Professional !
Android 2

Application Development

Reto Meier

Programmer to Programmer”

Get more out of
Wrox.com

Interact

Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library

Hundreds of our books are available online
through Books24x7.com

Wrox Blox

Download short informational pieces and code
to keep you up to date and out of trouble!

Contact Us.

We always like to get feedback from our readers. Have a book idea?

Join the Community

Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse

Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

www.wrox.com

PROFESSIONAL
ANDROID™ 2 APPLICATION DEVELOPMENT

INTRODUCTION. . .ttt ittt ittt iteeennnetaeeenaeseeeeeeeeennns XXVii
CHAPTER 1 Hello, ANdroid 1
CHAPTER 2 Getting Started i e 17
CHAPTER 3 Creating Applications and Activities 49
CHAPTER 4 CreatingUserinterfaces 85
CHAPTER 5 Intents, Broadcast Receivers, Adapters,

andthelnternet 137
CHAPTER 6 Files, Saving State,and Preferences 187
CHAPTER 7 Databases and ContentProviders. 209
CHAPTER 8 Maps, Geocoding, and Location-Based Services 245
CHAPTER 9 Workinginthe Background 285
CHAPTER 10 Invadingthe Phone-Top ...t 327
CHAPTER 11 Audio, Video, and Usingthe Camera 363
CHAPTER 12 Telephonyand SMS. i 389
CHAPTER 13 Bluetooth, Networks,and Wi-Fi 425
CHAPTER 14 SENSOIS . .ottt ettt e e e e e e e e 457
CHAPTER 15 Advanced Android Development 477
INDEX . ¢t ittt ettt et ttananattieteateeteteeeeteetennnnns 529

PROFESSIONAL

Android” 2 Application Development

Reto Meier

WILEY
Wiley Publishing, Inc.

Professional Android™ 2 Application Development

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana
ISBN: 978-0-470-56552-0

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the
1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to
the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation
warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The
advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the
services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages
arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of
further information does not mean that the author or the publisher endorses the information the organization or Web site may
provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may have
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Library of Congress Control Number: 2009943638

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Android is a trademark of Google, Inc. All other trademarks are the property
of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

www.wiley.com
http://www.wiley.com/go/permissions

To Kristy

ABOUT THE AUTHOR

RETO MEIER is originally from Perth, Western Australia, but now lives in London.

He currently works as an Android Developer Advocate at Google, helping Android app develop-
ers create the best applications possible. Reto is an experienced software developer with more than
10 years of experience in GUI application development. Before Google, he worked in various indus-
tries, including offshore oil and gas and finance.

Always interested in emerging technologies, Reto has been involved in Android since the initial
release in 2007. In his spare time, he tinkers with a wide range of development platforms, including
Google’ s plethora of developer tools.

You can check out Reto’ s web site, The Radioactive Yak, ahttp://blog.radiocactiveyak.com or
follow him on twitter at http: //www. twitter.com/retomeier.

ABOUT THE TECHNICAL EDITOR

MILAN NARENDRA SHAH graduated with a BSc Computer Science degree from the University of
Southampton. He has been working as a software engineer for more than seven years, with
experiences in C#, C/C++, and Java. He is married and lives in Buckinghamshire, United Kingdom.

CREDITS

ACQUISITIONS EDITOR VICE PRESIDENT AND EXECUTIVE GROUP
Scott Meyers PUBLISHER
Richard Swadley
PROJECT EDITOR
William Bridges VICE PRESIDENT AND EXECUTIVE PUBLISHER
Barry Pruett
TECHNICAL EDITOR
Milan Narendra Shah ASSOCIATE PUBLISHER
Jim Minatel
PRODUCTION EDITOR
Rebecca Anderson PROJECT COORDINATOR, COVER
Lynsey Stanford
COPY EDITOR
Sadie Kleinman PROOFREADER

Kyle Schlesinger, Word One
EDITORIAL DIRECTOR

Robyn B. Siesky INDEXER

Robert Swanson
EDITORIAL MANAGER

Mary Beth Wakefield COVER IMAGE

© Linda Bucklin/istockphoto
ASSOCIATE DIRECTOR OF MARKETING
David Mayhew COVER DESIGNER

Michael E. Trent
PRODUCTION MANAGER
Tim Tate

ACKNOWLEDGMENTS

Most importantly I’d like to thank Kristy. Your support makes everything I do possible, and your
generous help ensured that this book was the best it could be. Without you it would never have
happened.

A big thank-you goes to Google and the Android team, particularly the Android engineers and my
colleagues in developer relations. The pace at which Android has grown and developed in the past
year is nothing short of phenomenal.

I also thank Scott Meyers for giving me the chance to bring this book up to date; and Bill Bridges,
Milan Shah, Sadie Kleinman, and the Wrox team for helping get it done.

Special thanks go out to the Android developer community. Your hard work and exciting applica-
tions have helped make Android a great success.

CONTENTS

INTRODUCTION Xxvii
CHAPTER 1: HELLO, ANDROID 1
A Little Background 2
The Not-So-Distant Past 2
The Future 3
What It Isn’t 3
Android: An Open Platform for Mobile Development 4
Native Android Applications 5
Android SDK Features 6
Access to Hardware, Including Camera, GPS, and Accelerometer 6
Native Google Maps, Geocoding, and Location-Based Services 7
Background Services 7
SQLite Database for Data Storage and Retrieval 7
Shared Data and Interapplication Communication 7
Using Widgets, Live Folders, and Live Wallpaper to Enhance the
Home Screen 8
Extensive Media Support and 2D/3D Graphics 8
Optimized Memory and Process Management 8
Introducing the Open Handset Alliance 9
What Does Android Run On? 9
Why Develop for Mobile? 9
Why Develop for Android? 10
What Has and Will Continue to Drive Android Adoption? 10
What Does It Have That Others Don’t? 1
Changing the Mobile Development Landscape il
Introducing the Development Framework 12
What Comes in the Box 12
Understanding the Android Software Stack 13
The Dalvik Virtual Machine 14
Android Application Architecture 15
Android Libraries 16

Summary 16

CONTENTS

CHAPTER 2: GETTING STARTED 17
Developing for Android 18
What You Need to Begin 18
Downloading and Installing the SDK 18
Developing with Eclipse 19
Using the Eclipse Plug-In 20
Creating Your First Android Application 23
Starting a New Android Project 23
Creating a Launch Configuration 24
Running and Debugging Your Android Applications 26
Understanding Hello World 26
Types of Android Applications 29
Foreground Applications 29
Background Services and Intent Receivers 29
Intermittent Applications 30
Widgets 30
Developing for Mobile Devices 30
Hardware-Imposed Design Considerations 30
Be Efficient 31
Expect Limited Capacity 31
Design for Small Screens 32
Expect Low Speeds, High Latency 32

At What Cost? 33
Considering the Users’ Environment 34
Developing for Android 35
Being Fast and Efficient 35
Being Responsive 36
Developing Secure Applications 37
Ensuring a Seamless User Experience 37
To-Do List Example 38
Android Development Tools 43
The Android Virtual Device and SDK Manager 44
Android Virtual Devices 44

SDK Manager 45

The Android Emulator 46
Dalvik Debug Monitor Service (DDMS) 47
The Android Debug Bridge (ADB) 47
Summary 48

xiv

CONTENTS

CHAPTER 3: CREATING APPLICATIONS AND ACTIVITIES 49
What Makes an Android Application? 50
Introducing the Application Manifest 51
Using the Manifest Editor 56
The Android Application Life Cycle 57
Understanding Application Priority and Process States 58
Externalizing Resources 59

Creating Resources 60
Creating Simple Values 60
Styles and Themes 62
Drawables 63
Layouts 63
Animations 64
Menus 66

Using Resources 67
Using Resources in Code 67
Referencing Resources within Resources 68
Using System Resources 69
Referring to Styles in the Current Theme 70

To-Do List Resources Example 70

Creating Resources for Different Languages and Hardware 71

Runtime Configuration Changes 72

Introducing the Android Application Class 74
Extending and Using the Application Class 74
Overriding the Application Life Cycle Events 75
A Closer Look at Android Activities 76

Creating an Activity 77

The Activity Life Cycle 78
Activity Stacks 78
Activity States 79
Monitoring State Changes 80
Understanding Activity Lifetimes 82

Android Activity Classes 84

Summary 84

CHAPTER 4: CREATING USER INTERFACES 85
Fundamental Android Ul Design 86
Introducing Views 86

XV

CONTENTS

Creating Activity User Interfaces with Views
The Android Widget Toolbox
Introducing Layouts
Using Layouts
Optimizing Layouts
Creating New Views
Modifying Existing Views
Customizing Your To-Do List
Creating Compound Controls
Creating Custom Views
Creating a New Visual Interface
Handling User Interaction Events
Creating a Compass View Example
Using Custom Controls
Drawable Resources
Shapes, Colors, and Gradients
Color Drawable
Shape Drawable
Gradient Drawable
Composite Drawables
Transformative Drawables
Layer Drawable
State List Drawables
Level List Drawables
NinePatch Drawable
Resolution and Density Independence
The Resource Framework and Resolution Independence
Resource Qualifiers for Screen Size and Pixel Density
Specifying Supported Screen Sizes
Best Practices for Resolution Independence
Relative Layouts and Density-Independent Pixels
Using Scalable Graphics Assets
Provide Optimized Resources for Different Screens
Testing, Testing, Testing
Emulator Skins
Testing for Custom Resolutions and Screen Sizes
Creating and Using Menus
Introducing the Android Menu System
Defining an Activity Menu
Menu Item Options

XVi

87
88
89
89
91
91
92
93
96
99
99
104
105
110
m
M
1
111
13
14
14
16
16
16
17
17
18
18
19
19
120
120
121
121
122
122
123
123
124
126

CONTENTS

Dynamically Updating Menu Items 127
Handling Menu Selections 127
Submenus and Context Menus 128
Creating Submenus 128
Using Context Menus 128
Defining Menus in XML 130
To-Do List Example Continued 131
Summary 136
CHAPTER 5: INTENTS, BROADCAST RECEIVERS, ADAPTERS,
AND THE INTERNET 137
Introducing Intents 138
Using Intents to Launch Activities 138
Explicitly Starting New Activities 139
Implicit Intents and Late Runtime Binding 139
Returning Results from Activities 140
Native Android Actions 143
Using Intent Filters to Service Implicit Intents 144
How Android Resolves Intent Filters 146
Finding and Using the Launch Intent Within an Activity 147
Passing on Responsibility 147
Select a Contact Example 148
Using Intent Filters for Plug-Ins and Extensibility 152
Supplying Anonymous Actions to Applications 153
Incorporating Anonymous Actions in Your Activity’s Menu 154
Introducing Linkify 155
The Native Linkify Link Types 155
Creating Custom Link Strings 156
Using the Match Filter 157
Using the Transform Filter 157
Using Intents to Broadcast Events 157
Broadcasting Events with Intents 158
Listening for Broadcasts with Broadcast Receivers 158
Broadcasting Sticky and Ordered Intents 161
Native Android Broadcast Actions 161
Introducing Pending Intents 162
Introducing Adapters 163
Introducing Some Native Adapters 163
Customizing the Array Adapter 163
Using Adapters for Data Binding 164

xvii

CONTENTS

Customizing the To-Do List Array Adapter 165
Using the Simple Cursor Adapter 169
Using Internet Resources 170
Connecting to an Internet Resource 170
Using Internet Resources 17
Introducing Dialogs 172
Introducing the Dialog Classes 172
The Alert Dialog Class 173
Specialist Input Dialogs 174
Using Activities as Dialogs 174
Managing and Displaying Dialogs 175
Creating an Earthquake Viewer 176
Summary 184
CHAPTER 6: FILES, SAVING STATE, AND PREFERENCES 187
Saving Simple Application Data 188
Creating and Saving Preferences 188
Retrieving Shared Preferences 189
Creating a Settings Activity for the Earthquake Viewer 189
Introducing the Preference Activity and Preferences Framework 197
Defining a Preference Screen Layout in XML 198
Native Preference Controls 199
Using Intents to Import System Preference Screens 200
Introducing the Preference Activity 200
Finding and Using Preference Screen Shared Preferences 201
Introducing Shared Preference Change Listeners 201
Creating a Standard Preference Activity for the Earthquake Viewer 202
Saving Activity State 203
Saving and Restoring Instance State 203
Saving the To-Do List Activity State 205
Saving and Loading Files 207
Including Static Files as Resources 207
File Management Tools 208
Summary 208
CHAPTER 7: DATABASES AND CONTENT PROVIDERS 209
Introducing Android Databases 209
Introducing SQLite Databases 210
Introducing Content Providers 210

xviii

CONTENTS

Introducing SQLite 210
Cursors and Content Values 21
Working with SQLite Databases 21
Introducing the SQLiteOpenHelper 214
Opening and Creating Databases without SQLiteHelper 215
Android Database Design Considerations 215
Querying a Database 215
Extracting Results from a Cursor 216
Adding, Updating, and Removing Rows 217
Inserting New Rows 217
Updating a Row 218
Deleting Rows 218
Saving Your To-Do List 218
Creating a New Content Provider 224
Exposing Access to the Data Source 225
Registering Your Provider 227
Using Content Providers 227
Introducing Content Resolvers 227
Querying for Content 228
Adding, Updating, and Deleting Content 228
Inserts 228
Deletes 229
Updates 229
Accessing Files in Content Providers 230
Creating and Using an Earthquake Content Provider 230
Creating the Content Provider 230
Using the Provider 236
Native Android Content Providers 238
Using the Media Store Provider 239
Using the Contacts Provider 240
Introducing the Contacts Contract Content Provider 240
Reading Contact Details 240
Modifying and Augmenting Contact Details 243
Summary 244
CHAPTER 8: MAPS, GEOCODING, AND LOCATION-BASED SERVICES 245
Using Location-Based Services 246
Configuring the Emulator to Test Location-Based Services 246
Updating Locations in Emulator Location Providers 246

Xix

CONTENTS

Selecting a Location Provider 247
Finding the Available Providers 248
Finding Location Providers Using Criteria 248

Finding Your Location 249
‘Where Am 1?7’ Example 250
Tracking Movement 252
Updating Your Location in ‘Where Am 1?7’ 253

Using Proximity Alerts 255

Using the Geocoder 256
Reverse Geocoding 257
Forward Geocoding 258
Geocoding ‘Where Am 1?7’ 259

Creating Map-Based Activities 260
Introducing Map View and Map Activity 260
Getting Your Maps API Key 261

Getting Your Development/Debugging MD5 Fingerprint 261
Getting your Production/Release MD5 Fingerprint 262
Creating a Map-Based Activity 262
Configuring and Using Map Views 263
Using the Map Controller 264
Mapping ‘Where Am |?’ 265
Creating and Using Overlays 268
Creating New Overlays 268
Introducing Projections 269
Drawing on the Overlay Canvas 269
Handling Map Tap Events 270
Adding and Removing Overlays 271
Annotating ‘Where Am 1?7’ 271
Introducing My Location Overlay 275
Introducing ltemized Overlays and Overlay Items 275
Pinning Views to the Map and Map Positions 278
Mapping Earthquakes Example 279
Summary 284
CHAPTER 9: WORKING IN THE BACKGROUND 285

Introducing Services 286

Creating and Controlling Services 287
Creating a Service 287
Registering a Service in the Manifest 289
Self-Terminating a Service 289

XX

CONTENTS

Starting, Controlling, and Interacting with a Service
An Earthquake Monitoring Service Example

Binding Activities to Services

Prioritizing Background Services

Using Background Threads

Using AsyncTask to Run Asynchronous Tasks
Creating a New Asynchronous Task
Running an Asynchronous Task

290
290
297
299
300
301
301
302

Moving the Earthquake Service to a Background Thread Using AsyncTask 303

Manual Thread Creation and GUI Thread Synchronization 304
Creating a New Thread 304
Using the Handler for Performing GUI Operations 304

Let’s Make a Toast 306
Customizing Toasts 306
Using Toasts in Worker Threads 308

Introducing Notifications 309

Introducing the Notification Manager 310

Creating Notifications 310
Creating a Notification and Configuring the Status Bar Icon 310
Configuring the Extended Status Notification Display 3N

Triggering Notifications 313

Adding Notifications and Toasts to the Earthquake Monitor 314

Advanced Notification Techniques 316
Using the Defaults 317
Making Sounds 317
Vibrating the Phone 317
Flashing the Lights 318

Ongoing and Insistent Notifications 319

Using Alarms 320
Setting Repeating Alarms 322
Using Repeating Alarms to Update Earthquakes 323

Summary 325

CHAPTER 10: INVADING THE PHONE-TOP 327

Introducing Home-Screen Widgets 328

Creating App Widgets 328

Creating the Widget Layout 329
Widget Design Guidelines 329
Supported Widget Views and Layouts 330

Defining Your Widget Settings 331

XXi

CONTENTS

Creating Your Widget Intent Receiver and Adding It to the

Application Manifest 332
Introducing Remote Views and the App Widget Manager 333

Creating Remote Views and Using the App Widget Manager
to Apply Them 333

Using a Remote View within the App Widget Provider’s

onUpdate Handler 334
Using Remote Views to Modify Ul 335
Making Your Widgets Interactive 335
Refreshing Your Widgets 337
Using the Minimum Update Rate 337
Listening for Intents 338
Using Alarms 339
Creating and Using a Widget Configuration Activity 340
Creating an Earthquake Widget 341
Introducing Live Folders 346
Creating Live Folders 346
Live Folder Content Providers 347
Live Folder Activity 348
Creating an Earthquake Live Folder 349
Adding Search to Your Applications and the Quick Search Box 351
Adding Search to Your Application 351
Creating a Search Activity 352
Responding to Search Queries from a Content Provider 353
Surfacing Search Results to the Quick Search Box 355
Adding Search to the Earthquake Example 355
Creating Live Wallpaper 358
Creating a Live Wallpaper Definition Resource 359
Creating a Wallpaper Service 359
Creating a Wallpaper Service Engine 360
Summary 361
CHAPTER 11: AUDIO, VIDEO, AND USING THE CAMERA 363
Playing Audio and Video 364
Introducing the Media Player 364
Preparing Audio for Playback 365
Packaging Audio as an Application Resource 365
Initializing Audio Content for Playback 365
Preparing for Video Playback 366
Playing Video Using the Video View 367

xxii

CONTENTS

Setting up a Surface for Video Playback 367
Initializing Video Content for Playback 369
Controlling Playback 370
Managing Media Playback Output 370
Recording Audio and Video 371
Using Intents to Record Video 371
Using the Media Recorder 372
Configuring and Controlling Video Recording 373
Previewing Video Recording 374
Using the Camera and Taking Pictures 375
Using Intents to Take Pictures 375
Controlling the Camera and Taking Pictures 377
Controlling and Monitoring Camera Settings and Image Options 377
Monitoring Auto Focus 379
Using the Camera Preview 379
Taking a Picture 381
Reading and Writing JPEG EXIF Image Details 381
Adding New Media to the Media Store 382
Using the Media Scanner 382
Inserting Media into the Media Store 383
Raw Audio Manipulation 384
Recording Sound with Audio Record 384
Playing Sound with Audio Track 385
Speech Recognition 386
Summary 388
CHAPTER 12: TELEPHONY AND SMS 389
Telephony 390
Launching the Dialer to Initiate Phone Calls 390
Replacing the Native Dialer 390
Accessing Phone and Network Properties and Status 392
Reading Phone Device Details 392
Reading Data Connection and Transfer State 392
Reading Network Details 393
Reading SIM Details 394
Monitoring Changes in Phone State, Phone Activity, and
Data Connections 395
Monitoring Incoming Phone Calls 396
Tracking Cell Location Changes 396
Tracking Service Changes 397
Monitoring Data Connectivity and Activity 398

xxiii

CONTENTS

Introducing SMS and MMS 398
Using SMS and MMS in Your Application 399
Sending SMS and MMS from Your Application Using Intents

and the Native Client 399
Sending SMS Messages Manually 400
Sending Text Messages 400
Tracking and Confirming SMS Message Delivery 401
Conforming to the Maximum SMS Message Size 402
Sending Data Messages 403
Listening for Incoming SMS Messages 403
Simulating Incoming SMS Messages in the Emulator 405
Handling Data SMS Messages 406
Emergency Responder SMS Example 406
Automating the Emergency Responder 415
Summary 423
CHAPTER 13: BLUETOOTH, NETWORKS, AND WI-FI 425

Using Bluetooth 425
Accessing the Local Bluetooth Device Adapter 426
Managing Bluetooth Properties and State 427
Being Discoverable and Remote Device Discovery 430

Managing Device Discoverability 430
Discovering Remote Devices 431
Bluetooth Communications 433
Opening a Bluetooth Server Socket Listener 434
Selecting Remote Bluetooth Devices for Communications 435
Opening a Client Bluetooth Socket Connection 437
Transmitting Data Using Bluetooth Sockets 438
Bluetooth Data Transfer Example 439

Managing Network Connectivity 448
Introducing the Connectivity Manager 448
Reading User Preferences for Background Data Transfer 449
Monitoring Network Details 450
Finding and Configuring Network Preferences and Controlling

Hardware Radios 451
Monitoring Network Connectivity 451

Managing Your Wi-Fi 452
Monitoring Wi-Fi Connectivity 452
Monitoring Active Connection Details 453
Scanning for Hotspots 453

xXiv

CONTENTS

Managing Wi-Fi Configurations 454
Creating Wi-Fi Network Configurations 455
Summary 455
CHAPTER 14: SENSORS 457
Using Sensors and the Sensor Manager 458
Introducing Sensors 458
Supported Android Sensors 458
Finding Sensors 459
Using Sensors 459
Interpreting Sensor Values 461
Using the Compass, Accelerometer, and Orientation Sensors 462
Introducing Accelerometers 462
Detecting Acceleration Changes 463
Creating a G-Forceometer 464
Determining Your Orientation 467
Determining Orientation Using the Orientation Sensor 468
Calculating Orientation Using the Accelerometer and
Magnetic Field Sensors 468
Remapping the Orientation Reference Frame 470
Creating a Compass and Artificial Horizon 470
Controlling Device Vibration 474
Summary 475
CHAPTER 15: ADVANCED ANDROID DEVELOPMENT 477
Paranoid Android 478
Linux Kernel Security 478
Introducing Permissions 478
Declaring and Enforcing Permissions 479
Enforcing Permissions for Broadcast Intents 480
Using Wake Locks 480
Introducing Android Text to Speech 481
Using AIDL to Support IPC for Services 483
Implementing an AIDL Interface 484
Passing Class Objects as Parcelables 484
Creating the AIDL Service Definition 486
Implementing and Exposing the IPC Interface 487
Using Internet Services 488
Building Rich User Interfaces 489

XXV

CONTENTS

Working with Animations
Introducing Tweened Animations
Creating Tweened Animations
Applying Tweened Animations
Using Animation Listeners
Animated Sliding User Interface Example
Animating Layouts and View Groups

Creating and Using Frame-by-Frame Animations

Advanced Canvas Drawing
What Can You Draw?
Getting the Most from Your Paint
Improving Paint Quality with Anti-Aliasing
Canvas Drawing Best Practice
Advanced Compass Face Example
Bringing Map Overlays to Life

Introducing the Surface View
When Should You Use a Surface View?
Creating a New Surface View
Creating 3D Controls with a Surface View

Creating Interactive Controls
Using the Touch Screen
Using the Device Keys, Buttons, and D-Pad
Using the On Key Listener
Using the Trackball

Summary

INDEX

XXVi

489
490
490
492
492
493
498
500
501
501
502
507
507
508
516
517
517
517
519
520
520
524
525
526
526

529

INTRODUCTION

Now is an exciting time for mobile developers. Mobile phones have never been more popular, and
powerful smartphones are now a popular choice for consumers. Stylish and versatile phones packing
hardware features like GPS, accelerometers, and touch screens, combined with fixed-rate, reasonably
priced data plans provide an enticing platform upon which to create innovative mobile applications.

A host of Android handsets are now available to tempt consumers, including phones with QVGA
screens and powerful WVGA devices like the Motorola Droid and the Google Nexus One. The real
win though, is for developers. With much existing mobile development built on proprietary operating
systems that restrict the development and deployment of third-party applications, Android offers an
open alternative. Without artificial barriers, Android developers are free to write applications that take
full advantage of increasingly powerful mobile hardware and distribute them in an open market.

As a result, developer interest in Android devices has exploded as handset sales have continued to grow.
In 2009 and the early parts of 2010 more than 20 Android handsets have been released from OEMs
including HTC, Motorola, LG, Samsung, and Sony Ericsson. Android devices are now available in over
26 countries on more than 32 carriers. In the United States, Android devices are available on all four
major carriers: T-Mobile, Verizon, AT&T, and Sprint. Additionally, you can now buy the unlocked
Google Nexus One handset directly from Google at http: //www.google.com/phone.

Built on an open source framework, and featuring powerful SDK libraries and an open philosophy,
Android has opened mobile phone development to thousands of developers who haven’ t had access
to tools for building mobile applications. Experienced mobile developers can now expand into the
Android platform, leveraging the unique features to enhance existing products or create innovative
new ones.

Using the Android Market for distribution, developers can take advantage of an open marketplace,
with no review process, for distributing free and paid apps to all compatible Android devices.

This book is a hands-on guide to building mobile applications using version 2 of the Android software
development kit. Chapter by chapter, it takes you through a series of sample projects, each introducing
new features and techniques to get the most out of Android. It covers all the basic functionality as well
as exploring the advanced features through concise and useful examples.

Google’ s philosophy is to release early and iterateften. Since Android’ s first full release in October
2008, there have been seven platform and SDK releases. With such a rapid release cycle, there are likely
to be regular changes and improvements to the software and development libraries. While the Android
engineering team has worked hard to ensure backwards compatibility, future releases are likely to date
some of the information provided in this book.

Nonetheless, the explanations and examples included here will give you the grounding and knowledge
needed to write compelling mobile applications using the current SDK, along with the flexibility to
quickly adapt to future enhancements.

INTRODUCTION

WHOM THIS BOOK IS FOR

This book is for anyone interested in creating applications for the Android mobile phone platform
using the SDK. It includes information that will be valuable, whether you’ re an experienced mobile
developer or you’ re making your first foray, via Android, into writing mobile applications.

It will help if readers have used mobile phones (particularly phones running Android), but it’ s not
necessary, nor is prior experience in mobile phone development. It’ s expected that you’ Il have some
experience in software development and be familiar with basic development practices. While knowledge
of Java is helpful, it’ s not a necessity.

Chapters 1 and 2 introduce mobile development and contain instructions to get you started in Android.
Beyond that, there’ s no requirement to read the chapters in order, although a good understanding of the
core components described in Chapters 3 through 7 is important before you venture into the remaining
chapters. Chapters 8 through 15 cover a variety of optional and advanced functionality and can be read
in whatever order interest or need dictates.

WHAT THIS BOOK COVERS

Chapter 1 introduces Android, including what it is and how it fits into existing mobile development.
What Android offers as a development platform and why it” s an exciting opportunity for creating
mobile phone applications are then examined in greater detail.

Chapter 2 covers some best practices for mobile development and explains how to download the
Android SDK and start developing applications. It also introduces the Android developer tools and
demonstrates how to create new applications from scratch.

Chapters 3 through 7 take an in-depth look at the fundamental Android application components.
Starting with examining the pieces that make up an Android application and its life cycle, you’ 1l quickly
move on to the application manifest and external resources before learning about Activities, their
lifetimes, and their life cycles.

You’ Il then learn how to create user interfaces with layouts and Views, before being introduced to
the Intent mechanism used to perform actions and send messages between application components.
Internet resources are then covered before a detailed look at data storage, retrieval, and sharing. You’ 1l
start with the preference-saving mechanism before moving on to file handling and databases. This
section finishes with a look at sharing application data using Content Providers.

Chapters 8 to 14 look at more advanced topics. Starting with maps and location-based services, you’ 1l
move on to Services, background Threads, and using Notifications.

Next you’ Il learn how your applications can interacwith the user directly from the home screen using
widgets, live folders, Live Wallpaper, and the quick search box. After looking at playing and recording
multimedia, and using the camera, you’ 1l be introduced to Android’ s communication abilities.

The telephony API will be examined as well as the APIs used to send and receive SMS messages before
going on to Bluetooth and network management (both Wi-Fi and mobile data connections).

Chapter 14 examines the sensor APIs, demonstrating how to use the compass, accelerometers, and
other hardware sensors to let your application react to its environment.

XXVviii

INTRODUCTION

Chapter 15 includes several advanced development topics, among them security, IPC, advanced graph-
ics techniques, and user— hardware interactions.

HOW THIS BOOK IS STRUCTURED

This book is structured in a logical sequence to help readers of different development backgrounds
learn how to write advanced Android applications.

There’ s no requirement to read each chapter sequentially, but several of the sample projects are
developed over the course of several chapters, adding new functionality and other enhancements at
each stage.

Experienced mobile developers with a working Android development environment can skim the first
two chapters —which are an introduction to mobile development and instructions for creating

your development environment —and dive in at Chapters 3 to 7. These cover the fundamentals of
Android development, so it s important to have a solid understanding of the concepts they describe.
With this covered, you can move on to the remaining chapters, which look at maps, location-based
services, background applications, and more advanced topics such as hardware interaction and
networking.

WHAT YOU NEED TO USE THIS BOOK

To use the code samples in this book, you will need to create an Android development environment by
downloading the Android SDK, developer tools, and the Java development kit. You may also wish to
download and install Eclipse and the Android Developer Tool plug-in to ease your development, but
neither is a requirement.

Android development is supported in Windows, MacOS, and Linux, with the SDK available from the
Android web site.

You do not need an Android device to use this book or develop Android applications.

Chapter 2 outlines these requirements in more detail as well as describing where to
download and how to install each component.

CONVENTIONS

To help you get the most from the text and keep track of what’ s happening, I’ ve used various conven-
tions throughout the book.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed
in italics like this.

XXiX

INTRODUCTION

As for styles in the text:
» Ishow URLs and code within the text like so: persistence.properties.

» To help readability, class names in text are often represented using a regular font but capital-
ized like so:

Content Provider
> I present code in two different ways:

I use a monofont type with no highlighting for most code examples.
I use bold highlighting to emphasize code that's particularly important
in the present context.

> Insome code samples, you’ Il see lines marked as follows:
[... previous code goes here ...]

or

[... implement something here ...]

This represents an instruction to replace the entire line (including the square brackets) with
actual code, either from a previous code snippet in the former case, or your own
implementation in the latter.

» To keep the code sample reasonably concise, I have not always included every import state-
ment required in the code samples. The downloadable code samples described below include
all the required import statements.

SOURCE CODE

XXX

As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code files that accompany the book. All the source code used in this book is
available for download at www.wrox.com. Once at the site, simply locate the book’ s title (either by using
the Search box or by using one of the title lists), and click the Download Code link on the book’ s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN;
this book’ s ISBN is 978-0-470-56552-0.

Once you download the code, just decompress it with your favorite decompression tool. Alternatively,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx

INTRODUCTION

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’ s errata is also available atww.wrox.com/misc-pages/booklist
.shtml.

If you don’ tspot ¢ your’ * error on the Book Errata page,ugortarox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ 1l check the information
and, if appropriate, post a message to the book’ s Errata page and fix the problem in subsequent editions
of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.comand click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

XXXi

http://www.wrox.com
http://P2P.WROX.COM
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

INTRODUCTION

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the ¢ ¢ Subscribe to This Forini icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and

Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXXii

Hello, Android

WHAT’S IN THIS CHAPTER?

A background to mobile application development
What Android is (and what it isn’t)

An introduction to the Android SDK features
What devices Android runs on

Why develop for mobile and Android?

Y Y Y VY VY Y

An introduction to the SDK and the Android development framework

Whether you’re an experienced mobile engineer, a desktop or web developer, or a complete
programming novice, Android represents an exciting new opportunity to write innovative appli-
cations for mobile devices.

Despite the name, Android will not help you create an unstoppable army of emotionless robot
warriors on a relentless quest to cleanse the earth of the scourge of humanity. Instead, Android
is an open-source software stack that includes the operating system, middleware, and key
mobile applications along with a set of API libraries for writing mobile applications that can
shape the look, feel, and function of mobile handsets.

Small, stylish, and versatile, modern mobile devices have become powerful tools that incorpo-
rate cameras, media players, GPS systems, and touchscreens. As technology has evolved, mobile
phones have become about more than simply making calls, but their software and development
platforms have struggled to keep pace.

Until recently, mobile phones were largely closed environments built on highly fragmented, pro-
prietary operating systems that required proprietary development tools. The phones themselves
often prioritized native applications over those written by third parties. This has introduced an
artificial barrier for developers hoping to build on increasingly powerful mobile hardware.

2 | CHAPTER1 HELLO, ANDROID

In Android, native and third-party applications are written with the same APIs and executed on the
same run time. These APIs feature hardware sensor access, video recording, location-based services,
support for background services, map-based activities, relational databases, inter-application commu-
nication, and 2D and 3D graphics.

Using this book, you will learn how to use these APIs to create your own Android applications. In this
chapter you’ll learn some mobile development guidelines and be introduced to the features available
from the Android development platform.

Android has powerful APIs, excellent documentation, a thriving developer community, and no devel-
opment or distribution costs. As mobile devices continue to increase in popularity, this is an exciting
opportunity to create innovative mobile phone applications no matter what your development
experience.

A LITTLE BACKGROUND

In the days before Twitter and Facebook, when Google was still a twinkle in its founders’ eyes and
dinosaurs roamed the earth, mobile phones were just that — portable phones small enough to fit inside
a briefcase, featuring batteries that could last up to several hours. They did however offer the freedom
to make calls without being physically connected to a landline.

Increasingly small, stylish, and powerful mobile phones are now as ubiquitous as they are indispensable.
Hardware advancements have made mobiles smaller and more efficient while including an increasing
number of peripherals.

After first getting cameras and media players, mobiles now include GPS systems, accelerometers, and
touch screens. While these hardware innovations should prove fertile ground for software development,
the applications available for mobile phones have generally lagged behind the hardware.

The Not-So-Distant Past

Historically, developers, generally coding in low-level C or C++, have needed to understand the specific
hardware they were coding for, generally a single device or possibly a range of devices from a single
manufacturer. As hardware technology and mobile Internet access has advanced, this closed approach
has become outmoded.

More recently, platforms like Symbian have been created to provide developers with a wider target
audience. These systems have proven more successful in encouraging mobile developers to provide rich
applications that better leverage the hardware available.

These platforms offer some access to the device hardware, but require the developer to write complex

C/C++ code and make heavy use of proprietary APIs that are notoriously difficult to work with. This

difficulty is amplified for applications that must work on different hardware implementations and those
that make use of a particular hardware feature, like GPS.

In more recent years, the biggest advance in mobile phone development was the introduction of Java-

hosted MIDlets. MIDlets are executed on a Java virtual machine, a process that abstracts the underlying
hardware and lets developers create applications that run on the wide variety of devices that supports

the Java run time. Unfortunately, this convenience comes at the price of restricted access to the device

hardware.

What ltIsn’t | 3

In mobile development it was considered normal for third-party applications to receive different
hardware access and execution rights from those given to native applications written by the phone
manufacturers, with MIDlets often receiving few of either.

The introduction of Java MIDlets expanded developers’ audiences, but the lack of low-level hardware
access and sandboxed execution meant that most mobile applications are regular desktop programs or
web sites designed to render on a smaller screen, and do not take advantage of the inherent mobility of

the handheld platform.

The Future

Android sits alongside a new wave of mobile operating systems designed for increasingly powerful
mobile hardware. Windows Mobile, the Apple iPhone, and the Palm Pre now provide a richer, sim-
plified development environment for mobile applications. However, unlike Android, they’re built on
proprietary operating systems that in some cases prioritize native applications over those created by
third parties, restrict communication among applications and native phone data, and restrict or control
the distribution of third-party apps to their platforms.

Android offers new possibilities for mobile applications by offering an open development environment
built on an open-source Linux kernel. Hardware access is available to all applications through a series
of API libraries, and application interaction, while carefully controlled, is fully supported.

In Android, all applications have equal standing. Third-party and native Android applications are
written with the same APIs and are executed on the same run time. Users can remove and replace any
native application with a third-party developer alternative; even the dialer and home screens can be
replaced.

WHAT IT ISN’T

As a disruptive addition to a mature field, it’s not hard to see why there has been some confusion about
what exactly Android is. Android is not:

» A Java ME implementation Android applications are written in the Java language, but they
are not run within a Java ME virtual machine, and Java-compiled classes and executables will
not run natively in Android.

» Part of the Linux Phone Standards Forum (LiPS) or the Open Mobile Alliance (OMA)
Android runs on an open-source Linux kernel, but, while their goals are similar, Android’s
complete software stack approach goes further than the focus of these standards-defining
organizations.

» Simply an application layer (like UIQ or S60) While Android does include an application
layer, “Android” also describes the entire software stack encompassing the underlying oper-
ating system, the API libraries, and the applications themselves.

> A mobile phone handset Android includes a reference design for mobile handset manufac-
turers, but there is no single “Android phone.” Instead, Android has been designed to support
many alternative hardware devices.

> Google’s answer to the iPhone The iPhone is a fully proprietary hardware and software
platform released by a single company (Apple), while Android is an open-source software

4 | CHAPTER1 HELLO, ANDROID

stack produced and supported by the Open Handset Alliance and designed to operate on any
handset that meets the requirements. Google has now released its first direct-to-consumer
handset, the Nexus 1, but this device remains simply one hardware implementation running
on the Android platform.

ANDROID: AN OPEN PLATFORM FOR MOBILE DEVELOPMENT

Google’s Andy Rubin describes Android as:

The first truly open and comprehensive platform for mobile devices, all of the
software to run a mobile phone but without the proprietary obstacles that have
hindered mobile innovation. (http://googleblog.blogspot.com/2007/11/
wheres-my-gphone.html)

Put simply, Android is a combination of three components:

>

>

>

A free, open-source operating system for mobile devices
An open-source development platform for creating mobile applications

Devices, particularly mobile phones, that run the Android operating system and the applica-
tions created for it

More specifically, Android is made up of several necessary and dependent parts, including the
following:

>

A hardware reference design that describes the capabilities required for a mobile device to
support the software stack.

A Linux operating system kernel that provides low-level interface with the hardware, memory
management, and process control, all optimized for mobile devices.

Open-source libraries for application development, including SQLite, WebKit, OpenGL, and
a media manager.

A run time used to execute and host Android applications, including the Dalvik virtual
machine and the core libraries that provide Android-specific functionality. The run time is
designed to be small and efficient for use on mobile devices.

An application framework that agnostically exposes system services to the application layer,
including the window manager and location manager, content providers, telephony, and
sensors.

A user interface framework used to host and launch applications.
Preinstalled applications shipped as part of the stack.

A software development kit used to create applications, including tools, plug-ins, and docu-
mentation.

What really makes Android compelling is its open philosophy, which ensures that you can fix any defi-
ciencies in user interface or native application design by writing an extension or replacement. Android

Native Android Applications | 5

provides you, as a developer, with the opportunity to create mobile phone interfaces and applications
designed to look, feel, and function exactly as you imagine them.

NATIVE ANDROID APPLICATIONS

Android phones will normally come with a suite of generic preinstalled applications that are part of the
Android Open Source Project (AOSP), including, but not necessarily limited to:

» Ane-mail client

An SMS management application

A full PIM (personal information management) suite including a calendar and contacts list
A WebKit-based web browser

A music player and picture gallery

A camera and video recording application

A calculator

Y Y Y Y Y Y Y

The home screen
» Analarm clock

In many cases Android devices will also ship with the following proprietary Google mobile
applications:

» The Android Market client for downloading third-party Android applications

> A fully-featured mobile Google Maps application including StreetView, driving directions
and turn-by-turn navigation, satellite view, and traffic conditions

» The Gmail mail client
» The Google Talk instant-messaging client
» The YouTube video player

The data stored and used by many of these native applications — like contact details — are also avail-
able to third-party applications. Similarly, your applications can handle events such as incoming calls
or new SMS messages.

The exact makeup of the applications available on new Android phones is likely to vary based on the
hardware manufacturer and/or the phone carrier or distributor.

The open-source nature of Android means that carriers and OEMs can customize the user interface and
the applications bundled with each Android device. Several OEMs have done this, including HTC with
the Sense UL, Motorola with MotoBlur, and Sony Ericsson’s custom Ul.

It’s important to note that for compatible devices, the underlying platform and SDK remain consis-
tent across OEM and carrier variations. The look and feel of the user interface may vary, but your
applications will function in the same way across all compatible Android devices.

6 | CHAPTER1 HELLO, ANDROID

ANDROID SDK FEATURES

The true appeal of Android as a development environment lies in the APIs it provides.

As an application-neutral platform, Android gives you the opportunity to create applications that are
as much a part of the phone as anything provided out of the box. The following list highlights some of
the most noteworthy Android features:

>

>

>

Y Y Y VY VY VY Y VY Yy VY

\

No licensing, distribution, or development fees or release approval processes
Wi-Fi hardware access

GSM, EDGE, and 3G networks for telephony or data transfer, enabling you to make or
receive calls or SMS messages, or to send and retrieve data across mobile networks

Comprehensive APIs for location-based services such as GPS

Full multimedia hardware control, including playback and recording with the camera and
microphone

APIs for using sensor hardware, including accelerometers and the compass

Libraries for using Bluetooth for peer-to-peer data transfer

IPC message passing

Shared data stores

Background applications and processes

Home-screen Widgets, Live Folders, and Live Wallpaper

The ability to integrate application search results into the system search

An integrated open-source HTMLS WebKit-based browser

Full support for applications that integrate map controls as part of their user interface

Mobile-optimized hardware-accelerated graphics, including a path-based 2D graphics library
and support for 3D graphics using OpenGL ES 2.0

Media libraries for playing and recording a variety of audio/video or still image formats
Localization through a dynamic resource framework

An application framework that encourages reuse of application components and the replace-
ment of native applications

Access to Hardware, Including Camera, GPS, and Accelerometer

Android includes API libraries to simplify development involving the device hardware. These ensure
that you don’t need to create specific implementations of your software for different devices, so you
can create Android applications that work as expected on any device that supports the Android
software stack.

The Android SDK includes APIs for location-based hardware (such as GPS), the camera, audio, net-
work connections, Wi-Fi, Bluetooth, accelerometers, the touchscreen, and power management. You can
explore the possibilities of some of Android’s hardware APIs in more detail in Chapters 11 through 14.

Android SDK Features | 7

Native Google Maps, Geocoding, and Location-Based Services

Native map support lets you create a range of map-based applications that leverage the mobility of
Android devices. Android lets you create activities that include interactive Google Maps as part of
your user interface, with full access to maps that you can control programmatically and annotate using
Android’s rich graphics library.

Android’s location-based services manage technologies like GPS and Google’s GSM cell-based location
technology to determine the device’s current position. These services enforce an abstraction from spe-
cific location-detecting technology and let you specify minimum requirements (e.g., accuracy or cost)
rather than choosing a particular technology. They also mean that your location-based applications
will work no matter what technology the host handset supports.

To combine maps with locations, Android includes an API for forward and reverse geocoding that lets
you find map coordinates for an address, and the address of a map position.

You’ll learn the details of using maps, the Geocoder, and location-based services in Chapter 8.

Background Services
Android supports applications and services designed to run invisibly in the background.

Modern mobiles are by nature multifunction devices; however, their limited screen sizes means that
generally only one interactive application can be visible at any time. Platforms that don’t support
background execution limit the viability of applications that don’t need your constant attention.

Background services make it possible to create invisible application components that perform automatic
processing without direct user action. Background execution allows your applications to become event-
driven and to support regular updates, which is perfect for monitoring game scores or market prices,
generating location-based alerts, or prioritizing and prescreening incoming calls and SMS messages.

Learn more about how to get the most out of background services in Chapter 9.

SQLite Database for Data Storage and Retrieval

Rapid and efficient data storage and retrieval are essential for a device whose storage capacity is limited
by its compact nature.

Android provides a lightweight relational database for each application using SQLite. Your appli-
cations can take advantage of this managed relational database engine to store data securely and
efficiently.

By default each application database is sandboxed — its content is available only to the application that
created it — but Content Providers supply a mechanism for the managed sharing of these application
databases.

Databases and Content Providers are covered in detail in Chapter 7.

Shared Data and Interapplication Communication

Android includes three techniques for transmitting information from your applications for use else-
where: Notifications, Intents, and Content Providers.

8 | CHAPTER1 HELLO, ANDROID

Notifications are the standard means by which a mobile device traditionally alerts users. Using the API
you can trigger audible alerts, cause vibration, and flash the device’s LED, as well as control status bar
notification icons, as shown in Chapter 9.

Intents provide a mechanism for message-passing within and between applications. Using Intents you
can broadcast a desired action (such as dialing the phone or editing a contact) system-wide for other

applications to handle. Intents are an important core component of Android and are covered in depth
in Chapter S.

Finally, you can use Content Providers to give managed access to your application’s private databases.
The data stores for native applications, such as the contact manager, are exposed as Content Providers
so you can create your own applications that read or modify this data. Chapter 7 covers Content
Providers in detail, including the native providers, and demonstrates how to create and use providers
of your own.

Using Widgets, Live Folders, and Live Wallpaper to Enhance the
Home Screen

Widgets, Live Folders, and Live Wallpaper let you create dynamic application components that provide
a window into your applications or offer useful and timely information directly on the home screen.

If you offer a way for users to interact with your application directly from the home screen, they get
instant access to interesting information without needing to open an application, and you get a dynamic
shortcut into your application.

You’ll learn how to create application components for the home screen in Chapter 10.

Extensive Media Support and 2D/3D Graphics

Bigger screens and brighter, higher-resolution displays have helped make mobiles multimedia devices.
To help you make the most of the hardware available, Android provides graphics libraries for 2D
canvas drawing and 3D graphics with OpenGL.

Android also offers comprehensive libraries for handling still images, video, and audio files, including
the MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, and GIF formats.

2D and 3D graphics are covered in depth in Chapter 15, while Android media management libraries
are covered in Chapter 11.

Optimized Memory and Process Management

Android’s process and memory management is a little unusual. Like Java and .NET, Android uses its
own run time and virtual machine to manage application memory. Unlike with either of these other
frameworks, the Android run time also manages the process lifetimes. Android ensures application
responsiveness by stopping and killing processes as necessary to free resources for higher-priority
applications.

In this context, the highest priority is given to the application with which the user is interacting. Ensur-
ing that your applications are prepared for a swift death but are still able to remain responsive, and to

Why Develop for Mobile? | 9

update or restart in the background if necessary, is an important consideration in an environment that
does not allow applications to control their own lifetimes.

You will learn more about the Android application life cycle in Chapter 3.

INTRODUCING THE OPEN HANDSET ALLIANCE

The Open Handset Alliance (OHA) is a collection of more than 50 technology companies, including
hardware manufacturers, mobile carriers, and software developers. Of particular note are the promi-
nent mobile technology companies Motorola, HTC, T-Mobile, and Qualcomm. In their own words,
the OHA represents the following;:

A commitment to openness, a shared vision for the future, and concrete plans to
make the vision a reality. To accelerate innovation in mobile and offer
consumers a richer, less expensive, and better mobile experience. (http: //www

.openhandsetalliance.com/)

The OHA hopes to deliver a better mobile software experience for consumers by providing the plat-
form needed for innovative mobile development at a faster rate and with higher quality than existing
platforms, without licensing fees for either software developers or handset manufacturers.

WHAT DOES ANDROID RUN ON?

The first Android mobile handset, the T-Mobile G1, was released in the United States in October 2008.
By the end of 2009 over 20 Android-compatible handsets had been launched or announced in more
than 26 countries on 32 different carrier networks.

Rather than being a mobile OS created for a single hardware implementation, Android is designed to
support a large variety of hardware platforms, from WVGA phones with hard keyboards to QVGA
devices with resistive touchscreens.

Beyond that, with no licensing fees or proprietary software, the cost to handset manufacturers for pro-
viding Android handsets, and potentially other Android-powered devices, is comparatively low. Many
people now expect that the advantages of Android as a platform for creating powerful applications will
encourage device manufacturers to produce increasingly tailored hardware.

WHY DEVELOP FOR MOBILE?

In market terms, the emergence of modern mobile smartphones and superphones — multifunction
devices including a phone but featuring a full-featured web browser, cameras, media players, Wi-Fi,
and location-based services — has fundamentally changed the way people interact with their mobile
devices and access the Internet. Mobile-phone ownership easily surpasses computer ownership in many
countries; 2009 marked the year that more people accessed the Internet for the first time from a mobile
phone rather than a PC.

10 | CHAPTER1 HELLO, ANDROID

The increasing popularity of modern smartphones, combined with the increasing availability of flat-
rate, affordable data plans and Wi-Fi, has created a growth market for advanced mobile applications.

The ubiquity of mobile phones, and our attachment to them, makes them a fundamentally different
platform for development from PCs. With a microphone, a camera, a touchscreen, location detection,
and environmental sensors, a phone can effectively become an extension of your own perceptions.

With the average Android user installing and using around 40 apps, mobile applications have changed
the way people use their phones. This gives you, the application developer, a unique opportunity to
create dynamic, compelling new applications that become a vital part of people’s lives.

WHY DEVELOP FOR ANDROID?

If you have a background in mobile application development, you don’t need me to tell you that:
> Alot of what you can do with Android is already possible.
> But doing it is painful.

Android represents a clean break, a mobile framework based on the reality of modern mobile devices
designed by developers, for developers.

With a simple and powerful SDK, no licensing fees, excellent documentation, and a thriving developer
community, Android represents an excellent opportunity to create software that changes how and why
people use their mobile phones.

From a commercial perspective Android:

> Requires no certification for becoming an Android developer

> Provides the Android Market for distribution and monetization of your applications
> Has no approval process for application distribution
>

Gives you total control over your brand and access to the user’s home screen

What Has and Will Continue to Drive Android Adoption?

Android is targeted primarily at developers, with Google and the OHA betting that the way to deliver
better mobile software to consumers is to make it easier for developers to write it themselves.

As a development platform, Android is powerful and intuitive, letting developers who have never
programmed for mobile devices create useful applications quickly and easily. It’s easy to see how inno-
vative Android applications could create demand for the devices necessary to run them, particularly if
developers write applications for Android because they can’ trite them for other platforms.

Open access to the nuts and bolts of the underlying system is what’s always driven software develop-
ment and platform adoption. The Internet’s inherent openness and neutrality have seen it become the
platform for a multibillion-dollar industry within 10 years of its inception. Before that, it was open sys-
tems like Linux and the powerful APIs provided as part of the Windows operating system that enabled
the explosion in personal computers and the movement of computer programming from the arcane to
the mainstream.

Why Develop for Android? | 11

This openness and power ensure that anyone with the inclination can bring a vision to life at minimal
cost.

What Does It Have That Others Don’t?

Many of the features listed previously, such as 3D graphics and native database support, are also
available in other mobile SDKs. Here are some of the unique features that set Android apart:

> Google Map applications Google Maps for Mobile has been hugely popular, and Android
offers a Google Map as an atomic, reusable control for use in your applications. The Map
View lets you display, manipulate, and annotate a Google Map within your Activities to build
map-based applications using the familiar Google Maps interface.

» Background services and applications Background services let you create an application
that uses an event-driven model, working silently while other applications are being used or
while your mobile sits ignored until it rings, flashes, or vibrates to get your attention. Maybe
it’s a streaming music player, an application that tracks the stock market, alerting you to sig-
nificant changes in your portfolio, or a service that changes your ringtone or volume depend-
ing on your current location, the time of day, and the identity of the caller.

> Shared data and interprocess communication Using Intents and Content Providers,
Android lets your applications exchange messages, perform processing, and share data. You
can also use these mechanisms to leverage the data and functionality provided by the native
Android applications. To mitigate the risks of such an open strategy, each application’s
process, data storage, and files are private unless explicitly shared with other applications via
a full permission-based security mechanism detailed in Chapter 15.

» All applications are created equal Android doesn’t differentiate between native applications
and those developed by third parties. This gives consumers unprecedented power to change
the look and feel of their devices by letting them completely replace every native application
with a third-party alternative that has access to the same underlying data and hardware.

» Home-screen Widgets, Live Folders, Live Wallpaper, and the quick search box Using Wid-
gets, Live Folders, and Live Wallpaper, you can create windows into your application from
the phone’s home screen. The quick search box lets you integrate search results from your
application directly into the phone’s search functionality.

Changing the Mobile Development Landscape

Existing mobile development platforms have created an aura of exclusivity around mobile development.
Whether by design or as a side effect of the cost, complexity, or necessity for approval involved in
developing native applications, many mobile phones remain almost exactly as they were when first
purchased.

In contrast, Android allows, even encourages, radical change. As consumer devices, Android handsets
ship with a core set of the standard applications that consumers demand on a new phone, but the real
power lies in users’ ability to completely change how their devices look, feel, and function.

Android gives developers a great opportunity. All Android applications are a native part of the phone,
not just software that’s run in a sandbox on top of it. Rather than writing small-screen versions of

12

| CHAPTER1 HELLO, ANDROID

software that can be run on low-power devices, you can now write mobile applications that change the
way people use their phones.

While Android will still have to compete with existing and future mobile development platforms as an
open-source developer framework, the strength of the development kit is very much in its favor. Cer-

tainly its free and open approach to mobile application development, with total access to the phone’s

resources, is a giant step in the right direction.

INTRODUCING THE DEVELOPMENT FRAMEWORK

With the PR job done, it’s time to look at how you can start developing applications for Android.
Android applications are written with Java as a programming language but executed by means of a
custom virtual machine called Dalvik rather than a traditional Java VM.

Later in this chapter you’ll be introduced to the framework, starting with a technical explanation of the
Android software stack, a look at what’s included in the SDK, an introduction to the Android libraries,
and a look at the Dalvik virtual machine.

Each Android application runs in a separate process within its own Dalvik instance, relinquishing all
responsibility for memory and process management to the Android run time, which stops and kills
processes as necessary to manage resources.

Dalvik and the Android run time sit on top of a Linux kernel that handles low-level hardware inter-
action, including drivers and memory management, while a set of APIs provides access to all the
underlying services, features, and hardware.

What Comes in the Box

The Android software development kit (SDK) includes everything you need to start developing, testing,
and debugging Android applications. Included in the SDK download are:

» The Android APIs The core of the SDK is the Android API libraries that provide devel-
oper access to the Android stack. These are the same libraries used at Google to create native
Android applications.

> Development tools So you can turn Android source code into executable Android appli-
cations, the SDK includes several development tools that let you compile and debug your
applications. You will learn more about the developer tools in Chapter 2.

» The Android Virtual Device Manager and Emulator The Android Emulator is a fully inter-
active Android device emulator featuring several alternative skins. The emulator runs within
an Android Virtual Device that simulates the device hardware configuration. Using the emu-
lator you can see how your applications will look and behave on a real Android device. All
Android applications run within the Dalvik VM, so the software emulator is an excellent
environment — in fact, as it is hardware-neutral, it provides a better independent test envi-
ronment than any single hardware implementation.

» Full documentation The SDK includes extensive code-level reference information detail-
ing exactly what’s included in each package and class and how to use them. In addition to

Introducing the Development Framework | 13

the code documentation, Android’s reference documentation explains how to get started and
gives detailed explanations of the fundamentals behind Android development.

Sample code The Android SDK includes a selection of sample applications that demonstrate
some of the possibilities available with Android, as well as simple programs that highlight
how to use individual API features.

Online support Android has rapidly generated a vibrant developer community. The Google
Groups at http://developer.android.com/resources/community-groups.html are active
forums of Android developers with regular input from the Android engineering and developer
relations teams at Google. StackOverflow at http: //www. stackoverflow.com/questions/
tagged/android has also become a popular destination for Android questions.

For those using the popular Eclipse IDE, Android has released a special plug-in that simplifies project
creation and tightly integrates Eclipse with the Android Emulator and debugging tools. The features of
the ADT plug-in are covered in more detail in Chapter 2.

Understanding the Android Software Stack

The Android software stack is composed of the elements shown in Figure 1-1 and described in further
detail after it. Put simply, a Linux kernel and a collection of C/C++ libraries are exposed through an
application framework that provides services for, and management of, the run time and applications.

>

Linux kernel Core services (including hardware drivers, process and memory management,
security, network, and power management) are handled by a Linux 2.6 kernel. The kernel
also provides an abstraction layer between the hardware and the remainder of the stack.

Libraries Running on top of the kernel, Android includes various C/C++ core libraries such
as libc and SSL, as well as:

> A media library for playback of audio and video media

> A surface manager to provide display management

> Grapbhics libraries that include SGL and OpenGL for 2D and 3D graphics
> SQLite for native database support

» SSL and WebKit for integrated web browser and Internet security

Android run time What makes an Android phone an Android phone rather than a mobile
Linux implementation is the Android run time. Including the core libraries and the Dalvik
virtual machine, the Android run time is the engine that powers your applications and, along
with the libraries, forms the basis for the application framework.

» Core libraries While Android development is done in Java, Dalvik is not a Java
VM. The core Android libraries provide most of the functionality available in the
core Java libraries as well as the Android-specific libraries.

» Dalvik virtual machine Dalvik is a register-based virtual machine that’s been opti-
mized to ensure that a device can run multiple instances efficiently. It relies on the
Linux kernel for threading and low-level memory management.

14 | CHAPTER1 HELLO, ANDROID

Application Layer

Native Apps Third-Party Apps Developer Apps

(Contacts, Maps, Browser, etc.)

Application Framework

- N
Location-Based Content Window Activity Package
Services Providers Manager Manager Manager
Telephony L P2P/XMPP Notifications Views] Resource J
Manager
- /
Libraries Android Run Time
4 N " N
Graphics Media SSL & Webkit Android Libraries

(OpenGL, SGL, FreeType)

)) Surface Dalvik
libc SQLite Manager Virtual Machine
(.

Linux Kernel
Hardware Drivers Power Process Memory
(USB, Display, Bluetooth, etc.) Management Management Management
FIGURE 1-1

> Application framework The application framework provides the classes used to create
Android applications. It also provides a generic abstraction for hardware access and manages
the user interface and application resources.

> Application layer All applications, both native and third-party, are built on the application
layer by means of the same API libraries. The application layer runs within the Android run
time, using the classes and services made available from the application framework.

The Dalvik Virtual Machine

One of the key elements of Android is the Dalvik virtual machine. Rather than use a traditional Java vir-
tual machine (VM) such as Java ME (Java Mobile Edition), Android uses its own custom VM designed
to ensure that multiple instances run efficiently on a single device.

Introducing the Development Framework | 15

The Dalvik VM uses the device’s underlying Linux kernel to handle low-level functionality including
security, threading, and process and memory management. It’s also possible to write C/C++ appli-
cations that run directly on the underlying Linux OS. While you can do this, in most cases there’s no
reason you should need to.

If the speed and efficiency of C/C++ is required for your application, Android now provides a Native
Development Kit (NDK). The NDK is designed to enable you to create C++ libraries using the libc and
libm libraries, along with native access to OpenGL.

@ This book focuses exclusively on writing applications that run within Dalvik

= using the SDK. If your inclinations run toward exploring the Linux kernel and
C/C++ underbelly of Android, modifying Dalvik, or otherwise tinkering with
things under the hood, check out the Android Internals Google Group at
http://groups.google.com/group/android-internals

While use of the NDK is encouraged where needed, details of its use have not been
included within this book.

All Android hardware and system service access is managed using Dalvik as a middle tier. By using a
VM to host application execution, developers have an abstraction layer that ensures they never have to
worry about a particular hardware implementation.

The Dalvik VM executes Dalvik executable files, a format optimized to ensure minimal memory foot-
print. You create.dex executables by transforming Java language compiled classes using the tools
supplied within the SDK. You’ll learn more about how to create Dalvik executables in the next chapter.

Android Application Architecture

Android’s architecture encourages the concept of component reuse, enabling you to publish and share
Activities, Services, and data with other applications, with access managed by the security restrictions
you put in place.

The same mechanism that lets you produce a replacement contact manager or phone dialer can let you
expose your application components to let other developers create new Ul front ends and functionality
extensions, or otherwise build on them.

The following application services are the architectural cornerstones of all Android applications, pro-
viding the framework you’ll be using for your own software:

> Activity Manager Controls the life cycle of your Activities, including management of the
Activity stack described in Chapter 3.

> Views Used to construct the user interfaces for your Activities, as described in Chapter 4.

» Notification Manager Provides a consistent and nonintrusive mechanism for signaling your
users, as described in Chapter 9.

» Content Providers Let your applications share data, as described in Chapter 7.

» Resource Manager Supports non-code resources like strings and graphics to be external-
ized, as shown in Chapter 3.

16 | CHAPTER1 HELLO, ANDROID

Android Libraries

Android offers a number of APIs for developing your applications. Rather than list them all here, I refer
you to the documentation at http://developer.android.com/reference/packages.html, which gives
a complete list of packages included in the Android SDK.

Android is intended to target a wide range of mobile hardware, so be aware that the suitability and
implementation of some of the advanced or optional APIs may vary depending on the host device.

SUMMARY

This chapter explained that despite significant advances in the hardware features available on modern
mobile phones, the software has lagged. Hard-to-use development kits, hardware-specific APIs, and a
lack of openness have stifled innovation in mobile software.

Android offers an opportunity for developers to create innovative software applications for mobile
devices without the restrictions generally associated with the existing proprietary mobile development
frameworks.

You were shown the complete Android software stack, which includes not only an application layer
and development toolkit but also the Dalvik VM, a custom run time, core libraries, and a Linux kernel,
all of which are available as open source.

You also learned:

» How handsets with an expanding range of hardware features have created demand for tools
that give developers better access to these features.

> About some of the features available to developers using Android, including native map sup-
port, hardware access, background services, interprocess messaging, shared databases, and
2D and 3D graphics.

» That all Android applications are built equal, allowing users to completely replace one appli-
cation, even a core native application, with another.

» That the Android SDK includes developer tools, APIs, and comprehensive documentation.

The next chapter will help you get started by downloading and installing the Android SDK and setting
up an Android development environment in Eclipse.

You’ll also learn how to use the Android developer tools plug-in to streamline development, testing,
and debugging before creating your first Android application.

After learning about the building blocks of Android applications, you’ll be introduced to the different
types of applications you can create, and you’ll start to understand some of the design considerations
that should go into developing applications for mobile devices.

Getting Started

WHAT’S IN THIS CHAPTER?

> How to install the Android SDK, create a development environment,
and debug your projects.

» Understanding mobile design considerations and the importance of
optimizing for speed and efficiency and designing for small screens
and mobile data connections.

» Using Android Virtual Devices, the emulator, and developer tools.

All you need to start writing your own Android applications is a copy of the Android SDK and
the Java development kit. Unless you’re a masochist, you’ll probably want a Java IDE — Eclipse
is particularly well supported — to make development a little easier.

Versions of the SDK, Java, and Eclipse are available for Windows, MacOS, and Linux, so you
can explore Android from the comfort of whatever OS you favor. The SDK tools and emula-
tor work on all three OS environments, and because Android applications are run on a virtual
machine, there’s no advantage to developing from any particular operating system.

Android code is written with Java syntax, and the core Android libraries include most of the
features from the core Java APIs. Before they can be run, though, your projects must first be
translated into Dalvik byte code. As a result, you get the benefits of using Java while your appli-
cations have the advantage of running on a virtual machine optimized for mobile devices.

The SDK download includes all the Android libraries, full documentation, and excellent sam-
ple applications. It also includes tools to help you write and debug your applications, like the
Android Emulator to run your projects and the Dalvik Debug Monitoring Service (DDMS) to
help debug them.

By the end of this chapter you’ll have downloaded the Android SDK, set up your development
environment, completed two new applications, and run and debugged them with the DDMS
using the emulator running on an Android Virtual Device.

If you’ve developed for mobile devices before, you already know that their small-form factor, limited
power, and restricted memory create some unique design challenges. Even if you’re new to the game,

18 | CHAPTER2 GETTING STARTED

it’s obvious that some of the things you can take for granted on the desktop or the Web aren’t going to
work on a mobile.

As well as the hardware limitations, the user environment brings its own challenges. Mobile devices are
used on the move and are often a distraction rather than the focus of attention, so your applications
need to be fast, responsive, and easy to learn and use.

This chapter examines some of the best practices for writing mobile applications to help overcome the
inherent hardware and environmental challenges. Rather than try to tackle the whole topic, we’ll focus
on using the Android SDK in a way that’s consistent with good mobile design principles.

DEVELOPING FOR ANDROID

The Android SDK includes all the tools and APIs you need to write compelling and powerful mobile
applications. The biggest challenge with Android, as with any new development toolkit, is learning the
features and limitations of its APIs.

If you have experience in Java development you’ll find that the techniques, syntax, and grammar you’ve
been using will translate directly into Android, although some of the specific optimization techniques
may seem counterintuitive.

If you don’t have experience with Java but have used other object-oriented languages (such as C#), you
should find the transition straightforward. The power of Android comes from its APIs, not from Java,
so being unfamiliar with all the Java-specific classes won’t be a big disadvantage.

What You Need to Begin

Because Android applications run within the Dalvik virtual machine, you can write them on any plat-
form that supports the developer tools. This currently includes the following:

» Microsoft Windows (XP or later)
» Mac OS X 10.4.8 or later (Intel chips only)
» Linux
To get started, you’ll need to download and install the following;:
» The Android SDK
» Java Development Kit (JDK) 5 or 6

You can download the latest JDK from Sun at http://java.sun.com/javase/downloads/index. jsp

If you already have a [DK installed, make sure that it meets the version requirements
listed above, and note that the Java runtime environment (JRE) is not sufficient.

Downloading and Installing the SDK

The Android SDK is completely open. There’s no cost to download or use the API, and Google doesn’t
charge (or require review) to distribute your finished programs on the Android Market or otherwise.

Developing for Android | 19

You can download the latest version of the SDK for your development platform from the Android
development homepage at http://developer.android.com/sdk/index.html

Unless otherwise noted, the version of the Android SDK used for writing this book
was version 2.1 rl.

The SDK is presented as a ZIP file containing only the latest version of the Android developer tools.
Install it by unzipping the SDK into a new folder. (Take note of this location, as you’ll need it later.)

Before you can begin development you need to add at least one SDK Platform; do this on Windows by
running the “SDK Setup.exe” executable, or on MacOS or Linux by running the “android” executable
in the tools subfolder. In the screen that appears, select the “Available Packages™ option on the left
panel, and then select the SDK Platform versions you wish to install in the “Sources, Packages, and
Archives” panel on the right. The selected platform will then be downloaded to your SDK installation
folder and will contain the API libraries, documentation, and several sample applications.

The examples and step-by-step instructions provided are targeted at developers using Eclipse with the
Android Developer Tool (ADT) plug-in. Neither is required, though — you can use any text editor or
Java IDE you’re comfortable with and use the developer tools in the SDK to compile, test, and debug
the code snippets and sample applications.

If you’re planning to use them, the next sections explain how to set up Eclipse and the ADT plug-in
as your Android development environment. Later in the chapter we’ll also take a closer look at the
developer tools that come with the SDK, so if you’d prefer to develop without using Eclipse or the ADT
plug-in you’ll particularly want to check that out.

The examples included in the SDK are well documented and are an excellent source
for full, working examples of applications written for Android. Once you’ ve
finished setting up your development environment it’ s worth going through them.

Developing with Eclipse

Using Eclipse with the ADT plug-in for your Android development offers some significant advantages.

Eclipse is an open-source IDE (integrated development environment) particularly popular for Java
development. It’s available for download for each of the development platforms supported by Android
(Windows, MacOS, and Linux) from the Eclipse foundation homepage: www.eclipse.org/downloads/

There are many variations available; the following is the recommended configuration for Android:
> Eclipse 3.4 or 3.5 (Galileo)
» Eclipse JDT plug-in
> WST
WST and the JDT plug-in are included in most Eclipse IDE packages.

20 | CHAPTER2 GETTING STARTED

Installing Eclipse consists of uncompressing the download into a new folder. When that’s done, run
the eclipse executable. When it starts for the first time, create a new workspace for your Android
development projects.

Using the Eclipse Plug-In

The ADT plug-in for Eclipse simplifies your Android development by integrating the developer tools,
including the emulator and .class-to-.dex converter, directly into the IDE. While you don’t have to use
the ADT plug-in, it does make creating, testing, and debugging your applications faster and easier.

The ADT plug-in integrates the following into Eclipse:

» An Android Project Wizard that simplifies creating new projects and includes a basic applica-
tion template

> Forms-based manifest, layout, and resource editors to help create, edit, and validate your
XML resources

» Automated building of Android projects, conversion to Android executables (.dex), packag-
ing to package files (.apk), and installation of packages onto Dalvik virtual machines

» The Android Virtual Device manager, which lets you create and manage virtual devices host-
ing emulators that run a specific release of the Android OS and with set memory constraints

» The Android Emulator, including control of the emulator’s appearance and network connec-
tion settings, and the ability to simulate incoming calls and SMS messages

» The Dalvik Debug Monitoring Service (DDMS), which includes port forwarding, stack, heap,
and thread viewing, process details, and screen-capture facilities

> Access to the device or emulator’s file system, enabling you to navigate the folder tree and
transfer files

> Runtime debugging, so you can set breakpoints and view call stacks
» All Android/Dalvik log and console outputs
Figure 2-1 shows the DDMS perspective within Eclipse with the ADT plug-in installed.

