
Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Written by an Android authority, this up-to-date resource shows you
how to leverage the features of Android 2 to enhance existing
products or create innovative new ones. Serving as a hands-on guide
to building mobile apps using Android, the book walks you through
a series of sample projects that introduces you to Android’s new features
and techniques. Using the explanations and examples included in
these pages, you’ll acquire the foundation needed to write compelling
mobile applications that use Android, along with the flexibility to
quickly adapt to future enhancements.

Professional Android 2 Application Development:

• Reviews Android as a development platform and best practices
for mobile development

• Provides an in-depth look at the Android application components

• Details creating layouts and Views to produce compelling resolution
independent user interfaces

• Examines Intents and Content Providers for sharing data

• Introduces techniques for creating map-based applications and using
location-based services such as GPS

• Looks at how to create and use background Services, Notifications,
and Alarms

• Demonstrates how to create interactive homescreen components

• Explores the Bluetooth, telephony, and networking APIs

• Examines using hardware, including the camera and sensors such
as the compass and accelerometers

Reto Meier is a software developer who has been involved in Android since the
initial release in 2007. He is an Android Developer Advocate at Google.

Wrox Professional guides are planned and written by working programmers
to meet the real-world needs of programmers, developers, and IT professionals.
Focused and relevant, they address the issues technology professionals face every
day. They provide examples, practical solutions, and expert education in new
technologies, all designed to help programmers do a better job.

Programming / Mobile & Wireless / Android

Build unique mobile applications
with the latest Android SDK

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

 $44.99 USA
 $53.99 CAN

Meier

A
ndroid

™ 2 A
pplication D

evelopm
ent

Reto Meier

Professional

Android™ 2
Application Development

Professional

Related Wrox Books
Beginning iPhone SDK Programming with Objective-C
ISBN: 9780470500972
Learning to develop iPhone applications doesn’t need to be an overwhelming undertaking. This book provides an easy-to-follow,
example-driven introduction to the fundamentals of the Apple iPhone SDK and offers you a clear understanding of how things
are done when programming iPhone applications with Objective-C. When you reach the end of the book, you will be prepared to
confidently tackle your next iPhone programming challenge.

Ivor Horton’s Beginning Java 2: JDK 5 Edition
ISBN: 978-0-7645-6874-9
This comprehensive introduction to Java programming — written by the leading author of computer programming language
tutorials — shows readers how to build real-world Java applications using the Java SDK (software development kit).

Safari and WebKit Development for iPhone OS 3.0
ISBN: 9780470549667
With the unparalleled success of iPhone and iPod touch, iPhone OS 3.0 has emerged as a compelling platform for which vast
numbers of web developers are designing and building web-based mobile applications. This book explores the Safari and WebKit
development platform that is built into iPhone OS 3.0 and takes you through the process of creating an iPhone web application
from the ground up. You’ll learn how to use existing open source frameworks to speed up your development time, imitate qualities
of built-in Apple apps, cache data locally and even run in offline mode, and more. Whether you’re eager to build new web applications
for iPhone OS 3.0 or optimize existing web sites for this platform, you have everything you need to do so within this book.

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

www.wrox.com

PROFESSIONAL
ANDROID™ 2 APPLICATION DEVELOPMENT

INTRODUCTION . xxvii

CHAPTER 1 Hello, Android . 1

CHAPTER 2 Getting Started . 17

CHAPTER 3 Creating Applications and Activities . 49

CHAPTER 4 Creating User Interfaces . 85

CHAPTER 5 Intents, Broadcast Receivers, Adapters,

and the Internet . 137

CHAPTER 6 Files, Saving State, and Preferences . 187

CHAPTER 7 Databases and Content Providers . 209

CHAPTER 8 Maps, Geocoding, and Location-Based Services 245

CHAPTER 9 Working in the Background . 285

CHAPTER 10 Invading the Phone-Top . 327

CHAPTER 11 Audio, Video, and Using the Camera . 363

CHAPTER 12 Telephony and SMS . 389

CHAPTER 13 Bluetooth, Networks, and Wi-Fi . 425

CHAPTER 14 Sensors . 457

CHAPTER 15 Advanced Android Development . 477

INDEX . 529

PROFESSIONAL

Android™ 2 Application Development

Reto Meier

Wiley Publishing, Inc.

Professional Android™ 2 Application Development

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

ISBN: 978-0-470-56552-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the
1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to
the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation
warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The
advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the
services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages
arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of
further information does not mean that the author or the publisher endorses the information the organization or Web site may
provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may have
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Library of Congress Control Number: 2009943638

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Android is a trademark of Google, Inc. All other trademarks are the property
of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

www.wiley.com
http://www.wiley.com/go/permissions

To Kristy

ABOUT THE AUTHOR

RETO MEIER is originally from Perth, Western Australia, but now lives in London.

He currently works as an Android Developer Advocate at Google, helping Android app develop-
ers create the best applications possible. Reto is an experienced software developer with more than
10 years of experience in GUI application development. Before Google, he worked in various indus-
tries, including offshore oil and gas and finance.

Always interested in emerging technologies, Reto has been involved in Android since the initial
release in 2007. In his spare time, he tinkers with a wide range of development platforms, including
Google’s plethora of developer tools.

You can check out Reto’s web site, The Radioactive Yak, athttp://blog.radioactiveyak.com or
follow him on twitter at http://www.twitter.com/retomeier.

ABOUT THE TECHNICAL EDITOR

MILAN NARENDRA SHAH graduated with a BSc Computer Science degree from the University of
Southampton. He has been working as a software engineer for more than seven years, with
experiences in C#, C/C++, and Java. He is married and lives in Buckinghamshire, United Kingdom.

CREDITS

ACQUISITIONS EDITOR

Scott Meyers

PROJECT EDITOR

William Bridges

TECHNICAL EDITOR

Milan Narendra Shah

PRODUCTION EDITOR

Rebecca Anderson

COPY EDITOR

Sadie Kleinman

EDITORIAL DIRECTOR

Robyn B. Siesky

EDITORIAL MANAGER

Mary Beth Wakefield

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Lynsey Stanford

PROOFREADER

Kyle Schlesinger, Word One

INDEXER

Robert Swanson

COVER IMAGE

© Linda Bucklin/istockphoto

COVER DESIGNER

Michael E. Trent

ACKNOWLEDGMENTS

Most importantly I’d like to thank Kristy. Your support makes everything I do possible, and your
generous help ensured that this book was the best it could be. Without you it would never have
happened.

A big thank-you goes to Google and the Android team, particularly the Android engineers and my
colleagues in developer relations. The pace at which Android has grown and developed in the past
year is nothing short of phenomenal.

I also thank Scott Meyers for giving me the chance to bring this book up to date; and Bill Bridges,
Milan Shah, Sadie Kleinman, and the Wrox team for helping get it done.

Special thanks go out to the Android developer community. Your hard work and exciting applica-
tions have helped make Android a great success.

CONTENTS

INTRODUCTION xxvii

CHAPTER 1: HELLO, ANDROID 1

A Little Background 2
The Not-So-Distant Past 2
The Future 3

What It Isn’t 3
Android: An Open Platform for Mobile Development 4
Native Android Applications 5
Android SDK Features 6

Access to Hardware, Including Camera, GPS, and Accelerometer 6
Native Google Maps, Geocoding, and Location-Based Services 7
Background Services 7
SQLite Database for Data Storage and Retrieval 7
Shared Data and Interapplication Communication 7
Using Widgets, Live Folders, and Live Wallpaper to Enhance the

Home Screen 8
Extensive Media Support and 2D/3D Graphics 8
Optimized Memory and Process Management 8

Introducing the Open Handset Alliance 9
What Does Android Run On? 9
Why Develop for Mobile? 9
Why Develop for Android? 10

What Has and Will Continue to Drive Android Adoption? 10
What Does It Have That Others Don’t? 11
Changing the Mobile Development Landscape 11

Introducing the Development Framework 12
What Comes in the Box 12
Understanding the Android Software Stack 13
The Dalvik Virtual Machine 14
Android Application Architecture 15
Android Libraries 16

Summary 16

CONTENTS

CHAPTER 2: GETTING STARTED 17

Developing for Android 18
What You Need to Begin 18

Downloading and Installing the SDK 18
Developing with Eclipse 19
Using the Eclipse Plug-In 20

Creating Your First Android Application 23
Starting a New Android Project 23
Creating a Launch Configuration 24
Running and Debugging Your Android Applications 26
Understanding Hello World 26

Types of Android Applications 29
Foreground Applications 29
Background Services and Intent Receivers 29
Intermittent Applications 30
Widgets 30

Developing for Mobile Devices 30
Hardware-Imposed Design Considerations 30

Be Efficient 31
Expect Limited Capacity 31
Design for Small Screens 32
Expect Low Speeds, High Latency 32
At What Cost? 33

Considering the Users’ Environment 34
Developing for Android 35

Being Fast and Efficient 35
Being Responsive 36
Developing Secure Applications 37
Ensuring a Seamless User Experience 37

To-Do List Example 38
Android Development Tools 43

The Android Virtual Device and SDK Manager 44
Android Virtual Devices 44
SDK Manager 45

The Android Emulator 46
Dalvik Debug Monitor Service (DDMS) 47
The Android Debug Bridge (ADB) 47

Summary 48

xiv

CONTENTS

CHAPTER 3: CREATING APPLICATIONS AND ACTIVITIES 49

What Makes an Android Application? 50
Introducing the Application Manifest 51
Using the Manifest Editor 56
The Android Application Life Cycle 57
Understanding Application Priority and Process States 58
Externalizing Resources 59

Creating Resources 60
Creating Simple Values 60
Styles and Themes 62
Drawables 63
Layouts 63
Animations 64
Menus 66

Using Resources 67
Using Resources in Code 67
Referencing Resources within Resources 68
Using System Resources 69
Referring to Styles in the Current Theme 70

To-Do List Resources Example 70
Creating Resources for Different Languages and Hardware 71
Runtime Configuration Changes 72

Introducing the Android Application Class 74
Extending and Using the Application Class 74
Overriding the Application Life Cycle Events 75

A Closer Look at Android Activities 76
Creating an Activity 77
The Activity Life Cycle 78

Activity Stacks 78
Activity States 79
Monitoring State Changes 80
Understanding Activity Lifetimes 82

Android Activity Classes 84
Summary 84

CHAPTER 4: CREATING USER INTERFACES 85

Fundamental Android UI Design 86
Introducing Views 86

xv

CONTENTS

Creating Activity User Interfaces with Views 87
The Android Widget Toolbox 88

Introducing Layouts 89
Using Layouts 89
Optimizing Layouts 91

Creating New Views 91
Modifying Existing Views 92

Customizing Your To-Do List 93
Creating Compound Controls 96
Creating Custom Views 99

Creating a New Visual Interface 99
Handling User Interaction Events 104
Creating a Compass View Example 105

Using Custom Controls 110
Drawable Resources 111

Shapes, Colors, and Gradients 111
Color Drawable 111
Shape Drawable 111
Gradient Drawable 113

Composite Drawables 114
Transformative Drawables 114
Layer Drawable 116
State List Drawables 116
Level List Drawables 116

NinePatch Drawable 117
Resolution and Density Independence 117

The Resource Framework and Resolution Independence 118
Resource Qualifiers for Screen Size and Pixel Density 118
Specifying Supported Screen Sizes 119

Best Practices for Resolution Independence 119
Relative Layouts and Density-Independent Pixels 120
Using Scalable Graphics Assets 120
Provide Optimized Resources for Different Screens 121

Testing, Testing, Testing 121
Emulator Skins 122
Testing for Custom Resolutions and Screen Sizes 122

Creating and Using Menus 123
Introducing the Android Menu System 123
Defining an Activity Menu 124
Menu Item Options 126

xvi

CONTENTS

Dynamically Updating Menu Items 127
Handling Menu Selections 127
Submenus and Context Menus 128

Creating Submenus 128
Using Context Menus 128

Defining Menus in XML 130
To-Do List Example Continued 131

Summary 136

CHAPTER 5: INTENTS, BROADCAST RECEIVERS, ADAPTERS,
AND THE INTERNET 137

Introducing Intents 138
Using Intents to Launch Activities 138

Explicitly Starting New Activities 139
Implicit Intents and Late Runtime Binding 139
Returning Results from Activities 140
Native Android Actions 143

Using Intent Filters to Service Implicit Intents 144
How Android Resolves Intent Filters 146
Finding and Using the Launch Intent Within an Activity 147
Passing on Responsibility 147
Select a Contact Example 148

Using Intent Filters for Plug-Ins and Extensibility 152
Supplying Anonymous Actions to Applications 153
Incorporating Anonymous Actions in Your Activity’s Menu 154

Introducing Linkify 155
The Native Linkify Link Types 155
Creating Custom Link Strings 156
Using the Match Filter 157
Using the Transform Filter 157

Using Intents to Broadcast Events 157
Broadcasting Events with Intents 158
Listening for Broadcasts with Broadcast Receivers 158
Broadcasting Sticky and Ordered Intents 161
Native Android Broadcast Actions 161

Introducing Pending Intents 162
Introducing Adapters 163

Introducing Some Native Adapters 163
Customizing the Array Adapter 163
Using Adapters for Data Binding 164

xvii

CONTENTS

Customizing the To-Do List Array Adapter 165
Using the Simple Cursor Adapter 169

Using Internet Resources 170
Connecting to an Internet Resource 170
Using Internet Resources 171

Introducing Dialogs 172
Introducing the Dialog Classes 172

The Alert Dialog Class 173
Specialist Input Dialogs 174

Using Activities as Dialogs 174
Managing and Displaying Dialogs 175

Creating an Earthquake Viewer 176
Summary 184

CHAPTER 6: FILES, SAVING STATE, AND PREFERENCES 187

Saving Simple Application Data 188
Creating and Saving Preferences 188
Retrieving Shared Preferences 189
Creating a Settings Activity for the Earthquake Viewer 189
Introducing the Preference Activity and Preferences Framework 197

Defining a Preference Screen Layout in XML 198
Native Preference Controls 199
Using Intents to Import System Preference Screens 200

Introducing the Preference Activity 200
Finding and Using Preference Screen Shared Preferences 201
Introducing Shared Preference Change Listeners 201

Creating a Standard Preference Activity for the Earthquake Viewer 202
Saving Activity State 203

Saving and Restoring Instance State 203
Saving the To-Do List Activity State 205

Saving and Loading Files 207
Including Static Files as Resources 207
File Management Tools 208
Summary 208

CHAPTER 7: DATABASES AND CONTENT PROVIDERS 209

Introducing Android Databases 209
Introducing SQLite Databases 210
Introducing Content Providers 210

xviii

CONTENTS

Introducing SQLite 210
Cursors and Content Values 211
Working with SQLite Databases 211

Introducing the SQLiteOpenHelper 214
Opening and Creating Databases without SQLiteHelper 215
Android Database Design Considerations 215
Querying a Database 215
Extracting Results from a Cursor 216
Adding, Updating, and Removing Rows 217

Inserting New Rows 217
Updating a Row 218
Deleting Rows 218

Saving Your To-Do List 218
Creating a New Content Provider 224

Exposing Access to the Data Source 225
Registering Your Provider 227

Using Content Providers 227
Introducing Content Resolvers 227
Querying for Content 228
Adding, Updating, and Deleting Content 228

Inserts 228
Deletes 229
Updates 229

Accessing Files in Content Providers 230
Creating and Using an Earthquake Content Provider 230

Creating the Content Provider 230
Using the Provider 236

Native Android Content Providers 238
Using the Media Store Provider 239
Using the Contacts Provider 240

Introducing the Contacts Contract Content Provider 240
Reading Contact Details 240
Modifying and Augmenting Contact Details 243

Summary 244

CHAPTER 8: MAPS, GEOCODING, AND LOCATION-BASED SERVICES 245

Using Location-Based Services 246
Configuring the Emulator to Test Location-Based Services 246
Updating Locations in Emulator Location Providers 246

xix

CONTENTS

Selecting a Location Provider 247
Finding the Available Providers 248
Finding Location Providers Using Criteria 248

Finding Your Location 249
‘Where Am I?’ Example 250
Tracking Movement 252
Updating Your Location in ‘Where Am I?’ 253

Using Proximity Alerts 255
Using the Geocoder 256

Reverse Geocoding 257
Forward Geocoding 258
Geocoding ‘Where Am I?’ 259

Creating Map-Based Activities 260
Introducing Map View and Map Activity 260
Getting Your Maps API Key 261

Getting Your Development/Debugging MD5 Fingerprint 261
Getting your Production/Release MD5 Fingerprint 262

Creating a Map-Based Activity 262
Configuring and Using Map Views 263
Using the Map Controller 264
Mapping ‘Where Am I?’ 265
Creating and Using Overlays 268

Creating New Overlays 268
Introducing Projections 269
Drawing on the Overlay Canvas 269
Handling Map Tap Events 270
Adding and Removing Overlays 271
Annotating ‘Where Am I?’ 271

Introducing My Location Overlay 275
Introducing Itemized Overlays and Overlay Items 275
Pinning Views to the Map and Map Positions 278

Mapping Earthquakes Example 279
Summary 284

CHAPTER 9: WORKING IN THE BACKGROUND 285

Introducing Services 286
Creating and Controlling Services 287

Creating a Service 287
Registering a Service in the Manifest 289
Self-Terminating a Service 289

xx

CONTENTS

Starting, Controlling, and Interacting with a Service 290
An Earthquake Monitoring Service Example 290

Binding Activities to Services 297
Prioritizing Background Services 299

Using Background Threads 300
Using AsyncTask to Run Asynchronous Tasks 301

Creating a New Asynchronous Task 301
Running an Asynchronous Task 302

Moving the Earthquake Service to a Background Thread Using AsyncTask 303
Manual Thread Creation and GUI Thread Synchronization 304

Creating a New Thread 304
Using the Handler for Performing GUI Operations 304

Let’s Make a Toast 306
Customizing Toasts 306
Using Toasts in Worker Threads 308

Introducing Notifications 309
Introducing the Notification Manager 310
Creating Notifications 310

Creating a Notification and Configuring the Status Bar Icon 310
Configuring the Extended Status Notification Display 311

Triggering Notifications 313
Adding Notifications and Toasts to the Earthquake Monitor 314
Advanced Notification Techniques 316

Using the Defaults 317
Making Sounds 317
Vibrating the Phone 317
Flashing the Lights 318

Ongoing and Insistent Notifications 319
Using Alarms 320

Setting Repeating Alarms 322
Using Repeating Alarms to Update Earthquakes 323

Summary 325

CHAPTER 10: INVADING THE PHONE-TOP 327

Introducing Home-Screen Widgets 328
Creating App Widgets 328

Creating the Widget Layout 329
Widget Design Guidelines 329
Supported Widget Views and Layouts 330

Defining Your Widget Settings 331

xxi

CONTENTS

Creating Your Widget Intent Receiver and Adding It to the
Application Manifest 332

Introducing Remote Views and the App Widget Manager 333
Creating Remote Views and Using the App Widget Manager

to Apply Them 333
Using a Remote View within the App Widget Provider’s

onUpdate Handler 334
Using Remote Views to Modify UI 335
Making Your Widgets Interactive 335

Refreshing Your Widgets 337
Using the Minimum Update Rate 337
Listening for Intents 338
Using Alarms 339

Creating and Using a Widget Configuration Activity 340
Creating an Earthquake Widget 341
Introducing Live Folders 346

Creating Live Folders 346
Live Folder Content Providers 347
Live Folder Activity 348

Creating an Earthquake Live Folder 349
Adding Search to Your Applications and the Quick Search Box 351

Adding Search to Your Application 351
Creating a Search Activity 352
Responding to Search Queries from a Content Provider 353

Surfacing Search Results to the Quick Search Box 355
Adding Search to the Earthquake Example 355

Creating Live Wallpaper 358
Creating a Live Wallpaper Definition Resource 359
Creating a Wallpaper Service 359
Creating a Wallpaper Service Engine 360

Summary 361

CHAPTER 11: AUDIO, VIDEO, AND USING THE CAMERA 363

Playing Audio and Video 364
Introducing the Media Player 364
Preparing Audio for Playback 365

Packaging Audio as an Application Resource 365
Initializing Audio Content for Playback 365

Preparing for Video Playback 366
Playing Video Using the Video View 367

xxii

CONTENTS

Setting up a Surface for Video Playback 367
Initializing Video Content for Playback 369

Controlling Playback 370
Managing Media Playback Output 370

Recording Audio and Video 371
Using Intents to Record Video 371
Using the Media Recorder 372

Configuring and Controlling Video Recording 373
Previewing Video Recording 374

Using the Camera and Taking Pictures 375
Using Intents to Take Pictures 375
Controlling the Camera and Taking Pictures 377

Controlling and Monitoring Camera Settings and Image Options 377
Monitoring Auto Focus 379
Using the Camera Preview 379
Taking a Picture 381

Reading and Writing JPEG EXIF Image Details 381
Adding New Media to the Media Store 382

Using the Media Scanner 382
Inserting Media into the Media Store 383

Raw Audio Manipulation 384
Recording Sound with Audio Record 384
Playing Sound with Audio Track 385

Speech Recognition 386
Summary 388

CHAPTER 12: TELEPHONY AND SMS 389

Telephony 390
Launching the Dialer to Initiate Phone Calls 390
Replacing the Native Dialer 390
Accessing Phone and Network Properties and Status 392

Reading Phone Device Details 392
Reading Data Connection and Transfer State 392
Reading Network Details 393
Reading SIM Details 394

Monitoring Changes in Phone State, Phone Activity, and
Data Connections 395

Monitoring Incoming Phone Calls 396
Tracking Cell Location Changes 396
Tracking Service Changes 397
Monitoring Data Connectivity and Activity 398

xxiii

CONTENTS

Introducing SMS and MMS 398
Using SMS and MMS in Your Application 399
Sending SMS and MMS from Your Application Using Intents

and the Native Client 399
Sending SMS Messages Manually 400

Sending Text Messages 400
Tracking and Confirming SMS Message Delivery 401
Conforming to the Maximum SMS Message Size 402
Sending Data Messages 403

Listening for Incoming SMS Messages 403
Simulating Incoming SMS Messages in the Emulator 405
Handling Data SMS Messages 406

Emergency Responder SMS Example 406
Automating the Emergency Responder 415

Summary 423

CHAPTER 13: BLUETOOTH, NETWORKS, AND WI-FI 425

Using Bluetooth 425
Accessing the Local Bluetooth Device Adapter 426
Managing Bluetooth Properties and State 427
Being Discoverable and Remote Device Discovery 430

Managing Device Discoverability 430
Discovering Remote Devices 431

Bluetooth Communications 433
Opening a Bluetooth Server Socket Listener 434
Selecting Remote Bluetooth Devices for Communications 435
Opening a Client Bluetooth Socket Connection 437
Transmitting Data Using Bluetooth Sockets 438

Bluetooth Data Transfer Example 439
Managing Network Connectivity 448

Introducing the Connectivity Manager 448
Reading User Preferences for Background Data Transfer 449
Monitoring Network Details 450
Finding and Configuring Network Preferences and Controlling

Hardware Radios 451
Monitoring Network Connectivity 451

Managing Your Wi-Fi 452
Monitoring Wi-Fi Connectivity 452
Monitoring Active Connection Details 453
Scanning for Hotspots 453

xxiv

CONTENTS

Managing Wi-Fi Configurations 454
Creating Wi-Fi Network Configurations 455

Summary 455

CHAPTER 14: SENSORS 457

Using Sensors and the Sensor Manager 458
Introducing Sensors 458

Supported Android Sensors 458
Finding Sensors 459
Using Sensors 459

Interpreting Sensor Values 461
Using the Compass, Accelerometer, and Orientation Sensors 462

Introducing Accelerometers 462
Detecting Acceleration Changes 463
Creating a G-Forceometer 464
Determining Your Orientation 467

Determining Orientation Using the Orientation Sensor 468
Calculating Orientation Using the Accelerometer and

Magnetic Field Sensors 468
Remapping the Orientation Reference Frame 470

Creating a Compass and Artificial Horizon 470
Controlling Device Vibration 474
Summary 475

CHAPTER 15: ADVANCED ANDROID DEVELOPMENT 477

Paranoid Android 478
Linux Kernel Security 478
Introducing Permissions 478
Declaring and Enforcing Permissions 479
Enforcing Permissions for Broadcast Intents 480

Using Wake Locks 480
Introducing Android Text to Speech 481
Using AIDL to Support IPC for Services 483

Implementing an AIDL Interface 484
Passing Class Objects as Parcelables 484

Creating the AIDL Service Definition 486
Implementing and Exposing the IPC Interface 487

Using Internet Services 488
Building Rich User Interfaces 489

xxv

CONTENTS

Working with Animations 489
Introducing Tweened Animations 490
Creating Tweened Animations 490
Applying Tweened Animations 492
Using Animation Listeners 492
Animated Sliding User Interface Example 493
Animating Layouts and View Groups 498
Creating and Using Frame-by-Frame Animations 500

Advanced Canvas Drawing 501
What Can You Draw? 501
Getting the Most from Your Paint 502
Improving Paint Quality with Anti-Aliasing 507
Canvas Drawing Best Practice 507
Advanced Compass Face Example 508
Bringing Map Overlays to Life 516

Introducing the Surface View 517
When Should You Use a Surface View? 517
Creating a New Surface View 517
Creating 3D Controls with a Surface View 519

Creating Interactive Controls 520
Using the Touch Screen 520
Using the Device Keys, Buttons, and D-Pad 524
Using the On Key Listener 525
Using the Trackball 526

Summary 526

INDEX 529

xxvi

INTRODUCTION

Now is an exciting time for mobile developers. Mobile phones have never been more popular, and
powerful smartphones are now a popular choice for consumers. Stylish and versatile phones packing
hardware features like GPS, accelerometers, and touch screens, combined with fixed-rate, reasonably
priced data plans provide an enticing platform upon which to create innovative mobile applications.

