should
roach

f the
 on the
lture
s such
come
iar

l) by
base.
ough
unity.
Three main contenders were vying for attention in the world of O-O Lisp in
eighties: Loops, developed at Xerox, initially for the Interlisp environment; Flavors,
developed at MIT, available on several Lisp-oriented architectures; Ceyx, developed at
INRIA. Loops introduced the interesting concept of “data-oriented programmi
whereby you may attach a routine to a data item (such as an attribute). Execution
routine will be triggered not only by an explicit call, but also whenever the item is acce
or modified. This opens the way to event-driven computation, a further step tow
decentralizing software architectures.

The unification of the various approaches came with the Common Lisp Ob
System or CLOS (pronounced C-Los by most people), an extension of Common
which was the first object-oriented language to have an ANSI standard.

35.4 C EXTENSIONS

Much of the late nineteen-eighties transformation of object technology from an attra
idea into an industrial practice can be attributed to the emergence and treme
commercial success of languages that added object-oriented extensions to the stab
of a widely available non-O-O language, C. The first such effort to attract widesp
attention was Objective-C; the best known today is C++.

The language styles reflect two radically different approaches to the proble
“hybrid” language design, so called because it combines O-O mechanisms with tho
a language based on entirely different principles. (Examples of hybrids base
languages other than C include Ada 95 and Borland Pascal.) Objective-C illustrate
orthogonal approach: add an O-O layer to the existing language, keeping the two pa
independent as possible. C++ illustrates the merged approach, intertwining concepts from
both. The potential advantages of each style are clear: the orthogonal approach
make the transition easier, avoiding unexpected interferences; the merged app
should lead to a more consistent language.

Both efforts capitalized on the success of C, which had rapidly become one o
dominant languages in the industry. The appeal to managers was obvious, based
prospect of turning C programmers into O-O developers without too much of a cu
shock. The model (evoked by Brad Cox) was that of the C and Fortran preprocessor
as Ratfor which, in the seventies, enabled part of the software community to be
familiar with concepts of “structured programming” while continuing to work in famil
language frameworks.

Objective-C

Designed at Stepstone Corporation (originally Productivity Products Internationa
Brad Cox, Objective-C is a largely orthogonal addition of Smalltalk concepts onto a C
It was the base language for the NEXTSTEP workstation and operating system. Alth
obscured in part by the success of C++, Objective-C has retained an active user comm

SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS§35.41132

rrent
ping

 lines

tines
is is

 after

tion
d C),
ents
ility

tructs
day’s
find a
c C
sure
ources

d in
ample:
As in Smalltalk, the emphasis is on polymorphism and dynamic binding, but cu
versions of Objective-C have departed from the Smalltalk model by offering static ty
as an option (and for some of them, somewhat surprisingly, static binding as well). Here
is an example of Objective-C syntax:

= Proceedings: Publication { id date, place; id articles;}

+ new { return [[super new] initialize]}

– initialize { articles = [OrderedCollection new]; return self;}

– add: anArticle { return [contents add: anArticle];}

– remove: anArticle { return [contents remove:anArticle];}

– (int) size { return [contents size];}

=:

Class Proceedings is defined as heir to Publication (Objective-C supports single
inheritance only). The braces introduce attributes (“instance variables”). The next
describe routines; self, as in Smalltalk, denotes the current instance. The name id denotes,
in the non-statically typed variant, a general class type for all non-C objects. Rou
introduced by +, known as “class methods” as in Smalltalk, are meant for the class; th
the case here with the creation operation new. Others, introduced by –, are normal “object
methods” that send messages to instances of the class.

Stepstone’s Objective-C is equipped with a library of classes initially patterned
their Smalltalk counterparts. Many other classes are also available for NEXTSTEP.