Installing the ADT Plug-In

Install the developer tools plug-in by following these steps:
1. Select Help = Install New Software. .. from within Eclipse.

2. Inthe resulting dialog box enter the following address into the Work With text entry box and
press Enter: https://dl-ssl.google.com/android/eclipse/

3. Eclipse will now search for the ADT plug-in. When finished it will display the available plug-
in, as shown in Figure 2-2. Select it by clicking the checkbox next to the Developer Tools root
node, and click Next.

4. Eclipse will now download the plug-in. When it’s finished, ensure both the Android DDMS
and Android Developer Tools plug-ins are selected and click Next.

Developing for Android | 21

e Ldn Hefeclor Run Neigate Ssarch Propcl Window Meip

- - 3 Q- o 7~ - - - 71 [0 DOME | 5 Debmg 5§ Java
| B vevices 12 "B gk 27 OR theeess 3 '8
| E i3 rml.i\. a EE = | BRE =" T Sistun unma atima Hama _;__
[remme * | mame 3 e wan 421 299 man |
Il & m st 5554 Onlim o= data 5 SE1 vl Fid G HeapWorker
AFSIHE_PIOOBLE =08 = anr L3 “83 wwal] T8 Sigsal Calcher
" i DA Anneenn LE = = e *§ 563 rumsing 55 25 JOWP -
| [app-priain : a
| rwiator Comtred £ '8 [backup Ruftesh | on Oo 19 075745 BST 2000
| [y et == Y- Lo dabvik-Carhe
Voloe: | home = Speet | Fall = data — o e
e = oIg.apachihaimon. SackTrace. [Ddmyminbernaljsa
Pata: | homs = Lafsacy: Ko i dontpank; Ly s
| & hocal ‘ !
Telophoay Aclioas i mst+found = =
- o misc @ Meap a
lacoming numbar: .
. - proparty Heap updeies will Rappen afer overy GO for this obent
& Voice i
B e D HepSis Allscated Free %Used ¥ Obiects :
. :_ it 1 LEXY M JTE0 M ESISVA KN FREFN 3058 Causa GL
Display: Statn =
Typa Coumt Tots Size Smabesi Langast Mg "
lang L Tross 2440 BET.TEE KD fan 243602 KR 5
Aata obpecl Mo 1052 M 1m%e e 3
| Lecaton Conlrols PR ® AR EAT E%A N sran aman av "
| iR i Hi "
| | Mamual [gpx. T ani = || ;
| '@ Legeat 17 . Bl Console| O Besowco Explones WEOOE + - B770
|
| Log
| Tims pid tag Hezsage
10-1% 07:02: 31 020 o 559 dalwikom o0 fread 179] chiscis FATI0 Brtas in 20iux
I .. .
|
| Filler:
|
|
FIGURE 2-1

5. Read and then Accept the terms of the license agreement, and click Next and then Finish. As
the ADT plug-in is not signed, you’ll be prompted before the installation continues.

6. When installation is complete you’ll have to restart Eclipse and update the ADT preferences.
Restart and select Window = Preferences. .. (or Eclipse = Preferences for MacOS).

7. Then select Android from the left panel.

8. Click Browse. .. and navigate to the folder into which you unzipped the Android SDK;
then click Apply. The list will then update to display each of the available SDK targets, as in
Figure 2-3. Click OK to complete the SDK installation.

@ If you download a new version of the SDK and place it in a different location, you
will need to update this preference to reflect the SDK with which the ADT should
be building.

22 | CHAPTER2 GETTING STARTED

= Install | . y [E=EEN >
Awvailable Software
Check the items that you wish to install. o

Work with; https://dl-ssl.google.com/android/eclipse! -

Find more software by working with the 'Available Software Sites' preferences.

type filter text

Name Version
4 [J]000 Developer Tools
[¥] 4+ Android DDMS 0.9.3.v200909031112-12945
L= Android Development Tools 0.9.3.¥200909031112-12945
Details

Show only the latest versions of available software [“] Hide items that are already installed
[¥] Group items by category What is already installed?
[¥] Contact all update sites during install to find required software

®

FIGURE 2-2
= Preferences . O — . - —— (= | D
type filter text Android & T

Ge“‘*’f”" Android Preferences
Android
Ait SDK Location: C:lAndroid SDKiandroid-sdk_17097_windows
Help Note: The list of SDK Targets below is only reloaded once you hit 'Apply" or "OK".
InstalliUpdate
Java Target Name Vendor Platform API ...
Run/Debug i Android 1.1 Android Open Source Project 1.1 2
Tasks Android 1.5 Android Open Source Project 15 3
Team Android 2.0 Android Open Source Project 2.0 5
Usage Data Colector Google APIs Google Inc. 15 3
Validation
XML

’Restore [_)efaulls] ’ Apply]

@ [ok |[cancal |

— = _—

FIGURE 2-3

Developing for Android | 23

Updating the Plug-In

As the Android SDK matures, there are likely to be frequent updates to the ADT plug-in. In most cases,
to update your plug-in you simply:

1. Navigate to Help = Check for Updates.

2. If there are any ADT updates available, they will be presented. Simply select them and choose
Install.

Sometimes a plug-in upgrade may be so significant that the dynamic update
mechanism can’ t be used. In those cases you may have to remove the previous
plug-in completely before installing the newer version as described in the previous
section.

Creating Your First Android Application

You’ve downloaded the SDK, installed Eclipse, and plugged in the plug-in. You’re now ready to start
programming for Android. Start by creating a new project and setting up your Eclipse run and debug
configurations.

Starting a New Android Project
To create a new Android project using the Android New Project Wizard, do the following;:

1. Select File = New = Project.
2. Select the Android Project application type from the Android folder and click Next.

3. In the dialog that appears (shown in Figure 2-4), enter the details for your new project. The
“Project name” is the name of your project file; the ‘“Package name” specifies its java pack-
age; Create Activity lets you specify the name of a class that will be your initial Activity; and
the “Application name” is the friendly name for your application. “Min SDK Version™ lets
you specify the minimum version of the SDK that your application will run on.

@ Selecting the minimum SDK version requires you to choose between gaining
functionality provided in newer SDK releases and making your application
available to a larger group of Android devices. Your application will be available
from the Google Android Market on any device running the specified build or
higher.

Android version 1.6 (Donut) is version 4 —at the time of going to print, the
majority of Android devices were currently running at least version 4. The 2.0
(Eclair) SDK is version 5, while 2.1 is version 7.

4. When you’ve entered the details, click Finish.

24 | CHAPTER2 GETTING STARTED

e — | &l
= New Android Project [E=EER <
New Android Project
@ Project name must be specified q

Project name:

Contents

@ Create new project in workspace
() Create project from existing source
Use default location

Browse... i
(7) Create project from existing sample N
Samples: | Please select a target.
Build Target
Target Name Vendor Platform API...
(] Android 1.1 Android Open Source Project 1.1 2 |
[] Android 1.5 Android Open Source Project 1.5 3
[] Android 2.0 Android Open Source Project 2.0 5
[T] Google APIs Google Inc. 15 3

Standard Android platform 1.1
Properties
Application name:
Package name:
Create Activity:
Min SDK Version:

®

FIGURE 2-4

If you selected Create Activity the ADT plug-in will create a new project that includes a class that
extends Activity. Rather than being completely empty, the default template implements Hello World.
Before modifying the project, take this opportunity to configure launch configurations for running and
debugging.

Creating a Launch Configuration

Launch configurations let you specify runtime options for running and debugging applications. Using a
launch configuration you can specify the following:

» The Project and Activity to launch
» The virtual device and emulator options to use

» Input/output settings (including console defaults)

Developing for Android | 25

You can specify different launch configurations
for running and debugging applications. The fol-
lowing steps show how to create a launch confi-
guration for an Android application:

1. Select Run Configurations. .. or Debug
Configurations. .. from the Run menu.

2. Right-click Android Application on the
project type list, and select New.

3. Enter a name for the configuration. You
can create multiple configurations for each
project, so create a descriptive title that will
help you identify this particular setup.

4. Now choose your start-up options. The first

Name: Hello World Standard

(=] Android £} Target| = Common
Project:

Hello_World

Browse...

Launch Action:
@ Launch Default Activity

) Launch:

() Do Nothing

Apply || Revert

FIGURE 2-5

(Android) tab lets you select the project to run and the Activity that you want to start when
you run (or debug) the application. Figure 2-5 shows the settings for the project you created

earlier.

5. Use the Target tab shown in Figure 2-6 to select the default virtual device to launch on, or
select manual to select a device or AVD each time. You can also configure the emulator’s net-
work connection settings and optionally wipe the user data and disable the boot animation
when launching a virtual device. Using the command line textbox you can specify additional

emulator start-up options if needed.

[=] Android | E) Target] Common
Deployment Target Selection Mode
) Manual
@ Automatic
Select a preferred Android Virtual Device for deployment:

AVD Name Target Name Platform API Level Details...
i[7] G1 Android 2.0 2.0 5

Start...

Manager...

Emulator launch parameters:

Network Speed:
Network Latency:

Wipe User Data
[Disable Boot Animation
Additional Emulator Command Line Options

FIGURE 2-6

26 | CHAPTER2 GETTING STARTED

The Android SDK does not include a default virtual machine. You will need to
create a virtual machine before you can run or debug your applications using the
emulator. If the virtual device selection dialog in Figure 2-6 is empty, click
Manage. . . to open the SDK and Virtual Machine Manager and create one. The
SDK and Virtual Machine Manager is described in more detail later in this chapter.

6. Finally, set any additional properties in the Common tab.

7. Click Apply, and your launch configuration will be saved.

Running and Debugging Your Android Applications

You’ve created your first project and created the run and debug configurations for it. Before making any
changes, test your installation and configurations by running and debugging the Hello World project.

From the Run menu select Run or Debug to launch the most recently selected configuration, or select
Run Configurations. .. or Debug Configurations. .. to select a specific configuration to use.

If you’re using the ADT plug-in, running or debugging your application does the following;:
» Compiles the current project and converts it to an Android executable (.dex)
> Packages the executable and external resources into an Android package (.apk)
» Starts the selected virtual device (if you’ve selected an AVD and it’s not already running)
» Installs your application onto the target device
» Starts your application

If you’re debugging, the Eclipse debugger will then be attached, allowing you to set breakpoints and
debug your code.

If everything is working correctly you’ll see a new Activity running in the emulator, as shown in
Figure 2-7.

Understanding Hello World

Let’s take a step back and have a real look at your first Android application.

Activity is the base class for the visual, interactive components of your application; it is roughly
equivalent to a Form in traditional desktop development. Listing 2-1 shows the skeleton code for an
Activity-based class; note that it extends aActivity, overriding the onCreate method.

) LISTING 2-1: Hello World

i package com.paad.helloworld;
Available for
download on . . o
Wrox.com import android.app.Activity;

import android.os.Bundle;

Developing for Android | 27

public class HelloWorld extends Activity {

/** Called when the activity is first created. */

@0Override

public void onCreate(Bundle savedInstanceState) ({
super.onCreate (savedInstanceState) ;

}

[% sssarc " L g

MO ONn
VEaY
2 ™S

iladzdaidsdeulzdssloiod
ry Ty
PP P e e) e v e s
70 ey e s) e e e
P e e sz g o =

:I.l'l'”'

FIGURE 2-7

What’s missing from this template is the layout of the visual interface. In Android, visual components
are called Views, which are similar to controls in traditional desktop development.

The Hello World template created by the wizard overrides the oncreate method to call
setContentView, which lays out the user interface by inflating a layout resource, as highlighted
below:

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main);

}

The resources for an Android project are stored in the res folder of your project hierarchy, which
includes drawable, layout, and values subfolders. The ADT plug-in interprets these resources to pro-
vide design-time access to them through the r variable, as described in Chapter 3.

28 | CHAPTER2 GETTING STARTED

Listing 2-2 shows the UI layout defined in the main.xml file created by the Android project template.

) LISTING 2-2: Hello World layout resource

Available for <?xml version="1.0" encoding="utf-8"?>
d&wgyggsn <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent">
<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World, HelloWorld"
/>
</LinearLayout>

Defining your Ul in XML and inflating it is the preferred way of implementing your user interfaces, as
it neatly decouples your application logic from your UI design.

To get access to your Ul elements in code, you add identifier attributes to them in the XML definition.
You can then use the findviewByTd method to return a reference to each named item. The following
XML snippet shows an ID attribute added to the Text View widget in the Hello World template:

<TextView
android:id="@+id/myTextView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World, HelloWorld"
/>

And the following snippet shows how to get access to it in code:
TextView myTextView = (TextView)findViewById(R.id.myTextView) ;

Alternatively (although it’s not generally considered good practice), you can create your layout directly
in code, as shown in Listing 2-3.

) LISTING 2-3: Creating layouts in code

public void onCreate(Bundle savedInstanceState) {

Available for super .onCreate (savedInstanceState) ;
download on
Wrox.com .

LinearLayout.LayoutParams 1p;

lp = new LinearLayout.LayoutParams (LayoutParams.FILL_PARENT,
LayoutParams.FILL_PARENT) ;

LinearLayout.LayoutParams textViewLP;
textViewLP = new LinearLayout.LayoutParams (LayoutParams.FILL_PARENT,
LayoutParams.WRAP_CONTENT) ;

LinearLayout 11 = new LinearLayout (this);
11.setOrientation(LinearLayout.VERTICAL) ;

TextView myTextView = new TextView(this);
myTextView.setText ("Hello World, HelloWorld");

Developing for Android | 29

11.addview (myTextView, textViewLP) ;
this.addContentView(11l, 1p);
}

All the properties available in code can be set with attributes in the XML layout. As well as allowing
easier substitution of layout designs and individual UI elements, keeping the visual design decoupled
from the application code helps keep the code more concise.

You’ll learn how to create complex layouts and about the Views used to populate them in Chapter 4.

Types of Android Applications
Most of the applications you create in Android will fall into one of the following categories:

» Foreground An application that’s useful only when it’s in the foreground and is effectively
suspended when it’s not visible. Games and map mashups are common examples.

> Background An application with limited interaction that, apart from when being config-
ured, spends most of its lifetime hidden. Examples include call screening applications and
SMS auto-responders.

> Intermittent Expects some interactivity but does most of its work in the background. Often
these applications will be set up and then run silently, notifying users when appropriate. A
common example would be a media player.

» Widget Some applications are represented only as a home-screen widget.

Complex applications are difficult to pigeonhole into a single category and usually include elements
of each of these types. When creating your application you need to consider how it’s likely to be used
and then design it accordingly. Let’s look more closely at some of the design considerations for each
application type.

Foreground Applications

When creating foreground applications you need to carefully consider the Activity life cycle (described
in Chapter 3) so that the Activity switches seamlessly between the foreground and the background.

Applications have little control over their life cycles, and a background application with no running
Services is a prime candidate for cleanup by Android’s resource management. This means that you
need to save the state of the application when it is no longer in the foreground, to let you present the
exact same state when it is brought to the front.

It’s also particularly important for foreground applications to present a slick and intuitive user experi-
ence. You’ll learn more about creating well-behaved and attractive foreground Activities in Chapters 3
and 4.

Background Services and Intent Receivers

These applications run silently in the background with very little user input. They often listen for
messages or actions caused by the hardware, system, or other applications, rather than rely on user
interaction.

30

| CHAPTER 2 GETTING STARTED

It’s possible to create completely invisible services, but in practice it’s better form to provide at least
some sort of user control. At a minimum you should let users confirm that the service is running and
let them configure, pause, or terminate it as needed.

Services and Intent Receivers, the driving forces of background applications, are covered in depth in
Chapters 5 and 9.

Intermittent Applications

Often you’ll want to create an application that reacts to user input but is still useful when it’s not active
in the foreground. Chat and e-mail apps are typical examples. These applications are generally a union
of visible Activities and invisible background Services.

Such an application needs to be aware of its state when interacting with the user. This might mean
updating the Activity Ul when it’s visible and sending notifications to keep the user updated when it’s
in the background, as seen in the section on Notifications and Services in Chapter 9.

Widgets

In some circumstances your application may consist entirely of a widget component. Using widgets,
described in detail in Chapter 10, you can create interactive visual components that users can add to
their home screens.

Widget-only applications are commonly used to display dynamic information such as battery levels,
weather forecasts, or the date and time.

DEVELOPING FOR MOBILE DEVICES

Android does a lot to simplify mobile-device software development, but it’s still important to under-
stand the reasons behind the conventions. There are several factors to account for when writing
software for mobile and embedded devices, and when developing for Android in particular.

In this chapter you’ ll learn some of the techniques and best practices for writing
efficient Android code. In later examples, efficiency is sometimes compromised for
clarity and brevity when new Android concepts or functionality are introduced. In
the best tradition of © © Do as I say, not as I do,” ° the examples you’ Il see are des{gned
to show the simplest (or easiest-to-understand) way of doing something, not
necessarily the best way of doing it.

Hardware-Imposed Design Considerations

Small and portable, mobile devices offer exciting opportunities for software development. Their limited
screen size and reduced memory, storage, and processor power are far less exciting, and instead present
some unique challenges.

Developing for Mobile Devices | 31

Compared to desktop or notebook computers, mobile devices have relatively:
» Low processing power

Limited RAM

Limited permanent storage capacity

Small screens with low resolution

High costs associated with data transfer

Slow data transfer rates with high latency

Y Y Y VY VY Y

Unreliable data connections
» Limited battery life

Each new generation of phones improves many of these restrictions. In particular, newer phones have
dramatically improved screen resolutions and significantly cheaper data tariffs. However, given the
range of devices available, it is good practice to design to accommodate the worst-case scenario.

Be Efficient

Manufacturers of embedded devices, particularly mobile devices, generally value small size and long
battery life over potential improvements in processor speed. For developers, that means losing the head
start traditionally afforded thanks to Moore’s law (the doubling of the number of transistors placed on
an integrated circuit every two years). In desktop and server hardware this usually results directly in
processor performance improvements; for mobile devices it instead means smaller, more power-efficient
mobiles without significant improvement in processor power.

In practice, this means that you always need to optimize your code so that it runs quickly and respon-
sively, assuming that hardware improvements over the lifetime of your software are unlikely to do you
any favors.

Since code efficiency is a big topic in software engineering, ’m not going to try to capture it here. Later
in this chapter you’ll learn some Android-specific efficiency tips, but for now just note that efficiency is
particularly important for resource-constrained environments like mobile devices.

Expect Limited Capacity

Advances in flash memory and solid-state disks have led to a dramatic increase in mobile-device storage
capacities (though MP3 collections still tend to expand to fill the available storage). While an 8 GB flash
drive or SD card is no longer uncommon in mobile devices, optical disks offer over 32 GB, and terabyte
drives are now commonly available for PCs. Given that most of the available storage on a mobile
device is likely to be used to store music and movies, most devices offer relatively limited storage space
for your applications.

Android devices offer an additional restriction in that applications must be installed on the internal
memory (as opposed to external SD cards). As a result, the compiled size of your application is a consid-
eration, though more important is ensuring that your application is polite in its use of system resources.

32

| CHAPTER 2 GETTING STARTED

You should carefully consider how you store your application data. To make life easier you can use
the Android databases and Content Providers to persist, reuse, and share large quantities of data, as
described in Chapter 7. For smaller data storage, such as preferences or state settings, Android provides
an optimized framework, as described in Chapter 6.

Of course, these mechanisms won’t stop you from writing directly to the file system when you want or
need to, but in those circumstances always consider how you’re structuring these files, and ensure that
yours is an efficient solution.

Part of being polite is cleaning up after yourself. Techniques like caching are useful for limiting repeti-
tive network lookups, but don’t leave files on the file system or records in a database when they’re no
longer needed.

Design for Small Screens

The small size and portability of mobiles are a challenge for creating good interfaces, particularly when
users are demanding an increasingly striking and information-rich graphical user experience.

Write your applications knowing that users will often only glance at the (small) screen. Make your
applications intuitive and easy to use by reducing the number of controls and putting the most impor-
tant information front and center.

Graphical controls, like the ones you’ll create in Chapter 4, are an excellent means of displaying a lot
of information in a way that’s easy to understand. Rather than a screen full of text with lots of buttons
and text-entry boxes, use colors, shapes, and graphics to convey information.

If you’re planning to include touch-screen support (and if you’re not, you should be), you’ll need to
consider how touch input is going to affect your interface design. The time of the stylus has passed;
now it’s all about finger input, so make sure your Views are big enough to support interaction using a
finger on the screen. There’s more information on touch-screen interaction in Chapter 15.

Android phones are now available with a variety of screen sizes including QVGA, HVGA, and WVGA.
As display technology advances, and Android expands beyond mobile devices, screen sizes and resolu-
tions will continue to increase. To ensure that your app looks good and behaves well on all the possible
host devices it’s important to design for small screens, but also make sure your Uls scale well on larger
displays. You’ll learn some techniques for optimizing your UI for different screen sizes in Chapter 3.

Expect Low Speeds, High Latency

In Chapter 5 you’ll learn how to use Internet resources in your applications. The ability to incorporate
some of the wealth of online information in your applications is incredibly powerful.

The mobile Web unfortunately isn’t as fast, reliable, or readily available as we’d often like, so when
you’re developing your Internet-based applications it’s best to assume that the network connection will
be slow, intermittent, and expensive. With unlimited 3G data plans and citywide Wi-Fi, this is changing,
but designing for the worst case ensures that you always deliver a high-standard user experience.

This also means making sure that your applications can handle losing (or not finding) a data
connection.

Developing for Mobile Devices | 33

The Android Emulator lets you control the
speed and latency of your network connection.
Figure 2-8 shows the emulator’s network con-
nection speed and latency, simulating a distinctly
suboptimal EDGE connection.

Experiment to ensure seamlessness and respon-
siveness no matter what the speed, latency, and
availability of network access. In some circum-
stances you might find that it’s better to limit
the functionality of your application or reduce
network lookups to cached bursts, based on the
network connection(s) available. Details on how
to detect the kind of network connections avail-
able at run time, and their speeds, are included in
Chapter 13.

At What Cost?

If you’re a mobile owner, you know all too well
that some of the more powerful features on your
mobile can literally come at a price. Services like
SMS, some location-based services, and data
transfer can sometimes incur an additional tariff
from your service provider.

[=] Android | E] Target

Deployment Target Selection Mode
) Manual

=] Common

@ Automatic
Select a preferred Android Virtual Device for deployment:

AVD N...
G1

Target Name PlL. A. Details...

Android 2.0 20 5 Start...

Manager...

Emulator launch parameters:

Network Speed:
Network Latency:

[]wipe User Data
[¥] Disable Boot Animation
Additional Emulator Command Line Options

| apply || Revert

FIGURE 2-8

It’s obvious why it’s important that any costs associated with functionality in your applications
be minimized, and that users be aware when an action they perform might result in their being

charged.

It’s a good approach to assume that there’s a cost associated with any action involving an interaction
with the outside world. In some cases (such as with GPS and data transfer) the user can toggle Android
settings to disable a potentially costly action. As a developer it’s important that you use and respect

those settings within your application.

In any case, it’s important to minimize interaction costs by doing the following:

» Transferring as little data as possible

» Caching data and GPS results to eliminate redundant or repetitive lookups

» Stopping all data transfers and GPS updates when your activity is not visible in the fore-
ground and if they’re only being used to update the UI

> Keeping the refresh/update rates for data transfers (and location lookups) as low as

practicable

» Scheduling big updates or transfers at “off-peak” times using alarms, as shown in Chapter 9

> Respecting the user’s preferences for background data transfer

Often the best solution is to use a lower-quality option that comes at a lower cost.

34

| CHAPTER2 GETTING STARTED

When using the location-based services described in Chapter 8, you can select a location provider based
on whether there is an associated cost. Within your location-based applications, consider giving users
the choice of lower cost or greater accuracy.

In some circumstances costs are hard to define, or they’re different for different users. Charges for
services vary between service providers and contract plans. While some people will have free unlimited
data transfers, others will have free SMS.

Rather than enforcing a particular technique based on which seems cheaper, consider letting your users
choose. For example, when downloading data from the Internet, you could ask users if they want to
use any network available or limit their transfers to times when they’re connected via Wi-Fi.

Considering the Users’ Environment

You can’t assume that your users will think of your application as the most important feature of their
device.

While Android is already starting to expand beyond its core base as a mobile phone platform, most
Android devices are still mobile phones. Remember that for most people, such a device is first and
foremost a phone, secondly an SMS and email communicator, thirdly a camera, and fourthly an MP3
player. The applications you write will most likely be in the fifth category of “useful mobile tools.”

That’s not a bad thing — they’ll be in good company with others including Google Maps and the web
browser. That said, each user’s usage model will be different; some people will never use their mobiles
to listen to music, and some phones don’t include a camera, but the multitasking principle inherent in
a device as ubiquitous as it is indispensable is an important consideration for usability design.

It’s also important to consider when and how your users will use your applications. People use their
mobiles all the time — on the train, walking down the street, or even while driving their cars. You
can’t make people use their phones appropriately, but you can make sure that your applications don’t
distract them any more than necessary.

What does this mean in terms of software design? Make sure that your application:

» Iswell behaved Start by ensuring that your Activities suspend when they’re not in the fore-
ground. Android triggers event handlers when your Activity is suspended or resumed so you
can pause Ul updates and network lookups when your application isn’t visible — there’s no
point updating your Ul if no one can see it. If you need to continue updating or processing in
the background, Android provides a Service class designed to run in the background without
the UI overheads.

> Switches seamlessly from the background to the foreground With the multitasking nature
of mobile devices, it’s very likely that your applications will regularly move into and out of
the background. It’s important that they “come to life”” quickly and seamlessly. Android’s
nondeterministic process management means that if your application is in the background,
there’s every chance it will get killed to free resources. This should be invisible to the user.
You can ensure seamlessness by saving the application state and queuing updates so that your
users don’t notice a difference between restarting and resuming your application. Switching
back to it should be seamless, with users being shown the exact Ul and application state they
last saw.

Developing for Mobile Devices | 35

> Ispolite Your application should never steal focus or interrupt a user’s current activity.
Use Notifications and Toasts (detailed in Chapter 9) instead to inform or remind users that
their attention is requested, if your application isn’t in the foreground. There are several ways
for mobile devices to alert users. For example, when a call is coming in, your phone rings;
when you have unread messages, the LED flashes; and when you have new voice mail, a small
“mail” icon appears in your status bar. All these techniques and more are available through
the notification mechanism.

> Presents a consistent user interface Your application is likely to be one of several in use
at any time, so it’s important that the Ul you present is easy to use. Don’t force users to
interpret and relearn your application every time they load it. Using it should be simple,
easy, and obvious — particularly given the limited screen space and distracting user
environment.

> Isresponsive Responsiveness is one of the most important design considerations on
a mobile device. You’ve no doubt experienced the frustration of a “frozen” piece of
software; the multifunctional nature of a mobile makes this even more annoying. With the
possibility of delays caused by slow and unreliable data connections, it’s important that your
application use worker threads and background services to keep your activities responsive
and, more importantly, to stop them from preventing other applications from responding
promptly.

Developing for Android

Nothing covered so far is specific to Android; the preceding design considerations are just as important
in developing applications for any mobile. In addition to these general guidelines, Android has some
particular considerations.

To start with, it’s worth taking a few minutes to read the design best practices included in Google’s
Android developer guide at http://developer.android.com/guide/index.html

The Android design philosophy demands that applications be designed for:
» Performance
» Responsiveness
» Seamlessness
>

Security

Being Fast and Efficient

In a resource-constrained environment, being fast means being efficient. A lot of what you already
know about writing efficient code will be just as applicable to Android, but the limitations of embedded
systems and the use of the Dalvik VM mean you can’t take things for granted.

The smart bet for advice is to go to the source. The Android team has published some specific guid-
ance on writing efficient code for Android, so rather than rehash their advice, I suggest you visit
http://developer.android.com/guide/practices/design/performance.html and take note of their
suggestions.

36 | CHAPTER2 GETTING STARTED

@ You may find that some of these performance suggestions contradict established
design practices — for example, avoiding the use of internal setters and getters or
preferring virtual classes over using interfaces. When writing software for
resource-constrained systems like embedded devices, there’ s often a compromise
between conventional design principles and the demand for greater efficiency.

One of the keys to writing efficient Android code is not to carry over assumptions from desktop and
server environments to embedded devices.

At a time when 2 to 4 GB of memory is standard for most desktop and server rigs, typical smartphones
feature around 200 MB of SDRAM. With memory such a scarce commodity, you need to take special
care to use it efficiently. This means thinking about how you use the stack and heap, limiting object
creation, and being aware of how variable scope affects memory use.

Being Responsive
Android takes responsiveness very seriously.
Android enforces responsiveness with the Activity Manager
and Window Manager. If either service detects an unresponsive

application, it will display the dreaded “Sorry! Activity is not
responding” message — often reported by users as a Force Close

error. This is shown in Figure 2-9. A Sorry!

This alert is modal, ste.als_focus, and won’t 80 aw?y until you hit Activity PAAD Chapter 13;

a button or your application starts responding. It’s pretty much Bluetooth (in application PAAD
the last thing you ever want to confront a user with. Chapter 13: Bluetooth) is not

responding.

Android monitors two conditions to determine responsiveness:

» An application must respond to any user action, such
as a key press or screen touch, within five seconds.

» A Broadcast Receiver must return from its onReceive
handler within 10 seconds.

The most likely culprits in cases of unresponsiveness are network
lookups, complex processing (such as the calculating of game
moves), and file I/O. There are a number of ways to ensure that FIGURE 2-9
these actions don’t exceed the responsiveness conditions, in

particular by using Services and worker threads, as shown in Chapter 9.

@ The © © Force close’ ° dialog is a last resort of usability; the generous five-second linit
is a worst-case scenario, not a target. Users will notice a regular pause of anything
more than half a second between key press and action. Happily, a side effect of the
efficient code you’ re already writing will be more responsive applications.

Developing for Mobile Devices | 37

Developing Secure Applications

Android applications have access to networks and hardware, can be distributed independently, and
are built on an open-source platform featuring open communication, so it shouldn’t be surprising that
security is a significant concern.

For the most part, users need to take responsibility for the applications they install and the
permissions requests they accept. The Android security model restricts access to certain
services and functionality by forcing applications to declare the permissions they require. Dur-
ing installation users are shown the application’s required permissions before they commit

to installing it. (You can learn more about Android’s security model in Chapter 15 and at
http://developer.android.com/guide/appendix/faq/security.html)

This doesn’t get you off the hook. You not only need to make sure your application is secure for its
own sake, you also need to ensure that it can’t be hijacked to compromise the device. You can use
several techniques to help maintain device security, and they’ll be covered in more detail as you learn
the technologies involved. In particular, you should do the following:

» Require permissions for any Services you publish or Intents you broadcast.

» Take special care when accepting input to your application from external sources such as the
Internet, Bluetooth, SMS messages, or instant messaging (IM). You can find out more about
using Bluetooth and SMS for application messaging in Chapters 12 and 13.

» Be cautious when your application may expose access to lower-level hardware to third-party
applications.

For reasons of clarity and simplicity, many of the examples in this book take a
fairly relaxed approach to security. When you’ re creating your own applications,
particularly ones you plan to distribute, this is an area that should not be
overlooked.

Ensuring a Seamless User Experience

The idea of a seamless user experience is an important, if somewhat nebulous, concept. What do we
mean by seamless? The goal is a consistent user experience in which applications start, stop, and tran-
sition instantly and without noticeable delays or jarring transitions.

The speed and responsiveness of a mobile device shouldn’t degrade the longer it’s on. Android’s process
management helps by acting as a silent assassin, killing background applications to free resources as
required. Knowing this, your applications should always present a consistent interface, regardless of
whether they’re being restarted or resumed.

With an Android device typically running several third-party applications written by different develop-
ers, it’s particularly important that these applications interact seamlessly. Using Intents, applications
can provide functionality for each other. Knowing your application may provide, or consume, third-
party Activities provides additional incentive to maintain a consistent look and feel.

Use a consistent and intuitive approach to usability. You can create applications that are revolutionary
and unfamiliar, but even these should integrate cleanly with the wider Android environment.

38 | CHAPTER2 GETTING STARTED

Persist data between sessions, and when the application isn’t visible, suspend tasks that use processor
cycles, network bandwidth, or battery life. If your application has processes that need to continue
running while your Activities are out of sight, use a Service, but hide these implementation decisions
from your users.

When your application is brought back to the front, or restarted, it should seamlessly return to its last
visible state. As far as your users are concerned, each application should be sitting silently, ready to be
used but just out of sight.

You should also follow the best-practice guidelines for using Notifications and use generic Ul elements
and themes to maintain consistency among applications.

There are many other techniques you can use to ensure a seamless user experience, and you’ll be introdu-
ced to some of them as you discover more of the possibilities available in Android in the coming chapters.

TO-DO LIST EXAMPLE

In this example you’ll be creating a new Android application from scratch. This simple example creates
a new to-do list application using native Android View controls. It’s designed to illustrate the basic
steps involved in starting a new project.

Don’ t worry if you don’ t understand everything that happens in this example.
Some of the features used to create this application, including Arrayadapters,
ListViews, and Keylisteners, won’ t be introduced properly until later chapters,
where they’ Il be explained in detail. You’ Il also return to this example later to add
new functionality as you learn more about Android.

1. Start by creating a new Android project. Within Eclipse, select File ©> New > Project. . ., then
choose Android (as shown in Figure 2-10) before clicking Next.

= New Project e) [

Select a wizard

—>

Wizards:
type filter text

[= General
4 [= Android
= Android Project
Jii Android Test Project
[= CVS
& = Java
[= Examples

@ [<o

FIGURE 2-10

To-Do List Example | 39

2. In the dialog box that appears (shown in Figure 2-11), enter the details for your new project.
The “Application name” is the friendly name of your application, and the “Create Activity”
field lets you name your Activity. With the details entered, click Finish to create your new

project.

= New Android Project

= [E))

New Android Project

Creates a new Android Project resource.

Project name: Todo_List

Contents

@ Create new project in workspace
() Create project from existing source
Use default location

() Create project from existing sample

Samples: | ApiDemos

Build Target

q

Browse...

Target Hame Vendor

[C] Android 1.1 Android Open Source Project
[7] Android 1.5 Android Open Source Project
Android 2.0 Android Open Source Project
[7] Google APIs Google Inc.

Platfor... APL..
1.1
1.5
2.0
1.5

Lo L R

Standard Android platform 2.0

Properties
Application name: Todo List

Package name: com.paad.todolist

Create Activity: = ToDoList
Min SDK Version: 5

@ | <Back | mext> |[Finisn

] ’ Cancel

FIGURE 2-11

3. Before creating your debug and run configurations, take this opportunity to create a virtual

device to test your apps with.

3.1. Select Window > Android SDK and AVD Manager. In the resulting dialog (shown in
Figure 2-12), select Virtual Devices from the left panel and click the New. .. button.

3.2. Enter a name for your device, and choose an SDK target and screen resolution. Set
the SD Card size to larger than 8 MB: enter 12 into the text-entry box as shown in

Figure 2-13.

40 | CHAPTER 2 GETTING STARTED

7
Android SDK and AVD Manager (o o=
_ = |Maximize
List of existing Android Virtual Devices:
Installed Packages |
Available Packages AVD Name Target Name Platform API Level
~ ExpertAndroid Google APIs (Google Inc.) 1.5 3 Delete
" G1 Android 2.0 2.0 5
~ ProAndroid Google APls (Google Inc.) 1.5 3 Repair...
i Details...
i
f Start...
i Refresh
i ~ A valid Android Virtual Device.
¥ An Android Virtual Device that failed to load. Click 'Details’ to see the error.

FIGURE 2-12
Create new AVD
Name: PAAD
Target: |Android 2.0 - AP Level 5 -
SD Card:
@ Size: 12 MiB -
() File: Browse...
Skin:
@ Built-in: WWVGAS00 -
() Resolution: x|
Hardware:

Property Value

Abstracted LCD density 240 Delete f
Max VM application heap size 24

Force create

Create AVD | | Cancel

==

FIGURE 2-13

4. Now create your debug and run configurations. Select Run = Debug Configurations. .. and
then Run & Run Configurations. . ., creating a new configuration for each specifying the
Todo_List project and selecting the virtual device you created in Step 3. You can leave the
launch action as Launch Default Activity, or explicitly set it to launch the new ToboList
Activity, as shown in Figure 2-14.

To-Do List Example | 41

Now decide what you want to show the users
and what actions they’ll need to perform. Design
a user interface that will make these actions as
intuitive as possible.

In this example we want to present users with a
list of to-do items and a text entry box to add
new ones. There’s both a list and a text-entry
control available from the Android libraries.
(Youw’ll learn more about the Views available in
Android, and how to create new ones, in
Chapter 4.)

The preferred method for laying out your Ul is
using a layout resource file. Open the main.xml

Name: Chapter2_Todo_List

[=] Android (] Target| = Common

Project:

Chapter2_Sample_Todo_List
Launch Action:
() Launch Default Activity
© Launch: |com.paad.todolist.ToDoList -
() Do Nothing

[appy || Reven |
FIGURE 2-14

layout file in the res/layout project folder, as shown in Figure 2-15.

Modify the main layout to include a ListView and an
EditText within a LinearLayout. It’s important to give both
the Edit Text and List view an ID so you can get references to

them both in code.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical™"
android:layout_width="fill_parent™"
android:layout_height="fill_parent">
<EditText
android:id="@+id/myEditText"
android:layout_width="fill_parent™"
android:layout_height="wrap_content"
android:text="New To Do Item"
/>
<ListView
android:id="@+id/myListView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
</LinearLayout>

With your user interface defined, open the TopoList Activity

% packag 3 ._ e Hierarc | = O

Chapter2_Sample_Todo_List -
@l BEB|s
4 [src

4 {3 com.paad.todolist
» [J] ToDoListjava
- =, Android 2.0

from your project’s source folder. In this example you’ll make A
all your changes by overriding the oncreate method. Start = assets

by inflating your Ul using setContentview and then get 4 Eres

references to the ListView and EditText using findviewById. ‘ g &?o‘:?ble

public void onCreate(Bundle savedInstanceState) ({ s & -\,r;,aml:zm.xml

super.onCreate (savedInstanceState) ;

// Inflate your view
setContentView (R.layout.main) ;

€l AndroidManifest.xml
default.properties

FIGURE 2-15

42 | CHAPTER2 GETTING STARTED

// Get references to UI widgets

ListView myListView = (ListView)findViewById(R.id.myListView) ;

final EditText myEditText = (EditText)findViewById(R.id.myEditText) ;
}

8. Still within oncreate, define an arrayList of Strings to store each to-do list item. You can
bind a ListView to an ArrayList using an ArrayAdapter, so create a new ArrayAdapter
instance to bind the to-do item array to the Listview. (We’ll return to ArrayAdapters in
Chapter 5.)

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

ListView myListView = (ListView)findvViewById(R.id.myListView) ;
final EditText myEditText = (EditText)findViewById(R.id.myEditText);

// Create the array list of to do items

final ArrayList<String> todoItems = new ArrayList<String>();

// Create the array adapter to bind the array to the listview

final ArrayAdapter<String> aa;

aa = new ArrayAdapter<String> (this,
android.R.layout.simple_list_item 1,
todoItems);

// Bind the array adapter to the listview.

myListView.setAdapter(aa);

}

9. The final step to make this to-do list functional is to let users add new to-do items. Add an
onKeyListener to the EditText that listens for a “D-pad center button” click before adding
the contents of the EditText to the to-do list array and notifying the arrayadapter of the
change. Then clear the EditText to prepare for another item.

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

ListView myListView = (ListView)findvViewById(R.id.myListView) ;
final EditText myEditText = (EditText)findViewById(R.id.myEditText) ;

final ArrayList<String> todolItems = new ArrayList<String>();

final ArrayAdapter<String> aa;

aa = new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
todoItems) ;

myListView.setAdapter (aa) ;

myEditText.setOnKeyListener (new OnKeyListener() {
public boolean onKey(View v, int keyCode, KeyEvent event) {
if (event.getAction() == KeyEvent.ACTION_DOWN)
if (keyCode == KeyEvent.KEYCODE_DPAD_ CENTER) {

todoItems.add (0, myEditText.getText().toString()):;
aa.notifyDataSetChanged();
myEditText.setText ("");
return true;

Android Development Tools | 43

});:

10.

1".

As it stands, this to-do list application isn’t spectacularly
useful. It doesn’t save to-do list items between sessions, you
can’t edit or remove an item from the list, and typical task-
list items like due dates and task priority aren’t recorded or
displayed. On balance, it fails most of the criteria laid out
so far for a good mobile application design.

You’ll rectify some of these deficiencies when you return to

}

return false; %ﬂ]a 7:08 AM
To Do List == s

| Profit!

Run or debug the application and you’ll see a text

7N
entry box above a list, as shown in Figure 2-16. I

You’ve now finished your first “real” Android _) _
application. Try adding breakpoints to the code to Write Killer Mobile App
test the debugger and experiment with the DDMS

tive. [
perspective Learn Android

All code snippets in this example are part of the Chapter 2
To-do List project, available for download at Wrox.com.

FIGURE 2-16

this example in later chapters.

ANDROID DEVELOPMENT TOOLS

The Android SDK includes several tools and utilities to help you create, test, and debug your projects.
A detailed examination of each developer tool is outside the scope of this book, but it’s worth briefly
reviewing what’s available. For more detail than is included here, check out the Android documentation
at http://developer.android.com/guide/developing/tools/index.html

As mentioned earlier, the ADT plug-in conveniently incorporates most of these tools into the Eclipse
IDE, where you can access them from the DDMS perspective, including:

>

The Android SDK and Virtual Device Manager Used to create and manage Android Virtual
Devices (AVD) and SDK packages. The AVD hosts an emulator running a particular build
of Android, letting you specify the supported SDK version, screen resolution, amount of SD
card storage available, and available hardware capabilities (such as touchscreens and GPS).

The Android Emulator An implementation of the Android virtual machine designed to run
within a virtual device on your development computer. Use the emulator to test and debug
your Android applications.

Dalvik Debug Monitoring Service (DDMS) Use the DDMS perspective to monitor and con-
trol the Dalvik virtual machines on which you’re debugging your applications.

Android Asset Packaging Tool (AAPT) Constructs the distributable Android package files
(.apk).

44 | CHAPTER 2 GETTING STARTED

» Android Debug Bridge (ADB) A client-server application that provides a link to a running
emulator. It lets you copy files, install compiled application packages (.apk), and run shell
commands.

The following additional tools are also available:

> SQLite3 A database tool that you can use to access the SQLite database files created and
used by Android.

» Traceview A graphical analysis tool for viewing the trace logs from your Android
application.

» MkSDCard Creates an SD card disk image that can be used by the emulator to simulate an
external storage card.

Dx Converts Java .class bytecode into Android .dex bytecode.

> activityCreator A script that builds Ant build files that you can then use to compile your
Android applications without the ADT plug-in.

> layoutOpt A tool that analyzes your layout resources and suggests improvements and opti-
mizations.

Let’s take a look at some of the more important tools in more detail.

The Android Virtual Device and SDK Manager

The Virtual Device and SDK Manager is a tool used to create and manage the virtual devices that will
host instances of your emulator. You can use the same tool both to see which version of the SDK you
have installed and to install new SDKs when they are released.

Android Virtual Devices

Android Virtual Devices are used to simulate the software builds and hardware specifications available
on different devices. This lets you test your application on a variety of hardware platforms without
needing to buy a variety of phones.

The Android SDK doesn’ t include any pre-built virtual devices, so you will need to
create at least one device before you can run your applications within an emulator.

Each virtual device is configured with a name, a target build of Android (based on the SDK version it
supports), an SD Card capacity, and screen resolution, as shown in the “Create new AVD” dialog in
Figure 2-17.

Each virtual device also supports a number of specific hardware settings and restrictions that can be
added in the form of NVPs in the hardware table. These additional settings include:

» Maximum virtual machine heap size

» Screen pixel density

Android Development Tools | 45

= Create new AVD (S
Hame: MyDevice
Target: Android 2.0 - API Level 5 v]
SD Card:
@ Size: 12
) File: Browse...
Skin:
@ Built-in: WVGAB54 A
() Resolution: X
Hardware:
Property Value
Abstracted LCD density 240 e
Max VM application heap size 24
Force create
Create AVD || cancel
==
FIGURE 2-17

» SD Card support

Available device memory

Y Y Y VY

» Support for audio recording

Accelerometer and GPS support

Camera hardware (and resolution)

The existence of DPad, touchscreen, keyboard, and trackball hardware

Different hardware settings and screen resolutions will present alternative user-interface skins to repre-
sent the different hardware configurations. This simulates a variety of mobile device types. To complete
the illusion, you can create a custom skin for each virtual device to make it look like the device it is

emulating.

SDK Manager

Use the installed and available package tabs to manage your SDK installations.

Installed Packages, shown in Figure 2-18, displays the SDK platforms, documentation, and tools you
have available to use in your development environment. When updating to a new version you can
simply click the Update All. .. button to have the manager update your SDK installation with the

latest version of each component.

46 | CHAPTER 2 GETTING STARTED

Android SDK and AVD Manager . - . [E=NEER

Virtual Devices : z z -
Installed Packages SDK Location: C:Android SDK\android-sdk_17097_windows!|
Available Packages Installed Packages

Documentation for Android SDK, API 5, revision 1
I Android SDK Tools, revision 3

SDK Platform Android 1.1, API 2, revision 1

SDK Platform Android 1.5, API 3, revision 1

SDK Platform Android 2.0, API 5, revision 1
'E;.Google APIs by Google Inc., Android AP 3, revision 2
(58 Usb Driver package, revision 1

Description
Android 5DK Platform 2.0_r1.

FIGURE 2-18

Alternatively, Available Packages checks the Android SDK repository for any source, packages, and
archives available but not yet installed on your system. Use the checkboxes, as shown in Figure 2-19,
to select additional SDK packages to install.

Android SDK and AVD Manager N [E=REEA >
Virtual Devices
Installed Packages Sources, Packages and Archives
Available Packages + [7]\d https:idi-ssl.google.comiandroidirepository/repository.xmi

-E', Google APls by Google Inc., Android API 3, revision 3
-E;, Google APls by Google Inc., Android API 4, revision 1
y SDK Platform Android 1.5, API 3, revision 3
3 SDK Platform Android 1.6, API 4, revision 1

Description

Android + Google APls.
Requires SDK Platform Android APl 3.

e... | | Delete Site... Display updates only [Refresll] ’Install Selected

FIGURE 2-19

The Android Emulator

The emulator is the perfect tool for testing and debugging your applications.

The emulator is an implementation of the Dalvik virtual machine, making it as valid a platform for run-
ning Android applications as any Android phone. Because it’s decoupled from any particular hardware,
it’s an excellent baseline to use for testing your applications.

Android Development Tools | 47

Full network connectivity is provided along with the ability to tweak the Internet connection speed and
latency while debugging your applications. You can also simulate placing and receiving voice calls and
SMS messages.

The ADT plug-in integrates the emulator into Eclipse so that it’s launched automatically within
the selected AVD when you run or debug your projects. If you aren’t using the plug-in or
want to use the emulator outside of Eclipse, you can telnet into the emulator and control it
from its console. (For more details on controlling the emulator, check the documentation at
http://developer.android.com/guide/developing/tools/emulator.html)

To execute the emulator you first need to create a virtual device, as described in the previous section.
The emulator will launch the virtual device and run a Dalvik instance within it.

At this time, the emulator doesn’ t implement all the mobile hardware features
supported by Android. It does not implement the camera, vibration, LEDs, actual
phone calls, the accelerometer, USB connections, audio capture, or battery charge
level.

Dalvik Debug Monitor Service (DDMS)

The emulator lets you see how your application will look, behave, and interact, but to really see what’s
happening under the surface you need the Dalvik Debug Monitoring Service. The DDMS is a powerful
debugging tool that lets you interrogate active processes, view the stack and heap, watch and pause
active threads, and explore the file system of any connected Android device.

The DDMS perspective in Eclipse also provides simplified access to screen captures of the emulator and
the logs generated by LogCat.

If you’re using the ADT plug-in, the DDMS is fully integrated into Eclipse and is available from the
DDMS perspective. If you aren’t using the plug-in or Eclipse, you can run DDMS from the command
line and it will automatically connect to any running device or emulator.

The Android Debug Bridge (ADB)

The Android debug bridge (ADB) is a client-service application that lets you connect with an Android
Emulator or device. It’s made up of three components: a daemon running on the emulator, a service
that runs on your development hardware, and client applications (like the DDMS) that communicate
with the daemon through the service.

As a communications conduit between your development hardware and the Android device/emulator,
the ADB lets you install applications, push and pull files, and run shell commands on the target device.
Using the device shell you can change logging settings, and query or modify SQLite databases available
on the device.

The ADT tool automates and simplifies a lot of the usual interaction with the ADB, including applica-
tion installation and updating, file logging, and file transfer (through the DDMS perspective).

48 | CHAPTER 2 GETTING STARTED

To learn more about what you can do with the ADB, check out the documentation at
http://developer.android.com/guide/developing/tools/adb.html

SUMMARY

This chapter showed you how to download and install the Android SDK, create a development environ-
ment using Eclipse on Windows, Mac OS, or Linux platforms, and create run and debug configurations
for your projects. You learned how to install and use the ADT plug-in to simplify the creation of new
projects and streamline your development cycle.

You were introduced to some of the design considerations involved in developing mobile applications,
particularly the importance of optimizing for speed and efficiency when increasing battery life and
shrinking sizes are higher priorities than increasing processor power.

As with any mobile development, there are considerations involved in designing for small screens and
potentially slow, costly, and unreliable mobile data connections.

After creating an Android to-do list application, you were introduced to Android virtual devices and
the emulator, as well as the developer tools you’ll use to test and debug your applications.

Specifically, in this chapter you:
» Downloaded and installed the Android SDK
Set up a development environment in Eclipse and downloaded and installed the ADT plug-in
Created your first application and learned how it works
Set up run and debug launch configurations for your projects

Learned about the different types of Android applications

Y Y Y¥Y VY Y

Were introduced to some mobile-device design considerations and learned some specific
Android design practices

» Created a to-do list application
> Were introduced to Android Virtual Devices, the emulator, and the developer tools

The next chapter focuses on Activities and application design. You’ll see how to define application
settings using the Android manifest and how to externalize your Ul layouts and application resources.
You’ll also find out more about the Android application life cycle and Android application states.

Creating Applications
and Activities

WHAT’S IN THIS CHAPTER?

» Anintroduction to the Android application components and the
different types of Android applications you can build with them

» The Android application life cycle
» How to create and annotate the application manifest

» How to use external resources to provide dynamic support for
locations, languages, and hardware configurations

» How to implement and use your own Application class
» How to create new Activities

» Understanding an Activity’s state transitions and life cycle

Before you start writing your own Android applications, it’s important to understand how
they’re constructed and to have an understanding of the Android application life cycle. In this
chapter you’ll be introduced to the loosely coupled components that make up Android applica-
tions and how they’re bound together by the Android manifest. Next you’ll see how and why
you should use external resources, before getting an introduction to the Activity component.

In recent years there’s been a move toward development frameworks featuring managed code,
such as the Java virtual machine and the NET Common Language Runtime.

In Chapter 1 you learned that Android also uses this model, with each application running in a
separate process on its own instance of the Dalvik virtual machine. In this chapter you’ll learn
more about the application life cycle and how it’s managed by the Android run time. This leads
to an introduction of the application process states. These states are used to determine an appli-
cation’s priority, which in turn affects the likelihood of an application’s being terminated when
more resources are required by the system.

50 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

Mobile devices come in a large variety of shapes and sizes and are used across the world. In this chapter
you’ll learn how to externalize resources to ensure your applications run seamlessly on different hard-
ware (particularly different screen resolutions and pixel densities), in different countries, and supporting
multiple languages.

Next you’ll examine the Application class, and learn how to extend it to provide a place for storing
application state values.

Arguably the most important of the Android building blocks, the activity class forms the basis for
all your user interface screens. You’ll learn how to create new Activities and gain an understanding of
their life cycles and how they affect the application lifetime.

Finally, you’ll be introduced to some of the Activity subclasses that simplify resource management for
some common user interface components such as maps and lists.

WHAT MAKES AN ANDROID APPLICATION?

Android applications consist of loosely coupled components, bound by an application manifest that
describes each component and how they all interact, as well as the application metadata including its
hardware and platform requirements.

The following six components provide the building blocks for your applications:

> Activities Your application’s presentation layer. Every screen in your application will be an
extension of the Activity class. Activities use Views to form graphical user interfaces that
display information and respond to user actions. In terms of desktop development, an Activ-
ity is equivalent to a Form. You’ll learn more about Activities later in this chapter.

> Services The invisible workers of your application. Service components run in the
background, updating your data sources and visible Activities and triggering Notifica-
tions. They’re used to perform regular processing that needs to continue even when your
application’s Activities aren’t active or visible. You’ll learn how to create Services in
Chapter 9.

» Content Providers Shareable data stores. Content Providers are used to manage and share
application databases. They’re the preferred means of sharing data across application bound-
aries. This means that you can configure your own Content Providers to permit access from
other applications and use Content Providers exposed by others to access their stored data.
Android devices include several native Content Providers that expose useful databases like
the media store and contact details. You’ll learn how to create and use Content Providers in
Chapter 7.

» Intents An inter-application message-passing framework. Using Intents you can broadcast
messages system-wide or to a target Activity or Service, stating your intention to have an
action performed. The system will then determine the target(s) that will perform any actions
as appropriate.

> Broadcast Receivers Intent broadcast consumers. If you create and register a Broad-
cast Receiver, your application can listen for broadcast Intents that match specific filter

Introducing the Application Manifest | 51

criteria. Broadcast Receivers will automatically start your application to respond to an
incoming Intent, making them perfect for creating event-driven applications.

> Widgets Visual application components that can be added to the home screen. A special
variation of a Broadcast Receiver, widgets let you create dynamic, interactive application
components for users to embed on their home screens. You’ll learn how to create your own
widgets in Chapter 10.

> Notifications A user notification framework. Notifications let you signal users without
stealing focus or interrupting their current Activities. They’re the preferred technique for
getting a user’s attention from within a Service or Broadcast Receiver. For example, when
a device receives a text message or an incoming call, it alerts you by flashing lights, making
sounds, displaying icons, or showing messages. You can trigger these same events from your
own applications using Notifications, as shown in Chapter 9.

By decoupling the dependencies between application components, you can share and interchange indi-
vidual pieces, such as Content Providers, Services, and even Activities, with other applications — both
your own and those of third parties.

INTRODUCING THE APPLICATION MANIFEST

Each Android project includes a manifest file, AndroidManifest.xml, stored in the root of the project
hierarchy. The manifest lets you define the structure and metadata of your application, its components,
and its requirements.

It includes nodes for each of the components (Activities, Services, Content Providers, and Broadcast
Receivers) that make up your application and, using Intent Filters and Permissions, determines how
they interact with each other and with other applications.

The manifest also offers attributes to specify application metadata (like its icon or theme), and addi-
tional top-level nodes can be used for security settings, unit tests, and defining hardware and platform
support requirements, as described below.

The manifest is made up of a root <manifest> tag with a package attribute set to the project’s pack-
age. It usually includes an xmlns:android attribute that supplies several system attributes used within
the file.

Use the versionCode attribute to define the current application version as an integer. This value is used
internally to compare application versions. Use the versionName attribute to specify a public version
number that is displayed to users.

A typical manifest node is shown in the following XML snippet:

<manifest xmlns:android=http://schemas.android.com/apk/res/android
package="com.my_domain.my_app"
android:versionCode="1"
android:versionName="0.9 Beta">
[... manifest nodes ...]
</manifest>

52

| CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

The <manifest> tag includes nodes that define the application components, security settings, test
classes, and requirements that make up your application. The following list gives a summary of the
available <manifest> node tags, and an XML snippet demonstrating how each one is used:

>

uses-sdk This node lets you define a minimum, maximum, and target SDK version that
must be available on a device in order for your application to function properly. Using a
combination of minSDKVersion, maxSDKVersion, and targetSDKVersion attributes you can
restrict which devices your application can run on, based on the SDK version supported by
the installed platform.

The minimum SDK version specifies the lowest version of the SDK that includes the APIs you
have used in your application. If you fail to specify a minimum version one will be assumed
and your application will crash if it attempts to access APIs that aren’t available on the host
device.

The maximum SDK version lets you define an upper limit you are willing to support. Your
application will not be visible on the Market for devices running a higher platform release.
It’s good practice not to set the maximum SDK value unless you know your application will
definitely not work on newer platform releases.

The target SDK version attribute lets you specify the platform against which you did your
development and testing. Setting a target SDK version tells the system that there is no
need to apply any forward- or backward- compatibility changes to support that particular
version.

<uses-sdk android:minSdkVersion="4"

android:targetSdkVersion="5">
</uses-sdk>

The supported SDK version is not equivalent to the platform version and cannot be
derived from it. For example, Android platform release 2.0 supports the SDK
version 5. To find the correct SDK version for each platform use the table at
http://developer.android.com/guide/appendix/api-levels.html

uses-configuration Use uses-configuration nodes to specify each combination of input
mechanisms supported by your application. You can specify any combination of input
devices that include:

> reqFiveWayNav Specify true for this attribute if you require an input device capa-
ble of navigating up, down, left, and right and of clicking the current selection. This
includes both trackballs and D-pads.

regHardKeyboard If your application requires a hardware keyboard specify true.

> regKeyboardType Lets you specify the keyboard type as one of nokeys, qwerty,
twelvekey, or undefined.

> regNavigation Specify the attribute value as one of nonav, dpad, trackball,
wheel, or undefined as a required navigation device.

Introducing the Application Manifest | 53

» regTouchScreen Select one of notouch, stylus, finger, or undefined to specify
the required touchscreen input.

You can specify multiple supported configurations, for example a device with a finger
touchscreen, a trackball, and either a QUERTY or twelve-key hardware keyboard, as
shown here:

<uses-configuration android:reqgTouchScreen=["finger"]
android:regNavigation=["trackball"]
android:reqgHardKeyboard=["true"]
android:regKeyboardType=["qwerty"/>

<uses-configuration android:reqgTouchScreen=["finger"]
android:regNavigation=["trackball"]
android:regHardKeyboard=["true"]
android:regKeyboardType=["twelvekey"]/>

When specifying required configurations be aware that your application won’ t be
installed on any device that does not have one of the combinations specified. In the
above example a device with a QWERTY keyboard and a D-pad (but no
touchscreen or trackball) would not be supported. Ideally you should develop your
application to ensure it works with any input configuration, in which case no
uses-configuration node is required.

uses-feature One of the advantages of Android is the wide variety of hardware platforms
it runs on. Use multiple uses-feature nodes to specify each of the hardware features

your application requires. This will prevent your application from being installed on a
device that does not include a required hardware feature. You can require support for

any hardware that is optional on a compatible device. Currently optional hardware fea-
tures include:

» android.hardware.camera For applications that require camera hardware.
> android.hardware.camera.autofocus If you require an autofocus camera.

As the variety of platforms on which Android is available increases, so too will
the optional hardware. A full list of uses-feature hardware can be found here:
http://developer.android.com/guide/topics/manifest/uses-feature-element.html

You can also use the uses-feature node to specify the minimum version of OpenGL required
by your application. Use the glEsversion attribute, specifying the OpenGL ES version as an
integer. The higher 16 bits represent the major number and the lower 16 bits represent the
minor number.

<uses-feature android:glEsVersion=" 0x00010001"
android:name="android.hardware.camera" />

supports-screens After the initial round of HVGA hardware, 2009 saw the introduction
of WVGA and QVGA screens to the Android device menagerie. With future Android devices
likely to feature devices with larger screens, the supports-screen node lets you specify the
screen sizes your application can, and can’t, support.

54 | CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

Exact dimensions will vary depending on hardware, but in general the supported screen sizes
match resolutions as follows:

> smallScreens Screens with a resolution smaller than traditional HVGA — typi-
cally QVGA screens.

> normalScreens Used to specify typical mobile phone screens of at least HVGA,
including WVGA and WQVGA.

» largeScreens Screens larger than normal. In this instance a large screen is consid-
ered to be significantly larger than a mobile phone display.

> anyDensity Setto true if your application can be scaled to accommodate any
screen resolution.

As of SDK 1.6 (API level 4), the default value for each attribute is true. Use this node to spec-
ify screen sizes you do not support.

<supports-screens android:smallScreens=["false"]
android:normalScreens=["true"]
android:largeScreens=["true"]
android:anyDensity=["false"] />

Where possible you should optimize your application for different screen
resolutions and densities using the resources folder, as shown later in this chapter. If
you specify a supports-screen node that excludes certain screen sizes, your
application will not be available to be installed on devices with unsupported
screens.

> application A manifest can contain only one application node. It uses attributes to specify
the metadata for your application (including its title, icon, and theme). During development
you should include a debuggable attribute set to true to enable debugging — though you
may wish to disable this on your release builds.

The <application> node also acts as a container that includes the Activity, Service, Content
Provider, and Broadcast Receiver tags used to specify the application components. You can
also define your own implementation of the Application class. Later in this chapter you’ll
learn how to create and use your own Application class extension to manage application
state.

<application android:icon="@drawable/icon"
android:theme="@style/my_theme"
android:name="MyApplication"
android:debuggable="true">
[... application nodes ...]
</application>

> activity An <activity> tag is required for every Activity displayed by your
application. Using the android:name attribute to specify the Activity class name.

Introducing the Application Manifest | 55

You must include the main launch Activity and any other screen or dialog that
can be displayed. Trying to start an Activity that’s not defined in the manifest will
throw a runtime exception. Each Activity node supports <intent-filter> child
tags that specify which Intents launch the Activity.

<activity android:name=".MyActivity" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

> service Aswiththeactivity tag, create a new service tag for each Service class
used in your application. (Services are covered in detail in Chapter 9.) Service tags
also support <intent-filters> child tags to allow late runtime binding.

<service android:enabled="true" android:name=".MyService"></service>

> provider Provider tags specify each of your application’s Content Providers.
Content Providers are used to manage database access and sharing within and
between applications and are examined in Chapter 7.

<provider android:permission="com.paad.MY_PERMISSION"
android:name=".MyContentProvider"
android:enabled="true"
android:authorities="com.paad.myapp.MyContentProvider">
</provider>

> receiver By adding a receiver tag, you can register a Broadcast Receiver with-
out having to launch your application first. As you’ll see in Chapter 5, Broadcast
Receivers are like global event listeners that, once registered, will execute when-
ever a matching Intent is broadcast by the system or an application. By registering a
Broadcast Receiver in the manifest you can make this process entirely autonomous.
If a matching Intent is broadcast, your application will be started automatically and
the registered Broadcast Receiver will be run.

<receiver android:enabled="true"
android:label="My Intent Receiver"
android:name=".MyIntentReceiver">
</receiver>

uses-permission As part of the security model, uses-permission tags declare the permis-
sions you’ve determined your application needs to operate properly. The permissions you
include will be presented to the user before installation commences. Permissions are required
for many of the native Android services, particularly those with a cost or security implication
(such as dialing, receiving SMS, or using the location-based services).

<uses-permission android:name="android.permission.ACCESS_LOCATION"/>

permission Third-party applications can also specify permissions before providing access
to shared application components. Before you can restrict access to an application compo-
nent, you need to define a permission in the manifest. Use the permission tag to create a
permission definition.

56 | CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

Application components can then require permissions by adding the android:permission
attribute. Other applications will then need to include a uses-permission tag in their mani-
fests to use these protected components.

Within the permission tag, you can specify the level of access the permission will permit
(normal,dangerous,signature,signatureOrSystem),a1abel,and;nlexternalresourcecon-
taining the description that explains the risks of granting the specified permission.

<permission android:name="com.paad.DETONATE_DEVICE"
android:protectionLevel="dangerous"
android:label="Self Destruct"
android:description="@string/detonate_description">
</permission>

> instrumentation Instrumentation classes provide a test framework for your application
components at run time. They provide hooks to monitor your application and its interaction
with the system resources. Create a new node for each of the test classes you’ve created for
your application.

<instrumentation android:label="My Test"
android:name=".MyTestClass"
android:targetPackage="com.paad.aPackage">
</instrumentation>

A more detailed description of the manifest and each of these nodes can be found at http://developer
.android.com/guide/topics/manifest/manifest-intro.html

The ADT New Project Wizard automatically creates a new manifest file when it creates a new project.

You’ll return to the manifest as each of the application components is introduced.

USING THE MANIFEST EDITOR

The ADT plug-in includes a visual Manifest Editor so you don’t have to manipulate the underlying
XML directly.

To use the Manifest Editor in Eclipse, right-click the AndroidManifest.xml file in your project folder
and select Open With ... = Android Manifest Editor. This presents the Android Manifest Overview
screen, as shown in Figure 3-1. This screen gives you a high-level view of your application structure,
enabling you to set your application version information and root level manifest nodes, including
<uses-sdk> and <uses-features>, as described previously in this chapter. It also provides shortcut
links to the Application, Permissions, Instrumentation, and raw XML screens.

Each of the next three tabs contains a visual interface for managing the application, security, and
instrumentation (testing) settings, while the last tag (using the manifest’s file name) gives access to the
raw XML.

Of particular interest is the Application tab, shown in Figure 3-2. Use it to manage the application node
and the application component hierarchy, where you specify the application components.

You can specify an application’s attributes — including its icon, label, and theme — in the Application
Attributes panel. The Application Nodes tree beneath it lets you manage the application components,
including their attributes and any associated Intent Filter subnodes.

The Android Application Life Cycle | 57

a Android Manfest

+ Manidest Genarsl Anriberies
Belines geneial informalion abowd e AndrosdMande st xmrl

Eackage com paad Aol Browse_. |
Virsion code 1
Versionmama 1.0 | Rrowsa...|
Shared used id ml
Shinrid used labal | rerowse_ |
Mhanifent EXtran @ (3@ @) Az Adiritates for Uses Sdk =
i - {7} Tha wpes-sdk tag describas the SOH Isatures that tsa comtainisg
@ Usos Sdk A package musl be running on bo operale correclly.
m"l Bin 5D versdon 4 Do
[Target SOK version 4 Browse... | 0
IE Max SOK version
= [xpoiriing

Toexport the applicabion for distribubon, you have the following opliomns:

= Uz the Export Wieard to export and sign an APK

= Expoaan enfigeed APK and sign @ manualy

= Links

Thiy coaviant of tha Androsd Manifest s mads up of thires sections. You can siso ede the XML directly.
(] Appbication: Activities, intent filers, providers, serices and recehers,

(0] Permission: Permess and [
Manilast | AppBCanion | Ber Instr AndrokMasie£l xml
FIGURE 31

THE ANDROID APPLICATION LIFE CYCLE

Unlike most traditional environments, Android applications have limited control over their own life
cycles. Instead, application components must listen for changes in the application state and react
accordingly, taking particular care to be prepared for untimely termination.

By default, each Android application runs in its own process, each of which is running a separate
instance of Dalvik. Memory and process management is handled exclusively by the run time.

While it> s uncommon, it’ s possible to force application components within the
same application to run in different processes or to have multiple applications share
the same process using the android:process attribute on the affected component
nodes within the manifest.

Android aggressively manages its resources, doing whatever it takes to ensure that the device remains
responsive. This means that processes (and their hosted applications) will be killed, without warning
in some cases, to free resources for higher-priority applications — generally those interacting directly
with the user at the time. The prioritization process is discussed in the next section.

58

| CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

a Android Manifest Application
= Apglcation Toggke

& The gpplicalion tog describes apphcationdevel componesls comlamed in the package, as well a3 genedal apphcation altrifules.
| Dafine an ~apebcation™ W in (e AsdroidMassastemi

= AppEcalion Atribubes
Dafises (e aitilales specilic io e application.

Rami Baorwse... | Persmstent -
Therme Baowse_. | Emabled L
Labai m.,l Darbepgyabie -

icon Earawabiencon [Bamwse..| wamage space actmity [eowse|
escriplion m Allw cloar user data -
Parmission = Tewl ooy -
Process ﬁh;nji Backup agen! | Browse..
Task affinity [Browse.. | Attow backup -
Allow TRER repareniing = [l aftar reEicne -
Has coda = Resiore meds apphcation -
Appcation Nodes EE®RR®DD A

ncc i =

(A} andreidmanlacusn AN (Acon) FBenin.-

() androd intent.casegory. LAUMCHER (Casegony)
Up

[

Manilesl | Apphcation Perminsi sl dation | dund roid Masilestomi

FIGURE 3-2

UNDERSTANDING APPLICATION PRIORITY AND PROCESS
STATES

The order in which processes are killed to reclaim resources is determined by the priority of the hosted
applications. An application’s priority is equal to its highest-priority component.

If two applications have the same priority, the process that has been at a lower priority longest will be
killed first. Process priority is also affected by interprocess dependencies; if an application has a depen-
dency on a Service or Content Provider supplied by a second application, the secondary application
will have at least as high a priority as the application it supports.