A host of Android handsets are now available to tempt consumers, including phones with QVGA
screens and powerful WVGA devices like the Motorola Droid and the Google Nexus One. The real
win though, is for developers. With much existing mobile development built on proprietary operating
systems that restrict the development and deployment of third-party applications, Android offers an
open alternative. Without artificial barriers, Android developers are free to write applications that take
full advantage of increasingly powerful mobile hardware and distribute them in an open market.

As a result, developer interest in Android devices has exploded as handset sales have continued to grow.
In 2009 and the early parts of 2010 more than 20 Android handsets have been released from OEMs
including HTC, Motorola, LG, Samsung, and Sony Ericsson. Android devices are now available in over
26 countries on more than 32 carriers. In the United States, Android devices are available on all four
major carriers: T-Mobile, Verizon, AT&T, and Sprint. Additionally, you can now buy the unlocked
Google Nexus One handset directly from Google at http://www.google.com/phone.

Built on an open source framework, and featuring powerful SDK libraries and an open philosophy,
Android has opened mobile phone development to thousands of developers who haven’t had access
to tools for building mobile applications. Experienced mobile developers can now expand into the
Android platform, leveraging the unique features to enhance existing products or create innovative
new ones.

Using the Android Market for distribution, developers can take advantage of an open marketplace,
with no review process, for distributing free and paid apps to all compatible Android devices.

This book is a hands-on guide to building mobile applications using version 2 of the Android software
development kit. Chapter by chapter, it takes you through a series of sample projects, each introducing
new features and techniques to get the most out of Android. It covers all the basic functionality as well
as exploring the advanced features through concise and useful examples.

Google’s philosophy is to release early and iterateoften. Since Android’s first full release in October
2008, there have been seven platform and SDK releases. With such a rapid release cycle, there are likely
to be regular changes and improvements to the software and development libraries. While the Android
engineering team has worked hard to ensure backwards compatibility, future releases are likely to date
some of the information provided in this book.

Nonetheless, the explanations and examples included here will give you the grounding and knowledge
needed to write compelling mobile applications using the current SDK, along with the flexibility to
quickly adapt to future enhancements.

INTRODUCTION

WHOM THIS BOOK IS FOR

This book is for anyone interested in creating applications for the Android mobile phone platform
using the SDK. It includes information that will be valuable, whether you’re an experienced mobile
developer or you’re making your first foray, via Android, into writing mobile applications.

It will help if readers have used mobile phones (particularly phones running Android), but it’s not
necessary, nor is prior experience in mobile phone development. It’s expected that you’ll have some
experience in software development and be familiar with basic development practices. While knowledge
of Java is helpful, it’s not a necessity.

Chapters 1 and 2 introduce mobile development and contain instructions to get you started in Android.
Beyond that, there’s no requirement to read the chapters in order, although a good understanding of the
core components described in Chapters 3 through 7 is important before you venture into the remaining
chapters. Chapters 8 through 15 cover a variety of optional and advanced functionality and can be read
in whatever order interest or need dictates.

WHAT THIS BOOK COVERS

Chapter 1 introduces Android, including what it is and how it fits into existing mobile development.
What Android offers as a development platform and why it’s an exciting opportunity for creating
mobile phone applications are then examined in greater detail.

Chapter 2 covers some best practices for mobile development and explains how to download the
Android SDK and start developing applications. It also introduces the Android developer tools and
demonstrates how to create new applications from scratch.

Chapters 3 through 7 take an in-depth look at the fundamental Android application components.
Starting with examining the pieces that make up an Android application and its life cycle, you’ll quickly
move on to the application manifest and external resources before learning about Activities, their
lifetimes, and their life cycles.

You’ll then learn how to create user interfaces with layouts and Views, before being introduced to
the Intent mechanism used to perform actions and send messages between application components.
Internet resources are then covered before a detailed look at data storage, retrieval, and sharing. You’ll
start with the preference-saving mechanism before moving on to file handling and databases. This
section finishes with a look at sharing application data using Content Providers.

Chapters 8 to 14 look at more advanced topics. Starting with maps and location-based services, you’ll
move on to Services, background Threads, and using Notifications.

Next you’ll learn how your applications can interact with the user directly from the home screen using
widgets, live folders, Live Wallpaper, and the quick search box. After looking at playing and recording
multimedia, and using the camera, you’ll be introduced to Android’s communication abilities.

The telephony API will be examined as well as the APIs used to send and receive SMS messages before
going on to Bluetooth and network management (both Wi-Fi and mobile data connections).

Chapter 14 examines the sensor APIs, demonstrating how to use the compass, accelerometers, and
other hardware sensors to let your application react to its environment.

xxviii

INTRODUCTION

Chapter 15 includes several advanced development topics, among them security, IPC, advanced graph-
ics techniques, and user–hardware interactions.

HOW THIS BOOK IS STRUCTURED

This book is structured in a logical sequence to help readers of different development backgrounds
learn how to write advanced Android applications.

There’s no requirement to read each chapter sequentially, but several of the sample projects are
developed over the course of several chapters, adding new functionality and other enhancements at
each stage.

Experienced mobile developers with a working Android development environment can skim the first
two chapters — which are an introduction to mobile development and instructions for creating
your development environment — and dive in at Chapters 3 to 7. These cover the fundamentals of
Android development, so it’s important to have a solid understanding of the concepts they describe.
With this covered, you can move on to the remaining chapters, which look at maps, location-based
services, background applications, and more advanced topics such as hardware interaction and
networking.

WHAT YOU NEED TO USE THIS BOOK

To use the code samples in this book, you will need to create an Android development environment by
downloading the Android SDK, developer tools, and the Java development kit. You may also wish to
download and install Eclipse and the Android Developer Tool plug-in to ease your development, but
neither is a requirement.

Android development is supported in Windows, MacOS, and Linux, with the SDK available from the
Android web site.

You do not need an Android device to use this book or develop Android applications.

Chapter 2 outlines these requirements in more detail as well as describing where to
download and how to install each component.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, I’ve used various conven-
tions throughout the book.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed
in italics like this.

xxix

INTRODUCTION

As for styles in the text:

➤ I show URLs and code within the text like so: persistence.properties.

➤ To help readability, class names in text are often represented using a regular font but capital-
ized like so:

Content Provider

➤ I present code in two different ways:

I use a monofont type with no highlighting for most code examples.
I use bold highlighting to emphasize code that’s particularly important
in the present context.

➤ In some code samples, you’ll see lines marked as follows:

[... previous code goes here ...]

or

[... implement something here ...]

This represents an instruction to replace the entire line (including the square brackets) with
actual code, either from a previous code snippet in the former case, or your own
implementation in the latter.

➤ To keep the code sample reasonably concise, I have not always included every import state-
ment required in the code samples. The downloadable code samples described below include
all the required import statements.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code files that accompany the book. All the source code used in this book is
available for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists), and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN;
this book’s ISBN is 978-0-470-56552-0.

Once you download the code, just decompress it with your favorite decompression tool. Alternatively,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

xxx

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx

INTRODUCTION

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available atwww.wrox.com/misc-pages/booklist
.shtml.

If you don’t spot ‘‘your’’ error on the Book Errata page, go towww.wrox.com/contact/techsupport

.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s Errata page and fix the problem in subsequent editions
of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

xxxi

http://www.wrox.com
http://P2P.WROX.COM
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

INTRODUCTION

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the ‘‘Subscribe to This Forum’’ icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxxii

1
Hello, Android

WHAT’S IN THIS CHAPTER?

➤ A background to mobile application development

➤ What Android is (and what it isn’t)

➤ An introduction to the Android SDK features

➤ What devices Android runs on

➤ Why develop for mobile and Android?

➤ An introduction to the SDK and the Android development framework

Whether you’re an experienced mobile engineer, a desktop or web developer, or a complete
programming novice, Android represents an exciting new opportunity to write innovative appli-
cations for mobile devices.

Despite the name, Android will not help you create an unstoppable army of emotionless robot
warriors on a relentless quest to cleanse the earth of the scourge of humanity. Instead, Android
is an open-source software stack that includes the operating system, middleware, and key
mobile applications along with a set of API libraries for writing mobile applications that can
shape the look, feel, and function of mobile handsets.

Small, stylish, and versatile, modern mobile devices have become powerful tools that incorpo-
rate cameras, media players, GPS systems, and touchscreens. As technology has evolved, mobile
phones have become about more than simply making calls, but their software and development
platforms have struggled to keep pace.

Until recently, mobile phones were largely closed environments built on highly fragmented, pro-
prietary operating systems that required proprietary development tools. The phones themselves
often prioritized native applications over those written by third parties. This has introduced an
artificial barrier for developers hoping to build on increasingly powerful mobile hardware.

2 ❘ CHAPTER 1 HELLO, ANDROID

In Android, native and third-party applications are written with the same APIs and executed on the
same run time. These APIs feature hardware sensor access, video recording, location-based services,
support for background services, map-based activities, relational databases, inter-application commu-
nication, and 2D and 3D graphics.

Using this book, you will learn how to use these APIs to create your own Android applications. In this
chapter you’ll learn some mobile development guidelines and be introduced to the features available
from the Android development platform.

Android has powerful APIs, excellent documentation, a thriving developer community, and no devel-
opment or distribution costs. As mobile devices continue to increase in popularity, this is an exciting
opportunity to create innovative mobile phone applications no matter what your development
experience.

A LITTLE BACKGROUND

In the days before Twitter and Facebook, when Google was still a twinkle in its founders’ eyes and
dinosaurs roamed the earth, mobile phones were just that — portable phones small enough to fit inside
a briefcase, featuring batteries that could last up to several hours. They did however offer the freedom
to make calls without being physically connected to a landline.

Increasingly small, stylish, and powerful mobile phones are now as ubiquitous as they are indispensable.
Hardware advancements have made mobiles smaller and more efficient while including an increasing
number of peripherals.

After first getting cameras and media players, mobiles now include GPS systems, accelerometers, and
touch screens. While these hardware innovations should prove fertile ground for software development,
the applications available for mobile phones have generally lagged behind the hardware.

The Not-So-Distant Past
Historically, developers, generally coding in low-level C or C++, have needed to understand the specific
hardware they were coding for, generally a single device or possibly a range of devices from a single
manufacturer. As hardware technology and mobile Internet access has advanced, this closed approach
has become outmoded.

More recently, platforms like Symbian have been created to provide developers with a wider target
audience. These systems have proven more successful in encouraging mobile developers to provide rich
applications that better leverage the hardware available.

These platforms offer some access to the device hardware, but require the developer to write complex
C/C++ code and make heavy use of proprietary APIs that are notoriously difficult to work with. This
difficulty is amplified for applications that must work on different hardware implementations and those
that make use of a particular hardware feature, like GPS.

In more recent years, the biggest advance in mobile phone development was the introduction of Java-
hosted MIDlets. MIDlets are executed on a Java virtual machine, a process that abstracts the underlying
hardware and lets developers create applications that run on the wide variety of devices that supports
the Java run time. Unfortunately, this convenience comes at the price of restricted access to the device
hardware.

What It Isn’t ❘ 3

In mobile development it was considered normal for third-party applications to receive different
hardware access and execution rights from those given to native applications written by the phone
manufacturers, with MIDlets often receiving few of either.

The introduction of Java MIDlets expanded developers’ audiences, but the lack of low-level hardware
access and sandboxed execution meant that most mobile applications are regular desktop programs or
web sites designed to render on a smaller screen, and do not take advantage of the inherent mobility of
the handheld platform.

The Future
Android sits alongside a new wave of mobile operating systems designed for increasingly powerful
mobile hardware. Windows Mobile, the Apple iPhone, and the Palm Pre now provide a richer, sim-
plified development environment for mobile applications. However, unlike Android, they’re built on
proprietary operating systems that in some cases prioritize native applications over those created by
third parties, restrict communication among applications and native phone data, and restrict or control
the distribution of third-party apps to their platforms.

Android offers new possibilities for mobile applications by offering an open development environment
built on an open-source Linux kernel. Hardware access is available to all applications through a series
of API libraries, and application interaction, while carefully controlled, is fully supported.

In Android, all applications have equal standing. Third-party and native Android applications are
written with the same APIs and are executed on the same run time. Users can remove and replace any
native application with a third-party developer alternative; even the dialer and home screens can be
replaced.

WHAT IT ISN’T

As a disruptive addition to a mature field, it’s not hard to see why there has been some confusion about
what exactly Android is. Android is not:

➤ A Java ME implementation Android applications are written in the Java language, but they
are not run within a Java ME virtual machine, and Java-compiled classes and executables will
not run natively in Android.

➤ Part of the Linux Phone Standards Forum (LiPS) or the Open Mobile Alliance (OMA)
Android runs on an open-source Linux kernel, but, while their goals are similar, Android’s
complete software stack approach goes further than the focus of these standards-defining
organizations.

➤ Simply an application layer (like UIQ or S60) While Android does include an application
layer, ‘‘Android’’ also describes the entire software stack encompassing the underlying oper-
ating system, the API libraries, and the applications themselves.

➤ A mobile phone handset Android includes a reference design for mobile handset manufac-
turers, but there is no single ‘‘Android phone.’’ Instead, Android has been designed to support
many alternative hardware devices.

➤ Google’s answer to the iPhone The iPhone is a fully proprietary hardware and software
platform released by a single company (Apple), while Android is an open-source software

4 ❘ CHAPTER 1 HELLO, ANDROID

stack produced and supported by the Open Handset Alliance and designed to operate on any
handset that meets the requirements. Google has now released its first direct-to-consumer
handset, the Nexus 1, but this device remains simply one hardware implementation running
on the Android platform.

ANDROID: AN OPEN PLATFORM FOR MOBILE DEVELOPMENT

Google’s Andy Rubin describes Android as:

The first truly open and comprehensive platform for mobile devices, all of the
software to run a mobile phone but without the proprietary obstacles that have
hindered mobile innovation. (http://googleblog.blogspot.com/2007/11/
wheres-my-gphone.html)

Put simply, Android is a combination of three components:

➤ A free, open-source operating system for mobile devices

➤ An open-source development platform for creating mobile applications

➤ Devices, particularly mobile phones, that run the Android operating system and the applica-
tions created for it

More specifically, Android is made up of several necessary and dependent parts, including the
following:

➤ A hardware reference design that describes the capabilities required for a mobile device to
support the software stack.

➤ A Linux operating system kernel that provides low-level interface with the hardware, memory
management, and process control, all optimized for mobile devices.

➤ Open-source libraries for application development, including SQLite, WebKit, OpenGL, and
a media manager.

➤ A run time used to execute and host Android applications, including the Dalvik virtual
machine and the core libraries that provide Android-specific functionality. The run time is
designed to be small and efficient for use on mobile devices.

➤ An application framework that agnostically exposes system services to the application layer,
including the window manager and location manager, content providers, telephony, and
sensors.

➤ A user interface framework used to host and launch applications.

➤ Preinstalled applications shipped as part of the stack.

➤ A software development kit used to create applications, including tools, plug-ins, and docu-
mentation.

What really makes Android compelling is its open philosophy, which ensures that you can fix any defi-
ciencies in user interface or native application design by writing an extension or replacement. Android

Native Android Applications ❘ 5

provides you, as a developer, with the opportunity to create mobile phone interfaces and applications
designed to look, feel, and function exactly as you imagine them.

NATIVE ANDROID APPLICATIONS

Android phones will normally come with a suite of generic preinstalled applications that are part of the
Android Open Source Project (AOSP), including, but not necessarily limited to:

➤ An e-mail client

➤ An SMS management application

➤ A full PIM (personal information management) suite including a calendar and contacts list

➤ A WebKit-based web browser

➤ A music player and picture gallery

➤ A camera and video recording application

➤ A calculator

➤ The home screen

➤ An alarm clock

In many cases Android devices will also ship with the following proprietary Google mobile
applications:

➤ The Android Market client for downloading third-party Android applications

➤ A fully-featured mobile Google Maps application including StreetView, driving directions
and turn-by-turn navigation, satellite view, and traffic conditions

➤ The Gmail mail client

➤ The Google Talk instant-messaging client

➤ The YouTube video player

The data stored and used by many of these native applications — like contact details — are also avail-
able to third-party applications. Similarly, your applications can handle events such as incoming calls
or new SMS messages.

The exact makeup of the applications available on new Android phones is likely to vary based on the
hardware manufacturer and/or the phone carrier or distributor.

The open-source nature of Android means that carriers and OEMs can customize the user interface and
the applications bundled with each Android device. Several OEMs have done this, including HTC with
the Sense UI, Motorola with MotoBlur, and Sony Ericsson’s custom UI.

It’s important to note that for compatible devices, the underlying platform and SDK remain consis-
tent across OEM and carrier variations. The look and feel of the user interface may vary, but your
applications will function in the same way across all compatible Android devices.

6 ❘ CHAPTER 1 HELLO, ANDROID

ANDROID SDK FEATURES

The true appeal of Android as a development environment lies in the APIs it provides.

As an application-neutral platform, Android gives you the opportunity to create applications that are
as much a part of the phone as anything provided out of the box. The following list highlights some of
the most noteworthy Android features:

➤ No licensing, distribution, or development fees or release approval processes

➤ Wi-Fi hardware access

➤ GSM, EDGE, and 3G networks for telephony or data transfer, enabling you to make or
receive calls or SMS messages, or to send and retrieve data across mobile networks

➤ Comprehensive APIs for location-based services such as GPS

➤ Full multimedia hardware control, including playback and recording with the camera and
microphone

➤ APIs for using sensor hardware, including accelerometers and the compass

➤ Libraries for using Bluetooth for peer-to-peer data transfer

➤ IPC message passing

➤ Shared data stores

➤ Background applications and processes

➤ Home-screen Widgets, Live Folders, and Live Wallpaper

➤ The ability to integrate application search results into the system search

➤ An integrated open-source HTML5 WebKit-based browser

➤ Full support for applications that integrate map controls as part of their user interface

➤ Mobile-optimized hardware-accelerated graphics, including a path-based 2D graphics library
and support for 3D graphics using OpenGL ES 2.0

➤ Media libraries for playing and recording a variety of audio/video or still image formats

➤ Localization through a dynamic resource framework

➤ An application framework that encourages reuse of application components and the replace-
ment of native applications

Access to Hardware, Including Camera, GPS, and Accelerometer
Android includes API libraries to simplify development involving the device hardware. These ensure
that you don’t need to create specific implementations of your software for different devices, so you
can create Android applications that work as expected on any device that supports the Android
software stack.

The Android SDK includes APIs for location-based hardware (such as GPS), the camera, audio, net-
work connections, Wi-Fi, Bluetooth, accelerometers, the touchscreen, and power management. You can
explore the possibilities of some of Android’s hardware APIs in more detail in Chapters 11 through 14.

Android SDK Features ❘ 7

Native Google Maps, Geocoding, and Location-Based Services
Native map support lets you create a range of map-based applications that leverage the mobility of
Android devices. Android lets you create activities that include interactive Google Maps as part of
your user interface, with full access to maps that you can control programmatically and annotate using
Android’s rich graphics library.

Android’s location-based services manage technologies like GPS and Google’s GSM cell-based location
technology to determine the device’s current position. These services enforce an abstraction from spe-
cific location-detecting technology and let you specify minimum requirements (e.g., accuracy or cost)
rather than choosing a particular technology. They also mean that your location-based applications
will work no matter what technology the host handset supports.

To combine maps with locations, Android includes an API for forward and reverse geocoding that lets
you find map coordinates for an address, and the address of a map position.

You’ll learn the details of using maps, the Geocoder, and location-based services in Chapter 8.

Background Services
Android supports applications and services designed to run invisibly in the background.

Modern mobiles are by nature multifunction devices; however, their limited screen sizes means that
generally only one interactive application can be visible at any time. Platforms that don’t support
background execution limit the viability of applications that don’t need your constant attention.

Background services make it possible to create invisible application components that perform automatic
processing without direct user action. Background execution allows your applications to become event-
driven and to support regular updates, which is perfect for monitoring game scores or market prices,
generating location-based alerts, or prioritizing and prescreening incoming calls and SMS messages.

Learn more about how to get the most out of background services in Chapter 9.

SQLite Database for Data Storage and Retrieval
Rapid and efficient data storage and retrieval are essential for a device whose storage capacity is limited
by its compact nature.

Android provides a lightweight relational database for each application using SQLite. Your appli-
cations can take advantage of this managed relational database engine to store data securely and
efficiently.

By default each application database is sandboxed — its content is available only to the application that
created it — but Content Providers supply a mechanism for the managed sharing of these application
databases.

Databases and Content Providers are covered in detail in Chapter 7.

Shared Data and Interapplication Communication
Android includes three techniques for transmitting information from your applications for use else-
where: Notifications, Intents, and Content Providers.

8 ❘ CHAPTER 1 HELLO, ANDROID

Notifications are the standard means by which a mobile device traditionally alerts users. Using the API
you can trigger audible alerts, cause vibration, and flash the device’s LED, as well as control status bar
notification icons, as shown in Chapter 9.

Intents provide a mechanism for message-passing within and between applications. Using Intents you
can broadcast a desired action (such as dialing the phone or editing a contact) system-wide for other
applications to handle. Intents are an important core component of Android and are covered in depth
in Chapter 5.

Finally, you can use Content Providers to give managed access to your application’s private databases.
The data stores for native applications, such as the contact manager, are exposed as Content Providers
so you can create your own applications that read or modify this data. Chapter 7 covers Content
Providers in detail, including the native providers, and demonstrates how to create and use providers
of your own.

Using Widgets, Live Folders, and Live Wallpaper to Enhance the
Home Screen

Widgets, Live Folders, and Live Wallpaper let you create dynamic application components that provide
a window into your applications or offer useful and timely information directly on the home screen.

If you offer a way for users to interact with your application directly from the home screen, they get
instant access to interesting information without needing to open an application, and you get a dynamic
shortcut into your application.

You’ll learn how to create application components for the home screen in Chapter 10.

Extensive Media Support and 2D/3D Graphics
Bigger screens and brighter, higher-resolution displays have helped make mobiles multimedia devices.
To help you make the most of the hardware available, Android provides graphics libraries for 2D
canvas drawing and 3D graphics with OpenGL.

Android also offers comprehensive libraries for handling still images, video, and audio files, including
the MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, and GIF formats.

2D and 3D graphics are covered in depth in Chapter 15, while Android media management libraries
are covered in Chapter 11.

