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Engineering seeks quality; software engineering is the production of quality softw
This book introduces a set of techniques which hold the potential for remark
improvements in the quality of software products. 

Before studying these techniques, we must clarify their goals. Software qual
best described as a combination of several factors. This chapter analyzes some o
factors, shows where improvements are most sorely needed, and points to the dir
where we shall be looking for solutions in the rest of our journey. 

1.1  EXTERNAL AND INTERNAL FACTORS 

We all want our software systems to be fast, reliable, easy to use, readable, mo
structured and so on. But these adjectives describe two different sorts of qualities.

On one side, we are considering such qualities as speed or ease of use, 
presence or absence in a software product may be detected by its users. These pr
may be called external quality factors.

Under “users” we should include not only the people who actually interact with the final
products, like an airline agent using a flight reservation system, but also those who
purchase the software or contract out its development, like an airline executive in charge
of acquiring or commissioning flight reservation systems. So a property such as the ease
with which the software may be adapted to changes of specifications — defined later in
this discussion as extendibility — falls into the category of external factors even though
it may not be of immediate interest to such “end users” as the reservations agent.

Other qualities applicable to a software product, such as being modular, or rea
are internal  factors, perceptible only to computer professionals who have access 
actual software text. 

In the end, only external factors matter. If I use a Web browser or live ne
computer-controlled nuclear plant, little do I care whether the source program is rea
or modular if graphics take ages to load, or if a wrong input blows up the plant. Bu
key to achieving these external factors is in the internal ones: for the users to enj
visible qualities, the designers and implementers must have applied internal tech
that will ensure the hidden qualities. 
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The following chapters present of a set of modern techniques for obtaining int
quality. We should not, however, lose track of the global picture; the internal techn
are not an end in themselves, but a means to reach external software qualities. So w
start by looking at external factors. The rest of this chapter examines them.

1.2  A REVIEW OF EXTERNAL FACTORS 

Here are the most important external quality factors, whose pursuit is the central ta
object-oriented software construction.

Correctness

Correctness is the prime quality. If a system does not do what it is supposed 
everything else about it — whether it is fast, has a nice user interface… — matters little. 

But this is easier said than done. Even the first step to correctness is already di
we must be able to specify the system requirements in a precise form, by itself q
challenging task. 

Methods for ensuring correctness will usually be conditional. A serious software
system, even a small one by today’s standards, touches on so many areas that it w
impossible to guarantee its correctness by dealing with all components and proper
a single level. Instead, a layered approach is necessary, each layer relying on lowe

In the conditional approach to correctness, we only worry about guaranteeing
each layer is correct on the assumption that the lower levels are correct. This is the on
realistic technique, as it achieves separation of concerns and lets us concentrate 
stage on a limited set of problems. You cannot usefully check that a program in a
level language X is correct unless you are able to assume that the compiler on
implements X correctly. This does not necessarily mean that you trust the compiler bl
simply that you separate the two components of the problem: compiler correctnes
correctness of your program relative to the language’s semantics. 

In the method described in this book, even more layers intervene: soft
development will rely on libraries of reusable components, which may be used in 
different applications.

Definition: correctness

Correctness is the ability of software products to perform their exact tasks,
as defined by their specification. 

Application system

Compiler 

Operating System

Hardware 
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The conditional approach will also apply here: we should ensure that the librarie
correct and, separately, that the application is correct assuming the libraries are.

Many practitioners, when presented with the issue of software correctness, 
about testing and debugging. We can be more ambitious: in later chapters we will ex
a number of techniques, in particular typing and assertions, meant to help build sof
that is correct from the start — rather than debugging it into correctness. Debuggin
testing remain indispensable, of course, as a means of double-checking the result. 

It is possible to go further and take a completely formal approach to softw
construction. This book falls short of such a goal, as suggested by the somewha
terms “check”, “guarantee” and “ensure” used above in preference to the word “pr
Yet many of the techniques described in later chapters come directly from the wo
mathematical techniques for formal program specification and verification, and go a
way towards ensuring the correctness ideal. 

Robustness

Robustness complements correctness. Correctness addresses the behavior of a s
cases covered by its specification; robustness characterizes what happens out
that specification. 

Definition: robustness

Robustness is the ability of software systems to react appropriately to
abnormal conditions. 

