

Real-World Flash Game
Development

This page intentionally left blank

Real-World Flash Game
Development
How to Follow Best
Practices and Keep
Your Sanity

Second Edition

Christopher Griffith

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD
PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Focal Press is an imprint of Elsevier

Focal Press is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

© 2012 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing from
the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be
found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as
may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they should
be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any
injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Griffith, Christopher, 1979–
Real-world Flash game development : how to follow best practices and keep your sanity / Christopher Griffith. – 2nd ed.
p. cm.
ISBN 978-0-240-81768-2 (pbk.)
1. Computer games–Programming. 2. Computer animation. 3. Flash (Computer file) I. Title.
QA76.76.C672G774 2011
794.8'1526–dc22 2011006568

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Focal Press publications
visit our website at www.elsevierdirect.com

11 12 13 14 5 4 3 2 1

Printed in the United States of America

Typeset by: diacriTech, Chennai, India

CONTENTS
Introduction . xi

Chapter 1 Computer Science Isn’t for Everyone 1
A Little Groundwork . 2

Common Game Types . 2

General Development Terms . 5

Game-Specific Development Terms . 9

Flash Development Terms . 11

You Can Wake Up Now . 12

Chapter 2 The Best Tool for the Job . 13
Flash Back . 13

The Case for Flash . 14

Nobody’s Perfect . 16

Stop Fighting It . 21

Things Flash Was Built to Do . 22

The Best Tool for the Job . 24

Chapter 3 A Plan is Worth a Thousand Aspirin. 25
Step 1 . 25

Step 2 . 26

Step 3 . 27

Step 4 . 28

Step 5 . 30

Step 6 (Optional) . 32

Chapter 4 //Comments FTW!. 35
Fair Warning . 36

Part 1: Classes . 36

Part 2: Events . 52

Part 3: Errors . 58

Part 4: Data Structures and Lists . 61

Part 5: Keep Your Comments to Everyone Else! 67

Part 6: Why Does Flash Do That? . 68

Conclusion . 76

CONTENTS v

Chapter 5 The Least You Can Do versus an Architect’s Approach . . . 77
Basic Encapsulation: Classes and Containers 78

Store Relevant Values as Variables and Constants 79

Don’t Rely on Your Stage . 80

Don’t Use Frameworks or Patterns You Don’t Understand

or That Don’t Apply . 81

Know When It’s Okay to Phone It In and When It Definitely Isn’t 81

Transitioning to Architecture . 82

OOP Concepts . 82

Practical OOP in Game Development . 85

The Singleton: A Good Document Pattern . 86

Summary . 89

Chapter 6 Managing Your Assets and Working with Graphics 91
A Better File Format . 91

A Few Words about Organization . 92

Working with Graphics . 93

Raster Formats to Use . 95

Key Points to Remember . 101

Chapter 7 Make It Move—ActionScript Animation 103
A Little Terminology . 104

To Tween or Not to Tween? Is That a Question? 105

A Simple Scripted Shooter . 105

Memory: Tweening Animation . 109

Summary . 114

Chapter 8 Turn It up to 11: Working with Audio 117
Formats to Use . 117

Export Settings to Use . 118

Using External Files . 121

Tools for Working with Sounds . 121

Scripting Sounds . 122

Chapter 9 Put the Video Back in “Video Game” 141
Video Codecs . 141

External Video Uses: Cutscenes and Menus 142

CutsceneManager . 145

Video on the Timeline . 152

Setting Up an Internal Video . 153

Summary . 156

vi CONTENTS

Chapter 10 XML and Dynamic Content . 157
Bringing Data In: Understanding the URLLoader Class 157

XML . 158

E4X . 158

Crossword Puzzle . 159

Content Is a Two-Way Street: A Crossword Builder 179

Sending Data Back Out . 180

One More Example: XML versus Flash Vars 181

Summary . 182

Chapter 11 Four-Letter Word: M-A-T-H . 183
The Math Class . 184

Part One: Geometry and Trigonometry . 184

A Quick Explanation of Radians and Pi . 188

3D in Flash . 192

Perspective Projection . 193

The SimpleTunnelShooter Example . 196

Part Two: Physics . 211

Example: A Top–Down Driving Engine . 214

Example: Top–Down Driving Game with Drift 223

Review . 226

Chapter 12 Don’t Hit Me: Collision Detection Techniques 227
What You Can Do versus What You Need . 227

HitTestObject—The Most Basic Detection . 228

HitTestPoint—One Step up . 229

Radius/Distance Testing—Great for Circles . 234

Rect Testing . 235

Pixel-Perfect Collision Detection and Physics 241

When All Else Fails, Mix ’N Match . 242

Chapter 13 MixUp—A Simple Engine . 243
The Main Document . 245

The MixUp Class . 245

The Title Class . 248

The RulesPanel Class . 249

The Game Class . 250

The Interfaces . 254

The GameBoard Class . 256

The SourceImageEmbedded Class . 263

The GameHistory and Results Classes . 265

CONTENTS vii

The SourceImageCamera Class . 267

Review . 270

Chapter 14 Bringing It All Together: A Platformer 271
The Platformer Genre . 272

Data Flow . 272

The Game Flow and Features . 273

The Level File Format and Asset Structure . 275

The Engine Classes . 281

The IWall Interface . 284

The CollisionGrid Class . 289

The Game Class . 308

The Asset Classes . 310

Taking It Further . 318

Chapter 15 Marble Runner: Our First Mobile Game 319
Part 1: Best Practices for iOS Games . 320

The GPU Is Here to Help . 325

Code Matters, Too . 326

A Question of Balance: Inheritance versus Interfaces 331

A Real-World Example . 332

Part 2: Marble Runner . 338

The Accelerometer Class . 339

How Accelerometer Values Are Computed . 340

The Game: Marble Runner . 342

Design Considerations . 369

Where to Take It . 370

Chapter 16 Air Hockey: A Multitouch, Multiplayer Tablet Game . . . 373
A Trio of Topics . 374

Multitouch Input for Devices . 374

The Finite-State Machine . 375

Physics Simulation with Box2D . 376

The Game: Two-Player Air Hockey . 377

Conclusion . 406

Afterword: Flash’s Future in Games . 407

Index . 409

viii CONTENTS

ONLINE CONTENTS: www.flashgamebook.com

Bonus Chapter 1 Squash ‘Em If You’ve Got ‘Em: The Bug Hunt 1
Bugs . 1

Performance and Optimization . 7

Summary . 18

Bonus Chapter 2 On Your Guard . 19
Malicious Use . 20

Data Protection . 21

SWF Protection . 27

Summary . 27

Bonus Chapter 3 Introduction to Mobile Development 29
Mobile: The New Hotness . 29

Something Old, Something New . 31

Getting from A to iOS: The Pipeline . 31

Our First iPhone Application . 35

Only the Beginning . 49

Changing the Settings . 49

The End of the Starting Point . 52

Appendix A Webcams and Microphones . 53
Testing 1, 2, 3: The Microphone Object . 53

Lights, Camera Object, ActionScript! . 57

Conclusion . 61

Appendix B Localization . 62
Key Points to Remember . 62

Localization in Flash CS5 . 63

Appendix C JSFL is JavaScript for Lovers . 70
Writing JSFL . 70

Custom Panels and MMExecute . 71

Conclusion . 76

Appendix D Using AMFPHP with Games . 77
Setting up AMFPHP . 77

Setting up the Database Tables . 79

The HighScores Service . 81

CONTENTS ix

This page intentionally left blank

INTRODUCTION

It feels like ages ago since I began the journey of writing this book.
In its first year, more than 4500 copies were sold, and its reception
exceeded my wildest expectations. I am thankful to all those who
bought it and also to those who took the time to spread the word
to others. Because technology develops at such an unrelenting
pace, however, the work of a good author is never quite finished.
In this revised edition of the book, you’ll find most of the same
material from the original (although some of it has found a perma-
nent place online), as well as what I hope is new and exciting cov-
erage of more advanced topics like mobile development for
devices.

Game development is a strange hybrid of many skills and styles
merged together. One can argue that games are the most compli-
cated form of entertainment to create. They not only require solid
coding, attractive design, and sound user interface decisions, but
also the best games all share one particular aspect: they’re fun to
play. This “fun factor” can be especially elusive because it is so
subjective. Different genres of games appeal to different people in
different walks of life. Very few games, if any, are going to appeal
to everyone, everywhere, all the time.

That said, the most popular type of game for players on the
Internet are what have been termed “casual” games. If you’re not
familiar with this phrase, casual games are meant to appeal to a
wide audience and focus on simplicity and approachability over
depth and realism. This is not to say that some casual games are
not deep and realistic, but the audience for a complicated tactical
simulation on a console is very different from someone killing
10 minutes on his or her lunch break at work. Casual games can
fall into any number of genres, from classic arcade-style games like
Pac-Man to puzzle and logic games like Tetris. In fact, both of the
titles I just mentioned have one thing in common: they are both
products of an era in game development (from the late 1970s to
mid-1980s), when the focus was not on spectacle and movie-
quality graphics and audio, but rather on creating games that were
first and foremost fun to play.

Games in Flash
Because you’ve picked up this book, I assume that you’re not just
interested in creating a game, but that you want to build it in
Flash. Flash is an outstanding platform for developing games, parti-
cularly casual games for the Web. The file size and power of the

INTRODUCTION xi

plug-in, combined with the 98% install base around the world,
make it a smart choice for getting your games seen by the largest
possible audience. Historically, some Flash games have been
thought of as glitchy, lacking in polish, and generally low-end. That
is quickly changing, however, as Flash games become more and
more sophisticated and get closer to “traditional” computer and
video games.

Which Flash to Use?
I feel I should also take a moment to talk about versions of Flash.
The first edition of this book was intended for use with Flash CS4.
At the time, Flash CS4 had been out for almost a year, and it made
sense to make that the version of choice. In the spring of 2010,
Adobe released Flash CS5, which this book primarily uses as the
default tool. All of the examples except the two mobile games at
the end can be opened in CS5 and do not require anything later
(and even those technically can—more in a moment about that).
Throughout the writing of this book, I have also been on the beta
for CS5.5, due to be released about the time this book appears on
store shelves. Because of this, I felt it would be negligent of me to
not include some mention of specific features in CS5.5. For the rest
of this book, I will call out specific areas, where CS5.5 has intro-
duced new workflows or options that will make your life easier. In
addition, CS5.5 cleans up a number of the sloppier workflow
options for Android and iOS development that exists in CS5, so I
will be showing screenshots of CS5.5 because that will be the
model going forward. The examples in Chapters 15 and 16 can
both technically be created with CS5 (with some additional down-
loads from Adobe’s Web site), but the performance, options, and
ease-of-use of the tools in CS5.5 make it a much better choice.

How to Get the Most Out of This Book
This book further assumes either that you have at least intermedi-
ate experience with Flash (CS5, 5.5, or an earlier version) as an ani-
mation or Web site creation tool, or that you’re entering Flash with
game development experience on another platform. The purpose
of this book is not to teach basic usage of the Flash environment
from the ground up—that has been done many times over by
other skilled authors and instructors. Rather, I hope that by the
time you finish reading this book, you will feel totally comfortable
tackling a game in Flash.

The first part of this book will discuss a lot of the terminologies
and basic concepts you’ll need to understand about game develop-
ment, as well as how to map out a game from start to finish on a

xii INTRODUCTION

single page. In the second part, we’ll discuss managing audio and
visual assets in Flash, game logic (including dissecting an entire
game script into its core components), and ways to architect your
games to save you from headaches later. I’ll share some best prac-
tices for both code and library organization.

A problem in Flash can usually be dissected any number of
ways, and games are no exception. Sometimes, external forces (cli-
ents, deadlines, and so on) will dictate one approach over another.
Part three will take what you’ve learned from the first half of the
book and apply it in a number of real-world scenarios, showing
how you don’t have to sacrifice the ideals of sound game develop-
ment just because your timeline got cut in half.

Finally, in this new edition, we’ll look at Flash in a mobile set-
ting and how to optimize for that medium. The examples will dis-
cuss both the Packager for iPhone, as well as deploying games on
AIR for Android.

Resources on the Web Site
On the companion Web site to this book, www.flashgamebook.com,
you’ll find a bevy of resources to assist you, both in following the
examples later in the book and in creating your own original work.
All the source code from the examples I share is available there, as
well as several chapters from the first edition that have been
“retired” from the printed page. The site also provides a way for
readers like you to ask questions and receive updates and clarifica-
tions as they become necessary. Be sure to check it out as you
read and after you finish reading the book.

INTRODUCTION xiii

This page intentionally left blank

1
COMPUTER SCIENCE ISN’T FOR EVERYONE

CHAPTER OUTLINE
A Little Groundwork 2
Common Game Types 2

Adventure 2
Action 3
Puzzle 3
Word Games 3
Strategy and Simulation 4
Role-Playing Game (RPG) 5
Vehicle Games 5
Board/Card-Based Games 5

General Development Terms 5
Pseudocode 6
Algorithm 6
Procedural Programming 7
Object-Oriented Programming (OOP) 7
Design Patterns 7
Classes 7
Public, Protected, Private, and Internal 8

Game-Specific Development Terms 9
Artificial Intelligence (AI) 9
Game Loop (or Main Loop) 9
Game View 10
Scrolling 10
Tile-Based Games 11

Flash Development Terms 11
Stage 11
Display Objects 11
Events and Listeners 11
Packages 12
Author Time, Compile Time, and Runtime 12

You Can Wake Up Now 12

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 1

A Little Groundwork
Before we get too far into Flash, it’s important to lay a foundation
for game development, so we understand the terminology that
will be used throughout the rest of the book. Refer back to this
chapter when you forget what a term means or how it applies in
a particular situation. If you start to feel a little overwhelmed by
all the long words and abstract concepts, don’t worry! Game
development (particularly efficient, well-executed development) is
complicated, and there’s nothing wrong in admitting it. Remem-
ber that anyone who has programmed a game has suffered the
same anxieties and doubt. Like anything in life, it will require
practice and real-world experience to become proficient in game
development. So grab a cup of your favorite caffeine-infused
beverage, and let’s get started!

Common Game Types
There are many different types of games (and some games that
pride themselves on being unable to be easily categorized), but
most can be classified into one of the following genres.

Adventure
Adventure-style games are typically story-driven and have one or
more central characters. These games are perceived the most like
movies (some have been known to have the production budget of
one) and can rely heavily on dialogue, exploration, and logical pro-
blem solving to move the player through the narrative. Adventure
games were especially popular during the late 1980s and early
1990s, with LucasArts and Sierra producing some of the finest
examples of the genre. This game type has had a resurgence of
sorts in Flash due to its art-driven production pipeline and the
typically lower system requirements.

Figure 1.1 Mountain Dew—
Capture the Cube Game.

2 Chapter 1 COMPUTER SCIENCE ISN'T FOR EVERYONE

Action
This category encompasses a large number of gameplay perspec-
tives and subgenres, but usually action games consist of tests of
players’ dexterity, reaction time, and quick-wittedness under pres-
sure. First-person shooters, side and vertical scrolling games, and
fighting games all fall into the action genre. Flash lends itself very
well to some of the subgenres of this category, particularly retro-
style action games such as Space Invaders or Super Mario
Brothers.

Puzzle
Think Tetris, Bejeweled, Sudoku, and the list goes on. Games that
involve logic, problem solving, pattern matching, or all of the above
fall into this game type. Flash thrives in this genre for a couple of rea-
sons. First, there’s generally a lower amount of art needed for a simple
puzzle game, meaning individual developers can often do it them-
selves. Second, the core casual gaming audience on the Web tends to
be older and appreciate the generally slower pace of puzzle games.

Word Games
This category could be considered a subgenre of puzzles, but the
approach to building them can be different enough that I thought
they deserved their own space. Word searches, crossword puzzles,
spelling games, and anagrams all belong to this genre. Flash is a

Figure 1.2 Raidiux © 2009,
Blockdot, Inc. All Rights
Reserved. www.blockdot.com.

Chapter 1 COMPUTER SCIENCE ISN'T FOR EVERYONE 3

popular medium for games of this type; for the same reasons, it is
for other puzzle games as well.

Strategy and Simulation
I’m cheating a little by combining these two genres into one, but
they share a number of common traits. Careful planning, resource
management, and decision making, such as city planning or the
creation of a large army, characterize strategy games. The level of
minutia the player is expected to maintain usually defines a strat-
egy or simulation game. Some games are so complex as to allow
every possible option available to the player to be micromanaged.

Figure 1.3 JinkyPOP © 2009,
Blockdot, Inc. All Rights
Reserved. www.blockdot.com.

Figure 1.4 The Maiden, Monk,
and Ogre © 2009, Blockdot,
Inc. All Rights Reserved. www.
blockdot.com.

4 Chapter 1 COMPUTER SCIENCE ISN'T FOR EVERYONE

More casual strategy games, like most created in Flash, simplify
gameplay by reducing the number of options available and focusing
on a couple of main tasks. A popular example of the casual strategy
subgenre is tower defense games, where the player must stop
enemies from getting past their defenses using a variety of different
weapons placed strategically.

Role-Playing Game (RPG)
RPGs are similar to adventure games, but they are normally defined
more by the growth of the main character throughout the course of
the game’s story. Traditionally, RPGs take place in a fantasy setting
and center around the player’s statistical development, such as
improving traits such as strength, intelligence, agility. The most
popular recent incarnation of these games has been in massively mul-
tiplayer online RPGs (MMORPGs), where players compete against
and collaborate with each other to develop their characters. Because
of the social and Web-based aspects, a few Flash MMORPGs have
begun to emerge. However, these games are typically costly and have
long-development cycles, making them riskier ventures for companies
and infeasible for individual developers.

Vehicle Games
These games are pretty self-explanatory; they revolve around
the operation of a vehicle on land, in water, in air, or in space. Tradi-
tionally, these games are played from a first- or third-person perspec-
tive to achieve a sense of realism. Because of system requirements
and the complexity of building a full 3D environment in Flash, most
casual games in this genre feature a two-dimensional game view.

Board/Card-Based Games
Usually a digital incarnation of a real-world game, this category can
consist of games such as chess, checkers, blackjack, and poker.
Because of the low system requirements, Flash is a great platform
for creating most board and card games, as is evidenced by the
large number of casino-style game sites on the Web.

General Development Terms
Computer science is a difficult field of study and definitely not
for everyone who simply wants to make games. However, a funda-
mental understanding of some of the core concepts of program-
ming helps later when we’re dissecting a game piece by piece. Yes
it’s dry and occasionally tedious sounding, but I promise that fun
stuff will follow!

Chapter 1 COMPUTER SCIENCE ISN'T FOR EVERYONE 5

Pseudocode
Pseudocode is nothing more than a standard language explanation
of a series of programmatic steps, which is like a summary of your
logic. Throughout some of the examples in this book, you’ll find that
I sometimes break down the logic in a game in pseudocode before
typing any actual ActionScript. It is easy to get too caught up in the
syntax of programming and overlook a flaw in the logic, so it is
almost always simpler to break down a problem in English before
tackling it as actual code. Often my pseudocode will become the
foundation for the names of my functions and properties.

Algorithm
An algorithm is nothing more than a series of instructions and
decisions that define the solution to a problem. They are not code or
language specific, and therefore they make sense in plain English.
For instance, an algorithm could be as straightforward as the process
that takes place when a program sorts a list of words by their length.
Here is what that might look like in pseudocode:

for all in wordlist
sort by length

sort by length (word A, word B)
if A.length > B.length

return B
else

return A

Figure 1.5 Tiki Freecell © 2009,
Blockdot, Inc. All Rights
Reserved. www.blockdot.com.

6 Chapter 1 COMPUTER SCIENCE ISN'T FOR EVERYONE

Procedural Programming
Many earlier programming languages, such as BASIC or Pascal,
were what are known as procedural languages. You can think of
them in the abstract as programming a list of tasks or subroutines.
They can be executed in any order, but all the commands are dri-
ven by one main logic controller, sometimes referred to as the
“main loop.” The examples in this book will be a combination of
procedural programming techniques and the next kind, object-
oriented programming.

Object-Oriented Programming (OOP)
Unlike procedural programming, where the focus is on a set of
tasks to be executed, OOP is centered around the concept of
“objects” interacting with each other. OOP can be a very compli-
cated subject to understand fully, but suffice it to say that each
object is a self-contained entity that has defining properties, can
send and receive messages from other objects, and can process its
own internal logic. For example, in OOP, a person would be one
object and his or her friend another. The persons will share some
components, both being people, but they will also have characteris-
tics unique to themselves. They communicate to each other
through messages in a common language. Some of the aspects of
ActionScript work in an OOP manner, and I will cover those at
length later on in this book.

Design Patterns
Much is talked about these days with regard to design patterns in
software engineering. There are many lengthy explanations, with
whole books devoted to the subject in abstract. For the purposes of
this book, think of a design pattern as the template for your code. It
is the blueprint by which you can structure a game as you program
it, particularly from an object-oriented approach. There are many
accepted design patterns in the industry, some of which work well
for Flash game development, and some that don’t really have a
place here. In Chapter 5, I’ll discuss the most effective patterns I’ve
found when working in Flash and how to implement them.

Classes
In OOP, classes are pieces of code that act as the building blocks of
objects. You can think of them as templates from which all the
objects used in an application are derived. A class defines all the
properties and functions (known as methods) of an object. Using
classes in Flash is important for a number of reasons. First of all,
defining your code in classes requires you to put more planning

Chapter 1 COMPUTER SCIENCE ISN'T FOR EVERYONE 7

into how you structure your game. This is a good thing; not having
clearly defined blueprints leads to second guessing and duplication
of work later on. If a carpenter went to build a house with no plans
from the architect other than a single drawing, he would either quit
or have to improvise continually along the way. The result would
be a very inconsistent, possibly uninhabitable house. I’ll cover class
structure extensively later on, as most or all of our development
will be centered on their use. In the mean time, here is an example
of a simple class defining a player in a game.

package {

import flash.display.MovieClip;

public class Player extends MovieClip {

public const jumpHeight:Number=10;//pixels
public const speed:Number=15;//pixels per second

public var health:Number=100;//percent
public var ammo:int=20;//units

public function Player() {
//initialization

}
}

}

Not all the codes may make sense at this point, but hopefully
you can see that we’ve just defined a player character with a prede-
fined jumping height and movement speed, and variables for how
much health and ammo he has. Granted, this little bit of code
alone won’t do anything, but it does create a foundation upon
which to build more functionality and features.

Public, Protected, Private, and Internal
The four prefixes you can give to the properties and functions
inside your classes, also known as attributes, define what items are
available from one class to the next. All of them are documented in
Flash’s Help files, but here’s a quick summary:
• Public methods and variables are accessible from anywhere and

are the foundation for how classes interact with each other;
when one class extends another, all public methods and
variables are inherited.

• Protected methods and variables are accessible only from inside
their class and are inherited.

8 Chapter 1 COMPUTER SCIENCE ISN'T FOR EVERYONE

• Private methods and variables are accessible only from inside
their class and are not inherited.

• Internal methods and variables are accessible from all classes
within their package.
There is one other attribute, known as static, which can work

with any of the other four listed above. When a method or vari-
able is static, there is only one copy of that item ever created and
it is accessed through the class directly, not objects created from
the class. In other words, a static property called “version” of the
class Game would be accessed as Game.version. If you tried to
access it from an instance of the game class, you would get an
error.

Game-Specific Development Terms
Now, we move onto more interesting development terminology.
This section covers concepts that we will be directly applying as we
build games in future chapters.

Artificial Intelligence (AI)
AI refers generically to a set of logical decisions that a program can
make to mimic human decision making. AI can be very simple
(like having the computer move the paddle toward the ball in a
game of Pong) or extremely complex (like having enemies duck for
cover, understand when they’re in danger, and react accordingly in
Halo 2). For our purposes in this book, and because Flash would
not be able to handle it otherwise, most of the AI we develop will
be relatively uncomplicated.

Game Loop (or Main Loop)
This term generally refers to the main segment of code that deter-
mines the next course of action for a game based on input, AI, or
some other arbitrary logic. It usually is nothing more than function
calls to other pieces of logic and checking to see if certain conditions
have been met (such as whether or not a player has won).

Here is an example of pseudocode describing a simple main
loop from a game:

on enter frame
move player
move enemies
check for collisions
check for win or lose

Chapter 1 COMPUTER SCIENCE ISN'T FOR EVERYONE 9

In languages like C, a main loop is literally a coded loop (like a
“while” or “for” loop) that runs until a condition is met. In some
cases, this is also referred to as the state machine because it is the
logic that determines which “state” the game is in, pregame,
ingame, postgame, etc., and performs the corresponding functions.
In ActionScript, it must be set up differently because a regular loop
would lock up the Flash player waiting for the game to finish.
Because of its animation heritage, Flash works in the context of
frames, much like a movie. It has a frame rate, that is, number of
frames per second that can be defined. When a frame passes, Flash
updates the screen, making it the perfect time to perform logic.
This can seem odd to developers used to other languages, but it
quickly becomes second nature. I’ll discuss game loops further
later, as they will be the driving force behind our game code. In
Chapter 16, I’ll also cover explicit use of a finite state machine (one
with a finite number of predefined states).

Game View
A game can take place from any number of views—often the genre
of a game defines which view to use, but not necessarily. Many
modern action games are first- or third-person views, in which you
see the game world from your character’s perspective or from just
behind them. More casual action and adventure games utilize
views from the side. Other genres such as strategy or racing may
view the action from above. Part of what makes a game compelling
and fun to play is the view you choose to employ. An action game
with lots of fast movement and obstacles would be difficult and
lackluster from a bird’s-eye view, but from a first-person view, it
has an immediacy and intensity that suspends the player’s disbe-
lief. Some game views work better in Flash than in others. Most
any views involving a three-dimensional environment won’t work
well given Flash’s technological performance limitations, but there
are tricks and techniques I’ll discuss later that can be used to
“simulate” 3D in a convincing manner.

Scrolling
Often a game’s environment extends beyond its viewable area. For
instance, in Super Mario Brothers, the game world stretches on for
some distance but only a small portion can be seen at a time.
Because of this, the game scrolls back and forth horizontally with
the player kept within the main viewable area. This same effect can
be used both horizontally and vertically for driving games, strategy
games, etc.

One technique to give a scrolling game environment more
depth and look three-dimensional is to have multiple layers of the
environment scroll at different speeds. This technique is known as

10 Chapter 1 COMPUTER SCIENCE ISN'T FOR EVERYONE

parallax scrolling. Much like in the real world, objects that appear
to be in the distance, such as mountains or buildings, can move at
a slower speed than objects in the foreground. We’ll discuss an
example of side scrolling animation in Chapter 7.

Tile-Based Games
Some game environments can be broken up into a grid, such as a
maze or strategy game. The artwork for the game can then be cre-
ated as tiles of a predetermined size. Although it requires more
work on the programming end to develop an efficient tile-mapping
system, it opens up games to the creation of a level editor to allow
end users to create custom maps. Starcraft and Warcraft are two
strategy games that feature very well-implemented tile systems with
editors. We’ll look at a tile-based game engine in Chapter 14.

Flash Development Terms
Before I end this chapter, here are a handful of terms that I’ll con-
tinue to refer to throughout the book. Understanding the way each
of these items works will be key to architecting sound game code
down the road. In Chapter 4, we’ll dig into these concepts even
more in-depth, but this will serve as a quick overview.

Stage
In Flash, the Stage is the main content area upon which everything
is built. All other visual objects are placed on top of the Stage once
they have been added to it. Think of it as your game’s canvas.

Display Objects
A display object is any object that has a visual representation and can
be placed onto the Stage. There are many different types of display
objects in Flash; those most familiar to experienced developers will be
Buttons, Sprites, and MovieClips. Even the Stage itself is a special kind
of display object. The display objects all share some common traits;
they all have an x, y, and z positions on screen, as well as scaling and
rotation properties. Flash maintains lists of all the display objects on
screen at any given time, making them easy to access and manipulate.

Events and Listeners
Events are the primary means of communication between objects in
AS3. They are simply messages that objects in Flash can broadcast
or dispatch. Any object that has been set up to listen for them
receives events. They can be notifications of user input, information
about external data being loaded, etc. Flash has many built-in events

Chapter 1 COMPUTER SCIENCE ISN'T FOR EVERYONE 11

for common tasks, and it is entirely possible (and encouraged) to
create new ones for custom objects like games. Events can carry
with them any amount of data pertinent to their type, but all of
them contain a few basic properties:
• A name or type
• A target: The object that dispatched the event
• A current target: The object that is currently listening to/

handling the event
Events are an extremely powerful tool that we will make extensive

use of in later chapters.

Packages
A package is a collection of classes and functions, used for organiza-
tion purposes. Because there are so many different classes built into
Flash, not to mention all the classes we will create, it is important to
keep them grouped into logical collections. For instance, any classes
in Flash that deal directly with display objects are in a package called
flash.display. Most events are found in the flash.events package. The
standard naming convention for a package is all lowercase. To use
classes in a particular package, we use the import command to gain
access to them:

package mypackage {

import flash.display.MovieClip;

public class MyClass() extends MovieClip {
}

}

Author Time, Compile Time, and Runtime
These terms refer to the different stages when data in Flash is altered
or verified. Throughout the book, I will make reference to things that
happen inside the Flash-authoring environment—these are author-
time events. Events or errors that occur during the process in which
Flash creates a SWF file are known as compile-time events. Finally,
runtime events occur once a SWF is running by itself.

You Can Wake Up Now
Whew. You made it! Although you may not fully understand the
concepts I’ve presented here, you will start to see them in context
in later chapters and they will start to click. Just think, now you
can drop words like “polymorphism” in casual conversation and
sound like a full-fledged nerd, er…software engineer!

12 Chapter 1 COMPUTER SCIENCE ISN'T FOR EVERYONE

2
THE BEST TOOL FOR THE JOB

CHAPTER OUTLINE
Flash Back 13
The Case for Flash 14

Player Penetration 14
Flexibility 15
Speed to Market 15
It Looks Good 16

Nobody's Perfect 16
Flaw: The Code Editor 16
Solution: Use an Additional Tool 16
Flaw: Performance/Memory Management 17
Solution: Use a Third-Party Solution or Roll Your Own 17
Flaw: Debugging Content 19
Solution: Use Traces and Custom Tools 19
Flaw: Lack of Built-In Game Libraries and Tools 20
Solution: Write Your Own/Find Open Source Implementations 21

Stop Fighting It 21
Things Flash Was Built to Do 22

Animation versus Games 22
Application versus Games 22
Web Sites versus Games 23
Flash versus Traditional Game Development 23

The Best Tool for the Job 24

Flash Back
Adobe (formerly Macromedia, originally FutureSplash) Flash has
been around for a long time now and has come a long way from its
humble beginnings. Starting in Flash 4, developers were given an
impressive (at the time) set of scripting tools for what had previously
been primarily a lightweight animation tool. The first games started
to appear in Flash 4 and continued on into Flash 7 with the
introduction of ActionScript version 2. Flash developers could now
program in a fairly object-oriented way, albeit with some concessions
and quirks.

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 13

Fast forward to the newest release, Flash CS5.5. Since the
version CS3, Flash users have had access to a powerful new version
of the language: ActionScript 3 (AS3). Redesigned from the ground
up, AS3 much more closely follows the standards and guidelines of
modern programming languages (such as Java or C#), with a well-
defined road map for new functionality in later versions. Flash CS4
introduced even more amazing new features to exploit games, such
as basic 3D transformations, inverse kinematics (for realistic
character manipulation), and an all-new animation toolset. In Flash
CS5, Adobe delivered the ability to deploy to mobile platforms, a
nice new version-control-friendly file format, and a number of nice
workflow improvements to the IDE. CS5.5 has continued these
improvements and fixed a number of stability and workflow issues
with CS5.

Because Flash CS5/5.5 is our development environment of
choice, AS3 is what we will cover in this book. If you’re still making
the transition from AS2 to AS3, or have yet to start, don’t be discour-
aged. Where a programming convention or technique has changed
significantly from AS2, I’ll note it off to the side. AS3 can take some
time to get used to, as some of its syntax has changed dramatically
over AS2. However, before long, the changes will become second
nature and you’ll wonder how you ever got along without some of
the best features of AS3. If you’ve already got AS3 development
experience, you’re a step ahead and should feel right at home in the
language. And if you’re coming from a game development back-
ground outside of Flash, you’ll find some things familiar and some
things very different from what you’re used to.

The Case for Flash
The first thing to know about Flash is that it was never designed to
develop games. There are a number of absent features that up to
this day frustrate even a fan of Flash, like me. I’ll further outline
these strikes against it shortly, but first let’s see what Flash has
been doing.

Player Penetration
Roughly 98% of users on the Internet have some version of the
Flash player, and usually within a year of a new version being
released, about more than 80% have upgraded. The sheer size of
the audience accessible to Flash developers is unprecedented in

Figure 2.1 Flash logos from
previous versions, all the way
back to Flash 5.

14 Chapter 2 THE BEST TOOL FOR THE JOB

the games industry. Because it is available on machines running
Windows, Mac OS, or Linux, it also bridges the gaps between all
the major consumer platforms. Most game designers and develo-
pers that produce big-budget, retail titles have to settle for a
much smaller demographic and have to make the conscious (and
often costly) decision to include platforms other than their main
target. This ubiquity is quickly spreading to other devices besides
desktop computers; phones and tablets of all shapes and sizes are
quickly adopting various flavors of Flash to enhance the user
experience.

Flexibility
Flash is capable of being many things at once. You can create
cartoons, postproduction effects, presentations, banner advertise-
ments, all kinds of Web sites, Web and desktop-based applications,
and, of course, games. Developers use Flash for any and all of
these functions, and some may only be familiar with the one task
they’ve learned to do. Because it is a very visual environment,
Flash is also much more approachable to novices than most devel-
opment packages. Unfortunately, this immense flexibility comes
with a price. By not being designed specifically to do any one
thing, Flash tends to take a very generic approach to its toolset and
includes functionality that is useful to a number of applications,
not just one niche. You can create additional tools, scripts, work-
flows, etc. that will help you in your particular task, but that is all
up to your individual ingenuity. I’ll cover some of these additions
in a later chapter.

Speed to Market
Flash makes many tasks, which would require a great deal of code
in other languages, much easier. Tasks, such as simple animation,
basic playback of video and audio, are very streamlined in Flash
and allow developers to get their products to market much faster
than other solutions, with arguably more power. For instance,
because of its animator heritage, Flash makes it very easy to display
visuals on the screen. This may sound like an obvious statement,
but compared with other development environments, this is a big
advantage. C++, Java, and other languages render everything to the
screen programmatically, so drawing a simple rectangle on screen
requires many, many lines worth of code. All it takes in Flash is
selecting the rectangle tool and placing one on the Stage, or writing
a few lines of ActionScript. Flash takes care of rendering everything
“under the hood,” so you as the developer don’t have to worry
about it. Well, not too much anyway.

Chapter 2 THE BEST TOOL FOR THE JOB 15

It Looks Good
While I’m sure we’ve all seen our share of hideous-looking Flash
content over the years, some of the best-looking and most visually
effective work I’ve ever seen on the Web was created in Flash.
Because Adobe is such a design-centric company, they are equally
concerned with tools that allow your work to look nice as they are
with tools that make it run well. This has a tendency to frustrate both
designers and developers from the hard-core ends of the spectrum,
but it is exactly this marriage of technology and design that makes
Flash unique.

Nobody’s Perfect
For all that Flash has been doing, it is certainly not without its
flaws when it comes to producing games. Don’t get me wrong; the
point of enumerating these flaws is so you as the developer will be
aware of them, not to make a case against using Flash in the first
place. The good news is that most of these downsides can be
worked around with the right tools.

Flaw: The Code Editor
Although the Flash ActionScript editor has definitely evolved with
the rest of the package over the years, it still lacks a handful of fun-
damental features that keep me from wholeheartedly recommending
it as the coding tool of choice. The most aggravating omission is
actually just a poor implementation: code hinting. As you write
code, Flash tries to anticipate what you’re going to want to type next
and offers you a selectable list of options to try and speed up the
process. The problem is that it only hints code when you get to the
end of a word, so if you start to misspell a variable or function and
don’t receive a hint for it, you have no indicator of where you went
wrong. With CS5, Adobe added the ability to introspect (look inside)
custom classes, but the code editor is still inferior to both competing
products.

Solution: Use an Additional Tool
The simplest solution (and the one I use) to this quandary is to use
an additional application to handle all your ActionScript writing
and use Flash for everything else. The two best options out there
as of this writing are FlashDevelop, a free open-source code editor,
and Flash Builder (formerly Flex Builder), Adobe’s coding applica-
tion based on Eclipse (another open-source editor). If you’re on a
tight budget or you don’t intend to use the Flex framework to cre-
ate Flash content, FlashDevelop is a great choice and what I use

16 Chapter 2 THE BEST TOOL FOR THE JOB

on a daily basis. If you want to create content in Flex, or you
already own a copy of Flash Builder, it is an equally robust solution
with some really great additional features such as “bookmarking”
lines of code that you’re actively working on. The extra step of
switching back to CS5 to publish your SWF will pale in comparison
with the amazingly good code hinting and other scripting enhance-
ments these programs offer.

Flaw: Performance/Memory Management
As Flash games continue to grow in size and complexity, they
require heftier hardware to run well. Most other modern develop-
ment environments include tools for benchmarking a game’s con-
sumption of system resources such as CPU power and memory.
Flash does not have any features like this, so it is harder to predict
without real-world testing how well a game will perform on a range
of systems or what its minimum requirements should be.

Solution: Use a Third-Party Solution or Roll
Your Own
The Task Manager in Windows and the Activity Monitor on a Mac
are great system-level tools that everyone has for monitoring the

Figure 2.2 The built-in ActionScript editor in Flash CS5.

Chapter 2 THE BEST TOOL FOR THE JOB 17

memory and CPU allocation of a given application. Unfortunately,
there’s no real way of getting the exact CPU usage of a Flash game
because most ways of testing it involve running it inside another
program, such as Flash CS5 or a Web browser. These programs
can be running other tasks that consume system resources, and
it’s hard to know where the “container” ends and the game begins.
That said, sometimes a simpler approach to this problem is more
effective. Flash content is set to run at a predefined frame rate. If
the player gets too bogged down with either code or whatever it’s
trying to render to the screen, it will bring the frame rate down. It
is very easy to use a small component in your games to monitor
the frame rate a particular machine is getting. You can then use
this information during testing to determine the minimum level of
machine required to play your game. Simply set a tolerance level
(usually 85% or higher of a game’s designed frame rate is accepta-
ble) and then note which machines fall below this tolerance. Mem-
ory is a little more exposed in Flash, and there are ways of
determining choke points in your game where memory usage gets
out of hand, though it does require writing your own utility. This
is done using the Sampler package, and we will discuss the

Figure 2.3 The free code editor FlashDevelop.

18 Chapter 2 THE BEST TOOL FOR THE JOB

package, the frame rate component, and other optimizations in
Chapter 17.

Flaw: Debugging Content
Adobe greatly improved the debugger from AS2 to AS3, but it still
has a number of flaws when it comes to working with larger
projects. As projects get larger and larger and rely on external
files, it becomes difficult to debug complex problems. You can
remotely debug content running in a browser, but it is not always
100% stable, and any child SWFs that have not been exported for
debugging (such as files that perhaps aren’t under your control)
won’t have the necessary information needed to find the problem.
I’ve had content that works fine within Flash and falls apart once
it is on a Web server; the results of which are a bug hunt in the
dark and a lot of head scratching. Needless to say this becomes
even more frustrating with games, which rely so heavily on lots
and lots of code.

Solution: Use Traces and Custom Tools
The single most helpful tool in debugging Flash content is
the trace command; it has been around since Flash 4 and works
essentially the same way it did those many years ago. All it does

Figure 2.4 The Activity Monitor
on a Mac.

Chapter 2 THE BEST TOOL FOR THE JOB 19

is display whatever information you tell it to at runtime.
This becomes invaluable when attempting to watch something as
complicated as a game execute in real time. You can have
Flash trace out entire sequences of logic to determine where a
bug is occurring, and you can use it to display messages to
other developers who might be working with your code. Though
traces work through the Output window in Flash, it is possible to
capture them inside Firefox using an extension called FlashTracer
and the debug version of the Flash player. Links to both can be
found on this book’s Web site. It works well for general
debugging, but when a game works fine in Firefox but not
other Web browsers it won’t be of any help. Another option is to
create even more robust tools you can use in any environment.
We’ll explore how to create and implement these tools in
Chapter 17.

Flaw: Lack of Built-In Game Libraries and Tools
Up until this point, the shortcomings of Flash I’ve outlined are
ones that affect developers of all kinds of Flash content. Because
games tend to need more specific toolsets and lean toward the end
of customized development, Flash lacks a number of code libraries
that are readily available on other platforms. Examples of this type
of library could be a physics simulator for doing realistic physical
collisions or a sound manager that easily handles fading/panning
sound effects in real time. These libraries must be written from
scratch, which means they do not benefit from the speed boost of
being implemented directly inside of Flash.

Figure 2.5 The FlashTracer
extension running inside
Firefox 3.

20 Chapter 2 THE BEST TOOL FOR THE JOB

Solution: Write Your Own/Find Open Source
Implementations
Unfortunately, until Adobe adds game-specific libraries to the Flash
player, we are stuck building our own. Luckily, many developers in
the Flash community are working to either port libraries such as
these from other languages or write them from the ground up in
ActionScript. Many of them are open-source projects that anyone
can contribute to and improve. There are links to a number of
these on this book’s Web site, and we’ll even explore one in
Chapter 16 for doing 2D physics. To be fair to Adobe, there are a
number of new capabilities coming in future versions of the Flash
player that support such game-centric features as 3D hardware
acceleration and control pads.

Stop Fighting It
Traditional game developers sometimes try to fight Flash’s nat-
ure when they first make the transition, but often the best way
to get the desired result out of Flash is to play to its strengths.
Take, for example, a character in a game you want to animate
depending on its state (idle, running, jumping, etc.). An artist
has given you image sequences of each of these states. The char-
acter’s state may be controlled by user input with the mouse or
keyboard, or by AI. A conventional approach to this problem
would be to write a script that updates the character with the
correct frame of animation based on what the game is telling it
to do. However, this requires the script to know how many ani-
mations there are, how many frames each animation is, and
whether the animations loop or only play once. It also has to
add the new image to the Stage and remove the old one. In
addition, it adds overhead to any other code running in the
game, which can become troublesome if you have many charac-
ters on screen at once.

This is a perfect example of an area where Flash shines over
other game development tools. Because the environment is built
around the concept of timelines and animation, you have a tre-
mendous amount of flexibility when it comes to controlling player
states, game states, or any other objects in your game that are
more than a still image. The trick is in knowing what Flash does
best and where you need to alter its behavior.

The flip side of the game development coin is that games do
take code: often lots of it. A game built entirely around animation
and fancy art would not likely be very interesting or reusable at a
later date. Users who have previously built content in Flash with
very little scripting may find themselves panicking at the sight of

Chapter 2 THE BEST TOOL FOR THE JOB 21

the amount of code we will encounter in later chapters. This is
normal; take a deep breath. Development in Flash has always
been a marriage of different disciplines, and games are possibly
the ultimate example of this notion. Each task Flash has been
designed to make easier has aspects that translate to game
development.

Things Flash Was Built to Do
Animation versus Games
Possibly Flash’s strongest use out of the box is as an animation
application. Much like postproduction programs (like Adobe After
Effects) or multimedia authoring tools (like Adobe Director), Flash
is centered around the concept of a timeline. By default, events
occur in a linear order, and objects on the timeline can have time-
lines nested within them. This allows for very complex animations
to be built relatively quickly.

Consider for a moment an animation of a character walking. In
order to look convincing, all the character’s appendages would
need to be separated and animated independently. Additionally,
they need to move across the Stage so the character is not just
walking in place. To move all the parts at the right speed would be
very cumbersome and time consuming. Instead, with nested time-
lines, the walking sequence can be contained inside a clip that
is moved at a different rate across the Stage. Although this concept
is not at all new to anyone familiar with Flash, it speaks to a hierar-
chy that will prove very handy later.

Application versus Games
Though it started as an animation tool, Flash has grown into a
number of other uses. Since the last few versions of Flash, Adobe
has started marketing it (along with Adobe Flash Builder) to create
what is referred to as Rich Internet Applications (RIAs). In brief,
RIAs are applications that perform what were traditionally desktop-
bound tasks from the Web. They can be anything from shopping
cart applications to billing software to a weather forecast widget. To
provide flexibility and to make rapid development of this kind of
software possible, Adobe includes a number of components—
prebuilt pieces of code designed for easy reuse. These components
are items such as scrollbars, text boxes, radio buttons—devices you
might see on a typical Web page in HTML. Although these compo-
nents are great for RIAs, they serve little use directly in games
(though I will show later how they can be very useful in tools that
aid game development).

22 Chapter 2 THE BEST TOOL FOR THE JOB

Arguably, a game is an application, since it performs certain
functions based on user input. However, an application in the
traditional sense is used to create something or deliver informa-
tion; it receives input and gives output. The guidelines for produ-
cing an application like a word processor are very different from
those used to create a game. This must be understood so as not
to try to develop games like you would any number of other
applications. Although applications tend to be used for productiv-
ity, games are used for entertainment, or in some cases, educa-
tion. Games are experiential; they set a tone and create an
environment for the user to have fun (or occasionally teach a
concept or make a point).

Web Sites versus Games
Another area where Flash has flourished is in Web site develop-
ment. I started using it at an ad agency, building branded Web
sites for clients. Flash includes many features for working on the
Web, including streaming support for content, the ability to load
data from a variety of external sources, and of course, its browser-
based player that places Flash content alongside anything else in
HTML. Much like games, Web sites tend to be experiential, but
they are also usually meant to be informative. When they are
intended purely for entertainment, they can resemble a game on
many levels, short of a score or accomplishment-based outcome.
In fact, because of the similarities in how each type of content is
produced, the line between Flash Web sites and games nested
inside them has become very blurred.

Flash versus Traditional Game Development
Working with game developers coming from a background like C
or Java has been an enlightening experience; many aspects of
Flash’s workflow that I take for granted are real stumbling blocks to
outsiders. First of all, traditional game developers tend to keep all
the code for a game and all the assets (art, sounds, video, etc.)
separated completely. The code defines what assets are loaded and
how they are used. In Flash, the standard way of managing assets
is to import them into a single library file. To use an asset, you
simply drag it onto the Stage and start working with it, or you give
it a name that can be referenced later in the code. This interdepen-
dence of code and assets has often been of a criticism leveled
against Flash by more traditionalist developers, as too heavily tying
code to specific assets can render it hard to reuse later. Although
there is some truth to this claim, there are ways (which we will
cover later) to utilize the conveniences of Flash’s asset management
with largely reusable code.

Flash CS5 versus Flash
Builder

Adobe Flash Builder is a
tool for creating Flash
content outside the CS5
environment, based on a
preset framework of
components and a layout
language similar to HTML.
It excels rapidly creating
RIAs. It was conceived to
try to win over developers
to Flash from platforms
such as Java or .NET.
Flash CS5 stands out in
terms of animation and
motion graphics
capabilities, whereas Flash
Builder shines as a
programmer tool. It is an
outstanding code editor
and has many features
that make traditional
programmers feel right at
home, as it is based on
the popular Eclipse IDE.
The main reason I chose to
cover Flash CS5 instead of
Flash Builder as my
development environment
of choice is that I feel
Flash is simply a better
environment for making
most games. There is no
equivalent to be found in
Flash Builder for Flash’s
animation toolset, but
Flash can be augmented
and used concurrently with
other tools like Flash
Builder to make up for its
code shortcomings. The
other reason to use Flash
Builder is the Flex
Framework, a set of
classes for easily creating
and skinning RIAs using a
markup language called
MXML, and it adds

Chapter 2 THE BEST TOOL FOR THE JOB 23

The Best Tool for the Job
Perhaps one of Flash’s greatest strengths is the fact that there are
arguably so many ways to achieve the same end goal. There are
definitely better and worse processes along the way, and in the
chapters to come, I will outline what I’ve found works consistently
and what to avoid.

considerable bulk to your
projects that in no way
benefits game
development. See above
regarding alternate code
editors for Flash.

24 Chapter 2 THE BEST TOOL FOR THE JOB

3
A PLAN IS WORTH A THOUSAND ASPIRIN

CHAPTER OUTLINE
Step 1 25
Step 2 26
Step 3 27
Step 4 28
Step 5 30

Methods Required 31
Step 6 (Optional) 32

I’ve built a lot of games in Flash over the years. Some have taken
less than a week, and some have stretched on for several months.
Whether they had huge budgets or practically no budget at all, one
common thread has come back over and over again: the projects
that were well planned out and clearly defined went smoothly and
those that were not didn’t. Planning a game thoroughly can be a
tedious step, but it’s much easier to change your mind or predict
problems on paper than it is in the heat of development. How
exactly you go about documenting and outlining your game is a
matter of personal preference and a measure of just how anal-
retentive you’re willing to be. Here are some strategies that work
for me.

Step 1
Be able to describe the game from a bird’s-eye view in one to two
sentences. Most any game idea, no matter how complex, can be
summed up in this manner, even if it leaves out a lot of details.
Being able to distill a game down to its most basic premise keeps
you on track and acts as a “bigger picture” reminder of what you’re
building. If you work at a company building games for clients,
you’re likely dealing with marketing people, not gamers; they tend
to appreciate this level of succinctness. For example, a summary of
Pac-Man could be as follows:

Move through a maze collecting food while avoiding ghosts that
are trying to kill you.

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 25

A game I once built for Mountain Dew’s MDX drink would have
a description like the following:

Drive a cab around the city at night and earn as much money as
possible by delivering passengers to their destination in a timely
manner. Pick up bottles of MDX for a speed boost.

Note the plug at the end outlining how the client’s product will
be showcased, which is very intentional.

Step 2
Outline or wireframe out the flow of all the game’s screens. At its
most basic, this includes the main menu, help panels, the core
gameplay itself, and any results screen (client link, scoreboards,
etc.). Note that this is not an outline of gameplay, but rather all the
steps leading up to and surrounding it. Performing this step cap-
tures the user’s progression through the game and helps identify
touch points between different screens that might be tricky to
integrate if you don’t plan for them in advance. Figure 3.1 is an

Loader

Gameplay

Database

How to Play

Back to Main

Post Score

View Scoreboard
Back to Main

Main Menu

Play Game
How to Play

View Scoreboard
(Quit)

View Scoreboard

Back to Main

Results Screen

Play Again
Post Score
Client Links
Back to Main

Figure 3.1 A very simple game
flow, with a box representing
each screen.

26 Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN

example of how a simple game with relatively few screens might
look. In this example, bolded text represents buttons or links that
can be clicked to access the associated screen. A simple wireframe
like this is also often helpful to artists, reminding them of any
necessary buttons, callouts, etc.

You might have noticed () around the Quit button. This indi-
cates that a Quit button is optional. It makes sense for games that
a player will download to his/her computer, but for Web games in
a browser, it doesn’t really have a place. If you add the option to
Quit from your game in a Web page, be sure you know where
you’re going to send them.

Step 3
With your description and basic wireframe in hand, it’s time to
outline the core mechanics that your game will utilize. This is
more or less a feature list and can simply be in bulleted form, but
the more detail you cover the less surprises you’ll run into once
you’re in production. It allows you to break down the gameplay
into its main pieces of functionality. These include components
such as the game’s rules, input mechanisms (such as the keyboard
or mouse), movement and collision, and how the player’s score or
progress is determined and recorded. Once again referring back to
Pac-Man as an example, here’s how a mechanics list might read:
• Maze tile engine

• Nothing can move through walls
• Any open space is filled with food, power-ups, or bonus

items (fruit)
• One pass-through connecting left and right sides
• Each tile has at least one and up to four possible

connections to other tiles
• Collision management

• Maze
• Ghosts
• Pick-ups

• Player
• Keyboard input; directional arrows
• Lives

– Player has three lives at start of game
– Player loses a life every time he is hit by a ghost without a

power-up
– When player dies, his progress in the current level is

maintained
• AI

• Normal behavior: chases player
• Power-up behavior: avoids player

Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN 27

• Starts from a central location at beginning of level and is
sent back there if caught by player in power-up mode

• Speed increases with each successive level
• Pick-ups

• No pick-ups regenerate until the start of a new level or a
new game

• Food
– All food pick-ups must be collected to win a level
– Food contributes 10 points per item to the player’s score

• Power-ups
– Each level of a game has four power-ups
– Eating a power-up makes player invincible for five seconds

and allows them to eat ghosts
• Bonus food items

– Appear on a random interval, one at a time, and only stay
in place for a few seconds before disappearing

– Contributes 100 points per item to the player’s score
• Scoring

• Pick-ups and eating ghosts contribute to overall score
• Final score is used as ranking mechanism for scoreboards

• Winning criteria
• Player wins a level when he picks up all food
• Game continues until player runs out of lives, getting

successively harder with each level (see AI)
As you can see, all the familiar features of Pac-Man have been out-

lined here, as well as their relationships to each other. Note that this list
is not typically client facing, but in projects with a short timeline, it can
be wise to put it in front of a client to get sign-off before you begin pro-
duction. This can give you leverage when that last-minute client change
comes down the line and threatens to derail the project. It also gets the
client empowered and makes them feel like they have a say in the
process, but at a point when a change in direction isn’t catastrophic.

Step 4
Build an asset list. Whether you’re working with an artist or you’re
building the entire game yourself, it’s a best practice to make a list of
all the art, sound, and copy (or text) assets you’ll need. Working
through this list after Step 3 is important because the game mechanics
and any specific art pieces and animations you need should be fresh
in your head. Following the Pac-Man theme, here is a sample asset
list. You can reference your wireframe from Step 2 to help you
remember what assets you’ll need for the nongameplay screens.
• Game Animations

• Pac-Man
– Movement

28 Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN

– Power-up
– Death

• Ghosts
– Movement
– Retreating movement

• Static Game Art
• Maze walls
• Food
• Power-ups
• Bonus food
• Point displays

• Nongame Screens
• Loader artwork
• Main Menu

– Title artwork
– Play Button (three states: up, over, and down)
– How to Play Button (“”)
– View Scoreboard Button (“”)

• How to Play
– Rules copy
– Rules artwork
– Back to Main Button (three states: up, over, and down)

• View Scoreboard
– Scoreboard table artwork
– Back to Main Button (three states: up, over, and down)

• Results Screen
– Score display artwork
– Play Again Button (three states: up, over, and down)
– Post Score Button (“”)
– Back to Main Menu Button (“”)

• Post Score Screen
– Confirmation message
– View Scoreboard Button (three states: up, over, and

down)
– Back to Main Menu Button (“”)

• Audio
• Sound effects

– Eating food sound
– Eating power-up sound
– Eating bonus food sound
– Eating ghost sound
– Ghost attacking Pac-Man/death sound
– Level begin sound
– Level end sound
– Game over sound

• Music
– None, it’s Pac-Man!

Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN 29

You probably noticed that nothing in this list defines how any of
these assets should look/sound, but this list defines just the objects
and events they are associated with. What the assets look like
should largely be irrelevant to you as the developer, provided they
meet your or your company’s quality standards and any technical
requirements, which leads us to the next step.

Step 5
Make a list of technical requirements for your game. This will
include two sets of criteria: (1) the system requirements of the end
user playing the game and (2) any server-side requirements your
game needs in order to function, such as a database and any
scripts necessary to connect to it. For a simple game, these require-
ments should be fairly succinct, and if you are building the game
for clients that are going to host it themselves, this list may have
been provided to you entirely.

Let’s start with the system requirements for the game’s
audience. Unless the game is an exact copy of another title
you’ve already released, you probably won’t know the exact
machine requirements necessary to run the game smoothly. Any
estimates you make will be vetted for accuracy during the testing
process. At the very least, you can set a screen resolution and
minimum version of the Flash player that is capable of running
the game. One note about the Flash player is that Adobe now
periodically releases minor updates that add features in addition
to fixing bugs. As a result, you must be cognizant of any cutting-
edge features that might necessitate a particularly patched version
of the player.

Here is an example:
Flash player major version: 10
Flash player minor version: 10.0.2.13
Screen resolution: 1024 × 768 or higher
Connection speed: DSL or higher
RAM: 512 MB+
CPU: 1.5 GHz+
These are fairly modest requirements for Flash games on the

Web. Obviously during the testing and QA (quality assurance) pro-
cess, you can adjust your initial numbers as necessitated by the
game’s feature set. Games with a lot of motion and many objects
moving on the screen at once are obviously going to need more
computing horsepower than a single screen with static game
pieces. Sometimes a feature can be compelling enough to justify a
trade-off in higher system requirements and thus a reduced
audience. This decision must not be made lightly, however. For
instance, more robust AI that makes the game more enjoyable but

30 Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN

taxes the CPU is more justifiable than a bunch of real-time special
effects, such as shadows, glows, etc., which look nice but don’t add
any real gameplay value. You and your client’s mileage may vary,
but experience has shown me that the lower you set your technical
barrier to entry the more people will play your game.

Next come the server-side requirements for your game. For sim-
ple games with no data that needs to be saved from session to ses-
sion, this is probably as simple as having an HTML page to house
your game’s SWF file. More and more, however, players expect
more robust functionality out of games on the Web. The ability to
save their high scores and even maintain a profile for larger games
is very popular, as it gives players bragging rights when they do
well and often affords some level of personalization.

Depending on whether you’re doing the back-end integration
(server-side scripts, database work, etc.) or you work with a team,
this list of requirements may look very different. If you work at a
company with a team that already has a database infrastructure in
place, your requirements may look something like the following:

Methods Required
Save score

Parameters: score—number, initals—string, security hash—
string
Returns 0 for success, −1 for error

Load score table
Parameters: size—number
Returns list of initials and scores, highest to lowest

Based on the wireframe example, we have created throughout the
previous steps, these two methods (or functions) are all you will
need to post a player’s score and load a table of high scores. The
first method, saving the score, would receive the player’s score,
their initials, and a security hash (which is covered in-depth in the
online bonus chapter “On Your Guard”). The second method, used
when viewing the high-score table, would receive a table size (like
10, 20, etc.) for the number of results to return. Regardless of
whether your team works in PHP, .NET, or some other back-end
language, this simple listing will let them know what code they
need to expose to Flash in order for the game to perform its
operations.

If you will be building these scripts yourself, and don’t already
have a system in place for doing so, you’ll need to set up a data-
base structure to house all your game’s data. If you are new to this
area of development but want to learn, I recommend starting with
PHP. It is free, it is fast, and it is relatively easy to pick up. There
are also many resources in books and on the Web for how to save
data into a database with PHP.

Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN 31

A BETTER PHP
If you’re already familiar with PHP, I would highly recommend looking
into AMFPHP; it allows you to send binary data in Flash’s native format
rather than name/value strings. Because of this, it allows you to send and
receive typed results (i.e., a number comes back as a number, not as a
string), and the chunks of data are much smaller and faster. There are
examples of using AMFPHP in Chapter 15 and Appendix D.

Step 6 (Optional)
Diagram your classes using a UML Modeler. UML stands for Unified
Modeling Language and is the standard for planning complex soft-
ware through a visual process. Basically, it involves visually showing
the hierarchy of the classes you intend to create alongside each other,
with all the publicly available properties and methods listed along
with what they accept and return. You may be wondering, “Why
would I want to do that? Why can’t I just get started typing code and
build it as I go?” The answer is simple; a UML diagram takes your
whole project into account in a single document. It is much easier to
make changes and correct inconsistencies and confusion in naming
conventions from this bird’s-eye view than once you’ve got a dozen
ActionScript files open and you’re trying to remember what the name
of the method you’re trying to call from one to the next. You can keep
the diagram handy as you work, and there are programs available,
which will take your completed diagram and turn it into actual
ActionScript class files complete with all the methods and properties
ready to be used! Figures 3.2 and 3.3 demonstrate how a visual layout
can become a set of ready-to-use class templates.

Now you’re probably wondering, “Well, if this step is so impor-
tant and helpful, why do you have it listed at the end as optional?”
There are a couple of reasons for this. One reason is that for very
simple games on a tight timeline, a full-blown UML diagram may
yield low returns on time that could be better spent just knocking
out the code. If you’re pretty certain your game will only rely on a
couple of class files, UML is probably overkill. I very rarely use it in
my day-to-day work, but on occasion, it has been helpful. Second,
although many UML tool options exist, with a large number of free
offerings, I have yet to find one that I wholeheartedly recommend
for Flash development. Well, I take that back. The best UML tool
for ActionScript I’ve ever used is Grant Skinner’s gModeler. It is
streamlined especially for this use; it was created in Flash so it will
run on any OS that supports the Flash player, and it will generate
code, as well as documentation. Unfortunately, it is several years
old and will only generate up to ActionScript 2 code, leaving AS3
developers like us in the cold. If you’re still doing work in AS2,
I highly recommend using it to model your classes.

32 Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN

pacman

#timer: Timer

+player: Player

#enemyList: Dictionary

#itemList: Dictionary

#gameGrid: Vector

+points: Number

+lifespan: Number

+speed: Number

Enemy Player

Character

flash.display.MovieClip

Game

Pickup

Powerup BonusFood

+startGame()

+endGame()

#frameScript()

#readInput()

#detectColisions()

Figure 3.2 A UML diagram
representing a game
hierarchy.

Figure 3.3 The generated
classes that resulted from the
UML diagram in Fig. 3.2.

Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN 33

Though I haven’t found my equivalent for “gModeler AS3,” I’ve
found the free StarUML (www.staruml.com) to be a solid title and
fairly straightforward. Also, an Adobe employee has created a tutor-
ial showing how to generate stub code from your diagrams much
the same way gModeler did. These resources are available on
www.flashgamebook.com.

I know this seems like a lot of steps just to get started if you’re
not used to this level of planning. Trust me, it will not only get
easier and more natural as you figure out what works best for you,
but you will find that less surprises pop up down the road. Now
that you have your plan firmly in hand, it’s time to open that copy
of Flash.

A quick review of the planning steps:
• One-two sentence description
• A game screen wireframe/flow
• List of game mechanics
• List of assets: art, animation, sound, video, and copy
• Technical requirements
• UML class diagrams

34 Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN

4
//COMMENTS FTW!

CHAPTER OUTLINE
Fair Warning 36
Part 1: Classes 36

Packages 37
Classes as Files 37
Constructors 38
Constants, Variables, and Methods 38
Getter and Setter Methods 40
Class Identifiers 42
Inheritance and Polymorphism 42
Interfaces 44
Linking Classes to Assets in Flash 47
Class versus Base Class 48
Using Exported Symbols with No Class File 49
getDefinitionByName and Casting 51

Part 2: Events 52
dispatchEvent 52
addEventListener, removeEventListener, and Event Phases 53
Event Propagation and Cancellation 56
Custom Events 57

Part 3: Errors 58
try, catch, finally 59
Throwing Your Own Errors 60

Part 4: Data Structures and Lists 61
Objects 62
Arrays 63
Vectors 65
Dictionaries 65
ByteArrays 66
So What Should I Use For My Lists? 66
Custom Data Structures 67

Part 5: Keep Your Comments to Everyone Else! 67
The Bottom Line 68

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 35

Part 6: Why Does Flash Do That? 68
Event Flow 68
Frame Scripts 69
Working with Multiple SWF Files 72
Garbage Collection 74

Conclusion 76

In this chapter, we’ll cover best practices to use when program-
ming in ActionScript 3. This includes smart class utilization, using
the event model, error handling, and data structures. We’ll also
cover a number of idiosyncrasies of Flash, which tend to trip up
developers coming to Flash from other languages.

Fair Warning
It’s worth mentioning that this chapter (like the rest of this book)
assumes a familiarity with either ActionScript 1 or 2 or another
programming language. If you have no idea what objects, variables,
or functions are or have never used Flash at all, you will be lost
very quickly. Some familiarity with ActionScript 3 is ideal since
we’ll also be moving pretty quickly through a wide variety of topics,
but it’s not absolutely necessary. The documentation that comes
with Flash expounds on all of these topics, so if you find yourself
confused or want to learn more, you can check out those examples.
You can also always ask questions on any chapter in this book at
www.flashgamebook.com. If you’re an experienced AS3 user, be
patient—we’ll get through the basics as quickly as possible and
move on to the fun stuff!

Part 1: Classes
As we learned in Chapter 1, classes are essentially the blueprints for
objects in ActionScript (and many other object-oriented program-
ming languages). They define the properties that are inherent to that
object, as well as the methods that determine how that object func-
tions on its own and as part of a larger context. When you create an
object from a class, that object is known as an instance of that class.
Every instance of a class may have different specific values for its
properties, but they all share the common architecture, so Flash
knows that all instances of a certain class will behave in the same
way. In its simplest form, instantiation, or creation, of an object
looks like the one shown below in ActionScript.

var myObject:MyClass = new MyClass();

36 Chapter 4 //COMMENTS FTW!

As a standard naming convention, classes should start with a
capital letter and then use InterCaps, or “CamelCase” from then
on, denoting the start of a word with a capital letter. CamelCase
makes names in code much easier to read—take, for example,
the longest class name currently used in the Flash CS5 code
base:

HTMLUncaughtScriptExceptionEvent

While this is something of an extreme example, note that it is
much easier to read than:

htmluncaughtscriptexceptionevent

Packages
A set of classes with categorically similar or related functionality
can be grouped together in packages. Classes within the same
package can reference each other without any special code,
whereas classes in different packages must import each other with
a line of code, similar to the following:

import flash.display.MovieClip;

Note that in this case, the MovieClip class is inside the display
package, which is part of the larger flash package. The standard
naming convention for packages is all lowercase letters, which
differentiates them from classes visually. Packages are represented
in the file system as a series of nested folders. In the previous
example, if the MovieClip class were not an included part of the
Flash Player, you could find the MovieClip.as file inside a folder
called display, inside another folder called flash.

Classes as Files
To create a class, you simply open Flash or a text editor like Flash-
Develop and create a basic framework. All AS3 classes must have
this minimal amount of code in order to function.

package flash.display {
public class MovieClip {
}

}

Note that the names in bold are the custom package and class
names of your choice. All classes need a class definition wrapped
by a package definition, placed in a folder structure that matches
the package hierarchy. However, this class won’t do anything, so
next we’ll cover adding properties and methods.

Chapter 4 //COMMENTS FTW! 37

Constructors
Every class has a constructor, even if it does nothing and is not
explicitly defined. It is the function, with the same name as the
class, which is called when a new instance of the class is created.
In the case of our last example, even if we leave it out, Flash adds
the following to the class:

package flash.display {
public class MovieClip {

public function MovieClip() {
}

}
}

The constructor allows us to run any initialization code that the
new instance might need, or it can do nothing, depending on how
your class is to be used.

Constants, Variables, and Methods
A class without any data or functionality inside it is not of very
much use, so we can define variables or properties, of the class
that will store information, and methods, or functions that will
perform actions. I’m going to assume you already know how to
use variables and methods, from either earlier versions of Action-
Script or another language. Constants are entirely new to AS3 but
are not a complicated concept. Essentially, they are variables that
can only be assigned a value once. When you declare a constant
or variable, it is best to give it a type, which tells Flash which
class to use as the blueprint for that variable. Below are few
examples:

const myInt:int = -3; //WILL ALWAYS BE -3 AND CANNOT BE MODIFIED
var myBoolean:Boolean = true;
var myString:String = "Hello World";
var myObject:Object = new Object();

Giving a variable a type also saves memory because Flash
knows the maximum amount of memory it needs to store an
instance of a specific class. If you don’t type a variable, as in the
following example, Flash must reserve a larger amount of memory
to accommodate any possible value.

var myMystery:* = "?";

Once you assign a value to an untyped variable, it becomes
typed from then on, so attempts to change its type (like you could
in earlier versions of ActionScript) will result in runtime errors,
such as the following example.

38 Chapter 4 //COMMENTS FTW!

var myMystery:* = "?";
myMystery = 5; //WILL CAUSE A RUNTIME ERROR

What’s worse, the above example won’t be caught during
compilation, so it might get missed until your game is deployed
live for real users. Unless absolutely unavoidable (like an instance
where you simply don’t know what will be assigned to a variable),
always type your variables. You’ll create far less headaches down
the road for yourself.

When you define methods, there are similar practices to follow.
It is best practice to define what parameters a method will receive
and what, if anything, it will return.

function myFunction (myParam:String):void {
//COMMANDS HERE

}

In this example, the method accepts a single parameter,
myParam, and returns nothing. If you have a case where a method
needs to accept an unknown number of parameters, a slightly
different syntax can be used.

function myFunction (...params):void {
//COMMANDS HERE

}

Here, the single parameter, params, is prefixed by three dots.
This signifies to Flash that the parameter should be treated like an
Array of values, so getting to each parameter that was passed must
be done through array syntax:

function myFunction (...params):void {
trace(params[0]);

}

It’s important to remember that when accepting a variable
number of parameters, type checking during compilation will not
catch any attempts to pass invalid data to the method. In this
instance, it’s best to do some type of manual checking and gener-
ate errors at runtime. We’ll cover more on errors shortly.

function myFunction (...params):void {
for (var i:int = 0; i < params.length; i++) {

if (!(params[i] is DisplayObject)) {
throw new ArgumentError("Only DisplayObjects
can be used in myFunction.");

}
}

}

Chapter 4 //COMMENTS FTW! 39

The keyword void is used to denote a function that does not
return anything (and will cause an error if it attempts to), and
all other types that variables can use can also be used here. If
you leave off the return value altogether, you can opt to return
something or not, depending on some piece of internal logic.
However, as a best practice, a method should always declare
what it will return as it helps to catch errors and maintains
consistency.

Getter and Setter Methods
There are two special types of methods you can create when you
want to expose a variable outside its class but want to control how
the variable is used. They are known as accessor—or getter and
setter—methods, and they are called like normal variable assign-
ments but act like functions underneath. You can use them to
make read-only variables or to perform actions on a value before it
is set as a variable. There are a few rules to follow when using
these special methods: getter methods never accept any parameters
and must specify a return type and setter methods may only have
one parameter and never return anything. Let’s look at a couple of
examples in a single script.

package {
public class MyClass {

protected var _maxNameLength:int = 8;
protected var _name:String;
protected var _lives:int = 3;

public function get name():String {
return _name;

}
public function set name(value:String):void {

name = value.substr(0,maxNameLength);
}

public function get lives():int {
return _lives;

}
}

}
//OUTSIDE CLASS
var myInstance:MyClass = new MyClass();
myInstance.name = "CHRISTOPHER";
trace(myInstance.name); //OUTPUTS "CHRISTOP";
trace(myInstance.lives); //OUTPUTS 3;
myInstance.lives = 10; //THROWS ERROR

40 Chapter 4 //COMMENTS FTW!

The name getter and setter functions return the protected value
of _name, which would otherwise be inaccessible, and it also forces
any attempts to assign a value to the _name property to a fixed
length of eight characters. The lives getter is an example of a read-
only property—there is no accompanying setter function. Any
attempts to set the value will cause an error. This is very useful
when you need to use values inside the class but also want external
classes to be able to read the value.

**The standard convention for variable and method names is to
start lowercase and then use CamelCase for all subsequent words
in the name. There is some debate over how to delineate public
variables from protected, private, or internal. My preference is to
follow Adobe’s convention, which is to use an underscore (“_”) at
the beginning of the name of any property that is not expressly
public. Doing so allows you to use getter and setter methods like
the previous example, where _name was the protected variable and
name was used for the pair of methods. This yields continuity in
your naming and makes your code easier for others (and yourself)
to follow.

AN ALTERNATE NAMING CONVENTION
Since writing the first edition of this book, I’ve had the privilege of work-
ing directly with some game industry veterans and picked up some new
patterns and conventions that they commonly use. While I think there’s
still value in Adobe’s method if you’re a beginner or if you’re only work-
ing in Flash, I wanted to mention this alternate convention because it is
particularly helpful if you’re intending to try to leverage code across plat-
forms outside AS3. It’s also what I now use as my standard and believe
it is only fair to disclose that. Basically, it does not differentiate between
private and public properties but rather prefixes them all with “m” as
members of a class. There’s no real reason for public or private members
to have different conventions because the compiler will catch illegal
access of either kind—it’s not like you can really mess it up. Also, it has
the added benefit of grouping all member variables in a class alphabeti-
cally when using code hinting. For instance, a player’s speed would be
mSpeed rather than _speed, regardless of being public, protected, or pri-
vate. Method names and names of accessors are still used as normal, but
method parameters are all prefixed with an underscore so as to denote
them clearly inside the method as temporary and local. You could use
something other than a prefix—some people like “p” instead. Don’t use a
dollar sign “$” like in some other languages; an Adobe engineer has men-
tioned in his blog that this could cause problems in certain circumstances
because it conflicts with internal Flash Player naming. The last example in
Chapter 16 will use these more recent conventions, so you can see how
they compare to Adobe’s standard and decide if you prefer it. Ultimately,
the important thing to remember when working on any project is to pick
a method that makes sense and stick with it consistently.

Chapter 4 //COMMENTS FTW! 41

Class Identifiers
Classes can use few different identifiers to determine how they are
exposed to other classes. The four available identifiers are as follows:
• Public: The public attribute defines that a class can be accessed

or used from anywhere else.
• Internal: The internal attribute allows a class to only be

accessed by other classes in the same package—by default,
classes are internal unless specified public, so internal does not
actually have to be used.

• Dynamic: If a class is dynamic, it can have properties and methods
added to it at runtime—by default, classes are static and can only
use the properties and methods defined inside themselves.

• Final: If a class is final, it cannot be extended by another class—
more on this shortly will be discussed when we cover inheritance—
by default, classes can be extended and are not final.
All of these identifiers can be used with each other, except that

public cannot be used with internal. Similarly, variables and meth-
ods can have their own set of identifiers used to define how they
are exposed outside the class.
• Public: Like the class attribute, this denotes that a variable or

method can be accessed from anywhere, including outside the
class.

• Internal: Also similar to classes, this denotes that a variable or
method can only be accessed from inside its package.

• Private: The private attribute prevents a variable or method
from being accessed outside its individual class.

• Protected: A protected attribute is pretty much like private,
except that protected variables and methods can also be
accessed by classes that extend the current class (more on
inheritance shortly).

• Static: If a method or variable is static, it is part of the class and
not instances of the class, meaning there is only ever one value
or functionality defined, and it is accessed via the class name
rather than an instance (i.e., MovieClip.staticVar rather than
myMovieClip.staticVar)—note that static properties and
methods are not inherited by subclasses.
The first four attributes in this list cannot be used with each

other, as they would conflict, but static can be used in combination
with any one of them.

Inheritance and Polymorphism
These two concepts were touched on in brief in Chapter 1, but we’ll
expound on them a little more here. When you need to create a
class that has the same functionality as another class, but needs
some additional properties or methods, a good option to save time

42 Chapter 4 //COMMENTS FTW!

and coding is to extend the first class to a new class, known as a sub-
class. All public and protected methods and variables that are not
static will be available to the new class. To clarify, any static proper-
ties of the parent, or superclass, must be prefaced with the class
name (as in the example below). In addition, any internal methods
or variables will be available to the subclass if it is in the same pack-
age as its superclass. To illustrate, let’s look at an example below:

package {
public class SuperClass {

static public var className:String = "SuperClass";
}

}

package {
public class SubClass extends SuperClass {

public function SubClass() {
trace(SuperClass.className); //OUTPUTS
"SuperClass"

trace(className); //THROWS ERROR
}

}
}

//FROM OUTSIDE EITHER CLASS
trace(SuperClass.className); //OUTPUTS "SuperClass"
trace(SubClass.className); //THROWS ERROR

Occasionally, you’ll need to change the functionality of a
method in a subclass from the way it behaves in the superclass.
This change in functionality through inheritance is known as
polymorphism. You can do this using the override keyword before
the beginning of the method, albeit with a number of caveats.
• Only methods may be overridden; no properties
• Only public, protected, and internal methods may be overridden
• Internal methods may only be overridden in subclasses in the

same package as the superclass
• The new overriding method must match the composition of the

original method, with the same parameters and return value
Let’s look at an example.

package {
class SuperClass {

public var name:String = "SuperClass";
protected var _number:Number = 5;
internal var _packageNumber:Number = 7.5;
private var _secretNumber:Number = 10;

Chapter 4 //COMMENTS FTW! 43

public function helloWorld():void {
trace("HELLO WORLD");

}
}

}

package {
class SubClass extends SuperClass {

public function SubClass() {
trace(name); //OUTPUTS "SuperClass"
trace(_number); //OUTPUTS 5;
trace(_packageNumber); //OUTPUTS 7.5
helloWorld(); //OUTPUTS "HI WORLD";
super.helloWorld(); //OUTPUTS "HELLO WORLD";
trace(_secretNumber); //THROWS ERROR;

}

override public function helloWorld():void {
trace("HI WORLD");

}
}

}

When SubClass traces out properties it has inherited from
SuperClass, they stay intact, with the exception of the private
variable. Also, when helloWorld is run from SubClass, it traces a
different message than when run from SuperClass. That said, there
is a way to get at the SuperClass implementation of helloWorld
through the use of the super keyword. Super returns a reference to
the superclass of the current class, allowing you access to any
methods you may have overridden.

Interfaces
One of the most commonly misunderstood (including by myself for
a long time) aspects of object-oriented programming (OOP) is the
concept of interfaces. It is confusing for a few reasons, not the least
of which is the confusion of an OOP interface with a graphical user
interface (like operating systems provide). An interface does not
contain any code, outside of declaring the public methods that a
class will use and what each will accept as parameters and what
each will return. If a class is like a blueprint of the specific direc-
tions for creating a new instance of that class, an interface is like a
checklist for that blueprint to make sure it adheres to a certain spe-
cification. Perhaps the best way to understand how an interface is
structured is to see one in code.

44 Chapter 4 //COMMENTS FTW!

public interface IEventDispatcher {
function addEventListener(type:String, listener:Function,

useCapture:Boolean=false, priority:int=0,useWeakReference:
Boolean = false):void;

function removeEventListener(type:String, listener:Function,
useCapture:Boolean=false):void;

function dispatchEvent(event:Event):Boolean;
function hasEventListener(type:String):Boolean;
function willTrigger(type:String):Boolean;

}

Note the differences between an interface and a class. Interfaces
are always public or internal, just like their class counterparts, but
none of the methods have any attributes because they are all
assumed to be public. Interfaces cannot include variables, but they
can include getter and setter methods, which can substitute for
variables.

At this point, you might very well be asking, “Why would I ever
bother to use an interface when I can simply extend a class to
make sure all the subclasses have the available methods?” The
answer is that unlike some other languages, classes in Flash cannot
inherit from multiple superclasses. This poses a problem when you
need to extend one class but include functionality from another
class in a different inheritance hierarchy.

A good example of a situation like this is the IBitmapDrawable
interface that is part of the Flash display package. When you want
to draw something to a BitmapData object, you can use either
another BitmapData object, or a DisplayObject. In order to keep
just any object from being passed to the draw method, both
BitmapData and DisplayObject implement an interface called IBit-
mapDrawable. This interface actually doesn’t do anything but
enforce this compatibility between two classes that have nothing to
do with each other. The draw method can then look like the
following:

public function draw(source:IBitmapDrawable, matrix:Matrix = null,
colorTransform:ColorTransform = null, blendMode:String = null,
clipRect:Rectangle = null, smoothing:Boolean = false):void

When an object is passed for the source parameter, Flash checks
to see if the object implements the IBitmapDrawable interface and
can throw an error to let the developer know. Here is another
example of a class implementing an interface while extending an
unrelated class.

package {
import flash.events.IEventDispatcher;
import flash.events.EventDispatcher;

Chapter 4 //COMMENTS FTW! 45

import flash.events.Event;
import flash.geom.Rectangle;

public class RectangleDispatcher extends Rectangle
implements IEventDispatcher {

private var _dispatcher:EventDispatcher;

public function RectangleDispatcher() {
_dispatcher = new EventDispatcher(this);

}

override public function set width(value:Number) {
super.width = value;
dispatchEvent(new Event(Event.CHANGE));

}

override public function set height(value:Number) {
super.height = value;
dispatchEvent(new Event(Event.CHANGE));

}

public function addEventListener(type:String,
listener:Function, useCapture:Boolean=false,
priority:int=0,useWeakReference:Boolean =
false):void {

_dispatcher.addEventListener(type, listener,
useCapture, priority, useWeakReference);

}

public function removeEventListener(type:String,
listener:Function, useCapture:Boolean=false):void {

_dispatcher.removeEventListener(type,
listener, useCapture);

}

public function dispatchEvent(event:Event):Boolean{
_dispatcher.dispatchEvent(event);
}

public function hasEventListener(type:String):Boolean{
return _dispatcher.hasEventListener(type);

}

public function willTrigger(type:String):Boolean{
return _dispatcher.willTrigger(type);

}
}

}

46 Chapter 4 //COMMENTS FTW!

In this example, the class being extended is Rectangle, which
has no ties to the EventDispatcher hierarchy. By implementing the
IEventDispatcher interface and creating an instance of the Event-
Dispatcher class, we can enjoy both the functionality of a Rectangle
and an EventDispatcher. When the width or height of this special
rectangle changes, it will dispatch an event to anything that is
listening. We will cover more on events in an upcoming section.

So, the question now is probably “When should I use
interfaces?” Unlike some OOP proponents who believe the answer
is “always,” I believe it really depends on the breadth of the game
or application you are building. Sometimes, in quick games where
I am the sole developer, I prefer inheritance because I usually have
the luxury of defining my entire inheritance chain and I don’t have
to work within a preexisting framework. I find interfaces to be most
helpful when working with other developers (particularly those at
other companies where we’re not eager to share specific code with
each other) because we can agree upon an interface for our
common class elements and integration of our respective compo-
nents is far more likely to work without a hitch as a result.
Interfaces are also extremely useful in creating flexible, reusable
game engines for more complex games, as we will see in later
chapters. In the end, interfaces are just a tool, and like any tool, it
should be used when called for and left alone the rest of the time.
In fact, in the mobile examples, we’ll look at toward the end of this
book, where performance is a key factor, and interfaces are often
not the answer.

Linking Classes to Assets in Flash
A common staple of my game development (and arguably one of the
biggest advantages of developing games in Flash) is the ease with
which you can link a Flash class to an item in your FLA library. Any
item in your library can have an associated class linked to it, but the
ones you will probably use the most are the DisplayObject sub-
classes Sprite and MovieClip. First, how Flash creates classes for
library items should be understood.

If you set the linkage property of a symbol in the library, it has a
class created for it when the SWF is compiled, regardless of whether
or not one was explicitly defined. For instance, take a Sprite in an
FLA library named “square,” with a simple blue square inside it.
Because the symbol is not a Sprite directly but rather an extension
of Sprite, a new class with the name “square” will be created at
compile time that extends Sprite and looks like the following:

package {
import flash.display.Sprite;
public class square extends Sprite {}

}

Chapter 4 //COMMENTS FTW! 47

The reason Flash does this is because it needs a point of refer-
ence to be able to instantiate that symbol on the stage if it is used
in script somewhere. To see the evidence of this, you can look at
all the classes embedded in a compiled SWF inside of FlashDeve-
lop. In Fig. 4.1, you can see the Flash library on the left, with the
symbol exported with the name “square” and reflected on the
right in the FlashDevelop project panel with the classes used in
the SWF.

If you had a class defined for the square, it would use that file
rather than generating its own. To see the result of this, we can
rename the linkage class for the symbol to uppercase “Square” to
match the name of a class I have defined for it.

package {
import flash.display.Sprite;
public class Square extends Sprite {

public function Square() {
rotation = 45;

}
}

}

Now, when the square is added to the stage, it will be rotated
45 degrees.

Class versus Base Class
When you open the linkage panel to assign a class to a symbol,
there is an additional field that is used to define the base class for a
symbol. The base class symbol is where you define what class you
would like to extend for that symbol. In the previous example, the
Square class extended from Sprite, so the base class for that symbol
was flash.display.Sprite, as shown in Fig. 4.2.

Figure 4.1 FlashDevelop can
reveal the classes used in a
SWF.

48 Chapter 4 //COMMENTS FTW!

However, suppose that we wanted to create multiple squares of
different colors. They wouldn’t need any additional functionality on
top of what Square already provides, so making an individual class
for each one would be tedious. Instead, we could make multiple
clips of different colors and set each of their base classes to Square.
Then, the individual class names could be things like squareBlue,
squareGreen, etc. An example is shown in Fig. 4.3.

Using Exported Symbols with No Class File
I try to make it a policy to explicitly write a class file for any
symbol that I intend to export for ActionScript because it is easier
to keep track of which symbols are available to me and allows
me to quickly add functionality as it becomes necessary. How-
ever, sometimes as in the case of the previous Square example,
some of the symbols I’m using all derive from a basic class I’ve
created and are only differentiated by the assets inside them. To
use these classes in your code, you can simply refer to the class

Figure 4.2 The properties
panel shows the linkage for
the square Sprite.