Optimized Memory and Process Management
Android’s process and memory management is a little unusual. Like Java and .NET, Android uses its
own run time and virtual machine to manage application memory. Unlike with either of these other
frameworks, the Android run time also manages the process lifetimes. Android ensures application
responsiveness by stopping and killing processes as necessary to free resources for higher-priority
applications.

In this context, the highest priority is given to the application with which the user is interacting. Ensur-
ing that your applications are prepared for a swift death but are still able to remain responsive, and to

Why Develop for Mobile? ❘ 9

update or restart in the background if necessary, is an important consideration in an environment that
does not allow applications to control their own lifetimes.

You will learn more about the Android application life cycle in Chapter 3.

INTRODUCING THE OPEN HANDSET ALLIANCE

The Open Handset Alliance (OHA) is a collection of more than 50 technology companies, including
hardware manufacturers, mobile carriers, and software developers. Of particular note are the promi-
nent mobile technology companies Motorola, HTC, T-Mobile, and Qualcomm. In their own words,
the OHA represents the following:

A commitment to openness, a shared vision for the future, and concrete plans to
make the vision a reality. To accelerate innovation in mobile and offer
consumers a richer, less expensive, and better mobile experience. (http://www
.openhandsetalliance.com/)

The OHA hopes to deliver a better mobile software experience for consumers by providing the plat-
form needed for innovative mobile development at a faster rate and with higher quality than existing
platforms, without licensing fees for either software developers or handset manufacturers.

WHAT DOES ANDROID RUN ON?

The first Android mobile handset, the T-Mobile G1, was released in the United States in October 2008.
By the end of 2009 over 20 Android-compatible handsets had been launched or announced in more
than 26 countries on 32 different carrier networks.

Rather than being a mobile OS created for a single hardware implementation, Android is designed to
support a large variety of hardware platforms, from WVGA phones with hard keyboards to QVGA
devices with resistive touchscreens.

Beyond that, with no licensing fees or proprietary software, the cost to handset manufacturers for pro-
viding Android handsets, and potentially other Android-powered devices, is comparatively low. Many
people now expect that the advantages of Android as a platform for creating powerful applications will
encourage device manufacturers to produce increasingly tailored hardware.

WHY DEVELOP FOR MOBILE?

In market terms, the emergence of modern mobile smartphones and superphones — multifunction
devices including a phone but featuring a full-featured web browser, cameras, media players, Wi-Fi,
and location-based services — has fundamentally changed the way people interact with their mobile
devices and access the Internet. Mobile-phone ownership easily surpasses computer ownership in many
countries; 2009 marked the year that more people accessed the Internet for the first time from a mobile
phone rather than a PC.

10 ❘ CHAPTER 1 HELLO, ANDROID

The increasing popularity of modern smartphones, combined with the increasing availability of flat-
rate, affordable data plans and Wi-Fi, has created a growth market for advanced mobile applications.

The ubiquity of mobile phones, and our attachment to them, makes them a fundamentally different
platform for development from PCs. With a microphone, a camera, a touchscreen, location detection,
and environmental sensors, a phone can effectively become an extension of your own perceptions.

With the average Android user installing and using around 40 apps, mobile applications have changed
the way people use their phones. This gives you, the application developer, a unique opportunity to
create dynamic, compelling new applications that become a vital part of people’s lives.

WHY DEVELOP FOR ANDROID?

If you have a background in mobile application development, you don’t need me to tell you that:

➤ A lot of what you can do with Android is already possible.

➤ But doing it is painful.

Android represents a clean break, a mobile framework based on the reality of modern mobile devices
designed by developers, for developers.

With a simple and powerful SDK, no licensing fees, excellent documentation, and a thriving developer
community, Android represents an excellent opportunity to create software that changes how and why
people use their mobile phones.

From a commercial perspective Android:

➤ Requires no certification for becoming an Android developer

➤ Provides the Android Market for distribution and monetization of your applications

➤ Has no approval process for application distribution

➤ Gives you total control over your brand and access to the user’s home screen

What Has and Will Continue to Drive Android Adoption?
Android is targeted primarily at developers, with Google and the OHA betting that the way to deliver
better mobile software to consumers is to make it easier for developers to write it themselves.

As a development platform, Android is powerful and intuitive, letting developers who have never
programmed for mobile devices create useful applications quickly and easily. It’s easy to see how inno-
vative Android applications could create demand for the devices necessary to run them, particularly if
developers write applications for Android because they can’twrite them for other platforms.

Open access to the nuts and bolts of the underlying system is what’s always driven software develop-
ment and platform adoption. The Internet’s inherent openness and neutrality have seen it become the
platform for a multibillion-dollar industry within 10 years of its inception. Before that, it was open sys-
tems like Linux and the powerful APIs provided as part of the Windows operating system that enabled
the explosion in personal computers and the movement of computer programming from the arcane to
the mainstream.

Why Develop for Android? ❘ 11

This openness and power ensure that anyone with the inclination can bring a vision to life at minimal
cost.

What Does It Have That Others Don’t?
Many of the features listed previously, such as 3D graphics and native database support, are also
available in other mobile SDKs. Here are some of the unique features that set Android apart:

➤ Google Map applications Google Maps for Mobile has been hugely popular, and Android
offers a Google Map as an atomic, reusable control for use in your applications. The Map
View lets you display, manipulate, and annotate a Google Map within your Activities to build
map-based applications using the familiar Google Maps interface.

➤ Background services and applications Background services let you create an application
that uses an event-driven model, working silently while other applications are being used or
while your mobile sits ignored until it rings, flashes, or vibrates to get your attention. Maybe
it’s a streaming music player, an application that tracks the stock market, alerting you to sig-
nificant changes in your portfolio, or a service that changes your ringtone or volume depend-
ing on your current location, the time of day, and the identity of the caller.

➤ Shared data and interprocess communication Using Intents and Content Providers,
Android lets your applications exchange messages, perform processing, and share data. You
can also use these mechanisms to leverage the data and functionality provided by the native
Android applications. To mitigate the risks of such an open strategy, each application’s
process, data storage, and files are private unless explicitly shared with other applications via
a full permission-based security mechanism detailed in Chapter 15.

➤ All applications are created equal Android doesn’t differentiate between native applications
and those developed by third parties. This gives consumers unprecedented power to change
the look and feel of their devices by letting them completely replace every native application
with a third-party alternative that has access to the same underlying data and hardware.

➤ Home-screen Widgets, Live Folders, Live Wallpaper, and the quick search box Using Wid-
gets, Live Folders, and Live Wallpaper, you can create windows into your application from
the phone’s home screen. The quick search box lets you integrate search results from your
application directly into the phone’s search functionality.

Changing the Mobile Development Landscape
Existing mobile development platforms have created an aura of exclusivity around mobile development.
Whether by design or as a side effect of the cost, complexity, or necessity for approval involved in
developing native applications, many mobile phones remain almost exactly as they were when first
purchased.

In contrast, Android allows, even encourages, radical change. As consumer devices, Android handsets
ship with a core set of the standard applications that consumers demand on a new phone, but the real
power lies in users’ ability to completely change how their devices look, feel, and function.

Android gives developers a great opportunity. All Android applications are a native part of the phone,
not just software that’s run in a sandbox on top of it. Rather than writing small-screen versions of

12 ❘ CHAPTER 1 HELLO, ANDROID

software that can be run on low-power devices, you can now write mobile applications that change the
way people use their phones.

While Android will still have to compete with existing and future mobile development platforms as an
open-source developer framework, the strength of the development kit is very much in its favor. Cer-
tainly its free and open approach to mobile application development, with total access to the phone’s
resources, is a giant step in the right direction.

INTRODUCING THE DEVELOPMENT FRAMEWORK

With the PR job done, it’s time to look at how you can start developing applications for Android.
Android applications are written with Java as a programming language but executed by means of a
custom virtual machine called Dalvik rather than a traditional Java VM.

Later in this chapter you’ll be introduced to the framework, starting with a technical explanation of the
Android software stack, a look at what’s included in the SDK, an introduction to the Android libraries,
and a look at the Dalvik virtual machine.

Each Android application runs in a separate process within its own Dalvik instance, relinquishing all
responsibility for memory and process management to the Android run time, which stops and kills
processes as necessary to manage resources.

Dalvik and the Android run time sit on top of a Linux kernel that handles low-level hardware inter-
action, including drivers and memory management, while a set of APIs provides access to all the
underlying services, features, and hardware.

What Comes in the Box
The Android software development kit (SDK) includes everything you need to start developing, testing,
and debugging Android applications. Included in the SDK download are:

➤ The Android APIs The core of the SDK is the Android API libraries that provide devel-
oper access to the Android stack. These are the same libraries used at Google to create native
Android applications.

➤ Development tools So you can turn Android source code into executable Android appli-
cations, the SDK includes several development tools that let you compile and debug your
applications. You will learn more about the developer tools in Chapter 2.

➤ The Android Virtual Device Manager and Emulator The Android Emulator is a fully inter-
active Android device emulator featuring several alternative skins. The emulator runs within
an Android Virtual Device that simulates the device hardware configuration. Using the emu-
lator you can see how your applications will look and behave on a real Android device. All
Android applications run within the Dalvik VM, so the software emulator is an excellent
environment — in fact, as it is hardware-neutral, it provides a better independent test envi-
ronment than any single hardware implementation.

➤ Full documentation The SDK includes extensive code-level reference information detail-
ing exactly what’s included in each package and class and how to use them. In addition to

Introducing the Development Framework ❘ 13

the code documentation, Android’s reference documentation explains how to get started and
gives detailed explanations of the fundamentals behind Android development.

➤ Sample code The Android SDK includes a selection of sample applications that demonstrate
some of the possibilities available with Android, as well as simple programs that highlight
how to use individual API features.

➤ Online support Android has rapidly generated a vibrant developer community. The Google
Groups at http://developer.android.com/resources/community-groups.html are active
forums of Android developers with regular input from the Android engineering and developer
relations teams at Google. StackOverflow at http://www.stackoverflow.com/questions/
tagged/android has also become a popular destination for Android questions.

For those using the popular Eclipse IDE, Android has released a special plug-in that simplifies project
creation and tightly integrates Eclipse with the Android Emulator and debugging tools. The features of
the ADT plug-in are covered in more detail in Chapter 2.

Understanding the Android Software Stack
The Android software stack is composed of the elements shown in Figure 1-1 and described in further
detail after it. Put simply, a Linux kernel and a collection of C/C++ libraries are exposed through an
application framework that provides services for, and management of, the run time and applications.

➤ Linux kernel Core services (including hardware drivers, process and memory management,
security, network, and power management) are handled by a Linux 2.6 kernel. The kernel
also provides an abstraction layer between the hardware and the remainder of the stack.

➤ Libraries Running on top of the kernel, Android includes various C/C++ core libraries such
as libc and SSL, as well as:

➤ A media library for playback of audio and video media

➤ A surface manager to provide display management

➤ Graphics libraries that include SGL and OpenGL for 2D and 3D graphics

➤ SQLite for native database support

➤ SSL and WebKit for integrated web browser and Internet security

➤ Android run time What makes an Android phone an Android phone rather than a mobile
Linux implementation is the Android run time. Including the core libraries and the Dalvik
virtual machine, the Android run time is the engine that powers your applications and, along
with the libraries, forms the basis for the application framework.

➤ Core libraries While Android development is done in Java, Dalvik is not a Java
VM. The core Android libraries provide most of the functionality available in the
core Java libraries as well as the Android-specific libraries.

➤ Dalvik virtual machine Dalvik is a register-based virtual machine that’s been opti-
mized to ensure that a device can run multiple instances efficiently. It relies on the
Linux kernel for threading and low-level memory management.

14 ❘ CHAPTER 1 HELLO, ANDROID

Third-Party Apps

Location-Based
Services

Application Layer

Developer AppsNative Apps
(Contacts, Maps, Browser, etc.)

Power
Management

Linux Kernel

Memory
Management

Process
Management

Hardware Drivers
(USB, Display, Bluetooth, etc.)

Application Framework

Content
Providers

Window
Manager

Activity
Manager

Package
Manager

Telephony P2P/XMPP Notifications Views Resource
Manager

Graphics
(OpenGL, SGL, FreeType)

Libraries Android Run Time

Media SSL & Webkit Android Libraries

Iibc SQLite Surface
Manager

Dalvik
Virtual Machine

FIGURE 1-1

➤ Application framework The application framework provides the classes used to create
Android applications. It also provides a generic abstraction for hardware access and manages
the user interface and application resources.

➤ Application layer All applications, both native and third-party, are built on the application
layer by means of the same API libraries. The application layer runs within the Android run
time, using the classes and services made available from the application framework.

The Dalvik Virtual Machine
One of the key elements of Android is the Dalvik virtual machine. Rather than use a traditional Java vir-
tual machine (VM) such as Java ME (Java Mobile Edition), Android uses its own custom VM designed
to ensure that multiple instances run efficiently on a single device.

Introducing the Development Framework ❘ 15

The Dalvik VM uses the device’s underlying Linux kernel to handle low-level functionality including
security, threading, and process and memory management. It’s also possible to write C/C++ appli-
cations that run directly on the underlying Linux OS. While you can do this, in most cases there’s no
reason you should need to.

If the speed and efficiency of C/C++ is required for your application, Android now provides a Native
Development Kit (NDK). The NDK is designed to enable you to create C++ libraries using the libc and
libm libraries, along with native access to OpenGL.

This book focuses exclusively on writing applications that run within Dalvik
using the SDK. If your inclinations run toward exploring the Linux kernel and
C/C++ underbelly of Android, modifying Dalvik, or otherwise tinkering with
things under the hood, check out the Android Internals Google Group at
http://groups.google.com/group/android-internals

While use of the NDK is encouraged where needed, details of its use have not been
included within this book.

All Android hardware and system service access is managed using Dalvik as a middle tier. By using a
VM to host application execution, developers have an abstraction layer that ensures they never have to
worry about a particular hardware implementation.

The Dalvik VM executes Dalvik executable files, a format optimized to ensure minimal memory foot-
print. You create.dex executables by transforming Java language compiled classes using the tools
supplied within the SDK. You’ll learn more about how to create Dalvik executables in the next chapter.

Android Application Architecture
Android’s architecture encourages the concept of component reuse, enabling you to publish and share
Activities, Services, and data with other applications, with access managed by the security restrictions
you put in place.

The same mechanism that lets you produce a replacement contact manager or phone dialer can let you
expose your application components to let other developers create new UI front ends and functionality
extensions, or otherwise build on them.

The following application services are the architectural cornerstones of all Android applications, pro-
viding the framework you’ll be using for your own software:

➤ Activity Manager Controls the life cycle of your Activities, including management of the
Activity stack described in Chapter 3.

➤ Views Used to construct the user interfaces for your Activities, as described in Chapter 4.

➤ Notification Manager Provides a consistent and nonintrusive mechanism for signaling your
users, as described in Chapter 9.

➤ Content Providers Let your applications share data, as described in Chapter 7.

➤ Resource Manager Supports non-code resources like strings and graphics to be external-
ized, as shown in Chapter 3.

16 ❘ CHAPTER 1 HELLO, ANDROID

Android Libraries
Android offers a number of APIs for developing your applications. Rather than list them all here, I refer
you to the documentation at http://developer.android.com/reference/packages.html, which gives
a complete list of packages included in the Android SDK.

Android is intended to target a wide range of mobile hardware, so be aware that the suitability and
implementation of some of the advanced or optional APIs may vary depending on the host device.

SUMMARY

This chapter explained that despite significant advances in the hardware features available on modern
mobile phones, the software has lagged. Hard-to-use development kits, hardware-specific APIs, and a
lack of openness have stifled innovation in mobile software.

Android offers an opportunity for developers to create innovative software applications for mobile
devices without the restrictions generally associated with the existing proprietary mobile development
frameworks.

You were shown the complete Android software stack, which includes not only an application layer
and development toolkit but also the Dalvik VM, a custom run time, core libraries, and a Linux kernel,
all of which are available as open source.

You also learned:

➤ How handsets with an expanding range of hardware features have created demand for tools
that give developers better access to these features.

➤ About some of the features available to developers using Android, including native map sup-
port, hardware access, background services, interprocess messaging, shared databases, and
2D and 3D graphics.

➤ That all Android applications are built equal, allowing users to completely replace one appli-
cation, even a core native application, with another.

➤ That the Android SDK includes developer tools, APIs, and comprehensive documentation.

The next chapter will help you get started by downloading and installing the Android SDK and setting
up an Android development environment in Eclipse.

You’ll also learn how to use the Android developer tools plug-in to streamline development, testing,
and debugging before creating your first Android application.

After learning about the building blocks of Android applications, you’ll be introduced to the different
types of applications you can create, and you’ll start to understand some of the design considerations
that should go into developing applications for mobile devices.

2
Getting Started

WHAT’S IN THIS CHAPTER?

➤ How to install the Android SDK, create a development environment,
and debug your projects.

➤ Understanding mobile design considerations and the importance of
optimizing for speed and efficiency and designing for small screens
and mobile data connections.

➤ Using Android Virtual Devices, the emulator, and developer tools.

All you need to start writing your own Android applications is a copy of the Android SDK and
the Java development kit. Unless you’re a masochist, you’ll probably want a Java IDE — Eclipse
is particularly well supported — to make development a little easier.

Versions of the SDK, Java, and Eclipse are available for Windows, MacOS, and Linux, so you
can explore Android from the comfort of whatever OS you favor. The SDK tools and emula-
tor work on all three OS environments, and because Android applications are run on a virtual
machine, there’s no advantage to developing from any particular operating system.

Android code is written with Java syntax, and the core Android libraries include most of the
features from the core Java APIs. Before they can be run, though, your projects must first be
translated into Dalvik byte code. As a result, you get the benefits of using Java while your appli-
cations have the advantage of running on a virtual machine optimized for mobile devices.

The SDK download includes all the Android libraries, full documentation, and excellent sam-
ple applications. It also includes tools to help you write and debug your applications, like the
Android Emulator to run your projects and the Dalvik Debug Monitoring Service (DDMS) to
help debug them.

By the end of this chapter you’ll have downloaded the Android SDK, set up your development
environment, completed two new applications, and run and debugged them with the DDMS
using the emulator running on an Android Virtual Device.

If you’ve developed for mobile devices before, you already know that their small-form factor, limited
power, and restricted memory create some unique design challenges. Even if you’re new to the game,

18 ❘ CHAPTER 2 GETTING STARTED

it’s obvious that some of the things you can take for granted on the desktop or the Web aren’t going to
work on a mobile.

As well as the hardware limitations, the user environment brings its own challenges. Mobile devices are
used on the move and are often a distraction rather than the focus of attention, so your applications
need to be fast, responsive, and easy to learn and use.

This chapter examines some of the best practices for writing mobile applications to help overcome the
inherent hardware and environmental challenges. Rather than try to tackle the whole topic, we’ll focus
on using the Android SDK in a way that’s consistent with good mobile design principles.

DEVELOPING FOR ANDROID

The Android SDK includes all the tools and APIs you need to write compelling and powerful mobile
applications. The biggest challenge with Android, as with any new development toolkit, is learning the
features and limitations of its APIs.

If you have experience in Java development you’ll find that the techniques, syntax, and grammar you’ve
been using will translate directly into Android, although some of the specific optimization techniques
may seem counterintuitive.

If you don’t have experience with Java but have used other object-oriented languages (such as C#), you
should find the transition straightforward. The power of Android comes from its APIs, not from Java,
so being unfamiliar with all the Java-specific classes won’t be a big disadvantage.

What You Need to Begin
Because Android applications run within the Dalvik virtual machine, you can write them on any plat-
form that supports the developer tools. This currently includes the following:

➤ Microsoft Windows (XP or later)

➤ Mac OS X 10.4.8 or later (Intel chips only)

➤ Linux

To get started, you’ll need to download and install the following:

➤ The Android SDK

➤ Java Development Kit (JDK) 5 or 6

You can download the latest JDK from Sun at http://java.sun.com/javase/downloads/index.jsp

If you already have a JDK installed, make sure that it meets the version requirements
listed above, and note that the Java runtime environment (JRE) is not sufficient.

Downloading and Installing the SDK
The Android SDK is completely open. There’s no cost to download or use the API, and Google doesn’t
charge (or require review) to distribute your finished programs on the Android Market or otherwise.

Developing for Android ❘ 19

You can download the latest version of the SDK for your development platform from the Android
development homepage at http://developer.android.com/sdk/index.html

Unless otherwise noted, the version of the Android SDK used for writing this book
was version 2.1 r1.

The SDK is presented as a ZIP file containing only the latest version of the Android developer tools.
Install it by unzipping the SDK into a new folder. (Take note of this location, as you’ll need it later.)

Before you can begin development you need to add at least one SDK Platform; do this on Windows by
running the ‘‘SDK Setup.exe’’ executable, or on MacOS or Linux by running the ‘‘android’’ executable
in the tools subfolder. In the screen that appears, select the ‘‘Available Packages’’ option on the left
panel, and then select the SDK Platform versions you wish to install in the ‘‘Sources, Packages, and
Archives’’ panel on the right. The selected platform will then be downloaded to your SDK installation
folder and will contain the API libraries, documentation, and several sample applications.

The examples and step-by-step instructions provided are targeted at developers using Eclipse with the
Android Developer Tool (ADT) plug-in. Neither is required, though — you can use any text editor or
Java IDE you’re comfortable with and use the developer tools in the SDK to compile, test, and debug
the code snippets and sample applications.

If you’re planning to use them, the next sections explain how to set up Eclipse and the ADT plug-in
as your Android development environment. Later in the chapter we’ll also take a closer look at the
developer tools that come with the SDK, so if you’d prefer to develop without using Eclipse or the ADT
plug-in you’ll particularly want to check that out.

The examples included in the SDK are well documented and are an excellent source
for full, working examples of applications written for Android. Once you’ve
finished setting up your development environment it’s worth going through them.

Developing with Eclipse
Using Eclipse with the ADT plug-in for your Android development offers some significant advantages.

Eclipse is an open-source IDE (integrated development environment) particularly popular for Java
development. It’s available for download for each of the development platforms supported by Android
(Windows, MacOS, and Linux) from the Eclipse foundation homepage: www.eclipse.org/downloads/

There are many variations available; the following is the recommended configuration for Android:

➤ Eclipse 3.4 or 3.5 (Galileo)

➤ Eclipse JDT plug-in

➤ WST

WST and the JDT plug-in are included in most Eclipse IDE packages.

20 ❘ CHAPTER 2 GETTING STARTED

Installing Eclipse consists of uncompressing the download into a new folder. When that’s done, run
the eclipse executable. When it starts for the first time, create a new workspace for your Android
development projects.

Using the Eclipse Plug-In
The ADT plug-in for Eclipse simplifies your Android development by integrating the developer tools,
including the emulator and .class-to-.dex converter, directly into the IDE. While you don’t have to use
the ADT plug-in, it does make creating, testing, and debugging your applications faster and easier.

The ADT plug-in integrates the following into Eclipse:

➤ An Android Project Wizard that simplifies creating new projects and includes a basic applica-
tion template

➤ Forms-based manifest, layout, and resource editors to help create, edit, and validate your
XML resources

➤ Automated building of Android projects, conversion to Android executables (.dex), packag-
ing to package files (.apk), and installation of packages onto Dalvik virtual machines

➤ The Android Virtual Device manager, which lets you create and manage virtual devices host-
ing emulators that run a specific release of the Android OS and with set memory constraints

➤ The Android Emulator, including control of the emulator’s appearance and network connec-
tion settings, and the ability to simulate incoming calls and SMS messages

➤ The Dalvik Debug Monitoring Service (DDMS), which includes port forwarding, stack, heap,
and thread viewing, process details, and screen-capture facilities

➤ Access to the device or emulator’s file system, enabling you to navigate the folder tree and
transfer files

➤ Runtime debugging, so you can set breakpoints and view call stacks

➤ All Android/Dalvik log and console outputs

Figure 2-1 shows the DDMS perspective within Eclipse with the ADT plug-in installed.

Installing the ADT Plug-In
Install the developer tools plug-in by following these steps:

1. Select Help ➪ Install New Software. . . from within Eclipse.

2. In the resulting dialog box enter the following address into the Work With text entry box and
press Enter: https://dl-ssl.google.com/android/eclipse/

3. Eclipse will now search for the ADT plug-in. When finished it will display the available plug-
in, as shown in Figure 2-2. Select it by clicking the checkbox next to the Developer Tools root
node, and click Next.