Application system

Application library 

Operating System

… More libraries …
Base library

Kernel library

Hardware 

Compiler

SPECIFICATION
Correctness

Robustness
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handling see 
chapter 12.
As reflected by the wording of its definition, robustness is by nature a more f
notion than correctness. Since we are concerned here with cases not covered 
specification, it is not possible to say, as with correctness, that the system should “pe
its tasks” in such a case; were these tasks known, the abnormal case would beco
of the specification and we would be back in the province of correctness.

This definition of “abnormal case” will be useful again when we study exception
handling. It implies that the notions of normal and abnormal case are always relative to a
certain specification; an abnormal case is simply a case that is not covered by the
specification. If you widen the specification, cases that used to be abnormal become
normal — even if they correspond to events such as erroneous user input that you would
prefer not to happen. “Normal” in this sense does not mean “desirable”, but simply
“planned for in the design of the software”. Although it may seem paradoxical at first that
erroneous input should be called a normal case, any other approach would have to rely o
subjective criteria, and so would be useless.

There will always be cases that the specification does not explicitly address. Th
of the robustness requirement is to make sure that if such cases do arise, the syste
not cause catastrophic events; it should produce appropriate error messages, term
execution cleanly, or enter a so-called “graceful degradation” mode. 

Extendibility

Software is supposed to be soft, and indeed is in principle; nothing can be easier than
change a program if you have access to its source code. Just use your favorite text

The problem of extendibility is one of scale. For small programs change is us
not a difficult issue; but as software grows bigger, it becomes harder and harder to 
A large software system often looks to its maintainers as a giant house of cards in 
pulling out any one element might cause the whole edifice to collapse. 

We need extendibility because at the basis of all software lies some hum
phenomenon and hence fickleness. The obvious case of business software (“Mana
Information Systems”), where passage of a law or a company’s acquisition may sud
invalidate the assumptions on which a system rested, is not special; even in sci
computation, where we may expect the laws of physics to stay in place from one mo
the next, our way of understanding and modeling physical systems will change.

Traditional approaches to software engineering did not take enough accou
change, relying instead on an ideal view of the software lifecycle where an initial ana
stage freezes the requirements, the rest of the process being devoted to design
building a solution. This is understandable: the first task in the progress of the disc
was to develop sound techniques for stating and solving fixed problems, before we
worry about what to do if the problem changes while someone is busy solving it. Bu

Definition: extendibility

Extendibility is the ease of adapting software products to changes of
specification. 



§1.2  A REVIEW OF EXTERNAL FACTORS 7

tial to
pment:
f data
 object

 on
larger

ges

that
ather

ethod
en for

ollow
ting

ttern, a

g the
e that
 such

 not
e one
 the
ty has

 one
, its

Chapter 4.
with the basic software engineering techniques in place it has become essen
recognize and address this central issue. Change is pervasive in software develo
change of requirements, of our understanding of the requirements, of algorithms, o
representation, of implementation techniques. Support for change is a basic goal of
technology and a running theme through this book.

Although many of the techniques that improve extendibility may be introduced
small examples or in introductory courses, their relevance only becomes clear for 
projects. Two principles are essential for improving extendibility: 

• Design simplicity: a simple architecture will always be easier to adapt to chan
than a complex one. 

• Decentralization: the more autonomous the modules, the higher the likelihood 
a simple change will affect just one module, or a small number of modules, r
than triggering off a chain reaction of changes over the whole system. 

The object-oriented method is, before anything else, a system architecture m
which helps designers produce systems whose structure remains both simple (ev
large systems) and decentralized. Simplicity and decentralization will be recurring themes
in the discussions leading to object-oriented principles in the following chapters.

Reusability

The need for reusability comes from the observation that software systems often f
similar patterns; it should be possible to exploit this commonality and avoid reinven
solutions to problems that have been encountered before. By capturing such a pa
reusable software element will be applicable to many different developments.

Reusability has an influence on all other aspects of software quality, for solvin
reusability problem essentially means that less software must be written, and henc
more effort may be devoted (for the same total cost) to improving the other factors,
as correctness and robustness.

Here again is an issue that the traditional view of the software lifecycle had
properly recognized, and for the same historical reason: you must find ways to solv
problem before you worry about applying the solution to other problems. But with
growth of software and its attempts to become a true industry the need for reusabili
become a pressing concern.

Reusability will play a central role in the discussions of the following chapters,
of which is in fact devoted entirely to an in-depth examination of this quality factor
concrete benefits, and the issues it raises. 