Chapter 4 //COMMENTS FTW! 49

name like you would any other. For instance, if I had a document
class for the previous example, it might look something like the
following:

package {
import flash.display.Sprite;
public class ClassesExample extends Sprite {

public function ClassesExample() {
var blue:Square = new squareBlue();
addChild(blue);
var green:Square = new squareGreen();
addChild(green);

}
}

}

You can use it like a normal class because when Flash compiles
the SWF, it will be a normal class, just as though you’d written it
yourself.

Figure 4.3 The base class can
be set to use a class for
multiple symbols with different
assets.

50 Chapter 4 //COMMENTS FTW!

getDefinitionByName and Casting
Suppose you needed to instantiate a series of symbols or
classes that followed a numeric sequence, say for the purposes
of our example “square1” through “square10.” It would be
very tedious to have to instantiate them one at a time and create a
lot of extra codes. It would probably look something like the
following:

var square:Square = new square1();
addChild(square);
square = new square2();
addChild(square);
...
square = new square10();
addChild(square);

Luckily, Flash gives us the ability to “look up” a class by its name.
In the flash.utils package, there is a method called getDefinition-
ByName, which accepts said name as a string parameter.

for (var i:int = 1; i <= 10; i++) {
var squareClass:Class = getDefinitionByName("square" + i)
as Class;

var square:Square = new squareClass();
addChild(square);

}

It returns a generic object that is a reference to the class, if it
exists. That object can then be converted to a class through an
operation known as casting. Casting is the process of telling
ActionScript to treat one object like a different kind of object. It is
most often used to treat a subclass like its superclass, which is
known as “safe” casting because all of the functionality will be
guaranteed to carry over from the superclass. An example of this
would be with Sprite and MovieClip. MovieClip extends Sprite, so
it is safe to cast a MovieClip as a Sprite because their public
methods and variables will match. If we were to do the opposite,
cast a Sprite as a MovieClip, it would be considered an “unsafe”
casting because a Sprite does not contain all of the methods and
variables of a MovieClip. While Flash will let you cast either
direction, it’s generally a good idea to avoid casting to a subclass
unless you know for certain that the methods and variables you
want to call will be available. In the case of the above example,
converting a base object to a class is technically an unsafe cast-
ing, but the Class class (a confusing nomenclature to be sure)
contains no additional public methods or variables, so there is no
danger of causing an error. We’ll use casting and getDefinitionBy-
Name regularly later in game examples.

Chapter 4 //COMMENTS FTW! 51

Part 2: Events
A core component of ActionScript 3 is the use of events. Event
objects can be believed as messages that are sent between objects
to notify each other of, well, events. When an object is set up to
receive events, it is known as listening. When an object sends an
event, it is known as dispatching. In their most basic form, events
contain a type (the name of the event being sent), a target (the
object that dispatched the event), and a currentTarget (the object
currently processing the event after receiving it). A basic event is
merely a notification that something happened, and you’ll need to
access the object that sent the event in order to get any more infor-
mation. However, events can be customized to send any amount of
data along with the message, but we’ll get to that shortly. First, let’s
look at how objects can send events.

dispatchEvent
Many of the core classes of AS3 dispatch events. In order to
dispatch an event, an object must either extend the Event-
Dispatcher class in some way or implement the IEventDispatcher
interface (see the interface example in the previous section on
classes). If it meets one of these two criteria, you simply call the
dispatchEvent method and pass it an event object. Event objects
are created from the Event class or a sub class of it. The basic
Event class has a number of predefined names, or enumerations, of
event types, but you can use any name you want.

var event:Event = new Event(Event.COMPLETE);

or

var event:Event = new Event("myCustomEventName");

However, it is a good idea to define your event names as con-
stants somewhere so that you can avoid misspellings. For instance,
if my game class needed to tell another object when the game had
started and ended, it would be wise for me to define these event
names, so they can be referenced later. The typical event naming
scheme is to use all capital letters, with underscores between
words, for the property name and CamelCase for the actual value,
as in the next example.

package {
import flash.display.Sprite;
import flash.events.Event;
public class Game extends Sprite {

static public const GAME_START:String = "gameStart";
static public const GAME_OVER:String = "gameOver";

52 Chapter 4 //COMMENTS FTW!

protected function startGame():void {
//START GAME LOGIC
dispatchEvent(new Event(GAME_START));

}

protected function gameOver():void {
//GAME OVER LOGIC
dispatchEvent(new Event(GAME_OVER));

}
}

}

There are a few things to note about that example. First, event
names are not only public constants but they’re static, which
makes them easily accessible from anywhere. Next, the Sprite class
extends EventDispatcher, so all my methods are ready for me to
use without defining anything extra, which is very convenient.
Finally, I often create and dispatch my events in a single line.
You’ll rarely need to keep a reference to an event object after you
create it, unless you’re adding a bunch of extra data to it, so I
prefer this method for basic events because it’s one less line to
type and one less variable to assign. Now, let’s look at how another
class might listen to these events.

addEventListener, removeEventListener,
and Event Phases
There are a couple of different ways to listen for events, and these
depend on the phase an event is in. When a DisplayObject on the
stage dispatches an event, it goes through three phases: capture,
target, and bubble. In the capture phase, the event travels all the
way from the Stage down through the display list chain to the
DisplayObject that sent the event. Once the event reaches its
“owner,” it enters what is known as the target phase. Finally, the
event travels back up the display list to the Stage called the
bubbling phase. Any object along the path of the display list can lis-
ten for these types of events, assuming the event is created that way.
The reason for this particular sequence is that objects in the display
list can easily listen for events further down the chain, such as
mouse or keyboard input. For non-DisplayObjects (or Display-
Objects that are not on the stage), events have only one phase, the
target phase. In other words, the only way to listen for these events
is to listen to the object directly. Let’s look at some examples to
make this a little clearer.

We’ll start with a generic object first since their events are sim-
pler and can only be listened to in one way. This is also the most
common way to listen for messages, during the target phase. To

Chapter 4 //COMMENTS FTW! 53

listen for an object’s events, you simply call its addEventListener
method and pass it a number of parameters. We’ll use the example
of the Game class from above, assuming that there is an instance
of this class in the document class of an FLA.

package {
import flash.display.Sprite;
import flash.events.Event;
public class Document extends Sprite {

public var game:Game;

public function Document() {
game = new Game();
game.addEventListener(Game.GAME_START,

gameStart);
game.addEventListener(Game.GAME_OVER,

gameOver);
addChild(game);

}

protected function gameStart(e:Event):void {
trace(e);

}

protected function gameOver(e:Event):void {
trace(e);

}
}

}

The two required parameters of the addEventListener method are
an event type (as a string) and a method to call when that event
occurs. Note that I can use protected (or private, or internal) methods
as my event listeners—this is the only time where something that
occurs outside this class can access an otherwise off-limits method. A
method that is set up to receive events must accept a single para-
meter, the event object. There are few other parameters that are
optional when setting up a listener, and I actually like to assign them,
control freak that I am. The third parameter is useCapture, which is
false by default. We will cover it momentarily as it deals with event
phases and display list. The fourth parameter is the listener priority,
which is 0 by default. The priority level tells Flash which listeners
should get the event first—the higher the number, the higher the
priority. If it is critical for one object to receive an event before
another, this is the best way to ensure that. I usually leave it at 0.

Finally, the fifth parameter is useWeakReference, which might
be the coolest feature of events, and is false by default. To fully

54 Chapter 4 //COMMENTS FTW!

appreciate what it does, you first need to understand how garbage
collector of Flash (the mechanism that removes unused objects
from memory) works. We’ll cover the garbage collector more in
depth when we reach the section on Flash idiosyncrasies, but suf-
fice it to say for the moment that by setting useWeakReference to
true, the listener will automatically be removed when the object it
is listening to is deleted from memory. Unless you have a specific
reason you do not want the listener to be removed automatically, I
recommend always setting useWeakReference to true. The follow-
ing is a modification of the two lines from the above example,
written to use weak references.

game.addEventListener(Game.GAME_START, gameStart, false, 0, true);
game.addEventListener(Game.GAME_OVER, gameOver, false, 0, true);

When you no longer need to listen for an event (or if you
are not using weakly reference listeners), you can use the
removeEventListener method with the same first three parameters
you called in addEventListener to disengage a listener from an
object. For the example above, once the Document class was
done listening to the game for events, it could call the following
two lines:

game.removeEventListener(Game.GAME_START, gameStart, false);
game.removeEventListener(Game.GAME_OVER, gameOver, false);

Like addEventListener, the third parameter is optional, depend-
ing on whether you’re using the capture phase, which we will
cover now.

As I mentioned earlier, if you’re passing events between
DisplayObjects, you have a few different options available to you,
depending on where your objects are in relation to each other.
Here are some different situations:

Scenario #1: The object you want to listen to is a child object,
either directly or through the display chain, of your current object.

In this instance, you can listen to the target object in all three
phases. When you listen during the capture or bubbling phases,
you don’t add the listener to the object itself, but rather the object
that is listening, as the event will be broadcast to your object as it
“passes through.” By default, most events do not bubble unless
explicitly told to do so. To be able to listen to the events of Game
class from all three phases, we would first have to modify the
dispatchEvent calls to look the following:

dispatchEvent(new Event(GAME_START, true));
dispatchEvent(new Event(GAME_OVER, true));

The second parameter when creating a new event tells the event
whether or not to bubble. Now that these events are bubbling, we

Chapter 4 //COMMENTS FTW! 55

can modify the listeners in the Document class to account for all
three event phases:

//CAPTURE PHASE
addEventListener(Game.GAME_START, gameStart, true, 0, true);
//TARGET PHASE
game.addEventListener(Game.GAME_START, gameStart, false, 0,
true);

//BUBBLE PHASE
addEventListener(Game.GAME_START, gameStart, false, 0, true);

Note the subtle differences between how the listeners are
added. The capture and bubbling listeners are identical, except for
the useCapture parameter, and the target listener is attached to the
game object directly. There are few times when you’d probably
use all of these listener types at once. I almost always listen at the
target phase because I usually know which object I need to receive
events and which don’t matter. One scenario where it is very help-
ful, though, is when you need to stop an event from being
broadcasted.

Event Propagation and Cancellation
By default, events, particularly those in DisplayObjects, will move
through their hierarchy uninterrupted, notifying each listener in
the chain as the event reaches it. However, there might be some
scenarios where you would want to stop certain events from
reaching their destination. A common example is with mouse
input. Say you had an application or a game with a side panel
containing some buttons and other information. If you were dis-
playing a message and wanted to disable input to the panel while
the message was being shown, you could tell the panel to disable
itself, which would in turn disable each of the buttons. However,
there are a lot of codes to write, and it is more easily handled by
canceling events.

When one of the buttons in the panel is clicked on by the
mouse, for example, it generates an event (specifically, a Mouse-
Event) that moves through each display list level until it reaches
the object that was clicked. If you listen for that event during the
capture phase in some parent object of the panel, you can stop
that event from proceeding any further and ever reaching its desti-
nation. You do this through the use of a couple of methods of
event objects: stopPropagation and stopImmediatePropagation.
They both do virtually the same thing but with minor differences.
The former stops any objects further down the display chain from
receiving the event. The latter stops those objects, as well as any
other listeners, in the current DisplayObject.

56 Chapter 4 //COMMENTS FTW!

Custom Events
If you find during development that you need an event type that
contains more information than a generic event, you can easily
extend the Event class to make custom events. Let’s look at one
quick example:

package {
import flash.events.Event;

public class GameEvent extends Event{
static public const GAME_START:String = "gameStart";
static public const GAME_WIN:String = "gameWin";
static public const GAME_LOSE:String = "gameLose";

public var score:Number;
public var timeLeft:Number;
public var level:int;
public var difficulty:int;

public function GameEvent(type:String,
score:Number = 0,
timeLeft:Number = 0,
level:int = 1,
difficulty:int = 1,
bubbles:Boolean = false,
cancelable:Boolean = false) {

this.score = score;
this.timeLeft = timeLeft;
this.level = level;
this.difficulty = difficulty;
super(type, bubbles, cancelable);

}

override public function clone():Event {
return new GameEvent(type, score, timeLeft, level,

difficulty, bubbles, cancelable);
}

}
}

Since we’ve created a custom event class, it makes more sense
to keep the event type names here, rather than in the Game class.
In this case, GAME_OVER has been split into GAME_WIN and
GAME_LOSE for more specific events. Also, we’ve included holder
variables for the game’s current score, time left, difficulty, and
current level if they were applicable. Obviously, you would tailor

Chapter 4 //COMMENTS FTW! 57

these properties to your specific game. In the Game class, we
would now dispatch events like the following:

dispatchEvent(new GameEvent(GameEvent.GAME_START));

There are a couple of things to remember when extending the
Event class. One is that any additional properties you want to store
must have variables created for them, so the constructor can assign
them or they can be re-assigned after the event object is created.
Another point to keep in mind is that you need to explicitly call the
Event superclass constructor through super() and pass it at least
the first parameter (and preferably all of them). The final aspect of
events to remember is that you should provide a clone method to
override the original. The clone method is automatically used by
Flash when events are re-dispatched from a listener object. If an
override is not provided, it will return a generic event rather than
your custom type. While it is not mandatory to provide it, it is a
best practice and will prevent problems from cropping up down
the road where your data gets lost along the way.

That completes this section on events. While there are even
more aspects of the event model in Flash which we could explore,
what we’ve learned represents the core functionality that you will
likely use when developing games.

Part 3: Errors
No one likes errors in their code. In fact, no one likes their
mistakes being pointed out by others, let alone a computer. It
may sound like an absurd statement, but errors in Flash really are
your friends. In ActionScripts 1 and 2, errors were passive—if
they occurred, things might break, but you wouldn’t necessarily
know where or why. When I first switched to AS3, I couldn’t
stand how many errors I got and it drove me nuts. Now that I’ve
gotten used to it, I’m very appreciative when Flash presents me
with a batch of errors; I would much rather know that something
happened and be able to fix it rather than have it fail silently and
have no idea why my application isn’t running as expected. And
really, though my ego might not like to admit it, those errors
were probably in my AS1 and AS2 codes; I just didn’t know it. As
some of you may already know, errors in ActionScript 3 make
themselves known by bringing your program (or at least method)
to a screeching halt and displaying a message in the output win-
dow. Anyone first developing in AS3 is bound to cause quite a
few errors. You’ll also note quickly that the Flash documentation
tends to refer to them in a couple of different ways. Sometimes
errors are referred to as exceptions. Also, because errors are
derived from the Error class, there are a number of subclasses

58 Chapter 4 //COMMENTS FTW!

that extend from it, such as ReferenceError or ArgumentError.
These subclasses give you more detailed information about what
went wrong. There are two main kinds or errors you’ll run into
during development.

The first are compile-time errors, which crop up when you go to
publish your SWF. These are my favorite errors because they let
you know immediately that you did something flat-out wrong. The
SWF won’t even work correctly as a result, so you’re forced to go
back and fix them. The most common errors are typographic:
mistyped variable names, assigning the wrong type of value to a
variable, and calling a method that doesn’t exist. While they can be
annoying if there are many of them, it’s always better to know
about problems up front and fix them.

The other kind is a runtime error, which occurs while your SWF
is running. These are equally helpful, but they have to be discov-
ered and are most likely to crop up during testing. They’ll only
occur when you run the piece of code with the problem in it. The
other trick with runtime errors is that they’re not always mistakes,
per se. Sometimes, an error occurs when certain events are dis-
patched and nothing is listening to them. In this case, the error
acts as a notification that something went wrong and that you need
to account for the scenario in which it took place.

Regardless of the type, errors should always be handled. There
are a couple of ways to fix errors. Most of the time, the error is the
result of a coding mistake or omission. However, sometimes an
error can occur because a piece of functionality has other depen-
dencies, like external files, which are not available during develop-
ment. In this case, you can prevent the errors from bringing the
rest of your code to a halt by catching them.

try, catch, finally
If you want to trap an error and keep it from halting the rest of
your code, you should wrap the code inside what a try statement
block.

try {
//ERROR-INDUCING CODE HERE

}

If an error occurs inside of a try block, it will attempt to be
caught by an adjacent catch block.

try {
//ERROR-INDUCING CODE HERE

} catch (error:Error) {
//NOTIFY DEVELOPER OF ERROR
trace(error);

}

Chapter 4 //COMMENTS FTW! 59

If no error occurs, the code in the catch block will not execute.
You can also use multiple catch blocks to catch different kinds of
errors rather than catching all errors with one lump block.

try {
//ERROR-INDUCING CODE HERE

} catch (error:ArgumentError) {
//CATCHES JUST ARGUMENT ERRORS
trace(error);

} catch (error:ReferenceError) {
//CATCHES JUST REFERENCE ERRORS
trace(error);

} catch (error:Error) {
//CATCHES ALL OTHER ERRORS
trace(error);

}

If you want some type of code to run regardless of whether an
error occurs, you can put it in a finally block, which appears after
all catches. If no error occurs, the sequence will be try > finally. If
an error occurs, it will follow try > catch(es) > finally.

try {
//ERROR-INDUCING CODE HERE

} catch (error:Error) {
//NOTIFY DEVELOPER OF ERROR
trace(error);

} finally {
trace("MADE IT THROUGH TO THE END");

}

Throwing Your Own Errors
Sometimes, you may want to cause errors yourself to let you or
another developer using your code to know that they’re attempting
to perform an illegal operation. Creating an error is known as
throwing to coincide with the catch metaphor. To throw an error,
you simply use the throw statement, which is a core part of AS3.

throw new Error("This is a custom error message.");

You don’t actually have to specify a message for your error,
particularly if you intend to create your own Error subclass (where
the message could be predetermined by the class), but I find it very
helpful to do so. If you’re working in a complex application that has
a lot of opportunities for errors, you can also define error codes to
provide differentiation as a second parameter to the Error construc-
tor. I don’t tend to throw errors as much in my game-specific
classes, but I use them frequently when creating utility classes that
may be shared among a number of projects or other developers.

60 Chapter 4 //COMMENTS FTW!

Creating custom error classes is even more straightforward than
custom event classes, so I’ll give only a brief example of how to do
so. I have found that the basic included error types are more than
enough to handle the errors I need to create. Here is a quick exam-
ple of a GameError class that you could use to hold a number of
predefined error messages.

package {
public class GameError extends Error {

static public const INVALID_INPUT:String = "That is
not a valid form of input for this game.";

static public const GAME_NOT_READY:String = "The game
object is not yet initialized. Run init() before
starting game.";

public function GameError(message:String="") {
super(message);

}
}

}
//IN GAME CLASS
public function startGame():void {

if (!initialized) throw new GameError(GameError.
GAME_NOT_READY));

//OTHER CODE
}

In this example, the GameError class (much like an Event
subclass) predefines the error messages the game will use for easy
access and syntax checking. If the game is not initialized when start-
Game is called, it will throw a GAME_NOT_READY error. For more
information about error handling, check out the online chapter “Bugs:
Squash ’Em If You’ve Got ’Em,” available on the book’s Web site.

Part 4: Data Structures and Lists
One of the most important abilities in programming is being able
to group similar objects together in lists for easier tracking. For
example, a game might have a player, a number of different kinds of
enemies, and a number of pickup items. It is inefficient, or even
impossible in some scenarios, to keep track of the enemies and pick-
ups with individual variables, so we need more complex data struc-
tures to store them and make them easily accessible. AS3 gives us
four main containers for this type of data, and depending on what
type of information you’re trying to store, a fifth one as well. We’ll
look at each of these structures, their pros and cons, the best tasks
for them, and how to iterate, or step through, each of them.

Chapter 4 //COMMENTS FTW! 61

Objects
At the root of all the different classes in ActionScript are basic
Objects. They are the building blocks for every other more complex
data type. They are also dynamic and therefore useful by them-
selves as lists. Every variable added to them is indexed by a string
name. Here is an example that stores a Sprite in a list by its name:

var enemyList:Object = new Object();
var enemy:Sprite = new Sprite();
enemy.name = "BadGuy1";
enemyList [enemy.name] = enemy;

Now let’s say you had a whole batch of enemies. You could use
a for loop to add them to the list.

var enemyList:Object = new Object();
for (var i:int = 0; i < 10; i++) {

var enemy:Sprite = new Sprite();
enemy.name = "BadGuy" + i;
enemyList [enemy.name] = enemy;

}

Later on, if you need to perform an action on all your enemies,
you could simply run another for loop, but this time a for…in loop.

for (var i:String in enemyList) {
var enemy:Sprite = enemyList[i];
//DO SOMETHING TO ENEMY SPRITE

}

It’s worth noting that when you iterate through an object using a
for…in loop that it goes through the object in reverse order from
newest item added to oldest, so you can’t count on an object for
your items to be in a particular order. However, when order doesn’t
matter in your list, this is a powerful tool because you can gain
direct access to any item in the list. If you need to remove an item
from an object list, you simply use the delete command along with
the item’s key. Items in objects are “keyed off” a string value. In the
example above, each enemy in the list is indexed by its name, and
future attempts to access this enemy can only be done if you know
its name or run through a loop to find it. Suppose when the user
clicks on an enemy, it should be destroyed and therefore be
removed from the list. Once the enemy is clicked on, you have a
reference to it through a MouseEvent. You could then remove it
from the list like the following example.

protected function enemyClicked(e:MouseEvent) {
var enemy:Sprite = e.target as Sprite;
delete enemyList[enemy.name];
//REMOVE DISPLAY OBJECTS, ETC

}

62 Chapter 4 //COMMENTS FTW!

Pros: Easy to access items, fast to iterate through, easy to
garbage collect
Cons: Unordered, must have a unique string property such as a
name associated with whatever you’re storing (using the same
string twice will override the first one)
When to use: Best used when you’re not interested in the
order of a group of items and when you have a unique string
identifier like a name to use

Arrays
Up until AS3, Objects and Arrays were the only two native types of
data storage available in Flash. An Array is an ordered list of items
that are indexed by number, starting from 0. Arrays can have an
unlimited number of items added to them using the push, unshift,
and splice commands. When an item is removed using the pop,
shift, or splice commands, the array size, or length, is reduced.
Items in the list can be set to null values, but the null still occupies
a slot in the array. Like Objects, Arrays are easy to set up and use.
Once an Array is created, the push command is used to add items
to the end of it. Likewise, the unshift command can be used to
insert items at the front.

var enemyList:Array = new Array();
for (var i:int = 0; i < 10; i++) {

var enemy:Sprite = new Sprite();
enemyList.push(enemy);

}

One big advantage of Arrays is the ability to easily combine
them. Say you had separate lists of enemies, obstacles, and pick-
ups, and you needed to perform an operation on all of them and
also keep them in their discrete lists. You can use the concat
method to concatenate the Arrays together into one list and only
loop through one larger Array.

var combinedList:Array = enemyList.concat(obstacleList,
pickupList);

for (var i:int = 0; i < combinedList.length; i++) {
var item:Sprite = combinedList[i];
//PERFORM SOME OPERATION ON EACH ITEM

}

Another advantage of using Arrays is the availability of sorting
options. Because it is an ordered list, the order can be changed
dependent on almost criteria you specify using the sort and sortOn
commands. The sortOn method is particularly helpful when you
have an Array of DisplayObjects such Sprites. Say you wanted to

Chapter 4 //COMMENTS FTW! 63

sort the list by their “x” positions from left to right. The code would
probably look something like the following:

enemyList.sortOn("x");

There are also special constants built into the Array class that
allow you to specify sorting order. By default, Arrays will sort in
ascending order, that is, from smallest to largest. You can add a
second parameter to the sortOn method to specify a different order.

enemyList.sortOn("x", Array.DESCENDING);

For all this flexibility in ordering, Arrays are not without their
shortcomings. Unlike the Object example where we were able to
pinpoint an item in the list based on its name, there is no safe way
to do that with Arrays. You could theoretically store each item’s
index in the Array in the item itself, but that would assume that the
Array order would never change at all—a largely unsafe assumption
to make. In order to find an item in an Array, you must iterate
through it, compare each item to the one you’re looking up, and
break out of the Array once you’ve found it to minimize processing
cycles.

protected function enemyClicked(e:MouseEvent) {
var enemy:Sprite = e.target as Sprite;
for (var i:int = 0; i < enemyList.length; i++) {

if (enemyList[i] == enemy) {
enemyList.splice(i, 1);
break;

}
}

}

The larger the Array is, the longer this process takes, and it is
obviously a way less efficient than simply keying off a value like in
an Object. AS3 added two methods that simplify the coding of this
considerably: indexOf and lastIndexOf. These two methods basically
do the search for you, simplifying your code to

protected function enemyClicked(e:MouseEvent) {
var enemy:Sprite = e.target as Sprite;
var index:int = enemyList.indexOf(enemy);
enemyList.splice(index, 1);

}

The lastIndexOf method does exactly the same search but starts
at the end of the Array and counts down. While this is definitely
less to type and is cleaner than a for loop, the underlying process
is still the same and large arrays are still taxing on Flash.

Pros: Ordered, lots of sorting options, ease of combining Arrays
Cons: Slower to access specific items (requires iteration), slightly
slower to iterate through than objects

64 Chapter 4 //COMMENTS FTW!

When to use: The best time to use an Array is when you need
your items to be able to be sorted and their order matters.
Arrays also do not have to store all of the same type of item,
making them a little bit more flexible for general-purpose use
(see section “Vectors,” below)

Vectors
A Vector is simply a typed Array, meaning that all items in the list
must be of the same type. By enforcing typing, Vectors are faster to
iterate through and process and take up less memory. They also
have the option to be of a fixed length, that is, no more items can
be added to them. They are slightly differently than Arrays, but all
their other methods are the same.

var enemyList:Vector.<Sprite> = new Vector.<Sprite>();
for (var i:int = 0; i < 10; i++) {

var enemy:Sprite = new Sprite();
enemyList.push(enemy);

}

Pros: All of the pros of Arrays except ability to combine
differently typed Vectors, faster to iterate through than Arrays
Cons: Still requires iteration to access specific items, so a little
slower than objects, requires Flash Player 10 (not available if
you’re still publishing for Player 9)
When to use: If at all possible, you should always use Vectors
over Arrays if all of your items are of the same type. Typically,
in a game, your lists will already be homogeneous anyway, so
switching to a Vector give you some extra performance

Dictionaries
Just as the Vector object improved on Arrays for ordered storage,
AS3 added a new class to improve on basic Objects for storing
unordered lists: the Dictionary object. Unlike regular Objects,
which require a string to be used as the key for an item, Diction-
aries can use any data type, including the item itself. This makes
them even easier to use for complex data types because you don’t
have to have a unique string to identify items. The Dictionary
constructor also contains one parameter called weakKeys, which
defaults to false. When a Dictionary uses weakKeys if an item in
the list and its key are one in the same, and you remove the item
from the list, the key is removed as well. For this reason, I like
to set weakKeys to true. Here is the enemyList example, using a
Dictionary object.

var enemyList:Dictionary = new Dictionary(true);
for (var i:int = 0; i < 10; i++) {

Chapter 4 //COMMENTS FTW! 65

var enemy:Sprite = new Sprite();
enemyList[enemy] = enemy;

}

As you can probably already tell, getting access to a specific
item in a Dictionary is also easier than with a traditional object.
With Dictionary objects, it is necessary to use the new for each
loop in AS3.

for each (var enemy:Sprite in enemyList) {
//DO SOMETHING TO ENEMY SPRITE

}

The delete command applies here the same way it does with
regular objects.

protected function enemyClicked(e:MouseEvent) {
delete enemyList[e.target];

}

Pros: Ability to key off any value, including items themselves;
fast, direct access of an object to individual items; can store
items of any type together
Cons: Unordered, not as helpful for lists of primitive values like
strings or numbers
When to use: As much as possible! Outstanding for storing all
unordered lists of complex objects

ByteArrays
Although not useful for storing lists of objects, the ByteArray class
is designed to store raw binary data, making it a perfect (in fact,
the only) candidate container for things such as image or sound
data. We won’t really use ByteArrays in this book, but they are very
fast and worth mentioning since they are often overlooked.

So What Should I Use For My Lists?
That answer, as with so many questions, is, “Depends.” I tend to
like to use Dictionaries to keep track of all my object lists in a
game and then use Arrays or Vectors only when I need their sort-
ing abilities. You really can’t beat a Dictionary for ease of use or
speed. If I must have an ordered list, I would prefer a Vector to an
Array due to its slight edge in speed. This is not to say that basic
Objects and Arrays are no longer useful. Objects are still great con-
tainers for dynamic data but not as fast for lists as Dictionaries.
Arrays are great to fall back on if you can’t guarantee that all your
list items will be of the same type or if you’re working with older
classes that aren’t configured to handle Vectors.

66 Chapter 4 //COMMENTS FTW!

Custom Data Structures
In the event that you need even more functionality than these
built-in classes afford, you can of course extend any of them to a
new class. One important thing to remember about all of these
classes is that they are dynamic, allowing them to have any proper-
ties added to them at runtime. In order for your subclasses to
inherit this same functionality, they must also be dynamic. We’ll
look at an example of a custom data structure (though not an
extension of any of these) in Chapter 14.

Part 5: Keep Your Comments
to Everyone Else!
Probably the single-most overlooked task of any developer, particu-
larly in crunch time, is commenting code. Comments are invalu-
able when handing code off to another developer, or even just
returning to it later. The convention is usually “the more com-
ments, the better,” but this can actually sometimes make code
harder to read. Here are a few tips for commenting your code.
• Don’t comment the obvious: If a line of code simply declares a

variable called “player,” it should be fairly self-explanatory what
is happening; extra comments like “//CREATING PLAYER
OBJECT” simply clutter up the code.

• Be thorough, but concise: Explain as much as you can in as few
words as you can; if comments break onto multiple lines or trail
off so the reader has to scroll sideways, it breaks the overall
flow of the code.

• When possible, use the ASDoc formatting standards of commenting
classes: This primarily means creating comment blocks in a specific
format (established by Adobe) just prior to properties and methods;
by creating your comments this way, documentation can easily
be generated for your code and many script editors such as
FlashDevelop can use the comments in tooltips to help remind you
of proper syntax (see below for example).

• Keep comments correct: This may sound like an unnecessary
statement, but if you write your comments for a piece of
functionality and later than functionality has to change, your
comments must be updated, too.

• Use header comment blocks: Sometimes a simple, complete
explanation in one place is more effective than a bunch of lines
spread out over a file; if you can explain everything that a class
does in a few sentences at the top of a file, don’t hesitate to do so.
Here is an example of ASDoc formatting—more precise standards

and style guides are available on Adobe’s Web site. This is taken from
a SoundEngine class, which we will look at in a later chapter.

Chapter 4 //COMMENTS FTW! 67

/**
* Plays the sound specified by the name parameter. Checks for the
sound internally first, and then looks for it as an external file.

* @param name String The name of the linked Sound in the
library, or the URL reference to an external sound.

* @param offset Number The number of seconds offset the
sound should start.

* @param loops int The number of times the sound should
loop. Use -1 for infinite looping.

* @param transform transform The initial sound transform
to use for the sound.

* @return SoundChannel The SoundChannel object created by
playing the sound. Can also be retrieved through getChannel
method.

*/
public function playSound(name:String, offset:Number = 0, loops:
int = 0, transform:SoundTransform = null):SoundChannel

Note that the comment block is placed just before the method
itself. It starts with a description of the method and then a list of
parameters it accepts and what it returns. When using an editor
like FlashDevelop or compiling documentation, the method itself
will be used to define things such as the default values of
parameters and specific data types.

The Bottom Line
It is better to comment some than none at all, so even if you’re
pressed for time, you’ll thank yourself later for having put some-
thing in, even if later on it takes you a minute to remember what
you were thinking.

Part 6: Why Does Flash Do That?
Flash and ActionScript have a number of idiosyncrasies that can
throw even seasoned developers off track. Some of these oddities
are instances where the language breaks form with similarly
constructed languages like Java or C#, much to the chagrin of devel-
opers coming to Flash from these languages. Others have to do with
the processing order in which Flash performs commands; some-
times, a bug is simply the result of a misunderstanding of this “order
of operations.” We’ll cover a number of these quirks in this section.

Event Flow
One of the common misunderstandings that I’ve witnessed with
developers first utilizing Flash’s event model is the difference

68 Chapter 4 //COMMENTS FTW!

between DisplayObject-generated events and all other events.
As we discussed earlier, events in ActionScript have three phases:
capture, target, and bubbling. Objects that dispatch events but
are not in the display list (which can include DisplayObjects that
have not been added to the stage) generate events only at the
target phase. In other words, other objects may listen for these
events only by attaching themselves directly to the dispatching
object.

DisplayObjects that are active somewhere in the display list are
capable of dispatching events that pass through all three phases.
When a DisplayObject that is on the Stage dispatches an event, it
actually originates at the Stage level and progresses through each
subsequent child to effectively “tunnel” down to the originating
object—this is the capture phase. The event then enters the target
phase and any listeners attached directly to the DisplayObject will
receive the event. Finally, if the event is set to bubble, it will
reverse its direction back up to the same display hierarchy it
traversed in the capture phase.

Frame Scripts
Before I go any further, I should go ahead and state for the record
that coding on the timeline should be avoided at all costs. There is
basically nothing that you can’t do with classes to control your
DisplayObjects at this point, and forcing your code into classes
imposes better architecture and less sloppy shortcuts, which will
later come back to bite you.

Now, I say basically because until AS3 (Flash CS3, specifically),
you still had to put a stop() action on the last frame of any Movie-
Clip you didn’t want to loop. Since switching to all-class scripting
architecture, I found it very frustrating to not be able to easily
remove this last bit of straggling timeline code from my FLA once
and for all. Then, I discovered an undocumented method of Movie-
Clips. It’s called addFrameScript, and it’s a complete mystery to me
why Adobe hasn’t documented it or encouraged its use because it
is a fantastic piece of code. Basically, it allows you to tell a particu-
lar function to run when a certain frame of a MovieClip is hit.
Unlike all the other MovieClip functions, it is zero-based rather
than one-based, so you must subtract one from the desired frame
number to use it correctly. Here is its syntax in the context of a
MovieClip class.

public function MyMovieClip() {
addFrameScript(totalFrames-1, stop);

}

Now, when the clip reaches the last frame, it will call its stop()
method and not loop. Obviously, this has further-reaching implications

Chapter 4 //COMMENTS FTW! 69

and uses than simply stopping a MovieClip from playing. In fact,
I have come up with a way to use this method to overcome a
defect in ActionScript with regards to MovieClips and frame labels.
Since early versions of Flash, you could put string labels on any
frame in the timeline and use them as reference points for naviga-
tion. Starting from AS3, Adobe finally introduced the ability to see
what label you’re currently on in a clip (with the currentLabel prop-
erty), as well as a list of all the labels in a clip (the currentLabels
property). I’ve long thought that Flash should dispatch an event
whenever a frame label is hit, so you could trigger actions based on
label markers. With addFrameScript, you can! Let’s look at an
example.

Here is an architecture I like to use for my document class in a
Flash file. It involves placing labels on the main timeline to denote
sections of a game; they might be things such as “loader,” “title-
Screen,” “game,” “resultsScreen,”and so on. Figure 4.4 illustrates
this arrangement.

In my document class, I create constants to match these frame
labels, so I can reference them easily and don’t risk misspelling them.
I also import the FrameLabel class, as I will be using it shortly.

package {
import flash.display.MovieClip;
import flash.display.FrameLabel;
public class FrameScriptExample extends MovieClip {

static public const FRAME_LOADER:String = "loader";
static public const FRAME_TITLE:String = "title";
static public const FRAME_GAME:String = "game";
static public const FRAME_RESULTS:String = "results";
public function FrameScriptExample() {

stop();
}

}
}

Once I have all my labels established, I create two functions that
will control my frame events.

private function enumerateFrameLabels():void {
for each (var label:FrameLabel in currentLabels)

addFrameScript(label.frame-1, dispatchFrameEvent);
}

Figure 4.4 For my main
timeline, I set up labels
denoting each section of the
game experience.

70 Chapter 4 //COMMENTS FTW!

private function dispatchFrameEvent():void {
dispatchEvent(new Event(currentLabel));

}

The enumerateFrameLabels method iterates through the list of
FrameLabel objects in the Array currentLabels and adds a frame
script to every frame that has a label. The function it adds is called
dispatchFrameEvent, and all it does is to generate a new event with
the same name as the frame label. Now, every time a frame label
is hit, an event with that label name will be dispatched. By using
events, any number of objects can listen for these frame events.
The rewritten constructor for this class now looks something more
like the following:

public function FrameScriptExample() {
stop();
enumerateFrameLabels();
addEventListener(FRAME_TITLE, setupTitle, false, 0, true);

}

protected function setupTitle(e:Event):void {
//PERFORM TITLE FUNCTIONS

}

It is worth noting that only one function can be assigned to
a frame at a time, so any subsequent addFrameScript calls to the
same frame number will replace the existing script. If you’re at all
nervous about using undocumented features in your work, add-
FrameScript is a pretty safe bet—it’s what the CS5 IDE uses intern-
ally when you place code on the timeline. Let’s say you put a script
on the last frame of the main timeline called stop(). When you
compile the SWF, Flash takes each of these frame scripts and con-
verts them into functions with names such as “frame30” to ensure
they are unique. Then, in the constructors for any clips with frame
scripts, Flash calls addFrameScript to attach these functions to their
respective frames. It looks something like the following:

addFrameScript(30, frame30);

I’m sure there are many other good applications of this method,
so continue to explore it and let’s collectively push Adobe to sup-
port and document it. If it’s good enough for Flash, it should be
good enough for you. One other minor sticking point is that very
early versions of Flash Player 9 prior to Flash CS3’s release (specifi-
cally, 9.0.28 and earlier) do not support addFrameScript. The com-
mand is ignored entirely. Because of this issue, other security
issues, bug fixes, and performance improvements, I recommend
you to only build for Flash Player 9.0.115 or higher. If you’re build-
ing for Flash Player 10 (which is the default for CS5), you don’t
need to worry about it at all.

Chapter 4 //COMMENTS FTW! 71

Working with Multiple SWF Files
At some point, you’ll probably be in the position of using multiple
SWF files to support a game. Perhaps you have multiple game
levels, each in their own SWF, or you have externalized all your
audio a separate file. To load external SWF files at runtime, you’ll
need to use a Loader object, which is part of the display package.
The syntax looks like the following:

package {
import flash.display.Loader;
import flash.display.Sprite;
import flash.display.MovieClip;
import flash.events.Event;
import flash.net.URLRequest;
public class LoaderExample extends Sprite {

protected var resourceLoader:Loader;
protected var resources:MovieClip;
public function LoaderExample() {

loadResources();
}
protected function loadResources():void {

if (!resourceLoader) resourceLoader = new
Loader();

resourceLoader.load(new URLRequest
("resources.swf"));

resourceLoader.contentLoaderInfo.addEventListener
(Event.COMPLETE, resourcesComplete, false, 0, true);

}
protected function resourcesComplete(e:Event):void {

resources = e.target.content as MovieClip;
}
protected function unloadResources():void {

resourceLoader.unloadAndStop();
}

}
}

In the loadResources method of this example, a new Loader
object is created (if one doesn’t already exist) and is used to load a
SWF named “resources.swf.” A listener is then added to the
Loader’s contentLoaderInfo object, which will dispatch events about
the Loader’s progress. Once the load has completed, the resources
variable is assigned to the content of the Loader. If at some point
the data needs to be unloaded, the method unloadResources can
be called to dump the SWF. Developers familiar with AS3 already
will note that the new unloadAndStop, introduced in CS4, is a big

72 Chapter 4 //COMMENTS FTW!

improvement over the previous (and still available) unload method.
It makes sure that all listeners and sounds connected to the loaded
content are properly removed and garbage collected to prevent any
of the assets lingering in memory.

One thing to note about classes in separate SWFs is that, by
default, every SWF has its own “sandbox” to store classes known as
its ApplicationDomain. This is to prevent classes in one SWF collid-
ing with those in another, which is helpful if two SWF files have
similarly named classes that are actually completely different in
their implementation. Most of the time, this is the behavior you
will want, as it protects your class integrity and keeps you from
thinking about how any other content may be built. However,
occasionally, you want to be able to merge a loaded SWF’s Applica-
tionDomain with its container. A good example of this is a SWF
that contains nothing but sounds exported in the library. In order
to easily get access to the classes for these sounds, you would have
to go a roundabout way of looking them up. If you know that none
of the class names in your loaded SWF file will conflict with those
in the container, you can tell Flash to merge the two when the
SWF is loaded. Using the previous example, the loadResources
method would have to change.

protected function loadResources():void {
if (!resourceLoader) resourceLoader = new Loader();
var loaderContext:LoaderContext = new LoaderContext
(false, ApplicationDomain.currentDomain);

resourceLoader.load(new URLRequest("resources.swf"),
loaderContext);

resourceLoader.contentLoaderInfo.addEventListener
(Event.COMPLETE, resourcesComplete, false, 0, true);

}

The new code uses two classes from the system package:
LoaderContext and ApplicationDomain. When you perform a load,
you can specify the context under which the file is loaded. Inside
that context, you can determine which ApplicationDomain the
loaded file should use. By specifying the current domain, any class
definitions in the loaded SWF file will be combined with and
accessible to those in the container. In Chapter 14, we’ll look at a
variation on this process when loading a set of assets.

One point to remember about using Loader objects is that you
must call unloadAndStop to fully unload any content you want to
get rid of. Simply setting the Loader object to null will only elimi-
nate the reference to it, and there is no guarantee that it will be
automatically garbage collected correctly. Fewer things are worse in
Flash than a memory leak that can’t be fixed because there is no
attainable reference to the offending object.

Chapter 4 //COMMENTS FTW! 73

Garbage Collection
AS3’s garbage collection (GC) system, or the mechanism that
removes unused objects from memory, has some peculiarities
that are likely to throw off AS2 developers though they are likely
nothing new to devs from other memory-managed languages.
Ideally, a garbage collector is always keeping track of which
objects are in use and which are not, freeing up as much memory
as possible. In reality, it is not so perfect, but there are ways to
make sure your code conforms to how the GC will work. First,
it’s important to understand in brief how the Flash GC performs
its functions.

The AS3 GC uses two techniques to clean up your objects. The
first is known as reference counting; all the objects in memory
have a number representing how many references there are to that
object. For example, the following code creates three different
references to a single object.

var obj1:Object = new Object;
var obj2:Object = obj1;
var obj3:Object = obj2;

Anytime the number of references to an object changes, Flash
checks to see if that number is zero. If it is, the object is purged
from memory. In this case, as long as we set obj1, obj2, and obj3
to null, the original object will be deleted. Sounds easy and effec-
tive enough, right? Unfortunately, there are a number of scenarios
where a “parent” object may no longer reference its child objects,
but they reference each other, as in the following example.

var obj1:Object = new Object();
var obj2:Object = new Object();
obj1.otherObject = obj2;
obj2.otherObject = obj1;
obj1 = null;
obj2 = null;

In this instance, while we’ve nulled out the references to obj1
and obj2, they now reference each other. As a result, the garbage
collector will not purge them as it does not discriminate between
what is referencing the objects, only that something is. This brings
us to the second method the GC uses to get rid of unused objects.
It is known as mark sweeping. In this process, Flash creates a tree
hierarchy of how all objects are connected to each other that links
back to what is essentially the root of the SWF. Any objects that are
not connected to the main tree in some way, even if they are con-
nected to each other, are marked for deletion from memory.

At this point, you’re probably thinking, “Okay, great. Sounds like
Flash has it covered.” Once again, it is not quite that simple. The

74 Chapter 4 //COMMENTS FTW!

reference counting technique of the GC happens automatically and
immediately when the number of references to an object changes.
However, because mark sweeping requires running the entire
length of the object tree in memory, it is very intense on the sys-
tem and is only run periodically. In my experience, this is usually
pretty frequently on decent machines, but it cannot be counted on
for split-second accuracy. Don’t worry, though—there are a few
things you can do to help the garbage collector run thoroughly and
effectively.
1. Be diligent about removing your references to objects.

If you have multiple references to objects in your classes, I sug-
gest writing a function called cleanUp in classes that contain a
lot of references. This function can perform tasks like setting
references to null and emptying Arrays. By helping the reference
counting mechanism of the GC, you’ll make the entire process
easier on Flash and therefore less taxing on your game.

2. Use weakly referenced listeners.
Event listeners are a commonplace for memory leaks because
developers add them and then neglect to remove them. Any
object that is dispatching events contains a list of all the objects
listening to those events. Even if the listening object has all of its
external references set to null, it will still be in this listener list.
Luckily, there is an option when adding an event listener to use
what are known as weak references. Weak references are not
counted as part of the reference counting mechanism of the GC,
so if only the remaining references to an object are weak, it will
be deleted. Simply set the fifth parameter of the addEventListener
method to true to use weak references. I recommend always
using them as they will save you endless headaches, and there is
not a scenario I have come across yet where using weak refer-
ences had a negative impact.

3. Avoid using dynamic objects other than for lists.
As a best practice, you should always use statically typed
classes, as opposed to dynamic classes, which allow you to add
new properties and methods at runtime. By forcing yourself to
intentionally declare the variables and object references you
want to use in your classes, you keep better track of them. Also,
statically typed classes require less memory as instances
because they do not require a lookup table to hold the dynami-
cally created properties and methods. Dynamic objects are a
common way references to other objects get lost so that they’re
not effectively garbage collected.

4. Use the unloadAndStop method in Flash Player 10.
Like I mentioned a brief while before in the section on loading
external files, unless you’re still developing Flash Player 9 con-
tent, always use the unloadAndStop method for getting rid of
loaded content. It does a far more effective job of preparing all

Chapter 4 //COMMENTS FTW! 75

the objects in the content for garbage collection and will save
you a lot of time trying to manually purge all those references
yourself.
The garbage collector in Flash has many nuances, and Adobe

will surely continue to improve it with each new version of the
Flash Player, hopefully eventually giving developers the ability to
delete an object outright without having to wait for the GC to do it.

Conclusion
Hopefully, this chapter has been an effective rundown on all the
basics you need to know about using AS3 in Flash. This foundation
will allow us to explore new classes and features in later chapters
as we begin to build games. If you’re interested in learning more
about the fundamentals of ActionScript, a good place to start is
Adobe’s documentation on Flash. It is very thorough and covers all
of these subjects and more in detail. Many thanks to Grant Skinner
for his blog posts on garbage collection—they were an invaluable
resource.

76 Chapter 4 //COMMENTS FTW!

5
THE LEAST YOU CAN DO VERSUS
AN ARCHITECT’S APPROACH

CHAPTER OUTLINE
Basic Encapsulation: Classes and Containers 78
Store Relevant Values as Variables and Constants 79
Don’t Rely on Your Stage 80
Don’t Use Frameworks or Patterns You Don’t Understand or That Don’t
Apply 81
Know When It’s Okay to Phone It In and When It Definitely Isn’t 81
Transitioning to Architecture 82
OOP Concepts 82

Encapsulation 83
Inheritance 83
Polymorphism 84
Interfaces 84

Practical OOP in Game Development 85
The Singleton: A Good Document Pattern 86
Summary 89

The subtitle of this book may be How to Follow Best Practices, but
it’s only fair to cover some “worst practices” and basic pitfalls you
should avoid when getting started. As such, the first half will look
at the bare minimum any Flash game developer should do, regard-
less of the circumstances. Once you have the basics known, you
can “graduate” to the second half of this chapter where we’ll exam-
ine how to look at your games like an architect from day one.

One of the most common phrases I hear developers (including
myself from time to time) use to justify lackluster coding is, “Well,
this project just didn’t afford me the time.” The implication here is that
if the developer had more time to do the work, it would have been
done better. I certainly don’t disagree with that premise. Before
I worked at a game company, I was employed by an interactive ad
agency. Anyone who has ever worked at an ad agency knows that there
is never enough time on any project, ever. Forget formalized design
patterns and wireframes, we’re talking about timelines in which it’s

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 77

hard to find time to use the bathroom. I have built the core mechanics
for a game in less (but not much less) than 24 hours; it wasn’t
pretty but it got the job done. I believe most reasonable people
could agree that a day or two turnaround for any game, regardless of
complexity, is utterly absurd, and any project manager or account
executive who agrees to such a timeline should be flogged publicly.

Despite all of this, I do think that abandoning all sense of stan-
dards, forward thinking, or just reasonable programming principles
because you were given a ridiculous schedule is not a good prac-
tice. In my experience, coding a game rigidly and badly saves no
more real time than coding it in a halfway decent way, so why not
strive for the higher standard? In this chapter, I’ll outline some
examples of “the least you can do,” even when you don’t have
much time on your hands. If you follow these basic principles
when you’re in crunch time, you (and anyone else who has to look
at your code) will be thanking yourself later on down the road.

Basic Encapsulation: Classes and
Containers
I once had to make edits to a game in which the developer had, for
the supposed sake of simplicity and speed, put virtually all of the
codes for the game, menu screens, and results screen in the same
document class. Needless to say, it was an organizational night-
mare. There was absolutely nothing separating game logic from the
navigational structure or the leaderboard code. I’m sure at that
time, this kept the developer from switching between files, but at
an ultimately very high cost. The code was an ugly step up from
just having it all tossed on the first frame of the timeline. Here are
the steps the developer should have taken to improve the readabil-
ity and editability of his or her code, in order of importance:
• Move all game logics to its own class. At the bare minimum,

any code that controls the mechanics of a game should be
encapsulated by itself, away from irrelevant information. This is
the core of the game, and the most likely candidate for re-use—it
should not be lumped in with everything else.

• Move code for each discrete screen or state of the game to its
respective class. If the game has a title screen, rules screen,
gameplay screen, and results screen, there should be a class for
each. In addition, the document class should be used to move
between them and manage which one is active.
This doesn’t sound unreasonable, does it? It’s hardly a formalized

structure, but it can be up to far more scrutiny than the previous
“structure.”

78 Chapter 5 THE LEAST YOU CAN DO VERSUS AN ARCHITECT’S APPROACH

Store Relevant Values as Variables and
Constants
If you work with string or numeric properties that represent a value
in your code (such as the speed of a player, the value of gravity in
a simulation, or the multiplier for a score bonus), store them as a
variable or a constant. “Well, duh,” you’re probably thinking right
now, “Who wouldn’t do that?!?” Sadly, I have to say I’ve seen a lot
of codes over the years which were hurriedly thrown together, and
the same numeric values were repeated all over the place instead
of using a variable. Here’s an example:

player.x += 10 * Math.cos(angle);
player.y += 10 * Math.sin(angle);

In their haste, a developer was probably testing values to deter-
mine the proper speed at which to move the player Sprite and just
used the number directly in the equation. It would have been vir-
tually no extra time to simply assign the number to a variable,
speed, and then use the variable in the code instead.

var speed:Number = 10;
//
player.x += speed * Math.cos(angle);
player.y += speed * Math.sin(angle);

Now if something changes in the game before it’s finished
which requires a change in player speed, it will require altering
only a single line of code versus how ever many places that value
was used. Although this seems like a very simple exercise, a num-
ber of otherwise good developers have been guilty of this at one
time or another because they were rushing. While this example is
obvious, there are other instances of this phenomenon, which
might not occur to developers immediately. One example that
comes to mind is the names of event types. Many Flash developers
with a background in ActionScript 2 are used to name events using
raw strings:

addEventListener("init",initMethod);

In ActionScript 3, Adobe introduced constants: values that will
never change but are helpful to enumerate. One of the key uses of
constants is in naming event types.

public static const INIT:String = "init";
addEventListener(INIT, initMethod);

There are a number of reasons for following this syntax. The
first is that it follows the above example: if you are going to use

Chapter 5 THE LEAST YOU CAN DO VERSUS AN ARCHITECT’S APPROACH 79

a value more than once anywhere in your code, it should be stored
in memory to change it easier. The second reason is that by declar-
ing event types and other constants in all capital letters, they stand
out in your code if someone else is looking at them. Perhaps the
most important reason, however, is compile-time checking. When
Flash compiles your SWF, it runs through all the codes to look for
misuse of syntax and other errors.

addEventListener("init", method1);
addEventListener("inti", method2);

If I had the previous two lines of code in different parts of the
same class, Flash would not throw an error when I compiled it.

public static const INIT:String = "init";
addEventLister(INIT, method1);
addEventLister(INTI, method2);

However, had I used a constant value from above and mis-
spelled the name of the constant, Flash would have warned me
about my mistake when I tried to compile it. This type of checking
is utterly invaluable at the eleventh hour when you’re trying to get
a project out the door and don’t have time to debug inexplicable
errors.

Don’t Rely on Your Stage
When a developer is working on a game in a crunch, it is often in a
vacuum. He or she can take certain things for granted, such as the
size of the Stage of their SWF. However, if that SWF is loaded into
another container of different dimensions, the game’s mechanic
can be adversely affected. For instance, the following lines of code
center an object horizontally and vertically on the stage, assuming
its container lines up with the upper left-hand corner of the stage
and its registration point is in its center.

player.x = stage.stageWidth/2;
player.y = stage.stageHeight/2;

If the SWF containing this code is loaded into a larger SWF, it is
unlikely it will still have the desired effect. The better option in this
case is to use the less-frequently known width and height values in
the LoaderInfo object for the SWF. Every SWF knows what its
intended stage size should be and that information is stored in an
object that is accessible to every DisplayObject in the display list.
The two lines above would simply become:

player.x = loaderInfo.width/2;
player.y = loaderInfo.height/2;

80 Chapter 5 THE LEAST YOU CAN DO VERSUS AN ARCHITECT’S APPROACH

These values will stay consistent even if the stage does not. One
exception to this is if you are working with scalable content (like a
universal iPhone/iPad app) and the original size of the stage is
irrelevant to how elements on the screen need to be laid out.

Don’t Use Frameworks or Patterns You Don’t
Understand or That Don’t Apply
This may sound like an odd item in a list of bad practices to avoid
when you’re pressed for time, but it is yet another very real sce-
nario I’ve witnessed with my own eyes. It is the opposite of gross
underengineering—obscene overengineering—and it is every bit as
much a crime … as development crimes go. An example might be
trying to apply a complex design pattern to a very simple execu-
tion. Some developers are tempted by many OOP frameworks that
exist because of the generosity of the Flash community as a way to
speed up development in a crunch. However, if the developer
doesn’t really understand the framework and how to implement it
effectively, they will have essentially added an enormous amount of
bulk to their project for no reason and will often end up “rewiring”
how the framework is intended to function because it should never
have been used in the first place.

Another project I recently had to make edits was created with a
model-view-controller (MVC) framework designed to force adher-
ence to the design pattern of the same name. However, because of
the architecture of the framework, it meant that related code was
scattered over at least 20 different class files. Some of the classes
only had one or two methods or properties associated with it, mak-
ing it a bread-crumb trail to attempt to debug. It was a classic
example of overengineering; the game was not complicated or var-
ied enough to warrant such a robust system, but the developer
equated using an OOP framework with good programming, so they
used it anyway. As a result, it took probably twice as long to fix
bugs in the game because it was hard to track down where the
logic for different parts of the game was stored.

Know When It’s Okay to Phone It In and
When It Definitely Isn’t
If you’re producing games independently of an employer or client,
either for profit or for an experiment, the stakes are much lower.
Fewer people, if any, are ever going to see your code, let alone
have to work with it. You can get away with some sloppier stan-
dards or rushed programming. In fact, some of the best founda-
tions for games I’ve seen have been born out of hastily thrown

Chapter 5 THE LEAST YOU CAN DO VERSUS AN ARCHITECT’S APPROACH 81

together “code brainstorms.” In experimentation, all you’re inter-
ested about is the “idea” behind a mechanism.

However, the moment you start answering to anyone else about
your code, be it a client or a coworker, it is vital to take the time to
do it right. No one is perfect, and no one’s code is perfect either,
but there’s a huge visible difference between someone who made a
genuine effort and someone who did not. Even if you’re indepen-
dent now, don’t turn a blind eye to your coding practices—you
might want to get a job someday and many employers like to see
code samples. Now that we’ve looked at the bare minimum, let’s
look at higher ideals toward which we should strive.

Transitioning to Architecture
Ever since ActionScript 3 was introduced, there has been a flurry of
interest regarding architecture and design patterns. If you read
Chapter 1, you will know that design patterns are basically a blue-
print or template for solving development problems. They are
meant to provide re-usable architecture when building applications.
In some areas of the programming community, design patterns are
an essential part of application development. That said, more often
than not, design patterns implemented in ActionScript tend to
hamper development because they work against the natural grain
of the language. One reason for this is that AS3 is already some-
what designed as a language to work in a certain way, specifically
with events. In this chapter, we’ll explore some of the basic funda-
mentals of object-oriented programming to keep in mind as we
develop, some programming styles and design patterns that work,
and when you should ignore the hype.

OOP Concepts
As I mentioned in Chapter 1, object-oriented programming (OOP)
is a model of software design centered around the concept of
objects interacting with each other. To put it into game terms,
every character on the screen in a game would be a unique object,
as well as interactive elements around them. They would all have
commands they accept and messages they can broadcast to each
other. By having each object responsible for its own behavior, pro-
gramming becomes much more modular and flexible. Abstractly,
this is probably not too a difficult concept to grasp. In practice, it
can be difficult to achieve without a certain amount of planning
and forethought. This is where design patterns arose; by using an
“approved” style of software design, planning an application
became easier because the template was already designed. Note,
I said application. Many of the accepted design patterns in the

82 Chapter 5 THE LEAST YOU CAN DO VERSUS AN ARCHITECT’S APPROACH

industry work extremely well for applications that perform specific
tasks, such as productivity apps, utilities, design software, and so on.
However, design patterns aren’t always the answer for game devel-
opment, because games are meant to feel more like “experiences”
than rigid, predictable business software. The best solution to
develop a game engine may not follow an “accepted” pattern at all,
and that’s perfectly okay. However, some basic principles should be
followed when using OOP so that your code is modular and scalable.

Encapsulation
One of the most fundamental OOP concepts is encapsulation.
Briefly, encapsulation is the notion that an object (or class, in
ActionScript) should be entirely self-managed and contained.
An object should not have to know anything about the environment
in which it exists to carry out its functions, and it should have a pre-
scribed list of functions (or interface) that other objects can use to
tell it what to do. In order to send information to objects outside, it
should send messages that can be “listened to” by other objects.
You can think of a well-encapsulated object like a soda vending
machine. All of the inner workings are hidden away from you, and
its functionality is distilled down to the buttons you can press to
select a drink and the bin in which you can “listen” to receive your
purchase. There is no reason for you to know what is going on
inside the machine; it might be a couple of gnomes brewing and
canning the soda right there on the spot or it might just be a series
of tubes. Either way, all you’re interested in is getting your tasty
sugar water through an interface that is easy to understand and
use. If you look at any of the built-in classes in Flash, they follow
this same pattern. The only information listed about a class in the
documentation is its public methods, properties, and events. There
is certainly more going on “under the hood” than what we’re
exposed to, but we don’t need to know about all of it. Your goal
should be the same in developing your classes for games.

Inheritance
Say we have two classes, Chair and Sofa. Each of these classes
share similar traits such as weight, size, number of legs, number of
people they can seat, and so on because they both are types of sit-
ting furniture. Instead of defining all of these traits in both classes,
we could save ourselves time by creating a class called Furniture
and adding the common traits to those. We could then say that
Chair and Sofa inherit those properties by being (or extending)
Furniture. This is the concept of inheritance; all objects in the real
and virtual worlds have a hierarchy. When programming in an
object-oriented style, the key to maximizing efficiency is to recognize

Chapter 5 THE LEAST YOU CAN DO VERSUS AN ARCHITECT’S APPROACH 83

the relationships of one object to another and the features they
share. Adding a property to both Chair and Sofa then becomes as
simple as adding that property to Furniture. When you extend a
class, the new class becomes its subclass and the original is now
referred to as the superclass; in the previous example the Furniture
is the superclass and the Chair and Sofa are subclasses. There are
some practical limitations to pure inheritance (namely that a class
can only extend one other class) that we’ll discuss shortly.

Polymorphism
Although it sounds like an affliction one might develop in a science
fiction novel, polymorphism is basically the idea that one class can
be substituted in code for another and that certain behaviors or
properties of inherited objects can be changed or overridden.
ActionScript only allows for a basic type of polymorhpism, so that’s
all we’ll cover here. Take the Chair from the previous example on
inheritance. Now, let’s say that we extend Chair to make a High-
Chair for an infant. Certain properties of the chair may not apply
or behave differently in the HighChair versus the normal Chair. We
can override the features that are different in the HighChair but
continue to inherit those that are similar. In practice, this process
is not as complicated as it sounds, and I will point it out when it is
used.

Interfaces
A core principle of object-oriented programming is the separation
between an interface and an implementation. An interface is simply
a list of public methods and properties, including their types. An
implementation would be a class that uses that interface to define
what methods and properties will be publicly available to other
classes. This concept can be initially confusing, so let’s look at an
example. Note in this example (and throughout the rest of this
book) that interface names in ActionScript start with a capital I by
convention.

In the section “Inheritance,” we used an example of a Chair
and Sofa extending from Furniture. However, if you were to intro-
duce another piece of furniture, a Table for instance, you would
now be presented with a problem. While all three of these objects
are Furniture, they have very different uses. The Table has no need
for methods that involve people sitting down, and the other two
have no need for methods that set dishes on them. Theoretically,
you could create a whole structure of inheritance, breaking down
Furniture into SeatingFurniture, DisplayFurniture, SupportFurni-
ture, etc., but you can see that this is becoming extremely
unwieldy. Also, any changes that are made in large inheritance

84 Chapter 5 THE LEAST YOU CAN DO VERSUS AN ARCHITECT’S APPROACH

structures can “ripple” down to subclasses and create problems
where none existed before. This is where interfaces come in very
handy.

For these three classes, you can simply define distinct interfaces
that support each one’s specific needs. You could break down the
interfaces as such:
• IFurniture: contains move() method
• ISeatedFurniture: contains sitDown() method
• ILayingFurniture: contains layDown() method
• ITableFurniture: contains setDishes() method

Unlike inheritance, where a class can only inherit directly from
one other class, you can use, however, many interfaces you like
with a single class. The Chair would implement IFurniture and
ISeatedFurniture. The Sofa would contain those two, as well as
ILayingFurniture, and the Table would contain IFurniture and ITa-
bleFurniture. Also, because interfaces can extend one another, the
latter three interfaces could all extend the first one as well, making
implementation even simpler. Now that you have some basic inter-
faces defined for different furniture purposes, you can mix and
match them as needed to apply to a particular piece of furniture.

Don’t worry if some of this abstract terminology gets confusing.
When we build a full-scale game in Chapter 14, you’ll be able to
see these concepts in practice.

Practical OOP in Game Development
By default, AS3 supports OOP and good encapsulation through the
use of events to send messages between objects. I’ve heard AS3’s
event model described as being akin to the Observer design pattern,
but regardless of the niche it falls into, it is the native way in which
the language operates. Remember that despite the advantages
other patterns may offer, all of them are altering the default beha-
vior of the language if they deviate from this model. Figure 5.1
shows the relationship of objects to each other in AS3’s hierarchy.

P
u
b
lic

 in
te

rfa
c
e

P
u
b
lic

 in
te

rfa
c
e

Dispatch events

Dispatch bubbling

events*

Dispatch events

Object1

(root

level)

Object2 Object3

Eventdispatcher/display list* hierarchy
Figure 5.1 The basic event
and communication model for
AS3.

Chapter 5 THE LEAST YOU CAN DO VERSUS AN ARCHITECT’S APPROACH 85

In this illustration, Object1 is at the top of the hierarchy either as
the root DisplayObject or just as a generic data EventDispatcher. It has
a reference to Object2 and can give it commands directly via its public
interface because it knows Object2’s type. However, Object2 has no
way of knowing its parent without breaking encapsulation. In fact,
Object2 should be able to function regardless of what its parent object
is. In order to send information out, it dispatches events. If Object1
adds itself as a listener to Object2, it will receive these events. The
same is true between Object2 and Object3. If all of these are
DisplayObjects, any events Object3 sets to bubble will eventually reach
Object1 if it is listening for them. You can think of these objects as a
line of people all facing one direction. The person at the back of the
line can see all the other people and address each one directly, even if
it has to go through the people directly in front of them. However,
everyone has no way of knowing whom, if anyone, is directly behind
him or her or if they are even listening. All they can do is say some-
thing (dispatch an event); they don’t have to care whether it is heard.
By avoiding a reliance on knowing the hierarchy above any particular
object, adding new objects to the hierarchy becomes relatively trivial.

In Fig. 5.2, we have added Object4 to the second level of the hier-
archy. All that needs to change is that Object1 needs to know the cor-
rect type of Object4 to properly address its public interface, and
Object4 needs to know the same information about Object2. Granted,
this is a very abstract and simple example, but a well thought-out
structure will allow you to make changes like this without dire conse-
quences to the rest of your application. Because games can vary so
widely in their mechanics and behavior and because elements of
gameplay tend to change throughout playtesting, having a flexible
system is a requirement when building a game engine.

The Singleton: A Good Document Pattern
Although I don’t subscribe to anyone about the design pattern
for game development, I do like to use one particular pattern
for the document class of my games. That pattern is known as

P
u
b
lic

 in
te

rfa
c
e

P
u
b
lic

 in
te

rfa
c
e

Dispatch events

Dispatch bubbling

events*

Dispatch eventsDispatch events

Object1

(root

level)

Object2

P
u
b
lic

 in
te

rfa
c
e

Object4 Object3

Eventdispatcher/display list* hierarchy
Figure 5.2 A model similar to
Fig. 5.1, but with a new object
inserted into the hierarchy.

86 Chapter 5 THE LEAST YOU CAN DO VERSUS AN ARCHITECT’S APPROACH

the Singleton. The name sort of implies the concept behind it.
A class that is a Singleton will only ever have one instance of itself
in memory and provides a global point of access to that instance.
In the context of a document or top-level class in a site, it ensures
that there is always an easy way to get back to some basic core
functionality. Say, for instance, that all the text for my game is
loaded in from an external XML file because it is being localized
into other languages. I don’t want to load the XML over and over
again whenever I need it, so it makes sense for my document
class to be responsible for loading it and then make it available
to all the objects down the display list. The Singleton pattern
provides a good way of doing this because it essentially creates a
global access point from anywhere, even non-DisplayObjects.
However, this is a double-edged sword because abuse of this
pattern to store too much data or rely too heavily on references
back to the main class will break your encapsulation. In practice,
you should never put references to a Singleton class inside an
engine component you intend to re-use as this will make it too
rigid. It should be reserved for classes that are being built for that
specific game. Let’s look at an example of a class set up as a
Singleton. This file can be found in the Chapter 5 folder under
SingletonExample.as.

package {

import flash.display.MovieClip;

public class SingletonExample extends MovieClip {

static private var _instance:SingletonExample;

public function SingletonExample(se:SingletonEnforcer) {
if (!se) throw new Error("The SingletonExample
class is a Singleton. Access it via the static
getInstance method.");

}

static public function getInstance():SingletonExample {
if (_instance) return _instance;
_instance = new SingletonExample(new
SingletonEnforcer());

return _instance;
}

}
}

internal class SingletonEnforcer {}

Chapter 5 THE LEAST YOU CAN DO VERSUS AN ARCHITECT’S APPROACH 87

Traditionally in other languages, a Singleton class would have
a private constructor function, preventing you from calling it.
However, in AS3, all constructors must be public, so we have to put
in an error check to enforce proper use. The class keeps a static refer-
ence to its only instance, and the static getInstance method returns it.
To prevent someone from arbitrarily instantiating the class, we create
a secondary private class that is only accessibly to the main docu-
ment. Think of it like the secret password for the Singleton’s con-
structor. Only the getInstance method knows how to properly create
a new SingletonExample instance as it will fail without this private
class. This is a pretty commonly accepted way of dealing with basic
Singleton classes in AS3. However, this particular example will also
break when used as a document class. This is because Flash will
automatically try to instantiate the class to create the display list hier-
archy. To get this, we must modify the time of instantiation, alter the
way the constructor works, and eliminate the private class. This new
version can be found in SingletonExampleDocument.as.

package {

import flash.display.MovieClip;

public class SingletonExampleDocument extends MovieClip {

static private var _instance:SingletonExampleDocument;

public function SingletonExampleDocument() {
if (_instance) throw new Error("This class is a

Singleton. Access it via the static
SingletonExampleDocument.getInstance method.");

_instance = this;
addEventListener(Event.REMOVED_FROM_STAGE, onRemove,
false, 0, true);

}

private function onRemove(e:Event):void {
_instance = null;

}

static public function getInstance():SingletonExample-
Document {

if (_instance) return _instance;
_instance = new SingletonExampleDocument();
return _instance;

}
}

}

88 Chapter 5 THE LEAST YOU CAN DO VERSUS AN ARCHITECT’S APPROACH

As you can see in this modified version, we allow instantiation
through the constructor once, relying on Flash to do it for us. Once
it is created, the constructor will throw an error from here on out.
The other addition we made is in case this document is loaded
into another SWF. If this game is loaded into a container that has
the ability to load and unload it multiple times, it’s best to have
the Singleton cleanup by itself once it is removed from the stage.
This will prevent persistence of the Singleton in memory.

For another example of a Singleton in practice, refer to Chapter 8
on audio. The SoundEngine class we will create there will follow
the same pattern. These types of controllers, or “engines,” are good
candidates for Singletons because they need to be easily accessible
from anywhere in your game.

Summary
If you are interested in learning more about design patterns to use
in your game development, there are links to good articles and
other books on this book’s website, www.flashgamebook.com. The
bottom line to remember is to always do what makes sense for
your situation and don’t go overboard with a solution that isn’t
applicable to what you’re doing. Ultimately, if your game is no fun,
no one will care that it is a perfectly implemented, flawlessly
designed model-view-controller pattern. Learning to program well
and effectively is a journey, and given the ever-changing landscape
of new languages, technologies, and platforms, no one will ever
reach a destination where they can say “I’m done!” Well, someone
might, but they’ll be left in the dust pretty quickly by everyone else.

Chapter 5 THE LEAST YOU CAN DO VERSUS AN ARCHITECT’S APPROACH 89

This page intentionally left blank

6
MANAGING YOUR ASSETS AND WORKING
WITH GRAPHICS

CHAPTER OUTLINE
A Better File Format 91
A Few Words about Organization 92
Working with Graphics 93
Raster Formats to Use 95

Compression 96
Smoothing 99
Deblocking 99
External Image Tools 99

Key Points to Remember 101

While code is certainly a huge part of most games, the assets the code
manipulates (art, sounds, text) are usually equally important. In all
previous versions of Flash, all binary resources were stored in a pro-
prietary format known as FLA. Unlike most programming languages
where such resources reside as individual files separate from the
code, every Flash file has an associated library that contains all the
assets that will get bundled into the SWF at compile time. Luckily for
us, this is one of the biggest and most welcome changes in Flash CS5.

A Better File Format
The FLA source file format of Flash has been a source of consterna-
tion for many developers over the years. It is completely binary and
proprietary and can often be bulky if uncompressed assets are
imported into it. This makes it very unfriendly for version control
systems, like subversion, as each time the file is versioned it must
upload the entire file. When you’re working with a 30- to 40-MB FLA
file (due to large audio assets or bitmaps), checking that file just
10 times will use 300–400 MB of disk space. In CS5, Adobe introduced
a new file format called XFL. It consists of an XML file that stores all
of the information about your settings, library, and timelines, and all
of the raw assets in your library zipped into one file. In addition, and

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 91

even more importantly, Flash will now let you save the project in an
uncompressed format. This means that instead of an FLA, you now
have a folder with raw assets and the XML information file. Now
when you use a version control system, only those elements that
have changed will be updated. For example, if you only change the
publish settings of an application in a minor way, only the settings
of XML file will be versioned, and because it is text based, only the
part of it that changed will be versioned. Another example would be
when a developer receives an updated asset, such as a replacement
sound file or bitmap. They can simply replace the file, republish the
SWF, and check in the new file. This is a huge boon for projects with
multiple developers and/or artists who work on the same files. Two
people could theoretically work on the same project file, updating
different parts of it, and a version control system would be able to
merge their changes together (assuming there were no conflicts).

CONVERTING FLAS FROM CS4 AND EARLIER
If you save a CS4 FLA as an uncompressed XFL in CS5, you don’t get an
exposed folder of assets. Instead, because the assets were already con-
verted to the own binary format of Flash, you get a folder of indistinguish-
able .dat files. This can be frustrating to discover if you’re looking to
update old files. If you plan to make more than minor edits to an older
file, it might be worth taking the time to recreate it in a “fresh” CS5 file so
that you can take full advantage of the format.

A Few Words about Organization
If you’ve worked in Flash for a very long time, you’ve probably had
the opportunity to open someone else’s Flash file from time to
time. I’ve rarely found two developers who organize their library
the same way. For a while, a popular convention was to sort library

Figure 6.1 The new XML-based
file structure of Flash CS5+.

92 Chapter 6 MANAGING YOUR ASSETS AND WORKING WITH GRAPHICS

assets by type, so there would be folders called MovieClips, But-
tons, Bitmaps, etc. Some prefer to sort it by use, reflected in folder
structures like Fig. 6.2.

The important thing to remember is that any organization is
better than none, and often the complexity of the project will
dictate the best structure to use. I typically use a hybrid of the two
aforementioned methods. I will keep my visual assets (MovieClips,
Images, Video) sorted by use and then by type inside their respec-
tive folders. I then keep items like sounds and font symbols orga-
nized strictly by type. My reasoning behind this is that having the
items physically near each other in the library makes it easier to
select and edit the properties of multiple items.

Working with Graphics
We’re long past the days of Pong; the bar has been raised. With
few exceptions, games are expected to have good-looking graphics
and animation that feels natural and smooth, and Flash games are
no different. In this section, I will outline the best formats to use
for graphics in games and the use of the timeline for animation.
I won’t discuss creation of artwork for a couple of reasons. First,
I am not an artist. Second, as Flash games become more and more
sophisticated, it is less likely that one individual will be responsible
for both the artwork and the code in a single game. If you work
alone and/or you are interested in designing graphics for Flash
games, I recommend checking out Robert Firebaugh’s Flash

Figure 6.2 A library organized
by “use.”

Chapter 6 MANAGING YOUR ASSETS AND WORKING WITH GRAPHICS 93

Professional 8 Game Graphics. While it’s several versions behind
now, it is still a great resource for learning how to design efficient
artwork for use inside Flash.

Flash supports both vector and raster (bitmap) artworks. Each
has its advantages and disadvantages in game development. Vector
graphics are resizable without any quality loss, have usually much
lower file size than raster, and they can be manipulated over the
timeline to create seamless (if rather time-consuming) animations
on the level of professional cartoons. However, vectors can be
notoriously heavy on the CPU in large numbers or when used in
large objects. Vector artwork is usually best created directly inside
Flash though it can be done in a tool such as Adobe Illustrator.
The upside of the first option is that Flash will automatically opti-
mize vectors as they are drawn to use the least number of points
possible. In a program like Illustrator where accuracy and pixel-
perfect quality are valued over optimization, art tends to end up
with bulkier vectors that must be cleaned up after they are
imported into Flash. If you are working on a project with all vector
artwork, less points translate to faster rendering and lower file size.

Most everyone will be familiar with and has used raster images,
even if all you’ve ever done is use them as your computer’s wall-
paper. They have few advantages over vectors. First, they offer
photorealism on a level that would not be possible without overly
complex vector shapes. Many different art programs, including
most 3D software, will render out images, where only a few will
generate Flash-compatible vector files. They are also much less
intense to render to the screen as Flash considers them on the
level of complexity of a vector rectangle. They are not without their
drawbacks, unfortunately. Raster images become exponentially
heavy in file size as they increase in pixel size and cannot be
resized inside Flash without a certain level of quality loss. Also,
images with transparency are more taxing on the Flash renderer
than ones without.

At this point, you may be saying “So, neither one is a clear win-
ner. Which one should I use?” Once again, like library organization
preferences, this is usually dictated by the project. There is no single
right choice that will work across the board; very rarely I will use all
one or the other. That said, I lean more heavily on raster images
than I do vector when it comes to game development. Many games
rely on the ability to render objects to the screen quickly to maintain
a sense of excitement, and a significant number of detailed vectors
will slow things down too much. As a general rule, the art for games
I work on is usually about 80% raster and 20% vector. Characters,
backgrounds, particle effects, etc. are all raster. Menus, in-game dis-
plays, and of course any text are vector.

94 Chapter 6 MANAGING YOUR ASSETS AND WORKING WITH GRAPHICS

Raster Formats to Use
The two best raster formats to use in Flash are JPEG and PNG.
JPEGs are great when you don’t need any transparency because
the compression level and quality you can get out of external pro-
grams like Photoshop is better than what Flash will perform intern-
ally. Because of their lack of transparency, they also have a lower
overhead on the Flash renderer. PNGs are the best solution when
you need transparency in your images, but they cost more in file
size and in processor power.

Most projects will be a blend of the two formats. Whenever pos-
sible, it’s a good idea to use a JPEG for any assets that can function
in a rectangular format without any transparency. This includes the
following:
• Game and menu screen backgrounds
• Images that are going to be used as a texture in a bitmap fill
• Art that is going to get masked inside of another shape
• Overlays that will be used for some type of graphical effect over

the game, like static or interference
PNGs are the best choice for clean transparency and are better

for the smaller elements in a game, including as follows:
• Characters, especially those that are animated
• In-game elements that need to be separated from the

background
• User interface elements like buttons and other irregular shapes
• Any image that has fine lines and needs pixel-perfect accuracy;

JPEGs have a tendency to blur or muddy pixel-fine details in an
image

Figure 6.3 The background art
for a game, saved as a JPEG
file.

Chapter 6 MANAGING YOUR ASSETS AND WORKING WITH GRAPHICS 95

8-BIT PNGs WITH AN ALPHA CHANNEL
PNGs come in two flavors: 32 bit (or 16 million colors with a full 8-bit
alpha channel) and 8 bit (256 colors). A seemingly little known fact about
Adobe Fireworks is that it can generate a special type of PNG, which has
an 8-bit color channel and an 8-bit alpha channel (sometimes called
PNG8+8). If you’re using artwork that has a fairly flat color palette or that
won’t degrade when the number of colors is reduced, this format is an
outstanding option. It allows you to keep nice clean edges and transpar-
ency, thanks to a true alpha channel while reducing the file size by over
50%. In fact, this format is often smaller than the compressed version of
a 32-bit PNG inside of Flash, and the resulting images look better.
Hopefully, this format will eventually find its way into Photoshop’s Save
For Web feature. Until then, you can always use Fireworks to batch process
your 32-bit PNGs to 8-bit PNGs.

Of course, these are just guidelines, not hard-and-fast rules, but
using a combination of formats that take file size into account up
front will save you time in the optimization phase. Another aspect
of dealing with raster images is how Flash will handle them when
compiling the game. Flash has a couple of different options when
it comes to exporting images that can have an impact on how your
game looks. Simply double-click on an image in your library to
view its properties. You can also select multiple images at a time
and adjust the properties of all of them at once.

Compression
When you import a JPEG file that has already been optimized in
another application, Flash will use it “as-is” by default. But in case of
PNGs, if the image has 256 colors or less, Flash will automatically

Figure 6.4 A character
sequence of individual PNG
files, with Onion Skinning
turned on in Flash.

96 Chapter 6 MANAGING YOUR ASSETS AND WORKING WITH GRAPHICS

downconvert it to an 8-bit PNG file, and you get instant file size
savings with no quality loss (also known as lossless compression).
If the image has more than 256 colors, Flash will apply its own
version of JPEG compression when your file is compiled. The level
of this compression can be controlled at the document level in the
Publish settings (where it defaults to 80%) and on a per-image
basis. For any images that will be still on screen for any length of
time, a setting of 70–80% is recommended to prevent too much
degradation. For images that are used in a rapid sequence, like

Figure 6.5 The result of saving
a JPEG from Fireworks.

Figure 6.6 The result of saving
a 32-bit PNG from Fireworks.

Chapter 6 MANAGING YOUR ASSETS AND WORKING WITH GRAPHICS 97

character animation, I’ve gotten away with as low as a setting of
50% without it being noticeable. In fact, at 30 frames per second,
the human eye cannot perceive enough detail and the natural
blurring effect of JPEG compression will create a nice sense of
motion blur. Never use anything over 90% unless the game is
going to be displayed on an enormous high-resolution display; you
likely won’t be able to tell the difference and the file size will jump
up dramatically.

Figure 6.7 The result of saving
an 8-bit PNG from Fireworks.

Figure 6.8 The Bitmap Properties panel will let you adjust the properties of a specific image or multiple images.

98 Chapter 6 MANAGING YOUR ASSETS AND WORKING WITH GRAPHICS

Smoothing
By default, Flash does not re-render images as they are distorted in
any form on the stage, including skewing, scaling, or even rotating
(at any angle not divisible by 90). This causes a jagged, blocky
effect that is very noticeable on any images that are not moving
rapidly. If you have any raster elements in your game that need to
be able to rotate or resize from time to time, consider checking the
Allow smoothing box in the Bitmap Properties panel. While it looks
considerably cleaner, this does tax the processor a little bit more
per image, so use it sparingly and consider disabling it for some
images if your game begins to stutter later on in testing.

Deblocking
Enabling deblocking will apply some extra smoothing to improve
images that are set to an extremely low JPEG quality, as in 30 or
less. Unless you are using many heavily compressed images,
deblocking is probably not a feature you will need much.

External Image Tools
The artists I work with typically use Adobe Photoshop and Adobe
Fireworks raster game art. They produce very good JPEG compression
and very clean PNG files. If you’re on a tight budget and can’t afford
(or don’t need all the high-end features of) Photoshop, Fireworks by
itself is a very satisfactory application. As of this writing, it is $300.

For vector art, I’ve known a number of artists who use the tools
in Flash to great effect, which cost nothing extra and automatically
optimize the vectors as they are created. Fireworks also has a very

Figure 6.9 The Publish settings
window allows you to set the
default image quality.

Chapter 6 MANAGING YOUR ASSETS AND WORKING WITH GRAPHICS 99

nice set of vector tools that export easily into Flash. Over the years,
I’ve also worked with artists who like Adobe Illustrator, but I find it
to be overkill for the level of detail needed in most games and not
all the effects (like complex blends and gradients) will translate
well to Flash.

CS5.5 FEATURE: CONVERT TO BITMAP AND EXPORT
TO BITMAP
Possibly, the two most exciting—and game development friendly—
features to be included in Flash CS5.5 will change how you make the
decision to use vector or raster assets. Although they have similar names,
they behave very differently in practice. The first option, known as Con-
vert to Bitmap, allows you to select any display object on stage, be it a
raw shape or a symbol with lots of children, and convert it to a flattened
bitmap. If the object is already a symbol in your library (recommended),
you can still reference and modify the symbol. This is immensely helpful
if you’re working with game that was created in Flash using complex vec-
tor shapes, filters, etc., and all you really need is a nice clean bitmap at
runtime. To use it, simply select the stage object you want to convert,
right-click on it with the mouse, and select Convert to Bitmap, as shown
in Figure 6.11. Because the bitmap is in your library now, you can also
export it for use with ActionScript.

Alternatively, perhaps you need to maintain the fidelity of the origi-
nal art because it is changing frequently and/or you don’t need the bit-
map data to be available in code. Under the Property Inspector for any
symbol on the stage, where you used to set the Cache as Bitmap option,
you can now select Export as Bitmap (shown in Figure 6.12). This will
maintain the fidelity of the object in Flash but flatten it to a bitmap
when the SWF is created. This is an extremely powerful tool because it
allows you to create user interface elements in vector format that you
can scale and size as necessary and have it ultimately output a more
efficient bitmap in the SWF. It should be pointed out that this option

Figure 6.10 Bitmap Smoothing
(on the left) can make a big
difference, particularly in
images with fine details.

100 Chapter 6 MANAGING YOUR ASSETS AND WORKING WITH GRAPHICS

actually outputs is a Sprite or MovieClip object that contains a shape
with a bitmap fill. I presume this was done to allow you to give the
symbol a name on the stage and have that name still reference it cor-
rectly at runtime. However, it has the drawback that if you wanted to
try to extract the BitmapData from it at runtime, and it’s not an option
because it is not a true Bitmap object.

Key Points to Remember
It’s very easy when working with a lot of images in a game for
users to get out of hand quickly, both in disorganization and file
size.
• Be vigilant about keeping tabs on your images throughout the

development process.
• Keep series of images organized in folders in your library.
• Keep images organized in the file system, so you can do

“updates” in Flash rather than having to re-import them all over
again if anything changes.

• Err on the side of smaller, both in dimension and file size,
particularly with full-framerate animations.

Figure 6.11 Using Flash CS5.5’s
new Convert to Bitmap option.

Chapter 6 MANAGING YOUR ASSETS AND WORKING WITH GRAPHICS 101

Better to be a stickler and optimize up front than to scramble to
scrape file size off at the eleventh hour by lowering the JPEG com-
pression on everything until your game is one big blocky mess. At
the end, your perseverance will pay off in peace of mind.

Figure 6.12 The new Export as
Bitmap option in Flash CS5.5’s
Property Inspector.