4. Eclipse will now download the plug-in. When it’s finished, ensure both the Android DDMS
and Android Developer Tools plug-ins are selected and click Next.

Developing for Android ❘ 21

FIGURE 2-1

5. Read and then Accept the terms of the license agreement, and click Next and then Finish. As
the ADT plug-in is not signed, you’ll be prompted before the installation continues.

6. When installation is complete you’ll have to restart Eclipse and update the ADT preferences.
Restart and select Window ➪ Preferences. . . (or Eclipse ➪ Preferences for MacOS).

7. Then select Android from the left panel.

8. Click Browse. . . and navigate to the folder into which you unzipped the Android SDK;
then click Apply. The list will then update to display each of the available SDK targets, as in
Figure 2-3. Click OK to complete the SDK installation.

If you download a new version of the SDK and place it in a different location, you
will need to update this preference to reflect the SDK with which the ADT should
be building.

22 ❘ CHAPTER 2 GETTING STARTED

FIGURE 2-2

FIGURE 2-3

Developing for Android ❘ 23

Updating the Plug-In
As the Android SDK matures, there are likely to be frequent updates to the ADT plug-in. In most cases,
to update your plug-in you simply:

1. Navigate to Help ➪ Check for Updates.

2. If there are any ADT updates available, they will be presented. Simply select them and choose
Install.

Sometimes a plug-in upgrade may be so significant that the dynamic update
mechanism can’t be used. In those cases you may have to remove the previous
plug-in completely before installing the newer version as described in the previous
section.

Creating Your First Android Application
You’ve downloaded the SDK, installed Eclipse, and plugged in the plug-in. You’re now ready to start
programming for Android. Start by creating a new project and setting up your Eclipse run and debug
configurations.

Starting a New Android Project
To create a new Android project using the Android New Project Wizard, do the following:

1. Select File ➪ New ➪ Project.

2. Select the Android Project application type from the Android folder and click Next.

3. In the dialog that appears (shown in Figure 2-4), enter the details for your new project. The
‘‘Project name’’ is the name of your project file; the ‘‘Package name’’ specifies its java pack-
age; Create Activity lets you specify the name of a class that will be your initial Activity; and
the ‘‘Application name’’ is the friendly name for your application. ‘‘Min SDK Version’’ lets
you specify the minimum version of the SDK that your application will run on.

Selecting the minimum SDK version requires you to choose between gaining
functionality provided in newer SDK releases and making your application
available to a larger group of Android devices. Your application will be available
from the Google Android Market on any device running the specified build or
higher.

Android version 1.6 (Donut) is version 4 — at the time of going to print, the
majority of Android devices were currently running at least version 4. The 2.0
(Eclair) SDK is version 5, while 2.1 is version 7.

4. When you’ve entered the details, click Finish.

24 ❘ CHAPTER 2 GETTING STARTED

FIGURE 2-4

If you selected Create Activity the ADT plug-in will create a new project that includes a class that
extends Activity. Rather than being completely empty, the default template implements Hello World.
Before modifying the project, take this opportunity to configure launch configurations for running and
debugging.

Creating a Launch Configuration
Launch configurations let you specify runtime options for running and debugging applications. Using a
launch configuration you can specify the following:

➤ The Project and Activity to launch

➤ The virtual device and emulator options to use

➤ Input/output settings (including console defaults)

Developing for Android ❘ 25

FIGURE 2-5

You can specify different launch configurations
for running and debugging applications. The fol-
lowing steps show how to create a launch confi-
guration for an Android application:

1. Select Run Configurations. . . or Debug
Configurations. . . from the Run menu.

2. Right-click Android Application on the
project type list, and select New.

3. Enter a name for the configuration. You
can create multiple configurations for each
project, so create a descriptive title that will
help you identify this particular setup.

4. Now choose your start-up options. The first
(Android) tab lets you select the project to run and the Activity that you want to start when
you run (or debug) the application. Figure 2-5 shows the settings for the project you created
earlier.

5. Use the Target tab shown in Figure 2-6 to select the default virtual device to launch on, or
select manual to select a device or AVD each time. You can also configure the emulator’s net-
work connection settings and optionally wipe the user data and disable the boot animation
when launching a virtual device. Using the command line textbox you can specify additional
emulator start-up options if needed.

FIGURE 2-6

26 ❘ CHAPTER 2 GETTING STARTED

The Android SDK does not include a default virtual machine. You will need to
create a virtual machine before you can run or debug your applications using the
emulator. If the virtual device selection dialog in Figure 2-6 is empty, click
Manage. . . to open the SDK and Virtual Machine Manager and create one. The
SDK and Virtual Machine Manager is described in more detail later in this chapter.

6. Finally, set any additional properties in the Common tab.

7. Click Apply, and your launch configuration will be saved.

Running and Debugging Your Android Applications
You’ve created your first project and created the run and debug configurations for it. Before making any
changes, test your installation and configurations by running and debugging the Hello World project.

From the Run menu select Run or Debug to launch the most recently selected configuration, or select
Run Configurations. . . or Debug Configurations. . . to select a specific configuration to use.

If you’re using the ADT plug-in, running or debugging your application does the following:

➤ Compiles the current project and converts it to an Android executable (.dex)

➤ Packages the executable and external resources into an Android package (.apk)

➤ Starts the selected virtual device (if you’ve selected an AVD and it’s not already running)

➤ Installs your application onto the target device

➤ Starts your application

If you’re debugging, the Eclipse debugger will then be attached, allowing you to set breakpoints and
debug your code.

If everything is working correctly you’ll see a new Activity running in the emulator, as shown in
Figure 2-7.

Understanding Hello World
Let’s take a step back and have a real look at your first Android application.

Activity is the base class for the visual, interactive components of your application; it is roughly
equivalent to a Form in traditional desktop development. Listing 2-1 shows the skeleton code for an
Activity-based class; note that it extends Activity, overriding the onCreate method.

LISTING 2-1: Hello World

package com.paad.helloworld;

import android.app.Activity;
import android.os.Bundle;

Developing for Android ❘ 27

public class HelloWorld extends Activity {

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
}

}

FIGURE 2-7

What’s missing from this template is the layout of the visual interface. In Android, visual components
are called Views, which are similar to controls in traditional desktop development.

The Hello World template created by the wizard overrides the onCreate method to call
setContentView, which lays out the user interface by inflating a layout resource, as highlighted
below:

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

The resources for an Android project are stored in the res folder of your project hierarchy, which
includes drawable, layout, and values subfolders. The ADT plug-in interprets these resources to pro-
vide design-time access to them through the R variable, as described in Chapter 3.

28 ❘ CHAPTER 2 GETTING STARTED

Listing 2-2 shows the UI layout defined in the main.xml file created by the Android project template.

LISTING 2-2: Hello World layout resource

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World, HelloWorld"

/>
</LinearLayout>

Defining your UI in XML and inflating it is the preferred way of implementing your user interfaces, as
it neatly decouples your application logic from your UI design.

To get access to your UI elements in code, you add identifier attributes to them in the XML definition.
You can then use the findViewById method to return a reference to each named item. The following
XML snippet shows an ID attribute added to the Text View widget in the Hello World template:

<TextView
android:id="@+id/myTextView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World, HelloWorld"

/>

And the following snippet shows how to get access to it in code:

TextView myTextView = (TextView)findViewById(R.id.myTextView);

Alternatively (although it’s not generally considered good practice), you can create your layout directly
in code, as shown in Listing 2-3.

LISTING 2-3: Creating layouts in code
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

LinearLayout.LayoutParams lp;
lp = new LinearLayout.LayoutParams(LayoutParams.FILL_PARENT,

LayoutParams.FILL_PARENT);

LinearLayout.LayoutParams textViewLP;
textViewLP = new LinearLayout.LayoutParams(LayoutParams.FILL_PARENT,

LayoutParams.WRAP_CONTENT);

LinearLayout ll = new LinearLayout(this);
ll.setOrientation(LinearLayout.VERTICAL);

TextView myTextView = new TextView(this);
myTextView.setText("Hello World, HelloWorld");

Developing for Android ❘ 29

ll.addView(myTextView, textViewLP);
this.addContentView(ll, lp);

}

All the properties available in code can be set with attributes in the XML layout. As well as allowing
easier substitution of layout designs and individual UI elements, keeping the visual design decoupled
from the application code helps keep the code more concise.

You’ll learn how to create complex layouts and about the Views used to populate them in Chapter 4.

Types of Android Applications
Most of the applications you create in Android will fall into one of the following categories:

➤ Foreground An application that’s useful only when it’s in the foreground and is effectively
suspended when it’s not visible. Games and map mashups are common examples.

➤ Background An application with limited interaction that, apart from when being config-
ured, spends most of its lifetime hidden. Examples include call screening applications and
SMS auto-responders.

➤ Intermittent Expects some interactivity but does most of its work in the background. Often
these applications will be set up and then run silently, notifying users when appropriate. A
common example would be a media player.

➤ Widget Some applications are represented only as a home-screen widget.

Complex applications are difficult to pigeonhole into a single category and usually include elements
of each of these types. When creating your application you need to consider how it’s likely to be used
and then design it accordingly. Let’s look more closely at some of the design considerations for each
application type.

Foreground Applications
When creating foreground applications you need to carefully consider the Activity life cycle (described
in Chapter 3) so that the Activity switches seamlessly between the foreground and the background.

Applications have little control over their life cycles, and a background application with no running
Services is a prime candidate for cleanup by Android’s resource management. This means that you
need to save the state of the application when it is no longer in the foreground, to let you present the
exact same state when it is brought to the front.

It’s also particularly important for foreground applications to present a slick and intuitive user experi-
ence. You’ll learn more about creating well-behaved and attractive foreground Activities in Chapters 3
and 4.

Background Services and Intent Receivers
These applications run silently in the background with very little user input. They often listen for
messages or actions caused by the hardware, system, or other applications, rather than rely on user
interaction.

30 ❘ CHAPTER 2 GETTING STARTED

It’s possible to create completely invisible services, but in practice it’s better form to provide at least
some sort of user control. At a minimum you should let users confirm that the service is running and
let them configure, pause, or terminate it as needed.

Services and Intent Receivers, the driving forces of background applications, are covered in depth in
Chapters 5 and 9.

Intermittent Applications
Often you’ll want to create an application that reacts to user input but is still useful when it’s not active
in the foreground. Chat and e-mail apps are typical examples. These applications are generally a union
of visible Activities and invisible background Services.

Such an application needs to be aware of its state when interacting with the user. This might mean
updating the Activity UI when it’s visible and sending notifications to keep the user updated when it’s
in the background, as seen in the section on Notifications and Services in Chapter 9.

Widgets
In some circumstances your application may consist entirely of a widget component. Using widgets,
described in detail in Chapter 10, you can create interactive visual components that users can add to
their home screens.

Widget-only applications are commonly used to display dynamic information such as battery levels,
weather forecasts, or the date and time.

DEVELOPING FOR MOBILE DEVICES

Android does a lot to simplify mobile-device software development, but it’s still important to under-
stand the reasons behind the conventions. There are several factors to account for when writing
software for mobile and embedded devices, and when developing for Android in particular.

In this chapter you’ll learn some of the techniques and best practices for writing
efficient Android code. In later examples, efficiency is sometimes compromised for
clarity and brevity when new Android concepts or functionality are introduced. In
the best tradition of ‘‘Do as I say, not as I do,’’ the examples you’ll see are designed
to show the simplest (or easiest-to-understand) way of doing something, not
necessarily the best way of doing it.

Hardware-Imposed Design Considerations
Small and portable, mobile devices offer exciting opportunities for software development. Their limited
screen size and reduced memory, storage, and processor power are far less exciting, and instead present
some unique challenges.

Developing for Mobile Devices ❘ 31

Compared to desktop or notebook computers, mobile devices have relatively:

➤ Low processing power

➤ Limited RAM

➤ Limited permanent storage capacity

➤ Small screens with low resolution

➤ High costs associated with data transfer

➤ Slow data transfer rates with high latency

➤ Unreliable data connections

➤ Limited battery life

Each new generation of phones improves many of these restrictions. In particular, newer phones have
dramatically improved screen resolutions and significantly cheaper data tariffs. However, given the
range of devices available, it is good practice to design to accommodate the worst-case scenario.

Be Efficient
Manufacturers of embedded devices, particularly mobile devices, generally value small size and long
battery life over potential improvements in processor speed. For developers, that means losing the head
start traditionally afforded thanks to Moore’s law (the doubling of the number of transistors placed on
an integrated circuit every two years). In desktop and server hardware this usually results directly in
processor performance improvements; for mobile devices it instead means smaller, more power-efficient
mobiles without significant improvement in processor power.

In practice, this means that you always need to optimize your code so that it runs quickly and respon-
sively, assuming that hardware improvements over the lifetime of your software are unlikely to do you
any favors.

Since code efficiency is a big topic in software engineering, I’m not going to try to capture it here. Later
in this chapter you’ll learn some Android-specific efficiency tips, but for now just note that efficiency is
particularly important for resource-constrained environments like mobile devices.

Expect Limited Capacity
Advances in flash memory and solid-state disks have led to a dramatic increase in mobile-device storage
capacities (though MP3 collections still tend to expand to fill the available storage). While an 8 GB flash
drive or SD card is no longer uncommon in mobile devices, optical disks offer over 32 GB, and terabyte
drives are now commonly available for PCs. Given that most of the available storage on a mobile
device is likely to be used to store music and movies, most devices offer relatively limited storage space
for your applications.

Android devices offer an additional restriction in that applications must be installed on the internal
memory (as opposed to external SD cards). As a result, the compiled size of your application is a consid-
eration, though more important is ensuring that your application is polite in its use of system resources.

32 ❘ CHAPTER 2 GETTING STARTED

You should carefully consider how you store your application data. To make life easier you can use
the Android databases and Content Providers to persist, reuse, and share large quantities of data, as
described in Chapter 7. For smaller data storage, such as preferences or state settings, Android provides
an optimized framework, as described in Chapter 6.

Of course, these mechanisms won’t stop you from writing directly to the file system when you want or
need to, but in those circumstances always consider how you’re structuring these files, and ensure that
yours is an efficient solution.

Part of being polite is cleaning up after yourself. Techniques like caching are useful for limiting repeti-
tive network lookups, but don’t leave files on the file system or records in a database when they’re no
longer needed.

Design for Small Screens
The small size and portability of mobiles are a challenge for creating good interfaces, particularly when
users are demanding an increasingly striking and information-rich graphical user experience.

Write your applications knowing that users will often only glance at the (small) screen. Make your
applications intuitive and easy to use by reducing the number of controls and putting the most impor-
tant information front and center.

Graphical controls, like the ones you’ll create in Chapter 4, are an excellent means of displaying a lot
of information in a way that’s easy to understand. Rather than a screen full of text with lots of buttons
and text-entry boxes, use colors, shapes, and graphics to convey information.

If you’re planning to include touch-screen support (and if you’re not, you should be), you’ll need to
consider how touch input is going to affect your interface design. The time of the stylus has passed;
now it’s all about finger input, so make sure your Views are big enough to support interaction using a
finger on the screen. There’s more information on touch-screen interaction in Chapter 15.

Android phones are now available with a variety of screen sizes including QVGA, HVGA, and WVGA.
As display technology advances, and Android expands beyond mobile devices, screen sizes and resolu-
tions will continue to increase. To ensure that your app looks good and behaves well on all the possible
host devices it’s important to design for small screens, but also make sure your UIs scale well on larger
displays. You’ll learn some techniques for optimizing your UI for different screen sizes in Chapter 3.

Expect Low Speeds, High Latency
In Chapter 5 you’ll learn how to use Internet resources in your applications. The ability to incorporate
some of the wealth of online information in your applications is incredibly powerful.

The mobile Web unfortunately isn’t as fast, reliable, or readily available as we’d often like, so when
you’re developing your Internet-based applications it’s best to assume that the network connection will
be slow, intermittent, and expensive. With unlimited 3G data plans and citywide Wi-Fi, this is changing,
but designing for the worst case ensures that you always deliver a high-standard user experience.

This also means making sure that your applications can handle losing (or not finding) a data
connection.

Developing for Mobile Devices ❘ 33

FIGURE 2-8

The Android Emulator lets you control the
speed and latency of your network connection.
Figure 2-8 shows the emulator’s network con-
nection speed and latency, simulating a distinctly
suboptimal EDGE connection.

Experiment to ensure seamlessness and respon-
siveness no matter what the speed, latency, and
availability of network access. In some circum-
stances you might find that it’s better to limit
the functionality of your application or reduce
network lookups to cached bursts, based on the
network connection(s) available. Details on how
to detect the kind of network connections avail-
able at run time, and their speeds, are included in
Chapter 13.

At What Cost?
If you’re a mobile owner, you know all too well
that some of the more powerful features on your
mobile can literally come at a price. Services like
SMS, some location-based services, and data
transfer can sometimes incur an additional tariff
from your service provider.

It’s obvious why it’s important that any costs associated with functionality in your applications
be minimized, and that users be aware when an action they perform might result in their being
charged.

It’s a good approach to assume that there’s a cost associated with any action involving an interaction
with the outside world. In some cases (such as with GPS and data transfer) the user can toggle Android
settings to disable a potentially costly action. As a developer it’s important that you use and respect
those settings within your application.

In any case, it’s important to minimize interaction costs by doing the following:

➤ Transferring as little data as possible

➤ Caching data and GPS results to eliminate redundant or repetitive lookups

➤ Stopping all data transfers and GPS updates when your activity is not visible in the fore-
ground and if they’re only being used to update the UI

➤ Keeping the refresh/update rates for data transfers (and location lookups) as low as
practicable

➤ Scheduling big updates or transfers at ‘‘off-peak’’ times using alarms, as shown in Chapter 9

➤ Respecting the user’s preferences for background data transfer

Often the best solution is to use a lower-quality option that comes at a lower cost.

34 ❘ CHAPTER 2 GETTING STARTED

When using the location-based services described in Chapter 8, you can select a location provider based
on whether there is an associated cost. Within your location-based applications, consider giving users
the choice of lower cost or greater accuracy.

In some circumstances costs are hard to define, or they’re different for different users. Charges for
services vary between service providers and contract plans. While some people will have free unlimited
data transfers, others will have free SMS.

Rather than enforcing a particular technique based on which seems cheaper, consider letting your users
choose. For example, when downloading data from the Internet, you could ask users if they want to
use any network available or limit their transfers to times when they’re connected via Wi-Fi.

Considering the Users’ Environment
You can’t assume that your users will think of your application as the most important feature of their
device.

While Android is already starting to expand beyond its core base as a mobile phone platform, most
Android devices are still mobile phones. Remember that for most people, such a device is first and
foremost a phone, secondly an SMS and email communicator, thirdly a camera, and fourthly an MP3
player. The applications you write will most likely be in the fifth category of ‘‘useful mobile tools.’’

That’s not a bad thing — they’ll be in good company with others including Google Maps and the web
browser. That said, each user’s usage model will be different; some people will never use their mobiles
to listen to music, and some phones don’t include a camera, but the multitasking principle inherent in
a device as ubiquitous as it is indispensable is an important consideration for usability design.

It’s also important to consider when and how your users will use your applications. People use their
mobiles all the time — on the train, walking down the street, or even while driving their cars. You
can’t make people use their phones appropriately, but you can make sure that your applications don’t
distract them any more than necessary.

What does this mean in terms of software design? Make sure that your application:

➤ Is well behaved Start by ensuring that your Activities suspend when they’re not in the fore-
ground. Android triggers event handlers when your Activity is suspended or resumed so you
can pause UI updates and network lookups when your application isn’t visible — there’s no
point updating your UI if no one can see it. If you need to continue updating or processing in
the background, Android provides a Service class designed to run in the background without
the UI overheads.

➤ Switches seamlessly from the background to the foreground With the multitasking nature
of mobile devices, it’s very likely that your applications will regularly move into and out of
the background. It’s important that they ‘‘come to life’’ quickly and seamlessly. Android’s
nondeterministic process management means that if your application is in the background,
there’s every chance it will get killed to free resources. This should be invisible to the user.
You can ensure seamlessness by saving the application state and queuing updates so that your
users don’t notice a difference between restarting and resuming your application. Switching
back to it should be seamless, with users being shown the exact UI and application state they
last saw.

Developing for Mobile Devices ❘ 35

➤ Is polite Your application should never steal focus or interrupt a user’s current activity.
Use Notifications and Toasts (detailed in Chapter 9) instead to inform or remind users that
their attention is requested, if your application isn’t in the foreground. There are several ways
for mobile devices to alert users. For example, when a call is coming in, your phone rings;
when you have unread messages, the LED flashes; and when you have new voice mail, a small
‘‘mail’’ icon appears in your status bar. All these techniques and more are available through
the notification mechanism.

➤ Presents a consistent user interface Your application is likely to be one of several in use
at any time, so it’s important that the UI you present is easy to use. Don’t force users to
interpret and relearn your application every time they load it. Using it should be simple,
easy, and obvious — particularly given the limited screen space and distracting user
environment.

➤ Is responsive Responsiveness is one of the most important design considerations on
a mobile device. You’ve no doubt experienced the frustration of a ‘‘frozen’’ piece of
software; the multifunctional nature of a mobile makes this even more annoying. With the
possibility of delays caused by slow and unreliable data connections, it’s important that your
application use worker threads and background services to keep your activities responsive
and, more importantly, to stop them from preventing other applications from responding
promptly.

Developing for Android
Nothing covered so far is specific to Android; the preceding design considerations are just as important
in developing applications for any mobile. In addition to these general guidelines, Android has some
particular considerations.

To start with, it’s worth taking a few minutes to read the design best practices included in Google’s
Android developer guide at http://developer.android.com/guide/index.html

The Android design philosophy demands that applications be designed for:

➤ Performance

➤ Responsiveness

➤ Seamlessness

➤ Security

Being Fast and Efficient
In a resource-constrained environment, being fast means being efficient. A lot of what you already
know about writing efficient code will be just as applicable to Android, but the limitations of embedded
systems and the use of the Dalvik VM mean you can’t take things for granted.

The smart bet for advice is to go to the source. The Android team has published some specific guid-
ance on writing efficient code for Android, so rather than rehash their advice, I suggest you visit
http://developer.android.com/guide/practices/design/performance.html and take note of their
suggestions.

36 ❘ CHAPTER 2 GETTING STARTED

You may find that some of these performance suggestions contradict established
design practices — for example, avoiding the use of internal setters and getters or
preferring virtual classes over using interfaces. When writing software for
resource-constrained systems like embedded devices, there’s often a compromise
between conventional design principles and the demand for greater efficiency.

One of the keys to writing efficient Android code is not to carry over assumptions from desktop and
server environments to embedded devices.

At a time when 2 to 4 GB of memory is standard for most desktop and server rigs, typical smartphones
feature around 200 MB of SDRAM. With memory such a scarce commodity, you need to take special
care to use it efficiently. This means thinking about how you use the stack and heap, limiting object
creation, and being aware of how variable scope affects memory use.

Being Responsive

FIGURE 2-9

Android takes responsiveness very seriously.

Android enforces responsiveness with the Activity Manager
and Window Manager. If either service detects an unresponsive
application, it will display the dreaded ‘‘Sorry! Activity is not
responding’’ message — often reported by users as a Force Close
error. This is shown in Figure 2-9.

This alert is modal, steals focus, and won’t go away until you hit
a button or your application starts responding. It’s pretty much
the last thing you ever want to confront a user with.

Android monitors two conditions to determine responsiveness:

➤ An application must respond to any user action, such
as a key press or screen touch, within five seconds.

➤ A Broadcast Receiver must return from its onReceive
handler within 10 seconds.

The most likely culprits in cases of unresponsiveness are network
lookups, complex processing (such as the calculating of game
moves), and file I/O. There are a number of ways to ensure that
these actions don’t exceed the responsiveness conditions, in
particular by using Services and worker threads, as shown in Chapter 9.

The ‘‘Force close’’ dialog is a last resort of usability; the generous five-second limit
is a worst-case scenario, not a target. Users will notice a regular pause of anything
more than half a second between key press and action. Happily, a side effect of the
efficient code you’re already writing will be more responsive applications.