Definition: reusability

Reusability is the ability of software elements to serve for the construction
of many different applications.
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On abstract data 
types see chapter 6.
Compatibility 

Compatibility is important because we do not develop software elements in a vac
they need to interact with each other. But they too often have trouble interacting be
they make conflicting assumptions about the rest of the world. An example is the
variety of incompatible file formats supported by many operating systems. A program
directly use another’s result as input only if the file formats are compatible. 

Lack of compatibility can yield disaster. Here is an extreme case:

DALLAS — Last week, AMR, the parent company of American Airlines, Inc., said it fell
on its sword trying to develop a state-of-the-art, industry-wide system that could also
handle car and hotel reservations.

AMR cut off development of its new Confirm reservation system only weeks after it was
supposed to start taking care of transactions for partners Budget Rent-A-Car, Hilton
Hotels Corp. and Marriott Corp. Suspension of the $125 million, 4-year-old project
translated into a $165 million pre-tax charge against AMR’s earnings and fractured the
company’s reputation as a pacesetter in travel technology. […]

As far back as January, the leaders of Confirm discovered that the labors of more than
200 programmers, systems analysts and engineers had apparently been for naught. The
main pieces of the massive project — requiring 47,000 pages to describe — had been
developed separately, by different methods. When put together, they did not work with
each other. When the developers attempted to plug the parts together, they could not.
Different “modules” could not pull the information needed from the other side of the
bridge.

AMR Information Services fired eight senior project members, including the team leader.
[…] In late June, Budget and Hilton said they were dropping out.

The key to compatibility lies in homogeneity of design, and in agreeing
standardized conventions for inter-program communication. Approaches include: 

• Standardized file formats, as in the Unix system, where every text file is simp
sequence of characters. 

• Standardized data structures, as in Lisp systems, where all data, and progra
well, are represented by binary trees (called lists in Lisp). 

• Standardized user interfaces, as on various versions of Windows, OS/2 and M
where all tools rely on a single paradigm for communication with the user, base
standard components such as windows, icons, menus etc. 

More general solutions are obtained by defining standardized access protocols
important entities manipulated by the software. This is the idea behind abstract data
and the object-oriented approach, as well as so-called middleware protocols such as
CORBA and Microsoft’s OLE-COM (ActiveX).

Definition: compatibility

Compatibility is the ease of combining software elements with others. 
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Efficiency

Almost synonymous with efficiency is the word “performance”. The software commu
shows two typical attitudes towards efficiency: 

• Some developers have an obsession with performance issues, leading them to
a lot of efforts to presumed optimizations. 

• But a general tendency also exists to downplay efficiency concerns, as evidenc
such industry lore as “make it right before you make it fast” and “next ye
computer model is going to be 50% faster anyway”. 

It is not uncommon to see the same person displaying these two attitudes at dif
times, as in a software case of split personality (Dr. Abstract and Mr. Microsecond).

Where is the truth? Clearly, developers have often shown an exaggerated conc
micro-optimization. As already noted, efficiency does not matter much if the softwa
not correct (suggesting a new dictum, “do not worry how fast it is unless it is also right”,
close to the previous one but not quite the same). More generally, the conce
efficiency must be balanced with other goals such as extendibility and reusability; ex
optimizations may make the software so specialized as to be unfit for change and 
Furthermore, the ever growing power of computer hardware does allow us to have a
relaxed attitude about gaining the last byte or microsecond. 

All this, however, does not diminish the importance of efficiency. No one like
wait for the responses of an interactive system, or to have to purchase more memory
a program. So offhand attitudes to performance include much posturing; if the final sy
is so slow or bulky as to impede usage, those who used to declare that “speed is n
important” will not be the last to complain. 

This issue reflects what I believe to be a major characteristic of software engine
not likely to move away soon: software construction is difficult precisely becaus
requires taking into account many different requirements, some of which, suc
correctness, are abstract and conceptual, whereas others, such as efficiency, are c
and bound to the properties of computer hardware.

For some scientists, software development is a branch of mathematics; for 
engineers, it is a branch of applied technology. In reality, it is both. The software deve
must reconcile the abstract concepts with their concrete implementations, the mathe
of correct computation with the time and space constraints deriving from physical 
and from limitations of current hardware technology. This need to please the ang
well as the beasts may be the central challenge of software engineering.

Definition: efficiency

Efficiency is the ability of a software system to place as few demands as
possible on hardware resources, such as processor time, space occupied in
internal and external memories, bandwidth used in communication devices.
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The constant improvement in computer power, impressive as it is, is not an e
for overlooking efficiency, for at least three reasons: 

• Someone who purchases a bigger and faster computer wants to see some
benefit from the extra power — to handle new problems, process previous prob
faster, or process bigger versions of the previous problems in the same amo
time. Using the new computer to process the previous problems in the same a
of time will not do! 