102 Chapter 6 MANAGING YOUR ASSETS AND WORKING WITH GRAPHICS

7
MAKE IT MOVE—ACTIONSCRIPT
ANIMATION

CHAPTER OUTLINE
A Little Terminology 104

Easing 104
Sequencing 104

To Tween or Not to Tween? Is That
a Question? 105
A Simple Scripted Shooter 105

The Projectile Class 106
The SimpleShooter Class 107

Memory: Tweening Animation 109
The MemoryCard Class 110
The Memory Class 111

Summary 114

No matter how good the artwork in a game looks, it can fall
completely flat if it is unconvincingly animated. Players respond to
motion and animation in a game, and it can mean the difference
between a successful suspension of disbelief and a boring experience.
Luckily for Flash game developers, animation is at the core of Flash’s
long history. It is what the product originally started out doing and
has only continued to develop over the years. Flash CS4 introduced a
number of new features that not only made the timeline amazingly
more powerful to work with, but also cut down on the time spent on
building animations. Some of these features include an entirely new
way of assigning tweens to objects on the stage, complete motion
control over every property of a tween, and inverse kinematics for
doing convincing joint-based character animation.

However, I should go ahead and get a disclaimer out of the
way. We will not be discussing standard Flash timeline animation
in this chapter. I made this decision for a few reasons:
• If you’re coming to this book from a Flash background, it’s very

likely that you are already familiar with many aspects of Flash
animation and will be able to pick up the new features quickly
on your own.

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 103

• If you’re coming to this book from another programming or
game development background, I find discussions of timeline
animation make people from these disciplines glaze over or
hang their heads.

• In game development, timeline animation use is typically greatly
reduced, and scripted animation is far more common.
The last of these points is really the most important. In game

development, you want to have as much control as possible over
the animations you use in your game, and the best way to achieve
this control is by creating the animations through ActionScript.
That said, I still regularly use the timeline for things like title and
menu screens, cutscenes between gameplay segments, and other
incidental, nongame-related animation. If you are interested in
learning more about timeline animation in Flash, I have links to
excellent learning resources on flashgamebook.com.

A Little Terminology
So that we’re all on the same page (literally and figuratively) over
the course of this chapter, here are a handful of terms that will be
used shortly, what they mean, and how they are relevant.

Easing
In real life, most motions do not occur in a rigid fashion. Unless
you are a robot underneath, for instance, your movement is not
completely linear and not always at the same rate of speed. When
starting to walk from a stationary position, you gradually speed up
and then slow down when you come to a stop again. In animation,
this gradual acceleration and deceleration constitute the concept
known as easing. Easing is a critical component in making anima-
tions look convincing and “real.” If a ball rolls across a surface, it
shouldn’t move at a fixed speed and then come to an abrupt stop.
The friction between the ball and the surface causes it to progres-
sively come to a stop. In scripted animation, easing is usually
defined by an equation (in the case of Flash, a function) that deter-
mines how an animation plays out over a given time based on a
starting and an ending point. It can also be used to create effects
such as elasticity and bounciness.

Sequencing
Sequencing refers to the stacking of animations (usually of different
objects), so they occur in a particular order rather than simulta-
neously. This concept becomes especially important when timing
events within a game; when a player makes a move, you might

104 Chapter 7 MAKE IT MOVE—ACTIONSCRIPT ANIMATION

want a short pause before an animation starts playing or you might
have a series of animations that you want to play when a player
does something.

To Tween or Not to Tween? Is That
a Question?
When creating animation in a game, there are generally two
methods to use. The first is to create scripted animation, which is
to move objects based on the game’s mechanic. An example of this
would be a top–down scrolling shooting game in which the speeds,
positions, and orientations of the background, player, and enemies
are all determined by engine calculations and updated frame-by-
frame. Another example would be any kind of physics simulation,
which we’ll discuss in-depth in Chapter 11.

The second method is to create what is commonly known as a
tween. A tween is a set of instructions that change the properties of
an object over time. For instance, if I move a circle from (0, 0) to
(10, 10) in two seconds, I have tweened that object’s x and y prop-
erties. Since version 7, Flash has included some basic classes for
creating tweens with code. These classes have changed very little
all the way through version 10, where we are today. However, a
number of Flash users in the community have taken it upon them-
selves to write elaborate tweening libraries that support things such
as moving multiple objects in sync with each other, dispatching
events when animations begin, change, and end, and sequencing
entire virtual timelines of animation. Tweens are less useful when
creating simulation-driven games, but they are extraordinarily help-
ful, when you simply need to move or manipulate components of a
game or create visual effects in a style you might have traditionally
used the timeline for in earlier versions of Flash. Although I’ve
used a number of tweening libraries and each of those has its own
merits, my favorite as of this writing is TweenMax by Jack Doyle of
greensock.com. Jack goes to great lengths to incorporate feedback
from the community and continues to update and improve the
library on his own time. It is the tween engine we’ll use in some
upcoming examples, and I highly recommend downloading the lat-
est version from his site and donating to the project if you end up
using it in your own work.

A Simple Scripted Shooter
In the following example, we will look at a simple animated game
mechanic involving a top–down, scrolling shooter. This game will
use a form of scripted animation to convey a sense of motion to

Chapter 7 MAKE IT MOVE—ACTIONSCRIPT ANIMATION 105

the player. You can follow this example using the SimpleShooter.
fla file in the Chapter 6 examples folder. When exported, this
example will create an environment with a two-tiered background
that scrolls at different rates, a ship that moves with the mouse
cursor and fires the projectiles when the mouse button is clicked.
There are just two classes for this example, SimpleShooter.as and
Projectile.as. We’ll look at the latter one first because it’s very
simple.

The Projectile Class
The class controlling the projectiles fired in the game only has
one main property—its speed. Arguably, for this example, we
could have stored the speed in the main game class to keep it in
a single file. However, if a more advanced feature set were added
to this game, it would need classes to control each of the objects
in play, so going ahead and creating a sort of “stub” class gets
some work out of the way. If we added enemies to this game
that also fired the projectiles, for instance, we’d want those pro-
jectiles to have a different speed than those fired by the player.
It also gets us into the practice of creating classes to control the
feature sets of our game objects, even when they’re not 100%
necessary.

package {

import flash.display.Sprite;

public class Projectile extends Sprite {

protected var _speed:Number;

public function Projectile(speed:Number = 0) {
this.speed = speed;

}

public function get speed():Number {
return _speed;

}

public function set speed(value:Number):void {
_speed = value;

}
}

}

Like I said: simple. The speed variable will be the number of
pixels the projectile will move on every frame cycle.

106 Chapter 7 MAKE IT MOVE—ACTIONSCRIPT ANIMATION

The SimpleShooter Class
This class handles all the logic behind the gameplay. It will control
the player’s position, the scrolling background, and creation,
movement, and removal of the projectiles. The background actually
consists of two separate objects we’re calling the foreground and
background. We will move these two objects at different speeds to
achieve a feeling of depth and sense of motion known as parallax
scrolling.

public class SimpleShooter extends Sprite {

public var background:Sprite, foreground:Sprite;
public var player:Sprite;

protected var _projectileList:Vector.<Projectile>;
protected var _speed:Number = 15;
protected var _stageWidth:int, _stageHeight:int;
protected var _projectileSpeed:Number = 20;

public function SimpleShooter() {
addEventListener(Event.ADDED_TO_STAGE, addedToStage,

false, 0, true);
addEventListener(Event.ENTER_FRAME, frameScript,

false, 0, true);
_projectileList = new Vector.<Projectile>();

}

As you can see, there are three public variables representing the
background, foreground, and player Sprites. Internally, it also stores
a list of all active projectiles, the speed at which the foreground
should move, the speed of any projectiles upon creation, and refer-
ences to the stage’s width and height.

protected function addedToStage(e:Event):void {
_stageWidth = stage.stageWidth;
_stageHeight = stage.stageHeight;
addEventListener(MouseEvent.MOUSE_DOWN, createProjectile,

false, 0, true);
}

protected function frameScript(e:Event):void {
movePlayer();
moveProjectiles();
moveForeground();
moveBackground();

}

Once added to the stage, the game stores information about the
stage and adds a listener for when the mouse button is pressed, it

Chapter 7 MAKE IT MOVE—ACTIONSCRIPT ANIMATION 107

will call a method named createProjectile. We will look at this method
shortly. The function that runs every frame, frameScript, performs
three tasks. It moves the player, moves all of the projectiles, and
updates the position of the foreground and background tiles.

protected function movePlayer():void {
player.x = mouseX;
player.y = mouseY;
if (mouseX > 0 && mouseX < _stageWidth && mouseY > 0 &&

mouseY < _stageHeight) {
Mouse.hide();

} else Mouse.show();
}

protected function moveProjectiles():void {
for each (var projectile:Projectile in _projectileList) {

projectile.x += projectile.speed;
if (projectile.x - projectile.width > _stageWidth) {

removeProjectile(projectile);
}

}
}

In the movePlayer function, the player’s x and y positions are
updated to match with those of the mouse. In addition, we check to
make sure the mouse cursor is within the bounds of the stage. If it
is, we hide the cursor so it does not cover up the player; otherwise,
we show it. The moveProjectiles method iterates through the list of
projectiles and updates each according to its speed. If the projectile
has moved too far off the screen, it is removed.

protected function moveForeground():void {
foreground.x -= _speed;
var right:int = foreground.getRect(this).right;
if (right <= _stageWidth) {

foreground.x = right - _stageWidth;
}

}

protected function moveBackground():void {
background.x -= _speed/3;
var right:int = background.getRect(this).right;
if (right <= _stageWidth) {

background.x = right - _stageWidth;
}

}

These two functions are almost identical. The only real difference
is that the background moves at one-third the rate of the

108 Chapter 7 MAKE IT MOVE—ACTIONSCRIPT ANIMATION

foreground. This will give the impression that the background is
much further away from the player.

protected function createProjectile(e:MouseEvent):void {
var projectile:Projectile = new Projectile

(_projectileSpeed);
projectile.x = mouseX;
projectile.y = mouseY;
_projectileList.push(projectile);
addChildAt(projectile, getChildIndex(player));

}

protected function removeProjectile(projectile:Projectile):
void {

if (projectile.parent == this) removeChild(projectile);
_projectileList.splice(_projectileList.indexOf

(projectile),1);
}

The last two functions in this class control are the creation and
removal of projectiles. The createProjectile method is called when
the mouse is pressed. It generates a new projectile object, moves it
to the mouse’s position, adds it to the vector list, and places it on
the stage underneath the player. In removeProjectile, we simply
pass any projectile instance as a parameter, and it is removed from
the stage and spliced from the list.

When you run this example, you can see that the animation
behind it is very basic, but effective. It conveys a continual sense of
motion and gives the impression that we’re traveling very quickly.
It is also a good base on which to add components like enemies
animating in the same direction as the foreground and background.
In the next example, we will look at a very different kind of game,
in which tweening is a more effective method of animation.

Memory: Tweening Animation
The following example is a simple memory game. There are six pairs
of matching cards that have a gray back and one of six different col-
ors on their front. The player clicks any two cards to flip over; if they
match, they stay face up. If they do not match, they are flipped back
over. In this instance, the game mechanic involves no motion by
default, so we’ll need to add animation to liven the experience up.
This is when a tweening library like TweenMax comes in. We’ll use
TweenMax, combined with the 3D DisplayObject properties, to
make the cards look like they’re being flipped over. Like the last
example, this game has two classes that control its functionality. The
files can be found in the Chapter 6 examples folder; the main file is

Chapter 7 MAKE IT MOVE—ACTIONSCRIPT ANIMATION 109

Memory.fla and the two class files are Memory.as and MemoryCard.
as. If you open the FLA file, you will see 12 instances of the Memory-
Card class arranged on the stage. We’ll look at this file first.

The MemoryCard Class
Each MemoryCard object is a MovieClip derivative that contains
the face-down state on the first frame and all the other faces on
subsequent frames. Every card needs to know what its value is so
that it can display the correct frame, and so that the game can
compare any two cards to determine a match. The card numbers
start at one and go up, in this case to six.

package {

import flash.display.MovieClip;

public class MemoryCard extends MovieClip {

protected var _cardNumber:int;

public function MemoryCard() {
stop();

}

public function get cardNumber():int {
return _cardNumber;

}

public function set cardNumber(value:int):void {
_cardNumber = value;

}

public function show():void {
gotoAndStop(_cardNumber + 1);

}

public function hide():void {
gotoAndStop(1);

}
}

}

Once a card has an assigned cardNumber, the show and hide
methods are the two main functions in play. The hide method
returns the card to its first frame, and the show method jumps to
its respective cardNumber plus one. The rest of the functionality
for this game is in the Memory class.

110 Chapter 7 MAKE IT MOVE—ACTIONSCRIPT ANIMATION

The Memory Class
package {

import flash.display.Sprite;
import flash.events.Event;
import flash.events.MouseEvent;
import gs.TweenMax;
import gs.easing.*;

public class Memory extends Sprite {

Because we’re making use of the TweenMax classes here, we
need to be sure to import them for our use. In this example, we
import the main class, TweenMax, and the entire easing equation
set. We won’t use every equation, but it’s helpful to have them all
available so we can select just the right look and feel.

protected var _cardList:Vector.<MemoryCard>;
protected var _selectedCards:Vector.<MemoryCard>;

public function Memory() {
addEventListener(Event.ADDED_TO_STAGE, addedToStage,

false, 0, true);
}

protected function addedToStage(e:Event):void {
_cardList = new Vector.<MemoryCard>();
_selectedCards = new Vector.<MemoryCard>(2);
for (var i:int = 0; i < numChildren; i++) {

if (getChildAt(i) is MemoryCard) {
_cardList.push(getChildAt(i) as MemoryCard);

}
}
shuffleCards();
activateCards();

}

When the class is instantiated, it creates a list of all the cards on
the stage and stores them in a vector. It also creates another vector
of length 2 that will store up to two cards that have been clicked.
The game then shuffles and activates the cards, which we will look
at next.

protected function shuffleCards():void {
var shuffledList:Vector.<MemoryCard> = new Vector.

<MemoryCard>();
while (_cardList.length > 0) {

var rand:int = Math.round(Math.random()*(_cardList.
length-1));

Chapter 7 MAKE IT MOVE—ACTIONSCRIPT ANIMATION 111

var index:int = shuffledList.push(_cardList[rand])-1;
_cardList[rand].cardNumber = Math.floor(index / 2)+1;
_cardList.splice(rand, 1);

}
_cardList = shuffledList;

}

protected function activateCards():void {
for each (var card:MemoryCard in _cardList) {

card.addEventListener(MouseEvent.CLICK,
selectCard, false, 0, true);

card.buttonMode = true;
}

}

protected function deactivateCards():void {
for each (var card:MemoryCard in _cardList) {

card.removeEventListener(MouseEvent.CLICK,
selectCard);

card.buttonMode = false;
}

}

The shuffledCards method does very much what you would
expect; it creates a new list having randomly pulled from the
original list. The two activation methods enable and disable mouse
input, respectively. This is so the game can manage user input
more easily and prevent impatient clicking from breaking the game
logic.

protected function selectCard(e:MouseEvent):void {
deactivateCards();
if (_selectedCards[0] == null) { //NO CARD SELECTED

_selectedCards[0] = e.target as MemoryCard;
flipCard(_selectedCards[0]);

} else if (_selectedCards[0] == e.target) { //SAME CARD
SELECTED

flipCard(_selectedCards[0], false);
_selectedCards[0] = null;
activateCards();

} else { //NEW CARD SELECTED
_selectedCards[1] = e.target as MemoryCard;
flipCard(e.target as MemoryCard);

}
}

protected function flipCard(card:MemoryCard, show:Boolean =
true):void {

112 Chapter 7 MAKE IT MOVE—ACTIONSCRIPT ANIMATION

if (show) {
TweenMax.to(card, .5, { onComplete:card.show,

rotationY:90, ease:Back.easeIn });
TweenMax.to(card, .4, { onComplete:checkCards,

rotationY:0, ease:Quad.easeOut, delay:.5 });
} else {

TweenMax.to(card, .4, { onComplete:card.hide,
rotationX:90, ease:Quad.easeIn });

TweenMax.to(card, .5, { rotationX:0, ease:Bounce.
easeOut, delay:.4 });

}
}

When a card is clicked, the selectCard method is called. If no
cards are selected, the clicked card becomes the first of a compari-
son pair. If the same card is selected again, it is flipped back over.
Finally, if a second card is clicked, it is added to the pair and
flipped. The flipCard method is the first place we use any
TweenMax functionality. By default, this function will show the
card face; if the second parameter is false, it will hide the card
again. The most basic TweenMax syntax involves the two static
methods to and from. The to method creates a TweenMax object
that will be automatically disposed of when the tween finishes. The
first parameter is the object that you want to tween, and
the second parameter is the amount of time you want it to take in
seconds. The final parameter is an object containing all the proper-
ties you want the tween to change, as well as information about
which easing equation to use and what function to call when the
tween is finished. TweenMax also supports a full event listener
model, but it’s a little overkill in this very simple instance.

When a card is flipped to be shown, the game first animates
its rotationY property to appear to flip horizontally. Note that the
easing method for this first tween is part of the Back class. The
card will appear to turn the opposite direction for a brief moment
before snapping toward its intended direction. When this tween is
complete, it calls the card’s show method and begins a tween
restoring it to its original state. Once this second tween is complete,
the checkCard method is called, which we will examine next. If the
card is being hidden, the tween animates the card’s rotationX
property to flip the card vertically. When the card finally returns to
its hidden state, the tween animates it using the Bounce easing
class. This will give the effect of the card hitting a rubber surface.

protected function checkCards():void {
if (!_selectedCards[1]) {

activateCards();
} else {

Chapter 7 MAKE IT MOVE—ACTIONSCRIPT ANIMATION 113

if (_selectedCards[0].cardNumber == _selectedCards
[1].cardNumber) {

_cardList.splice(_cardList.indexOf
(_selectedCards[0]),1);

_cardList.splice(_cardList.indexOf
(_selectedCards[1]),1);

TweenMax.to(_selectedCards[0], 1,
{rotationZ:180,ease:Elastic.easeOut});

TweenMax.to(_selectedCards[1], 1,
{rotationZ:-180,ease:Elastic.easeOut});

} else {
flipCard(_selectedCards[0], false);
flipCard(_selectedCards[1], false);

}
_selectedCards[0] = null;
_selectedCards[1] = null;
activateCards();

}
if (!_cardList.length) {

trace("WON GAME");
}

}

The final method in the Memory class is checkCards. It looks at
the _selectedCards list and checks to see if they have the same card
number. If the cards are not a match, it flips them back over. If
they are a match, they are removed from the main card list and
have a final tween run on them. This tween uses Elastic easing to
spin the cards with a rubber-band-like motion. Once the entire
card list vector is empty, the game has been won.

Obviously, the tweens I chose to use here are largely arbitrary.
One of the great things about TweenMax is how easy it is to
change the values to experiment with different equations and tim-
ing. We are also not limited to simple position, rotation, and scale
tweens. TweenMax has support for color and filter animation
effects as well, so you can really go wild experimenting, and the
syntax is still very straightforward. Feel free to explore the full
library with this game example.

Summary
However, if you ultimately choose to execute animation in your
game, make sure you consider how it affects the gameplay and
what is most appropriate for the subject matter. A game that is
intended for older adults or those who have vision difficulties
should have more subtle, smooth animation to not become

114 Chapter 7 MAKE IT MOVE—ACTIONSCRIPT ANIMATION

distracted. However, a game intended for most kids can’t really
ever have enough animation; and the wackier the animation the
better! Remember, the wrong kind of animation is almost as bad as
not having any at all because it breaks the tone you’re trying to set.
Just keep your theme in mind and tween away!

Chapter 7 MAKE IT MOVE—ACTIONSCRIPT ANIMATION 115

This page intentionally left blank

8
TURN IT UP TO 11: WORKING WITH AUDIO

CHAPTER OUTLINE
Formats to Use 117
Export Settings to Use 118

CS5.5 Feature—Incremental Compilation 119
Using External Files 121
Tools for Working with Sounds 121
Scripting Sounds 122

Understanding the Sound Classes 123
The SoundEngine Class 123
Using the Class 136
The SoundMixer Class 139

Sound is the most sorely overlooked component in the world of
Flash games. Because it can’t be seen, it’s very often tacked on at
the end of a project, when someone realizes “this game really
needs sound.” It can mean the difference between a completely flat
experience and a very rich one. Most of the best Flash games I’ve
played had excellent sound design. It’s not just that they used
sound effects and/or music; it’s that they paid attention to how the
sounds blended together in the final mix. In this chapter, I’ll out-
line the best formats to use for audio in games and different
approaches to control sound within a game.

Formats to Use
I’ve heard many schools of thought from different developers on
what formats they prefer. Some like nothing but WAV or AIFF files,
both uncompressed formats. Others prefer MP3s that have already
been compressed and are ready for export. The source format for
audio doesn’t matter quite as much as it does for graphics because
audio is almost always re-encoded, when Flash exports a SWF. The
export settings, which I will outline shortly, become very important
at this point because they will determine how the audio ultimately
sounds in a game. Much like graphic formats, I find that a blend of
the two types based on how they’re being used is the best way to
make format decisions.

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 117

For sound effects, which I categorize as sounds that are
event-triggered (like a punch or an explosion) and last no more than
a few seconds, I prefer WAV files that have been saved with the
following settings from a sound editor:
• Bit depth: 16
• Sample rate: 22 kHz
• Channels: Mono

This combination keeps the file size of each sound effect down,
but also provides enough flexibility and quality for anyone but the
most attentive audiophile.

For music or ambient sound (background sounds that provide
atmosphere), I prefer MP3 files. There are a couple of reasons for
this. First, music tracks for games should be fairly long (one minute
or more) to avoid being too repetitive, and long sounds begin to
create very large files. A one minute music track at the settings I
described above for sound effects would be 2.5 MB. This doesn’t
seem like very much in this day and age, but consider if you
had multiple music tracks and they started to get longer than one
minute. This would add up pretty quickly and become cumber-
some to manage and taxing on Flash’s memory footprint. I’ve
found that the following settings yield good-sounding music tracks:
• Constant bit rate (Flash doesn’t like variable bit rate)
• Bitrate: 64 kbps

Depending on how prominent the music is in a game, a higher
quality setting might be more appropriate. The same audio that
would have been 2.5 MB as a WAV is 480 k; less than one-fifth the
size.

Voice-over audio is a case where the context should determine
the format. A computer voice speaking the name of a button when
the user rolls over it is akin to a sound effect, so treat it like one.
Narration, or any extended dialog, makes more sense to treat like
music given its length.

Export Settings to Use
In the early days of Flash, when keeping SWF file size low was
overwhelmingly important, developers got used to setting all their
sounds to use the lowest possible quality. All the sounds were
muddy and often indistinct, but no one seemed to care because
everyone was doing it. Now, with ever-increasing audio and visual
fidelity in games (both commercial and on the Web), the lowest
common denominator won’t usually cut it. Let’s examine the
Sound Properties window for a clip inside an FLA.

In this case, I have opened a file that was imported as an MP3.
Flash automatically chose MP3 compression as the best option to
use, and selected an option only available to MP3s: use imported

118 Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO

MP3 quality. This is a great option and not only means that the
sound won’t experience any further quality loss, but also the SWF
will export faster than Flash if Flash had to recompress it.

CS5.5 Feature—Incremental Compilation
A new behind-the-scenes feature included in CS5.5 is something
called incremental compilation. What this does is take assets that
haven’t changed since the last SWF file was created (specifically
audio files set to export at MP3 and fonts, although hopefully
Adobe will eventually extend this to all asset types) and cache the
last compiled version of them. What this means, in practice, is that,
large sounds that used to take upward of 10 seconds to export to
MP3 will now take a fraction of a second. This cache is created the
very first time you export a SWF in a session of CS5.5, so the very
first export will take the original amount of time. However, every
subsequent export you do until you close the Flash IDE or alter the
audio asset’s properties will benefit from this huge speed boost.
Best of all, this happens automatically—you don’t have to do any-
thing to get the benefit!

You may be thinking at this point that it would simply make
sense to use MP3 compression for every sound effect in a game and
forego WAV files altogether. The problem with this approach is that
it is taxing on the Flash Player to start the process of playing an MP3
file because it must be uncompressed in real time. A music track
that only loops every one to two minutes isn’t noticeable, but if you
have many sound effects occurring in rapid succession, this
can cause a bog down on the processor that hurts the game’s

Figure 8.1 The Sound
Properties window allows you
to set the export settings for
each individual sound in your
library.

Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO 119

performance. This is where a different form of compression comes
in very handy.

ADPCM is a lower level of compression and sounds much closer
to the source audio than an MP3. As you can see from Fig. 8.2,
a one-second sound file that was 44 k in size becomes just 11 k,
using a sample rate of 22 kHz and a bit depth of 4. Not only is this
very small, but also it will cause far less overhead in the Flash Player.

OBSESSING OVER SOUND QUALITY
I tend to like to tweak the sound properties throughout the course of a project.
Sometimes, a compressed sound will be noticeable garbled or distorted, when
played by itself, but in the context of all the other sounds, it works fine. The
opposite is also sometimes, true. I’ve often found that for short sound effects
that exist in within a specific frequency range (beeps, clicks, and so on), you
can even get away with lowering the bit depth to three without a noticeable
difference, and squeeze out a few extra kilobytes. Your mileage may vary.

There is one other setting that is useful, specifically, for voice-
over sounds: Speech. It has no options to set other than a sample
rate (22 kHz is usually fine), and is a special variant of MP3 com-
pression designed by Adobe to work best with a human voice. It
also exports relatively quickly and doesn’t seem to carry quite the
overhead of a regular MP3.

If you only have a few sounds in your game, or you know most
of your sounds are of the same type and will use the same form of
compression, you can leave the individual sound properties set to
Default and change them globally in the Publish Settings. You’ll be
most interested in the Audio Event settings; Audio Stream isn’t

Figure 8.2 For sound effects,
ADPCM is the best option for
compression.

120 Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO

commonly used within games—but later we’ll look at a method for
using it in an unorthodox way to maintain frame rate.

Using External Files
Flash isn’t limited to playing sounds that are embedded within the
FLA. External MP3 files can be loaded in and played at runtime.
Although this feature doesn’t really make sense for individual
sound effects, music or other long sounds can work very well this
way. The SWF isn’t loaded down with the extra file size of the
audio and can stream it in over time, once the rest of the game is
loaded. Because you don’t have to worry about how it impacts
your initial load, it also makes increasing the quality (and, there-
fore, the file size) of the sound less of a concern. Below is a simple
bit of ActionScript that loads in an external sound.

var sound:Sound = new Sound(new URLRequest("mySound.mp3"));
sound.play();

The one main drawback to this method is that it exposes your
MP3 file to anyone with an activity viewer in his or her browser.
Although you can copyright any assets of your game to prevent
others from using them commercially, it does not prevent someone
from stealing the individual files.

Tools for Working with Sounds
Probably the best choice for working with sound in Flash is
Adobe’s SoundBooth. It is cross-platform, and it supports multiple
tracks for doing more complex mixing. It is reasonably priced and

Figure 8.3 You can set the
audio quality for all your
sounds that don’t use custom
settings within the Publish
Settings window.

Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO 121

integrates nicely with Flash. Sony’s Sound Forge is another
excellent application, but it is expensive and is applicable only for
Windows. If you are budget strapped (and on a Mac), HairerSoft’s
Amadeus Pro and Freeverse’s Sound Studio are great options.
Audacity is a free, cross-platform, open-source editor with a num-
ber of options, but if you need to do any level of sound manipu-
lation greater than cropping and normalizing, it’s really worth the
money to spring for a higher end program. Links to the apps just
mentioned are available on this book’s Web site.

Scripting Sounds
Sounds are handled differently from all other media in Flash
because they have no visual representation. There are two ways
you can add sound to your game: through script and by, directly,
placing sounds on the timeline. This is the case with most elements
in Flash, except that when you add a button to the stage, for
instance, you can also access it through script. The same is not
true for sounds. A sound on the timeline is not accessible from
ActionScript and, therefore, cannot be controlled. This forces devel-
opers to carefully choose how they are going to handle sounds.

At first, the obvious choice would be to always play sounds
through script because it provides the most flexibility and control,
and for games, this is almost always the case. The exception
comes, however, when working with some animation. If a game
has any segments that consist of long sequences of animation, like
cutscenes, it makes more sense to play any accompanying sound
effects on the timeline. This helps during sequencing to line up
music or sound effects with the animation, and it’s also just plain
easier.

The reason it’s all right to use timeline sound effects this way is
because sequences like this are linear and noninteractive. The
sounds are not likely to get stuck in a loop or linger around in
memory because they weren’t disposed of properly.

The rest of the time, scripting is the best way to control sounds.
Because sounds don’t need to adhere to the hierarchical structure
of Display Objects, the best strategy is to create a generic sound
controller that can play any type of sound and control its basic
properties from anywhere in the game. To create this sound
controller, we’ll dive into some ActionScript.

Figure 8.4 When creating long
sequences of animation, it makes
sense to use sound effects
played through the timeline.

122 Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO

Understanding the Sound Classes
Scripting sounds has gotten slightly more complicated in AS3
than it was in AS2. As with many aspects of AS3, the increased
complexity is matched by increased flexibility, but it can initially be
confusing. Objects of the Sound class are really just containers for
the actual sound data. When played, they generate a SoundChannel
object, and any subsequent commands should be issued to this
channel. As a result, you have to keep track of multiple objects to
have any level of control over the sound you trigger.

Another way in which sounds are handled differently is that
adjustable properties of sounds (like volume and panning) are no
longer individually assignable components. They are handled
through a new class known as the SoundTransform. To set the
volume and pan of a sound, you need to change its channel’s sound
transform object. The following code starts a sound playing and
then creates a transform at 100% volume (1) and centered pan (0):

var soundChannel:SoundChannel = mySound.play();
soundChannel.soundTransform = new SoundTransform(1, 0);

The SoundEngine Class
We’ll create a class called SoundEngine that will manage playing all
the sounds in a game and take care of storing all the pertinent objects.
It will also provide us with easy methods to call for setting volume
and pan without having to, manually, create new transforms. One
other great feature it will afford us is the ability to call either internal
sounds (found in the library) or external sound files. It will follow
what is known as a Singleton design pattern, which you learned
about in Chapter 5. Suffice it to say that there will only be one
instance of the SoundEngine, and it will be accessible from anywhere.
This will make playing sounds as simple as a line or two of code.

CODE IMPROVES FROM USE
The version of the SoundEngine I created in the first edition of this book
was a good starting place, but it was the first iteration of that code. I, sub-
sequently, started using it at my day job and encouraged others to do so
as well. Almost immediately we discovered limitations in it and potential
spots for bugs to arise. For a while, it became the most heavily edited
library in our workplace, often the butt of a joke: “Something’s broken:
must be the SoundEngine.” I’m pleased to say that thanks to the diligent
work of several amazing developers, I am presenting this new, improved
“SoundEngine 2.0” for this second edition. Most of the public interface
has stayed the same from the first version, so if you’ve been using it, you
should be able to easily replace your old files with this one without intro-
ducing any bugs. I’ll note in the coming pages any significant changes
between the two versions.

Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO 123

There are three class files we’ll need to establish to create this
engine. The first is the engine itself, SoundEngine.as. The second
class is an internal “helper” class called SoundEngineObject. This
object will store information about each individual sound as it is
created in order to keep track of them. In the original version of
this engine, I kept this class inside of the SoundEngine.as file,
which, while tidy, left extensibility of the engine inflexible. It is still
marked internal, but by being in its own file, other classes in the
same package can access it. We’ll discuss more about this class in
a moment. The other file is a special type of event, SoundEngine-
Event.as. This is the type of object the SoundEngine will dispatch
when certain events, such as a sound reaching its end or an error
in playing or loading a sound, occur within the engine.

Here’s a quick rundown of the functionality this class will contain:
• Start sounds, both internal and external
• Stop sounds
• Pause/resume sounds
• Mute/unmute sounds
• Set and retrieve the volume of sounds
• Set and retrieve the pan of sounds
• Set and retrieve the entire active SoundTransform of sounds
• Retrieve the SoundChannel object that an active sound is using
• Add listeners that will be notified of events within the

SoundEngine
• Retrieve the current status of a sound, such as whether it is

playing, paused, or muted
All of this information can currently be retrieved from sounds,

albeit with several lines of code. Our goal is to simplify this process
and not have to rewrite this code every time we want to play a sound.

We’ll begin in the SoundEngine.as file and set up the class
definitions we’ll be using.

package
{

import flash.events.EventDispatcher;
import flash.events.IOErrorEvent;
import flash.media.Sound;
import flash.media.SoundChannel;
import flash.media.SoundMixer;
import flash.media.SoundTransform;
import flash.net.URLRequest;
import flash.system.ApplicationDomain;
import flash.utils.getDefinitionByName;

public class SoundEngine extends EventDispatcher {
}
}

124 Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO

We’ll need access to parts of the events package to be able to
dispatch events, as well as the media package, where all the
sound-related classes are stored. We’ll also need the URLRequest-
class to load external files, and the ApplicationDomain class and
getDefinitionByName method to look up sounds in the library.

Inside the SoundEngine class, we’ll add some basic properties
and the constructor for the class:

protected var _soundList:Object;
protected var _allMuted:Boolean = false;
protected var _debug:Boolean = false;
static private var _instance:SoundEngine;

public function SoundEngine(validator:SoundEngineSingleton) {
if (_instance) throw new ArgumentError ("SoundEngine is a
Singleton class. Use getInstance() to retrieve the existing
instance.");

_soundList = new Object();
}

static public function getInstance():SoundEngine {
if (!_instance) _instance = new SoundEngine(new SoundEngine-
Singleton());

return _instance;
}

The top five lines are variable declarations for the properties that
we are going to store in the engine. The _soundList property will be
used to keep track of all the SoundEngineObjects the engine creates.
The _allMuted property will help us determine if the engine is
currently muted, so that any new sounds played will be muted as
well. There is a _debug flag that can be set to toggle debug informa-
tion printing to the output window—one of the additions of my
coworkers. Finally, the _instance property is also static; it will be
used to store the one SoundEngine object that gets created, so we
can always access it.

The constructor of a Singleton should technically be private, so
that nothing outside the class can instantiate it. However, Action-
Script 3 does not support private constructors, so we have to use a
work-around, which I will discuss momentarily. First, let’s look
at the getInstance method. It is static, so it will be accessible
from anywhere as SoundEngine.getInstance(). If an instance of
the engine has not yet been created, it stores a new one in the
_instance property I mentioned earlier. It then simply returns the
instance it has created. You probably noticed that both the meth-
ods make use of a class called SoundEngineSingleton. This is an
empty class that we will define internally to prevent any other class
outside of the engine from creating a new one. Without access to

Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO 125

this internal class, only the SoundEngine is capable of creating
itself. We will accomplish this with an additional line at the bottom
of the file:

class SoundEngineSingleton {}

Flash infers that a class declared this way is internal, so we’re
done. Now anyone who uses the class has only one way of getting to
the SoundEngine and is prevented from accidentally breaking
some of its functionality or creating more than one engine. Think of
it as the key to the engine; without it the engine won’t start.

Now that we’ve defined the basic properties of the engine and
established a way to create and access it, we should jump over to
the SoundEngineObject class to define exactly what each object will
do, when created.

static private var _canPlaySound:Boolean = Capabilities.hasAudio;

public var name:String;
public var sound:Sound;
public var channel:SoundChannel;

protected var _transform:SoundTransform;
protected var _playing:Boolean = false;
protected var _muted:Boolean = false;
protected var _paused:Boolean = false;
protected var _pauseTime:Number;
protected var _loops:uint;
protected var _offset:Number;

public function SoundEngineObject(name:String, sound:Sound) {
this.name = name;
this.sound = sound;

}

The first property is a static flag called _canPlaySound, which
reads the system’s ability to play sound files. What we discovered
through testing was that on a machine with a broken or missing
sound card, any requests to play sound by Flash will cause a runtime
error. While Adobe should have just chosen to suppress any such
errors, we introduced this flag to do an initial check and make sure
that no sounds are played if such a scenario exists. Before performing
any sound-based operations, the class will check this value to make
sure no error will be caused. Each engine object stores the basic infor-
mation about the sound it creates, such as the channel, the transform,
the number of times it should loop, and so on. Additionally, each
object has a name property, which is how the engine will keep track
of, or index, them. Now, we’ll add some methods to the object, so
that it can perform actions and give information.

126 Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO

public function play(offset:Number = 0, loops:int = 0, transform:
SoundTransform = null):SoundChannel {

if (_canPlaySound) {
_offset = offset;
if (loops < 0) loops = int.MAX_VALUE;
_loops = loops;
channel = sound.play(_offset, _loops, transform);
if (channel == null) {

_canPlaySound = false;
return null;

}

_transform = channel.transform;
if (isMuted) { //In case this sounds was muted,

paused, and then resumed
mute(true);

}

channel.addEventListener(Event.SOUND_COMPLETE, complete,
false, 0, true);

_playing = true;
return channel;

} else {
return null;

}

}

public function stop():void {
if (_canPlaySound && channel != null) {

channel.stop();
_loops = 0;
_playing = false;
dispatchEvent(new SoundEngineEvent

(SoundEngineEvent.SOUND_STOPPED, name));
}

}

protected function complete(e:Event):void {
if (_canPlaySound && channel != null) {

_playing = false;
dispatchEvent(new SoundEngineEvent(SoundEngineEvent.

SOUND_COMPLETE, name));
}

}

public function get isPlaying():Boolean {
return _playing;

}

Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO 127

The play and stop methods start and stop the sound object,
respectively, and store the information about how the sound is to be
played. They also set up a listener for the SOUND_COMPLETE event,
which is dispatched when the sound finishes. You’ll probably notice
I used a lot of the same syntax Sound and SoundChannel objects so
as to stay consistent with ActionScript’s conventions. If the same
sound is called multiple times before it is able to finish, as might well
be the case in a game in which a player fires some type of projectile,
any currently playing channel should be allowed to finish and then
remove itself. Also, we allow the option for sound to loop endlessly by
passing in a negative number (preferably −1) and then setting the
number of loops to the largest possible integer. In the original version
of the engine, I used the SOUND_COMPLETE event to check and
start the sound looping again. However, this led to a “hiccup” every
time the sound looped because of the delay between the event and
the sound actually restarting. The only way to get a smooth, seamless
loop is to pass in a loop count to the play method. There is also one
public “getter,” which will return whether or not the sound is cur-
rently playing; this functionality does not exist in the basic Sound
classes in ActionScript and is very helpful information to have in a
game. If background music is already playing, for example, then you
don’t want to accidentally start it a second time.

public function get volume():Number {
if (_canPlaySound && channel != null) {

return channel.soundTransform.volume;
} else {

return 0;
}

}

public function set volume(value:Number):void {
if (_canPlaySound && channel != null) {

var tf:SoundTransform = _transform;
tf.volume = value;
_transform = tf;
if (!_muted) channel.soundTransform = _transform;

}

}

public function get pan():Number {
if (_canPlaySound && channel != null) {

return channel.soundTransform.pan;
} else {

return 0;
}

}
public function set pan(value:Number):void {

128 Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO

if (_canPlaySound && channel != null) {
var tf:SoundTransform = _transform;
tf.pan = value;
_transform = tf;
if (!_muted) channel.soundTransform = _transform;

}
}

public function get transform():SoundTransform {
if (_canPlaySound && channel != null) {

return channel.soundTransform;
} else {

return null;
}

}

public function set transform(value:SoundTransform):void {
if (_canPlaySound && channel != null) {

_transform = value;
if (!_muted) channel.soundTransform = _transform;

}
}

These six methods allow us to set the individual properties controlling
volume and pan of the sound, as well as the raw transform object. Note
that if the sound is muted, the transforms are stored but not applied;
when they are unmuted, they will reference this stored transform.

public function mute(value:Boolean):void {
if (_canPlaySound && channel != null) {

_muted = value;
if (_muted) {

channel.soundTransform = _transform;
} else {

channel.soundTransform = new SoundTransform
(0, 0);

}
}

}

public function get isMuted():Boolean {
return _muted;

}

public function pause(value:Boolean):void {
if (_canPlaySound && channel != null) {

_paused = value;
if (_paused) {

var normalOffset:Number = _offset;

Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO 129

play(_pauseTime, _loops, _transform);
_offset = normalOffset;

} else {
_pauseTime = channel.position;
channel.stop();

}
}

}

public function get isPaused():Boolean {
return _paused;

}

The final methods in the class control the pausing and muting of
the sound, as well as information about each. In the pause method,
we store where the sound is when it is paused and stop it, using this
information as the offset when we resume. In the mute method, we
simply toggle between a zeroed-out SoundTransform object and the
one stored in our _transform property. Note that, in the original ver-
sion, these methods took no parameters and simply toggled the
value of the internal property. This led to inconsistencies where
some objects could get set to muted and some not and then toggling
would just invert both sets; there was no way to force all of them to
mute. By making the passing of a value explicit this solves the issue.

Now that we have an understanding of how each object will
work in the engine, we can return to the main class and see how
each is accessed. Back in the SoundEngine class:

public function playSound(name:String, offset:Number = 0, loops:
int = 0, transform:SoundTransform = null, applicationDomain:
ApplicationDomain = null):SoundChannel {

if (!_soundList[name]) { //SOUND DOES NOT EXIST
var sound:Sound;
var soundClass:Class;
try {

soundClass = (applicationDomain != null) ?
applicationDomain.getDefinition(name) as
Class : getDefinitionByName(name) as Class;

} catch (err:ReferenceError) {
if (_debug)

trace("SoundEngine Message: Could
not find sound object with name
" + name + ". Attempting to load

external file.");
}
if (soundClass) { //INTERNAL REFERENCE FOUND -
CREATING SOUND OBJECT

sound = new soundClass() as Sound;

130 Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO

} else { //NO INTERNAL REFERENCE FOUND - WILL
ATTEMPT TO LOAD

sound = new Sound(new URLRequest(name));
sound.addEventListener(IOErrorEvent.
IO_ERROR, onIOError, false, 0, true);

}
_soundList[name] = new SoundEngineObject(name, sound);

_soundList[name].addEventListener(SoundEngineEvent.
SOUND_COMPLETE, onSoundEvent, false, 0, true);

_soundList[name].addEventListener(SoundEngineEvent.
SOUND_STOPPED, onSoundEvent, false, 0, true);

}
var channel:SoundChannel = _soundList[name].play(offset,
loops, transform);

if (channel == null) {
return null;

}
if (_allMuted) _soundList[name].mute(true);
return channel;
}

protected function onIOError(e:IOErrorEvent):void {
if (_debug)

trace("SoundEngine Error Message: Failed to load
sound: " + e.text);

delete _soundList[e.target.url];
dispatchEvent(new SoundEngineEvent(SoundEngineEvent.
SOUND_ERROR, e.target.url));

}

protected function onSoundEvent(e:SoundEngineEvent):void {
dispatchEvent(e);

}

public function stopSound(name:String = null):void {
if (name) {

if (_soundList[name]) {
_soundList[name].stop();

} else if (_debug) {
trace("Sound "+ name + " was not found,
ignoring stop command.");

}
} else {

for (var i:String in _soundList) {
_soundList[i].stop();

}
}

}

Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO 131

The playSound method is the largest and most important in the
entire class. It checks to find whether the sound requested has ever
been played (created) before. If it hasn’t, the getDefinitionByName
method is used to look up the sound by name in the library.
If a custom ApplicationDomain was specified (which we’ll further
discuss in Chapter 14), it attempts to look up the sound name in
that domain instead. We found this to be necessary, when loading
asset SWF files with sounds embedded in them, so this is a consider-
able improvement in flexibility over the original version. If the sound
cannot be found, the assumption is made that an external file was
requested, and the sound uses the name as the URL to load the
sound. Once the sound engine object has been created, listeners are
attached to it to be notified, when the sound completes or is
stopped. An additional listener is also added if the sound is in an
external file and loading it fails. The two additional protected
methods, onIOError and onSoundEvent, are for dispatching events
to anything listening to the engine. The stopSound method does
what you would expect; it stops the sound passed in for the name
parameter. However, we’ve added an extra feature—if no sound
name is passed in, the engine will stop all the sounds. During a
game, you might often need to kill every sound that’s playing, and
this prevents you from having to name them individually.

Next, we move on to the volume, pan, and transform methods:

public function setVolume(value:Number, name:String = null):void {
if (name) {

if (_soundList[name]) {
_soundList[name].volume = Math.max

(0, Math.min(1, value));
} else {

throw new Error("Sound " + name + "

does not exist.");
}

} else {
for (var i:String in _soundList) _soundList[i].
volume = Math.max(0, Math.min(1, value));

}
}

public function getVolume(name:String):Number {
if (_soundList[name]) {

return _soundList[name].volume;
} else {

throw new Error("Sound " + name + " does not exist.");
}
return 0;

}

132 Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO

public function setPan(value:Number, name:String = null):void {
if (name) {

if (_soundList[name]) {
_soundList[name].pan = value;

} else {
throw new Error("Sound " + name + " does not

exist.");
}

} else {
for (var i:String in _soundList) _soundList[i].pan

= value;
}

}

public function getPan(name:String):Number {
if (_soundList[name]) {

return _soundList[name].pan;
} else {

throw new Error("Sound " + name + " does not
exist.");

}
return 0;

}

public function setTransform(transform:SoundTransform, name:
String = null):void {

if (name) {
if (_soundList[name]) {

_soundList[name].transform = transform;
} else {

throw new Error("Sound " + name + " does not
exist.");

}
} else {

for (var i:String in _soundList) _soundList[i].
transform = transform;

}
}

public function getTransform(name:String):SoundTransform {
if (_soundList[name]) {

return _soundList[name].transform;
} else {

throw new Error("Sound " + name + " does not exist.");
}
return null;

}

Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO 133

Note how each of the “setter” functions follows the form of the
stopSound method; if no specific sound is passed in, the method
runs on all of them.

public function mute(value:Boolean = false, name:String = null):
void {

if (name) {
if (_soundList[name]) {

_soundList[name].mute(value);
if (!_soundList[name].isMuted) _allMuted

= false;
} else {

throw new Error("Sound " + name + " does not
exist.");

}
} else {

_allMuted = value;
for each (var i:SoundEngineObject in _soundList) {

i.mute(_allMuted);
}

}
}

public function pause(value:Boolean = true, name:String = null):void {
if (name) {

if (_soundList[name]) {
_soundList[name].pause(value);

} else {
throw new Error("Sound " + name + " does not

exist.");
}

} else {
for (var i:String in _soundList) _soundList[i].

pause(value);
}

}

public function isPlaying(name:String):Boolean {
if (_soundList[name]) {

return _soundList[name].isPlaying;
}
else if (_debug) {

trace("Sound " + name + " does not exist.");
}
return false;

}

public function isPaused(name:String):Boolean {

134 Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO

if (_soundList[name]) {
return _soundList[name].isPaused;

}
else {

throw new Error("Sound " + name + " does not exist.");
}

return false;
}
public function isMuted(name:String = null):Boolean {

if (name) {
if (_soundList[name]) {

return _soundList[name].isMuted;
} else throw new Error("Sound " + name + " does not

exist.");
return false;

} else {
return _allMuted;

}
return true;

}

The pause and mute methods work the same way as their
SoundEngineObject counterparts, simply applying the setting to all
sounds or just one. If any sounds attempt to play when _allMuted
is true, they are created and then immediately muted as well. The
isMuted method reflects this as well—if no sound is specified, then
it will return the value of _allMuted. Also worth noting is that for
all of these methods (except isPlaying), an error is thrown if the
sound named doesn’t exist. That concludes the functionality of the
SoundEngine class.

You most likely noticed that the type of event dispatched by the
SoundEngine was of the type SoundEngineEvent, referring to the file
mentioned earlier. We’ll now take a quick look at that custom event.

package {

import flash.events.Event;

public class SoundEngineEvent extends Event {
static public const SOUND_COMPLETE:String =
"soundComplete";

static public const SOUND_STOPPED:String = "soundStopped";
static public const SOUND_ERROR:String = "soundError";
protected var _name:String;

public function SoundEngineEvent(type:String, name:
String, bubbles:Boolean=false, cancelable:Boolean=
false){

Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO 135

_name = name;
super(type, bubbles, cancelable);

}
override public function clone() : Event {

return new SoundEngineEvent(type, name, bubbles,
cancelable);

}

public function get name():String {
return _name;

}
}
}

The three constants defined at the top of the class are used to
clearly define the types of events that the SoundEngine can dis-
patch. The SoundEngineEvent is just like a normal event, except
that it contains one extra piece of data: the name of the sound that
generated the event. Without this, there would be no distinguishing
of one sound event from the next, especially when many were
occurring all at once.

Using the Class
Now that we have the class complete, we’ll set up a test file to
ensure that it is working. Create a new ActionScript 3 FLA. Import
the test sound effect provided to the library. To set up the sound to
be available to ActionScript, double-click it to pull up its Properties
panel. Under the Linkage area, select the checkbox to export the
Sound for ActionScript. In the Class field, type “Explosion”; this is
how you’ll refer to this sound from this point on. Flash will auto-
matically fill in the Base Class as an object of type Sound.

Save the FLA alongside the SoundEngine class file so Flash will
know how to find it. Open the Actions panel and type the following
in frame 1:

var se:SoundEngine = SoundEngine.getInstance();
se.playSound("Explosion");

Figure 8.5 Use the Linkage
properties to set up a sound
for export.

136 Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO

When you test your SWF, you should hear the sound effect play.
Note that we create a reference to the SoundEngine for conveni-
ence. If you were merely calling a single sound effect in a script
and had no reason to store a reference, you could shorten the call
this way:

SoundEngine.getInstance().playSound("Explosion");

Because this engine only exposes the existing functionality of
the Sound classes in a simpler and more convenient way, there is
plenty of other functionality that could be added in companion
classes. For instance, the ability to fade out sounds over time or
crossfade sounds to create musical transitions are both features
that don’t make sense in a basic sound engine but are very useful
in games. In fact, we’ll now look at a companion class, which a
coworker of mine created based on the SoundEngine. Many thanks
to Curry McKnight for this code! It makes use of TweenLite, just as
the example in Chapter 7.

public class SoundTweener
{

public static function allFrom(_duration:Number, _vars:
Object):TweenGroup

{

var soundList:Object = SoundEngine.getInstance().
soundList;

var soundArray:Array = new Array();
for each(var soundObj:SoundEngineObject in soundList)

soundArray.push(soundObj);
if(soundArray.length)
{

return TweenGroup.allFrom(soundArray,
_duration, _vars, TweenLite);

}
else
{

return null;
}

}

public static function allTo(_duration:Number, _vars:
Object):TweenGroup

{
var soundList:Object = SoundEngine.getInstance().

soundList;
var soundArray:Array = new Array();
for each(var soundObj:SoundEngineObject in soundList)

soundArray.push(soundObj);

Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO 137

if(soundArray.length)
{

return TweenGroup.allTo(soundArray,
_duration, _vars, TweenLite);

}
else
{

return null;
}

}

public static function from(_sound:String, _duration:
Number, _vars:Object):TweenLite

{
var soundObj:SoundEngineObject = SoundEngine.

getInstance().soundList[_sound];
if(soundObj)
{

return TweenLite.from(soundObj, _duration,
_vars);

}
else
{

return null;
}

}

public static function to(_sound:String, _duration:Number,
_vars:Object):TweenLite

{
var soundObj:SoundEngineObject = SoundEngine.

getInstance().soundList[_sound];
if(soundObj)
{

return TweenLite.to(soundObj, _duration,
_vars);

}
else
{

return null;
}

}

public static function killAllTweens(_complete:Boolean =
false):void

{
var soundList:Object = SoundEngine.getInstance().

soundList;

138 Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO

for each(var soundObj:SoundEngineObject in
soundList)

TweenLite.killTweensOf(soundObj,
_complete);

}

public static function killTweensOf(_sound:String,
_complete:Boolean = false):void

{
var soundObj:SoundEngineObject = SoundEngine.

getInstance().soundList[_sound];
if(soundObj)
{

TweenLite.killTweensOf(soundObj,
_complete);

}
}

}

This class consists of a set of static methods that directly
interface with the SoundEngineObjects and the list of them con-
tained in the SoundEngine. Simply provide the name of the sound
you want to control and pass it parameters the same way you
would any other kind of tween object. Here’s how it would look in
practice.

var se:SoundEngine = SoundEngine.getInstance();
se.playSound("EngineHum");
SoundTweener.from("EngineHum", 1, { volume:0 });

This will start an engine sound and then tween it to its normal
value starting at 0. Just like a normal TweenLite object, you can
also pass any custom-easing functions to give your sound just the
effect you’re looking to achieve.

The SoundMixer Class
One other class worth mentioning in the audio section of Flash is
the SoundMixer. It is the global sound controller for the
Flash Player and has its own SoundTransform. If you need to do
something basic like simply mute all the sounds in your game
outside of the SoundEngine, you can accomplish it with a very
simple script.

SoundMixer.soundTransform = new SoundTransform(0);

You can also use the SoundMixer to stop every sound that is
playing inside of Flash, the descendant of stopAllSounds() from
all the way back in Flash 3. While I recommend using a class

Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO 139

like the SoundEngine to manage playback and control of your
sounds, SoundMixer is a nice fallback if you are loading in con-
tent created by someone else and you need to control any rogue
sounds.

FLASH HACK: THE SOUND OF SILENCE
At a conference I once heard a Flash cartoonist reveal a secret for how he
made sure that Flash could keep up with the set frame rate and slow
down on older machines. Although it applied to Flash 5, I’ve found it can
still help in a pinch today. Basically, he would put a clip on the main
timeline that had a one-second sound with total silence in it, set to
stream, and loop it 9 or 10 times. The way Flash is designed to work is
that it will skip rendering frames in order to keep in sync with streaming
sounds on the timeline. It will, however, continue to process frame
scripts, meaning that any scripts that are reliant on the frame rate will still
run. In essence, it may make gameplay choppier on slow computers, but
it will play at the correct speed. The reason he looped it a number of
times is that each time a streaming sound restarts the Flash player will
stutter momentarily if the processor is maxed out. The clip will play
straight through and only have to restart the stream every 10 seconds or
so. At this rate, it is barely noticeable and makes a huge impact on the
playability of complex games. Because the sound is made up of silence,
you can use the highest compression settings possible that would turn
any other sounds to utter garbage, and it won’t make a difference. It
won’t add more than a few kilobytes to your end file and is worth the
peace of mind that the game will, at least, keep up on older machines.

The bottom line to remember with sounds is to not to forget
them. There is almost no game experience that cannot be enhanced
by a well-implemented soundtrack. Make audio a priority, and your
game will be stronger as a result.

140 Chapter 8 TURN IT UP TO 11: WORKING WITH AUDIO

9
PUT THE VIDEO BACK IN “VIDEO GAME”

CHAPTER OUTLINE
Video Codecs 141
External Video Uses: Cutscenes and Menus 142

Encoding a Cutscene 143
CutsceneManager 145

Using the CutsceneManager 151
Video on the Timeline 152

File Size 152
Ease of Use and Library Clutter 152
Performance 153
Free Motion Blur 153

Setting Up an Internal Video 153
Summary 156

Video is probably used more than you might initially think in Flash
games. Video is a great format for noninteractive cutscenes because
the performance is consistently satisfactory (Adobe has put a great
deal of effort into making sure that video plays smoothly in Flash),
and it can be created and stored completely externally to a game. In
this chapter, we’ll see how it is also an excellent container for charac-
ter animations, particle effects, and other small in-game animations.
We’ll also explore the Adobe Media Encoder that comes with Flash
CS5 and the different settings to use for each type of video.

Video Codecs
Flash can handle a few different formats of video, all of which cater
to different uses. The first, and the oldest, is Sorenson Spark.
Although it tends to show the most compression artifacts on a
higher-resolution video, its processor requirements are modest,
and it requires the least horsepower of any of Flash’s codecs. It
works well for a game that needs to support older machines and
where the video isn’t going to get very large. In Flash 8, Flash
introduced the On2 VP6 codec. The compression quality and file
size are much improved over Spark, albeit at a higher cost of CPU
overhead. The best feature of VP6 is that it can be encoded with an

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 141

alpha channel, so parts of the video can be transparent. For larger
videos an alpha channel can begin to drag down the performance,
whereas at smaller dimensions it is a lifesaver for both the perfor-
mance and file size (which we will discuss momentarily). The final
and the most recent addition to Flash is H.264 (or MPEG-4 based)
video. It is by far the best-looking video available in Flash and riv-
als the quality of either QuickTime or Windows Media Player. The
two drawbacks are that it is very processor intensive and it does
not support an alpha channel, so you can think of it as more of an
upgrade to Spark than a replacement for VP6. I would recommend
it for cutscenes in games in which the target machine is relatively
new; the quality cannot be beaten. In addition, in some current
and future iterations of the Flash Player, H.264 video will be hard-
ware accelerated, meaning it will utilize the end users’ GPU on
their video card to deliver lightning fast performance and leave the
CPU free up to run your code and other rendering tasks.

External Video Uses: Cutscenes and Menus
With console and commercial computer games reaching awe-
inspiring levels of graphical sophistication, the bar is naturally
raised on even simple Web-based games to look polished and
“modern.” This feel can be achieved through the use of cutscenes
in games that are story driven. When used wisely (and not over-
used), such as between levels or as a payoff at the end, they add a
very cinematic quality to a game.

Another way of effectively incorporating video is in menus. Most
players of Flash games are used to just static buttons and text on a
menu screen. By utilizing even a simple video loop created in Adobe
After Effects (or even created in Flash and then exported as a movie),

Figure 9.1 Video cutscenes
can add a very immersive
element to a game and can
make Flash games look more
polished and modern on a par
with commercial games.

142 Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME”

a menu can be much more dynamic and hold players’ visual interest
enough to get them into the game. Because these two uses of video
are passive, or noninteractive, it makes the most sense to load the
video files externally rather than embedding them in the game SWF.
We’ll now discuss how to encode the video and after that how we
load that video and play it as a cutscene using ActionScript.

Encoding a Cutscene
Adobe has replaced the Flash Video Encoder that came with earlier
versions of Flash with the far more robust and completely rede-
signed Media Encoder. It takes any video, audio, or image sources
and converts them into one of the basic Flash-compatible video for-
mats. It can be intimidating to use at first, as there are many options
to consider. Luckily, most of the presets will work well for our needs,
some with only minor modifications. We’ll now walk through the
process of encoding a couple of videos using different settings,
based on how we would use the video in a game.

To walk through this example, you’ll need the video support files
for this chapter from this book’s Web site. Since it comes with
Flash CS5 and CS5.5, I’ll assume you have the Media Encoder.
Launch the program and drag the video file named Cutscene.mov
into the program. This will add it to the list of media to be encoded.

Once you have added your video, you’ll see that there are a few
columns of settings. Second from the left is the Format column. If it is
not already set to FLV/F4V, toggle it to that setting now. To the right

Figure 9.2 The Adobe Media
Encoder offers a wide range of
presets so that you don’t have
to tweak every setting by
hand, unless you want to.

Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME” 143

of the format is the Preset column. If you were using a standard pre-
set for the video, you could select it from the preset list. In our case,
we want to select the very first option in the preset list, “F4V Same as
Source.” This setting will produce an H.264 Flash video file with the
same dimensions and audio settings as the original file (in this case,
710 × 386, 30 fps). Because this cutscene would be used in a Web
game, we don’t need that level of quality. Click just to the right of the
drop-down arrow to customize the settings.

In the lower-right quadrant of the window, you will see a five-
tabbed panel for adjusting the settings of the encoder. Select the
Video tab and check Resize Video. A good rule of thumb for
cutscenes (and video in general) in Flash is that you can very often
get away with encoding it between one-half and two-thirds the size
of the original and can scale the video in Flash without drastic
quality loss. Your tolerance of the compression may vary, but in
this case we’re going to set the dimensions to 470 × 255. Scroll
down in the video panel until you reach the Bitrate Settings. Select
VBR, 2 Pass (meaning the encoder will double-check its work to

Figure 9.3 You can customize the presets for the video to suit your needs.

144 Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME”

deliver the highest possible quality) from the Bitrate Encoding
drop-down. Set the Target Bitrate to 0.5 (or 500 kbps) and the Max-
imum Bitrate to 0.75 (or 750 kbps). Since this clip has a lot of
motion in certain parts, we want the encoder to be more generous
with those frames but more conservative with others. Next, select
the Audio tab. From the Bitrate Settings drop-down, select 96 kbps.
This will compress the audio cleanly and still provide ample quality
for our needs. At this point the encoder is estimating the file size at
right about 1 MB, as you can see to the left of the Cancel button. If
you were encoding several videos, you could save these settings as
a preset in the upper-right quadrant of the panel. For your pur-
poses, just click OK and return to the main screen. With your video
ready to encode, click Start Queue.

Besides the original MOV file, you will end up with an approxi-
mately 1-MB F4V file. At approximately 15 seconds in length, this is
probably a little large still for people on slower connections, so you’ll
want to take your audience into account when encoding. Now let’s
write some code to play what you’ve just encoded.

CutsceneManager
I typically create a class to manage cutscenes that can sit on top of
the gameplay and easily be called to play transition videos, so we’ll
set one up. There are a couple of reasons for using a custom class,
first of which is the fact that just setting up and loading a video in

Figure 9.4 Once you’ve
defined the settings for your
video, click Start Queue to
begin encoding.

Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME” 145

Flash is many lines of imports and code. Only having to type these
lines once by containing them within a flexible wrapper is the
essence of sound programming. Another reason to use a custom
class is to be able to trigger custom notifications for events.
Video playback in Flash generates a lot of events, some purely
informational and some error-based, and having to filter through
all the messages can be cumbersome when all you’re trying to do
is play a cutscene. By having the class listen for just the pertinent
messages and distill them down into a couple of useful events
simplifies the process even further.

This class isn’t as involved as the SoundEngine we looked at
earlier, and it is self-contained in one file.

package {

import flash.display.Sprite;
import flash.events.AsyncErrorEvent;
import flash.events.Event;
import flash.events.KeyboardEvent;
import flash.events.NetStatusEvent;
import flash.events.SecurityErrorEvent;
import flash.media.Video;
import flash.net.NetConnection;
import flash.net.NetStream;
import flash.ui.Keyboard;

public class CutsceneManager extends Sprite{
}

}

The CutsceneManager extends the Sprite class, so it can easily be
added to the Stage like any other DisplayObject. Because it uses
video, it needs not only the Video class but also the NetConnection
and NetStream classes. Some examples I’ve seen import the entire
events package (import flash.events.*), but for this example I’ve
added each of the necessary events manually. Finally, we’ll include
the KeyboardEvent and Keyboard classes so that we can bind a key
to skip the video—a handy feature that prevents players from having
to potentially sit through a video over and over again.

public var skipKey:uint = Keyboard.SPACE;
protected var _nc:NetConnection;
protected var _stream:NetStream;
protected var _video:Video;
protected var _activeVideo:String;

We only need to keep track of a few variables for this class. The
skipKey property is exposed publicly, so you can set it to whatever

146 Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME”

keystroke you’d like; it defaults to the space bar. The protected
properties are all related to keeping track of the video.

public function CutsceneManager(width:int, height:int) : void {
setupConnection();
_video = new Video(width, height);
addChild(_video);

}

protected function setupConnection() :void {
_nc = new NetConnection();
_nc.addEventListener(NetStatusEvent.NET_STATUS,
netStatus, false, 0, true);

_nc.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
securityError, false, 0, true);

_nc.connect(null);
}

The constructor function creates a new CutsceneManager and sets
up both the NetConnection and Video objects and prepares them for
use. The NetConnection instance sets up a couple of listeners as well,
which we’ll look at next.

protected function netStatus(e:NetStatusEvent) {
switch (e.info.code) {

case "NetStream.Play.StreamNotFound":
trace("Unable to locate video: " +

_activeVideo);
break;

case "NetStream.Play.Start":
dispatchEvent(new Event(Event.INIT));
break;

case "NetStream.Play.Stop":
stopCutscene(Event.COMPLETE);
break;

}
}

protected function securityError(e:SecurityErrorEvent):void {
trace(e);

}

protected function asyncError(e:AsyncErrorEvent):void {
//IGNORE ASYNCHRONOUS ERRORS

}

NetStatusEvent messages are used for both NetConnection and
NetStream objects. Anytime anything happens to the connection of

Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME” 147

video stream, messages are broadcast and captured by one event.
Using a switch statement, we filter through them for the messages
important to us. In this case, we want to know whether the video
fails to load, when the video actually starts playing, and when it
finishes. There are two other events that we need to set up listeners
for, which are error-based. It’s not that we should be overly
concerned with these errors, but without a listener attached to them,
they will throw real run-time errors that can break other parts of your
code. Now that we’ve covered all the “under-the-hood” code, we’ll
take a look at the main methods used to control the manager.

public function playCutscene(url:String) : void {
_activeVideo = url;

_stream = new NetStream(_nc);
_stream.addEventListener(NetStatusEvent.NET_STATUS,
netStatus, false, 0, true);

_stream.addEventListener(AsyncErrorEvent.ASYNC_ERROR,
asyncError, false, 0, true);

_video.attachNetStream(_stream);
_stream.play(url);
if (stage) stage.addEventListener(KeyboardEvent.KEY_
DOWN, skipCutscene, false, 0, true);

}

public function stopCutscene(eventType:String = Event.CANCEL) :
void {

_stream.close();
_video.clear();
dispatchEvent(new Event(eventType));
if (stage) stage.removeEventListener(KeyboardEvent.KEY_
DOWN, skipCutscene);

}

public function get activeVideo():String {
return _activeVideo;

}

protected function skipCutscene(e:KeyboardEvent) {
if (e.keyCode == skipKey) stopCutscene();

}

The playCutscene method is the heart of this class. It accepts a
URL string, sets up the stream, and links it to the video. It also adds
a listener for keystrokes, so you can define a key that will skip the
cutscene. You probably noticed back in the netStatus method that
on the video finishing it calls stopCutscene and passes a parameter
of Event.COMPLETE. By default, the stopCutscene method will

148 Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME”

assume that the video is terminated prematurely when it is called.
This way you will be able to differentiate from the outside the class
whether the video was able to finish playing or it was skipped. In
addition to dispatching a message about the status of the video, the
stopCutscene method performs two other important functions. One
is to close out the NetStream object (whether the video is still com-
ing from it) and the other is to clear the video. Without the latter
function, the last frame of the video would stay in the Video object,
covering up everything behind it.

That completes the CutsceneManager class. Since we reviewed
it in pieces, here is the entire script with all the methods in
context.

package {

import flash.display.Sprite;
import flash.events.AsyncErrorEvent;
import flash.events.Event;
import flash.events.KeyboardEvent;
import flash.events.NetStatusEvent;
import flash.events.SecurityErrorEvent;
import flash.media.Video;
import flash.net.NetConnection;
import flash.net.NetStream;
import flash.ui.Keyboard;

public class CutsceneManager extends Sprite{

public var skipKey:uint = Keyboard.SPACE;

protected var _nc:NetConnection;
protected var _stream:NetStream;
protected var _video:Video;
protected var _activeVideo:String;

public function CutsceneManager(width:int, height:
int) : void {

setupConnection();
_video = new Video(width, height);
addChild(_video);

}

public function playCutscene(url:String) : void {
_activeVideo = url;
_stream = new NetStream(_nc);
_stream.addEventListener(NetStatusEvent.
NET_STATUS, netStatus, false, 0, true);

Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME” 149

_stream.addEventListener(AsyncErrorEvent.
ASYNC_ERROR, asyncError, false, 0, true);

_video.attachNetStream(_stream);
_stream.play(url);
if(stage)stage.addEventListener(KeyboardEvent.

KEY_DOWN,skipCutscene,false,0,true);
}
public function stopCutscene(eventType:String = Event.

CANCEL) : void {
_stream.close();
_video.clear();
dispatchEvent(new Event(eventType));
if (stage) stage.removeEventListener(KeyboardEvent.

KEY_DOWN, skipCutscene);
}

public function get activeVideo():String {
return _activeVideo;

}

protected function skipCutscene(e:KeyboardEvent) {
if (e.keyCode == skipKey) stopCutscene();

}

protected function setupConnection() :void {
_nc = new NetConnection();
_nc.addEventListener(NetStatusEvent.

NET_STATUS, netStatus, false, 0, true);
_nc.addEventListener(SecurityErrorEvent.

SECURITY_ERROR, securityError, false, 0, true);
_nc.connect(null);

}

protected function netStatus(e:NetStatusEvent) {
switch (e.info.code) {

case "NetStream.Play.StreamNotFound":
trace("Unable to locate video: " +
_activeVideo);

break;
case "NetStream.Play.Start":

dispatchEvent(new Event(Event.INIT));
break;

case "NetStream.Play.Stop":
stopCutscene(Event.COMPLETE);
break;

}
}

150 Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME”

protected function securityError(e:SecurityErrorEvent):
void {

trace(e);
}

protected function asyncError(e:AsyncErrorEvent):void {
//IGNORE ASYNCHRONOUS ERRORS

}
}

}

Using the CutsceneManager
At this point we’ve written less than 100 lines of code, and they will
allow us to easily call in a video for use as a cutscene in less than five.
Open up a new FLA file in Flash and save it next to the Cutscene-
Manager class. Set the FLA dimensions to 710 × 386, the original size
of the video we’re going to load. If you followed the Adobe Media
Encoder example mentioned earlier in this chapter, copy the Cuts-
cene.f4v file you created next to the FLA. If not, you can find this
same file in the Chapter 9 examples folder. Then, on the first frame of
the FLA, add the following lines:

var cm:CutsceneManager = new CutsceneManager(stage.stageWidth,
stage.stageHeight);

addChild(cm);
cm.playCutscene("Cutscene.f4v");

You should see the video starts to play, filling up the whole
Stage. Since we haven’t specified another key, press the space bar
before the video finishes and you will see it go away quickly and
cleanly. If we want to get information about when the video
finishes playing, all we need is a few more lines:

cm.addEventListener(Event.COMPLETE, cutsceneFinished, false, 0,
true);

function cutsceneFinished(e:Event) {
trace(e);

}

That’s it. This class will work with any format of Flash-compatible
video and will save a lot of time when you’re in a crunch. This
class could also be modified pretty easily to work with a menu
background loop as well. Instead of clearing itself when the
video reached the end, it would simply need to loop back to the
beginning. You would also probably want to remove the skip
functionality.

Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME” 151

Video on the Timeline
Though an externally loaded file works great for noninteractive
videos, it’s not the best option for the video that is used in the
gameplay or when you need clips with alpha transparency.

Image sequences such as short character animations, particle
effects, tend to require a transparent background in order to inte-
grate seamlessly with the background. Conventional thinking in
Flash would dictate using a series of PNG images that simply
played back in order. Much of the time, however, the best option
is actually to import the sequence as a video file directly into your
library and use it on the timeline like a MovieClip. If all you have
are image sequences to work with (not all animation programs pro-
duce video formats directly compatible with Flash), fear not! In the
section Setting Up an Internal Video, I’ll show you how to use
Flash as a video editing tool. There are a few reasons to consider
using video instead of a sequence of PNG files.

File Size
Most of the time, an FLV encoded with an alpha channel will be
smaller than the equivalent PNG sequence, even with relatively high
JPEG compression turned on in Flash, because the On2 codec is
designed for handling motion and applies its compression more effi-
ciently than JPEG. When an encoder compresses a video, it makes
decisions about what data will change from one frame to the next,
stripping out anything it doesn’t need to duplicate. Single images
only have their image data to work with and cannot benefit from the
other images in a sequence. Video can also be encoded in variable
bit rate (VBR). Instead of using the same compression across the
board for every frame, the encoder determines which frames can
benefit from extra compression and which ones need to stay higher
quality. For example, if several frames of a video are all one color or
have very little details, the encoder will compress them heavily,
whereas frames with a lot of motion and color data will receive a
lighter compression. While you could manually apply the same
principle to all the images in a sequence, it would be much more
time-consuming and certainly tedious.

Ease of Use and Library Clutter
Say you have 10 different one-second character animations for a
player in a game. At 30 fps, this would equal 300 images. Using a
video in place of each of these sequences would result in only 10
library items—much more manageable and easy to update if changes
are made. Simply replace one video instead of 30 images. This effi-
ciency also translates to timeline management. Because a video is

152 Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME”

already treated as a single DisplayObject, sort of like a MovieClip
of images, it’s much easier to rearrange them on Stage and in the
timeline without having to select multiple frames at once.

Performance
Even with the extra performance overhead an alpha-channel video
clip brings, it is still more efficient than a series of images, particularly
as the dimensions of the clip increase. This is because Adobe has put
a lot of effort into making the video playback engine perform well
even on modest machines. Also, in the context of Flash’s timeline
model, a PNG sequence requires the renderer to add and remove
images on every frame, which is a more intensive task.

Free Motion Blur
The compression used on video tends to have a slight softening effect,
depending on what settings were used in the encoder, and this effect
can actually be helpful in creating a sense of motion blur on videos
with a lot of movement. Since Flash cannot natively do directional
motion blur, this effect would be much harder to produce with a
series of images. Obviously, if the encoder is smudging the video too
much, you might want to change the compression settings.

WHEN PNGS STILL WIN
Say you had an animation sequence of a character crouching. To be as
efficient as possible, you would probably use the same animation for the
character entering the crouch as that coming out of it, just reversing the
latter. This is possible with a sequence of images that you have complete
control over but not so with a video. You would have to create the second
animation separately, and at that point you will have lost any file size sav-
ings from using video in the first place. How you intend to use animation
sequences in your game should dictate which format you use.

Setting Up an Internal Video
Let’s walk through a practical example of setting up a timeline-based
video and test the file size improvement. The support files for this exer-
cise can be found in the Chapter 9 examples folder. In this example,
I have a 15-frame running sequence for a character that will need to
loop. It currently exists as an image sequence of PNG files. Open a new
FLA file and save it as ImageSequence.fla. Set the Stage size to 200 ×
200. Import the first image from the sequence into Flash. It will prompt
you if you would like to import the whole series; click Yes. You should
now have the image sequence on the Stage. Test the SWF, and you

Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME” 153

will see a running cycle animation that loops. It should be roughly
66 kb. You may be thinking, “66 k is nothing in this broadband age!
How much could I possibly gain by using a video instead?” You’d
probably be surprised just how much. This is just one video that is
less than one second long. The game that employed this particular
character had this same animation, as well as about nine others, from
three other angles (left, right, and back) in order to make it feel like
the character was moving in a three-dimensional space. That is more
than 2.5 MB for all those animations, and that’s just for one character.

To turn this sequence into a video, select Export → Export Movie
from the File menu in Flash. Give the movie the name Image-
Sequence and select QuickTime from the Format drop-down. You
will be presented with a QuickTime Export Settings window. Check
the box to ignore stage color and generate an alpha channel. Tell it to
store the temp data on disk, as it is more reliable for most image
sequences. Click the QuickTime Settings button to bring up one more
dialog. The default settings should be correct, but just make sure the
video is set to export at 200 × 200, 24 fps, using the Animation com-
pressor and Millions of Colors+. All this means is that it will create a
movie file with an alpha channel that we can then encode as Flash
video. Click OK and then click Export. Flash will let you know when it
is finished, which should only be a matter of seconds.

At this point you should have a new MOV file ready to encode.
Launch Adobe Media Encoder and drag the ImageSequence movie
onto it. Select FLV/F4V as the format and select FLV Same as
Source (Flash 8) from the preset options. Then, open the settings
to customize the preset. Under the Video tab, select the Encode
Alpha Channel box. Then, scroll down to the Bitrate Settings and
lower the Bitrate to 250 kbps. This may seem small, especially after

Figure 9.5 The Quicktime
Export settings give you a
number of options for
exporting a Flash timeline
animation to a MOV file.

154 Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME”

Figure 9.6 When encoding a
PNG sequence into an FLV, be
sure to check the Encode
Alpha Channel box.

Figure 9.7 A side-by-side
comparison of a PNG
sequence and a video of the
same sequence.

Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME” 155

encoding an enormous cutscene file, but for small animations like
this it is usually more than enough. This is the one option that
I tend to change per project because I haven’t found one setting
that works across the board for every type of animation. At this
point, the encoder should be estimating the FLV at 30–36 k less
than the image sequence we created in Flash. Click OK and Start
Queue to encode the video.

To do a true comparison of the two resulting SWF files, create a
new FLA that is 200 × 200. Save it as VideoSequence. Import the
ImageSequence.flv file. It will bring up the Import Video window.
Select the option to Embed FLV in SWF and click Continue twice.
Click Finish on the summary screen, and the video will be added
to your FLA on the Stage. If you test this SWF alongside the Image-
Sequence SWF, you’ll notice that indeed the video is 30 k smaller
and looks almost identical. One could argue that it is possible to
lower the JPEG quality of the PNG sequence and that SWF will
drop down to around 40 k. However, you still are left managing a
bunch of images rather than just one video file, and now the image
sequence will (usually) look worse than the video. Remember that
even though the savings in this example is small, most games will
use far more assets than just a single character; always calculate
the savings to the scale of your project to determine if using video
is worth the extra few steps.

Summary
In this chapter, we covered the following topics:
• Different formats of video that Flash will accept and when to

use them
• How to use the Adobe Media Encoder to create both cutscene-

style videos and alpha-channel clips
• How to create a CutsceneManager that handles loading external

video files
• How to use video on the timeline in place of image sequences

156 Chapter 9 PUT THE VIDEO BACK IN “VIDEO GAME”

10
XML AND DYNAMIC CONTENT

CHAPTER OUTLINE
Bringing Data In: Understanding the URLLoader Class 157
XML 158
E4X 158
Crossword Puzzle 159

The CrosswordTile Class 163
The CrosswordClue Class 167
The CrosswordPuzzle Class 168

Content Is a Two-Way Street: A Crossword Builder 179
Sending Data Back Out 180
One More Example: XML versus Flash Vars 181
Summary 182

Many Flash games are self-contained SWF files. They don’t load
any additional files in, and they don’t send any type of data out.
However, this closed architecture prohibits a number of scenarios
such as
• Externalized content (such as a puzzle data or even a game

copy)
• The ability to save to a public high-score table
• Localization to other languages
• Level editors and user-generated content

In this chapter, we’ll explore how features like these can be
implemented using a variety of features in ActionScript.

Bringing Data In: Understanding the
URLLoader Class
The core component behind sending and loading basic text, XML,
and binary data is the URLLoader class. It takes only a few lines of
code to load some data and begins working with it. Consider the
following example:

var loader:URLLoader = new URLLoader(new URLRequest("config.txt"));
loader.addEventListener(Event.COMPLETE, onTextLoad, false,

0, true);

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 157

function onTextLoad(e:Event) {
trace("Text: " + e.target.data);

}

All this code does is load a text file and trace what is in it. In and of
itself, this is not especially useful until you consider what you could
put inside the file. Maybe your game has a lot of text dialogue and
you don’t want it mixed with your code, or a bunch of legal copy you
don’t want to mess with pasting inside a text field in Flash. Word-
based, trivia, and many other puzzle games are also good candidates
for loading in external content, allowing you to add new content with-
out having to republish the game file. We’ll look at an example of this
type of game shortly, in the form of a crossword puzzle.

XML
By default, a URLLoader simply loads in plain text, which is fine for
most applications involving local files. By itself, however, text does
not lend a great deal of flexibility. It needs to be organized into a
format that has a structure. This is where XML comes in. If you’re
not already familiar with it, XML is, in brief, a markup language (in
format similar to HTML) for organizing data into a structured for-
mat. Here is an example of some simple XML defining a quiz:

<quiz>
<problem>

<question>What does this book cover?</question>
<answer>Flash Game Development</answer>
<answer>Java Game Development</answer>
<answer>C++ Game Development</answer>

</problem>
<problem>…etc.</problem>

</quiz>

As you can see, XML is incredibly flexible, allowing you to
define exactly how you want your data structured. XML structures
can become extremely complex, particularly for large-scale applica-
tions, but this example also shows how simple it can be. In this
case, we’ve defined that a quiz contains problems. Each problem
has a question and three answers, the first of which is correct. By
setting up your data with a logical hierarchy, we can access it easily
from inside Flash.

E4X
If you had worked with XML in ActionScript 1 or 2, you would
know how unwieldy it was to handle. Unless you used a very
robust parser, most changes to the structure of the XML would

158 Chapter 10 XML AND DYNAMIC CONTENT

break your code. A new feature in ActionScript 3 is the ability to
parse through XML data just like any other object in Flash. This
feature is known as E4X (ECMAScript for XML), and it makes XML
a native data type in Flash, just like numbers or strings. Because of
this, parsing XML is much faster and allows you to move through a
structure like you would a set of objects and arrays. The following
example uses a URLLoader to load the XML used in the previous
example.

var quiz:XML;
var loader:URLLoader = new URLLoader(new URLRequest("quiz.xml"));

loader.addEventListener(Event.COMPLETE, onXMLLoad, false,
0, true);

function onXMLLoad(e:Event) {
quiz = XML(e.target.data);
trace(quiz.problem[0].question); // "What does this book

cover?"
}

To use the data as XML once it is loaded, you simply use the
XML conversion function and assign it to a variable. To learn more
about the more advanced features of E4X such as filtering and
searching, look to the Flash reference documentation on XML. For
the purposes of this chapter, our use of XML will be more straight-
forward. Let’s look at a practical example of how XML can be used
to store puzzle data for a game.

Crossword Puzzle
One of the most popular types of word games in print or electronic
media is the crossword puzzle. There are many variations of the
crossword puzzle, but the traditional American square grid type is
the style we will work with (Fig. 10.1). It consists of overlapping
horizontal and vertical words with unique numbers denoting the
start of a word. Each word has a clue associated with it, which can
be another word or an entire phrase.

In the following exercise, we will lay out the structure of a cross-
word puzzle in XML and then create a simple crossword engine
that will display the puzzle and allow a player to fill it in. Any XML
to be used in Flash must have only one root node, that is, the node
that opens and closes the file. Any additional nodes will be ignored
when the XML is parsed. We start with an opening node labeled
“crossword,” which will encase our entire puzzle. Inside an opening
XML tag you can add parameters, called attributes, which allow you
to add any information pertinent to the node. In this case, we
define the width and the height of the puzzle in question. Attribute
values should be in quotes and do not need any type of separator
between them.

Chapter 10 XML AND DYNAMIC CONTENT 159

<crossword width="13" height="13">
</crossword>

Now we can begin to break down the crossword into its core
components, the grid layout (which we will call the “puzzle” in this
case) and the clues. The grid squares can either have letters or be
blacked out, so no letters can be entered. We’ll break down the
puzzle into rows and use a special character to denote the black
spaces. For this example, we’ll use the underscore (“_”). Each row
will spell out one line of the puzzle in a single string.

<puzzle>
<row>ASKS_SON_DOME</row>
<row>SENT_ONE_EVEN</row>
<row>HAIR_MOW_FEED</row>
<row>_STARE_SHIRTS</row>
<row>___PAWS_IN___</row>
<row>HAT_WHISPERED</row>
<row>IRON_ANT_DARE</row>
<row>DEPARTURE_TAN</row>
<row>___TO_SEAR___</row>

1

14

17 18 19

20 21 22

23 24 25

32 33

26 27 28 29 30 31

36 37 38

39 40 41

45

42 43 44

50 51 52 53 54

55 56 57

58

61 62 63

59 60

46 47 48 49

34 35

15 16

2 3 4 5 6 7 8 9 10 11 12 13

Figure 10.1 An American
square grid type crossword
puzzle.

160 Chapter 10 XML AND DYNAMIC CONTENT

<row>SHRUBS_ARISE_</row>
<row>TOUR_OAK_DIGS</row>
<row>ELLA_LIE_EDGE</row>
<row>PEEL_ODD_REST</row>

</puzzle>

As you can see, this structure is very readable and allows us to
see basically what the puzzle will look like before it is even in a
grid. It is important to remember that while there are many stan-
dards in XML, there is no reason to overcomplicate the path to get
to your data. Keeping it readable like this will also help us catch
mistakes faster.

Next, we need to add the accompanying clues for this puzzle.
We will do this by simply adding a clue node with two types of
clues in it: down and across.