C++

Originally designed by Bjarne Stroustrup at AT&T Bell Laboratories (an organiza
previously renowned, among other accomplishments, for its development of Unix an
C++ quickly gained, starting around 1986, a leading position for industrial developm
aiming to obtain some of the benefits of object technology while retaining compatib
with C. The language has remained almost fully upward-compatible with C (meaning that
a valid C program is also, in normal circumstances, a valid C++ program).

Early C++ implementations were simple preprocessors that removed O-O cons
to yield plain C, based on techniques sketched in the preceding chapter. To
compilers, however, are native C++ implementations; it has in fact become hard to
C compiler that is not also a C++ compiler, requiring the user who just wants a basi
compiler to turn on a special “no C++ constructs” compilation option. This is a mea
among many of the success of the approach. Compilers are available from many s
and for many platforms.

Originally, C++ was an attempt at providing a better version of C, improve
particular through a class construct and a stronger form of typing. Here is a class ex

§35.4 C EXTENSIONS 1133

. As
es, not

r
estions

r to
s will
d; this

ts.

 now
ity of
n of

feature

 the

use of
e for

ion of

“The C++ approach
to binding”, page
514.
class POINT {
float xx, yy;

public:
void translate (float, float);

void rotate (float);
float x ();

float y ();

friend void p_translate (POINT ✳, float, float);

friend void p_rotate (POINT ✳, float);
friend float p_x (POINT ✳);

friend float p_y (POINT ✳);
};

The first four routines are the normal, object-oriented interface of the class
shown by this example, the class declaration only shows the headers of these routin
their implementations (somewhat as in the output of the short command studied in earlie
chapters). The routine implementations must be defined separately, which raises qu
of scope for both compilers and human readers.

The other four routines are examples of “friend” routines. This notion is peculia
C++ and makes it possible to call C++ routines from normal C code. Friend routine
need an extra argument representing the object to which an operation is applie
argument is here of type POINT ✳, meaning pointer to POINT.

C++ offers a rich set of powerful mechanisms:

• Information hiding, including the ability to hide features from proper descendan

• Support for inheritance. Original versions supported single inheritance only, but
the language has multiple inheritance. Repeated inheritance lacks the flexibil
sharing or replicating on a feature-by-feature basis, which from the discussio
these topics seemed quite important. Instead, you share or duplicate an entire
set from the repeated ancestor.

• Static binding by default, but dynamic binding for functions specified as virtual;
C++ approach to this issue was discussed in depth in an earlier chapter.

• A notion of “pure virtual function”, which resembles deferred features.

• Stricter typing than in traditional C, but still with the possibility of casting.

• Usually no garbage collection (because of the presence of casts and the
pointers for arrays and similar structures), although some tools are availabl
suitably restrained programs.

• Because of the absence of automatic memory management by default, a not
destructor for taking care of object disposal (complementing the constructors of a
class, that is to say its creation procedures).

SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS§35.41134

 by

o
r, a

re as

esign
cts.

sses.

many
mong
nized
ional

 the

ough
les of
ither.
tart of

See “Efficiency con-
siderations”, page
327.

From Rex Jae-
schke's C++ column
in DEC Profes-
sional, November
1991.
• Exception handling, again not part of the original definition but now supported
most compilers.

• A form of assignment attempt, “downcasting”.

• A form of genericity, “templates”, which suffers from two limitations: n
constrained genericity; and, for reasons unclear to a non-implemente
considerable burden on compile-time performance (known in the C++ literatu
the template instantiation problem).

• Operator overloading.

• An assert instruction for debugging, but no assertions in the sense of support for D
by Contract (preconditions, postconditions, class invariants) tied to O-O constru

• Libraries available from various suppliers, such as the Microsoft Foundation Cla

Complexity

The size of C++ has grown considerably since the language’s first versions, and
people have complained about its complexity. That they have a point is illustrated, a
many possible examples, by this little excerpt from a pedagogical article by a recog
C and C++ authority, chair of the C standards committee of the American Nat
Standards Institute and author of several respected C++ books as well as the Dictionary of
Standard C, from whom I was at some point hoping to learn the difference between
C++ notions of reference and pointer:

While a reference is somewhat like a pointer, a pointer is an object that
occupies memory and has an address. Non-const pointers can also be made to
point to different objects at run time. On the other hand, a reference is an alias
to an object and does not, itself, occupy any memory. Its address and value are
the address and value of the object to which it is aliased. And while you can
have a reference to a pointer, you cannot have a pointer to a reference or an
array of references, nor can you have an object of some reference type.
References to the void type are also prohibited.