• One of the most visible effects of advances in computer power is actually to increase
the lead of good algorithms over bad ones. Assume that a new machine is tw
fast as the previous one. Let n be the size of the problem to solve, and N the maximum
n that can be handled by a certain algorithm in a given time. Then if the algorith
in O (n), that is to say, runs in a time proportional to n, the new machine will enable
you to handle problem sizes of about 2 ∗ N for large N. For an algorithm in O (n2) the
new machine will only yield a 41% increase of N. An algorithm in O (2n), similar to
certain combinatorial, exhaustive-search algorithms, would just add one to N — not
much of an improvement for your money.

• In some cases efficiency may affect correctness. A specification may state th
computer response to a certain event must occur no later than a specified tim
example, an in-flight computer must be prepared to detect and process a me
from the throttle sensor fast enough to take corrective action. This conne
between efficiency and correctness is not restricted to applications comm
thought of as “real time”; few people are interested in a weather forecasting m
that takes twenty-four hours to predict the next day’s weather.

Another example, although perhaps less critical, has been of frequent annoyance to me
a window management system that I used for a while was sometimes too slow to detec
that the mouse cursor had moved from a window to another, so that characters typed a
the keyboard, meant for a certain window, would occasionally end up in another.

In this case a performance limitation causes a violation of the specification, that is to say
of correctness, which even in seemingly innocuous everyday applications can cause nast
consequences: think of what can happen if the two windows are used to send electroni
mail messages to two different correspondents. For less than this marriages have bee
broken, even wars started. 

Because this book is focused on the concepts of object-oriented software engin
not on implementation issues, only a few sections deal explicitly with the assoc
performance costs. But the concern for efficiency will be there throughout. Whenev
discussion presents an object-oriented solution to some problem, it will make sure th
solution is not just elegant but also efficient; whenever it introduces some new 
mechanism, be it garbage collection (and other approaches to memory managem
object-oriented computation), dynamic binding, genericity or repeated inheritance, it w
so based on the knowledge that the mechanism may be implemented at a reasonabl
time and in space; and whenever appropriate it will mention the performance conseq
of the techniques studied.
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Efficiency is only one of the factors of quality; we should not (like some in 
profession) let it rule our engineering lives. But it is a factor, and must be taken
consideration, whether in the construction of a software system or in the design
programming language. If you dismiss performance, performance will dismiss you.

Portability 

Portability addresses variations not just of the physical hardware but more generally
hardware-software machine, the one that we really program, which includes t
operating system, the window system if applicable, and other fundamental tools. I
rest of this book the word “platform” will be used to denote a type of hardware-softw
machine; an example of platform is “Intel X86 with Windows NT” (known as “Wintel

Many of the existing platform incompatibilities are unjustified, and to a na
observer the only explanation sometimes seems to be a conspiracy to victimize hum
in general and programmers in particular. Whatever its causes, however, this div
makes portability a major concern for both developers and users of software. 

Ease of use

The definition insists on the various levels of expertise of potential users. This require
poses one of the major challenges to software designers preoccupied with ease of u
to provide detailed guidance and explanations to novice users, without bothering e
users who just want to get right down to business. 

As with many of the other qualities discussed in this chapter, one of the keys to
of use is structural simplicity. A well-designed system, built according to a clear, 
thought-out structure, will tend to be easier to learn and use than a messy one
condition is not sufficient, of course (what is simple and clear to the designer ma
difficult and obscure to users, especially if explained in designer’s rather than u
terms), but it helps considerably. 

This is one of the areas where the object-oriented method is particularly produ
many O-O techniques, which appear at first to address design and implementation
yield powerful new interface ideas that help the end users. Later chapters will intro
several examples. 

Definition: portability

Portability is the ease of transferring software products to various hardware
and software environments. 

Definition: ease of use

Ease of use is the ease with which people of various backgrounds and
qualifications can learn to use software products and apply them to solve
problems. It also covers the ease of installation, operation and monitoring. 
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See Wilfred J. 
Hansen, “User 
Engineering Princi-
ples for Interactive 
Systems”, Proceed-
ings of FJCC 39, 
AFIPS Press, 
Montvale (NJ), 
1971, pp 523-532. 
Software designers preoccupied with ease of use will also be well-advise
consider with some mistrust the precept most frequently quoted in the user inte
literature, from an early article by Hansen: know the user. The argument is that a goo
designer must make an effort to understand the system’s intended user communit
view ignores one of the features of successful systems: they always outgrow their 
audience. (Two old and famous examples are Fortran, conceived as a tool to so
problem of the small community of engineers and scientists programming the IBM
and Unix, meant for internal use at Bell Laboratories.) A system designed for a sp
group will rely on assumptions that simply do not hold for a larger audience. 