All Android applications will remain running and in memory until the system needs
resources for other applications.

Figure 3-3 shows the priority tree used to determine the order of application termination.

It’s important to structure your application correctly to ensure that its priority is appropriate for the
work it’s doing. If you don’t, your application could be killed while it’s in the middle of something
important.

Externalizing Resources | 59

The following list details each of the application states
shown in Figure 3-3, explaining how the state is determined [
by the application components comprising it:

Critical Priority
1. Active Process]

> Active pr Active (foreground) pr
ctive p ocesses ctive (fo egrou d? processes v High Priority
have application components interacting with 2 Visible Process
the user. These are the processes Android is try-)
ing to keep responsive by reclaiming resources.
There are generally very few of these processes, 3. Started Service Process
and they will be killed only as a last resort.
Active processes include: Y Low Priority
. o s . [4. Background Process]
> Activities in an “active” state; that is,
those in the foreground responding to v
user events. You will explore Activ- [5. Empty Process]

ity states in greater detail later in this

chapter. FIGURE 3-3
» Broadcast Receivers executing onReceive event handlers.

» Services executing onStart, onCreate, or onDestroy event handlers.

> Running Services that have been flagged to run in the foreground.

» Visible processes Visible but inactive processes are those hosting “visible” Activities. As the
name suggests, visible Activities are visible, but they aren’t in the foreground or responding to
user events. This happens when an Activity is only partially obscured (by a non-full-screen or
transparent Activity). There are generally very few visible processes, and they’ll be killed only
under extreme circumstances to allow active processes to continue.

» Started Service processes Processes hosting Services that have been started. Services support
ongoing processing that should continue without a visible interface. Because background Ser-
vices don’t interact directly with the user, they receive a slightly lower priority than visible
Activities. They are still considered foreground processes and won’t be killed unless resources
are needed for active or visible processes. You’ll learn more about Services in Chapter 9.

> Background processes Processes hosting Activities that aren’t visible and that don’t have
any running Services. There will generally be a large number of background processes that
Android will kill using a last-seen-first-killed pattern in order to obtain resources for fore-
ground processes.

> Empty processes To improve overall system performance, Android will often retain an
application in memory after it has reached the end of its lifetime. Android maintains this
cache to improve the start-up time of applications when they’re relaunched. These processes
are routinely killed as required.

EXTERNALIZING RESOURCES

No matter what your development environment, it’s always good practice to keep non-code resources
like images and string constants external to your code. Android supports the externalization of

resources ranging from simple values such as strings and colors to more complex resources like images
(Drawables), animations, and themes. Perhaps the most powerful externalizable resources are layouts.

60 | CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

By externalizing resources you make them easier to maintain, update, and manage. This also lets you
easily define alternative resource values to support different hardware and internationalization.

You’ll see later in this section how Android dynamically selects resources from resource trees that
contain different values for alternative hardware configurations, languages, and locations. This lets
you create different resource values for specific languages, countries, screens, and keyboards. When an
application starts, Android will automatically select the correct resource values without your having to
write a line of code.

Among other things, this lets you change the layout based on the screen size and orientation and cus-
tomize text prompts based on language and country.

Creating Resources

Application resources are stored under the res/ folder of your project hierarchy. In this folder each of
the available resource types are stored in a subfolder containing those resources.

If you start a project using the ADT wizard, it will create a res folder that
contains subfolders for the values, drawable-1dpi, drawable-mdpi,

drawable-hdpi, and layout resources that contain the default layout, 4 2 Chapter2_Sample_Todo_List
application icon, and string resource definitions respectively, as shown 4 i ::;roid -
. . 4 o
in Figure 3-4. » £8 gen [Generated Java Files]
. . &= assets
Note that three Drawable resource folders are created with three differ- i G res
ent icons, one each for low, medium, and high DPI displays. 4 (= drawable
™ icon.png
Nine primary resource types have different folders: simple values, 4 (= layout
Drawables, layouts, animations, styles, menus, searchables, XML, and - \‘ﬂlu";:'""m'
. 4
raw resources. When your application is built, these resources will be [strings.xmi
compiled as efficiently as possible and included in your application < AndroidManifest.xml
package. default.properties

. . FIGURE 3-4
This process also generates an R class file that contains references to

each of the resources you include in your project. This lets you reference
the resources in your code, with the advantage of design-time syntax
checking.

The following sections describe many of the specific resource types available within these categories
and how to create them for your applications.

In all cases the resource file names should contain only lowercase letters, numbers, and the period (.)
and underscore (_) symbols.

Creating Simple Values

Supported simple values include strings, colors, dimensions, and string or integer arrays. All simple
values are stored within XML files in the res/values folder.

Within each XML file you indicate the type of value being stored using tags, as shown in the sample
XML file in Listing 3-1.

Externalizing Resources | 61

J LISTING 3-1: Simple values XML

Available for . .
download on <?xml version="1.0" encoding="utf-8"?>
Wrox.com <resources>

<string name="app_name">To Do List</string>
<color name="app_background">#FF0000FF</color>
<dimen name="default_border">5px</dimen>
<array name="string_array">

<item>Item 1</item>

<item>Item 2</item>

<item>Item 3</item>

</array>
<array name="integer_array">
<item>3</item>
<item>2</item>
<item>1</item>
</array>
</resources>

This example includes all the simple value types. By convention, resources are separated into different
files for each type; for example, res/values/strings.xml would contain only string resources.

The following sections detail the options for defining simple resources.

Strings

Externalizing your strings helps maintain consistency within your application and makes it much easier
to create localized versions.

String resources are specified with the <string> tag, as shown in the following XML snippet.
<string name="stop_message">Stop.</string>

Android supports simple text styling, so you can use the HTML tags , <i>, and <u> to apply bold,
italics, or underlining respectively to parts of your text strings, as shown in the following example:

<string name="stop_message">Stop.</string>

You can use resource strings as input parameters for the string. format method. However,
String. format does not support the text styling described above. To apply styling to a format string
you have to escape the HTML tags when creating your resource, as shown in the following.

<string name="stop_message">Stop. $1S$s</string>
Within your code, use the Html . fromHtml method to convert this back into a styled character sequence.

String rString = getString(R.string.stop_message) ;
String fString = String.format (rString, "Collaborate and listen.");
CharSequence styledString = Html.fromHtml (fString) ;

Colors

Use the <color> tag to define a new color resource. Specify the color value using a # symbol followed
by the (optional) alpha channel, then the red, green, and blue values using one or two hexadecimal
numbers with any of the following notations:

62 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

#RGB
#RRGGBB
#ARGB

> #AARRGGBB

Y Y VY

The following example shows how to specify a fully opaque blue and a partially transparent green.

<color name="opaque_blue">#00F</color>
<color name="transparent_green">#7700FF00</color>

Dimensions

Dimensions are most commonly referenced within style and layout resources. They’re useful for creat-
ing layout constants such as borders and font heights.

To specify a dimension resource use the <dimen> tag, specifying the dimension value, followed by an
identifier describing the scale of your dimension:

> px (screen pixels)
in (physical inches)
pt (physical points)

mm (physical millimeters)

Y Y Y'Y

dp (density-independent pixels relative to a 160-dpi screen)
> sp (scale-independent pixels)

These alternatives let you define a dimension not only in absolute terms, but also using relative scales
that account for different screen resolutions and densities to simplify scaling on different hardware.

The following XML snippet shows how to specify dimension values for a large font size and a standard
border:

<dimen name="standard_border">5dp</dimen>
<dimen name="large_font_size">16sp</dimen>

Styles and Themes

Style resources let your applications maintain a consistent look and feel by enabling you to specify the
attribute values used by Views. The most common use of themes and styles is to store the colors and
fonts for an application.

You can easily change the appearance of your application by simply specifying a different style as the
theme in your project manifest.

To create a style use a <style> tag that includes a name attribute and contains one or more item tags.

Each item tag should include a name attribute used to specify the attribute (such as font size or color)

being defined. The tag itself should then contain the value, as shown in the following skeleton code.
<?xml version="1.0" encoding="utf-8"?>

<resources>
<style name="StyleName">

Externalizing Resources | 63

<item name="attributeName">value</item>
</style>
</resources>

Styles support inheritance using the parent attribute on the <style> tag, making it easy to create simple
variations.

The following example shows two styles that can also be used as a theme: a base style that sets several
text properties and a second style that modifies the first to specify a smaller font.

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="BaseText">
<item name="android:textSize">1l4sp</item>
<item name="android:textColor">#11l1l</item>
</style>
<style name="SmallText" parent="BaseText">
<item name="android:textSize">8sp</item>
</style>
</resources>

Drawables

Drawable resources include bitmaps and NinePatch (stretchable PNG) images. They also include com-
plex composite Drawables, such as LevelListDrawables and StateListDrawables that can be defined
in XML.

Both NinePatch Drawables and complex composite resources are covered in more detail in the next
chapter.

All Drawables are stored as individual files in the res/drawable folder. The resource identifier for a
Drawable resource is the lowercase file name without an extension.

The preferred format for a bitmap resource is PNG, although JPG and GIF files are
also supported.

Layouts

Layout resources let you decouple your presentation layer by designing user interface layouts in XML
rather than constructing them in code.

The most common use of a layout is for defining the user interface for an Activity. Once defined in
XML, the layout is “inflated” within an Activity using setContentView, usually within the oncreate
method. You can also reference layouts from within other layout resources, such as layouts for each
row in a List View. More detailed information on using and creating layouts in Activities can be found
in Chapter 4.

Using layouts to create your screens is best-practice Ul design in Android. The decoupling of the layout
from the code lets you create optimized layouts for different hardware configurations, such as varying
screen sizes, orientation, or the presence of keyboards and touchscreens.

64 | CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

Each layout definition is stored in a separate file, each containing a single layout, in the res/layout
folder. The file name then becomes the resource identifier.

A thorough explanation of layout containers and View elements is included in the next chapter, but as
an example Listing 3-2 shows the layout created by the New Project Wizard. It uses a Linear Layout
(described in more detail in Chapter 4) as a layout container for a Text View that displays the ‘“Hello
World” greeting.

) LISTING 3-2: Hello World layout

Available for . .
download on <?xml version="1.0" encoding="utf-8"?>

Wrox.com <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World!"

/>

</LinearLayout>

Animations

Android supports two types of animation. Tweened animations can be used to rotate, move, stretch,
and fade a View; or you can create frame-by-frame animations to display a sequence of Drawable
images. A comprehensive overview of creating, using, and applying animations can be found in
Chapter 15.

Defining animations as external resources enables you to reuse the same sequence in multiple places
and provides you with the opportunity to present different animations based on device hardware or
orientation.

Tweened Animations

Each tweened animation is stored in a separate XML file in the project’s res/anim folder. As with
layouts and Drawable resources, the animation’s file name is used as its resource identifier.

An animation can be defined for changes in alpha (fading), scale (scaling), translate (movement), or
rotate (rotation).

Table 3-1 shows the valid attributes, and attribute values, supported by each animation type.

You can create a combination of animations using the set tag. An animation set contains one or more
animation transformations and supports various additional tags and attributes to customize when and
how each animation within the set is run.

The following list shows some of the set tags available.
» duration Duration of the animation in milliseconds.

> startoffset Millisecond delay before the animation starts.

Externalizing Resources | 65

» fillBefore true to apply the animation transformation before it begins.
> fillafter true to apply the animation transformation after it ends.

> interpolator Sets how the speed of this effect varies over time. Chapter 15 explores
the interpolators available. To specify one, reference the system animation resources at
android:anim/interpolatorName

TABLE 3-1: Animation type attributes

ANIMATION TYPE ATTRIBUTES VALID VALUES
Alpha fromAlpha/toAlpha Float from O to 1
Scale fromXScale/toXScale Float from O to 1
fromYScale/toYScale Float from O to 1
pivotX/pivotY String of the percentage of graphic
width/height from 0% to 100%
Translate fromX/to X Float from O to 1
fromY/toY Float from O to 1
Rotate fromDegrees/toDegrees Float from O to 360
pivotX/pivot Y String of the percentage of graphic

width/height from 0% to 100%

If you do not use the startoffset tag, all the animation effects within a set will
execute simultaneously.

The following example shows an animation set that spins the target 360 degrees while it shrinks and
fades out.

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="@android:anim/accelerate_interpolator">
<rotate
android: fromDegrees="0"
android:toDegrees="360"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="500"
android:duration="1000" />
<scale
android: fromXScale="1.0"
android:toXScale="0.0"

66 | CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

android: fromyScale="1.0"
android:toYScale="0.0"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="500"
android:duration="500" />
<alpha
android: fromAlpha="1.0"
android:toAlpha="0.0"
android:startOffset="500"
android:duration="500" />
</set>

Frame-by-Frame Animations

Frame-by-frame animations let you create a sequence of Drawables, each of which will be displayed for
a specified duration, on the background of a View.

Because frame-by-frame animations represent animated Drawables they are stored in the res/drawable
folder, rather than with the tweened animations, and use their file names (without the .xml extension)
as their resource IDs.

The following XML snippet shows a simple animation that cycles through a series of bitmap resources,
displaying each one for half a second. In order to use this snippet you will need to create new image
resources rocket1 through rocket3.

<animation-list
xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="false">
<item android:drawable="@drawable/rocketl" android:duration="500" />
<item android:drawable="@drawable/rocket2" android:duration="500" />
<item android:drawable="@drawable/rocket3" android:duration="500" />
</animation-list>

Menus

Create menu resources to further decouple your presentation layer by designing your menu layouts in
XML rather than constructing them in code.

Menu resources can be used to define both Activity and context menus within your applications, and
provide the same options you would have when constructing your menus in code. Once defined in
XML, a menu is “inflated” within your application via the inflate method of the MenuInflator Ser-
vice, usually within the oncreateOptionsMenu method. You will examine menus in more detail in

Chapter 4.

Each menu definition is stored in a separate file, each containing a single menu, in the res/menu folder.
The file name then becomes the resource identifier. Using XML to define your menus is best-practice
design in Android.

A thorough explanation of menu options is included in the next chapter, but Listing 3-3 shows a simple
menu example.

Externalizing Resources | 67

) LISTING 3-3: Simple menu layout resource

Available for . .
download on <?xml version="1.0" encoding="utf-8"?>
Wrox.com <menu xmlns:android="http://schemas.android.com/apk/res/android">

<item android:id="@+id/menu_refresh"
android:title="Refresh" />
<item android:id="@+id/menu_settings"
android:title="Settings" />
</menu>

Using Resources

As well as the resources you create, Android supplies several system resources that you can use in your
applications. The resources can be used directly from your application code and can also be referenced
from within other resources (e.g., a dimension resource might be referenced in a layout definition).

Later in this chapter you’ll learn how to define alternative resource values for different languages, loca-
tions, and hardware. It’s important to note that when using resources you cannot choose a particular
specialized version. Android will automatically select the most appropriate value for a given resource
identifier based on the current hardware and device settings.

Using Resources in Code

You access resources in code using the static R class. R is a generated class based on your external
resources, and created when your project is compiled. The R class contains static subclasses for each of
the resource types for which you’ve defined at least one resource. For example, the default new project
includes the R.string and R.drawable subclasses.

y If you are using the ADT plug-in in Eclipse, the R class will be created
automatically when you make any change to an external resource file or folder. If
you are not using the plug-in, use the AAPT tool to compile your project and
generate the R class. R is a compiler-generated class, so don’ t make any manual
modifications to it as they will be lost when the file is regenerated.

Each of the subclasses within R exposes its associated resources as variables, with the variable names
matching the resource identifiers — for example, R.string.app_name or R.drawable.icon

The value of these variables is a reference to the corresponding resource’s location in the resource table,
not an instance of the resource itself.

Where a constructor or method, such as setContentview, accepts a resource identifier, you can pass in
the resource variable, as shown in the following code snippet.

// Inflate a layout resource.
setContentView(R.layout.main) ;

68

| CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

// Display a transient dialog box that displays the
// error message string resource.
Toast.makeText (this, R.string.app_error, Toast.LENGTH_LONG) .show() ;

When you need an instance of the resource itself, you’ll need to use helper methods to extract them
from the resource table. The resource table is represented within your application as an instance of the
Resources class.

Because these methods perform lookups on the application’s resource table, these helper methods can’t
be static. Use the getResources method on your application context, as shown in the following snippet,
to access your application’s Resources instance.

Resources myResources = getResources|();

The Resources class includes getters for each of the available resource types and generally works by
passing in the resource ID you’d like an instance of. The following code snippet shows an example of
using the helper methods to return a selection of resource values.

Resources myResources = getResources();

CharSequence styledText = myResources.getText (R.string.stop_message) ;
Drawable icon = myResources.getDrawable (R.drawable.app_icon) ;

int opaqueBlue = myResources.getColor (R.color.opaque_blue);
float borderWidth = myResources.getDimension (R.dimen.standard_border) ;

Animation tranOut;
tranOut = AnimationUtils.loadAnimation(this, R.anim.spin_shrink_fade);

String[] stringArray;
stringArray = myResources.getStringArray(R.array.string_array);

int[] intArray = myResources.getIntArray(R.array.integer_array) ;

Frame-by-frame animated resources are inflated into AnimationResources. You can return the value
using getDrawable and casting the return value, as shown here:

AnimationDrawable rocket;
rocket = (AnimationDrawable)myResources.getDrawable (R.drawable.frame_by frame) ;

Referencing Resources within Resources

You can also use resource references as attribute values in other XML resources.

This is particularly useful for layouts and styles, letting you create specialized variations on themes and
localized strings and graphics. It’s also a useful way to support different images and spacing for a layout
to ensure that it’s optimized for different screen sizes and resolutions.

To reference one resource from another use @ notation, as shown in the following snippet.

attribute="@[packagename:] resourcetype/resourceidentifier"

Externalizing Resources | 69

Android will assume you’ re using a resource from the same package, so you only
need to fully qualify the package name if you’ re using a resource from a different
package.

Listing 3-4 shows a layout that uses color, dimension, and string resources.

) LISTING 3-4: Using resources in a layout

Available for .]
downloadon <?xml version="1.0" encoding="utf-8"?>
Wrox.com <LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:padding="@dimen/standard_border">
<EditText
android:id="@+1id/myEditText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/stop_message"
android:textColor="@color/opaque_blue"
/>
</LinearLayout>

Using System Resources

The native Android applications externalize many of their resources, providing you with various
strings, images, animations, styles, and layouts to use in your applications.

Accessing the system resources in code is similar to using your own resources. The difference is that you
use the native Android resource classes available from android.R, rather than the application-specific
R class. The following code snippet uses the getString method available in the application context to
retrieve an error message available from the system resources:

CharSequence httpError = getString(android.R.string.httpErrorBadUrl) ;

To access system resources in XML specify Android as the package name, as shown in this XML
snippet.

<EditText
android:id="@+1d/myEditText"
android:layout_width="£fill parent"
android:layout_height="wrap_ content"
android:text="@android:string/httpErrorBadurl"
android:textColor="@android:color/darker_gray"
/>

70 | CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

Referring to Styles in the Current Theme

Using themes is an excellent way to ensure consistency for your application’s UL Rather than fully
define each style, Android provides a shortcut to let you use styles from the currently applied theme.

To do this you use ?android: rather than @ as a prefix to the resource you want to use. The following
example shows a snippet of the preceding code but uses the current theme’s text color rather than an
external resource.

<EditText
android:id="@+id/myEditText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/stop_message"
android:textColor="?android:textColor"
/>

This technique lets you create styles that will change if the current theme changes, without your having
to modify each individual style resource.

To-Do List Resources Example

In this example you’ll create new external resources in preparation for adding functionality to the To-
Do List example you started in Chapter 2. The string and image resources you create here will be used
in Chapter 4 when you implement a menu system for the To-Do List application.

The following steps will show you how to create text and icon resources to use for the Add and Remove
menu items, and how to create a theme to apply to the application:

1. Create two new PNG images, one to represent adding a to-do

list item, and one to represent removing an item. Each image _I_ ><
should have dimensions of approximately 16 pixels by 16 pixels,
like those illustrated in Figure 3-5. FIGURE 3-5

2. Copy the images into your project’s res/drawable-mdpi folder and refresh
your project.

3. Open the strings.xml resource from the res/values folder and add values for the add_new,
remove, and cancel menu items. (You can remove the default hello string value while you’re
there.)

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="app_name">To Do List</string>
<string name="add_new">Add New Item</string>
<string name="remove">Remove Item</string>
<string name="cancel">Cancel</string>
</resources>

4. Create a new theme for the application by creating a new styles.xml resource in the
res/values folder. Base your theme on the standard Android theme, but set values for a
default text size.

Externalizing Resources | 71

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="ToDoTheme" parent="@android:style/Theme.Black">
<item name="android:textSize">12sp</item>
</style>
</resources>

Apply the theme to your project in the manifest.

<activity android:name=".ToDoList"
android:label="@string/app_name"
android:theme="@style/ToDoTheme" >

Creating Resources for Different Languages and Hardware

One of the most compelling reasons to externalize your resources is Android’s dynamic resource-
selection mechanism.

Using the directory structure described below, you can create different resource values for specific
languages, locations, and hardware configurations. Android will choose from among these values
dynamically at run time.

You can specify alternative resource values using a parallel directory structure within the res folder.
A hyphen (-) is used to separate qualifiers that specify the conditions you’re providing alterna-
tives for.

The following example hierarchy shows a folder structure that features default string values, with
French language and French Canadian location variations:

Project/
res/

values/
strings.xml

values-fr/
strings.xml

values-fr-rCa/
strings.xml

The following list gives the qualifiers you can use to customize your resource values:

>

Mobile Country Code and Mobile Network Code (MCC/MNC) The country, and option-
ally the network, associated with the SIM currently used in the device. The MCC is specified
by mcc followed by the three-digit country code. You can optionally add the MNC using mnc
and the two- or three-digit network code (e.g., mcc234-mnc20 or mcc310). You can find a list of
MCC/MNC codes on Wikipedia at http://en.wikipedia.org/wiki/Mobile Network_ Code

Language and Region Language specified by the lowercase two-letter ISO 639-1 language
code, followed optionally by a region specified by a lowercase r followed by the uppercase
two-letter ISO 3166-1-alpha-2 language code (e.g., en, en-rUs, or en-rGB).

Screen Size One of small (smaller than HVGA), medium (at least HVGA and smaller than
VGA), or large (VGA or larger).

72

| CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

» Screen Width/Length Specify 1ong or notlong for resources designed specifically for wide
screen (e.g., WVGA is long, QVGA is notlong).

> Screen Orientation One of port (portrait), 1and (landscape), or square (square).

Screen Pixel Density Pixel density in dots per inch (dpi). Best practice is to use 1dpi, mdp1,
or hdpi to specify low (120 dpi), medium (160 dpi), or high (240 dpi) pixel density respec-
tively. You can specify nodpi for bitmap resources you don’t want scaled to support an exact
screen density. Unlike with other resource types Android does not require an exact match to
select a resource. When selecting the appropriate folder it will choose the nearest match to the
device’s pixel density and scale the resulting Drawables accordingly.

» Touchscreen Type One of notouch, stylus, or finger.

> Keyboard Availability One of keysexposed, keyshidden, or keyssoft.
» Keyboard Input Type One of nokeys, qwerty, or 12key.

» Ul Navigation Type One of nonav, dpad, trackball, or wheel.

You can specify multiple qualifiers for any resource type, separating each qualifier with a hyphen. Any
combination is supported; however, they must be used in the order given in the preceding list, and no
more than one value can be used per qualifier.

The following example shows valid and invalid directory names for alternative Drawable resources.

> Valid:

drawable-en-rUS
drawable-en-keyshidden
drawable-long-land-notouch-nokeys

> Invalid:
drawable-rUS-en (out of order)

drawable-rUS-rUK (multiple values for a single qualifier)

When Android retrieves a resource at run time, it will find the best match from the available alterna-
tives. Starting with a list of all the folders in which the required value exists, it will select the one with
the greatest number of matching qualifiers. If two folders are an equal match, the tiebreaker will be
based on the order of the matched qualifiers in the preceding list.

If no resource matches are found on a given device, your application will throw an
exception when attempting to access that resource. To avoid this you should always
include default values for each resource type in a folder that includes no qualifiers.

Runtime Configuration Changes

Android handles runtime changes to the language, location, and hardware by terminating and restarting
each application and reloading the resource values.

This default behavior isn’t always convenient or desirable, particularly as some configuration changes
(like those to screen orientation and keyboard availability) can occur as easily as a user can rotate the

Externalizing Resources | 73

device or slide out the keyboard. You can customize your application’s response to such changes by
detecting and reacting to them yourself.

To have an Activity listen for runtime configuration changes, add an android: configChanges attribute
to its manifest node, specifying the configuration changes you want to handle.

The following list describes the configuration changes you can specify:
» orientation The screen has been rotated between portrait and landscape.
keyboardHidden The keyboard has been exposed or hidden.

>

> fontScale The user has changed the preferred font size.
» locale The user has chosen a different language setting.
>

keyboard The type of keyboard has changed; for example, the phone may have a 12-key
keypad that flips out to reveal a full keyboard.

A\

touchscreen or navigation The type of keyboard or navigation method has changed. Nei-
ther of these events should normally happen.

In certain circumstances multiple events will be triggered simultaneously. For example, when the user
is sliding out a keyboard most devices will fire both the keyboardnidden and orientation
events.

You can select multiple events you wish to handle yourself by separating the values with a pipe (|).

Listing 3-5 shows an activity node declaring that it will handle changes in screen orientation and key-
board visibility.

) LISTING 3-5: Activity definition for handling dynamic resource changes

Available for . , .
download on <activity android:name=".TodoList"
Wrox.com android:label="@string/app_name"

android:theme="@style/TodoTheme"
android:configChanges="orientation|keyboardHidden"/>

Adding an android:configChanges attribute suppresses the restart for the specified configuration
changes, instead triggering the onconfigurationChanged method in the Activity. Override this method
to handle the configuration changes, using the passed-in configuration object to determine the new
configuration values, as shown in Listing 3-6. Be sure to call back to the superclass and reload any
resource values that the Activity uses, in case they’ve changed.

) LISTING 3-6: Handling configuration changes in code

Available for ~ @Override
download on public void onConfigurationChanged (Configuration _newConfig) ({
Wrox.com super .onConfigurationChanged (_newConfig) ;

[... Update any UI based on resource values ...] R
continues

74 | CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

LISTING 3-6 (continued)

if (_newConfig.orientation == Configuration.ORIENTATION_LANDSCAPE) {
[... React to different orientation ...]

if (_newConfig.keyboardHidden == Configuration.KEYBOARDHIDDEN_NO) {
[... React to changed keyboard visibility ...]

}

When onConfigurationChanged is called, the Activity’s Resource variables will have already been
updated with the new values so they’ll be safe to use.

Any configuration change that you don’t explicitly flag as being handled by your application will cause
your Activity to restart, without a call to onConfigurationChanged.

INTRODUCING THE ANDROID APPLICATION CLASS

Extending the application class with your own implementation enables you to do three things:
1. Maintain application state
2. Transfer objects between application components
3. Manage and maintain resources used by several application components

When your Application implementation is registered in the manifest, it will be instantiated when your
application process is created. As a result your Application implementation is by nature a singleton and
should be implemented as such to provide access to its methods and member variables.

Extending and Using the Application Class

Listing 3-7 shows the skeleton code for extending the Application class and implementing it as a
singleton.

) LISTING 3-7: Skeleton application class

Qx:,illl?:;%f:; import android.app.Application;
Wrox.com import android.content.res.Configuration;

public class MyApplication extends Application {
private static MyApplication singleton;

// Returns the application instance
public static MyApplication getInstance() {
return singleton;

}

Introducing the Android Application Class | 75

@Override
public final void onCreate() {
super.onCreate() ;
singleton = this;
}
}

Once created, you must register your new Application class in the manifest’s <application> node, as
shown in the following snippet:

<application android:icon="@drawable/icon"
android:name="MyApplication">
[... Manifest nodes ...]
</application>

Your Application implementation will by instantiated when your application is started. Create new
state variables and global resources for access from within the application components:

MyObject value = MyApplication.getInstance().getGlobalStatevalue();
MyApplication.getInstance () .setGlobalStatevValue (myObjectValue) ;

This is a particularly effective technique for transferring objects between your loosely coupled applica-
tion components, or for maintaining application state or shared resources.

Overriding the Application Life Cycle Events

The Application class also provides event handlers for application creation and termination, low avail-
able memory, and configuration changes (as described in the previous section).

By overriding these methods you can implement your own application-specific behavior for each of
these circumstances:

» onCreate Called when the application is created. Override this method to initialize your
application singleton and create and initialize any application state variables or shared
resources.

» onTerminate Can be called when the application object is terminated. Note that there is
no guarantee of this method handler’s being called. If the application is terminated by the
kernel in order to free resources for other applications, the process will be terminated without
warning and without a call to the application object’s onTerminate handler.

> onLowMemory Provides an opportunity for well-behaved applications to free additional
memory when the system is running low on resources. This will generally only be called when
background processes have already been terminated and the current foreground applications
are still low on memory. Override this handler to clear caches or release unnecessary
resources.

» onConfigurationChanged Unlike with Activities, your application object is not killed and
restarted for configuration changes. Override this handler if it is necessary to handle configu-
ration changes at an application level.

As shown in Listing 3-8, you must always call through to the superclass event handlers when overriding
these methods.

76 | CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

) LISTING 3-8: Overriding the application life cycle handlers

Available for .)) . .
downloadon public class MyApplication extends Application {

Wrox.com
private static MyApplication singleton;

// Returns the application instance
public static MyApplication getInstance() {
return singleton;

}

@Override

public final void onCreate() {
super.onCreate();
singleton = this;

}

@Ooverride
public final void onTerminate() {
super.onTerminate();

}

@Override

public final void onLowMemory () {
super .onLowMemory () ;

}

@Ooverride

public final void onConfigurationChanged(Configuration newConfig) {
super.onConfigurationChanged (newConfig) ;

}

A CLOSER LOOK AT ANDROID ACTIVITIES

To create user interface screens you extend the Activity class, using Views to provide the Ul and allow
user interaction.

Each Activity represents a screen (similar to a Form) that an application can present to its users. The
more complicated your application, the more screens you are likely to need.

Create a new Activity for every screen you want to display. Typically this includes at least a primary
interface screen that handles the main Ul functionality of your application. This primary interface is

often supported by secondary Activities for entering information, providing different perspectives on
your data, and supporting additional functionality. To move between screens start a new Activity (or
return from one).

Most Activities are designed to occupy the entire display, but you can also create Activities that are
semitransparent or floating.

A Closer Look at Android Activities | 77

Creating an Activity

Extend activity to create a new Activity class. Within this new class you must define the user interface
and implement your functionality. The basic skeleton code for a new Activity is shown in Listing 3-9.

) LISTING 3-9: Activity skeleton code

Available for . .
download on package com.paad.myapplication;

Wrox.com

import android.app.Activity;
import android.os.Bundle;

public class MyActivity extends Activity {

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

}

The base Activity class presents an empty screen that encapsulates the window display handling. An
empty Activity isn’t particularly useful, so the first thing you’ll want to do is create the user interface
with Views and layouts.

Views are the user interface controls that display data and provide user interaction. Android provides
several layout classes, called View Groups, that can contain multiple Views to help you design your
user interfaces.

Chapter 4 examines Views and View Groups in detail, examining what’s available, how to use them,
and how to create your own Views and layouts.

To assign a user interface to an Activity, call setContentview from the oncreate method of your Activity.
In this first snippet, an instance of a Textview is used as the Activity’s user interface:

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
TextView textView = new TextView(this);
setContentView(textView);

}

Usually you’ll want to use a more complex UI design. You can create a layout in code using lay-
out View Groups, or you can use the standard Android convention of passing a resource ID for a
layout defined in an external resource, as shown in the following snippet:

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main);

78 | CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

In order to use an Activity in your application you need to register it in the manifest. Add new
<activity> tags within the <application> node of the manifest; the <activity> tag includes attributes
for metadata such as the label, icon, required permissions, and themes used by the Activity. An Activity
without a corresponding <activity> tag can’t be displayed.

The XML in Listing 3-10 shows how to add a node for the myactivity class created in Listing 3-9.

) LISTING 3-10: Activity layout in XML

Available for .. .)
download on <activity android:label="@string/app_name"
Wrox.com android:name=".MyActivity">

</activity>

Within the <activity> tag you can add <intent-filter> nodes that specify the Intents your Activity
will listen for and react to. Each Intent Filter defines one or more actions and categories that your
Activity supports. Intents and Intent Filters are covered in depth in Chapter 5, but it’s worth noting
that for an Activity to be available from the main application launcher it must include an Intent Filter
listening for the MAIN action and the LAUNCHER category, as highlighted in Listing 3-11.

) LISTING 3-11: Main application Activity definition

Available for .. .)
download on <activity android:label="€@string/app_name"
Wrox.com android:name=".MyActivity">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

The Activity Life Cycle

A good understanding of the Activity life cycle is vital to ensure that your application provides a seam-
less user experience and properly manages its resources.

As explained earlier, Android applications do not control their own process lifetimes; the Android run
time manages the process of each application, and by extension that of each Activity within it.

While the run time handles the termination and management of an Activity’s process, the Activity’s
state helps determine the priority of its parent application. The application priority, in turn, influences
the likelihood that the run time will terminate it and the Activities running within it.

Activity Stacks

The state of each Activity is determined by its position on the Activity stack, a last-in—first-out collec-
tion of all the currently running Activities. When a new Activity starts, the current foreground screen
is moved to the top of the stack. If the user navigates back using the Back button, or the foreground
Activity is closed, the next Activity on the stack moves up and becomes active. This process is illustrated
in Figure 3-6.

A Closer Look at Android Activities | 79

New Activity }—F Active Activity
A

New Activity Back button
started pushed or
activity closed

\ 4
Last Active Activity

- Removed to
free resources

Previous Activities

Activity Stack
FIGURE 3-6

As described previously in this chapter, an application’s priority is influenced by its highest-
priority Activity. When the Android memory manager is deciding which application to termi-
nate to free resources, it uses this stack to determine the priority of applications based on their
Activities.

Activity States

As Activities are created and destroyed they move in and out of the stack shown in Figure 3-6. As they
do so, they transition through four possible states:

> Active When an Activity is at the top of the stack it is the visible, focused, foreground Activ-
ity that is receiving user input. Android will attempt to keep it alive at all costs, killing
Activities further down the stack as needed, to ensure that it has the resources it needs. When
another Activity becomes active, this one will be paused.

» Paused Insome cases your Activity will be visible but will not have focus; at this point it’s
paused. This state is reached if a transparent or non-full-screen Activity is active in front of it.
When paused, an Activity is treated as if it were active; however, it doesn’t receive user input
events. In extreme cases Android will kill a paused Activity to recover resources for the active
Activity. When an Activity becomes totally obscured, it is stopped.

> Stopped When an Activity isn’t visible, it “stops.” The Activity will remain in memory,
retaining all state information; however, it is now a candidate for termination when the sys-
tem requires memory elsewhere. When an Activity is stopped it’s important to save data and
the current Ul state. Once an Activity has exited or closed, it becomes inactive.

> Inactive After an Activity has been killed, and before it’s been launched, it’s inactive. Inac-
tive Activities have been removed from the Activity stack and need to be restarted before they
can be displayed and used.

80

| CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

State transitions are nondeterministic and are handled entirely by the Android memory manager.
Android will start by closing applications that contain inactive Activities, followed by those that are
stopped. In extreme cases it will remove those that are paused.

To ensure a seamless user experience, transitions between states should be invisible
to the user. There should be no difference in an Activity moving from a paused,
stopped, or inactive state back to active, so it’ s important to save all Ul state and
persist all data when an Activity is paused or stopped. Once an Activity does
become active, it should restore those saved values.

Monitoring State Changes

To ensure that Activities can react to state changes, Android provides a series of event handlers that are
fired when an Activity transitions through its full, visible, and active lifetimes. Figure 3-7 summarizes
these lifetimes in terms of the Activity states described in the previous section.

Activity is Killable
o d

i

1

Activity. Activity.
onCreate onSavelnstanceState

Activity.
onStart

Activity. Activity. Activity.
onResume onRestorelnstanceState onPause

Activity.
onRestart

Active Lifetime

Activity.
onStop

Activity.
onDestroy

<
<

Visible Lifetime

'
'
'
'
'
'
'
]
'
'
'
T
'
'
'
'
'
T
-
'

Full Lifetime
FIGURE 3-7

The skeleton code in Listing 3-12 shows the stubs for the state change method handlers available in
an Activity. Comments within each stub describe the actions you should consider taking on each state
change event.

) LISTING 3-12: Activity state event handlers

Available for . .
download on package com.paad.myapplication;

Wrox.com

import android.app.Activity;
import android.os.Bundle;

public class MyActivity extends Activity {

A Closer Look at Android Activities | 81

// Called at the start of the full lifetime.
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
// Initialize activity.

// Called after onCreate has finished, use to restore UI state
@Override
public void onRestoreInstanceState (Bundle savedInstanceState) {
super .onRestoreInstanceState (savedInstanceState) ;
// Restore UI state from the savedInstanceState.
// This bundle has also been passed to onCreate.

// Called before subsequent visible lifetimes

// for an activity process.

@Override

public void onRestart () {
super .onRestart () ;
// Load changes knowing that the activity has already
// been visible within this process.

// Called at the start of the visible lifetime.
@Override
public void onStart () {

super.onStart () ;

// Apply any required UI change now that the Activity is visible.

// Called at the start of the active lifetime.

@Override

public void onResume () {
super .onResume () ;
// Resume any paused UI updates, threads, or processes required
// by the activity but suspended when it was inactive.

// Called to save UI state changes at the

// end of the active lifecycle.

@Override

public void onSavelInstanceState (Bundle savedInstanceState) {
// Save UI state changes to the savedInstanceState.
// This bundle will be passed to onCreate if the process is
// killed and restarted.
super.onSavelnstanceState (savedInstanceState) ;

// Called at the end of the active lifetime.
@Override

continues

82

| CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

LISTING 3-12 (continued)

public void onPause() {
// Suspend UI updates, threads, or CPU intensive processes
// that don't need to be updated when the Activity isn't
// the active foreground activity.
super .onPause () ;

}

// Called at the end of the visible lifetime.

@QOverride

public void onStop () {
// Suspend remaining UI updates, threads, or processing
// that aren't required when the Activity isn't visible.
// Persist all edits or state changes
// as after this call the process is likely to be killed.
super.onStop () ;

}

// Called at the end of the full lifetime.

@QOverride

public void onDestroy () {
// Clean up any resources including ending threads,
// closing database connections etc.
super .onDestroy () ;

}

}

As shown in the preceding code, you should always call back to the superclass when overriding these
event handlers.

Understanding Activity Lifetimes

Within an Activity’s full lifetime, between creation and destruction, it will go through one or more
iterations of the active and visible lifetimes. Each transition will trigger the method handlers described
previously. The following sections provide a closer look at each of these lifetimes and the events that
bracket them.

The Full Lifetime

The full lifetime of your Activity occurs between the first call to oncreate and the final call
to onDestroy. It’s possible, in some cases, for an Activity’s process to be terminated without the
onDestroy method being called.

Use the onCreate method to initialize your Activity: inflate the user interface, allocate references to
class variables, bind data to controls, and create Services and threads. The oncreate method is passed
a Bundle object containing the Ul state saved in the last call to onsaveInstanceState. You should use
this Bundle to restore the user interface to its previous state, either within the onCreate method or by
overriding onRestoreInstanceState

Override onDestroy to clean up any resources created in onCreate, and ensure that all external connec-
tions, such as network or database links, are closed.

A Closer Look at Android Activities | 83

As part of Android’s guidelines for writing efficient code, it’s recommended that you avoid the creation
of short-term objects. Rapid creation and destruction of objects forces additional garbage collection,
a process that can have a direct impact on the user experience. If your Activity creates the same set of
objects regularly, consider creating them in the onCcreate method instead, as it’s called only once in the
Activity’s lifetime.

The Visible Lifetime

An Activity’s visible lifetimes are bound between calls to onstart and onStop. Between these calls your
Activity will be visible to the user, although it may not have focus and may be partially obscured. Activ-
ities are likely to go through several visible lifetimes during their full lifetime, as they move between the
foreground and background. While it’s unusual, in extreme cases the Android run time will kill an
Activity during its visible lifetime without a call to onStop.

The onstop method should be used to pause or stop animations, threads, sensor listeners, GPS lookups,
timers, Services, or other processes that are used exclusively to update the user interface. There’s little
value in consuming resources (such as CPU cycles or network bandwidth) to update the UI when it
isn’t visible. Use the onStart (or onRestart) methods to resume or restart these processes when the Ul
is visible again.

The onRestart method is called immediately prior to all but the first call to onstart. Use it to imple-
ment special processing that you want done only when the Activity restarts within its full lifetime.

The onstart/onstop methods are also used to register and unregister Broadcast Receivers that are
being used exclusively to update the user interface. You’ll learn more about using Broadcast Receivers
in Chapter 5.

The Active Lifetime

The active lifetime starts with a call to onResume and ends with a corresponding call to onPause.

An active Activity is in the foreground and is receiving user input events. Your Activity is likely to go
through several active lifetimes before it’s destroyed, as the active lifetime will end when a new Activity
is displayed, the device goes to sleep, or the Activity loses focus. Try to keep code in the onPause and
onResume methods relatively fast and lightweight to ensure that your application remains responsive
when moving in and out of the foreground.

Immediately before onpause, a call is made to onsaveInstanceState. This method provides an
opportunity to save the Activity’s Ul state in a Bundle that will be passed to the oncreate and
onRestoreInstanceState methods. Use onSaveInstanceState to save the Ul state (such as checkbox
states, user focus, and entered but uncommitted user input) to ensure that the Activity can present
the same UI when it next becomes active. You can safely assume that during the active lifetime
onSaveInstanceState and onPause will be called before the process is terminated.

Most Activity implementations will override at least the onPause method to commit unsaved changes,
as it marks the point beyond which an Activity may be killed without warning. Depending on your
application architecture you may also choose to suspend threads, processes, or Broadcast Receivers
while your Activity is not in the foreground.

84 | CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

The onResume method can be very lightweight. You will not need to reload the UI state here as this
is handled by the oncreate and onRestoreInstancestate methods when required. Use onResume to
reregister any Broadcast Receivers or other processes you may have suspended in onPause.

Android Activity Classes

The Android SDK includes a selection of Activity subclasses that wrap up the use of common user
interface widgets. Some of the more useful ones are listed here:

» MapActivity Encapsulates the resource handling required to support a Mapview widget
within an Activity. Learn more about MapActivity and Mapview in Chapter 8.

> ListActivity Wrapper class for Activities that feature a Listview bound to a data source as
the primary Ul metaphor, and exposing event handlers for list item selection.

> ExpandableListActivity Similar to the List Activity but supporting an ExpandableListView

TabActivity Enables you to embed multiple Activities or Views within a single screen using
a tab widget to switch among them.

SUMMARY

In this chapter you learned how to design robust applications using loosely coupled application compo-
nents: Activities, Services, Content Providers, Intents, and Broadcast Receivers bound together by the
application manifest.

You were introduced to the Android application life cycle, learning how each application’s priority is
determined by its process state, which is, in turn, determined by the state of the components within it.

To take full advantage of the wide range of device hardware available and the international user base,
you learned how to create external resources and how to define alternative values for specific locations,
languages, and hardware configurations.

Next you learned about the Application class, and how to extend it to facilitate application state man-
agement and inter-component data transfer.

You then discovered more about Activities and their role in the application framework. As well as
learning how to create new Activities, you were introduced to the Activity life cycle. In particular,
you learned about Activity state transitions and how to monitor these events to ensure a seamless
user experience.

Finally, you were introduced to some specialized Android Activity classes.

In the next chapter you’ll learn how to create user interfaces. Chapter 4 will demonstrate how to use
layouts to design your UI before introducing some native widgets and showing you how to extend,
modify, and group them to create specialized controls. You’ll also learn how to create your own unique
user interface elements from a blank canvas, before being introduced to the Android menu system.

Creating User Interfaces

WHAT’S IN THIS CHAPTER?

Using Views and layouts

Optimizing layouts

XML Drawable resources

Creating resolution-independent user interfaces

The Android menu system

Y Y Y VY VY Y

Extending, grouping, creating, and using Views

It’s vital that you create compelling and intuitive user interfaces for your applications. Ensuring
that they are as stylish and easy to use as they are functional should be a top design priority.

To quote Stephen Fry on the importance of style as part of substance in the design of digital
devices:

As if a device can function if it bas no style. As if a device can be called stylish
that does not function superbly. ... yes, beauty matters. Boy, does it matter. It is
not surface, it is not an extra, it is the thing itself.

— STEPHEN FrY, The Guardian (October 27, 2007)
Increasing screen sizes, display resolutions, and mobile processor power have made mobile

applications increasingly visual. While the diminutive screens pose a challenge for those creating
complex visual interfaces, the ubiquity of mobiles makes it a challenge worth accepting.

In this chapter you’ll learn about the basic Android UI elements and discover how to use Views,
View Groups, and layouts to create functional and intuitive user interfaces for your Activities.

After being introduced to some of the controls available from the Android SDK, you’ll learn
how to extend and customize them. Using View Groups, you’ll see how to combine Views to

86

| CHAPTER 4 CREATING USER INTERFACES

create atomic, reusable Ul elements made up of interacting subcontrols. You’ll also learn how to create
your own Views to implement creative new ways to display data and interact with users.

The individual elements of an Android user interface are arranged on screen by means of a variety
of layout managers derived from viewGroup. The correct use of layouts is essential for creating good
interfaces; this chapter introduces several native layout classes and demonstrates how to use them and
how to create your own.

With the range of Android devices rapidly increasing, the range of screen sizes and resolutions your
app will be expected to run on has also increased. You’ll learn how to create resolution-independent
layouts and Drawables and the best practices for developing and testing your Uls so they look great on
all host screens.

Android’s application and context menu systems use a new approach, optimized for modern touch
screen devices. As part of an examination of the Android Ul model, this chapter ends with a look at
how to create and use Activity and context menus.

FUNDAMENTAL ANDROID Ul DESIGN

User interface (UI) design, user experience (UX), human computer interaction (HCI), and usability are
huge topics that aren’t covered in great depth in this book. Nonetheless, it’s important that you get
them right when creating your user interfaces.

Android introduces some new terminology for familiar programming metaphors that will be explored
in detail in the following sections:

> Views Views are the base class for all visual interface elements (commonly known as con-
trols or widgets). All Ul controls, including the layout classes, are derived from view.

» View Groups View Groups are extensions of the View class that can contain multiple child
Views. Extend the viewGroup class to create compound controls made up of interconnected
child Views. The viewGroup class is also extended to provide the layout managers that help
you lay out controls within your Activities.

> Activities Activities, described in detail in the previous chapter, represent the window, or
screen, being displayed. Activities are the Android equivalent of Forms. To display a user
interface you assign a View (usually a layout) to an Activity.

Android provides several common UI controls, widgets, and layout managers.

For most graphical applications it’s likely that you’ll need to extend and modify these standard
Views — or create composite or entirely new Views — to provide your own user experience.

INTRODUCING VIEWS

As described earlier, all visual components in Android descend from the view class and are referred to
generically as Views. You’ll often see Views referred to as controls or widgets (not to be confused with

Introducing Views | 87

home screen or App Widgets described in Chapter 10) — terms you’re probably familiar with if you’ve
previously done any GUI development.

The viewGroup class is an extension of View designed to contain multiple Views. Generally, View
Groups are used either to construct atomic reusable components or to manage the layout of child
Views. View Groups that perform the latter function are generally referred to as layouts.

Because all visual elements derive from View, you will likely see both widgetr and control used inter-
changeably with View.

You were already introduced to a layout and two native Views — the LinearLayout, a ListView, and
a TextView — when you created the to-do list example in Chapter 2.

In the following sections you’ll learn how to put together increasingly complex Uls, starting with the
Views available in the SDK, before learning how to extend them, build your own compound controls,
and create your own custom Views from scratch.

Creating Activity User Interfaces with Views

A new Activity starts with a temptingly empty screen onto which you place your user interface. To
assign the user interface, call setContentView, passing in the View instance, or layout resource, to
display. Because empty screens aren’t particularly inspiring, you will almost always use setContentview
to assign an Activity’s user interface when overriding its onCreate handler.

The setcontentview method accepts either a layout resource ID (as described in Chapter 3) or a single
View instance. This lets you define your user interface either in code or using the preferred technique of
external layout resources.

Using layout resources decouples your presentation layer from the application logic, providing the
flexibility to change the presentation without changing code. This makes it possible to specify different
layouts optimized for different hardware configurations, even changing them at run time based on
hardware changes (such as screen orientation).

Listing 4-1 shows how to set the user interface for an Activity using an external layout resource. You
can get references to the Views used within a layout with the findviewBy1d method. This example
assumes that main.xml exists in the project’s res/layout folder.

) LISTING 4-1: Inflating an Activity layout

Available for .
downloadon @Override
Wrox.com public void onCreate(Bundle savedInstanceState) {

super .onCreate (savedInstanceState) ;

setContentView(R.layout.main);
TextView myTextView = (TextView)findViewById(R.id.myTextView);
}

If you prefer the more traditional approach, you can construct the user interface in code. Listing 4-2
shows how to assign a new Textview as the user interface.

88 | CHAPTER4 CREATING USER INTERFACES

) LISTING 4-2: Creating a Ul layout in code

Available for .
download on @override
Wrox.com public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;

TextView myTextView = new TextView(this);
setContentView (myTextView);

myTextView.setText ("Hello, Android");
}

The setcontentview method accepts a single View instance; as a result, you have to use layouts to add
multiple controls to your Activity.

The Android Widget Toolbox

Android supplies a toolbox of standard Views to help you create simple interfaces. By using these
controls (and modifying or extending them as necessary), you can simplify your development and
provide consistency between applications.

The following list highlights some of the more familiar toolbox controls:

> TextView A standard read-only text label. It supports multiline display, string formatting,
and automatic word wrapping.

> EditText An editable text entry box. It accepts multiline entry, word-wrapping, and hint
text.

> Listview A View Group that creates and manages a vertical list of Views, displaying them
as rows within the list. The simplest List View displays the tostring value of each object in
an array, using a Text View for each item.

> spinner A composite control that displays a Text View and an associated List View that lets
you select an item from a list to display in the textbox. It’s made from a Text View displaying
the current selection, combined with a button that displays a selection dialog when pressed.

Button A standard push-button.
» CheckBox A two-state button represented by a checked or unchecked box.

RadioButton A two-state grouped button. A group of these presents the user with a number
of binary options of which only one can be enabled at a time.

> ViewFlipper A View Group that lets you define a collection of Views as a horizontal row
in which only one View is visible at a time, and in which transitions between visible views are
animated.

> QuickContactBadge Displays a badge showing the image icon assigned to a contact
you specify using a phone number, name, e-mail address, or URL Clicking the image
will display the quick contact bar, which provides shortcuts for contacting the selected
contact — including calling, sending an SMS, e-mail, and IM.

Introducing Layouts | 89

This is only a selection of the widgets available. Android also supports several more advanced
View implementations, including date-time pickers, auto-complete input boxes, maps,
galleries, and tab sheets. For a more comprehensive list of the available widgets, head to
http://developer.android.com/guide/tutorials/views/index.html

It’s only a matter of time before you, as an innovative developer, encounter a situation in which none
of the built-in controls meets your needs. Later in this chapter you’ll learn how to extend and combine
the existing controls and how to design and create entirely new widgets from scratch.

INTRODUCING LAYOUTS

Layout managers (more generally just called layouts) are extensions of the viewGroup class used to posi-
tion child controls for your UL Layouts can be nested, letting you create arbitrarily complex interfaces
using a combination of layouts.

The Android SDK includes some simple layouts to help you construct your UL It’s up to you to select
the right combination of layouts to make your interface easy to understand and use.

The following list includes some of the more versatile layout classes available:

> FrameLayout The simplest of the Layout Managers, the Frame Layout simply pins each
child view to the top left corner. Adding multiple children stacks each new child on top of
the one before, with each new View obscuring the last.

> LinearLayout A Linear Layout aligns each child View in either a vertical or a horizontal
line. A vertical layout has a column of Views, while a horizontal layout has a row of Views.
The Linear Layout manager enables you to specify a “weight” for each child View that con-
trols the relative size of each within the available space.

> RelativeLayout The most flexible of the native layouts, the Relative Layout lets you define
the positions of each child View relative to the others and to the screen boundaries.

> TableLayout The Table Layout lets you lay out Views using a grid of rows and columns.
Tables can span multiple rows and columns, and columns can be set to shrink or grow.

> Gallery A Gallery Layout displays a single row of items in a horizontally scrolling list.

The Android documentation describes the features and properties of each layout class in detail, so
rather than repeat it here, I’ll refer you to http://developer.android.com/guide/topics/ui/
layout-objects.html

Later in this chapter you’ll also learn how to create compound controls (widgets made up of several
interconnected Views) by extending these layout classes.

Using Layouts

The preferred way to implement layouts is by using XML as external resources. A layout XML must
contain a single root element. This root node can contain as many nested layouts and Views as neces-
sary to construct an arbitrarily complex screen.

Listing 4-3 shows a simple layout that places a Textview above an EditText control using a vertical
LinearLayout.

90 | CHAPTER 4 CREATING USER INTERFACES

) LISTING 4-3: Simple Linear Layout in XML

Available for .
download on <?xml version="1.0" encoding="utf-8"?>
Wrox.com <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Enter Text Below"

/>

<EditText
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Text Goes Here!"

/>

</LinearLayout>

Note that for each of the layout elements, the constants wrap_content and fi11_parent are used rather

than an exact height or width in pixels. These constants are the simplest, and most powerful, technique
for ensuring your layouts are screen-size and resolution independent.

The wrap_content constant will set the size of a View to the minimum required to contain the contents
it displays (such as the height required to display a wrapped text string). The £i1l_parent constant
expands the View to fill the available space within the parent View (or screen).

In Listing 4-3, the layout is set to fill the entire screen, while both text-based Views are asked to fill the
full available width. Their height is restricted to that required by the text being displayed.

Later in this chapter you’ll learn how to set the minimum height and width for your own controls, as
well as further best practices for resolution independence.

Implementing layouts in XML decouples the presentation layer from the View and Activity code. It
also lets you create hardware-specific variations that are dynamically loaded without requiring code
changes.

When preferred, or required, you can implement layouts in code. When you’re assigning Views to
layouts in code, it’s important to apply LayoutParameters using the setLayoutParams method, or by
passing them in to the adaview call, as shown in Listing 4-4.

) LISTING 4-4: Simple LinearLayout in code

Available for ,) .
download on LinearLayout 11 = new LinearLayout (this);
Wrox.com 11.setOrientation(LinearLayout.VERTICAL) ;

TextView myTextView = new TextView(this);
EditText myEditText = new EditText (this);

Creating New Views | 91

myTextView.setText ("Enter Text Below");
myEditText.setText ("Text Goes Here!");

int 1Height = LinearLayout.LayoutParams.FILL_PARENT;
int 1wWidth = LinearLayout.LayoutParams.WRAP_CONTENT;

11.addvView (myTextView, new LinearLayout.LayoutParams (1Height, 1wWidth));
11.addview (myEditText, new LinearLayout.LayoutParams (lHeight, 1lwidth));
setContentView (11l) ;

Optimizing Layouts

Inflating layouts into your Activities is an expensive process. Each additional nested layout and View
can have a dramatic impact on the performance and seamlessness of your applications.

In general, it’s good practice to keep your layouts as simple as possible, but also to avoid needing to
inflate an entirely new layout for small changes to an existing one.

The following points include some best practice guidelines for creating efficient layouts. Note that they
are not exhaustive.

» Avoid unnecessary nesting: Don’t put one layout within another unless it is necessary. A Lin-
ear Layout within a Frame Layout, both of which are set to FTLL_PARENT, does nothing but
add extra time to inflate. Look for redundant layouts, particularly if you’ve been making sig-
nificant changes to an existing layout.

> Avoid using too many Views: Each additional View in a layout takes time and resources to
inflate. A layout shouldn’t ever include more than 80 Views or the time taken to inflate it
becomes significant.

» Avoid deep nesting: As layouts can be arbitrarily nested, it’s easy to create complex, deeply
nested hierarchies. While there is no hard limit, it’s good practice to restrict nesting to fewer
than 10 levels.

It’s important that you optimize your layout hierarchies to reduce inefficiencies and eliminate unneces-
sary nesting.

To assist you, the Android SDK includes the 1ayoutopt command line tool. Call 1ayoutopt, passing
in the name of the layout resource (or a resource folder) to have your layouts analyzed and to receive
recommendations for fixes and improvements.

CREATING NEW VIEWS

The ability to extend existing Views, assemble composite controls, and create unique new Views lets
you implement beautiful user interfaces optimized for your application’s workflow. Android lets you
subclass the existing View toolbox or implement your own View controls, giving you total freedom to
tailor your UI to optimize the user experience.

92 | CHAPTER4 CREATING USER INTERFACES

When you design a user interface it’s important to balance raw aesthetics and
usability. With the power to create your own custom controls comes the temptation
to rebuild all your controls from scratch. Resist that urge. The standard Views will
be familiar to users from other Android applications and will update in line with
new platform releases. On small screens, with users often paying limited attention,
familiarity can often provide better usability than a slightly shinier control.

The best approach to use when creating a new View depends on what you want to achieve:

> Modify or extend the appearance and/or behavior of an existing control when it already
supplies the basic functionality you want. By overriding the event handlers and onbraw, but
still calling back to the superclass’s methods, you can customize a View without having to
reimplement its functionality. For example, you could customize a Textview to display a set
number of decimal points.

» Combine Views to create atomic, reusable controls that leverage the functionality of several
interconnected Views. For example, you could create a dropdown combo box by combining
a TextView and a Button that displays a floating Listview when clicked.

> Create an entirely new control when you need a completely different interface that you can’t
get by changing or combining existing controls.

Modifying Existing Views

The toolbox includes Views that provide many common Ul requirements, but the controls are neces-
sarily generic. By customizing these basic Views you avoid reimplementing existing behavior while still
tailoring the user interface, and functionality, to your application’s needs.

To create a new View based on an existing control, create a new class that extends it, as shown in
Listing 4-5.

) LISTING 4-5: Extending TextView

Available for . \
download on import android.content.Context;
Wrox.com import android.util.AttributeSet;

import android.widget.TextView;
public class MyTextView extends TextView {

public MyTextView (Context context, AttributeSet attrs, int defStyle)
{

super (context, attrs, defStyle);
}

public MyTextView (Context context) {
super (context) ;
}

Creating New Views | 93

public MyTextView (Context context, AttributeSet attrs) {
super (context, attrs);

}
To override the appearance or behavior of your new View, override and extend the event handlers

associated with the behavior you want to change.

In the following extension of the Listing 4-5 code, the ondraw method is overridden to modify the
View’s appearance, and the onkeyDown handler is overridden to allow custom key-press handling.

public class MyTextView extends TextView {

public MyTextView (Context context, AttributeSet ats, int defStyle) {
super (context, ats, defStyle);

public MyTextView (Context context) {
super (context) ;

public MyTextView (Context context, AttributeSet attrs) {
super (context, attrs);

@Ooverride
public void onDraw(Canvas canvas) {
[... Draw things on the canvas under the text ...]

// Render the text as usual using the TextView base class.
super .onDraw(canvas) ;

[... Draw things on the canvas over the text ...]

@Ooverride

public boolean onKeyDown (int keyCode, KeyEvent keyEvent) {
[... Perform some special processing ...]
[... based on a particular key press ...]

// Use the existing functionality implemented by
// the base class to respond to a key press event.
return super.onKeyDown(keyCode, keyEvent);

}

The event handlers available within Views are covered in more detail later in this chapter.

Customizing Your To-Do List
The to-do list example from Chapter 2 uses TextView controls to represent each row in a List View. You

can customize the appearance of the list by extending Text View and overriding the ondraw method.

In this example you’ll create a new TodoListItemview that will make each item appear as if on a paper
pad. When complete, your customized to-do list should look like Figure 4-1.

94 | CHAPTER 4 CREATING USER INTERFACES

1. Create a new TodoListTtemView class that extends Textview. Include a stub for overriding
the ondraw method, and implement constructors that call a new init method stub.

package com.paad.todolist;

import android.content.Context;
import android.content.res.Resources;
import android.graphics.Canvas;
import android.graphics.Paint;

import android.util.AttributeSet;
import android.widget.TextView;

public class TodoListItemView extends TextView {

public TodoListItemView (Context context, AttributeSet ats, int ds) {
super (context, ats, ds);
init();

public TodoListItemView (Context context) {
super (context) ;
init();

public TodoListItemView (Context context, AttributeSet attrs) {
super (context, attrs);

inic(); T . TR

To Do List

}

private void init() { Then you get the
}

@0Override

public void onDraw(Canvas canvas) {
// Use the base TextView to render the text.
super .onDraw (canvas) ;

}

2. Create a new colors.xml resource in the res/values the they there their them thi »
folder. Create new color values for the paper, mar-
gin, line, and text colors.

<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="notepad_paper">#AAFFFF99</color>
<color name="notepad_lines">#FF0000FF</color>

. o
<color name="notepad_margin">#90FF0000</color> A m ¢xj
<color name="notepad_text">#AA0000FF</color>

</resources> i} !

- -

3. Create a new dimens.xml resource file and add a
new value for the paper’s margin width. FIGURE 4-1

Creating New Views | 95

<?xml version="1.0" encoding="utf-8"?>
<resources>

<dimen name="notepad_margin">30dp</dimen>
</resources>

With the resources defined, you’re ready to customize the TodoListItenview appearance.
Create new private instance variables to store the Paint objects you’ll use to draw the paper
background and margin. Also create variables for the paper color and margin width

values.

Fill in the init method to get instances of the resources you created in the last two steps, and
create the Paint objects.

private Paint marginPaint;
private Paint linePaint;
private int paperColor;
private float margin;

private void init() {
// Get a reference to our resource table.
Resources myResources = getResources();

// Create the paint brushes we will use in the onDraw method.
marginPaint = new Paint (Paint.ANTI_ALIAS_FLAG) ;

marginPaint.setColor (myResources.getColor (R.color.notepad_margin)) ;
linePaint = new Paint (Paint.ANTI_ALIAS_FLAG) ;
linePaint.setColor (myResources.getColor (R.color.notepad_lines));

// Get the paper background color and the margin width.
paperColor = myResources.getColor (R.color.notepad_paper) ;
margin = myResources.getDimension (R.dimen.notepad_margin) ;

}

To draw the paper, override onbraw and draw the image using the Paint objects you created
in Step 4. Once you’ve drawn the paper image, call the superclass’s ondbraw method and let it
draw the text as usual.

@Override

public void onDraw (Canvas canvas) {
// Color as paper
canvas .drawColor (paperColor) ;

// Draw ruled lines
canvas.drawLine (0, 0, getMeasuredHeight(), 0, linePaint);
canvas.drawLine (0, getMeasuredHeight (),
getMeasuredwWidth (), getMeasuredHeight(),
linePaint) ;

// Draw margin
canvas.drawLine (margin, 0, margin, getMeasuredHeight (), marginPaint) ;

// Move the text across from the margin
canvas.save () ;
canvas.translate (margin, 0);

96 | CHAPTER4 CREATING USER INTERFACES

// Use the TextView to render the text.
super .onDraw (canvas) ;
canvas.restore () ;

}

6. That completes the TodoListItenview implementation. To use it in the To-Do List
Activity you need to include it in a new layout and pass that layout in to the Array Adapter
constructor.

Start by creating a new todolist_item.xml resource in the res/layout folder. It will specify
how each of the to-do list items is displayed. For this example your layout need only consist
of the new TodoListItenView, set to fill the entire available area.

<?xml version="1.0" encoding="utf-8"?>
<com.paad.todolist.TodoListItemView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:padding="10dp"
android:scrollbars="vertical"
android:textColor="@color/notepad_text"
android: fadingEdge="vertical"
/>

7. Now open the ToDoList Activity class. The final step is to change the parameters
passed in to the ArrayAdapter in onCreate. Replace the reference to the default

android.R.layout.simple_list_item_1 with a reference to the new Rr. layout
.todolist_item layout created in Step 6.

final ArrayList<String> todoItems = new ArrayList<String>();

int resID = R.layout.todolist_item;

final ArrayAdapter<String> aa = new ArrayAdapter<String>(this, resID,
todoItems);

myListView.setAdapter (aa) ;

All code snippets in this example are part of the Chapter 4 Todo List project, available for download at Wrox.com.

Creating Compound Controls

Compound controls are atomic, reusable Views that contain multiple child controls laid out and wired
together.

When you create a compound control you define the layout, appearance, and interaction of the Views
it contains. You create compound controls by extending a viewGroup (usually a layout). To create a
new compound control choose the layout class that’s most suitable for positioning the child controls,
and extend it as shown in Listing 4-6.

) LISTING 4-6: Creating a compound control

(‘}L’m?g;%m public class MyCompoundView extends LinearLayout {

Wrox.com public MyCompoundView (Context context) {
super (context) ;

Creating New Views | 97

public MyCompoundView (Context context, AttributeSet attrs) {
super (context, attrs);

}

As with Activities, the preferred way to design compound View layouts is using an external resource.
Listing 4-7 shows the XML layout definition for a simple compound control consisting of an Edit Text
View and a clear text Button to clear it.

) LISTING 4-7: A compound View layout resource

Available for , .
download on <?xml version="1.0" encoding="utf-8"?>

Wrox.com <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<EditText
android:id="@+id/editText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

/>

<Button
android:id="@+id/clearButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Clear"

/>

</LinearLayout>

To use this layout for your new View, override the View’s constructor to inflate the layout resource

using the inflate method from the LayoutInflate system service. The inflate method takes the
layout resource and returns the inflated View.

For circumstances such as this, in which the returned View should be the class you’re creating, you can
pass in the parent View and attach the result to it automatically, as shown in Listing 4-8.

Listing 4-8 shows the ClearableEditText class. Within the constructor it inflates the layout resource
created earlier and gets references to each of the Views it contains. It also makes a call to hookupButton
that will be used to hook up the clear text functionality when the button is pressed.

) LISTING 4-8: Constructing a compound View

Available for , .)
download on public class ClearableEditText extends LinearLayout {

Wrox.com

EditText editText;
Button clearButton;

public ClearableEditText (Context context) {
super (context) ;

// Inflate the view from the layout resource. .
continues

98 | CHAPTER 4 CREATING USER INTERFACES

LISTING 4-8 (continued)

String infService = Context.LAYOUT_ INFLATER SERVICE;
LayoutInflater 1i;

1li = (LayoutInflater)getContext().getSystemService(infService);
li.inflate(R.layout.clearable_edit_text, this, true);

// Get references to the child controls.
editText = (EditText)findVviewById(R.id.editText);
clearButton = (Button)findViewById(R.id.clearButton);

// Hook up the functionality
hookupButton() ;

}

If you’d prefer to construct your layout in code, you can do so just as you would for an Activity.
Listing 4-9 shows the ClearableEditText constructor overridden to create the same Ul defined in the
XML used in Listing 4-8.

) LISTING 4-9: Creating a compound View layout in code

Available for . .
download on public ClearableEditText (Context context) {
Wrox.com super (context) ;

// Set orientation of layout to vertical
setOrientation(LinearLayout.VERTICAL);

// Create the child controls.
editText = new EditText (getContext());
clearButton = new Button(getContext());
clearButton.setText ("Clear");

// Lay them out in the compound control.
int lHeight = LayoutParams.WRAP_CONTENT;
int 1Wwidth = LayoutParams.FILL_PARENT;

addvView(editText, new LinearLayout.LayoutParams (1Width, lHeight));
addview(clearButton, new LinearLayout.LayoutParams(lWwidth, lHeight)):;

// Hook up the functionality
hookupButton() ;
}

Once the View layout has been constructed you can hook up the event handlers for each child control
to provide the functionality you need. In this next snippet the hookupButton method is filled in to clear
the Edit Text when the Button is pressed.
private void hookupButton() {
clearButton.setOnClickListener (new Button.OnClickListener () {

public void onClick(View v) {
editText.setText ("");

1)

Creating New Views | 99

Creating Custom Views

Creating completely new Views gives you the power to fundamentally shape the way your applica-
tions look and feel. By creating your own controls you can create user interfaces that are uniquely
suited to your users’ needs. To create new controls from a blank canvas you extend either the view or
Surfaceview classes.

The view class provides a canvas object with a series of draw methods and Paint classes. Use them to
create a visual interface with bitmaps and raster graphics. You can then override user events like screen
touches or key presses to provide interactivity. In situations in which extremely rapid repaints and 3D
graphics aren’t required, the view base class offers a powerful lightweight solution.

The surfaceview class provides a surface object that supports drawing from a background thread
and using opencL for 3D graphics. This is an excellent option for graphics-heavy controls that

are frequently updated or that display complex graphical information, particularly games and

3D visualizations.

This chapter introduces 2D controls based on the view class. To learn more about the surfaceview
class and some of the more advanced Canvas paint features available in Android, see Chapter 15.