Developing for Mobile Devices ❘ 37

Developing Secure Applications
Android applications have access to networks and hardware, can be distributed independently, and
are built on an open-source platform featuring open communication, so it shouldn’t be surprising that
security is a significant concern.

For the most part, users need to take responsibility for the applications they install and the
permissions requests they accept. The Android security model restricts access to certain
services and functionality by forcing applications to declare the permissions they require. Dur-
ing installation users are shown the application’s required permissions before they commit
to installing it. (You can learn more about Android’s security model in Chapter 15 and at
http://developer.android.com/guide/appendix/faq/security.html)

This doesn’t get you off the hook. You not only need to make sure your application is secure for its
own sake, you also need to ensure that it can’t be hijacked to compromise the device. You can use
several techniques to help maintain device security, and they’ll be covered in more detail as you learn
the technologies involved. In particular, you should do the following:

➤ Require permissions for any Services you publish or Intents you broadcast.

➤ Take special care when accepting input to your application from external sources such as the
Internet, Bluetooth, SMS messages, or instant messaging (IM). You can find out more about
using Bluetooth and SMS for application messaging in Chapters 12 and 13.

➤ Be cautious when your application may expose access to lower-level hardware to third-party
applications.

For reasons of clarity and simplicity, many of the examples in this book take a
fairly relaxed approach to security. When you’re creating your own applications,
particularly ones you plan to distribute, this is an area that should not be
overlooked.

Ensuring a Seamless User Experience
The idea of a seamless user experience is an important, if somewhat nebulous, concept. What do we
mean by seamless? The goal is a consistent user experience in which applications start, stop, and tran-
sition instantly and without noticeable delays or jarring transitions.

The speed and responsiveness of a mobile device shouldn’t degrade the longer it’s on. Android’s process
management helps by acting as a silent assassin, killing background applications to free resources as
required. Knowing this, your applications should always present a consistent interface, regardless of
whether they’re being restarted or resumed.

With an Android device typically running several third-party applications written by different develop-
ers, it’s particularly important that these applications interact seamlessly. Using Intents, applications
can provide functionality for each other. Knowing your application may provide, or consume, third-
party Activities provides additional incentive to maintain a consistent look and feel.

Use a consistent and intuitive approach to usability. You can create applications that are revolutionary
and unfamiliar, but even these should integrate cleanly with the wider Android environment.

38 ❘ CHAPTER 2 GETTING STARTED

Persist data between sessions, and when the application isn’t visible, suspend tasks that use processor
cycles, network bandwidth, or battery life. If your application has processes that need to continue
running while your Activities are out of sight, use a Service, but hide these implementation decisions
from your users.

When your application is brought back to the front, or restarted, it should seamlessly return to its last
visible state. As far as your users are concerned, each application should be sitting silently, ready to be
used but just out of sight.

You should also follow the best-practice guidelines for using Notifications and use generic UI elements
and themes to maintain consistency among applications.

There are many other techniques you can use to ensure a seamless user experience, and you’ll be introdu-
ced to some of them as you discover more of the possibilities available in Android in the coming chapters.

TO-DO LIST EXAMPLE

In this example you’ll be creating a new Android application from scratch. This simple example creates
a new to-do list application using native Android View controls. It’s designed to illustrate the basic
steps involved in starting a new project.

Don’t worry if you don’t understand everything that happens in this example.
Some of the features used to create this application, including ArrayAdapters,
ListViews, and KeyListeners, won’t be introduced properly until later chapters,
where they’ll be explained in detail. You’ll also return to this example later to add
new functionality as you learn more about Android.

1. Start by creating a new Android project. Within Eclipse, select File ➪ New ➪ Project. . . , then
choose Android (as shown in Figure 2-10) before clicking Next.

FIGURE 2-10

To-Do List Example ❘ 39

2. In the dialog box that appears (shown in Figure 2-11), enter the details for your new project.
The ‘‘Application name’’ is the friendly name of your application, and the ‘‘Create Activity’’
field lets you name your Activity. With the details entered, click Finish to create your new
project.

FIGURE 2-11

3. Before creating your debug and run configurations, take this opportunity to create a virtual
device to test your apps with.

3.1. Select Window ➪ Android SDK and AVD Manager. In the resulting dialog (shown in
Figure 2-12), select Virtual Devices from the left panel and click the New. . . button.

3.2. Enter a name for your device, and choose an SDK target and screen resolution. Set
the SD Card size to larger than 8 MB: enter 12 into the text-entry box as shown in
Figure 2-13.

40 ❘ CHAPTER 2 GETTING STARTED

FIGURE 2-12

FIGURE 2-13

4. Now create your debug and run configurations. Select Run ➪ Debug Configurations. . . and
then Run ➪ Run Configurations. . . , creating a new configuration for each specifying the
Todo_List project and selecting the virtual device you created in Step 3. You can leave the
launch action as Launch Default Activity, or explicitly set it to launch the new ToDoList

Activity, as shown in Figure 2-14.

To-Do List Example ❘ 41

FIGURE 2-14

. 5. Now decide what you want to show the users
and what actions they’ll need to perform. Design
a user interface that will make these actions as
intuitive as possible.

In this example we want to present users with a
list of to-do items and a text entry box to add
new ones. There’s both a list and a text-entry
control available from the Android libraries.
(You’ll learn more about the Views available in
Android, and how to create new ones, in
Chapter 4.)

The preferred method for laying out your UI is
using a layout resource file. Open the main.xml
layout file in the res/layout project folder, as shown in Figure 2-15.

FIGURE 2-15

. 6. Modify the main layout to include a ListView and an
EditText within a LinearLayout. It’s important to give both
the Edit Text and List View an ID so you can get references to
them both in code.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<EditText
android:id="@+id/myEditText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="New To Do Item"

/>
<ListView
android:id="@+id/myListView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

/>
</LinearLayout>

. 7. With your user interface defined, open the ToDoList Activity
from your project’s source folder. In this example you’ll make
all your changes by overriding the onCreate method. Start
by inflating your UI using setContentView and then get
references to the ListView and EditText using findViewById.

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

// Inflate your view
setContentView(R.layout.main);

42 ❘ CHAPTER 2 GETTING STARTED

// Get references to UI widgets
ListView myListView = (ListView)findViewById(R.id.myListView);
final EditText myEditText = (EditText)findViewById(R.id.myEditText);

}

8. Still within onCreate, define an ArrayList of Strings to store each to-do list item. You can
bind a ListView to an ArrayList using an ArrayAdapter, so create a new ArrayAdapter

instance to bind the to-do item array to the ListView. (We’ll return to ArrayAdapters in
Chapter 5.)

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

ListView myListView = (ListView)findViewById(R.id.myListView);
final EditText myEditText = (EditText)findViewById(R.id.myEditText);

// Create the array list of to do items
final ArrayList<String> todoItems = new ArrayList<String>();
// Create the array adapter to bind the array to the listview
final ArrayAdapter<String> aa;
aa = new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1,
todoItems);

// Bind the array adapter to the listview.
myListView.setAdapter(aa);

}

9. The final step to make this to-do list functional is to let users add new to-do items. Add an
onKeyListener to the EditText that listens for a ‘‘D-pad center button’’ click before adding
the contents of the EditText to the to-do list array and notifying the ArrayAdapter of the
change. Then clear the EditText to prepare for another item.

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

ListView myListView = (ListView)findViewById(R.id.myListView);
final EditText myEditText = (EditText)findViewById(R.id.myEditText);

final ArrayList<String> todoItems = new ArrayList<String>();
final ArrayAdapter<String> aa;
aa = new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1,
todoItems);

myListView.setAdapter(aa);

myEditText.setOnKeyListener(new OnKeyListener() {
public boolean onKey(View v, int keyCode, KeyEvent event) {
if (event.getAction() == KeyEvent.ACTION_DOWN)

if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER){
todoItems.add(0, myEditText.getText().toString());
aa.notifyDataSetChanged();
myEditText.setText("");
return true;

Android Development Tools ❘ 43

}
return false;

}
});

}

FIGURE 2-16

.10. Run or debug the application and you’ll see a text
entry box above a list, as shown in Figure 2-16.

11. You’ve now finished your first ‘‘real’’ Android
application. Try adding breakpoints to the code to
test the debugger and experiment with the DDMS
perspective.

All code snippets in this example are part of the Chapter 2
To-do List project, available for download at Wrox.com.

As it stands, this to-do list application isn’t spectacularly
useful. It doesn’t save to-do list items between sessions, you
can’t edit or remove an item from the list, and typical task-
list items like due dates and task priority aren’t recorded or
displayed. On balance, it fails most of the criteria laid out
so far for a good mobile application design.

You’ll rectify some of these deficiencies when you return to
this example in later chapters.

ANDROID DEVELOPMENT TOOLS

The Android SDK includes several tools and utilities to help you create, test, and debug your projects.
A detailed examination of each developer tool is outside the scope of this book, but it’s worth briefly
reviewing what’s available. For more detail than is included here, check out the Android documentation
at http://developer.android.com/guide/developing/tools/index.html

As mentioned earlier, the ADT plug-in conveniently incorporates most of these tools into the Eclipse
IDE, where you can access them from the DDMS perspective, including:

➤ The Android SDK and Virtual Device Manager Used to create and manage Android Virtual
Devices (AVD) and SDK packages. The AVD hosts an emulator running a particular build
of Android, letting you specify the supported SDK version, screen resolution, amount of SD
card storage available, and available hardware capabilities (such as touchscreens and GPS).

➤ The Android Emulator An implementation of the Android virtual machine designed to run
within a virtual device on your development computer. Use the emulator to test and debug
your Android applications.

➤ Dalvik Debug Monitoring Service (DDMS) Use the DDMS perspective to monitor and con-
trol the Dalvik virtual machines on which you’re debugging your applications.

➤ Android Asset Packaging Tool (AAPT) Constructs the distributable Android package files
(.apk).

44 ❘ CHAPTER 2 GETTING STARTED

➤ Android Debug Bridge (ADB) A client-server application that provides a link to a running
emulator. It lets you copy files, install compiled application packages (.apk), and run shell
commands.

The following additional tools are also available:

➤ SQLite3 A database tool that you can use to access the SQLite database files created and
used by Android.

➤ Traceview A graphical analysis tool for viewing the trace logs from your Android
application.

➤ MkSDCard Creates an SD card disk image that can be used by the emulator to simulate an
external storage card.

➤ Dx Converts Java .class bytecode into Android .dex bytecode.

➤ activityCreator A script that builds Ant build files that you can then use to compile your
Android applications without the ADT plug-in.

➤ layoutOpt A tool that analyzes your layout resources and suggests improvements and opti-
mizations.

Let’s take a look at some of the more important tools in more detail.

The Android Virtual Device and SDK Manager
The Virtual Device and SDK Manager is a tool used to create and manage the virtual devices that will
host instances of your emulator. You can use the same tool both to see which version of the SDK you
have installed and to install new SDKs when they are released.

Android Virtual Devices
Android Virtual Devices are used to simulate the software builds and hardware specifications available
on different devices. This lets you test your application on a variety of hardware platforms without
needing to buy a variety of phones.

The Android SDK doesn’t include any pre-built virtual devices, so you will need to
create at least one device before you can run your applications within an emulator.

Each virtual device is configured with a name, a target build of Android (based on the SDK version it
supports), an SD Card capacity, and screen resolution, as shown in the ‘‘Create new AVD’’ dialog in
Figure 2-17.

Each virtual device also supports a number of specific hardware settings and restrictions that can be
added in the form of NVPs in the hardware table. These additional settings include:

➤ Maximum virtual machine heap size

➤ Screen pixel density

Android Development Tools ❘ 45

FIGURE 2-17

➤ SD Card support

➤ The existence of DPad, touchscreen, keyboard, and trackball hardware

➤ Accelerometer and GPS support

➤ Available device memory

➤ Camera hardware (and resolution)

➤ Support for audio recording

Different hardware settings and screen resolutions will present alternative user-interface skins to repre-
sent the different hardware configurations. This simulates a variety of mobile device types. To complete
the illusion, you can create a custom skin for each virtual device to make it look like the device it is
emulating.

SDK Manager
Use the installed and available package tabs to manage your SDK installations.

Installed Packages, shown in Figure 2-18, displays the SDK platforms, documentation, and tools you
have available to use in your development environment. When updating to a new version you can
simply click the Update All. . . button to have the manager update your SDK installation with the
latest version of each component.

46 ❘ CHAPTER 2 GETTING STARTED

FIGURE 2-18

Alternatively, Available Packages checks the Android SDK repository for any source, packages, and
archives available but not yet installed on your system. Use the checkboxes, as shown in Figure 2-19,
to select additional SDK packages to install.

FIGURE 2-19

The Android Emulator
The emulator is the perfect tool for testing and debugging your applications.

The emulator is an implementation of the Dalvik virtual machine, making it as valid a platform for run-
ning Android applications as any Android phone. Because it’s decoupled from any particular hardware,
it’s an excellent baseline to use for testing your applications.

Android Development Tools ❘ 47

Full network connectivity is provided along with the ability to tweak the Internet connection speed and
latency while debugging your applications. You can also simulate placing and receiving voice calls and
SMS messages.

The ADT plug-in integrates the emulator into Eclipse so that it’s launched automatically within
the selected AVD when you run or debug your projects. If you aren’t using the plug-in or
want to use the emulator outside of Eclipse, you can telnet into the emulator and control it
from its console. (For more details on controlling the emulator, check the documentation at
http://developer.android.com/guide/developing/tools/emulator.html)

To execute the emulator you first need to create a virtual device, as described in the previous section.
The emulator will launch the virtual device and run a Dalvik instance within it.

At this time, the emulator doesn’t implement all the mobile hardware features
supported by Android. It does not implement the camera, vibration, LEDs, actual
phone calls, the accelerometer, USB connections, audio capture, or battery charge
level.

Dalvik Debug Monitor Service (DDMS)
The emulator lets you see how your application will look, behave, and interact, but to really see what’s
happening under the surface you need the Dalvik Debug Monitoring Service. The DDMS is a powerful
debugging tool that lets you interrogate active processes, view the stack and heap, watch and pause
active threads, and explore the file system of any connected Android device.

The DDMS perspective in Eclipse also provides simplified access to screen captures of the emulator and
the logs generated by LogCat.

If you’re using the ADT plug-in, the DDMS is fully integrated into Eclipse and is available from the
DDMS perspective. If you aren’t using the plug-in or Eclipse, you can run DDMS from the command
line and it will automatically connect to any running device or emulator.

The Android Debug Bridge (ADB)
The Android debug bridge (ADB) is a client-service application that lets you connect with an Android
Emulator or device. It’s made up of three components: a daemon running on the emulator, a service
that runs on your development hardware, and client applications (like the DDMS) that communicate
with the daemon through the service.

As a communications conduit between your development hardware and the Android device/emulator,
the ADB lets you install applications, push and pull files, and run shell commands on the target device.
Using the device shell you can change logging settings, and query or modify SQLite databases available
on the device.

The ADT tool automates and simplifies a lot of the usual interaction with the ADB, including applica-
tion installation and updating, file logging, and file transfer (through the DDMS perspective).

48 ❘ CHAPTER 2 GETTING STARTED

To learn more about what you can do with the ADB, check out the documentation at
http://developer.android.com/guide/developing/tools/adb.html

SUMMARY

This chapter showed you how to download and install the Android SDK, create a development environ-
ment using Eclipse on Windows, Mac OS, or Linux platforms, and create run and debug configurations
for your projects. You learned how to install and use the ADT plug-in to simplify the creation of new
projects and streamline your development cycle.

You were introduced to some of the design considerations involved in developing mobile applications,
particularly the importance of optimizing for speed and efficiency when increasing battery life and
shrinking sizes are higher priorities than increasing processor power.

As with any mobile development, there are considerations involved in designing for small screens and
potentially slow, costly, and unreliable mobile data connections.

After creating an Android to-do list application, you were introduced to Android virtual devices and
the emulator, as well as the developer tools you’ll use to test and debug your applications.

Specifically, in this chapter you:

➤ Downloaded and installed the Android SDK

➤ Set up a development environment in Eclipse and downloaded and installed the ADT plug-in

➤ Created your first application and learned how it works

➤ Set up run and debug launch configurations for your projects

➤ Learned about the different types of Android applications

➤ Were introduced to some mobile-device design considerations and learned some specific
Android design practices

➤ Created a to-do list application

➤ Were introduced to Android Virtual Devices, the emulator, and the developer tools

The next chapter focuses on Activities and application design. You’ll see how to define application
settings using the Android manifest and how to externalize your UI layouts and application resources.
You’ll also find out more about the Android application life cycle and Android application states.

3
Creating Applications
and Activities

WHAT’S IN THIS CHAPTER?

➤ An introduction to the Android application components and the
different types of Android applications you can build with them

➤ The Android application life cycle

➤ How to create and annotate the application manifest

➤ How to use external resources to provide dynamic support for
locations, languages, and hardware configurations

➤ How to implement and use your own Application class

➤ How to create new Activities

➤ Understanding an Activity’s state transitions and life cycle

Before you start writing your own Android applications, it’s important to understand how
they’re constructed and to have an understanding of the Android application life cycle. In this
chapter you’ll be introduced to the loosely coupled components that make up Android applica-
tions and how they’re bound together by the Android manifest. Next you’ll see how and why
you should use external resources, before getting an introduction to the Activity component.

In recent years there’s been a move toward development frameworks featuring managed code,
such as the Java virtual machine and the .NET Common Language Runtime.

In Chapter 1 you learned that Android also uses this model, with each application running in a
separate process on its own instance of the Dalvik virtual machine. In this chapter you’ll learn
more about the application life cycle and how it’s managed by the Android run time. This leads
to an introduction of the application process states. These states are used to determine an appli-
cation’s priority, which in turn affects the likelihood of an application’s being terminated when
more resources are required by the system.

50 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

Mobile devices come in a large variety of shapes and sizes and are used across the world. In this chapter
you’ll learn how to externalize resources to ensure your applications run seamlessly on different hard-
ware (particularly different screen resolutions and pixel densities), in different countries, and supporting
multiple languages.

Next you’ll examine the Application class, and learn how to extend it to provide a place for storing
application state values.

Arguably the most important of the Android building blocks, the Activity class forms the basis for
all your user interface screens. You’ll learn how to create new Activities and gain an understanding of
their life cycles and how they affect the application lifetime.

Finally, you’ll be introduced to some of the Activity subclasses that simplify resource management for
some common user interface components such as maps and lists.

WHAT MAKES AN ANDROID APPLICATION?

Android applications consist of loosely coupled components, bound by an application manifest that
describes each component and how they all interact, as well as the application metadata including its
hardware and platform requirements.

The following six components provide the building blocks for your applications:

➤ Activities Your application’s presentation layer. Every screen in your application will be an
extension of the Activity class. Activities use Views to form graphical user interfaces that
display information and respond to user actions. In terms of desktop development, an Activ-
ity is equivalent to a Form. You’ll learn more about Activities later in this chapter.

➤ Services The invisible workers of your application. Service components run in the
background, updating your data sources and visible Activities and triggering Notifica-
tions. They’re used to perform regular processing that needs to continue even when your
application’s Activities aren’t active or visible. You’ll learn how to create Services in
Chapter 9.

➤ Content Providers Shareable data stores. Content Providers are used to manage and share
application databases. They’re the preferred means of sharing data across application bound-
aries. This means that you can configure your own Content Providers to permit access from
other applications and use Content Providers exposed by others to access their stored data.
Android devices include several native Content Providers that expose useful databases like
the media store and contact details. You’ll learn how to create and use Content Providers in
Chapter 7.

➤ Intents An inter-application message-passing framework. Using Intents you can broadcast
messages system-wide or to a target Activity or Service, stating your intention to have an
action performed. The system will then determine the target(s) that will perform any actions
as appropriate.

➤ Broadcast Receivers Intent broadcast consumers. If you create and register a Broad-
cast Receiver, your application can listen for broadcast Intents that match specific filter

Introducing the Application Manifest ❘ 51

criteria. Broadcast Receivers will automatically start your application to respond to an
incoming Intent, making them perfect for creating event-driven applications.

➤ Widgets Visual application components that can be added to the home screen. A special
variation of a Broadcast Receiver, widgets let you create dynamic, interactive application
components for users to embed on their home screens. You’ll learn how to create your own
widgets in Chapter 10.

➤ Notifications A user notification framework. Notifications let you signal users without
stealing focus or interrupting their current Activities. They’re the preferred technique for
getting a user’s attention from within a Service or Broadcast Receiver. For example, when
a device receives a text message or an incoming call, it alerts you by flashing lights, making
sounds, displaying icons, or showing messages. You can trigger these same events from your
own applications using Notifications, as shown in Chapter 9.

By decoupling the dependencies between application components, you can share and interchange indi-
vidual pieces, such as Content Providers, Services, and even Activities, with other applications — both
your own and those of third parties.

INTRODUCING THE APPLICATION MANIFEST

Each Android project includes a manifest file, AndroidManifest.xml, stored in the root of the project
hierarchy. The manifest lets you define the structure and metadata of your application, its components,
and its requirements.

It includes nodes for each of the components (Activities, Services, Content Providers, and Broadcast
Receivers) that make up your application and, using Intent Filters and Permissions, determines how
they interact with each other and with other applications.

The manifest also offers attributes to specify application metadata (like its icon or theme), and addi-
tional top-level nodes can be used for security settings, unit tests, and defining hardware and platform
support requirements, as described below.

The manifest is made up of a root <manifest> tag with a package attribute set to the project’s pack-
age. It usually includes an xmlns:android attribute that supplies several system attributes used within
the file.

Use the versionCode attribute to define the current application version as an integer. This value is used
internally to compare application versions. Use the versionName attribute to specify a public version
number that is displayed to users.

A typical manifest node is shown in the following XML snippet:

<manifest xmlns:android=http://schemas.android.com/apk/res/android
package="com.my_domain.my_app"
android:versionCode="1"
android:versionName="0.9 Beta">
[... manifest nodes ...]

</manifest>

52 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

The <manifest> tag includes nodes that define the application components, security settings, test
classes, and requirements that make up your application. The following list gives a summary of the
available <manifest> node tags, and an XML snippet demonstrating how each one is used:

➤ uses-sdk This node lets you define a minimum, maximum, and target SDK version that
must be available on a device in order for your application to function properly. Using a
combination of minSDKVersion, maxSDKVersion, and targetSDKVersion attributes you can
restrict which devices your application can run on, based on the SDK version supported by
the installed platform.

The minimum SDK version specifies the lowest version of the SDK that includes the APIs you
have used in your application. If you fail to specify a minimum version one will be assumed
and your application will crash if it attempts to access APIs that aren’t available on the host
device.

The maximum SDK version lets you define an upper limit you are willing to support. Your
application will not be visible on the Market for devices running a higher platform release.
It’s good practice not to set the maximum SDK value unless you know your application will
definitely not work on newer platform releases.

The target SDK version attribute lets you specify the platform against which you did your
development and testing. Setting a target SDK version tells the system that there is no
need to apply any forward- or backward- compatibility changes to support that particular
version.

<uses-sdk android:minSdkVersion="4"
android:targetSdkVersion="5">

</uses-sdk>

The supported SDK version is not equivalent to the platform version and cannot be
derived from it. For example, Android platform release 2.0 supports the SDK
version 5. To find the correct SDK version for each platform use the table at
http://developer.android.com/guide/appendix/api-levels.html

➤ uses-configuration Use uses-configuration nodes to specify each combination of input
mechanisms supported by your application. You can specify any combination of input
devices that include:

➤ reqFiveWayNav Specify true for this attribute if you require an input device capa-
ble of navigating up, down, left, and right and of clicking the current selection. This
includes both trackballs and D-pads.

➤ reqHardKeyboard If your application requires a hardware keyboard specify true.

➤ reqKeyboardType Lets you specify the keyboard type as one of nokeys, qwerty,
twelvekey, or undefined.

➤ reqNavigation Specify the attribute value as one of nonav, dpad, trackball,
wheel, or undefined as a required navigation device.

Introducing the Application Manifest ❘ 53

➤ reqTouchScreen Select one of notouch, stylus, finger, or undefined to specify
the required touchscreen input.