References and pointer are not interchangeable. A reference to an int cannot,
for example, be assigned to a pointer to an int or vice versa. However, a
reference to a pointer to an int can be assigned a pointer to an int .

I swear I tried to understand. I was almost convinced I got the hang of it, alth
perhaps not being quite ready for the midterm exam yet. (“Give convincing examp
cases in which it is appropriate to use: (1) A pointer only. (2) A reference only. (3) E
(4) Neither. No notes or Web browsers allowed”.) Then I noticed I had missed the s
the next paragraph:

From what we have seen so far, it may not be obvious as to why references
indeed exist.

§35.4 C EXTENSIONS 1135

 such
ol of
rfectly

very

eek
nald

rlier
more
ment,
s are
ject-

s, was
art of

are
. In
een
rtable
sonal
. The
logy,
 under

e by
ed the
s if it
o the
 C++

Booch interview:
http://www.
geekchic.com/repli-
que.htm. Knuth
interview: Dr.
Dobb’s Journal, no.
246, April 1996,
pages 16-22.
Oh well. Proponents of C++ would undoubtedly state that most users can ignore
subtleties. Another school holds that a programming language, the principal to
software developers, should be based on a reasonable number of solid, powerful, pe
understood concepts; in other words, that every serious user should know all of the
language, and trust all of it. But it may be impossible to reconcile this view with the
idea of hybrid language.

C++: an assessment

C++ leaves few people indifferent. The eminent author Grady Booch lists it, in a “G
Chic” interview, as his programming language of choice. Then, according to Do
Knuth, it would make Edsger Dijkstra “physically ill to think of programming in C++”.

C++ here could use the answer of Junia to Nero in Racine’s Britannicus:

I have neither deserved, in all humility,
Such excess of honor, nor such indignity.

Disappointment with C++ indeed follows from exaggerated hopes. Ea
discussions in this book have carefully analyzed some of the language’s
controversial design choices — especially in the areas of typing, memory manage
inheritance conventions and dynamic binding — and shown that better solution
available. But one cannot criticize C++ as if it were the be-all and end-all of ob
oriented languages. What C++ has attempted, and achieved beyond anyone’s dream
to catch a particular moment in the history of software: the time at which a large p
the profession and its managers were ready to try object technology, but not ready to shed
their current practices. C++ was the almost magical answer: still C enough not to sc
the managers; already O-O enough to attract the forward-looking members of the trade
seizing the circumstance, C++ was only following the example of C itself, which, fift
years earlier, was another product of coinciding opportunities — the need for a po
machine-oriented language, the development of Unix, the emergence of per
computers, and the availability of a few decommissioned machines at Bell Labs
merits of C++ lie in the historic boost it gave to the development of object techno
making it presentable to a whole community that might not have accepted the ideas
a less conventional apparel.

That C++ is not the ideal object-oriented language, a comment regularly mad
authors and lecturers in the field, and obvious enough to anyone who has studi
concepts, should not obscure this contribution. We must not indeed look at C++ a
were destined to remain a major tool for the software engineering community well int
twenty-first century, as it would then be overstaying its welcome. In the meantime
has admirably played its role: that of a transition technology.

SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS§35.51136

e first
ng to
 was
y); as

 on
l, Java
e

s are
rnet;

ne else.
built
s to a
at they

d Sun
n this
chance
urce
da, as

ty for
d to

re are
n O-O
 C++

ngle
ainful
guage,

ff, and

 along
ing the
le to
ftware
modest
sing
e files);
pical

ComputerWorld, vol.
30, no. 29, 15 July
1996, page 122.