Creating a New Visual Interface

The base view class presents a distinctly empty 100-pixel-by-100-pixel square. To change the size of the
control and display a more compelling visual interface, you need to override the onMeasure and onbdraw
methods.

Within onMeasure the new View will calculate the height and width it will occupy given a set of bound-
ary conditions. The ondraw method is where you draw on the Canvas.

Listing 4-10 shows the skeleton code for a new view class, which will be examined and developed
further in the following sections.

) LISTING 4-10: Creating a new View class

Available for ; , .
download on public class MyView extends View {

Wrox.com
// Constructor required for in-code creation
public MyView (Context context) {
super (context) ;

}

// Constructor required for inflation from resource file

public MyView (Context context, AttributeSet ats, int defaultStyle) {
super (context, ats, defaultStyle);

}

//Constructor required for inflation from resource file
public MyView (Context context, AttributeSet attrs) {
super (context, attrs);

} .
continues

100

| CHAPTER 4 CREATING USER INTERFACES

LISTING 4-10 (continued)

@Override

protected void onMeasure (int wMeasureSpec, int hMeasureSpec) {
int measuredHeight = measureHeight (hMeasureSpec) ;
int measuredWidth = measureWidth (wMeasureSpec) ;

// MUST make this call to setMeasuredDimension

// or you will cause a runtime exception when

// the control is laid out.

setMeasuredDimension (measuredHeight, measuredwidth) ;

private int measureHeight (int measureSpec) {
int specMode = MeasureSpec.getMode (measureSpec) ;
int specSize = MeasureSpec.getSize (measureSpec) ;

[... Calculate the view height ...]

return specSize;

private int measureWidth(int measureSpec) {
int specMode = MeasureSpec.getMode (measureSpec) ;
int specSize = MeasureSpec.getSize (measureSpec) ;

[... Calculate the view width ...]
return specSize;
@Override

protected void onDraw(Canvas canvas) {
[... Draw your visual interface ...]

Note that the onMeasure method calls setMeasureddimension; you must always call
this method within your overridden onMeasure method or your control will throw
an exception when the parent container attempts to lay it out.

Drawing Your Control

The onbraw method is where the magic happens. If you’re creating a new widget from scratch, it’s
because you want to create a completely new visual interface. The Canvas parameter in the onDraw
method is the surface you’ll use to bring your imagination to life.

Android provides a variety of tools to help draw your design on the Canvas using various Paint objects.
The canvas class includes helper methods for drawing primitive 2D objects including circles, lines,

Creating New Views | 101

rectangles, text, and Drawables (images). It also supports transformations that let you rotate, translate
(move), and scale (resize) the Canvas while you draw on it.

When these tools are used in combination with Drawables and the Paint class (which offer a variety of
customizable fills and pens), the complexity and detail that your control can render are limited only by
the size of the screen and the power of the processor rendering it.

One of the most important techniques for writing efficient code in Android is to
avoid the repetitive creation and destruction of objects. Any object created in your
onDraw method will be created and destroyed every time the screen refreshes.
Improve efficiency by making as many of these objects (particularly instances of
Paint and Drawable) class-scoped and by moving their creation into the
constructor.

Listing 4-11 shows how to override the ondraw method to display a simple text string in the center of
the control.

) LISTING 4-11: Drawing a custom View

Available for

downloadon ~ @Override
Wrox.com protected void onDraw(Canvas canvas) {

}

// Get the size of the control based on the last call to onMeasure.
int height = getMeasuredHeight () ;
int width = getMeasuredWidth() ;

// Find the center
int px = width/2;
int py = height/2;

// Create the new paint brushes.

// NOTE: For efficiency this should be done in

// the views's constructor

Paint mTextPaint = new Paint (Paint.ANTI_ALIAS_FLAG) ;
mTextPaint.setColor (Color .WHITE) ;

// Define the string.
String displayText = "Hello World!";

// Measure the width of the text string.
float textWidth = mTextPaint.measureText (displayText) ;

// Draw the text string in the center of the control.
canvas.drawText (displayText, px-textWidth/2, py, mTextPaint);

So that we don’t diverge too far from the current topic, a more detailed look at the techniques available
for drawing more complex visuals is included in Chapter 15.

102 | CHAPTER 4 CREATING USER INTERFACES

Android does not currently support vector graphics. As a result, changes to any
element of your Canvas require that the entire Canvas be repainted; modifying the
color of a brush will not change your View’s display until the control is invalidated
and redrawn. Alternatively, you can use OpenGL to render graphics. For more
details, see the discussion on surfaceview in Chapter 15.

Sizing Your Control

Unless you conveniently require a control that always occupies a space 100 pixels square, you will also
need to override onMeasure.

The onMeasure method is called when the control’s parent is laying out its child controls. It asks the
question “How much space will you use?”” and passes in two parameters: widthMeasureSpec and
heightMeasureSpec. They specify the space available for the control and some metadata describing
that space.

Rather than return a result, you pass the View’s height and width into the setMeasuredpimension
method.

Listing 4-12 shows how to override onMeasure. Note the calls to local method stubs calculateHeight
and calculatewidth.queyﬂlbe used to decode the widthHeightSpec and heightMeasureSpec values
and calculate the preferred height and width values.

) LISTING 4-12: Determining View dimensions

Available for .
downloadon ~ @Override
Wrox.com protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {

int measuredHeight = measureHeight (heightMeasureSpec) ;
int measuredWidth = measureWidth (widthMeasureSpec) ;

setMeasuredDimension (measuredHeight, measuredwidth) ;

}

private int measureHeight (int measureSpec) {
// Return measured widget height.
}

private int measureWidth (int measureSpec) {
// Return measured widget width.

}

The boundary parameters, widthMeasureSpec and heightMeasureSpec, are passed in as integers for
efficiency reasons. Before they can be used, they first need to be decoded using the static getMode and
getSize methods from the MeasureSpec class.

int specMode = MeasureSpec.getMode (measureSpec) ;
int specSize = MeasureSpec.getSize (measureSpec) ;

Creating New Views | 103

Depending on the mode value, the size represents either the maximum space available for the control
(in the case of AT_MoST), or the exact size that your control will occupy (for ExacTLy). In the case of
UNSPECIFIED, your control does not have any reference for what the size represents.

By marking a measurement size as EXACT, the parent is insisting that the View will be placed into an
area of the exact size specified. The AT_MOST mode says the parent is asking what size the View would
like to occupy, given an upper boundary. In many cases the value you return will be the same.

In either case, you should treat these limits as absolute. In some circumstances it may still be appropriate
to return a measurement outside these limits, in which case you can let the parent choose how to deal
with the oversized View, using techniques such as clipping and scrolling.

Listing 4-13 shows a typical implementation for handling View measurement.

) LISTING 4-13: A typical View measurement implementation

Available for .
downloadon @Override
Wrox.com protected void onMeasure (int widthMeasureSpec, int heightMeasureSpec) {

int measuredHeight = measureHeight (heightMeasureSpec) ;
int measuredWidth = measureWidth (widthMeasureSpec) ;

setMeasuredDimension (measuredHeight, measuredwidth) ;

private int measureHeight (int measureSpec) {
int specMode = MeasureSpec.getMode (measureSpec) ;
int specSize = MeasureSpec.getSize (measureSpec) ;

// Default size if no limits are specified.
int result = 500;

if (specMode == MeasureSpec.AT MOST) {
// Calculate the ideal size of your
// control within this maximum size.
// If your control fills the available
// space return the outer bound.
result = specSize;
} else if (specMode == MeasureSpec.EXACTLY) {
// If your control can fit within these bounds return that value.
result = specSize;
}

return result;

private int measureWidth (int measureSpec) {
int specMode = MeasureSpec.getMode (measureSpec) ;
int specSize = MeasureSpec.getSize (measureSpec) ;

// Default size if no limits are specified.
int result = 500;

if (specMode == MeasureSpec.AT MOST) ({ .
continues

104 | CHAPTER4 CREATING USER INTERFACES

LISTING 4-13 (continued)

// Calculate the ideal size of your control
// within this maximum size.
// If your control fills the available space
// return the outer bound.
result = specSize;
} else if (specMode == MeasureSpec.EXACTLY) {
// If your control can fit within these bounds return that value.
result = specSize;
}

return result;

Handling User Interaction Events

In order for your new View to be interactive, it will need to respond to user events like key presses,
screen touches, and button clicks. Android exposes several virtual event handlers, listed here, that let
you react to user input:

» onKeyDown Called when any device key is pressed; includes the D-pad, keyboard, hang-up,
call, back, and camera buttons

onkKeyUp Called when a user releases a pressed key
onTrackballEvent Called when the device’s trackball is moved

onTouchEvent Called when the touchscreen is pressed or released, or when it detects
movement

Listing 4-14 shows a skeleton class that overrides each of the user interaction handlers in a View.

) LISTING 4-14: Input event handling for Views

Available for .
download on @Override
Wrox.com public boolean onKeyDown (int keyCode, KeyEvent keyEvent) {

// Return true if the event was handled.
return true;

@Override

public boolean onKeyUp (int keyCode, KeyEvent keyEvent) {
// Return true if the event was handled.
return true;

@Override
public boolean onTrackballEvent (MotionEvent event) {
// Get the type of action this event represents
int actionPerformed = event.getAction();
// Return true if the event was handled.
return true;

Creating New Views | 105

@Override

public boolean onTouchEvent (MotionEvent event) ({
// Get the type of action this event represents
int actionPerformed = event.getAction();
// Return true if the event was handled.
return true;

}

Further details on using each of these event handlers, including greater detail on the parameters received
by each method and support for multitouch events, are available in Chapter 15.

Creating a Compass View Example

In the following example you’ll create a new Compass View by extending the View class. This View will
display a traditional compass rose to indicate a heading/orientation. When complete, it should appear
as in Figure 4-2.

A BEM@ 1M

FIGURE 4-2

A compass is an example of a UI control that requires a radically different visual display from the Text
Views and Buttons available in the SDK toolbox, making it an excellent candidate for building from
scratch.

@ In Chapter 14 you’ll use this Compass View and the device’s built-in accelerometer
to display the user’s current bearing. Then in Chapter 15 you will learn some
advanced techniques for Canvas drawing that will let you dramatically improve its
appearance.

106 | CHAPTER 4 CREATING USER INTERFACES

Create a new Compass project that will contain your new Compass View, and create an Activ-
ity to display it. Now create a new Compassview class that extends view. Create constructors
that will allow the View to be instantiated either in code or through inflation from a resource
layout. Add a new initCompassview method that will be used to initialize the control and call
it from each constructor.

package com.paad.compass;

import android.content.Context;
import android.graphics.*;

import android.graphics.drawable.*;
import android.view.*;

import android.util.AttributeSet;
import android.content.res.Resources;

public class CompassView extends View {
public CompassView (Context context) {
super (context) ;
initCompassView() ;

public CompassView (Context context, AttributeSet attrs) ({
super (context, attrs);
initCompassView() ;

public CompassView (Context context,
AttributeSet ats,
int defaultStyle) {
super (context, ats, defaultStyle);
initCompassView() ;

protected void initCompassView() {
setFocusable (true) ;

}

The compass control should always be a perfect circle that takes up as much of the canvas as
this restriction allows. Override the onMeasure method to calculate the length of the shortest
side, and use setMeasuredDimension to set the height and width using this value.

@Override

protected void onMeasure (int widthMeasureSpec, int heightMeasureSpec) {
// The compass is a circle that fills as much space as possible.
// Set the measured dimensions by figuring out the shortest boundary,
// height or width.
int measuredWidth = measure (widthMeasureSpec) ;
int measuredHeight = measure (heightMeasureSpec) ;

int d = Math.min(measuredWidth, measuredHeight) ;

setMeasuredDimension(d, d);

Creating New Views | 107

private int measure(int measureSpec) {
int result = 0;

// Decode the measurement specifications.
int specMode = MeasureSpec.getMode (measureSpec) ;
int specSize = MeasureSpec.getSize (measureSpec) ;

if (specMode == MeasureSpec.UNSPECIFIED) {
// Return a default size of 200 if no bounds are specified.
result = 200;
} else {
// As you want to fill the available space
// always return the full available bounds.
result = specSize;
}
return result;

}

3. Create two new resource files that store the colors and text strings you’ll use to draw the
compass.

3.1. Create the text string resource res/values/strings.xml.
<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">Compass</string>

<string name="cardinal_north">N</string>

<string name="cardinal_east">E</string>

<string name="cardinal_south">S</string>

<string name="cardinal_west">W</string>
</resources>

3.2. Create the color resource res/values/colors.xml.
<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="background_color">#F555</color>
<color name="marker_color">#AFFF</color>
<color name="text_color">#AFFF</color>
</resources>

4. Now return to the Compassview class. Add a new property to store the displayed bearing, and
create get and set methods for it.

private float bearing;

public void setBearing(float _bearing) {
bearing = _bearing;

}

public float getBearing() {
return bearing;

}

5. Next, return to the initCompassview method and get references to each resource created in
Step 3. Store the string values as instance variables, and use the color values to create new
class-scoped paint objects. You’ll use these objects in the next step to draw the compass
face.

108 | CHAPTER 4 CREATING USER INTERFACES

6.

private Paint markerPaint;
private Paint textPaint;

private Paint circlePaint;
private String northString;
private String eastString;
private String southString;
private String westString;
private int textHeight;

protected void initCompassView() {
setFocusable (true) ;

circlePaint = new Paint (Paint.ANTI ALIAS FLAG);
circlePaint.setColor(r.getColor(R.color.background color));
circlePaint.setStrokeWidth(1);
circlePaint.setStyle(Paint.Style.FILL_AND STROKE);

Resources r = this.getResources();

northString = r.getString(R.string.cardinal_north);
eastString = r.getString(R.string.cardinal_east);
southString = r.getString(R.string.cardinal_ south);
westString = r.getString(R.string.cardinal west);

textPaint = new Paint (Paint.ANTI ALIAS FLAG);
textPaint.setColor(r.getColor(R.color.text_color));

textHeight = (int)textPaint.measureText ("yY");

markerPaint = new Paint (Paint.ANTI_ALIAS FLAG);
markerPaint.setColor (r.getColor(R.color.marker_color));

}

The final step is drawing the compass face using the string and Paint objects you created in
Step 5. The following code snippet is presented with only limited commentary. You can find
more detail about drawing on the Canvas and using advanced Paint effects in Chapter 15.

6.1. Start by overriding the onDraw method in the Compassview class.

@Override
protected void onDraw(Canvas canvas) {

6.2. Find the center of the control, and store the length of the smallest side as the com-
pass’s radius.

int px = getMeasuredWidth() / 2;
int py = getMeasuredHeight() /2 ;

int radius = Math.min(px, py);

6.3. Draw the outer boundary, and color the background of the compass face using the
drawCircle method. Use the circlePaint object you created in Step 5.

// Draw the background
canvas.drawCircle (px, py, radius, circlePaint);

6.4. This compass displays the current heading by rotating the face so that the current
direction is always at the top of the device. To achieve this, rotate the canvas in the
opposite direction to the current heading.

109

Creating New Views

// Rotate our perspective so that the 'top' is
// facing the current bearing.

canvas.save () ;

canvas.rotate(-bearing, px, py);

6.5. All that’s left is to draw the markings. Rotate the canvas through a full rotation,
drawing markings every 15 degrees and the abbreviated direction string every 45
degrees.

int textWidth = (int)textPaint.measureText ("W");
int cardinalX = px-textWidth/2;
int cardinalY = py-radius+textHeight;

// Draw the marker every 15 degrees and text every 45.
for (int 1 = 0; 1 < 24; i++) {
// Draw a marker.
canvas.drawlLine (px, py-radius, px, py-radius+10, markerPaint);

canvas.save () ;
canvas.translate(0, textHeight);

// Draw the cardinal points
if (1 % 6 ==0) {
String dirString = "";
switch (i) {
case(0) : {
dirString = northString;
int arrowY = 2*textHeight;
canvas.drawLine (px, arrowY, px-5, 3*textHeight,

markerPaint) ;
canvas.drawLine (px, arrowY, px+5, 3*textHeight,
markerPaint) ;
break;
}
case(6) : dirString = eastString; break;
case(12) : dirString = southString; break;
case(18) : dirString = westString; break;

}

canvas.drawText (dirString, cardinalX, cardinalY, textPaint);

else if (i % 3 == 0) {
// Draw the text every alternate 45deg
String angle = String.valueOf (1i*15);
float angleTextWidth = textPaint.measureText (angle) ;

int angleTextX = (int) (px-angleTextWidth/2);
int angleTextY = py-radius+textHeight;
canvas.drawText (angle, angleTextX, angleTextY, textPaint);

}

canvas.restore() ;

canvas.rotate (15, px, py);
}

canvas.restore();

110 | CHAPTER4 CREATING USER INTERFACES

7. To view the compass, modify the main.xml layout resource and replace the Textview refer-
ence with your new Compassview. This process is explained in more detail in the next section.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<com.paad.compass.CompassView
android:id="@+id/compassView"
android:layout_width="fill parent"
android:layout_height="£fill parent"
/>
</LinearLayout>

8. Run the Activity, and you should see the compassview displayed. See Chapter 14 to learn how
to bind the compassview to the device’s compass.

All code snippets in this example are part of the Chapter 4 Compass project, available for download at Wrox.com.

Using Custom Controls

Having created your own custom Views, you can use them within code and layouts as you would
any other View. Listing 4-15 shows you how to override the oncreate method in order to add the
CompassView, created in the preceding example, to an Activity.

) LISTING 4-15: Using a custom View

Available for .
download on @Override
Wrox.com public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
CompassView cv = new CompassView(this);
setContentView(cv);

cv.setBearing (45) ;

}

To use the same control within a layout resource, specify the fully qualified class name when you create
a new node in the layout definition, as shown in the following XML snippet.

<com.paad.compass.CompassView
android:id="@+id/compassView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>

You can inflate the layout and get a reference to the Compassview as usual, using the following code:

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main);
CompassView cv = (CompassView)this.findViewById(R.id.compassView);
cv.setBearing (45) ;

Drawable Resources | 111

DRAWABLE RESOURCES

In Chapter 3 you were introduced to the resources framework and shown how to externalize your
application resources and include alternative assets for different hardware platforms.

In this section you will be introduced to several new types of Drawables resources — including shapes
and transformative and composite Drawables — and be shown how to use these resources to create
user interfaces that are independent of screen size and resolution.

All of these resources can be defined and manipulated in code, but in this section we will focus on how
to create these Drawables using XML.

@ The resources framework, described in Chapter 3, which can be used to define
=" alternative resources for different hardware devices, can be used for all the XML
Drawables described in this section.

Shapes, Colors, and Gradients

Android includes a number of simple Drawable resource types that can be defined entirely in XML.
These include the colorDrawable, ShapeDrawable, and GradientDrawable classes. These resources
are stored in the res/drawable folder, and can then be identified in code by their lowercase XML
filenames.

If these Drawables are defined in XML, and you specify their attributes using density-independent
pixels, the run time will smoothly scale them. Like vector graphics, these Drawables can be scaled
dynamically to display correctly and without scaling artifacts regardless of screen size, resolution, or
pixel density. The notable exceptions to this rule are Gradient Drawables, which require a gradient
radius defined in pixels.

As you will see later in this chapter, you can use these Drawables in combination with transformative
Drawables and composite Drawables. Together, they can result in dynamic, scalable Ul elements that
require fewer resources and will appear crisp on any screen.

Color Drawable

A colorDrawable, the simplest of the XML-defined Drawables, lets you specify an image asset based
on a single solid color. Color Drawables are defined as XML files using the <color> tag in the Drawable
resources folder. Listing 4-16 shows the XML for a solid red Color Drawable.

) LISTING 4-16: A solid red Drawable resource

Available for
download on <color xmlns:android="http://schemas.android.com/apk/res/android"

Wrox.com android:color="#FF0000"
/>

Shape Drawable

Shape Drawable resources let you define simple primitive shapes by defining their dimensions, back-
ground, and stroke/outline using the <shape> tag.

112 | CHAPTER4 CREATING USER INTERFACES

Each shape consists of a type (specified via the shape attribute), attributes that define the dimensions of
that shape, and subnodes to specify padding, stroke (or outline), and background color values.

Android currently supports the following shape types as values for the shape attribute:
» oval A simple oval shape.

» rectangle Also supports a <corners> subnode that uses a radius attribute to create a
rounded rectangle.

> ring Supports the innerRadius and thickness

attributes to let you specify, respectively, the inner e e— ey

. . . . @ 5:42 PM
radius of the ring shape and its thickness. Alter- HEH

. ChaAdvanced LayoutResource
natively, you can use innerRadiusRatio and/or -
thicknessRatio to define the ring’s inner radius I
and thickness as a proportion of its width (where
an inner radius of a quarter of the width would use
the value 4).

Use the <stroke> subnode to specify an outline for your shapes
using width and color attributes.

You can also include a <padding> node to offset the position-
ing of your shape on the canvas.

More usefully, you can include a subnode to specify the back-
ground color. The simplest case involves using the <solid>
node, including the color attribute, to define a solid back-
ground color.

The following section describes the GradientDrawable class
and how to specify a gradient fill for your Shape Drawables.

Listing 4-17 shows a rectangular Shape Drawable with a solid
fill, rounded edges, 10dp outline, and 10dp of padding around .
each edge. The result is shown in Figure 4-3.

FIGURE 4-3
J LISTING 4-17: A solid red Drawable resource
(‘i\x\auirll?(l)]:ifgrrl <?xml version="1.0" encoding="utf-8"?>
Wrox.com <shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">
<solid
android:color="#£0600000" />
<stroke

android:width="10dp"
android:color="#00FF00" />
<corners
android:radius="15dp" />
<padding
android:left="10dp"
android:top="10dp"

Drawable Resources | 113

android:right="10dp"
android:bottom="10dp"
/>
</shape>

Gradient Drawable

A GradientDrawable lets you design complex gradient fills. Each gradient defines a smooth transition
between two or three colors in a linear, radial, or sweep pattern.

Gradient Drawables are defined using the <gradient> tag as a subnode within a Shape Drawable defi-
nition (such as those defined above).

Each Gradient Drawable requires at least a startColor and endColor attribute and supports on
optional middleColor. Using the type attribute you can define your gradient as one of the following:

» linear The default gradient type, it displays a straight color transition from startcolor to
endColor at an angle defined by the angle attribute.

» radial Draws a circular gradient from startColor to endColor from the outer edge of the
shape to the center. It requires a gradientRadius attribute that specifies the radius of the
gradient transition in pixels. It also optionally supports centerx and centerY to offset the
location of the center of the gradient.

Because the gradient radius is defined in pixels it will not be dynamically scaled for different
pixel densities. To minimize banding, you may need to specify different gradient radius values
for different screen resolutions.

> sweep Draws a sweep gradient that transitions from startColor to endColor along the
outer edge of the parent shape (typically a ring).

Listing 4-18 shows the XML for a linear gradient within a rectangle, a radial gradient within an oval,
and a sweep gradient within a ring, as shown in Figure 4-4.

J LISTING 4-18: Linear, Radial, and Sweep Gradient definitions

Available for . .)
download on <!-- Rectangle with Linear Gradient -->
Wrox.com <?xml version="1.0" encoding="utf-8"?>

<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle"

android:useLevel="false">

<gradient
android:startColor="#ffffff"
android:endColor="#ffffff"
android:centerColor="#000000"
android:useLevel="false"
android:type="linear"
android:angle="45"

/>

</shape> .
continues

114 | CHAPTER4 CREATING USER INTERFACES

LISTING 4-18 (continued)

<!-- Oval with Radial Gradient -->
<?xml version="1.0" encoding="utf-8"7?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="oval"
android:useLevel="false">
<gradient
android:type="radial"
android:startColor="#ffffff"
android:endColor="#ffffff"
android:centerColor="#000000"
android:useLevel="false"
android:gradientRadius="300"
/>
</shape>

<!-- Ring with Sweep Gradient -->
<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="ring"
android:useLevel="false"
android:innerRadiusRatio="3"
android:thicknessRatio="8">

<gradient
android:startColor="#ffffff" I I
android:endColor="#ffEfEE" = B9 A H Ml & as4pm
android:centerColor="#000000" ChaAdvanced LayoutResource

android:uselLevel="false"
android:type="sweep"
/>
</shape>

Composite Drawables

Use composite Drawables to combine and manipulate other
Drawable resources.

Any Drawable resource can be used within the following com-
posite resource definitions, including bitmaps, shapes, and
colors. Similarly, these new Drawables can be used within
each other and assigned to Views in the same way as all other
Drawable assets.

Transformative Drawables

You can scale and rotate existing Drawable resources using
the aptly named ScaleDrawable and RotateDrawable classes.
These transformative Drawables are particularly useful for

creating progress bars or animating Views.

FIGURE 4-4

Drawable Resources | 115

» ScaleDrawable Within the <scale> tag, use the scaleHeight and scalewidth attributes to
define the target height and width relative to the bounding box of the original Drawable. Use
the scaleGravity attribute to control the anchor point for the scaled image.

» RotateDrawable Within the <rotate> tag, use frombegrees and toDegrees to define the
start and end rotation angle around a pivot point. Define the pivot using the pivotx and
pivoty attributes, specifying a percentage of the Drawable’s width and height, respectively,
using nn% notation.

To apply the scaling and rotation at run time, use the setLevel method on the View object hosting the
Drawable to move between the start and finish values (0 to 10,000).

When moving through levels, level 0 represents the start angle (or smallest scale result). Level 10, 000
represents the end of the transformation (the finish angle or highest scaling).

Listing 4-19 shows Scale and Rotate Drawable XML definitions, while Listing 4-20 demonstrates how
to manipulate them in code after they have been assigned to an Image View.

J LISTING 4-19: Resource files for a Rotate Drawable and Scale Drawable

Available for .
download on <!-- Rotation Drawable Resource -->
Wrox.com <?xml version="1.0" encoding="utf-8"?>

<rotate xmlns:android="http://schemas.android.com/apk/res/android"
android:drawable="@drawable/icon"
android: fromDegrees="0"
android:toDegrees="90"
android:pivotX="50%"
android:pivotY="50%"
/>

<!-- Scale Drawable Resource -->

<?xml version="1.0" encoding="utf-8"?>

<rotate xmlns:android="http://schemas.android.com/apk/res/android"
android:drawable="@drawable/icon"
android:scaleHeight="100%"
android:scalewWidth="100%"

/>

) LISTING 4-20: Applying rotation and scale Drawable transformations in code

Available for
download on ImageView rotatingImage = (ImageView)findViewById(R.id.RotatingImageView) ;
Wrox.com ImageView scalingImage = (ImageView)findViewById(R.id.ScalingImageView) ;

// Rotate the image 50% of the way to its final orientation.
rotatingImage.setImageLevel (5000) ;

// Scale the image to 50% of its final size.
scalingImage.setImageLevel (5000) ;

116 | CHAPTER4 CREATING USER INTERFACES

Layer Drawable

A LayerDrawable lets you composite several Drawable resources on top of one another. If you define an
array of partially transparent Drawables you can stack them on top of one another to create complex
combinations of dynamic shapes and transformations.

Similarly, you can use Layer Drawables as the source for the transformative Drawable resources
described in the preceding section, or the State List and Level List Drawables that follow.

Listing 4-21 shows a Layer Drawable. These are defined via the <layer-1ist> node tag; within that tag
use the drawable attribute in each <item> subnode to define the Drawables to composite.

Each Drawable will be stacked in index order, with the first item in the array at the bottom of the stack.

) LISTING 4-21: A Layer Drawable resource XML definition

Available for , .
download on <?xml version="1.0" encoding="utf-8"?>

Wrox.com <layer-list xmlns:android="http://schemas.android.com/apk/res/android">
<item android:drawable="@drawable/bottomimage"/>
<item android:drawable="@drawable/image2"/>
<item android:drawable="@drawable/image3" />
<item android:drawable="@drawable/topimage"/>
</layer-list>

State List Drawables

A State List Drawable is a composite resource that enables you to specify a different Drawable to
display based on the state of the View to which it has been assigned.

Most native Android Views use State List Drawables, including the image used on Buttons and the
background used for standard List View items.

To define a State List Drawable, create an XML file that specifies an alternative Drawable resource for
each selection state required, as shown in Listing 4-22.

) LISTING 4-22: State List Drawable

Available for
download on <selector xmlns:android="http://schemas.android.com/apk/res/android">
Wrox.com <item android:state_window_focused="false"

android:drawable="@drawable/widget_bg_normal"/>
<item android:state_pressed="true"
android:drawable="@drawable/widget_bg_pressed"/>
<item android:state_focused="true"
android:drawable="@drawable/widget_bg_selected" />
<item android:drawable="@drawable/widget_bg_normal"/>
</selector>

Level List Drawables

Using a Level List Drawable you can effectively overlay several Drawable resources, specifying an
integer index value for each layer, as shown in Listing 4-23.

Resolution and Density Independence | 117

) LISTING 4-23: Level List Drawable resource

Available for
download on <level-list xmlns:android="http://schemas.android.com/apk/res/android">
Wrox.com <item android:maxLevel="0" android:drawable="@drawable/earthquake_0"/>

<item android:maxLevel="1" android:drawable="@drawable/earthquake 1"/>

<item android:maxLevel="2" android:drawable="@drawable/earthquake_2"/>

<item android:maxLevel="4" android:drawable="@drawable/earthquake 4"/>

<item android:maxLevel="6" android:drawable="@drawable/earthquake_6"/>

<item android:maxLevel="8" android:drawable="@drawable/earthquake_8"/>

<item android:maxLevel="10" android:drawable="@drawable/earthquake_10"/>
</level-list>

To select which image to display in code call setImageLevel on the View displaying the Level List
Drawable resource, passing in the index of the Drawable you wish to display.

imageView.setImageLevel (5);

The View will display the image corresponding to the index with an equal or greater value to the one
specified. Level List Drawables are particularly useful when creating Widget layouts.

NinePatch Drawable

NinePatch (or stretchable) images are PNG files that mark the parts of an image that can be stretched.
NinePatch images must be properly defined PNG files that end in .9.png. The resource identifier for
NinePatches is the file name without the trailing .9.png.

A NinePatch is a variation of a PNG image that uses a one-pixel border to define the area of the image
that can be stretched if the image is enlarged. To create a NinePatch, draw single-pixel black lines that
represent stretchable areas along the left and top borders of your image. The unmarked sections won’t
be resized, and the relative size of each of the marked sections will remain the same as the image size
changes.

NinePatches are a powerful tool for creating images for the backgrounds of Views
or Activities that may have a variable size. For example, Android uses NinePatches
to create button borders.

RESOLUTION AND DENSITY INDEPENDENCE

With the first four Android handsets all featuring 3.2 HVGA screens, it was easy for developers to
become complacent when designing their user interfaces. For almost a year after the release of the first
Android handset, there was only one screen size and pixel density to design for.

The end of 2009 and start of 2010 heralded an explosion in the number of devices running Android,
and with a larger variety of handsets came variation in screen sizes and pixel densities.

It’s important to create your Uls knowing that your apps will be running on a broad variety of screen
resolutions (including HVGA, QVGA, and two flavors of WVGA — 800x480 and 854x480). Similarly,

118 | CHAPTER4 CREATING USER INTERFACES

the physical screen sizes have begun to vary beyond 3.2 inches to include the 3.7-inch Nexus One and
Motorola Droid, and the 4-inch Sony Ericsson Xperia X10.

With the floodgates now open, you should expect your applications to be running on an even greater
variety of hardware — potentially including tablets, netbooks, and consumer electronics.

The following sections will begin by describing the range of screens you need to consider, and how
to support them, before summarizing some of the best practices for ensuring your applications are
resolution- and density-independent. Finally, you’ll learn how to test your applications against a variety
of screen hardware without spending a fortune on phones.

The Resource Framework and Resolution Independence

The Android framework provides a number of techniques to enable you to optimize your UI for a
variety of screen sizes and pixel densities.

This section describes the resource directory qualifiers you can use to store alternative assets and layouts
for different screen configurations, and the manifest elements you can use to limit the screen sizes your
application supports.

Resource Qualifiers for Screen Size and Pixel Density

In Chapter 3 you were introduced to the Android resource framework. Using this framework you
can create a parallel directory structure to store external resources for different host hardware
configurations.

This section summarizes the folder-name qualifiers you can use to include alternative resources for
different screen sizes, pixel densities, and aspect ratios.

> Screensize The size of the screen relative to a “standard” smartphone (such as the G1 or
Droid).

» small A screen smaller than the standard 3.2”
» medium Typical smartphone screen size

> large A screen significantly larger than that of a typical smartphone, such as the
screen of a tablet or netbook

> Pixel density Refers to the density of pixels on the display. Typically measured in dots per
inch (dpi), this is calculated as a function of the physical screen size and resolution.

» 1dpi Used to store low-density resources for screens with pixel density in the
range of 100 to 140dpi

» mdpi Used for medium-density screens with 140 to 180dpi
hdpi Used for high-density screens featuring 190 to 250dpi

nodpi Used for resources that must not be scaled regardless of the host screen’s
density

> Aspectratio The screen’s aspect ratio is the ratio of its height to its width.

Resolution and Density Independence | 119

» long Used for screens that are significantly wider in landscape mode than those of
standard smartphones (such as the G1)

> notlong Used for screens with a typical smartphone aspect ratio

Each of these qualifiers is independent and can be used independently, or in combination with each
other, as shown in Listing 4-24.

Note that these qualifiers can also be used with the other resource folder qualifiers described in
Chapter 3.

) LISTING 4-24: Sample screen-based resource directory qualifiers

Available for
download on res/layout-small-long/ // Layouts for small, long screens.
Wrox.com res/layout-large/ // Layouts for large screens.

res/drawable-hdpi/ // Drawables for high density screens.

Specifying Supported Screen Sizes

For some applications it may not be possible to optimize your Ul to support all possible screen sizes.
You can use the <supports-screens> manifest element to specify which screens your application can
be run on, as shown in Listing 4-25.

) LISTING 4-25: Manifest element supporting normal and large screen sizes

Available for
download on <supports-screens
Wrox.com android:smallScreens="false"

android:normalScreens="true"
android:largeScreens="true"
android:anyDensity="true"

/>

In this context a small screen is any display with resolution smaller than HVGA. A large screen is
significantly larger than a smartphone (such as a tablet), while normal screens encompass the majority
of smartphone handsets.

The anyDensity attribute controls how your application will be scaled when displayed on devices of
varying pixel density. If you have taken varying pixel density into account in your UI (and you should
have) set this to true.

A false value will force Android to use compatibility scaling to attempt to scale your application Ul
correctly. This will generally result in a Ul with degraded image assets that show scaling artifacts.

Applications built with an SDK of API level 4 or higher will default all of these values to true.

Best Practices for Resolution Independence

The variety of Android hardware available provides both an exciting opportunity and a potential
hazard for application developers.

120

| CHAPTER 4 CREATING USER INTERFACES

This section summarizes some of the most common techniques for creating applications that will run
effectively on any screen platform.

The most important thing to remember is never make assumptions regarding the screen your applica-
tion will be running on. Create your layouts and assets for classes of screens (small, normal, and large
size with low, medium, and high density) rather than particular screen dimensions or resolutions.

By assuming your application will need to be scaled slightly on every device, you can ensure that when
it is scaled the UI does not suffer.

The Android Developer site includes some excellent tips for supporting multiple
screen types. The section on “Strategies for Legacy Apps™ is particularly useful for
developers with existing applications looking to support new screen sizes and
resolutions. You can find this documentation here: http: //developer.android
.com/guide/practices/screens_support.html#strategies

Relative Layouts and Density-Independent Pixels

Wherever possible you should avoid using hard-coded pixel values. This applies to layouts, Drawables
and font sizes.

In particular you should avoid the Absolute Layout class, which depends on the specification of pixel-
based coordinates for each child View. Instead, use an alternative Layout manager that describes the
child Views relative to each other or the screen edges. For most complex Uls the Relative Layout is
likely to be the best solution.

Within your layouts you should also avoid specifying View, Drawable, and font sizes using pixel values.
Instead, define the height and width of Views using wrap_content or £i11_parent where appropriate,
and density-independent pixels (dp) or scale-independent pixels (sp) as required for View and font sizes,
respectively.

@ Density- and scale-independent pixels are means of specifying screen dimensions
that will scale to appear the same on hardware using different pixel densities. One
density-independent pixel (dp) is equivalent to one pixel on a 160dpi screen. A line
specified as 2dp wide will appear as 3 pixels on a display with 240dpi.

Using Scalable Graphics Assets

Earlier in this chapter you were introduced to a number of Drawable resources, most of which can be
defined in XML and all of which can be scaled smoothly by the run time, regardless of the screen size
or pixel density.

Where possible, use the following Drawable resources rather than fixed bitmap assets:
» NinePatches
» Shape Drawables

» Gradient Drawables

Resolution and Density Independence | 121

» Composite and transformative Drawables such as:
> Rotate and Scale Drawables
» LevelListDrawables
» StateListDrawables
Remember when defining these assets to use density-independent pixels (dp).

Using scalable assets has the advantage of generic support for arbitrary screen sizes and resolutions,
with the framework dynamically scaling your assets to produce the best possible image quality.

Provide Optimized Resources for Different Screens

When using Drawable resources that cannot be dynamically scaled well, you should create and include
image assets optimized for each pixel density category (low, medium, and high). Application icons are
an excellent example of a resource that should be optimized for different pixel densities.

Using the resource framework described earlier in the chapter (and in Chapter 3), you can create anno-
tated Drawable directories to store image assets for each supported density, as shown in the following
list:

> res/drawable-1dpi
> res/drawable-mdpi
> res/drawable-hdpi

By creating assets optimized for the pixel density of the host platform you ensure that your UI will be
crisp and clear and devoid of artifacts like aliasing and lost pixels — typical side effects of scaling.

Similarly, you should consider creating alternative layout definitions for different screen sizes. A layout
optimized for a typical smartphone screen may crop important information on a small device, or appear
too sparse when displayed on a large device such as a tablet.

Use the resource framework to annotate the layout resource folder to create specialized layouts for
small, normal, and large screens, as shown in the following list:

> res/layout-small
> res/layout-normal

> res/layout-large

Testing, Testing, Testing

With dozens of Android devices of varying screen sizes and pixel densities now available, it’s impracti-
cal (and in some cases impossible) to physically test your application on every device.

Android Virtual Devices are ideal platforms for testing your application with a number of different
screen configurations. Virtual devices also have the advantage of letting you configure alternative plat-
form releases (1.6, 2.0, 2.1, etc.) and hardware configurations (such as keyboards or trackballs).

You learned how to create and use Android Virtual Devices in Chapter 2, so this section will focus on
how best to create virtual devices that are representative of different screens.

122 | CHAPTER 4 CREATING USER INTERFACES

Emulator Skins

The simplest way to test your application Ul is to use the built-in skins. Each skin emulates a known
device configuration with a resolution, pixel density, and physical screen size.

As of Android 2.1, the following built-in skins were available for testing:
> QVGA 320x240,120dpi, 3.3”

WQVGA432 432x240,120dpi, 3.9”

HVGA 480x320, 160dpi, 3.6”

WVGAS800 800x480,240dpi, 3.9”

WVGAS854 854x480,240dpi, 4.1”

Y Y VY

Testing for Custom Resolutions and Screen Sizes

One of the advantages of using an AVD to evaluate devices is the ability to define arbitrary screen
resolutions and pixel densities.

Figure 4-5 shows a new AVD for a 1024 x 768 device with a pixel density of 240dpi.

MName: Big_High_Res

Target: [Andmid 2.0 - API Level 5

SD Card:

@ Size: 12

© File: |

© Built-in: | QVGA

@) Resolution: | 1024]

Hardware:

| Property
Abstracted LCD density
Max VM application hea...

[Force create

[Create AVD]’ Cancel

FIGURE 4-5

Creating and Using Menus | 123

When you start a new AVD you will be presented with the Launch (s
Options dialog shown in Figure 4-6. If you check the ““Scale dis- T

play to real size” checkbox and specify a screen size for your virtual
device, as well as the dpi of your development monitor, the emula-
tor will scale to approximate the physical size and pixel density you
specified.

Skin: HVGA (320:480)
Density: Medium (160)

Screen Size (in): 3.2

T.hlS lets you evaluate your UI against a variety of.scAreen sizes and Monitordgi 133
pixel densities as well as resolutions and skins. This is an ideal way
to see how your application will appear on a small, high-resolution [Wipe user data
phone or a large, low resolution tablet.

CREATING AND USING MENUS

Menus offer a way to expose application functions without sacrificing valuable screen space. Each
Activity can specify its own menu that’s displayed when the device’s menu button is pressed.

FIGURE 4-6

Android also supports context menus that can be assigned to any View. Context menus are normally
triggered when a user holds the middle D-pad button, depresses the trackball, or long-presses the touch-
screen for around three seconds when the View has focus.

Activity and context menus support submenus, checkboxes, radio buttons, shortcut keys, and icons.

Introducing the Android Menu System

If you’ve ever tried to navigate a mobile phone menu system using a stylus or trackball, you know that
traditional menu systems are awkward to use on mobile devices.

To improve the usability of application menus, Android features a three-stage menu system optimized
for small screens:

» Theicon menu This compact menu (shown in

Figure 4-7) appears along the bottom of the screen o Merislem 3 |~ M Toerm 2
when the menu button is pressed. It displays the icons Shart Text

and text for a limited number of Menu Items (typically @
six). By convention, menu icons are grayscale images Menultemd | MenuTiem 3

in an embossed style, though this may vary on different M

devices. FIGURE 4-7

This icon menu does not display checkboxes, radio buttons, or the shortcut keys for Menu
Items, so it’s generally good practice not to depend on checkboxes or radio buttons in icon
Menu Items, as they will not be visible.

If the Activity menu contains more than the maximum number of visible Menu Items, a More
Menu Item is displayed. When selected, it displays the expanded menu. Pressing the back but-
ton closes the icon menu.

124 | CHAPTER 4 CREATING USER INTERFACES

» The expanded menu The expanded menu is triggered when a Men em &
user selects the More Menu Item from the icon menu. The Chali »
expanded menu (shown in Figure 4-8) displays a scrollable list of
only the Menu Items that weren’t visible in the icon menu. This Radiobutton 1
menu displays full text, shortcut keys, and checkboxes/radio adbbitton 2
buttons.
Radiobution 3 L
It does not, however, display icons. Pressing back from the expanded
menu returns you to the icon menu. Submanu
FIGURE 4-8

@ You cannot force Android to display the expanded menu instead of the icon menu.
As a result, special care must be taken with Menu Items that feature checkboxes or
radio buttons. The maximum number of icon Menu Items can vary by device, so
it’s good practice to ensure that their state information is also indicated by an icon
or a change in text.

» Submenus The traditional expanding hierarchi-
cal tree can be awkward to navigate using a mouse,
so it’s no surprise that this metaphor is particularly
ill-suited for use on mobile devices. The Android
alternative is to display each submenu in a floating
window.

Submenu
For example, when a user selects a submenu such as

the creatively labeled Submenu shown in Figure 4-8,

its items are displayed in a floating menu dialog box, Menu Item 1
as shown in Figure 4-9.

Note that the name of the submenu is shown in the Check Box
header bar and that each Menu Item is displayed

with its full text, checkbox (if any), and shortcut key. .

: : Radio 1
Since Android does not support nested submenus,
you can’t add a submenu to a submenu (trying will
result in an exception). Radio 2

As with the extended menu, icons are not displayed
in the submenu, so it’s good practice to avoid assign- Radio 3
ing icons to submenu items.

Pressing the back button closes the floating win-
dow without your having to navigate back to the

extended or icon menus. FIGURE 4-9

Defining an Activity Menu

To define a menu for an Activity, override its onCreateOptionsMenu handler. This method is triggered
the first time an Activity’s menu is displayed.

Creating and Using Menus | 125

The onCreateOptionsMenu receives a Menu object as a parameter. You can store a reference to, and

continue to use, the Menu reference elsewhere in your code until the next time onCreateOptionsMenu is

called.

You should always call through to the superclass implementation, as it automatically includes addi-
tional system menu options where appropriate.

Use the add method on the Menu object to populate your menu. For each new Menu Item, you must
specify the following:

>

>

>

>

A group value to separate Menu Items for batch processing and ordering.

A unique identifier for each Menu Item. For efficiency reasons, Menu Item selections are
generally handled by the onoptionsTtemSelected event handler, so this unique identifier is
important for determining which Menu Item was pressed. It is convention to declare each
menu ID as a private static variable within the activity class. You can use the Menu.FIRST
static constant and simply increment that value for each subsequent item.

An order value that defines the order in which the Menu Items are displayed.

The Menu Item display text, either as a character string or as a string resource.

When you have finished populating the Menu return true.

Listing 4-26 shows how to add a single Menu Item to an Activity Menu.

J LISTING 4-26: Adding a Menu Item

Available for
download on
Wrox.com

static final private int MENU_ITEM = Menu.FIRST;

@QOverride

public boolean onCreateOptionsMenu (Menu menu) {

super.onCreateOptionsMenu (menu) ;

// Group ID

int groupId = 0;

// Unique menu item identifier. Used for event handling.
int menultemId = MENU_ITEM;

// The order position of the item

int menultemOrder = Menu.NONE;

// Text to be displayed for this menu item.

int menultemText = R.string.menu_item;

// Create the menu item and keep a reference to it.
MenuItem menultem = menu.add(groupId, menultemId,
menultemOrder, menultemText) ;

return true;

}

Like the Menu object, each MenuTtem returned by add is valid until the next call to onCreateoptionsMenu.
Rather than maintaining a reference to each item, you can find a particular Menu Item by passing its
ID in to the Menu’s findItem method.

126 | CHAPTER 4 CREATING USER INTERFACES

Menu Iltem Options

Android supports most of the traditional Menu Item options you’re probably familiar with, including
icons, shortcuts, checkboxes, and radio buttons, as listed here:

» Checkboxes and radio buttons Checkboxes and radio buttons on Menu Items are visible in
expanded menus and submenus, as shown in Figure 4-9. To set a Menu Item as a checkbox,
use the setCheckable method. The state of that checkbox is controlled via setChecked.

A radio button group is a group of items displaying circular buttons, in which only one item
can be selected at any given time. Checking one of these items will automatically uncheck any
checked item in the same group.

To create a radio button group, assign the same group identifier to each item and then call
Menu. setGroupCheckable, passing in that group identifier and setting the exclusive parameter
to true.

Checkboxes are not visible in the icon menu, so Menu Items that feature checkboxes should
be reserved for submenus and items that appear only in the expanded menu. The following
code snippet shows how to add a checkbox and a group of three radio buttons.

// Create a new check box item.
menu.add (0, CHECKBOX_ITEM, Menu.NONE, "CheckBox").setCheckable(true);

// Create a radio button group.
menu.add (RB_GROUP, RADIOBUTTON_1, Menu.NONE, "Radiobutton 1");
menu.add (RB_GROUP, RADIOBUTTON_2, Menu.NONE, "Radiobutton 2");
menu.add (RB_GROUP, RADIOBUTTON_3, Menu.NONE,

"Radiobutton 3").setChecked(true) ;
menu.setGroupCheckable (RB_GROUP, true, true);

> Shortcut keys You can specify a keyboard shortcut for a Menu Item using the setShortcut
method. Each call to setShortcut requires two shortcut keys, one for use with the numeric
keypad and a second to support a full keyboard. Neither key is case-sensitive.

// Add a shortcut to this menu item, '0' if using the numeric keypad
// or 'b' if using the full keyboard.
menultem.setShortcut('0', 'b');

> Condensed titles The icon menu does not display shortcuts or checkboxes, so it’s often nec-
essary to modify its display text to indicate its state. The setTitleCondensed method lets you
specify text to be displayed only in the icon menu.

menultem.setTitleCondensed("Short Title");

» Icons Theicon property is a Drawable resource identifier for an icon to be used in the Menu
Item. Icons are displayed only in the icon menu; they are not visible in the extended menu
or submenus. You can specify any Drawable resource as a menu icon, though by convention
menu icons are generally grayscale and use an embossed style.

menultem.setIcon(R.drawable.menu_item_ icon) ;

» Menuitem click listener An event handler that will execute when the Menu Item is selected.
For efficiency, the use of such an event handler is discouraged; instead, Menu Item selections
should be handled by the onoptionsTtemselected handler, as shown later in this section.

Creating and Using Menus | 127

menultem.setOnMenultemClickListener (new OnMenuItemClickListener () {
public boolean onMenuItemClick (Menultem _menultem) {
[... execute click handling, return true if handled ...]
return true;
}
1)

> Intents An Intent assigned to a Menu Item is triggered when the clicking of a Menu Item
isn’t handled by either a MenuTtemClickListener or the Activity’s onOptionsItemSelected
handler. When the Intent is triggered Android will execute startactivity, passing in the
specified Intent.

menultem.setIntent (new Intent (this, MyOtherActivity.class));

Dynamically Updating Menu Items

By overriding your Activity’s onPrepareOptionsMenu method you can modify a Menu based on an
application’s current state immediately before the Menu is displayed. This lets you dynamically dis-
able/enable Menu Items, set visibility, and modify text.

To modify Menu Items dynamically you can either find a reference to them in the onCreateoOptionsMenu
method when they’re created, or you can use the findTtem method on the Menu object, as shown in
Listing 4-27, where onPrepareOptionsMenu is overridden.

) LISTING 4-27: Dynamic menu modification

Available for .
downloadon ~ @Override
Wrox.com public boolean onPrepareOptionsMenu (Menu menu) {

super .onPrepareOptionsMenu (menu) ;
MenuItem menultem = menu.findItem(MENU_ ITEM);
[... modify menu items ...]

return true;

Handling Menu Selections

Android handles all of an Activity’s Menu Item selections using a single event handler, the
onOptionsItemSelected method. The Menu Item selected is passed in to this method as the MenuTtem
parameter.

To react to the menu selection, compare the item.getTItemId value to the Menu Item identifiers you
used when populating the Menu, and react accordingly, as shown in Listing 4-28.

) LISTING 4-28: Handling Menu Item selections

Available for . . .
download on public boolean onOptionsItemSelected (Menultem item) {

Wrox.com super.onOptionsItemSelected(item) ;)
continues

128 | CHAPTER 4 CREATING USER INTERFACES

LISTING 4-28 (continued)

// Find which menu item has been selected
switch (item.getItemId()) {

// Check for each known menu item

case (MENU_ITEM) :
[... Perform menu handler actions ...]
return true;

}

// Return false if you have not handled the menu item.
return false;

Submenus and Context Menus

Context menus use the same floating window as the submenus shown in Figure 4-9. While their appear-
ance is the same, the two menu types are populated differently.

Creating Submenus

Submenus are displayed as regular Menu Items that, when selected, reveal more items. Traditionally,
submenus are displayed in a hierarchical tree layout. Android uses a different approach to simplify
menu navigation for small-screen devices. Rather than a tree structure, selecting a submenu presents a
single floating window that displays all of its Menu Items.

You can add submenus using the addsubMenu method. It supports the same parameters as the add
method used to add normal Menu Items, enabling you to specify a group, unique identifier, and text
string for each submenu. You can also use the setHeaderIcon and setIcon methods to specify an icon
to display in the submenu’s header bar or icon menu, respectively.

The Menu Items within a submenu support the same options as those assigned to the icon or extended
menus. However, unlike traditional systems, Android does not support nested submenus.

The following code snippet shows an extract from an implementation of the onCreateMenuOptions
code that adds a submenu to the main menu, sets the header icon, and then adds a submenu Menu
Item:

SubMenu sub = menu.addSubMenu (0, 0, Menu.NONE, "Submenu");
sub.setHeaderIcon(R.drawable.icon) ;
sub.setIcon(R.drawable.icon) ;

Menultem submenultem = sub.add(0, 0, Menu.NONE, "Submenu Item");

Using Context Menus

Context Menus are contextualized by the currently focused View and are triggered by the user’s press-
ing the trackball, middle D-pad button, or a View for around three seconds.

You define and populate Context Menus much as you define and populate Activity Menus. There are
two options available for creating Context Menus for a particular View.

Creating and Using Menus | 129

Creating Context Menus

One option is to create a generic ContextMenu object for a view class by overriding a View’s
onCreateContextMenu handler, as shown here:

@Override

public void onCreateContextMenu (ContextMenu menu) {
super.onCreateContextMenu (menu) ;
menu.add("ContextMenulteml") ;

}
The Context Menu created here will be available within any Activity that includes this view class.

The more common alternative is to create Activity-specific Context Menus by overriding the
Activity’s onCreateContextMenu method, and registering the Views that should use it using the
registerForContextMenu as shown in Listing 4-29.

) LISTING 4-29: Assigning a Context Menu to a View

Available for .
download on @Override
Wrox.com public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;

EditText view = new EditText (this);
setContentView (view) ;

registerForContextMenu (view);

}

Once a View has been registered, the oncreatecontextMenu handler will be triggered the first time a
Context Menu should be displayed for that View.

Override onCreateContextMenu and check which View has triggered the menu creation in order to
populate the Context Menu parameter with the appropriate Menu Items, as shown in this extension to
Listing 4-29.

@Override
public void onCreateContextMenu (ContextMenu menu, View v,
ContextMenu.ContextMenuInfo menuInfo) {
super.onCreateContextMenu (menu, v, menulnfo);

menu.setHeaderTitle("Context Menu") ;
menu.add (0, menu.FIRST, Menu.NONE,

"Ttem 1").setIcon(R.drawable.menu_item) ;
menu.add (0, menu.FIRST+1, Menu.NONE, "Item 2").setCheckable(true);
menu.add (0, menu.FIRST+2, Menu.NONE, "Item 3").setShortcut('3', '3');
SubMenu sub = menu.addSubMenu ("Submenu") ;
sub.add("Submenu Item") ;

}

As shown in the preceding code, the contextMenu class supports the same add method as the Menu class,
so you can populate a Context Menu in the same way that you populate Activity menus — using the
add method. This includes using the add method to add submenus to your Context Menus. Note that

130 | CHAPTER 4 CREATING USER INTERFACES

icons will never be displayed. You can, however, specify the title and icon to display in the Context
Menu’s header bar.

Android also supports late runtime population of Context Menus via Intent Filters. This mechanism
lets you populate a Context Menu by specifying the kind of data presented by the current View, and
asking other Android applications if they support any actions for it.

The most common example of this mechanism is the cut/copy/paste Menu Items available on Edit Text
controls. Using Intent Filters to populate Context Menus is covered in detail in the next chapter.

Handling Context Menu Selections

Context Menu Item selections are handled much the same as Activity Menu selection. You can attach
an Intent or Menu Item Click Listener directly to each Menu Item, or use the preferred technique of
overriding the onContextTtemSelected method on the Activity.

This event handler is triggered whenever a Context Menu Item is selected.

@Override
public boolean onContextItemSelected(MenulItem item) {
super.onContextItemSelected (item) ;

[... Handle menu item selection ...

return false;

Defining Menus in XML

Android lets you define your Menu hierarchies as XML resources.

As with layouts and other resources, this gives you the ability to create different Menus for alternative
hardware configurations, languages, or locations. For example, you may wish to move some onscreen
options to your menu for small displays.

Menu resources are created as XML files in the res/menu folder of your resources directory. Each menu
hierarchy must be created as a separate file, for which the lowercase file name becomes the resource
identifier.

Create your Menu hierarchy using the <menu> tag as the root node and a series of <item> tags to specify
each Menu Item. Each item node supports attributes to specify the Menu Item properties, including the
text, icon, shortcut, and checkbox options.

To create a submenu, simply place a new <menu> tag as a subnode within an <items.

Listing 4-30 shows how to create the Menu hierarchy described in Listing 4-29 as an XML resource.

) LISTING 4-30: Defining a menu in XML

Available for
download on <menu xmlns:android="http://schemas.android.com/apk/res/android"
Wrox.com android:name="Context Menu">

<item
android:id="@+id/item01"

Creating and Using Menus | 131

android:icon="@drawable/menu_item"
android:title="Item 1">
</item>
<item
android:id="@+id/item02"
android:checkable="true"
android:title="Item 2">
</item>
<item
android:id="@+id/item03"
android:numericShortcut="3"
android:alphabeticShortcut="3"
android:title="Item 3">
</item>
<item
android:id="@+id/item04"
android:title="Submenu">
<menu>
<item
android:id="@+id/item05"
android:title="Submenu Item">
</item>
</menu>
</item>
</menu>

To use your Menu resource, use the MenuInflator class within your onCreateOptionsMenu or
onCreateContextMenu event handlers, as shown in Listing 4-31.

) LISTING 4-31: Inflating an XML menu resource

Available for
download on public void onCreateContextMenu (ContextMenu menu, View v,
Wrox.com ContextMenu.ContextMenuInfo menuInfo) {

super.onCreateContextMenu (menu, v, menulnfo);
MenuInflater inflater = getMenuInflater();
inflater.inflate(R.menu.my menu, menu);
menu.setHeaderTitle("Context Menu");

To-Do List Example Continued

In the following example you’ll be adding some simple menu functions to the to-do list application you
started in Chapter 2 and continued to improve earlier in this chapter.

You will add the ability to remove to-do items using Context and Activity Menus, and improve the use
of screen space by displaying the text entry box only when adding a new item.

1. Start by importing the packages you need to support Menu functionality into the ToDoList
Activity class.

import android.view.Menu;
import android.view.Menultem;

132

| CHAPTER 4 CREATING USER INTERFACES

import android.view.ContextMenu;
import android.widget.AdapterView;

Then add private static final variables that define the unique IDs for each Menu Item.

static final private int ADD_NEW_TODO = Menu.FIRST;
static final private int REMOVE_TODO = Menu.FIRST + 1;

Now override the onCreateOptionsMenu method to add two new Menu Items, one to add
and the other to remove a to-do item. Specify the appropriate text, and assign icon resources
and shortcut keys for each item.

@Override
public boolean onCreateOptionsMenu (Menu menu) {
super .onCreateOptionsMenu (menu) ;

// Create and add new menu items.

MenuItem itemAdd = menu.add (0, ADD_NEW_TODO, Menu.NONE,
R.string.add_new) ;

Menultem itemRem = menu.add (0, REMOVE_TODO, Menu.NONE,
R.string.remove) ;

// Assign icons ' A EEHQ 1:27 PM

itemAdd.setIcon(R.drawable.add_new_item) ;
itemRem.setIcon (R.drawable.remove_item) ;

// Allocate shortcuts to each of them.
itemAdd.setShortcut('0', 'a');
itemRem.setShortcut ('l', 'r');

return true;

If you run the Activity, pressing the hardware
menu button will display the menu as shown in
Figure 4-10.

Having populated the Activity Menu, create a Con-
text Menu. First, modify onCreate to register the
List View to use a Context Menu. Then override
onCreateContextMenu to populate the Context
Menu with a remove item.

@Override
public void onCreate (Bundle savedInstanceState) {

X

Remove Item

[... existing onCreate method ...]

FIGURE 4-10

registerForContextMenu (myListView) ;

@Override
public void onCreateContextMenu (ContextMenu menu,
View v,

Creating and Using Menus | 133

ContextMenu.ContextMenuInfo menulInfo) {
super .onCreateContextMenu (menu, v, menulnfo) ;

menu.setHeaderTitle("Selected To Do Item");
menu.add (0, REMOVE_TODO, Menu.NONE, R.string.remove) ;
}

Now modify the appearance of the Menu based on the application context. Override the
onPrepareOptionsMenu method; the Menu Item should be customized to show Cancel rather
than Delete if you are currently adding a new to-do item.

private boolean addingNew = false;

@Override
public boolean onPrepareOptionsMenu (Menu menu) {
super .onPrepareOptionsMenu (menu) ;

int idx = myListView.getSelectedItemPosition();

String removeTitle = getString(addingNew ?
R.string.cancel : R.string.remove) ;

Menultem removelItem = menu.findItem(REMOVE_TODO) ;
removeltem.setTitle (removeTitle) ;
removeltem.setVisible(addingNew || idx > -1);

return true;

}

For the code in Step 5 to work you need to increase the scope of the todoListTtems and
Listview control beyond the oncreate method. Do the same thing for the Arrayadapter and
EditText to support the add and remove actions when they’re implemented later.

private ArrayList<String> todoItems;
private ListView myListView;
private EditText myEditText;
private ArrayAdapter<String> aa;

@QOverride

public void onCreate(Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

// Get references to UI widgets
myListView = (ListView)findViewById(R.id.myListView);
myEditText = (EditText)findViewById(R.id.myEditText);

todoItems = new ArrayList<String>();

int resID = R.layout.todolist_item;

aa = new ArrayAdapter<String>(this, resID, todoItems);
myListView.setAdapter (aa) ;

myEditText.setOnKeyListener (new OnKeyListener () {
public boolean onKey (View v, int keyCode, KeyEvent event) {
if (event.getAction() == KeyEvent.ACTION_DOWN)

134 | CHAPTER 4 CREATING USER INTERFACES

if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER)
{
todoItems.add (0, myEditText.getText ().toString());
myEditText.setText ("");
aa.notifyDataSetChanged() ;
return true;

}

return false;
}
)

registerForContextMenu (myListView) ;
}

7. Next you need to handle Menu Item clicks. Override the onOptionsItemSelected and
onContextItemSelected methods to execute stubs that handle the new Menu Items.

7.1. Start by overriding onOptionsItemSelected to handle the Activity Menu selections.
For the remove Menu Item you can use the getSelectedTtemPosition method on
the List View to find the currently highlighted item.

@Override

public boolean onOptionsItemSelected(Menultem item) {
super.onOptionsItemSelected (item) ;

int index = myListView.getSelectedItemPosition();

switch (item.getItemId()) {
case (REMOVE_TODO) : {
if (addingNew) {
cancelAdd() ;
}
else {
removeltem(index) ;
}
return true;
}
case (ADD_NEW_TODO) : {
addNewItem() ;
return true;

return false;

}

7.2. Next, override onContextItemSelected to handle Context Menu Item selec-
tions. Note that you are using the Adapterview-specific implementation of
ContextMenuInfo. This includes a reference to the View that triggered the Context
Menu and the index of the data it’s displaying from the underlying Adapter.

Use the latter as the index of the item to remove.
@Override
public boolean onContextItemSelected(Menultem item) {
super.onContextItemSelected (item) ;

Creating and Using Menus | 135

switch (item.getItemId()) {
case (REMOVE_TODO) : {
AdapterView.AdapterContextMenuInfo menuInfo;
menuInfo =(AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
int index = menuInfo.position;

removeIltem(index) ;
return true;

}

return false;

}

7.3. Create the stubs called in the Menu Item selection handlers you created earlier.

private void canceladd() {
}

private void addNewItem() {
}

private void removeItem(int _index) {

}

Now implement each of the stubs to provide the new functionality.

private void canceladd() {
addingNew = false;
myEditText.setVisibility(View.GONE) ;
}

private void addNewItem() {
addingNew = true;
myEditText.setVisibility(View.VISIBLE);
myEditText.requestFocus();

}

private void removeltem(int _index) {
todoItems.remove (_index);
aa.notifyDataSetChanged();

}

You need to hide the text entry box after you’ve added a new to-do item. In the onCreate
method modify the onkeyListener to call the canceladd function after adding a new item.

myEditText.setOnKeyListener (new OnKeyListener () {
public boolean onKey(View v, int keyCode, KeyEvent event) {
if (event.getAction() == KeyEvent.ACTION_DOWN)
if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER)
{
todoItems.add (0, myEditText.getText ().toString());
myEditText.setText ("");
aa.notifyDataSetChanged() ;
cancelAdd();
return true;

136 | CHAPTER 4 CREATING USER INTERFACES

return false;
}
Y

10. Finally, to ensure a consistent UI, modify the main.xml layout to hide the text entry box until
the user chooses to add a new item.

<EditText
android:id="@+id/myEditText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text=""
android:visibility="gone"

/>

All code snippets in this example are part of the Chapter 4 Todo List 2 project, available for download at Wrox.com.

Running the application should now let you trigger the Activity Menu to add or remove items from the
list, and a Context Menu on each item should offer the option of removing it.

SUMMARY

You now know the basics of creating intuitive user interfaces for Android applications. You learned
about Views and layouts and were introduced to the Android menu system.

You learned to create Activity screens by positioning Views using layout managers that can be created
in code or as resource files. You learned how to extend, group, and create new View-based controls to
provide a customized appearance and behavior for your applications.

In this chapter, you:
» Were introduced to some of the controls and widgets available as part of the Android SDK.
Learned how to use your custom Views within Activities.
Discovered how to create dynamic Drawable resources in XML.
Learned how to create Uls that are resolution- and pixel-density-independent.

Discovered how to create and use Activity Menus and Context Menus.

Y Y Y VY Y

Extended the to-do list example to support custom Views and menu-based functions.
» Created a new Compass View control from scratch.

Now that we’ve covered the fundamentals of Android Ul design, the next chapter focuses on binding
application components using Intents, Broadcast Receivers, and Adapters. You will learn how to start
new Activities and broadcast and consume requests for action. Chapter 5 also introduces Internet
connectivity and looks at the pialog class.

Intents, Broadcast Receivers,
Adapters, and the Internet

WHAT’S IN THIS CHAPTER?

\

An introduction to Intents

\

Starting new Activities and sub-Activities using implicit and explicit
Intents

Intent filters and intent resolution

Using linkify

Intents, broadcast actions and Broadcast Receivers
Using Adapters to bind data to Views

Using the Internet in Android

Y Y Y VY VY Y

How to create and use Dialogs

At first glance the subjects of this chapter might appear to have little in common; in practice
they represent the glue that binds applications and their components.

Mobile applications on most platforms run in their own sandboxes. They’ re isolated from each
other, and have strict limitations applied to their interaction with hardware and native compo-
nents. Android applications are also sandboxed but they can use Intents, Broadcast Receivers,
Adapters, Content Providers, and the Internet to interact through those boundaries.

In this chapter you’ 1l look at Intents. Intents are probably the most unique, and important,
concept in Android development. You’ 1l learthow to use Intents to broadcast data between
applications and application components, and start Activities or Services, both explicitly and
using late runtime binding.

Using implicit Intents you’ 1l learn how to request that an action be performed on a piece of data,
letting Android determine which application components can best service that request.

138 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

Broadcast Intents are used to announce events system-wide. You’ 1l learn how to transmit these broad-
casts, and receive them using Broadcast Receivers.

You’ 1l examine Adapters and learn how to use thm to bind your presentation layer to data sources,
before examining dialog boxes.

Having looked at the mechanisms for transmitting and consuming local data, you’ 1l be introduced to
Android’ s Internet connectivity model and some of the Java techniques for parsing Internet data feeds.

An earthquake-monitoring example will then demonstrate how to tie all these features together. The
earthquake monitor will form the basis of an ongoing example that you’ 1l improve and extend in later
chapters.

INTRODUCING INTENTS

Intents are used as a message-passing mechanism that works both within your application, and between
applications. Intents can be used to:

» Declare your intention that an Activity or Service be started to perform an action, usually
with (or on) a particular piece of data

» Broadcast that an event (or action) has occurred
> Explicitly start a particular Service or Activity

You can use Intents to support interaction among any of the application components installed on an
Android device, no matter which application they’ re a part of. This turns your device from a platform
containing a collection of independent components into a single interconnected system.

One of the most common uses for Intents is to start new Activities, either explicitly (by specifying the
class to load) or implicitly (by requesting that an action be performed on a piece of data). In the latter
case the action need not be performed by an Activity within the calling application.

Intents can also be used to broadcast messages across the system. Any application can register Broad-
cast Receivers to listen for, and react to, these broadcast Intents. This lets you create event-driven
applications based on internal, system, or third-party-application events.

Android broadcasts Intents to announce system events, like changes in Internet connection status or
battery charge levels. The native Android applications, such as the phone dialer and SMS manager,
simply register components that listen for specific broadcast Intents —such as ¢ ¢ incoming phone call’ ’
or ¢ ¢ SMS message received’ > —and react accordingly.

Using Intents to propagate actions —even within the same application —is a fundamental Android
design principle. It encourages the decoupling of components, to allow the seamless replacement of
application elements. It also provides the basis of a simple model for extending an application’ s func-
tionality.

Using Intents to Launch Activities

The most common use of Intents is to bind your application components. Intents are used to start, and
transition between, Activities.

Introducing Intents | 139

The instructions given in this section refer to starting new Activities, but the same
details also apply to Services. Details on starting (and creating) Services are
available in Chapter 9.

To open an Activity, call startactivity, passing in an Intent as shown in the following snippet:
startActivity (myIntent) ;

The Intent can either explicitly specify the Activity class to open, or include an action that an Activity
must perform. In the latter case the run time will choose an Activity dynamically using a process known
as Intent resolution.

The startactivity method finds and starts the single Activity that best matches your Intent.

When you use startActivity your application won’ t receive any notification when the newly launched
Activity finishes. To track feedback from the opened screen use the startactivityForResult method
described in more detail in the next section.

Explicitly Starting New Activities

You learned in Chapter 2 that applications consist of a number of interrelated screens — Activities —
that must be included in the application manifest. To connect them you may want to explicitly specify
an Activity to open.

To explicitly select an Activity class to start, create a new Intent, specifying the current application
Context and Activity class to launch. Pass this Intent in to startActivity as shown in Listing 5-1.