You can specify multiple supported configurations, for example a device with a finger
touchscreen, a trackball, and either a QUERTY or twelve-key hardware keyboard, as
shown here:

<uses-configuration android:reqTouchScreen=["finger"]
android:reqNavigation=["trackball"]
android:reqHardKeyboard=["true"]
android:reqKeyboardType=["qwerty"/>

<uses-configuration android:reqTouchScreen=["finger"]
android:reqNavigation=["trackball"]
android:reqHardKeyboard=["true"]
android:reqKeyboardType=["twelvekey"]/>

When specifying required configurations be aware that your application won’t be
installed on any device that does not have one of the combinations specified. In the
above example a device with a QWERTY keyboard and a D-pad (but no
touchscreen or trackball) would not be supported. Ideally you should develop your
application to ensure it works with any input configuration, in which case no
uses-configuration node is required.

➤ uses-feature One of the advantages of Android is the wide variety of hardware platforms
it runs on. Use multiple uses-feature nodes to specify each of the hardware features
your application requires. This will prevent your application from being installed on a
device that does not include a required hardware feature. You can require support for
any hardware that is optional on a compatible device. Currently optional hardware fea-
tures include:

➤ android.hardware.camera For applications that require camera hardware.

➤ android.hardware.camera.autofocus If you require an autofocus camera.

As the variety of platforms on which Android is available increases, so too will
the optional hardware. A full list of uses-feature hardware can be found here:
http://developer.android.com/guide/topics/manifest/uses-feature-element.html

You can also use the uses-feature node to specify the minimum version of OpenGL required
by your application. Use the glEsVersion attribute, specifying the OpenGL ES version as an
integer. The higher 16 bits represent the major number and the lower 16 bits represent the
minor number.

<uses-feature android:glEsVersion=" 0x00010001"
android:name="android.hardware.camera" />

➤ supports-screens After the initial round of HVGA hardware, 2009 saw the introduction
of WVGA and QVGA screens to the Android device menagerie. With future Android devices
likely to feature devices with larger screens, the supports-screen node lets you specify the
screen sizes your application can, and can’t, support.

54 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

Exact dimensions will vary depending on hardware, but in general the supported screen sizes
match resolutions as follows:

➤ smallScreens Screens with a resolution smaller than traditional HVGA — typi-
cally QVGA screens.

➤ normalScreens Used to specify typical mobile phone screens of at least HVGA,
including WVGA and WQVGA.

➤ largeScreens Screens larger than normal. In this instance a large screen is consid-
ered to be significantly larger than a mobile phone display.

➤ anyDensity Set to true if your application can be scaled to accommodate any
screen resolution.

As of SDK 1.6 (API level 4), the default value for each attribute is true. Use this node to spec-
ify screen sizes you do not support.

<supports-screens android:smallScreens=["false"]
android:normalScreens=["true"]
android:largeScreens=["true"]
android:anyDensity=["false"] />

Where possible you should optimize your application for different screen
resolutions and densities using the resources folder, as shown later in this chapter. If
you specify a supports-screen node that excludes certain screen sizes, your
application will not be available to be installed on devices with unsupported
screens.

➤ application A manifest can contain only one application node. It uses attributes to specify
the metadata for your application (including its title, icon, and theme). During development
you should include a debuggable attribute set to true to enable debugging — though you
may wish to disable this on your release builds.

The <application> node also acts as a container that includes the Activity, Service, Content
Provider, and Broadcast Receiver tags used to specify the application components. You can
also define your own implementation of the Application class. Later in this chapter you’ll
learn how to create and use your own Application class extension to manage application
state.

<application android:icon="@drawable/icon"
android:theme="@style/my_theme"
android:name="MyApplication"
android:debuggable="true">
[... application nodes ...]

</application>

➤ activity An <activity> tag is required for every Activity displayed by your
application. Using the android:name attribute to specify the Activity class name.

Introducing the Application Manifest ❘ 55

You must include the main launch Activity and any other screen or dialog that
can be displayed. Trying to start an Activity that’s not defined in the manifest will
throw a runtime exception. Each Activity node supports <intent-filter> child
tags that specify which Intents launch the Activity.

<activity android:name=".MyActivity" android:label="@string/app_name">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

➤ service As with the activity tag, create a new service tag for each Service class
used in your application. (Services are covered in detail in Chapter 9.) Service tags
also support <intent-filter> child tags to allow late runtime binding.

<service android:enabled="true" android:name=".MyService"></service>

➤ provider Provider tags specify each of your application’s Content Providers.
Content Providers are used to manage database access and sharing within and
between applications and are examined in Chapter 7.

<provider android:permission="com.paad.MY_PERMISSION"
android:name=".MyContentProvider"
android:enabled="true"
android:authorities="com.paad.myapp.MyContentProvider">

</provider>

➤ receiver By adding a receiver tag, you can register a Broadcast Receiver with-
out having to launch your application first. As you’ll see in Chapter 5, Broadcast
Receivers are like global event listeners that, once registered, will execute when-
ever a matching Intent is broadcast by the system or an application. By registering a
Broadcast Receiver in the manifest you can make this process entirely autonomous.
If a matching Intent is broadcast, your application will be started automatically and
the registered Broadcast Receiver will be run.

<receiver android:enabled="true"
android:label="My Intent Receiver"
android:name=".MyIntentReceiver">

</receiver>

➤ uses-permission As part of the security model, uses-permission tags declare the permis-
sions you’ve determined your application needs to operate properly. The permissions you
include will be presented to the user before installation commences. Permissions are required
for many of the native Android services, particularly those with a cost or security implication
(such as dialing, receiving SMS, or using the location-based services).

<uses-permission android:name="android.permission.ACCESS_LOCATION"/>

➤ permission Third-party applications can also specify permissions before providing access
to shared application components. Before you can restrict access to an application compo-
nent, you need to define a permission in the manifest. Use the permission tag to create a
permission definition.

56 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

Application components can then require permissions by adding the android:permission

attribute. Other applications will then need to include a uses-permission tag in their mani-
fests to use these protected components.

Within the permission tag, you can specify the level of access the permission will permit
(normal, dangerous, signature, signatureOrSystem), a label, and an external resource con-
taining the description that explains the risks of granting the specified permission.

<permission android:name="com.paad.DETONATE_DEVICE"
android:protectionLevel="dangerous"
android:label="Self Destruct"
android:description="@string/detonate_description">

</permission>

➤ instrumentation Instrumentation classes provide a test framework for your application
components at run time. They provide hooks to monitor your application and its interaction
with the system resources. Create a new node for each of the test classes you’ve created for
your application.

<instrumentation android:label="My Test"
android:name=".MyTestClass"
android:targetPackage="com.paad.aPackage">

</instrumentation>

A more detailed description of the manifest and each of these nodes can be found at http://developer
.android.com/guide/topics/manifest/manifest-intro.html

The ADT New Project Wizard automatically creates a new manifest file when it creates a new project.

You’ll return to the manifest as each of the application components is introduced.

USING THE MANIFEST EDITOR

The ADT plug-in includes a visual Manifest Editor so you don’t have to manipulate the underlying
XML directly.

To use the Manifest Editor in Eclipse, right-click the AndroidManifest.xml file in your project folder
and select Open With . . . ➪ Android Manifest Editor. This presents the Android Manifest Overview
screen, as shown in Figure 3-1. This screen gives you a high-level view of your application structure,
enabling you to set your application version information and root level manifest nodes, including
<uses-sdk> and <uses-features>, as described previously in this chapter. It also provides shortcut
links to the Application, Permissions, Instrumentation, and raw XML screens.

Each of the next three tabs contains a visual interface for managing the application, security, and
instrumentation (testing) settings, while the last tag (using the manifest’s file name) gives access to the
raw XML.

Of particular interest is the Application tab, shown in Figure 3-2. Use it to manage the application node
and the application component hierarchy, where you specify the application components.

You can specify an application’s attributes — including its icon, label, and theme — in the Application
Attributes panel. The Application Nodes tree beneath it lets you manage the application components,
including their attributes and any associated Intent Filter subnodes.

The Android Application Life Cycle ❘ 57

FIGURE 3-1

THE ANDROID APPLICATION LIFE CYCLE

Unlike most traditional environments, Android applications have limited control over their own life
cycles. Instead, application components must listen for changes in the application state and react
accordingly, taking particular care to be prepared for untimely termination.

By default, each Android application runs in its own process, each of which is running a separate
instance of Dalvik. Memory and process management is handled exclusively by the run time.

While it’s uncommon, it’s possible to force application components within the
same application to run in different processes or to have multiple applications share
the same process using the android:process attribute on the affected component
nodes within the manifest.

Android aggressively manages its resources, doing whatever it takes to ensure that the device remains
responsive. This means that processes (and their hosted applications) will be killed, without warning
in some cases, to free resources for higher-priority applications — generally those interacting directly
with the user at the time. The prioritization process is discussed in the next section.

58 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

FIGURE 3-2

UNDERSTANDING APPLICATION PRIORITY AND PROCESS
STATES

The order in which processes are killed to reclaim resources is determined by the priority of the hosted
applications. An application’s priority is equal to its highest-priority component.

If two applications have the same priority, the process that has been at a lower priority longest will be
killed first. Process priority is also affected by interprocess dependencies; if an application has a depen-
dency on a Service or Content Provider supplied by a second application, the secondary application
will have at least as high a priority as the application it supports.

All Android applications will remain running and in memory until the system needs
resources for other applications.

Figure 3-3 shows the priority tree used to determine the order of application termination.

It’s important to structure your application correctly to ensure that its priority is appropriate for the
work it’s doing. If you don’t, your application could be killed while it’s in the middle of something
important.

Externalizing Resources ❘ 59

5. Empty Process

4. Background Process

3. Started Service Process

2. Visible Process

1. Active Process

Low Priority

High Priority

Critical Priority

FIGURE 3-3

The following list details each of the application states
shown in Figure 3-3, explaining how the state is determined
by the application components comprising it:

➤ Active processes Active (foreground) processes
have application components interacting with
the user. These are the processes Android is try-
ing to keep responsive by reclaiming resources.
There are generally very few of these processes,
and they will be killed only as a last resort.

Active processes include:

➤ Activities in an ‘‘active’’ state; that is,
those in the foreground responding to
user events. You will explore Activ-
ity states in greater detail later in this
chapter.

.
➤ Broadcast Receivers executing onReceive event handlers.

➤ Services executing onStart, onCreate, or onDestroy event handlers.

➤ Running Services that have been flagged to run in the foreground.

➤ Visible processes Visible but inactive processes are those hosting ‘‘visible’’ Activities. As the
name suggests, visible Activities are visible, but they aren’t in the foreground or responding to
user events. This happens when an Activity is only partially obscured (by a non-full-screen or
transparent Activity). There are generally very few visible processes, and they’ll be killed only
under extreme circumstances to allow active processes to continue.

➤ Started Service processes Processes hosting Services that have been started. Services support
ongoing processing that should continue without a visible interface. Because background Ser-
vices don’t interact directly with the user, they receive a slightly lower priority than visible
Activities. They are still considered foreground processes and won’t be killed unless resources
are needed for active or visible processes. You’ll learn more about Services in Chapter 9.

➤ Background processes Processes hosting Activities that aren’t visible and that don’t have
any running Services. There will generally be a large number of background processes that
Android will kill using a last-seen-first-killed pattern in order to obtain resources for fore-
ground processes.

➤ Empty processes To improve overall system performance, Android will often retain an
application in memory after it has reached the end of its lifetime. Android maintains this
cache to improve the start-up time of applications when they’re relaunched. These processes
are routinely killed as required.

EXTERNALIZING RESOURCES

No matter what your development environment, it’s always good practice to keep non-code resources
like images and string constants external to your code. Android supports the externalization of
resources ranging from simple values such as strings and colors to more complex resources like images
(Drawables), animations, and themes. Perhaps the most powerful externalizable resources are layouts.

60 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

By externalizing resources you make them easier to maintain, update, and manage. This also lets you
easily define alternative resource values to support different hardware and internationalization.

You’ll see later in this section how Android dynamically selects resources from resource trees that
contain different values for alternative hardware configurations, languages, and locations. This lets
you create different resource values for specific languages, countries, screens, and keyboards. When an
application starts, Android will automatically select the correct resource values without your having to
write a line of code.

Among other things, this lets you change the layout based on the screen size and orientation and cus-
tomize text prompts based on language and country.

Creating Resources
Application resources are stored under the res/ folder of your project hierarchy. In this folder each of
the available resource types are stored in a subfolder containing those resources.

FIGURE 3-4

If you start a project using the ADT wizard, it will create a res folder that
contains subfolders for the values, drawable-ldpi, drawable-mdpi,

drawable-hdpi, and layout resources that contain the default layout,
application icon, and string resource definitions respectively, as shown
in Figure 3-4.

Note that three Drawable resource folders are created with three differ-
ent icons, one each for low, medium, and high DPI displays.

Nine primary resource types have different folders: simple values,
Drawables, layouts, animations, styles, menus, searchables, XML, and
raw resources. When your application is built, these resources will be
compiled as efficiently as possible and included in your application
package.

This process also generates an R class file that contains references to
each of the resources you include in your project. This lets you reference
the resources in your code, with the advantage of design-time syntax
checking.

The following sections describe many of the specific resource types available within these categories
and how to create them for your applications.

In all cases the resource file names should contain only lowercase letters, numbers, and the period (.)
and underscore (_) symbols.

Creating Simple Values
Supported simple values include strings, colors, dimensions, and string or integer arrays. All simple
values are stored within XML files in the res/values folder.

Within each XML file you indicate the type of value being stored using tags, as shown in the sample
XML file in Listing 3-1.

Externalizing Resources ❘ 61

LISTING 3-1: Simple values XML

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="app_name">To Do List</string>
<color name="app_background">#FF0000FF</color>
<dimen name="default_border">5px</dimen>
<array name="string_array">

<item>Item 1</item>
<item>Item 2</item>
<item>Item 3</item>

</array>
<array name="integer_array">

<item>3</item>
<item>2</item>
<item>1</item>

</array>
</resources>

This example includes all the simple value types. By convention, resources are separated into different
files for each type; for example, res/values/strings.xml would contain only string resources.

The following sections detail the options for defining simple resources.

Strings
Externalizing your strings helps maintain consistency within your application and makes it much easier
to create localized versions.

String resources are specified with the <string> tag, as shown in the following XML snippet.

<string name="stop_message">Stop.</string>

Android supports simple text styling, so you can use the HTML tags , <i>, and <u> to apply bold,
italics, or underlining respectively to parts of your text strings, as shown in the following example:

<string name="stop_message">Stop.</string>

You can use resource strings as input parameters for the String.format method. However,
String.format does not support the text styling described above. To apply styling to a format string
you have to escape the HTML tags when creating your resource, as shown in the following.

<string name="stop_message">Stop. %1$s</string>

Within your code, use the Html.fromHtml method to convert this back into a styled character sequence.

String rString = getString(R.string.stop_message);
String fString = String.format(rString, "Collaborate and listen.");
CharSequence styledString = Html.fromHtml(fString);

Colors
Use the <color> tag to define a new color resource. Specify the color value using a # symbol followed
by the (optional) alpha channel, then the red, green, and blue values using one or two hexadecimal
numbers with any of the following notations:

62 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

➤ #RGB

➤ #RRGGBB

➤ #ARGB

➤ #AARRGGBB

The following example shows how to specify a fully opaque blue and a partially transparent green.

<color name="opaque_blue">#00F</color>
<color name="transparent_green">#7700FF00</color>

Dimensions
Dimensions are most commonly referenced within style and layout resources. They’re useful for creat-
ing layout constants such as borders and font heights.

To specify a dimension resource use the <dimen> tag, specifying the dimension value, followed by an
identifier describing the scale of your dimension:

➤ px (screen pixels)

➤ in (physical inches)

➤ pt (physical points)

➤ mm (physical millimeters)

➤ dp (density-independent pixels relative to a 160-dpi screen)

➤ sp (scale-independent pixels)

These alternatives let you define a dimension not only in absolute terms, but also using relative scales
that account for different screen resolutions and densities to simplify scaling on different hardware.

The following XML snippet shows how to specify dimension values for a large font size and a standard
border:

<dimen name="standard_border">5dp</dimen>
<dimen name="large_font_size">16sp</dimen>

Styles and Themes
Style resources let your applications maintain a consistent look and feel by enabling you to specify the
attribute values used by Views. The most common use of themes and styles is to store the colors and
fonts for an application.

You can easily change the appearance of your application by simply specifying a different style as the
theme in your project manifest.

To create a style use a <style> tag that includes a name attribute and contains one or more item tags.
Each item tag should include a name attribute used to specify the attribute (such as font size or color)
being defined. The tag itself should then contain the value, as shown in the following skeleton code.

<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="StyleName">

Externalizing Resources ❘ 63

<item name="attributeName">value</item>
</style>

</resources>

Styles support inheritance using the parent attribute on the <style> tag, making it easy to create simple
variations.

The following example shows two styles that can also be used as a theme: a base style that sets several
text properties and a second style that modifies the first to specify a smaller font.

<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="BaseText">
<item name="android:textSize">14sp</item>
<item name="android:textColor">#111</item>

</style>
<style name="SmallText" parent="BaseText">
<item name="android:textSize">8sp</item>

</style>
</resources>

Drawables
Drawable resources include bitmaps and NinePatch (stretchable PNG) images. They also include com-
plex composite Drawables, such as LevelListDrawables and StateListDrawables that can be defined
in XML.

Both NinePatch Drawables and complex composite resources are covered in more detail in the next
chapter.

All Drawables are stored as individual files in the res/drawable folder. The resource identifier for a
Drawable resource is the lowercase file name without an extension.

The preferred format for a bitmap resource is PNG, although JPG and GIF files are
also supported.

Layouts
Layout resources let you decouple your presentation layer by designing user interface layouts in XML
rather than constructing them in code.

The most common use of a layout is for defining the user interface for an Activity. Once defined in
XML, the layout is ‘‘inflated’’ within an Activity using setContentView, usually within the onCreate

method. You can also reference layouts from within other layout resources, such as layouts for each
row in a List View. More detailed information on using and creating layouts in Activities can be found
in Chapter 4.

Using layouts to create your screens is best-practice UI design in Android. The decoupling of the layout
from the code lets you create optimized layouts for different hardware configurations, such as varying
screen sizes, orientation, or the presence of keyboards and touchscreens.

64 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

Each layout definition is stored in a separate file, each containing a single layout, in the res/layout

folder. The file name then becomes the resource identifier.

A thorough explanation of layout containers and View elements is included in the next chapter, but as
an example Listing 3-2 shows the layout created by the New Project Wizard. It uses a Linear Layout
(described in more detail in Chapter 4) as a layout container for a Text View that displays the ‘‘Hello
World’’ greeting.

LISTING 3-2: Hello World layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World!"

/>
</LinearLayout>

Animations
Android supports two types of animation. Tweened animations can be used to rotate, move, stretch,
and fade a View; or you can create frame-by-frame animations to display a sequence of Drawable
images. A comprehensive overview of creating, using, and applying animations can be found in
Chapter 15.

Defining animations as external resources enables you to reuse the same sequence in multiple places
and provides you with the opportunity to present different animations based on device hardware or
orientation.

Tweened Animations
Each tweened animation is stored in a separate XML file in the project’s res/anim folder. As with
layouts and Drawable resources, the animation’s file name is used as its resource identifier.

An animation can be defined for changes in alpha (fading), scale (scaling), translate (movement), or
rotate (rotation).

Table 3-1 shows the valid attributes, and attribute values, supported by each animation type.

You can create a combination of animations using the set tag. An animation set contains one or more
animation transformations and supports various additional tags and attributes to customize when and
how each animation within the set is run.

The following list shows some of the set tags available.

➤ duration Duration of the animation in milliseconds.

➤ startOffset Millisecond delay before the animation starts.

Externalizing Resources ❘ 65

➤ fillBefore true to apply the animation transformation before it begins.

➤ fillAfter true to apply the animation transformation after it ends.

➤ interpolator Sets how the speed of this effect varies over time. Chapter 15 explores
the interpolators available. To specify one, reference the system animation resources at
android:anim/interpolatorName

TABLE 3-1: Animation type attributes

ANIMATION TYPE ATTRIBUTES VALID VALUES

Alpha fromAlpha/toAlpha Float from 0 to 1

Scale fromXScale/toXScale Float from 0 to 1

fromYScale/toYScale Float from 0 to 1

pivotX/pivotY String of the percentage of graphic
width/height from 0% to 100%

Translate fromX/to X Float from 0 to 1

fromY/toY Float from 0 to 1

Rotate fromDegrees/toDegrees Float from 0 to 360

pivotX/pivot Y String of the percentage of graphic
width/height from 0% to 100%

If you do not use the startOffset tag, all the animation effects within a set will
execute simultaneously.

The following example shows an animation set that spins the target 360 degrees while it shrinks and
fades out.

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"

android:interpolator="@android:anim/accelerate_interpolator">
<rotate
android:fromDegrees="0"
android:toDegrees="360"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="500"
android:duration="1000" />

<scale
android:fromXScale="1.0"
android:toXScale="0.0"

66 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

android:fromYScale="1.0"
android:toYScale="0.0"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="500"
android:duration="500" />

<alpha
android:fromAlpha="1.0"
android:toAlpha="0.0"
android:startOffset="500"
android:duration="500" />

</set>

Frame-by-Frame Animations
Frame-by-frame animations let you create a sequence of Drawables, each of which will be displayed for
a specified duration, on the background of a View.

Because frame-by-frame animations represent animated Drawables they are stored in the res/drawable
folder, rather than with the tweened animations, and use their file names (without the .xml extension)
as their resource IDs.

The following XML snippet shows a simple animation that cycles through a series of bitmap resources,
displaying each one for half a second. In order to use this snippet you will need to create new image
resources rocket1 through rocket3.

<animation-list
xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="false">
<item android:drawable="@drawable/rocket1" android:duration="500" />
<item android:drawable="@drawable/rocket2" android:duration="500" />
<item android:drawable="@drawable/rocket3" android:duration="500" />

</animation-list>

Menus
Create menu resources to further decouple your presentation layer by designing your menu layouts in
XML rather than constructing them in code.

Menu resources can be used to define both Activity and context menus within your applications, and
provide the same options you would have when constructing your menus in code. Once defined in
XML, a menu is ‘‘inflated’’ within your application via the inflate method of the MenuInflator Ser-
vice, usually within the onCreateOptionsMenu method. You will examine menus in more detail in
Chapter 4.

Each menu definition is stored in a separate file, each containing a single menu, in the res/menu folder.
The file name then becomes the resource identifier. Using XML to define your menus is best-practice
design in Android.

A thorough explanation of menu options is included in the next chapter, but Listing 3-3 shows a simple
menu example.

Externalizing Resources ❘ 67

LISTING 3-3: Simple menu layout resource

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/menu_refresh"

android:title="Refresh" />
<item android:id="@+id/menu_settings"

android:title="Settings" />
</menu>

Using Resources
As well as the resources you create, Android supplies several system resources that you can use in your
applications. The resources can be used directly from your application code and can also be referenced
from within other resources (e.g., a dimension resource might be referenced in a layout definition).

Later in this chapter you’ll learn how to define alternative resource values for different languages, loca-
tions, and hardware. It’s important to note that when using resources you cannot choose a particular
specialized version. Android will automatically select the most appropriate value for a given resource
identifier based on the current hardware and device settings.

Using Resources in Code
You access resources in code using the static R class. R is a generated class based on your external
resources, and created when your project is compiled. The R class contains static subclasses for each of
the resource types for which you’ve defined at least one resource. For example, the default new project
includes the R.string and R.drawable subclasses.

If you are using the ADT plug-in in Eclipse, the R class will be created
automatically when you make any change to an external resource file or folder. If
you are not using the plug-in, use the AAPT tool to compile your project and
generate the R class. R is a compiler-generated class, so don’t make any manual
modifications to it as they will be lost when the file is regenerated.

Each of the subclasses within R exposes its associated resources as variables, with the variable names
matching the resource identifiers — for example, R.string.app_name or R.drawable.icon

The value of these variables is a reference to the corresponding resource’s location in the resource table,
not an instance of the resource itself.

Where a constructor or method, such as setContentView, accepts a resource identifier, you can pass in
the resource variable, as shown in the following code snippet.