See “Remote execu-
tion”, page 955.
35.5 JAVA

Introduced by a Sun Microsystems team, Java gained considerable attention in th
few months of 1996, presented as the way to help tame the Internet. Accordi
ComputerWorld, the number of press mentions of Java in the first six months of 1996
4325 (which we may multiply by 2 or 3 since this was presumably the US press onl
a point of comparison, Bill Gates was mentioned only 5096 times.

The principal contribution of Java is in implementation technology. Building
ideas already present in many other O-O environments but taken here to a new leve
execution rests on a bytecode (a low-level, portable interpretable format) whos
specification is in the public domain, and a widely available virtual machine to interpret
bytecode programs. The virtual machine is simply a program, for which version
available for many different platforms, and can be downloaded freely through the Inte
this enables almost anyone to execute bytecode programs produced by almost anyo
Often you do not even have to download anything explicitly: the virtual machine is
in tools such as Web browsers; and such tools will be able to recognize reference
bytecode program, for example a reference embedded in a link on a Web page, so th
will then automatically download the program and execute it on the spot.

The explosion of the Internet has given this technology a great momentum, an
has been able to convince many other major players to produce tools based o
technology. As the bytecode is largely separate from the language, it stands a good
of becoming a medium of choice for compiler output, regardless of what the so
language is. Compiler writers for such notations as O-O extensions of Pascal and A
well as the notation of this book, have not been slow to recognize the opportuni
developing software that will run without any change, and without even the nee
recompile, across all industry platforms.

Java is one of the most innovative developments in the software field, and the
many reasons to be excited about it. Java’s language is not the main one. As a
extension of C, it has missed some of the lessons learned since 1985 by the
community; as in the very first version of C++, there is no genericity and only si
inheritance is supported. Correcting these early oversights in C++ was a long and p
process, creating years of havoc as compilers never quite supported the same lan
books never quite gave accurate information, trainers never quite taught the right stu
programmers never quite knew what to think.

Just as everyone in the C++ world has finally come up to speed, Java is starting
the same road. The language does have one significant benefit over C++: by remov
notion of arbitrary pointer, especially to describe arrays, it has finally made it possib
support garbage collection. For the rest, it seems to take no account of modern so
engineering ideas: no assertion support (in fact, Java went so far as to remove the
assert instruction of C and C++); partial reliance on run-time type checking; a confu
modular structure with three interacting concepts (classes, nested packages, sourc
and ever the cryptic syntax bequeathed from C, with such lines as the following ty
examples from the designers’ book on the language:

§35.6 OTHER O-O LANGUAGES 1137

.

ution
it can
come
Java
stry: a

ly ones
hich

iented
n the

ral
port.

er

 and

this
n; its

ation

e.

lation

sion

From [Arnold 1996].

See “Formats for
reusable componen
distribution”, page
79.

“FROM ADA TO
ADA 95”, 33.7, page
1092; “Object-ori-
ented extensions of
Pascal”, page 1101.
String [] labels = (depth == 0 ? basic: extended);

while ((name = getNextPlayer()) != null) {

exhibiting side-effect-producing functions as a way of life, use of = conflicting with the
tradition of mathematics, semicolons sometimes required and sometimes illegal etc

That the language is uninspiring should not, however, detract from the contrib
that Java technology has already made to portable software development. If
eventually solve its current efficiency problems, Java could, through its bytecode, be
the closest approximation (built from software rather than hardware, although “
chips” have also been announced) to one of the oldest dreams of the computer indu
truly universal machine.