<clues>
<across>Questions</across>
<across>Harry Potter to Lily Evans</across>
<across>Igloo, for example</across>
<across>Emailed</across>
<across>Lonely number</across>
<across>Opposite of 60 Across</across>
<across>It grows on you</across>
<across>Cut grass</across>
<across>Fill a dog's dish</across>
<across>Look at intently</across>
<across>They have sleeves</across>
<across>Animal feet</across>
<across>With 41 Across, keen on</across>
<across>Fedora, e.g.</across>
<across>Spoke quietly</across>
<across>It's pumped in a gym</across>
<across>Social insect</across>
<across>"I __ ya!" (challenge)</across>
<across>Lounge in an airport</across>
<across>Lie in the sun</across>
<across>See 24 Across</across>
<across>Burn the surface of</across>
<across>Small trees</across>
<across>Come up</across>
<across>Take a trip around</across>
<across>Mighty tree</across>
<across>Uses a shovel</across>
<across>Famous singer Fitzgerald</across>
<across>Tell a tall tale</across>
<across>Rim</across>
<across>Open a banana</across>

Chapter 10 XML AND DYNAMIC CONTENT 161

<across>Opposite of 14 Across</across>
<across>Take five</across>
<down>Fire leftover</down>
<down>Oceans</down>
<down>Make a sweater, perhaps</down>
<down>Guitar holder</down>
<down>Sort of</down>
<down>Yoko __</down>
<down>Reporter's offering</down>
<down>Gave the meaning of a word</down>
<down>Above</down>
<down>Get together</down>
<down>Finishes</down>
<down>Not cooked</down>
<down>___-Hop</down>
<down>Cavity in the head</down>
<down>With 50 Down, what one did for Easter, maybe</down>
<down>"___ we there yet?"</down>
<down>Apex</down>
<down>Made like a comet</down>
<down>Remy, the chef, is one</down>
<down>Period in history</down>
<down>Fox's home</down>
<down>Not synthetic</down>
<down>Steal</down>
<down>Hole in the head</down>
<down>Ghost _ (Johnny Blaze)</down>
<down>"__ on it!" (hurry up)</down>
<down>Golfer's target</down>
<down>Be king, say</down>
<down>Alone</down>
<down>Border</down>
<down>See 25 Down</down>
<down>Band-__</down>
<down>Sun__ (day's end)</down>

<clues>

Note that we are not interested in which clue is associated with
which word in the puzzle, but rather arrange them in ascending
order. This is because if we build our crossword engine correctly,
there will eventually be a one-to-one association between a word
and its clue. Note hard-coding the number allows us to move clues
around if a mistake was made or one was left out.

For this example, we’ll break down the crossword engine into a
few components. At its core, a crossword can be broken down into
individual tiles, so we’ll create a class to represent a tile. Together
they make up the grid, or a puzzle, so the main class driving the

162 Chapter 10 XML AND DYNAMIC CONTENT

engine will be a puzzle class. At this point, one could argue the
merits of creating a class to define a word, but in terms of practi-
cality a word is nothing more than an array of tiles, so for our pur-
poses we’ll keep it simple. Finally, we need a way to display the
clue for a given word, so we’ll make a class to handle that.

The CrosswordTile Class
The best way to solve a complex problem is to break it down into
smaller, more manageable problems. Such is the case with the
CrosswordTile class. This class will keep track of the correct letter
for a given tile and whether that tile is active in gameplay. To start,
we’ll set up our class and package.

package {

import flash.display.MovieClip;
import flash.events.Event;
import flash.events.KeyboardEvent;
import flash.text.TextField;
import flash.geom.Point;
import flash.ui.Keyboard;

public class CrosswordTile extends MovieClip {
}

}

Since this class will handle display as well as the data in the tile,
we’ll extend it from MovieClip and use frames to store its different
states.

Instead of starting with the constructor for the class, let’s outline
the different properties this tile should keep track of. This will con-
sist of both basic public variables and protected variables with pub-
lic getters and setters.

// PUBLIC DisplayObjects
public var letterField:TextField;
public var wordField:TextField;

// PUBLIC VARIABLES
public var letter:String;
public var acrossIndex:int = -1;
public var downIndex:int = -1;
public var tileIndex:Point;

// PROTECTED VARIABLES
protected var _wordIndex:uint;
protected var _answer:String;

Chapter 10 XML AND DYNAMIC CONTENT 163

// GETTER/SETTERS
public function get wordIndex():uint {

return _wordIndex;
}

public function set wordIndex(value:uint):void {
_wordIndex = value;
wordField.text = (_wordIndex) ? _wordIndex.toString() : "";

}

First, we declare two TextField objects that will be used to dis-
play the letter in the tile when it is entered and the number of the
word if it is the first letter. The letter property will be used to store
the letter that belongs to this square. Note that this is not the letter
that will be used to store user input, but rather the correct answer
from the XML. The acrossIndex and downIndex variables will store
the tile’s associations with any horizontal or vertical words. For the
tileIndex, or the actual grid position in the puzzle, we use a Point
object since it already has x and y properties.

PUBLIC PROPERTIES ARE OKAY
You don’t always have to use getters and setters for every publicly exposed
property in your classes. If a variable is purely being stored, the extra over-
head of a function to do so is unnecessary. Use getters and setters when
some other action needs to take place when a value is set, but you want
the simplicity of a simple variable assignment. As long as you keep to a
standard convention (protected/private variables always begin with an
underscore, for instance), you can easily convert the public variable to a
getter/setter property later on and cannot change more than a couple of
lines of code. Getters also come in handy when you want a value to be
readable but not writeable; simply omit the setter and you’re done!

Next, we have two protected variables, one of which has getter/set-
ter methods. The wordIndex property is used to store the word in the
puzzle (horizontal or vertical) to which the tile belongs. The _answer
property will store a player-inputted answer. We now move on to the
publicly exposed methods, which can be called from outside the class.

public function setAnswer(e:KeyboardEvent):Boolean {
if (e.keyCode >= String("A").charCodeAt(0) && e.keyCode

<= String("Z").charCodeAt(0)) {
_answer = String.fromCharCode(e.keyCode);
letterField.text = _answer;
return true;

} else if (e.keyCode == Keyboard.BACKSPACE) {
_answer = "";
letterField.text = _answer;

}

164 Chapter 10 XML AND DYNAMIC CONTENT

return false;
}

public function deactivate() {
gotoAndStop(2);

}

public function activate() {
gotoAndStop(1);

}

When a user enters a keyboard input on a tile, it will call
setAnswer. This method is a normal public function that another
class can call, but it accepts a KeyboardEvent as its parameter like
an event handler. This allows another method elsewhere to pass
along the received keyboard event for evaluation without having
this method attached to a listener. Once it checks to see whether
the key pressed is an alphabetic character or backspace, it updates
itself accordingly. It does not validate the answer further, but it
does return true if a letter was entered and false if any other key
was pressed. The activate and deactivate methods simply toggle
between two different frames to show the tile as a usable square or
a blank.

The constructor for the class will build the tile based on the
character it is given to display. Remember how we denoted a
blanked-out space with an underscore in the XML. We’ll define a
constant property named EMPTY for this character, so that we can
easily reference it (and even change it later if needed).

static public const EMPTY:String = "_";

public function CrosswordTile(letter:String = EMPTY) {
this.letter = letter;
addEventListener(Event.ADDED_TO_STAGE, init, false, 0,
true);

if (letter == EMPTY) {
deactivate();

} else {
activate();

}
}

protected function init(e:Event) : void {
if (letterField) {

letterField.text = "";
letterField.mouseEnabled = false;

}
if (wordField) {

Chapter 10 XML AND DYNAMIC CONTENT 165

wordField.text = (_wordIndex) ? _wordIndex.
toString() : "";

wordField.mouseEnabled = false;
}

}

The constructor stores the letter passed in, sets up a notification
for when the tile is added to the display list, and toggles to the nor-
mal state or the blacked-out state. The init method sets up the text
fields and disables mouse interaction with them. To some, these
may seem like steps that could simply be accomplished in the con-
structor, but unfortunately, this is not the case. If you tried to move
them into the constructor, Flash would give you a run-time error.
This is a point of confusion for many people, but suffice it to say
that while we’ve declared that there will be two text fields, we’re
going to create these objects inside Flash. As long as we give the
same name to our text field instances on the Stage, Flash will link
the declared variable to the actual object. However, this step does
not take place until after the constructor has completed, so the
next best time to run these commands is when the tile is added to
the Stage and ready to use.

Now that we have the class defining a tile created, we need to
see the display object to which it will be linked. Open up the
CrosswordPuzzle.fla file from the Chapter 10 examples folder. In
the Library, you will find a symbol called CrosswordTile. If you
open it, you will see the two text fields (with the names of the vari-
ables in the class) and the two frames showing the different states
that a tile can use. If you bring up the properties panel for the

Figure 10.2 The CrosswordTile
symbol is made up of a square
and two text fields. Figure 10.3 The CrosswordTile symbol is now linked to its class.

166 Chapter 10 XML AND DYNAMIC CONTENT

symbol (right-click and choose Properties), you will see that it is set
to export with the same name as the class we’ve just created. Now
when a new CrosswordTile is constructed, this library asset will be
used as the object to display.

The CrosswordClue Class
Before we delve into building the puzzle itself, let’s consider the
clue component. It is a relatively simple class—all it needs to do is
display the clue for the selected word. With no need for multiple
frames, Sprite is a better candidate than MovieClip.

package {

import flash.display.Sprite;
import flash.text.TextField;

public class CrosswordClue extends Sprite {

static public const DEFAULT_VALUE:String = "Clue";

public var clueText:TextField;

public function CrosswordClue(){
}

public function get text():String {
return clueText.text;

}

public function set text(value:String):void {
clueText.text = value;

}
}

}

The class uses a TextField object and a getter/setter combina-
tion to assign text to it. You might wonder why we didn’t simply
use a standard text field instead of a custom class. You very well
could for an example as straightforward as this, but there are a
couple of reasons to encapsulate it as its own class. First is the abil-
ity to define constants, such as what the default value of the text
field should be when there is no clue shown. Another reason is
expandability and flexibility—by already having a class setup to
handle the clue, it will be easier to add animation and other fea-
tures without adding a lot of code to the puzzle class. One other
reason you might not expect is that it is easier to set up a text field
inside Flash rather than a code. Custom fonts (basically, anything

Chapter 10 XML AND DYNAMIC CONTENT 167

other than system fonts) are clumsily handled through ActionScript
and require more hassle than simply creating a symbol with a
TextField object inside it and linking it to a class. In fact, spawning
a new TextField from scratch in code and assigning it for format-
ting objects and positioning is as much or more code than the
class we just created.

In the CrosswordPuzzle.fla file, you’ll find a symbol in the
library named CrosswordClue, and it has the single TextField
named clueText. It is set to export using the same class name and
is extending from the base class Sprite. You may have some cogni-
tive dissonance when you see that the base class field says Sprite,
but the type still says MovieClip. This has to do with the way the
Flash authoring environment handles timeline-based elements and
is a holdover from older versions, presumably for consistency. To
help the confusion (or perhaps add to it), Flash now color-codes
Sprites in the Library as green instead of the MovieClip blue. Don’t
dwell too hard on it—it’s a quirk of Flash and while annoying does
not cause any real problems.

The CrosswordPuzzle Class
With the individual tiles and the clue field ready to be used, it’s time
to set up the core CrosswordPuzzle engine. Unlike the two previous
components, we will not link this class to a symbol in the library.
Because crossword puzzles can be any number of sizes, having any
type of fixed layout defined in a symbol would make the class too rigid
to deal with. Say, for instance, you wanted to support multiple dimen-
sions of puzzles in a single game; if you tied the class to specific sym-
bols, you would need to do so as the base class and have multiple

Figure 10.4 The CrosswordClue
class extends Sprite, even
though it says MovieClip in the
symbol properties.

168 Chapter 10 XML AND DYNAMIC CONTENT

subclasses that extend CrosswordPuzzle, which could get cumbersome
quickly. It is easier to set up the puzzle dynamically based on the
puzzle data. Like the CrosswordClue, CrosswordPuzzle extends Sprite;
since it is being generated dynamically, it will not use frames.

package {

import flash.display.Sprite;
import flash.geom.ColorTransform;
import flash.geom.Point;
import flash.events.Event;
import flash.events.MouseEvent;
import flash.events.KeyboardEvent;
import flash.ui.Keyboard;

public class CrosswordPuzzle extends Sprite {

}
}

In the basic package definition, we will need to be able to listen
for both Keyboard and Mouse events, and we will use the Color-
Transform class (the code version of the Color properties drop-
down on a timeline-based symbol) to tint tiles that are selected.
Next we define the constants and properties of the class, as well as
the constructor.

// CLASS CONSTANTS
static public const tileSelectedColor:ColorTransform = new

ColorTransform(0, 1, 1, 1, 0, 0, 0, 0);
static public const wordSelectedColor:ColorTransform = new

ColorTransform(.7, 1, 1, 1, 0, 0, 0, 0);

// PROTECTED VARIABLES
protected var _content:XML;
protected var _puzzleHeight:int;
protected var _puzzleWidth:int;
protected var _tileList:Array;
protected var _wordListAcross:Array;
protected var _wordListDown:Array;
protected var _selectedWord:Array;
protected var _selectedTile:CrosswordTile;
protected var _crosswordClue:CrosswordClue;

public function CrosswordPuzzle(content:XML){
_content = content;
_tileList = new Array();
_wordListAcross = new Array();

Chapter 10 XML AND DYNAMIC CONTENT 169

_wordListDown = new Array();
createPuzzle();

}

To tint a tile when it is selected, we create two color transforms
(in this case, versions of light blue). One is used for the specific tile
that is selected, and a lighter one will be used for the word asso-
ciated with that tile. The engine employs a number of variables to
keep track of various pieces of data. The _content XML variable
will store the puzzle data once it is loaded from an external file. It
also keeps track of the width and height of the puzzle, a list of all
the tiles in the play (including blacked-out ones), lists of the hori-
zontal and vertical words, references to the currently selected tile
and the word, and a reference to the CrosswordClue class we cre-
ated earlier. Finally, the constructor accepts an XML object contain-
ing the puzzle content as a parameter. It then initializes the three
lists and calls createPuzzle, which we will look at next.

protected function createPuzzle() {
_puzzleWidth = _content.@width;
_puzzleHeight = _content.@height;
var totalWords:int = 1;
var tile:CrosswordTile;
//SETUP TILES
for (var i:int = 0; i < _puzzleHeight; i++) {

for (var j:int = 0; j < _puzzleWidth; j++) {
var letter:String = _content.puzzle.

row[i].charAt(j);
tile = new CrosswordTile(letter);
tile.name = j.toString() + "_" + i.toString();
tile.tileIndex = new Point(j, i);
if (letter != CrosswordTile.EMPTY) {

var startOfWord:Boolean = false;
if (j == 0 || _content.puzzle.

row[i].charAt(j-1) == "_") {
tile.acrossIndex =

_wordListAcross.push
(new Array());

_wordListAcross[tile.
acrossIndex-1].push
(tile);

startOfWord = true;
}
if (i == 0 || _content.puzzle.

row[i-1].charAt(j) == "_") {
tile.downIndex =

_wordListDown.push
(new Array());

170 Chapter 10 XML AND DYNAMIC CONTENT

_wordListDown[tile.
downIndex-1].push(tile);

startOfWord = true;
}
if (startOfWord) {

tile.wordIndex =
totalWords++;

}
if (tile.acrossIndex < 0) {

var previousAcrossTile:
CrosswordTile =
_tileList[_tileList.
length-1];

_wordListAcross[previousAcrossTile.acrossIndex-1].push
(tile);

tile.acrossIndex =
previousAcrossTile.
acrossIndex;

}
if (tile.downIndex < 0) {

if (i > 0) {
var previousDown

Tile:Crossword
Tile = _tileList
[_tileList.
length-
_puzzleWidth];

if (previousDown
Tile.letter !=
CrosswordTile.
EMPTY) {

_wordListDown[previousDownTile.downIndex-1].push(tile);
tile.downIndex=

previousDown
Tile.
downIndex;

}
}

}
}
_tileList.push(tile);
tile.x = j*tile.width;
tile.y = i*tile.height;
addChild(tile);
tile.addEventListener(MouseEvent.CLICK,
selectTile, false, 0, true);

}

Chapter 10 XML AND DYNAMIC CONTENT 171

}
_crosswordClue = new CrosswordClue();
_crosswordClue.y = getRect(this).bottom + 20;
addChild(_crosswordClue);

}

There is a lot to the createPuzzle method, so we’ll break it down
into more manageable chunks.

_puzzleWidth = _content.@width;
_puzzleHeight = _content.@height;
var totalWords:int = 1;
var tile:CrosswordTile;

The first few lines simply initialize the variables that will be
used throughout the rest of the method. Note that the attributes
we assigned to the crossword XML earlier are prefixed with the @
symbol. Another great feature of E4X is that it is smart enough to
differentiate numbers from strings, so even though the values were
in quotes in the XML file, Flash converted them to numbers for us.

for (var i:int = 0; i < _puzzleHeight; i++) {
for (var j:int = 0; j < _puzzleWidth; j++) {

var letter:String = _content.puzzle.row[i].
charAt(j);

tile = new CrosswordTile(letter);
tile.name = j.toString() + "_" + i.toString();
tile.tileIndex = new Point(j, i);

Next, we begin two for loops that will run through the entire
grid of the puzzle, row by row. Each iteration identifies the letter
used at that space in the grid and creates a new CrosswordTile
object for each one. As you can see, to get down to a specific row
in the puzzle node of the XML, we simply use a combination of
dot and array syntax. When you have multiple nodes on the same
level with the same name, Flash converts it into an XMLList object,
like an XML array. To get at a particular item in the XMLList, we
use a number from 0 up to the number of items minus 1.

if (letter != CrosswordTile.EMPTY) {
var startOfWord:Boolean = false;
if (j == 0 || _content.puzzle.row[i].charAt(j-1) ==
CrosswordTile.EMPTY) {

tile.acrossIndex = _wordListAcross.push(new
Array());

_wordListAcross[tile.acrossIndex-1].push
(tile);

startOfWord = true;
}

172 Chapter 10 XML AND DYNAMIC CONTENT

if (i == 0 || _content.puzzle.row[i-1].charAt(j) ==
CrosswordTile.EMPTY) {

tile.downIndex = _wordListDown.push(new Array());
_wordListDown[tile.downIndex-1].push(tile);
startOfWord = true;

}
if (startOfWord) {

tile.wordIndex = totalWords++;
}
if (tile.acrossIndex < 0) {

var previousAcrossTile:CrosswordTile = _tile
List[_tileList.length-1];

_wordListAcross[previousAcrossTile.
acrossIndex-1].push(tile);

tile.acrossIndex = previousAcrossTile.
acrossIndex;

}
if (tile.downIndex < 0) {

var previousDownTile:CrosswordTile = _tileList
[_tileList.length-_puzzleWidth];

_wordListDown[previousDownTile.downIndex-1].
push(tile);

tile.downIndex = previousDownTile.downIndex;
}

}

This section of the method performs a series of checks to deter-
mine the tile’s current state (in-use or blacked-out) and the words
with which it is associated. First, we check whether the tile is sup-
posed to be empty. If so, we stop there and don’t include it in any
word lists. Next, we determine whether the tile is the starting letter
of a word, either across or down. We ascertain this by checking if
the tile immediately to the left or top of the current tile is a blank.
If it is the start of a new word, we add it to the across list and/or
the down list. We also increment the total number of words coun-
ter and set the tile’s wordIndex to this number. If you recall from
the CrosswordTile class, when the wordIndex is set, it adds this
number to the upper left hand corner TextField. This is the number
that will be used to match the tile to its corresponding clue. If the
tile is not the start of a word, its acrossIndex and downIndex will
still be the default value of -1. We then look up the previous tile to
both the left and above the tile to use its same indices and add it
to the across list, down list, or both. At this point, the tile shares
association with words in the across word list, down word list, and
the beginning letter of each word.

_tileList.push(tile);
tile.x = j*tile.width;

Chapter 10 XML AND DYNAMIC CONTENT 173

tile.y = i*tile.height;
addChild(tile);
tile.addEventListener(MouseEvent.CLICK,

selectTile, false, 0, true);
}

}
_crosswordClue = new CrosswordClue();
_crosswordClue.y = getRect(this).bottom + 20;
addChild(_crosswordClue);

Once the logic has run to determine each tile’s link to its
neighbors, we add it to the master tile list, position it based on
its location in the letter grid, add it to the Stage, and attach a lis-
tener for mouse clicks. To end this method after the loop has
completed processing all the tiles, we add the previously created
CrosswordClue component to the Stage and position it under-
neath the rest of the puzzle with a little bit of whitespace. A com-
plete crossword puzzle should now exist on the Stage with all the
proper blacked-out squares and certain tiles that are assigned
clue numbers. You may have noticed that the method attached to
the mouse listener for each tile is called selectTile. We will discuss
it next.

protected function selectTile(e:MouseEvent):void {
var tile:CrosswordTile = e.target as CrosswordTile;
var acrossWord:Array = _wordListAcross[tile.

acrossIndex-1];
var downWord:Array = _wordListDown[tile.downIndex-1];
clearSelection();
if (tile.letter == CrosswordTile.EMPTY) {

_crosswordClue.text = CrosswordClue.
DEFAULT_VALUE;

stage.removeEventListener(KeyboardEvent.KEY_
DOWN, keyDown);

_selectedTile = null;
return;

}
if (!_selectedTile) stage.addEventListener

(KeyboardEvent.KEY_DOWN, keyDown, false, 0, true);
if (_selectedWord == acrossWord && _selectedTile == tile)

_selectedWord = downWord;
else if (_selectedWord == downWord &&
_selectedTile == tile) _selectedWord =
acrossWord;

else if (_selectedWord == acrossWord &&
_selectedTile != tile) _selectedWord =
acrossWord;

174 Chapter 10 XML AND DYNAMIC CONTENT

else if (_selectedWord == downWord &&
_selectedTile != tile) _selectedWord =
downWord;

else _selectedWord = acrossWord;
for (var i:int = 0; i < _selectedWord.length; i++) {

if (_selectedWord[i] == tile) {
_selectedWord[i].transform.color

Transform = tileSelectedColor;
} else {

_selectedWord[i].transform.color
Transform = wordSelectedColor;

}
}
_selectedTile = tile;
var wordNumber:int = _selectedWord[0].wordIndex;
if (_selectedWord == downWord) {

_crosswordClue.text = String(wordNumber) +
" Down: " + (_content.clues.down[tile.
downIndex-1] || "");

} else {
_crosswordClue.text = String(wordNumber) +

" Across: " + (_content.clues.across[tile.
acrossIndex-1] || "");

}
}

The selectTile method is called when the player clicks a tile. To
provide the expected user feedback, this method needs to (1) high-
light the selected tile, (2) highlight the word with which the tile is
associated, and (3) display the hint associated with the tile. First,
we look up the across and down words the tile is associated with
and then call clearSelection, which we will look at shortly. Suffice it
to say now that clearSelection will nullify any other currently
selected tiles. Next, we check whether the player clicked on a
blacked-out tile; if so, we clear the clue text, disable the keyboard
input if it is active, and exit the function. If the _selectedTile prop-
erty is null, meaning no tile was previously selected, we add a lis-
tener for the keyboard input so that players can start to type letters
once they click a tile. We now need to know whether to use the
tile’s associated across or down word. By default, if no previous
word was selected, we use the tile’s across word. We use many
conditions to ensure that if a tile is selected as part of a down
word, and another tile in that word is clicked, it will keep the
same word selected. We also check to see if the same tile was
clicked twice; if so, we want to select the opposite type of the word
that is currently selected. For instance, if an across word is selected

Chapter 10 XML AND DYNAMIC CONTENT 175

by its first letter, clicking the first letter again will highlight the
down word. Once we have determined the proper word to select,
we run through a for loop that assigns the color transforms we cre-
ated earlier to each of the tiles in the word. Now all that is left to
do is display the clue for the word; to do this, we grab the wordIn-
dex of the first tile in the word. Finally, we concatenate a string
with the word descriptor (“1 Down,” “30 Across,” etc.) and the
clue itself, pulled from the corresponding XMLList. Now that we
have the behavior defined for when the player selects a tile, we
need some way of deselecting the tiles and words, like when they
click on a blacked-out tile. That’s where the clearSelection method
comes into play.

protected function clearSelection():void {
if (!_selectedWord) return;
for (var i:int = 0; i < _selectedWord.length; i++) {

_selectedWord[i].transform.colorTransform = new
ColorTransform();

}
}

All this method does is reset the color transforms for the tiles in
the currently selected word. If no word is selected when the
method is called, it exits. Note that we do not null out the variables
_selectedTile and _selectedWord, because we may need to know the
previously selected word. In fact, the selectTile method relies on
knowing the previously selected word to fulfill all its conditions.
Now that we have methods to set up a puzzle and select specific
tiles in it and we need one more method to insert letters into the
tiles. If you recall in the selectTile method, we set up a keyboard
event listener when a tile is successfully selected. This method, key-
Down, is what we’ll look at next.

protected function keyDown(e:KeyboardEvent):void {
var selectedIndex:int = (_selectedTile.tileIndex.

y *_puzzleWidth) + _selectedTile.tileIndex.x;
var newIndex:int;
switch (e.keyCode) {

case Keyboard.UP:
newIndex = Math.max(0, selectedIndex -
_puzzleWidth);

if (_tileList[newIndex].letter != CrosswordTile.
EMPTY) _tileList[newIndex].dispatchEvent(new
MouseEvent(MouseEvent.CLICK));

break;
case Keyboard.DOWN:
newIndex = Math.min(_tileList.length-1,
selectedIndex + _puzzleWidth);

176 Chapter 10 XML AND DYNAMIC CONTENT

if (_tileList[newIndex].letter != CrosswordTile.
EMPTY) _tileList[newIndex].dispatchEvent(new
MouseEvent(MouseEvent.CLICK));

break;
case Keyboard.LEFT:
newIndex = Math.max(selectedIndex - 1, (_selected

Tile.tileIndex.y * _puzzleWidth));
if (_tileList[newIndex].letter != CrosswordTile.

EMPTY) _tileList[newIndex].dispatchEvent(new
MouseEvent(MouseEvent.CLICK));

break;
case Keyboard.RIGHT:
newIndex = Math.min(selectedIndex + 1,

((_selectedTile.tileIndex.y+1) * _puzzleWidth)-1);
if (_tileList[newIndex].letter != CrosswordTile.

EMPTY) _tileList[newIndex].dispatchEvent(new
MouseEvent(MouseEvent.CLICK));

break;
case Keyboard.SPACE:
_selectedTile.dispatchEvent(new MouseEvent

(MouseEvent.CLICK));
break;
default:
_selectedTile.setAnswer(e);
break;

}
}

The keyDown method is responsible for handling a few
different types of keyboard inputs. We employ a switch statement
to filter through the possible values for the key that was pressed.
In addition to responding to alphabetic key presses, we want to
give the player the ability to move between different tiles with the
arrow keys, as well as the ability to toggle between the across and
down words of the selected tile. For the arrow key input, if a tile
in the direction the player is attempting to move isn’t blacked
out, we simulate a mouse click by dispatching a new MouseEvent
from the tile. The result is that it’s as though the tile next to the
selected tile was clicked with the mouse and selectTile is called to
handle it. By simulating already existing functionality, we lessen
the possibility for bugs, since the logic on selection of words
based on tiles is centralized in one place. The same is true for
the space bar; when it is pressed it is as though the selected tile
was simply clicked again. For all other keys, we send the event
through the setAnswer method of the tile. If you recall, that
method knows how to filter for proper alphabetic inputs, so we
don’t have to worry about that here.

Chapter 10 XML AND DYNAMIC CONTENT 177

All of our classes for the crossword puzzle engine are now
defined; let’s try it out. If you open the CrosswordPuzzle.fla in the
Chapter 9 folder, you will find the following code on the first frame.

var loader:URLLoader = new URLLoader(new URLRequest("crossword.
xml"));

loader.addEventListener(Event.COMPLETE, createCrossword);

var cp:CrosswordPuzzle;

function createCrossword(e:Event) {
cp = new CrosswordPuzzle(XML(e.target.data));
cp.x = stage.stageWidth/2 - cp.width/2;
cp.y = cp.x;
addChild(cp);

}

Figure 10.5 The finished
crossword puzzle engine,
running with the sample
puzzle.

178 Chapter 10 XML AND DYNAMIC CONTENT

This little snippet of code handles loading in the XML file with all
the crossword data and creates a new CrosswordPuzzle instance with it.
Finally, it centers the puzzle horizontally on the Stage and adds it to the
display list. This code could easily be integrated into a larger class that
handles, for instance, the loading of multiple puzzles.

The resulting SWF for the whole crossword engine is just less
than 15 k, pretty small for a lot of functionality. Using a device, or
a system, font for the tiles would bring it down even further, since
at least half the file is font data.

Content Is a Two-Way Street:
A Crossword Builder
While editing an XML file by hand is certainly not impossible, it
would get grueling pretty quickly to have to create entire cross-
word puzzles that way. This is where an editor comes into play.
Using the same core components, like the tile class and much of
the puzzle class, you can take the crossword engine and write its
second version that outputs the XML file and even saves it to a
local file. While we won’t build an entire editor here, a savePuzzle
method might look like this for such applications.

protected function savePuzzle(e:Event = null) {
_content = new XML(<crossword width={_puzzleWidth}

height={_puzzleHeight}><puzzle/><clues/></crossword>);
for (var i:int = 0; i < _tileList.length; i+= _puzzle

Width) {
var slice:Array = _tileList.slice(i, i+_puzzle
Width-1);

var str:String = "";
for (var j:int = 0; j < slice.length; j++) {

if (slice[j].letter == "") str += Cross
wordTile.EMPTY;

else str += slice[j].letter;
}
var row:XML = new XML(<row>{str}</row>);
_content.puzzle.appendChild(row);

}
for (i = 0; i < _acrossClues.length; i++) {

var across:XML = new XML(<across>{_acrossClues
[i]}</across>);

_content.clues.appendChild(across);
}
for (i = 0; i < _downClues.length; i++) {

var down:XML = new XML(<down>{_downClues[i]}
</down>);

Chapter 10 XML AND DYNAMIC CONTENT 179

_content.clues.appendChild(down);
}
var file:FileReference = new FileReference();
file.save(_content,"crosssword.xml");

}

When creating an XML within ActionScript, you don’t have to
enclose it in “” or convert it from a string. You simply start typing it,
hence the one line to create the _content container for the XML. To
insert ActionScript values in the midst of raw XML, simply use braces
({}) around the expression that needs to be evaluated. In this case, the
first line creates the main nodes with the puzzle width and height
attributes and two child nodes: puzzle and clues. It then runs through
the tile list and builds all the rows for the puzzle. The appendChild
method is called, which adds each row to the bottom of the puzzle
XMLList, like a push to an array. Then, the across and down clues are
iterated and appended as well. Finally, the FileReference save method
is called. It brings up a system file dialog window and saves the XML
as text data to the file selected. The second parameter is only a
suggestion—the end user can select whatever file name they want.

Sending Data Back Out
While the local file saving abilities in the FileReference class are great,
the real power comes from saving data to a remote destination, such
as a database. Data such as high-score leaderboards, user profiles,
and more are all great candidates for XML formatting. To get the
information to the database, it must get through some data processing
(or middleware) layer, such as WebServices, AMF (Remoting), or stan-
dard form posts. Here is a quick example of what the latter might look
like, simply posting the raw XML to a receiving PHP page.

var myXML:XML = <crossword width="10" height="10"><puzzle/>
<clues/></crossword>;

var request:URLRequest = new URLRequest("myservice.php");
request.contentType = "text/xml";
request.data = myXML.toXMLString();
request.method = URLRequestMethod.POST;
var loader:URLLoader = new URLLoader(request);

Just as the URLLoader is the core class for loading remote data into
Flash, it is also the sending mechanism when combined with a data-
laden URLRequest. In this example, we simply format the request to
notify the receiving page that it contains incoming XML content. Of
course, sending the XML in its raw form like this is not particularly
secure—most any savvy hacker will be able to use any number of
HTTP monitoring tools to see the XML being sent (or any being
received for that matter). For some data, such as public high-score

180 Chapter 10 XML AND DYNAMIC CONTENT

tables, this won’t matter. However, more sensitive data such as user
information should be hidden. We’ll explore ways to overcome this
security deficiency in an online bonus chapter on flashgamebook.com.

One More Example: XML versus Flash Vars
A popular way of getting information into a SWF file from its con-
taining HTML page is through the use of Flash Vars. If you’re not
familiar with them, Flash Vars are essentially name/value pairs that
are passed into the SWF upon loading. Say you had a site in which
users could log in and you wanted to display a player’s name
inside the game. A traditional solution to this problem would be to
add the username to the object and embed tags in the HTML
page. It would look like as follows:

<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/
flash/swflash.cab#version=10,0,0,0" width="500" height="600"
id="CrosswordPuzzle" align="middle">

<param name="allowScriptAccess" value="sameDomain" />
<param name="allowFullScreen" value="false" />
<param name="movie" value="CrosswordPuzzle.swf" />
<param name="quality" value="high" />
<param name="bgcolor" value="#ffffff" />
<param name="flashvars" value="username=Chris" />

<embed src="CrosswordPuzzle.swf" quality="high"
bgcolor="#ffffff" width="500" height="600" name="Crossword
Puzzle" align="middle" allowScriptAccess="sameDomain"
allowFullScreen="false" type="application/x-shockwave-flash"
pluginspage=http://www.adobe.com/go/getflashplayer

flashvars="username=Chris"/>
</object>

If you have multiple pieces of information you need to pass into
Flash, they are separated by &’s, just like a URL in a browser. There
are a couple of drawbacks to using this system that become very
apparent when you start using more than one or two variables. One
reason is that you’re limited to only single name/value pairs; you
can’t store any type of complex data in a Flash Var. The other one is
that it becomes tricky to manage them in the page, and one typo or
error processing could render all of them unavailable. To add to
their annoyance during troubleshooting, any special characters must
be URL-encoded, increasing their lack of readability.

A better option is to use a single Flash Var, maybe called config.
The value of this variable is a path to either a static or a dynamic
XML file. It would probably look something like the following:

<param name="flashvars" value="config=configuration.xml"/>

Chapter 10 XML AND DYNAMIC CONTENT 181

If the information contained within the XML file didn’t need to
change per user (like the links to various pages or media), it could
simply be a file on the server besides your SWF that the SWF loads
in on launching. If the information was dynamic (like a username
or preferences), it could point to a PHP (or other back-end service)
file that returns XML.

<param name="flashvars" value="config=configuration.php"/>

The URLLoader will load in the data as plain text, regardless of file
extension, so as long as the page renders out as XML you’re good to
go. This keeps your back-end developers (or you if you’re a solo opera-
tion) from having to wrangle variables within a page of already convo-
luted HTML. Here is an example of what a config file might look like.

<config>
<mediaPath>http://www.mydomain.com/media/</mediaPath>
<serviceURL>http://www.mydomain.com/services/

</serviceURL>
<userName>Chris</userName>

</config>

Remember that you could put whatever information you wanted
to in here and in whatever structure. As you can see, this much
more readable option is also easier to parse, and due to E4X, your
basic data types (such as strings and numbers) come through
intact; Flash Vars are all strings.

Summary
In this chapter we’ve explored a few uses of XML in games. There
are definitely many more. Some developers I’ve met are wary of
using XML, feeling that doing so forces them to use an elaborate,
complex setup or follow some “best practices” guide to formatting
they read in a 500-page tome on XML in an Enterprise setting.
Nothing could be further from the truth; use XML where it makes
sense, keep it simple, and try to follow a structure that lends itself
to growth. The great thing about XML is that it is a standard in and
of itself, and ActionScript 3 makes working with it a no-brainer.

182 Chapter 10 XML AND DYNAMIC CONTENT

11
FOUR-LETTER WORD: M-A-T-H

CHAPTER OUTLINE
The Math Class 184
Part One: Geometry and Trigonometry 184
A Quick Explanation of Radians and Pi 188
3D in Flash 192

Position 193
Rotation 193

Perspective Projection 193
The SimpleTunnelShooter Example 196

The Basic Mechanics 196
Classes 196
The Tunnel Class 196

Part Two: Physics 211
Scalar 211
Vector 211
The Vector3D Class 212
Displacement 212
Velocity 212
Acceleration 213
Friction 213
Inertia 213
Simulation versus Illusion 214
Reality versus Expectations 214

Example: A Top–Down Driving Engine 214
The Vehicle Class 215
The Time Class 217
The Game Class 219

Example: Top–Down Driving Game with Drift 223
Review 226

Few people I know, programmers included, don’t groan a little when
math and physics are brought up. While not all games utilize them,
geometry, trigonometry, and basic physical mechanics are essential
parts of game development. Don’t worry though; this isn’t a physics
and math book. There are many of those out in the marketplace
already, some of which are even written specifically for games.

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 183

In fact, this isn’t even going to be an in-depth exploration of those
topics because they really aren’t necessary for most casual games.
In this chapter, we will cover the foundational concepts you’ll
need to understand to be able to handle a wide variety of chal-
lenges involved in game development. We will accomplish this in
two parts: Geometry and Trigonometry, and Physics, each with a
practical example illustrating the concepts. If when you’re done
with this chapter, your appetite is whetted for a more in-depth
look at these topics, I have provided links to further reading on
this book’s Web site.

The Math Class
ActionScript includes a core library for performing a lot of the func-
tions we’re going to learn about in this chapter. It is the Math class,
and it will quickly become invaluable as we get into more compli-
cated problems later on in our code. It doesn’t include everything
we’ll eventually need, but later we’ll learn about some companion
functions we can write to make it even more useful.

Part One: Geometry and Trigonometry
Geometry, specifically Euclidean geometry, is the branch of mathe-
matics that deals with, among other things, the relationship
between points, lines, and shapes in a space. From it, we derive
the formulas for finding the distance between two points, as well as
the entire x-y coordinate system (known as the Cartesian coordi-
nate system) on which Flash’s Stage is built. Figure 11.1 illustrates
a typical two-dimensional coordinate system.

Flash’s coordinate system is slightly different in that it is flipped
over the x-axis, resulting in y values being reversed. The upper-left
corner of the Stage is at (0, 0) and expands down and to the right
from there, as shown in Fig. 11.2. This is important to note because
it is diametrically opposed to the notion that numbers decrease as
they move “down” on a graph, and it can cause confusion later
when we move into some of the concepts of physics.

Trigonometry (or trig for short) is a related, but more specific,
branch that describes the relationships between the sides and
angles of triangles, specifically right triangles (triangles with one
angle of 90°). All triangles have some fundamental properties:
• A triangle’s interior angles always add up to 180°.
• Any triangle (regardless of orientation and type) can be split

into two right triangles.
• The relationships between any given side and angle of a triangle

are defined by ratios that are known as the trigonometric
functions.

184 Chapter 11 FOUR-LETTER WORD: M-A-T-H

You have probably heard of the three most common trig func-
tions: sine (sin), cosine (cos), and tangent (tan). They each relate
to different sides of a triangle. The longest side of the triangle (and
in a right triangle, the side opposite the right angle) is the hypote-
nuse (hyp). In Fig. 11.3, we relate to the other two sides of the

1

1

−1

−1

y

x

(0,0)

Figure 11.1 A standard
two-dimensional Cartesian
coordinate system, or x-y axis.

1

−1

−1

1 y

x

(0,0)

Flash stage

Figure 11.2 Flash’s vertically
inverted coordinate system.

Chapter 11 FOUR-LETTER WORD: M-A-T-H 185

triangle based on the angle we’re interested in; in this case A. The
vertical side of the triangle is opposite (opp) angle A, while the
horizontal side is adjacent (adj) to it.

The aforementioned trig functions work with these sides as
follows:
• The sine of an angle is equal to the opposite side’s length

divided by the hypotenuse’s length: sin A = opp/hyp
• The cosine of an angle is equal to the adjacent side’s length

divided by the hypotenuse’s length: cos A = adj/hyp
• The tangent of an angle is equal to the opposite side divided by

the adjacent site: tan A = opp/adj
As you can see, these functions are very helpful if you only know

a little bit of information about a triangle and need to determine the
other components. Let’s look at a few examples. In Fig. 11.4, we
know the value of angle A is 50° (and by extension, the other
missing angle would then be 40°). We also know the length of the
hypotenuse is 30.

To find the lengths of the other two sides, we rewrite the sine
and cosine equations as follows:

adj = cos A× hyp, or adj = ð cos 50Þ× 30
opp = sin A× hyp, or opp = ð sin 50Þ× 30

If you used a calculator with the trig functions on it, you would
quickly determine that the value of the adjacent side is ~19.3 and
the value of the opposite side is ~23.

In Fig. 11.5, we can see that we now know one angle (45°) and
the length of the side opposite that angle (20°).

Once again, we simply manipulate the equations to determine
the other two sides, this time using tangent instead of cosine, since
cosine has nothing to do with the opposite side:

hyp = opp/ sin A, or hyp = 20/ð sin 45Þ
adj = opp/ tan A, or adj = 20/ð tan 45Þ

Using a calculator, this would reveal the hypotenuse to have a
length of ~28.3 and the adjacent side to also be 20.

Now let’s look at an example (Fig. 11.6) with a triangle where
we know the lengths of the two shorter sides, but no angles and no
hypotenuse.

Since we know the opposite and adjacent sides, the obvious
choice would be to use the tangent equation to determine the value
of angle A (and flipping the two sides to find out the value of B):

tan A = 15/20
tan B = 20/15

However, now we’re stuck. We want the values of A and B, not
the tangent of A and B. Luckily, there is a way to reverse each trig

H
ypotenuse=30

Adjacent

O
p
p
o
s
it
e

A = 50°
90°

Figure 11.4 Using the
information about one
angle and one side,
we can use the trig
functions to find the
values of the other
two sides.

H
ypotenuse

Adjacent

O
p
p
o
s
it
e

A90°

Figure 11.3 The three
sides of a right triangle,
related to angle A.

H
ypotenuse

Adjacent

O
p
p
o
s
it
e

=
20

A = 45°
90°

Figure 11.5 A triangle
where we know one
angle and one side.

186 Chapter 11 FOUR-LETTER WORD: M-A-T-H

equation using what are known as the inverse trig functions. The
names of these functions match their counterparts, but prefixed
with the word arc. In this case, we need to use arctangent to find
the value of each of these angles.

A = arctan ð15/20Þ
B = arctan ð20/15Þ

Based on these equations, angle A would be ~37° and B would
be ~53°. If you add these together with the right angle of 90°, you
can see that we indeed have a proper triangle of 180°.

For our final theoretical example, look back again to Fig. 11.6.
Suppose all you needed was the hypotenuse and you weren’t inter-
ested in the angles at all. You could do what we did previously,
using arctangent to get the values of the angles and then use those
angles with either sine or cosine to determine the hypotenuse.
However, as this is a multiple-step process, it is inefficient when
we have a much quicker way. In addition to the standard trig
functions, there is another equation to determine the third side of
a triangle when you know the other two, which is known as the
Pythagorean theorem. The theorem states that the hypotenuse of a
triangle, squared, is equal to the sum of the squares of the other
two sides. Let’s look at this as an equation, calling the two shorter
sides a and b and the hypotenuse c.

a2 + b2 = c2

Finding any one side when you know the other two is just a
simple permutation of this equation as follows:

c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 + b2Þ

q
, b =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 − a2Þ

q
, a =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 − b2Þ

q

For our purposes, we know sides a and b to be 15 and 20 (or 20
and 15; it doesn’t really matter). From these values, the hypotenuse
would therefore be equal to √(152 + 202), or 25.

Now that we have defined these functions and have seen how
to use them, let’s look at a couple of practical examples in Flash
and how to apply the functions there.

A fairly common use of the trig functions is finding the angle of
the mouse cursor relative to another point. This angle can then be
applied to the rotation of a DisplayObject to make the object “look”
at the mouse. If you open the MousePointer.fla file, you’ll find just
such an example setup. It consists of a triangle MovieClip called
“pointer” on the Stage. One of the corners of the triangle is colored
differently to differentiate the direction it is pointing. For simplicity,
the ActionScript to perform this math is on the timeline; if you
were using this code as part of something larger, it would make
sense to put it in a class. Let’s look at this code now.

H
ypotenuse

Adjacent = 20

O
p
p
o
s
it
e

=
15

A

B

90°

Figure 11.6 A triangle
where we know just two
of the sides, but no
angles and no
hypotenuse.

Chapter 11 FOUR-LETTER WORD: M-A-T-H 187

addEventListener(Event.ENTER_FRAME, updatePointer, false, 0,
true);

function updatePointer(e:Event) {
var angle:Number = Math.atan2(mouseY - pointer.y,
mouseX - pointer.x);

pointer.rotation = angle * (180 / Math.PI);
}

On every frame (30 times per second at our current frame rate),
the angle of the pointer relative to the mouse position is updated.
There is a fair amount going on in these two lines, so let’s look at
them one at a time.

var angle:Number = Math.atan2(mouseY - pointer.y, mouseX - pointer.x);

Remember we learned that if we know two sides of the triangle,
we could use that information to find out any of the angles. In this
case, we know the difference in x and y between the mouse cursor
and the pointer clip. These constitute the two shorter sides of a right
triangle—a straight line drawn between the pointer and mouse would
be the hypotenuse of this triangle. This is illustrated in Fig. 11.7.

In the figure, A represents the angle we’re interested in, as we
want the pointer to basically “look down” the imaginary hypotenuse.
This makes x distance the adjacent side to the angle, and y distance
the opposite side. Recall the formula for the tangent of an angle:
tan A = opp/adj. To determine A, we need to use the arctangent for-
mula: A = arctan(opp/adj). In ActionScript, there are two ways to
implement arctangent—they are the atan() and atan2() methods of
the Math class. The first expects to receive one value, assuming you
have already divided the opposite side by the adjacent. The second
one performs this step for you and is, thus, more commonly used (at
least by me); pass it the opposite side first, followed by the adjacent
side. In our case, the opposite side is the difference in the y value of
the mouse cursor and the y position of the pointer. Likewise, the adja-
cent side is the difference in x values of the cursor and the pointer.
We now have the angle represented by A in Fig. 11.7. However, this
angle (and all angles returned by the arc functions in ActionScript) is
in radians, not degrees. The rotation property of the pointer is assigned
in degrees, so we need to know how to convert one unit to the other.

A Quick Explanation of Radians and Pi
You already know that sum of all angles of a triangle is 180°, and
that of a circle is 360°, exactly double. A single radian is the value
of the angle created when a slice of the circumference of a circle is
equal to the circle’s radius; Figure 11.8 illustrates this.

x
A°

y

Figure 11.7 The distance
between the mouse cursor
and the registration point
of the pointer clip forms a
triangle.

Arc length = radius

1 radian

Radius

Figure 11.8 When the
length of an arc on a circle
is equal to the circle’s
radius, the value of the
angle formed is 1 radian.

188 Chapter 11 FOUR-LETTER WORD: M-A-T-H

If this explanation is confusing, don’t worry—a full understanding
of the use of radians is not necessary to perform the math we need.
In fact, there is a very handy constant in math that will help us
convert between radians and degrees. It is known as Pi (pronounced
“pie”), represented by the symbol π, and a nonrepeating decimal
number approximately equivalent to 3.141. It represents the number
of radians in a triangle, or half the number of radians in a circle.
Therefore, 180° is equal to π radians. To convert between radians and
degrees, we simply multiply a number of radians by 180/π or a
number of degrees by π/180. Returning to our ActionScript example
from above, the next line of code does just that, using the Math.
PI constant.

pointer.rotation = angle * (180 / Math.PI);

If you test this FLA file, you will see that the pointer consistently
points in the direction of your cursor as you move it around the
screen. Now that we have this piece of functionality in place, let’s
add a layer of complexity. Suppose in addition to “looking at” the
mouse we wanted the pointer to also move toward the mouse until
it reaches the mouse’s x and y positions. If you open the example
MouseFollower.fla, you’ll see how we can accomplish this.

Initially, this example looks very much like the previous one,
except for a few extra lines of code. Let’s look at this additional
ActionScript now.

var speed:Number = 5; //PIXELS PER FRAME

addEventListener(Event.ENTER_FRAME, updatePointer, false, 0,
true);

function updatePointer(e:Event) {
var angle:Number = Math.atan2(mouseY - pointer.y,

mouseX - pointer.x);
pointer.rotation = angle * (180 / Math.PI);
var xSpeed:Number = Math.cos(angle) * speed;
var ySpeed:Number = Math.sin(angle) * speed;
if (Math.abs(mouseX - pointer.x) > Math.abs(xSpeed))

pointer.x += xSpeed;
if (Math.abs(mouseY - pointer.y) > Math.abs(ySpeed))

pointer.y += ySpeed;
}

The first line we’ve added is a speed component. This defines
how many pixels the pointer should move per frame, in this case
the number of pixels is 5. In the updatePointer function, we’ve also
added a few lines to perform this move. Since the speed is how
many pixels we want to move in a straight line, we need to convert
it into the amount we need to move in the x-axis and y-axis.

Chapter 11 FOUR-LETTER WORD: M-A-T-H 189

In order to do this, we need to think of the speed as the hypotenuse
of an imaginary triangle. We also already know the angle of the
triangle we’re interested in, because we just used arctangent to solve
it. With this information in hand, we can use the sine and cosine
functions to find the adjacent and opposite sides of this triangle, or
the x and y components, respectively.

var xSpeed:Number = Math.cos(angle) * speed;
var ySpeed:Number = Math.sin(angle) * speed;

Once we have these two speeds, we can simply apply them to
the x and y positions of the pointer to move it. In its simplest form,
that code would look like as follows:

pointer.x += xSpeed;
pointer.y += ySpeed;

However, if you were to leave the code like this, you would find
that the pointer would start to move erratically when it got very
close to the mouse. This is because while trying to get as close to
the cursor as possible, it continues to “jump over” its target and
will appear to bounce back and forth endlessly. To circumvent this
behavior, we need to check to see if the pointer is close enough to
the mouse so that it can stop moving. Doing so will employ
another method of the Math class, abs(). This method is known in
English as the absolute-value function. When given a number,
either positive or negative, it returns the unsigned value of that
number; Math.abs(4) = 4, Math.abs(−7) = 7, etc. In our example,
we want to know whether the distance between the cursor and the
pointer is greater than the distance the pointer is trying to travel.
Since we can’t know whether difference between the cursor’s
position and the pointer’s position will result in a negative number,
we use the absolute value of the number for our calculation to
ensure it is always positive. We also apply the function for the
xSpeed and ySpeed variables because there are situations where
they could be negative as well.

if (Math.abs(mouseX - pointer.x) > Math.abs(xSpeed)) pointer.x
+= xSpeed;

if (Math.abs(mouseY - pointer.y) > Math.abs(ySpeed)) pointer.y
+= ySpeed;

If you compile the SWF, you will see that this code causes the
pointer to follow the mouse around the screen, always pointing
toward it. While this logic is not what most people would consider
intelligence, it is a form of AI.

Let’s look at one more example that will give the pointer a little
more “personality.” Open MouseFollowDistance.fla to follow along.
Continuing on our previous examples, we once again have a clip
named pointer and some code in the first frame. However, instead

190 Chapter 11 FOUR-LETTER WORD: M-A-T-H

of constantly following the cursor, the pointer will only pursue the
mouse when it is within a certain distance.

var speed:Number = 5; //PIXELS PER FRAME
var interestDistance:Number = 150; //PIXELS

addEventListener(Event.ENTER_FRAME, updatePointer, false, 0,
true);

function updatePointer(e:Event) {
if (getDistance(mouseX, mouseY, pointer.x, pointer.y) >

interestDistance) return;
var angle:Number = Math.atan2(mouseY - pointer.y,

mouseX - pointer.x);
pointer.rotation = angle * (180 / Math.PI);
var xSpeed:Number = Math.cos(angle) * speed;
var ySpeed:Number = Math.sin(angle) * speed;
if (Math.abs(mouseX - pointer.x) > Math.abs(xSpeed))

pointer.x += xSpeed;
if (Math.abs(mouseY - pointer.y) > Math.abs(ySpeed))

pointer.y += ySpeed;
}

function getDistance(x1:Number, y1:Number, x2:Number,
y2:Number):Number {

return Math.sqrt(Math.pow((x2-x1),2) + Math.pow((y2-y1),2));
}

The first variable we add is interestDistance, or the number of
pixels within which the pointer becomes “interested” in the mouse
cursor. At the beginning of updatePointer, we also add a condition
to check if the distance between the two is greater than the amount
we specified. We do this by introducing a new function called
getDistance. If you remember any basic geometry from school, you’ll
probably recognize this method as the distance formula. However, it
is also a variation of the Pythagorean theorem. Recall that

c2 = a2 + b2

where a and b are sides of a triangle. To find c, we rewrite the
function as follows:

c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 + b2Þ

q

In our case, a and b represent the differences in x and y,
respectively. If we replace these variables with our actual values, it
looks like as follows:

distance =
ffi
ððx2− x1Þ2 + ðy2− y1Þ2Þ

q

Chapter 11 FOUR-LETTER WORD: M-A-T-H 191

Written in ActionScript, using the Math class methods for
exponents, this same function results in

Math.sqrt(Math.pow((x2-x1),2) + Math.pow((y2-y1),2));

Upon testing the SWF, you’ll see that the pointer will only follow
the cursor when the mouse is within 150 pixels of it. We have
bestowed the pointer with a basic decision-making ability. So far,
these examples have been fairly abstract—they don’t really consti-
tute a game. We will use these examples as part of a larger piece of
game code, but first we need to understand a little more about
Flash’s coordinate system.

3D in Flash
A new feature introduced in Flash CS4 is support for “3D”
objects. This ability is sometimes misunderstood initially and
requires a little clarification. Flash cannot natively use 3D models
created in programs such as Autodesk Maya or 3D Studio, though
starting in future versions of Flash you will be able to do this
through external libraries and hardware acceleration. Rather, the
current features manipulate 2D objects in 3D space, allowing for
effects such as true perspective skewing and distortion. One way
to think about it is to imagine all your objects on the Stage like
rigid pieces of paper; they have no perceivable depth, but you
can tell their orientation in 3D space. This new ability adds
several new properties to DisplayObjects, not the least of which is
the introduction of a third, or z, axis. Figure 11.9 illustrates how
the z-axis is represented in the two-dimensional environment of

z

x

y

STAGE

Figure 11.9 The new z-axis in
Flash is perpendicular to both
the x and y axes.

192 Chapter 11 FOUR-LETTER WORD: M-A-T-H

the Stage; you can think of it as following the invisible line
created from your eyes to the screen.

Position
On the z-axis, the value of 0 is at Stage level. Negative values for the
z property of a DisplayObject would make the object appear larger
and “closer” to the viewer. Positive values for z will increasingly shrink
the object, making it “further away.” Flash developers who have per-
formed tricks with the x and y scales of objects in the past to achieve
the feeling of depth and 3D space will no doubt breathe a sigh of relief
at the ease with which this effect can now be achieved with only a line
or two of code. It should be noted that the z position of an object only
tells Flash how to properly render the object in perspective; it does not
affect the display list order. In other words, if you had two objects in a
scene (let’s say one with a z position of 30, whereas the other had a
z position of 10), but the one with the higher z position was added to
the Stage later, it would still appear to be on the top in the display list.

Rotation
In addition to 3D positioning, you can also rotate DisplayObjects
around any of the three axes. Figures 11.10–11.12 illustrate how a
DisplayObject is rendered when its rotationX, rotationY, and rota-
tionZ properties are each set to 45, respectively. You’ll notice that
the effect of rotationZ is not unlike the traditional rotation property
from previous versions of Flash.

Perspective Projection
At this point it’s important to understand how the 3D transformations
are computed and are applied to give the illusion of 3D space in a 2D
environment. Each DisplayObject in Flash has a vanishing point, that
is, the point in 3D space where all parallel lines heading to the point
appear to converge. The use of just one vanishing point is known as

TEXT

Figure 11.10 A DisplayObject
rotated 45° on its x-axis.

Chapter 11 FOUR-LETTER WORD: M-A-T-H 193

TEXT

Figure 11.11 A DisplayObject rotated 45° on its y-axis.

TEXT

Figure 11.12 A DisplayObject rotated 45° on its z-axis.

194 Chapter 11 FOUR-LETTER WORD: M-A-T-H

one-point projection. Figure 11.13 illustrates how four dif-
ferent objects look when using the same vanishing point.

Only being able to use a single vanishing point for
all DisplayObjects would be rather limiting, so Flash
allows us to assign each DisplayObject its own vanish-
ing point. By default, every new object uses the center
of the Stage as its vanishing point. Unfortunately, mul-
tiple vanishing points cannot be assigned within the
Flash authoring environment. This must be done
through ActionScript using the transform property of
DisplayObjects. Starting in CS4, Transform objects now
have a new property called perspectiveProjection. This
object allows us to set the vanishing point for any
given DisplayObject. Let’s look at a few lines of script,
applied to the same clips shown in Fig. 11.13.

clip1.transform.perspectiveProjection = new
PerspectiveProjection();

clip2.transform.perspectiveProjection = new
PerspectiveProjection();

clip1.transform.perspectiveProjection.projectionCenter = new
Point(0, 200);

clip2.transform.perspectiveProjection.projectionCenter = new
Point(550, 200);

clip3.transform.perspectiveProjection = clip1.transform.
perspectiveProjection;

clip4.transform.perspectiveProjection = clip2.transform.
perspectiveProjection;

In this example, we create two new PerspectiveProjection objects,
one positioned at the left-hand side of the screen and the other at the
right. Figure 11.14 shows the result of this script; the two clips on the
left skew to the left, while those on the right skew to the right.

With that basic overview of the 3D abilities of Flash, let’s look at
a practical example using the math covered earlier in this chapter.
It is similar to the premise behind Atari’s classic arcade game
Tempest. The player controls a character at the mouth of a long
tunnel that appears to start at the screen in first-person view and
diminishes into the distance. We’ll use the trig functions and some

Vanishing point

Figure 11.13 Four DisplayObjects rotating
toward a single vanishing point.

Vanishing point 1 Vanishing point 2

Figure 11.14 Two pairs of
DisplayObjects, each with its
own vanishing point.

Chapter 11 FOUR-LETTER WORD: M-A-T-H 195

3D manipulation to construct the game environment and move the
various components of gameplay.

The SimpleTunnelShooter Example
The support files for this exercise are in the Chapter 11 folder; the
main file is SimpleTunnelShooter.fla. All the class files for it are in
the tunnelshooter package. This is to eliminate any interference
with other examples from this chapter, as well as to demonstrate
use of packages for keeping code isolated and organized.

The Basic Mechanics
The game will generate a tunnel in the shape of an octagon through
a series of surface tiles positioned in 3D space. There need to be
enough tiles to create a sense of depth, like the tunnel extends a
long distance. The player will move the character around the edges;
each side of the tunnel is a “step.” Enemies will be generated at the
far end of the tunnel and moved toward the player over time.

Classes
There are five classes that we will utilize for this example:
• Game.as: This controls the input and interaction with the other

components—the main “engine.”
• Tunnel.as: It is a DisplayObject that manages construction of the

3D tunnel and facilitates interaction with the tiles that make up
the sides of the tunnel.

• TunnelTile.as: This is a DisplayObject that will be distorted in
3D space and used in conjunction with other tiles to simulate
the 3D surface of the tunnel.

• Enemy.as: This is the class defining enemy objects that will be
created at one end of the tunnel and moved toward the
opening of the tunnel.

• Player.as: This is actually just a stub class; it has no code for this
example other than to establish a link between a symbol in the
library—it would be used later to bestow interactive abilities to
the player object.
We’ll work with these classes from the “inside out,” starting with

the Tunnel, TunnelTile, and Enemy classes, and then pulling all of
them together in the Game class.

The Tunnel Class
In order to create the illusion of depth, we’ll create a 3D surface
from multiple flat objects, or tiles. Because it doesn’t need access
to multiple frames, Tunnel extends the Sprite class.

196 Chapter 11 FOUR-LETTER WORD: M-A-T-H

public class Tunnel extends Sprite {

protected var _radius:Number;
protected var _sides:int, _depth:int;
protected var _tileWidth:Number, _tileHeight:Number;
protected var _tunnelTiles:Array;
protected var _highlightIndex:int = -1;

There are some basic properties we will need to track during
and after creation of the tunnel. Even though it is not a circle, the
radius will keep track of the distance of each tile from the center of
the tunnel. We also need to know the number of sides the tunnel
has, as well as how many tiles deep it extends. The _tunnelTiles
array will keep track of all the tiles so they can be referenced later.
Finally, the _highlightIndex property will be used later when we
want to light up a set of tiles.

public function Tunnel(radius:Number, depth:int=10, sides:int=8)
{

_radius = radius;
_sides = sides;
_depth = depth;
createTunnel();

}

In the constructor, we pass the radius of the tunnel, as well as
how many tiles deep and around the tunnel are. After that we call
createTunnel, which we will look at next.

protected function createTunnel():void {
_tunnelTiles = new Array();
var tempTile:TunnelTile = new TunnelTile();
_tileHeight = tempTile.height;
_tileWidth = (_radius * Math.tan(Math.PI/_sides)) * 2;
var angle:Number = (Math.PI * 2) / _sides;
for (var j:int = 0; j < _depth; j++) {

var tileSet:Array = new Array();
for (var i:int = 0; i < _sides; i++) {

tempTile = new TunnelTile();
tempTile.width = _tileWidth;
tempTile.x = Math.cos(i*angle) * _radius;
tempTile.y = Math.sin(i*angle) * _radius;
tempTile.z = j * _tileHeight;
tempTile.rotationX = 90;
tempTile.rotationZ = i * Math.round(radiansToDegrees

(angle)) + 90;
var ct:ColorTransform = tempTile.transform.

colorTransform;
ct.redMultiplier *= (_depth - j)/_depth;

Chapter 11 FOUR-LETTER WORD: M-A-T-H 197

ct.greenMultiplier *= (_depth - j)/_depth;
ct.blueMultiplier *= (_depth - j)/_depth;
tempTile.transform.colorTransform = ct;
tileSet.push(tempTile);
addChild(tempTile);

}
_tunnelTiles.push(tileSet);

}
}

This method is at the heart of this class. We start by determin-
ing the height and width each tile will need to be for the sides to
meet all the way around the tunnel. We assume that the artwork
for each tile will dictate the height of the tile; in order to maintain
the illusion of depth, the pieces will ultimately be taller than they
are wide. To determine the width of each tile, we will need to refer
back to the trig functions discussed earlier in this chapter. Since we
are building our tunnel to have eight sides, we’ll use that as our
visual reference.

In Fig. 11.15, note the white dashed line represents the virtual
circle that touches the center points of all the sides of the octagon.
The radius of this imaginary circle is the value passed into the tunnel
constructor. In order to find the value of angle A, we divide π (which
is half the angle value of a circle) by the number of sides. Since we
now know one angle and one side, the best trig function to use is
tangent. Recall from the earlier discussion in the chapter that

tan A = opp/adj

So, it follows that in order to find the value of the opposite side,
we rearrange the equation as follows:

opp = adj × tan A

However, this will only give us half the width of a side, so we
need to multiply it by 2 as well; thus, the line will be as follows:

_tileWidth = (_radius * Math.tan(Math.PI/_sides)) * 2;

Before we start the loops that create the tiles, we need to know
the angle value of each side, so that we can place the tiles. This is
simply the entire angle of the circle (2π) in radians, divided by the
number of sides (eight).

var angle:Number = (Math.PI * 2)/_sides;

Now that we have the information we need to place the tiles
around the center of the tunnel, we need to run through two loops
to create a multidimensional array. Each layer of eight tiles
comprises its own array, stored in a larger array.

Adjacent

Opposite

A°

adjacent = radius
A = π/8 (number of sides)

Figure 11.15 We can break
the shape down into right
triangles in order to use trig
functions to determine the
missing values.

198 Chapter 11 FOUR-LETTER WORD: M-A-T-H

for (var j:int = 0; j < _depth; j++) {
var tileSet:Array = new Array();
for (var i:int = 0; i < _sides; i++) {

}
_tunnelTiles.push(tileSet);

}

Each time the outer loop runs, a new tile set is created that the inner
loop will fill. That tile set is then added to the larger _tunnelTiles array.

tempTile = new TunnelTile();
tempTile.width = _tileWidth;

In the inner loop, we create a new TunnelTile object and set its
width to the predetermined value. Next, we need to position it
around the center point. We can once again break a side down
into right triangles. We know that the hypotenuse to be the value
of the radius and the angle is the value between the center points
of any two connecting sides, as shown in Fig. 11.16.

tempTile.x = Math.cos(i*angle) * _radius;
tempTile.y = Math.sin(i*angle) * _radius;
tempTile.z = j * _tileHeight;

The value of i is the current side of the tunnel we’re dealing with,
from 0 to 7. We multiply the i value by the angle associated with
each side and use the sine and cosine functions to position x and y
coordinates of the tile. We then use the current depth level,
represented by j to position the tiles down the z-axis. Now the tile is
positioned, but it would still appear to be a flat shape on the Stage.
We must rotate it in 3D space.

tempTile.rotationX = 90;
tempTile.rotationZ = i * Math.round(radiansToDegrees(angle)) + 90;

We rotate the tile along its x-axis to turn it parallel to the tunnel;
one end of the tile will now appear closer than the other. Next, we
rotate it along the z-axis so that each tile faces the center of the
tunnel. We convert the angle from radians to degrees (using a func-
tion we’ll cover momentarily) and add 90. This is to compensate for
having rotated the tile along its x-axis already; without it, the tiles will
align perfectly perpendicular to the Stage and will disappear from
view. Now the tile is ready to use.

tileSet.push(tempTile);
addChild(tempTile);

We add the tile to the tileSet array (which will get added to
_tunnelTiles) and then to the display list. If we were to stop here,
the tunnel would work just fine, but there’s no real sense of depth,

Adjacent

Opposite

hypotenuse

A°

Hypotenuse = radius

Figure 11.16 We know the
value of the hypotenuse and
the angle between each side.

Chapter 11 FOUR-LETTER WORD: M-A-T-H 199

since Flash’s 3D capabilities do not include any form of lighting.
However, we can manually adjust this using a ColorTransform.

var ct:ColorTransform = tempTile.transform.colorTransform;
ct.redMultiplier *= (_depth - j)/_depth;
ct.greenMultiplier *= (_depth - j)/_depth;
ct.blueMultiplier *= (_depth - j)/_depth;
tempTile.transform.colorTransform = ct;

In order for the tunnel to look like it is truly diminishing from the
player’s point of view, the mouth of the tunnel should look like the
main light source. The light should therefore fall off as the tunnel
descends. We can achieve this effect by multiplying the red, green,
and blue values of each tile’s colorTransform object by the depth of
the tile. Note that you can’t operate directly on an object’s color-
Transform. You must assign it to a variable, which makes a copy,
modify the copy, and assign it back to the object. All transforms in
ActionScript work this way. We’ve now created the tunnel and its
entire tile set. Let’s look at a few of the other functions the tunnel
uses, including one that is mentioned earlier.

protected function radiansToDegrees(value:Number):Number {
return value * (180/Math.PI);

}

protected function degreesToRadians(value:Number):Number {
return value * (Math.PI/180);

}

These two functions simply perform the conversion from radians
to degrees and vice versa that we have discussed earlier in this chap-
ter. For simplicity, they’re included in this class, but the smartest way
to utilize them would be as static methods of a math utilities class.

public function get radius():Number {
return _radius;

}

public function get sides():int {
return _sides;

}

public function get depth():int {
return _depth;

}

public function get tunnelTiles():Array {
return _tunnelTiles;

}

200 Chapter 11 FOUR-LETTER WORD: M-A-T-H

Each of these getter functions provides easy access to various
properties of the tunnel without making them writeable. One could
argue that the tunnelTiles getter should return a copy of the tunnel
array, not the original, but since you would also have to copy all
the arrays inside it as well, it is not a very efficient way to manage
the list. It is better to just be mindful that any edits made to
the tunnelTiles list could break the tunnel’s functionality of
appearance.

public function highlightSide(angle:Number):void {
if (angle < 0) angle = Math.PI*2 + angle;
var index:int = Math.round((angle * _sides)/(Math.PI * 2));
if (_highlightIndex == index) return;
for (var i:int = 0; i < _tunnelTiles.length; i++) {

if (_highlightIndex >= 0) _tunnelTiles[i]
[_highlightIndex].deactivate();

_tunnelTiles[i][index].activate();
}
_highlightIndex = index;

}

The final method in the Tunnel class is one that will be of
particular use to the Game class. It allows an entire side (from
the top to the bottom) to be highlighted or “lit up.” This will be
useful if we need to point out which side the player is currently
on or if we need to notify the player of an enemy on a particular
side. It accepts an angle as a parameter to match with its corre-
sponding side. If the angle is negative, we convert it to its positive
equivalent by adding 2π (or 360°). Once we know the correct side,
and if it is not already highlighted, we loop through the list from
top to bottom to call the activate method of each tile and the
deactivate method of any tiles that are previously highlighted.
Afterwards, we set the value of _highlightIndex to the currently
selected side for reference later. Let’s look at the entire class now
in context:

package tunnelshooter {

import flash.display.Sprite;
import flash.events.Event;
import flash.geom.ColorTransform;

public class Tunnel extends Sprite {

protected var _radius:Number;
protected var _sides:int, _depth:int;
protected var _tileWidth:Number, _tileHeight:Number;
protected var _tunnelTiles:Array;

Chapter 11 FOUR-LETTER WORD: M-A-T-H 201

protected var _highlightIndex:int = -1;

public function Tunnel(radius:Number, depth:int = 10,
sides:int = 8) {

_radius = radius;
_sides = sides;
_depth = depth;
createTunnel();

}

protected function createTunnel():void {
_tunnelTiles = new Array();
var tempTile:TunnelTile = new TunnelTile();
_tileHeight = tempTile.height;
_tileWidth = (_radius * Math.tan(Math.PI/_sides)) * 2;
var angle:Number = (Math.PI * 2) / _sides;
for (var j:int = 0; j < _depth; j++) {

var tileSet:Array = new Array();
for (var i:int = 0; i < _sides; i++) {

tempTile = new TunnelTile();
tempTile.width = _tileWidth;
tempTile.x = Math.cos(i*angle) * _radius;
tempTile.y = Math.sin(i*angle) * _radius;
tempTile.z = j * _tileHeight;
tempTile.rotationX = 90;
tempTile.rotationZ = i * Math.round(radians
ToDegrees(angle)) + 90;

tileSet.push(tempTile);
addChild(tempTile);
var ct:ColorTransform = tempTile.transform.
colorTransform;

ct.redMultiplier *= (_depth - j)/_depth;
ct.greenMultiplier *= (_depth - j)/_depth;
ct.blueMultiplier *= (_depth - j)/_depth;
tempTile.transform.colorTransform = ct;

}
_tunnelTiles.push(tileSet);

}
}

protected function radiansToDegrees(value:Number):Number {
return value * (180/Math.PI);

}

protected function degreesToRadians(value:Number):Number {
return value * (Math.PI/180);

}

202 Chapter 11 FOUR-LETTER WORD: M-A-T-H

protected function getRandomColor():ColorTransform {
var red:Number = Math.random();
var green:Number = Math.random();
var blue:Number = Math.random();
var ct:ColorTransform = new ColorTransform(red,

green, blue, 1, 0, 0, 0, 0);
return ct;

}

public function get radius():Number {
return _radius;

}

public function get sides():int {
return _sides;

}

public function get depth():int {
return _depth;

}

public function get tunnelTiles():Array {
return _tunnelTiles;

}

public function highlightSide(angle:Number):void {
if (angle < 0) angle = Math.PI*2 + angle;
var index:int = Math.round((angle * _sides)/(Math.PI * 2));
if (_highlightIndex == index) return;
for (var i:int = 0; i < _tunnelTiles.length; i++) {

if (_highlightIndex >= 0) _tunnelTiles[i]
[_highlightIndex].deactivate();

_tunnelTiles[i][index].activate();
}
_highlightIndex = index;

}

}

}

getRandomColor
You may have noticed that there is one method I didn’t discuss. It is the
getRandomColor method, and it does exactly the same. It returns a randomly
generated colorTransform object that can be applied. I created it as an
experiment when writing this class, and though it didn’t produce the results I
was looking for, it is very interesting and might prove helpful if you want to
do something with colored tiles or any other type of color generation.

Chapter 11 FOUR-LETTER WORD: M-A-T-H 203

Next we’ll look at the TunnelTile class, which the Tunnel class
utilized to build itself. Since the class is pretty short, we’ll look at it
in its entirety and then explain each method.

public class TunnelTile extends MovieClip {

private var _highlightedTransform:ColorTransform;
private var _normalTransform:ColorTransform;

public function TunnelTile() {
}

public function activate() {
if (!_normalTransform) _normalTransform = transform.

colorTransform;
if (!_highlightedTransform) createHighlight();
transform.colorTransform = _highlightedTransform;

}

public function deactivate() {
transform.colorTransform = _normalTransform;

}

private function createHighlight() {
_highlightedTransform = transform.colorTransform;
_highlightedTransform.redOffset = _highlightedTransform.

greenOffset = _highlightedTransform.blueOffset = 50;
}

}

The constructor for this class does nothing, as the Tunnel is
responsible for placing and manipulating each tile. The methods
here mainly deal with activating and deactivating the highlight
effect for the tile, as evidenced by their names activate, deactivate,
and createHighlight. The first time a tile is activated, it stores its
normal color transform (the one given to it by the Tunnel class) in
a private variable for future reference. It also creates a highlighted
version of that transform, which is done by offsetting all the color
values by 50. This creates a tint effect, as thought the tiles were
overlaid with white. That way, when activate is called, the tint
transform is used, and deactivate returns the transform to its pre-
vious state.

The last class to examine before we begin dissection of the
gameplay is the Enemy class. It is also very simple, though further
functionality could easily be added.

204 Chapter 11 FOUR-LETTER WORD: M-A-T-H

public class Enemy extends MovieClip {

public var index:int;
protected var _brightness:Number;

public function Enemy(index:int) {
this.index = index;

}

public function get brightness ():Number {
return _brightness;

}

public function set brightness (value:Number):void {
_brightness = value;
var ct:ColorTransform = transform.colorTransform;
ct.redMultiplier = ct.greenMultiplier = ct.blue

Multiplier = _brightness;
transform.colorTransform = ct;

}
}

Since an enemy in this style of game generally sticks to one side
of the tunnel, we keep track of which side through the index prop-
erty, which is passed in when the enemy is created. The other
method is a getter/setter combo that set the brightness value of the
enemy’s colorTransform. This has the opposite effect of the tint we
used on the tiles. It will allow us to make the enemy darker the
further down the tunnel it is, and make it brighter as it approaches
the player.

We are now ready to look at the Game class, and the logic that
will control the player and the enemies.

public class Game extends Sprite {

static public var tunnelSize:Number = 175;
static public var tunnelDepth:int = 8;
static public var tunnelSides:int = 8;
static public var enemyFrequency:Number = 3;
static public var enemyTime:Number = 5;
protected var _tunnel:Tunnel;
protected var _player:Player;
protected var _angleIncrement:Number;
protected var _enemyFrequency:Number;
protected var _enemyTime:Number;

Chapter 11 FOUR-LETTER WORD: M-A-T-H 205

protected var _enemyCreator:Timer;
protected var _enemyList:Dictionary;

The class starts out with some static variables; think of these as
game settings. We use variables instead of constants because we
might want to be able to change these values gradually at runtime.
You’ll probably recognize the first three as components of the
Tunnel class, which the Game will have to create. The next two
relate to the creation of enemies. The enemyFrequency is the rate
in seconds at which enemies are created, and the enemyTime is
the amount of time (also in seconds) it takes for an enemy to
move from the bottom of the tunnel to the top. We also declare
some protected variables we will use later on, such as references to
the Tunnel, Player, and list of enemies. You’ll notice we also dupli-
cate two of the static variables as protected instance variables. This
protects these values from changing in the middle of the game by
an outside source. These values will be assigned in the constructor
and then are only adjustable from inside the class. We’ll look at the
constructor next.

public function Game(){
_tunnel = new Tunnel(tunnelSize, tunnelDepth,
tunnelSides);

addChild(_tunnel);
_player = new Player();
addChild(_player);
_angleIncrement = 2 * Math.PI / tunnelSides;
_enemyFrequency = enemyFrequency;
_enemyTime = enemyTime;
_enemyCreator = new Timer(_enemyFrequency*1000);
_enemyCreator.addEventListener(TimerEvent.TIMER,
addEnemy, false, 0, true);

_enemyList = new Dictionary(true);
}

The constructor sets up a new Tunnel object, a Player object,
and the Timer that will release new enemies using the addEnemy
method. Now we’ll look at the methods that start the game and
control player movement.

public function startGame():void {
_enemyCreator.start();
addEventListener(Event.ENTER_FRAME, frameScript, false,
0, true);

}

protected function frameScript(e:Event):void {
movePlayer();

}

206 Chapter 11 FOUR-LETTER WORD: M-A-T-H

protected function movePlayer():void {
var mouseAngle:Number = Math.atan2(mouseY, mouseX);
var roundedAngle:Number = _angleIncrement * Math.round

(mouseAngle/_angleIncrement);
_player.x = _tunnel.radius * Math.cos(roundedAngle);
_player.y = _tunnel.radius * Math.sin(roundedAngle);
var oldRotation:Number = _player.rotation;
_player.rotation = roundedAngle * (180/Math.PI) + 180;
if (oldRotation != _player.rotation) _tunnel.highlight

Side(roundedAngle);
}

When startGame is called, the Timer object is started to create
new enemies, and a frame script is attached to the enterFrame
event. This frameScript method simply calls movePlayer, which
reads the position of the mouse around the center of the tunnel and
adjusts the Player’s x and y positions accordingly to stay along the
outside edge. It also rotates the Player so it is always pointing inward
toward the tunnel. If the player moves to a new side, that side of the
tunnel is highlighted using the methods we looked at earlier.

protected function addEnemy(e:TimerEvent):void {
var index:int = Math.round(Math.random()*(_tunnel.sides-1));
var enemy:Enemy = new Enemy(index);
enemy.x = _tunnel.tunnelTiles[0][index].x;
enemy.y = _tunnel.tunnelTiles[0][index].y;
enemy.z = _tunnel.tunnelTiles[_tunnel.depth-1][index].z;
enemy.rotation = index * (360/_tunnel.sides) - 180;
enemy.brightness = .5;
addChildAt(enemy, getChildIndex(_player));
_enemyList[enemy] = enemy;
var tween:TweenLite = TweenLite.to(enemy, _enemyTime,

{z:0, brightness:1, ease:Quad.easeIn, onComplete:
enemyMovementFinished, onCompleteParams:[enemy]});

}

protected function enemyMovementFinished(target:Enemy):void {
removeChild(target);
delete _enemyList[target];

}

The addEnemy function picks a side at random, creates a new
enemy object, and positions it on that side, at the bottom of the
tunnel. It also sets the enemy to start out at half brightness, so
it will be visible, but blend in much more with the tiles. Once
the enemy is added, a new tween is created using TweenLite (dis-
cussed in Chapter 7), which will animate the enemy from bottom
to top over the time we specified earlier. Once the tween is

Chapter 11 FOUR-LETTER WORD: M-A-T-H 207

complete, enemyMovementFinished is called. At the moment, all it
does is remove the enemy from memory, but in a full game it would
contain additional logic to cause damage when it hit if the player
was not on that side or deduct points from the player’s score. The
enemy motion could also be handled by a moveEnemies method
that decrements the enemies’ z position over time, but this method
has two big plusses. First, it is much easier to implement—one line
of code versus several. Second, and even more importantly, using a
tween gives much greater motion control. Notice that the tween
uses an easeIn function on the animation, which will make the
enemy slowly accelerate as it moves. This effect would be much
more troublesome to write manually and with very little return. Let’s
review the Game class in its entirety before we move on to the fun
part—linking these classes to an FLA and watching it run!

package tunnelshooter {

import flash.display.Sprite;
import flash.events.Event;
import flash.events.TimerEvent;
import flash.utils.Timer;
import flash.utils.Dictionary;
import gs.TweenLite;
import gs.easing.Quad;

public class Game extends Sprite {

static public var tunnelSize:Number = 175;
static public var tunnelDepth:int = 8;
static public var tunnelSides:int = 8;
static public var enemyFrequency:Number = 3;
static public var enemyTime:Number = 5;

protected var _tunnel:Tunnel;
protected var _player:Player;
protected var _angleIncrement:Number;
protected var _enemyFrequency:Number;
protected var _enemyTime:Number;
protected var _enemyCreator:Timer;
protected var _enemyList:Dictionary;

public function Game(){
_tunnel = new Tunnel(tunnelSize, tunnelDepth,
tunnelSides);

addChild(_tunnel);
_player = new Player();
addChild(_player);

208 Chapter 11 FOUR-LETTER WORD: M-A-T-H

_angleIncrement = 2 * Math.PI / tunnelSides;
_enemyFrequency = enemyFrequency;
_enemyTime = enemyTime;
_enemyCreator = new Timer(_enemyFrequency*1000);
_enemyCreator.addEventListener(TimerEvent.TIMER,

addEnemy, false, 0, true);
_enemyList = new Dictionary(true);

}

public function startGame():void {
_enemyCreator.start();
addEventListener(Event.ENTER_FRAME, frameScript,

false, 0, true);
}

protected function frameScript(e:Event):void {
movePlayer();

}

protected function movePlayer():void {
var mouseAngle:Number = Math.atan2(mouseY, mouseX);
var roundedAngle:Number = _angleIncrement * Math.

round(mouseAngle/_angleIncrement);
_player.x = _tunnel.radius * Math.cos(roundedAngle);
_player.y = _tunnel.radius * Math.sin(roundedAngle);
var oldRotation:Number = _player.rotation;
_player.rotation = roundedAngle * (180/Math.PI) + 180;
if (oldRotation != _player.rotation) _tunnel.high

lightSide(roundedAngle);
}

protected function addEnemy(e:TimerEvent):void {
var index:int = Math.round(Math.random()*(_tunnel.

sides-1));
var enemy:Enemy = new Enemy(index);
enemy.x = _tunnel.tunnelTiles[0][index].x;
enemy.y = _tunnel.tunnelTiles[0][index].y;
enemy.z = _tunnel.tunnelTiles[_tunnel.depth-1]

[index].z;
enemy.rotation = index * (360/_tunnel.sides) - 180;
enemy.brightness = .5;
addChildAt(enemy, getChildIndex(_player));
_enemyList[enemy] = enemy;
var tween:TweenLite = TweenLite.to(enemy, _enemy

Time,{z:0,brightness:1,ease:Quad.easeIn,onComplete:
enemyMovementFinished, onCompleteParams:[enemy]});

}

Chapter 11 FOUR-LETTER WORD: M-A-T-H 209

protected function enemyMovementFinished(target:
Enemy):void {

removeChild(target);
delete _enemyList[target];

}
}

}

All the necessary classes for this iteration of the game have
been completed. Now, it is time to implement with actual assets.
If you open the SimpleTunnelShooter.fla file, you’ll find some
clips in the library that will be used by the classes. These include
the Enemy clip, the Player clip, and the TunnelTile clip. There is
also a bitmap used for the tile texture. I chose a brick because it
has a nice effect along the seams, but most of the texture would
work for the tunnel and some might even stitch together more
cleanly.

The only thing on the timeline is the script necessary to
instantiate a game and start it. This could also be done with a
document class for the FLA, but for simplicity and since this isn’t a
full game, the timeline suffices just fine.

import tunnelshooter.*;

var game:Game = new Game();
game.x = 275;
game.y = 200;
addChild(game);
game.startGame();

That’s it! We’re done with this example. When published, the
end result should look something like Fig. 11.17.

While this is by no means a complete game, it contains numer-
ous examples of how the trig functions can be used to manipulate
objects in 2D and 3D space. Here are some ideas on functionality
that would enhance this game.
• Continually increasing speed of enemy creation
• The ability of the player to either catch enemies or shoot at

them
• Subtle rotation or distortion of the entire tunnel over time to

create player disorientation
• Multiple types of enemies
• Other shapes of tunnels; eight sides work well for performance

reasons, but many more could be used
This concludes Part One of this chapter. We will continue to

apply these concepts moving forward into our discussion of phy-
sics, as well as in upcoming chapters as we delve into more com-
plex game mechanics.

210 Chapter 11 FOUR-LETTER WORD: M-A-T-H

Part Two: Physics
The correct name for this half of the chapter really should be two-
dimensional, algebraic physics, since that’s all we’re going to dis-
cuss for our purposes. Physics is, among other definitions, the
science of the behavior and interaction of objects in the universe
around us. It includes concepts such as forces, mass, and energy.
The field of physics is a vast area of study, and this chapter focuses
on one specific branch of it, known as mechanics. Even more speci-
fically, we will be looking at classical mechanics, which, among
other things, deals with the interactions between objects in our
visible, physical world. In the upcoming section, we will discuss the
concepts behind basic mechanics and how to apply them in games.
To start out, we need to establish some standardized vocabulary.

Scalar
A scalar is simply a number in traditional mathematical terms. In
physics applications, it can represent a magnitude such as speed,
four miles per hour (4 mph), for instance. There is no information
about the direction or orientation of an object traveling at that speed.

Vector
In contrast to a scalar, a vector contains information about both the
magnitude of a physical element and its direction. The direction

Figure 11.17 The completed
tunnel shooter example.

Chapter 11 FOUR-LETTER WORD: M-A-T-H 211

component is a numeric angle value, but in conversation it is often
referred to in looser terminology. For instance, the vector form of
the scalar example above could be something like “four miles per
hour, heading northwest,” though we would not necessarily be able
to do any calculation with that information until we assigned it a
number.

The Vector3D Class
Among the classes in Flash for handling complex math more effi-
ciently is the Vector3D class. It is the code representation of the
vector concept we learned about earlier. It contains x, y, and z
values to determine its magnitude, and a fourth value, w, which
stores information about the vector’s direction, such as an angle.
We will look at an example shortly where we will use the Vector3D
class to simplify some vector math.