) LISTING 5-1: Explicitly starting an Activity

Available for
download on Intent intent = new Intent (MyActivity.this, MyOtherActivity.class);

Wrox.com startActivity(intent);

After startactivity is called, the new Activity (in this example Myotheractivity) will be created and
become visible and active, moving to the top of the Activity stack.

Calling finish on the new Activity, or pressing the hardware back button, will close it and remove it
from the stack. Alternatively, developers can navigate to the previous Activity, or yet another Activity,
by calling startactivity.

Implicit Intents and Late Runtime Binding

An implicit Intent is a mechanism that lets anonymous application components service action requests.
That means you can ask the system to launch an Activity that can perform a given action without
knowing which application, or Activity, will do so.

When constructing a new implicit Intent to use with startactivity, you nominate an action to perform
and, optionally, supply the URI of the data to perform that action on. You can also send additional data
to the target Activity by adding extras to the Intent.

140 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

When you use this Intent to start an Activity, Android will —at run time —resolve it into the Activity
class best suited to performing the required action on the type of data specified. This means you can cre-
ate projects that use functionality from other applications, without knowing exactly which application
you’ re borrowing functionality from ahead of time.

For example, to let users make calls from your application you could implement a new dialer, or you
could use an implicit Intent that requests the action (dialing) be performed on a phone number (repre-
sented as a URI), as shown in Listing 5-2.

) LISTING 5-2: Implicitly starting an Activity

Available for } . . .
download on if (somethingWeird && itDontLookGood) ({
Wrox.com Intent intent = new Intent(Intent.ACTION_DIAL, Uri.parse("tel:555-2368"));

startActivity (intent);

}

Android resolves this Intent and starts an Activity that provides the dial action on a telephone
number —in this case the dialer Activity.

In circumstances where multiple Activities are capable of performing a given action, the user is pre-
sented with a choice. The full process of Intent resolution is described later in this chapter.

Various native applications provide Activities to handle actions performed on specific data. Third-party
applications, including your own, can be registered to support new actions, or to provide an alternative
provider of native actions. You’ Il be introduced to some of the native actions, and how to register your
own Activities to support them, later in this chapter.

Returning Results from Activities

An Activity started via startactivity is independent of its parent and will not provide any feedback
when it closes.

Alternatively, you can start an Activity as a sub-Activity that’ s inherently connected to its parent. A sub-
Activity triggers an event handler within its parent Activity when it closes. Sub-Activities are perfect for
situations in which one Activity is providing data input (such as a user’ s selecting an item from a list)
for another.

Sub-Activities are really just Activities opened in a different way. As such they must be registered in
the application manifest —in fact any manifest-registered Activity can be opened as a sub-Activity
including system or third-party application Activities.

Launching Sub-Activities

The startactivityForResult method works much like startactivity, but with one important differ-
ence. As well as the explicit or implicit Intent used to determine which Activity to launch, you also pass
in a request code. This value will later be used to uniquely identify the sub-Activity that has returned a
result.

The skeleton code for launching a sub-Activity is shown in Listing 5-3.

Introducing Intents | 141

) LISTING 5-3: Starting an Activity for a result

Available for , , . i
download on private static final int SHOW_SUBACTIVITY = 1;
Wrox.com

Intent intent = new Intent (this, MyOtherActivity.class);
startActivityForResult (intent, SHOW_SUBACTIVITY):;

Like regular Activities, sub-Activities can be started implicitly or explicitly. Listing 5-4 uses an implicit
Intent to launch a new sub-Activity to pick a contact.

) LISTING 5-4: Implicitly starting an Activity for a result

Available for) . . .
download on private static final int PICK_CONTACT_SUBACTIVITY = 2;
Wrox.com

Uri uri = Uri.parse("content://contacts/people");
Intent intent = new Intent (Intent.ACTION_PICK, uri);
startActivityForResult (intent, PICK_CONTACT_SUBACTIVITY) ;

Returning Results

When your sub-Activity is ready to return, call setResult before finish to return a result to the calling
Activity.

The setResult method takes two parameters: the result code and the result itself, represented as an
Intent.

5 s

The result code is the ¢ ¢ result’ > of running the sub-Activity —generally eitkerivity . RESULT_OK or
Activity.RESULT_CANCELED. In some circumstances you’ Il want to use your own response codes to

handle application specific choices; setResult supports any integer value.

The Intent returned as a result often includes a URI to a piece of content (such as the selected contact,
phone number, or media file) and a collection of extras used to return additional information.

Listing 5-5 is taken from a sub-Activity’ nCreate method, and shows how an OK and Cancel button
might return different results to the calling Activity.

) LISTING 5-5: Creating new Shared Preferences

Available for . . .
download on Button okButton = (Button) findViewById(R.id.ok_button) ;
Wrox.com okButton.setOnClickListener (new View.OnClickListener () {

public void onClick (View view) {
Uri data = Uri.parse("content://horses/" + selected_horse_id);

Intent result = new Intent(null, data);
result.putExtra (IS_INPUT CORRECT, inputCorrect);
result.putExtra (SELECTED_PISTOL, selectedPistol);

continues

142 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

LISTING 5-5 (continued)

setResult (RESULT_OK, result);
finish();
}
)i

Button cancelButton = (Button) findViewById(R.id.cancel_button);
cancelButton.setOnClickListener (new View.OnClickListener () {
public void onClick (View view) {
setResult (RESULT_CANCELED, null);
finish();
}
})

If the Activity is closed by the user pressing the hardware back key, or finish is called without a prior
call to setResult, the result code will be set to RESULT_CANCELED and the result Intent set to null.

Handling Sub-Activity Results

When a sub-Activity closes, the onactivityResult event handler is fired within the calling Activity.
Override this method to handle the results returned by sub-Activities.

The onaActivityResult handler receives a number of parameters:
> Request code The request code that was used to launch the returning sub-Activity.

> Result code The result code set by the sub-Activity to indicate its result. It can be any integer
value, but typically will be either activity.RESULT_OK or Activity.RESULT_CANCELED.

If the sub-Activity closes abnormally, or doesn’t specify a result code before it
closes, the result code is Activity.RESULT_CANCELED.

> Data An Intent used to package returned data. Depending on the purpose of the sub-
Activity, it may include a URI that represents a selected piece of content. Alternatively, or
additionally, the sub-Activity can return extra information as primitive values using the
Intent extras Bundle.

The skeleton code for implementing the onActivityResult event handler within an Activity is shown
in Listing 5-6.

) LISTING 5-6: Implementing an On Activity Result Handler

Available for , . . .
download on private static final int SHOW_SUB_ACTIVITY_ONE = 1;
Wrox.com private static final int SHOW_SUB_ACTIVITY_TWO = 2;

@Override
public void onActivityResult (int requestCode,

Introducing Intents | 143

int resultCode,
Intent data) {

super.onActivityResult (requestCode, resultCode, data);

switch(requestCode) {
case (SHOW_SUB_ACTIVITY_ONE) : {
if (resultCode == Activity.RESULT_OK) {
Uri horse = data.getData();
boolean inputCorrect = data.getBooleanExtra (IS_INPUT_CORRECT, false);
String selectedPistol = data.getStringExtra (SELECTED_PISTOL) ;
}
break;
}
case (SHOW_SUB_ACTIVITY_TWO) : {
if (resultCode == Activity.RESULT_OK) {
// TODO: Handle OK click.
}
break;
}

Native Android Actions
Native Android applications also use Intents to launch Activities and sub-Activities.
The following non-comprehensive list shows some of the native actions available as static string con-

stants in the Intent class. When creating implicit Intents you can use these actions, called Activity
Intents, to start Activities and sub-Activities within your own applications.

Later you will be introduced to Intent Filters and you’ll learn how to register your
own Activities as handlers for these actions.

> ACTION_ANSWER Opens an Activity that handles incoming calls. Currently this is handled by
the native in-call screen.

» ACTION_CALL Brings up a phone dialer and immediately initiates a call using the number
supplied in the Intent URL Generally it’ s considered better form to usecTTon_pIAL if
possible.

» ACTION_DELETE Starts an Activity that lets you delete the data specified at the Intent” s data
URL

» ACTION_DIAL Brings up a dialer application with the number to dial pre-populated from
the Intent URL By default this is handled by the native Android phone dialer. The dialer can
normalize most number schemas: for example, te1:555-1234 and tel: (212) 555 1212 are
both valid numbers.

> ACTION_EDIT Requests an Activity that can edit the data at the specified Intent URI.

144 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

» ACTION_INSERT Opens an Activity capable of inserting new items into the Cursor specified
in the Intent URIL. When called as a sub-Activity it should return a URI to the newly inserted
item.

> ACTION_PICK Launches a sub-Activity that lets you pick an item from the Content Provider
specified by the Intent URL. When closed it should return a URI to the item that was
picked. The Activity launched depends on the data being picked: for example, passing
content://contacts/people will invoke the native contacts list.

> ACTION_SEARCH Launches the Activity used for performing a search. Supply the search term
as a string in the Intent’ s extras using th@earchManager . QUERY key.

> ACTION_SENDTO Launchesan Activity to send a message to the contact specified by the Intent
URL

> ACTION_SEND Launches an Activity that sends the data specified in the Intent. The recipient
contact needs to be selected by the resolved Activity. Use setType to set the MIME type of the
transmitted data.

The data itself should be stored as an extra by means of the key EXTRA_TEXT or EXTRA_STREAM,
depending on the type. In the case of e-mail, the native Android applications will also
accept extras via the EXTRA_EMATL, EXTRA_CC, EXTRA_BCC, and EXTRA_SUBJECT keys. Use the
ACTION_SEND action only to send data to a remote recipient (not another application on the
device).

> ACTION_VIEW The most common generic action. View asks that the data supplied in the
Intent’ s URI be viewed in the most reasonable manner. Different applications will handle
view requests depending on the URI schema of the data supplied. Natively http: addresses
will open in the browser, tel: addresses will open the dialer to call the number, geo:
addresses will be displayed in the Google Maps application, and contact content will be
displayed in the contact manager.

> ACTION_WEB_SEARCH Opens an Activity that performs a web search based on the text sup-
plied in the Intent URI (typically the browser).

As well as these Activity actions, Android includes a large number of broadcast
actions used to create Intents that are broadcast to announce system events. These
broadcast actions are described later in this chapter.

Using Intent Filters to Service Implicit Intents

If an Intent is a request for an action to be performed on a set of data, how does Android know which
application (and component) to use to service the request?

Intent Filters are used to register Activities, Services, and Broadcast Receivers as being capable of
performing an action on a particular kind of data. Intent Filters are also used to register Broadcast
Receivers as being interested in Intents broadcasting a given action or event.

Using Intent Filters, application components announce that they can respond to action requests from
any application installed on the device.

Introducing Intents | 145

To register an application component as a potential Intent handler, add an intent-filter tag to the

component’ s manifest node using the following tags (and associated attributes) within the Intent Filter

node:

» action Uses the android:name attribute to specify the name of the action being serviced.
Each Intent Filter must have one (and only one) action tag. Actions should be unique strings
that are self-describing. Best practice is to use a naming system based on the Java package
naming conventions.

» category Uses the android:name attribute to specify under which circumstances the action
should be serviced. Each Intent Filter tag can include multiple category tags. You can specify
your own categories or use the standard values provided by Android and listed here:

>

aLTERNATIVE This category specifies that this action should be available as an
alternative to the default action performed on an item of this data type. For
example, where the default action for a contact is to view it, the alternative could
be to edit it.

SELECTED_ALTERNATIVE Similar to the ALTERNATIVE category, but where that cat-
egory will always resolve to a single action using the Intent resolution described
below, SELECTED_ALTERNATIVE is used when a list of possibilities is required. As
you’ I see later in this chapter, one of the uses of Intent Filters is to help populate
Context Menus dynamically using actions.

BROWSABLE Specifies an action available from within the browser. When an Intent
is fired from within the browser it will always include the browsable category. If
you want your application to respond to actions triggered within the browser (e.g.,
intercepting links to a particular web site), you must include the browsable cate-

gory.
DEFAULT Set this to make a component the default action for the data type speci-

fied in the Intent Filter. This is also necessary for Activities that are launched using
an explicit Intent.

GADGET By setting the gadget category you specify that this Activity can run
embedded inside another Activity.

HOME By setting an Intent Filter category as home without specifying an action,
you are presenting it as an alternative to the native home screen.

LAUNCHER Using this category makes an Activity appear in the application
launcher.

» data The data tag lets you specify which data types your component can act on; you can

include several data tags as appropriate. You can use any combination of the following
attributes to specify the data your component supports:

>

>

android:host Specifies a valid hostname (e.g., google.com).

android:mimetype Lets you specify the type of data your component is capable
of handling. For example, <type android:value="vnd.android.cursor.dir/*"/>
would match any Android cursor.

android:path Specifies valid ¢ ¢ path’ > values for the URI (etggnsport /boats/).

146 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

> android:port Specifies valid ports for the specified host.
> android:scheme Requires a particular scheme (e.g., content or http).

Listing 5-7 shows an Intent Filter for an Activity that can perform the SHOW_DAMAGE action as either a
primary or an alternative action (you’ Il create earthquake content in the next chapter).

) LISTING 5-7: Registering an Activity as an Intent Receiver

Available for
download on <activity android:name=".EarthquakeDamageViewer" android:label="View Damage">

Wrox.com <intent-filter>
<action android:name="com.paad.earthquake.intent.action.SHOW_DAMAGE"></action>
<category android:name="android.intent.category.DEFAULT"/>
<category android:name="android.intent.category.ALTERNATIVE SELECTED"/>
<data android:mimeType="vnd.earthquake.cursor.item/*"/>
</intent-filter>
</activity>

How Android Resolves Intent Filters

When you use startActivity, the implicit Intent passed in usually resolves to a single Activity. If there
are multiple Activities capable of performing the given action on the specified data, the user will be
presented with a list of alternatives.

The process of deciding which Activity to start is called Intent resolution. The aim of Intent resolution
is to find the best Intent Filter match possible by means of the following process:

1. Android puts together a list of all the Intent Filters available from the installed packages.

2. Intent Filters that do not match the action or category associated with the Intent being
resolved are removed from the list.

2.1. Action matches are made if the Intent Filter either includes the specified action or
has 720 action specified. An Intent Filter will fail the action match check only if it has
one or more actions defined, and none of them matches the action specified by the
Intent.

2.2. Category matching is stricter. Intent Filters must include all the categories defined
in the resolving Intent. An Intent Filter with no categories specified matches only
Intents with no categories.

3. Finally, each part of the Intent’ s data URI is compared to the Intent Filter’ dsta tag. If the
Intent Filter specifies a scheme, host/authority, path, or MIME type these values are com-
pared to the Intent’ s URIL. Any mismatch will remove the Intent Filter from the list. Specifying
no data values in an Intent Filter will result in a match with all Intent data values.

3.1. The MIME type is the data type of the data being matched. When matching data
types you can use wildcards to match subtypes (e.g., earthquakes/*). If the Intent
Filter specifies a data type it must match the Intent; specifying no data types results
in a match with all of them.

3.2. The scheme is the © ¢ protocol’ * part of the URI —for exaniplep:, mailto:, or
tel:.

Introducing Intents | 147

3.3. The hostname or data authority is the section of the URI between the scheme and
the path (e.g., www.google.com). For a hostname to match, the Intent Filter’ s scheme
must also pass.

3.4. The data path is what comes after the authority (e.g., /ig). A path can match only if
the scheme and hostname parts of the data tag also match.

4. When you implicitly start an Activity, if more than one component is resolved from this pro-
cess all the matching possibilities are offered to the user.

Native Android application components are part of the Intent resolution process in exactly the same
way as third-party applications. They do not have a higher priority, and can be completely replaced
with new Activities that declare Intent Filters that service the same actions.

Finding and Using the Launch Intent Within an Activity

When an application component is started through an implicit Intent, it needs to find the action it’ s to
perform and the data to perform it on.

Call the getTntent method —usually from within the oncreate method —to extract the Intent used
to start a component, as in Listing 5-8.

) LISTING 5-8: Finding the launch Intent in a sub-Activity

Available for)
download on @Override
Wrox.com public void onCreate(Bundle icicle) {

super.onCreate(icicle) ;
setContentView(R.layout.main) ;

Intent intent = getIntent();
}

Use the getbata and getAction methods to find the data and action associated with the Intent. Use the
type-safe get<type>Extra methods to extract additional information stored in its extras Bundle.

String action = intent.getAction();

Uri data = intent.getData();

Passing on Responsibility

Use the startNextMatchingActivity method to pass responsibility for action handling to the next best
matching application component, as shown in Listing 5-9.

) LISTING 5-9: Passing on Intent Receiver Handling

Available for .
download on Intent intent = getIntent();
Wrox.com if (isDuringBreak)

startNextMatchingActivity(intent);

This lets you add additional conditions to your components that restrict their use beyond the ability of
the Intent Filter— based Intent resolution process.

148 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

In some cases your component may wish to perform some processing, or offer the user a choice, before
passing the Intent on to an alternative component.

Select a Contact Example

In this example you® 1l create a new Activity that serviceaCTION_PICK for contact data. It displays each
of the contacts in the contacts database and lets the user select one, before closing and returning the
selected contact’ s URI to the calling Activity.

It’s worth noting that this example is somewhat contrived. Android already
supplies an Intent Filter for picking a contact from a list that can be invoked by
means of the content://contacts/people/ URI in an implicit Intent. The purpose
of this exercise is to demonstrate the form, even if this particular implementation
isn’t particularly useful.

Create a new ContactPicker project that includes a contactPicker Activity:

package com.paad.contactpicker;

import android.app.Activity;

import android.content.Intent;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.provider.Contacts.People;
import android.view.View;

import android.widget.AdapterView;

import android.widget.ListView;

import android.widget.SimpleCursorAdapter;
import android.widget.AdapterView.OnItemClickListener;

public class ContactPicker extends Activity {
@Override
public void onCreate(Bundle icicle) {
super.onCreate (icicle) ;
setContentView(R.layout.main) ;

}

Modify the main.xml layout resource to include a single Listview control. This control will
be used to display the contacts.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<ListView android:id="@+id/contactListView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

Introducing Intents | 149

/>
</LinearLayout>

Create a new listitemlayout.xml layout resource that includes a single Textview. This will be
used to display each contact in the List View.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView
android:id="@+id/itemTextView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:padding="10px"
android:textSize="16px"
android:textColor="#FFF"
/>
</LinearLayout>

Return to the contactPicker Activity. Override the oncreate method and extract the data
path from the calling Intent:

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView(R.layout.main) ;

Intent intent = getIntent();
String dataPath = intent.getData().toString();

4.1. Create a new data URI for the people stored in the contact list, and bind it to the

List View using a SimpleCursorArrayAdapter:

@

The simpleCursorArrayAdapter lets you assign Cursor data, used by Content
Providers, to Views. It’s used here without further comment but is examined in
detail later in this chapter.

final Uri data Uri.parse(dataPath + "people/");
final Cursor c¢ = managedQuery(data, null, null, null);

String[] from = new String[] {People.NAME};
int[] to = new int[] { R.id.itemTextView };

SimpleCursorAdapter adapter = new SimpleCursorAdapter (this,
R.layout.listitemlayout,
c,
from,
to);

ListView 1lv = (ListView)findViewById(R.id.contactListView) ;

lv.setAdapter (adapter) ;

150 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

5.

4.2. Addan onItemClickListener to the List View. Selecting a contact from the list
should return a path to the item to the calling Activity.

lv.setOnItemClickListener (new OnItemClickListener () {
@Override
public void onItemClick(AdapterView<?> parent, View view, int pos,
long id) {
// Move the cursor to the selected item
c.moveToPosition (pos) ;
// Extract the row id.
int rowId = c.getInt(c.getColumnIndexOrThrow("_id"));
// Construct the result URI.
Uri outURI = Uri.parse(data.toString() + rowId);
Intent outData = new Intent();
outData.setData (outURI) ;
setResult (Activity.RESULT OK, outData);
finish();
}
1)

4.3. Close off the oncreate method:
}

Modify the application manifest and replace the intent-filter tag of the Activity to add
support for the ACTION_PICK action on contact data:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.paad.contactpicker">
<application android:icon="@drawable/icon">
<activity android:name="ContactPicker" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.PICK"></action>
<category android:name="android.intent.category.DEFAULT"></category>
<data android:path="contacts" android:scheme="content"></data>
</intent-filter>
</activity>
</application>
</manifest>

This completes the sub-Activity. To test it, create a new test harness ContentPickerTester
Activity. Create a new layout resource — contentpickertester.xml —that includes a
TextView to display the selected contact and a Button to start the sub-Activity:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView
android:id="@+id/selected_contact_textview"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<Button

Introducing Intents | 151

android:id="@+id/pick_contact_button"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Pick Contact"
/>
</LinearLayout>

Override the oncreate method of the contentPickerTester to add a click listener to the
Button so that it implicitly starts a new sub-Activity by specifying the aAcTTON_PICK and the
contact database URI (content://contacts/):

package com.paad.contactpicker;

import android.app.Activity;

import android.content.Intent;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.provider.Contacts.People;
import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.widget.TextView;

public class ContentPickerTester extends Activity {
public static final int PICK_CONTACT = 1;

@Override

public void onCreate(Bundle icicle) {
super.onCreate (icicle) ;
setContentView(R.layout.contentpickertester) ;

Button button = (Button)findvViewById(R.id.pick_contact_button);

button.setOnClickListener (new OnClickListener() {
@Ooverride
public void onClick(View _view) {
Intent intent = new Intent (Intent.ACTION_PICK,
Uri.parse("content://contacts/"));
startActivityForResult (intent, PICK_CONTACT);

)i

}

When the sub-Activity returns, use the result to populate the Text View with the selected
contact’ s name:
@Override

public void onActivityResult (int regCode, int resCode, Intent data) {
super.onActivityResult (reqCode, resCode, data);

switch(regCode) {
case (PICK_CONTACT) : {

152 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

if (resCode == Activity.RESULT OK) {
Uri contactData = data.getData();
Cursor c¢ = managedQuery (contactData, null, null, null);
c.moveToFirst () ;
String name = c.getString(c.getColumnIndexOrThrow (People.NAME)) ;
TextView tv = (TextView)findViewById(R.id.selected_contact_textview) ;
tv.setText (name) ;

}

break;

}

9. With your test harness complete, simply add it to your application manifest. You’ 1l also need
to add a READ_CONTACTS permission within a uses-permission tag, to allow the application
to access the contacts database.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.paad.contactpicker">
<application android:icon="@drawable/icon">
<activity android:name=".ContactPicker" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.PICK"></action>
<category android:name="android.intent.category.DEFAULT"></category>
<data android:path="contacts" android:scheme="content"></data>
</intent-filter>
</activity>
<activity android:name=".ContentPickerTester"
android:label="Contact Picker Test">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-permission android:name="android.permission.READ_CONTACTS"/>
</manifest>

All code snippets in this example are part of the Chapter 5 Contact Picker project, available for download at Wrox.com.

When your Activity is running, press the button. The contact picker Activity should be shown as in
Figure 5-1.

Once you select a contact, the parent Activity should return to the foreground with the selected contact
name displayed, as shown in Figure 5-2.

Using Intent Filters for Plug-Ins and Extensibility

You’ ve now learned how to create implicit Intents to launch Activities, but that’ s only half the story.
Android also lets future packages provide new functionality for existing applications, using Intent
Filters to populate menus dynamically at run time.

Introducing Intents | 153

This provides a plug-in model for your Activities that lets A i Ml & 3:23 pm
them take advantage of future functionality, provided
through application components you haven’ t yet con-
ceived of, without your having to modify or recompile your

Carol Kessel

projects. Barry Cranford
The addIntentOptions method available from the Menu Alon Shmuel
class lets you specify an Intent that describes the data acted

upon by the Menu. Android resolves this Intent and returns Doug Burbidge
every action specified in Intent Filters that match the

specified data. A new Menu Item is created for each, with Hou Wah Thoo
the text populated from the matching Intent Filters’

labels. Scott Glue
The elegance of this concept is best explained by example. Stuart Barrow
If the data your Activity displays is a list of places, the

Menu Items available might include View and ¢ ¢ Show Gavin Morris
directions to.” > Jump a few years ahead and you’ ve created

. . . . Mike Thampson
an application that interfaces with your car, allowing your

phone to handle driving. Thanks to the runtime menu

generation, when a new Intent Filter —with a DRIVE_CAR
action —is included within the new Activity’ s node, Peta White
Android will automagically add this action as a new Menu

Cindy Archer

Item in your earlier application. Victor Wycoco

Runtime menu population provides the ability to retrofit
functionality when you create new components capable
of performing actions on a given type of data. Many of
Android’ s native applications use this functionality, giv-
ing you the ability to provide additional actions to native

Activities.
Pick Cantact

Supplying Anonymous Actions to Applications

FIGURE 5-1

Ha M @ 3:25em

To use this mechanism to make your Activity’ s actions avail-
able anonymously for existing applications, publish them
using intent-filter tags within their manifest nodes.

The Intent Filter describes the action it performs and the
data upon which it can be performed. The latter will be used
during the Intent resolution process to determine when this
action should be available. The category tag must be either
ALTERNATIVE Or SELECTED_ALTERNATIVE or both. The text
used for the Menu Items is specified by the android:label
attribute.

Listing 5-10 shows an example of an Intent Filter used to
advertise an Activity’ s ability to nuke moon-bases from
orbit.

FIGURE 5-2

154 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

) LISTING 5-10: Advertising-supported Activity actions

Available for L. .
download on <activity android:name=".NostromoController">
Wrox.com <intent-filter

android:label="Nuke From Orbit">
<action android:name="com.pad.nostromo.NUKE_ FROM ORBIT" />
<data android:mimeType="vnd.moonbase.cursor.item/*"/>
<category android:name="android.intent.category.ALTERNATIVE" />
<category android:name="android.intent.category.SELECTED_ ALTERNATIVE" />
</intent-filter>
</activity>

The Content Provider and other code needed for this example to run aren’ t provided; in the following
sections you’ 1l see how to write the code that adds this action dynamically to another Activity’ s Menu.

Incorporating Anonymous Actions in Your Activity’s Menu

To add Menu Items to your Menus dynamically at run time, use the addTntentOptions method on the
Menu object in question: pass in an Intent that specifies the data for which you want to provide actions.
Generally this will be handled within your Activities’ onCreateOptionsMenu Or onCreateContextMenu
handlers.

The Intent you create will be used to resolve components with Intent Filters that supply actions for
the data you specify. The Intent is being used to find actions, so don’ t assign it one; it should spec-
ify only the data to perform actions on. You should also specify the category of the action, either
CATEGORY_ALTERNATIVE Or CATEGORY_SELECTED_ALTERNATIVE.

The skeleton code for creating an Intent for menu-action resolution is shown here:

Intent intent = new Intent();
intent.setData (MyProvider.CONTENT_ URI) ;
intent.addCategory (Intent.CATEGORY_ALTERNATIVE) ;

Pass this Intent in to addIntentOptions on the Menu you wish to populate, as well as any option flags,
the name of the calling class, the menu group to use, and the menu ID values. You can also specify an
array of Intents you’ d like to use to create additional menu items.

Listing 5-11 gives an idea of how to dynamically populate an Activity menu that would include the
¢ ¢ moon-base nuker action from Listing 5-10.

5 3

) LISTING 5-11: Dynamic Menu population from advertised actions

Available for :
download on @Ove?rlde .
Wrox.com public boolean onCreateOptionsMenu (Menu menu) {

super .onCreateOptionsMenu (menu) ;

// Create the intent used to resolve which actions

// should appear in the menu.

Intent intent = new Intent();

intent.setData (MoonBaseProvider.CONTENT_URI) ;
intent.addCategory (Intent.CATEGORY_SELECTED_ALTERNATIVE) ;

Introducing Intents | 155

// Normal menu options to let you set a group and ID
// values for the menu items you're adding.

int menuGroup = 0;

int menulItemId = 0;

int menultemOrder = Menu.NONE;

// Provide the name of the component that's calling
// the action -- generally the current Activity.
ComponentName caller = getComponentName () ;

// Define intents that should be added first.
Intent[] specificIntents = null;

// The menu items created from the previous Intents
// will populate this array.

MenuItem[] outSpecificItems = null;

// Set any optional flags.
int flags = Menu.FLAG_APPEND_TO_GROUP;

// Populate the menu

menu.addIntentOptions (menuGroup,
menultemId,
menultemOrder,
caller,
specificIntents,
intent,
flags,
outSpecificItems);

return true;

Introducing Linkify

Linkify is a helper class that automagically creates hyperlinks within Text View (and Text View-
derived) classes through RegEx pattern matching.

Text that matches a specified RegEx pattern will be converted into a clickable hyperlink that implicitly

fires startActivity (new Intent (Intent.ACTION_VIEW, uri)), using the matched text as the target
URL

You can specify any string pattern you want to turn into links; for convenience, the 1inkify class pro-
vides presets for common content types (like phone numbers and e-mail/web addresses), as described
in the following section.

The Native Linkify Link Types

The static Linkify.addLinks method accepts the View to linkify, and a bitmask of one or more of
the default content types supported and supplied by the Linkify class: WEB_URLS, EMATI,_ADDRESSES,
PHONE_NUMBERS, and ALL.

Listing 5-12 shows how to linkify a Text View to display web and e-mail addresses as hyperlinks. When
clicked, they will open the browser and an e-mail application respectively.

156 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

) LISTING 5-12: Using Linkify in code

Available for
download on TextView textView = (TextView)findViewById(R.id.myTextView) ;

Wrox.com Linkify.addLinks (textView, Linkify.WEB_URLS|Linkify.EMAIL_ADDRESSES);

Most Android devices have at least two e-mail applications: Gmail and Email. In
situations in which multiple Activities are resolved as possible action consumers the
user is asked to select his or her preference.

You can also linkify Views from within a layout resource using the android:autoLink attribute. It
supports one or more (separated by |) of the following self-describing values: none, web, email, phone,
and all.

Listing 5-13 shows how to add hyperlinks for phone numbers and e-mail addresses:

) LISTING 5-13: Using Linkify in XML

Available for .
download on <TextView
Wrox.com android:layout_width="fill_parent"

android:layout_height="fill_parent"
android:text="@string/linkify me"
android:autoLink="phone |email"

/>

Creating Custom Link Strings

To define your own linkify strings you create a new RegEx pattern to match the text you want to
display as hyperlinks.

As with the native types, you linkify the target View by calling L.inki fy.addLinks, but this time pass in
the new RegEx pattern. You can also pass in a prefix that will be prepended to the target URI when a
link is clicked.

Listing 5-14 shows a View being linkified to support earthquake data provided by an Android Content
Provider (that you will create in Chapter 7). Rather than include the entire schema, the linkify pattern
matches any text that starts with ¢ ¢ quake’ > and is followed by a number. The content schema is then
prepended to the URI before the Intent is fired.

J LISTING 5-14: Creating custom link strings in Linkify

Available for ,
download on int flags = Pattern.CASE_INSENSITIVE;

Wrox.com Pattern p = Pattern.compile("\\bquake[0-9]*\\b", flags);
Linkify.addLinks (myTextView, p,
"content://com.paad.earthquake/earthquakes/");

Introducing Intents | 157

Linkify also supports TransformFilter and MatchFilter interfaces. These offer additional control over
the target URI structure and the definition of matching strings, and are used as in the following skeleton
code:

Linkify.addLinks (myTextView, pattern, prefixWith,
new MyMatchFilter(), new MyTransformFilter());

Using the Match Filter

Implement the acceptMatch method in your Match Filter to add additional conditions to RegEx pattern
matches. When a potential match is found acceptMatch is triggered, with the match start and end index
(along with the full text being searched) passed in as parameters.

Listing 5-15 shows a MatchFilter implementation that cancels any match immediately preceded by an
exclamation mark.

) LISTING 5-15: Using a Linkify Match Filter

Available for , , .
download on class MyMatchFilter implements MatchFilter {
Wrox.com public boolean acceptMatch(CharSequence s, int start, int end) {

return (start == 0 || s.charAt(start-1) != '!');

}

Using the Transform Filter

The Transform Filter gives you more freedom to format your text strings by letting you modify the
implicit URI generated by the link text. Decoupling the link text from the target URI gives you more
freedom in how you display data strings to your users.

To use the Transform Filter, implement the transformurl method in your Transform Filter. When
linkify finds a successful match it calls transformurl, passing in the RegEx pattern used and the default
URI string it creates. You can modify the matched string and return the URI as a target suitable to be
¢ ¢ viewed” > by another Android application.

The TransformFilter implementation shown in Listing 5-16 transforms the matched text into a low-
ercase URI.

) LISTING 5-16: Using a Linkify Transform Filter

Available for , . :
download on class MyTransformFilter implements TransformFilter {
Wrox.com public String transformUrl (Matcher match, String url) {

return url.toLowerCase() ;

}

Using Intents to Broadcast Events

As a system-level message-passing mechanism, Intents are capable of sending structured messages
across process boundaries.

158 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

So far you’ ve looked at using Intents to start new application components, but they can also be
used to broadcast messages anonymously between components via the sendBroadcast method. You
can implement Broadcast Receivers to listen for, and respond to, these broadcast Intents within your
applications.

Broadcast Intents are used to notify listeners of system or application events, extending the event-driven
programming model between applications.

Broadcasting Intents helps make your application more open; by broadcasting an event using an Intent
you let yourself and third-party developers react to events without having to modify your original
application. Within your applications you can listen for broadcast Intents to replace or enhance native
(or third-party) applications, or react to system changes and application events.

Android uses broadcast Intents extensively to broadcast system events like battery-charging levels,
network connections, and incoming calls.

Broadcasting Events with Intents

Broadcasting Intents is simple. Within your application, construct the Intent you want to broadcast and
use the sendBroadcast method to send it.

Set the action, data, and category of your Intent in a way that lets Broadcast Receivers accurately
determine their interest. In this scenario the Intent action string is used to identify the event being
broadcast, so it should be a unique string that identifies the event. By convention, action strings are
constructed with the same form as Java package names:

public static final String NEW_LIFEFORM_DETECTED =
"com.paad.action.NEW_LIFEFORM";

If you wish to include data within the Intent you can specify a URI using the Intent’ slata property.
You can also include extras to add additional primitive values. Considered in terms of an event-driven
paradigm, the extras equate to optional parameters passed into an event handler.

Listing 5-17 shows the basic creation of a broadcast Intent using the action defined previously, with
additional event information stored as extras.

) LISTING 5-17: Broadcasting an Intent

Available for .
downloadon Intent intent = new Intent (NEW_LIFEFORM_DETECTED) ;
Wrox.com intent.putExtra("lifeformName", lifeformType);

intent.putExtra("longitude", currentLongitude) ;
intent.putExtra("latitude", currentLatitude);
sendBroadcast (intent) ;

Listening for Broadcasts with Broadcast Receivers

Broadcast Receivers are used to listen for broadcast Intents. For a Broadcast Receiver to be enabled it
needs to be registered, either in code or within the application manifest. When registering a Broadcast
Receiver you must use an Intent Filter to specify which Intents it is listening for.

Introducing Intents | 159

To create a new Broadcast Receiver, extend the BroadcastReceiver class and override the onReceive
event handler as shown in Listing 5-18.

) LISTING 5-18: Broadcast Receiver skeleton implementation

Available for . . }
download on import android.content.BroadcastReceiver;
Wrox.com import android.content.Context;

import android.content.Intent;

public class MyBroadcastReceiver extends BroadcastReceiver {
@Override
public void onReceive (Context context, Intent intent) {
//TODO: React to the Intent received.

}

The onreceive method will be executed when a broadcast Intent is received that matches the Intent
Filter used to register the Receiver. The onrReceive handler must complete within five seconds or the
Force Close dialog will be displayed.

Applications with Broadcast Receivers registered in the manifest don’ t have to be running when the
Intent is broadcast for the receivers to execute. They will be started automatically when a match-
ing Intent is broadcast. This is excellent for resource management as it lets you create event-driven
applications that will still respond to broadcast events even after they’ ve been closed or killed.

Typically Broadcast Receivers will update content, launch Services, update Activity Ul, or notify the
user using the Notification Manager. The five-second execution limit ensures that major processing
cannot, and should not, be done within the Broadcast Receiver itself.

Listing 5-19 shows how to implement a Broadcast Receiver. In the following sections you will learn
how to register it in code or in your application manifest.

) LISTING 5-19: Implementing a Broadcast Receiver

mﬁgﬂgﬁ%ﬁ public class LifeformDetectedBroadcastReceiver extends BroadcastReceiver {
Wrox.com
public static final String BURN = "com.paad.alien.action.BURN_IT WITH_FIRE";
@Override

public void onReceive (Context context, Intent intent) {
// Get the lifeform details from the intent.
Uri data = intent.getData();
String type = intent.getStringExtra("type");
double lat = intent.getDoubleExtra("latitude", 0);
double 1ng = intent.getDoubleExtra("longitude", 0);
Location loc = new Location("gps");
loc.setLatitude(lat) ;

loc.setLongitude (1ng) ; .
continues

160 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

LISTING 5-19 (continued)

if (type.equals("alien")) {
Intent startIntent = new Intent (BURN, data);
startIntent.putExtra("latitude", lat);
startIntent.putExtra("longitude", 1ng);

context.startActivity(startIntent) ;

}

Registering Broadcast Receivers in Your Application Manifest

To include a Broadcast Receiver in the application manifest, add a <receiver> tag within the
application node, specifying the class name of the Broadcast Receiver to register. The receiver node
needs to include an intent-filter tag that specifies the action string being listened for, as shown in
Listing 5-20.

) LISTING 5-20: Registering a Broadcast Reveiver in XML

Available for
downloadon <receiver android:name=".LifeformDetectedBroadcastReceiver">
Wrox.com <intent-filter>

<action android:name="com.paad.action.NEW_LIFEFORM"/>
</intent-filter>
</receiver>

Broadcast Receivers registered this way are always active, and will receive broadcast Intents even when
the application has been killed or hasn’ t been started.

Registering Broadcast Receivers in Code

You can also register Broadcast Receivers in code. A receiver registered programmatically will respond
to broadcast Intents only when the application component it is registered within is running.

This is typically useful when the Receiver is being used to update Ul elements in an Activity. In this case
it’ s good practice to un-register the Broadcast Receiver when the Activity isn’ t visible (or active).

Listing 5-21 shows how to register a Broadcast Receiver in code using the IntentFilter class.

) LISTING 5-21: Registering a Broadcast Receiver in code

Available for . .
download on // Create and register the broadcast receiver.

Wrox.com IntentFilter filter = new IntentFilter (NEW_LIFEFORM_DETECTED) ;
LifeformDetectedBroadcastReceiver r = new LifeformDetectedBroadcastReceiver();
registerReceiver(r, filter);

To un-register a Broadcast Receiver use the unregisterReceiver method on your application context,
passing in a Broadcast Receiver instance as follows:

unregisterReceiver (receiver) ;

Introducing Intents | 161

Further examples can also be found in Chapter 9, where you learn to create your own background
Services and use Intents to broadcast events to your Activities.

Broadcasting Sticky and Ordered Intents

When broadcasting an Intent using sendBroadcast, your Intent will be received by all registered Broad-
cast Receivers, but you cannot control the order and they cannot propagate results.

In circumstances where the order in which the Broadcast Receivers receive the Intent is important,
or where you require the Receivers to be able to affect the Intent being broadcast, you can use the
sendOrderedBroadcast method.

sendOrderedBroadcast (intent, null);

Using this method, your Intent will be delivered to all registered Receivers in order of priority. You
can optionally assign your own Broadcast Receiver, which will then receive the Intent after it has been
handled (and potentially modified) by all the other registered Broadcast Receivers.

sendOrderedBroadcast (intent, null, myBroadcastReceiver, null,
Activity.RESULT_OK, null, null);

For efficiency reasons, some broadcasts are sticky. When you call registerReceiver specifying an
Intent Filter that matches a sticky broadcast, the return value will be the sticky broadcast Intent. To
broadcast a sticky Intent your application must have the BROADCAST _STICKY uses-permission.

sendStickyBroadcast (intent) ;
To remove a sticky intent call removestickyBroadcast, passing in the sticky Intent to remove.

removeStickyBroadcast (intent) ;

Native Android Broadcast Actions

Android broadcasts Intents for many of the system Services. You can use these messages to add func-
tionality to your own projects based on system events such as time-zone changes, data-connection
status, incoming SMS messages, or phone calls.

The following list introduces some of the native actions exposed as constants in the Intent class; these
actions are used primarily to track device status changes.

> ACTION_BOOT_COMPLETED Fired once when the device has completed its startup sequence. An
application requires the RECEIVE_BOOT COMPLETED permission to receive this broadcast.

» ACTION_CAMERA BUTTON Fired when the camera button is clicked.

> ACTION_DATE_CHANGED and ACTION_TIME CHANGED These actions are broadcast if the date
or time on the device is manually changed (as opposed to changing through the inexorable
progression of time).

» ACTION_MEDIA_BUTTON Fired when the media button is clicked.

> ACTION_MEDIA_EJECT If the user chooses to eject the external storage media, this event is
fired first. If your application is reading or writing to the external media storage you should
listen for this event in order to save and close any open file handles.

162 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

» ACTION_MEDIA MOUNTED and ACTION_MEDIA UNMOUNTED These two events are broadcast
whenever new external storage media are successfully added to or removed from the device.

> ACTION_NEW_OUTGOING_CALL Broadcast when a new outgoing call is about to be placed. Lis-
ten for this broadcast to intercept outgoing calls. The number being dialed is stored in the
EXTRA_PHONE_NUMBER extra, while the resultData in the returned Intent will be the number
actually dialed. To register a Broadcast Receiver for this action your application must declare
the PROCESS_OUTGOING_CALLS uses-permission.

» ACTION_SCREEN_OFF and ACTION_SCREEN_ON Broadcast when the screen turns off or on
respectively.

» ACTION_TIMEZONE CHANGED This action is broadcast whenever the phone’ s current
time zone changes. The Intent includes a time-zone extra that returns the ID of the new
java.util.TimeZone.

A comprehensive list of the broadcast actions used and transmitted natively by Android to notify appli-
cations of system state changes is available at http://developer.android.com/reference/android/
content/Intent.html

Android also uses broadcast Intents to announce application-specific events like incoming SMS mes-
sages. The actions and Intents associated with these events will be discussed in more detail in later
chapters when you learn more about the associated Services.

INTRODUCING PENDING INTENTS

The PendingIntent class provides a mechanism for creating Intents that can be fired by another appli-
cation at a later time.

A Pending Intent is commonly used to package an Intent that will be fired in response to a future event,
such as a widget View being clicked or a Notification being selected from the notification panel.

When used, Pending Intents execute the packaged Intent with the same permissions
and identity as if you had executed them yourself, within your own application.

As shown in Listing 5-22, the PendingIntent class offers static methods to construct Pending Intents
used to start an Activity, start a Service, or broadcast an Intent.

) LISTING 5-22: Creating new Pending Intents

Available for o
download on // Start an Activity
Wrox.com Intent startActivityIntent = new Intent (this, MyOtherActivity.class);

PendingIntent.getActivity(this, 0, startActivityIntent, 0);

// Broadcast an Intent
Intent broadcastIntent = new Intent (NEW_LIFEFORM_DETECTED) ;
PendingIntent.getBroadcast (this, 0, broadcastIntent, 0);

Introducing Adapters | 163

You’ 1l learn more about using Pending Intents indter chapters when they’ re used to support other
Services such as widgets and Notifications.

INTRODUCING ADAPTERS

Adapters are bridging classes that bind data to Views (such as List Views) used in the user interface.
The adapter is responsible for creating the child Views used to represent each item within the parent
View, and providing access to the underlying data.

Views that support Adapter binding must extend the Adapterview abstract class. It” s possible to create
your own AdapterView-derived controls and to create new Adapter classes to bind them.

Introducing Some Native Adapters

In many cases you won’ t have to create your own Adapter from scratch. Android supplies a set of
Adapters that pump data into native UI controls.

Because Adapters are responsible both for supplying the data and for creating the Views that represent
each item, Adapters can radically modify the appearance and functionality of the controls they’ re
bound to.

The following list highlights two of the most useful and versatile native Adapters:

> ArrayAdapter The Array Adapter uses generics to bind an Adapter View to an array of
objects of the specified class. By default the Array Adapter uses the tostring value of each
object in the array to create and populate Text Views. Alternative constructors enable you to
use more complex layouts, or you can extend the class to use alternatives to Text Views as
shown in the next section.

> SimpleCursorAdapter The Simple Cursor Adapter attaches Views specified within a lay-
out to the columns of Cursors returned from Content Provider queries. You specify an XML
layout definition, and then bind each column to a View within that layout. The adapter will
create a new View for each Cursor entry and inflate the layout into it, populating each View
within the layout using the Cursor column values.

The following sections will delve into these Adapter classes in more detail. The examples provided bind
data to List Views, though the same logic will work just as well for other Adapter View classes such as
Spinners and Galleries.

Customizing the Array Adapter

By default the Array Adapter will use the tostring value of the object array it is binding to populate
the Text View available within the specified layout.

In most cases you will need to customize the layout used to represent each View. To do that, you will
need to extend Arrayadapter with a type-specific variation, overriding the getview method to assign
object properties to layout Views as shown in Listing 5-23.

The getview method is used to construct, inflate, and populate the View that will be displayed within
the parent Adapter View class (e.g., List View) which is being bound to the underlying array using this
Adapter.

164 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

The getview method receives parameters that describe the position of the item to be displayed, the
View being updated (or nul1), and the View Group into which this new View will be placed. A call to
getItem will return the value stored at the specified index in the underlying array.

Return the new populated View instance as a result from this method.

) LISTING 5-23: Customizing the Array Adapter

Available for
download on public class MyArrayAdapter extends ArrayAdapter<MyClass> {
Wrox.com

int resource;

public MyArrayAdapter (Context context,
int _resource,
List<MyClass> items) {
super (context, _resource, items);
resource = _resource;

@Override
public View getView(int position, View convertView, ViewGroup parent) {
LinearLayout newView;

MyClass classInstance = getItem(position);

// TODO Retrieve values to display from the
// classInstance variable.

// Inflate a new view if this is not an update.
if (convertView == null) {
newView = new LinearLayout (getContext());
String inflater = Context.LAYOUT_ INFLATER_SERVICE;

LayoutInflater vi = (LayoutInflater)getContext ().getSystemService(inflater);
vi.inflate(resource, newView, true);

} else {
newView = (LinearLayout)convertView;

// TODO Retrieve the Views to populate
// TODO Populate the Views with object property values.

return newView;

Using Adapters for Data Binding

To apply an Adapter to an Adapterview-derived class you call the View’ setadapter method, passing
in an Adapter instance as shown in Listing 5-24.

Introducing Adapters | 165

v

Available for
download on
Wrox.com

LISTING 5-24: Creating and applying an Adapter

ArrayList<String> myStringArray = new ArrayList<String>();
ArrayAdapter<String> myAdapterInstance;

int layoutID = android.R.layout.simple_ list_item_1;
myAdapterInstance = new ArrayAdapter<String>(this, layoutID , myStringArray):;

myListView.setAdapter (myAdapterInstance);

This snippet shows the most simplistic case, in which the array being bound contains Strings and each
List View item is represented by a single Text View.

The first of the following examples demonstrates how to bind an array of complex objects to a List
View using a custom layout. The second shows how to use a Simple Cursor Adapter to bind a query
result to a custom layout within a List View.

Customizing the To-Do List Array Adapter

This example extends the To-Do List project, storing each item as a ToboTItem object that includes the
date each item was created.

You will extend Arrayadapter to bind a collection of ToboTItem objects to the Listview and customize
the layout used to display each List View item.

1. Return to the To-Do List project. Create a new ToDoItem class that stores the task and its

creation date. Override the tostring method to return a summary of the item data.

package com.paad.todolist;

import java.text.SimpleDateFormat;
import java.util.Date;

public class ToDoItem ({

String task;
Date created;

public String getTask() {
return task;

public Date getCreated() ({
return created;

public ToDoItem(String _task) {
this(_task, new Date(java.lang.System.currentTimeMillis()));

}

public ToDoItem(String _task, Date _created) {
task = _task;

166 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

created = _created;

@Override

public String toString() {
SimpleDateFormat sdf = new SimpleDateFormat ("dd/MM/yy");
String dateString = sdf.format (created);
return " (" + dateString + ") " + task;

}

Open the TopoList Activity and modify the ArrayList and Arrayadapter variable types
to store ToDoTtem objects rather than Strings. You’ Il then need to modify thencreate
method to update the corresponding variable initialization. You’ Il also need to update the
onKeyListener handler to support the ToDoTtem objects.

private ArrayList<ToDoItem> todoItems;
private ListView myListView;

private EditText myEditText;

private ArrayAdapter<ToDoItem> aa;

@Override
public void onCreate(Bundle icicle) {
super.onCreate (icicle) ;

// Inflate your view
setContentView(R.layout.main) ;

// Get references to UI widgets
myListView = (ListView)findViewById(R.id.myListView) ;
myEditText = (EditText)findViewById(R.id.myEditText) ;

todoItems = new ArrayList<ToDoItem>();

int resID = R.layout.todolist_item;

aa = new ArrayAdapter<ToDoItem>(this, resID, todoItems);
myListView.setAdapter (aa) ;

myEditText.setOnKeyListener (new OnKeyListener () {
public boolean onKey(View v, int keyCode, KeyEvent event) {
if (event.getAction() == KeyEvent.ACTION_DOWN)
if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER) ({
ToDoItem newItem = new ToDoItem(myEditText.getText().toString()):;
todoItems.add (0, newItem);
myEditText.setText ("");
aa.notifyDataSetChanged() ;
cancelAdd() ;
return true;
}
return false;
}
});

registerForContextMenu (myListView) ;

Introducing Adapters | 167

3. If you run the Activity it will now display each to-do item as shown in Figure 5-3.

Dl @ zazem

{16/12/09) Create Todoltem layout.

(16/12/08) Update TodaActhity.

{15/12/08) Create Todolistltem class,

FIGURE 5-3

4. Now you can create a custom layout to display each to-do item.

Start by modifying the custom layout you created in Chapter 4 to include a second Textview.
It will be used to show the creation date of each to-do item.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="@color/notepad_paper">
<TextView
android:id="@+id/rowDate"
android:layout_width="wrap_content"
android:layout_height="fill_parent"
android:padding="10dp"
android:scrollbars="vertical"
android: fadingEdge="vertical"
android:textColor="@color/notepad_text"
android:layout_alignParentRight="true"
/>
<TextView
android:id="@+id/row"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:padding="10dp"
android:scrollbars="vertical"
android: fadingEdge="vertical"
android:textColor="@color/notepad_text"
android:layout_alignParentLeft="@+id/rowDate"
/>
</RelativeLayout>

168 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

6.

Create a new class (ToboTtemAdapter) that extends an Arrayadapter with a ToDoTtem-specific
variation. Override getView to assign the task and date properties in the ToDoTtem object to
the Views in the layout you created in Step 4:

import java.text.SimpleDateFormat;
import android.content.Context;
import java.util.*;

import android.view.*;

import android.widget.*;

public class ToDoItemAdapter extends ArrayAdapter<ToDoItem> {
int resource;

public ToDoItemAdapter (Context _context,
int _resource,
List<ToDoItem> _items) ({
super (_context, _resource, _items);
resource = _resource;

@Override
public View getView(int position, View convertView, ViewGroup parent) {
LinearLayout todoView;

ToDoItem item = getItem(position);

String taskString = item.getTask();

Date createdDate = item.getCreated();

SimpleDateFormat sdf = new SimpleDateFormat ("dd/MM/yy");
String dateString = sdf.format (createdDate) ;

if (convertView == null) {
todoView = new LinearLayout (getContext());
String inflater = Context.LAYOUT_INFLATER_SERVICE;

LayoutInflater vi = (LayoutInflater)getContext().getSystemService(inflater);
vi.inflate(resource, todoView, true);

} else {
todoView = (LinearLayout) convertView;

}

TextView dateView = (TextView)todoView.findViewById(R.id.rowDate) ;

TextView taskView = (TextView)todoView.findViewById(R.id.row) ;

dateView.setText (dateString) ;
taskView.setText (taskString) ;

return todoView;
}

Finally, replace the arrayadapter declaration with a ToDoItemAdapter:

private ToDoItemAdapter aa;

Introducing Adapters | 169

Within onCreate, replace the Arrayadapter<string> instantiation with the new
ToDoltemAdapter:

aa = new ToDoItemAdapter (this, resID, todoItems);

7. If you run your Activity it should appear as shown in the screenshot in Figure 5-4.
i
Update Android book for version 2 16412109
Write Android book 16/1.2/09

FIGURE 5-4

All code snippets in this example are part of the Chapter 5 Todo List project, available for download at Wrox.com.

Using the Simple Cursor Adapter

The simpleCursoradapter lets you bind a cursor to a List View, using a custom layout definition to
define the layout of each row/item, which is populated by a row’ s column values.

Construct a Simple Cursor Adapter by passing in the current context, a layout resource, a Cursor, and
two arrays: one that contains the names of the columns to be used, and a second (equally-sized) array
that has resource IDs for the Views to use to display the contents of the corresponding columns.

Listing 5-25 shows how to construct a Simple Cursor Adapter to display contact information.

) LISTING 5-25: Creating a Simple Cursor Adapter

Available for
download on
Wrox.com

String uriString = "content://contacts/people/";
Cursor myCursor = managedQuery (Uri.parse(uriString), null, null, null);

String[] fromColumns = new String[] {People.NUMBER, People.NAME};
int[] toLayoutIDs = new int[] { R.id.nameTextView, R.id.numberTextView};
SimpleCursorAdapter myAdapter;

myAdapter = new SimpleCursorAdapter(this,
R.layout.simplecursorlayout,

continues

170 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

LISTING 5-25 (continued)

myCursor,
fromColumns,
toLayoutIDs);

myListView.setAdapter (myAdapter) ;

The Simple Cursor Adapter was used earlier in this chapter in the Contact Picker example. You’ Il learn
more about Content Providers and Cursors in Chapter 7, where you® 1l also find more Simple Cursor
Adapter examples.

USING INTERNET RESOURCES

With Internet connectivity and a WebKit browser, you might well ask if there’ s any reason to create
native Internet-based applications when you could make a web-based version instead.

There are a number of benefits to creating thick- and thin-client native applications rather than relying
on entirely web-based solutions:

> Bandwidth Static resources like images, layouts, and sounds can be expensive data con-
sumers on devices with limited and often expensive bandwidth restraints. By creating a native
application you can limit the bandwidth requirements to updated data only.

» Caching Mobile Internet access has not yet reached the point of ubiquity. With a browser-
based solution a patchy Internet connection can result in intermittent application availability.
A native application can cache data to provide as much functionality as possible without a
live connection.

» Native features Android devices are more than a simple platform for running a browser:
they include location-based services, Notifications, widgets, camera hardware, and
accelerometers. By creating a native application you can combine the data available online
with the hardware features available on the device to provide a richer user experience.

Modern mobile devices offer a number of alternatives for accessing the Internet. Looked at broadly,
Android provides two connection techniques for Internet connectivity. Each is offered transparently to
the application layer.

> Mobile Internet GPRS, EDGE, and 3G Internet access is available through carriers that
offer mobile data plans.

> Wi-Fi Wi-Fi receivers and mobile hotspots are becoming increasingly common.

Connecting to an Internet Resource

While the details of working with specific web services won’ t be covered within this book, it’ s useful to
know the general principles of connecting to the Internet, and getting an input stream from a remote
data source.

Using Internet Resources | 171

Before you can access Internet resources, you need to add an INTERNET uses-permission node to your
application manifest, as shown in the following XML snippet:

<uses-permission android:name="android.permission.INTERNET"/>

Listing 5-26 shows the basic pattern for opening an Internet data stream.

) LISTING 5-26: Opening a data stream

Available for , . ,
download on String myFeed = getString(R.string.my_feed);
Wrox.com try {

URL url = new URL (myFeed) ;

URLConnection connection = url.openConnection();
HttpURLConnection httpConnection = (HttpURLConnection)connection;

int responseCode = httpConnection.getResponseCode() ;

if (responseCode == HttpURLConnection.HTTP_OK) {
InputStream in = httpConnection.getInputStream() ;
[... Process the input stream as required ...]

}
catch (MalformedURLException e) { }
catch (IOException e) { }

Android includes several classes to help you handle network communications. They are available in the
java.net.* and android.net.* packages.

Later in this chapter is a fully worked example that shows how to obtain and process an Internet feed
to get a list of earthquakes felt in the last 24 hours.

Chapter 13 features more information on managing specific Internet connections, including informa-
tion on monitoring connection status and configuring Wi-Fi access point connections.

Using Internet Resources
Android offers several ways to leverage Internet resources.

At one extreme you can use a WebView to include a WebKit-based browser View within an Activity. At
the other extreme you can use client-side APIs such as Google’ s GData APIs to interact directly with
server processes. Somewhere in between, you can process remote XML feeds to extract and process
data using a Java-based XML parser such as sax or the more efficient xm1PullParser.

Detailed instructions for parsing XML and interacting with specific web services are outside the scope
of this book. That said, the Earthquake example, included later in this chapter, gives a fully worked
example of parsing an XML feed using the sax parser.

If you’ re using Internet resources in your applicatin, remember that your users’ data connections are
dependent on the communications technology available to them. EDGE and GSM connections are
notoriously low-bandwidth, while a Wi-Fi connection may be unreliable in a mobile setting.

172 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

Optimize the user experience by limiting the quantity of data being transmitted, and ensure that your
application is robust enough to handle network outages and bandwidth limitations.

INTRODUCING DIALOGS

Dialog boxes are a common UI metaphor in desktop, web, RN @ 10:43
and mobile applications. They’ re used to help users answer
questions, make selections, and confirm actions, and to dis-
play warning or error messages. Dialog boxes in Android
are partially transparent, floating Activities that partially
obscure the Activities that launched them.

As in Figure 5-5, they generally obscure the Activities behind
them using a blur or dim filter. @ It is pitch black.

There are three ways to implement a dialog in Android: e e e

» Using the Dialog class (or its extensions) As well grue.
as the general-purpose Alertdialog class, Android
includes a number of specialist classes that extend
Dialog. Each is designed to provide specific dialog-
box functionality. A Dialog-class-based screen is
constructed entirely within its calling Activity, so
it doesn’ t need to be registered in the manifest as
its life cycle is controlled entirely by the calling
Activity.

Go Back J { Move Forward

> Dialog-themed Activities You can apply the
dialog theme to a regular Activity to give it the
appearance of a standard dialog box.

FIGURE 5-5

» Toasts Toasts are special non-modal transient message boxes, often used by Broadcast
Receivers and Services to notify users of events occurring in the background. You can learn
more about Toasts in Chapter 9.

Introducing the Dialog Classes

To use the base pialog class you create a new instance and set the title and layout, using the setTitle
and setContentview methods as shown in Listing 5-27.

J LISTING 5-27: Creating a new dialog using the Dialog class

Available for : _ . A . .
downloadon Pi@log d = new Dialog(MyActivity.this);

Wrox.com
// Have the new window tint and blur the window it

// obscures.
Window window = d.getWindow() ;
window.setFlags (WindowManager.LayoutParams.FLAG_BLUR_BEHIND,

Introducing Dialogs | 173

WindowManager.LayoutParams.FLAG_BLUR_BEHIND) ;

// Set the title

d.setTitle("Dialog Title");

// Inflate the layout
d.setContentView(R.layout.dialog view);

// Find the TextView used in the layout
// and set its text value

TextView text = (TextView)d.findViewById(R.id.dialogTextView) ;
text.setText ("This is the text in my dialog");
Once it’ s configured to your liking, use thehow method to display it.

d.show();

The Alert Dialog Class

The alertDdialog class is one of the most versatile Dialog-class implementations. It offers a number of
options that let you construct screens for some of the most common dialog-box use cases, including:

> Presenting a message to the user offering them one to three options in the form of buttons.
This functionality is probably familiar to you if you’ ve done any desktop programming for
which the buttons presented are usually a combination of OK, Cancel, Yes, and No.

» Offering a list of options in the form of checkboxes or radio buttons.
» Providing a text entry box for user input.
To construct the Alert Dialog user interface, create a new AlertDialog.Builder object as follows:
AlertDialog.Builder ad = new AlertDialog.Builder (context) ;

You can then assign values for the title and message to display, and optionally assign values to be used
for any buttons, selection items, and text input boxes you wish to display. That includes setting event
listeners to handle user interaction.

Listing 5-28 gives an example of a new Alert Dialog used to display a message and offer two button
options to continue. Clicking either button will close the Dialog after executing the attached Click
Listener.

J LISTING 5-28: Configuring an Alert Dialog

mﬁgﬂgﬁ%ﬁ ConFext gontext = MyAct%vity.this;

Wrox.com String title = "It is Pitch Black";
String message = "You are likely to be eaten by a grue.";
String buttonlString = "Go Back";
String button2String = "Move Forward";

AlertDialog.Builder ad = new AlertDialog.Builder (context) ;
ad.setTitle(title);
ad.setMessage (message) ;

ad.setPositiveButton (buttonlString, R
continues

174 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

LISTING 5-28 (continued)

new OnClickListener () {
public void onClick(DialogInterface dialog, int argl) {
eatenByGrue() ;
}
1)
ad.setNegativeButton (button2String,
new OnClickListener () {
public void onClick(DialogInterface dialog, int argl) {
// do nothing
}
1)
ad.setCancelable(true) ;

ad.setOnCancelListener (new OnCancelListener () {
public void onCancel (DialogInterface dialog) {

eatenByGrue () ;
}
)

To display an Alert Dialog that you’ ve created calkhow:
ad.show();

A better alternative is using your Activity’ &nCreateDialog and onPrepareDialog handlers to create
dialog instances that can persist state. This technique is examined later in this chapter.

Specialist Input Dialogs

One of the major uses of dialog boxes is to provide an interface for user input. Android includes several
specialist dialog boxes that encapsulate controls designed to facilitate common user-input requests.
They include the following:

> CharacterPickerDialog Lets users select an accented character based on a regular charac-
ter source.

> DatePickerDialog Lets users select a date from a DatePicker View. The constructor
includes a callback listener to alert your calling Activity when the date has been set.

» TimePickerDialog Similar to the Date Picker Dialog, this dialog lets users select a time from
a TimePicker View.

> ProgressDialog A dialog that displays a progress bar beneath a message text box. Perfect
for keeping the user informed of ongoing progress of a time-consuming operation.

Using Activities as Dialogs

Dialogs offer a simple and lightweight technique for displaying screens, but there will still be times
when you need more control over the content and life cycle of your dialog box.

The solution is to implement it as a full Activity. By creating an Activity you lose the lightweight nature
of the Dialog class, but you gain the ability to implement any screen you want and full access to the
Activity life-cycle event handlers.

Introducing Dialogs | 175

The easiest way to make an Activity look like a dialog is to apply the android:style/Theme.Dialog
theme when you add it to your manifest, as shown in the following XML snippet:

<activity android:name="MyDialogActivity"
android:theme="@android:style/Theme.Dialog">
</activity>

This will cause your Activity to behave as a Dialog, floating on top of, and partially obscuring, the
Activity beneath it.

Managing and Displaying Dialogs

Rather than creating new instances of a dialog each time it’ s required, Android provides the
onCreateDialog and onPrepareDialog event handlers within the Activity class to persist and manage
dialog-box instances.

By overriding the onCreatebialog handler you can specify dialogs that will be created on demand
when showDialog is used to display a specific dialog. As shown in Listing 5-29, the overridden method
includes a switch statement that lets you determine which dialog is required.

) LISTING 5-29: Using the On Create Dialog event handler

Available for
downloadon static final private int TIME_DIALOG = 1;

Wrox.com

@Override
public Dialog onCreateDialog(int id) {
switch(id) {
case (TIME_DIALOG)
AlertDialog.Builder timeDialog = new AlertDialog.Builder (this);
timeDialog.setTitle("The Current Time Is...");
timeDialog.setMessage ("Now") ;
return timeDialog.create();
}
return null;

}

After the initial creation, each time showbialog is called it will trigger the onPreparepialog handler. By
overriding this method you can modify a dialog each time it is displayed. This lets you contextualize
any of the display values, as shown in Listing 5-30 that assigns the current time to the dialog created in
Listing 5-29.

) LISTING 5-30: Using the On Prepare Dialog event handler

Available for :
download on @Ove?rlde, ,
Wrox.com public void onPrepareDialog(int id, Dialog dialog) {

switch(id) {
case (TIME_DIALOG)

SimpleDateFormat sdf = new SimpleDateFormat ("HH:mm:ss");
continues

176 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

LISTING 5-30 (continued)

Date currentTime = new Date(java.lang.System.currentTimeMillis());
String dateString = sdf.format (currentTime) ;

AlertDialog timeDialog = (AlertDialog)dialog;
timeDialog.setMessage (dateString) ;

break;

}

Once you’ ve overridden these methods you can display the dialogs by callingshowbialog as shown
below. Pass in the identifier for the dialog you wish to display, and Android will create (if necessary)
and prepare the dialog before displaying it.

showDialog (TIME_DIALOG) ;

As well as providing improved resource use, this technique lets your Activity handle the persistence of
state information within Dialogs. Any selection or data input (such as item selection and text entry)
will be persisted between displays of each Dialog instance.

CREATING AN EARTHQUAKE VIEWER

In the following example you® 1l create a tool that uses a USGS earthquake feed to display a list of recent
earthquakes.

You will return to this earthquake application several times, first in Chapters 6

and 7 to save preferences and share the earthquake data with a Content Provider,
and again in Chapters 8 and 9 to add mapping support and to move the earthquake
updates into a Service.

In this example you® 1l create a list-based Activittthat connects to an earthquake feed and displays the
location, magnitude, and time of the earthquakes it contains. You’ 1l use an Alert Dialog to provide a
details window that includes a linkified Text View with a link to the USGS web site.

1. Start by creating an Earthquake project featuring an Earthquake Activity. Modify the
main.xml layout resource to include a List View control —be sure to name it so you can
reference it from the Activity code.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<ListView
android:id="@+id/earthquakeListView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
</LinearLayout>

Creating an Earthquake Viewer | 177

Create a new public Quake class. This class will be used to store the details (date, details, loca-
tion, magnitude, and link) of each earthquake. Override the tostring method to provide the
string that will be used to represent each quake in the List View.

package com.paad.earthquake;

import java.util.Date;
import java.text.SimpleDateFormat;
import android.location.Location;

public class Quake {
private Date date;
private String details;
private Location location;
private double magnitude;
private String link;

public Date getDate() { return date; }

public String getDetails() { return details; }
public Location getLocation() { return location; }
public double getMagnitude() { return magnitude; }
public String getLink() { return link; }

public Quake(Date _d, String _det, Location _loc, double _mag, String _link) {

date = _d;
details = _det;
location = _loc;
magnitude = _mag;

link = _link;

@Override

public String toString() {
SimpleDateFormat sdf = new SimpleDateFormat ("HH.mm") ;
String dateString = sdf.format (date);
return dateString + ": " + magnitude + " " + details;

}

In the Earthquake Activity, override the onCreate method to store an ArrayList of Quake
objects and bind that to the ListView using an ArrayAdapter:

package com.paad.earthquake;

import java.io.IOException;

import java.io.InputStream;

import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URL;

import java.net.URLConnection;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;

import java.util.Date;

import java.util.GregorianCalendar;

178 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

import android.app.Activity;

import android.app.Dialog;

import android.location.Location;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

import android.view.WindowManager;

import android.view.Menultem;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import android.widget.TextView;

import android.widget.AdapterView.OnItemClickListener;

public class Earthquake extends Activity {

ListView earthquakeListView;
ArrayAdapter<Quake> aa;

ArrayList<Quake> earthquakes = new ArrayList<Quake>():;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main) ;

earthquakeListView = (ListView)this.findViewById(R.id.earthquakeListView);
int layoutID = android.R.layout.simple_ list item 1;

aa = new ArrayAdapter<Quake> (this, layoutID , earthquakes);
earthquakeListView.setAdapter(aa);

}

Next, start processing the earthquake feed. For this example the feed used is the one-day
USGS feed for earthquakes with a magnitude greater than 2.5.

Add the location of your feed as an external string resource. This lets you
potentially specify a different feed based on a user’s location.

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="app_name">Earthquake</string>
<string name="quake_feed">
http://earthquake.usgs.gov/eqgcenter/catalogs/lday-M2.5.xml
</string>
</resources>

Creating an Earthquake Viewer | 179

Before your application can access the Internet it needs to be granted permission for Internet
access. Add the uses-permission to the manifest:

<uses-permission android:name="android.permission.INTERNET"/>

Returning to the Earthquake Activity, create a new refreshEarthquakes method that con-
nects to and parses the earthquake feed. Extract each earthquake and parse the details to
obtain the date, magnitude, link, and location. As you finish parsing each earthquake, pass it
in to a new addNewQuake method.