35.6 OTHER O-O LANGUAGES

The languages reviewed so far are some of the best known, but by no means the on
to have attracted significant attention. Here are a few other important contributions, w
would each deserve a separate chapter in a book entirely devoted to object-or
languages, and to which you can find references (books and Web pages) i
bibliographical section:

• Oberon is Niklaus Wirth’s O-O successor to Modula-2, part of a more gene
project which also involves a programming environment and even hardware sup

• Modula-3, originally from Digital Equipment’s research laboratory, is anoth
modular language with class-like record types, also starting from Modula-2.

• Trellis, also from DEC Research, was among the first to offer both genericity
multiple inheritance.

• Sather, drawing in part from the concepts and notation of the first edition of
book, especially assertions, has the benefit of a public-domain implementatio
pSather version provides an interesting concurrency mechanism.

• Beta is a direct descendant of Simula, designed in Scandinavia with the collabor
of Kristen Nygaard (one of Simula’s original authors). It introduces the pattern
construct to unify the concepts of class, procedure, function, type and coroutin

• Self is based not on classes but on “prototypes”, supporting inheritance as a re
between objects rather than types.

• Ada 95 was discussed in the Ada chapter.

• Borland Pascal and other O-O extensions of Pascal were cited in the discus
of Pascal.

t

SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS§35.71138

 The

r in the

1984,
ional

came

orks

m

 Bob
ence.

ction

’s
35.7 BIBLIOGRAPHICAL NOTES

Simula

[Dahl 1966] describes an initial version of Simula subsequently known as Simula 1.
current Simula, long known as Simula 67, was initially described by [Dahl 1970], which
assumed Algol 60 as a basis and only described the Simula extensions. A chapte
famous Structured Programming book of Dahl, Dijkstra and Hoare [Dahl 1972] brought
the concepts to a wider audience. The language description was revised in
incorporating the Algol 60 elements. The official reference is the Swedish nat
standard [SIS 1987]. For an account of Simula’s history by its designers, see [Nygaard
1981].

The best known book on Simula is [Birtwistle 1973]. It remains an excellent
introduction. A more recent text is [Pooley 1986].

Smalltalk

References on the earliest versions of Smalltalk (-72 and -76) are [Goldberg 1976] and
[Ingalls 1978].

A special issue that Byte devoted to Smalltalk [Goldberg 1981] was the key event
that brought Smalltalk to prominence long before supporting environments be
widely available. The basic reference on the language is [Goldberg 1983], serving both as
pedagogical description and reference; complementing it is [Goldberg 1985], which
describes the programming environment.

For a good recent introduction to both the Smalltalk language and the VisualW
environment see [Hopkins 1995]; for an in-depth treatment see Lalonde’s and Pugh’s two-
volume set [Lalonde 1990-1991].

The story of Simula’s original influence on Smalltalk (the “Algol compiler fro
Norway”) comes from an interview of Alan Kay in TWA Ambassador (yes, an airline
magazine), exact issue number forgotten — early or mid-eighties. I am indebted to
Marcus for pointing out the connection between Lisp’s decline and Smalltalk’s resurg

C extensions: Objective-C, C++

Objective-C is described by its designer in an article [Cox 1984] and a book [Cox 1990]
(whose first edition dates back to 1986). Pinson and Wiener have written an introdu
to O-O concepts based on Objective-C [Pinson 1991].

There are hundreds of books on C++. For a personal account of the language
history by its designer, see [Stroustrup 1994]. The original article was [Stroustrup 1984];
it was extended into a book [Stroustrup 1986], later revised as [Stroustrup 1991], which
contains many tutorial examples and useful background. The reference manual is
[Ellis 1990].

§E35.1 EXERCISES 1139

ue”
isons

on the

 say,
1995,

at it
utput

s book
ucer-
 of its
utine

 the
nd

The address shown
is for the first mes-
sage in the discus-
sion; from there you
can follow links to
the rest of the

“A coroutine exam-
ple”, page 1119.
Ian Joyner has published several editions of an in-depth “C++ critiq
[Joyner 1996] available on a number of Internet sites and containing detailed compar
with other O-O languages.