Good user interface designers follow a more prudent policy. They make as lim
assumptions about their users as they can. When you design an interactive syste
may expect that users are members of the human race and that they can read, 
mouse, click a button, and type (slowly); not much more. If the software addres
specialized application area, you may perhaps assume that your users are familiar 
basic concepts. But even that is risky. To reverse-paraphrase Hansen’s advice:

Functionality

One of the most difficult problems facing a project leader is to know how m
functionality is enough. The pressure for more facilities, known in industry parlanc
featurism (often “creeping featurism”), is constantly there. Its consequences are bad
internal projects, where the pressure comes from users within the same compan
worse for commercial products, as the most prominent part of a journalist’s compa
review is often the table listing side by side the features offered by competing produ

Featurism is actually the combination of two problems, one more difficult than
other. The easier problem is the loss of consistency that may result from the addit
new features, affecting its ease of use. Users are indeed known to complain that 
“bells and whistles” of a product’s new version make it horrendously complex. S
comments should be taken with a grain of salt, however, since the new features 
come out of nowhere: most of the time they have been requested by users — other users.
What to me looks like a superfluous trinket may be an indispensable facility to you.

The solution here is to work again and again on the consistency of the ov
product, trying to make everything fit into a general mold. A good software produ
based on a small number of powerful ideas; even if it has many specialized feature
should all be explainable as consequences of these basic concepts. The “grand pla
be visible, and everything should have its place in it.

User Interface Design principle
Do not pretend you know the user; you don’t.

Definition: functionality
Functionality is the extent of possibilities provided by a system. 
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The more difficult problem is to avoid being so focused on features as to forge
other qualities. Projects commonly make such a mistake, a situation vividly picture
Roger Osmond in the form of two possible paths to a project’s completion:

The bottom curve (black) is all too common: in the hectic race to add more feat
the development loses track of the overall quality. The final phase, intended to get 
right at last, can be long and stressful. If, under users’ or competitors’ pressure, yo
forced to release the product early — at stages marked by black squares in the fig
the outcome may be damaging to your reputation.

What Osmond suggests (the color curve) is, aided by the quality-enhan
techniques of O-O development, to maintain the quality level constant throughou
project for all aspects but functionality. You just do not compromise on reliabi
extendibility and the like: you refuse to proceed with new features until you are happy
the features you have.

This method is tougher to enforce on a day-to-day basis because of the pre
mentioned, but yields a more effective software process and often a better product
end. Even if the final result is the same, as assumed in the figure, it should be re
sooner (although the figure does not show time). Following the suggested path also 
that the decision to release an early version — at one of the points marked by c
squares in the figure — becomes, if not easier, at least simpler: it will be based on
assessment of whether what you have so far covers a large enough share of the full
set to attract prospective customers rather than drive them away. The question “is i
enough?” (as in “will it not crash?”) should not be a factor.

As any reader who has led a software project will know, it is easier to approve
advice than to apply it. But every project should strive to follow the approach repres
by the better one of the two Osmond curves. It goes well with the cluster model introduced
in a later chapter as the general scheme for disciplined object-oriented developmen

Other qualities

Functionality

Common

Desirable

Debugging

early
releases

Envisaged
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“NT 4.0 Beats 
Clock”, Computer-
World, vol. 30, no. 
30, 22 July 1996.
Timeliness

Timeliness is one of the great frustrations of our industry. A great software produc
appears too late might miss its target altogether. This is true in other industries too, b
evolve as quickly as software.

Timeliness is still, for large projects, an uncommon phenomenon. When Micro
announced that the latest release of its principal operating system, several years
making, would be delivered one month early, the event was newsworthy enough to
(at the top of an article recalling the lengthy delays that affected earlier projects) the 
page headline of ComputerWorld.

Other qualities 

Other qualities beside the ones discussed so far affect users of software systems 
people who purchase these systems or commission their development. In particula

• Verifiability  is the ease of preparing acceptance procedures, especially test da
procedures for detecting failures and tracing them to errors during the validatio
operation phases. 