// Inflate a layout resource.
setContentView(R.layout.main);

68 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

// Display a transient dialog box that displays the
// error message string resource.
Toast.makeText(this, R.string.app_error, Toast.LENGTH_LONG).show();

When you need an instance of the resource itself, you’ll need to use helper methods to extract them
from the resource table. The resource table is represented within your application as an instance of the
Resources class.

Because these methods perform lookups on the application’s resource table, these helper methods can’t
be static. Use the getResources method on your application context, as shown in the following snippet,
to access your application’s Resources instance.

Resources myResources = getResources();

The Resources class includes getters for each of the available resource types and generally works by
passing in the resource ID you’d like an instance of. The following code snippet shows an example of
using the helper methods to return a selection of resource values.

Resources myResources = getResources();

CharSequence styledText = myResources.getText(R.string.stop_message);
Drawable icon = myResources.getDrawable(R.drawable.app_icon);

int opaqueBlue = myResources.getColor(R.color.opaque_blue);

float borderWidth = myResources.getDimension(R.dimen.standard_border);

Animation tranOut;
tranOut = AnimationUtils.loadAnimation(this, R.anim.spin_shrink_fade);

String[] stringArray;
stringArray = myResources.getStringArray(R.array.string_array);

int[] intArray = myResources.getIntArray(R.array.integer_array);

Frame-by-frame animated resources are inflated into AnimationResources. You can return the value
using getDrawable and casting the return value, as shown here:

AnimationDrawable rocket;
rocket = (AnimationDrawable)myResources.getDrawable(R.drawable.frame_by_frame);

Referencing Resources within Resources
You can also use resource references as attribute values in other XML resources.

This is particularly useful for layouts and styles, letting you create specialized variations on themes and
localized strings and graphics. It’s also a useful way to support different images and spacing for a layout
to ensure that it’s optimized for different screen sizes and resolutions.

To reference one resource from another use @ notation, as shown in the following snippet.

attribute="@[packagename:]resourcetype/resourceidentifier"

Externalizing Resources ❘ 69

Android will assume you’re using a resource from the same package, so you only
need to fully qualify the package name if you’re using a resource from a different
package.

Listing 3-4 shows a layout that uses color, dimension, and string resources.

LISTING 3-4: Using resources in a layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:padding="@dimen/standard_border">
<EditText

android:id="@+id/myEditText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/stop_message"
android:textColor="@color/opaque_blue"

/>
</LinearLayout>

Using System Resources
The native Android applications externalize many of their resources, providing you with various
strings, images, animations, styles, and layouts to use in your applications.

Accessing the system resources in code is similar to using your own resources. The difference is that you
use the native Android resource classes available from android.R, rather than the application-specific
R class. The following code snippet uses the getString method available in the application context to
retrieve an error message available from the system resources:

CharSequence httpError = getString(android.R.string.httpErrorBadUrl);

To access system resources in XML specify Android as the package name, as shown in this XML
snippet.

<EditText
android:id="@+id/myEditText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@android:string/httpErrorBadUrl"
android:textColor="@android:color/darker_gray"

/>

70 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

Referring to Styles in the Current Theme
Using themes is an excellent way to ensure consistency for your application’s UI. Rather than fully
define each style, Android provides a shortcut to let you use styles from the currently applied theme.

To do this you use ?android: rather than @ as a prefix to the resource you want to use. The following
example shows a snippet of the preceding code but uses the current theme’s text color rather than an
external resource.

<EditText
android:id="@+id/myEditText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/stop_message"
android:textColor="?android:textColor"

/>

This technique lets you create styles that will change if the current theme changes, without your having
to modify each individual style resource.

To-Do List Resources Example
In this example you’ll create new external resources in preparation for adding functionality to the To-
Do List example you started in Chapter 2. The string and image resources you create here will be used
in Chapter 4 when you implement a menu system for the To-Do List application.

The following steps will show you how to create text and icon resources to use for the Add and Remove
menu items, and how to create a theme to apply to the application:

FIGURE 3-5

. 1. Create two new PNG images, one to represent adding a to-do
list item, and one to represent removing an item. Each image
should have dimensions of approximately 16 pixels by 16 pixels,
like those illustrated in Figure 3-5.

2. Copy the images into your project’s res/drawable-mdpi folder and refresh
your project.

3. Open the strings.xml resource from the res/values folder and add values for the add_new,
remove, and cancel menu items. (You can remove the default hello string value while you’re
there.)

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="app_name">To Do List</string>
<string name="add_new">Add New Item</string>
<string name="remove">Remove Item</string>
<string name="cancel">Cancel</string>

</resources>

4. Create a new theme for the application by creating a new styles.xml resource in the
res/values folder. Base your theme on the standard Android theme, but set values for a
default text size.

Externalizing Resources ❘ 71

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="ToDoTheme" parent="@android:style/Theme.Black">
<item name="android:textSize">12sp</item>

</style>
</resources>

5. Apply the theme to your project in the manifest.

<activity android:name=".ToDoList"
android:label="@string/app_name"
android:theme="@style/ToDoTheme">

Creating Resources for Different Languages and Hardware
One of the most compelling reasons to externalize your resources is Android’s dynamic resource-
selection mechanism.

Using the directory structure described below, you can create different resource values for specific
languages, locations, and hardware configurations. Android will choose from among these values
dynamically at run time.

You can specify alternative resource values using a parallel directory structure within the res folder.
A hyphen (-) is used to separate qualifiers that specify the conditions you’re providing alterna-
tives for.

The following example hierarchy shows a folder structure that features default string values, with
French language and French Canadian location variations:

Project/
res/
values/

strings.xml
values-fr/

strings.xml
values-fr-rCA/

strings.xml

The following list gives the qualifiers you can use to customize your resource values:

➤ Mobile Country Code and Mobile Network Code (MCC/MNC) The country, and option-
ally the network, associated with the SIM currently used in the device. The MCC is specified
by mcc followed by the three-digit country code. You can optionally add the MNC using mnc

and the two- or three-digit network code (e.g., mcc234-mnc20 or mcc310). You can find a list of
MCC/MNC codes on Wikipedia at http://en.wikipedia.org/wiki/Mobile_Network_Code

➤ Language and Region Language specified by the lowercase two-letter ISO 639-1 language
code, followed optionally by a region specified by a lowercase r followed by the uppercase
two-letter ISO 3166-1-alpha-2 language code (e.g., en, en-rUS, or en-rGB).

➤ Screen Size One of small (smaller than HVGA), medium (at least HVGA and smaller than
VGA), or large (VGA or larger).

72 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

➤ Screen Width/Length Specify long or notlong for resources designed specifically for wide
screen (e.g., WVGA is long, QVGA is notlong).

➤ Screen Orientation One of port (portrait), land (landscape), or square (square).

➤ Screen Pixel Density Pixel density in dots per inch (dpi). Best practice is to use ldpi, mdpi,
or hdpi to specify low (120 dpi), medium (160 dpi), or high (240 dpi) pixel density respec-
tively. You can specify nodpi for bitmap resources you don’t want scaled to support an exact
screen density. Unlike with other resource types Android does not require an exact match to
select a resource. When selecting the appropriate folder it will choose the nearest match to the
device’s pixel density and scale the resulting Drawables accordingly.

➤ Touchscreen Type One of notouch, stylus, or finger.

➤ Keyboard Availability One of keysexposed, keyshidden, or keyssoft.

➤ Keyboard Input Type One of nokeys, qwerty, or 12key.

➤ UI Navigation Type One of nonav, dpad, trackball, or wheel.

You can specify multiple qualifiers for any resource type, separating each qualifier with a hyphen. Any
combination is supported; however, they must be used in the order given in the preceding list, and no
more than one value can be used per qualifier.

The following example shows valid and invalid directory names for alternative Drawable resources.

➤ Valid:

drawable-en-rUS
drawable-en-keyshidden
drawable-long-land-notouch-nokeys

➤ Invalid:

drawable-rUS-en (out of order)
drawable-rUS-rUK (multiple values for a single qualifier)

When Android retrieves a resource at run time, it will find the best match from the available alterna-
tives. Starting with a list of all the folders in which the required value exists, it will select the one with
the greatest number of matching qualifiers. If two folders are an equal match, the tiebreaker will be
based on the order of the matched qualifiers in the preceding list.

If no resource matches are found on a given device, your application will throw an
exception when attempting to access that resource. To avoid this you should always
include default values for each resource type in a folder that includes no qualifiers.

Runtime Configuration Changes
Android handles runtime changes to the language, location, and hardware by terminating and restarting
each application and reloading the resource values.

This default behavior isn’t always convenient or desirable, particularly as some configuration changes
(like those to screen orientation and keyboard availability) can occur as easily as a user can rotate the

Externalizing Resources ❘ 73

device or slide out the keyboard. You can customize your application’s response to such changes by
detecting and reacting to them yourself.

To have an Activity listen for runtime configuration changes, add an android:configChanges attribute
to its manifest node, specifying the configuration changes you want to handle.

The following list describes the configuration changes you can specify:

➤ orientation The screen has been rotated between portrait and landscape.

➤ keyboardHidden The keyboard has been exposed or hidden.

➤ fontScale The user has changed the preferred font size.

➤ locale The user has chosen a different language setting.

➤ keyboard The type of keyboard has changed; for example, the phone may have a 12-key
keypad that flips out to reveal a full keyboard.

➤ touchscreen or navigation The type of keyboard or navigation method has changed. Nei-
ther of these events should normally happen.

In certain circumstances multiple events will be triggered simultaneously. For example, when the user
is sliding out a keyboard most devices will fire both the keyboardHidden and orientation

events.

You can select multiple events you wish to handle yourself by separating the values with a pipe (|).

Listing 3-5 shows an activity node declaring that it will handle changes in screen orientation and key-
board visibility.

LISTING 3-5: Activity definition for handling dynamic resource changes

<activity android:name=".TodoList"
android:label="@string/app_name"
android:theme="@style/TodoTheme"
android:configChanges="orientation|keyboardHidden"/>

Adding an android:configChanges attribute suppresses the restart for the specified configuration
changes, instead triggering the onConfigurationChanged method in the Activity. Override this method
to handle the configuration changes, using the passed-in Configuration object to determine the new
configuration values, as shown in Listing 3-6. Be sure to call back to the superclass and reload any
resource values that the Activity uses, in case they’ve changed.

LISTING 3-6: Handling configuration changes in code

@Override
public void onConfigurationChanged(Configuration _newConfig) {
super.onConfigurationChanged(_newConfig);

[... Update any UI based on resource values ...]
continues

74 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

LISTING 3-6 (continued)

if (_newConfig.orientation == Configuration.ORIENTATION_LANDSCAPE) {
[... React to different orientation ...]

}

if (_newConfig.keyboardHidden == Configuration.KEYBOARDHIDDEN_NO) {
[... React to changed keyboard visibility ...]

}
}

When onConfigurationChanged is called, the Activity’s Resource variables will have already been
updated with the new values so they’ll be safe to use.

Any configuration change that you don’t explicitly flag as being handled by your application will cause
your Activity to restart, without a call to onConfigurationChanged.

INTRODUCING THE ANDROID APPLICATION CLASS

Extending the Application class with your own implementation enables you to do three things:

1. Maintain application state

2. Transfer objects between application components

3. Manage and maintain resources used by several application components

When your Application implementation is registered in the manifest, it will be instantiated when your
application process is created. As a result your Application implementation is by nature a singleton and
should be implemented as such to provide access to its methods and member variables.

Extending and Using the Application Class
Listing 3-7 shows the skeleton code for extending the Application class and implementing it as a
singleton.

LISTING 3-7: Skeleton application class

import android.app.Application;
import android.content.res.Configuration;

public class MyApplication extends Application {

private static MyApplication singleton;

// Returns the application instance
public static MyApplication getInstance() {
return singleton;

}

Introducing the Android Application Class ❘ 75

@Override
public final void onCreate() {

super.onCreate();
singleton = this;

}
}

Once created, you must register your new Application class in the manifest’s <application> node, as
shown in the following snippet:

<application android:icon="@drawable/icon"
android:name="MyApplication">

[... Manifest nodes ...]
</application>

Your Application implementation will by instantiated when your application is started. Create new
state variables and global resources for access from within the application components:

MyObject value = MyApplication.getInstance().getGlobalStateValue();
MyApplication.getInstance().setGlobalStateValue(myObjectValue);

This is a particularly effective technique for transferring objects between your loosely coupled applica-
tion components, or for maintaining application state or shared resources.

Overriding the Application Life Cycle Events
The Application class also provides event handlers for application creation and termination, low avail-
able memory, and configuration changes (as described in the previous section).

By overriding these methods you can implement your own application-specific behavior for each of
these circumstances:

➤ onCreate Called when the application is created. Override this method to initialize your
application singleton and create and initialize any application state variables or shared
resources.

➤ onTerminate Can be called when the application object is terminated. Note that there is
no guarantee of this method handler’s being called. If the application is terminated by the
kernel in order to free resources for other applications, the process will be terminated without
warning and without a call to the application object’s onTerminate handler.

➤ onLowMemory Provides an opportunity for well-behaved applications to free additional
memory when the system is running low on resources. This will generally only be called when
background processes have already been terminated and the current foreground applications
are still low on memory. Override this handler to clear caches or release unnecessary
resources.

➤ onConfigurationChanged Unlike with Activities, your application object is not killed and
restarted for configuration changes. Override this handler if it is necessary to handle configu-
ration changes at an application level.

As shown in Listing 3-8, you must always call through to the superclass event handlers when overriding
these methods.

76 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

LISTING 3-8: Overriding the application life cycle handlers

public class MyApplication extends Application {

private static MyApplication singleton;

// Returns the application instance
public static MyApplication getInstance() {
return singleton;

}

@Override
public final void onCreate() {
super.onCreate();
singleton = this;

}

@Override
public final void onTerminate() {
super.onTerminate();

}

@Override
public final void onLowMemory() {
super.onLowMemory();

}

@Override
public final void onConfigurationChanged(Configuration newConfig) {
super.onConfigurationChanged(newConfig);

}
}

A CLOSER LOOK AT ANDROID ACTIVITIES

To create user interface screens you extend the Activity class, using Views to provide the UI and allow
user interaction.

Each Activity represents a screen (similar to a Form) that an application can present to its users. The
more complicated your application, the more screens you are likely to need.

Create a new Activity for every screen you want to display. Typically this includes at least a primary
interface screen that handles the main UI functionality of your application. This primary interface is
often supported by secondary Activities for entering information, providing different perspectives on
your data, and supporting additional functionality. To move between screens start a new Activity (or
return from one).

Most Activities are designed to occupy the entire display, but you can also create Activities that are
semitransparent or floating.

A Closer Look at Android Activities ❘ 77

Creating an Activity
Extend Activity to create a new Activity class. Within this new class you must define the user interface
and implement your functionality. The basic skeleton code for a new Activity is shown in Listing 3-9.

LISTING 3-9: Activity skeleton code

package com.paad.myapplication;

import android.app.Activity;
import android.os.Bundle;

public class MyActivity extends Activity {

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
}

}

The base Activity class presents an empty screen that encapsulates the window display handling. An
empty Activity isn’t particularly useful, so the first thing you’ll want to do is create the user interface
with Views and layouts.

Views are the user interface controls that display data and provide user interaction. Android provides
several layout classes, called View Groups, that can contain multiple Views to help you design your
user interfaces.

Chapter 4 examines Views and View Groups in detail, examining what’s available, how to use them,
and how to create your own Views and layouts.

To assign a user interface to an Activity, call setContentView from the onCreatemethod of your Activity.

In this first snippet, an instance of a TextView is used as the Activity’s user interface:

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
TextView textView = new TextView(this);
setContentView(textView);

}

Usually you’ll want to use a more complex UI design. You can create a layout in code using lay-
out View Groups, or you can use the standard Android convention of passing a resource ID for a
layout defined in an external resource, as shown in the following snippet:

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

78 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

In order to use an Activity in your application you need to register it in the manifest. Add new
<activity> tags within the <application> node of the manifest; the <activity> tag includes attributes
for metadata such as the label, icon, required permissions, and themes used by the Activity. An Activity
without a corresponding <activity> tag can’t be displayed.

The XML in Listing 3-10 shows how to add a node for the MyActivity class created in Listing 3-9.

LISTING 3-10: Activity layout in XML

<activity android:label="@string/app_name"
android:name=".MyActivity">

</activity>

Within the <activity> tag you can add <intent-filter> nodes that specify the Intents your Activity
will listen for and react to. Each Intent Filter defines one or more actions and categories that your
Activity supports. Intents and Intent Filters are covered in depth in Chapter 5, but it’s worth noting
that for an Activity to be available from the main application launcher it must include an Intent Filter
listening for the MAIN action and the LAUNCHER category, as highlighted in Listing 3-11.

LISTING 3-11: Main application Activity definition

<activity android:label="@string/app_name"
android:name=".MyActivity">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

The Activity Life Cycle
A good understanding of the Activity life cycle is vital to ensure that your application provides a seam-
less user experience and properly manages its resources.

As explained earlier, Android applications do not control their own process lifetimes; the Android run
time manages the process of each application, and by extension that of each Activity within it.

While the run time handles the termination and management of an Activity’s process, the Activity’s
state helps determine the priority of its parent application. The application priority, in turn, influences
the likelihood that the run time will terminate it and the Activities running within it.

Activity Stacks
The state of each Activity is determined by its position on the Activity stack, a last-in–first-out collec-
tion of all the currently running Activities. When a new Activity starts, the current foreground screen
is moved to the top of the stack. If the user navigates back using the Back button, or the foreground
Activity is closed, the next Activity on the stack moves up and becomes active. This process is illustrated
in Figure 3-6.

A Closer Look at Android Activities ❘ 79

Active ActivityNew Activity

Last Active Activity

Previous Activities

Activity Stack

New Activity
started

Removed to
free resources

Back button
pushed or

activity closed

.

.

.

FIGURE 3-6

As described previously in this chapter, an application’s priority is influenced by its highest-
priority Activity. When the Android memory manager is deciding which application to termi-
nate to free resources, it uses this stack to determine the priority of applications based on their
Activities.

Activity States
As Activities are created and destroyed they move in and out of the stack shown in Figure 3-6. As they
do so, they transition through four possible states:

➤ Active When an Activity is at the top of the stack it is the visible, focused, foreground Activ-
ity that is receiving user input. Android will attempt to keep it alive at all costs, killing
Activities further down the stack as needed, to ensure that it has the resources it needs. When
another Activity becomes active, this one will be paused.

➤ Paused In some cases your Activity will be visible but will not have focus; at this point it’s
paused. This state is reached if a transparent or non-full-screen Activity is active in front of it.
When paused, an Activity is treated as if it were active; however, it doesn’t receive user input
events. In extreme cases Android will kill a paused Activity to recover resources for the active
Activity. When an Activity becomes totally obscured, it is stopped.

➤ Stopped When an Activity isn’t visible, it ‘‘stops.’’ The Activity will remain in memory,
retaining all state information; however, it is now a candidate for termination when the sys-
tem requires memory elsewhere. When an Activity is stopped it’s important to save data and
the current UI state. Once an Activity has exited or closed, it becomes inactive.

➤ Inactive After an Activity has been killed, and before it’s been launched, it’s inactive. Inac-
tive Activities have been removed from the Activity stack and need to be restarted before they
can be displayed and used.

80 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

State transitions are nondeterministic and are handled entirely by the Android memory manager.
Android will start by closing applications that contain inactive Activities, followed by those that are
stopped. In extreme cases it will remove those that are paused.

To ensure a seamless user experience, transitions between states should be invisible
to the user. There should be no difference in an Activity moving from a paused,
stopped, or inactive state back to active, so it’s important to save all UI state and
persist all data when an Activity is paused or stopped. Once an Activity does
become active, it should restore those saved values.

Monitoring State Changes
To ensure that Activities can react to state changes, Android provides a series of event handlers that are
fired when an Activity transitions through its full, visible, and active lifetimes. Figure 3-7 summarizes
these lifetimes in terms of the Activity states described in the previous section.

Activity.
onCreate

Activity.
onSaveInstanceState

Activity.
onRestoreInstanceState

Activity.
onRestart

Activity.
onStart

Activity.
onResume

Activity.
onPause

Activity is Killable

Activity.
onStop

Activity.
onDestroy

Active Lifetime

Visible Lifetime

Full Lifetime

FIGURE 3-7

The skeleton code in Listing 3-12 shows the stubs for the state change method handlers available in
an Activity. Comments within each stub describe the actions you should consider taking on each state
change event.

LISTING 3-12: Activity state event handlers

package com.paad.myapplication;

import android.app.Activity;
import android.os.Bundle;

public class MyActivity extends Activity {

A Closer Look at Android Activities ❘ 81

// Called at the start of the full lifetime.
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
// Initialize activity.

}

// Called after onCreate has finished, use to restore UI state
@Override
public void onRestoreInstanceState(Bundle savedInstanceState) {

super.onRestoreInstanceState(savedInstanceState);
// Restore UI state from the savedInstanceState.
// This bundle has also been passed to onCreate.

}

// Called before subsequent visible lifetimes
// for an activity process.
@Override
public void onRestart(){

super.onRestart();
// Load changes knowing that the activity has already
// been visible within this process.

}

// Called at the start of the visible lifetime.
@Override
public void onStart(){

super.onStart();
// Apply any required UI change now that the Activity is visible.

}

// Called at the start of the active lifetime.
@Override
public void onResume(){

super.onResume();
// Resume any paused UI updates, threads, or processes required
// by the activity but suspended when it was inactive.

}

// Called to save UI state changes at the
// end of the active lifecycle.
@Override
public void onSaveInstanceState(Bundle savedInstanceState) {

// Save UI state changes to the savedInstanceState.
// This bundle will be passed to onCreate if the process is
// killed and restarted.
super.onSaveInstanceState(savedInstanceState);

}

// Called at the end of the active lifetime.
@Override

continues

82 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

LISTING 3-12 (continued)

public void onPause(){
// Suspend UI updates, threads, or CPU intensive processes
// that don’t need to be updated when the Activity isn’t
// the active foreground activity.
super.onPause();

}

// Called at the end of the visible lifetime.
@Override
public void onStop(){

// Suspend remaining UI updates, threads, or processing
// that aren’t required when the Activity isn’t visible.
// Persist all edits or state changes
// as after this call the process is likely to be killed.
super.onStop();

}

// Called at the end of the full lifetime.
@Override
public void onDestroy(){

// Clean up any resources including ending threads,
// closing database connections etc.
super.onDestroy();

}
}

As shown in the preceding code, you should always call back to the superclass when overriding these
event handlers.

Understanding Activity Lifetimes
Within an Activity’s full lifetime, between creation and destruction, it will go through one or more
iterations of the active and visible lifetimes. Each transition will trigger the method handlers described
previously. The following sections provide a closer look at each of these lifetimes and the events that
bracket them.

The Full Lifetime
The full lifetime of your Activity occurs between the first call to onCreate and the final call
to onDestroy. It’s possible, in some cases, for an Activity’s process to be terminated without the
onDestroy method being called.

Use the onCreate method to initialize your Activity: inflate the user interface, allocate references to
class variables, bind data to controls, and create Services and threads. The onCreate method is passed
a Bundle object containing the UI state saved in the last call to onSaveInstanceState. You should use
this Bundle to restore the user interface to its previous state, either within the onCreate method or by
overriding onRestoreInstanceState.

Override onDestroy to clean up any resources created in onCreate, and ensure that all external connec-
tions, such as network or database links, are closed.

A Closer Look at Android Activities ❘ 83

As part of Android’s guidelines for writing efficient code, it’s recommended that you avoid the creation
of short-term objects. Rapid creation and destruction of objects forces additional garbage collection,
a process that can have a direct impact on the user experience. If your Activity creates the same set of
objects regularly, consider creating them in the onCreate method instead, as it’s called only once in the
Activity’s lifetime.

The Visible Lifetime
An Activity’s visible lifetimes are bound between calls to onStart and onStop. Between these calls your
Activity will be visible to the user, although it may not have focus and may be partially obscured. Activ-
ities are likely to go through several visible lifetimes during their full lifetime, as they move between the
foreground and background. While it’s unusual, in extreme cases the Android run time will kill an
Activity during its visible lifetime without a call to onStop.