The earthquake feed XML is parsed here by the SAX parser. Several alternatives
exist, including the xm1Pullparser. An analysis of the alternative XML parsing
techniques (and how to use them) is beyond the scope of this book, but it’s
important to evaluate and compare the options available within your own
applications.

private void refreshEarthquakes () {
// Get the XML
URL url;
try {
String quakeFeed = getString(R.string.quake_feed) ;
url = new URL(quakeFeed) ;

URLConnection connection;
connection = url.openConnection() ;

HttpURLConnection httpConnection = (HttpURLConnection)connection;
int responseCode = httpConnection.getResponseCode () ;

if (responseCode == HttpURLConnection.HTTP_OK) {
InputStream in = httpConnection.getInputStream() ;

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance () ;
DocumentBuilder db = dbf.newDocumentBuilder () ;

// Parse the earthquake feed.
Document dom = db.parse(in);
Element docEle = dom.getDocumentElement () ;

// Clear the old earthquakes
earthquakes.clear () ;

// Get a list of each earthquake entry.
NodeList nl = docEle.getElementsByTagName ("entry") ;
if (nl != null && nl.getLength() > 0) {

for (int 1 = 0 ; 1 < nl.getLength(); i++) {
Element entry = (Element)nl.item(i);
Element title = (Element)entry.getElementsByTagName ("title").item(0);
Element g = (Element)entry.getElementsByTagName ("georss:point") .item(0);
Element when = (Element)entry.getElementsByTagName ("updated").item(0) ;

Element link = (Element)entry.getElementsByTagName ("link").item(0);

180 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

String details = title.getFirstChild() .getNodeValue() ;
String hostname = "http://earthquake.usgs.gov";
String linkString = hostname + link.getAttribute("href");

String point = g.getFirstChild().getNodevValue() ;
String dt = when.getFirstChild() .getNodeValue() ;
SimpleDateFormat sdf = new SimpleDateFormat ("yyyy-MM-dd'T'hh:mm:ss'Z'");
Date gdate = new GregorianCalendar(0,0,0).getTime() ;
try {
gdate = sdf.parse(dt);
} catch (ParseException e) {
e.printStackTrace() ;

String[] location = point.split(" ");

Location 1 = new Location ("dummyGPS") ;
1.setLatitude (Double.parseDouble (location[0]));
1.setLongitude (Double.parseDouble (location([1]));

String magnitudeString = details.split(" ")[1];
int end = magnitudeString.length()-1;
double magnitude = Double.parseDouble (magnitudeString.substring (0, end));

details = details.split(",")[1].trim();
Quake quake = new Quake(gdate, details, 1, magnitude, linkString);

// Process a newly found earthquake
addNewQuake (quake) ;

}

} catch (MalformedURLException e) {
e.printStackTrace() ;

} catch (IOException e) {
e.printStackTrace () ;

} catch (ParserConfigurationException e) {
e.printStackTrace() ;

} catch (SAXException e) {
e.printStackTrace();

}

finally {

}

private void addNewQuake (Quake _quake) {
// TODO: Add the earthquakes to the array list.
}

Update the addNewgQuake method so that it takes each newly processed quake and adds it to
the earthquake Array List. It should also notify the Array Adapter that the underlying data
has changed.

private void addNewQuake (Quake _quake) {

Creating an Earthquake Viewer | 181

// Add the new quake to our list of earthquakes.
earthquakes.add(_quake) ;

// Notify the array adapter of a change.
aa.notifyDataSetChanged() ;
}

8. Modify your oncreate method to call refreshEarthquakes on startup:

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView (R.layout.main) ;

earthquakeListView = (ListView)this.findViewById(R.id.earthquakeListView) ;

int layoutID = android.R.layout.simple_list_item_1;
aa = new ArrayAdapter<Quake> (this, layoutID , earthquakes);
earthquakelListView.setAdapter (aa) ;

refreshEarthquakes();

@ The Internet lookup is currently happening on the main Ul thread. This is bad
form, as the application will become unresponsive if the lookup takes longer than a
few seconds. In Chapter 9 you’ll learn how to move expensive or time-consuming
operations like this into a Service and onto a background thread.

. £S M @ 10:46
G —

9. If you run your project, you should see a List U3.33: 3.1 Virgin islands region
View that features the earthquakes from the last
24 hours with a magnitude greater than 2.5, as
shown in the screen shot in Figure 5-6. 02.46: 3.1 Central Alaska

10. There are two more steps needed to make this a
more useful application. First, create a new Menu
Item to let users refresh the earthquake feed on
demand.

00.09: 4.7 Babuyan Islands
region

19.50: 3.0 Virgin Islands region

10.1. Start by adding a new external string for
the menu option:

19.30: 3.0 Central Alaska

<string name="menu_update">
Refresh Earthquakes

</string> 15.20: 4.6 Banda Sea

10.2. Then override the Activity’ snCreate
OptionsMenu and onOptionsTItem 11.36:4“8Jujuy
Selected methods to display and handle
the Refresh Earthquakes Menu Item: FIGURE 5-6

182 | CHAPTER5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

static final private int MENU_UPDATE = Menu.FIRST;

@Override
public boolean onCreateOptionsMenu (Menu menu) {
super.onCreateOptionsMenu (menu) ;

menu.add (0, MENU_UPDATE, Menu.NONE, R.string.menu_update);

return true;

@Override
public boolean onOptionsItemSelected(Menultem item) {
super.onOptionsItemSelected (item) ;

switch (item.getItemId()) {
case (MENU_UPDATE) : {
refreshEarthquakes () ;
return true;

}

return false;

}

11. Now add some interaction. Let users find more details by opening a dialog box when they
select an earthquake from the list.

11.1. Create a new quake_details.xml layout resource for the dialog box you’ 1l display
when an item is clicked:
<?xml version="1.0" encoding="utf-8"7?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:padding="10dp">
<TextView
android:id="@+id/quakeDetailsTextView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:textSize="14sp"
/>
</LinearLayout>

11.2. Then modify your oncCreate method to add an ItemClickListener to the List View

that displays a dialog box whenever an earthquake item is clicked:

static final private int QUAKE_DIALOG = 1;
Quake selectedQuake;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView(R.layout.main) ;

earthquakeListView = (ListView)this.findViewById(R.id.earthquakeListView) ;

Creating an Earthquake Viewer | 183

earthquakeListView.setOnItemClickListener (new OnItemClickListener() {
@Override
public void onItemClick(AdapterView _av, View _v, int _index,
long arg3) {
selectedQuake = earthquakes.get (_index);
showDialog (QUAKE_DIALOG) ;
}
)i

int layoutID = android.R.layout.simple_list_item_ 1;
aa = new ArrayAdapter<Quake>(this, layoutID , earthquakes);
earthquakeListView.setAdapter (aa) ;

refreshEarthquakes () ;
}

11.3. Now override the onCreatedialog and onPrepareDialog methods to create and
populate the earthquake details dialog box:

@Override
public Dialog onCreateDialog(int id) {
switch(id) {
case (QUAKE_DIALOG)
LayoutInflater 1i = LayoutInflater.from(this);
View quakeDetailsView = li.inflate(R.layout.quake_details, null);

AlertDialog.Builder quakeDialog = new AlertDialog.Builder (this);
quakeDialog.setTitle("Quake Time");
quakeDialog.setView (quakeDetailsView) ;
return quakeDialog.create();
}

return null;

@0Override
public void onPrepareDialog(int id, Dialog dialog) {
switch(id) {
case (QUAKE_DIALOG)
SimpleDateFormat sdf = new SimpleDateFormat ("dd/MM/yyyy HH:mm:ss");
String dateString = sdf.format (selectedQuake.getDate());
String quakeText = "Magnitude " + selectedQuake.getMagnitude() +
"\n" + selectedQuake.getDetails() + "\n" +
selectedQuake.getLink() ;

AlertDialog quakeDialog = (AlertDialog)dialog;

quakeDialog.setTitle(dateString) ;

TextView tv = (TextView)quakeDialog.findViewById
(R.1d.quakeDetailsTextView) ;

tv.setText (quakeText) ;

break;

184

| CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

SUMMARY

11.4. The final step is to linkify the dialog to make the link to the USGS a hyperlink.
Adjust the dialog box’ s XML layout resource definition to include amutolink

attribute:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:padding="10dp">
<TextView
android:id="@+id/quakeDetailsTextView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:textSize="14sp"
android:autoLink="all"
/>
</LinearLayout>

All code snippets in this example are part of the Chapter 5 Earthquake project, available for download at Wrox.com.

Launch your application again. When you click a particular earthquake a dialog will appear, partially
obscuring the list, as shown in Figure 5-7.

WA GR@s

The focus of this chapter has been on binding your applica-
tion components.

Intents provide a versatile messaging system that lets you
pass intentions between your application and others, to per-
form actions and signal events. You learned how to use
implicit and explicit Intents to start new Activities, and how
to populate an Activity menu dynamically through runtime e 16/12/2009 18:54:43

resolution of Activity Intent Filters.

You were introduced to broadcast Intents, and saw how they
can be used to send messages throughout the device, particu-
larly to support an event-driven model based on system- and
application-specific events.

You learned how to use sub-Activities to pass data between
Activities, and how to use Dialogs to display information
and facilitate user input.

Adapters were introduced and used to bind underlying data
to visual components. In particular you saw how to use an
Array Adapter and Simple Cursor Adapter to bind a List
View to Array Lists and Cursors.

FIGURE 5-7

Summary | 185

Finally, you learned the basics behind connecting to the Internet and using remote feeds as data sources
for your native client applications.

You also learned:

>

>

>

>

To use linkify to add implicit Intents to Text Views at run time.
Which native Android actions are available for you to extend, replace, or embrace.

How to use Intent Filters to let your own Activities become handlers for completing action
requests from your own or other applications.

How to listen for broadcast Intents using Broadcast Receivers.

How to use an Activity as a dialog box.

In the next chapter you will learn how to persist information within your applications. Android pro-
vides a number of mechanisms for saving application data, including files, simple preferences, and
fully featured relational databases (using the SQLite database library). Chapter 6 will focus on using
Preferences and saving Activity state, while Chapter 7 will examine Content Providers and SQLite
databases.

Files, Saving State,
and Preferences

WHAT’S IN THIS CHAPTER?

» Persisting simple application data
» Saving Activity instance data between sessions

» Creating Preference Screens and managing application
preferences

» Saving and loading files and managing the local file system

» Including static files as external resources

In this chapter you’ll be introduced to two of the simplest but most versatile data persistence
techniques in Android — Shared Preferences and local files.

Saving and loading data are essential for most applications. At a minimum, an Activity should
save its user interface (UI) state each time it moves into the background. This ensures that the
same UI state is presented when the Activity returns to the foreground, even if the process has
been killed and restarted before that happens.

It’s also likely that you’ll need to save user application preferences and Ul selections or data
entry. Android’s nondeterministic Activity and application lifetimes make persisting UI state
and application data between sessions particularly important. Android offers several alterna-
tives for saving application data, each optimized to fulfill a particular need.

Shared Preferences are a simple, lightweight key/value pair mechanism for saving primitive
application data, most commonly a user’s application preferences. Android also provides
access to the local file system, through both specialized methods and the normal Java.10
classes.

188 | CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

SAVING SIMPLE APPLICATION DATA

The data-persistence techniques in Android provide options for balancing speed, efficiency, and
robustness.

> Shared Preferences When storing Ul state, user preferences, or application settings, you
want a lightweight mechanism to store a known set of values. Shared Preferences let you save
groups of key/value pairs of primitive data as named preferences.

» Saved Application State Activities include specialized event handlers to record the current
Ul state when your application is moved to the background.

» Files It’s not pretty, but sometimes writing to and reading from files is the only way to go.
Android lets you create and load files on the device’s internal or external media.

There are two lightweight techniques for saving simple application data for Android
applications — Shared Preferences and a pair of event handlers used for saving Activity instance
details. Both mechanisms use a name/value pair (NVP) mechanism to store simple primitive
values.

Using the SharedPreferences class you can create named maps of key/value pairs within your
application that can be shared among application components running in the same application
context.

Shared Preferences support the primitive types Boolean, string, float, long, and integer, making them
an ideal means of quickly storing default values, class instance variables, the current Ul state, and user
preferences. They are most commonly used to persist data across user sessions and to share settings
among application components.

Activities also offer the onSaveTnstancestate handler. It’s designed specifically to persist Ul state when
the Activity becomes eligible for termination by a resource-hungry run time.

The handler works like the Shared Preference mechanism. It offers a Bundle parameter that represents
a key/value map of primitive types that can be used to save the Activity’s instance values. This Bundle
is then made available as a parameter passed in to the onCreate and onRestoreInstancestate method
handlers.

This UI state Bundle should be used to record the values needed for an Activity to present an identical
UI when it’s displayed after an unexpected close.

CREATING AND SAVING PREFERENCES

To create or modify a Shared Preference, call getSharedpreferences on the application Context,
passing in the name of the Shared Preference to change. Shared Preferences are shared across an appli-
cation’s components, but aren’t available to other applications.

To modify a Shared Preference use the Sharedpreferences.Editor class. Get the Editor object by
calling edit on the Shared Preferences object you want to change. To save edits call commit on the
Editor, as shown in Listing 6-1.

Creating a Settings Activity for the Earthquake Viewer | 189

v

Available for
download on
Wrox.com

LISTING 6-1: Creating new Shared Preferences

// Retrieve an editor to modify the shared preferences.
SharedPreferences.Editor editor = mySharedPreferences.edit();

// Store new primitive types in the shared preferences object.
editor.putBoolean("isTrue", true);
editor.putFloat("lastFloat", 1f);

editor.putInt ("wholeNumber", 2);

editor.putLong ("aNumber", 31);
editor.putString("textEntryValue", "Not Empty");

// Commit the changes.
editor.commit();

RETRIEVING SHARED PREFERENCES

Accessing Shared Preferences, like editing and saving them, is done using the getSharedpreferences
method. Pass in the name of the Shared Preference you want to access, and use the type-safe get<type>
methods to extract saved values.

Each getter takes a key and a default value (used when no value has yet been saved for that key), as
shown in the Listing 6-2.

v

Available for
download on

Wrox.com

LISTING 6-2: Retreiving saved Shared Preferences

public static String MY_PREFS = "MY_PREFS";

public void loadPreferences () {

// Get the stored preferences
int mode = Activity.MODE_PRIVATE;
SharedPreferences mySharedPreferences = getSharedPreferences (MY_PREFS, mode) ;

// Retrieve the saved values.

boolean isTrue = mySharedPreferences.getBoolean("isTrue", false);

float lastFloat = mySharedPreferences.getFloat("lastFloat", 0f);

int wholeNumber = mySharedPreferences.getInt ("wholeNumber", 1);

long aNumber = mySharedPreferences.getLong ("aNumber", 0);

String stringPreference = mySharedPreferences.getString("textEntryvalue", "");

CREATING A SETTINGS ACTIVITY
FOR THE EARTHQUAKE VIEWER

In Chapter 5 you created an earthquake monitor that showed a list of recent earthquakes based on an
RSS feed.

In the following example you’ll build an Activity to set application preferences for this earthquake
viewer. It will let users configure settings for a more personalized experience. You’ll provide the option

190 | CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

to toggle automatic updates, control the frequency of updates, and filter the minimum earthquake
magnitude displayed.

Later in this chapter you’ll replace this Activity with a standard settings screen.

Open the Earthquake project you created in Chapter 5.

Add new string resources for the labels displayed in the preferences screen. Also add a string
for the new Menu Item that will let users access this Activity:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">Earthquake</string>
<string name="quake_feed">
http://earthquake.usgs.gov/eqgcenter/catalogs/lday-M2.5.xml

</string>

<string name="menu_update">Refresh Earthquakes</string>

<string name="auto_update_prompt">Auto Update?</string>

<string name="update_freq prompt">Update Frequency</string>

<string name="min_qguake_mag_prompt">Minimum Quake Magnitude</string>
<string name="menu_preferences">Preferences</string>

</resources>

Create a new preferences.xml layout resource for the preferences Activity. Include a check-

box for indicating the “automatic update” toggle, and spinners to select the update rate and
magnitude filter:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<TextView

android:
android:
android:

/>
<CheckBox

android:
android:

/>
<TextView

android:

android

/>

layout_width="fill_parent"
layout_height="wrap_content"
text="@string/auto_update_prompt"

android:id="@+id/checkbox_auto_update"

layout_width="fill_parent"
layout_height="wrap_content"

layout_width="fill_parent"

:layout_height="wrap_content"
android:

text="@string/update_freq prompt"

<Spinner android:id="@+id/spinner_update_freqg"

android:
android:
android:

/>
<TextView

android:

layout_width="fill_parent"
layout_height="wrap_content"
drawSelectorOnTop="true"

layout_width="fill_parent"

Creating a Settings Activity for the Earthquake Viewer | 191

android:layout_height="wrap_content"
android:text="@string/min_quake_mag_prompt"
/>
<Spinner android:id="@+id/spinner_quake_mag"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"
/>
<LinearLayout
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<Button android:id="@+id/okButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@android:string/ok"
/>
<Button android:id="@+id/cancelButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@android:string/cancel"
/>
</LinearLayout>
</LinearLayout>

Create four array resources in a new res/values/arrays.xnl file. They will provide the val-
ues to use for the update frequency and minimum magnitude spinners:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="update_freqg options">
<item>Every Minute</item>
<item>5 minutes</item>
<item>10 minutes</item>
<item>15 minutes</item>
<item>Every Hour</item>
</string-array>

<array name="magnitude">
<item>3</item>
<item>5</item>
<item>6</item>
<item>7</item>
<item>8</item>
</array>

<string-array name="magnitude_options">
<item>3</item>
<item>5</item>
<item>6</item>
<item>7</item>
<item>8</item>
</string-array>

<array name="update_freq values">
<item>1</item>

192

| CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

<item>5</item>
<item>10</item>
<item>15</item>
<item>60</item>
</array>
</resources>

Create the Preferences Activity.

Override onCreate to inflate the layout you created in Step 2, and get references to the check-
box and both the spinner controls. Then make a call to the populatespinners stub:

package com.paad.earthquake;

import
import
import
import
import
import
import
import
import

public

android.app.Activity;
android.content.SharedPreferences;
android.content.SharedPreferences.Editor;
android.os.Bundle;

android.view.View;
android.widget.ArrayAdapter;
android.widget.Button;
android.widget.CheckBox;
android.widget.Spinner;

class Preferences extends Activity {

CheckBox autoUpdate;
Spinner updateFregSpinner;
Spinner magnitudeSpinner;

@Override

public void onCreate(Bundle savedInstanceState) ({
super.onCreate (savedInstanceState) ;
setContentView(R.layout.preferences) ;

updateFregSpinner = (Spinner)findViewById(R.id.spinner_update_freq) ;
magnitudeSpinner = (Spinner)findviewById(R.id.spinner_quake_mag) ;
autoUpdate = (CheckBox)findViewById(R.id.checkbox_auto_update) ;
populateSpinners () ;

private void populateSpinners() {

}
}

Fill in the populatespinners method, using Array Adapters to bind each spinner to its corre-

sponding array:

private void populateSpinners() {
// Populate the update frequency spinner
ArrayAdapter<CharSequence> fAdapter;
fAdapter = ArrayAdapter.createFromResource(this, R.array.update_freqg options,

android.R.layout.simple_spinner_item) ;

int spinner_dd_item = android.R.layout.simple_spinner_dropdown_item;
fAdapter.setDropDownViewResource (spinner_dd_item) ;
updateFregSpinner.setAdapter (fAdapter) ;

Creating a Settings Activity for the Earthquake Viewer | 193

// Populate the minimum magnitude spinner

ArrayAdapter<CharSequence> mAdapter;

mAdapter = ArrayAdapter.createFromResource (this,
R.array.magnitude_options,
android.R.layout.simple_spinner_item) ;

mAdapter.setDropDownViewResource (spinner_dd_item) ;

magnitudeSpinner.setAdapter (mAdapter) ;

}

Add public static string values that you’ll use to identify the Shared Preference keys you’ll
use to store each preference value. Update the onCreate method to retrieve the named pref-
erenceand(xﬂlupdateUIFromPreferenceszheupdateUIFromPreferencesInethodlwesthe
get<type> methods on the Shared Preference object to retrieve each preference value and
apply it to the current UL

Use the default application Shared Preference object to save your settings values:

public static final String PREF_AUTO_UPDATE = "PREF_AUTO_UPDATE";
public static final String PREF_MIN_MAG = "PREF_MIN_MAG";
public static final String PREF_UPDATE_FREQ = "PREF_UPDATE_FREQ";

SharedPreferences prefs;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.preferences) ;

updateFregSpinner = (Spinner)findViewById(R.id.spinner_update_freq) ;
magnitudeSpinner = (Spinner)findViewById(R.id.spinner_quake_mag) ;
autoUpdate = (CheckBox)findViewById(R.id.checkbox_auto_update) ;

populateSpinners() ;

Context context = getApplicationContext();
prefs = PreferenceManager.getDefaultSharedPreferences (context) ;
updateUIFromPreferences() ;

private void updateUIFromPreferences () {
boolean autoUpChecked = prefs.getBoolean (PREF_AUTO_UPDATE, false);
int updateFregIndex = prefs.getInt (PREF_UPDATE_FREQ, 2);
int minMagIndex = prefs.getInt (PREF_MIN_MAG, 0);

updateFregSpinner.setSelection (updateFregIndex) ;
magnitudeSpinner.setSelection (minMagIndex) ;
autoUpdate.setChecked (autoUpChecked) ;

}

Still in the oncreate method, add event handlers for the OK and Cancel buttons. Cancel
should close the Activity, while OK should call saveprreferences first:

@QOverride

public void onCreate(Bundle savedInstanceState) ({
super .onCreate (savedInstanceState) ;
setContentView(R.layout.preferences) ;

194 | CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

9.

updateFregSpinner = (Spinner)findviewById(R.id.spinner_update_freq);
magnitudeSpinner = (Spinner)findvViewById(R.id.spinner_guake_mag) ;
autoUpdate = (CheckBox)findviewById(R.id.checkbox_auto_update) ;
populateSpinners () ;

Context context = getApplicationContext () ;
prefs = PreferenceManager.getDefaultSharedPreferences (context) ;
updateUIFromPreferences() ;

Button okButton = (Button) findViewById(R.id.okButton) ;
okButton.setOnClickListener (new View.OnClickListener () {

public void onClick(View view) {

savePreferences|() ;
Preferences.this.setResult (RESULT_OK) ;
finish();
}
)
Button cancelButton = (Button) findvViewById(R.id.cancelButton) ;

cancelButton.setOnClickListener (new View.OnClickListener () {
public void onClick (View view) {
Preferences.this.setResult (RESULT_CANCELED) ;

finish();

)

private void savePreferences () {

}

Fill in the savepreferences method to record the current preferences, based on the Ul selec-
tions, to the Shared Preference object:

private void savePreferences() {

}

int updateIndex = updateFregSpinner.getSelectedItemPosition();
int minMagIndex = magnitudeSpinner.getSelectedItemPosition();
boolean autoUpdateChecked = autoUpdate.isChecked() ;

Editor editor = prefs.edit();

editor.putBoolean (PREF_AUTO_UPDATE, autoUpdateChecked);
editor.putInt (PREF_UPDATE_FREQ, updateIndex) ;
editor.putInt (PREF_MIN_MAG, minMagIndex) ;
editor.commit () ;

That completes the Preferences Activity. Make it accessible in the application by adding it
to the manifest:

<activity android:name=".Preferences"

android:label="Earthquake Preferences">

</activity>

Creating a Settings Activity for the Earthquake Viewer | 195

10.

1".

12.

13.

Now return to the Earthquake Activity, and add support for the new Shared Preferences file
and a Menu Item to display the Preferences Activity. Start by adding the new Menu Item.
Extend the onCreateOptionsMenu method to include a new item that opens the Preferences
Activity:

static final private int MENU_PREFERENCES = Menu.FIRST+1;
@Override

public boolean onCreateOptionsMenu (Menu menu) {
super .onCreateOptionsMenu (menu) ;

menu.add (0, MENU_UPDATE, Menu.NONE, R.string.menu_update);
menu.add (0, MENU_PREFERENCES, Menu.NONE, R.string.menu_preferences);

return true;

Modify the onoptionsTtemSelected method to dis- [04 @ 1:51em
play the Preferences Activity when the new Menu Earthquake Preferences

Item is selected. Create an explicit Intent and pass

it in to the startActivityForResult method. This
will launch the Preferences screen and alert the Earth-
quake class when the preferences are saved through the
onActivityResult handler:

=

10 minutes

private static final int SHOW_PREFERENCES = 1;

public boolean onOptionsItemSelected(Menultem item) {

super.onOptionsItemSelected(item) ;

switch (item.getItemId()) {
case (MENU_UPDATE): {
refreshEarthquakes () ;

return true;

}

case (MENU_PREFERENCES) : {
Intent 1 = new Intent(this, Preferences.class); FIGURE 6-1
startActivityForResult (i, SHOW_PREFERENCES) ;
return true;

}
return false;

}

Launch your application and select Preferences from the Activity menu. The Preferences
Activity should be displayed as shown in Figure 6-1.

All that’s left is to apply the preferences to the earthquake functionality. Implementing the
automatic updates will be left until Chapter 9, when you’ll learn to use Services and back-
ground threads. For now you can put the framework in place and apply the magnitude filter.

196 | CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

Start by creating a new updateFromPreferences method that reads the Shared Preference
values and creates instance variables for each of them:

int minimumMagnitude = 0;
boolean autoUpdate = false;
int updateFreqg = 0;

private void updateFromPreferences () {
Context context = getApplicationContext () ;
SharedPreferences prefs =
PreferenceManager.getDefaultSharedPreferences (context) ;

int minMagIndex = prefs.getInt (Preferences.PREF_MIN_MAG, 0);
if (minMagIndex 0)

<
minMagIndex 0;

int fregIndex = prefs.getInt (Preferences.PREF_UPDATE_FREQ, 0);
if (fregIndex < 0)
fregIndex = 0;

autoUpdate = prefs.getBoolean (Preferences.PREF_AUTO_UPDATE, false);

Resources r = getResources();

// Get the option values from the arrays.

int[] minMagValues = r.getIntArray(R.array.magnitude) ;

int[] fregValues = r.getIntArray(R.array.update_freqg values) ;

// Convert the values to ints.
minimumMagnitude = minMagValues[minMagIndex];
updateFreq = fregValues|[fregIndex];

}

14. Apply the magnitude filter by updating the addNewguake method to check a new earthquake’s
magnitude before adding it to the list:

private void addNewQuake (Quake _quake) {
if (_quake.getMagnitude() > minimumMagnitude) {
// Add the new quake to our list of earthquakes.
earthquakes.add (_quake) ;

// Notify the array adapter of a change.
aa.notifyDataSetChanged() ;

}

15. Override the onActivityResult handler to call updateFromPreferences and refresh the
earthquakes whenever the pPreferences Activity saves changes:

@Override
public void onActivityResult (int requestCode, int resultCode, Intent data) {
super.onActivityResult (requestCode, resultCode, data);

if (requestCode == SHOW_PREFERENCES)
if (resultCode == Activity.RESULT_OK) ({
updateFromPreferences () ;

Introducing the Preference Activity and Preferences Framework | 197

refreshEarthquakes () ;
}
}

16. Finally, call updateFromPreferences in onCreate (before the call to refreshEarthquakes) to
ensure the preferences are applied when the Activity starts:

@Override

public void onCreate(Bundle savedInstanceState) ({
super .onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

earthquakeListView = (ListView)this.findViewById(R.id.earthquakeListView) ;
earthquakelListView.setOnItemClickListener (new OnItemClickListener () ({

@Override
public void onItemClick (AdapterView _av, View _v, int _index, long arg3) {
selectedQuake = earthquakes.get(_index) ;
showDialog (QUAKE_DIALOG) ;
}
)

int layoutID = android.R.layout.simple_list_item 1;
aa = new ArrayAdapter<Quake> (this, layoutID , earthquakes);
earthquakeListView.setAdapter (aa) ;

updateFromPreferences () ;
refreshEarthquakes () ;

All code snippets in this example are part of the Chapter 6 Earthquake project, available for download at Wrox.com.

INTRODUCING THE PREFERENCE ACTIVITY
AND PREFERENCES FRAMEWORK

Android offers an XML-driven framework to create system-style preference screens for
your applications. By using this framework you can ensure that the preference Activi-

ties in your applications are consistent with those used in both native and other third-party
applications.

This has two distinct advantages:
» Users will be familiar with the layout and use of your application settings screen.

> You can integrate settings screens from other applications (including system settings such as
location settings) into your application’s settings screens.

The Preference Activity framework consists of three parts:

> Preference Screen Layout An XML file that defines the hierarchy displayed in your Prefer-
ence Activity. It specifies the controls to display, the values to allow, and the Shared Prefer-
ence keys to use for each Ul control.

198

| CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

» Preference Activity An extension of Preferenceactivity that will be used to host your
application preference screens.

» Shared Preference Change Listener An implementation of the
onSharedPreferenceChangeListener class used to listen for changes to Shared Preferences.

The Activity Preference framework is a powerful tool for creating fully customizable dynamic prefer-
ence screens. The full range of possibilities available through this framework is beyond the scope of this
book; however, the following sections will introduce it and demonstrate how to create and use each of
the components described above.

Defining a Preference Screen Layout in XML

The most important part of the Preference Activity is the XML layout. Unlike in the standard Ul layout,
preference definitions are stored in the res/xml resources folder.

While conceptually they are similar to the UI layout resources described in Chapter 4, Preference Screen
layouts use a specialized set of controls designed specifically to create preference screens like those used
for system settings. These native preference controls are described in the next section.

Each preference layout is defined as a hierarchy, beginning with a single PreferenceScreen element:

<?xml version="1.0" encoding="utf-8"7?>

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">

</PreferenceScreen>

You can include additional Preference Screen elements, each
of which will be represented as a selectable element that will i@ 7:54 Pm
display a new screen if clicked. Location & security

SIM card lock

Within each Preference Screen you can include any combi-
nation of PreferenceCategory and Preference<control>
elements. Preference Category elements, shown in the fol-
lowing snippet, are used to break each Preference Screen
into subcategories using a title bar separator:

Set up SIM card lock

<PreferenceCategory
android:title="My Preference Category"/>
</PreferenceCategory Credential storage

Visible passwords

Figure 6-2 shows the SIM card lock, passwords, and creden-
tial storage Preference Categories used in the “Location &
security” Preference Screen.

All that remains is to add the preference controls that will Set password
be used to set the application preferences. While the specific Set or

attributes available for each preference control vary, each of
them includes at least the following four:

» android:key The Shared Preference key the
selected value will be recorded against. FIGURE 6-2

Introducing the Preference Activity and Preferences Framework | 199

» android:title The text displayed to represent the preference.
android:summary The longer text description displayed in a smaller font below the title text.

android:defaultvalue The default value that will be displayed (and selected) if no prefer-
ence value has been assigned to this preference key.

Listing 6-3 shows a sample Preference Screen that includes a Preference Category and CheckBox Pref-
erence.

) LISTING 6-3: A simple Shared Preferences screen

Available for . .
download on <?xml version="1.0" encoding="utf-8"?>

Wrox.com <PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<PreferenceCategory

android:title="My Preference Category"/>

<CheckBoxPreference
android:key="PREF_CHECK_BOX"
android:title="Check Box Preference"
android:summary="Check Box Preference Description"
android:defaultvValue="true"

/>

</PreferenceCategory>
</PreferenceScreen>

This Preference Screen will appear as shown in Figure 6-3.

Native Preference Controls (¢ PN I @ 7:59 pm

Earthquake Preferences

Android includes several preference controls to build your

My Preference Category
Preference Screens: = T

Check Box Preference

ch e ence ption

» CheckBoxPreference A standard preference
checkbox control. Used to set preferences to true
or false.

> EditTextPreference Allows users to enter a
string value as a preference. Selecting the prefer-
ence text will display a text entry dialog.

> ListPreference The preference equivalent of a
spinner. Selecting this preference will display a dia-
log box containing a list of values from which to
select. You can specify different arrays to contain
the display text and selection values.

> RingtonePreference A specialized List Prefer-
ence that presents the list of available ringtones
for user selection. This is particularly useful when
you’re constructing a screen to configure notifica-
tion settings. FIGURE 6-3

200 | CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

Each of these preference controls can be used to construct your Preference Screen hierarchy. Alterna-
tively, you can create your own specialized preference controls by extending the preference class (or
any of these subclasses).

You can find further details on the Android documentation at: http://developer.android.com/
reference/android/preference/Preference.html

Using Intents to Import System Preference Screens

As well as your own Preference Screens, preference hierarchies can include Preference Screens from
other applications — including system Preference Screens.

You can invoke any Activity within your Preference Screen using an Intent. If you add an Intent node
within any Preference Screen element, the system will interpret this as a request to call startactivity
using the specified action.

This is particularly useful for including links to relevant system Preference Screens within your own
application settings. The following XML snippet adds a link to the system display settings:

<PreferenceScreen
android:title="Intent preference"
android:summary="System preference imported using an intent">
<intent android:action="android.settings.DISPLAY_ SETTINGS "/>
</PreferenceScreen>

The android.provider.Settings class includes a number of android.settings.* constants that can
be used to invoke the system settings screens.

To make your own Preference Screens available for invocation using this technique, simply add an
Intent Filter to the manifest entry for the host Preference Activity (described in detail in the following
section):
<activity android:name=".UserPreferences" android:label="Earthquake Preferences">
<intent-filter>
<action android:name="com.paad.myapp.ACTION_USER_PREFERENCE" />
</intent-filter>
</activity>

Introducing the Preference Activity

The pPreferenceactivity class is used to host the preference hierarchy defined using the preferences
XML file. To create a new Preference Activity, extend the Preferenceactivity class as follows:

public class MyPreferenceActivity extends PreferenceActivity ({

}

To inflate the preferences, override the onCreate handler and call addPreferencesFromResource, as
shown in the following snippet:

@Override

public void onCreate(Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
addPreferencesFromResource (R.xml .preferences) ;

Introducing the Preference Activity and Preferences Framework | 201

Like all Activities, the Preference Activity must be included in the application manifest:

<activity android:name=".MyPreferenceActivity"
android:label="My Preferences">
</activity>

This is all that’s required for a simple Preference Activity implementation. To display the application
settings hosted in this Activity, open it by calling startactivity or startActivityForResult:

Intent i = new Intent(this, MyPreferenceActivity.class);
startActivityForResult (i, SHOW_PREFERENCES) ;

Finding and Using Preference Screen Shared Preferences

The Shared Preference values recorded for the options presented in a Preference Activity are stored
against the application Context. This lets any application component, including Activities, Services,
and Broadcast Receivers, access the values, as shown in the following snippet:

Context context = getApplicationContext();
SharedPreferences prefs = PreferenceManager.getDefaultSharedPreferences (context) ;
// TODO Retrieve values using get<type> methods.

Introducing Shared Preference Change Listeners

The onsharedpreferenceChangeListener is a useful class that can be implemented to invoke a callback
whenever a particular Shared Preference value is added, removed, or modified.

This is particularly useful for Activities and Services that use the Shared Preference framework to set
application preferences. Using this handler your application components can listen for changes to user
preferences and update their Uls or behavior as required.

Register Shared Preference Change Listeners using the Shared Preference you want to monitor. The
implementation of the Shared Preference Change Listener is shown in Listing 6-4.

) LISTING 6-4: On Shared Preference Change Listener skeleton implementation

Available for , . Lo \
download on public class MyActivity extends Activity implements
Wrox.com OnSharedPreferenceChangeListener {

@Override
public void onCreate(Bundle SavedInstanceState) {
// Register this OnSharedPreferenceChangelListener
Context context = getApplicationContext () ;
SharedPreferences prefs =
PreferenceManager.getDefaultSharedPreferences (context) ;
prefs.registerOnSharedPreferenceChangelListener (this) ;

public void onSharedPreferenceChanged (SharedPreferences prefs, String key) {
// TODO Check the shared preference and key parameters and change UI or
// behavior as appropriate.

Prepared for ASHLEE KABAT, email: akabat@spam.la Order number: 56760408 This PDF is for the purchaser’s personal use in accordance with
the Wrox Terms of Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy, please visit
www.wrox.com to purchase your own copy.

202 | CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

CREATING A STANDARD PREFERENCE ACTIVITY
FOR THE EARTHQUAKE VIEWER

Previously in this chapter you created a custom Activity to let users modify the application settings for
the earthquake viewer. In this example you’ll replace this custom Activity with the standard application
settings framework described in the previous section.

1.

Start by creating a new XML resource folder at res/xml. Within it create a new userprefer-
ences.xml file. This file will define the settings Ul for your earthquake application settings.
Use the same controls and data sources as in the previous Activity, but this time create them
using the standard application settings framework.

Be sure to use the preference keys you defined earlier.

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<CheckBoxPreference
android:key="PREF_AUTO_UPDATE"
android:title="Auto refresh"
android:summary="Select to turn on automatic updating"
android:defaultvalue="true"
/>
<ListPreference
android:key="PREF_UPDATE_FREQ"
android:title="Refresh frequency"
android:summary="Frequency at which to refresh earthquake list"
android:entries="Qarray/update_freqg options"
android:entryValues="@Qarray/update_freqg values"
android:dialogTitle="Refresh frequency"
android:defaultvalue="60"
/>
<ListPreference
android:key="PREF_MIN_MAG"
android:title="Minimum magnitude"
android:summary="Select the minimum magnitude earthquake to report"
android:entries="@array/magnitude_options"
android:entryValues="Qarray/magnitude"
android:dialogTitle="Magnitude"
android:defaultvalue="3"
/>
</PreferenceScreen>

Open the Preference Activity and modify its inheritance to extend PreferenceaActivity:
public class UserPreferences extends PreferenceActivity

The Preference Activity will handle the controls used in the UL, so you can remove the
variables used to store the checkbox and spinner objects. You can also remove the
populateSpinners,updateUIFromPreferences,and savePreferences methods.

Now update oncreate. Remove all the references to the Ul controls and the OK and Cancel
buttons. Instead of using these, inflate the preferences UI file you created in Step 1:

Saving Activity State | 203

@Override
public void onCreate(Bundle savedInstanceState) ({
super .onCreate (savedInstanceState) ;

addPreferencesFromResource (R.xml .preferences) ; —===s
AT B A M@ 1:33pm

Earthguake Preferences

}

5. If you run your application now, and select the
Preferences menu item, your new ‘‘native’ settings
screen should be visible, as shown in Figure 6-4.

Auto refresh

Refresh frequency
All code snippets in this example are part of the Chapter 6 Earth- o e
quake Part 2 project, available for download at Wrox.com.

Minimum magnitude

SAVING ACTIVITY STATE

If you want to save Activity information that doesn’t need to
be shared with other components (e.g., class instance vari-
ables), you can call Activity.getPreferences () without
specifying a Shared Preferences name. Access to the returned
Shared Preferences map is restricted to the calling Activity;
each Activity supports a single unnamed Shared Preferences
object.

Listing 6-5 shows how to use the Activity’s private Shared

FIGURE 6-4
Preference.
) LISTING 6-5: Saving Activity state
Available for , .
download on protected void saveActivityPreferences() {
Wrox.com // Create or retrieve the activity preference object.

SharedPreferences activityPreferences = getPreferences (Activity.MODE_PRIVATE) ;

// Retrieve an editor to modify the shared preferences.
SharedPreferences.Editor editor = activityPreferences.edit();

// Retrieve the View
TextView myTextView = (TextView)findViewById(R.id.myTextView) ;

// Store new primitive types in the shared preferences object.
editor.putString ("currentTextValue", myTextView.getText ().toString());

// Commit changes.
editor.commit () ;

Saving and Restoring Instance State

To save Activity instance variables, Android offers a specialized variation of Shared Preferences.

204 | CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

By overriding an Activity’s onSaveInstanceState event handler, you can use its Bundle param-
eter to save Ul instance values. Store values using the same get and put methods as shown for
Shared Preferences, before passing the modified Bundle into the superclass’s handler, as shown in
Listing 6-6.

) LISTING 6-6: Saving Activity instance state

Available for
download on private static final String TEXTVIEW_STATE_KEY = "TEXTVIEW_STATE_KEY";

Wrox.com

@Override
public void onSaveInstanceState (Bundle saveInstanceState) {
// Retrieve the View
TextView myTextView = (TextView)findvViewById(R.id.myTextView) ;

// Save its state
saveInstanceState.putString (TEXTVIEW_STATE_KEY, myTextView.getText ().toString());
super.onSaveInstanceState (savelnstanceState) ;

}

This handler will be triggered whenever an Activity completes its active lifecycle, but only when it’s not
being explicitly finished (with a call to finish). As a result, it’s used to ensure a consistent Activity state
between active life cycles of a single user session.

The saved Bundle is passed in to the onRestoreInstancestate and onCreate methods if the application
is forced to restart during a session. Listing 6-7 shows how to extract values from the Bundle and use
them to update the Activity instance state.

) LISTING 6-7: Restoring Activity instance state

Available for
download on @Override

Wrox.com public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

TextView myTextView = (TextView)findViewById(R.id.myTextView) ;

String text = "";
if (savedInstanceState != null && savedInstanceState.containsKey (TEXTVIEW_STATE_KEY))

text = savedInstanceState.getString (TEXTVIEW_STATE_KEY) ;

myTextView.setText (text) ;

It’s important to remember that onsaveInstanceState is called only when an
Activity becomes inactive, and not when it is being closed by a call to finish or by
the user’s pressing the back button.

Saving Activity State | 205

Saving the To-Do List Activity State

Currently, each time the To-Do List example application is restarted, all the to-do items are lost and
any text entered into the text entry box is cleared. In this example you’ll start to save the application
state of the To-Do List application across sessions.

The instance state in the ToDoList Activity consists of three variables:
> Isanew item being added?
> What text exists in the new item entry textbox?
» What is the currently selected item?

Using the Activity’s default Shared Preference you can store each of these values and update the UI
when the Activity is restarted.

Later in this chapter you’ll learn how to use the SQLite database to persist the
to-do items as well. This example is a first step that shows how to ensure a seamless
experience by saving Activity instance details.

1. Start by adding static string variables to use as preference keys:

private static final String TEXT_ENTRY_KEY = "TEXT_ENTRY_KEY";
private static final String ADDING_ITEM _KEY = "ADDING_ITEM KEY";
private static final String SELECTED_INDEX KEY = "SELECTED_INDEX_ KEY";

2. Next, override the onpause method. Get the Activity’s private Shared Preference object and
its Editor object.

Using the keys you created in Step 1, store the instance values according to whether a new
item is being added, and also store any text in the “new item” edit box:

@Override
protected void onPause () {
super.onPause () ;

// Get the activity preferences object.
SharedPreferences uiState = getPreferences(0);

// Get the preferences editor.
SharedPreferences.Editor editor = uiState.edit();

// Add the UI state preference values.

editor.putString (TEXT_ENTRY_KEY, myEditText.getText().toString());
editor.putBoolean (ADDING_ITEM_KEY, addingNew) ;

// Commit the preferences.

editor.commit () ;

206 | CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

3. Write a restoreUTstate method that applies the instance values you recorded in the pre-

vious step when the application restarts. Modify the oncreate method to add a call to the
restoreUIState method at the very end:

@Override

public void onCreate(Bundle savedInstanceState) {
[... existing onCreate logic ...]
restoreUIState() ;

private void restoreUIState() {
// Get the activity preferences object.
SharedPreferences settings = getPreferences (Activity.MODE_PRIVATE) ;

// Read the UI state values, specifying default values.
String text = settings.getString (TEXT_ENTRY_KEY, "");
Boolean adding = settings.getBoolean (ADDING_ITEM_KEY, false);

// Restore the UI to the previous state.
if (adding) {
addNewItem() ;
myEditText.setText (text) ;
}
}

4. Record the index of the selected item using the onSaveInstanceState/onRestoreInstance
state mechanism. It’s then saved and applied only if the application is killed without the
user’s explicit instruction:

@override

public void onSaveInstanceState (Bundle savedInstanceState) {
savedInstanceState.putInt (SELECTED_INDEX_ KEY, myListView.getSelectedItemPosition());

super.onSavelInstanceState (savelnstanceState) ;

@Override

public void onRestoreInstanceState (Bundle savedInstanceState) {
int pos = -1;
if (savedInstanceState != null)

if (savedInstanceState.containsKey (SELECTED_INDEX_KEY))
pos = savedInstanceState.getInt (SELECTED_INDEX_KEY, -1);

myListView.setSelection (pos) ;
}

All code snippets in this example are part of the Chapter 6 Todo List project, available for download at Wrox.com.

When you run the To-Do List application you should now see the Ul state persisted across sessions.
That said, the application still won’t persist the To-Do List items — you’ll add this essential piece of
functionality in the next chapter.

Including Static Files as Resources | 207

SAVING AND LOADING FILES

It’s good practice to use Shared Preferences or a database to store your application data, but there are
still times when you’ll want to use files directly rather than rely on Android’s managed mechanisms.

As well as the standard Java I/O classes and methods, Android offers openFileInput and
openFileouput to simplify reading and writing streams from and to local files, as shown in
Listing 6-8.

) LISTING 6-8: Saving and loading files

Available for , .
download on String FILE_NAME = "tempfile.tmp";
Wrox.com

// Create a new output file stream that's private to this application.
FileOutputStream fos = openFileOutput (FILE_NAME, Context.MODE_PRIVATE) ;
// Create a new file input stream.

FileInputStream fis = openFileInput (FILE_NAME) ;

These methods support only those files in the current application folder; specifying path separators will
cause an exception to be thrown.

If the file name you specify when creating a FileoutputStream does not exist, Android will create it for
you. The default behavior for existing files is to overwrite them; to append an existing file, specify the
mode as Context .MODE_APPEND.

By default, files created using the openFileoutput method are private to the calling application — a
different application will be denied access. The standard way to share a file between applications is
to use a Content Provider. Alternatively, you can specify either Context .MODE_WORLD_READABLE Or
Context .MODE_WORLD_WRITEABLE when creating the output file, to make it available in other applica-
tions, as shown in the following snippet:

String OUTPUT_FILE = "publicCopy.txt";
FileOutputStream fos = openFileOutput (OUTPUT_FILE, Context.MODE_WORLD_WRITEABLE) ;

INCLUDING STATIC FILES AS RESOURCES

If your application requires external file resources, you can include them in your distribution package
by placing them in the res/raw folder of your project hierarchy.

To access these read-only file resources, call the openrRawResource method from your application’s
Resource object to receive an InputStream based on the specified file. Pass in the file name (without
extension) as the variable name from the r.raw class, as shown in the following skeleton code:

Resources myResources = getResources();
InputStream myFile = myResources.openRawResource (R.raw.myfilename) ;

Adding raw files to your resources hierarchy is an excellent alternative for large, preexisting data
sources (such as dictionaries) for which it’s not desirable (or even possible) to convert them into
Android databases.

208 | CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

Android’s resource mechanism lets you specify alternative resource files for different languages, loca-
tions, and hardware configurations. You could, for example, create an application that loads a different
dictionary resource based on the user’s language settings.

FILE MANAGEMENT TOOLS

Android supplies some basic file management tools to help you deal with the file system. Many of these
utilities are located within the standard java.io.File package.

Complete coverage of Java file management utilities is beyond the scope of this book, but Android does
supply some specialized utilities for file management that are available from the application Context.

» deleteFile Enables you to remove files created by the current application.
> fileList Returns a string array that includes all the files created by the current application.

These methods are particularly useful for cleaning up temporary files left behind if your application
crashes or is killed unexpectedly.

SUMMARY

In this chapter you learned how to persist simple data within your applications and how to manage
files and preferences.

After learning how to save the Activity instance data between sessions using the save and restore
instance state handlers, you were introduced to Shared Preferences and the system Preference Screen
framework. You used them to save instance values and user preferences that can be used across your
application components.

Along the way you also learned to:
> Save and load files directly to and from the underlying file system.
> Include static files as external project resources.

In the next chapter you will learn how to persist more complex and structured information within
your applications. As well as the techniques described in this chapter, Android provides fully featured
relational databases (using the SQLite database library) that can be shared among applications by
means of Content Providers. Both SQLite and Content Providers will be explored in the next chapter.

Databases and Content Providers

WHAT’S IN THIS CHAPTER?

Y Y Y Y

\

>

>

Creating databases and using SQLite
Using Content Providers to share application data
Querying Content Providers

Using Cursors and Content Values to read and write from and to
Content Providers

Database design considerations
Introduction to the native Content Providers

Using the Contact Content Provider

In this chapter you’ll be introduced to the SQLite library, and you’ll look at how to use Content
Providers to share and use structured data within and between applications.

SQLite offers a powerful SQL database library that provides a robust persistence layer over
which you have total control.

Content Providers offer a generic interface to any data source by decoupling the data storage
layer from the application layer.

By default, access to a database is restricted to the application that created it. Content Providers

offer a standard interface your applications can use to share data with and consume data from

other applications — including many of the native data stores.

INTRODUCING ANDROID DATABASES

Structured data persistence in Android is provided through the following mechanisms:

>

SQLite Databases When managed, structured data is the best approach, Android offers
the SQLite relational database library. Every application can create its own databases over
which it has complete control.

210

| CHAPTER7 DATABASES AND CONTENT PROVIDERS

» Content Providers Content Providers offer a generic, well-defined interface for using and
sharing data.

Introducing SQLite Databases

Using SQLite you can create independent relational databases for your applications. Use them to store

and manage complex, structured application data.

Android databases are stored in the /data/data/<package_name>/databases folder on your device (or
emulator). By default all databases are private, accessible only by the application that created them.

Database design is a big topic that deserves more thorough coverage than is possible within this book.
It is worth highlighting that standard database best practices still apply in Android. In particular, when
you’re creating databases for resource-constrained devices (such as mobile phones), it’s important to
normalize your data to reduce redundancy.

Introducing Content Providers

Content Providers provide an interface for publishing and consuming data, based around a simple URI
addressing model using the content:// schema. They let you decouple the application layer from the
data layer, making your applications data-source agnostic by hiding the underlying data source.

Shared Content Providers can be queried for results, existing records updated or deleted, and new
records added. Any application with the appropriate permissions can add, remove, or update data
from any other application — including from the native Android databases.

Many native databases are available as Content Providers, accessible by third-party applications,
including the phone’s contact manager, media store, and other native databases as described later
in this chapter.

By publishing your own data sources as Content Providers, you make it possible for you (and other
developers) to incorporate and extend your data in new applications.

INTRODUCING SQLite

SQLite is a well regarded relational database management system (RDBMS). It is:
» Open-source
» Standards-compliant
» Lightweight
» Single-tier
It has been implemented as a compact C library that’s included as part of the Android software stack.

By being implemented as a library, rather than running as a separate ongoing process, each SQLite
database is an integrated part of the application that created it. This reduces external dependencies,
minimizes latency, and simplifies transaction locking and synchronization.

SQLite has a reputation for being extremely reliable and is the database system of choice for many
consumer electronic devices, including several MP3 players, the iPhone, and the iPod Touch.

Working with SQLite Databases | 211

Lightweight and powerful, SQLite differs from many conventional database engines by loosely typing
each column, meaning that column values are not required to conform to a single type. Instead, each
value is typed individually for each row. As a result, type checking isn’t necessary when assigning or

extracting values from each column within a row.

For more comprehensive coverage of SQLite, including its particular strengths and limitations, check
out the official site at http://www.sqglite.org/

CURSORS AND CONTENT VALUES

ContentValues are used to insert new rows into tables. Each Content Values object represents a single
table row as a map of column names to values.

Queries in Android are returned as cursor objects. Rather than extracting and returning a copy of
the result values, Cursors are pointers to the result set within the underlying data. Cursors provide a
managed way of controlling your position (row) in the result set of a database query.

The Cursor class includes a number of navigation functions including, but not limited to, the following;:
> moveToFirst Moves the cursor to the first row in the query result

moveToNext Moves the cursor to the next row

moveToPrevious Moves the cursor to the previous row

getCount Returns the number of rows in the result set

Y V Y Y

getColumnIndexOrThrow Returns the index for the column with the specified name (throw-
ing an exception if no column exists with that name)

getColumnName Returns the name of the specified column index

getColumnNames Returns a string array of all the column names in the current Cursor

Y VY

moveToPosition Moves the Cursor to the specified row
> getPosition Returns the current Cursor position

Android provides a convenient mechanism for simplifying the management of Cursors within your
Activities. The startManagingCursor method integrates the Cursor’s lifetime into the calling Activity’s.
When you’ve finished with the Cursor, call stopManagingCursor to do just that.

Later in this chapter you’ll learn how to query a database and how to extract specific row/column
values from the resulting Cursors.

WORKING WITH SQLite DATABASES

It’s good practice to create a helper class to simplify your database interactions.

The following section shows you how to create a database adapter class for your database. This abstrac-
tion layer encapsulates your database interactions. It will provide intuitive, strongly typed methods for
adding, removing, and updating items. A database adapter should also handle queries and expose
methods for creating, opening, and closing the database.

212 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

It can also be used as a convenient location to publish static database constants, including table and
column names.

Listing 7-1 shows the skeleton code for a standard database adapter class. It includes an extension of
the soLiteOpenHelper class (discussed in more detail in the following section), used to simplify opening,
creating, and upgrading the database.

) LISTING 7-1: Skeleton code for a standard database adapter implementation

Available for . .
download on import android.content.Context;

Wrox.com import android.database.*;
import android.database.sqglite.*;
import android.database.sglite.SQLiteDatabase.CursorFactory;
import android.util.Log;

public class MyDBAdapter {
private static final String DATABASE_NAME = "myDatabase.db";
private static final String DATABASE_TABLE = "mainTable";
private static final int DATABASE_VERSION = 1;

// The index (key) column name for use in where clauses.
public static final String KEY_ID="_id";

// The name and column index of each column in your database.
public static final String KEY_NAME="name";

public static final int NAME_COLUMN = 1;

// TODO: Create public field for each column in your table.

// SQL Statement to create a new database.

private static final String DATABASE_CREATE = "create table " +
DATABASE_TABLE + " (" + KEY_ID +
" integer primary key autoincrement, " +

KEY_NAME + " text not null);";

// Variable to hold the database instance
private SQLiteDatabase db;

// Context of the application using the database.
private final Context context;

// Database open/upgrade helper

private myDbHelper dbHelper;

public MyDBAdapter (Context _context) ({
context = _context;
dbHelper = new myDbHelper (context, DATABASE_NAME, null, DATABASE_VERSION) ;

public MyDBAdapter open() throws SQLException {
db = dbHelper.getWritableDatabase() ;
return this;

Working with SQLite Databases | 213

public void close() {
db.close();

public int insertEntry (MyObject _myObject) {
// TODO: Create a new ContentValues to represent my row
// and insert it into the database.
return index;

}
public boolean removeEntry(long _rowIndex) {
return db.delete (DATABASE_TABLE, KEY_ID + "=" + _rowlIndex, null) > 0;
}
public Cursor getAllEntries () {

return db.query (DATABASE_TABLE, new String[] {KEY_ID, KEY_NAME},
null, null, null, null, null);

public MyObject getEntry(long _rowIndex) {
// TODO: Return a cursor to a row from the database and
// use the values to populate an instance of MyObject
return objectInstance;

public boolean updateEntry(long _rowIndex, MyObject _myObject) {
// TODO: Create a new ContentValues based on the new object
// and use it to update a row in the database.
return true;

private static class myDbHelper extends SQLiteOpenHelper {

public myDbHelper (Context context, String name,
CursorFactory factory, int version) {
super (context, name, factory, version);

// Called when no database exists in disk and the helper class needs
// to create a new one.
@Override
public void onCreate(SQLiteDatabase _db) {
_db.execSQL (DATABASE_CREATE) ;

// Called when there is a database version mismatch meaning that the version
// of the database on disk needs to be upgraded to the current version.
@Override
public void onUpgrade (SQLiteDatabase _db, int _oldVersion, int _newVersion) {
// Log the version upgrade.
Log.w("TaskDBAdapter", "Upgrading from version " +
_oldversion + " to " +
_newVersion + ", which will destroy all old data");

continues

214 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

LISTING 7-1 (continued)

// Upgrade the existing database to conform to the new version. Multiple
// previous versions can be handled by comparing _oldVersion and _newVersion
// values.

// The simplest case is to drop the old table and create a new one.
_db.execSQL ("DROP TABLE IF EXISTS " + DATABASE_TABLE) ;

// Create a new one.

onCreate(_db) ;

Introducing the SQLiteOpenHelper

SQLiteOpenHelper is an abstract class used to implement the best practice pattern for creating, opening,
and upgrading databases. By implementing an SQLite Open Helper you hide the logic used to decide if
a database needs to be created or upgraded before it’s opened.

Listing 7-1 showed how to extend the sQLiteopenHelper class by overriding the constructor, onCreate,
and onupgrade methods to handle the creation of a new database and upgrading to a new version,
respectively.

In the previous example onUpgrade simply drops the existing table and replaces it
with the new definition. In practice, a better solution is to migrate existing data
into the new table.

To use an implementation of the helper class, create a new instance, passing in the context, database
name, and current version, and a CursorFactory (if you’re using one).

Call getReadableDatabase or getliritableDatabase to open and return a readable/writable instance of
the underlying database.

A call to getwritableDatabase can fail because of disk space or permission issues, so it’s good practice
to provide fallback to the getReadableDatabase method, as shown in Listing 7-2.

) LISTING 7-2: Using the SQLiteOpenHelper to access a database

me?:;%m dbHelper = new myDbHelper (context, DATABASE_NAME, null, DATABASE_VERSION) ;
Wrox.com
SQLiteDatabase db;
try {
db = dbHelper.getWritableDatabase() ;
}
catch (SQLiteException ex) {
db = dbHelper.getReadableDatabase() ;
}

Working with SQLite Databases | 215

Behind the scenes, if the database doesn’t exist the helper executes its onCreate handler. If the database
version has changed, the onupgrade handler will fire. In either case the get<read/writ>ableDatabase
call will return the existing, newly created, or upgraded database, as appropriate.

Opening and Creating Databases without SQLiteHelper

You can create and open databases without using the SQLite Helper by using the openorcreatenata
base method from the application Context.

Setting up a database is a two-step process. First call openorCreatebatabase to create the new database.
Then call execsgL on the resulting database instance to run the SQL commands that will create your
tables and their relationships. The general process is shown in Listing 7-3.

) LISTING 7-3: Creating a new database

Available for)) \ .
download on private static final String DATABASE_NAME = "myDatabase.db";

Wrox.com private static final String DATABASE_TABLE = "mainTable";

private static final String DATABASE_CREATE =
"create table " + DATABASE_TABLE + " (_id integer primary key autoincrement," +
"column_one text not null);";

SQLiteDatabase myDatabase;

private void createDatabase() {
myDatabase = openOrCreateDatabase (DATABASE_NAME, Context.MODE_PRIVATE, null);
myDatabase.execSQL (DATABASE_CREATE) ;

}

Android Database Design Considerations

There are several considerations specific to Android that you should keep in mind when designing your
database.

» Files (such as bitmaps or audio files) are not usually stored within database tables. Use a string
to store a path to the file, preferably a fully qualified URI.

> While not strictly a requirement, it’s strongly recommended that all tables include an auto-
increment key field as a unique index field for each row. If you plan to share your table using
a Content Provider, a unique ID field is mandatory.

Querying a Database

Each database query is returned as a cursor. This lets Android manage resources more efficiently by
retrieving and releasing row and column values on demand.

To execute a query on a database use the query method, passing in:

> An optional Boolean that specifies if the result set should contain only unique values.

» The name of the table to query.

216 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

\

A projection, as an array of strings, that lists the columns to include in the result set.

A “where” clause that defines the rows to be returned. You can include ? wildcards that will
be replaced by the values passed in through the selection argument parameter.

A\

An array of selection argument strings that will replace the ?’s in the where clause.
A “group by” clause that defines how the resulting rows will be grouped.

A “having” filter that defines which row groups to include if you specified a group by clause.

Y Y Y Y

A string that describes the order of the returned rows.
> An optional string that defines a limit for the number of returned rows.

Listing 7-4 shows snippets for returning some, and all, of the rows in a particular table.

) LISTING 7-4: Querying a database

Available for .
download on // Return all rows for columns one and three, no duplicates

Wrox.com String[] result_columns = new String[] {KEY_ID, KEY_COLl, KEY_COL3};

Cursor allRows = myDatabase.query(true, DATABASE_TABLE, result_columns,
null, null, null, null, null, null);

// Return all columns for rows where column 3 equals a set value

// and the rows are ordered by column 5.

String where = KEY_COL3 + "=" + requiredValue;

String order = KEY_COL5;

Cursor myResult = myDatabase.query (DATABASE_TABLE, null, where,
null, null, null, order);

Extracting Results from a Cursor

To extract values from a result Cursor, first use the moveTo<location> methods described earlier to
position the cursor at the correct row of the result Cursor.

Then use the type safe get<type> methods (passing in a column index) to return the value stored at the
current row for the specified column, as shown in the following snippet.

String columnValue = myResult.getString(columnIndex) ;

Database implementations should publish static constants that provide the column
names and/or indexes using easily recognizable variable names based on the column
names. These static constants are generally exposed within the database adapter.

Listing 7-5 shows how to iterate over a result Cursor, extracting and summing a column of float values.

Working with SQLite Databases | 217

) LISTING 7-5: Extracting values from a Cursor

Available for .
download on int GOLD_HOARDED_COLUMN = 2;
Wrox.com Cursor myGold = myDatabase.query("GoldHoards", null, null, null,

float totalHoard = 0f;

// Make sure there is at least one row.

if (myGold.moveToFirst()) {
// Iterate over each cursor.
do {

float hoard = myGold.getFloat (GOLD_HOARDED_COLUMN) ;
totalHoard += hoard;
} while (myGold.moveToNext ());
}

float averageHoard = totalHoard / myGold.getCount();

null, null, null);

Because SQLite database columns are loosely typed, you can cast individual values into valid types as

required. For example, values stored as floats can be read back as strings.

Adding, Updating, and Removing Rows

The sQLiteDatabase class exposes insert, delete, and update methods that encapsulate the SQL state-
ments required to perform these actions. Additionally, the execsoL method lets you execute any valid
SQL on your database tables should you want to execute these (or any other) operations manually.

Any time you modify the underlying database values, you should call refreshguery on each Cursor

that has a view on the affected table.

Inserting New Rows

To create a new row, construct a ContentValues object and use its put methods to provide a value for
each column. Insert the new row by passing the Content Values object into the insert method called

on the target database — along with the table name — as shown in Listing 7-6.

) LISTING 7-6: Inserting new rows into a database

Available for .
download on // Create a new row of values to insert.

Wrox.com ContentValues newValues = new ContentValues();

// Assign values for each row.
newValues.put (COLUMN_NAME, newValue) ;
[... Repeat for each column ...]

// Insert the row into your table
myDatabase.insert (DATABASE_TABLE, null, newValues);

218 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

Updating a Row
Updating rows is also done with Content Values.

Create a new ContentValues object, using the put methods to assign new values to each column you
want to update. Call update on the database, passing in the table name, the updated Content Values
object, and a where clause that specifies the row(s) to update as shown in Listing 7-7.

) LISTING 7-7: Updating a database row

Available for .
download on // Define the updated row content.
Wrox.com ContentValues updatedvValues = new ContentValues();

// Assign values for each row.
newValues.put (COLUMN_NAME, newValue) ;
[... Repeat for each column ...]

String where = KEY_ID + "=" + rowld;

// Update the row with the specified index with the new values.
myDatabase.update (DATABASE_TABLE, newValues, where, null);

Deleting Rows

To delete a row simply call delete on a database, specifying the table name and a where clause that
returns the rows you want to delete as shown in Listing 7-8.

) LISTING 7-8: Deleting a database row

Available for
download on myDatabase.delete (DATABASE_TABLE, KEY_ID + "=" + rowId, null);

Wrox.com

Saving Your To-Do List

In Chapter 6 you enhanced the To-Do List example to persist the Activity’s Ul state across sessions.
That was only half the job; in the following example you’ll create a database to save the to-do items.

1. Start by creating a new ToDoDBAdapter class. It will be used to manage your database inter-
actions. Create private variables to store the sQLiteDatabase object and the Context of the
calling application. Add a constructor that takes an application Context, and create static
class variables for the name and version of the database, as well as a name for the to-do item
table.

package com.paad.todolist;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sglite.SQLiteException;

Working with SQLite Databases | 219

import android.database.sqglite.SQLiteDatabase;
import android.database.sglite.SQLiteOpenHelper;
import android.util.Log;

public class ToDoDBAdapter {
private static final String DATABASE_NAME = "todoList.db";
private static final String DATABASE_TABLE = "todoItems";
private static final int DATABASE_VERSION = 1;

private SQLiteDatabase db;
private final Context context;

public ToDoDBAdapter (Context _context) {
this.context = _context;

}

Create public convenience variables that define the column names: this will make it easier to
find the correct columns when extracting values from query result Cursors.

public static final String KEY_ID = "_id";
public static final String KEY_TASK = "task";
public static final String KEY_CREATION_DATE = "creation_date";

Create a new taskDBOpenHelper class within the ToDoDBAdapter that extends SQLiteOpen-
Helper. It will be used to simplify version management of your database. Within it, overwrite
the onCreate and onupgrade methods to handle the database creation and upgrade logic.

private static class toDoDBOpenHelper extends SQLiteOpenHelper {

public toDoDBOpenHelper (Context context, String name,
CursorFactory factory, int version) {
super (context, name, factory, version);

}

// SQL Statement to create a new database.

private static final String DATABASE_CREATE = "create table " +
DATABASE_TABLE + " (" + KEY_ID + " integer primary key autoincrement, " +
KEY_TASK + " text not null, " + KEY_CREATION_DATE + " long);";

@Override

public void onCreate (SQLiteDatabase _db) {
_db.execSQL (DATABASE_CREATE) ;
}

@Override
public void onUpgrade (SQLiteDatabase _db, int _oldVersion, int _newVersion) {
Log.w("TaskDBAdapter", "Upgrading from version " +
_oldversion + " to " +
_newVersion + ", which will destroy all old data");

// Drop the old table.

_db.execSQL ("DROP TABLE IF EXISTS " + DATABASE_TABLE) ;
// Create a new one.

onCreate(_db) ;

220 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

4. Within the ToDoDBAdapter class, add a private variable to store an instance of the
toDoDBOpenHelper class you just created, and assign it within the constructor.

private toDoDBOpenHelper dbHelper;

public ToDoDBAdapter (Context _context) {
this.context = _context;
dbHelper = new toDoDBOpenHelper (context, DATABASE_NAME,
null, DATABASE_VERSION) ;
}

5. Still in the adapter class, create open and close methods that encapsulate the open and close
logic for your database. Start with a close method that simply calls close on the database
object.

public void close() {
db.close();
}

6. The open method should use the toDoDBOpenHelper class. Call getwritableDatabase to let
the helper handle database creation and version checking. Wrap the call to try to provide a
readable database if a writable instance can’t be opened.

public void open() throws SQLiteException {
try {
db = dbHelper.getWritableDatabase() ;
} catch (SQLiteException ex) {
db = dbHelper.getReadableDatabase() ;

}
7. Add strongly typed methods for adding, removing, and updating items.

// Insert a new task
public long insertTask(ToDoItem _task) {
// Create a new row of values to insert.
ContentValues newTaskValues = new ContentValues() ;
// Assign values for each row.
newTaskValues.put (KEY_TASK, _task.getTask());
newTaskValues.put (KEY_CREATION_DATE, _task.getCreated().getTime());
// Insert the row.
return db.insert (DATABASE_TABLE, null, newTaskValues);

// Remove a task based on its index
public boolean removeTask(long _rowIndex) {
return db.delete (DATABASE_TABLE, KEY_ID + "=" + _rowlIndex, null) > 0;

// Update a task
public boolean updateTask(long _rowIndex, String _task) {

ContentValues newValue = new ContentValues();

newValue.put (KEY_TASK, _task);

return db.update (DATABASE_TABLE, newValue, KEY_ID + "=" + _rowIndex, null) > 0;
}

Working with SQLite Databases | 221

Now add helper methods to handle queries. Write three methods — one to return all the
items, another to return a particular row as a Cursor, and finally one that returns a strongly

typed'ToDoItem.

public Cursor getAllToDoItemsCursor () {

return db.query (DATABASE_TABLE,
new String([] { KEY_ID, KEY_TASK, KEY_CREATION_DATE},

null, null, null, null, null);
}

public Cursor setCursorToToDoItem(long _rowIndex) throws SQLException ({

Cursor result = db.query(true, DATABASE_TABLE,
new String[] {KEY_ID, KEY_TASK},

KEY_ID + "=" + _rowIndex, null, null, null,
null, null);
if ((result.getCount() == 0) || !result.moveToFirst()) {

throw new SQLException("No to do items found for row: " + _rowIndex);

}
return result;

}

public ToDoItem getToDoItem(long _rowIndex) throws SQLException ({
Cursor cursor = db.query(true, DATABASE_TABLE,
new String[] {KEY_ID, KEY_TASK},
KEY_ID + "=" 4+ _rowIndex, null, null, null,
null, null);

| !cursor.moveToFirst()) {
" + _rowIndex) ;

if ((cursor.getCount() == 0)
throw new SQLException("No to do item found for row:

}

String task = cursor.getString (TASK_COLUMN) ;
long created = cursor.getLong (CREATION_DATE_COLUMN) ;

ToDoItem result = new ToDoItem(task, new Date(created));
return result;

}

That completes the database helper class. Return the TopoList Activity and update it to
persist the to-do list array. Start by updating the Activity’s onCreate method to create an
instance of the toboDBAdapter and open a connection to the database. Also include a call to

the populateTodoList method stub.