• Integrity  is the ability of software systems to protect their various compon
(programs, data) against unauthorized access and modification. 

• Repairability  is the ability to facilitate the repair of defects. 

• Economy, the companion of timeliness, is the ability of a system to be complete
or below its assigned budget.

About documentation 

In a list of software quality factors, one might expect to find the presence of g
documentation as one of the requirements. But this is not a separate quality factor; in
the need for documentation is a consequence of the other quality factors seen abo
may distinguish between three kinds of documentation: 

• The need for external documentation, which enables users to understand the po
of a system and use it conveniently, is a consequence of the definition of ease o

• The need for internal documentation, which enables software developers
understand the structure and implementation of a system, is a consequence
extendibility requirement. 

• The need for module interface documentation, enabling software developers 
understand the functions provided by a module without having to understan
implementation, is a consequence of the reusability requirement. It also follows
extendibility, as module interface documentation makes it possible to deter
whether a certain change need affect a certain module. 

Definition: timeliness
Timeliness is the ability of a software system to be released when or before
its users want it.
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Rather than treating documentation as a product separate from the software p
it is preferable to make the software as self-documenting as possible. This applies
three kinds of documentation: 

• By including on-line “help” facilities and adhering to clear and consistent u
interface conventions, you alleviate the task of the authors of user manuals and
forms of external documentation. 

• A good implementation language will remove much of the need for inte
documentation if it favors clarity and structure. This will be one of the ma
requirements on the object-oriented notation developed throughout this book. 

• The notation will support information hiding and other techniques (such
assertions) for separating the interface of modules from their implementation.
then possible to use tools to produce module interface documentation automa
from module texts. This too is one of the topics studied in detail in later chapte

All these techniques lessen the role of traditional documentation, although of c
we cannot expect them to remove it completely.

Tradeoffs 

In this review of external software quality factors, we have encountered requiremen
may conflict with one another.

How can one get integrity without introducing protections of various kinds, whic
will inevitably hamper ease of use? Economy often seems to fight with functionality.
Optimal efficiency would require perfect adaptation to a particular hardware and softw
environment, which is the opposite of portability, and perfect adaptation to a specificatio
where reusability pushes towards solving problems more general than the one init
given. Timeliness pressures might tempt us to use “Rapid Application Developme
techniques whose results may not enjoy much extendibility.

Although it is in many cases possible to find a solution that reconciles appar
conflicting factors, you will sometimes need to make tradeoffs. Too often, develo
make these tradeoffs implicitly, without taking the time to examine the issues invo
and the various choices available; efficiency tends to be the dominating factor in
silent decisions. A true software engineering approach implies an effort to state the c
clearly and make the choices consciously. 

Necessary as tradeoffs between quality factors may be, one factor stands ou
the rest: correctness. There is never any justification for compromising correctness f
sake of other concerns such as efficiency. If the software does not perform its functio
rest is useless.

Key concerns 

All the qualities discussed above are important. But in the current state of the sof
industry, four stand out: 
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• Correctness and robustness: it is still too difficult to produce software without defec
(bugs), and too hard to correct the defects once they are there. Techniqu
improving correctness and robustness are of the same general flavors: more sys
approaches to software construction; more formal specifications; built-in ch
throughout the software construction process (not just after-the-fact testing
debugging); better language mechanisms such as static typing, assertions, au
memory management and disciplined exception handling, enabling developers t
correctness and robustness requirements, and enabling tools to detect inconsis
before they lead to defects. Because of this closeness of correctness and rob
issues, it is convenient to use a more general term, reliability , to cover both factors. 

• Extendibility and reusability: software should be easier to change; the softw
elements we produce should be more generally applicable, and there should 
larger inventory of general-purpose components that we can reuse when deve
a new system. Here again, similar ideas are useful for improving both qualities
idea that helps produce more decentralized architectures, in which the compo
are self-contained and only communicate through restricted and clearly de
channels, will help. The term modularity  will cover reusability and extendibility. 

As studied in detail in subsequent chapters, the object-oriented method
significantly improve these four quality factors — which is why it is so attractive. It a
has significant contributions to make on other aspects, in particular: 

• Compatibility: the method promotes a common design style and standard
module and system interfaces, which help produce systems that will work toge

• Portability: with its emphasis on abstraction and information hiding, obj
technology encourages designers to distinguish between specification
implementation properties, facilitating porting efforts. The techniques 
polymorphism and dynamic binding will even make it possible to write systems
automatically adapt to various components of the hardware-software machin
example different window systems or different database management system

• Ease of use: the contribution of O-O tools to modern interactive systems a
especially their user interfaces is well known, to the point that it sometimes obs
other aspects (ad copy writers are not the only people who call “object-oriented
system that uses icons, windows and mouse-driven input).   