VECTOR VERSUS VECTOR3D
There is another class in Flash known as Vector, which I mentioned in
Chapter 4. It has nothing to do with vectors in physics terms. Rather, it
is a special type of Array that stores only one type of value and uses
less memory than an Array by doing so. For instance, if you used Arrays
of Numbers in previous versions of Flash, you can now use a Vector
instead. It has all the same methods and properties of Arrays but is
faster to navigate and more efficient. The name Vector comes from the
C programming language, but really you can just think of it as a typed
Array.

Displacement
Displacement is most easily thought of as the distance between any
two points in space when connected by a straight line. Though it is
technically a vector, we generally think of displacement in terms of
a scalar. That is to say, we don’t usually consider the direction of
one object relative to another when computing their distance apart
from each other. It would be odd to refer to the distance from
one’s self to a nearby table as “4 ft, 30° from my facing direction.”
We simply say “four feet.”

Velocity
Displacement over a period of time results in what we know as
speed. For instance, if it takes me an hour to walk five miles, my
speed is five miles per hour (5 mph). However, as discussed above,
this is merely a scalar value as it has no directional information. If
we add a direction, such as 90°, we get the vector of velocity.

212 Chapter 11 FOUR-LETTER WORD: M-A-T-H

The formula for determining velocity, where d = displacement and
t = time, is as follows:

v = d/t

Acceleration
If we change the velocity of an object over time (whether increas-
ing or decreasing), we create that object’s acceleration. For sake of
clarity, acceleration can be either a positive or negative change, but
we usually refer to an acceleration that results in a lower velocity,
or slowing down, as a deceleration. The formula for acceleration,
where v = velocity and t = time is as follows:

a = v/t

A naturally occurring example of acceleration that we are all
familiar with is that of gravity, the force pulling us downward
toward Earth’s center. The magnitude of gravity on Earth is
approximately 9.8 m/s.

Friction
When two surfaces are in contact with each other, the resistance
between the two is known as friction. Each surface has a property
unique to it known as the coefficient of friction. Simply put, it
describes the smoothness or roughness of a surface; the higher the
number, the more friction that surface generates. Sandpaper, for
example, would have a much higher coefficient of friction than a
material like ice. The energy that is lost due to friction is converted
to heat, which explains why rubbing your hands together even-
tually warms them. However, for our purposes, all you really need
to understand about friction is its degrading effect on velocity and
acceleration. An object’s coefficient of friction often has to be deter-
mined through trial and error when programming. For instance,
the value for the friction of a rolling ball in the real world might
not work effectively in a game. The important thing to remember is
that none of the values must be set in stone—you can change
them as needed to suit gameplay.

Inertia
The counterpart to friction, inertia is an object’s resistance to a
change that causes it to either want to stay at rest or keep moving.
Without friction, static objects would never be able to gain traction,
thus remaining still, and moving objects would never be able to
come to a stop. You can feel the sensation of inertia when inside
an elevator or a vehicle that comes to a sudden stop; your body
can feel for a moment like it is still moving.

Chapter 11 FOUR-LETTER WORD: M-A-T-H 213

Simulation versus Illusion
It’s important to remember that as fast as ActionScript 3 and the
Flash Player are, they still are not powerful enough to run a truly
realistic physics simulation. Some open-source implementations of
simple physics engines have been written, but most have severe
limitations compared to what is possible in software that is written
much closer to the hardware level than Flash. However, this is not
to say that these engines or even the relatively simple code we will
write shortly in this chapter are not effective at conveying the illu-
sion of physical reactions. Indeed, we will see that even a bare
bones implementation of physics can be effective at suspending
disbelief for the purposes of a game.

Reality versus Expectations
Another point that some developers get hung up on when trying to
emulate physics in Flash is striving for real-world values and reac-
tions. While this is admirable, it often yields unsatisfactory game-
play. Take, for example, a platform game with multiple levels the
player can move between by jumping and dropping. If you were to
apply the rather harsh realities of the effects of gravity and friction
on moving bodies, the game would become impossibly hard. This
is because a realistic simulation factors out human response time.
It is hard for people to stop themselves from falling over in real life
once the process begins—it would be practically impossible using a
keyboard and mouse. Characters in games have often jumped
farther, run faster, and controlled themselves in mid-air unlike how
real humans would ever be able to do. This is okay; as I mentioned
earlier, it only takes so much to suspend a player’s disbelief. Part
of achieving effective physics in games is knowing what the player
will expect to happen, rather than simply trying to mimic the world
precisely. We will explore this more through the following
examples.

Example: A Top–Down Driving Engine
Modern driving games for computers and consoles employ a lot of
physics. All sorts of aspects such as road conditions, gear ratios,
tire materials, and chassis weights factor into the math behind
these simulations, and the result (depending on the game) is a
fairly accurate representation of real-world physics. For the pur-
poses of most Flash games, however, what we are about to create
will suffice for a very satisfactory driving experience. This example
is divided into two classes: the Vehicle class, which defines the
properties of the car, and the Game class, which handles input and
manipulates the car’s position and rotation. There is also an

214 Chapter 11 FOUR-LETTER WORD: M-A-T-H

additional utility class called Time, which will prove handy both
here and elsewhere in later examples. The files for this example are
in the Chapter 11 folder: DrivingSim and the drivingsim package.
The end result will use the arrow keys to steer, accelerate, and
reverse and the space bar to do a hard-brake stop.

The Vehicle Class
This class will define all the basic properties of the car we’ll see on
screen. It starts with a number of constant and variable
declarations:

static public const maxAcceleration:Number = 100;
static public const maxSpeed:Number = 350;
static public const maxSteering:Number = Math.PI / 40;
static public const accelerationRate:Number = 50;
static public const handBrakeFriction:Number = .75;
static public const stoppingThreshold:Number = 0.1;

The first values set are the maximum acceleration and speed per
second, followed by the maximum turning radius. Adjusting these
three values yields a very different experience, and you could easily
make them instance variables instead of static constants, thereby
allowing different cars to have different behavior. We also define the
rate of acceleration, meaning how many units we can increase our
acceleration per second. Next we set the amount of friction the hand
brake applies to the speed of the car. In this case, as long as the
hand brake is being held, the car will slow to 75% of its current
speed. The last constant is called the stoppingThreshold, which is the
value below which the game will round the speed down to 0. This is
present because when multiplying a number between 0 and 1, the
result will gradually get closer to 0, but never reach it.

protected var _speed:Number = 0; //PIXELS PER SECOND
protected var _acceleration:Number = 0; //PIXELS PER SECOND
protected var _angle:Number = 0; //ANGLE IN RADIANS

Next come three protected variables for speed, acceleration, and
the angle of the car, all initially set to 0. Out constructor is empty
for this example, so we’ll skip it and move on to the three getter/
setter function pairs that will complete this class.

public function get angle():Number {
return _angle;

}

public function set angle(value:Number):void {
_angle = value;
rotation = _angle * (180 / Math.PI);

}

Chapter 11 FOUR-LETTER WORD: M-A-T-H 215

These functions expose the protected _angle variable and also
set the visible rotation of the car Sprite on screen.

public function get speed():Number {
return _speed;

}

public function set speed(value:Number):void {
_speed = Math.max(Math.min(value,maxSpeed),-maxSpeed);
if (Math.abs(_speed) < stoppingThreshold) _speed = 0;

}

For the speed property, since it can be negative or positive, we
use the Math min() and max() methods to force restrictions on
how high or low the speed can be. This is also where we employ
the stoppingThreshold property to truncate the speed if it becomes
infinitesimally small.

public function get acceleration():Number {
return _acceleration;

}

public function set acceleration(value:Number):void {
_acceleration = Math.max(Math.min(value,maxAcceleration),
-maxAcceleration);

}

Much like the speed methods, we use min() and max() again to
set the limits for the acceleration property. That is all that is
required in the Vehicle class for now. Here, it is in its entirety.

package drivingsim {

import flash.display.Sprite;

public class Vehicle extends Sprite{

static public const maxAcceleration:Number = 100;
static public const maxSpeed:Number = 350;
static public const maxSteering:Number = Math.PI / 40;
static public const accelerationRate:Number = 50;
static public const handBrakeFriction:Number = .75;
static public const stoppingThreshold:Number = 0.1;

protected var _speed:Number = 0;
protected var _acceleration:Number = 0;
protected var _angle:Number = 0;

public function Vehicle() {
}

216 Chapter 11 FOUR-LETTER WORD: M-A-T-H

public function get angle():Number {
return _angle;

}

public function set angle(value:Number):void {
_angle = value;
rotation = _angle * (180 / Math.PI);

}

public function get speed():Number {
return _speed;

}

public function set speed(value:Number):void {
_speed = Math.max(Math.min(value,maxSpeed),-

maxSpeed);
if (Math.abs(_speed) < stoppingThreshold) _speed = 0;

}

public function get acceleration():Number {
return _acceleration;

}

public function set acceleration(value:Number):void {
_acceleration = Math.max(Math.min(value,

maxAcceleration),-maxAcceleration);
}

}
}

The Time Class
Before we move on to the Game class, we should take a quick look
at a helpful utility class that will by the game. Since Flash is a
frame-based environment, and, therefore, is dependent on the
machine it is running on maintaining a consistent frame rate, it’s a
good idea to have a way to enforce accuracy in our calculations
regardless of the number of frames actually being processed. It is
also often easier to think of units like speed and acceleration in
terms of seconds rather than frames. To gain this accuracy, we
need to know how much actual time has transpired between
frames. This change in time is often referred to as delta time. This
value can be obtained within a couple of lines using the getTimer
method in the flash.utils package. We could have just written these
lines into the Game class, but because it has so many applications,
it’s better to write it once in a class and reference it there from
now on.

Chapter 11 FOUR-LETTER WORD: M-A-T-H 217

GETTIMER
This method has been around since Flash 4 and still proves its usefulness
to this day. It returns the number of milliseconds that have passed since
the Flash Player started running. It is perfect for calculating time spent
between frames or any other pair of events. It should be noted that you
cannot rely on the method to return a specific number or always start
from 0. If multiple instances of the Flash Player are open, they all share
the same value, and whichever one opened first started at 0.

We’ll look at this class in a single pass, since it is relatively
short.

package drivingsim {

import flash.display.Sprite;
import flash.events.Event;
import flash.utils.getTimer;

public class Time extends Sprite {

static private var _instance:Time = new Time();
static private var _currentTime:int;
static private var _previousTime:int;

public function Time() {
if (_instance) throw new Error("The Time class cannot
be instantiated.");

addEventListener(Event.ENTER_FRAME, updateTime,
false, 0, true);

_currentTime = getTimer();
}

private function updateTime(e:Event):void {
_previousTime = _currentTime;
_currentTime = getTimer();

}

static public function get deltaTime():Number {
return (_currentTime - _previousTime) / 1000;

}
}

}

This class instantiates a single instance of itself in memory and pre-
vents any other instantiations. The one static, public method it has is a
getter for deltaTime. Every frame cycle, the class updates the current
and previous times so at any moment it is ready to return an accurate
delta. Since I like to work in seconds rather than in milliseconds,

218 Chapter 11 FOUR-LETTER WORD: M-A-T-H

I divide the difference by 1000 when I return it. This could easily be
modified to return milliseconds instead, if that’s what you prefer. It’s
mainly important to pick a convention and stick with it. We’ll now
look at how method class is used in the Game class.

The Game Class
Now we’ve come to the core of the functionality and the math that
we’ll need to employ. It also functions as the document class for
the accompanying FLA. The class starts out with just a few
declarations.

protected var _leftPressed:Boolean;
protected var _rightPressed:Boolean;
protected var _upPressed:Boolean;
protected var _downPressed:Boolean;
protected var _spacePressed:Boolean;
protected var _friction:Number = .95;

There are Boolean values for each key we’ll use, so we can
know whether that key is being pressed. There is also a value for
friction, or rather the coefficient of friction of the surface the vehi-
cle will be driving on. This value will cause the vehicle to slow
down when it is not accelerating.

public function Game() {
addEventListener(Event.ADDED_TO_STAGE, addedToStage,

false, 0, true);
}

private function addedToStage(e:Event):void {
startGame();

}
public function startGame():void {

addEventListener(KeyboardEvent.KEY_DOWN, keyDown, false,
0, true);

addEventListener(KeyboardEvent.KEY_UP, keyUp, false,
0, true);

addEventListener(Event.ENTER_FRAME, gameLoop, false,
0, true);

}

When the game is added to the Stage, it triggers startGame. This
method sets up listeners for both keyboard input and the enter-
Frame cycle. We’ll look at the keyDown and keyUp methods next.

protected function keyDown(e:KeyboardEvent):void {
if (e.keyCode == Keyboard.LEFT) _leftPressed = true;
if (e.keyCode == Keyboard.RIGHT) _rightPressed = true;
if (e.keyCode == Keyboard.UP) _upPressed = true;

Chapter 11 FOUR-LETTER WORD: M-A-T-H 219

if (e.keyCode == Keyboard.DOWN) _downPressed = true;
if (e.keyCode == Keyboard.SPACE) _spacePressed = true;

}

protected function keyUp(e:KeyboardEvent):void {
if (e.keyCode == Keyboard.LEFT) _leftPressed = false;
if (e.keyCode == Keyboard.RIGHT) _rightPressed = false;
if (e.keyCode == Keyboard.UP) _upPressed = false;
if (e.keyCode == Keyboard.DOWN) _downPressed = false;
if (e.keyCode == Keyboard.SPACE) _spacePressed = false;

}

These two functions simply toggle the different Boolean values
to either true or false as keyboard input is received.

protected function gameLoop(e:Event):void {
if (stage.focus != this) stage.focus = this;
readInput();
moveVehicle();

}

Because we’re dealing with keyboard input, which automatically
focuses on the Stage, on each frame cycle we make sure that the
game still has focus, even if the player were to click somewhere
else on the screen. It then calls readInput and moveVehicle, both of
which we’ll look at next.

protected function readInput():void {
if (_upPressed) vehicle.acceleration += Vehicle.
accelerationRate * Time.deltaTime;

if (_downPressed) vehicle.acceleration -= Vehicle.
accelerationRate * Time.deltaTime;

if (!_upPressed && !_downPressed) vehicle.acceleration = 0;
if (_rightPressed) vehicle.angle += (Vehicle.maxSteering *
(vehicle.speed / Vehicle.maxSpeed));

if (_leftPressed) vehicle.angle -= (Vehicle.maxSteering *
(vehicle.speed / Vehicle.maxSpeed));

if (_spacePressed) {
vehicle.speed *= Vehicle.handBrakeFriction;
vehicle.acceleration = 0;

}
}

This method runs through all the key-related Boolean values. If
the up or down arrows are pressed, it applies acceleration. If the
right and left arrows are pressed, it applies steering based on the
speed of the vehicle. Finally, if the space bar is pressed, it applies
the hand brake friction to the vehicle’s speed and resets any
acceleration.

220 Chapter 11 FOUR-LETTER WORD: M-A-T-H

protected function moveVehicle():void {
if (!vehicle.acceleration) vehicle.speed *= _friction;
vehicle.speed += vehicle.acceleration;
vehicle.x += Math.cos(vehicle.angle) * (vehicle.speed *

Time.deltaTime);
vehicle.y += Math.sin(vehicle.angle) * (vehicle.speed *

Time.deltaTime);
}

While only four lines, this method does a great deal. First, it
applies friction to the vehicle’s speed if it is not accelerating; not
doing so would cause the vehicle to continue moving as though it
were one a very slick surface. The vehicle’s speed is then increased
by its acceleration. The last two lines then compute the vehicle’s
new x and y coordinates based on the angle the car is facing and the
speed at which it is traveling. Note that both this method and
the readInput method use Time.deltaTime property to only apply the
speed that is necessary for the amount of time that has passed. By
using this method, the framerate of the SWF can now change, either
deliberately or accidentally, without consequence to the responsive-
ness of the simulation. Let’s review the Game class in its entirety.

package drivingsim {

import flash.display.Sprite;
import flash.events.Event;
import flash.events.KeyboardEvent;
import flash.ui.Keyboard;

public class Game extends Sprite {

protected var _leftPressed:Boolean;
protected var _rightPressed:Boolean;
protected var _upPressed:Boolean;
protected var _downPressed:Boolean;
protected var _spacePressed:Boolean;
protected var _friction:Number = .95;

public var vehicle:Vehicle;

public function Game() {
addEventListener(Event.ADDED_TO_STAGE,

addedToStage, false, 0, true);
}

private function addedToStage(e:Event):void {
startGame();

}

Chapter 11 FOUR-LETTER WORD: M-A-T-H 221

public function startGame():void {
addEventListener(KeyboardEvent.KEY_DOWN, keyDown,
false, 0, true);

addEventListener(KeyboardEvent.KEY_UP, keyUp,
false, 0, true);

addEventListener(Event.ENTER_FRAME, gameLoop,
false, 0, true);

}

protected function gameLoop(e:Event):void {
if (stage.focus != this) stage.focus = this;
readInput();
moveVehicle();

}

protected function readInput():void {
if (_upPressed) vehicle.acceleration += Vehicle.
accelerationRate * Time.deltaTime;

if (_downPressed) vehicle.acceleration -= Vehicle.
accelerationRate * Time.deltaTime;

if (!_upPressed && !_downPressed) vehicle.
acceleration = 0;

if (_rightPressed) vehicle.angle += (Vehicle.max
Steering * (vehicle.speed / Vehicle.maxSpeed));

if (_leftPressed) vehicle.angle -= (Vehicle.max
Steering * (vehicle.speed / Vehicle.maxSpeed));

if (_spacePressed) {
vehicle.speed *= Vehicle.handBrakeFriction;
vehicle.acceleration = 0;

}
}

protected function moveVehicle():void {
if (!vehicle.acceleration) vehicle.speed *=
_friction;

vehicle.speed += vehicle.acceleration;
vehicle.x += Math.cos(vehicle.angle) * (vehicle.
speed * Time.deltaTime);

vehicle.y += Math.sin(vehicle.angle) * (vehicle.
speed * Time.deltaTime);

}

protected function keyDown(e:KeyboardEvent):void {
if (e.keyCode == Keyboard.LEFT) _leftPressed = true;
if (e.keyCode == Keyboard.RIGHT) _rightPressed = true;
if (e.keyCode == Keyboard.UP) _upPressed = true;
if (e.keyCode == Keyboard.DOWN) _downPressed = true;

222 Chapter 11 FOUR-LETTER WORD: M-A-T-H

if (e.keyCode == Keyboard.SPACE) _spacePressed = true;
}

protected function keyUp(e:KeyboardEvent):void {
if (e.keyCode == Keyboard.LEFT) _leftPressed = false;
if (e.keyCode == Keyboard.RIGHT) _rightPressed = false;
if (e.keyCode == Keyboard.UP) _upPressed = false;
if (e.keyCode == Keyboard.DOWN) _downPressed = false;
if (e.keyCode == Keyboard.SPACE) _spacePressed = false;

}

}
}

If you open the FLA file associated with this example and run it,
you will see that the vehicle instance on the Stage is now controllable
with the arrow keys and space bar. This is just the foundation for a
game—it has no collision detection, computer AI, or even goals. One
other thing to note about this example is that the car moves like it has
the best tires ever made and can turn on a dime. While this is okay
and might work perfectly for certain scenarios, the simulation could be
a little more realistic with the addition of the ability to “drift” the car,
essentially making the motion of the car to continue in the direction it
was previously traveling. Let’s look at how we could achieve that now.

Example: Top–Down Driving Game with Drift
In the previous example, we applied the acceleration directly to the
speed of the car without taking into account the direction of the accel-
eration. Remember how we learned that vectors have both a magni-
tude and a direction earlier in this chapter. If we set both the
acceleration and velocity of the car to vectors, we’ll gain more realistic
behavior when we combine them. Since this is just a modification of
the previous example, I won’t cover any sections of the code that
haven’t changed. The files for this example are in the Chapter 11 folder;
the FLA is DrivingSimDrift and the associated package is called driving-
simdrift. Let’s start by looking at the changes to the Vehicle class.

static public const maxSpeed:Number = 350;
static public const maxSteering:Number = Math.PI / 30;
static public const maxAcceleration:Number = 400;
static public const handBrakeFriction:Number = .75;
static public const stoppingThreshold:Number = 0.1;

protected var _velocity:Vector3D = new Vector3D();
protected var _acceleration:Vector3D = new Vector3D();
protected var _angle:Number = 0;

Chapter 11 FOUR-LETTER WORD: M-A-T-H 223

We still have the maxAcceleration, maxSpeed, and maxSteering
constants, but the values have changed some. Like the previous
example, these values are determined through experimentation
and are completely subject to change depending on what kind of
handling you want the car to have. The two other major changes
are that the speed value has been replaced with velocity and is
now of type Vector3D. Acceleration keeps its name but is also a
Vector3D. These changes obviously affect their getter/setter
functions.

public function get velocity():Vector3D {
return _velocity;

}

public function set velocity(value:Vector3D):void {
_velocity = value;
if (_velocity.length > maxSpeed) {
var overage:Number = (_velocity.length - maxSpeed) /

maxSpeed;
_velocity.scaleBy(1 / (1 + overage));

}
if (_velocity.length < stoppingThreshold) {
_velocity.x = _velocity.y = 0;

}
}

public function get acceleration():Vector3D {
return _acceleration;

}

public function set acceleration(value:Vector3D):void {
_acceleration = value;

}

While the acceleration functions are not much different from
you would expect, the velocity setter has changed significantly. In
order to enforce a top speed and the stopping threshold, we must
measure the length of the vector, which is another term for its
magnitude. If the length property is greater than the top speed, we
scale the entire vector by the amount of the overage. This will
adjust the x and y properties of the vector in a single line instead
of having to do them separately. If the length property is less than
the stopping threshold, we also set the x and y properties to 0. We
could have also scaled the vector by 0, but a simple variable
assignment is less overhead than performing calculations on all the
properties of the vector. Next let’s look at the changes to the Game
class. Only the readInput and moveVehicle methods have changed,
so that’s all we’ll address here.

224 Chapter 11 FOUR-LETTER WORD: M-A-T-H

protected function readInput():void {
vehicle.acceleration = new Vector3D();
if (_upPressed) {

vehicle.acceleration.x += Math.cos(vehicle.angle) *
Vehicle.maxAcceleration * Time.deltaTime

vehicle.acceleration.y += Math.sin(vehicle.angle) *
Vehicle.maxAcceleration * Time.deltaTime;

}
if (_downPressed) {

vehicle.acceleration.x += -Math.cos(vehicle.angle) *
Vehicle.maxAcceleration * Time.deltaTime

vehicle.acceleration.y += -Math.sin(vehicle.angle) *
Vehicle.maxAcceleration * Time.deltaTime;

}
if (_rightPressed) vehicle.angle += (Vehicle.maxSteering *

(vehicle.velocity.length / Vehicle.maxSpeed));
if (_leftPressed) vehicle.angle -= (Vehicle.maxSteering *

(vehicle.velocity.length / Vehicle.maxSpeed));
if (_spacePressed) {

vehicle.velocity.scaleBy(Vehicle.handBrakeFriction);
}

}

At the onset of the readInput method, we create a new, empty
vector object for acceleration. If the up or down arrows are
pressed, the vector’s x and y components are adjusted accordingly.
If neither is pressed, the acceleration is empty and will have no
effect when combined with the velocity. If the space bar is pressed,
the velocity is scaled down by the amount of vehicle’s hand-brake
friction.

protected function moveVehicle():void {
vehicle.velocity.scaleBy(_friction);
vehicle.velocity = vehicle.velocity.add(vehicle.

acceleration);
vehicle.x += vehicle.velocity.x * Time.deltaTime;
vehicle.y += vehicle.velocity.y * Time.deltaTime;

}

When moving the vehicle, we use the friction property to scale
the velocity down. We then combine the existing velocity vector
with the new acceleration vector. Another way to combine the two
would have been the Vector3D incrementBy method. It adds the
two relevant vectors without returning a new object. However, in
our case, assigning the result back to the velocity property of the
vehicle forces it through the maxSpeed check we looked at earlier.
If we used incrementBy method, we would have to do that check
manually here. Finally, to adjust the x and y positions of the

Chapter 11 FOUR-LETTER WORD: M-A-T-H 225

vehicle, we increment it by the velocity’s x and y components and
the deltaTime property.

If you export this example and test it, you’ll notice immediately
the car handles very differently, almost as if it were on ice. When
you turn at high speeds, the car continues in its original direction
for a time before eventually aligning itself with the new direction.
This is because by adding the vectors together with discrete x and
y values, it takes a few passes of friction scaling to reduce the effect
of previous accelerations. Naturally, most cars don’t drift the way
this one does. With some additional complexity, you could factor
in the weight of the car to determine when the car’s velocity over-
comes its downward force (essentially, the car’s traction) and so
get the best of both examples.

Review
We’ve covered a lot of material in this chapter, so let’s run through
a high-level reminder of everything we’ve learned:
• The relationship of triangles to angle and distance problems
• The trigonometric functions (sine, cosine, and tangent) and

their uses
• The coordinate system inside Flash, including the 3D transform

system
• How to manipulate objects in Flash’s 3D space
• How to use perspective projection to create vanishing points
• The difference between scalar and vector values in physics
• The basics of classical mechanics in motion—velocity, acceleration,

friction, and inertia
• How to apply simple 2D physics in ActionScript
• How to use the new Vector3D class to simplify the process of

combining vectors
There is considerably more material in books and on the Inter-

net to read about physics if you’re interested in doing more robust
simulations. There are links to a number of resources on this
book’s Web site.

226 Chapter 11 FOUR-LETTER WORD: M-A-T-H

12
DON’T HIT ME: COLLISION DETECTION
TECHNIQUES

CHAPTER OUTLINE
What You Can Do versus What You Need 227
HitTestObject—The Most Basic Detection 228
HitTestPoint—One Step Up 229
Radius/Distance Testing—Great for Circles 234
Rect Testing 235

The Enemy Class 236
The SimpleShooterCollisions Class Additions 237
Weaknesses of This Method 239

Pixel-Perfect Collision Detection
and Physics 241
When All Else Fails, Mix 'N Match 242

If you do much game development, you’ll eventually need to
determine when two objects on screen are colliding with one
another. Although Flash does not automatically notify you of this,
there are a number of different methods that can be used to detect
it. In this chapter, we’ll look at several types of collision detection
and in which scenarios they work best. We’ll also look at the strate-
gies that can be used with different styles of detection to achieve
the desired results.

What You Can Do versus What You Need
A temptation by some developers, particularly those coming from
other game-development backgrounds, is to always use the most
precise, robust collision detection in all situations. The problem
with this approach is the same that we discussed about physics in
the last chapter; using more than you need to create an illusion is
a waste of effort and computing power that could be used else-
where. The trick with collision detection is to identify the minimum
accuracy that you need to achieve a particular effect, and then
implement a system that works for that scenario. One good reason

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 227

to not try to develop the end-all collision detection system is
that there really isn’t one that works best in every possible situation.
It’s rare that I’ve used the same technique twice in two games that
weren’t extremely similar. What works well in a driving game might
not make sense in a pinball game, and so on. The following sections
will outline the different types of detection you can achieve in AS3,
with some examples.

HitTestObject—The Most Basic Detection
AS3 provides two methods to developers to detect when
DisplayObjects are colliding. The first, and simplest, is hitTestObject.
You can call it on one DisplayObject and pass it another Display-
Object to test against, regardless of location or parental hierarchy.
Flash will resolve any differences in coordinate systems. If the two
objects are touching, it returns true; otherwise false. Sounds great,
right? Unfortunately, there is one big catch. To keep this calculation
fast, Flash resolves the two DisplayObjects down to their basic
bounding boxes. In other words, even if a shape is very intricate and
has large parts that are transparent or void of any data, Flash will
see it as a single rectangle. This is shown in Fig. 12.1.

To make matters worse, the bounding box will adjust to what-
ever size it needs to be to encompass all the DisplayObject data. If
that circle from Fig. 12.1 were a bitmap instead of a shape, it
would actually be a square because of the transparent parts of the
image. If you were to rotate this circle, the bitmap square is now at
an angle. Figure 12.2 shows the larger bounding box that Flash will
now use to fit this rotated shape.

As a result of these limitations, hitTestObject is generally the least
accurate method of determining a collision. That said, it is very fast
and definitely has its uses. When all you need to know is whether two
Sprites are overlapping into each other’s display space, hitTestObject
is very effective. If your game has DisplayObjects that can change

=

Actual shape object HitTest object

Figure 12.1 A shape object like a circle is still seen
as a rectangle with its maximum dimensions by
Flash’s hit detection engine.

=

Actual image object HitTest object

(original size)

Figure 12.2 Once rotated, an image actually takes up
a larger space than its actual dimensions, during
collision detection.

228 Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES

their “distance” from the player (i.e., move closer or further away
from the player’s perspective), you’re likely going to have to deal with
managing the indices of these objects. If you detect that two objects
are touching, you have a great opportunity to check their positions
and display indices.

HitTestPoint—One Step Up
In earlier versions of Flash, hitTestObject and its counterpart,
hitTestPoint, were both part of the same method hitTest. In AS3,
Adobe broke the two up into discrete methods, both for speed and
for accurate type checking. Unlike the object version of this
method, hitTextPoint accepts x and y coordinates to check if the
DisplayObject is overlapping a particular pixel. In fact, when testing
against objects that have empty space (not transparent image data
like an alpha channel, but actually void of data), this method has
the option of accurately telling you if the shape is overlapping the
point. Obviously, this method is considerably more accurate than
hitTestObject, but it only does a single point in space. To test a
complex shape against another, you’d need to do this test many
times at points all around the shape’s outer border. This would
quickly become taxing for the processor, particularly if there are
multiple objects colliding on screen. It is most commonly used
when determining whether the mouse coordinates are overlapping
a particular shape.

One thing that is important to note about this method is that it
expects to receive its coordinates as they would appear on the
Stage. If you are testing against a point embedded in several
DisplayObjects in the display list and their coordinate systems do
not line up with the Stage, then you’ll need to convert the coordi-
nates to the Stage’s system. Luckily, all DisplayObjects give you a
method to do this, called localToGlobal. It accepts a point object
and converts it numerically to the Stage coordinate system.

var clip1:Sprite = new Sprite();
clip1.x = clip1.y = 50;
var testPoint:Point = new Point(0, 0);
testPoint = clip1.localToGlobal(testPoint);
trace(testPoint); //OUTPUTS X = 50, Y = 50

In this short snippet, a Sprite is created on the Stage and has its
coordinates set to (50, 50). According to the Sprite’s coordinate system,
its center is at (0, 0). By running localToGlobal on the point object, we
can see that according to the Stage, the center is actually at (50, 50).

Another good use for this method is when doing hit tests for
vehicles against scenery. You can use a pair of points for the two
front bumper ends and a pair for the rear.

Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES 229

As Fig. 12.3 shows, you can use Sprites to visually mark the points
on the car, where you want to do a hit test. All you need to do then is
to have an identifier, separating the front ones from those in the back.
If the car backs into something solid, you want it to be able to drive
forward to pull away from it, but not to be able to back up any further.

Let’s look at a simple example of how this test can be used in prac-
tice. You can follow along in the HitTestPoint.fla file in the Chapter 12
examples folder. When you open up the FLA, you’ll find two objects
on the Stage: a square and two long rectangles. The square represents
our player character (and is named as such) and the rectangles are
part of the same clip called “barriers.” Note that the square clip has a
number of dots along its outer border; these dots represent collision
test points. When the SWF is run, the square will move toward the
mouse at a given speed but will not be able to move past the barriers.
The code for this example is in three different classes: HitTestPoint.as,
HitTestCoordinate.as, and Player.as. We’ll start with the Player.

public class Player extends Sprite {

private var _speed:int = 50;
private var _hitPointList:Vector.<HitTestCoordinate>;

public function Player() {
addEventListener(Event.ADDED_TO_STAGE, addedToStage,

false, 0, true);
}

private function addedToStage(e:Event):void {
_hitPointList = new Vector.<HitTestCoordinate>();
for (var i:int = 0; i < numChildren; i++) {

var child:DisplayObject = getChildAt(i);
if (child is HitTestCoordinate)

_hitPointList.push(child);
}

}

Figure 12.3 This car has two
hit points in the front and two
in the rear.

230 Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES

public function get hitPointList():Vector.
<HitTestCoordinate> {

return _hitPointList;
}

public function get speed():int { return _speed; }
}

This class represents the square on the Stage. It has a given
speed at which it will move per second (50 pixels), and a vector
list of its collision test points. When it is added to the Stage, it
enumerates these points in the list. Other than this basic function-
ality, this class does nothing. Now, we’ll look at the class behind
the collision points.

public class HitTestCoordinate extends Sprite {

private var _point:Point;

public function HitTestCoordinate() {
visible = false;
_point = new Point(x, y);

}

public function get point():Point {
updatePoint();
return _point;

}

public function get pointGlobal():Point {
return parent.localToGlobal(point);

}

private function updatePoint():void {
_point.x = x;
_point.y = y;

}
}

This class is designed to be a visual tool for placing collision
points, so that they don’t have to be placed manually in code. Any
shape could be used to represent them; I chose a circle because it
is small and unobtrusive; the shape is, ultimately, irrelevant
because the Sprite hides itself on creation. It stores a point within
itself representing its position. In addition to providing access to
this point, it provides an accessorial method to return the point
already converted to the global coordinate space, which is how
we’ll need to measure the point for the hit test.

Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES 231

CS5.5 FEATURE—VISIBLE PROPERTY
Starting in CS5.5, if you’re publishing to Flash Player 10.2 (or any mobile
version), you finally have the option to set the initial visible property of a
display object on the Stage. This has long been an annoyance in earlier
versions, and works as a great alternative to setting the property in the
constructor of the class. Figure 12.4 shows where this option resides in
the Property Inspector for any Stage object.

Now that we have the player Sprite and its test points, we’ll look
at the document class driving this example. Note that this class
makes use of the Time class we created back in Chapter 11; if you
skipped ahead to this chapter, all you need to know is that it has a
method to return the time elapsed between the frame cycles.

public class HitTestPoint extends Sprite {

public var barriers:Sprite;
public var player:Player;

public function HitTestPoint() {

Figure 12.4 The new visibility
toggle in the property
inspector, under the display
category.

232 Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES

addEventListener(Event.ADDED_TO_STAGE, addedToStage,
false, 0, true);

}

private function addedToStage(e:Event):void {
addEventListener(Event.ENTER_FRAME, enterFrame,
false, 0, true);

}

private function enterFrame(e:Event):void {
//CHECK DISTANCE AND PERFORM MOVES
var distance:Number = Math.sqrt(Math.pow(player.x -
mouseX, 2) + Math.pow(player.y - mouseY, 2));

var tempPoint:Point = new Point(mouseX, mouseY);
var dx:Number = 0;
var dy:Number = 0;
if (distance > player.speed * Time.deltaTime) {

var angle:Number = Math.atan2(mouseY -
player.y, mouseX - player.x);

dx = (player.speed * Time.deltaTime) * Math.
cos(angle);

dy = (player.speed * Time.deltaTime) * Math.
sin(angle);

tempPoint.x = player.x + dx;
tempPoint.y = player.y + dy;

}
//DO CHECKS
for each (var coordinate:HitTestCoordinate in
player.hitPointList) {

if (barriers.hitTestPoint(coordinate.pointGlobal.
x + dx, coordinate.pointGlobal.y + dy, true)) {

if (barriers.hitTestPoint(coordinate.
pointGlobal.x + dx, coordinate.pointGlobal.y,
true)) {
tempPoint.x = player.x;

}
if (barriers.hitTestPoint(coordinate.point

Global.x,coordinate.pointGlobal.y+dy,true)){
tempPoint.y = player.y;

}
}

}
//RE-ASSIGN VALUES
player.x = tempPoint.x;
player.y = tempPoint.y;

}
}

Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES 233

Really, the only code happening in this class is in the
enterFrame method. It measures the distance between the mouse
and the player. If it is less than the speed of the player in a single
frame, the player attempts to move to the mouse’s exact position
(this is to prevent the player from eternally jumping back and forth
over the mouse). If it is further away, the player will calculate its
angle relative to the mouse and then move at its given speed in
that direction. However, before the new coordinates are assigned,
they are stored in a point object, tempPoint. A for each loop then
iterates through every coordinate in the player’s list. It checks these
coordinates, adjusted for the change in position, against the bar-
riers clip. If it detects a collision, then it checks the individual x
and y values to determine the direction in which the collision is
occurring.

If you noticed the position of the test points in the player Sprite,
you noted there are a total of eight, one for each side and one for
each corner. The distance between them is such that you can actu-
ally coerce the square onto the barrier walls, as they are thin
enough to fit between the points. Although it looks like a bug, I left
this behavior in to make a point (no pun intended). Even if you
find a technique that works for you, you will probably have to
make some adjustments as you test. In this case, because we’re
dealing with such thin barriers, we need to position the collision
points closer together and probably have more of them. By making
these essentially little components, it is very easy to adjust the
number and positioning of these points; remember that they only
need to be slightly closer together than the smallest object you’re
testing against. That said, you might have a game where you need
to wrap one object around another in which case the current
behavior would be ideal.

Radius/Distance Testing—Great for Circles
Although not an actual method of DisplayObjects, a very accurate
way of detecting collision between two circular objects (or a circular
object and a point) is simply by using the distance formula. If you
know the radius of each object you want to test against each other,
you can add the two radii together and see if it is greater than the
distance between them. In addition to flat, two-dimensional circles,
this method works very well for characters on an isometric, or
angled, playfield.

In Fig. 12.5, there are two characters with each having a radius
of “personal space.” A traditional hitTestObject would not work
here because the objects will visually overlap when one passes in
front of another. Instead, we need to measure the distance between
the two players and determine if they are close enough to be

234 Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES

“touching.” In this case, we also need to correct for the perspective
skew of the field. The best way to make this adjustment would be
to have the game engine store their coordinates as though they
were being viewed from the top down. Then, the engine can test
against traditional circles, but render out the view by applying the
perspective correction.

Another nice feature of this type of testing is that it is easy to have
multiple testing radii because the only real criterion is a number in
pixels. Perhaps when two players get a certain distance from each
other, they gain the ability to talk to each other, but only at a closer
distance can they fight, exchange inventory, cuddle, and so on.

One more example in which this type of detection is ideal is that
of a billiards simulation. In a top–down pool game, for instance, you
need to be able to accurately tell when two objects are colliding. The
easiest way to do this type of test is a measurement of the distance
between their edges. This scenario is shown in Fig. 12.6.

If you recall back to Chapter 10, the distance formula between
two points is

ffiðx2 − x1Þ+ ðy2 − y1Þ
p

. As you can see in Fig. 12.6, the
value of d is the distance between the two center points of the
balls. However, this isn’t the value that will tell us when the balls
are colliding because by the time the distance between them is 0,
they will be on top of each other. To find the distance between
their edges, we have to calculate d minus the two radii. If we use
the value of r for the radius, and assume the two balls are of the
same size (which they would be in billiards), we can
then say that the distance between the two edges is

d =
ffi
ðx2 − x1Þ+ ðy2 − y1Þ

p
− 2r:

When the value of d is 0, the two balls are touching.
If it is less than 0, they are overlapping and must have
their positions corrected.

Rect Testing
Another similar method to the basic hitTestObject is what
is known as rect testing. It involves getting the bounding
box rectangle of any two DisplayObjects (using the

Figure 12.5 These two players
each have a radius around
them constituting their hit area.

Ball 1

(x1, y1)

(x2 – x1) + (y2 – y1)

Ball 2

(x2, y2)

d

d = √

r

r

Figure 12.6 A distance collision check
applied to two balls on a pool table.

Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES 235

getRect method) and doing comparisons of intersection, overlap,
and so on. Although this doesn’t seem like it would be any better
than the hitTestObject method, it has a number of advantages. The
first is what I like to call predictive testing; basically, once you have
the rect of an object, you can move it around, scale it, and perform
point tests against it without any effect on the original object. In
order to test whether two objects are about to hit with the hitTest-
Object method, you must actually move the objects around, which
can occasionally cause glitches in the renderer. This is because
when you update the position, scale, or rotation of a DisplayObject
on the Stage, Flash will put it in the queue to redraw. By extracting
the rectangle first, you can do tests on it that don’t involve the dis-
play list at all and save the performance.

Another reason rect tests are a generally superior method of
detection is their greater flexibility. You can easily have multiple hit
areas on an object or determine how much two rectangles are
overlapping to determine the force of a collision. Let’s say you
have a vehicle that has multiple places in which it can take
damage. You could place Sprites (that would make themselves invi-
sible at runtime) to act as hit “sensors,” so to speak. When you
needed to perform collision tests, you would iterate through these
sensors to get their rects. Once you have a set of rectangles, you
can test them individually or test them in combinations, using the
union method.

This next example will demonstrate rect testing by expanding on
a lesson from Chapter 7. Remember the SimpleShooter scolling
example? We’ll take that base code and add enemies and collision
detection using rects. You can follow the example in the Simple-
ShooterCollisions.fla file and associated classes. There are two
main additions that have been made to the file since we last looked
at it: the new Enemy class and some method additions to the
SimpleShooterCollisions class.

The Enemy Class
public class Enemy extends MovieClip {

static public const FRAME_DESTROY:String = "destroy";

protected var _speed:Number;
protected var _alive:Boolean = true;

public function Enemy(speed:Number = 0) {
this.speed = speed;
stop();

}

236 Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES

public function destroy() {
_alive = false;
gotoAndStop(FRAME_DESTROY);

}

public function get speed():Number {
return _speed;

}

public function set speed(value:Number):void {
_speed = value;

}

public function get alive():Boolean {
return _alive;

}
}

Like the Projectile class, Enemy objects have a speed parameter
assigned to them on creation. They also have a Boolean value,
specifying whether they are alive or dead. Finally, they have a
destroy method, which toggles the alive value and plays a destruc-
tion animation. In the FLA file, you can see an item in the library
named Enemy that is linked to this class. It is a MovieClip with two
frames: the static flying position and the destruction animation.
Next, we’ll look at the additional methods that are now a part of
the main game class.

The SimpleShooterCollisions Class Additions
In the code below, the sections in bold are new to this iteration of
the game. Refer to Chapter 7 for explanations on the other
methods.

protected var _enemyList:Vector.<Enemy>;
protected var _enemySpeed:Number = −10;
protected var _enemyGenerator:Timer;
protected var _enemyFrequency:int = 2000;

public function SimpleShooterCollisions() {
addEventListener(Event.ADDED_TO_STAGE, addedToStage,
false, 0, true);

addEventListener(Event.ENTER_FRAME, frameScript, false, 0,
true);

_projectileList = new Vector.<Projectile>();
_enemyList = new Vector.<Enemy>();
_enemyGenerator = new Timer(_enemyFrequency);

Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES 237

_enemyGenerator.addEventListener(TimerEvent.TIMER,
createEnemy, false, 0, true);

}

protected function addedToStage(e:Event):void {
_stageWidth = stage.stageWidth;
_stageHeight = stage.stageHeight;
addEventListener(MouseEvent.MOUSE_DOWN, createProjectile,

false, 0, true);
_enemyGenerator.start();

}

protected function frameScript(e:Event):void {
movePlayer();
moveProjectiles();
moveEnemies();
checkCollisions();
moveForeground();
moveBackground();

}

In the initialization functions, there are now variables for how
frequently enemies are generated, how fast they move, and a
Timer object to create them. In the frame loop, there are also two
new methods called which we will look at next.

protected function moveEnemies():void {
for each (var enemy:Enemy in _enemyList) {

enemy.x += enemy.speed;
if (enemy.x + enemy.width < 0) {

removeEnemy(enemy);
}

}
}

protected function createEnemy(e:TimerEvent = null):void {
var enemy:Enemy = new Enemy(_enemySpeed);
enemy.x = _stageWidth + enemy.width;
enemy.y = Math.random() * (_stageHeight − enemy.height) +

(enemy.height/2);
addChild(enemy);
_enemyList.push(enemy);

}

protected function removeEnemy(enemy:Enemy):void {
if (enemy.parent == this) removeChild(enemy);
_enemyList.splice(_enemyList.indexOf(enemy),1);

}

238 Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES

protected function checkCollisions():void {
var enemyRect:Rectangle;
var projectileRect:Rectangle;
for each (var enemy:Enemy in _enemyList) {

if (!enemy.alive) continue;
enemyRect = enemy.getRect(this);
for each (var projectile:Projectile in _projectileList) {

projectileRect = projectile.getRect(this);
if (enemyRect.intersects(projectileRect)) {

removeProjectile(projectile);
enemy.destroy();

}
}

}
}

You’ll likely notice some similarities between how the projec-
tiles and enemies are each moved. The createEnemy method,
called by the Timer, places new Enemy objects at the right side of
the Stage and they gradually travel across to the opposite side in
the moveEnemies function. Once everything has been moved, the
checkCollisions method runs. It loops through the two lists of pro-
jectiles and enemies and tests rects against each other. If a projec-
tile hits an enemy that is still alive, the enemy will be destroyed.
Note that, at this point, we don’t remove the enemy. We rely on
the destroy method of the Enemy class to display the destruction,
and the object will get removed, once it reaches the left side of
the Stage. When you test this SWF, you will see that when a pro-
jectile from the player hits an enemy, it explodes. Add a scoring
mechanism to the number of ships destroyed and a way for the
player to be hurt, and you’ve got yourself a really simple but com-
plete game!

Weaknesses of This Method
Even though this type of checking is overall pretty thorough, it will
also break down in certain scenarios. If you were to increase the
speed of the ships and the projectiles enough, they would even-
tually reach a point where they would “jump over” each other. In a
single frame, they would go from facing each other to passing each
other without a collision being recorded. Granted, they would have
to be traveling very fast—faster than would probably be practical
for this type of game—but that doesn’t keep the underlying detec-
tion from being fundamentally flawed on some level. Because the
detection is tied to the game’s frame cycle, it also means that low-
ering the frame rate will lower the frequency of detection, effec-
tively creating the same problem I had just mentioned.

Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES 239

Luckily, there is a solution to this problem: iterative testing.
Essentially, we want to test the space between a Sprite’s new posi-
tion and its previous position to see if a collision had occurred
“between frames.” In our shooter example, if the distance traveled
between the frame cycles is less than the width of either the pro-
jectile or enemy rects, then our current test is sufficient. However,
once their speed exceeds their width, both Sprites need to iterate
over their traveled distance to determine if they collided with any-
thing in the dead space. This is where using rectangles for the tests
are particularly helpful because you can use a loop to move them
at a certain interval and perform checks each time. Here’s an
example of how you could perform this loop.

for each (var enemy:Enemy in _enemyList) {
if (!enemy.alive) continue;
enemyRect = enemy.getRect(this);
if (enemyRect.width <= Math.abs(enemy.speed)) {

//"LITE" CHECK SUFFICIENT
for each (var projectile:Projectile in _projectileList) {

projectileRect = projectile.getRect(this);
if (enemyRect.intersects(projectileRect)) {

removeProjectile(projectile);
enemy.destroy();

}
}

} else {
var numberOfChecks:int = Math.ceil(Math.abs(enemy.

speed)/enemyRect.width);
for (var i:Number = 0; i <= numberOfChecks; i++) {

var newRect:Rectangle = enemyRect.clone();
newRect.x −= enemyRect.width*i;

for each (var projectile:Projectile in
_projectileList) {

projectileRect = projectile.getRect(this);
if (newRect.intersects(projectileRect)) {

removeProjectile(projectile);
enemy.destroy();

}
}

}
}

}

In this modified example of the shooter collision check, if the
width of the enemyRect is less than the speed it moved in a single
frame, then the check is performed as usual. However, if the speed
exceeds the width of the rectangle, then we determine how many
checks we need to perform by dividing the speed by the width and

240 Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES

rounding up. We add another for loop, this time counting the
number of checks we need to perform and creating a new rectangle
with a new position to test against. If this seems like a lot of loop-
ing, remember that the number of checks you’re likely to have to
perform is still pretty low unless the rectangle you’re checking
against is very small. Even then, AS3 should be able to handle it
just fine. To be even more accurate, it would be wise to add the
same iterative checking for the projectiles as well, but I’ll leave this
to you as an exercise to complete.

Pixel-Perfect Collision Detection
and Physics
Although for many applications, the methods I’ve discussed so far are
very effective (and the most efficient for mobile platforms), there are
some instances where you simply will need pixel-perfect detection of
two arbitrary shapes. There are ways to do this using BitmapData
drawing and comparisons, but I’m not going to discuss that here.
Instead, I’m going to recommend the excellent Collision Detection Kit
developed by Corey O’Neil. I’ve included the latest version (as of this
writing) with the chapter files that can be downloaded from www.
flashgamebook.com. On the site you will also find direct links to Cor-
ey’s site and his Google Code repository for the source. It’s a pretty
great library and takes very little time to implement.

Sometimes, even pixel-accurate detection is less important than
the way objects react when they collide. In these cases, you may
need a full rigidbody collision engine with its own physics simula-
tion. For scenarios where you’ll have a lot of objects colliding at
once and needing to react to each other, writing your own physics
engine from scratch can be daunting. Luckily, there’s an open
source library that has been ported to just about every language
under the sun called Box2D. It has been used in a number of
award-winning games and is very full-featured for doing 2D physics
and collisions. However, because it is so full-featured, it can be
daunting to approach. The physics simulation runs independently
of any visuals, so you must bind DisplayObjects to the colliders in
the engine. This increased flexibility also makes it more involved to
implement. To compound this, because it was ported from the
C programming language, there are some conventions in naming
that can seem off-putting at first. Those “warnings” aside, it is an
excellent piece of software and performs extremely well, even with
many objects in the simulation at once. On www.flashgamebook.
com, you can find links to tutorials and examples that people in
the community have written to get started, as well as links to the
latest source code. The example in Chapter 16 also makes use of
this library and discusses some of the basics.

Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES 241

When All Else Fails, Mix 'N Match
Sometimes, any one approach to collision detection is not enough
to get the job done, effectively. That’s when a combination of
approaches can work, depending on the scenario. For instance, in
the earlier example, we saw how the distance detection method
served well to determine collisions between the two players.
However, that method doesn’t work well to determine the overlap
of the player Sprites on screen. In addition to using distance for
interaction, we can do a basic hitTestObject test to determine when
they are overlapping and to adjust their indices in the display list.
In that perspective skewed instance, when one player has a lower
y value, it should appear behind the other player.

The most important thing to keep in mind when applying colli-
sion detection techniques is to keep an open mind to different
options. Like in the case of physics simulation, pixel-perfect
precision is rarely necessary and will end up costing you too much
in performance. It is a balance of accuracy, speed, and flexibility
that ultimately yields the best detection. We’ll look at more practi-
cal examples of collision detection in Chapters 14–16.

242 Chapter 12 DON’T HIT ME: COLLISION DETECTION TECHNIQUES

13
MIXUP—A SIMPLE ENGINE

CHAPTER OUTLINE
The Main Document 245
The MixUp Class 245
The Title Class 248
The RulesPanel Class 249
The Game Class 250
The Interfaces 254
The GameBoard Class 256
The SourceImageEmbedded Class 263
The GameHistory and Results Classes 265
The SourceImageCamera Class 267
Review 270

Up to this point, we’ve gone through many examples of different
aspects of game development. Now, let’s pull them together to
create a simple game from start to finish. In this chapter, we will
discuss how to create a basic image scramble game that we’ll call
MixUp. This is a popular type of puzzle game, in which an image
is broken into rectangles on a grid and reshuffled. Players must
click on these “pieces” to interchange their positions and, ulti-
mately, restore the original image. The difficulty of these puzzles is
a combination of the number and size of the rectangles the image
is broken into and the amount of detail in the imagery. We’ll create
an engine that will use and support any resolution of source image
(within reason and memory restrictions) and divide it, dynamically,
into any number of grid rectangles. We’ll then see how this basic
engine can be easily extended to support other source images like
video or a live camera feed. Let’s get started!

When defining the parameters for a game such as this, it’s
important to lay out a set of basic rules before starting to program.
We won’t do a full-design document, as this is a simple game and
that’s not the point of this exercise. Instead, we’ll just do a bullet-
point list of the feature set and components, so that we know what
we’re dealing with.

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 243

Game screens and interface elements:
• Title Screen

• Game logo
• Play button
• How To Play button

• How To Play Popup
• Rules textfield
• Close button

• In-game Screen
• Game status displays
• Quit button

• Results Screen
• Game results textfields
• Play Again button
• Back to Title Screen button
In-game Functionality and Rules

• Game will shuffle pieces on grid, with no piece in its original
position

• Game will include timer, which will count up from 0
• Game will dispatch events, when certain things happen,

including the following:
• Player completing puzzle
• Player moving two pieces
• Player moving at least one piece to its correct position

• Game will be played with the mouse
• Players will click on a piece to select it
• If they click on the same piece again, they will deselect it
• If they click on another piece that is not locked down, then

the two selected pieces will trade positions, and the game
will check to see if either are now in the right place

• Players will not be able to move pieces that are correctly
positioned

We could go into even more detail, but this should be enough to
get us started. Game design is an iterative process, meaning it grows
and changes as it progresses. It is totally reasonable to change
mechanics that don’t make sense or prove to not work once in prac-
tice, but this initial layout allows us to try predicting potential problems
and saving time in the long run by anticipating trouble down the road.

Now that we have the basic guidelines for the game down, we
can look at the file and class structure. In this case, we’re going to
work with one main FLA file that will house the game assets, and
we’ll use a number of classes and interfaces to control different
aspects of the game functionality. Here’s a quick breakdown of the
classes we’ll use and what each one is responsible for:
• MixUp: Document class, manages game state/screens, retains

static game history, and handles display of rules
• Title: Title/menu screen

244 Chapter 13 MIXUP—A SIMPLE ENGINE

• RulesPanel: Handles display and closure of the How To Play
Popup

• Game: Shows GameBoard, timer, and UI elements
• GameBoard: Creates puzzle from source image, shuffles pieces,

and handles game logic
• IGamePiece: An interface that defines the methods for what

constitutes a game piece
• GamePiece: Implements IGamePiece and defines specific

behavior for pieces (with regard to animation, mouse
interaction, and so on)

• ISourceImage: Base interface for plugging in different image sets
or video for use with the GameBoard
• SourceImageEmbedded: Uses images embedded in the SWF
• SourceImageCamera: Uses camera feed

• GameHistory: Simple data class containing static properties for
the player’s performance each time they play a round

• Results: Screen displaying game results when the game is over
We’ll work through each of these classes and the basic setup of

the FLA one by one. So that we have some context for the code
we’ll be working with, we’ll start with the structure of the MixUp.fla
file. You can open it from the Chapter 13 Examples folder that you
downloaded (or should download) from www.flashgamebook.com.

The Main Document
When you open up MixUp.fla and look at the library and timeline,
you’ll notice a couple of things. First, they are very simple. The
timeline has three labels and three matching pieces of content for
each one: the title screen, the game screen, and the results
screen. They are given their own discrete space on the timeline
for organizational purposes and to simplify screen management.
In the library, there are only a handful of items. Each screen is
contained within its respective clip; there are a couple of different
buttons; and there is an image to be used as the source for the
puzzle. Each of the screens is linked to a class with the same
name. If you look at the document properties panel, you’ll also
see that the document is pointing to a class called MixUp. We’ll
start here first and work our way inward through the structure of
the game.

The MixUp Class
This document class file controls the main logic for navigating
between the screens in the game and displaying the rules panel. As
the top-level in our game, it is the one class that persists through-
out the entire experience and is in the unique position of storing

Chapter 13 MIXUP—A SIMPLE ENGINE 245

useful data such as the current session’s game history (for showing
best scores, average scores, and so on).

public class MixUp extends MovieClip {

static public const FRAME_TITLE:String = "title";
static public const FRAME_GAME:String = "game";
static public const FRAME_RESULTS:String = "results";

static public var gameHistory:Array = new Array();

protected var _imageNameList:Array = ["goldengate.jpg"];
protected var _imageList:Vector.<ISourceImage>;

public var title:Title;
public var game:Game;
public var results:Results;

public function MixUp() {
enumerateFrameLabels();
addEventListener(FRAME_TITLE, setupTitle, false,

0, true);
addEventListener(FRAME_GAME, setupGame, false, 0,

true);
addEventListener(FRAME_RESULTS, setupResults,

false, 0, true);
createImagePool();

}

protected function createImagePool():void {
_imageList = new Vector.<ISourceImage>();
for each (var imageName:String in _imageNameList)

_imageList.push(new SourceImageEmbedded
(imageName));

}

There are only a few variables in this class: one for each of the
main screens, an Array for the game history, and a constant defining
each of the frame labels. In addition to these public properties are
two lists. One will store the list of available images to use for the
puzzle (in this case, the one that is embedded in the library), and
the other will store the list of image objects that will be used by the
game. In the constructor for the class, enumerateFrameLabels is
called and listeners are added to each of the frame names. It also
calls createImagePool, which runs through the list of image names
and creates new SourceImageEmbedded objects for each of them.
More information will be provided on this later when we get to the
in-game classes.

246 Chapter 13 MIXUP—A SIMPLE ENGINE

private function dispatchFrameEvent():void {
dispatchEvent(new Event(currentLabel));

}

private function enumerateFrameLabels():void {
for each (var label:FrameLabel in currentLabels)

addFrameScript(label.frame-1, dispatchFrameEvent);
}

These two functions use the addFrameScript method to dispatch
events, whenever a frame label is hit. Combined with the listeners
in the constructor, events will be fired when the title screen, game
screen, and results screen are reached.

protected function setupTitle(e:Event):void {
stop();
title.addEventListener(Title.PLAY_GAME, playGame, false,
0, true);

title.addEventListener(Title.SHOW_RULES, showRules,
false, 0, true);

}

protected function showRules(e:Event):void {
var rules:RulesPanel = new RulesPanel();
rules.x = stage.stageWidth/2;
rules.y = stage.stageHeight/2;
addChild(rules);

}

protected function playGame(e:Event):void {
gotoAndStop(FRAME_GAME);

}

protected function mainMenu(e:Event):void {
gotoAndStop(FRAME_TITLE);

}

When the title screen is reached, we attach listeners to it for two
events that are defined in the Title class: PLAY_GAME and SHOW_
RULES. When showRules is called, it creates a new RulesPanel
instance, positions it, and adds it to the Stage. The playGame
method does exactly what you’d expect it to do—go to the frame
with the game in it. The mainMenu method will be used later to
return to the title screen, but it is included here for consistency.

protected function setupGame(e:Event):void {
stop();
game.init(_imageList[0], 3, 4);
setTimeout(game.startGame, 1500);

Chapter 13 MIXUP—A SIMPLE ENGINE 247

game.addEventListener(Game.GAME_OVER, gameOver, false,
0, true);

}

protected function gameOver(e:Event):void {
var history:GameHistory = new GameHistory(true, e.target.

timeElapsed, e.target.movesMade);
history.formattedTime = e.target.timeElapsedText.text;
gameHistory.unshift(history);
gotoAndStop(FRAME_RESULTS);

}

protected function setupResults(e:Event):void {
results.addEventListener(Results.PLAY_AGAIN, playGame,

false, 0, true);
results.addEventListener(Results.MAIN_MENU, mainMenu,

false, 0, true);
}

These three methods follow much the same pattern of doing
initialization, when a frame label is reached. The setupGame method
runs functions on the game object and adds a listener for the
GAME_OVER event. We’ll return to the gameOver method, later,
once we’ve progressed through the game logic that will get us there.
Suffice it to say that we’ll store stats about the player’s most recent
game in the history array. Now that the document class is defined,
we’re ready to delve into each of the individual screens.

The Title Class
Most games have some sort of main menu of options; few drop
you directly into the action without explanation or pause. In this
example, we have only two options on the title screen, which keeps
it simple for explanation. A player can choose to start a game or
first view the rules.

public class Title extends MovieClip {

static public const PLAY_GAME:String = "playGame";
static public const SHOW_RULES:String = "showRules";

public var playButton:SimpleButton;
public var rulesButton:SimpleButton;

public function Title() {
addEventListener(Event.ADDED_TO_STAGE, addedToStage,
false, 0, true);

}

248 Chapter 13 MIXUP—A SIMPLE ENGINE

private function addedToStage(e:Event):void {
playButton.addEventListener(MouseEvent.CLICK,

playButtonClick, false, 0, true);
rulesButton.addEventListener(MouseEvent.CLICK,

rulesButtonClick, false, 0, true);
}

private function playButtonClick(e:MouseEvent):void {
dispatchEvent(new Event(PLAY_GAME));

}

private function rulesButtonClick(e:MouseEvent):void {
dispatchEvent(new Event(SHOW_RULES));

}
}

As you can see, the logic behind this screen is very simple.
When either of the two buttons on the Title screen are clicked,
events are dispatched with names corresponding to the listeners
we saw in the MixUp class. Adding buttons to this screen is as sim-
ple as adding a constant for the event it generates a variable for
the DisplayObject and a listener for button click.

The RulesPanel Class
From the Title screen, the player can choose to view the rules panel.
In the MixUp class, we saw how this panel is instantiated and added
to the Stage. Now, we’ll look at the internal logic behind it.

public class RulesPanel extends Sprite {

public var closeButton:SimpleButton;

public function RulesPanel() {
addEventListener(Event.ADDED_TO_STAGE, addedToStage,

false, 0, true);
}

private function addedToStage(e:Event):void {
TweenLite.from(this, .4, { y : −height });
closeButton.addEventListener(MouseEvent.CLICK,

closeButtonClick, false, 0, true);
}

private function closeButtonClick(e:MouseEvent):void {
closeButton.removeEventListener(MouseEvent.

CLICK, closeButtonClick);

Chapter 13 MIXUP—A SIMPLE ENGINE 249

TweenLite.to(this, .4, { y : −height, onComplete:
parent.removeChild, onCompleteParams:[this] });

}
}

When the rules panel becomes part of the display list, it anima-
tes itself in from the top of the screen. It also adds a listener to the
close button that reverses this animation and on completion
removes the panel from the Stage. Because there are no other
references to the panel than the display list, once it is removed
from the Stage, Flash will garbage-collect it. Now, we’re ready to
dive into the Game class and see the logic going on behind the
scenes.

The Game Class
We’ve now reached the meat of the code is, so to speak. The Game
class is a composite of a few different components. The first and
most important is the GameBoard class, which we will review
shortly. The GameBoard controls the actual logic that keeps track
of each of the images, shuffles them, and determines whether or
not the puzzle has been completed. In addition, the Game class
stores an instance of whatever the source image is—in this case, a
still image from the library. Finally, this class manages all of the UI
relevant to the game, like the quit button and text fields. We’ll start
breaking it down with the variable declarations.

public class Game extends MovieClip {

static public const GAME_OVER:String = "gameOver";

public var piecesLeftText:TextField;
public var movesMadeText:TextField;
public var timeElapsedText:TextField;
public var quitButton:SimpleButton;

private var _sourceImage:ISourceImage;
private var _gameBoard:GameBoard;
private var _totalPieces:int;
private var _piecesLeft:int;
private var _movesMade:int;
private var _timeElapsed:int;
private var _timer:Timer;

public function Game() {
addEventListener(Event.ADDED_TO_STAGE, addedToStage,
false, 0, true);

250 Chapter 13 MIXUP—A SIMPLE ENGINE

_timer = new Timer(1000);
_timer.addEventListener(TimerEvent.TIMER,

timerUpdate, false, 0, true);
}

private function addedToStage(e:Event):void {
quitButton.addEventListener(MouseEvent.CLICK,

gameOver, false, 0, true);
}

There are three TextField objects that display the remaining
number of pieces, number of moves that have been made, and the
time that has elapsed, as well as a button the player can use to
quit the game. Each of the private variables stores some piece of
information related to gameplay, including the source image in the
form of an interface (rather than a class). Along with the Game-
Board, we’ll discuss this interface in a subsequent section. The con-
structor sets up the quit button and also creates a Timer object.
The timer will fire every second (or 1000 ms) once started, creating
a very basic clock. Whenever a second passes, the Timer will call
timerUpdate.

public function get movesMade():int { return _movesMade; }
public function set movesMade(value:int):void {

_movesMade = value;
movesMadeText.text = String(_movesMade);

}

public function get piecesLeft():int { return _piecesLeft; }
public function set piecesLeft(value:int):void {

_piecesLeft = value;
piecesLeftText.text = String(_piecesLeft);

}

public function get timeElapsed():int { return _timeElapsed; }
public function set timeElapsed(value:int):void {

_timeElapsed = value;
var timeString:String;
if (_timeElapsed < 60) {

timeString = "0:";
} else {

timeString = String(Math.floor(_timeElapsed /
60)) + ":";

}
var seconds:int = _timeElapsed % 60;
if (seconds < 10) {

timeString += "0" + String(seconds);
} else {

Chapter 13 MIXUP—A SIMPLE ENGINE 251

timeString += String(seconds);
}
timeElapsedText.text = timeString;

}

This set of six methods comprises the accessor, or getter/setter,
methods that we’ll use for this class. The get function simply
returns the value of the private variable. The set function sets the
private variable and also updates the corresponding TextField
object. In the case of the timeElapsed property, in particular, the
time must be updated from just a number of seconds to a standard
formatting of “mm:ss.”

public function init(sourceImage:ISourceImage,
rows:int,
columns:int,
imageWidth:int = 0,
imageHeight:int = 0,
boardPosition:Point = null):void {

_totalPieces = piecesLeft = rows * columns;
movesMade = 0;
_sourceImage = sourceImage;
_gameBoard = new GameBoard(_sourceImage, GamePiece, rows,

columns, imageWidth, imageHeight);
if (!boardPosition) boardPosition = new Point();
_gameBoard.x = boardPosition.x;
_gameBoard.y = boardPosition.y;
_gameBoard.createBoard();
addChildAt(_gameBoard, 0);
_gameBoard.shuffleBoard();

}

public function startGame():void {
_gameBoard.activate();
_gameBoard.addEventListener(GameBoard.GAME_OVER,

pauseBeforeGameOver, false, 0, true);
_gameBoard.addEventListener(GameBoard.PIECE_SWAP,

pieceSwap, false, 0, true);
_gameBoard.addEventListener(GameBoard.PIECE_LOCK,

pieceLock, false, 0, true);
timeElapsed = 0;
_timer.start();

}

You may have noticed that these two public methods are the
same two called by the MixUp class earlier. The init function sets
up the game for play, and startGame activates the GameBoard
for mouse input and starts the Timer. There are a number of

252 Chapter 13 MIXUP—A SIMPLE ENGINE

parameters for init, which include the source image object to be
used for the puzzle, the number of rows and columns the grid
should be divided into, the width and height in pixels of the image
that will be displayed, and the physical position of the GameBoard
object in the form of a point. Only the source image, rows, and col-
umns are required. By default, we will use the native width and
height of the image we’re slicing up and set the board at 0,0. The
total number of pieces for the puzzle is calculated as the number
of rows multiplied by the number of columns. The init function is
also where the GameBoard object is actually created. Most of the
same parameters that were passed into the function are similarly
passed along to the GameBoard constructor, and it is subsequently
added to the Stage. The GameBoard will dispatch a number of
events as things occur in the game, so in startGame, we add listen-
ers for these events. We’ll look at these listeners next.

private function pauseBeforeGameOver(e:Event):void {
_timer.stop();
setTimeout(gameOver, 2000, null);

}

private function pieceSwap(e:Event):void {
movesMade++;

}

private function pieceLock(e:Event):void {
piecesLeft−−;

}

private function gameOver(e:Event):void {
_timer.stop();
_gameBoard.deactivate();
_gameBoard.cleanUp();
dispatchEvent(new Event(GAME_OVER));

}

private function timerUpdate(e:TimerEvent):void {
timeElapsed = _timer.currentCount;

}

The method pauseBeforeGameOver merely stops gameplay and
inserts a two-second pause before calling the gameOver method, so
that the player has a moment to see the image they completed.
When a piece swap is made, the number of moves is incremented,
and when a piece is locked into its correct position, the number of
pieces is decremented. Finally, after the post-game pause is com-
plete, gameOver deactivates the GameBoard, performs clean up,
and dispatches the GAME_OVER event back up to the MixUp class.

Chapter 13 MIXUP—A SIMPLE ENGINE 253

The Interfaces
Before we proceed any further into the GameBoard engine, we
need to look at the two interfaces that will be used in it, and which
we’ve already seen glimpses of in the MixUp and Game classes. As
you’ll recall from Chapter 4, an interface simply defines the names
and parameters of public methods that will be used in a class.
There is no actual logic performed in an interface. They are used
to supply a common interface through which classes of disparate
types can be used in the same context. The first is ISourceImage. It
is this interface that must be implemented by any source of ima-
gery the game will use for its puzzle, regardless of whether it is still
embedded photos, external photos, video, and so on.

package {

import flash.display.BitmapData;

public interface ISourceImage {

function getImages(rows:int, columns:int, width:
int = 0, height:int = 0):Vector.<BitmapData>;

function cleanUp():void;
function destroy():void;

}
}

Classes that implement this interface only need to have three
methods defined in them. The first method, getImages, is arguably the
most important. It needs to return a vector list of BitmapData objects
representing the sliced up original image, based on the number of
rows and columns. The next two, cleanUp and destroy, do pretty
much what you would expect based on their names. The cleanUp
method will be called when the GameBoard wants to dispose of the
sliced up images used to create the puzzle. The destroy method takes
it one step further and also is intended to dispose of the original
source image as well. Because BitmapData takes up a lot of space in
memory, it is important to provide easy ways of freeing up that space.

The other interface used with the GameBoard class is one called
IGamePiece. It defines the methods that will be used by the click-
able game pieces that will make up the game board. Each game
piece will have a BitmapData object from the vector list returned
by ISourceImage.getImages().

package {

import flash.display.BitmapData;
import flash.events.IEventDispatcher;

254 Chapter 13 MIXUP—A SIMPLE ENGINE

public interface IGamePiece extends IEventDispatcher {

//DisplayObject Properties
function get x():Number;
function set x(value:Number):void;
function get y():Number;
function set y(value:Number):void;
function get width():Number;
function set width(value:Number):void;
function get height():Number;
function set height(value:Number):void;

//GamePiece-specific Methods
function select():void;
function deselect():void;
function activate():void;
function deactivate():void;
function movePiece(x:Number, y:Number):void;
function lock():void;

//GamePiece-specific Accessors
function get image():BitmapData;
function set image(value:BitmapData):void;
function get index():int;
function set index(value:int):void;
function get currentIndex():int;
function set currentIndex(value:int):void;

}
}

This interface has considerably more definitions in it because
unlike the source images, these game pieces will also need to be
DisplayObjects. Because there is no common interface for Dis-
playObject classes to extend from, we’ll need to define some of
the basic properties that a game piece will need to have. These
include x and y position, as well as width and height. For conve-
nience, because the pieces will also need to dispatch events, we
can extend IEventDispatcher to keep us from having to retype all
those methods. For the game logic, every piece must have a way
to be selected, deselected, activated, deactivated, moved, and
locked. They must also have properties that define the Bitmap-
Data displayed inside them, and their original and current
positions on the game board. We’ll look at the classes that
implement these interfaces shortly, but now that we at least
know how these objects will be defined, we’ll move on to the
GameBoard class.

Chapter 13 MIXUP—A SIMPLE ENGINE 255

The GameBoard Class
This class is the engine at the heart of this entire game, and where
all the major logic happens. In order to be as flexible and reusable
as possible, it refers to objects by their interfaces rather than by
their specific class.

public class GameBoard extends Sprite {

static public var GAME_READY:String = "gameReady";
static public var GAME_OVER:String = "gameOver";
static public var PIECE_SWAP:String = "pieceSwap";
static public var PIECE_LOCK:String = "pieceLock";

protected var _pieces:Vector.<IGamePiece>;
protected var _rows:int, _columns:int;
protected var _imageWidth:int, _imageHeight:int;
protected var _boardImage:ISourceImage;
protected var _selectedPiece:IGamePiece;
protected var _pieceClass:Class;

public function GameBoard(boardImage:ISourceImage,
pieceClass:Class, rows:int, columns:int, imageWidth:int = 0,
imageHeight:int = 0) {

_rows = rows;
_columns = columns;
_imageWidth = imageWidth;
_imageHeight = imageHeight;
_boardImage = boardImage;
_pieceClass = pieceClass;

}

When a new GameBoard object is created, it looks for an image
object to slice, the number of rows and columns, to use the width
and height of the puzzle, and which class to use for the game
piece (because it will be generically referred to as IGamePiece for
the rest of the code). In addition to these properties, the class
defines four different events that it will dispatch, and a list object,
_pieces, which will store a list of the game pieces in play.

public function createBoard():void {
_pieces = new Vector.<IGamePiece>();
var numPieces:int = _rows * _columns;
var imageData:Vector.<BitmapData> = _boardImage.

getImages(_rows, _columns);
for (var i:int = 0; i < numPieces; i++) {

var piece:IGamePiece = new _pieceClass();
piece.index = i;

256 Chapter 13 MIXUP—A SIMPLE ENGINE

piece.image = imageData[i];
piece.x = piece.width * (i % _columns);
piece.y = piece.height * Math.floor(i / _columns);
_pieces.push(piece);
addChild(piece as DisplayObject);

}
}

public function shuffleBoard():void {
randomize(_pieces);
for (var i:int = 0; i < _pieces.length; i++) {

movePiece(_pieces[i], i);
}

}

The createBoard function is the process by which the image
data is pulled from its source and inserted into game pieces. For
every piece of image data, a new game piece is created and
added to the Stage. The result of createBoard is a reproduction
of the original image, but in adjacent pieces rather than a single
bitmap. The shuffleBoard method is used to mix up the images
and move them from their original places. We’ll, shortly, review
the randomize and movePiece methods it calls. The two methods
above are separated in order to allow the game to display the
original image for a period, if needed, before rearranging the
board.

public function activate():void {
for each (var piece:IGamePiece in _pieces) {

piece.activate();
piece.addEventListener(MouseEvent.CLICK,

pieceClicked, false, 0, true);
}

}

public function deactivate():void {
for each (var piece:IGamePiece in _pieces) {

piece.deactivate();
piece.removeEventListener(MouseEvent.CLICK,

pieceClicked);
}

}

public function cleanUp():void {
_boardImage.cleanUp();
_pieces = null;

}

Chapter 13 MIXUP—A SIMPLE ENGINE 257

These methods are what are used on beginning and completion
of a game. Calling activate will enable each piece and make it click-
able. The deactivate method reverses this action, and the cleanUp
function calls the same method on the source image that we
looked at earlier in the interface.

protected function pieceClicked(e:MouseEvent):void {
var piece:IGamePiece = e.target as IGamePiece;
if (!_selectedPiece) {

_selectedPiece = piece;
} else if (_selectedPiece == piece) {

_selectedPiece.deselect();
_selectedPiece = null;

} else {
var index:int = _selectedPiece.currentIndex;
dispatchEvent(new Event(PIECE_SWAP));
piece.deselect();
_selectedPiece.deselect();
movePiece(_selectedPiece, piece.currentIndex);
checkPiece(_selectedPiece);
movePiece(piece, index);
checkPiece(piece);
_selectedPiece = null;
checkWin();

}
}

protected function checkPiece(piece:IGamePiece):Boolean {
if (piece.currentIndex == piece.index) {

piece.removeEventListener(MouseEvent.CLICK,
pieceClicked);

piece.lock();
dispatchEvent(new Event(PIECE_LOCK));
return true;

}
return false;

}

protected function checkWin():void {
var won:Boolean = true;
for each (var piece:IGamePiece in _pieces) {

if (piece.currentIndex != piece.index) won = false;
}
if (won) {

deactivate();
dispatchEvent(new Event(GAME_OVER));

}
}

258 Chapter 13 MIXUP—A SIMPLE ENGINE

protected function movePiece(piece:IGamePiece, newIndex:int):
void {

piece.movePiece(piece.width * (newIndex % _columns),
piece.height * Math.floor(newIndex / _columns));

piece.currentIndex = newIndex;
}

I have grouped these methods together because they are all
interrelated and easier to look at in the context of each other. The
pieceClicked method is called when—you guessed it—a piece is
clicked. It checks if another piece has already been selected. If not,
this piece becomes the currently selected piece. If this piece is
already selected, it will be deselected. If a different piece has
already been selected, the game dispatches a PIECE_SWAP event
and proceeds to exchange the two pieces’ positions. The movePiece
function calls the same method on the corresponding piece and
updates its currentIndex property. Once moved, the position of the
piece is evaluated by the checkPiece method. If the piece’s current-
Index matches its original index, the piece is in place and is locked.
Finally, once the two pieces have been moved and checked, check-
Win is called to determine if all the pieces are now in their correct
positions. If they are, the game deactivates itself and dispatches the
GAME_OVER event.

protected function randomize(vector:Vector.<IGamePiece>):
Vector.<IGamePiece> {

for (var i:int = 0; i < vector.length-1; i++) {
var randomIndex:int = Math.round(Math.random()*

(vector.length − 1 − i)) + i;
swapElements(vector, i, randomIndex);

}
return vector;

}

protected function swapElements(vector:Vector.<IGamePiece>,
index1:int,index2:int):void {

var temp:IGamePiece =vector[index1];
vector[index1]=vector[index2];
vector[index2]=temp;
temp=null;

}

These two final methods of the GameBoard class are not speci-
fic to the game logic but are actually generic utility functions that I
wrote originally to manipulate Arrays. Here, they have been modi-
fied to do the same with vectors of a specific type. The randomize
method shuffles the vector so that all of the elements are in new
positions. By swapping each index with a random one after it, we

Chapter 13 MIXUP—A SIMPLE ENGINE 259

ensure that we get a unique order every time. This method makes
direct use of the swapElements function to move the elements in
the list. Now, we’ll look at the GamePiece class that is used for the
implementation of the IGamePiece interface. Remember how the
GameBoard class only referenced pieces through the IGamePiece
interface? Because of this, the GamePiece class has the luxury to
have whatever internal mechanisms we want, as long as it correctly
implements all the methods of the interface. As a result, this class
has a fair amount of “hard-coded” values, such as the color, size,
and speed of animations. To make a different type of game piece,
you could use this class as a starting point and then modify any of
the functionality inside it or start from scratch. Ultimately, all that
matters in this case is that the interface methods are defined and
that the game piece in some way extends from DisplayObject, or
preferably InteractiveObject. This is because in the GameBoard
class, pieces are added to the Stage and a non-DisplayObject des-
cendant will display an error.

public class GamePiece extends Sprite implements IGamePiece {

protected var _image:Bitmap;
protected var _index:int;
protected var _currentIndex:int;
protected var _rolloverHighlight:Shape;
protected var _clickHighlight:Shape;

public function GamePiece() {
}

For this implementation, GamePiece will extend Sprite and con-
tains a Bitmap variable to store its image slice, two int variables to
store its current and original index, and two Shape variables that
will be used for rollover and click states.

protected function createRolloverHighlight():void {
_rolloverHighlight = new Shape();
_rolloverHighlight.graphics.lineStyle(1, 0xFFFFFF, 1);
_rolloverHighlight.graphics.beginFill(0xFFFFFF, .3);
_rolloverHighlight.graphics.drawRect(.5, .5, _image.

width-1, _image.height-1);
_rolloverHighlight.graphics.endFill();
addChild(_rolloverHighlight);
_rolloverHighlight.visible = false;

}

protected function createClickHighlight():void {
_clickHighlight = new Shape();
_clickHighlight.graphics.lineStyle(2, 0, 1);

260 Chapter 13 MIXUP—A SIMPLE ENGINE

_clickHighlight.graphics.beginFill(0xFFFFFF, .2);
_clickHighlight.graphics.drawRect(1, 1, _image.width-2,
_image.height-2);

_clickHighlight.graphics.endFill();
addChild(_clickHighlight);
_clickHighlight.visible = false;

}

These two methods create the aforementioned Shape instances
that will constitute the piece’s alternate states. Both of them are
arbitrarily defined and could be styled any number of ways or even
make reference to clips in the FLA library.

public function get index():int { return _index; }

public function set index(value:int):void {
_index = value;

}

public function get currentIndex():int { return _currentIndex; }

public function set currentIndex(value:int):void {
_currentIndex = value;

}

public function get image():BitmapData { return _image.
bitmapData; }

public function set image(value:BitmapData):void {
if (!_image) {

_image = new Bitmap(value);
addChild(_image);
createRolloverHighlight();
createClickHighlight();

}
else _image.bitmapData = value;

}

These accessor methods are implementations from the interface.
The only one that requires a little extra explanation is the set func-
tion for the image property. If the image already exists, it is
assigned directly to the Bitmap instance. If not, it creates the Bit-
map and the highlighted states.

protected function onClick(e:MouseEvent):void {
select();

}

protected function onRollOver(e:MouseEvent):void {

Chapter 13 MIXUP—A SIMPLE ENGINE 261

_rolloverHighlight.visible = true;
}

protected function onRollOut(e:MouseEvent):void {
_rolloverHighlight.visible = false;

}

public function select():void {
_clickHighlight.visible = true;

}

public function deselect():void {
_clickHighlight.visible = false;

}

public function activate():void {
addEventListener(MouseEvent.CLICK, onClick, false, 1,

true);
addEventListener(MouseEvent.ROLL_OVER, onRollOver,

false, 0, true);
addEventListener(MouseEvent.ROLL_OUT, onRollOut, false,

0, true);
buttonMode = true;

}

public function deactivate():void {
removeEventListener(MouseEvent.CLICK, onClick);
removeEventListener(MouseEvent.ROLL_OVER, onRollOver);
removeEventListener(MouseEvent.ROLL_OUT, onRollOut);
buttonMode = false;
_rolloverHighlight.visible = false;
deselect();

}

The first three methods are triggered by mouse events and tog-
gle the rollover state and select method. The next four are more
implementations from the interface, all of which affect the different
states and mouse input.

public function lock():void {
deactivate();
setTimeout(pieceLockAnimation, 500);

}

public function movePiece(newX:Number, newY:Number):void {
TweenLite.to(this, .5, { x:newX, y:newY, ease:Expo.

easeOut});
}

262 Chapter 13 MIXUP—A SIMPLE ENGINE

protected function pieceLockAnimation():void {
var shape:Shape = new Shape();
shape.graphics.beginFill(0x00CC00, .5);
shape.graphics.drawCircle(0, 0, Math.max(width, height)/2);
shape.graphics.endFill();
shape.x = width / 2;
shape.y = height / 2;
addChild(shape);
TweenLite.to(shape, 1, { scaleX:2, scaleY:2, alpha:0,
onComplete:removeChild, onCompleteParams:[shape]});

parent.setChildIndex(this, parent.numChildren − 1);
}

override public function toString():String {
return "GamePiece: index = " + index + " , currentIndex = " +
currentIndex;

}

Finally, wrapping up the class are the methods to lock the piece
in place and also to move it. The pieceLockAnimation method is
another custom animation function, which could be substituted for
just about any other treatment. In this case, when a piece is locked,
it flashes a green (usually the color associated with a positive
move) square over the piece and fades it out.

SHAPES
Shape objects are a low-impact form of DisplayObject that are great to use
when all you need is something to draw in using the Graphics API or to
use as an overlay. Because they don’t extend InteractiveObject, you don’t
have to worry about them receiving or blocking mouse or keyboard events
that you need your container to get. Because they’re so simple they also
consume fewer resources, so if you did a puzzle with 100+ pieces, you
wouldn’t be consuming nearly as much in memory or rendering power.