ToDoDBAdapter toDoDBAdapter;

public void onCreate(Bundle icicle) {
[... existing onCreate logic ...]

toDoDBAdapter = new ToDoDBAdapter (this) ;

// Open or create the database
toDoDBAdapter.open() ;

populateTodoList () ;
}

private void populateTodoList() { }

222

| CHAPTER7 DATABASES AND CONTENT PROVIDERS

10.

1.

12.

Create a new instance variable to store a Cursor over all the to-do items in the database.
Update the populateTodoList method to use the toboDBadapter instance to query the
database, and call startManagingCursor to let the Activity manage the Cursor. It should
also make a call to updatearray, a method that will be used to repopulate the to-do list array
using the Cursor.

Cursor toDoListCursor;

private void populateTodoList () {
// Get all the todo list items from the database.
toDoListCursor = toDoDBAdapter. getAllToDoItemsCursor();
startManagingCursor (toDoListCursor) ;

// Update the array.
updateArray () ;

private void updateArray () { }

Now implement the updateArray method to update the current to-do list array. Call requery
on the result Cursor to ensure it’s fully up to date, then clear the array and iterate over the
result set. When the update is complete call notifyDataSetChanged on the Array Adapter.

private void updateArray () {
toDoListCursor.requery () ;

todoItems.clear () ;

if (toDoListCursor.moveToFirst())
do {
String task = toDoListCursor.getString(ToDoDBAdapter.TASK_COLUMN) ;
long created = toDoListCursor.getLong (ToDoDBAdapter.CREATION_DATE_COLUMN) ;

ToDoItem newlItem = new ToDoItem(task, new Date(created)) ;
todoItems.add (0, newlItem) ;
} while(toDoListCursor.moveToNext ());

aa.notifyDataSetChanged() ;
}

To join the pieces together, modify the onkeyListener assigned to the text entry box

in the oncreate method, and update the removertem method. Both should now use the
toDoDBAdapter to add and remove items from the database rather than modifying the to-do
list array directly.

12.1. Start with the onKeyListener, insert the new item into the database, and refresh
the array.

public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView(R.layout.main) ;

myListView = (ListView)findViewById(R.id.myListView) ;
myEditText (EditText) findViewById(R.id.myEditText) ;

Working with SQLite Databases | 223

todoItems = new ArrayList<ToDoItem> () ;

int resID = R.layout.todolist_item;

aa = new ToDoItemAdapter (this, resID, todoItems);
myListView.setAdapter (aa) ;

myEditText.setOnKeyListener (new OnKeyListener () {
public boolean onKey(View v, int keyCode, KeyEvent event) {
if (event.getAction() == KeyEvent.ACTION_DOWN)
if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER) ({
ToDoItem newlItem = new ToDoItem(myEditText.getText().toString());
toDoDBAdapter.insertTask (newItem) ;
updateArray () ;
myEditText.setText ("");
aa.notifyDataSetChanged() ;
cancelAdd() ;
return true;
}
return false;
}
)

registerForContextMenu (myListView) ;
restoreUIState () ;

toDoDBAdapter = new ToDoDBAdapter (this);

// Open or create the database
toDoDBAdapter.open() ;

populateTodoList () ;
}

12.2. Then modify the removeItem method to remove the item from the database and
refresh the array list.
private void removeItem(int _index) {
// Items are added to the listview in reverse order, so invert the index.
toDoDBAdapter.removeTask (todoItems.size()-_index) ;
updateArray () ;
}

As a final step, override the onbestroy method of your activity to close your database
connection.
@Override

public void onDestroy () {
super.onDestroy () ;

// Close the database
toDoDBAdapter.close() ;

All code snippets in this example are part of the Chapter 7 Todo List project, available for download at Wrox.com.

224 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

Your to-do items will now be saved between sessions. As a further enhancement you could change the
Array Adapter to a Simple Cursor Adapter and have the List View update dynamically with changes to
the database.

Because you’re using a private database your tasks are not available to other applications. To provide
access to your tasks in other applications, expose them using a Content Provider. You’ll do exactly
that next.

CREATING A NEW CONTENT PROVIDER

To create a new Content Provider, extend the abstract contentProvider class. Override the onCreate
method to create (and initialize) the underlying data source you’re planning to publish with this
provider. Sample skeleton code for a new Content Provider is shown in Listing 7-9.

) LISTING 7-9: Creating a new Content Provider

Available for , .
download on import android.content.*;
Wrox.com import android.database.Cursor;

import android.net.Uri;
import android.database.SQLException;

public class MyProvider extends ContentProvider {

@Override

public boolean onCreate() {
// TODO Construct the underlying database.
return true;

}

You should expose a public static CONTENT_URT property that returns the full URI of this provider. A
Content Provider URI must be unique to the provider, so it’s good practice to base the URI path on
your package name. The general form for defining a Content Provider’s URI is:

content://com.<CompanyName>.provider.<ApplicationName>/<DataPath>
For example:
content://com.paad.provider.myapp/elements

Content URISs can represent either of two forms. The previous URI represents a request for all values of
that type (in this case all elements).

A trailing /<rownumber>, as shown in the following code, represents a request for a single record
(in this case the fifth element).

content://com.paad.provider.myapp/elements/5
It’s good practice to support access to your provider for both of these forms.

The simplest way to do this is to use a UriMatcher. Create and configure a Uri Matcher to parse
URIs and determine their forms. This is particularly useful when you’re processing Content Resolver
requests. Listing 7-10 shows the skeleton code for this pattern.

Creating a New Content Provider | 225

J LISTING 7-10: Using the UriMatcher to handle single or multiple query requests

Available for . . .
download on public class MyProvider extends ContentProvider {

Wrox.com
private static final String myURI = "content://com.paad.provider.myapp/items";
public static final Uri CONTENT URI = Uri.parse (myURI) ;

@Override

public boolean onCreate() {
// TODO: Construct the underlying database.
return true;

// Create the constants used to differentiate between the different URI
// requests.

private static final int ALLROWS = 1;

private static final int SINGLE_ROW = 2;

private static final UriMatcher uriMatcher;
// Populate the UriMatcher object, where a URI ending in 'items' will

// correspond to a request for all items, and 'items/[rowID]'
// represents a single row.

static {
uriMatcher = new UriMatcher (UriMatcher .NO_MATCH) ;
uriMatcher.addURI ("com.paad.provider.myApp", "items", ALLROWS) ;

uriMatcher.addURI ("com.paad.provider.myApp", "items/#", SINGLE_ROW) ;
}
}

You can use the same technique to expose alternative URIs for different subsets of data, or different
tables within your database, using the same Content Provider.

It’s also good practice to expose the name of each of the columns available in your provider, to simplify
extracting data from a query-result Cursor.

Exposing Access to the Data Source

Expose queries and transactions on your Content Provider by implementing the delete, insert,
update, and query methods.

These methods are the interface used by the Content Resolver to access the underlying data. They allow
applications to share data across application boundaries without having to publish different interfaces
for each data source.

The most common scenario is to use a Content Provider to expose a private SQLite database, but
within these methods you can access any source of data (including files or application instance
variables).

Listing 7-11 shows the skeleton code for implementing queries and transactions within a Content
Provider. Notice that the UriMatcher object is used to refine the transaction and query requests.

226 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

LISTING 7-11: Implementing queries and transactions within a Content Provider

J

Available for .
download on @Override
Wrox.com public Cursor query(Uri uri,

String[] projection,
String selection,
String[] selectionArgs,
String sort) {

// If this is a row query, limit the result set to the passed in row.
switch (uriMatcher.match(uri)) {
case SINGLE_ROW :
// TODO: Modify selection based on row id, where:
// rowNumber = uri.getPathSegments().get(1l));

}
return null;

@Override
public Uri insert (Uri _uri, ContentValues _initialvValues) {
long rowID = [... Add a new item ...]

// Return a URI to the newly added item.
if (rowID > 0) {
return ContentUris.withAppendedId(CONTENT_URI, rowID) ;

}
throw new SQLException("Failed to add new item into " + _uri);

@Override
public int delete(Uri uri, String where, String[] whereArgs) {
switch (uriMatcher.match(uri)) {
case ALLROWS:
case SINGLE_ROW:
default: throw new IllegalArgumentException ("Unsupported URI:" + uri);

}

@Override

public int update(Uri uri, ContentValues values, String where, Stringl]

whereArgs) {
switch (uriMatcher.match(uri)) {
case ALLROWS:

case SINGLE_ROW:
default: throw new IllegalArgumentException ("Unsupported URI:" + uri);

The final step in creating a Content Provider is defining the MIME type that identifies the data the

provider returns.

Using Content Providers | 227

Override the getType method to return a String that uniquely describes your data type. The type
returned should include two forms, one for a single entry and another for all the entries, following
these forms:

> Singk:ﬁenl vnd.<companyname>.cursor.item/<contenttype>
> All items vnd.<companyName>.cursor.dir/<contenttype>

Listing 7-12 shows how to override the getType method to return the correct MIME type based on the
URI passed in.

) LISTING 7-12: Returning a Content Provider MIME type

Available for)
downloadon @Override

Wrox.com public String getType (Uri _uri) {
switch (uriMatcher.match(_uri)) {
case ALLROWS: return "vnd.paad.cursor.dir/myprovidercontent";
case SINGLE_ROW: return "vnd.paad.cursor.item/myprovidercontent";
default: throw new IllegalArgumentException ("Unsupported URI: " + _uri);

Registering Your Provider
Once you have completed your Content Provider, it must be added to the application manifest.
Use the authorities tag to specify its base URI, as shown in the following XML snippet.

<provider android:name="MyProvider"
android:authorities="com.paad.provider.myapp"/>

USING CONTENT PROVIDERS

The following sections introduce the ContentResolver class, and how to use it to query and transact
with a Content Provider.

Introducing Content Resolvers

Each application Context includes a ContentResolver instance, accessible using the
getContentResolver method.

ContentResolver cr = getContentResolver();

The Content Resolver includes a number of methods to modify and query Content Providers. Each
method accepts a URI that specifies the Content Provider to interact with.

A Content Provider’s URI is its authority as defined by its manifest node. An authority URI is an arbi-
trary string, so most Content Providers include a public CONTENT URT property to publish that authority.

228 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

Content Providers usually expose two forms of URI, one for requests against all data, and another that
specifies only a single row. The form for the latter appends /<rowID> to the general CONTENT URT.

Querying for Content

Content Provider queries take a form very similar to that of database queries. Query results are returned
as Cursors over a result set, like databases, in the same way as described previously in this chapter.

You can extract values from the result Cursor using the same techniques described within the database
section on “Extracting Results from a Cursor.”

Using the query method on the contentResolver object, pass in:
» The URI of the Content Provider data you want to query.
> A projection that lists the columns you want to include in the result set.

> A wbhere clause that defines the rows to be returned. You can include ? wildcards that will be
replaced by the values passed into the selection argument parameter.

> Anarray of selection argument strings that will replace the 2s in the where clause.
» A string that describes the order of the returned rows.

Listing 7-13 shows how to use a Content Resolver to apply a query to a Content Provider:

) LISTING 7-13: Querying a Content Provider with a Content Resolver

Available for
downloadon ~ ContentResolver cr = getContentResolver();
Wrox.com // Return all rows

Cursor allRows = cr.query (MyProvider.CONTENT URI, null, null, null, null);
// Return all columns for rows where column 3 equals a set value
// and the rows are ordered by column 5.
String where = KEY_COL3 + "=" + requiredValue;
String order = KEY_COL5;
Cursor someRows = cr.query (MyProvider.CONTENT_ URT,
null, where, null, order);

You’ll see more examples of querying for content later in this chapter when the native Android Content
Providers are introduced.

Adding, Updating, and Deleting Content

To perform transactions on Content Providers, use the delete, update, and insert methods on the
ContentResolver object.

Inserts

The Content Resolver offers two methods for inserting new records into your Content Provider —
insert and bulkInsert. Both methods accept the URI of the item-type you’re adding; where the former
takes a single new contentvalues object, the latter takes an array.

Using Content Providers | 229

The simple insert method will return a URI to the newly added record, while bulkInsert returns the
number of successfully added rows.

Listing 7-14 shows how to use the insert and bulkInsert methods.

v

Available for
download on
Wrox.com

LISTING 7-14: Inserting new rows into a Content Provider

// Get the Content Resolver
ContentResolver cr = getContentResolver () ;

// Create a new row of values to insert.
ContentValues newValues = new ContentValues() ;

// Assign values for each row.
newValues.put (COLUMN_NAME, newValue) ;
[... Repeat for each column ...]

Uri myRowUri = cr.insert (MyProvider.CONTENT_ URI, newValues) ;

// Create a new row of values to insert.
ContentValues[] valueArray = new ContentValues[5];

// TODO: Create an array of new rows
int count = cr.bulkInsert (MyProvider.CONTENT_URI, valueArray) ;

Deletes

To delete a single record, call delete on the Content Resolver, passing in the URI of the row you want
to remove. Alternatively, you can specify a where clause to remove multiple rows. Both techniques are

shown in Listing 7-15.

V.

LISTING 7-15: Deleting records from a Content Provider

Available for
download on ContentResolver cr = getContentResolver();
Wrox.com

// Remove a specific row.

cr.delete (myRowUri, null, null);

// Remove the first five rows.

String where = "_id < 5";

cr.delete (MyProvider.CONTENT_URI, where, null);

Updates

Content Provider row updates are made with the Content Resolver update method. The update method
takes the URI of the target Content Provider, a ContentValues object that maps column names to
updated values, and a where clause that indicates which rows to update.

When the update is executed, every row matched by the where clause is updated using the specified
Content Values, and the number of successful updates is returned as shown in Listing 7-16.

230 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

) LISTING 7-16: Updating records in a Content Provider

Available for .
download on // Create a new row of values to insert.
Wrox.com ContentValues newValues = new ContentValues();

// Create a replacement map, specifying which columns you want to
// update, and what values to assign to each of them.
newValues.put (COLUMN_NAME, newValue) ;

// Apply to the first 5 rows.
String where = "_id < 5";

getContentResolver () .update (MyProvider.CONTENT _URI, newValues, where, null);

Accessing Files in Content Providers

Content Providers represent files as fully qualified URIs rather than as raw file blobs. To insert a
file into a Content Provider, or access a saved file, use the Content Resolvers openOutputStream or
openInputStream methods respectively. The process for storing a file is shown in Listing 7-17.

) LISTING 7-17: Adding files to Content Providers

Available for , , . . .
download on // Insert a new row into your provider, returning its unique URI.
Wrox.com Uri uri = getContentResolver () .insert (MyProvider.CONTENT URI, newValues) ;

try {
// Open an output stream using the new row's URI.
OutputStream outStream = getContentResolver () .openOutputStream(uri) ;
// Compress your bitmap and save it into your provider.
sourceBitmap.compress (Bitmap.CompressFormat.JPEG, 50, outStream) ;

}
catch (FileNotFoundException e) { }

CREATING AND USING AN EARTHQUAKE CONTENT PROVIDER

Having created an application that features a list of earthquakes, you have an excellent opportunity to
share this information with other applications.

By exposing this data through a Content Provider you make it possible for yourself, and others, to
create new applications based on earthquake data without having to duplicate network traffic and the
associated XML parsing.

Creating the Content Provider

1. First open the Earthquake project and create a new EarthquakeProvider class that extends
contentProvider. Include stubs to override the onCreate, getType, query, insert, delete,
and update methods.

Creating and Using an Earthquake Content Provider | 231

package com.paad.earthquake;

import android.content.*;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sglite.SQLiteOpenHelper;
import android.database.sglite.SQLiteDatabase;
import android.database.sglite.SQLiteQueryBuilder;
import android.net.Uri;

import android.text.TextUtils;

import android.util.Log;

public class EarthquakeProvider extends ContentProvider {

@Override
public boolean onCreate() {

}

@Override
public String getType (Uri url) {
}

@Override
public Cursor query(Uri url, String[] projection, String selection,
String[] selectionArgs, String sort) {

@Override
public Uri insert (Uri _url, ContentValues _initialValues) {

}

@Override
public int delete(Uri url, String where, String[] whereArgs) {
}

@Override
public int update(Uri url, ContentValues values,
String where, String[]wArgs) {

}

Publish the URI for this provider. This URI will be used to access this Content Provider from
within other application components via the ContentResolver.

public static final Uri CONTENT_URI =
Uri.parse("content://com.paad.provider.earthquake/earthquakes") ;

Create the database that will be used to store the earthquakes. Within the EarthquakeProvider
create a new SQLiteDatabase instance and expose public variables that describe the column
names and indexes. Include an extension of sQLiteOpenHelper to manage database creation
and version control.

// The underlying database
private SQLiteDatabase earthquakeDB;

232 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

private static final String TAG = "EarthquakeProvider";
private static final String DATABASE_NAME = "earthquakes.db";
private static final int DATABASE_VERSION = 1;

private static final String EARTHQUAKE_TABLE = "earthquakes";

// Column Names

public static final String KEY_ID = "_id";
public static final String KEY_DATE = "date";
public static final String KEY_DETAILS = "details";

public static final String KEY_LOCATION_LAT = "latitude";
public static final String KEY_LOCATION_LNG = "longitude";
public static final String KEY_MAGNITUDE = "magnitude";
public static final String KEY_LINK = "link";

// Column indexes

public static final int DATE_COLUMN = 1;
public static final int DETAILS_COLUMN = 2;
public static final int LONGITUDE_COLUMN = 3;
public static final int LATITUDE_COLUMN = 4;
public static final int MAGNITUDE_COLUMN = 5;
public static final int LINK_COLUMN = 6;

// Helper class for opening, creating, and managing database version control
private static class earthquakeDatabaseHelper extends SQLiteOpenHelper ({
private static final String DATABASE_CREATE =
"create table " + EARTHQUAKE_TABLE + " ("
KEY_ID + " integer primary key autoincrement, "
KEY_DATE + " INTEGER, "
KEY_DETAILS + " TEXT, "
KEY_LOCATION_LAT + " FLOAT, "
KEY_LOCATION_LNG + " FLOAT, "
KEY_MAGNITUDE + " FLOAT), "
KEY_LINK + " TEXT);";

+ o+ o+ o+ o+ o+ 4

public earthquakeDatabaseHelper (Context context, String name,
CursorFactory factory, int version) {
super (context, name, factory, version);

}

@Override

public void onCreate (SQLiteDatabase db) ({
db.execSQL (DATABASE_CREATE) ;

}

@Override
public void onUpgrade (SQLiteDatabase db, int oldVersion, int newVersion) {
Log.w(TAG, "Upgrading database from version " + oldVersion + " to "
+ newVersion + ", which will destroy all old data");

db.execSQL ("DROP TABLE IF EXISTS " + EARTHQUAKE_TABLE) ;
onCreate (db) ;

}

4. Create a UriMatcher to handle requests using different URIs. Include support for queries
and transactions over the entire dataset (QUAKES) and a single record matching a quake index
value (QUAKE_ID).

Creating and Using an Earthquake Content Provider | 233

// Create the constants used to differentiate between the different URI
// requests.

private static final int QUAKES = 1;

private static final int QUAKE_ID = 2;

private static final UriMatcher uriMatcher;

// Allocate the UriMatcher object, where a URI ending in 'earthquakes' will
// correspond to a request for all earthquakes, and 'earthquakes' with a
trailing '/[rowID]' will represent a single earthquake row.
static {
uriMatcher = new UriMatcher (UriMatcher .NO_MATCH) ;
uriMatcher.addURI ("com.paad.provider.Earthquake", "earthquakes", QUAKES) ;
uriMatcher.addURI ("com.paad.provider.Earthquake", "earthquakes/#", QUAKE_ID);
}

Override the getType method to return a string for each of the URI structures supported.

@Override
public String getType (Uri uri) {
switch (uriMatcher.match(uri)) {
case QUAKES: return "vnd.android.cursor.dir/vnd.paad.earthquake";
case QUAKE_ID: return "vnd.android.cursor.item/vnd.paad.earthquake";
default: throw new IllegalArgumentException ("Unsupported URI: " + uri);

}

Override the provider’s oncreate handler to create a new instance of the database helper
class, and open a connection to the database.

@QOverride
public boolean onCreate() {
Context context = getContext();

earthquakeDatabaseHelper dbHelper = new earthquakeDatabaseHelper (context,
DATABASE_NAME, null, DATABASE_VERSION) ;
earthquakeDB = dbHelper.getWritableDatabase() ;
return (earthquakeDB == null) ? false : true;
}

Implement the query and transaction stubs. Start with the query method, which should
decode the request being made based on the URI (either all content or a single row), and
apply the selection, projection, and sort-order criteria parameters to the database before
returning a result Cursor.

@Override

public Cursor query (Uri uri,
String[] projection,
String selection,
String[] selectionArgs,
String sort) {

SQLiteQueryBuilder gb = new SQLiteQueryBuilder();

gb.setTables (EARTHQUAKE_TABLE) ;

234 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

// If this is a row query, limit the result set to the passed in row.
switch (uriMatcher.match(uri)) {

case QUAKE_ID: gb.appendWhere(KEY_ID + "=" + uri.getPathSegments().get(1l));
break;
default : break;

// If no sort order is specified sort by date / time
String orderBy;
if (TextUtils.isEmpty(sort)) {
orderBy = KEY_DATE;
} else {
orderBy = sort;

// Apply the query to the underlying database.
Cursor c¢ = gb.query(earthquakeDB,
projection,
selection, selectionArgs,
null, null,
orderBy) ;

// Register the contexts ContentResolver to be notified if
// the cursor result set changes.
c.setNotificationUri (getContext ().getContentResolver (), uri);

// Return a cursor to the query result.
return c;

}

8. Now implement methods for inserting, deleting, and updating content. In this case the
process is an exercise in mapping Content Provider transaction requests to their database
equivalents.

@Override
public Uri insert (Uri _uri, ContentValues _initialvValues) ({
// Insert the new row, will return the row number if
// successful.
long rowID = earthquakeDB.insert (EARTHQUAKE_TABLE, "quake", _initialValues);

// Return a URI to the newly inserted row on success.

if (rowID > 0) {
Uri uri = ContentUris.withAppendedId (CONTENT _URI, rowlID) ;
getContext () .getContentResolver () .notifyChange (uri, null);
return uri;

}

throw new SQLException("Failed to insert row into " + _uri);

@Override
public int delete(Uri uri, String where, String[] whereArgs) ({
int count;

Creating and Using an Earthquake Content Provider | 235

switch (uriMatcher.match(uri)) {
case QUAKES:
count = earthquakeDB.delete (EARTHQUAKE_TABLE, where, whereArgs) ;

break;

case QUAKE_TID:
String segment = uri.getPathSegments().get(1l);
count = earthquakeDB.delete (EARTHQUAKE_TABLE, KEY_ID + "="

+ segment
+ (!TextUtils.isEmpty (where) ? " AND ("
+ where + ')' : ""), whereArgs) ;
break;
default: throw new IllegalArgumentException ("Unsupported URI: " + uri);

getContext () .getContentResolver () .notifyChange (uri, null);
return count;

@QOverride

public int update(Uri uri, ContentValues values, String where, Stringl]

whereArgs) {
int count;
switch (uriMatcher.match(uri)) {
case QUAKES: count = earthquakeDB.update (EARTHQUAKE_TABLE, values,
where, whereArgs) ;

break;

case QUAKE_ID: String segment = uri.getPathSegments().get(1l);
count = earthquakeDB.update (EARTHQUAKE_TABLE, values, KEY_ID

+ "=" + segment
+ (!TextUtils.isEmpty (where) ? " AND ("
+ where + ')' : ""), whereArgs);

break;

default: throw new IllegalArgumentException("Unknown URI " + uri);

getContext () .getContentResolver () .notifyChange (uri, null);
return count;

}
With the Content Provider complete, register it in the manifest by creating a new <provider>
node within the application tag.

<provider android:name=".EarthquakeProvider"
android:authorities="com.paad.provider.earthquake" />

All code snippets in this example are part of the Chapter 7 Todo List 2 project, available for download at Wrox.com.

236 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

Using the Provider

You can now update the Earthquake Activity to use the Earthquake Provider to store quakes and use
them to populate the List View.

1. Within the Earthquake Activity, update the addNewQuake method. It should use the applica-
tion’s Content Resolver to insert each new Earthquake into the provider. Move the existing
array control logic into a separate addQuakeToArray method.

private void addNewQuake (Quake _quake) {
ContentResolver cr = getContentResolver();
// Construct a where clause to make sure we don't already have this
// earthquake in the provider.
String w = EarthquakeProvider.KEY_DATE + " = " + _quake.getDate().getTime();

// If the earthquake is new, insert it into the provider.
if (cr.query(EarthquakeProvider.CONTENT_URI, null, w, null, null).getCount()==0)
ContentValues values = new ContentValues();

values.put (EarthquakeProvider.KEY_DATE, _quake.getDate().getTime());
values.put (EarthquakeProvider.KEY_DETAILS, _quake.getDetails());

double lat = _quake.getLocation().getLatitude();

double 1ng = _quake.getLocation().getLongitude() ;

values.put (EarthquakeProvider.KEY_LOCATION_LAT, lat);

values.put (EarthquakeProvider .KEY_LOCATION_LNG, 1lng);

values.put (EarthquakeProvider.KEY_LINK, _quake.getLink());
values.put (EarthquakeProvider.KEY_MAGNITUDE, _quake.getMagnitude());

cr.insert (EarthquakeProvider.CONTENT_URI, values);
earthquakes.add (_quake) ;

addQuakeToArray (_quake) ;

}

private void addQuakeToArray (Quake _quake) ({
if (_quake.getMagnitude() > minimumMagnitude) {
// Add the new quake to our list of earthquakes.
earthquakes.add(_quake) ;

// Notify the array adapter of a change.
aa.notifyDataSetChanged() ;
}
}

2. Create a new loadQuakesFromProvider method that loads all the earthquakes from the
Earthquake Provider, and inserts them into the Array List using the addguakeToArray
method created in Step 1.

private void loadQuakesFromProvider () {
// Clear the existing earthquake array
earthquakes.clear () ;

ContentResolver cr = getContentResolver();

Creating and Using an Earthquake Content Provider | 237

// Return all the saved earthquakes
Cursor ¢ = cr.query (EarthquakeProvider.CONTENT_URI, null, null, null, null);

if (c.moveToFirst())
{
do {
// Extract the quake details.
Long datems = c.getLong (EarthquakeProvider.DATE_COLUMN) ;
String details = c.getString(EarthquakeProvider.DETAILS_COLUMN) ;
Float lat = c.getFloat (EarthquakeProvider.LATITUDE_COLUMN) ;
Float lng = c.getFloat (EarthquakeProvider .LONGITUDE_COLUMN) ;
Double mag = c.getDouble (EarthquakeProvider .MAGNITUDE_COLUMN) ;
String link = c.getString(EarthquakeProvider.LINK_COLUMN) ;

Location location = new Location ("dummy") ;
location.setLongitude (1ng) ;
location.setlLatitude(lat);

Date date = new Date(datems) ;

Quake g = new Quake(date, details, location, mag, link);
addQuakeToArray (q) ;
} while(c.moveToNext ());

}

Call 10adguakesFromProvider from onCreate to initialize the earthquake List View
at start-up.

@QOverride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main) ;

earthquakelListView = (ListView)this.findViewById(R.id.earthquakeListView) ;
earthquakelListView.setOnItemClickListener (new OnItemClickListener () ({

@Override
public void onItemClick (AdapterView _av, View _v, int _index, long arg3) {
selectedQuake = earthquakes.get(_index) ;
showDialog (QUAKE_DIALOG) ;
}
)

int layoutID = android.R.layout.simple_list_item 1;
aa = new ArrayAdapter<Quake> (this, layoutID , earthquakes);
earthquakeListView.setAdapter (aa) ;

loadQuakesFromProvider () ;

updateFromPreferences () ;
refreshEarthquakes () ;

238 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

4. Finally, make a change to the refreshEarthquakes method so that it loads the saved
earthquakes from the provider after clearing the array, but before adding any new quakes
received.

private void refreshEarthquakes () {
[... exiting refreshEarthquakes method ...]

// Clear the old earthquakes
earthquakes.clear () ;

loadQuakesFromProvider () ;

[... exiting refreshEarthquakes method ...]

All code snippets in this example are part of the Chapter 7 Todo List 3 project, available for download at Wrox.com.

NATIVE ANDROID CONTENT PROVIDERS

Android exposes several native databases using Content Providers.

You can access these Content Providers directly using the techniques described earlier in this chapter.
Alternatively, the android.provider package includes classes that can simplify access to many of the
most useful providers, including:

> Browser Use the browser Content Provider to read or modify bookmarks, browser history,
or web searches.

» Ccalllog View or update the call history, including both incoming and outgoing calls,
together with missed calls and call details like caller ID and call durations.

> ContactsContract Use the Contacts Contract provider to retrieve, modify, or store your
contacts’ details. This Content Provider replaces the Contact Content Provider.

> MediaStore The Media Store provides centralized, managed access to the multimedia on
your device, including audio, video, and images. You can store your own multimedia within
the media store and make it globally available, as shown in Chapter 11.

> Settings You can access the device’s preferences using the Settings provider.
You can view most system settings and modify some of them. More usefully, the
android.provider.Settings class includes a collection of Intent actions that can be used to
open the appropriate settings screen to let users modify their own settings.

> UserDictionary Access (or add to) the user defined words added to the dictionary for use in
IME predictive text input.

You should use these native Content Providers wherever possible to ensure your application integrates
seamlessly with other native and third-party applications.

While a detailed description of how to use each of these helpers is beyond the scope of this chapter, the
following sections describe how to use the Media Store and Contacts Contract Content Provider.

Native Android Content Providers | 239

Using the Media Store Provider
The Android Media Store is a managed repository of audio, video, and image files.

Whenever you add a new multimedia file to the file system, it should also be added to the Media Store.
This will expose it to other applications, including the default media player. Chapter 11 shows you
how to use the Content Scanner to add new media to the Media Store.

To access media from the Media Store, query the image, video, or audio Content Providers using
the techniques described earlier within this chapter. The MediaStore class includes Audio, Video, and
Images subclasses, which in turn contain subclasses that are used to provide the column names and
content URIs for each media provider.

The Media Store segregates media kept on the internal and external volumes of the host device. Each
of the Media Store subclasses provides a URI for either the internally or externally stored media using
the forms:

> MediaStore.<mediatype>.Media.EXTERNAL_CONTENT_URI
> MediaStore.<mediatype>.Media.INTERNAL_CONTENT_URI

Listing 7-18 shows a simple code snippet used to find the song title and album name for each piece of
audio stored on the external volume.

) LISTING 7-18: Accessing the Media Store Content Provider

Available for
download on // Get a cursor over every piece of audio on the external volume.

Wrox.com Cursor cursor =
getContentResolver () .query (MediaStore.Audio.Media.EXTERNAL_CONTENT_URT,
null, null, null, null);

// Let the activity manage the cursor lifecycle.
startManagingCursor (cursor) ;

// Use the convenience properties to get the index of the columns
int albumIdx = cursor.getColumnIndexOrThrow (MediaStore.Audio.Media.ALBUM) ;
int titleIdx = cursor. getColumnIndexOrThrow (MediaStore.Audio.Media.TITLE) ;

String[] result = new String[cursor.getCount()];
if (cursor.moveToFirst())
do {
// Extract the song title.
String title = cursor.getString(titleIdx);
// Extract the album name.
String album = cursor.getString(albumIdx) ;

result[cursor.getPosition()] = title + " (" + album + ")";
} while(cursor.moveToNext()) ;

In Chapter 11 you’ll learn how to play audio and video resources stored in the Media Store by specify-
ing the URI of a particular multi media item.

240 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

Using the Contacts Provider

Access to the contact manager is particularly useful on a communications device. Android does the
right thing by exposing all the information available from the contacts database to any application
granted the READ_CONTACTS permission.

Android 2.0 (API level 5) introduced the contactscontract class, which superceded the contacts class
that had previously been used to store and manage the contacts stored on the device.

The new contact Content Provider extends the scope of contacts management in Android by providing
an extensible database of contact-related information. This allows users to specify multiple sources for
their contact information. More importantly for us, it allows developers to arbitrarily extend the data
stored against each contact, or even become an alternative provider for contacts and contact details.

Introducing the Contacts Contract Content Provider

The Contacts Contract Content Provider is an extensible database of contact-related information.

Rather than using a single well-defined table of contact detail columns, the Contacts Contract provider
uses a three-tier data model to store data, associate it with a contact, and aggregate it to a single person
using the following contactsContract subclasses:

> Data In the underlying table, each row defines a set of personal data (e.g., phone numbers,
e-mail addresses, etc.), separated by MIME type. While there is a predefined set of common
column names for each personal data-type (available, along with the appropriate MIME
types from subclasses within contactsContract.CommonDataKinds), this table can be used
to store any value.

Importantly, the kind of data stored in a particular row is determined by the MIME type
specified for that row. A series of generic columns is used to store up to 15 different pieces
of data varying by data type.

When adding new data to the Data table, you specify a Raw Contact to which a set of data
will be associated.

» RawContacts From Android 2.0 onwards, users can specify multiple contact accounts (e.g.,
Gmail, Facebook, etc.). Each row in the Raw Contacts table defines an account to which a set
of pata values is associated.

» contacts The Contacts table aggregates rows from Raw Contacts that all describe the same
person.

Typically you will use the Data table to add, delete, or modify data stored against an existing contact
account, the Raw Contacts table to create and manage accounts, and both the Contact and Data tables
to query the database and extract contact details.

Reading Contact Details

You can use the Content Resolver to query any of the three Contact Contracts tables described above
using the CONTENT_URT static constant available from each class. Each class includes a number of static
properties that describe the column names included in the underlying tables.

Native Android Content Providers | 241

In order to access any contact details you need to include the READ_CONTACTS uses-permission in your
application manifest:

<uses-permission android:name="android.permission.READ_CONTACTS"/>

Listing 7-19 queries the Contacts table for a Cursor to every person in the address book, creating an
array of strings that holds each contact’s name and unique ID.

) LISTING 7-19: Accessing the contact Content Provider

Available for
download on // Get a cursor over every aggregated contact.

Wrox.com Cursor cursor =
getContentResolver () .query (ContactsContract.Contacts.CONTENT_URI,
null, null, null, null);

// Let the activity manage the cursor lifecycle.
startManagingCursor (cursor) ;

// Use the convenience properties to get the index of the columns

int nameIdx =

cursor.getColumnIndexOrThrow (ContactsContract.Contacts.DISPLAY_NAME) ;

int idIdx = cursor. getColumnIndexOrThrow (ContactsContract.Contacts._ID);

String[] result = new String[cursor.getCount()];
if (cursor.moveToFirst())
do {
// Extract the name.
String name = cursor.getString (nameldx) ;
// Extract the phone number.
String id = cursor.getString (idIdx) ;

result[cursor.getPosition()] = name + " (" + id + ")";
} while(cursor.moveToNext ()) ;

stopManagingCursor (cursor) ;

The contactsContract.Data Content Provider is used to store all the contact details — such as
addresses, phone numbers, and e-mail addresses — making it the best approach when searching for
one of these details.

The Data table is also used for finding details for a given contact. In most cases, you will likely be
querying for contact details based on a full or partial contact name.

To simplify this lookup, Android provides the contactsContract.Contacts.CONTENT_FILTER_URT
query URI. Append the full or partial name to lookup as an additional path segment to the URI. To
extract the associated contact details, find the _1D value from the returned Cursor and use it to create a
query on the Data table.

The content of each column with a row in the Data table depends on the MIME type specified for
that row. As a result, any query on the Data table must filter the rows by MIME-type in order to
meaningfully extract data.

242 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

Listing 7-20 shows how to use the contact-detail column names available in the commonDatakinds
subclasses to extract the display name and mobile phone number from the Data table for a particular
contact.

) LISTING 7-20: Finding contact details after finding a contact

Available for
d&r”““"“ // Find a contact using a partial name match
fox.com Uri lookupUri =
Uri.withAppendedPath (ContactsContract.Contacts.CONTENT FILTER_URI, "kristy");

Cursor idCursor = getContentResolver () .query(lookupUri, null, null, null,
null) ;

String id = null;

if (idCursor.moveToFirst()) {
int idIdx = idCursor.getColumnIndexOrThrow (ContactsContract.Contacts._ID);
id = idCursor.getString (idIdx) ;

}

idCursor.close() ;

if (id !'= null) {

// Return all the contact details of type PHONE for the contact we found
String where = ContactsContract.Data.CONTACT_ID + " = " + id + " AND " +
ContactsContract.Data.MIMETYPE + " = '" +

ContactsContract.CommonDataKinds.Phone.CONTENT ITEM TYPE +

Cursor dataCursor =
getContentResolver () .query (ContactsContract.Data.CONTENT_URI,
null, where, null, null);

// Use the convenience properties to get the index of the columns
int nameIdx =

dataCursor.getColumnIndexOrThrow (ContactsContract.Data.DISPLAY_NAME) ;
int phoneIdx =

dataCursor.getColumnIndexOrThrow (ContactsContract.CommonDataKinds.Phone.NUMBER)

7

String[] result = new String[dataCursor.getCount()];
if (dataCursor.moveToFirst())
do {
// Extract the name.
String name = dataCursor.getString(nameldx) ;
// Extract the phone number.
String number = dataCursor.getString (phonelIdx) ;

result[dataCursor.getPosition()] = name + " (" + number + ")";
} while(dataCursor.moveToNext ()) ;
dataCursor.close() ;

Native Android Content Providers | 243

The Contacts sub-class also offers a phone number lookup URI to help find a contact associated with
a particular phone number. This query is highly optimized to return fast results for incoming caller-ID
notification.

Use ContactsContract . PhoneLookup.CONTENT_FILTER URI, appending the number to find as an addi-
tional path segment, as shown in Listing 7-21.

) LISTING 7-21: Performing a caller-ID lookup

Available for ; !)
download on String incomingNumber = "5551234";

Wrox.com
Uri lookupUri =
Uri.withAppendedPath(ContactsContract.PhoneLookup.CONTENT FILTER URI,
incomingNumber) ;

Cursor idCursor = getContentResolver().query(lookupUri, null, null, null,
null);

if (idCursor.moveToFirst()) {
int nameIdx =
idCursor.getColumnIndexOrThrow (ContactsContract.Contacts.DISPLAY NAME) ;
String caller = idCursor.getString(nameIdx) ;
Toast .makeText (getApplicationContext (), caller, Toast.LENGTH_LONG) .show() ;
}

idCursor.close() ;

In addition to the static contact details described above, the contactsContract.StatusUpdates table
contains social status updates and instant messenger availability. Using this table you can look up or
modify the status, and presence, of any contact who has an associated social networking and/or instant
messaging account.

Modifying and Augmenting Contact Details

As well as querying the contacts database, you can use these Content Providers to modify, delete, or
insert contact records after adding the WRITE_CONTACTS uses-permission to your application manifest.

The extensible nature of the Contacts Contract provider allows you to add arbitrary Data table rows to
any account stored as a Raw Contact. In practice it is poor form to extend a third-party account with
custom data as it will be unable to synchronize your custom data with its online server.

Better practice is to create your own syncing contact adapter that will be aggregated with the other
third-party account details.

The process for creating your own syncing contact account adapter is beyond the scope of this book.
However, in general terms, by creating a record in the Raw Contacts provider it’s possible for you to
create a contacts account type for your own custom data.

You can add new records into the contacts Data provider that are associated with your custom contact
account. Once added, your custom contact data will be aggregated with the details provided by native
and other third-party contact information adapters and made available when developers query the
Contacts Content Provider as described in the previous section.

244 | CHAPTER7 DATABASES AND CONTENT PROVIDERS

SUMMARY

In this chapter you learned how to add a robust persistence layer to your applications and access native
and third-party Content Providers.

Android provides a fully featured SQLite RDBMS to all applications. This small, efficient, and
robust database library lets you create relational databases to persist application data. Using
Content Providers, you learned how to share private data, particularly databases, across application
boundaries.

All database and Content Provider queries are returned as Cursors; you learned how to perform queries
and extract data from the resulting Cursor objects.

Along the way you also learned to:
» Create new SQLite databases
> Interact with databases to insert, update, and delete rows

» Use the native Content Providers included with Android to access and manage native data
like media and contacts

Now that you have a solid foundation in the fundamentals of Android development, the remainder of
this book will investigate some of the more interesting optional Android features.

Starting in the next chapter you’ll be introduced to the geographic APIs. Android offers a rich suite of
geographical functionality, including location-based services (such as GPS) and forward and reverse
geocoding, as well as a fully integrated Google maps implementation. Using Google maps you can
create map-based Activities that feature annotations to develop native map-mashups.

Maps, Geocoding, and
Location-Based Services

WHAT’S IN THIS CHAPTER?

Forward and reverse geocoding

Creating interactive maps with Map Views and Map Activities

>

>

» Creating and adding Overlays to maps

» Finding your location with location-based services
>

Using proximity alerts

One of the defining features of mobile phones is their portability, so it’ s not surprising that some
of the most enticing Android features are the services that let you find, contextualize, and map
physical locations.

You can create map-based Activities using Google Maps as a user interface element. You have
full access to the map, which enables you to control display settings, alter the zoom level, and
pan the display. Using Overlays you can annotate maps and handle user input to provide map-
contextualized information and functionality.

Also covered in this chapter are the location-based services (LBS), the services that let you find
the device’ s current location. They include technologies like GPS and Google’ s cell-based loca-
tion technology. You can specify which location-sensing technology to use explicitly by name,
or implicitly by defining a set of criteria in terms of accuracy, cost, and other requirements.

Maps and location-based services use latitude and longitude to pinpoint geographic locations,

but your users are more likely to think in terms of an address. Android provides a Geocoder that
supports forward and reverse geocoding. Using the Geocoder you can convert back and forth

between latitude/longitude values and real-world addresses.

Used together, the mapping, geocoding, and location-based services provide a powerful toolkit
for incorporating your phone’ s native mobility into your mobile applications.

246 | CHAPTER8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

USING LOCATION-BASED SERVICES

Location-based services is an umbrella term used to describe the different technologies used to find a
device’ s current location. The two main LBS elements are:

» Location Manager Provides hooks to the location-based services

» Location Providers Each of these represents a different location-finding technology used to
determine the device’ s current location

Using the Location Manager, you can:
» Obtain your current location
» Track movement
> Set proximity alerts for detecting movement into and out of a specified area
>

Find available Location Providers

CONFIGURING THE EMULATOR TO TEST LOCATION-BASED
SERVICES

Location-based services are dependent on device hardware to find the current location. When you are
developing and testing with the emulator your hardware is virtualized, and you’ re likely to stay in
pretty much the same location.

To compensate, Android includes hooks that let you emulate Location Providers for testing
location-based applications. In this section you® Il learn how to mock the position of the supported GPS
provider.

If you’re planning on doing location-based application development and are using
the Android Emulator, this section will show you how to create an environment
that simulates real hardware and location changes. For the remainder of this
chapter it will be assumed that you have used the examples in this section to update
the location for the GPS_PROVIDER within the emulator, or that you are using a
physical device.

UPDATING LOCATIONS IN EMULATOR LOCATION PROVIDERS

Use the Location Controls available from the DDMS perspective in Eclipse (shown in Figure 8-1) to
push location changes directly into the emulator’ s GPS Location Provider.

Figure 8-1 shows the Manual and KML tabs. Using the Manual tab you can specify particular lat-
itude/longitude pairs. Alternatively, the KML and GPX tabs let you load KML (Keyhole Markup
Language) and GPX (GPS Exchange Format) files, respectively. Once these are loaded you can jump to
particular waypoints (locations) or play back each location sequentially.

Selecting a Location Provider | 247

Location Controls Location Controls

lepx [kmL | [Manual [GPx |

Decimal Load KML...
() Sexagesimal
Name Longitude Latitude *
Lengitude -122.084095 5
Sahina Park -76.782580 17.977958
Latitude 37422006 Trelawny Stadium 77631562 18.473402

Warner Park 62723286 17.298609

Sir Vivian Richards Stadi... -61.784830 17.103275

m

Beausejour Stadium -60.931689 14.070543
Arnos Vale Ground -61.221485 13146520
Three Ws Oval -59630898 13135528
Kensington Owval -59.622581 13.105050
Queen's Park (National ... -61.752777 12058879 _
4 i | 3

)) (et

FIGURE 8-1

Most GPS systems record track-files using GPX, while KML is used extensively
online to define geographic information. You can handwrite your own KML file or
generate one by using Google Earth to find directions between two locations.

All location changes applied using the DDMS Location Controls will be applied to the GPS receiver,
which must be enabled and active.

Note that the GPS values returned by getLastKnownLocation will not change
unless at least one application has requested location updates.

SELECTING A LOCATION PROVIDER

Depending on the device, there may be several technologies that Android can use to determine the
current location. Each technology, or Location Provider, will offer different capabilities, including
differences in power consumption, monetary cost, accuracy, and the ability to determine altitude,
speed, or heading information.

To get an instance of a specific provider, call getProvider, passing in the name:

String providerName = LocationManager.GPS_PROVIDER;
LocationProvider gpsProvider;
gpsProvider = locationManager.getProvider (providerName) ;

This is generally useful only for determining the abilities of a particular provider. Most Location Man-
ager methods require only a provider name to perform location-based services.

248 | CHAPTER8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Finding the Available Providers

The LocationManager class includes static string constants that return the provider name for the two
most common Location Providers:

> LocationManager .GPS_PROVIDER
> LocationManager .NETWORK_PROVIDER

To get a list of names for all the providers available on the device, call getProviders, using a Boolean
to indicate if you want all, or only the enabled, providers to be returned:

boolean enabledOnly = true;
List<String> providers = locationManager.getProviders (enabledOnly) ;

Finding Location Providers Using Criteria

In most scenarios it” s unlikely that you will want to explicitly choose the Location Provider to use.
More commonly, you® 1l specify the requirements thaa provider must meet and let Android determine
the best technology to use.

Use the criteria class to dictate the requirements of a provider in terms of accuracy (fine or coarse),
power use (low, medium, high), financial cost, and the ability to return values for altitude, speed, and
bearing.

Listing 8-1 specifies Criteria requiring coarse accuracy, low power consumption, and no need for alti-
tude, bearing, or speed. The provider is permitted to have an associated cost.

) LISTING 8-1: Specifying Location Provider Criteria

Available for)
download on Criteria criteria = new Criteriaf();

Wrox.com criteria.setAccuracy(Criteria.ACCURACY_COARSE) ;
criteria.setPowerRequirement (Criteria.POWER_LOW) ;
criteria.setAltitudeRequired(false);
criteria.setBearingRequired(false);
criteria.setSpeedRequired(false);
criteria.setCostAllowed (true);

Having defined the required Criteria, you can use getBestProvider to return the best matching Loca-
tion Provider or getProviders to return all the possible matches. The following snippet demonstrates
the use of getBestProvider to return the best provider for your criteria where the Boolean lets you
restrict the result to a currently enabled provider:

String bestProvider = locationManager.getBestProvider (criteria, true);

If more than one Location Provider matches your criteria, the one with the greatest accuracy is returned.
If no Location Providers meet your requirements the criteria are loosened, in the following order, until
a provider is found:

» Power use
» Accuracy

» Ability to return bearing, speed, and altitude

Finding Your Location | 249

The criterion for allowing a device with monetary cost is never implicitly relaxed. If no provider is
found, null is returned.

To see a list of names for all the providers that match your criteria you can use getpProviders. It accepts
a Criteria object and returns a filtered String list of all available Location Providers that match them.
As with the getBestProvider call, if no matching providers are found, this call returns nu11.

List<String> matchingProviders = locationManager.getProviders (criteria,
false);

FINDING YOUR LOCATION

The purpose of location-based services is to find the physical location of the device.

Access to the location-based services is handled by the Location Manager system Service. To access the
Location Manager, request an instance of the LOCATION_SERVICE using the getSystemService method,
as shown in the following snippet:

String serviceString = Context.LOCATION_SERVICE;
LocationManager locationManager;
locationManager = (LocationManager)getSystemService (serviceString);

Before you can use the Location Manager you need to add one or more uses-permission tags to your
manifest to support access to the LBS hardware.

The following snippet shows the fine and coarse permissions. An application that has been granted fine
permission will have coarse permission granted implicitly.

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

The GPS provider requires fine permission, while the Network (Cell ID/Wi-Fi)
provider requires only coarse.

You can find the last location fix determined by a particular Location Provider using the
getLastKnownLocation method, passing in the name of the Location Provider. The following example
finds the last location fix taken by the GPS provider:

String provider = LocationManager.GPS_PROVIDER;
Location location = locationManager.getLastKnownLocation (provider) ;

Note that getlLastKnownLocation does not ask the Location Provider to update the
current position. If the device has not recently updated the current position, this
value may not exist or be out of date.

The Location object returned includes all the position information available from the provider that
supplied it. This can include latitude, longitude, bearing, altitude, speed, and the time the location fix

250 | CHAPTER8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

was taken. All these properties are available via get methods on the Location object. In some instances
additional details will be included in the extras Bundle.

‘Where Am I?’ Example

The following example —Where Am I? —features a new Activity that finds the device’ s current loca-
tion using the GPS Location Provider. You will expand on this example throughout the chapter as you
learn new geographic functionality.

This example assumes that you have enabled the GPs_PROVIDER Location Provider
using the techniques shown previously in this chapter, or that you’re running it on
a device that supports GPS and has that hardware enabled.

1. Create a new Where Am I? project with a whereamt Activity. This example uses the GPS
provider (either mock or real), so modify the manifest file to include the <uses-permission>
tags for ACCESS_FINE_LOCATION and INTERNET.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.paad.whereami ">
<application
android:icon="@drawable/icon">
<activity
android:name=".WhereAmI"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-permission
android:name="android.permission.ACCESS_FINE LOCATION"
/>
</manifest>

2. Modify the main.xml layout resource to include an android: 1D attribute for the Textview
control so that you can access it from within the Activity.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TextView
android:id="@+id/myLocationText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello"
/>

Finding Your Location | 251

<uses permission
android:name="android.permission.INTERNET
/>
</LinearLayout>

Override the oncreate method of the whereamT Activity to get a reference to the Location
Manager. Call getLastKnownLocation to get the last location fix value, and pass it in to the
updateliithNewLocation method stub.

package com.paad.whereami ;

import android.app.Activity;

import android.content.Context;

import android.location.Location;

import android.location.LocationManager;
import android.os.Bundle;

import android.widget.TextView;

public class WhereAmI extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

LocationManager locationManager;
String context = Context.LOCATION_SERVICE;
locationManager = (LocationManager)getSystemService (context);

String provider = LocationManager.GPS_PROVIDER;
Location location =
locationManager.getLastKnownLocation (provider) ;

updateWithNewLocation (location) ;

}

private void updateWithNewLocation (Location location) {}

}

Fill in the updatewithNewLocation method to display the passed-in Location in the Text
View by extracting the latitude and longitude values.

private void updateWithNewLocation (Location location) {
String latLongString;
TextView myLocationText;
myLocationText = (TextView)findViewById(R.id.myLocationText) ;
if (location != null) {
double lat = location.getLatitude();
double 1lng = location.getLongitude() ;

latLongString = "Lat:" + lat + "\nLong:" + 1ng;
} else {
latLongString = "No location found";

}
myLocationText.setText ("Your Current Position is:\n" +
latLongString) ;

All code snippets in this example are part of the Chapter 8 Where Am I? project, available for download at Wrox.com.

252 | CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

5. When running, your Activity should look like o B & 12:30 Pm
Figure 8-2. Where Am I?

Tracking Movement

Most location-sensitive applications will need to be reactive
to user movement. Simply polling the Location Manager will
not force it to get new updates from the Location Providers.

FIGURE 8-2

Use the requestLocationUpdates method to get updates whenever the current location changes, using
a LocationListener. Location Listeners also contain hooks for changes in a provider’ s status and
availability.

The requestLocationUpdates method accepts either a specific Location Provider name or a set of
Criteria to determine the provider to use.

To optimize efficiency and minimize cost and power use, you can also specify the minimum time and
the minimum distance between location change updates.

Listing 8-2 shows the skeleton code for requesting regular updates based on a minimum time and
distance.

) LISTING 8-2: Requesting location updates

Available for . . .
download on String provider = LocationManager.GPS_PROVIDER;

Wrox.com

int t = 5000; // milliseconds
int distance = 5; // meters

LocationListener myLocationListener = new LocationListener () {

public void onLocationChanged(Location location) {
// Update application based on new location.

public void onProviderDisabled(String provider) {
// Update application if provider disabled.

public void onProviderEnabled(String provider) {
// Update application if provider enabled.

public void onStatusChanged(String provider, int status,
Bundle extras) {
// Update application if provider hardware status changed.
}
Y

locationManager .requestLocationUpdates (provider, t, distance,
myLocationListener) ;

When the minimum time and distance values are exceeded, the attached Location Listener will execute
its onLocationChanged event.

Finding Your Location | 253

You can request multiple location updates pointing to different Location Listeners
and using different minimum thresholds. A common design pattern is to create a
single listener for your application that broadcasts Intents to notify other
components of location changes. This centralizes your listeners and ensures that the
Location Provider hardware is used as efficiently as possible.

To stop location updates, call removeUpdates, as shown in the following code. Pass in the Location
Listener instance you no longer want to have triggered.

locationManager .removeUpdates (myLocationListener) ;

Most GPS hardware incurs significant power cost. To minimize this you should disable updates when-
ever possible in your application, especially when your application isn’ t visible and location changes
are being used to update an Activity’ s user interface. You can improve performance further by making
the minimum time between updates as long as possible.

Privacy is also a factor when your application tracks the user location. Ensure that your application is
using the device location data in a way that respects the user’ s privacy by:

» Only tracking location when necessary for your application

> Notifying users of when you are tracking their locations, and how that location information
is being used and stored

> Allowing users to disable location updates, and respecting the system settings for LBS
preferences.

Updating Your Location in ‘Where Am I?’

In the following example, the Where Am I? project is enhanced to track your current location by listen-
ing for location changes. Updates are restricted to one every two seconds, and only when movement of
more than 10 meters has been detected.

Rather than explicitly selecting the GPS provider, in this example you® 1l create a set of Criteria and let
Android choose the best provider available.

1. Start by opening the WhereamT Activity in the Where Am I? project. Update the oncreate
method to find the best Location Provider that features high accuracy and draws as little
power as possible.

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

LocationManager locationManager;
String context = Context.LOCATION_SERVICE;
locationManager = (LocationManager)getSystemService (context);

Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY_ FINE);

254 | CHAPTER8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

2.

}

criteria.setAltitudeRequired(false);
criteria.setBearingRequired(false);

criteria.setCostAllowed(true);

criteria.setPowerRequirement (Criteria.POWER_LOW) ;

String provider = locationManager.getBestProvider (criteria, true);

Location location = locationManager.getLastKnownLocation (provider) ;
updateWithNewLocation (location) ;

Create a new LocationListener instance variable that fires the existing updatewithNew
Location method whenever a location change is detected.

private final LocationListener locationListener = new LocationListener() ({

Y

public void onLocationChanged (Location location) {
updateWithNewLocation (location) ;

public void onProviderDisabled(String provider) {
updateWithNewLocation (null) ;

public void onProviderEnabled(String provider) { }
public void onStatusChanged(String provider, int status,
Bundle extras){ }

Return to onCreate and execute requestLocationUpdates, passing in the new Location Lis-
tener object. It should listen for location changes every two seconds but fire only when it
detects movement of more than 10 meters.

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

LocationManager locationManager;
String context = Context.LOCATION_SERVICE;
locationManager = (LocationManager)getSystemService (context);

Criteria criteria = new Criterial();

criteria.setAccuracy (Criteria.ACCURACY_FINE) ;
criteria.setAltitudeRequired(false);
criteria.setBearingRequired (false) ;

criteria.setCostAllowed (true) ;

criteria.setPowerRequirement (Criteria.POWER_LOW) ;

String provider = locationManager.getBestProvider (criteria, true);

Location location =
locationManager.getLastKnownLocation (provider) ;
updateWithNewLocation (location) ;

locationManager.requestLocationUpdates (provider, 2000, 10,
locationListener);

Using Proximity Alerts | 255

If you run the application and start changing the device location, you will see the Text View update
accordingly.

All code snippets in this example are part of the Chapter 8 Where Am I? project, available for download at Wrox.com.

USING PROXIMITY ALERTS

It s often useful to have your applications react when a user moves toward, or away from, a specific
location. Proximity alerts let your applications set triggers that are fired when a user moves within or
beyond a set distance from a geographic location.

Internally, Android may use different Location Providers depending on how close

you are to the outside edge of your target area. This allows the power use and cost
to be minimized when the alert is unlikely to be fired based on your distance from

the target area interface.

To set a proximity alert for a given coverage area, select the center point (using longitude and latitude
values), a radius around that point, and an expiry time-out for the alert. The alert will fire if the device
crosses over that boundary, both when it moves from outside to within the radius, and when it moves
from inside to beyond it.

When triggered, proximity alerts fire Intents, most commonly broadcast Intents. To specify the Intent
to fire, you use a PendingIntent, a class that wraps an Intent in a kind of method pointer, as shown in
the following code snippet:

Intent intent = new Intent (MY_ACTION) ;
PendingIntent pendingIntent = PendingIntent.getBroadcast(this, -1, intent, 0);

The following example sets a proximity alert that never expires and that is triggered when the device
moves within 10 meters of its target:

private static String TREASURE_PROXIMITY_ALERT = "com.paad.treasurealert";

private void setProximityAlert() {
String locService = Context.LOCATION_SERVICE;
LocationManager locationManager;
locationManager = (LocationManager)getSystemService (locService);

double lat 73.147536;

double Ing = 0.510638;

float radius = 100f; // meters

long expiration = -1; // do not expire

Intent intent = new Intent (TREASURE_PROXIMITY ALERT);

256 | CHAPTER8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

PendingIntent proximityIntent = PendingIntent.getBroadcast(this, -1,
intent,
0);
locationManager.addProximityAlert (lat, lng, radius,
expiration,
proximityIntent);
}

When the Location Manager detects that you have crossed the radius boundary —that is, you have
moved either from outside to within or from inside to beyond the specified proximity radius —the
packaged Intent will be fired with an extra keyed as LocationManager .KEY_PROXIMITY_ENTERING set tO
true or false accordingly.

To handle proximity alerts you need to create a BroadcastReceiver, such as the one shown in
Listing 8-3.

) LISTING 8-3: Creating a proximity alert Broadcast Receiver

Available for
download on public class ProximityIntentReceiver extends BroadcastReceiver ({

Wrox.com

@Override
public void onReceive (Context context, Intent intent) {
String key = LocationManager.KEY_PROXIMITY_ENTERING;

Boolean entering = intent.getBooleanExtra(key, false);
[... perform proximity alert actions ...]

}

To start listening for proximity alerts, register your receiver:

IntentFilter filter = new IntentFilter (TREASURE_PROXIMITY_ ALERT) ;
registerReceiver (new ProximityIntentReceiver (), filter);

USING THE GEOCODER

Geocoding lets you translate between street addresses and longitude/latitude map coordinates. This can
give you a recognizable context for the locations and coordinates used in location-based services and
map-based Activities.

The geocoding lookups are done on the server, so your applications will require you to include an
Internet uses-permission in your manifest, as shown here:

<uses-permission android:name="android.permission.INTERNET"/>
The Geocoder class provides access to two geocoding functions:
» Forward geocoding Finds the latitude and longitude of an address

> Reverse geocoding Finds the street address for a given latitude and longitude

Using the Geocoder | 257

The results from these calls are contextualized by means of a locale (used to define your usual location
and language). The following snippet shows how you set the locale when creating your Geocoder. If
you don’ t specify a locale, it will assume your device’ s default.

Geocoder geocoder = new Geocoder (getApplicationContext (),
Locale.getDefault());

Both geocoding functions return a list of address objects. Each list can contain several possible results,
up to a limit you specify when making the call.

Each Address object is populated with as much detail as the Geocoder was able to resolve. This can
include the latitude, longitude, phone number, and increasingly granular address details from country
to street and house number.

Geocoder lookups are performed synchronously, so they will block the calling
thread. For slow data connections, this can lead to a Force Close dialog. In most
cases it’s good form to move these lookups into a Service or background thread, as
demonstrated in Chapter 9.

For clarity and brevity, the calls made in the code samples within this chapter are
made on the main application thread.

Reverse Geocoding

Reverse geocoding returns street addresses for physical locations, specified by latitude/longitude pairs.
It provides a recognizable context for the locations returned by location-based services.

To perform a reverse lookup, you pass the target latitude and longitude to a Geocoder’ s
getFromLocation method. It will return a list of possible matching addresses. If the Geocoder could
not resolve any addresses for the specified coordinate, it will return nul1l.

Listing 8-4 shows how to reverse-geocode your last known location.

) LISTING 8-4: Reverse-geocoding your last known location

Available for)
downloadon location =
Wrox.com locationManager.getLastKnownLocation (LocationManager .GPS_PROVIDER) ;

double latitude = location.getLatitude();
double longitude = location.getLongitude();
List<Address> addresses = null;

Geocoder gc = new Geocoder(this, Locale.getDefault()):
try {

addresses = gc.getFromLocation(latitude, longitude, 10);
} catch (IOException e) {}

258

| CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

The accuracy and granularity of reverse lookups are entirely dependent on the quality of data in the
geocoding database; as a result, the quality of the results may vary widely between different countries
and locales.

Forward Geocoding

Forward geocoding (or just geocoding) determines map coordinates for a given location.

What constitutes a valid location varies depending on the locale (geographic area)
within which you're searching. Generally, it will include regular street addresses of
varying granularity (from country to street name and number), postcodes, train sta-
tions, landmarks, and hospitals. As a general guide, valid search terms will be similar
to the addresses and locations you can enter into the Google Maps search bar.

To do a forward-geocoding lookup, call getFromLocationName on a Geocoder instance. Pass in the
location you want the coordinates for and the maximum number of results to return:

List<Address> result = geocoder.getFromLocationName (aStreetAddress, maxResults);

The returned list of Addresses can include multiple possible matches for the named location. Each

address result will include latitude and longitude and any additional address information available

for those coordinates. This is useful to confirm that the correct location was resolved, as well as for
providing location specifics in searches for landmarks.

As with reverse geocoding, if no matches are found, null will be returned. The
availability, accuracy, and granularity of geocoding results will depend entirely on
the database available for the area you’re searching.

When you’ re doing forward lookups, the Locale object specified during the creation of the Geocoder
object is particularly important. The Locale provides the geographical context for interpreting your
search requests, as the same location names can exist in multiple areas. Where possible, consider select-
ing a regional Locale to help avoid place-name ambiguity.

Additionally, try to use as many address details as possible, as shown in Listing 8-35.

) LISTING 8-5: Geocoding an address

Available for .
download on Geocoder fwdGeocoder = new Geocoder (this, Locale.US);
Wrox.com String streetAddress = "160 Riverside Drive, New York, New York";

List<Address> locations = null;
try {

locations = fwdGeocoder.getFromLocationName (streetAddress, 10);
} catch (IOException e) {}

Using the Geocoder | 259

For even more specific results, use the getFromLocationName overload, which lets you restrict your
search to within a geographical bounding box.

List<Address> locations = null;
try {
locations = fwdGeocoder.getFromLocationName (streetAddress, 10,
n, e s, w);
} catch (IOException e) {}

This overload is particularly useful in conjunction with a Map View, as you can restrict the search to
within the visible map.

Geocoding ‘Where Am |?’

Using the Geocoder you can determine the street address at your current location. In this example you® 11
further extend the Where Am I? project to include and update the current street address whenever the
device moves.

Start by modifying the manifest to include the Internet uses-permission:
<uses-permission android:name="android.permission.INTERNET"/>

Then open the whereAmT Activity. Modify the updatewithNewLocation method to instantiate a new
Geocoder object, and call the getFromLocation method, passing in the newly received location and
limiting the results to a single address.

Extract each line in the street address, as well as the locality, postcode, and country, and append this
information to an existing Text View string.

private void updateWithNewLocation (Location location) {
String latLongString;
TextView myLocationText;

myLocationText = (TextView)findViewById(R.id.myLocationText) ;
String addressString = "No address found";
if (location != null) {

double lat = location.getLatitude();
double 1ng = location.getLongitude() ;
latLongString = "Lat:" + lat + "\nLong:" + 1lng;

double latitude = location.getLatitude();
double longitude = location.getLongitude();
Geocoder gc = new Geocoder(this, Locale.getDefault()):
try {
List<Address> addresses = gc.getFromLocation(latitude, longitude, 1);
StringBuilder sb = new StringBuilder();
if (addresses.size() > 0) {
Address address = addresses.get(0);

for (int i = 0; i < address.getMaxAddressLineIndex(); i++)
sb.append (address.getAddressLine(i)) .append("\n");

sb.append(address.getLocality()) .append("\n");
sb.append (address.getPostalCode()) .append("\n") ;

260 | CHAPTER8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

sb.append (address.getCountryName());
}
addressString = sb.toString();
} catch (IOException e) {}
} else {
latLongString = "No location found";
}
myLocationText.setText ("Your Current Position is:\n" +
latLongString + "\n" + addressString);

All code snippets in this example are part of the Chapter 8 Where Am I? project, available for download at Wrox.com.

If you run the example now, it should appear as shown in Figure 8-3.

o Bl @ 12:41 P

Where Am I?

FIGURE 8-3

CREATING MAP-BASED ACTIVITIES

The Mapview provides an ideal user interface option for presenting geographical data.

One of the most intuitive ways of providing context for a physical location or address is to display it
on a map. Using a MapView, you can create Activities that feature an interactive map.

Map Views support annotation using Overlays and by pinning Views to geographical locations. Map
Views offer full programmatic control of the map display, letting you control the zoom, location, and
display modes —including the option to display satellite, street, and traffic views.

In the following sections you’ I see how to use Overlays and thetapcontroller to create dynamic map-
based Activities. Unlike online mashups, your map Activities will run natively on the device, enabling
you to leverage its hardware and mobility to provide a more customized and personal user experience.

Introducing Map View and Map Activity
This section introduces several classes used to support Android maps:

> MapView is the Map View control.

> MapActivity is the base class you extend to create a new Activity that can include a Map
View. The Mapactivity class handles the application life cycle and background service
management required for displaying maps. As a result you can use Map Views only within
MapActivity-derived Activities.

Creating Map-Based Activities | 261

> Overlay is the class used to annotate your maps. Using Overlays, you can use a Canvas to
draw onto any number of layers that are displayed on top of a Map View.

» MapController is used to control the map, enabling you to set the center location and zoom
levels.

» MyLocationOverlay is a special Overlay that can be used to display the current position and
orientation of the device.

» ItemizedOverlays and OverlayItems are used together to let you create a layer of map mark-
ers, displayed using Drawables and associated text.

Getting Your Maps API Key

In order to use a Map View in your application you must first obtain an API key from the Android
developer web site at http://code.google.com/android/maps-api-signup.html.

Without an API key the Map View will not download the tiles used to display the map.

To obtain a key you need to specify the MDS fingerprint of the certificate used to sign your application.
Generally, you will sign your application using two certificates —a default debug certificate and a pro-
duction certificate. The following sections explain how to obtain the MDS fingerprint of each signing
certificate used for your application.

Getting Your Development/Debugging MD5 Fingerprint

If you are using Eclipse with the ADT plug-in to debug your applications, they will be signed with the
default debug certificate. To view map tiles while debugging you will need to obtain a Maps API key
registered via the MD35 fingerprint of the debug certificate.

You can find the location of your keystore in the Default Debug Keystore textbox after selecting
Windows = Preferences & Android = build. Typically the debug keystore is stored in the following
platform-specific locations:

> Windows Vista \users\<username>\.android\debug.keystore
> Windows XP \Documents and Settings\ <username>\.android\debug.keystore

» Linux or Mac ~/.android/debug.keystore

@ Each computer you use for development will have a different debug certificate and
MDS value. If you want to debug and develop map applications across multiple
computers you will need to generate and use multiple API keys.

To find the MDS fingerprint of your debug certificate use the keytool command from your Java instal-
lation, as shown here:

keytool -list -alias androiddebugkey -keystore <keystore_location>.keystore
-storepass android -keypass android

262 | CHAPTER8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Getting your Production/Release MD5 Fingerprint

Before you compile and sign your application for release, you will need to obtain a map API key using
the MDS fingerprint for your release certificate.

Find the MDS$ fingerprint using the keytool command and specifying the -1ist parameter and the
keystore and alias you will use to sign your release application.

keytool -list -alias my-android-alias -keystore my-android-keystore

You will be prompted for your keystore and alias passwords before the MDS5 fingerprint is returned.