• Efficiency: as noted above, although the extra power or object-oriented techniqu
first appears to carry a price, relying on professional-quality reusable compo
can often yield considerable performance improvements. 

• Timeliness, economy and functionality: O-O techniques enable those who mas
them to produce software faster and at less cost; they facilitate addition of func
and may even of themselves suggest new functions to add.

In spite of all these advances, we should keep in mind that the object-oriented m
is not a panacea, and that many of the habitual issues of software engineering r
Helping to address a problem is not the same as solving the problem. 
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[Lientz 1980]
1.3  ABOUT SOFTWARE MAINTENANCE 

The list of factors did not include a frequently quoted quality: maintainability. 
understand why, we must take a closer look at the underlying notion, maintenance.

Maintenance is what happens after a software product has been deliv
Discussions of software methodology tend to focus on the development phase; 
introductory programming courses. But it is widely estimated that 70% of the co
software is devoted to maintenance. No study of software quality can be satisfacto
neglects this aspect. 

What does “maintenance” mean for software? A minute’s reflection shows this 
to be a misnomer: a software product does not wear out from repeated usage, and th
not be “maintained” the way a car or a TV set does. In fact, the word is used by sof
people to describe some noble and some not so noble activities. The noble p
modification: as the specifications of computer systems change, reflecting changes
external world, so must the systems themselves. The less noble part is late debu
removing errors that should never have been there in the first place.

The above chart, drawn from a milestone study by Lientz and Swanson, sheds
light on what the catch-all term of maintenance really covers. The study surveyed
installations developing software of all kinds; although it is a bit old, more re
publications confirm the same general results. It shows the percentage of mainte
costs going into each of a number of maintenance activities identified by the author

More than two-fifths of the cost is devoted to user-requested extensions
modifications. This is what was called above the noble part of maintenance, which i
the inevitable part. The unanswered question is how much of the overall effort the ind
could spare if it built its software from the start with more concern for extendibility. We 
legitimately expect object technology to help. 

12.4%9%6.2%
5.5%

4%
3.4%

Emergency
Fixes

Routine
Fixes

Hardware
changes

Documen-
tation

Effic
iency

improvem
ents

Other

41.8%

Changes in User Requirements

17.6%
Changes
in Data
Formats
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For another 
example, see “How 
long is a middle 
initial?”, page 125.

Chapter 6 covers 
abstract data types 
in detail.
The second item in decreasing order of percentage cost is particularly intere
effect of changes in data formats. When the physical structure of files and other data
change, programs must be adapted. For example, when the US Postal Service, a fe
ago, introduced the “5+4” postal code for large companies (using nine digits inste
five), numerous programs that dealt with addresses and “knew” that a postal cod
exactly five digits long had to be rewritten, an effort which press accounts estimated
hundreds of millions of dollars. 

Many readers will have received the beautiful brochures for a set of conferences — not a
single event, but a sequence of sessions in many cities — devoted to the “millennium
problem”: how to go about upgrading the myriads of date-sensitive programs whose
authors never for a moment thought that a date could exist beyond the twentieth century
The zip code adaptation effort pales in comparison. Jorge Luis Borges would have liked
the idea: since presumably few people care about what will happen on 1 January 3000
this must be the tiniest topic to which a conference series, or for that matter a conference
has been or will ever be devoted in the history of humanity: a single decimal digit.

The issue is not that some part of the program knows the physical structure o
this is inevitable since the data must eventually be accessed for internal handling. Bu
traditional design techniques this knowledge is spread out over too many parts 
system, causing unjustifiably large program changes if some of the physical stru
changes — as it inevitably will. In other words, if postal codes go from five to nine di
or dates require one more digit, it is reasonable to expect that a program manipulat
codes or the dates will need to be adapted; what is not acceptable is to have the kno
of the exact length of the data plastered all across the program, so that changing tha
will cause program changes of a magnitude out of proportion with the conceptual s
the specification change. 

The theory of abstract data types will provide the key to this problem, by allow
programs to access data by external properties rather than physical implementation

Another significant item in the distribution of activities is the low percentage (5.
of documentation costs. Remember that these are costs of tasks done at maintenan
The observation here — at least the speculation, in the absence of more specific da
that a project will either take care of its documentation as part of development or no
at all. We will learn to use a design style in which much of the documentation is act
embedded in the software, with special tools available to extract it. 