The SourceImageEmbedded Class
Now that we have all the logic for the game itself and functional
pieces, the last component to this puzzle is the image itself. We’ve
seen the ISourceImage interface that is used by the GameBoard
class to pull in a list of BitmapData objects. But how does the origi-
nal BitmapData get pulled in and then sliced? The answer is
“depends.” It depends on the source of the image. If the images are
embedded in the FLA library, as in our example, the BitmapData is
just waiting there for us to instantiate. But for other sources, like
external image files or a camera feed, it’s a little more complicated.
We’ll start out by seeing how to use an embedded image. You may

Chapter 13 MIXUP—A SIMPLE ENGINE 263

have noticed an image in the MixUp.fla library that was set to export
as “goldengate.” This image of the Golden Gate Bridge in San Fran-
cisco (taken by yours truly circa 2003) will be available to us as raw
BitmapData when the SWF is exported. Back in the MixUp.as docu-
ment class, we also defined a list of image names (in this case, just
one image) that would be used to load in the data. Those names
were then used to create instances of a class called SourceIma-
geEmbedded. We’ll look at that class now.

public class SourceImageEmbedded implements ISourceImage {

private var _imageClass:Class;
private var _sourceBitmap:BitmapData;
private var _pieceList:Vector.<BitmapData>;

public function SourceImageEmbedded(linkageName:String)
{

_imageClass = getDefinitionByName(linkageName) as
Class;

}

When a new SourceImageEmbedded object is created, the link-
age name in the library for the image we want to use is passed
into the constructor. That name is then used to look up and
retrieve the actual class that name is associated with. If you recall,
there were three required methods of the ISourceImage interface.
We’ll now look at this class’s implementation of those functions.

public function getImages(rows:int,
columns:int,
width:int = 0,
height:int = 0):Vector.<BitmapData> {

if (_pieceList) return _pieceList;
_sourceBitmap = new _imageClass(width, height);
var pieceBitmap:BitmapData;
var pieceWidth:int = Math.floor(_sourceBitmap.width /

columns);
var pieceHeight:int = Math.floor(_sourceBitmap.height / rows);
_pieceList = new Vector.<BitmapData>();
for (var j:int = 0; j < rows; j++) {

for (var i:int = 0; i < columns; i++) {
pieceBitmap = new BitmapData(pieceWidth,

pieceHeight);
var rect:Rectangle = new Rectangle(i * piece

Width, j * pieceHeight, pieceWidth,
pieceHeight);

pieceBitmap.copyPixels(_sourceBitmap,
rect, new Point());

264 Chapter 13 MIXUP—A SIMPLE ENGINE

_pieceList.push(pieceBitmap);
}

}
return _pieceList;

}

public function cleanUp():void {
for each (var bmd:BitmapData in _pieceList) {

bmd.dispose();
}
_pieceList = null;

}

public function destroy():void {
cleanUp();
_sourceBitmap.dispose();
_imageClass = null;

}

The getImages method is, definitely, the heavy-lifter of this class.
If the list of BitmapData objects already exists (in other words, the
image has already been cut up), the function simply returns that
list again. This is to prevent destruction of still usable objects and
creation of unnecessary new objects, as BitmapData can be costly
to create and destroy repeatedly. For each rectangle on the grid, a
new BitmapData object is created in fixed dimensions and has the
pixel data from the original image copied to it. The cleanUp and
destroy functions, as mentioned earlier in the section on the inter-
face, are there to properly dispose of the references to BitmapData,
when the game is through with them. Although not particularly
crucial with only one image, if you had a game with 10, 50, or 100
images, then you would not want to keep all of them in memory at
once—just the one you’re working with at any given moment.
Now, we have all the classes we need to make the game work, but
we have no measure of skill or statistics to associate with the
player’s performance. From here, we switch gears to what happens
when the game is over.

The GameHistory and Results Classes
Although it sounds like a cool course that you’d take at a college,
this class contains a few pieces of data about how the player did in
a particular round of MixUp.

public class GameHistory {

public var won:Boolean;
public var time:int;

Chapter 13 MIXUP—A SIMPLE ENGINE 265

public var formattedTime:String;
public var movesMade:int;

public function GameHistory(won:Boolean, time:int, moves
Made:int) {

this.won = won;
this.time = time;
this.movesMade = movesMade;

}

}

That’s it. As you can see, there’s not much to this class. This is
just the most basic set of data. You could feasibly store all sorts of
information about how the player performed, but for this example,
we’re limiting it to whether or not they won (as opposed to quitting
prematurely), how much time it took them, and the number of
moves they made. This information is stored in the MixUp game-
History Array and used by the Results Class.

public class Results extends MovieClip {

static public const PLAY_AGAIN:String = "playAgain";
static public const MAIN_MENU:String = "mainMenu";

public var movesMadeText:TextField;
public var finalTimeText:TextField;
public var playAgainButton:SimpleButton;
public var mainMenuButton:SimpleButton;

public function Results() {
addEventListener(Event.ADDED_TO_STAGE, addedTo
Stage, false, 0, true);

}

private function addedToStage(e:Event):void {
var history:GameHistory = MixUp.gameHistory[0];
movesMadeText.text = String(history.movesMade);
finalTimeText.text = history.formattedTime;
playAgainButton.addEventListener(MouseEvent.
CLICK, playAgain, false, 0, true);

mainMenuButton.addEventListener(MouseEvent.
CLICK, mainMenu, false, 0, true);

}

private function playAgain(e:MouseEvent):void {
dispatchEvent(new Event(PLAY_AGAIN));

}

266 Chapter 13 MIXUP—A SIMPLE ENGINE

private function mainMenu(e:MouseEvent):void {
dispatchEvent(new Event(MAIN_MENU));

}
}

Like the Title class, this screen is pretty minimal in its current
form, but it could support many other pieces of information or
options. Because GameHistory objects are added to the beginning
of the Array in the MixUp class, to get the latest object, the Results
class simply looks at the first element.

At this point, we at last have a game that can be played start to
finish and has multiple screens. If you publish the SWF and test it,
you will see how the game works, as in Figure 13.1.

Before we end this chapter, however, we have one more class to
look at. It is an alternative class to use for the ISourceImage imple-
mentation. It is called SourceImageCamera, and it will use a live
feed for the grid instead. If you don’t have any kind of webcam,
then you can either skip to the next chapter or you can read on for
enlightenment.

The SourceImageCamera Class
Our previous implementation, the SourceImageEmbedded class,
was simply a generic object. It only ran code when it was requested
and was silent the rest of the time. For this next example, we’ll

Figure 13.1 The MixUp game
in action.

Chapter 13 MIXUP—A SIMPLE ENGINE 267

need to be able to continually update the BitmapData in the pieces
after they’re cut up in order for a camera feed to be worthwhile.

public class SourceImageCamera extends Sprite implements
ISourceImage {

protected var _rows:int, _columns:int;
protected var _video:Video;
protected var _camera:Camera;
protected var _sourceBitmap:BitmapData;
protected var _pieceList:Vector.<BitmapData>;

public function SourceImageCamera(width:int, height:int,
fps:int = 15) {

_camera = Camera.getCamera();
_video = new Video(width, height);
_camera.setMode(width, height, fps);
_video.attachCamera(_camera);

}

You’ll notice a number of similarities between this class and the
one for embedded images. In this version, we create variables to
store the number of rows and columns for later use, as well as
references to use with the Video and Camera classes. For more
information on using the Camera class, refer to Appendix A, which
can be found at flashgamebook.com. When this class is con-
structed, new Camera and Video objects are created to match the
desired dimensions and frame rate.

public function getImages(rows:int, columns:int, width:int = 0,
height:int = 0):Vector.<BitmapData> {

if (_pieceList) return _pieceList;
if (width == 0) width = _video.width;
if (height == 0) height = _video.height;
_rows = rows;
_columns = columns;
_sourceBitmap = new BitmapData(width, height);
_sourceBitmap.draw(_video, new Matrix());
var pieceBitmap:BitmapData;
var pieceWidth:int = Math.floor(_sourceBitmap.width /

_columns);
var pieceHeight:int = Math.floor(_sourceBitmap.height /

_rows);
_pieceList = new Vector.<BitmapData>();
for (var j:int = 0; j < _rows; j++) {

for (var i:int = 0; i < _columns; i++) {
pieceBitmap = new BitmapData(pieceWidth,

pieceHeight);

268 Chapter 13 MIXUP—A SIMPLE ENGINE

var rect:Rectangle = new Rectangle(i *
pieceWidth, j * pieceHeight, pieceWidth,
pieceHeight);

pieceBitmap.copyPixels(_sourceBitmap,
rect, new Point());

_pieceList.push(pieceBitmap);
}

}
addEventListener(Event.ENTER_FRAME, updateImages, false,
0, true);

return _pieceList;
}

Once again, you probably notice a number of similarities to the
image version of this class, except for two main differences. The
first is that instead of simply instantiating a new BitmapData image
from a class, we have to create an empty one and draw the video
into it. The second is that once the list is done being created, an
ENTER_FRAME listener is added to call a method called update-
Images, which we’ll look at next.

protected function updateImages(e:Event):void {
_sourceBitmap.dispose();
_sourceBitmap = new BitmapData(_video.width, _video.
height);

_sourceBitmap.draw(_video);
var pieceBitmap:BitmapData;
var pieceWidth:int = Math.floor(_sourceBitmap.width /
_columns);

var pieceHeight:int = Math.floor(_sourceBitmap.height /
_rows);

for (var j:int = 0; j < _rows; j++) {
for (var i:int = 0; i < _columns; i++) {

pieceBitmap = _pieceList[i + (j *
_columns)];

var rect:Rectangle = new Rectangle(i *
pieceWidth, j * pieceHeight, pieceWidth,
pieceHeight);

pieceBitmap.copyPixels(_sourceBitmap,
rect, new Point());

}
}

}

Most of this function mirrors the same process we did in get-
Images, except that we now dispose of the original source image
and draw a new one on every frame loop (to keep up with the
changing camera image). Also, instead of creating a new list of

Chapter 13 MIXUP—A SIMPLE ENGINE 269

BitmapData objects, we simply update the images we’ve already
created. Because these objects are associated with the Bitmaps
inside of the game pieces, those Bitmaps will automatically be
updated when the pixel data inside their BitmapData changes.

public function cleanUp():void {
for each (var bmd:BitmapData in _pieceList) {

bmd.dispose();
}
removeEventListener(Event.ENTER_FRAME, updateImages);
_pieceList = null;

}

public function destroy():void {
cleanUp();
_sourceBitmap.dispose();
_video = null;
_camera = null;

}

Finally, only minor changes are needed to the cleanUp and
destroy methods. The frame loop must be removed, and the video
and camera objects nulled. Back in the MixUp class, you only need
to change one line to change the game from using a static image
to using this new source. On the game.init line in the setupGame
method, change the line to look like this:

game.init(new SourceImageCamera(640, 480, 24), 3, 4);

The game will now use a live feed in all the rectangles, which
makes the game even more interesting if there is much motion in
the background behind you. You can apply these same techniques
to create new SourceImage classes that pull in imagery.

Review
In this chapter, we took a simple game from basic concept and rule
set to completion using interfaces to keep it modular. In the next
chapter, we will apply these concepts further on a much larger,
more complicated game.

270 Chapter 13 MIXUP—A SIMPLE ENGINE

14
BRINGING IT ALL TOGETHER:
A PLATFORMER

CHAPTER OUTLINE
The Platformer Genre 272
Data Flow 272
The Game Flow and Features 273

The Setting 274
The Level Design and Walls 274
Portals 274
The Player Character 274
Items 275
Enemies 275

The Level File Format and Asset Structure 275
The Level XML 277
Asset SWFs 280
The Game Outline 280

The Engine Classes 281
The ISprite Interface 281
The IPlayer Interface 282
The IEnemy Interface 283
The IItem Interface 283
The IPortal Interface 284

The IWall Interface 284
The PlatformerEvent Class 285
The PortalDestinations and PortalRequirement Classes 286
The PlatformerConfig Class 286
The GridReference Class 287

The CollisionGrid Class 289
The PlatformerEngine Class 290

The Game Class 308
The PlatformerExample Class 308

The Asset Classes 310
The Player Class 310
The Enemy Class 312
The Item Class 313
The Portal Class and Wall Class 314
The Assets 315

Taking It Further 318
Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 271

In the process of deciding what game I should walk through the crea-
tion of in this chapter, I asked a lot of my developer friends what they
would find most useful. I even posted a public survey for people to cast
votes on a variety of game types. I was impressed that by a huge margin
(the runner-up had about half as many votes), the winner was a
platformer-style game. When I asked other developers why they
thought this was the case; the answer was simple, albeit daunting: the
platformer is an example of many different game design and develop-
ment principles all working together at once: level design, animation,
keyboard input, physics, collision detection, and basic AI. So, in the
name of democracy, that’s the type of game we will create in this
chapter.

The Platformer Genre
If you’ve played very many games in your life, particularly on a con-
sole, odds are you’ve probably played a platformer game at one point.
In fact, if you’ve played almost any of Nintendo’s popular line of
Mario games, you’ve played a platformer. Although that famous Ita-
lian plumber tends to be the iconic representation of platformer
games, this subgenre of action/adventure games is actually much
broader than squashing enemies from above and collecting oversized
mushrooms. Some might take place in a single screen, whereas others
scroll horizontally and/or vertically. Some might focus on solving a
puzzle by moving objects around, collecting keys, or manipulating the
game environment to allow the player to escape.

Despite all the variations and possible styles of platformer
games, they all tend to follow a few core tenets:
• The user controls some kind of protagonist, generally, just

referred to as a player.
• The player can move left and right and can almost always jump

or use ladders.
• Some basic rules of physics, such as gravity and basic collisions with

solid objects, usually apply; some games use other forces like wind,
buoyancy, or rubbery surfaces that cause the player to bounce.

• Gameplay is level-based; each level has a start and an endpoint,
or ends based on accomplishing a particular objective
(collecting certain items, destroying all enemies, and so on).

• There is a backstory, however brief, explaining what the player
is doing and why.
Next, we’ll define the rule set for our game based on these fun-

damental ideas.

Data Flow
It’s important to outline the responsibilities of the different compo-
nents of the game before going any further.

272 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

In Fig. 14.1, I’ve outlined what each component of our game is
responsible for controlling. When I talk about the “engine,” I’m
referring to the set of classes that make up the core mechanics of a
platformer game. This engine is game-agnostic—it is the code that is
meant to be reused later. When I talk about the game or application-
level code, I’m referring to the current implementation of the engine.
Let’s say I wanted to build two different platformer games with
different art sets and basic behaviors (modified physics, for exam-
ple). The engine code should remain unchanged from one game to
the next (other than to add/fix features that affects all games), while
the game code and art are unique to each implementation.

We applied a similar process with MixUp in Chapter 13, just
not as explicitly outlined; the GameBoard class and the accompa-
nying interfaces were the engine and the other classes were the
implementation. It is important to delineate each component’s
“jurisdiction” ahead of time; it is easier than separating the code,
later, into different classes. When we look at the code for this game
later on in the chapter, it will be split into these two categories.

The Game Flow and Features
As a platformer is more complicated than the simple puzzler
in Chapter 13, it requires even better definition of scope and
mechanics. This rule applies to game development across the
board—an increase in complexity necessitates an increase in docu-
mentation. There are so many possible feature sets that can be
included in a platformer, and it is important to narrow them down
to just what we will implement in this version of the engine; other-
wise, this chapter would engulf an entire book and take you weeks

Game/Application

UI elements Level XML

Engine

Method calls

Asset SWF(s)

Responsibilities Responsibilities

Handling engine events

Updating UI

 Score

 Lives/health

 Timer (if applicable)

Audio playback (if applicable)

Define active rule set for engine

Level assembly and display

Sprite updates

Physics

Collision detection

Dispatching game events

Game state management

Events

Figure 14.1 The application
and the engine have different
responsibilities that work in
tandem with each other.

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 273

to build it. It is important to remember that most well-written
applications start out with a basic feature set and are modular
enough to add feature sets over time. Take any given professional
level app, even Flash itself; we are now on version 10, and it still
does not have all the features we might want it to have. Instead,
Adobe has chosen to focus on certain feature sets and fine tune
them so that they work reliably and consistently. We must remem-
ber to give ourselves this same breathing room. No one developer
is going to create the next World of Warcraft by himself/herself; it
takes hundreds of people and thousands of hours of work.

The Setting
For the purposes of this book and learning the mechanics of a plat-
former, we don’t really need a backstory. Suffice it to say that for
this game, the player will be exploring dungeon-like mazes, avoid-
ing enemies, and collecting treasure for points. Although this may
sound simple and familiar, that is intentional. Ultimately, we want
to create a generic engine that can be reused for any number of
implementations and environments.

The Level Design and Walls
The levels for this platformer will be based around a grid design of
squares. This helps to simplify level creation and enforces a stan-
dard for asset artwork. Any given grid square can be either solid or
empty, either blocking the player or allowing them to pass through
it. Going forward, we will refer to solid grid squares as walls. We
will examine how a sample level layout will look on paper,
momentarily. If there are no walls along the bottom of the level, it
will be possible for the player to fall off the map. This would cause
the level to end and the player to lose a life.

Portals
Every level will have an exit point that will signify completion of the
level, when the player passes through it. We’ll call this exit a portal,
as it transports the player somewhere else. You may be wondering
why we’re not simply calling it an exit. While this implementation
of the game and engine may only ever have one exit, future itera-
tions might span a level over a series of screens and these portals
would actually be a means of moving between them.

The Player Character
In this game, the arrow keys will control the player. The Left and Right
arrow keys will move him or her in those directions, respectively.
The Up arrow will make the player jump, and the Down arrow will be

274 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

used to enter portals. The player’s jump height is equal to 1.5 times
the height of a grid square. This allows for the player to clear gaps
one grid space in width and to easily jump onto grid squares one unit
above. Additionally, the player has the ability to carry items in an
inventory. In our iteration, these items will primarily consist of treas-
ure and keys for unlocking doors, but could include other pickups like
health in the future.

Items
Both keys for unlocking portals and treasure are classified as items.
They share a similar relationship in that they both disappear and
are added to the player’s inventory when the player moves over
them. The game will define certain special types of items (such as
keys), which will be used by the game engine in a particular way.
Items not predefined by the engine will simply accumulate in the
inventory, and it will be up to the particular implementation of the
game as to how to handle them when they are picked up.

Enemies
An enemy in this game will be defined as any entity that is toxic to
the player. Coming into contact with an enemy will damage the
player, either by taking a life or eating away at the player’s health.
By using this more general definition, an enemy could be a sharp
inanimate object or a moving creature with basic AI. As such, ene-
mies can either process physics such as gravity or choose to ignore
them (imagine stalactites in a cave).

In Fig. 14.2, you’ll see a level design for the platformer based
around a 10 × 10 grid. As the key below shows, black squares repre-
sent walls and white squares are movable areas for the player. The
dollar signs are treasure that can be picked up for points, and the key
icon represents the key required to exit through the portal at the top
of the level. There is also one enemy along the bottom of the level
that will move back and forth. The player must jump over the enemy
to avoid it. The player will start the level at the top, in the one notch
cut out of the border wall surrounding the level. All of the levels for
the game can (and probably should) be mapped out this way. This
type of system is also very handy because it can translate into a stan-
dardized format like XML (which we will look at momentarily), and it
is relatively straightforward to create an editor app for building levels.

The Level File Format and Asset Structure
It is a good idea to keep all of the data for each level in external
files. This allows you to load new levels at runtime, as well as cre-
ate your own in a standardized format, either by hand or

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 275

(preferably) using a custom editor. Much like in Chapter 10, we’ll
store this level data in XML. This keeps the data modular and flex-
ible, making it easy to add/remove elements from a level. It also
enforces a level of organization on the data, keeping it readable if
you needed to make edits by hand.

In addition to the level data living outside the final game SWF, it’s
a good idea with a game like this to externalize as many assets as pos-
sible. As such, we’ll look at maintaining separate SWF files for the
different art assets used in the game. Each level XML file will include
the asset SWFs it uses, and the engine will handle loading those files
before assembling the level. Keeping these assets in separate SWFs

= Treasure

Sample platformer level layout

= Enemy = Player start= Portal

= Key = Wall

Figure 14.2 Because of the
grid design of the levels, it is
easy to map out a potential
level design on “paper” first.

276 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

also allows for other developers or artists to work on different aspects
of the game without stepping on each other’s toes. When we get to
the code behind the engine, we’ll define the rules that asset files must
follow in order to work properly with the engine.

The Level XML
Here is what Fig. 14.2 looks like represented as XML. Note that to
make the wall nodes more readable, I have inserted carriage
returns between each column. In the final format, there is no rea-
son to have these and it is a nonstandard XML practice.

<level width="10" height="10" gridSquareSize="50">
<assets>

<asset file="player.swf"/>
<asset file="enemies.swf"/>
<asset file="items.swf"/>
<asset file="environment.swf"/>

</assets>
<player spriteClass="Player" x="2" y="0" />
<enemies>

<enemy spriteClass="Enemy1" name="enemy1" x="5" y="8" />
</enemies>
<items>

<item spriteClass="Key" type="key" name="key1"
x="1" y="5" points="0"/>

<item spriteClass="Treasure" type="treasure"
name="treasure1" x="2" y="3" points="100"/>

<item spriteClass="Treasure" type="treasure"
name="treasure2" x="1" y="8" points="100"/>

<item spriteClass="Treasure" type="treasure"
name="treasure3" x="6" y="6" points="100"/>

</items>
<portals>

<portal spriteClass="LevelEndDoor" destination=
"nextLevel" x="5" y="1">

<requirement type="inventory" name="key1"/>
</portal>

</portals>
<walls>

<wall spriteClass="StandardWall" x="0" y="0"/>
<wall spriteClass="StandardWall" x="0" y="1"/>
<wall spriteClass="StandardWall" x="0" y="2"/>
<wall spriteClass="StandardWall" x="0" y="3"/>
<wall spriteClass="StandardWall" x="0" y="4"/>
<wall spriteClass="StandardWall" x="0" y="5"/>
<wall spriteClass="StandardWall" x="0" y="6"/>

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 277

<wall spriteClass="StandardWall" x="0" y="7"/>
<wall spriteClass="StandardWall" x="0" y="8"/>
<wall spriteClass="StandardWall" x="0" y="9"/>

<wall spriteClass="StandardWall" x="1" y="0"/>
<wall spriteClass="StandardWall" x="1" y="4"/>
<wall spriteClass="StandardWall" x="1" y="6"/>
<wall spriteClass="StandardWall" x="1" y="7"/>
<wall spriteClass="StandardWall" x="1" y="9"/>

<wall spriteClass="StandardWall" x="2" y="2"/>
<wall spriteClass="StandardWall" x="2" y="4"/>
<wall spriteClass="StandardWall" x="2" y="7"/>
<wall spriteClass="StandardWall" x="2" y="9"/>

<wall spriteClass="StandardWall" x="3" y="0"/>
<wall spriteClass="StandardWall" x="3" y="2"/>
<wall spriteClass="StandardWall" x="3" y="9"/>

<wall spriteClass="StandardWall" x="4" y="0"/>
<wall spriteClass="StandardWall" x="4" y="1"/>
<wall spriteClass="StandardWall" x="4" y="2"/>
<wall spriteClass="StandardWall" x="4" y="3"/>
<wall spriteClass="StandardWall" x="4" y="5"/>
<wall spriteClass="StandardWall" x="4" y="9"/>

<wall spriteClass="StandardWall" x="5" y="0"/>
<wall spriteClass="StandardWall" x="5" y="2"/>
<wall spriteClass="StandardWall" x="5" y="3"/>
<wall spriteClass="StandardWall" x="5" y="6"/>
<wall spriteClass="StandardWall" x="5" y="9"/>

<wall spriteClass="StandardWall" x="6" y="0"/>
<wall spriteClass="StandardWall" x="6" y="3"/>
<wall spriteClass="StandardWall" x="6" y="7"/>
<wall spriteClass="StandardWall" x="6" y="9"/>

<wall spriteClass="StandardWall" x="7" y="0"/>
<wall spriteClass="StandardWall" x="7" y="5"/>
<wall spriteClass="StandardWall" x="7" y="9"/>

<wall spriteClass="StandardWall" x="8" y="0"/>
<wall spriteClass="StandardWall" x="8" y="4"/>
<wall spriteClass="StandardWall" x="8" y="5"/>
<wall spriteClass="StandardWall" x="8" y="8"/>
<wall spriteClass="StandardWall" x="8" y="9"/>

278 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

<wall spriteClass="StandardWall" x="9" y="0"/>
<wall spriteClass="StandardWall" x="9" y="1"/>
<wall spriteClass="StandardWall" x="9" y="2"/>
<wall spriteClass="StandardWall" x="9" y="3"/>
<wall spriteClass="StandardWall" x="9" y="4"/>
<wall spriteClass="StandardWall" x="9" y="5"/>
<wall spriteClass="StandardWall" x="9" y="6"/>
<wall spriteClass="StandardWall" x="9" y="7"/>
<wall spriteClass="StandardWall" x="9" y="8"/>
<wall spriteClass="StandardWall" x="9" y="9"/>

</walls>
</level>

In the opening tag of the XML, the width and height of the level
and the pixel size of each grid square are set. In this case, the level
is 10 × 10, with a square size of 50 pixels. This GameBoard will
ultimately be 500 × 500 pixels. In the first set of nodes, I define
which asset SWFs the level will use. The engine will load these files
before parsing the rest of the level. Whenever a node makes refer-
ence to a class, it will be defined and contained within one of the
asset SWFs. I’ll shortly outline the creation of these asset SWFs.

The next individual node defines the player class and start posi-
tion. Note this x and y will not translate directly to an x and y on
the Stage, but rather the corresponding grid reference in the level.
To match the arrays that will eventually exist to house the grid, the
x and y coordinates are 0-based. Thus, the player’s start position of
(2, 0) will actually be in the third column at the top. The next two
sets of nodes follow the same pattern, just with enemies and items.
Items have a couple of extra attributes, including the type (so the
engine knows how to use the item), a unique name (so that the
item can be tied to functionality in the game), and a point value.
Note that the key is not worth any points, but will be a require-
ment to exit the level.

Next in the file are any portal nodes. This level has only one,
and its destination attribute designates that it will go to the next
level. Portals also have optional requirement nodes; these are
things that must be done for the portal to be active. In this case,
the item tagged with the name “key1” is required to have been
picked up in order for the portal to be used. With this structure,
you could theoretically have multiple requirements, such as
destroying all enemies on a level or gathering all the treasure.

Finally, the file ends with the wall definitions. Each of these
nodes defines a grid square that holds a wall. The player will not
be able to move into these squares. Every one of these wall squares
will look the same, but you could, in fact, define a different asset
class for each of them. This would allow you to create grid squares
that seam together to form larger images.

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 279

Asset SWFs
To keep the game as modular as possible, and load times low, the
various art assets for the game will be stored in external SWFs and
loaded in at runtime. This will provide a few benefits:
• Assets will only be loaded when needed, meaning the main game

SWF will not be weighted down with a ton of art in its initial load,
should an implementation of this game have many levels.

• Multiple developers and artists are capable of working on
specific assets in tandem without needing access to the core
FLA file.

• Adding new character and scenery art will be as simple as
dropping in new SWFs and referencing them in the level XML.
This structure is similar to how many commercial games work;

the EXE or main application file is the “engine” and is accompa-
nied by one or more resource files (pak, was, and rsc are some
common extensions).

The asset files will have no active timeline. Each will consist
merely of library items with class linkages. Once the assets are
loaded into the game, they will be stored in memory and then
accessed by instantiating new copies the assets. When a level is
complete, the assets will be purged from memory, but if they need
to be loaded again they should already be cached in the user’s
browser, preventing a repeat download.

The Game Outline
Before we dig into the code behind this game, I’ll outline all the
classes that will come into play. The classes are divided into three
categories, each with a specific purpose:
• Engine code: These files are at the heart of the game mechanic

and are where the core feature set of the engine is implemented;
in addition to classes, this code also contains interfaces for
creating the different game components. These files are all within
the com.flashgamebook.engines.platformer package.

• Game code: These classes control how this specific instance of
the engine looks and behaves, and other logic like switching
between levels and creation of all the engine instances.

• Asset classes: For each of the asset SWFs in use, we’ll specify
unique class names for each individual asset, but we won’t
actually create AS files for any of them—more on this will be
discussed, shortly.
We’ll now look at all the classes involved, in the aforementioned

order. It’s important to note that unlike the MixUp game in
Chapter 13, this example does not include multiple screens with navi-
gation—we will focus on the game only. There is already enough
code at work here and I did not want to bog you down with informa-
tion not directly pertinent to the tasks at hand. I’m nice like that!

280 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

The Engine Classes
In this section, I will outline each of the classes involved in the
core engine of this platformer and walk through the code of each.
This is where the bulk of the code for this game resides, and it’s
important to understand all the components at play.
• PlatformerEngine.as: This is the big one; all the core functionality

of the game is run here; all the other classes in the package act
as support for the engine.

• CollisionGrid.as: To efficiently store information about the game
grid, we will use this custom data structure, which relies on
multidimensional arrays and vectors to keep track of everything
going on in the game.

• GridReference.as: Each grid square has an accompanying
GridReference object, which stores which enemies, items, walls,
and portals are in a given slot on the grid.

• PlatformerConfig.as: This is a data class that allows for easy
configuration of different aspects of the engine, and makes it
easier to change the behavior of the engine properties from
level to level by storing preconfigured instances of this class.

• PortalRequirement.as: Each portal instance has an array of these
objects, which define what requirements must be met in order
to finish a level.

• PortalDestination.as: An enumeration class, this file simply
contains preapproved destinations for portals (which map to those
mentioned earlier in the XML) and makes it easy to add new ones.

• PlatformerEvent.as: Tucked inside the events subpackage, this
class extends a normal DataEvent that the PlatformerEngine can
dispatch when certain things happen inside the game; it also
stores enumerations for all the different game events.

• ISprite.as, IPlayer.as, IEnemy.as, IItem.as, IPortal.as, IWall.as:
This set of interfaces in the Sprites subpackage all define the
necessary methods required for Sprites, which wish to act as the
player, enemies, and so on in the game.
We’ll work through these classes in reverse order, so that the

main engine class will make more sense in context.

The ISprite Interface
This interface is the foundation for all of the other types of Sprites,
except walls. It extends IEventDispatcher, so that if, at some point,
we need the Sprites to be able to easily dispatch events, there will
be no interface conflicts.

package com.flashgamebook.engines.platformer.sprites {

import flash.display.Sprite;
import flash.display.DisplayObject;

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 281

import flash.events.IEventDispatcher;
import flash.geom.Rectangle;

public interface ISprite extends IEventDispatcher {

function get x():Number;
function set x(value:Number):void;
function get y():Number;
function set y(value:Number):void;
function get width():Number;
function set width(value:Number):void;
function get height():Number;
function set height(value:Number):void;
function get rotation():Number;
function set rotation(value:Number):void;
function get hitArea():Sprite;
function getRect(coordinateSpace:DisplayObject):

Rectangle;
function get name():String;
function set name(value:String):void;

}
}

You probably noted that all of these methods and accessors are
included in DisplayObjects, specifically Sprites. Implementing this
interface on a Sprite-based class will require no extra functionality,
but makes it more flexible in the engine by referring to this inter-
face rather than any particular DisplayObject type.

The IPlayer Interface
Wherever the engine refers to the character the user controls in the
game, it is done through the IPlayer interface, which extends
ISprite.

package com.flashgamebook.engines.platformer.sprites {

import flash.geom.Vector3D;

public interface IPlayer extends ISprite {

function get netForce():Vector3D;
function set netForce(value:Vector3D):void;
function get isJumping():Boolean;
function set isJumping(value:Boolean):void;
function get isFalling():Boolean;
function set isFalling(value:Boolean):void;
function update():void;

282 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

function get tempX():Number;
function set tempX(value:Number):void;
function get tempY():Number;
function set tempY(value:Number):void;

}
}

Note the use of Vector3D objects, much like in the examples of
Chapter 11.

The IEnemy Interface
Similar to the IPlayer interface, IEnemy also extends ISprite. In fact,
it repeats a couple of the accessors from IPlayer, but it didn’t make
sense to make them part of ISprite just so they would be inherited.

package com.flashgamebook.engines.platformer.sprites {

import flash.geom.Vector3D;
import com.flashgamebook.engines.platformer.

GridReference;

public interface IEnemy extends ISprite {

function update():void;
function get tempX():Number;
function set tempX(value:Number):void;
function get tempY():Number;
function set tempY(value:Number):void;
function get receivesForces():Boolean;
function get motion():Vector3D;
function get gridReference():GridReference;
function set gridReference(value:GridReference):

void;

}
}

One unique aspect of this interface is that enemies must keep
track of where they currently are on the collision grid because they
are the only type of entity besides the player that can move. As
such, implementors of this interface have an accessor for a GridRe-
ference object, which we’ll look at soon.

The IItem Interface
Although admittedly an awkward name for an interface, IItem is
used for any items the player can pick up.

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 283

package com.flashgamebook.engines.platformer.sprites {

public interface IItem extends ISprite {

function get points():Number;
function set points(value:Number):void;
function get type():String;
function set type(value:String):void;
function pickUp():void;

}
}

The IPortal Interface
As I mentioned earlier in the chapter, portals are the devices that
players use to move between levels.

package com.flashgamebook.engines.platformer.sprites {

public interface IPortal extends ISprite {

function get requirements():Array;
function set requirements(value:Array):void;
function get destination():String;
function set destination(value:String):void;

}
}

The IWall Interface
The final interface, and the only one that doesn’t extend from
something else, is the one used for instances of walls. Although all
of these functions are defined in ISprite, IWall intentionally has a
smaller subset to keep it separate from that hierarchy. Collision
detection with walls is handled differently than with other objects,
so this gives us an opportunity to expand this interface without
ramifications to other parts of the engine.

package com.flashgamebook.engines.platformer.sprites {

import flash.display.DisplayObject;
import flash.geom.Rectangle;

public interface IWall {
//DISPLAY OBJECT PROPERTIES AND METHODS
function get x():Number;

284 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

function set x(value:Number):void;
function get y():Number;
function set y(value:Number):void;
function get width():Number;
function set width(value:Number):void;
function get height():Number;
function set height(value:Number):void;
function getRect(targetCoordinateSpace:

DisplayObject):Rectangle;

}
}

The PlatformerEvent Class
All the messages dispatched by the PlatformerEngine, with the
exception of progress messages during loading, are in the form of a
PlatformerEvent object.

package com.flashgamebook.engines.platformer.events {

import flash.events.DataEvent;

public class PlatformerEvent extends DataEvent {

public static const LEVEL_LOAD_COMPLETE:String =
"levelLoadComplete";

public static const ASSET_LOAD_COMPLETE:String =
"assetLoadComplete";

public static const GAME_START:String = "gameStart";
public static const PLAYER_DIE:String = "playerDie";
public static const INVENTORY_UPDATE:String =

"inventoryUpdate";
public static const ENTER_PORTAL:String =

"enterPortal";

public function PlatformerEvent(type:String, data:
String = null, bubbles:Boolean = false,
cancelable:Boolean = false) {

super(type, bubbles, cancelable, data);
}

}
}

As it becomes necessary to dispatch events about additional
functionality, those event enumerations will easily be added here.

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 285

The PortalDestinations and PortalRequirement
Classes
Because they’re both very short, we’ll now look at the two classes
related to portal behavior.

package com.flashgamebook.engines.platformer {

public class PortalDestinations {

public static const NEXT_LEVEL:String = "nextLevel";
public static const PREV_LEVEL:String = "prevLevel";

}
}

While these two enumerations could have potentially been tucked
away into the PlatformerEngine class, it makes more sense for them to
be singled out. This is because there may be more functionality to add
to portal behavior, such as the ability to move between two different
portals on in a single map. This framework allows for that extensibility.

package com.flashgamebook.engines.platformer {

public class PortalRequirement {

public static const INVENTORY:String = "inventory";
public static const ENEMY_KILLED:String =

"enemyKilled";

public var type:String;
public var name:String;

public function PortalRequirement(type:String,
name:String) {

this.type = type;
this.name = name;

}

}
}

PortalRequirement objects are also very simple and could have had
their limited functionality handled by a generic object, but it’s a better
practice to statically type it and create a space for future functionality.

The PlatformerConfig Class
This class exposes certain properties of the engine by allowing you
to preconfigure the behavior of the engine before even creating it.

286 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

It is prepopulated with values that work well for our purposes, but
these are all easily changed later.

package com.flashgamebook.engines.platformer {

import flash.geom.Rectangle;
import flash.geom.Vector3D;
import flash.ui.Keyboard;

public class PlatformerConfig {

public var gravity:Vector3D = new Vector3D(0,25);
public var friction:Number = .75;
public var drag:Number = .92;

//INPUT
public var keyJump:int = Keyboard.UP;
public var keyUse:int = Keyboard.DOWN;
public var keyLeft:int = Keyboard.LEFT;
public var keyRight:int = Keyboard.RIGHT;

//PLAYER PROPERTIES
public var playerMovement:Vector3D = new Vector3D(30);
public var playerJump:Vector3D = new Vector3D(0,-10);

}
}

Notice this is a good way of creating and assigning input schemes,
as well as defining things like the effects of gravity and friction.

The GridReference Class
As stated earlier, every square on the game grid has an associated
GridReference object. It stores which walls, enemies, items, and
portals are in a given square.

package com.flashgamebook.engines.platformer {

import com.flashgamebook.engines.platformer.sprites.*;

public class GridReference {

public var walls:Vector.<IWall> = new Vector.
<IWall>();

public var items:Vector.<IItem> = new Vector.
<IItem>();

public var enemies:Vector.<IEnemy> = new Vector.
<IEnemy>();

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 287

public var portals:Vector.<IPortal> = new Vector.
<IPortal>();

public function hasEnemy(sprite:IEnemy):Boolean {
return (enemies.indexOf(sprite) > -1);

}

public function removeEnemy(sprite:IEnemy):void {
if (enemies.indexOf(sprite) > -1) {

enemies.splice(enemies.indexOf
(sprite),1);

}
}

public function hasItem(sprite:IItem):Boolean {
return (items.indexOf(sprite) > -1);

}

public function removeItem(sprite:IItem):void {
if (items.indexOf(sprite) > -1) {

items.splice(items.indexOf
(sprite),1);

}
}

public function concat(gridReference:
GridReference): void {

if (!gridReference) return;
walls = walls.concat(gridReference.walls);
items = items.concat(gridReference.items);
enemies = enemies.concat(gridReference.enemies);
portals = portals.concat(gridReference.portals);

}

public function toString():String {
var str:String = "GRID REFERENCE:\n";
str +=" WALLS:" + walls +"\n";
str +=" ITEMS:" + items +"\n";
str +=" ENEMIES:" + enemies +"\n";
str +=" PORTALS:" + portals;
return str;

}

public function clear():void {
walls = null;
items = null;
enemies = null;

288 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

portals = null;
}

}
}

Every type of object a grid reference can store has a vector cre-
ated just for it. Many of these vectors may stay empty, but they
consume very little memory by themselves, so it is a small price to
pay for such flexibility. Similar to an array, grid reference objects
have a concat method, which allows you to merge one grid refer-
ence with another. With this functionality, it is possible to combine
multiple grid references into one for easy checking.

There are also convenient methods for removing enemies and
items from a grid reference, and a custom toString method that
allows you to easily see what’s in a grid reference with a simple
trace statement. Finally, there is also a clear method that can be
called during engine cleanup.

The CollisionGrid Class
In order to store all the grid references in a cohesive structure, we
need a container. We could use a simple array or vector to keep
track of all of them, but in our case, it makes more sense to create a
custom data structure: enter the CollisionGrid. This class uses both
an array and multiple vectors to create a multidimensional grid.

package com.flashgamebook.engines.platformer {

import flash.geom.Point;

public class CollisionGrid {

private var _width:int;
private var _height:int;
private var _grid:Array;

public function CollisionGrid(width:int, height:int) {
_width = width;
_height = height;
_grid = new Array(_width, true);
for (var i:int = 0; i < _width; i++) {

_grid[i] = new Vector.<GridReference>
(_height, true);

for (var j:int = 0; j < _height; j++) {
_grid[i][j] = new GridReference();

}
}

}

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 289

public function getGridReference(x:int, y:int):
GridReference {

if (x < 0 || y < 0) return null;
if (x >= _width || y >= _height) return null;
return _grid[x][y];

}

public function clear():void {
for (var i:int = 0; i < _grid.length; i++) {

for each (var gridReference:
GridReference in _grid[i]) {

gridReference.clear();
}
_grid[i] = null;

}
_grid = null;

}
}

}

When a new CollisionGrid object is created, it needs a width
and height. It constructs all the necessary containers and fills them
with empty GridReference objects. Because the structure and
dimensions of a level can’t change on the fly, the vector containers
have a fixed length. This improves speed and memory usage.

Getting at a specific GridReference object is as simple as calling
the getGridReference method and passing it x and y values. If a grid
square outside the range of the grid is requested, the method
returns null. Like a GridReference object, the grid also has a clear
method, which performs cleanup and disposal of all the objects.

The PlatformerEngine Class
Now, we’ve reached the heart of the entire game. This class is very
large (500+ lines), so I will break it up into discrete pieces. The
class is divided logically into different sets of tasks, so it’s easier to
find what you’re looking for. These tasks are as follows:
• Level XML load handling
• Asset load handling
• Level creation
• Game loop functionality (what’s run every frame)
• Helper methods
• Input handlers

This largely maps to the order of events that occur when using
the engine as well, so it is straightforward to follow. This class also
uses a ton of imports, which I’ll skip here in the text, but you can
find in the source files for this chapter. We’ll start by looking at all
the properties defined in the class.

290 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

public class PlatformerEngine extends Sprite {

protected var _gravity:Vector3D;
protected var _friction:Number;
protected var _config:PlatformerConfig;
protected var _currentLevel:XML;
protected var _previousTime:int;
protected var _deltaTime:Number;
protected var _keyLeftPressed:Boolean;
protected var _keyRightPressed:Boolean;
protected var _walls:Array;
protected var _items:Array;
protected var _enemies:Array;
protected var _portals:Array;
protected var _player:IPlayer;
protected var _collisionGrid:CollisionGrid;
protected var _gameRunning:Boolean = false;
protected var _inventory:Vector.<IItem>;
protected var _assetDomain:ApplicationDomain;
protected var _assetPath:String = "";
protected var _assetQueue:Vector.<String> = new Vector.

<String>();
protected var _assets:Vector.<Loader> = new Vector.<Loader>();

public function PlatformEngine() {
}

The properties listed here mostly consist of containers for differ-
ent types of objects. A couple of important things to note are the
container for the player’s inventory and the _assetDomain property.
The latter is used to store all the class definitions for the assets the
engine will load. This will keep those definitions from overriding any
that might exist in the engine but will keep them from being sepa-
rated from each other. Note that the constructor does nothing—it is
there merely as an acknowledgment. Initialization is handled
through the init method, which we will look at next.

public function init(config:PlatformerConfig):void {
_config = config;
_gravity = _config.gravity;
_friction = _config.friction;
_assetDomain = new ApplicationDomain(ApplicationDomain.

currentDomain);
_inventory = new Vector.<IItem>();

}

This method handles creation of a number of basic engine
properties. It is the first of a handful of public-facing methods.

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 291

The majority of the functionality of this engine is protected and
inaccessible from the outside.

public function startGame():void {
if (!stage) throw new Error("PlatformEngine instance must
be added to stage before startGame() is called.");

stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyDown,
false, 0, true);

stage.addEventListener(KeyboardEvent.KEY_UP, onKeyUp,
false, 0, true);

addEventListener(Event.ENTER_FRAME, update, false, 0, true);
_previousTime = getTimer();
_gameRunning = true;

}

public function stopGame():void {
if (!stage) throw new Error("PlatformEngine instance must
be added to stage before stopGame() is called.");

stage.removeEventListener(KeyboardEvent.KEY_DOWN,
onKeyDown);

stage.removeEventListener(KeyboardEvent.KEY_UP, onKeyUp);
removeEventListener(Event.ENTER_FRAME, update);
_gameRunning = false;

}

Once the game is added to the Stage and has had all of its data
loaded, the startGame and stopGame methods can be called. They
handle the enterFrame and keyboard listener attachment, and also
toggle a Boolean value called _gameRunning. This will be used,
later, in case the game is stopped and disposed of before all the
game loop code has finished running.

public function get inventory():Vector.<IItem> {
return _inventory.slice();

}

One of the facets the game does expose is a copy of the
inventory vector. This allows the UI to display information about
what is in the player’s inventory. Storing everything the player
picks up allows us to tie portal requirements to specific items
later on.

public function get inventoryWorth():Number {
var worth:Number = 0;
for each (var item:IItem in _inventory) {

worth += item.points;
}
return worth;

}

292 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

In addition to the list of inventory items, there’s a helpful
method for retrieving the total worth of the inventory in points.
If you recall from the level XML, every item has a point attribute;
in some cases, that value is 0, but all of them have it.

public function destroy():void {
clearReferences();
for (var i:int = numChildren-1; i >= 0; i--) {

removeChildAt(i);
}

}

protected function clearReferences():void {
_collisionGrid.clear();
_inventory = null;
_walls = null;
_items = null;
_enemies = null;
_portals = null;
_player = null;
for each(var loader:Loader in _assets) {

loader.unload();
}
_assets = null;
_assetQueue = null;

}

Both of these methods are used to perform cleanup on the
engine. Because there are so many pieces of data in so many
containers, it is important to null them all out. Note also that
each of the Loader objects in the asset list call the unload
method on themselves. We’ll discuss the level and asset loading
next.

//LEVEL MANAGEMENT
public function loadLevel(uri:String):void {

var request:URLRequest = new URLRequest(uri);
var levelLoader:URLLoader = new URLLoader(request);
levelLoader.addEventListener(Event.COMPLETE,

levelLoaded, false, 0, true);
levelLoader.addEventListener(IOErrorEvent.IO_ERROR,

levelError, false, 0, true);
levelLoader.addEventListener(SecurityErrorEvent.

SECURITY_ERROR, securityError, false, 0, true);
}

protected function levelLoaded(e:Event):void {
_currentLevel = XML(e.target.data);

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 293

_collisionGrid = new CollisionGrid(Number(_currentLevel.
@width), Number(_currentLevel.@height));

var assets:XMLList = _currentLevel.assets.children();
for (var i:int = 0; i < assets.length(); i++) {

_assetQueue.push(assets[i].@file);
}
var pe:PlatformerEvent = new PlatformerEvent(Platformer
Event.LEVEL_LOAD_COMPLETE);

dispatchEvent(pe);
loadNextAsset();

}

protected function levelError(e:IOErrorEvent):void {
trace("PlatformEngine: Error Loading Level:",e.text);

}

protected function securityError(e:SecurityErrorEvent):void {
trace("SecurityError:",e.text);

}
//END LEVEL MANAGEMENT

Once the engine is created and initialized, it is ready to load a
level XML file. As such, there is a public method called loadLevel
that does just this. Once the level data is loaded and converted to an
XML object, a new CollisionGrid object is created, as well as a list of
all the necessary assets needed to play the level. Once this list is
complete, asset loading begins.

//ASSET MANAGEMENT
protected function loadNextAsset(e:Event = null):void {

var loader:Loader = new Loader();
var nextAsset:String = _assetQueue[_assets.length];
var context:LoaderContext = new LoaderContext(false,
_assetDomain);

loader.load(new URLRequest(_assetPath + nextAsset), context);
loader.contentLoaderInfo.addEventListener(Event.
COMPLETE, assetsLoaded, false, 0, true);

loader.contentLoaderInfo.addEventListener(Progress
Event.PROGRESS, assetLoadProgress, false, 0, true);

loader.contentLoaderInfo.addEventListener(IOErrorEvent.
IO_ERROR, assetLoadError, false, 0, true);

loader.contentLoaderInfo.addEventListener(Security
ErrorEvent.SECURITY_ERROR, securityError, false, 0, true);

_assets.push(loader);
}

The loadNextAsset method is called each time one asset finishes
loading, until the entire manifest has been pulled into the engine.

294 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

Note that the Loader has a specific LoaderContext object created
for it, which directs it to place the Loader’s class definitions in a
common ApplicationDomain. Each Loader also has a progress
event linked to it, which we will discuss next.

protected function assetLoadProgress(e:ProgressEvent):void {
var baseCompletion:Number = 100 * (_assets.length-1)/

_assetQueue.length;
var currentProgress:Number = (100/_assetQueue.length) *

(e.bytesLoaded/e.bytesTotal);
var bytesLoaded:int = Math.round(baseCompletion +

currentProgress);
var pe:ProgressEvent = new ProgressEvent(ProgressEvent.

PROGRESS, false, false, bytesLoaded, 100);
dispatchEvent(pe);

}

To create an accurate percentage of how much of the level assets
have loaded (without knowing the file size of each one), we have to
create a custom ProgressEvent. It takes into account the number of
items to load and the individual progress of each asset to create an
event with somewhere between 0 and 100 bytes loaded, which repre-
sents the percent loaded. Naturally, if the asset files are dramatically
different in size, this means of measuring completion will seem a little
erratic, but it will be as accurate as we can get without loading all of
the files at once (which can choke on some Internet connections).

protected function assetsLoaded(e:Event):void {
if (_assets.length < _assetQueue.length) {

loadNextAsset();
return;

}
var pe:PlatformerEvent = new PlatformerEvent(Platformer

Event.ASSET_LOAD_COMPLETE);
dispatchEvent(pe);
createLevel();

}

protected function assetLoadError(e:IOErrorEvent):void {
trace("PlatformEngine: Error Loading Asset:",_assetQueue

[_assets.length-1]);
}

protected function getAssetClass(assetName:String):Class {
if (_assetDomain.hasDefinition(assetName)) {

return _assetDomain.getDefinition(assetName) as
Class;

}

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 295

throw new ArgumentError("Asset Class"+assetName+" cannot
be found in loaded asset files.");

}
//END ASSET MANAGEMENT

Once all the assets are loaded successfully, the level is ready to be
created through createLevel. To link up the classes referenced in the
XML, there is one helper function called getAssetClass that accepts a
class name as a string. It looks up the class definition in the common
asset ApplicationDomain and either returns it as a Class object or
displays an error if the asset does not exist.

//BEGIN LEVEL CREATION
protected function createLevel():void {

createWalls();
createPortals();
createEnemies();
createItems();
//CREATE PLAYER
var playerClass:Class = getAssetClass(_currentLevel.
player.@spriteClass);

_player = new playerClass();
_player.x = Number(_currentLevel.player.@x) * Number
(_currentLevel.@gridSquareSize);

_player.y = Number(_currentLevel.player.@y) * Number
(_currentLevel.@gridSquareSize);

addChild(_player as DisplayObject);
}

There is a lot going on in this method; it calls individual methods
for creating each type of core object, and then creates the player
Sprite. I’ll show all of the creation methods back to back, as they are
largely similar in structure.

protected function createWalls():void {
_walls = new Array();
var walls:XMLList = _currentLevel.walls.children();
for (var i:int = 0; i < walls.length(); i++) {

var wallClass:Class = getAssetClass(walls[i].
@spriteClass);

var wallSprite:IWall = new wallClass();
wallSprite.x = Number(walls[i].@x) * Number

(_currentLevel.@gridSquareSize);
wallSprite.y = Number(walls[i].@y) * Number

(_currentLevel.@gridSquareSize);
_walls.push(wallSprite);
var gridReference:GridReference = _collisionGrid.

getGridReference(Number(walls[i].@x),
Number(walls[i].@y));

gridReference.walls.push(wallSprite);

296 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

addChild(wallSprite as DisplayObject);
}

}

protected function createEnemies():void {
_enemies = new Array();
var enemies:XMLList = _currentLevel.enemies.children();
for (var i:int = 0; i < enemies.length(); i++) {

var enemyClass:Class = getAssetClass(enemies[i].
@spriteClass);

var enemySprite:IEnemy = new enemyClass();
enemySprite.x = Number(enemies[i].@x) * Number

(_currentLevel.@gridSquareSize);
enemySprite.y = Number(enemies[i].@y) * Number

(_currentLevel.@gridSquareSize);
enemySprite.name = enemies[i].@name;
_enemies.push(enemySprite);
var gridReference:GridReference = _collisionGrid.

getGridReference(Number(enemies[i].@x),
Number(enemies[i].@y));

gridReference.enemies.push(enemySprite);
enemySprite.gridReference = gridReference;
addChild(enemySprite as DisplayObject);

}
}

protected function createItems():void {
_items = new Array();
var items:XMLList = _currentLevel.items.children();
for (var i:int = 0; i < items.length(); i++) {

var itemClass:Class = getAssetClass(items[i].
@spriteClass);

var itemSprite:IItem = new itemClass();
itemSprite.x = Number(items[i].@x) * Number

(_currentLevel.@gridSquareSize);
itemSprite.y = Number(items[i].@y) * Number

(_currentLevel.@gridSquareSize);
itemSprite.points = Number(items[i].@points);
itemSprite.name = items[i].@name;
itemSprite.type = items[i].@type;
_items.push(itemSprite);
var gridReference:GridReference = _collisionGrid.

getGridReference(Number(items[i].@x),
Number(items[i].@y));

gridReference.items.push(itemSprite);
addChild(itemSprite as DisplayObject);

}
}

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 297

protected function createPortals():void {
_portals = new Array();
var portals:XMLList = _currentLevel.portals.children();
for (var i:int = 0; i < portals.length(); i++) {

var portalClass:Class = getAssetClass(portals[i].
@spriteClass);

var portalSprite:IPortal = new portalClass();
portalSprite.x = Number(portals[i].@x) * Number

(_currentLevel.@gridSquareSize);
portalSprite.y = Number(portals[i].@y) * Number

(_currentLevel.@gridSquareSize);
portalSprite.destination = portals[i].

@destination;
for each (var requirement:XML in portals[i].

requirement) {
portalSprite.require,ments.push(new

PortalRequirement(requirement.@type,
requirement.@name));

}
_portals.push(portalSprite);
var gridReference:GridReference = _collisionGrid.

getGridReference(Number(portals[i].@x),
Number(portals[i].@y));

gridReference.portals.push(portalSprite);
addChild(portalSprite as DisplayObject);

}
}
//END LEVEL CREATION

Because there is so much code to digest here, I’ve bolded the
most significant areas. Each of the types of Sprites adds itself to the
appropriate GridReference object, and each enemy Sprite stores a
reference to its respective GridReference. In createPortals, each por-
tal defines a new PortalRequirement object for every requirement
necessary to use that portal. Every type of Sprite is added both to
an engine-level list, as well as a grid reference, and then added to
the Stage at its specified position from the XML.

The level has now been created and is in the display list. From this
point forward, startGame and stopGame can be called on the engine,
and the player Sprite is ready to receive input. However, we’re going
to jump slightly out of order in the file for a moment to outline the
helper methods before we dive into the main game loop. Then, we’ll
examine the keyboard input handlers the game uses as well.

//BEGIN UTILITY
protected function getGridPosition(sprite:ISprite):Point {

var spriteRect:Rectangle = sprite.getRect(this);
var centerX:Number = spriteRect.x + (spriteRect.width/2);

298 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

var xPos:int = Math.floor(centerX / Number(_currentLevel.
@gridSquareSize));

var centerY:Number = spriteRect.y + (spriteRect.height/2);
var yPos:int = Math.floor(centerY / Number(_currentLevel.

@gridSquareSize));
return new Point(xPos, yPos);

}

protected function updateGridReference(sprite:IEnemy):void {
var position:Point = getGridPosition(sprite);
var newGridReference = _collisionGrid.getGridReference

(position.x, position.y);
if (newGridReference == sprite.gridReference) return;
sprite.gridReference.removeEnemy(sprite);
sprite.gridReference = newGridReference;
newGridReference.enemies.push(sprite);

}

protected function getCollisionReference(sprite:ISprite):
GridReference {

var testPoint:Point = getGridPosition(sprite);
var testReference:GridReference = new GridReference();
//CHECK THE CURRENT GRID REFERENCE, AND THE EIGHT

SURROUNDING
testReference.concat(_collisionGrid.getGridReference

(testPoint.x-1, testPoint.y-1));
testReference.concat(_collisionGrid.getGridReference

(testPoint.x, testPoint.y-1));
testReference.concat(_collisionGrid.getGridReference

(testPoint.x+1, testPoint.y-1));
testReference.concat(_collisionGrid.getGridReference

(testPoint.x-1, testPoint.y));
testReference.concat(_collisionGrid.getGridReference

(testPoint.x, testPoint.y));
testReference.concat(_collisionGrid.getGridReference

(testPoint.x+1, testPoint.y));
testReference.concat(_collisionGrid.getGridReference

(testPoint.x-1, testPoint.y+1));
testReference.concat(_collisionGrid.getGridReference

(testPoint.x, testPoint.y+1));
testReference.concat(_collisionGrid.getGridReference

(testPoint.x+1, testPoint.y+1));
return testReference;

}
//END UTILITY

To make it easy to determine the grid space for any given Sprite
in the game, there is a single method, which returns a Point object.

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 299

Any given Sprite is measured from the centerpoint of its Stage
Rectangle to determine the grid space in which is resides.

As I mentioned earlier, enemies are capable of moving
between grid squares, so they need the ability to update the Grid-
Reference objects to which they are linked. This is where the
updateGridReference method comes in handy—it handles remov-
ing an enemy from one reference and into another with a single
command.

The final, and perhaps most important, helper method is get-
CollisionReference. This method assembles an entirely new GridRe-
ference object concatenated from the eight grid squares surrounding
a Sprite, plus the square in which the Sprite currently exists. This is
important because it ensures that we only test for collisions in
nearby grid references. There is no need to test the player against
another Sprite on the other side of the level. This ensures that there
will be no more and no less than nine checks per cycle, which
means that the level size can scale almost indefinitely without a
performance drop. This method will be called at the onset of every
collision detection check.

//BEGIN INPUT MANAGEMENT
protected function onKeyDown(e:KeyboardEvent):void {

switch (e.keyCode) {
case _config.keyLeft: _keyLeftPressed = true;
break;
case _config.keyRight: _keyRightPressed = true;
break;
case _config.keyJump: playerJump();
break;
case _config.keyUse: checkPortals();
break;

}
}

protected function onKeyUp(e:KeyboardEvent):void {
switch (e.keyCode) {

case _config.keyLeft: _keyLeftPressed = false;
break;
case _config.keyRight: _keyRightPressed = false;
break;

}
}
//END INPUT MANAGEMENT

The key input for this platformer is very simple. The left and
right keys (regardless of the actual key they’re assigned to in the
Config class) act as toggles, while the jump and use keys (Up and
Down arrows, by default), perform one-time actions.

300 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

On every frame update, the game will call the update method.
This function determines the amount of time that has elapsed
since it was last called, and then this function calls a number of
other methods.

//BEGIN GAME LOOP LOGIC
protected function update(e:Event):void {

_deltaTime = (getTimer() - _previousTime)/1000;
_previousTime = getTimer();
readKeyInput();
applyForces();
movePlayer();
moveEnemies();
checkPlayerCollisions();
render();

}

As a top-level summary, before we dig into each method indivi-
dually, here is the process that takes place in the course of an
update.
• The game checks to see which keys are pressed, so that it can

apply player forces if necessary.
• Physics forces are applied to the player.
• The player’s cumulative forces are used to update the player’s

position in the form of temporary properties (tempX and
tempY).

• All of the enemies in the game are moved according to their
motion parameter; they are also checked for collisions against
walls.

• The player is collision-checked against different kinds of Sprites,
depending on the player’s position in the grid; portals are not
checked, until the “use” key is pressed.

• If the player is colliding with a wall, the player’s temp position
is updated to adjust for the wall.

• If the player is colliding with an enemy, a death event is
dispatched.

• If the player is colliding with an item, the item is added to the
inventory, and an inventory update event is dispatched.

• The player’s and enemies’ temporary positions are assigned to
their respective x and y values, having been correctly adjusted
for collisions.

protected function readKeyInput():void {
var movement:Vector3D = _config.playerMovement.clone();
movement.scaleBy(_deltaTime);
if (_keyLeftPressed) {

_player.netForce.decrementBy(movement);
}

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 301

if (_keyRightPressed) {
_player.netForce.incrementBy(movement);

}
}

In readKeyInput, the player’s horizontal movement is applied as
a force (scaled by the amount of time that has passed) to the
player’s physics object.

protected function playerJump():void {
if (_player.isJumping || _player.isFalling) return;
_player.isJumping = true;
var jump:Vector3D = _config.playerJump.clone();
_player.netForce.incrementBy(jump);

}

When the user presses the jump key, it triggers the playerJump
method. If the player is already jumping or is falling through the
air, the jump command is ignored. The jump is applied directly
one time, rather than being scaled over time; gravity will, even-
tually, overcome the force of the jump.

protected function applyForces():void {
var gravity:Vector3D = _config.gravity.clone();
gravity.scaleBy(_deltaTime);
_player.netForce.incrementBy(gravity);
if (_player.isJumping) {

_player.netForce.x *= _config.drag;
} else {

_player.netForce.x *= _config.friction;
}

}

protected function movePlayer():void {
_player.tempX = _player.x + _player.netForce.x;
_player.tempY = _player.y + _player.netForce.y;

}

Next, the forces of gravity, drag, and friction are all applied to
the player’s force object. Then the player’s position is updated to
its tempX and tempY properties based on the current amount of
force being applied. Before checking for collisions, however, we
need to update the positions of all enemies in the game.

protected function moveEnemies():void {
for each (var enemy:IEnemy in _enemies) {

var motion:Vector3D = enemy.motion.clone();
motion.scaleBy(_deltaTime);
enemy.tempX = enemy.x + motion.x;
enemy.tempY = enemy.y + motion.y;

302 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

//CHECK WALL COLLISIONS
var testReference:GridReference = getCollision

Reference(enemy);
var enemyRect:Rectangle = enemy.hitArea.getRect

(this);
var oldRect:Rectangle = enemyRect.clone();
enemyRect.offset(enemy.tempX - enemy.x, enemy.

tempY - enemy.y);
for each (var wall:IWall in testReference.walls) {

var wallRect:Rectangle = wall.getRect
(this);

var intersection:Rectangle = wallRect.
intersection(enemyRect);

if (!intersection.width || !intersection.
height) continue;

if (wallRect.right <= oldRect.left) {
//WALL IS TO THE LEFT

enemyRect.x += intersection.width;
enemy.motion.x *= -1;

}
if (wallRect.left >= oldRect.right) {
//WALL IS TO THE RIGHT

enemyRect.x -= intersection.width;
enemy.motion.x *= -1;

}
}
enemy.tempX = enemy.x + enemyRect.x - oldRect.x;
enemy.tempY = enemy.y + enemyRect.y - oldRect.y;

}
}

Each enemy has its own motion force, individually defined, and
each one is applied separately. In the same process, because we’re
already looping through the list of enemies, we test for wall collisions
using the getCollisionReference method we discussed earlier. If an
enemy is hitting a wall, its direction is reversed. For this example,
there is no accounting for physics on enemies, so gravity would not
affect them. However, it would not be terribly difficult to add support
for forces to be applied to enemies, as well as the player.

protected function checkPlayerCollisions():void {
var testReference:GridReference = getCollisionReference

(_player);
//CHECK INDIVIDUAL SPRITES
checkWalls(testReference);
checkItems(testReference);
checkEnemies(testReference);

}

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 303

The checkPlayerCollisions method actually consists of several
methods that test against individual kinds of Sprites. The tests for each
are very similar, but the results are handled differently in each case.

protected function checkWalls(testReference:GridReference):
void {

var testRect:Rectangle = _player.hitArea.getRect(this);
var oldRect:Rectangle = testRect.clone();
testRect.x += _player.tempX - _player.x;
testRect.y += _player.tempY - _player.y;
for each (var wall:IWall in testReference.walls) {

var wallRect:Rectangle = wall.getRect(this);

var intersection:Rectangle = wallRect.
intersection(testRect);

if (!intersection.width || !intersection.height)
continue;

if (wallRect.top >= oldRect.bottom) { //WALL IS
BELOW

testRect.y -= intersection.height;
//OFFSET BY INTERSECTION HEIGHT

_player.netForce.y = 0;
}

intersection = wallRect.intersection(testRect);
if (wallRect.right <= oldRect.left) { //WALL IS TO

THE LEFT
testRect.x += intersection.width;
if (intersection.width) _player.netForce.

x = 0;
}

intersection = wallRect.intersection(testRect);
if (wallRect.left >= oldRect.right) { //WALL IS TO

THE RIGHT
testRect.x -= intersection.width;
if (intersection.width) _player.netForce.

x = 0;
}

intersection = wallRect.intersection(testRect);
if (wallRect.bottom <= oldRect.top) { //WALL IS

ABOVE
testRect.y += intersection.height;

//OFFSET BY INTERSECTION HEIGHT

304 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

if (intersection.height) _player.
netForce.y = 0;

}

//ADJUST VALUES TO MATCH NEW RECT
_player.tempX = _player.x + (testRect.x - oldRect.x);
_player.tempY = _player.y + (testRect.y - oldRect.y);

}
}

The wall collision check is the most involved, as it requires the
most calculation and action on the engine’s part. If the player
is overlapping into a wall, then the player’s position must be
corrected relative to the wall. If no overlap occurs, the full check
and adjustment is skipped to minimize calculations.

protected function checkItems(testReference:GridReference):
void {

var testRect:Rectangle = _player.hitArea.getRect(this);
for each (var item:IItem in testReference.items) {

var itemRect:Rectangle = item.hitArea.getRect(this);
if (testRect.intersects(itemRect)) {

var itemPoint:Point = getGridPosition(item);
var gridReference:GridReference =
_collisionGrid.getGridReference
(itemPoint.x, itemPoint.y);

gridReference.removeItem(item);
_inventory.push(item);
_items.splice(_items.indexOf(item),1);
removeChild(item as DisplayObject);
var pe:PlatformerEvent = new Platformer
Event(PlatformerEvent.INVENTORY_
UPDATE,item.name);

dispatchEvent(pe);
}

}
}

The next type of Sprite to check against is items. A similar rectangle
intersection test is performed, but no position adjustments are needed.
If the player collides with an item, it should simply be removed from
the screen and all collision lists, and added to the player’s inventory.

protected function checkEnemies(testReference:GridReference):void {
var testRect:Rectangle = _player.hitArea.getRect(this);
for each (var enemy:IEnemy in testReference.enemies) {

var enemyRect:Rectangle = enemy.hitArea.getRect
(this);

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 305

if (testRect.intersects(enemyRect)) {
var enemyPoint:Point = getGridPosition

(enemy);
var gridReference:GridReference =

_collisionGrid.getGridReference
(enemyPoint.x, enemyPoint.y);

gridReference.removeEnemy(enemy);
_enemies.splice(_enemies.indexOf(enemy),1);
removeChild(enemy as DisplayObject);
var pe:PlatformerEvent = new Platformer

Event(PlatformerEvent.PLAYER_DIE,
enemy.name);

dispatchEvent(pe);
}

}
}

The checkEnemies method is very similar to the item check,
except that a different outcome occurs in the form of a PLAYER_
DIE event. The enemy is also removed from all lists.

protected function checkPortals():void {
var testPoint:Point = getGridPosition(_player);
var testReference:GridReference = _collisionGrid.
getGridReference(testPoint.x, testPoint.y);

if (testReference.portals.length) {
var portal:IPortal = testReference.portals[0];
var portalRect:Rectangle = portal.hitArea.getRect

(this);
if (_player.hitArea.getRect(this).intersects

(portalRect)) {
var metRequirements:Boolean = true;
for each (var requirement:PortalRequirement

in portal.requirements) {
if (requirement.type ==

PortalRequirement.INVENTORY) {
if (!checkInventory(requirement.name)) {

metRequirements = false;
break;

}
}

}
if (metRequirements) {

var pe:PlatformerEvent = new
PlatformerEvent(PlatformerEvent.
ENTER_PORTAL,portal.destination);

dispatchEvent(pe);

306 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

}
}

}
}

protected function checkInventory(name:String):Boolean {
var found:Boolean = false;
for (var i:int = 0; i < _inventory.length; i++) {

if (_inventory[i].name == name) {
found = true;
break;

}
}
return found;

}

When the use key is pressed, the engine runs the checkPortals
method. This not only tests to see if the player is colliding with a
portal, but it checks the portal’s requirement list to make sure the
player has completed the requirements for passing through the
portal. The one type of requirement the engine currently accounts
for is an inventory item. The checkInventory method is called to see
if an item with the specified name is in the player’s inventory. If it
is, the requirement is met and the player is allowed access to the
portal.

protected function render():void {
if (!_gameRunning) return;
_player.x = _player.tempX;
_player.y = _player.tempY;
_player.update();
for each (var enemy:IEnemy in _enemies) {

enemy.x = enemy.tempX;
enemy.y = enemy.tempY;
updateGridReference(enemy);
enemy.update();

}
}
//END GAME LOOP LOGIC

The final method of the engine class updates the player’s and
all enemies’ x and y positions to their corrected temp values. It
also calls the update method on both of these types of objects.
This allows animation/graphic updates in those types of Sprites to
occur regularly and without having to call any specific code. Now,
we’ve discussed the entire engine package—next, we’ll review the
game classes that put this engine into action.

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 307

The Game Class
For this example, all of the classes associated with game code are in
the “example” package, differentiating itself from the main engine.
One of these classes is tied to the PlatformerExample.fla file, found
with the Chapter 14 support files. The other classes are related to
the assets, which we will examine shortly.

The PlatformerExample Class
The document class used for this example handles creation of the
engine instances, as well as notification and progress messaging.

package example {

import flash.display.Sprite;
import flash.events.ProgressEvent;
import flash.text.TextField;

import com.flashgamebook.engines.platformer.*;
import com.flashgamebook.engines.platformer.events.
PlatformerEvent;

public class PlatformerExample extends Sprite{

public var pointsText:TextField;
public var loadingText:TextField;
public var percentText:TextField;
public var gameOverText:TextField;

private var _platformer:PlatformerEngine;
private var _config:PlatformerConfig;
private var _level:int = 0;
private var _score:Number = 0;
private var _previousScore:Number = 0;

public function PlatformerExample() {
nextLevel();

}

public function nextLevel() {
_level++;
loadingText.visible = true;
percentText.text = "0%";
percentText.visible = true;
gameOverText.visible = false;
_platformer = new PlatformerEngine();
_config = new PlatformerConfig();

308 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

_platformer.init(_config);
_platformer.loadLevel("level"+_level+".
xml");

_platformer.addEventListener(Progress
Event.PROGRESS, loadProgress, false, 0,
true);

_platformer.addEventListener(Platformer
Event.ASSET_LOAD_COMPLETE, loadComplete,
false, 0, true);

_platformer.addEventListener(Platformer
Event.ENTER_PORTAL, levelComplete,
false, 0, true);

_platformer.addEventListener(Platformer
Event.PLAYER_DIE, playerDied, false, 0,
true);

_platformer.addEventListener(Platformer
Event.INVENTORY_UPDATE, inventoryUpdate,
false, 0, true);

}

private function loadProgress(e:ProgressEvent):
void {

percentText.text = Math.round(100 *
(e.bytesLoaded/e.bytesTotal)) +"%";

}

private function loadComplete(e:PlatformerEvent):
void {

loadingText.visible = false;
percentText.visible = false;
addChild(_platformer);
_platformer.startGame();

}

private function levelComplete(e:PlatformerEvent) {
if (e.data = PortalDestinations.
NEXT_LEVEL) {

_platformer.stopGame();
trace("GAME OVER:",_platformer.

inventoryWorth,"points");
_previousScore = _platformer.

inventoryWorth;
_platformer.destroy();
removeChild(_platformer);
nextLevel();

}
}

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 309

private function playerDied(e:PlatformerEvent) {
_platformer.stopGame();
trace("GAME OVER: Player killed by",

e.data);
_platformer.destroy();
removeChild(_platformer);
gameOverText.visible = true;

}

private function inventoryUpdate(e:Platformer
Event) {

_score = _previousScore + _platformer.
inventoryWorth;

pointsText.text = _score.toString();
}

}
}

The primary method behind this class is nextLevel. It creates the
objects necessary to instantiate the game engine and start the load-
ing process. If you test this SWF using the bandwidth profiler inside
of Flash, you’ll see that it accurately moves from 0 to 100% over the
course of loading all the assets. The method also sets up listeners
for the major game events, like the player dying, picking up items,
and going through the end portal. Overall, this class is pretty bare
bones—this is only slightly more than the bare minimum code
required to get an instance of the PlatformerEngine up and run-
ning. Next, we’ll look at the different asset classes, and how each
one is tied to specific game assets.

The Asset Classes
The PlatformerEngine only makes use of interfaces to manipulate
the Sprites used in the game. In order for us to build assets for the
game, we must create classes that implement those interfaces for
each type of object. If you look in the example package, you’ll
notice that each of the classes besides the main document file map
to one of the five types of interfaces in the engine: player, enemy,
item, wall, and portal. Let’s examine how each of these classes
implements the appropriate interface. Because we’re going for a
minimalist implementation here, these classes are pretty simple and
only include the bare essentials to meet the requirements of the
interfaces.

The Player Class
This class will be used to implement the IPlayer interface.

310 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

package example {

import com.flashgamebook.engines.platformer.sprites.
IPlayer;

import flash.display.Sprite;
import flash.geom.Vector3D;

public class Player extends Sprite implements IPlayer {

private var _netForce:Vector3D = new Vector3D();
private var _tempX:Number = 0;
private var _tempY:Number = 0;

public function get netForce():Vector3D {
return _netForce;

}

public function set netForce(value:Vector3D):void {
_netForce = value;

}

public function get isJumping():Boolean {
if (_netForce.y < 0) return true;
return false;

}

public function set isJumping(value:Boolean):void {
}

public function get isFalling():Boolean {
if (_netForce.y > 0) return true;
return false;

}

public function set isFalling(value:Boolean):void {
}

public function get tempX():Number {
return _tempX;

}

public function set tempX(value:Number):void {
_tempX = value;

}

public function get tempY():Number {
return _tempY;

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 311

}

public function set tempY(value:Number):void {
_tempY = value;

}

public function update():void {

}

override public function get hitArea():Sprite {
return this;

}
}

}

Note that the hitArea accessor can be overridden to return
any Sprite you wanted to use as the rectangle for collision test-
ing. In this case, we’re just using the bounding box of the Sprite
itself.

The Enemy Class
This class implements the IEnemy interface.

package example {

import com.flashgamebook.engines.platformer.sprites.
IEnemy;

import com.flashgamebook.engines.platformer.
GridReference;

import flash.display.Sprite;
import flash.geom.Vector3D;

public class Enemy extends Sprite implements IEnemy {

private var _motion:Vector3D = new Vector3D(-20);
private var _tempX:Number;
private var _tempY:Number;
private var _gridReference:GridReference;

public function get tempX():Number {
return _tempX;

}

public function set tempX(value:Number):void {
_tempX = value;

}

312 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

public function get tempY():Number {
return _tempY;

}

public function set tempY(value:Number):void {
_tempY = value;

}

public function get motion():Vector3D {
return _motion;

}

public function get receivesForces():Boolean {
return false;

}

public function get gridReference():GridReference {
return _gridReference;

}

public function set gridReference(value:Grid
Reference):void {

_gridReference = value;
}

public function update():void {

}

override public function get hitArea():Sprite {
return this;

}
}

}

There is one aspect of note in this implementation; the motion
vector is entirely arbitrary. Because this does not affect the engine
code, we can set the enemy’s speed to any value we want.

The Item Class
This class implements the IItem interface.

package example {

import com.flashgamebook.engines.platformer.sprites.
IItem;

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 313

import flash.display.Sprite;

public class Item extends Sprite implements IItem {

private var _points:Number;
private var _type:String;

public function get points():Number {
return _points;

}

public function set points(value:Number):void {
_points = value;

}

public function get type():String {
return _type;

}

public function set type(value:String):void {
_type = value;

}

public function pickUp():void {

}

override public function get hitArea():Sprite {
return this;

}
}

}

In another implementation of this engine, the pickUp method
could be used to play some type of animation or play a sound.

The Portal Class and Wall Class
These classes implement the IPortal and IWall interfaces.

package example {

import com.flashgamebook.engines.platformer.sprites.
IPortal;

import flash.display.Sprite;

public class Portal extends Sprite implements IPortal {

private var _requirements:Array = new Array();
private var _destination:String;

314 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

public function get requirements():Array {
if (!_requirements) _requirements = new
Array();

return _requirements;
}

public function set requirements(value:Array):
void {

requirements = value;
}

public function get destination():String {
return _destination;

}

public function set destination(value:String):
void {

_destination = value;
}

override public function get hitArea():Sprite {
return this;

}
}

}

package example {

import com.flashgamebook.engines.platformer.sprites.
IWall;

import flash.display.Sprite;

public class Wall extends Sprite implements IWall {

public function Wall() {
}

}
}

Even though it does nothing, the Wall class exists to fulfill the
requirement of an IWall implementation. Without it, we could not
substitute this class for instances in which an IWall is required.

The Assets
We’ve now discussed every class in play throughout this game.
Whew! Give yourself a pat on the back for having slogged
through it all. Now, crack open the player.fla file in the main

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 315

Chapter 14 examples folder. We’ll see how these classes are
implemented.

Once you open the FLA file (and any of the other asset FLAs, for
that matter), you’ll notice one thing right off the bat: there is nothing
on the Stage. All of these assets are being exported directly from the
library with linkages. If you right-click on the Player Sprite in the
library and select properties, then you’ll see a dialog like Fig. 14.3.

This Player Sprite is nothing more than a green square, and it
uses the Player class file in the example package as its base class
from which it derives a new class, simply called “Player” (with no
package association). The reason for this structure is so the level
XML does not have to directly associate itself with a particular
package implementation. If you open any of the other asset files—
environment.fla, for example—you’ll see that each asset is set up in
a similar fashion. Figure 14.4 reflects this.

Once each of these individual SWFs is compiled, they can be
loaded into the engine and have all their class definitions recog-
nized. Running the main PlatformerExample SWF should look like
Fig. 14.5. Doesn’t it bring back that classic NES nostalgia?

Figure 14.3 For each asset, the base class points to the actual code
implementation, and the class field points to a unique, unpackaged name that
matches the level XML.

316 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

Figure 14.4 The level-end
portal has the name
LevelEndDoor, but is an
instance of the Portal class.

Figure 14.5 The completed
engine implementation, running
level1.xml.

Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER 317

Taking It Further
There is a lot more that is possible with this game engine, from
making it scroll to adding a second player to creating more types
of enemies and items. Platformers can have an obscene number of
features, and it’s important to remember that high-end platformers
like Little Big Planet for the Playstation 3 or any of the recent
Mario games by Nintendo have set the bar very high. If you build a
platformer in Flash, make sure it differentiates itself in some way
from the pack.

318 Chapter 14 BRINGING IT ALL TOGETHER: A PLATFORMER

15
MARBLE RUNNER: OUR FIRST
MOBILE GAME

CHAPTER OUTLINE
Part 1: Best Practices for iOS Games 320

Filters (and PixelBender) 321
Vector Shapes (and Shape Tweens) 322
Text 323
Motion Tweens 324
The Drawing API, Masks, and Blends 324
Runtime Loaded SWFs 324

The GPU Is Here to Help 325
Not Without Its Limits 326

Code Matters, Too 326
Declare Your Types 327
Use Static Properties and Functions 327
Make Final Your Answer 328
Recycle, Both In Your Code and In Your Home 328
Avoid Extremely Large Frameworks and Libraries 329
Keep Your Display List Shallow 330
Don’t Use Events Where You Can Easily Use Functions 330

A Question of Balance: Inheritance versus Interfaces 331
A Real-World Example 332

The XFL Document 332
Space.as 332
Rock.as 333
SpaceRocks.as: The Document Class 336
The FrameRateProfiler Class 338

Part 2: Marble Runner 338
The Accelerometer Class 339
How Accelerometer Values Are Computed 340
The Game: Marble Runner 342

The XFL File 343
The Classes 343
LabyrinthEngine 344
LabyrinthLevel 350
IBall, IHazard, IWall 352
MarbleRunner: The Document Class 354

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 319

Title 356
Leaderboard 357
GameClip 361
Marble 364
HazardPit and StandardWall 367
Results 368

Design Considerations 369
Level Design 369
Risk and Reward Scenarios 370

Where to Take It 370
Scoring 370
Pickups 370
Scrolling Levels 371

Up to this point in this book, almost all the examples I’ve shown
are geared toward Flash running in a browser on a desktop PC.
Shortly after the release of the first edition of this book, Adobe
announced that Flash CS5 would be able to export native iOS
applications and, later, Android applications using a forthcoming
version of AIR (Adobe’s runtime for desktop deployment). Although
between that announcement and the present, there has been a
great deal of drama surrounding Flash on mobile devices, as of this
writing both of those plans have come to pass. Using Flash CS5
(and CS5.5), you can now deploy mobile applications for iOS
(iPhone, iPod Touch, and iPad) and Android devices. In this chap-
ter and in Chapter 16, I’ll explore building games for both plat-
forms, including best practices, resource management, and
deployment. If you need a primer on how to set up the necessary
developer accounts and SDKs associated with these platforms,
check out the online bonus chapter “Introduction to Mobile Devel-
opment” on www.flashgamebook.com.

This chapter will be split into two parts. In the first part, we’ll
look at creating a simple demo application and some of the best
practices associated with mobile development for iOS. In the sec-
ond part, we’ll build our first mobile game for the iPhone based
around the accelerometer. In Chapter 16, we’ll explore Android
development and the differences in development for that platform,
which is far less restrictive.

Part 1: Best Practices for iOS Games
Mobile development has and will probably always require a differ-
ent approach from desktop development. In addition, to have a
smaller screen, the computing resources are simply much more
limited. In the case of iPhone or iPod Touch, you can expect it to

320 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

have about one-tenth the processing power of the average desktop
computer. Memory is also limited and must be utilized carefully.
Fear not, however; in this chapter, we’ll examine how best to work
within these limitations and how some of these practices will help
enforce more disciplined programming when you switch back to
desktop applications. We’ll start by looking at features of Flash you
should use sparingly or just avoid altogether when creating games
for iOS, as well as those APIs that simply do not exist on that plat-
form. Notice that I said “games”—some of these features might
make sense in a non-performance-driven productivity application,
but that’s not what we’re covering in this book. Also remember
that few of these rules are hard and fast—they’re all just factors to
consider and weigh when making game design decisions. After cov-
ering the “gray” functionality areas, we’ll look at some general
guidelines and techniques to follow while coding, which will help
get the absolute best performance out of your iOS device. Adobe
has done a great job of making sure almost all of the features of
the Flash Player are available in iOS applications produced by
Flash CS5. However, despite this, there are some features that are
left untouched, particularly for game development. This is mainly
due to the fact that many of the APIs in Flash are memory and
CPU intensive, at least by mobile standards. In this section, we’ll
cover what you should avoid while developing games.

Filters (and PixelBender)
Ever since they were added in Flash Player 8, the various real-time
filter effects such as blurs, glows, and drop shadows have saved a
lot of time for designers and developers on faking or pre-applying
these effects to images in external applications such as Photoshop.
To a less common extent, features such as the DisplacementMap
and Convolution filters allowed for distortion effects completely
controllable by code. Filters are a great feature of Flash and very
easy to implement. However, they are also very costly in terms of
system resources. In a desktop application on a computer, this cost
is pretty minimal in the grand scheme of all the other running pro-
cesses, particularly on computers that have advanced video cards.
On iOS, it is another story. Processing these filters and keeping
them updated in real time is very taxing rendering and brings per-
formance down very quickly with only a couple of filters running at
a time. Adobe has even recommended against their use for any
type of application in which performance is vital.

This is not to say that a savvy developer couldn’t still make use
of a filter or two when judiciously applied. The most important fac-
tor to consider is when you apply the filter. One way to use a filter
is on Bitmap objects, or more specifically, on the BitmapData
inside them. If you were using Bitmaps for objects within a game,

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 321

and you needed a filter applied that would persist until the object
was removed (such as, say, a drop shadow), you could call the
applyFilter method on the BitmapData to render the filter effect
into the image itself (and thus eliminating the repeat cost of ren-
dering the effect over and over again). This could potentially save
file size on the images used and would provide some level of run-
time flexibility to be able to change the values of the filter prior to
applying it. Once again, it’s important to emphasize that this is a
costly process on iOS, so if this was a feature you planned to
implement, you would want to perform these operations at the
onset of a level or gameplay session to avoid noticeable stuttering
in your game.

On a related note, filters created with PixelBender (or ShaderFil-
ters) are not supported in iOS-exported Flash applications. This has
to do with the way that the Shaders are applied, but even if they were
supported, they would come with even stronger performance caveats
and warnings. This is important to consider if you’re attempting to
port an existing Flash game to iOS; if your game mechanic relies
heavily on Shaders, you’ll need to either find a way to recreate the
effect another way or change the functionality completely.

Vector Shapes (and Shape Tweens)
The ability to create file-size efficient and clean vector graphics has
been a hallmark of Flash since the very beginning. Like filters, they
are another core feature of the Flash Player that designers and
developers make use of frequently. Unfortunately, like filters, they
come with fairly substantial overhead cost when the renderer has
to redraw the screen, particularly when dealing with complex
shapes. This cost is further multiplied when performing shape
tweens (known as MorphShapes in ActionScript), so these should
be avoided altogether.

In general, it’s a good idea to stick with bitmaps as much as
possible when creating games for iOS devices. They are the fastest
type of display object for the rendered to process, and with proper
compression the artwork for a game should not get out of hand
very quickly in terms of file size. Thanks to the new CS5.5 Export
as Bitmap option we looked at in Chapter 6, you can now set some
of your vector instances to rasterize on compile. That said, there
are times when it is okay to use vector graphics without incurring
too great a resource load. When determining whether to use vector
art for an element in your game, consider the following questions:
• Will the art remain static?
• Can I group multiple vector elements together inside a single

DisplayObject?
• Is the art complex (a square or circle vs. a custom-drawn

character)?

322 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

If the answer to these questions is yes, then you can probably
use the vector elements without consequence by simply exporting
them as bitmaps or caching them to the GPU first. Bitmap/GPU
caching is the process of storing a “snapshot” of a graphical ele-
ment in memory on the video card of the device, thereby not
requiring the CPU to render it every frame. If the art is for an ani-
mation sequence (and therefore not static), such as a character
running or an explosion, it is not going to be a good candidate to
keep in vector graphics. It is better for this type of art be imported
as a bitmap sequence because caching relies on the content of a
DisplayObject not changing over time to recognize a savings in
resources. We’ll look at a couple of examples of bitmap caching a
little later in this chapter.