Creating a Map-Based Activity

To use maps in your applications you need to extend Mapactivity. The layout for the new class must

then include a Mapview to display a Google Maps interface element. The Android maps library is not a
standard Android package; as an optional API, it must be explicitly included in the application manifest
before it can be used. Add the library to your manifest using a uses-1ibrary tag within the application
node, as shown in the following XML snippet:

<uses-library android:name="com.google.android.maps"/>

The maps package as described here is not part of the standard Android
open-source project. It is provided within the Android SDK by Google and is
available on most Android devices. However, be aware that because it is a
nonstandard package, an Android device may not feature this particular library.

Google Maps downloads the map tiles on demand; as a result, it implicitly requires permission to use
the Internet. To see map tiles in your Map View you need to add a <uses-permission> tag to your
application manifest for INTERNET, as shown here:

<uses-permission android:name="android.permission.INTERNET"/>

Once you’ ve added the library and configured your permission, you’ re ready to create your new map-
based Activity.

MapView controls can be used only within an Activity that extends MapActivity. Override the onCreate
method to lay out the screen that includes a Mapview, and override isRouteDisplayed to return true if
the Activity will be displaying routing information (such as traffic directions).

Listing 8-6 shows the framework for creating a new map-based Activity.

) LISTING 8-6: A skeleton Map Activity

(‘}xﬂ:ﬁggfim import com.google.android.maps.MapActivity;

Wrox.com import com.google.android.maps.MapController;
import com.google.android.maps.MapView;
import android.os.Bundle;

Creating Map-Based Activities | 263

public class MyMapActivity extends MapActivity {
private MapView mapView;

private MapController mapController;

@Override
public void onCreate(Bundle savedInstanceState) ({
super .onCreate (savedInstanceState) ;

setContentView(R.layout.map_layout) ;
mapView = (MapView)findViewById(R.id.map_view) ;
}

@Override

protected boolean isRouteDisplayed() {
// IMPORTANT: This method must return true if your Activity
// 1s displaying driving directions. Otherwise return false.
return false;

}

The corresponding layout file used to include the Mapview is shown in Listing 8-7. Note that you
need to include your map API key (as described earlier in this chapter) to use a Map View in your
application.

) LISTING 8-7: A Map Activity layout resource

Available for , .
download on <?xml version="1.0" encoding="utf-8"?>
Wrox.com <LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<com.google.android.maps.MapView
android:id="@+id/map_view"
android:layout_width="fill parent"
android:layout_height="£fill parent"
android:enabled="true"
android:clickable="true"
android:apiKey="mymapapikey"

/>

</LinearLayout>

Figure 8-4 shows an example of a basic map-based Activity.

Android currently supports only one Mapactivity and one MapView per application.

Configuring and Using Map Views

The Mapview class displays the Google map; it includes several options for specifying how the map is
displayed.

264 | CHAPTER8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

By default the Map View will show the standard street map, | [J A B EH @ 1:16pm
as shown in Figure 8-4. In addition, you can choose to dis- ¥

play a satellite view, StreetView, and expected traffic, as W of

shown in the following code snippet:

mapView.setSatellite(true);
mapView.setStreetView(true);
mapView.setTraffic (true);

You can also query the Map View to find the current and
maximum available zoom levels, as well as the center point
and currently visible longitude and latitude span (in deci-
mal degrees). The latter (shown in the following snippet)
is particularly useful for performing geographically limited
Geocoder lookups:

int maxZoom = mapView.getMaxZoomLevel () ;
GeoPoint center = mapView.getMapCenter () ;
int latSpan = mapView.getLatitudeSpan() ;
int longSpan = mapView.getLongitudeSpan() ;

You can also optionally display the standard map zoom
controls using the setBuiltInZoomControls method.

mapView.setBuiltInZoomControls (true) ;

Using the Map Controller

Use the Map Controller to pan and zoom a Mapview. You FIGURE 8-4

can get a reference to a Mapview’ s controller usingretController.
MapController mapController = myMapView.getController();

Map locations in the Android mapping classes are represented by GeoPoint objects, which contain
latitude and longitude measured in microdegrees. To convert degrees to microdegrees, multiply by 1E6
(1,000,000).

Before you can use the latitude and longitude values stored in the Location objects returned by location-
based services, you’ 1l need to convert them to microdegrees and store them as GeoPoints.

Double lat = 37.422006*1E6;

Double 1Ing = -122.084095*1E6;

GeoPoint point = new GeoPoint (lat.intValue(), lng.intValue());
Re-center and zoom the Map View using the setCenter and setzoom methods available on the Map
View’ #lapController.

mapController.setCenter (point) ;

mapController.setZoom (1) ;
When you are using setZoom, 1 represents the widest (or most distant) zoom and 21 the tightest (near-
est) view.

Creating Map-Based Activities | 265

The actual zoom level available for a specific location depends on the resolution of Google’ s maps and
imagery for that area. You can also use zoomIn and zoomout to change the zoom level by one step.

The setcenter method will ¢ ¢ jump’ > to a new location; to show a smooth transitionaussateTo.

mapController.animateTo (point) ;

Mapping ‘Where Am I?’

In the following code example the Where Am I? project is extended again. This time you’ 1l add mapping
functionality by transforming it into a Map Activity. As the device location changes, the map will
automatically re-center on the new position.

1. Start by adding the <uses-permission> tag for Internet access to the application manifest.
Also import the Android maps library within the application tag.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.paad.whereami">
<application
android:icon="@drawable/icon">
<uses-library android:name="com.google.android.maps"/>
<activity
android:name=".WhereAmI"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION"/>
</manifest>

2. Change the inheritance of whereamr to descend from Mapactivity instead of Activity.
You’ 1l also need to include an override for the sRouteDisplayed method. Because this
Activity won’ t show routing directions, you can returrfalse.

public class WhereAmI extends MapActivity {
@Ooverride
protected boolean isRouteDisplayed() {
return false;

[... existing Activity code ... 1]
}

3. Modify the main.xml layout resource to include a Mapview using the fully qualified class
name. You will need to obtain a maps API key to include within the android:apikey
attribute of the com.android.Mapview node.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

266 | CHAPTER8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView
android:id="@+id/myLocationText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello"

/>

<com.google.android.maps.MapView
android:id="@+id/myMapView"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:enabled="true"
android:clickable="true"
android:apiKey="myMapKey"

/>

</LinearLayout>

o Bl @ 12:53 Pm
Where Am I?
e

4. Running the application now should display the
original geolocation text with a Mapview beneath
it, as shown in Figure 8-5.

5. Configure the Map View and store a reference to
its MapController as an instance variable. Set up
the Map View display options to show the satellite
and streetview and zoom in for a closer look. FIGURE 8-5

MapController mapController;

@Override
public void onCreate (Bundle savedInstance
State) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

// Get a reference to the MapView

MapView myMapView = (MapView)findViewById(R.id.myMapView);
// Get the Map View's controller

mapController = myMapView.getController();

// Configure the map display options
myMapView.setSatellite(true);
myMapView.setStreetView(true);
myMapView.displayZoomControls (false);

// Zoom in
mapController.setZoom(17);

LocationManager locationManager;
String context = Context.LOCATION_SERVICE;

locationManager = (LocationManager)getSystemService (context);

Criteria criteria = new Criteria();

Creating Map-Based Activities | 267

criteria.setAccuracy(Criteria.ACCURACY_FINE) ;
criteria.setAltitudeRequired(false);
criteria.setBearingRequired(false);

criteria.setCostAllowed (true) ;

criteria.setPowerRequirement (Criteria.POWER_LOW) ;

String provider = locationManager.getBestProvider (criteria, true);

Location location =
locationManager.getLastKnownLocation (provider) ;

updateWithNewLocation (location) ;

locationManager.requestLocationUpdates (provider, 2000, 10,
locationListener) ;

}

The final step is to modify the updatewi thNewLocation method to re-center the map on the
current location using the Map Controller.

private void updateWithNewLocation (Location location) {
String latLongString;
TextView myLocationText;

myLocationText = (TextView)findViewById(R.id.myLocationText) ;
String addressString = "No address found";
if (location != null) {

// Update the map location.

Double geoLat = location.getLatitude()*1E6;

Double geolLng = location.getLongitude()*1E6;

GeoPoint point = new GeoPoint (geolLat.intValue(),
geolng.intValue());

mapController.animateTo (point);

double lat = location.getLatitude();
double 1lng = location.getLongitude() ;
latLongString = "Lat:" + lat + "\nLong:" + 1lng;

double latitude = location.getLatitude();
double longitude = location.getLongitude();

Geocoder gc = new Geocoder (this, Locale.getDefault());
try {
List<Address> addresses = gc.getFromLocation(latitude, longitude, 1);
StringBuilder sb = new StringBuilder () ;
if (addresses.size() > 0) {
Address address = addresses.get(0);

for (int 1 = 0; 1 < address.getMaxAddressLineIndex(); i++)
sb.append (address.getAddressLine (i)) .append("\n") ;

sb.append (address.getLocality()) .append("\n") ;
sb.append (address.getPostalCode()) .append ("\n") ;
sb.append (address.getCountryName ()) ;

268 | CHAPTER8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

addressString = sb.toString();
} catch (IOException e) {}
} else {
latLongString = "No location found";
}
myLocationText.setText ("Your Current Position is:\n" +
latLongString + "\n" + addressString) ;

}

All code snippets in this example are part of the Chapter 8 Where Am I? project, available for download at Wrox.com.

Creating and Using Overlays

Overlays enable you to add annotations and click handling to mapviews. Each Overlay lets you draw
2D primitives, including text, lines, images, and shapes, directly onto a canvas, which is then overlaid
onto a Map View.

You can add several Overlays onto a single map. All the Overlays assigned to a Map View are added
as layers, with newer layers potentially obscuring older ones. User clicks are passed through the stack
until they are either handled by an Overlay or registered as clicks on the Map View itself.

Creating New Overlays

Each Overlay is a canvas with a transparent background that is layered onto a Map View and used to
handle map touch events.

To add a new Overlay create a new class that extends overlay. Override the draw method to draw the
annotations you want to add, and override onTap to react to user clicks (generally made when the user
taps an annotation added by this Overlay).

Listing 8-8 shows the framework for creating a new Overlay that can draw annotations and handle
user clicks.

) LISTING 8-8: Creating a new Overlay

(‘}L’m?g;%m import android.graphics.Canvas;

Wrox.com import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;

public class MyOverlay extends Overlay {

@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
if (shadow == false) {
[... Draw annotations on main map layer ...]
}
else {

[... Draw annotations on the shadow layer ...]
}

@Override
public boolean onTap (GeoPoint point, MapView mapView) {

Creating Map-Based Activities | 269

// Return true if screen tap is handled by this overlay
return false;

}

Introducing Projections

The canvas used to draw Overlay annotations is a standard canvas that represents the visible display
surface. To add annotations based on physical locations, you need to convert between geographical
points and screen coordinates.

The Projection class lets you translate between latitude/longitude coordinates (stored as GeoPoints)
and x/y screen pixel coordinates (stored as Points).

A map’ s Projection may change between subsequentalls to draw, so it’ s good practice to get a new
instance each time. Get a Map View’ s Projection by callingsetProjection.

Projection projection = mapView.getProjection();
Use the fromPixel and topixel methods to translate from GeoPoints to Points and vice versa.

For performance reasons, you can best use the toPixel Projection method by passing a Point object to
be populated (rather than relying on the return value), as shown in Listing 8-9.

) LISTING 8-9: Using map projections

Available for . , ,
download on Point myPoint = new Point();
Wrox.com // To screen coordinates

projection.toPixels (geoPoint, myPoint) ;
// To GeoPoint location coordinates
projection. fromPixels (myPoint.x, myPoint.y);

Drawing on the Overlay Canvas

You handle Canvas drawing for Overlays by overriding the Overlay’ siraw handler.

The passed-in Canvas is the surface on which you draw your annotations, using the same techniques
introduced in Chapter 4 for creating custom user interfaces for Views. The Canvas object includes the
methods for drawing 2D primitives on your map (including lines, text, shapes, ellipses, images, etc.).
Use paint objects to define the style and color.

Listing 8-10 uses a Projection to draw text and an ellipse at a given location.

) LISTING 8-10: A simple Map Overlay

Available for ~ @Override | |
download on public void draw(Canvas canvas, MapView mapView, boolean shadow) {
Wrox.com Projection projection = mapView.getProjection();

Double lat = -31.960906*1E6;

continues

270 | CHAPTER8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

LISTING 8-10 (continued)

Double 1ng = 115.844822*1E6;
GeoPoint geoPoint = new GeoPoint (lat.intValue(), 1lng.intValue());

if (shadow == false) {
Point myPoint = new Point();
projection.toPixels (geoPoint, myPoint) ;

// Create and setup your paint brush
Paint paint = new Paint();
paint.setARGB (250, 255, 0, 0);

paint.setAntiAlias(true);
paint.setFakeBoldText (true) ;

// Create the circle

int rad = 5;

RectF oval = new RectF (myPoint.x-rad, myPoint.y-rad,
myPoint.x+rad, myPoint.y+rad);

// Draw on the canvas
canvas.drawOval (oval, paint);
canvas.drawText ("Red Circle", myPoint.x+rad, myPoint.y, paint);

For more advanced drawing features see Chapter 11, where gradients, strokes, and
filters are introduced.

Handling Map Tap Events
To handle map taps (user clicks), override the onTap event handler within the Overlay extension class.
The onTap handler receives two parameters:
> A Geopoint that contains the latitude/longitude of the map location tapped
» The Mapview that was tapped to trigger this event

When you are overriding onTap, the method should return true if it has handled a particular tap and
false to let another Overlay handle it, as shown in Listing 8-11.

) LISTING 8-11: Handling map-tap events

Available for :

download on @Ove?rlde , . .

Wrox.com public boolean onTap (GeoPoint point, MapView mapView) {
// Perform hit test to see if this overlay is handling the click
if ([... perform hit test ... 1) {

[... execute on tap functionality ...]
return true;

Creating Map-Based Activities | 271

// If not handled return false
return false;

Adding and Removing Overlays

Each Mapview contains a list of Overlays currently displayed. You can get a reference to this list by
calling getoverlays, as shown in the following snippet:

List<Overlay> overlays = mapView.getOverlays();

Adding and removing items from the list is thread-safe and synchronized, so you can modify and query
the list safely. You should still iterate over the list within a synchronization block synchronized on the
List.

To add an Overlay onto a Map View, create a new instance of the Overlay and add it to the list, as
shown in the following snippet.

List<Overlay> overlays = mapView.getOverlays();
MyOverlay myOverlay = new MyOverlay () ;
overlays.add(myOverlay) ;
mapView.postInvalidate();

The added Overlay will be displayed the next time the Map View is redrawn, so it’ s usually a good
practice to call postInvalidate after you modify the list to update the changes on the map display.

Annotating ‘Where Am |?’

This final modification to ¢ ¢ Where Am I?” > creates and adds a new Overlay that displays a white circle
at the device’ s current position.

1. Start by creating a new MyPositionOverlay Overlay class in the Where Am I? project.

package com.paad.whereami ;

import android.graphics.Canvas;

import android.graphics.Paint;

import android.graphics.Point;

import android.graphics.RectF;

import android.location.Location;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;
import com.google.android.maps.Projection;

public class MyPositionOverlay extends Overlay {

@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {

}

@Override
public boolean onTap (GeoPoint point, MapView mapView) {

272 | CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

return false;

}

2. Create a new instance variable to store the current Location, and add setter and getter meth-
ods for it.

Location location;

public Location getLocation() {
return location;

}

public void setLocation(Location location) {
this.location = location;

}

3. Override the draw method to add a small white circle at the current location.

private final int mRadius = 5;

@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
Projection projection = mapView.getProjection();

if (shadow == false) {
// Get the current location
Double latitude = location.getLatitude()*1E6;
Double longitude = location.getLongitude()*1E6;
GeoPoint geoPoint;
geoPoint = new
GeoPoint (latitude.intValue (), longitude.intValue()) ;

// Convert the location to screen pixels
Point point = new Point();
projection.toPixels (geoPoint, point);

RectF oval = new RectF (point.x - mRadius, point.y - mRadius,
point.x + mRadius, point.y + mRadius);

// Setup the paint

Paint paint = new Paint();
paint.setARGB (250, 255, 255, 255);
paint.setAntiAlias (true);
paint.setFakeBoldText (true) ;

Paint backPaint = new Paint();
backPaint.setARGB (175, 50, 50, 50);
backPaint.setAntiAlias (true) ;

RectF backRect = new RectF(point.x + 2 + mRadius,
point.y - 3*mRadius,
point.x + 65, point.y + mRadius);

// Draw the marker

canvas.drawOval (oval, paint);
canvas.drawRoundRect (backRect, 5, 5, backPaint);
canvas.drawText ("Here I Am",

Creating Map-Based Activities | 273

5.

point.x + 2*mRadius, point.y,
paint) ;

}

super .draw (canvas, mapView, shadow) ;

}
Now open the WhereamI ACtiVity ClaSS, and add the MyPositionOverlay to the Mapview.

Start by adding a new instance variable to store the MyPositionoverlay, then override
onCreate to create a new instance of the class, and add it to the Mapview’ s Overlay list.

MyPositionOverlay positionOverlay;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

MapView myMapView = (MapView)findViewById(R.id.myMapView) ;
mapController = myMapView.getController();

myMapView.setSatellite(true) ;
myMapView.setStreetView (true) ;
myMapView.displayZoomControls (false) ;

mapController.setZoom(17) ;

// Add the MyPositionOverlay

positionOverlay = new MyPositionOverlay();
List<Overlay> overlays = myMapView.getOverlays();
overlays.add(positionOverlay) ;

LocationManager locationManager;
String context = Context.LOCATION_SERVICE;
locationManager = (LocationManager)getSystemService (context);

Criteria criteria = new Criteria();

criteria.setAccuracy (Criteria.ACCURACY_FINE) ;
criteria.setAltitudeRequired(false);
criteria.setBearingRequired(false);

criteria.setCostAllowed (true);

criteria.setPowerRequirement (Criteria.POWER_LOW) ;

String provider = locationManager.getBestProvider (criteria, true);

Location location = locationManager.getLastKnownLocation (provider) ;
updateWithNewLocation (location) ;

locationManager.requestLocationUpdates (provider, 2000, 10,
locationListener) ;

}
Finally, update the updatewithNewLocation method to pass the new location to the Overlay.

private void updateWithNewLocation (Location location) {
String latLongString;
TextView myLocationText;

274 | CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

myLocationText = (TextView)findViewById(R.id.myLocationText) ;
String addressString = "No address found";
if (location != null) {

// Update my location marker
positionOverlay.setLocation(location) ;

// Update the map location.

Double geoLat = location.getLatitude()*1E6;

Double geolng = location.getLongitude()*1E6;

GeoPoint point = new GeoPoint (geoLat.intValue(),
geolng.intValue()) ;

mapController.animateTo (point) ;

double lat = location.getLatitude();
double 1lng = location.getLongitude() ;
latLongString = "Lat:" + lat + "\nLong:" + 1lng;

double latitude = location.getLatitude();
double longitude = location.getLongitude();

Geocoder gc = new Geocoder (this, Locale.getDefault());
try {
List<Address> addresses = gc.getFromLocation(latitude,
longitude, 1);
StringBuilder sb = new StringBuilder();
if (addresses.size() > 0) {
Address address = addresses.get(0);

for (int 1 = 0; 1 < address.getMaxAddressLineIndex(); i++)
sb.append (address.getAddressLine (i)) .append("\n") ;

sb.append (address.getLocality()) .append("\n") ;
sb.append (address.getPostalCode()) .append("\n") ;
sb.append (address.getCountryName ()) ;
}
addressString = sb.toString();
} catch (IOException e) {}
} else {
latLongString = "No location found";
}
myLocationText.setText ("Your Current Position is:\n" +
latLongString + "\n" + addressString);
}

All code snippets in this example are part of the Chapter 8 Where Am I? project, available for download at Wrox.com.

When run, your application will display your current device location with a white circle and supporting
text, as shown in Figure 8-6.

Creating Map-Based Activities | 275

It’s worth noting that this is not the preferred technique for displaying your current
location on a map. This functionality is implemented natively by Android through
the MyLocationOverlay class. If you want to display and follow your current
location, you should consider using (or extending) this class, as shown in the next
section, instead of implementing it manually as shown bere.

Introducing My Location Overlay < GAl@ 1259pM

The MyLocationOverlay class is a special Overlay designed
to show your current location and orientation on a Mapview.

Where Am I?
ETERIE

To use My Location Overlay you need to create a new
instance, passing in the application Context and target Map
View, and add it to the Mapview’ s Overlay list, as shown
here:

List<Overlay> overlays =
mapView.getOverlays () ;

MyLocationOverlay myLocationOverlay =
new MyLocationOverlay (this, mapView) ;

overlays.add (myLocationOverlay) ;

You can use My Location Overlay to display both your
current location (represented as a flashing blue marker) and
your current orientation (shown as a compass on the map
display).

The following snippet shows how to enable both the
compass and marker; in this instance the Map View’ s
MapController is also passed in, allowing the Overlay to
automatically scroll the map if the marker moves FIGURE 8-6
offscreen.

myLocationOverlay.enableCompass () ;
myLocationOverlay.enableMyLocation (mapView.getMapController()) ;

Introducing Itemized Overlays and Overlay Items

OverlayItems are used to supply simple maker functionality to your Map Views via the
ItemizedOverlay class.

ItemizedOverlays provide a convenient shortcut for adding markers to a map, letting you assign
a marker image and associated text to a particular geographical position. The Ttemizedoverlay
instance handles the drawing, placement, click handling, focus control, and layout optimization of
each overlayItem marker for you.

276 | CHAPTER8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

To add an Ttemizedoverlay marker layer to your map, start by creating a new class that extends
ItemizedOverlay<OverlayItem>, as shown in Listing 8-12.

TtemizedOverlay is a generic class that lets you create extensions based on any
overlayItem-derived subclass.

Within the constructor you need to call through to the superclass after defining the bounds for your
default marker. You must then call populate to trigger the creation of each overlayItem; populate
must be called whenever the data used to create the items changes.

Within the implementation, override size to return the number of markers to display and createTten
to create a new item based on the index of each marker.

) LISTING 8-12: Creating a new ltemized Overlay

Available for \ ,)
download on import android.graphics.drawable.Drawable;
Wrox.com import com.google.android.maps.GeoPoint;

import com.google.android.maps.ItemizedOverlay;
import com.google.android.maps.OverlayItem;

public class MyItemizedOverlay extends ItemizedOverlay<OverlayItem> {

public MyItemizedOverlay (Drawable defaultMarker) {
super (boundCenterBottom(defaultMarker));
populate();

@Override
protected OverlayItem createltem(int index) {
switch (index) {
case 1:
Double lat = 37.422006*1E6;
Double lng -122.084095*1E6;
GeoPoint point = new GeoPoint (lat.intValue(), lng.intValue());

OverlayItem oi;
0oi = new OverlayItem(point, "Marker", "Marker Text");
return oi;

}

return null;

@Override

public int size() {
// Return the number of markers in the collection
return 1;

Creating Map-Based Activities | 277

To add an Ttemizedoverlay implementation to your map, create a new instance (passing in the Draw-
able marker image to use for each marker) and add it to the map’ s Overlay list.

List<Overlay> overlays = mapView.getOverlays();
MyItemizedOverlay markers = new

MyItemizedOverlay (r.getDrawable (R.drawable.marker)) ;
overlays.add (markers) ;

@ Note that the map markers placed by the Itemized Overlay use state to indicate if
they are selected. Use the StateListDrawable described in Chapter 4 to indicate
when a marker has been selected.

In Listing 8-12, the list of Overlay items is static and defined in code. More typically your Overlay items
will be a dynamic ArrayList to which you will want to add and remove items at run time.

Listing 8-13 shows the skeleton class for a dynamic Itemized Overlay implementation, backed by an
ArrayList, and supporting the addition and removal of items at run time.

) LISTING 8-13: Skeleton code for a dynamic ltemized Overlay

Available for
download on
Wrox.com

public class MyDynamicItemizedOverlay extends ItemizedOverlay<OverlayItem>
private ArrayList<OverlayItem> items;

public MyDynamicItemizedOverlay (Drawable defaultMarker) {
super (boundCenterBottom(defaultMarker)) ;
items = new ArrayList<OverlayItem>();
populate() ;

}

public void addNewItem(GeoPoint location, String markerText,
String snippet) {
items.add(new OverlayItem(location, markerText, snippet));
populate () ;
}

public void removelItem(int index) {
items.remove (index) ;
populate() ;

}

@Override
protected OverlaylItem createltem(int index) {
return items.get (index) ;

continues

278

| CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

LISTING 8-13 (continued)

@Override
public int size() {
return items.size();
}
}

Pinning Views to the Map and Map Positions

You can pin any View-derived object to a Map View (including layouts and other View Groups),
attaching it to either a screen position or a geographical map location.

In the latter case, the View will move to follow its pinned position on the map, effectively acting as an
interactive map marker. As a more resource-intensive solution, this is usually reserved for supplying the
detail © ¢ balloons’ > often displayed on mashups owige further detail when a marker is clicked.

You implement both pinning mechanisms by calling addview on the Mapview, usually from the oncreate
or onRestore methods within the MapActivity containing it. Pass in the View you want to pin and the
layout parameters to use.

The MapView.LayoutParams parameters you pass in to addview determine how, and where, the View is
added to the map.

To add a new View to the map relative to the screen, specify a new Mapview.LayoutParams, including
arguments that set the height and width of the View, the x/y screen coordinates to pin to, and the
alignment to use for positioning, as shown in Listing 8-14.

) LISTING 8-14: Pinning a View to a map

Available for int y = 10;

download on
Wrox.com

int x = 10;

EditText editTextl = new EditText (getApplicationContext());
editTextl.setText ("Screen Pinned") ;

MapView.LayoutParams screenLP;
screenLP = new MapView.LayoutParams (MapView.LayoutParams.WRAP_CONTENT,
MapView.LayoutParams.WRAP_CONTENT,

X, Y,
MapView.LayoutParams.TOP_LEFT) ;

mapView.addView (editTextl, screenLP);

To pin a View relative to a physical map location, pass four parameters when constructing the new
Map View LayoutParams, representing the height, width, GeoPoint to pin to, and layout alignment as
shown in Listing 8-135.

) LISTING 8-15: Pinning a View to a geographical location

Available for _ .
download on Double lat = 37.422134*1E6;
Wrox.com Double 1lng = -122.084069*1E6;

GeoPoint geoPoint = new GeoPoint(lat.intValue(), lng.intvValue());

Mapping Earthquakes Example | 279

MapView.LayoutParams geoLP;

geoLP = new MapView.LayoutParams (MapView.LayoutParams.WRAP_CONTENT,
MapView.LayoutParams.WRAP_CONTENT,
geoPoint,
MapView.LayoutParams.TOP_LEFT) ;

EditText editText2 = new EditText (getApplicationContext());
editText2.setText ("Location Pinned") ;

mapView.addView(editText2, geoLP);

Panning the map will leave the first Textview stationary in the upper left corner, while the second
TextView will move to remain pinned to a particular position on the map.

To remove a View from a Map View, call removeview, passing in the View instance you wish to remove,
as shown here.

mapView.removeView (editText2) ;

MAPPING EARTHQUAKES EXAMPLE

The following step-by-step guide demonstrates how to build a map-based Activity for the Earthquake
project you started in Chapter 5. The new Mapactivity will display a map of recent earthquakes using
techniques you learned within this chapter.

1. Create a new earthquake_map.xml layout resource that includes a Mapview, being sure to
include an android:id attribute and an android:apiKey attribute that contains your Android
Maps API key.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<com.google.android.maps.MapView
android:id="@+id/map_view"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:enabled="true"
android:clickable="true"
android:apiKey="myapikey"
/>
</LinearLayout>

2. Create a new EarthquakeMap Activity that inherits from Mapactivity. Use setContentview
within onCreate to inflate the earthquake_map resource you created in Step 1.

package com.paad.earthquake;

import android.os.Bundle;
import com.google.android.maps.MapActivity;

280 | CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

public class EarthquakeMap extends MapActivity {
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.earthquake_map) ;

@Override
protected boolean isRouteDisplayed() {
return false;

}

3. Update the application manifest to include your new EarthquakeMap Activity and import the
map library.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.paad.earthquake">
<application android:icon="@drawable/icon">
<activity
android:name=".Earthquake"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".Preferences"
android:label="Earthquake Preferences"/>
<activity android:name=".EarthquakeMap"
android:label="View Earthquakes"/>
<provider android:name=".EarthquakeProvider"
android:authorities="com.paad.provider.earthquake" />
<uses-library android:name="com.google.android.maps"/>
</application>
<uses-permission android:name="android.permission.INTERNET"/>
</manifest>

4. Addanew menu option to the Earthquake Activity to display the EarthquakeMap Activity.

4.1. Start by adding a new string to the strings.xml resource for the menu text.

<?xml version="1.0" encoding="autf-8"?>
<resources>
<string name="app_name">Earthquake</string>
<string name="quake_feed">
http://earthquake.usgs.gov/eqgcenter/catalogs/lday-M2.5.xml
</string>
<string name="menu_update">Refresh Earthquakes</string>
<string name="auto_update_prompt">Auto Update?</string>
<string name="update_freq prompt">Update Frequency</string>
<string name="min_guake_mag_prompt">
Minimum Quake Magnitude
</string>
<string name="menu_preferences">Preferences</string>
<string name="menu_ earthquake_map">Earthquake Map</string>
</resources>

Mapping Earthquakes Example | 281

4.2. Then add a new menu identifier before modifying the oncreateoptionsMenu han-
dler to add the new Menu Item. It should use the text defined in Step 4.1, and when
selected it should fire an Intent to explicitly start the EarthquakeMap Activity.

static final private int MENU EARTHQUAKE MAP = Menu.FIRST+2;

@Override
public boolean onCreateOptionsMenu (Menu menu) {
super .onCreateOptionsMenu (menu) ;

menu.add (0, MENU_UPDATE, Menu.NONE, R.string.menu_update) ;
menu.add (0, MENU_PREFERENCES, Menu.NONE,
R.string.menu_preferences) ;
Intent startMap = new Intent(this, EarthquakeMap.class);
menu.add (0, MENU_ EARTHQUAKE_MAP,
Menu.NONE,
R.string.menu_ earthquake_map) .setIntent (startMap):;
return true;

}

Now create a new EarthquakeOverlay class that extends overlay. It will draw the position
and magnitude of each earthquake on the Map View.

package com.paad.earthquake;

import java.util.ArrayList;

import android.database.Cursor;

import android.database.DataSetObserver;
import android.graphics.Canvas;

import android.graphics.Paint;

import android.graphics.Point;

import android.graphics.RectF;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;
import com.google.android.maps.Projection;

public class EarthquakeOverlay extends Overlay {
@Override

public void draw(Canvas canvas, MapView mapView, boolean shadow) {
Projection projection = mapView.getProjection();

if (shadow == false) {
// TODO: Draw earthquakes
}

}

5.1. Add a new constructor that accepts a cursor to the current earthquake data, and

store that Cursor as an instance variable.
Cursor earthquakes;

public EarthquakeOverlay (Cursor cursor, ContentResolver resolver) {
super () ;

earthquakes = cursor;

282

| CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

5.2. Create a new refreshQuakeLocations method that iterates over the results Cursor
and extracts the location of each earthquake, extracting the latitude and longitude
before storing each coordinate in a List of GeoPoints.

ArrayList<GeoPoint> quakeLocations;

private void refreshQuakeLocations () {
if (earthquakes.moveToFirst())
do {
Double lat =
earthquakes.getFloat (EarthquakeProvider .LATITUDE_COLUMN) * 1E6;
Double 1ng =
earthquakes.getFloat (EarthquakeProvider.LONGITUDE_COLUMN) * 1E6;

GeoPoint geoPoint = new GeoPoint (lng.intValue(),
lat.intValue());
quakeLocations.add (geoPoint) ;

} while(earthquakes.moveToNext ());

}

5.3. Call refreshQuakeLocations from the Overlay’ s constructor. Also register a
DataSetObserver on the results Cursor that refreshes the Earthquake Location list
if a change in the Earthquake Cursor is detected.

public EarthquakeOverlay (Cursor cursor) {
super () ;
earthquakes = cursor;

quakeLocations = new ArrayList<GeoPoint>();
refreshQuakeLocations();
earthquakes.registerDataSetObserver (new DataSetObserver () ({
@Override
public void onChanged() {
refreshQuakeLocations () ;
}
});:
}

5.4. Complete the EarthquakeOverlay by overriding the draw method to iterate over the
list of GeoPoints, drawing a marker at each earthquake location. In this example
a simple red circle is drawn, but you could easily modify it to include additional
information, such as by adjusting the size of each circle based on the magnitude of
the quake.
int rad = 5;

@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
Projection projection = mapView.getProjection();

// Create and setup your paint brush
Paint paint = new Paint();
paint.setARGB (250, 255, 0, 0);
paint.setAntiAlias(true);
paint.setFakeBoldText (true);

Mapping Earthquakes Example | 283

}

if (shadow == false) {

for (GeoPoint point :

}

Point myPoint = new Point();

projection.toPixels (point, myPoint);

quakeLocations) {

RectF oval = new RectF(myPoint.x-rad, myPoint.y-rad,
myPoint .x+rad, myPoint.y+rad);

canvas.drawOval (oval, paint);

Return to the EarthquakeMap class. Within the onCreate method, create a Cursor that
returns the earthquakes you want to display on the map. Use this Cursor to create a new
EarthquakeOverlay before adding the new instance to the Map View’ s list of Overlays.

Cursor earthquakeCursor;

@QOverride

public void onCreate(Bundle savedInstanceState)

super.onCreate (savedInstanceState) ;
setContentView (R.layout.earthquake_map) ;

{

String earthquakeURI = EarthquakeProvider.CONTENT_ URI;
earthquakeCursor = getContentResolver() .query(earthquakeURI,

MapView earthquakeMap =

null,
null);

null, null,

(MapView) findViewById(R.id.map_view);

EarthquakeOverlay eo = new EarthquakeOverlay(earthquakeCursor);
earthquakeMap.getOverlays() .add(eo) ;

}

Finally, override onResume to call requery on the Earthquake result set whenever this Activ-
ity becomes visible. Also, override onPause and onDestroy to optimize use of the Cursor

resources.

@QOverride

public void onResume () {
earthquakeCursor.requery();
super.onResume () ;

@QOverride

public void onPause () {
earthquakeCursor.deactivate();
super.onPause() ;

@Override

public void onDestroy() {
earthquakeCursor.close();
super.onDestroy () ;

284 | CHAPTER8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

8. If you run the application and select Earthquake Map from the main menu, your application
should appear as shown in Figure 8-7.

All code snippets in this example are part of the Chapter 8 Earthquake project, available for download at Wrox.com.

SUMMARY 11:24 PM

View Earthquakes

Location-based services, the Geocoder, and MapViews are #
available to create intuitive, location-aware applications that :&H‘
feature geographical information.

.yt Ty h

This chapter introduced the Geocoder and showed how to
perform forward and reverse geocoding lookups to translate
between map coordinates and street addresses. You were
introduced to location-based services, used to find the cur-
rent geographical position of a device. You also used them
to track movement and create proximity alerts.

Then you created interactive map applications. Using Over-
lays and Views you annotated Mapviews with 2D graphics,

as well as markers in the form of overlayItems and Views

(including View Groups and layouts).

In Chapter 9 you’ Il learn how to work from the background.
You’ 1l be introduced to the Service component and learn
how to move processing onto background threads. To inter-
act with the user while hidden from view, you’ Il use Toasts
to display transient messages and the Notification Manager
to ring, vibrate, and flash the phone.

FIGURE 8-7

Working in the Background

WHAT’S IN THIS CHAPTER?

Creating, starting, and stopping Services
Binding Services to Activities
Setting Service priority to foreground

Using AsyncTasks to manage background processing

Y Y Y VY Y

Creating background threads and using Handlers to synchronize with
the GUI thread

Displaying Toasts
Using the Notification Manager to notify users of application events

Creating insistent and ongoing Notifications

Y Y Y VY

Using Alarms to schedule application events

Android offers the service class to create application components specifically to handle opera-
tions and functionality that should run invisibly, without a user interface.

Android accords Services a higher priority than inactive Activities, so they’ re less likely to be
killed when the system requires resources. In fact, should the run time prematurely terminate a
Service that’ s been started, it can be configured to restart as soon as sufficient resources become
available. In extreme cases, the termination of a Service —such as an interruption in music
playback —will noticeably affect the user experience, and in these cases a Service’ s priority can
be raised to the equivalent of a foreground Activity.

By using Services, you can ensure that your applications continue to run and respond to events,
even when they’ re not in active use.

Services run without a dedicated GUL, but, like Activities and Broadcast Receivers, they still exe-
cute in the main thread of the application’ s process. To help keep your applications responsive,

286 | CHAPTER9 WORKING IN THE BACKGROUND

you’ 1l learn to move time-consuming processeslike network lookups) into background threads using
the Thread and AsyncTask classes.

Android offers several techniques for applications to communicate with users without an Activity.
You’ 1l learn how to use Notifications and Toastsa alert and update users without interrupting the
active application.

Toasts are a transient, non-modal dialog-box mechanism used to display information to users with-
out stealing focus from the active application. You’ Il learn to display Toasts from any application
component to send unobtrusive on-screen messages to your users.

Where Toasts are silent and transient, Notifications represent a more robust mechanism for alerting
users. In many cases, when the user isn’ t actively using the mobile phone it sits silent and unwatched in
a pocket or on a desk until it rings, vibrates, or flashes. Should a user miss these alerts, status bar icons
are used to indicate that an event has occurred. All these attention-grabbing antics are available to your
Android application through Notifications.

Alarms provide a mechanism for firing Intents at set times, outside the control of your application life
cycle. You’ 1l learn to use Alarms to start Services, opr Activities, or broadcast Intents based on either
the clock time or the time elapsed since device boot. An Alarm will fire even after its owner application
has been closed, and can (if required) wake a device from sleep.

INTRODUCING SERVICES

Unlike Activities, which present a rich graphical interface to users, Services run in the background —
updating your Content Providers, firing Intents, and triggering Notifications. They are the perfect
means of performing ongoing or regular processing and of handling events even when your applica-
tion’ s Activities are invisible or inactive, or have been closed.

Services are started, stopped, and controlled from other application components, including other
Services, Activities, and Broadcast Receivers. If your application performs actions that don’ t depend
directly on user input, Services may be the answer.

Started Services always have higher priority than inactive or invisible Activities, making them less likely
to be terminated by the run time’ s resource management. The only reason Android will stop a Service
prematurely is to provide additional resources for a foreground component (usually an Activity). When
that happens, your Service will be restarted automatically when resources become available.

If your Service is interacting directly with the user (for example, by playing music) it may be necessary to
increase its priority to that of a foreground Activity. This will ensure that your Service isn’ t terminated
except in extreme circumstances, but reduces the run time’ s ability to manage its resources, potentially
degrading the overall user experience.

Applications that update regularly but only rarely or intermittently need user interaction are good
candidates for implementation as Services. MP3 players and sports-score monitors are examples of
applications that should continue to run and update without a visible Activity.

Further examples can be found within the software stack itself: Android implements several Services,
including the Location Manager, Media Controller, and Notification Manager.

Introducing Services | 287

Creating and Controlling Services

In the following sections you’ 1l learn how to create a new Service, and how to start and stop it using
Intents and the startService method. Later you’ Il learn how to bind a Service to an Activity to provide
a richer communications interface.

Creating a Service

To define a Service, create a new class that extends service. You’ Il need to overrideonBind and
onCreate, as shown in Listing 9-1.

) LISTING 9-1: A skeleton Service class

Available for ! , .
download on import android.app.Service;
Wrox.com import android.content.Intent;

import android.os.IBinder;
public class MyService extends Service {

@Override
public void onCreate() {
// TODO: Actions to perform when service is created.

@Override

public IBinder onBind(Intent intent) ({
// TODO: Replace with service binding implementation.
return null;

}

In most cases you’ 1l also want to overridenstartCommand. This is called whenever the Service is started
with a call to startService, so it may be executed several times within a Service’ s lifetime. You should
ensure that your Service accounts for this.

The onstartCommand handler replaces the onstart event that was used prior to Android 2.0. By con-
trast, it enables you to tell the system how to handle restarts if the Service is killed by the system prior
to an explicit call to stopService or stopSelf.

The following snippet extends Listing 9-1 to show the skeleton code for overriding the onstartcommand
handler. Note that it returns a value that controls how the system will respond if the Service is restarted
after being killed by the run time.

@Override

public int onStartCommand (Intent intent, int flags, int startId) {
// TODO Launch a background thread to do processing.
return Service.START_STICKY;

}

Services are launched on the main Application thread, meaning that any processing done in the
onStartCommand handler will happen on the main GUI thread. The standard pattern for implementing

288 | CHAPTER9 WORKING IN THE BACKGROUND

a Service is to create and run a new thread from onstartCommand to perform the processing in the
background and stop the Service when it’ s complete (you will be shown how to create and manage
background threads later in this chapter).

This pattern lets onStartCommand complete quickly, and lets you control the restart behavior using one
of the following service constants:

» START_STICKY Describes the standard behavior, which is similar to the way in which
onStart was implemented prior to Android 2.0. If you return this value, onStartCommand will
be called any time your Service restarts after being terminated by the run time. Note that on a
restart the Intent parameter passed in to onStartCommand will be nu11.

This mode is typically used for Services that handle their own states, and that are explicitly
started and stopped as required (via startService and stopService). This includes Services
that play music or handle other ongoing background tasks.

» START_NOT_STICKY This mode is used for Services that are started to process specific actions
or commands. Typically they will use stopSelf to terminate once that command has been
completed.

Following termination by the run time, Services set to this mode will restart only if there are
pending start calls. If no startservice calls have been made since the Service was terminated,
the Service will be stopped without a call being made to onstartCommand.

This mode is ideal for Services that handle specific requests, particularly regular processing
such as updates or network polling. Rather than restarting the Service during a period of
resource contention, it” s often more prudent tdet the Service stop and retry at the next sched-
uled interval.

» START_REDELIVER_INTENT In some circumstances you will want to ensure that the com-
mands you have requested from your Service are completed.

This mode is a combination of the first two —if the Service is terminated by the run time, it
will restart only if there are pending start calls or the process was killed prior to its calling
stopSelf.

In the latter case, a call to onStartCommand will be made, passing in the initial Intent whose
processing did not properly complete.

Note that each mode requires you to explicitly stop your Service, through stopService or stopselt
respectively, when your processing has completed. Both of these methods are discussed in more detail
later in this chapter.

Prior to Android SDK 2.0 (SDK API level 5) the Service class triggered the onstart
event handler to let you perform actions when the Service started. Implementing
the onstart handler is now the equivalent of overriding onStartCommand and
returning the START _STICKY flag.

The restart mode you specify in your onStartCommand return value will affect the parameter values
passed in to subsequent calls.

Introducing Services | 289

Initially the Intent will be the parameter you passed in to startService to start your Service. After
system-based restarts it will be either null, in the case of sSTART_sTICKY mode, or the original Intent, if
the mode is set to START REDELIVER_INTENT.

The flag parameter can be used to discover how the Service was started. In particular you can use the
code snippet shown in Listing 9-2 to determine if either of the following cases is true:

> START FLAG_REDELIVERY Indicates that the Intent parameter is a redelivery caused by the
system run time’ s having terminated the Service before it was explicitly stopped by a call to
stopSelf.

» START FLAG_RETRY Indicates that the Service has been restarted after an abnormal termina-
tion. Passed in when the Service was previously set to START STICKY.

) LISTING 9-2: Determining the cause of a system start

Available for .
downloadon ~ @Override
Wrox.com public int onStartCommand(Intent intent, int flags, int startId) {

if ((flags & START FLAG RETRY) == 0) {
// TODO If it's a restart, do something.
}

else {
// TODO Alternative background process.

}
return Service.START_ STICKY;

Registering a Service in the Manifest

Once you® ve constructed a new Service, you have to register it in the application manifest.

Do this by including a <service> tag within the application node. Use the requires-permission
attribute to require a uses-permission for other applications to access this Service.

The following is the service tag you’ d add for the skeleton Service you created earlier:

<service android:enabled="true" android:name=".MyService"/>

Self-Terminating a Service

Once your Service has completed the actions or processing it was started for, you should make a call
to stopSelf, either without a parameter to force a stop, or by passing in a start1d value to insure pro-
cessing has been completed for each instance of startservice called so far, as shown in the following

snippet:
stopSelf (startId);

By explicitly stopping the Service when your processing is complete, you allow the system to recover
the resources otherwise required to keep it running. Due to the high priority of Services they are not
commonly killed by the run time, so self-termination can significantly improve the resource footprint

of your application.

290 | CHAPTER9 WORKING IN THE BACKGROUND

Starting, Controlling, and Interacting with a Service

To start a Service, call startService; you can either use an action to implicitly start a Service with the
appropriate Intent Receiver registered, or you can explicitly specify the Service using its class. If the
Service requires permissions that your application does not have, the call to startservice will throw a
SecurityException.

In both cases you can pass values in to the Service’ snstart handler by adding extras to the Intent, as
shown in Listing 9-3, which demonstrates both techniques available for starting a Service.

) LISTING 9-3: Starting a Service

Available for L. .
download on // Implicitly start a Service

Wrox.com Intent myIntent = new Intent (MyService.ORDER_PIZZA) ;
myIntent.putExtra ("TOPPING", "Margherita");
startService (myIntent) ;

// Explicitly start a Service
startService (new Intent (this, MyService.class));

To use this example you would need to include a vy_ACTION constant in the
MyService class and use an Intent Filter to register the Service as a provider of
MY_ACTION.

To stop a Service use stopService, passing an Intent that defines the Service to stop. Listing 9-4 first
starts and then stops a Service both explicitly and by using the component name returned from a call
to startService.

) LISTING 9-4: Stopping a Service

Available for
download on ComponentName service = startService(new Intent(this, BaseballWatch.class));
Wrox.com // Stop a service using the service name.

stopService (new Intent (this, service.getClass()));

// Stop a service explicitly.

try {
Class serviceClass = Class.forName (service.getClassName()) ;
stopService(new Intent(this, serviceClass));

} catch (ClassNotFoundException e) {}

If startService is called on a Service that’ s already running, the Service’ osiStartcommand handler will
be executed again. Calls to startservice do not nest, so a single call to stopService will terminate it
no matter how many times startService has been called.

An Earthquake Monitoring Service Example

In this chapter you’ Il modify the Earthquake example you started in Chapter 5 (and continued to
enhance in Chapters 6, 7, and 8). In this example you’ 1l move the earthquake updating and processing
functionality into a separate Service component.

Introducing Services | 291

Later in this chapter you’ Il build additional functionality within this Service,
starting by moving the network lookup and XML parsing to a background thread.
Later you’ [l use Toasts and Notifications to alert users of new earthquakes.

Start by creating a new EarthquakeService that extends Service.

package com.paad.earthquake;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import java.util.Timer;

import java.util.TimerTask;

public class EarthquakeService extends Service {
@Override
public void onCreate() {
// TODO: Initialize variables, get references to GUI objects

@Override
public IBinder onBind(Intent intent) ({
return null;

}

Add this new Service to the manifest by adding a new service tag within the application
node.

<service android:enabled="true" android:name=".EarthquakeService"/>

Move the refreshEarthquakes and addNewQuake methods out of the Earthquake ACtiVity
and into the EarthquakeService.

You’ Il need to remove the calls tmddQuakeToArray and loadQuakesFromProvider (leave
both of these methods in the Earthquake Activity because they’ re still required). In the
EarthquakeService also remove all references to the earthquakes ArrayList.

private void addNewQuake (Quake _quake) {
ContentResolver cr = getContentResolver();
// Construct a where clause to make sure we don't already have
// this earthquake in the provider.
String w = EarthquakeProvider.KEY_DATE + " = " +
_quake.getDate() .getTime () ;

// If the earthquake is new, insert it into the provider.
Cursor ¢ = cr.query(EarthquakeProvider.CONTENT_URI,
null, w, null, null);
if (c.getCount ()==0){
ContentValues values = new ContentValues() ;

values.put (EarthquakeProvider .KEY_DATE,
_quake.getDate () .getTime()) ;
values.put (EarthquakeProvider .KEY_DETAILS, _quake.getDetails());

292

| CHAPTER9 WORKING IN THE BACKGROUND

}

double lat = _quake.getLocation().getLatitude() ;

double 1ng = _quake.getLocation().getLongitude() ;

values.put (EarthquakeProvider.KEY_LOCATION_LAT, lat);

values.put (EarthquakeProvider.KEY_LOCATION_LNG, 1ng);

values.put (EarthquakeProvider.KEY_LINK, _quake.getLink());
values.put (EarthquakeProvider.KEY_MAGNITUDE, _quake.getMagnitude()) ;

cr.insert (EarthquakeProvider.CONTENT_URI, values) ;

c.close();

private void refreshEarthquakes () {
// Get the XML
URL url;
try {

String quakeFeed = getString(R.string.quake_feed) ;
url = new URL(quakeFeed) ;

URLConnection connection;
connection = url.openConnection() ;

HttpURLConnection httpConnection =
(HttpURLConnection)connection;
int responseCode = httpConnection.getResponseCode() ;

if (responseCode == HttpURLConnection.HTTP_OK) {
InputStream in = httpConnection.getInputStream() ;

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance () ;
DocumentBuilder db = dbf.newDocumentBuilder () ;

// Parse the earthquake feed.
Document dom = db.parse(in);
Element docEle = dom.getDocumentElement () ;

// Get a list of each earthquake entry.
NodeList nl = docEle.getElementsByTagName ("entry") ;
if (nl != null && nl.getLength() > 0) {

for (int 1 = 0 ; i1 < nl.getLength(); i++) {
Element entry = (Element)nl.item(i);
Element title;
title =
(Element)entry.getElementsByTagName ("title") .item(0) ;
Element g =

(Element)entry.getElementsByTagName ("georss:point") .item(0) ;
Element when =

(Element)entry.getElementsByTagName ("updated") .item(0) ;
Element link =

(Element) entry.getElementsByTagName ("1link") .item(0) ;

String details = title.getFirstChild() .getNodevValue() ;

Introducing Services | 293

String hostname = "http://earthquake.usgs.gov";
String linkString = hostname + link.getAttribute("href");

String point = g.getFirstChild() .getNodevalue() ;
String dt = when.getFirstChild() .getNodeValue() ;
SimpleDateFormat sdf;
sdf = new SimpleDateFormat ("yyyy-MM-dd'T'hh:mm:ss'Z'");
Date gdate = new GregorianCalendar(0,0,0).getTime() ;
try {

gdate = sdf.parse(dt);
} catch (ParseException e) {

e.printStackTrace() ;

String[] location = point.split(" ");
Location 1 = new Location("parsed");
1.setLatitude (Double.parseDouble (location[0]));
1.setLongitude (Double.parseDouble (location[1]));

String magnitudeString = details.split(" ")[1];
int end = magnitudeString.length()-1;
double magnitude =
Double.parseDouble (magnitudeString.substring (0, end));

details = details.split(",")[1].trim();

Quake quake = new Quake(gdate, details, 1, magnitude,
linkString) ;

// Process a newly found earthgquake
addNewQuake (quake) ;

}

} catch (MalformedURLException e) {
e.printStackTrace() ;

} catch (IOException e) {
e.printStackTrace() ;

} catch (ParserConfigurationException e) {
e.printStackTrace() ;

} catch (SAXException e) {
e.printStackTrace() ;

}

finally {

}

}

4. Within the Earthquake Activity, create a new refreshEarthquakes method. It should explic-
itly start the EarthquakeService.

private void refreshEarthquakes () {
startService (new Intent (this, EarthquakeService.class));

294 | CHAPTER9 WORKING IN THE BACKGROUND

Return to the EarthquakeService. Override the onStartCommand and onCreate methods to
support a new Timer that will be used to update the earthquake list. onstartcommand should
return START STICKY because we are using a timer to trigger multiple refreshes. This is gen-
erally poor form; the Timer behavior should be moved to a background thread and triggered
by Alarms. You’ Il learn how to do both of these things later in this chapter.

Use the sharedpreference object created in Chapter 6 to determine if the earthquakes should
be regularly updated.

private Timer updateTimer;
private float minimumMagnitude;

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
// Retrieve the shared preferences
SharedPreferences prefs =
getSharedPreferences (Preferences.USER_PREFERENCE,
Activity.MODE_PRIVATE) ;

int minMagIndex = prefs.getInt (Preferences.PREF_MIN MAG, 0);
if (minMagIndex < 0)
minMagIndex = 0;

int freqIndex = prefs.getInt (Preferences.PREF_UPDATE_FREQ, 0);
if (freqIndex < 0)
freqIndex = 0;

boolean autoUpdate =
prefs.getBoolean(Preferences.PREF_AUTO_ UPDATE, false);

Resources r = getResources();
int[] minMagValues = r.getIntArray(R.array.magnitude);
int[] freqValues = r.getIntArray(R.array.update_freq values);

minimumMagnitude = minMagValues[minMagIndex];
int updateFreq = freqValues[freqIndex];

updateTimer.cancel();

if (autoUpdate) {
updateTimer = new Timer ("earthquakeUpdates");
updateTimer.scheduleAtFixedRate (doRefresh, 0,

updateFreq*60*1000) ;

}

else
refreshEarthquakes();

return Service.START STICKY;
Yi

private TimerTask doRefresh = new TimerTask() {
public void run() {

Introducing Services | 295

refreshEarthquakes();

@QOverride

public void onCreate() {
updateTimer = new Timer ("earthquakeUpdates");

}

The EarthquakeService will now update the earthquake Provider each time it is asked to
refresh, as well as on an automated schedule (if one is specified). The updates are not yet
passed back to the Earthquake Activity’ s List View or the Earthquake Map Activity.

To alert those components, and any other applications interested in earthquake data, modify
the EarthquakeService to broadcast a new Intent whenever a new earthquake is added.

6.1. Modify the addNewguake method to call a new announceNewQuake method.
public static final String NEW EARTHQUAKE FOUND = "New_ Earthquake_Found";

private void addNewQuake (Quake _quake) {

ContentResolver cr = getContentResolver();
// Construct a where clause to make sure we don't already have
// this earthquake in the provider.
String w = EarthquakeProvider.KEY_DATE +
" = " + _quake.getDate() .getTime() ;

// If the earthquake is new, insert it into the provider.
Cursor ¢ = cr.query (EarthquakeProvider.CONTENT_ URI,
null, w, null, null);
if (c.getCount()==0){
ContentValues values = new ContentValues();

values.put (EarthquakeProvider.KEY_DATE, _quake.getDate().getTime());
values.put (EarthquakeProvider .KEY_DETAILS, _quake.getDetails());

double lat = _quake.getLocation().getLatitude();

double 1lng = _quake.getLocation().getLongitude();

values.put (EarthquakeProvider .KEY_LOCATION_LAT, lat);

values.put (EarthquakeProvider.KEY_LOCATION_LNG, 1ng);

values.put (EarthquakeProvider .KEY_LINK, _quake.getLink());

values.put (EarthquakeProvider.KEY_MAGNITUDE,
_quake.getMagnitude()) ;

cr.insert (EarthquakeProvider.CONTENT_URI, values);
announceNewQuake (_quake) ;

}

c.close();

private void announceNewQuake (Quake quake) {

}

296 | CHAPTER9 WORKING IN THE BACKGROUND

6.2.

Within announceNewQuake, broadcast a new Intent whenever a new earthquake is

found.
private void announceNewQuake (Quake quake) {

Intent intent = new Intent (NEW_EARTHQUAKE FOUND) ;
intent.putExtra("date", quake.getDate().getTime());
intent.putExtra("details", quake.getDetails());
intent.putExtra("longitude", quake.getLocation().getLongitude());
intent.putExtra("latitude", quake.getLocation().getLatitude());
intent.putExtra("magnitude", quake.getMagnitude()):

sendBroadcast (intent) ;
}

7. That completes the EarthquakeService implementation. You still need to modify the two
Activity components to listen for the Service Intent broadcasts and refresh their displays
accordingly.

71.

7.2.

7.3.

Within the Earthquake Activity, create a new internal EarthquakeReceiver
class that extends BroadcastReceiver. Override the onReceive method to call
loadFromProviders to update the earthquake array and refresh the list.

public class EarthquakeReceiver extends BroadcastReceiver ({
@Override
public void onReceive (Context context, Intent intent) {
loadQuakesFromProvider () ;

}

Override the onResume method to register the new Receiver and update the List
View contents when the Activity becomes active. Override onPause to unregister
it when the Activity moves out of the foreground.

EarthquakeReceiver receiver;

@Override
public void onResume () {
IntentFilter filter;
filter = new IntentFilter (EarthquakeService.NEW_EARTHQUAKE_FOUND) ;
receiver = new EarthquakeReceiver();
registerReceiver (receiver, filter);

loadQuakesFromProvider () ;
super .onResumne () ;

@Override

public void onPause () {
unregisterReceiver (receiver) ;
super .onPause() ;

}

Do the same for the EarthquakeMap Activity, this time calling requery on the result
Cursor before invalidating the Map View whenever the Intent is received.

EarthquakeReceiver receiver;

@Override

Introducing Services | 297

public void onResume () {
earthquakeCursor.requery () ;

IntentFilter filter;

filter = new IntentFilter (EarthquakeService.NEW_EARTHQUAKE_FOUND) ;
receiver = new EarthquakeReceiver();

registerReceiver (receiver, filter);

super .onResume () ;

}

@Override

public void onPause() {
earthquakeCursor.deactivate();
super .onPause () ;

}

public class EarthquakeReceiver extends BroadcastReceiver {
@Ooverride
public void onReceive (Context context, Intent intent) {
earthquakeCursor.requery();
MapView earthquakeMap = (MapView)findViewById(R.id.map_view);
earthquakeMap.invalidate();

All code snippets in this example are part of the Chapter 9 Earthquake project, available for download at Wrox.com.

Now when the Earthquake Activity is launched it will start the Earthquake Service. This Service will
then continue to run, updating the earthquake Content Provider in the background, even after the
Activity is suspended or closed.

You’ Il continue to upgrade and enhance the Earthquake Service throughout the
chapter, first using Toasts and later using Notifications and Alarms.

At this stage the earthquake processing is done in a Service, but it’ s still being executed on the main GUI
thread. Later in this chapter you® Il learn how tanove time-consuming operations onto background

5 5

threads to improve performance and avoid © ¢ Force Close’ > messages.

Similarly, the Service is constantly running, taking up valuable resources. Later sections will explain
how to replace the Timer with Alarms.

Binding Activities to Services

When an Activity is bound to a Service, it maintains a reference to the Service instance itself, enabling
you to make method calls on the running Service as you would on any other instantiated class.

Binding is available for Activities that would benefit from a more detailed interface with a Service. To
support binding for a Service, implement the onBind method, as shown in Listing 9-5.

298 | CHAPTER9 WORKING IN THE BACKGROUND

) LISTING 9-5: Implementing binding on a Service

Available for , . . .)
download on private final IBinder binder = new MyBinder();

Wrox.com

@Override
public IBinder onBind(Intent intent) ({
return binder;

public class MyBinder extends Binder ({
MyService getService() {
return MyService.this;

The connection between the Service and Activity is represented as a ServiceConnection.

You’ Il need to implement a newserviceConnection, overriding the onServiceConnected and
onServiceDisconnected methods to get a reference to the Service instance once a connection has been
established, as shown in Listing 9-6.

) LISTING 9-6: Binding to a Service

Available for .
download on // Reference to the service
Wrox.com private MyService serviceBinder;

// Handles the connection between the service and activity
private ServiceConnection mConnection = new ServiceConnection() {
public void onServiceConnected (ComponentName className, IBinder service) {
// Called when the connection is made.
serviceBinder = ((MyService.MyBinder)service) .getService();

public void onServiceDisconnected (ComponentName className) {
// Received when the service unexpectedly disconnects.
serviceBinder = null;
}
Y

To perform the binding, call bindservice, passing in an Intent (either explicit or implicit) that selects
the Service to bind to and an instance of your new ServiceConnection implementation, as shown in
this extension of Listing 9-6:

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

// Bind to the service
Intent bindIntent = new Intent (MyActivity.this, MyService.class);
bindService (bindIntent, mConnection, Context.BIND AUTO CREATE);

Introducing Services | 299

Once the Service has been bound, all of its public methods and properties are available through the
serviceBinder object obtained from the onServiceConnected handler.

Android applications do not (normally) share memory, but in some cases your application may want
to interact with (and bind to) Services running in different application processes.

You can communicate with a Service running in a different process using broadcast Intents or through
the extras Bundle in the Intent used to start the Service. If you need a more tightly coupled connection
you can make a Service available for binding across application boundaries using AIDL. AIDL defines
the Service’ s interface in terms of OS level primives, allowing Android to transmit objects across
process boundaries. AIDL definitions are covered in Chapter 15.

Prioritizing Background Services

As you learned in Chapter 3, Android uses a dynamic approach to manage resources that can result in
your applications, Activities, and Services being terminated by the run time with little or no warning.

When calculating which applications and application components should be killed, Android assigns
running Services the second-highest priority. Only active, foreground Activities are considered a higher
priority in terms of system resources.

In extreme cases, in which your Service is interacting directly with the user, it may be appropriate to
lift its priority to the equivalent of a foreground Activity’ s. You do this by setting your Service to run
in the foreground using the startForeground method.

It is expected that Services running in the foreground will be interacting directly with the user (for
example, by playing music). Because of this, the user should always be aware of a foreground Service.
To ensure this, calls to startForeground must specify an ongoing Notification (described in more detail
later in this chapter), as shown in Listing 9-7. This notification will continue for at least as long as the
Service is running in the foreground.

@ By moving your Service to the foreground you effectively make it impossible for the
i

run time to Rill in order to free resources. Having multiple unkillable Services
running simultaneously can make it extremely difficult for the system to recover
from resource-starved situations.

Use this technique only if it is necessary in order for your Service to function
properly, and even then keep the Service in the foreground only as long as
absolutely necessary.

) LISTING 9-7: Moving a Service to the foreground

d“gﬂ?{'}’;ﬁ‘(‘:’: int NOTIFICATION_ ID = 1;

Wrox.com
Intent intent = new Intent(this, MyActivity.class);

PendingIntent pi = PendingIntent.getActivity(this, 1, intent, 0)); R
continues

300 | CHAPTER9 WORKING IN THE BACKGROUND

LISTING 9-7 (continued)

Notification notification = new Notification(R.drawable.icon,
"Running in the Foreground", System.currentTimeMillis());
notification.setLatestEventInfo(this, "Title", "Text", pi);

notification.flags = notification.flags |
Notification.FLAG_ONGOING_EVENT;

startForeground (NOTIFICATION ID, notification);

Listing 9-7 uses setLatestEventInfo to update the notification using the default status window layout.
Later in this chapter you’ Il learn how to specify a custom layout for your Notification. Using this
technique you can provide more details of your ongoing Service to users.

Once your Service no longer requires foreground priority you can move it back to the background, and
optionally remove the ongoing notification using the stopForeground method, as shown in Listing 9-8.
The Notification will be canceled automatically if your Service stops or is terminated.

) LISTING 9-8: Moving a Service back to the background

Available for e .
download on // Move to the background and remove the Notification

Wrox.com stopForeground (true) ;

Prior to Android 2.0 it was possible to set a Service to the foreground using the
setForeground method. This method has now been deprecated and will result in a
no-op, effectively doing nothing.

USING BACKGROUND THREADS

To ensure that your applications remain responsive, it’ s good practice to move all slow, time-consuming
operations off the main application thread and onto a child thread.

@ All Android application components —including Activities, Services, and
Broadcast Receivers —start on the main application thread. As a result,
time-consuming processing in any component will block all other components
including Services and the visible Activity.

Android offers two alternatives for backgrounding your processing. The asyncTask class lets you define
an operation to be performed in the background, then provides event handlers you can use to monitor
progress and post the results on the GUI thread.

Alternatively, you can implement your own Threads and use the Handler class to synchronize with the
GUI thread before updating the Ul Both techniques are described in this section.

Using Background Threads | 301

Using background threads is vital for avoiding the ¢ ¢ Force Close’ > dialog box described in Chapter 2. In
Android, Activities that don’ t respond to an input event (such as a key press) within five seconds, and
Broadcast Receivers that don’ t complete theibnReceive handlers within 10 seconds, are considered
unresponsive.

Not only do you want to avoid this scenario, you don’ t want to even get close. Use background threads
for all time-consuming processing, including file operations, network lookups, database transactions,
and complex calculations.

Using AsyncTask to Run Asynchronous Tasks

The asyncTask class offers a simple, convenient mechanism for moving your time-consuming opera-
tions onto a background thread. It offers the convenience of event handlers synchronized with the GUI
thread to let you update Views and other UI elements to report progress or publish results when your
task is complete.

AsyncTask handles all of the thread creation, management, and synchronization, enabling you to create
an asynchronous task consisting of processing to be done in the background and a Ul update to be
performed when processing is complete.

Creating a new Asynchronous Task

To create a new asynchronous task you need to extend AsyncTask, as shown in the skeleton code of
Listing 9-9. Your implementation should specify the classes used for input parameters on the execute
method, the progress-reporting values, and the result values in the following format:

AsyncTask<[Input Parameter Type], [Progress Report Typel, [Result Typel>

If you don’ t need or want to take input parameters, update progress, or report a final result, simply
specify void for any or all of the types required.

LISTING 9-9: Skeleton AsyncTask implementation using a string parameter and integer
) progress and result values

Available for
download on))
Wrox.com private class MyAsyncTask extends AsyncTask<String, Integer, Integer> {
@Override
protected void onProgressUpdate (Integer... progress) ({
// [... Update progress bar, Notification, or other UI element ...]
}
@Override
protected void onPostExecute(Integer... result) {
// [... Report results via UI update, Dialog, or notification ...]
}
@Override
protected Integer doInBackground(String... parameter) {

int myProgress = 0; .
continues

302 | CHAPTER9 WORKING IN THE BACKGROUND

LISTING 9-9 (continued)

// [... Perform background processing task, update myProgress ...]
PublishProgress (myProgress)
// [... Continue performing background processing task ...]

// Return the value to be passed to onPostExecute
return result;

}
As shown in Listing 9-9, your subclass should implement the following event handlers:

» doInBackground Takes a set of parameters of the type defined in your class implementation.
This method will be executed on the background thread, so it must not attempt to interact
with Ul objects.

Place your long-running code here, using the publishProgress method to allow
onProgressUpdate to post progress updates to the UL

When your background task is complete, return the final result for the onPostExecute han-
dler to report it to the UL

> onProgressUpdate Override this handler to post interim updates to the UI thread.
This handler receives the set of parameters passed in to publishProgress from within
doInBackground.

This handler is synchronized with the GUI thread when executed, so you can safely modify
Ul elements.

» onPostExecute When doTnBackground has completed, the return value from that method is
passed in to this event handler.

Use this handler to update the UI once your asynchronous task has completed. This handler
is synchronized with the GUI thread when executed, so you can safely modify UI elements.

Running an Asynchronous Task

Once you’ ve implemented your asynchronous task, execute it by creating a new instance and calling
execute, as shown in Listing 9-10. You can pass in a number of parameters, each of the type specified
in your implementation.

) LISTING 9-10: Executing an asynchronous task

Available for
download on new MyAsyncTask () .execute("inputStringl", "inputString2");

Wrox.com

Each rsyncrTask instance can be executed only once. If you attempt to call execute
a second time an exception will be thrown.

Using Background Threads | 303

Moving the Earthquake Service to a Background Thread Using
AsyncTask

The following example shows how to move the network lookup and XML processing done in the
EarthquakeService onto a background thread using an AsyncTask.

1. Create a new asyncTask implementation, EarthquakeLookupTask, specifying void for the
input parameters and result variable types, and Quake for the progress reporting. Include
StubsthatoverrhiedoInBackground,onProgressUpdate,and.onPostExecute.

private class EarthquakeLookupTask extends AsyncTask<Void, Quake,
Void> {
@Override
protected Void doInBackground(Void... params) {
return null;

}

@Override
protected void onProgressUpdate (Quake... values) {
super .onProgressUpdate (values) ;

}

@Override
protected void onPostExecute(Void result) {
super .onPostExecute (result) ;

}
}

2. Move all the existing code from the refreshEarthquakes method into the new
doTnBackground handler. Add a new call to publishProgress, passing in the most
recently parsed Quake, each time a new quake is processed. When the parsing is complete,
return null.

@QOverride

protected Void doInBackground(Void... params) {
[... existing XML parsing ...]

// Process a newly found earthquake
addNewQuake (quake) ;
publishProgress (quake);

[... existing exception handling ...]

return null;
}
3. Update the now-empty refreshEarthquakes method. It should create and execute a new
EarthquakeLookupTask. First check to see if another asynchronous task has already begun.
To avoid stacking refresh requests you should begin an update only if one is not already in

progress.

304 | CHAPTER9 WORKING IN THE BACKGROUND

EarthquakeLookupTask lastLookup = null;

private void refreshEarthquakes () {
if (lastLookup == null ||
lastLookup.getStatus() .equals (AsyncTask.Status.FINISHED)) {
lastLookup = new EarthquakeLookupTask();
lastLookup.execute((Void[])null);
}

Al