The next items in Lientz and Swanson’s list are also interesting, if less dir
relevant to the topics of this book. Emergency bug fixes (done in haste when a user 
that the program is not producing the expected results or behaves in some catas
way) cost more than routine, scheduled corrections. This is not only because they m
performed under heavy pressure, but also because they disrupt the orderly proc
delivering new releases, and may introduce new errors. The last two activities accou
small percentages: 
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• One is efficiency improvements; this seems to suggest that once a system w
project managers and programmers are often reluctant to disrupt it in the ho
performance improvements, and prefer to leave good enough alone. (W
considering the “first make it right, then make it fast” precept, many projects
probably happy enough to stop at the first of these steps.) 

• Also accounting for a small percentage is “transfer to new environments”. A pos
interpretation (again a conjecture in the absence of more detailed data) is tha
are two kinds of program with respect to portability, with little in-between: so
programs are designed with portability in mind, and cost relatively little to p
others are so closely tied to their original platform, and would be so difficult to p
that developers do not even try. 

1.4  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• The purpose of software engineering is to find ways of building quality softwar

• Rather than a single factor, quality in software is best viewed as a tradeoff bet
a set of different goals. 

• External factors, perceptible to users and clients, should be distinguished 
internal factors, perceptible to designers and implementors. 

• What matters is the external factors, but they can only be achieved throug
internal factors. 

• A list of basic external quality factors was presented. Those for which cur
software is most badly in need of better methods, and which the object-orie
method directly addresses, are the safety-related factors correctness and robu
together known as reliability, and the factors requiring more decentralized soft
architectures: reusability and extendibility, together known as modularity. 

• Software maintenance, which consumes a large portion of software cos
penalized by the difficulty of implementing changes in software products, and b
over-dependence of programs on the physical structure of the data they manip

1.5  BIBLIOGRAPHICAL NOTES 

Several authors have proposed definitions of software quality. Among the first articl
subject, two in particular remain valuable today: [Hoare 1972], a guest editorial, and
[Boehm 1978], the result of one of the first systematic studies, by a group at TRW. 

The distinction between external and internal factors was introduced in a 
General Electric study commissioned by the US Air Force [McCall 1977]. McCall uses
the terms “factors” and “criteria” for what this chapter has called external factors
internal factors. Many (although not all) of the factors introduced in this cha
correspond to some of McCall’s; one of his factors, maintainability, was drop
because, as explained, it is adequately covered by extendibility and verifiability. McC
study discusses not only external factors but also a number of internal factors (“crite
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as well as metrics, or quantitative techniques for assessing satisfaction of the inte
factors. With object technology, however, many of that study’s internal factors
metrics, too closely linked with older software practices, are obsolete. Carrying ove
part of McCall’s work to the techniques developed in this book would be a useful pro
see the bibliography and exercises to chapter 3.

The argument about the relative effect of machine improvements depending o
complexity of the algorithms is derived from [Aho 1974].

On ease of use, a standard reference is [Shneiderman 1987], expanding on
[Shneiderman 1980], which was devoted to the broader topic of software psychology. 
Web page of Shneiderman’s lab at http://www.cs.umd.edu/projects/hcil/ contains many
bibliographic references on these topics.

The Osmond curves come from a tutorial given by Roger Osmond at TOOLS 
[Osmond 1995]. Note that the form given in this chapter does not show time, enabli
more direct view of the tradeoff between functionality and other qualities in the 
alternative curves, but not reflecting the black curve’s potential for delaying a pro
Osmond’s original curves are plotted against time rather than functionality.

The chart of maintenance costs is derived from a study by Lientz and Swa
based on a maintenance questionnaire sent to 487 organizations [Lientz 1980]. See also
[Boehm 1979]. Although some of their input data may be considered too specialized
by now obsolete (the study was based on batch-type MIS applications of an averag
of 23,000 instructions, large then but not by today’s standards), the results generally
still applicable. The Software Management Association performs a yearly surve
maintenance; see [Dekleva 1992] for a report about one of these surveys. 

The expressions programming-in-the-large and programming-in-the-small were
introduced by [DeRemer 1976].

For a general discussion of software engineering issues, see the textbook by G
Jazayeri and Mandrioli [Ghezzi 1991]. A text on programming languages by some of t
same authors, [Ghezzi 1997], provides complementary background for some of the iss
discussed in the present book.
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