Text
Text in Flash on iOS falls along similar lines as vector shapes. This
is because static text (text that is baked into the SWF rather than
editable or changeable at runtime) is actually converted to vector
shapes by the Flash compiler when creating a SWF file. All the
same rules therefore apply to static text as to vector shapes. If you
need the flexibility of editable text in the Flash IDE (and really,
who doesn’t?), try to find a way to group the text into DisplayOb-
jects that can then be cached to the GPU. If the text is heavily treat-
ed/processed in some way (with multiple filters, for instance), or
uses a very complex, detailed font, it can still be advisable to first
flatten the text into a bitmap in a program like Fireworks or
Photoshop.

Dynamic text (or in fringe cases, Input text) is a somewhat dif-
ferent beast. Unless you’re treating every element in your game ico-
nically or graphically, at some point you’ll need some kind of text,
so it’s important that you use it as carefully as possible. If you’re
using a text field to display some type of changing, in-game infor-
mation, like a score or number of lives, there is really nothing to
be gained by caching it. In this case, it’s best to pick a font that has
a relatively simple character set or a system font such as Arial or
Verdana. Sometimes fonts such as these (which are often the bane
of designers with typography experience) are not stylistically appro-
priate for the task at hand, so this is an area for aesthetic and func-
tional compromise. In some scenarios, there might be a limited
number of values a text field can have, such as when using words
instead of numbers to display a particular aspect of a game. For
instance, if you had a text field in your interface that had the
optional values of High, Medium, and Low, you could “bake” this
text either as cached static text or as a pre-rendered bitmap and
simply swap out the appropriate DisplayObject at a given moment.
This limits the number of characters that must be embedded from

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 323

a font and improves performance, but this technique really has to
be applied on a case-by-case basis. Sometimes, such as when deal-
ing with numeric values that have far too many possible combina-
tions, it is simply not feasible to use anything other than a
standard text field. However, if your approach is to use as few of
these as possible, you should find a good balance between flexibil-
ity and optimization.

Motion Tweens
Although Adobe does not recommend against it, I have found
through tests that the new Motion Tweens introduced in Flash CS4
and Flash Player 10 are not especially efficient for use on iOS
devices. Unlike the classic tweens of previous versions, which were
ultimately converted to keyframe animations on export, the new
Motion Tweens are converted into code, utilizing a number of
classes in the fl.motion package. As of this writing, they appear to
use enough overhead to make the very animations they are created
to execute choppy. At some point in a future version, the collective
efforts of Apple to improve the iPhone and Adobe to improve their
export process from Flash may yield a Motion Tween that will run
fine in that environment. It is best to stick with either a keyframed
animation or a basic script-based tweening package such as
TweenLite.

The Drawing API, Masks, and Blends
Although it does not come up often in game development, Adobe
recommends avoiding the entire drawing API for runtime creation
of vector shapes. Slightly more prevalent in games are masks and
use of blend modes for certain graphical effects. It is best to avoid
using them altogether. If they are absolutely necessary to achieve a
visual effect, they should be handled the same way as filters; place
them inside a DisplayObject, cache them to the GPU, and then
leave them alone.

Runtime Loaded SWFs
A common technique in Flash development is to spread content out
over a number of SWFs, so as to not incur the entire load of a site or
game up front when streaming over the Internet. It is less common
in smaller games, where it makes sense to bundle everything
together, but in larger games that have a lot of artwork and audio, it
is a better practice to deploy across multiple files. Not only does this
mean that content is only downloaded when needed, but it makes
multideveloper projects easier by clearly demarcating one code base
from another. Unfortunately, this ability is not available in Flash

324 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

applications created for iOS. This is because, as mentioned in online
chapter Introduction to Mobile Development, all of the ActionScript
code inside an iOS application is precompiled rather than inter-
preted at runtime. Because there is, in fact, no runtime interpreter
or compiler, any code loaded in from an external SWF is ignored.
This means larger games that work on the Web in multiple pieces
will need to be rearchitected to work as a single file. Let me be clear
though; this does not preclude loading individual assets such as
sounds, images, or text data from external sources; this still works
fine and in the same manner as the standard Flash Player. It simply
means that any and all classes that need to be available to a game
must be compiled up front into the single SWF.

The GPU Is Here to Help
Now that we’ve covered what to avoid or limit when doing iOS
development, let’s look at one huge improvement Adobe has made
to the display list to increase performance. When running on the
device, all DisplayObjects now have a new property called cacheAs-
BitmapMatrix. It is meant to work in conjunction with the cacheAs-
Bitmap option that has been available since Flash 8. The matrix of
a DisplayObject is a single-object representation of all the visual
transformations that are being applied to it, such as translation (x
and y coordinates), rotation, and scaling. You can learn more
about the matrix property of DisplayObjects in Adobe’s ActionScript
reference. By assigning a matrix object to the cacheAsBitmapMatrix
property of a DisplayObject, Flash will use this information to store
a bitmap version of the object on the device’s graphics card. In
essence, this is how OpenGL works in the traditional iOS develop-
ment workflow using XCode and Objective-C. This means that all
of the energy spent compositing that DisplayObject into the scene
and rendering it is offloaded from the CPU to the GPU, freeing up
memory and horsepower to be used on other things such as code
execution.

The most advantageous new behavior is that unlike just using
cacheAsBitmap, the cached image data is not limited to just x and
y translations. You can rotate, scale, and skew any object with this
matrix, and Flash will simply tell the GPU to perform those trans-
formations. This feature is specifically for use with objects you only
intend to work with in 2D space. For the 3D transformations that
we looked at in Chapter 7, Flash will automatically perform this
GPU caching if it is enabled in the Publish Settings. This feature is
especially important for game development, where it is often
necessary to have several objects on screen at once, many of them
in motion. The initial comparison simulations Adobe released
showed huge performance gains by using this new feature, and it

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 325

will likely be the best antidote available to bottlenecks on iOS
devices (and even Android ones as well).

Not Without Its Limits
Before you close this book and think bitmap caching has solved all of
the performance challenges, let’s examine its limitations. The
resources on the GPU are also limited, so you shouldn’t exceed a
total of roughly four million pixels of cached data, which is roughly 26
full, third-generation iPhone screens worth of data. This should be
more than enough space for your average single-screen puzzle or
strategy game, but it can definitely become an issue if you’ve got
scrolling backgrounds or many animated Sprites. Adobe also recom-
mends limiting the size of any individually cached element to 1020 ×
1020 pixels or less—a little over one million pixels or ¼ of the total
cache. This is due to actual hardware limitations on iOS devices.

The memory limitation means you’ll have to be shrewd about
those elements you choose to cache, but your approach should either
make extensive use of the feature or not at all. When exporting your
application, you will have to select whether it will use CPU or GPU
compositing of display objects. Using the GPU option and caching
only an image or two in your entire application will actually slow
down the performance. This is because the CPU has to send all of the
noncached objects up to the GPU to be rendered every frame—lots of
data. If your game is very simple and it only makes sense to cache a
handful of elements, you very well might be better off letting the CPU
do all the works. As always, once you are done with a DisplayObject,
be sure it is properly set for garbage collection so that memory will
get freed up for something else. This means deleting all references to
it and purging it from the Stage. We’ll look in depth at a practical
example of caching data to the GPU shortly.

Code Matters, Too
In desktop/web-targeted Flash development, the overhead gener-
ated by ActionScript code is not typically a concern. Graphical con-
siderations (size of elements on Stage, rendering performance, etc.)
will almost always be the key bottlenecks to overcome or circum-
vent. This is largely due to the very fast virtual machine that inter-
prets and compiles AS3 at runtime and the substantial processors
in most modern computers. Although there are certainly optimiza-
tions all programmers can make to get extra performance out of
their code, it is not a high priority except in extremely complex
applications.

The same cannot be said for ActionScript running on iOS
devices. This is because the code is not compiled or interpreted at

326 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

runtime like in the Flash Player. As I mentioned earlier, it is
compiled ahead-of-time (AOT) into iOS machine code along with
the standard Flash libraries. In this entirely different process, cer-
tain elements of ActionScript are slower and performance of code
becomes essential to maintaining responsiveness and a decent
frame rate in your games. We’ll now look at the best practices to
follow when coding games for the iPhone.

Declare Your Types
This first and most basic practice should be familiar to anyone who
has read any programming books (or Chapter 4 of this book), but
the importance of it is magnified in Flash on the iPhone. When you
declare a variable to be of a specific type, you are allocating a speci-
fic amount of memory for that object, as well as keeping the runtime
code from having to look up the variable in a table in memory.

var myString:String = "something"; //CORRECT
var myUnknown = 5; //INCORRECT, AND YOU SHOULD BE ASHAMED

This also applies to method signatures—always be sure to specify
the types of parameters a method accepts, as well as a return type.
Avoid this use of dynamic arguments except when critically necessary.

//GOOD PRACTICE
private function doSomething(arg1:int, arg2:String):void
//BAD PRACTICE
private function doSomething(...args)

While this seems elementary, it makes a huge difference to both
the compiler and the application at runtime. Frankly, if you aren’t
already typing your variables in AS3, you really should be ashamed
anyway.

Use Static Properties and Functions
When a member variable or function of a class is static, only one
instance of it is ever created for the class. Many of the variables
and methods used by a class will only make sense within the con-
text of a specific instance of that class, but any values that are con-
stant across all instances should become static. Here are a couple
of examples:

private static const MAX_SPEED:int = 10;
private static const MAX_AMMO:int = 20;
private var _health:int = 100;

Assume the three lines above were part of an Enemy class for a
game. The first two, MAX_SPEED and MAX_AMMO, are not going to
change per Enemy instance; they are universal across all Enemies, so

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 327

they should be marked as static. The third value, health, is specific to
each Enemy, so it should be remain instance based. The same applies
to methods as well. Consider these two methods:

public function getScore():int;
public static function getHighScore():int;

If you create a new instance of a game class for each session of
play, it might have individual values, such as the player’s score. In
this case, it makes sense to have a method for retrieving that speci-
fic score from a specific game instance. However, in the case of the
highest score achieved over multiple sessions of a game, it makes
more sense to store this value in a static variable and retrieve it
from a static method.

Make Final Your Answer
Another seemingly trivial optimization that can be made to your
classes and methods is to mark them with the final keyword. When
a method or class is final, it cannot be extended through a subclass,
and the compiled code that is generated requires less lookups in
memory to execute the method. In fact, the compiler is smart
enough to make decisions about how to generate the final method
code based on how many times the method is called and its size. If
you were using a base game engine that is extended for multiple
applications, it wouldn’t be practical to declare it as final. However,
all of the application-specific classes (those that are not generic and
are only related to the application at hand) for a game should easily
be marked as final. Even when a class might need to be extended
and you don’t want to mark it final, there are often individual meth-
ods that would make sense to “finalize”—every little bit helps.

Recycle, Both In Your Code and In Your Home
The process of creating and destroying objects in memory is taxing
for the iPhone (or any limited-resource mobile device). Some types
of games, such as modern-day Asteroids™ knockoffs, create
numerous objects on the Stage and then proceed to destroy them
and create new ones. This technique is very common in game
development, and as long as guidelines for proper garbage collec-
tion are followed, it is not a noticeable performance hit until the
number of objects being created and destroyed gets into the thou-
sands at a time. iOS devices have a much lower tolerance for that
much creation and destruction, so we want to limit these processes
in our code as much as possible. We can’t really do so much about
the initial creation step—the objects have got to get there some-
how. However, an alternative to deletion (and thus the creation of
new objects) is to re-use or “recycle” them.

328 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

Returning to the example of Asteroids, imagine that there are
never more than 10 of the aforementioned space rocks on screen
at any given time. According to the rules of that game, every time
you shoot a full-size asteroid, two to four smaller ones are created.
Using the standard creation or deletion process, this will mean that
if the player destroys all of the asteroids successfully, the game will
have generated and garbage collected 40 objects (or more if the
smaller asteroids also split apart). While this may not seem like
much in the grand scheme, keep in mind that we are working in a
constrained mobile environment and this example scales to much
larger projects as well. If you used a recycling process, once an
asteroid was “destroyed” by the player, it would have some sort of
reset method called on it that would kill any processes and return
it to the state it was in just after creation. This prevents the object
from garbage collecting, thereby foregoing the deletion phase. In
the example later in this chapter, we’ll use object recycling to
increase performance and decrease memory usage.

Avoid Extremely Large Frameworks and Libraries
There are numerous open- and closed-source frameworks and
code libraries for helping Flash developers to write their code fas-
ter. These can range from text formatting utilities to encryption
libraries to design pattern frameworks (such as pureMVC, for
example). Some developers rely on these resources regularly for
speeding up their jobs. Many of these libraries are large and con-
tain many thousands of lines of code and potentially hundreds of
methods. In the standard Flash Player, only methods that are called
are compiled into machine code (using the JIT compiler). This
means any methods that are not used are never allocated memory
beyond the tiny bytecode that is compiled into the SWF. In the AOT
compilation process for the iPhone, Flash must assume that every
function may potentially be called during the course of an applica-
tion, so it has to compile all of them into machine code. This means
there is a considerable increase in file size of the final application, as
well as a moderate increase in the amount of memory needed to
store all of the code (that might not even be called at runtime).

Whenever possible, avoid using libraries from which you call only
a handful of methods. A good example of this might be any number
of the utility packages for formatting strings and text for display. Say
you use it for a convenient method to properly insert commas into
large numbers (meaning 1000 becomes 1,000) for readability. If the
class has, say, nine other methods for performing different opera-
tions and you are only using the one method, consider copying and
pasting that method into your own code. That will result in machine
code one-tenth the size it could have been and more memory for
essential code that is used. This is not a hard-and-fast rule—some

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 329

libraries are efficient about componentizing themselves so that
only the classes that you need active for your application are
included; the TweenLite/TweenMax animation platform by Jack
Doyle is a great example of this architecture. In general, however,
be mindful of how much code ends up in your final SWF—it does
matter.

TOO BIG WILL FAIL TO BE DOWNLOADED
As of this writing, Apple has a 20-MB limit on the size of the application
that can be downloaded to an iOS device over a carrier’s 3G network.
This means applications and games larger than 20 MB must be down-
loaded either through iTunes or over a Wi-Fi connection. While this prob-
ably isn’t a deal breaker for most of the people, if you’re right at or just
over this threshold with your app, cleaning up unused code means you’ll
get that much more exposure from customers who can download it from
anywhere.

Keep Your Display List Shallow
While this doesn’t come up too often in game development,
another way to increase performance of the renderer is to keep
your display list from branching too deeply. Depending on the type
of game you are creating, this might have extensive implications or
none at all. Just keep in mind that every layer deeper you go into
the display list increases rendering and processing time.

Don’t Use Events Where You Can Easily Use
Functions
Function calls require less memory than using the event model hier-
archy, especially when using bubble or capture events that must tra-
verse the display list. This is not to suggest that the event model
should be thrown out altogether—events are still required for listen-
ing for input and for any number of other common ActionScript tasks
such as ENTER_FRAME loops, and individual events used wisely help
maintain flexibility for re-purposing code. However, there are some
cases in which a method would work just as well and will decrease
overhead. This is particularly helpful for events that would otherwise
get dispatched over and over again in a game loop. Perhaps the
enemy Sprites in a game broadcast information about themselves
repeatedly throughout gameplay. Rather than dispatching an event
every time, a method could be passed to each enemy Sprite to call on
their recipients. Consider the following two examples:

//EXAMPLE #1
//DISPATCHES AN EVENT EVERY FRAME

330 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

private function onEnterFrame(e:Event):void
{

dispatchEvent(new CustomEvent(CustomEvent.UPDATE));
}

//EXAMPLE #2
//CALLBACK GETS SET THROUGH A PUBLIC ACCESSOR
private var _updateCallback:Function;
public function set updateCallback(value:Function):void
{

_updateCallback = value;
}
//ENTER FRAME HANDLER CALLS METHOD INSTEAD OF DISPATCHING EVENT
private function onEnterFrame(e:Event):void
{

_updateCallback(someData);
}

The first example makes use of an event dispatched every single
frame, which is taxing. Instead, if there is only one recipient for the
update event, it is more efficient to simply call a method. As men-
tioned earlier regarding the depth of display list, this is not likely to be
a huge issue for games, but it is an area you can look to for optimiza-
tion if you find the performance of your application a little lacking.

A Question of Balance: Inheritance versus
Interfaces
As you’ve no doubt seen throughout this book, one of the key ele-
ments to writing modular, re-usable code is to make use of inter-
faces. The heavy usage of these interfaces can be seen in examples
in Chapters 13 and 14. Because of the AOT compiler for iOS and
how it allocates memory for each method, interfaces perform more
slowly than directly referring to an instance of a class. In other
words, see the below example:

protected var _boardImage:ISourceImage;
var imageData:Vector.<BitmapData> = _boardImage.getImages

(_rows, _columns);

would perform more slowly than this:

protected var _boardImage:SourceImage;
var imageData:Vector.<BitmapData> = _boardImage.getImages

(_rows, _columns);

This is because an interface just represents how something
works rather than the thing by itself, Flash always has to look up

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 331

what object is representing the interface and where the actual
method is in memory. This is actually true of the regular desktop
Flash Player as well, but its impact is barely felt in that environ-
ment, if at all. However, on an iOS device, frequent memory look-
ups during the course of a performance-intensive application like a
game can result in degradation. In the case of the previous exam-
ples, because the methods in question are called pretty infrequently
over the course of the application, it would not have a noticeable
impact on performance. However, the other interface mentioned,
IGamePiece, has methods that are called quite often during the
game, so it might eventually become necessary to reference those
classes directly. Ultimately, like with so many elements of Flash, it
comes down to striking a balance between performance and practi-
cality. Sometimes the performance of your game has to come
before following every best practice to a tee.

A Real-World Example
We’ll now look at a very simple program example that could feasi-
bly be used in a game and see how it performs when utilizing bit-
map caching. In the spirit of the classic example I’ve referenced a
number of times in this chapter, it will consist of several “space
rocks” floating across a slowly tiling background. It will also
demonstrate the use of object recycling to keep the memory foot-
print as low as possible, as well as a utility to measure frame rate
performance without any tricky debugging.

The XFL Document
You can find the XFL file for this application in the Chapter 15
examples folder. If you open the document, you’ll find a library
with just five items in it: two images, two Sprite symbols, and a
component. The main timeline does not have any object placed on
it other than an instance of the FrameRate Profiler component (for
ease of setting the component parameters). We’ll return to this
component shortly—for now let’s jump into the code. I’ll start with
the classes for the two Sprites as the document class references
them later and it will be helpful to know how it works.

Space.as
This class is extremely simple as it just contains the code needed to
update its position based on a constant value. This code could
arguably exist in the main document class instead, but this would
provide the flexibility to add more functionality later and keep the
main class from getting cluttered.

332 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

public class Space extends Sprite
{

private static const SCROLL_SPEED:Number = 20;
//PIXELS PER SECOND

private var _previousTime:int = 0;
private var _deltaTime:Number = 0;

public function Space()
{

cacheAsBitmap = true;
}

public function update():void
{

if (_previousTime)
{

_deltaTime = (getTimer() - _previousTime)/1000;
x -= SCROLL_SPEED * _deltaTime;

}
_previousTime = getTimer();

}

}

Since this Sprite is actually the same smaller image tiled three
times (so that it can appears to seamlessly stretch on forever), the
constructor caches the whole object as a bitmap so that the GPU
can render it more quickly. Since we won’t be doing anything but
translation (x and y movements), there’s no need to use cacheAs-
BitmapMatrix just yet. The update method simply detects the
amount of time that has passed since it was last called and moves
itself the appropriate distance based on the constant scrolling
speed of 20 pixels per second. In a more robust application, it
would be wise to store separate values for x and y movements so
as to be able to tile the image in any direction. For now, this will
suffice.

Rock.as
The Rock class will handle creation of our floating debris and the
randomization of size and speed, which will give this example a
dynamic feel. Here, we will see the use of cacheAsBitmapMatrix
and object recycling.

public class Rock extends Sprite
{

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 333

private static const MOVEMENT_SPEED_MAX:Number = 100;
//PIXELS PER SECOND
private static const MOVEMENT_SPEED_MIN:Number = 50;
//PIXELS PER SECOND
private static const ROTATION_SPEED_MAX:Number = 30;
//DEGREES PER SECOND
private static const ROTATION_SPEED_MIN:Number = -20;
//DEGREES PER SECOND

private static var _availableRocks:Vector.<Rock> = new
Vector.<Rock>();

private var _movementSpeed:Number = 0;
private var _rotationSpeed:Number = 0;
private var _previousTime:int = 0;
private var _deltaTime:Number = 0;

public function Rock()
{

init();
}

private function init():void
{

var scaleRand:Number = Math.random();
scaleX = scaleY = scaleRand;
transform.colorTransform = new ColorTransform
(scaleRand, scaleRand, scaleRand);

_movementSpeed = (MOVEMENT_SPEED_MAX - MOVEMENT_
SPEED_MIN) * Math.random() + MOVEMENT_SPEED_MIN;

_rotationSpeed = (ROTATION_SPEED_MAX - ROTATION_
SPEED_MIN) * Math.random() + ROTATION_SPEED_MIN;

cacheAsBitmapMatrix = new Matrix();
}

The rocks will move and rotate at different random values, so
we define constants for the lower and upper limits of those ranges.
There is also a static Vector that we will keep track of every
instance of the Rock class that is created. The constructor does
nothing more than call the init method. This is one of the key com-
ponents to designing objects to be recycled; since you can’t call the
constructor on an object more than once, you need a way to dele-
gate any initialization to a method you can call whenever you
need. In the init function, a random value for the scale of the rock
is generated and also applied in a ColorTransform object. This will
create the appearance that smaller rocks are further away by tinting

334 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

them darker than larger ones. Values for movement speed and
rotation speed are then calculated based on the minimum and
maximum settings we observed earlier. Finally, the rock is cached
to the GPU as the last step in the process—we do this finally so
that the GPU doesn’t have to draw it multiple times due to the
changes we’ve made to its scale and color transform. Now, when-
ever this Rock is manipulated on the Stage, its rendering will be
handled solely by the graphics processor on the device.

public function reset():void
{

scaleX = scaleY = 1;
transform.colorTransform = new ColorTransform();
_movementSpeed = 0;
_rotationSpeed = 0;
_previousTime = 0;
_availableRocks.push(this);
cacheAsBitmapMatrix = null;

}

Acting as a counter to the init method, the class also has a reset
method that can be called to restore all of the key values of the
class to their default states. When other classes (specifically the
document class) are done using this instance, they will call this
method to tag it for recycling. Note that the Rock adds itself to the
static Vector list _avaialbleRocks. This will become important in the
next method we examine.

public static function getRock():Rock
{

if (_availableRocks.length)
{

var rock:Rock = _availableRocks.pop();
rock.init();
return rock;

}
else
{

return new Rock();
}

}

The static getRock method acts as the crux of the recycling process.
Instead of having Rocks get created by calling the constructor (which
will ultimately result in an untracked number of rock instances), this
method will check to see if there are any dormant rock instances
available which could be re-used. Once a rock has become inactive
using the reset method, it is added to the pool of available instances. If
there are any items in this list, getRock plucks the object off the end of

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 335

the Vector, reinitializes it (since it’s not being constructed again), and
returns it. If the list is empty (like at the start of the application), a
new rock is created and returned instead. In a moment, we’ll see how
this works in practice to eliminate unnecessary garbage collection.

public function update():void
{

if (_previousTime)
{

_deltaTime = (getTimer() - _previousTime)/1000;
rotation += _deltaTime * _rotationSpeed;
x += _deltaTime * _movementSpeed;

}
_previousTime = getTimer();

}

The final method in the class is an update method, which will
look very similar to the one in the Space class. It has the additional
rotation property set, which will make the rocks spin as they move.

SpaceRocks.as: The Document Class
The main document class will drive this example since it is more of
a technical demonstration than anything else. It will be responsible
for placing all of the objects on screen, sending them update
events, and removing those that are no longer needed.

public class SpaceRocks extends Sprite
{

public static const ROCK_CREATION_INTERVAL:Number = 800;
//MILLISECONDS
private var _rockList:Dictionary = new Dictionary(true);
private var _rockTimer:Timer;
private var _space:Space;

public function SpaceRocks()
{

//SETUP EVENT LISTENER
addEventListener(Event.ENTER_FRAME, onEnterFrame,
false, 0, true);

//CREATE SPACE
_space = new Space();
addChildAt(_space, 0);
//SETUP ROCK CREATION TIMER
_rockTimer = new Timer(ROCK_CREATION_INTERVAL);
_rockTimer.addEventListener(TimerEvent.TIMER,
onRockTimer, false, 0, true);

_rockTimer.start();
}

336 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

The class starts by defining the constant value for how often to create
new rocks. There is also a Dictionary object for keeping track of all the
rocks in use. Inside the constructor, an enterFrame listener is attached,
which will drive all of the updates. It also creates a new instance of the
Space Sprite and sets up the timer for generating new Rocks.

private function onRockTimer(e:TimerEvent):void
{

var rock:Rock = Rock.getRock();
addChild(rock);
rock.x = -rock.width * 2;
rock.y = Math.random() * loaderInfo.height;
_rockList[rock] = rock;

}

Whenever the timer for creating new rocks is called, you can see
that the static Rock.getRock method is used. This will allow us to
use either new or recycled instances of the class as it sees fit and
does not complicate our implementation. Once a “new” rock is
retrieved, it is placed just offscreen at a random y value and added
to the Dictionary object.

private function onEnterFrame(e:Event):void
{

//UPDATE ROCKS
for each (var rock:Rock in _rockList)
{

rock.update();
if (rock.x > loaderInfo.width + rock.width)
{

removeChild(rock);
delete _rockList[rock];
rock.reset();

}
}
//UPDATE SPACE
_space.update();
if (_space.x <= -_space.width/3)
{

_space.x = _space.x + (_space.width/3);
}

}

On every frame, the class iterates over all of the rocks in the
Dictionary object, calling their update methods. Once a rock is out-
of-bounds (has left the other side of the screen), it is removed
from the list of active rocks and reset. The Space instance is also
updated, repositioning itself once it gets to the point where it can
loop back to create a seamless texture.

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 337

There are two lines I commented out in the source code for this
example, which can be found in the Rock class. They consist of
two trace commands: one is called when a new rock is created and
the other when a rock is “recycled.” If you uncomment these lines
and export this SWF to run in the AIR player, you’ll see that in
practice, the application creates a whole slew of rocks from scratch
at the beginning and then begins to transition to using existing
rocks instead. This change is not immediate since the speed of the
rocks is variable, and it will take a little while for enough rocks to
have been created to account for this latency.

The FrameRateProfiler Class
The final piece of this application, which we’ll examine, is not
directly related to SpaceRocks at all. Instead, it is a utility class that
will prove useful going forward for measuring the performance of
Flash applications on iOS. It is based on a class I created (dis-
cussed in the online bonus chapter on debugging and performance
issues, found at www.flashgamebook.com), which displays the
actual frame redraw rate (as opposed to the intended rate) of a
SWF. The previous version used a text field to simply display the
frame rate as a number. When I initially dropped it into Space-
Rocks to use, I saw immediate performance degradation. This is
because I was placing a live-updating text field (which cannot be
cached to the GPU) directly over objects that the GPU was trying
to render. The net result was that the CPU still had to composite
everything, so I lost all intended performance gain from using
cachAsBitmapMatrix to begin with.

This new version of the profiler takes a graphical approach. It
creates two simple vector boxes (one white, one green), caches
them to the GPU (so that they can sit on top of everything else and
be properly composited), and then adjusts the scaleX value of the
one on top to reflect the percentage of the intended frame rate.
Figure 15.1 shows how this looks in practice. As it is not pertinent
to the current example, I won’t step through all of the code
for the profiler here, but feel free to peruse it in the Chapter 15
examples folder. Now, let’s look at a full game example for iOS.

Part 2: Marble Runner
One of the reasons the new mobile devices such as the iOS and the
Android families are garnering such appeal from a broad range of
users is their simple yet sophisticated approach to user input. Most
devices (aside from those with a slide-out keyboard) have any-
where from one to four buttons. All other inputs are handled by
one of two ways: either by touch interaction with the screen or
through the use of the built-in accelerometer. This mechanism

338 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

allows you to know the orientation of the device in 3D space and
respond to movement. In this example, we’ll create a game that
uses the accelerometer as the primary means of input. It’s also
worth noting that this game will be intended for the iPhone in par-
ticular, so it will make use of a fixed screen aspect ratio and resolu-
tion. In Chapter 16, when we create an Android game, we’ll make
sure that the game supports multiple screen sizes.

The Accelerometer Class
Flash CS5 has an extremely simple class for interfacing with a
mobile device’s accelerometer. If you want to read values from the
device, you simply instantiate a new Accelerometer object and lis-
ten for its UPDATE event.

import flash.events.AccelerometerEvent;
import flash.sensors.Accelerometer;

var accelerometer:Accelerometer = new Accelerometer();
accelerometer.addEventListener(AccelerometerEvent.UPDATE,

onAccelerometerUpdate, false, 0, true);

function onAccelerometerUpdate(e:AccelerometerEvent):void
{
}

In this case, the onAccelerometerUpdate method will be called
on creating the listener (to establish the initial orientation of the
device), and then afterwards at a fixed interval. You can define this

Figure 15.1 The FrameRate
Profiler, used in SpaceRocks,
currently reflects 100% of the
intended frame rate. As
performance lessened, the
green bar would shrink,
revealing a white bar
underneath.

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 339

interval in milliseconds by calling setRequestedUpdateInterval on
the Accelerometer instance and passing it a value. In general, how-
ever, you probably won’t want to use anything faster than the
default interval, and more frequently you start using up extra bat-
tery life—something users of your games won’t appreciate. In fact,
if you find you can, it’s not a bad idea to reduce the frequency of
intervals as it mean that you’re polling the device even less and in
fact saving battery power.

When you receive an AccelerometerEvent, you’ll find that it has
four distinct values inside. The first three are the x, y, and z values
for the acceleration along each of those respective axes. Each of
these properties ranges from around ‒1 G to +1 G (a “G” is
approximately 9.8 m/s2), cumulatively representing the orientation
of the device and the forces of acceleration due to gravity. When
the device is moved or rotated, these values fluctuate, reflecting the
acceleration applied to the device at given angles. We’ll look at a
visual representation of this concept momentarily. The fourth value
is a timestamp identifying the number of milliseconds since the
application started when the event was created. You can think of it
as though getTimer was called when the event occurred. This data
might be useful if you wanted to delay or ignore reaction to an
AccelerometerEvent without messing with the update interval.

How Accelerometer Values Are Computed
When an iPhone or other mobile device is stationary, the values
from AccelerometerEvents are consistent as they represent the
force of gravity acting downwards on it. Figure 15.2 shows the
three axes that are used to determine the orientation of an iPhone’s
accelerometer.

X

Z

Y

Figure 15.2 The three axes of
the iPhone’s accelerometer.

340 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

When the device is moved along its x axis (shown in red in
Fig. 15.2), which runs across the front of the display from left to
right, it registers negative or positive forces. If you were to hold the
device in a horizontal orientation in front of you with the menu
button on the right, as shown in the top half of Fig. 15.3, it would
show y and z values of 0 and an x value of ‒1. This represents the
force of gravity moving down the x-axis. Conversely, if you rotated
the device 180 degrees around the z-axis, as shown in the bottom
of Fig. 15.3, this value would reverse to +1.

Similarly, when the device is held upright with the menu button
on the bottom—the most common orientation when using an
iPhone, shown in Fig. 15.4—the y value is affected. In this position,
the force of gravity is traveling straight down the face of the iPhone
and is thus ‒1. To get a y value of +1, turn the device so that the
menu button is on top.

Finally, when laid facing up on a flat surface, the device regis-
ters x and y values of 0, while the z value is approximately ‒1. Flip-
ping the iPhone upside down onto its face will change this z value

accelerationX = −1, accelerationY = 0, accelerationZ = 0

accelerationX = 1, accelerationY = 0, accelerationZ = 0

Figure 15.3 The accelerometer
values for the iPhone when it
is facing you and on its side.

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 341

to 1. This shows that the force of gravity is traveling straight down
through the face of the device, as shown in Fig. 15.2. It is important
to understand these orientation relationships, particularly x and y,
as they will make up the core input mechanism in the game we
are about to create.

The Game: Marble Runner
In the following game example, we will create an experience similar
to the wooden marble labyrinths that have existed for many years.
Such a game is shown in Fig. 15.5, where the player would turn
the two knobs to navigate the marble safely through the maze with-
out falling down a hole.

In our version, rather than having knobs that adjust
the angle of the game board, we will move the surface of
the phone itself to simulate the very same effect. Each
level of the game will require the player to navigate
more complicated mazes with more hazards. To make it
more interesting, we’ll also incorporate a timer element;
finish with time left and your score will be higher, run
out of time and you must replay the level.

In addition to the use of the accelerometer, this game
will require us to cover a number of concepts, including
the following:
1. Technical

a. Collision detection
b. Timers
c. Simulated 3D effects

accelerationX = 0, accelerationY = −1, accelerationZ = 0 accelerationX = 0, accelerationY = 1, accelerationZ = 0

Figure 15.4 The accelerometer
values for the iPhone when it
is fully upright and facing you.

Figure 15.5 A tabletop marble maze game—
the inspiration for an example of this chapter.

342 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

d. Storing save game data for return play
e. Loading and saving data using remoting services

2. Game design
a. Hazards and risk/reward scenarios
b. Score calculation
c. Laying out a level in the Flash IDE
So, without further ado, let’s dig in!

The XFL File
From the Chapter 15 examples folder, open the MarbleRunner.xfl
file in the directory of the same name. There are some immediate
things to note about this file:
• The document frame rate is set to 24 fps. For a game such as this

with some heavier collision detection calculations going on this
strikes a good balance of visual smoothness and load on the CPU.

• The main timeline consists of a set of labels and clips, represent-
ing the different screens of the application. We’ll look into these
classes in depth shortly.

• The library assets are sorted into folders based on the screen to
which they belong, except for fonts (which are shared by all the
screens).

The Classes
The classes for this game are split into two categories: the core
game logic that is extensible and agnostic for a labyrinth-style
game (the “engine” classes) and the custom functionality that is
specific to this Marble Runner implementation (the “application”
classes). As such, they are logically located in two different
packages. The engine set of files can be found in

com.flashgamebook.iphone.engines.labyrinth

The application classes are located in

com.flashgamebook.iphone.examples.chapter15.marblerunner

We’ll start with the core engine and work our way outwards.
The concepts may seem somewhat abstract at first but will take
shape once you see how they are implemented. These files consist
of the following:
• LabyrinthEngine.as: This class is pretty self-explanatory—it is the

center of all the logic handling collision detection, ball
movement, and level completion.

• LabyrinthLevel.as: The base class for any levels built in the Flash
IDE—we use an inheritance model rather than an interface
because levels are more rigidly controlled and we want to be
able to do some validation on them.

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 343

• IBall.as: An interface that will be implemented by the player
ball.

• IHazard.as: The interface required by any object acting as a
hazard in the engine.

• IWall.as: Any object that will be treated as a wall by the engine
will need to implement this interface.

LabyrinthEngine
final public class LabyrinthEngine extends Sprite
{

static public var MAX_BALL_SPEED:Number = 150;
static public var ACCELERATION_MULTIPLIER:Number = 80;

static private const DISTANCE_TO_ENDPOINT:Number = 10;

private var _currentLevel:LabyrinthLevel;
private var _ball:IBall;
private var _ballDO:DisplayObject;
private var _levelEndCallback:Function;
private var _accelerometer:Accelerometer;
private var _ax:Number = 0;
private var _ay:Number = 0;
private var _previousTime:int;

There are relatively few member variables in this class: one to
store the current level, two for the ball (one that uses IBall and the
other that casts it as a DisplayObject for convenience later), a call-
back for when the level is complete (meaning the player success-
fully moved the ball to a designated endpoint), and a few to store
the Accelerometer instance and its acceleration values. Also
included are a couple of static variables that can be used to alter
general properties of the engine.

public function LabyrinthEngine(ballClass:Class,levelClass:
Class)

{
_ball = new ballClass();
_ballDO = DisplayObject(_ball);
_currentLevel = new levelClass();

var validationError:Error = _currentLevel.validate();
if (validationError) throw validationError;

addChild(_currentLevel);
_currentLevel.addChild(_ballDO);
resetBall();

}

344 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

The constructor for the engine accepts two classes that it will be
responsible for instantiating. The first is the class used for the ball;
in theory, this could be any class that implements IBall, but in
practice it will be some kind of DisplayObject. As such, we cast it
and store the second reference to prevent casting it again when we
need it later. The level class is also instantiated, validated (through
a method we’ll look at shortly), and then added to the engine’s dis-
play list. The ball is then added to the level and has its position
reset.

This class has three public methods that can be called from
other classes. We’ll look at these next.

public function startLevel(callback:Function):void
{

_levelEndCallback = callback;
_accelerometer = new Accelerometer();
_accelerometer.setRequestedUpdateInterval(100);
_accelerometer.addEventListener(AccelerometerEvent.
UPDATE, onAccelerometerUpdate, false, 0, true);

_previousTime = getTimer();
addEventListener(Event.ENTER_FRAME, onEnterFrame,
false, 0, true);

}

public function endLevel(callback:Boolean = true):void
{

removeEventListener(Event.ENTER_FRAME, onEnterFrame);
_accelerometer.removeEventListener(AccelerometerEvent.
UPDATE, onAccelerometerUpdate)

if (callback && _levelEndCallback != null) _levelEndCallback();
}

public function dispose():void
{

removeEventListener(Event.ENTER_FRAME, onEnterFrame);
removeChild(_currentLevel);
_currentLevel = null;
_ball = null;
_ballDO = null;
_accelerometer = null;

}

In startLevel, the engine creates an accelerometer instance,
sets it to update every tenth of a second, and starts the game
loop. It also accepts a function that will later be called when the
level ends. As you might expect, endLevel undoes pretty much
everything startLevel does, with the option to trigger the callback
function if it exists. Finally, dispose can be called when the engine

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 345

is being discarded to help with quicker garbage collection. Next,
we’ll look at the two event handlers for the Accelerometer and
game loop.

private function onAccelerometerUpdate(e:AccelerometerEvent):void
{

_ax = (_ax + e.accelerationX)/2;
_ay = (_ay - e.accelerationY)/2;

}

private function onEnterFrame(e:Event):void
{

var currentTime:Number = getTimer();
var deltaTime:Number = (currentTime - _previousTime)/1000;
_previousTime = currentTime;
moveBall(deltaTime);
checkCollisions();
checkHazards();
checkWin();

}

Whenever an Accelerometer update occurs, the x and y values
are pulled from the resulting event and averaged with the values
stored in the engine. This will help with the sometimes erratic
jumps and spikes in the numbers returned by the device. You
may also notice that we add the value to the x acceleration but
subtract it from the y. This is because Flash’s coordinate system

is inverted from a typical Cartesian coordinate
plane. In traditional geometry, x values increase
as you move from left to right and y values
increase as you move up, as shown in Fig. 15.6.
In Flash, y values increase as you move down,
so the values for acceleration along that axis
must also be inverted.

The onEnterFrame game loop basically acts as
the catalyst for several other methods that are
called. We’ll look at each of these in order they
appear here, but here’s a quick summary of what
takes place every frame:
1. The ball is moved based on how much time

has passed since the last frame.
2. The engine detects all collisions with walls and

adjusts positions accordingly.
3. The engine detects any collisions with hazards

in the level.
4. The engine checks to see if the player has

reached their destination.

3 x

y

−1

−2

−3

2

(2, 3)

(0, 0)

−3 −2 −1 1

1

2

3

(−1.5, −2.5)

(−3, 1)

Figure 15.6 The Cartesian coordinate system.

346 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

private function moveBall(deltaTime:Number):void
{

var maxDelta:Number = MAX_BALL_SPEED * deltaTime;

_ball.vx += _ax * deltaTime * ACCELERATION_MULTIPLIER;
if (_ball.vx > maxDelta)
{

_ball.vx = maxDelta;
}
else if (_ball.vx < -maxDelta)
{

_ball.vx = -maxDelta;
}

_ball.vy += _ay * deltaTime * ACCELERATION_MULTIPLIER;
if (_ball.vy > maxDelta)
{

_ball.vy = maxDelta;
}
else if (_ball.vy < -maxDelta)
{

_ball.vy = -maxDelta;
}

_ball.x += _ball.vx;
_ball.y += _ball.vy;

}

When moveBall is called, the ball’s current velocity is incremen-
ted based on the current acceleration from the Accelerometer and
the time that has elapsed. If the ball’s velocity exceeds the set max-
imum value, it is clamped to prevent an infinite increase. This
resultant velocity is then applied to the ball’s position. You may
notice that I’m multiplying the acceleration by a static value, in this
case 80. The reason for doing this was something I learned through
playtesting. When using the raw values from the accelerometer,
they were so small that you had to tilt very dramatically the iPhone
to get enough response to move the ball. This doesn’t lead to a
very fun experience as I had to move the phone in a very unnatural
fashion to get the ball to respond. By multiplying it by a much lar-
ger number, you get a fairly sensitive response time from much
smaller movements of the device. After testing a few different
values, I settled on this one for having the best feel.

private function checkCollisions():void
{

for each (var wall:IWall in _currentLevel.walls)
{

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 347

var hitting:Boolean = wall.hitTestObject(_ballDO);
if (hitting)
{

var ballRect:Rectangle = _ball.getRect
(_currentLevel);

var wallRect:Rectangle = wall.getRect
(_currentLevel);

var intersection:Rectangle = ballRect.
intersection(wallRect);

if (!intersection.width && !intersection.
height) continue;

var rectCenter:Point = new Point
(intersection.x + intersection.width/2,
intersection.y + intersection.height/2);

var angle:Number = Math.atan2(rectCenter.
y - _ball.y, rectCenter.x - _ball.x);

angle = Math.round(angle/(Math.PI/2));
angle *= Math.PI/2;

var angleSin:Number = Math.sin(angle);
var angleCos:Number = Math.cos(angle);

var offsetX:Number = angleCos * intersection.
width;

var offsetY:Number = angleSin * intersection.
height;

_ball.x -= offsetX;
_ball.y -= offsetY;

}
}

}

The checkCollisions method is the one in which the heaviest
math in the engine occurs. Every one of the individual wall seg-
ments is tested against the ball to see if they overlap. First, every
comparison starts with the rather blunt but fast hitTestObject check.
If there is a collision, a more informative test is performed. This is
done by getting the bounding box rectangles of both objects and
by determining their rectangle of overlap (or intersection). The
angle of the collision is then determined by measuring the angle
between the middle of the ball and middle of the collision rectan-
gle. This is illustrated in Fig. 15.7. The gray area represents the col-
lision rectangle. The dashed line connecting the center point of the

348 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

ball and the center of the collision is used to
determine the angle of the collision.

Once the angle of collision has been deter-
mined, it is rounded to the nearest 90 degrees.
This is so that the appropriate offset can be cal-
culated to “push” the ball and the wall apart.
This offset is then applied to the x and y coordi-
nates of the ball since the walls in this example
not to move in response to being hit.

private function checkHazards():void
{

var ballRect:Rectangle = _ball.getRect
(_currentLevel);

for each (var hazard:IHazard in _currentLevel.hazards)
{

if (hazard.getRect(_currentLevel).intersects
(ballRect))

{
resetBall();
break;

}
}

}

private function resetBall():void
{

_ball.x = _currentLevel.startPoint.x;
_ball.y = _currentLevel.startPoint.y;
_ball.vx = 0;
_ball.vy = 0;

}

Once the wall collisions have been resolved, the engine iterates
through all of the hazards in a level and determines if they inter-
sect. If the ball collides with any hazard, it is reset to initial starting
point with its velocity dropped to zero.

private function checkWin():void
{

var testPoint:Point = new Point(_ball.x, _ball.y);
if (Point.distance(testPoint, _currentLevel.endPoint) <

DISTANCE_TO_ENDPOINT)
{

endLevel();
}

}

The final method of the class, checkWin, simply measures the
distance between the ball and the endpoint specified by the level.

Wall

Angle

Figure 15.7 When the ball and wall intersect, the
angle of the intersection is determined using the
center points of the ball and the collision.

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 349

In this case, when the ball is within 10 pixels of the endpoint, it is
considered a win and endLevel is called, which we looked pre-
viously. In just under 200 lines of code, we’ve laid out the core
functionality behind this game. While we’re far from done, most of
the heavy lifting is out of the way.

LabyrinthLevel
This class is never meant to be used directly. It is the base for every
level that will be created in the IDE. It establishes all of the necessary
criteria for a level and provides the ability to validate itself. As I men-
tioned before, this differs from the other components of the engine in
that all of the levels inherit from it instead of implementing an inter-
face. This is because we need more rigidity in how the levels are built,
whereas we need not be so particular about the ball, walls, or hazards.

public class LabyrinthLevel extends Sprite
{

static public const ERROR_NO_START_POINT:String = "Level
Invalid: No start point specified - place a DisplayObject
named \"startPointClip\" in the level.";

static public const ERROR_NO_END_POINT:String = "Level
Invalid: No end point specified - place a DisplayObject
named \"endPointClip\" in the level.";

static public const ERROR_NO_WALLS:String = "Level Invalid:
Level requires at least one DisplayObject that implements
IWall.";

private var _hazards:Vector.<IHazard>;
private var _endPoint:Point;
private var _startPoint:Point;
private var _walls:Vector.<IWall>;

A level in Marble Runner is defined as a set of walls and
hazards, as well as a starting point and endpoint. When the level
validates itself, it may throw errors stating which required compo-
nents are missing. There are constants provided for missing starting
and ending points, as well as when the level cannot find any walls.

public function LabyrinthLevel()
{

_hazards = new Vector.<IHazard>();
_walls = new Vector.<IWall>();
for (var i:int = 0; i < numChildren; i++)
{

var child:DisplayObject = getChildAt(i);
if (child is IHazard)
{

_hazards.push(child);

350 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

}
else if (child.name == "startPointClip")
{

_startPoint = new Point(child.x, child.y);
child.visible = false;

}
else if (child.name == "endPointClip")
{

_endPoint = new Point(child.x, child.y);
child.visible = false;

}
else if (child is IWall)
{

_walls.push(child);
}
else if (child is Shape)
{

child.cacheAsBitmap = true;
}

}
}

When the level initializes in the constructor, it walks through its
entire display list, identifying each component and storing it in the
appropriate variable or Vector. This type of “scan” allows the level
to be fairly loosely designed in the IDE, with no requirements for
layering order of any of the components.

public function validate():Error
{

var err:Error;
if (!_startPoint)
{

err = new Error(ERROR_NO_START_POINT);
}
else if (!_endPoint)
{

err = new Error(ERROR_NO_END_POINT);
}
else if (!_walls.length)
{

err = new Error(ERROR_NO_WALLS);
}
return err;

}

As we saw in the engine class, the validate method returns one
of three different errors, depending on elements that are missing

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 351

from the level. If nothing is missing, the error is null and will be
ignored by the engine.

public function get startPoint():Point
{

return _startPoint;
}

public function get endPoint():Point
{

return _endPoint;
}

public function get hazards():Vector.<IHazard>
{

return _hazards;
}

public function get walls():Vector.<IWall>
{

return _walls;
}

Finally, every level provides read-only accessors for each of its
private member variables. These were used in multiple places by the
engine, particularly with respect to collision detection. Since we’re
already on the topic, we’ll also take a quick look in the XFL file at
how a level is composed. If you opened the Game folder in the
library and selected the symbol named Level 1, and then opened its
properties panel, you would see as that in Fig. 15.8. The base class is
listed as the file we just looked at, and the symbol class name is sim-
ply “Level1.” If you select the two black dots in the level, you’ll see
that they are simply markers for the starting and end points. All of
the blue walls are made up of one symbol in the library whose class
we’ll look at shortly.

IBall, IHazard, IWall
These three interfaces are all very simple, so we’ll look at them
altogether in one pass.

public interface IBall extends IEventDispatcher
{

function get x():Number;
function set x(value:Number):void;
function get y():Number;
function set y(value:Number):void;
function get width():Number;
function set width(value:Number):void;

352 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

function get height():Number;
function set height(value:Number):void;
function getRect(coordinateSpace:DisplayObject):Rectangle;
function hitTestObject(obj:DisplayObject):Boolean;

function get vx():Number;
function set vx(value:Number):void;
function get vy():Number;
function set vy(value:Number):void;

}

public interface IHazard
{

function get x():Number;
function set x(value:Number):void;
function get y():Number;
function set y(value:Number):void;
function getRect(coordinateSpace:DisplayObject):Rectangle;
function hitTestObject(obj:DisplayObject):Boolean;

}

Figure 15.8 The properties panel and layout for the first level of Marble Runner.

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 353

public interface IWall
{

function get x():Number;
function set x(value:Number):void;
function get y():Number;
function set y(value:Number):void;
function getRect(coordinateSpace:DisplayObject):Rectangle;
function hitTestObject(obj:DisplayObject):Boolean;

}

As you can see, the three interfaces share a great deal of func-
tionality and almost all methods that are native to DisplayObjects.
In fact, IHazard and IWall have identical method signatures. How-
ever, they must both exist so that the engine can differentiate
between one type of object and another. However, you could create
an interface based on all the common traits of these (called, say,
IDisplayObject) and simply extend it to add specific functionality.
I did not do that in this case, however, because using interfaces on
the iPhone is already slightly slower at runtime, and because there
were only three of them, I opted to not abstract them one layer
further. If you had a version of this game with several other com-
ponents such as pickups or transporters, it would begin to make
sense to try to consolidate functionality into shared interfaces.

That sums up the engine components of Marble Runner. Next,
we’ll take a look at the application-specific classes for this imple-
mentation. These classes consist of the following:
• MarbleRunner.as—the base document class for the game
• Title.as—the title screen
• HowToPlay.as—the rules screen
• Leaderboard.as—the screen displaying the top scores, and the

class that handles all communication with the back-end services
• GameClip.as—the screen that instantiates the game engine and

displays UI elements like the score and timer
• Marble.as—the class that implements IBall for the game
• StandardWall.as—the sole class we’ll use to implement IWall
• HazardPit.as—the hazard used in the second level—implements

IHazard
• Results.as—the screen displayed at the end of a level

The only one of these classes we won’t examine is How To Play.
It’s so simple that it is not worth breaking down; suffice it to say
that it has a “back” button that returns to the title screen.

MarbleRunner: The Document Class
final public class MarbleRunner extends MovieClip
{

static public const EVENT_NAVIGATE:String = "navigate";

354 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

static public const FRAME_TITLE:String = "title";
static public const FRAME_HOW_TO_PLAY:String = "howtoplay";
static public const FRAME_GAME:String = "game";
static public const FRAME_LEADERBOARD:String = "leaderboard";
static public const FRAME_RESULTS:String = "results";

static private var _gameData:SharedObject;

public function MarbleRunner()
{

stop();
addEventListener(Event.ADDED_TO_STAGE, onAdded

ToStage, false, 0, true);
addEventListener(EVENT_NAVIGATE, onNavigate,

false, 0, true);
}

private function onAddedToStage(e:Event):void
{

loadGameData();
gotoAndStop(FRAME_TITLE);

}

private function onNavigate(e:DataEvent):void
{

gotoAndStop(e.data);
}

static public function get gameData():SharedObject
{

return _gameData;
}

static public function loadGameData():void
{

if (_gameData)
return;

_gameData = SharedObject.getLocal("MarbleRunner");
}

static public function saveGameData(level:int, score:int):
void

{
if (!_gameData)

loadGameData();

_gameData.data.level = level;

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 355

_gameData.data.score = score;
_gameData.flush();

}
}

The main document serves two primary functions for Marble
Runner. It is used to change screens, which is done when a screen
dispatches a DataEvent of the type “navigate.” Although bubbling an
event up to the root level clip like this is not at all advisable in
performance-sensitive areas like playing the actual game, it’s totally
fine when navigating between static menu screens. The other pur-
pose of the document class is to save the user’s progress, so if they
have to take a call or otherwise unexpectedly quit from the game,
they can return to it later. This is done through the use of a Shared-
Object, which you may be familiar with if you’ve ever used it in the
desktop version of Flash to save small pieces of data to use later. In
this case, we store the current level the player is on and their score
at the time. Next, we’ll look at the title screen where this is first used.

Title
The title screen simply consists of some buttons and the game
logo. Players have the option to start a new game, continue their
previous game, see how to play the game, or view the leaderboard
(see Fig. 15.9).

final public class Title extends Sprite
{

public var btnNewGame:SimpleButton;
public var btnContinueGame:SimpleButton;
public var btnHowToPlay:SimpleButton;
public var btnLeaderboard:SimpleButton;

public function Title()
{

addEventListener(Event.ADDED_TO_STAGE,
onAddedToStage, false, 0, true);

}

private function onAddedToStage(e:Event):void
{

btnNewGame.addEventListener(MouseEvent.CLICK,
onNewGame, false, 0, true);

btnContinueGame.addEventListener(MouseEvent.
CLICK, onContinueGame, false, 0, true);

btnHowToPlay.addEventListener(MouseEvent.CLICK,
onHowToPlay, false, 0, true);

Figure 15.9 The title screen of
Marble Runner.

356 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

btnLeaderboard.addEventListener(MouseEvent.
CLICK, onLeaderboard, false, 0, true);

if (!MarbleRunner.gameData.data.level)
{

btnContinueGame.alpha = .5;
btnContinueGame.mouseEnabled = false;

}
}

private function onNewGame(e:MouseEvent):void
{

MarbleRunner.saveGameData(1, 0);
onContinueGame(null);

}

private function onContinueGame(e:MouseEvent):void
{

dispatchEvent(new DataEvent(MarbleRunner.EVENT_
NAVIGATE, true, false, MarbleRunner.FRAME_GAME));

}

private function onHowToPlay(e:MouseEvent):void
{

dispatchEvent(new DataEvent(MarbleRunner.EVENT_
NAVIGATE, true, false, MarbleRunner.
FRAME_HOW_TO_PLAY));

}

private function onLeaderboard(e:MouseEvent):void
{

dispatchEvent(new DataEvent(MarbleRunner.EVENT_
NAVIGATE, true, false, MarbleRunner.
FRAME_LEADERBOARD));

}
}

If there is no save data option, the Continue button is faded out
and disabled. When a new game is started, it saves initial data that
can later be used to continue from where they left off. All of the
other buttons simply dispatch navigation events that the document
class will use to move between screens—pretty straightforward stuff.

Leaderboard
In creating a global leaderboard for a game, Flash developers have a
staggering number of options for communicating storing the data. For
this example (and all others in this book), the leaderboard connects

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 357

to a database via the AMF (Action Message Format) protocol, some-
times referred to as Flash remoting. On the back end, it is connected
to this book’s Web site, which is running AMFPHP middleware. I pre-
fer AMF to other alternatives for a few different reasons:
• The data sent out and received by the game is binary and

therefore very small; if you have bandwidth restrictions (such as
the iPhone’s 3G network) or will be sending lots of data back
and forth over the course of a game, the savings in data size
over something like XML will become noticeable very quickly.

• Types and data structures remain intact when they finally get to
the ActionScript code: strings are strings, numbers are numbers,
and even Arrays work as you would expect them to do without
any conversion or parsing; as long as you know the format of
the data being returned by the service, you can start using it
immediately.

• The setup for AMF is extremely quick in AS3; in just a few lines
of code, you can connect to a service, call a remote method,
and receive a response.

• Most AMF back-end software (like AMFPHP) is free and very
easy to set up, and there are flavors for any number of other
platforms from .NET to Java.
In the following code snippets, I will only be explaining the client-

side (Flash) code. You can find a full explanation of the PHP code in
Appendix D on www.flashgamebook.com. If you are a solo developer
and will need to know how to build these types of services yourself, I
hope it is extremely useful to you. However, if like me you work with
a team of dedicated back-end developers, this information isn’t as
relevant, and PHP is a different enough language that I don’t want to
create confusion here in the text.

The leaderboard class serves two purposes. Its static methods
and properties provide a globally accessible way of pulling in and
saving out data to the database. Its instance methods are used to
display the high-score list screen. As I dissect the code over the
next few pages, I’ll split it into these two categories to help clarify
this distinction. Note that while it uses many others, the only
import I’ve reprinted here is a custom one from the included utils
package: an MD5 hashing algorithm.

import com.flashgamebook.iphone.utils.MD5;

final public class Leaderboard extends Sprite
{

static public const GATEWAY_URL:String = "http://www.
flashgamebook.com/services/gateway.php";

static public const GAME_ID:String = "MarbleRunner";
static public const SECRET_KEY:String = "fandango";
static public const NUMBER_OF_RESULTS:int = 10;

358 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

static public const STATUS_MESSAGE_ERROR:String = "An error
occurred when retrieving scores.\nPlease try again later.";

static private var _netConnection:NetConnection;

The static constants for the leaderboard are the URL of the AMF
gateway to which the game will connect, the game name (ID), a
secret key value that will be used for security purposes, the number
of results to pull from the database, and the text to display in the
event of an error (like the lack of an Internet connection). A refer-
ence to a NetConnection object is also created, as this will be how
the AMF communication is handled.

static public function createConnection():void
{

if (!_netConnection)
{

_netConnection = new NetConnection();
_netConnection.connect(GATEWAY_URL);

}
}

static public function saveScore(score:int, initials:String)
{

createConnection();
var responder:Responder = new Responder(onScoreSaved,
onScoreSaveError);

var date:Date = new Date();
var hash:String = MD5.hash(MD5.hash(SECRET_KEY + score +
initials + date.toString()));

_netConnection.call("games.HighScores.saveScore",
responder, GAME_ID, score, initials, date.toString(), hash);

}

static private function onScoreSaved(result:Object):void

{
trace("Score Saved:",result);

}

static private function onScoreSaveError(result:Object):void
{

//ERROR OCCURRED
}

Any time a call to the AMF service is made; createConnection is
called to make sure the NetConnection has been established. When
a score is saved to the database, which can be done from any other

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 359

class, a Responder object is created for handling the returned data.
To make sure that the data being saved is valid and the service is
not being hacked, the method creates a date stamp and combines
it with the other pieces of data (including the secret key). This
value is then hashed twice using MD5. If you’re not familiar with
hashing, you can refer to the bonus online chapter on securing
your games, On Your Guard. Briefly, it is the process of taking a
chunk of data and reducing it algorithmically to a fixed length string
of numbers and letters. The goal is that it should be impossible or
nearly impossible for someone to be able to determine the original
data. MD5 is just one of many other algorithms, including a number
of them that are far more secure, such as SHA256. I chose MD5
because it is very fast to process and is a native part of PHP, a back-
end software that will perform a comparison hash to validate the data.

Once this hash value is created, a remote method is called via
the NetConnection, saveScore, which is part of the HighScores class
in the games package in the PHP code. This method accepts the
game ID, score, and the various pieces of validation data. Note that
we do not send the secret key—it will be up to the author of the
back-end service (in this case, me) to make sure I have the same
key in use there. Next, we will look at the code that executes when
loading the leaderboard screen.

public var btnBack:SimpleButton;
public var tfRank:TextField;
public var tfInitials:TextField;
public var tfScores:TextField;
public var tfStatusMessage:TextField;

public function Leaderboard()
{

addEventListener(Event.ADDED_TO_STAGE, onAddedToStage,
false, 0, true);

}

private function onAddedToStage(e:Event):void
{

btnBack.addEventListener(MouseEvent.CLICK, onBack,
false, 0, true);

createConnection();
loadScores();

}

private function loadScores():void
{

var responder:Responder = new Responder(onScoresLoaded,
onScoresLoadedError);

360 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

_netConnection.call("games.HighScores.getScores",
responder, GAME_ID, NUMBER_OF_RESULTS);

}

private function onScoresLoaded(result:Object):void
{

if (result is Array)
{

var scores:Array = result as Array;
tfRank.text = "";
tfInitials.text = "";
tfScores.text = "";
tfStatusMessage.text = "";
for (var i:int = 0; i < scores.length; i++)
{

tfRank.appendText(String(i+1) + "\n");
tfInitials.appendText(scores[i].initials + "\n");
tfScores.appendText(scores[i].score+"\n");

}
}

}

private function onScoresLoadedError(result:Object):void
{

tfStatusMessage.text = STATUS_MESSAGE_ERROR;
}

private function onBack(e:MouseEvent):void
{

dispatchEvent(new DataEvent(MarbleRunner.EVENT_NAVIGATE,
true, false, MarbleRunner.FRAME_TITLE));

}

As you can see, when a leaderboard screen is instantiated and
added to the Stage, it calls the same createConnection method we
looked at earlier. It then proceeds to load the scores from the data-
base. Note how the call is similarly formed to the saveScore
method. Once the scores are loaded in, the data is appended to
the different text columns as shown in Fig. 15.10. If the scores fail
to load for some reason, the generic error message is displayed in
lieu of the data.

GameClip
Once a new game is started, the GameClip class is instantiated. It
creates an instance of the LabyrinthEngine we looked at earlier and
keeps track of the timer and the player’s current level (based on
the data stored in the shared object).

Figure 15.10 The Leaderboard
screen of Marble Runner.

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 361

import com.flashgamebook.iphone.engines.labyrinth.LabyrinthEngine;

final public class GameClip extends Sprite
{

static public const LEVEL_LENGTH:int = 75; //IN SECONDS
static public const SCORE_MULTIPLIER:int = 150;

public var tfLevel:TextField;
public var tfTime:TextField;
public var tfScore:TextField;

private var _engine:LabyrinthEngine;
private var _level:int = 1;
private var _score:int = 0;
private var _timer:Timer;

Because the engine does all of the heavy lifting, our implemen-
tation of a labyrinth game is pretty simple. There’s a Timer and a
few TextFields to display important information, and then a hand-
ful of methods we’ll look at next.

public function GameClip()
{

addEventListener(Event.ADDED_TO_STAGE, onAddedToStage,
false, 0, true);

}

private function onAddedToStage(e:Event):void
{

_level = MarbleRunner.gameData.data.level;
_score = MarbleRunner.gameData.data.score;
tfLevel.text = _level.toString();
tfScore.text = _score.toString();
nextLevel();

}

private function nextLevel():void
{

_timer = new Timer(1000, LEVEL_LENGTH);
_timer.addEventListener(TimerEvent.TIMER, onTimer,

false, 0, true);
_timer.addEventListener(TimerEvent.TIMER_COMPLETE,

onTimerComplete, false, 0, true);
_timer.start();
var levelClass:Class = getDefinitionByName("Level" +

_level) as Class;
_engine = new LabyrinthEngine(Marble, levelClass);
_engine.y = 20;

362 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

addChild(_engine);
_engine.startLevel(levelComplete);

}

private function levelComplete():void
{

_timer.stop();
_score += (LEVEL_LENGTH - _timer.currentCount) *
SCORE_MULTIPLIER;

tfScore.text = _score.toString();
_level++;
MarbleRunner.saveGameData(_level,_score);
dispatchEvent(new DataEvent(MarbleRunner.EVENT_NAVIGATE,
true, false, MarbleRunner.FRAME_RESULTS));

}

private function onTimer(e:TimerEvent):void
{

var currentTime:int = LEVEL_LENGTH - Timer(e.target).
currentCount;

tfTime.text = timeToString(currentTime);
}

private function onTimerComplete(e:TimerEvent):void
{

_engine.endLevel(false);
}

private function timeToString(time:int):String
{

var timeStr:String = Math.floor(time / 60).toString();
timeStr += ":";
var seconds:String = "0" + (time % 60);
seconds = seconds.substr(-2);
timeStr += seconds;
return timeStr;

}

Every level clip is a class that extends LabyrinthLevel, which we
examined earlier. In the XFL document library, you can find each
of these levels, exported as Level1, Level2, etc. Since we’re not add-
ing any custom functionality, these classes will be generated auto-
matically by Flash on export. When nextLevel is called in the
GameClip, it concatenates “Level” with the current level number
and looks up the class definition. This and the Marble class we’ll
look at shortly are then passed to a new instance of the Labyr-
inthEngine class. The engine instance is offset 20 pixels down from

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 363

the top of the screen to make room for the UI elements like the
score, current level, and timer indicators.

The timer is also started at this point; when the timer runs out,
the game engine’s endLevel method is triggered to end the game.
However, if the level is completed before the timer runs out, the
levelComplete method that was passed into startLevel will be
called. This method calculates the player’s score based on how
much time they had left, increments the level counter, and saves
their progress. After that it redirects them to the results screen
that we’ll look at shortly. First, we’ll take a quick look at three
other classes used in the game: the Marble, the HazardPit, and
the StandardWall.

Marble
The IBall interface we examined earlier requires very little more
than a simple DisplayObject in order to serve the purposes of the
game engine. However, as this is the player “character,” it makes
sense to put a little more effort into its implementation. Our ball
will have a texture applied to it and appear to be three dimensional
as the texture will move in accordance with the ball’s movement.
This is accomplished by clever use of a mask and radial gradient. If
you open the Marble symbol from the XFL library, you’ll see sev-
eral layers. Figure 15.11A illustrates how the first two layers are
made up of a texture and a circular mask. Figure 15.11B shows the
gradient effect that will be laid over the masked texture to give it
lighting and a three-dimensional look. Finally, Fig. 15.11C repre-
sents the final composited effect.

In reality, the texture would bend around the edges of the ball a
little, an effect that could be created with a DisplacementMapFilter
or a PixelBender Shader. However, because it is so small, this effect
is entirely convincing for a moving ball and much less costly on the
CPU. Next, we’ll look at how we should use code to move the tex-
ture underneath the mask.

CREATING SCROLLABLE TEXTURES
The texture we’re using for the marble actually started out ¼ of its current
size. It is a seamless texture that is tiled into four quadrants, as shown in
Fig. 15.12. The reason we quadruple the image data is so that as the tex-
ture moves it will need to be repositioned to maintain the illusion of an
infinitely wrapping surface. If we were using higher resolution textures, or
many more than lone image in question, the quadrupling could be done
inside Flash by making multiple instances of the single tile.

import com.flashgamebook.iphone.engines.labyrinth.IBall;

final public class Marble extends Sprite implements IBall

Figure 15.11 The top two
components blended together
(A, B) result in the convincing
marble ball in the bottom
image (C).

364 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

{
public var shine:Sprite;
public var texture:Sprite;

private var _vx:Number = 0;
private var _vy:Number = 0;
private var _textureOffsetX:Number;
private var _textureOffsetY:Number;

public function Marble()
{

_textureOffsetX = shine.width/2;
_textureOffsetY = shine.height/2;

}

Both the texture and the three-dimensional effect (or “shine”)
are inside Sprites on the Stage. The shine also has cacheAsBitmap
turned on inside Flash though it could have just as easily been
enabled here in the code. The two-texture offset values represent
the coordinates at which the texture Sprite needs to have its posi-
tion reset. We’ll use these in a moment.

override public function getRect(coordinateSpace:DisplayObject):
Rectangle

{
return shine.getRect(coordinateSpace);

}

One quirk of DisplayObjects in Flash is that even areas outside
of a mask count toward the calculated dimensions of an object.

Figure 15.12 The texture used
is actually four copies of the
same texture in quadrants.

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 365

In other words, even though the ball itself is 18 × 18 pixels, the
rectangle returned by getRect is 36 × 36 because those are the
dimensions of the texture. Since this rectangle will be crucial in
performing hit detection in the engine, we employ a work-around
here; we override the getRect method to instead return the rectan-
gle for the shine Sprite. It reflects the correct dimensions and will
provide the desired data.

override public function set x(value:Number):void
{

var difference:Number = value - x;
texture.x += difference;
if (texture.x > _textureOffsetX)

texture.x -= shine.width;
else if (texture.x < -_textureOffsetX)

texture.x += shine.width;
super.x = value;

}

override public function set y(value:Number):void
{

var difference:Number = value - y;
texture.y += difference;
if (texture.y > _textureOffsetY)

texture.y -= shine.height;
else if (texture.y < -_textureOffsetY)

texture.y += shine.height;
super.y = value;

}

In addition to the override for getRect, we need to alter the
default behavior of the x and y accessors. Whenever the x and y
are set, we need to also update the position of the texture. This will
ensure that whenever the ball is moved, it will appear to roll in that
direction. The first step is to determine the distance the ball is
being moved and also move the texture by that amount. Then, we
test to see if the texture has moved outside of its “safe zone” and
reposition as necessary.

public function get vx():Number
{

return _vx;
}

public function set vx(value:Number):void
{

_vx = value;
}

366 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

public function get vy():Number
{

return _vy;
}

public function set vy(value:Number):void
{

_vy = value;
}

The last methods in the class are just the accessors required by the
IBall interface. The x and y velocity values are simply stored as mem-
ber variables. We don’t do anything with these values since they are
set and read by the engine. The final result from this class is a ball
that looks and reacts like a real ball would as it moves around the
labyrinth.

HazardPit and StandardWall
These last two game classes exist simply to fulfill the interface
requirements for the game engine. As such, they implement their
respective interfaces, cache themselves as bitmaps, and that’s it.
Here both of them are back to back since they’re almost identical.

import com.flashgamebook.iphone.engines.labyrinth.IHazard;

final public class HazardPit extends Sprite implements IHazard
{

public function HazardPit()
{

cacheAsBitmap = true;
}

}
import com.flashgamebook.iphone.engines.labyrinth.IWall;

final public class StandardWall extends Sprite implements IWall
{

public function StandardWall()
{

cacheAsBitmap = true;
}

}

If we wanted to have a hazard that consisted of a spinning
blade or a wall that animated in some kind of nonstandard way,
we would create new classes similar to these and add the required
functionality. This is where the extra effort of programming to
interfaces bears fruit. Although both of these classes are Sprites,
there’s no reason we couldn’t use a MovieClip instead or extend

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 367

them from some other type of DisplayObject. For that matter, they
could even be Shape objects that draw their contents dynamically;
the engine doesn’t care as long as the interface is implemented
properly.

Results
The final screen in Marble Runner is the results screen, where the
player’s score is totaled and can be submitted to the high-score
table. Figure 15.13 shows how this screen looks in practice.

final public class Results extends Sprite
{

public var btnPostScore:SimpleButton;
public var btnContinue:SimpleButton;
public var btnQuit:SimpleButton;
public var tfScore:TextField;
public var tfName:TextField;

public function Results()
{

addEventListener(Event.ADDED_TO_STAGE,
onAddedToStage, false, 0, true);

}

private function onAddedToStage(e:Event):void
{

tfScore.text = String(MarbleRunner.gameData.data.
score);

tfName.restrict = "A-Z";
btnPostScore.addEventListener(MouseEvent.CLICK,
onPostScore, false, 0, true);

btnContinue.addEventListener(MouseEvent.CLICK,
onContinue, false, 0, true);

btnQuit.addEventListener(MouseEvent.CLICK,
onQuit, false, 0, true);

}

private function onPostScore(e:MouseEvent):void
{

if (tfName.length < 3)
{

return;
}
Leaderboard.saveScore(MarbleRunner.gameData.
data.score, tfName.text.toUpperCase());

btnPostScore.removeEventListener(MouseEvent.
CLICK, onPostScore);

Figure 15.13 The results screen
of Marble Runner.

368 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

btnPostScore.mouseEnabled = false;
btnPostScore.alpha = .5;

}

private function onContinue(e:MouseEvent):void
{

dispatchEvent(new DataEvent(MarbleRunner.EVENT_
NAVIGATE, true, false, MarbleRunner.FRAME_GAME));

}

private function onQuit(e:MouseEvent):void
{

dispatchEvent(new DataEvent(MarbleRunner.EVENT_
NAVIGATE, true, false, MarbleRunner.FRAME_TITLE));

}
}

This screen uses an input TextField that allows a player to enter
his or her initials and submit them to the database. When the
player selects this input box, the iPhone’s virtual keyboard will
appear for them to type. Once they click Post Score, the saveScore
method of the Leaderboard class is called, which we dissected ear-
lier. To keep a player from submitting the score repeatedly, we dis-
able the button after it has been tapped once.

Design Considerations
Now that we’ve taken an in-depth look at all of the codes behind
Marble Runner, let’s take a moment to consider the elements of
game design that come into play in this example.

Level Design
If you open one of the Level clips inside the library, you’ll see that
it is composed of a bunch of wall Sprites and some positioning
clips. By building the engine and level classes to use this frame-
work, any developer could open this file and build new levels for
the game without having to touch any code, assuming they used
only the existing assets. This is an extremely important and inten-
tional decision to make when architecting a game engine. If you’re
a solo developer, you will have built yourself a powerful toolset for
making level design less tedious. If you are part of a team, some-
one else (maybe not even a developer) can be responsible for lay-
ing out levels and testing them without modifying the code base.
This is actually similar to how larger scale commercial games are
produced.

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 369

Risk and Reward Scenarios
In the second level, I introduce the first hazards (red
dots), as shown in Fig. 15.14. These red dots will reset
the player to the start of the level if they collide. The
most direct path for the player to take through the
level involves navigating around these red dots in very
close proximity. However, you’ll also notice that there
is also a secondary path along the left and bottom of
the level. This path has no hazards but is much more
out of the way and will take longer to navigate, assum-
ing the player doesn’t hit a hazard on the more direct
path. This is known as a risk/reward scenario; a player
is presented with the option to take a calculated risk
in order to reap a benefit. In this case, the reward for
navigating the hazards successfully is more time left
on the clock and a higher score. It is important to
think about scenarios like this in level design because
it provides a much richer experience for a broader
range of players. More conservative gamers who are
more interested in getting to the end might take the
safe path, whereas the user interested only in leader-
board rank will always want to risk being reset to
achieve the highest possible score.

Where to Take It
This engine provides a solid base on which many hundreds of
levels could be built with variety of artworks. However, there are a
number of enhancements that should be considered before you
could consider this a great game. Here are a few to ponder.

Scoring
This example features extremely basic scoring principles. For every
second left on the clock, 150 points are awarded. It doesn’t get much
more straightforward than that. To make it more interesting for
players, though, it would be a good idea to introduce other ways to
earn points. Maybe every level has a base score value that you receive
automatically for completing it. Maybe there is an additional bonus
that can be earned for completing a level without restarting it because
of a hazard.

Pickups
Although it would require modifying the base engine, a feature that
would be very welcome would be the idea of pickups. These would

Figure 15.14 The second level of Marble
Runner, where hazards are introduced.

370 Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME

be treated programmatically similarly to hazards, except that the
player would want to collide with them. Maybe they’re worth
points. Maybe they’re power-ups that make the ball temporarily
invulnerable to hazards. Maybe they’re required to exit the level.
How ever they’re implemented, this would bring a whole new
dimension to Marble Runner’s gameplay.

Scrolling Levels
In an early version of Marble Runner, I actually had this feature
implemented. Levels could be designed larger than the iPhone’s
screen size and the whole engine clip would reposition itself to
keep the ball centered in the frame as much as possible. While this
was not technically challenging to include, I removed it when run-
ning into performance problems on the iPhone. All of the redraw-
ing that occurred was very tasking on the iPhone and I felt it was
in the best interest of the example to remove it. There are other
alternatives for drawing the level to the screen that would be more
complicated, but I’ll leave that up to your ingenuity.

That concludes our look at Marble Runner. If you decide to make
a full-fledged game with this engine, please let me know. I’d love to
feature such a game on www.flashgamebook.com. In Chapter 16 the
final chapter, we’ll look at a two-player game intended for use on
Android devices, which will cover a handful of new topics.

Chapter 15 MARBLE RUNNER: OUR FIRST MOBILE GAME 371

This page intentionally left blank

16
AIR HOCKEY: A MULTITOUCH,
MULTIPLAYER TABLET GAME

CHAPTER OUTLINE
A Trio of Topics 374
Multitouch Input for Devices 374
The Finite-State Machine 375
Physics Simulation with Box2D 376
The Game: Two-Player Air Hockey 377

The XFL File 378
The Classes 378
Main.as 379
Title.as 380
Rules.as 381
GameTouchController.as 383
Game.as 387
AirHockeyEngine.as 397
Ready to Build 405

Conclusion 406

While the iPhone and iPad have been hogging the attention of
device users lately, Google’s Android platform has been the fastest
in terms of growth. This is because just about everything about the
platform is open source—people can feasibly make their own ver-
sions of the Android OS customized for their needs. This also
means all the basic tools to develop Android applications are free as
well, and there are few to no restrictions about putting applications
on phones or tablets. This also means that devices made by manu-
facturers can have a pretty wide variance in specifications (screen
size, processor and video speed, memory, storage, media devices
like cameras, and keyboards—virtual and slideout), leading to hard-
ware fragmentation. On top of that, in many cases the carriers of a
handset (such as AT&T, Sprint, Verizon, and so on) control when
users are allowed to upgrade to a new version of the OS. Google
releases new updates a couple of times a year, so devices can
quickly fall behind, leading to software fragmentation. These types
of fragmentation are arguably the biggest criticisms of the platform,

Real-World Flash Game Development, Second Edition.
© 2012 Elsevier Inc. All rights reserved. 373

as on paper everything else about Android is pretty awesome.
One of the best things about it is that starting with version 2.1
(and 2.2 more solidly), the Android OS allows for the use of Flash in
two flavors:
• As a plug-in to the Android OS Web browser, so you can view

Web sites just as you would on a desktop
• In the form of AIR, Adobe’s integrated package for desktop

applications built using HTML and Flash
In this chapter, we’ll be looking at the second of these two

options, using AIR for Android to publish a game directly to the
device. To use this example, you’ll need an Android phone or
tablet supporting v2.2 of the OS, like many newer devices by HTC,
Motorola, Samsung, and Google. If you have such a device, you’ll
need to visit the Android marketplace and download Adobe AIR
for it. Also, while in the name of the chapter, I call it out as a tablet
game; Android tablets are, as of this writing, still very expensive.
I actually developed this example on a Google Nexus One, so it
is playable on a phone. I simply imagined that the experience
would be better on a much larger screen with more room to move
around.

A Trio of Topics
In each of the examples in this book, I’ve tried to introduce new
aspects of game development along the way, even if they are only
indirectly related to the example. This chapter will cover three
topics I have mentioned only in passing up until now:
• Multitouch input (with an Android device, though the same API

works with iOS)
• A finite-state machine for controlling game flow and logic

(referenced in Chapter 1)
• A full rigid-body physics engine that is open-source, fast, and

used in many popular Flash games
This may seem like a lot, but don’t worry—I’m not diving terri-

bly deep into any of these topics, just what we need to get the job
done. By the time you finish with this chapter, you should feel
totally comfortable building games that use all three of the above
elements, as well as beginning to dig deeper into each of them.
We’ll pull all of these pieces together to create a simple, two-player
air hockey game like the one you may have played in an arcade or
even at someone’s house.

Multitouch Input for Devices
In Chapter 15, we explored using the accelerometer in a device to
control movement in a game. The other primary means of input

374 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

on a modern mobile device is a touch screen. All iOS or Android
devices support varying degrees of multitouch input, meaning they
support a variable number of points being touched on the screen
simultaneously. This is a very different model that we’re used to in
Flash, having relied on a single mouse or keyboard input. It’s also
very powerful, allowing a whole new level of control. Adobe has
done a particularly good job of implementing touch input inside of
Flash. There are three different modes in which Flash operates
when reading input from the touch display. These modes are
defined by the MultitouchInputMode class and are as follows:
• NONE: Any touches detected by the device are translated as

mouse events. This is the default mode in which all Flash
applications start, making it very easy to translate existing
content into mobile applications without any change in the
input scheme—this is also the mode we used in Chapter 15.

• TOUCH_POINT: Touches are translated into a series of new
events, defined by the TouchEvent class. Every touch has a
unique ID (integer) so as to distinguish them when they happen
simultaneously. This is needed when you need to be able to
capture more than one touch at once or to write handlers to
recognize custom gestures. This mode will be used in gameplay
later on in this chapter.

• GESTURE: Certain predefined gestures commonly supported by
touch devices (such as swipes, press-and-hold touches,
rotations, and so on) are read in this mode. Any touches that
don’t fall into a predefined gesture are treated like mouse
events, not unlike “NONE” mode. This mode is less relevant in
most games, unless they make specific use of the gestures. We’ll
use it briefly in this chapter just to show how it is implemented.
Flash can only operate in a single touch mode at a time, so you

need to plan for which kind makes the most sense for each part of
your application. Changing modes is as simple as setting the Multi-
touch.inputMode property to one of those three enumerations.

The Finite-State Machine
Up to this point, we’ve not looked at an example with complicated
enough behavior to warrant a full-state machine implementation,
but I would be doing a disservice to not demonstrate it at least
once. The version I’ll make use of in this chapter is essentially the
same model I use on a daily basis at Blockdot. It was written by
Jim Montgomery, one of my teammates, and was simple, straight-
forward, and very flexible. I won’t dig into the code under the
hood (though it is included as part of the source files), but I will
take a moment to describe how it works, which is ultimately more
important. In games in which you need to handle switching

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 375

between different logic during gameplay (which is most of them), a
state machine will become the backbone of your application. Here
are the steps you go through to set up the state machine we’ll be
using in this chapter:
1. Define all the states your game will need to use, each with a

unique integer identifier (in the case of the air hockey game, I’ll
make use of four discrete states).

2. Create event handlers for the logic that needs to happen in each
state. There are three components to every state:
a. ENTER: This event occurs once when a state is switched to

from another state.
b. UPDATE: This event occurs repetitively (usually on a frame

cycle) as long as the machine stays in this state.
c. EXIT: This event occurs when a call is made to the machine

to switch to a new state; this is usually reserved for doing
cleanup from the state being left.

3. Create a new instance of the state manager class and add each
of the states to it.

4. On an ENTER_FRAME loop or similarly timed event, call the
update method of the state machine.
Some of this will make more sense when we look at how it is

actually implemented in the game, which we’ll get to shortly. In
the meantime, suffice it to say that in practice, it is very simple to
set up and provides the most flexibility for adding new states or
changing the flow between states throughout development. There’s
a reason we use it on a daily basis!

Physics Simulation with Box2D
In Chapter 11, we took a look at some elementary physics princi-
ples that we will use commonly in games. In Chapters 14 and 15,
we implemented some very basic physics using simple collision
detection and gravity. However, in this example, a little more is
required. If you’ve ever played air hockey, you’ll know that the
puck ricochets off the two-player paddles, as well as the walls.
Gravity and friction are abated by the presence of upward blowing
air. We could write our own physics simulation to recreate all this,
but I’m not going to, favoring instead to use the very popular,
open-source Box2D library that has been ported to just about every
platform imaginable. I’m doing this for two reasons:
• Don’t re-invent the wheel. There are some cases in which

rolling your own physics is the best way to go because it will
have the lightest memory or processor overhead. We used a
custom system in Marble Runner in Chapter 15 because on the
iPhone, every single cycle was counted and it was more
important to be efficient than robust. On the Android, we’ve got

376 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

more speed available to us, so using a vetted, powerful physics
package makes the most sense.

• Box2D is widely used for Flash game development. It is popular
because it works well, is free, and is open source. It is
continually improved by the community, and because it is
supported on so many different platforms, it allows you to
switch between Flash and, say, native iOS development, and
maintain almost identical syntax.
There are a couple of things to note about Box2D. First is that I

will only be scratching the surface of its capabilities in this chapter.
I encourage you to explore it further on your own; it has a very
active community around it. The second is that the library has its
roots in the C language, so some of the ways in which you interact
with it are decidedly less “ActionScript like.” Everything about it is
engineered to run as fast and efficiently as possible. Luckily, it is
pretty well documented, so it is relatively easy to figure out how to
perform a specific task with it. The final note is that, like any robust
physics solution, Box2D operates abstracted away from the ele-
ments of the display list. What this means is that most of the work
we’ll be doing will be to bind the objects in the physics simulation
with DisplayObjects on the Stage to achieve the look we want.
We’ll dig into this further when we explore the air hockey engine.

The Game: Two-Player Air Hockey
The concept of air hockey, if you’re unfamiliar with it, is extremely
simple. The game is played on a table, usually designed to look
like a traditional hockey rink, with two openings on either end act-
ing as the goals. Two players are each given a round plastic instru-
ment, usually called a paddle (shown on the right in Fig. 16.1),
with which they must hit the puck (the disc shown on the left) into
their opponent’s goal. For the record, if you haven’t played this
game and my description just now was your first
exposure to it, put down this book right now and
go find a place to play it. It’s very fun!

For the virtual simulation of this game, we’ll
define some quick rules.
• In real air hockey, the puck and the paddles are

not too different in size from each other, radius
wise. In this version, the paddles will be enlarged
somewhat in proportion to the puck so as to
provide a usable target to hit with one’s finger.

• In the live game, players can feasibly reach
across the table to their opponent’s side to hit
the puck (though that is usually against the
rules). This will be very rigidly disallowed here

Figure 16.1 The puck (left) and paddle (right)
used in a typical air hockey game.

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 377

because we need to be able to assign touch events to either one
side or the other. If both players were tapping on the same side
of the screen, we wouldn’t be able to distinguish the difference
between them.