Lisp extensions

Loops: [Bobrow 1982]; Flavors: [Cannon 1980], [Moon 1986]; Ceyx: [Hullot 1984];
CLOS: [Paepcke 1993].

Java

In the few months that followed the release of Java, many books have appeared
topic. Those by the designing team include: [Arnold 1996] for a language tutorial,
[Gosling 1996] as the language reference, and [Gosling 1996a] about the basic libraries.

A discussion about Java’s lack of assertions in the style of this book (that is to
supporting the principles of Design by Contract), conducted on Usenet in August
appears at http://java.sun.com/archives/java-interest/0992.html.

Other languages

Oberon: [Wirth 1992], [Oberon-Web]. Modula-3: [Harbison 1992], [Modula-3-Web].
Sather: [Sather-Web]. Beta: [Madsen 1993], [Beta-Web]. Self: [Chambers 1991], [Ungar
1992].

EXERCISES

E35.1 Stopping on short files

Adapt the Simula coroutine example (printer-controller-producer) to make sure th
stops properly if the input does not have enough elements to produce 1000 o
elements. (Hint : one possible technique is to add a fourth coroutine, the “reader”.)

E35.2 Implicit resume

(This is a exercise on Simula concepts, but you may use the notation of the rest of thi
extended with the simulation primitives described in this chapter.) Rewrite the prod
printer example in such a way that each coroutine does not need to resume one
colleagues explicitly when it has finished its current job; declare instead the coro
classes as descendants of PROCESS, and replace explicit resume instructions by hold (0)
instructions. (Hints: recall that event notices with the same activation time appear in
event list in the order in which they are generated. Associate with each process a coition
that needs to be satisfied for the process to be resumed.)

SIMULA TO JAVA AND BEYOND: MAJOR O-O LANGUAGES AND ENVIRONMENTS§E35.31140

uch as

ith a
ncy
ply

-event

e.)

s
rsion:
“Keeping the origi-
nal version of a
redefined feature”,
page 555.
E35.3 Emulating coroutines

Devise a mechanism for emulating coroutines in an O-O language of your choice (s
the notation of the rest of this book) that does not provide coroutine support. (Hint : write
a resume procedure, implemented as a loop containing a conditional instruction w
branch for every resume. Obviously, you may not for this exercise use the concurre
mechanism of chapter 30, which among other applications supports coroutines.) Ap
your solution to the producer-printer-controller example of this chapter.

E35.4 Simulation

Using the notation of this book or another O-O language, write classes for discrete
simulation, patterned after the Simula classes SIMULATION, EVENT_NOTICE,
PROCESS. (Hint : you may use the techniques developed for the previous exercis

E35.5 Referring to a parent’s version

Discuss the respective merits of Smalltalk’s super technique against the technique
introduced earlier in this book to enable a redefined routine to use the original ve
Precursor construct and, when appropriate, repeated inheritance.

	35 35 Simula to Java and beyond: major O-O languag...
	35.1 SIMULA
	Background
	Availability
	Major language traits
	An example
	Coroutine concepts
	Coroutine sequencing
	(This figure appeared originally on page 1012.)

	A coroutine example
	Sequencing and inheritance
	Simulation
	An event list

	A simulation example
	Simula: an assessment

	35.2 SMALLTALK
	Language style
	Messages
	Environment and performance
	Smalltalk: an assessment

	35.3 LISP EXTENSIONS
	35.4 C EXTENSIONS
	Objective-C
	C++
	Complexity
	C++: an assessment

	35.5 JAVA
	35.6 OTHER O-O LANGUAGES
	35.7 BIBLIOGRAPHICAL NOTES
	Simula
	Smalltalk
	C extensions: Objective-C, C++
	Lisp extensions
	Java
	Other languages

	EXERCISES
	E35.1 Stopping on short files
	E35.2 Implicit resume����
	E35.3 Emulating coroutines��
	E35.4 Simulation��
	E35.5 Referring to a parent’s version