• This game will enforce a score limit of three goals to end a session.
That should be about all the setup we need—let’s dig into

some code!

The XFL File
From the Chapter 16 examples folder, open the AirHockey.xfl file in
the AirHockey directory. Note the differences and similarities to the
file we created for Marble Runner:
• The document frame rate is set to 30 fps. Since we’re on an

Android device (and, ideally, on a more powerful tablet rather
than just a phone), we can bump up the frame rate to a
smoother setting.

• The main timeline follows the same structure as before, utilizing
frame labels to denote the three main parts of the application.

• The library is also laid out in much the same way.
• Under the Publish Settings, the file is set to export as AIR for

Android.

The Classes
There are fewer classes we’ll be working with than the two previous
examples, primarily because we’re using Box2D for all the physics
(which consists of a lot of classes) and the game itself doesn’t need
the logic broken up into a bunch of components. We’ll still follow
the engine/application division of labor, where the engine should
behave as agnostically as possible to the application in which it
resides. However, the engine itself is mostly just there to provide a
communication layer between the application and the physics
simulation. We’ll look at this in depth shortly.

Because this example makes use of the Box2D library, as well as
a generic state machine and the Greensock Tweening library, the
game classes will live parallel to a lot of other code. The compo-
nents we’ll be looking at will be found at:

com.flashgamebook.android.airhockey

and

com.flashgamebook.android.airhockey.engine

Below are the classes we’ll examine and their responsibilities:
• AirHockeyEngine.as: As the engine, this manages the physics

simulation and updates the positions of the puck and two-
player paddles in reaction to the physics.

378 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

• AirHockeyEngineConfig.as: This is simply a basic structure,
consisting of parameters you need to define for the engine to
work. This is more practical than setting values directly on the
engine itself or passing in a horde of parameters to an
initialization function. Doing it in this way also lends itself
better to validation, like we performed on levels in Marble
Runner; however, I don’t implement any validation here.

• Main.as: The document class for the whole application. There
will be very little here, which is new from previous examples.

• Title.as: The class wrapper for the title screen—as basic as it
gets.

• Rules.as: The class wrapper for the rules screen, where I’ll
briefly demonstrate gesture events.

• Game.as: The heart of the application, which creates and
controls the state machine, routes input information, and
instantiates the engine.

• GameTouchController.as: The wrapper for touch input in the
game since we need it to behave in a specific way to avoid
twitchiness or hiccups.
We’ll start with the relatively superficial bits of application func-

tionality and then move to the game itself.

Main.as
As with other examples, the main document class just handles
navigation between sections of the game, which number three in
this application.

public class Main extends MovieClip
{

static public const FRAME_TITLE:String = "title";
static public const FRAME_RULES:String = "rules";
static public const FRAME_GAME:String = "game";

static private var mInstance:Main;

public function Main()
{

mInstance = this;
enumerateFrameLabels();
addEventListener(FRAME_TITLE, onFrameTitle,

false, 0, true);
addEventListener(FRAME_RULES, onFrameRules,

false, 0, true);
addEventListener(FRAME_GAME, onFrameGame, false,

0, true);
gotoAndStop(FRAME_TITLE);

}

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 379

static public function getInstance():Main
{

return mInstance;
}

private function onFrameTitle(_evt:Event):void
{

Multitouch.inputMode = MultitouchInputMode.NONE;
}

private function onFrameRules(_evt:Event):void
{

Multitouch.inputMode = MultitouchInputMode.GESTURE;
}

private function onFrameGame(_evt:Event):void
{

Multitouch.inputMode = MultitouchInputMode.
TOUCH_POINT;

}

private function dispatchFrameEvent():void
{

dispatchEvent(new Event(currentLabel));
}

private function enumerateFrameLabels():void
{

for each (var label:FrameLabel in currentLabels)
{

addFrameScript(label.frame-1,
dispatchFrameEvent);

}
}

}

The most notable element of this class is that each of the three
different application states uses a different form of multitouch
input. The title screen will use mouse events, the rules screen will
rely on gestures, and the game itself will use raw touch point data.
There’s also a static pointer (through getInstance) to the class so
that sections can easily navigate to other sections.

Title.as
On the heels of such a simple document class, an even simpler title
screen component can be obtained. Note that it uses standard

380 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

mouse events, so it will function in the same manner when being
run on a desktop machine.

public class Title extends Sprite
{

public var btnPlay:SimpleButton;
public var btnRules:SimpleButton;

public function Title()
{

addEventListener(Event.ADDED_TO_STAGE,
onAddedToStage, false, 0, true);

}

private function onAddedToStage(_evt:Event):void
{

btnPlay.addEventListener(MouseEvent.CLICK,
onPlayClick, false, 0, true);

btnRules.addEventListener(MouseEvent.CLICK,
onRulesClick, false, 0, true);

}

private function onPlayClick(_evt:MouseEvent):void
{

Main.getInstance().gotoAndStop(Main.FRAME_GAME);
}

private function onRulesClick(_evt:MouseEvent):void
{

Main.getInstance().gotoAndStop(Main.FRAME_RULES);
}

}

Rules.as
This class is a little more involved. If you refer to the XFL docu-
ment and open the Rules clip from the library, you’ll see that there
are two screens of instructions, but only one is visible on stage.
The other is off to the right, but they are both contained in a single
display object called clipRulesText. We’ll use a combination of ges-
tures and TweenNano (the superlight version of TweenLite) to
simulate the popular swiping effect used in many iOS and Android
applications. There are other ways to have organized this content,
but for the sake of this example, this was the most straightforward.

import flash.events.TransformGestureEvent;
import com.greensock.TweenNano;
import com.greensock.easing.Quad;

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 381

public class Rules extends Sprite
{

static private const NUMBER_OF_PAGES:int = 2;

public var clipRulesText:Sprite;
public var btnBack:SimpleButton;

private var mCurrentPage:int = 1;

public function Rules()
{

addEventListener(Event.ADDED_TO_STAGE,
onAddedToStage, false, 0, true);

}

private function onAddedToStage(_evt:Event):void
{

addEventListener(TransformGestureEvent.GESTURE_
SWIPE, onGestureSwipe, false, 0, true);

btnBack.addEventListener(MouseEvent.CLICK,
onBackButtonClick, false, 0, true);

clipRulesText.cacheAsBitmap = true;
}

Note that in setting up the input for this screen, we use the pre-
defined GESTURE_SWIPE event. Also worth noting is that we
attached a normal mouse listener to the back button since that is
how any nongesture input will be treated by Flash in this mode.
We also cache the text box as a bitmap for the best performance
when animating it with TweenNano.

private function onGestureSwipe(_evt:TransformGestureEvent):
void

{
if (_evt.offsetX < 0)
{

changePage(1);
}
else if (_evt.offsetX > 0)
{

changePage(-1);
}

}
private function onBackButtonClick(_evt:MouseEvent):void

{
Main.getInstance().gotoAndStop(Main.FRAME_TITLE);

}

382 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

private function changePage(_direction:int):void
{

mCurrentPage += _direction;
mCurrentPage = (mCurrentPage < 1) ? 1 : mCurrentPage;
mCurrentPage = (mCurrentPage > NUMBER_OF_PAGES) ?
NUMBER_OF_PAGES: mCurrentPage;

var targetX:int = (mCurrentPage - 1) * -loaderInfo.width;
TweenNano.to(clipRulesText, .25, { x: targetX, ease:
Quad.easeInOut });

}

In the onGestureSwipe event handler, we simply use the offset
property of the event to determine if they swiped from left to right
(positive) or right to left (negative). However, the behavior we’re
expecting is the inverse. When swiping from right to left, the user
wants to advance to the content on the right and vice versa for
going from left to right. This is handled by the changePage method,
which determines the new page to display and uses TweenNano to
slide the text clip around on stage. The net result is very natural,
similar to the native swiping used for menus in the Android OS.

Now that we’re done with the ancillary components to our
game, let’s dig into the gameplay itself. We’ll start with the touch
controller, so you’ll have context for what it does in the game.
Then, we’ll look at the application end of the game and how it
manages states. We’ll finish out the game with the engine and how
it drives the physics.

GameTouchController.as
As you saw in the main document class, when we enter the game
state of the application, we changed to the touch point form of
multitouch input. This will give us the flexibility we need for two
active players. The GameTouchController class is linked directly to
a display object on stage. In this case, there are two of them, one
for each side of the game board. They are on the layer input zones
in the XFL file, inside of the game clip. They are simply shapes
filled with a transparent color, so they will receive input events but
not be visible. Now let’s take a look at the code.

public class GameTouchController extends Sprite
{

private var mPosition:Point;
private var mCoordinateSpace:DisplayObjectContainer;
private var mDistanceThreshold:Number;
private var mTouching:Boolean = false;

public function GameTouchController()

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 383

{
mPosition = new Point();
addEventListener(TouchEvent.TOUCH_BEGIN,

onTouchBegin, false, 0, true);
addEventListener(TouchEvent.TOUCH_MOVE,

onTouchMove, false, 0, true);
addEventListener(TouchEvent.TOUCH_END, onTouchEnd,

false, 0, true);

addEventListener(MouseEvent.MOUSE_DOWN,
onMouseDown, false, 0, true);

addEventListener(MouseEvent.MOUSE_MOVE,
onMouseMove, false, 0, true);

addEventListener(MouseEvent.MOUSE_UP, onMouseUp,
false, 0, true);

}

public function init(_coordinateSpace:DisplayObject
Container, _initialPosition:Point, _distanceThreshold:
Number):void

{
mCoordinateSpace = _coordinateSpace;
mPosition = _initialPosition;
mDistanceThreshold = _distanceThreshold;
mTouching = false;

}

This class needs to keep track of a few things. One is the touch
position of the user’s finger, stored in mPosition. It also keeps track
of the coordinate space to translate the touch position, as having
the position relative to the touch controller itself isn’t likely to be
useful. There is a distance threshold variable, which is used to vali-
date whether the placement of a touch event is close enough to
the point stored in mPosition to update. This will prevent someone
from simply using two fingers to tap opposite sides of the game
board and have their paddle “snap” across the table. When a touch
occurs, if it is outside this distance threshold, it is ignored. The last
property the class stores is a flag to find whether a touch is occur-
ring. This will prevent updates unless someone starts touching
within the distance threshold. These values are all set in the init
function, which we will see later is called by the Game class. You’ll
also notice that in the constructor, we add listeners for both touch
events and mouse events. This is done for the purposes of debug-
ging. Since touch events only work on a device, if you want to test
simple functionality without publishing to that device every time,
you can just export a SWF in the Flash player and the behavior will
be mimicked using the mouse. In practice, it would be a good idea

384 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

when deploying the game to comment out the last three lines of
the constructor, so these methods are not called.

public function get position():Point
{

return mPosition.clone();
}

public function dispose():void
{

removeEventListener(TouchEvent.TOUCH_BEGIN, onTouchBegin);
removeEventListener(TouchEvent.TOUCH_MOVE, onTouchMove);
removeEventListener(TouchEvent.TOUCH_END, onTouchEnd);
removeEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);
removeEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);
removeEventListener(MouseEvent.MOUSE_UP, onMouseUp);

}

There is an accessor for getting the current finger position,
which simply returns a copy of the internally stored position. We
return a copy, so this value can’t be accidentally modified and
mess up the internal mechanics of the controller. The dispose func-
tion should be self-explanatory by now. It does cleanup of listeners
to free up memory.

private function onTouchBegin(_evt:TouchEvent):void
{

var newPosition:Point = new Point(_evt.stageX, _evt.stageY
)

newPosition = mCoordinateSpace.globalToLocal(newPosition);

if (Point.distance(mPosition, newPosition) <= mDistance
Threshold)

{
mTouching = true;
onTouchMove(_evt);

}
}

private function onTouchMove(_evt:TouchEvent):void
{

if (mTouching)
{

mPosition.x = _evt.stageX;
mPosition.y = _evt.stageY;
mPosition = mCoordinateSpace.globalToLocal(mPosition);

}
}

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 385

private function onTouchEnd(_evt:TouchEvent):void
{

mTouching = false;
}

When a new touch is detected, onTouchBegin is called. It trans-
lates the position of the touch into the coordinate space defined in
the init function and then compares it to the internally stored posi-
tion. If it falls within the threshold, the touching flag is set to true
and onTouchMove is called manually to force an update of the
position. onTouchMove is called automatically whenever movement
occurs on the touch display. When the touch is no longer detected,
onTouchEnd is called, setting the flag back to false.

// For Desktop debugging
private function onMouseDown(_evt:MouseEvent):void
{

var newPosition:Point = new Point(_evt.stageX, _evt.stageY
)

newPosition = mCoordinateSpace.globalToLocal(newPosition);

if (Point.distance(mPosition, newPosition) <= mDistance
Threshold)

{
mTouching = true;
onMouseMove(_evt);

}
}

private function onMouseMove(_evt:MouseEvent):void
{

if (mTouching)
{

mPosition.x = _evt.stageX;
mPosition.y = _evt.stageY;
mPosition = mCoordinateSpace.globalToLocal

(mPosition);
}

}

private function onMouseUp(_evt:MouseEvent):void
{

mTouching = false;
}

These three methods are the mouse versions of the touch hand-
lers we just examined. You’ll notice that they’re practically identical
because the events are so similar. This was a very wise move on

386 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

Adobe’s part when creating the touch event API—it’s very easy to
swap out mouse events for touch ones. Now, we’ll look at how this
class is used in the game.

Game.as
Before we dig heavily into the code for the Game class, let’s look at
what is inside the game clip in the XFL document. I’ve grouped the dif-
ferent types of components into layers for easy access, per Figure 16.2.

In the bottom-most layer is the basic line art for the rink,
encapsulated in a Sprite and set for bitmap caching. The second
layer contains the score display objects. They resemble text fields,
but they are actually MovieClips with the four possible score values
advancing over each frame. This would not be practical for a game
with an uncapped score, but for our purposes, it will work fine.

Figure 16.2 The game clip, layered in Flash.

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 387

Alternatively, you could place dynamic text fields inside the clips
and update them with the score. They are also cached as bitmaps
because they will live underneath other cached elements. Text in
particular has rendering performance lag when layered between
GPU-cached elements. You’re probably thinking “but wait, the con-
tents of the clip will change whenever the player scores, causing
Flash to redraw it.” You’d be right; however, this re-caching pro-
cess will take place when the game is not active, so there will be
no noticeable hiccup. The alternative would be to not cache it and
have it slow down the whole game considerably—not the best
option.

The third layer, “Bounds,” contains box clips I’ve created to act as
the borders of the table. The physics system will translate these boxes
(with the help of our engine) into mathematical constructs. This
allows us to fine-tune the layout of elements visually without adjust-
ing numbers in code. Note that each of these clips is named. Since
there are a limited number of them, I simply reference them later
on in the Game class. If the number of clips grew or had no limit,
I would apply the same method of crawling the display list that I
used in Marble Runner. However, because that involves the creation
of unnecessary stub classes, I’ve omitted that process here. The
“Game Objects” layer contains the puck and both paddles. Finally,
the top-most layer holds the GameTouchController objects we looked
at earlier. Now we’re ready to dive into the code for this sucker. We’ll
start by examining the member variables and constants.

public class Game extends Sprite
{

static public const STATE_PRE_GAME:int = 1;
static public const STATE_GAME_ACTIVE:int = 2;
static public const STATE_GAME_SCORE:int = 3;
static public const STATE_POST_GAME:int = 4;

static public const MAX_SCORE:int = 3;

static private const OVERLAY_PRE_GAME_COUNTDOWN:String =
"PreGameCountdown";

static private const OVERLAY_PLAYER_1_SCORE:String =
"Player1Score";

static private const OVERLAY_PLAYER_2_SCORE:String =
"Player2Score";

static private const OVERLAY_PLAYER_1_WON:String =
"Player1Won";

static private const OVERLAY_PLAYER_2_WON:String =
"Player2Won";

388 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

public var clipPaddle1:Sprite, clipPaddle2:Sprite,
clipPuck:Sprite;

public var clipGoal1:Sprite, clipGoal2:Sprite;
public var clipWall1:Sprite, clipWall2:Sprite, clipWall3:
Sprite, clipWall4:Sprite, clipWall5:Sprite, clipWall6:
Sprite;

public var clipTouchController1:GameTouchController,
clipTouchController2:GameTouchController;

public var clipScoreDisplay1:MovieClip, clipScoreDisplay2:
MovieClip;

private var mStateMachine:FSMManager;
private var mEngine:AirHockeyEngine;
private var mPlayer1Score:int = 0, mPlayer2Score:int = 0;
private var mOverlayClip:MovieClip;

The first four constants defined here represent the four different
states in which the game can function. Our state machine requires
a unique “int” identifier for every state registered with it, so this is
an easy way to enumerate them. The PRE_GAME state will consist
of the countdown prior to gameplay. GAME_ACTIVE will represent
the game in a state of play, where both players can give input and
the physics will be active. The GAME_SCORE state will take over
when a player scores, displaying who scored and resetting the
game board. Finally, when the game is finished, it will go to the
POST_GAME state.

The second set of constant values contains the names of over-
lays that will be displayed in the game at different points. These
name values correspond to MovieClips in the XFL library, as
shown in Fig. 16.3.

All of the public variables map to various display objects, all
pre-fixed with the word “clip.” This will allow us to easily pass
these objects into the engine, so it can bind them to the physics
simulation. Finally, there are member variables storing an instance
of the finite-state manager (more on that in a moment), an
instance of the AirHockeyEngine, the scores of the two players, and
a reference that will be used to store which overlay clip is currently
active. When none is displayed, this property should be null.

Figure 16.3 The overlay
MovieClips used in the
game—their class names
match the constant values
in the Game class.

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 389

public function Game()
{

addEventListener(Event.ADDED_TO_STAGE, onAddedToStage,
false, 0, true);

}

private function onAddedToStage(_evt:Event):void
{

// Create engine configuration and link it to stage display
objects

var config:AirHockeyEngineConfig = new AirHockeyEngineConfig();
config.mClipReference = this;
config.mPlayer1 = clipPaddle1;
config.mPlayer2 = clipPaddle2;
config.mPlayer1Goal = clipGoal1;
config.mPlayer2Goal = clipGoal2;
config.mPuck = clipPuck;
config.mPlayer1ScoreCallback = onPlayer1Score;
config.mPlayer2ScoreCallback = onPlayer2Score;
var boundaries:Vector.<DisplayObject> = new Vector.

<DisplayObject>();
boundaries.push(clipWall1, clipWall2, clipWall3,

clipWall4, clipWall5, clipWall6);
config.mBoundaryList = boundaries;
mEngine = new AirHockeyEngine(config);

// Set up state manager
mStateMachine = new FSMManager();
mStateMachine.addState(STATE_PRE_GAME, "AirHockeyState::

PreGame", onPreGameEnter, onPreGameUpdate, null);
mStateMachine.addState(STATE_GAME_ACTIVE, "AirHockeyState::

GameActive", onGameActiveEnter, onGameActiveUpdate, null);
mStateMachine.addState(STATE_GAME_SCORE, "AirHockeyState::

GameScore", onGameScoreEnter, onGameScoreUpdate, null);
mStateMachine.addState(STATE_POST_GAME, "AirHockeyState::

PostGame", onPostGameEnter, onPostGameUpdate, null);
mStateMachine.gotoState(STATE_PRE_GAME);

// Start the game loop
clipScoreDisplay1.gotoAndStop(1);
clipScoreDisplay2.gotoAndStop(1);
addEventListener(Event.ENTER_FRAME, onEnterFrame, false,

0, true);
}

private function onEnterFrame(_evt:Event):void
{

mStateMachine.update(Time.deltaTime);
}

390 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

public function dispose():void
{

removeEventListener(Event.ENTER_FRAME, onEnterFrame);
clipTouchController1.dispose();
clipTouchController2.dispose();
mStateMachine.dispose();
mEngine.dispose();

}

The first chunk of functionality in the class is all about initializa-
tion and disposal. When the clip is added to the stage, it performs
three main tasks. It creates an AirHockeyEngineConfig instance,
which as I mentioned earlier is just a structure for passing relevant
data to the engine. Although it is taking things a bit out of order,
here is the main content of that configuration class, for context.

public var mClipReference:Sprite;
public var mBoundaryList:Vector.<DisplayObject>;
public var mPlayer1:Sprite;
public var mPlayer2:Sprite;
public var mPlayer1Goal:DisplayObject;
public var mPlayer2Goal:DisplayObject;
public var mPuck:DisplayObject
public var mPlayer1ScoreCallback:Function;
public var mPlayer2ScoreCallback:Function;

Most of these should be self-explanatory, but I will call out a
couple of them for clarity. The clip reference member exists so the
engine has a context for the game that is using it. The boundary
list Vector is an easy way of pre-encapsulating all of the walls for
processing later since we don’t need to know about them individu-
ally. The two callback variables are for tying functionality from the
engine back to the Game class, by allowing the engine to trigger
events without knowing their context. We could use events for this
same purpose, but in the spirit of being efficient for mobile, call-
backs will work just fine.

Getting back to the initialization of the Game class, once all the
values for the config object have been assigned, a new instance of an
engine is created and passed this object. Next, the state manager is
created. For each of the four states we’ve already defined, we must
add that state to the manager. The FSM addState method expects a
numeric ID (the values we defined first in the class), a string descrip-
tion, and then up to three methods to call for that state. In the case
of this game, we’re not really interested in when a state is exited in
favor of another one. Instead, we want to know when a state is
entered and an update method to call every frame. We’ll look at all
of these methods shortly. Once the states are added, we tell the
machine to go to the PRE_GAME state, which will automatically start
the game.

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 391

The last task performed in the initialization is resetting the score
displays to their initial state (of 0) and attaching a listener to the
ENTER_FRAME event. In turn, the onEnterFrame handler simply
calls the state machine’s update method, passing it the delta time.
The machine will handle all of the other processing. Compared to
similar ENTER_FRAME loops we’ve looked at up to this point, this
is remarkably simple and will keep the logic for the game well
separated. You’ll notice that we don’t compute a value for the delta
time like we have in previous examples. Instead, we make use of a
class called Time with a deltaTime property. This is a custom utility
class that handles calculating these values for us. We’ll look at how
it works shortly, but for now suffice it to say that it is simply return-
ing a number that represents the change in time from the previous
frame in seconds.

The last method in the chunk of code we’re examining is the
dispose function. It performs cleanup across the board, calling the
dispose method of all of the game components and removing
the frame loop. When we leave the game, this will be called to free
up memory before moving to another section.

private function onPlayer1Score():void
{

mPlayer1Score++;
clipScoreDisplay1.nextFrame();
var overlayClass:Class = Class(getDefinitionByName(

OVERLAY_PLAYER_1_SCORE));
mOverlayClip = new overlayClass() as MovieClip;
mOverlayClip.cacheAsBitmap = true;
addChild(mOverlayClip);
mStateMachine.gotoState(STATE_GAME_SCORE);

}

private function onPlayer2Score():void
{

mPlayer2Score++;
clipScoreDisplay2.nextFrame();
var overlayClass:Class = Class(getDefinitionByName(

OVERLAY_PLAYER_2_SCORE));
mOverlayClip = new overlayClass() as MovieClip;
mOverlayClip.cacheAsBitmap = true;
addChild(mOverlayClip);
mStateMachine.gotoState(STATE_GAME_SCORE);

}

These two methods are almost identical; they are the callbacks
used for when the engine registers either player scoring a goal.
They display the correct overlay clip, increment that player’s
score, and change the state manager to the GAME_SCORE state.

392 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

We’ll now look at the methods we’ve defined for each state of the
game, breaking them into pairs.

private function onPreGameEnter():void
{

var overlayClass:Class = Class(getDefinitionByName(
OVERLAY_PRE_GAME_COUNTDOWN));

mOverlayClip = new overlayClass() as MovieClip;
addChild(mOverlayClip);

}

private function onPreGameUpdate(_dt:Number):void
{

if (mOverlayClip.currentFrame == mOverlayClip.totalFrames)
{

removeChild(mOverlayClip);
mOverlayClip = null;
mStateMachine.gotoState(STATE_GAME_ACTIVE);

}
}

When the PRE_GAME state is entered, it creates an overlay for
the countdown clip, which has a simple animation play to its com-
pletion. In the update loop for this state, we simply check to see if
the animation is done playing. If it is, we remove the animation
and then head directly into the GAME_ACTIVE state.

private function onGameActiveEnter():void
{

clipTouchController1.init(this, new Point(clipPaddle1.x,
clipPaddle1.y), clipPaddle1.height * 0.75);

clipTouchController2.init(this, new Point(clipPaddle2.x,
clipPaddle2.y), clipPaddle2.height * 0.75);

}

private function onGameActiveUpdate(_dt:Number):void
{

clipPaddle1.x = clipTouchController1.position.x;
clipPaddle1.y = clipTouchController1.position.y;
clipPaddle2.x = clipTouchController2.position.x;
clipPaddle2.y = clipTouchController2.position.y;
mEngine.setPlayer1Position(clipTouchController1.position.
x, clipTouchController1.position.y);

mEngine.setPlayer2Position(clipTouchController2.position.
x, clipTouchController2.position.y);

mEngine.update(_dt);
mEngine.checkForCollisions();

}

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 393

When the game becomes active, we initialize the two control-
lers with the current position of each paddle and set the distance
threshold to include a small amount of area outside the circum-
ference of each paddle. This “buffer” area will allow for the inher-
ent imprecision of touch displays and give a margin of error, so
the player doesn’t have to have their finger directly on the center
of a paddle in order to move it. In the update loop, we adjust
each paddle’s position to match that of the position stored in the
controller. We also update the player positions inside of the
engine and call two additional methods. We’ll explore these in
depth later in this chapter, but for now, all you need to really
know is that the update function of the engine advances the phy-
sics simulation and the checkForCollisions method sees if the
puck has come into contact with either player’s goal. If it has, the
callbacks we looked at earlier are called and the game changes
state to GAME_SCORE.

private function onGameScoreEnter():void
{

trace("::Entering Score State :: Player 1 -", mPlayer1Score,
", Player 2 -", mPlayer2Score);

}

private function onGameScoreUpdate(_dt:Number):void
{

mEngine.update(_dt);
if (mOverlayClip.currentFrame == mOverlayClip.totalFrames)
{

removeChild(mOverlayClip);
mOverlayClip = null;
if (mPlayer1Score == MAX_SCORE || mPlayer2Score ==

MAX_SCORE)
{

mStateMachine.gotoState(STATE_POST_GAME);
}
else
{

mEngine.reset();
mStateMachine.gotoState(STATE_GAME_ACTIVE);

}
}

}

The entrance function to this state doesn’t really have anything
to do since the score callbacks handled all of the immediate logic.
I included it for posterity and with a trace for debugging purposes
so that you can see when the game changes state. Like the
PRE_GAME state, the update loop here checks to see if the score

394 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

animation has finished. When it does finish, the game checks to
see if either player has reached the maximum score for the game,
defined at the beginning as a constant value of 3. If neither player
has reached the maximum score, the engine is reset and the game
goes back to the active state. If a player has won, the game goes to
its final state of POST_GAME.

private function onPostGameEnter():void
{

var overlayClass:Class;
if (mPlayer1Score > mPlayer2Score)
{

overlayClass = Class(getDefinitionByName(OVERLAY_
PLAYER_1_WON));

}
else
{

overlayClass = Class(getDefinitionByName(OVERLAY_
PLAYER_2_WON));

}
mOverlayClip = new overlayClass() as MovieClip;
mOverlayClip.cacheAsBitmap = true;
addChild(mOverlayClip);

}

private function onPostGameUpdate(_dt:Number):void
{

if (mOverlayClip.currentFrame == mOverlayClip.totalFrames)
{

removeChild(mOverlayClip);
mOverlayClip = null;
dispose();
Main.getInstance().gotoAndStop(Main.FRAME_TITLE);

}
}

All of this should look familiar at this point—an overlay is dis-
played showing the winner, and after that animation has finished
playing, the game disposes of itself and returns to the title screen.
That’s the extent of the Game class. Before diving into the engine
class, where we’ll roll up our sleeves with physics, let’s take a quick
look at the Time class I created earlier. It is generic enough that
you can use it in any project.

public class Time extends Sprite
{

static public const FPS24:Number = 1/24;
static public const FPS30:Number = 1/30;

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 395

static private var mInstance:Time = new Time();
static private var mCurrentTime:int;
static private var mPreviousTime:int;
static private var mFixedDelta:Number = -1;

public function Time()
{

if (mInstance) throw new Error("The Time class cannot
be instantiated.");

addEventListener(Event.ENTER_FRAME, onUpdateTime,
false, 0, true);

mCurrentTime = getTimer();
}

private function onUpdateTime(_evt:Event):void
{

mPreviousTime = mCurrentTime;
mCurrentTime = getTimer();

}

static public function fixDelta(_value:Number = -1):void
{

mFixedDelta = _value;
}

static public function get deltaTime():Number
{

if (mFixedDelta > 0)
{

return mFixedDelta;
}
return (mCurrentTime - mPreviousTime) / 1000;

}
}

All of the values stored inside the class are static, but it creates an
internal instance of itself in order to create its own ENTER_FRAME
loop. As you can see, it stores values for the current time and the time
in the previous frame so that when the accessor for deltaTime is
called, it can compute it on the fly. There’s also an additional function
called fixDelta. In certain cases, like with a physics simulation, you
might want the delta time to always be a consistent value so as to
maintain the fidelity of things like collision checking. This method
allows you to set the desired value that deltaTime will return every
time you call it. Although we won’t use it in this game, there are times
when it might well come in handy—there are even preset constants
defined for 24 and 30 fps deltas. To use this method, you’d simply call

396 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

Time.fixDelta(Time.FPS30);

From then on, you’d get a consistent value for the deltaTime, no
matter how much time had actually passed. To undo this action,
simply pass in a value of 0 or less:

Time.fixDelta(0);

You’re welcome. Now to get back to the game at hand.

AirHockeyEngine.as
The engine for this game, as I’ve already mentioned, utilizes Box2D
for its physics simulation. However, before we get started in the
engine, here is a quick look at Box2D’s core principles. I’ll be stay-
ing very much on the surface of this library, but if you want to
dig further, you can find a link to a fantastic series of tutorials at
www.flashgamebook.com.
• Box2D works in meters as its basic unit of measurement; one of

the first things to do when using the library is to establish your
conversion rate of pixels to meters. 30 pixels per meter is the
unofficial standard, because of how the simulation internally
handles its calculations.

• Every element inside a Box2D simulation is a mathematical
construct. It knows nothing about display objects, so our engine
will be responsible for mapping the simulation objects to visuals
on-screen.

• The coordinate space in which Box2D runs its simulation is
known as “the world” and is represented by an instance of the
b2World class. Objects in the world that take up physical space
are called “bodies,” represented by the b2Body class.

• Bodies can be static, dynamic, or kinematic. Static bodies do
not respond to forces and do not move, like concrete walls.
Dynamic objects move freely and respond to forces in the world
(like gravity and impacts with other objects). Kinematic objects
(which we won’t use in our game) are ones that move but don’t
respond to force—a good example might be gears that rotate by
themselves and move other bodies.

• Bodies are represented by shapes (such as squares, circles, and
triangles), and these shapes determine how they react in
collisions. However, shape objects do not have any knowledge of
the physical properties of the body, such as friction, density, and
so on. There is a separate kind of object, called a fixture, which is
used to define these properties for a body and bind it to a shape.

• No objects in Box2D are created directly. Rather, definition or
“def” objects are created, which are then passed to the world to
create the actual objects. Think of def objects such as blueprints
for the actual object to be created. You can use a def over and
over again, once the world uses it to create an object, it retains

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 397

no knowledge of the def. You’ll notice throughout the code
below that class names in Box2D consistently end with “Def”
when they refer to this construct.
Let’s now look at how these principles work in the context of

our engine.

public class AirHockeyEngine
{

public static const DISTANCE_RATIO:Number = 30;

private var mPhysicsEngine:b2World;
private var mConfig:AirHockeyEngineConfig;
private var mPlayer1:b2Body, mPlayer2:b2Body;
private var mPuck:b2Body, mGoal1:b2Body, mGoal2:b2Body;
private var mCollisionBodies:Vector.<b2Body>;
private var mPlayer1Joint:b2MouseJoint, mPlayer2Joint:

b2MouseJoint;
// Origin positions
private var mPlayer1Origin:b2Vec2, mPlayer2Origin:

b2Vec2, mPuckOrigin:b2Vec2;

The first thing we define as a constant is the pixels per meter
ratio I mentioned a moment ago. We then define member variables
for the different Box2D components we’ll want to keep track of: the
world and bodies for the paddles, puck, goals, and walls. There’s a
member variable to keep track of the engine config object we cre-
ated earlier in the Game class. We also define a new kind of object
called a b2MouseJoint. Joints are used in Box2D to connect two
objects to each other with some kind of physical constraints. In the
case of a b2MouseJoint, we’ll use it to connect the paddle bodies
to the world object so that we can use the mouse (or in our situa-
tion, touch input) to apply forces to it. We’ll see how this works
shortly. The last thing we define are origin positions for the two
paddles and the puck. These b2Vec2 objects, which you can sort of
think of like a cross between the Point and Vector3D objects in
ActionScript, will keep the original positions of the objects so that
we can restore the state of the game board at a moment’s notice.

public function AirHockeyEngine(_config:AirHockeyEngineConfig)
{

if (!_config)
{

throw new ArgumentError("The AirHockeyEngine
requires a AirHockeyEngineConfig struct to
instantiate.");

}

mConfig = _config;

398 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

// Set up Box2D World
setupPhysics();

}

public function dispose():void
{

mPhysicsEngine = null;
mConfig = null;
mPlayer1 = null;
mPlayer2 = null;
mPuck = null;
mGoal1 = null;
mGoal2 = null;
mPlayer1Joint = null;
mPlayer2Joint = null;
mCollisionBodies = null;

}

In the constructor, we simply pass and store the AirHockey-
EngineConfig object and then call setupPhysics, which we’ll examine
next. The dispose function, which the Game class calls, simply nulls
out every member variable.

private function setupPhysics():void
{

mPhysicsEngine = new b2World(new b2Vec2(), false);
// Create paddle bodies
mPlayer1 = displayObjectToCircle(mConfig.mPlayer1,
mPhysicsEngine);

mPlayer1Origin = mPlayer1.GetPosition().Copy();
mPlayer2 = displayObjectToCircle(mConfig.mPlayer2,
mPhysicsEngine);

mPlayer2Origin = mPlayer2.GetPosition().Copy();
// Create paddle reaction joints
var jointDef:b2MouseJointDef = new b2MouseJointDef();
jointDef.bodyA = mPhysicsEngine.GetGroundBody();
jointDef.bodyB = mPlayer1;
jointDef.target = mPlayer1.GetPosition();
jointDef.maxForce = 300.0 * mPlayer1.GetMass();
mPlayer1Joint = mPhysicsEngine.CreateJoint(jointDef) as
b2MouseJoint;

jointDef.bodyB = mPlayer2;
jointDef.target = mPlayer2.GetPosition();
jointDef.maxForce = 300.0 * mPlayer2.GetMass();
mPlayer2Joint = mPhysicsEngine.CreateJoint(jointDef) as
b2MouseJoint;

// Create puck and goals

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 399

mPuck = displayObjectToCircle(mConfig.mPuck,
mPhysicsEngine);

mPuck.SetLinearDamping(.8);
mPuckOrigin = mPuck.GetPosition().Copy();
mGoal1 = displayObjectToBox(mConfig.mPlayer1Goal,

mPhysicsEngine);
mGoal2 = displayObjectToBox(mConfig.mPlayer2Goal,

mPhysicsEngine);

for each (var boundary:DisplayObject in mConfig.
mBoundaryList)

{
displayObjectToBox(boundary, mPhysicsEngine);

}

mCollisionBodies = new Vector.<b2Body>(2, true);
}

When setting up a b2World object, you can define certain prop-
erties of it, such as gravity and whether objects are allowed to
sleep (that is, be removed from the calculations of the simulation if
they’re not moving). In our case, since the gravity of our game is
downward through the z-axis of the board, we don’t want the phy-
sics engine to apply gravity. Passing an empty b2Vec2 gives us a
gravity of 0. The next few lines create the body objects for the pad-
dles and copy their original position for the origin objects. You’ll
notice that this process uses a method called displayObjectToCircle.
This is a static function we’ll look at shortly. It takes a display
object and the corresponding b2World object and performs all the
processes of “converting” the visual representation into a mathe-
matical circle. For the walls, we’ll use a very similar function, dis-
playObjectToBox, which works for rectangular objects.

After defining the bodies for the paddles, we need joints to attach
them to the world, so they have a reaction to input. This is done by
creating a new joint definition of the type b2MouseJointDef. Joints
have to have two bodies to work, so the first body we supply is the
world’s “body” and the second is the paddle to which it will attach.
The target of a joint is the position to which it wants to move. When
reading input later on, we’ll change this target vector to reflect the
position of the player’s finger. This change in target will cause the
joint to react, exerting a force on the paddle body. The last thing we
do before creating the joint in the world is to specify a maxForce
property, which, according to the Box2D manual, is “used to prevent
violent reactions when multiple dynamic bodies interact.” Think
of it as a throttle on the force you can exert. I wish I could say
the value of 300 times the mass of the paddle was a value I calcu-
lated carefully. Unfortunately, like so much of working with physics

400 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

in games, it was a value that after some testing “felt right.” Often,
real-world accuracy is not what is desired in a physics simulation, so
elements like this will require some futzing with values to get the
desired feel. After creating the joints for the paddles, we simply con-
vert the other display objects passed into the config. We’ll now look
at these two conversion functions and how they work. They’re very
similar overall, so we’ll start with the displayObjectToBox and then
look at the differences when we need a circle instead.

private static function displayObjectToBox(_displayObject:
DisplayObject, _world:b2World):b2Body

{
// Create body def
var bodyDef:b2BodyDef = new b2BodyDef();
bodyDef.type = b2Body.b2_staticBody;
var rect:Rectangle = _displayObject.getRect(_displayObject.
parent);

bodyDef.position.Set((rect.left + rect.width/2) /
DISTANCE_RATIO, (rect.top + rect.height/2) / DISTANCE_
RATIO);

// Create shape and fixture
var boxShape:b2PolygonShape = new b2PolygonShape();
boxShape.SetAsBox((rect.width / 2) / DISTANCE_RATIO,
(rect.height / 2) / DISTANCE_RATIO);

var fixtureDef:b2FixtureDef = new b2FixtureDef();
fixtureDef.shape = boxShape;
fixtureDef.density = .5;
fixtureDef.friction = 1;
fixtureDef.restitution = 0.1;
// Create body
var body:b2Body = _world.CreateBody(bodyDef);
body.CreateFixture(fixtureDef);
return body;

}

For all of the boxes in this engine, we just need them to provide
fixed boundaries, so we can conveniently define all of the box body
types as static. We use the getRect method of the DisplayObject
we’ve used in previous chapters to get the dimensions of the box.
We then use this rectangular object to set the position and shape of
the body. The shape object we use, which is a generic b2Polygon-
Shape, has a convenient SetAsBox method that is used to quickly
define a rectangular shape. You may notice that we pass the SetAs-
Box method half the width and height of the rectangle. This is
because the box will be centered on its position and the method
wants to know how far out from the center to travel. Next, we create
a fixture object that defines the physical properties of the walls. As
these objects are static, the only real value we’re concerned with is

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 401

restitution, which is how much bounce occurs when things hit the
walls. A value of 0 would mean that no bounce occurred. A value
of 1 would mean that a bounce of exactly the same magnitude of
its incoming force would occur. We’ll see how this applies for the
paddle and puck objects in a moment. The final step is to create a
body in the world using the definition object, and then attach its
fixture.

private static function displayObjectToCircle(_displayObject:
DisplayObject, _world:b2World):b2Body

{
// Create body def
var bodyDef:b2BodyDef = new b2BodyDef();
bodyDef.type = b2Body.b2_dynamicBody;
bodyDef.position.Set(_displayObject.x / DISTANCE_RATIO,

_displayObject.y / DISTANCE_RATIO);
// Create shape and fixture
var circleShape:b2CircleShape = new b2CircleShape(

(_displayObject.height / 2) / DISTANCE_RATIO);
var fixtureDef:b2FixtureDef = new b2FixtureDef();
fixtureDef.shape = circleShape;
fixtureDef.density = .5;
fixtureDef.friction = .5;
fixtureDef.restitution = 1;
// Create body
var body:b2Body = _world.CreateBody(bodyDef);
body.CreateFixture(fixtureDef);
return body;

}

For circle objects like the puck and paddles, we do almost the same
process, except that we use a b2CircleShape instead of a polygon. We
also apply a restitution of 1, so there will be a nice bounce when the
paddles impact the puck. Now that we’ve got all of the setup in order,
we’ll look at what happens with the engine updated every frame.

public function update(_dt:Number):void
{

mPhysicsEngine.Step(1/30, 10, 10);
mPhysicsEngine.ClearForces();

mConfig.mPlayer1.x = mPlayer1.GetPosition().x *
DISTANCE_RATIO;

mConfig.mPlayer1.y = mPlayer1.GetPosition().y *
DISTANCE_RATIO;

mConfig.mPlayer2.x = mPlayer2.GetPosition().x *
DISTANCE_RATIO;

mConfig.mPlayer2.y = mPlayer2.GetPosition().y *
DISTANCE_RATIO;

402 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

mConfig.mPuck.x = mPuck.GetPosition().x * DISTANCE_RATIO;
mConfig.mPuck.y = mPuck.GetPosition().y * DISTANCE_RATIO;

}

Surprisingly simple, you say? This is where the beauty of Box2D
really shines. Once the simulation has been configured correctly,
you simply tell the world to advance or Step, passing it the delta
time (in this case, a fixed 1/30th of a second), and the number of
collision iterations to perform. The values I’m using for both types of
collisions, 10 and 10, are fairly standard in the Box2D community for
most uses. Basically, the more iterations it performs, the more accu-
rate the simulation and the lower the risk of missed collisions. How-
ever, every iteration adds computation cycles that eat processing
power. You generally want to keep this as efficient as possible, espe-
cially on a mobile device. The ClearForces method is then called to
“clear any forces you applied to bodies,” according to the Box2D
manual. In earlier versions, this was done automatically by the step-
ping process, but it is now done manually so that you can perform
multiple steps before resetting forces. After the two commands of
the physics simulation are called and all of the bodies have been
subsequently updated, it’s time to adjust the positions of our display
objects. The next six lines of code simply update the x and y coordi-
nates of the two paddles and the puck.

With only the update function in place, our game would run
just fine since all of the heavy lifting is done by Box2D. However,
as is, we have no way of knowing when a player lands the puck in
their opponent’s goal. If you recall from the Game class, we called
a method named checkForCollisions that does just that.

public function checkForCollisions():void
{

for (var collision:b2Contact = mPhysicsEngine.
GetContactList(); collision; collision = collision.
GetNext())

{
mCollisionBodies[0] = collision.GetFixtureA().

GetBody();
mCollisionBodies[1] = collision.GetFixtureB().

GetBody();
if (mCollisionBodies.indexOf(mPuck) > -1 &&

mCollisionBodies.indexOf(mGoal1) > -1)
{

if (mConfig.mPlayer2ScoreCallback != null)
{

mConfig.mPlayer2ScoreCallback();
break;

}
}

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 403

if (mCollisionBodies.indexOf(mPuck) > -1 &&
mCollisionBodies.indexOf(mGoal2) > -1)

{
if (mConfig.mPlayer1ScoreCallback != null)
{

mConfig.mPlayer1ScoreCallback();
break;

}
}

}
}

Box2D stores all collisions calculated in a particular step in
essentially an internal array. The information about when two
objects touch and the associated forces is stored in a b2Contact
object. Instead of giving us access to an array to iterate through, we
have to get at this collision data in an unusual way. Basically, calling
GetContactList on the world object returns the first collision it calcu-
lated (rather than an actual list). If there are none, it will return null.
Once you have this collision, to get the next one, you must call the
GetNext method of the contact object. This continues through all
remaining collisions until eventually GetNext will return null. This is
why we have such a nonstandard for loop; once the collision vari-
able is null, the loop will end. For each contact object, we check to
see if the two bodies in the collision are the puck and either of the
goals. If the puck is touching Player 1’s goal, Player 2 scores and vice
versa. At this point, we run the callback function specified in the
configuration earlier and let the game logic take over. We also
assume that no further collisions need to be considered, so we break
from the loop to prevent unnecessary object creation. Now we need
to allow the controller class to update the positions of the paddles.
This is done through the following methods:

public function setPlayer1Position(_x:Number, _y:Number):void
{

mPlayer1Joint.GetTarget().Set(_x / DISTANCE_RATIO, _y /
DISTANCE_RATIO);

}

public function setPlayer2Position(_x:Number, _y:Number):void
{

mPlayer2Joint.GetTarget().Set(_x / DISTANCE_RATIO, _y /
DISTANCE_RATIO);

}

Both work exactly the same way, setting the target of each asso-
ciated mouse joint to the touch coordinates passed. Updating this
target will make the joint react by exerting a force on the paddle.

404 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

This force will then translate to the puck when they collide. The
final method we’ll look at in this class is the reset function. This
will reset all of the moving bodies to their original coordinates:
exactly what you’d want to do after a player scores.

public function reset():void
{

mPlayer1.SetPosition(mPlayer1Origin);
mPlayer1Joint.SetTarget(mPlayer1Origin);
mPlayer2.SetPosition(mPlayer2Origin);
mPlayer2Joint.SetTarget(mPlayer2Origin);
mPuck.SetPosition(mPuckOrigin);
mPuck.SetLinearVelocity(new b2Vec2()); // Stop puck in
case it is in motion

mConfig.mPlayer1.x = mPlayer1.GetPosition().x *
DISTANCE_RATIO;

mConfig.mPlayer1.y = mPlayer1.GetPosition().y *
DISTANCE_RATIO;

mConfig.mPlayer2.x = mPlayer2.GetPosition().x *
DISTANCE_RATIO;

mConfig.mPlayer2.y = mPlayer2.GetPosition().y *
DISTANCE_RATIO;

mConfig.mPuck.x = mPuck.GetPosition().x * DISTANCE_RATIO;
mConfig.mPuck.y = mPuck.GetPosition().y * DISTANCE_RATIO;

}

We use the origin positions we stored during setup to reset the
paddles and puck. We also force the velocity of the puck to 0 in
case it was moving when reset was called. Finally, we simply adjust
the display objects exactly the same way we did in the update
method.

Ready to Build
We’re done! We’ve covered all of the code that is in this example. If
you have an Android device setup for debugging, you should be
able to plug it into your computer and publish this game directly
to it. You should notice very smooth motion and reaction to touch
input. There are definitely optimizations that would need to be
made for mobile if you were to start using lots of dynamic objects.
In fact, for mobile development Adobe recommends the use of a
different version of Box2D. It is actually the original C++ version of
the library, run through a piece of Adobe software called Alchemy.
Alchemy turns libraries of C and C++ code into Flash SWC files.
These SWC libraries can then be included in your projects and
tend to perform much faster than traditional ports. There is a
link to the alchemy port of Box2D on www.flashgamebook.com.

Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME 405

You may be asking at this point “Why would you have not just
used that version of the library?” I used the open source, tradition-
ally ported version because it is updated more often (as of this
writing) and it allows those interested in digging further to examine
the entire source tree. The Alchemy process leaves no exposed
code, and even if it did, it would likely not be as readable as a
line-by-line port. Because the syntax is slightly different in a few
cases, switching to the Alchemy version is not as simple as swap-
ping out library references. However, it would make an excellent
exercise to port this air hockey game to the Alchemy version … an
excellent exercise for you, my dear reader, that is.

Conclusion
You’ve reached the end of the examples in this book, congratulations!
I hope you feel empowered to take on a Flash game of your own,
regardless of the platform. Also, don’t forget that there are additional
bonus chapters and appendices available on www.flashgamebook
.com, covering topics such as localization into other languages, JSFL
Flash IDE scripting, creating back-end services with PHP, security,
and more. Simply download them to your computer and continue
reading!

406 Chapter 16 AIR HOCKEY: A MULTITOUCH, MULTIPLAYER TABLET GAME

AFTERWORD: FLASH’S FUTURE
IN GAMES

In the afterword of the first edition of this book, I challenged my
readers to do something different and original with their Flash
games to help legitimize it as a gaming platform. That feels a little
unnecessary, 18 months later, with all that has happened with multi-
ple new platforms and Adobe’s recent open commitment to support-
ing game developers with features such as hardware acceleration
and controllers. The platform is legitimate for games and none of us
have to prove that any longer. Instead, we need to push Adobe to
improve the toolset and platform.

Obviously, I’m a big proponent of Flash (or it wouldn’t make
much sense for me to write this book), but I’m also mindful that it
may someday be relegated to the fate of Shockwave and other
high-level development platforms. The Apple versus Adobe debacle
showed that Flash is not impervious to criticism (and that some of
it is very valid). You may someday not be able to use Flash to
reach a particular platform—and that’s okay! As Keith Peters said
at one point on his blog when talking about Apple’s stance, “Be a
professional. Learn a new language.” I agree with this philosophy
wholeheartedly. At the same time, Flash still has quite a bit of life
left in it, and the community needs to be vocal with Adobe to
demand that they keep Flash up to par with the expectations of its
competitors and users. They will listen, and if they want Flash to
survive, they will evolve.

I hope this text has been helpful to you, and I hope that you’ll
take a few minutes to leave feedback on this book’s Web site,
www.flashgamebook.com. It means a lot to me to hear comments,
both positive and critical, and helps me improve my writing for
future editions and other books. Thanks for your support.

AFTERWORD: FLASH’S FUTURE IN GAMES 407

This page intentionally left blank

INDEX

Page numbers in italics indicate figures and tables

A
Absolute-value function, 190
Acceleration, 213
Accelerometer class, 339–340
axes of, 340
orientation computation,
340–342

values, 341–342
Accessor, 40–41, 385 see also

mPosition
Action games, 3
Action Message Format (AMF),

357
advantages, 358

ActionScript 3 (AS3), 14
classes, 36, 37
collision detection, 228–229
comment block, 67–68
communication model,
85–86, 86

constants, 79
data structures, 61–67
design pattern importance, 82
distance formula, 192
E4X, 158–159
editor, 16, 17
errors, 58–61
events, 52–58
GC system, 74–76
Math class, 184
physics, 211–214
radian to degree conversion, 189
tasks, 330
transforms, 200
variables, 79
working with multiple SWF
files, 72–73 see also Flash
see also Object-oriented
programming (OOP)

activate method, 258
Activity Monitor on Mac, 17, 19
addEventListener, 53

parameters, 54
addFrameScript, 69
Adobe, 16
Flash, 13
Flash CS5.5, 272
naming convention, 41

Adobe Media Encoder, 143, 143
alpha-channel clips, 154
Bitrate, 144
cutscenestyle videos, 142–145
preset customization, 144
settings, 144
Start Queue, 145 see also Video

in flash games
Adobe’s SoundBooth, 121 see also

Sound
ADPCM, 120, 120
Adventure-style games, 2
Ahead-of-time (AOT), 326
AI, see Artificial intelligence (AI)
Air Hockey, 376–377
AirHockey.xfl filep, 378
game classes, 378–379
game clip, 387
rules, 377
Two-Player, 377

AirHockeyEngine.as, 378, 397–405
b2Contact object, 404
Box2D’s core principles, 397–398
checkForCollisions function,
403, 404

displayObjectToBox function,
400–402

reset function, 404–405
setupPhysics function, 399–400
update function, 402

AirHockeyEngineConfig.as, 379,
391

Alchemy, 405–406
Algorithm, 6
American square grid type,

159–178, 160

AMF, see Action Message Format
(AMF)

AMFPHP, 32, 358
Android, 373
Air Hockey in, 405–406
Flash in, 373
Multitouch Input, 374
software fragmentation, 373
user input in, 338

Animation, 103
character, 141
easing, 104
through Flash, 15, 21
Flash CS5, 23–24
format, 153
vs. Games, 22
scripted, 105
Scripted Shooter, 105–109
sequencing, 104–105
timeline for, 93–94
tween, 105 see also Game

appendChild method, 180
Application responsibilities, 273
ApplicationDomain, 73, 132
Application-level code, 273
Application-specific classes, 328
Architecture, transitioning to, 82
Array
advantages, 63
concat method, 63
indexOf method, 64
lastIndexOf method, 64
sortOn method, 63–64

Artificial intelligence (AI), 9
ASDoc formatting, 67
Asset, 23, 315–316
classes, 310–316
library, 343
list, 28, 34
management, 294 see also
unloadAndStop method;
Video

INDEX 409

Attributes, 8, 159
dynamic, 42
final, 42
internal, 9, 42
private, 9, 42
protected, 8, 42
public, 8, 42
static, 9, 42

Audacity, 121
Author-time events, 12

B
b2MouseJoint, 398
b2Vec2 objects, 398
Back-end integration, 31
Bitmap
cacheAsBitmapMatrix, 325
caching limitations, 326
GPU caching, 323
properties panel, 98
smoothing, 99, 100

Board/card-based games, 5
BoundaryList Vector, 391
Bounds layer, 388
Box2D, 377
alchemy, 405–406
classes, 378
physics simulation with,
376–377

Bubbling listener, 53
Bubbling phase, see Bubbling

listener
Buffer area, 394
ByteArrays, 66

C
cacheAsBitmapMatrix, 325
CamelCase, 37
Capture listener, 53
Capture phase, see Capture

listener
Card-based games, see Board/

card-based games
Cartesian coordinate system, 346,

184, 185
Casting, 51
changePage, 383
checkCard method, 113
checkPiece method, 259

Classes, 7, 36, 78
accessor, 40–41
vs. base class, 48
casting, 51
constants, 38
constructors, 38
using exported symbols, 49–50
as files, 37
getDefinitionByName, 51
identifiers, 42
inheritance, 44
interfaces, 44–47
linking to assets, 47–48
methods, 38–39
for multiple symbols, 49, 50
naming convention, 37, 41, 41
object, 36
overriding method, 43
packages, 37
polymorphism, 43
properties panel, 49
sub and super classes, 42, 44
in SWF, 48
variables, 38
void keyword, 40

Classical mechanics, 211
cleanUp function, 75, 258
ClearForces method, 403
clearSelection method, 175
Clip reference member, 391
clipRulesText, 381
Clone method, 58
Code editor, see ActionScript—

editor
Coefficient of friction, 213
Collision detection, 227
combination of approaches,
242

distance formula, 234
hitTestObject, 228–229
hitTestPoint, 229–234
pixel-perfect, 241
rect testing, 235–241
rotation, 228

Compiler, 328
Compile-time
errors, 59
events, 12

concat method, 63
config, 181, 182 see also Flash Vars
Constructor, 38, 399

Containers, 78
contentLoaderInfo object, 72
createBoard function, 257
createTunnel function, 197, 198
Crossword Builder, 179–180
Crossword puzzle, 159–179, 178

American square grid type, 159,
160

appendChild method, 180
clue node, adding, 161
components, 160, 162
CrosswordClue class, 167–168
CrosswordPuzzle class, 168–179
CrosswordTile class, 163–167
FileReference save method, 180
grid squares, 160
savePuzzle method, 179
structure in XML, 159
SWF, 179
word and clue association, 162
XML editor, 179
XML loading, 179 see also
Word game

CrosswordClue, 168
CrosswordClue Class, 167–168
Sprite, 167
symbol properties, 168

CrosswordPuzzle Class, 168–179
clearSelection method, 175
constants and properties, 169
createPuzzle function, 170–172
keyDown method, 176–177
package, 169
selectTile, 174–175
variables, 170
XMLList object, 172

CrosswordTile Class, 163–167, 166
activate and deactivate
methods, 165

class and package, 163
constructor, 165–166
CrosswordTile, 166, 166
init method, 166
letter property, 164
protected variables, 163
public getters and setters,
163–164

public variables, 163
publicly exposed methods, 164
setAnswer, 165
wordIndex property, 164

410 INDEX

Custom class, 145–146
see also Cutscenes

CutsceneManager, 145–151
constructor function, 147
controlling methods, 147
custom class, 145–146
methods, entire script of, 149
NetConnection function, 147
NetStatusEvent messages, 147
playCutscene method, 148
protected properties, 146
setupConnection function, 147
stopCutscene method, 148
working with, 151
see also Cutscenes

Cutscenes, 142, 142
Adobe Media Encoder, 144
CutsceneManager function,
145–151

encoding, 143–145
see also Menus
see also Video in flash games

D
Data processing layer, 180
Data structures, 61
arrays, 63–65
bytearrays, 66
custom, 67
dictionaries, 65–66
objects, 62–63
vectors, 65

Data types, basic, 182
deactivate method, 258
Deblocking, 99
Debugging, 19
deltaTime function, 217, 396–397
Design patterns, 7
Dictionaries, 65–66
dispatchEvent method, 52–53
Dispatching, 52
Displacement, 212
Display package, 37
DisplayObject, 69, 193
collision detection, 228
matrix of, 325
rotation, 193–194
and vanishing point, 193, 195
visible property, 232, 232

displayObjectToBox function, 400

displayObjectToCircle function,
400

dispose function, 385
Distance formula, 191–192
balls on pool table, 235
collision detection, 234
feature, 235
players hit area, 234, 235
between two edges, 235
between two points, 235
see also Pythagorean
theorem

Distance threshold variable, 384
Document class, 336–338
Driving games, 214
Drivingsimdrift, 223
Dynamic objects, 75

E
E4X, see ECMAScript for XML

(E4X)
Easing, 104
ECMAScript for XML (E4X),

158–159
advantage, 172
features, 159
XML loading, 158 see also XML

8-bit alpha channel, see PNG8+8
8-bit color channel, see PNG8+8
Encapsulation, 83
Enemy, 275
Enemy class, 204–205, 236–237
enemyFrequency, 206
enemyMovementFinished, 207
enemyTime, 206
Engine, 273
responsibilities, 273
see also Application
responsibilities

Engine/application division of
labor, 378

ENTER mode, 376
ENTER_FRAME
event, 392
loop, 376

enterFrame method, 234
enumerateFrameLabels method, 71
Errors, 58
catch statement block, 59
compile-time, 59

finally statement block, 60
fixing, 59
runtime, 59
subclasses, 58
throwing, 60–61
try statement block, 59

Euclidean geometry, 184
Events, 11–12, 52–58
addEventListener, 53, 56
cancellation, 56
custom, 57–58
dispatchEvent method,
52–53, 55

DisplayObjects, 69
phases, 53, 56
phases, 68
propagation, 56
removeEventListener method,
55

Exceptions, see Errors
EXIT mode, 376

F
FileReference save method, 180
Filters, 321–322
with PixelBender, 322
when to apply, 321

Finite-State Machine, 374–376
fixDelta function, 396–397
FLA source file format, 91
conversion from CS4, 92
see also Raster formats

Flash, 3, 217, 320
accelerometer class, 339–340
ActionScript editor, 16
activity monitor on Mac, 17, 19
animation vs. games, 22
application vs. games, 22–23
asset sorting, 93
board/card-based games, 5
coordinate system, 184
CS4, 14, 103
CS5, 14, 17, 23
CS5.5, 100, 100–101
CS5+, 92
DisplayObject in, 11, 193, 193
events and listeners, 11
FLA source file format, 91
Flash Builder, 16
FlashDevelop, 16, 18

INDEX 411

Flash (Cont.)
FlashTracer, 19, 20
flaws, 16, 19–20
flexibility, 15
frame rate, 140
game development, 21, 23
getTimer method, 217, 218
hit detection engine, 228
library organized by “use”, 93
logos, 14
marketing, 15
MP3 compression, 118–119,
119

On2 VP6 codec, 141
open source implementations,
21

packages, 12
performance on on iOS, 338
player, 329
player penetration, 14
Stage, 11
strengths, 24
text in, 323–324
3D in, 192–193, 192–193
timeline animation to
MOV file, 154

utils package, 51, 358
vanishing point, 195
vector class, 212
vertically inverted coordinate
system, 185

video playback, 145
Web Sites vs. games, 23
XML in, 159 see also Game

Flash Builder, Adobe, 16
vs.Flash CS5, 23
RIAs, 22

Flash games
CS5.5 feature, 119–121
loading external file, 121
sound addition, 122–140
see also Sound see also Video
in flash games

Flash remoting, see Action
Message Format (AMF)

Flash Vars, 181
displaying player name, 181
drawbacks, 181
single, 181

Flash Video Encoder, 143
flash.display, 12

FlashDevelop, 16
classes used in SWF, 48
free code editor, 18

FlashTracer, 19, 20
Flex Builder, see Flash Builder,

Adobe
Flex Framework, 23
flipCard method, 112–113
Frame rate, 10
Frame scripts
addFrameScript, 69, 71
dispatchFrameEvent, 71
FrameLabel class, 70, 70
functions, 70
MovieClip class, 69

FrameRateProfiler class, 338, 339
Friction, 213
FSM addState, 391
Full rigid-body physics engine,

374
Function call advantage, 330

G
Game, 273
action, 3
adventure-style, 2
AI, 9
algorithm, 6
animation vs., 22, 104
application vs., 22–23
attributes, 8
board/card-based, 5
classes, 7
code development, 78
code secrecy, 82
design, 7, 244
flash layers, 387–388
graphics and, 93
main loop, 9–10
OOP, 7
procedural programming, 7
pseudocode, 6
puzzle, 3
raster graphics, 94
RPGs, 5
scrolling, 10
strategy and simulation, 4–5
tile-based, 11
vector graphics, 94
vehicle, 5

view, 10
Web Sites vs., 23
word, 3–4 see also Flash

Game class, 205–206, 214, 219–223,
245, 250–253, 378–379

AirHockeyEngineConfig.as, 379,
391

declarations, 219
ENTER_FRAME event, 392
FSM addState, 391
Game.as, 379, 387–397
GameBoard class, 250
getter/setter function, 252
init function, 252, 384
initialization and disposal, 391
keyDown method, 219
keyUp method, 220
listeners, 252
Main as, 379–380
moveVehicle, 221
mPosition, 384
onTouchBegin function, 386
onTouchEnd function, 386
onTouchMove function, 386
package, 221
pauseBeforeGameOver method,
253

readInput, 220
Rules as, 379, 381–383
TextField objects, 251
Time, 392
timerUpdate, 251
Title as, 379–381

Game loop, see Main loop
Game Objects layer, 388
Game planning
AMFPHP, 32
building asset list, 28–30
class modeling, 32, 33
core mechanics, 27–28
description from bird’s-eye
view, 25–26

methods, 31–32
outline or wireframe out game
flow, 26, 26–27

PHP, 31
plan review, 34
quit button, 27
recommended UML tools, 34
server-side requirements, 31
system requirements, 30

412 INDEX

UML diagram, 33 see also
Game see also Flash

Game.as, 379, 387–397
GAME_ACTIVE state, 389, 393–394
GAME_SCORE state, 389, 392, 394
GameBoard class, 245, 250,

256–263
accessor methods, 261
activate method, 258
checkPiece method, 259
cleanUp function, 258
createBoard function, 257
deactivate method, 258
movePiece function, 259
non-DisplayObject descendant,
259

pieceClicked method, 259
pieceLockAnimation method, 263
properties, 256
set function, 261
shuffleBoard method, 257
variables, 260

GameClip class, 354, 361–364
see also level clip class

GameError class, 61
GameHistory, 245, 265
GameTouchController.as, 379,

383–388
Garbage collection (GC), 74
dynamic object avoidance, 75
mark sweeping, 74
reference counting, 74
reference removal, 75
referenced listeners, 75
unloadAndStop method, 75
see also Flash

Generic sound controller, see
Sound—controller, generic

Geometry, 184
GESTURE mode, 375
GESTURE_SWIPE event, 382–383
GetContactList function, 404
getDefinitionByName method, 51
getImages method, 265
getInstance method, 125
GetNext function, 404
getRandomColor method, 203
Getter and setter methods, see

Accessor
getTimer method, 217, 218
gModeler, 32

H
H.264 video, 141
drawbacks, 141
see also Video codecs

“hard-coded” values, 259
hitTestObject, 228–229
Flash’s hit detection engine, 228
limitations, 228
rotation, 228

hitTestPoint, 229–234
car, hit points of, 230
enterFrame method, 234
HitTestCoordinate.as, 231
HitTestPoint.as, 232
localToGlobal function, 229
Player.as, 230
Sprite, 229

Hypotenuse (hyp), 185

I
IBitmapDrawable interface, 45
Identifiers, 42
IEventDispatcher interface, 47
Image sequences, 152
Image tools, external, 99–101
Incremental compilation, 119–121
indexOf method, 64
Inertia, 213
Inheritance, 83–84
init function, 334, 384
Interface, 44, 47, 84–85, 254–255

BitmapData object, 254
cleanup method, 254
destroy method, 254
DisplayObject, 255
getImages method, 254
IEventDispatcher, 47
IGamePiece, 254
ISourceImage, 254
package, 254
structure, 45 see also
IBitmapDrawable interface

Inverse trig functions, 186
iOS Games, best practices for,

320–325
API drawing, 324
code recycle, 328–329
codes, 326–331
declaration, 327
display list, 330

example, 332–338
file size, 330, 330
filters, 321–322
finalization, 328
frameworks and code libraries,
329–330

function call advantage, 330–331
GPU, 325–326
inheritance versus interfaces,
331–332

Motion Tweens, 324
static property, 327–328
SWFs, 324–325
text in Flash, 323–324
vector shapes, 322–323

Items, 275

J
Joints, 398, 400
force on paddle, 404

JPEGs, 95, 97
background art for game, 95
bitmap properties panel, 98
compression, 96

keyDown method, 176–177, 219
keyUp method, 220

L
lastIndexOf method, 64
Leaderboard class
MD5 hashing algorithm, 358
purposes, 358
screen, 360, 361

level clip class, 363 see also
GameClip class

Listener, 339
Listening, 52
Loader object, 72–73
LoaderContext, 73
loadResources method, 73
localToGlobal, 229
Logic controller,main,

seeMain loop

M
Main as, 379–380
Main document class, 245,

336–338, 379

INDEX 413

Main loop, 7
in programming languages, 10
pseudocode, 9

Marble, 354, 364–367
bend around edges, 364, 364
hit detection, 365
marble texture, 364–365
shine, 365

Marble Runner, 342–369
application classes, 343, 354
Cartesian coordinate system,
346

checkCollisions, 348
checkWin, 349
classes, 343–344
collision angle, 348–349, 349
concepts in, 342
design considerations, 369–370
endLevel, 349
engine classes, 343
GameClip class, 354, 361–364
hazard collision, 349
HazardPit class, 354, 367–368
HighScores class, 360
hitTestObject check, 348
HowToPlay class, 354
IBall, 344, 352, 354, 367
IDisplayObject, 354
IHazard, 344, 353–354
IWall, 344, 354
LabyrinthEngine, 343–350
LabyrinthLevel, 343, 350–352
Leaderboard class, 354,
357–361

level design, 369
level in, 350, 353
Marble class, 354, 364–367
MarbleRunner document class,
354–356

moveBall, 347
onEnterFrame function, 346
pickups, 370–371
results screen, 354, 368,
368–369

risk/reward scenario, 370, 370
score, 359
scoring, 370
scrolling levels, 371
StandardWall, 354, 367–368
tabletop marble maze, 342
Title class, 354, 356–357

title screen, 356
validate function, 351
XFL file, 343

Massively multiplayer online
RPGs (MMORPGs), 5

Math Class, 184
MD5 hashing algorithm, 358
static constants, 359

Mechanics, 211
Media package, 125
Memory Class, 111
addedToStage function, 111
checkCard method, 113
flipCard method, 112–113
selectCard method, 112–113
selectedCards method, 114
shuffledCards method, 111–112
see also MemoryCard Class

MemoryCard Class, 110
Menus, 142
skipKey, 146
Sprite class, 146
vector, 94 see also Cutscenes
see also Video in flash games

MixUp, 243, 245
difficulty, 243
game in action, 267
parameters, 243
screens and interface elements,
244 see also Puzzle games

MixUp class, 244–248
constructor, 246
event dispatch, 247
gameOver method, 248
mainMenu method, 247
setupGame method, 248
showRules, 247
title screen and listeners, 247
variables, 246

MMORPGs, see Massively
multiplayer online RPGs
(MMORPGs)

Model-view-controller (MVC), 81
MorphShapes, see Shape tweens
Motion Tweens, 324
movePiece function, 259
MovieClip class, 37, 389, 389
mPosition, 384 see also Accessor
Multitouch Input, 374
MultitouchInputMode class,

374–375

Mute method, 130, 135
MXML, 23
NONE mode, 375

O
Object-oriented programming

(OOP), 7
classes, 7
encapsulation, 83
in game development, 82,
85–86

inheritance, 83–84
interfaces, 44–47, 84–85
polymorphism, 84
see also ActionScript 3 (AS3)
see also Procedural languages

Objects, dynamic, 75
Objects, 62–63
On2 codec, 152
On2 VP6 codec, 141

see also Video codecs
onEnterFrame handler, 392
one-point projection function, 193

see also Vanishing point
onTouchBegin function, 386
onTouchEnd function, 386
onTouchMove function, 386
OOP, see Object-oriented

programming (OOP)

P
Packages, 12, 37
Paddle, 377
joint force on, 404
position update, 404

Parallax scrolling, 10, 107
Pause method, 130, 135
Perspective projection, 195

see also DisplayObject
see also Vanishing point

PHP, 31
Physics, 211–214
acceleration, 213
collision detection, 241
displacement, 212
driving games, 214–223
enemy and, 275
engine responsibilities, 273
friction, 213

414 INDEX

full rigid-body physics engine,
374

inertia, 213
in platformer, 272
reality vs. expectations, 214
scalar, 211
simulation vs. illusion, 214
simulation with Box2D,
376–377

vector, 211–212
velocity, 212–213

Pi, 189
pieceClicked method, 259
pieceLockAnimation method, 263
PixelBender, 321–322
Pixel-perfect collision detection,

241
Platformer, 272, 273
asset, 315–316, 316–317
asset classes, 280, 295, 310–316
asset loading, 294
asset structure, 276
asset SWFs, 280
checkInventory, 307
checkItems, 305
checkPlayerCollisions, 303–304
checkPortals, 306–307
checkWalls, 304
cleanup, 293
CollisionGrid, 281, 289–307
core tenets, 272
data flow, 272–273
enemy, 275, 297, 312–313
engine classes, 280–284
game class, 308–310
game code, 280
get-CollisionReference, 300
GridPosition function, 298
GridReference class, 287–289,
299

GridReference.as, 281, 299
IEnemy.as, 281, 283
IItem.as, 281, 283–284
init method, 291
IPlayer.as, 281–283
IPortal.as, 281, 284
ISprite.as, 281–282
items, 275, 297, 313–314
IWall.as, 281, 284–289
key input, 300, 302
level design, 274–275, 276

level file format, 275
level loading, 293
level XML, 277–279
moveEnemies, 302–303, 306
movePlayer, 302
PlatformerConfig class, 281,
286–287

PlatformerEngine, 281, 290–307,
317

PlatformerEvent class, 281, 285
player character, 274–275
Player class, 310–312
playerJump, 302
portal, 274, 298
Portal class, 286, 314–315, 317
PortalDestination.as, 281
PortalRequirement.as, 281
startGame function, 292
stopGame function, 292
update function, 301
Wall class, 315
walls, 274

play and stop methods, 128
playCutscene method, 148
Player Sprite, 316
playSound method, 132
PNG file, 95
animation and, 153
bitmap properties panel, 98
character sequence, 96
compression, 96
8-bit, 95–96, 98
encoding, 155
lossless compression, 96
sequence to video, 154
32-bit, 97
and video comparison, 155, 156

PNG8+8, 96
“pointer”, 187
absolute-value function, 190
and cursor position, 190
getDistance function, 191
in MouseFollowDistance.fla,
190

radian to degree conversion,
189

speed, 189–190
xSpeed and ySpeed variables,
190

Polymorphism, 43, 84
Portal, 274

POST_GAME state, 389, 394
PRE_GAME state, 389
countdown clip, 393

Procedural languages, 7
see also Object-oriented
programming (OOP)

Programming languages, modern,
14 see also Procedural
languages

Projectile class, 106
Property Inspector, 100, 102
pseudocode, 6
Publish Settings window, 121
Puck, 377
Puzzle games, 3
Pythagorean theorem, 187

Q
Quality assurance (QA), 30
Quicktime Export settings, 154

R
Radians, 188, 188
to degree conversion, 189
functions, 200

Raster formats
deblocking, 99
external image tools, 99–101
JPEGs, 95
PNGs, 95
smoothing, 99, 100
usage in Flash, 96 see also FLA
source file format

Raster graphics, 94
Reality vs. expectations, 214
Rect testing, 235–241
advantages, 235
drawbacks, 239–241
Enemy Class, 236–237
iterative testing, 240
shooter collision check, 240
SimpleShooterCollisions Class,
237–239

Reference counting, 74
removeEventListener method, 55
parameters, 55

reset method, 335
Results classes, 245, 266
Retrostyle action games, 3

INDEX 415

RIAs, see Rich internet
applications (RIAs)

Rich internet applications (RIAs),
22

Right triangles, 184
three sides, 186

Risk/reward scenario, 370, 370
Role-playing game (RPG), 5
Root node, 159
RPG, see Role-playing game (RPG)
Rules.as, 379, 381–383
RulesPanel class, 245, 249–250
Runtime
error, 59
events, 12

S
“Safe” casting, 51
savePuzzle method, 179
Scalar, 211
Scripted Shooter, 105
Projectile class, 106
SimpleShooter class, 106

Scripting sounds, 122–140
companion class, 137
linkage properties and sound
export, 136

sound classes, 123
SoundEngine class, 123–136
SoundMixer class, 139–140
see also Sound

Scrolling, parallax,
see Parallax scrolling

selectCard method, 112–113
selectedCards method, 114
selectTile method, 175–176
Sequencing, 104–105
setAnswer function, 165
ShaderFilters, see PixelBender
Shape objects, 263

see also DisplayObject
Shape tweens, 322
shuffleBoard method, 257
shuffledCards method, 111–112
SimpleShooter class, 107
createProjectile method, 107,
109

frameScript function, 107
moveBackground function, 108
moveForeground function, 108

movePlayer function, 108
moveProjectiles method, 108
re moveProjectile method, 109

see also Animation
SimpleShooterCollisions Class,

237–239
checkCollisions function, 239
createEnemy function, 238–239
moveEnemies function,
238–239

removeEnemy function, 238
SimpleTunnelShooter, 196–210,

211
classes, 196
functionality enhancing, 210
mechanics, 196
tunnel class, 196–210

Simulation vs. illusion, 214
Singleton, the, 86
constructors, 88
design pattern, 123
SingletonExample.as, 86
SingletonExampleDocument.as,
88

SoundEngine class, 89
skipKey variable, 146
Sorenson Spark, 141

see also Video codecs
sortOn method, 63–64
Sound
ADPCM, 120, 120
ambient, 118
classes, 123
controller, generic, 122
effects, 118–119, 120, 122
event-triggered, 118
export settings, 118–121, 119
file formats, 117–118
Forge, 121
incremental compilation,
119–121

loading external file, 121
music, 118
property settings, 118, 119, 123
quality, 120–121
scripting, 122–140
SoundEngine class, 123–136
tools, 121–122
voice-over audio, 118, 120
see also Asset

“SoundEngine 2.0”, 123

SoundEngine class, 123–136
accessing object, 130
functionality, 124
mute method, 130, 135
pan method, 133
pause method, 130, 135
playSound method, 132
SoundEngine.as, 124
SoundEngineEvent.as, 124,

135
SoundEngineObject, 124, 126
SoundEngineSingleton, 125
stopSound method, 132
transform method, 133
volume method, 132

SoundEngine.as., 124
ApplicationDomain class, 125
constructor, 125
getDefinitionByName method,
125

properties, 125
URLRequest class, 125

SoundEngineObject, 124, 126
mute method, 130
pause method, 130
play and stop methods, 128
property, 126
SOUND_COMPLETE event, 128

SoundEngineSingleton, 125
SoundMixer, 139–140
SoundTransform, 123
SourceImageCamera class,

267–270
BitmapData objects, 269
setupGame method, 270
updateImages, 269

SourceImageEmbedded class,
245, 263–265

function implementation, 264
getImages method, 265

Speech, see Voice-over audio
Speed, 212
State machine, 10
stopCutscene method, 148
stopImmediatePropagation

method, 56
stoppingThreshold constant, 215
stopPropagation method, 56
stopSound method, 132, 134
Strategy games, 4–5, 11

see also Tile-based games

416 INDEX

Super Mario Brothers, 10
see also Action games

SWF, 73, 157
features, 157
Flash Vars, 181
LoaderInfo object, 80
xSpeed and ySpeed variables,
190

T
Target listener, 53
Target phase, see Target listener
Tempest, 195
Text, 323–324
dynamic, 323
in Flash, 323–324

3D in Flash, 192–193
DisplayObject, 193, 193
position, 193
rotation, 193
z-axis in Flash, 192, 192

Tile-based games, 11
Time class, 214, 217–219, 395
delta time, 217
package, 218

Timestamp, 340
Title class, 244, 248–249, 379–381
Top–down driving engine, 214–223
Game class, 214, 219–223
Time class, 214, 217–219
Vehicle class, 214–217

Top–down driving game with
drift, 223–226

getter/setter functions, 224
moveVehicle, 225
readInput method, 225
Vehicle class, changes in, 223

Touch handlers, 383–387
TOUCH_POINT mode, 375
Triangles, 184
angle, determining, 187–188, 188
properties, 184
side, value of, 186–187, 186–187
see also Trigonometric
functions

Trigonometric functions, 184–185
arctangent, 186
inverse, 186
sides, determining value of,
186, 186–187

and sides, 186
use, 187

Trigonometry (Trig), 184
Tunnel class, 196–210
ColorTransform, 199–200
constructor, 197
createTunnel function,
197–198

functions, 200
getRandomColor method, 203
highlightSide function, 201
loops, 198–199
properties, 197
rotation, 199
tile position, 199
tileSet array, 199
TunnelTile class, 204
virtual circle, 198, 198 see also
SimpleTunnelShooter

TunnelTile class, 204
addEnemy function, 207
constructor, 206
Enemy class, 204–205
enemyFrequency, 206
enemyMovementFinished, 207
enemyTime, 206
frameScript method, 206–207
Game class, 205–207
linking classes to FLA, 208
movePlayer, 207
startGame, 206–207
timeline, 210
tint effect, 204
utility, 204

Tween, 105
Tweening animation, 109
Memory Class, 111–114
MemoryCard Class, 110 see also
Game see also Flash

TweenLite, 137, 207
TweenMax, 113–114

U
Unified modeling language

(UML), 32
game hierarchy, 33
generated classes, 33

unloadAndStop method, 75
“Unsafe” casting, 51
update function, 376, 394

updateImages method, 269
see also getImages method

updatePointer, 191
URLLoader class, 157–158, 180
E4X, 158–159
XML, 158

useCapture parameter, 54
useWeakReference parameter, 54
utils package
getDefinitionByName, 51
MD5 hashing algorithm, 358

V
Vanishing point, 193
DisplayObjects and, 193, 195

Variable bit rate (VBR), 152
Vector, 65, 211–212
graphics, 94
3D Class, 212

Vehicle class, 214–217
acceleration property, 216
acceleration rate, 215
constant and variable, 215
getter/setter pairs, 215
package, 216
speed property, 216
stoppingThreshold constant,
215

Vehicle games, 5
Velocity, 212–213
Video, 34, 93, 141
Video, setting up internal,

153–156
encoding, 154
PNG sequence and video
comparison, 155, 156

PNG sequence encoding, 155
PNG to video, 154
Quicktime Export settings, 154

Video codecs, 141–142
H.264 video, 141
On2 VP6 codec, 141
Sorenson Spark, 141

Video in flash games, 141
Adobe Media Encoder, 143, 143
cutscenes, 142, 142
external video uses, 142–145
Flash Video Encoder, 143
menus, 142
timeline, 152–153

INDEX 417

Video in flash games (Cont.)
video codecs, 141–142

Video on timeline, 152–153
file size, 152
free motion blur, 153
management, 152
performance, 153

Voice-over audio, 118
export settings, 120
see also Sound

Void keyword, 40

W
Walls, 274
Weak references, 54, 75
weakKeys, 65
Word games, 3–4 see also

Crossword puzzle

X
XML, 158
within ActionScript, 180

advantage, 158
crossword puzzle,
159–178

editor, 179
in Flash, 159
quiz, 158
standard form posts, 180
URLLoader, 158
see also ECMAScript for XML
(E4X)

418 INDEX

	Front Cover
	Real-World Flash Game Development
	Copyright
	Table of Contents
	Introduction
	Games in Flash
	Which Flash to Use?
	How to Get the Most Out of This Book
	Resources on the Web Site

	Chapter 1. Computer Science Isn't for Everyone
	A Little Groundwork
	Common Game Types
	General Development Terms
	Game-Specific Development Terms
	Flash Development Terms
	You Can Wake Up Now

	Chapter 2. The Best Tool for the Job
	Flash Back
	The Case for Flash
	Nobody's Perfect
	Stop Fighting It
	Things Flash Was Built to Do
	The Best Tool for the Job

	Chapter 3. A Plan is Worth a Thousand Aspirin
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6 (Optional)

	Chapter 4. //Comments FTW!
	Fair Warning
	Part 1: Classes
	Part 2: Events
	Part 3: Errors
	Part 4: Data Structures and Lists
	Part 5: Keep Your Comments to Everyone Else!
	Part 6: Why Does Flash Do That?
	Conclusion

	Chapter 5. The Least You Can Do versus an Architect’s Approach
	Basic Encapsulation: Classes and Containers
	Store Relevant Values as Variables and Constants
	Don’t Rely on Your Stage
	Don’t Use Frameworks or Patterns You Don’t Understand or That Don’t Apply
	Know When It’s Okay to Phone It In and When It Definitely Isn’t
	Transitioning to Architecture
	OOP Concepts
	Practical OOP in Game Development
	The Singleton: A Good Document Pattern
	Summary

	Chapter 6. Managing Your Assets and Working with Graphics
	A Better File Format
	A Few Words about Organization
	Working with Graphics
	Raster Formats to Use
	Key Points to Remember

	Chapter 7. Make It Move—ActionScript Animation
	A Little Terminology
	To Tween or Not to Tween? Is That a Question?
	A Simple Scripted Shooter
	Memory: Tweening Animation
	Summary

	Chapter 8. Turn It up to 11: Working with Audio
	Formats to Use
	Export Settings to Use
	Using External Files
	Tools for Working with Sounds
	Scripting Sounds

	Chapter 9. Put the Video Back in “Video Game”
	Video Codecs
	External Video Uses: Cutscenes and Menus
	CutsceneManager
	Video on the Timeline
	Setting Up an Internal Video
	Summary

	Chapter 10. XML and Dynamic Content
	Bringing Data In: Understanding the URLLoader Class
	XML
	E4X
	Crossword Puzzle
	Content Is a Two-Way Street: A Crossword Builder
	Sending Data Back Out
	One More Example: XML versus Flash Vars
	Summary

	Chapter 11. Four-Letter Word: M-A-T-H
	The Math Class
	Part One: Geometry and Trigonometry
	A Quick Explanation of Radians and Pi
	3D in Flash
	Perspective Projection
	The SimpleTunnelShooter Example
	Part Two: Physics
	Example: A Top–Down Driving Engine
	Example: Top–Down Driving Game with Drift
	Review

	Chapter 12. Don’t Hit Me: Collision Detection Techniques
	What You Can Do versus What You Need
	HitTestObject—The Most Basic Detection
	HitTestPoint—One Step Up
	Radius/Distance Testing—Great for Circles
	Rect Testing
	Pixel-Perfect Collision Detection and Physics
	When All Else Fails, Mix 'N Match

	Chapter 13. MixUp—A Simple Engine
	The Main Document
	The MixUp Class
	The Title Class
	The RulesPanel Class
	The Game Class
	The Interfaces
	The GameBoard Class
	The SourceImageEmbedded Class
	The GameHistory and Results Classes
	The SourceImageCamera Class
	Review

	Chapter 14. Bringing It All Together: A Platformer
	The Platformer Genre
	Data Flow
	The Game Flow and Features
	The Level File Format and Asset Structure
	The Engine Classes
	The IWall Interface
	The CollisionGrid Class
	The Game Class
	The Asset Classes
	Taking It Further

	Chapter 15. Marble Runner: Our First Mobile Game
	Part 1: Best Practices for iOS Games
	The GPU Is Here to Help
	Code Matters, Too
	A Question of Balance: Inheritance versus Interfaces
	A Real-World Example
	Part 2: Marble Runner
	The Accelerometer Class
	How Accelerometer Values Are Computed
	The Game: Marble Runner
	Design Considerations
	Where to Take It

	Chapter 16. Air Hockey: A Multitouch, Multiplayer Tablet Game
	A Trio of Topics
	Multitouch Input for Devices
	The Finite-State Machine
	Physics Simulation with Box2D
	The Game: Two-Player Air Hockey
	Conclusion

	Afterword: Flash’s Future in Games
	Index