The onStop method should be used to pause or stop animations, threads, sensor listeners, GPS lookups,
timers, Services, or other processes that are used exclusively to update the user interface. There’s little
value in consuming resources (such as CPU cycles or network bandwidth) to update the UI when it
isn’t visible. Use the onStart (or onRestart) methods to resume or restart these processes when the UI
is visible again.

The onRestart method is called immediately prior to all but the first call to onStart. Use it to imple-
ment special processing that you want done only when the Activity restarts within its full lifetime.

The onStart/onStop methods are also used to register and unregister Broadcast Receivers that are
being used exclusively to update the user interface. You’ll learn more about using Broadcast Receivers
in Chapter 5.

The Active Lifetime
The active lifetime starts with a call to onResume and ends with a corresponding call to onPause.

An active Activity is in the foreground and is receiving user input events. Your Activity is likely to go
through several active lifetimes before it’s destroyed, as the active lifetime will end when a new Activity
is displayed, the device goes to sleep, or the Activity loses focus. Try to keep code in the onPause and
onResume methods relatively fast and lightweight to ensure that your application remains responsive
when moving in and out of the foreground.

Immediately before onPause, a call is made to onSaveInstanceState. This method provides an
opportunity to save the Activity’s UI state in a Bundle that will be passed to the onCreate and
onRestoreInstanceState methods. Use onSaveInstanceState to save the UI state (such as checkbox
states, user focus, and entered but uncommitted user input) to ensure that the Activity can present
the same UI when it next becomes active. You can safely assume that during the active lifetime
onSaveInstanceState and onPause will be called before the process is terminated.

Most Activity implementations will override at least the onPause method to commit unsaved changes,
as it marks the point beyond which an Activity may be killed without warning. Depending on your
application architecture you may also choose to suspend threads, processes, or Broadcast Receivers
while your Activity is not in the foreground.

84 ❘ CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

The onResume method can be very lightweight. You will not need to reload the UI state here as this
is handled by the onCreate and onRestoreInstanceState methods when required. Use onResume to
reregister any Broadcast Receivers or other processes you may have suspended in onPause.

Android Activity Classes
The Android SDK includes a selection of Activity subclasses that wrap up the use of common user
interface widgets. Some of the more useful ones are listed here:

➤ MapActivity Encapsulates the resource handling required to support a MapView widget
within an Activity. Learn more about MapActivity and MapView in Chapter 8.

➤ ListActivity Wrapper class for Activities that feature a ListView bound to a data source as
the primary UI metaphor, and exposing event handlers for list item selection.

➤ ExpandableListActivity Similar to the List Activity but supporting an ExpandableListView

➤ TabActivity Enables you to embed multiple Activities or Views within a single screen using
a tab widget to switch among them.

SUMMARY

In this chapter you learned how to design robust applications using loosely coupled application compo-
nents: Activities, Services, Content Providers, Intents, and Broadcast Receivers bound together by the
application manifest.

You were introduced to the Android application life cycle, learning how each application’s priority is
determined by its process state, which is, in turn, determined by the state of the components within it.

To take full advantage of the wide range of device hardware available and the international user base,
you learned how to create external resources and how to define alternative values for specific locations,
languages, and hardware configurations.

Next you learned about the Application class, and how to extend it to facilitate application state man-
agement and inter-component data transfer.

You then discovered more about Activities and their role in the application framework. As well as
learning how to create new Activities, you were introduced to the Activity life cycle. In particular,
you learned about Activity state transitions and how to monitor these events to ensure a seamless
user experience.

Finally, you were introduced to some specialized Android Activity classes.

In the next chapter you’ll learn how to create user interfaces. Chapter 4 will demonstrate how to use
layouts to design your UI before introducing some native widgets and showing you how to extend,
modify, and group them to create specialized controls. You’ll also learn how to create your own unique
user interface elements from a blank canvas, before being introduced to the Android menu system.

4
Creating User Interfaces

WHAT’S IN THIS CHAPTER?

➤ Using Views and layouts

➤ Optimizing layouts

➤ XML Drawable resources

➤ Creating resolution-independent user interfaces

➤ The Android menu system

➤ Extending, grouping, creating, and using Views

It’s vital that you create compelling and intuitive user interfaces for your applications. Ensuring
that they are as stylish and easy to use as they are functional should be a top design priority.

To quote Stephen Fry on the importance of style as part of substance in the design of digital
devices:

As if a device can function if it has no style. As if a device can be called stylish
that does not function superbly. . . . yes, beauty matters. Boy, does it matter. It is
not surface, it is not an extra, it is the thing itself.

— Stephen Fry, The Guardian (October 27, 2007)

Increasing screen sizes, display resolutions, and mobile processor power have made mobile
applications increasingly visual. While the diminutive screens pose a challenge for those creating
complex visual interfaces, the ubiquity of mobiles makes it a challenge worth accepting.

In this chapter you’ll learn about the basic Android UI elements and discover how to use Views,
View Groups, and layouts to create functional and intuitive user interfaces for your Activities.

After being introduced to some of the controls available from the Android SDK, you’ll learn
how to extend and customize them. Using View Groups, you’ll see how to combine Views to

86 ❘ CHAPTER 4 CREATING USER INTERFACES

create atomic, reusable UI elements made up of interacting subcontrols. You’ll also learn how to create
your own Views to implement creative new ways to display data and interact with users.

The individual elements of an Android user interface are arranged on screen by means of a variety
of layout managers derived from ViewGroup. The correct use of layouts is essential for creating good
interfaces; this chapter introduces several native layout classes and demonstrates how to use them and
how to create your own.

With the range of Android devices rapidly increasing, the range of screen sizes and resolutions your
app will be expected to run on has also increased. You’ll learn how to create resolution-independent
layouts and Drawables and the best practices for developing and testing your UIs so they look great on
all host screens.

Android’s application and context menu systems use a new approach, optimized for modern touch
screen devices. As part of an examination of the Android UI model, this chapter ends with a look at
how to create and use Activity and context menus.

FUNDAMENTAL ANDROID UI DESIGN

User interface (UI) design, user experience (UX), human computer interaction (HCI), and usability are
huge topics that aren’t covered in great depth in this book. Nonetheless, it’s important that you get
them right when creating your user interfaces.

Android introduces some new terminology for familiar programming metaphors that will be explored
in detail in the following sections:

➤ Views Views are the base class for all visual interface elements (commonly known as con-
trols or widgets). All UI controls, including the layout classes, are derived from View.

➤ View Groups View Groups are extensions of the View class that can contain multiple child
Views. Extend the ViewGroup class to create compound controls made up of interconnected
child Views. The ViewGroup class is also extended to provide the layout managers that help
you lay out controls within your Activities.

➤ Activities Activities, described in detail in the previous chapter, represent the window, or
screen, being displayed. Activities are the Android equivalent of Forms. To display a user
interface you assign a View (usually a layout) to an Activity.

Android provides several common UI controls, widgets, and layout managers.

For most graphical applications it’s likely that you’ll need to extend and modify these standard
Views — or create composite or entirely new Views — to provide your own user experience.

INTRODUCING VIEWS

As described earlier, all visual components in Android descend from the View class and are referred to
generically as Views. You’ll often see Views referred to as controls or widgets (not to be confused with

Introducing Views ❘ 87

home screen or App Widgets described in Chapter 10) — terms you’re probably familiar with if you’ve
previously done any GUI development.

The ViewGroup class is an extension of View designed to contain multiple Views. Generally, View
Groups are used either to construct atomic reusable components or to manage the layout of child
Views. View Groups that perform the latter function are generally referred to as layouts.

Because all visual elements derive from View, you will likely see both widget and control used inter-
changeably with View.

You were already introduced to a layout and two native Views — the LinearLayout, a ListView, and
a TextView — when you created the to-do list example in Chapter 2.

In the following sections you’ll learn how to put together increasingly complex UIs, starting with the
Views available in the SDK, before learning how to extend them, build your own compound controls,
and create your own custom Views from scratch.

Creating Activity User Interfaces with Views
A new Activity starts with a temptingly empty screen onto which you place your user interface. To
assign the user interface, call setContentView, passing in the View instance, or layout resource, to
display. Because empty screens aren’t particularly inspiring, you will almost always use setContentView
to assign an Activity’s user interface when overriding its onCreate handler.

The setContentView method accepts either a layout resource ID (as described in Chapter 3) or a single
View instance. This lets you define your user interface either in code or using the preferred technique of
external layout resources.

Using layout resources decouples your presentation layer from the application logic, providing the
flexibility to change the presentation without changing code. This makes it possible to specify different
layouts optimized for different hardware configurations, even changing them at run time based on
hardware changes (such as screen orientation).

Listing 4-1 shows how to set the user interface for an Activity using an external layout resource. You
can get references to the Views used within a layout with the findViewById method. This example
assumes that main.xml exists in the project’s res/layout folder.

LISTING 4-1: Inflating an Activity layout

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.main);
TextView myTextView = (TextView)findViewById(R.id.myTextView);

}

If you prefer the more traditional approach, you can construct the user interface in code. Listing 4-2
shows how to assign a new TextView as the user interface.

88 ❘ CHAPTER 4 CREATING USER INTERFACES

LISTING 4-2: Creating a UI layout in code

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

TextView myTextView = new TextView(this);
setContentView(myTextView);

myTextView.setText("Hello, Android");
}

The setContentView method accepts a single View instance; as a result, you have to use layouts to add
multiple controls to your Activity.

The Android Widget Toolbox
Android supplies a toolbox of standard Views to help you create simple interfaces. By using these
controls (and modifying or extending them as necessary), you can simplify your development and
provide consistency between applications.

The following list highlights some of the more familiar toolbox controls:

➤ TextView A standard read-only text label. It supports multiline display, string formatting,
and automatic word wrapping.

➤ EditText An editable text entry box. It accepts multiline entry, word-wrapping, and hint
text.

➤ ListView A View Group that creates and manages a vertical list of Views, displaying them
as rows within the list. The simplest List View displays the toString value of each object in
an array, using a Text View for each item.

➤ Spinner A composite control that displays a Text View and an associated List View that lets
you select an item from a list to display in the textbox. It’s made from a Text View displaying
the current selection, combined with a button that displays a selection dialog when pressed.

➤ Button A standard push-button.

➤ CheckBox A two-state button represented by a checked or unchecked box.

➤ RadioButton A two-state grouped button. A group of these presents the user with a number
of binary options of which only one can be enabled at a time.

➤ ViewFlipper A View Group that lets you define a collection of Views as a horizontal row
in which only one View is visible at a time, and in which transitions between visible views are
animated.

➤ QuickContactBadge Displays a badge showing the image icon assigned to a contact
you specify using a phone number, name, e-mail address, or URI. Clicking the image
will display the quick contact bar, which provides shortcuts for contacting the selected
contact — including calling, sending an SMS, e-mail, and IM.

Introducing Layouts ❘ 89

This is only a selection of the widgets available. Android also supports several more advanced
View implementations, including date-time pickers, auto-complete input boxes, maps,
galleries, and tab sheets. For a more comprehensive list of the available widgets, head to
http://developer.android.com/guide/tutorials/views/index.html

It’s only a matter of time before you, as an innovative developer, encounter a situation in which none
of the built-in controls meets your needs. Later in this chapter you’ll learn how to extend and combine
the existing controls and how to design and create entirely new widgets from scratch.

INTRODUCING LAYOUTS

Layout managers (more generally just called layouts) are extensions of the ViewGroup class used to posi-
tion child controls for your UI. Layouts can be nested, letting you create arbitrarily complex interfaces
using a combination of layouts.

The Android SDK includes some simple layouts to help you construct your UI. It’s up to you to select
the right combination of layouts to make your interface easy to understand and use.

The following list includes some of the more versatile layout classes available:

➤ FrameLayout The simplest of the Layout Managers, the Frame Layout simply pins each
child view to the top left corner. Adding multiple children stacks each new child on top of
the one before, with each new View obscuring the last.

➤ LinearLayout A Linear Layout aligns each child View in either a vertical or a horizontal
line. A vertical layout has a column of Views, while a horizontal layout has a row of Views.
The Linear Layout manager enables you to specify a ‘‘weight’’ for each child View that con-
trols the relative size of each within the available space.

➤ RelativeLayout The most flexible of the native layouts, the Relative Layout lets you define
the positions of each child View relative to the others and to the screen boundaries.

➤ TableLayout The Table Layout lets you lay out Views using a grid of rows and columns.
Tables can span multiple rows and columns, and columns can be set to shrink or grow.

➤ Gallery A Gallery Layout displays a single row of items in a horizontally scrolling list.

The Android documentation describes the features and properties of each layout class in detail, so
rather than repeat it here, I’ll refer you to http://developer.android.com/guide/topics/ui/

layout-objects.html

Later in this chapter you’ll also learn how to create compound controls (widgets made up of several
interconnected Views) by extending these layout classes.

Using Layouts
The preferred way to implement layouts is by using XML as external resources. A layout XML must
contain a single root element. This root node can contain as many nested layouts and Views as neces-
sary to construct an arbitrarily complex screen.

Listing 4-3 shows a simple layout that places a TextView above an EditText control using a vertical
LinearLayout.

90 ❘ CHAPTER 4 CREATING USER INTERFACES

LISTING 4-3: Simple Linear Layout in XML

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Enter Text Below"

/>
<EditText
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Text Goes Here!"

/>
</LinearLayout>

Note that for each of the layout elements, the constants wrap_content and fill_parent are used rather
than an exact height or width in pixels. These constants are the simplest, and most powerful, technique
for ensuring your layouts are screen-size and resolution independent.

The wrap_content constant will set the size of a View to the minimum required to contain the contents
it displays (such as the height required to display a wrapped text string). The fill_parent constant
expands the View to fill the available space within the parent View (or screen).

In Listing 4-3, the layout is set to fill the entire screen, while both text-based Views are asked to fill the
full available width. Their height is restricted to that required by the text being displayed.

Later in this chapter you’ll learn how to set the minimum height and width for your own controls, as
well as further best practices for resolution independence.

Implementing layouts in XML decouples the presentation layer from the View and Activity code. It
also lets you create hardware-specific variations that are dynamically loaded without requiring code
changes.

When preferred, or required, you can implement layouts in code. When you’re assigning Views to
layouts in code, it’s important to apply LayoutParameters using the setLayoutParams method, or by
passing them in to the addView call, as shown in Listing 4-4.

LISTING 4-4: Simple LinearLayout in code

LinearLayout ll = new LinearLayout(this);
ll.setOrientation(LinearLayout.VERTICAL);

TextView myTextView = new TextView(this);
EditText myEditText = new EditText(this);

Creating New Views ❘ 91

myTextView.setText("Enter Text Below");
myEditText.setText("Text Goes Here!");

int lHeight = LinearLayout.LayoutParams.FILL_PARENT;
int lWidth = LinearLayout.LayoutParams.WRAP_CONTENT;

ll.addView(myTextView, new LinearLayout.LayoutParams(lHeight, lWidth));
ll.addView(myEditText, new LinearLayout.LayoutParams(lHeight, lWidth));
setContentView(ll);

Optimizing Layouts
Inflating layouts into your Activities is an expensive process. Each additional nested layout and View
can have a dramatic impact on the performance and seamlessness of your applications.

In general, it’s good practice to keep your layouts as simple as possible, but also to avoid needing to
inflate an entirely new layout for small changes to an existing one.

The following points include some best practice guidelines for creating efficient layouts. Note that they
are not exhaustive.

➤ Avoid unnecessary nesting: Don’t put one layout within another unless it is necessary. A Lin-
ear Layout within a Frame Layout, both of which are set to FILL_PARENT, does nothing but
add extra time to inflate. Look for redundant layouts, particularly if you’ve been making sig-
nificant changes to an existing layout.

➤ Avoid using too many Views: Each additional View in a layout takes time and resources to
inflate. A layout shouldn’t ever include more than 80 Views or the time taken to inflate it
becomes significant.

➤ Avoid deep nesting: As layouts can be arbitrarily nested, it’s easy to create complex, deeply
nested hierarchies. While there is no hard limit, it’s good practice to restrict nesting to fewer
than 10 levels.

It’s important that you optimize your layout hierarchies to reduce inefficiencies and eliminate unneces-
sary nesting.

To assist you, the Android SDK includes the layoutopt command line tool. Call layoutopt, passing
in the name of the layout resource (or a resource folder) to have your layouts analyzed and to receive
recommendations for fixes and improvements.

CREATING NEW VIEWS

The ability to extend existing Views, assemble composite controls, and create unique new Views lets
you implement beautiful user interfaces optimized for your application’s workflow. Android lets you
subclass the existing View toolbox or implement your own View controls, giving you total freedom to
tailor your UI to optimize the user experience.

92 ❘ CHAPTER 4 CREATING USER INTERFACES

When you design a user interface it’s important to balance raw aesthetics and
usability. With the power to create your own custom controls comes the temptation
to rebuild all your controls from scratch. Resist that urge. The standard Views will
be familiar to users from other Android applications and will update in line with
new platform releases. On small screens, with users often paying limited attention,
familiarity can often provide better usability than a slightly shinier control.

The best approach to use when creating a new View depends on what you want to achieve:

➤ Modify or extend the appearance and/or behavior of an existing control when it already
supplies the basic functionality you want. By overriding the event handlers and onDraw, but
still calling back to the superclass’s methods, you can customize a View without having to
reimplement its functionality. For example, you could customize a TextView to display a set
number of decimal points.

➤ Combine Views to create atomic, reusable controls that leverage the functionality of several
interconnected Views. For example, you could create a dropdown combo box by combining
a TextView and a Button that displays a floating ListView when clicked.

➤ Create an entirely new control when you need a completely different interface that you can’t
get by changing or combining existing controls.

Modifying Existing Views
The toolbox includes Views that provide many common UI requirements, but the controls are neces-
sarily generic. By customizing these basic Views you avoid reimplementing existing behavior while still
tailoring the user interface, and functionality, to your application’s needs.

To create a new View based on an existing control, create a new class that extends it, as shown in
Listing 4-5.

LISTING 4-5: Extending TextView

import android.content.Context;
import android.util.AttributeSet;
import android.widget.TextView;

public class MyTextView extends TextView {

public MyTextView (Context context, AttributeSet attrs, int defStyle)
{

super(context, attrs, defStyle);
}

public MyTextView (Context context) {
super(context);

}

Creating New Views ❘ 93

public MyTextView (Context context, AttributeSet attrs) {
super(context, attrs);

}
}

To override the appearance or behavior of your new View, override and extend the event handlers
associated with the behavior you want to change.

In the following extension of the Listing 4-5 code, the onDraw method is overridden to modify the
View’s appearance, and the onKeyDown handler is overridden to allow custom key-press handling.

public class MyTextView extends TextView {

public MyTextView (Context context, AttributeSet ats, int defStyle) {
super(context, ats, defStyle);

}

public MyTextView (Context context) {
super(context);

}

public MyTextView (Context context, AttributeSet attrs) {
super(context, attrs);

}

@Override
public void onDraw(Canvas canvas) {
[... Draw things on the canvas under the text ...]

// Render the text as usual using the TextView base class.
super.onDraw(canvas);

[... Draw things on the canvas over the text ...]
}

@Override
public boolean onKeyDown(int keyCode, KeyEvent keyEvent) {
[... Perform some special processing ...]
[... based on a particular key press ...]

// Use the existing functionality implemented by
// the base class to respond to a key press event.
return super.onKeyDown(keyCode, keyEvent);

}
}

The event handlers available within Views are covered in more detail later in this chapter.

Customizing Your To-Do List
The to-do list example from Chapter 2 uses TextView controls to represent each row in a List View. You
can customize the appearance of the list by extending Text View and overriding the onDraw method.

In this example you’ll create a new TodoListItemView that will make each item appear as if on a paper
pad. When complete, your customized to-do list should look like Figure 4-1.

94 ❘ CHAPTER 4 CREATING USER INTERFACES

. 1. Create a new TodoListItemView class that extends TextView. Include a stub for overriding
the onDraw method, and implement constructors that call a new init method stub.

package com.paad.todolist;

import android.content.Context;
import android.content.res.Resources;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.util.AttributeSet;
import android.widget.TextView;

public class TodoListItemView extends TextView {

public TodoListItemView (Context context, AttributeSet ats, int ds) {
super(context, ats, ds);
init();

}

public TodoListItemView (Context context) {
super(context);
init();

}

public TodoListItemView (Context context, AttributeSet attrs) {
super(context, attrs);
init();

}

FIGURE 4-1

.

private void init() {
}

@Override
public void onDraw(Canvas canvas) {
// Use the base TextView to render the text.
super.onDraw(canvas);

}

}

2. Create a new colors.xml resource in the res/values
folder. Create new color values for the paper, mar-
gin, line, and text colors.

<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="notepad_paper">#AAFFFF99</color>
<color name="notepad_lines">#FF0000FF</color>
<color name="notepad_margin">#90FF0000</color>
<color name="notepad_text">#AA0000FF</color>

</resources>

3. Create a new dimens.xml resource file and add a
new value for the paper’s margin width.

Creating New Views ❘ 95

<?xml version="1.0" encoding="utf-8"?>
<resources>
<dimen name="notepad_margin">30dp</dimen>

</resources>

4. With the resources defined, you’re ready to customize the TodoListItemView appearance.
Create new private instance variables to store the Paint objects you’ll use to draw the paper
background and margin. Also create variables for the paper color and margin width
values.

Fill in the init method to get instances of the resources you created in the last two steps, and
create the Paint objects.

private Paint marginPaint;
private Paint linePaint;
private int paperColor;
private float margin;

private void init() {
// Get a reference to our resource table.
Resources myResources = getResources();

// Create the paint brushes we will use in the onDraw method.
marginPaint = new Paint(Paint.ANTI_ALIAS_FLAG);

marginPaint.setColor(myResources.getColor(R.color.notepad_margin));
linePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
linePaint.setColor(myResources.getColor(R.color.notepad_lines));

// Get the paper background color and the margin width.
paperColor = myResources.getColor(R.color.notepad_paper);
margin = myResources.getDimension(R.dimen.notepad_margin);

}

5. To draw the paper, override onDraw and draw the image using the Paint objects you created
in Step 4. Once you’ve drawn the paper image, call the superclass’s onDraw method and let it
draw the text as usual.

@Override
public void onDraw(Canvas canvas) {
// Color as paper
canvas.drawColor(paperColor);

// Draw ruled lines
canvas.drawLine(0, 0, getMeasuredHeight(), 0, linePaint);
canvas.drawLine(0, getMeasuredHeight(),

getMeasuredWidth(), getMeasuredHeight(),
linePaint);

// Draw margin
canvas.drawLine(margin, 0, margin, getMeasuredHeight(), marginPaint);

// Move the text across from the margin
canvas.save();
canvas.translate(margin, 0);

96 ❘ CHAPTER 4 CREATING USER INTERFACES

// Use the TextView to render the text.
super.onDraw(canvas);
canvas.restore();

}

6. That completes the TodoListItemView implementation. To use it in the To-Do List
Activity you need to include it in a new layout and pass that layout in to the Array Adapter
constructor.

Start by creating a new todolist_item.xml resource in the res/layout folder. It will specify
how each of the to-do list items is displayed. For this example your layout need only consist
of the new TodoListItemView, set to fill the entire available area.

<?xml version="1.0" encoding="utf-8"?>
<com.paad.todolist.TodoListItemView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:padding="10dp"
android:scrollbars="vertical"
android:textColor="@color/notepad_text"
android:fadingEdge="vertical"

/>

7. Now open the ToDoList Activity class. The final step is to change the parameters
passed in to the ArrayAdapter in onCreate. Replace the reference to the default
android.R.layout.simple_list_item_1 with a reference to the new R.layout

.todolist_item layout created in Step 6.

final ArrayList<String> todoItems = new ArrayList<String>();
int resID = R.layout.todolist_item;
final ArrayAdapter<String> aa = new ArrayAdapter<String>(this, resID,

todoItems);
myListView.setAdapter(aa);

All code snippets in this example are part of the Chapter 4 Todo List project, available for download at Wrox.com.

Creating Compound Controls
Compound controls are atomic, reusable Views that contain multiple child controls laid out and wired
together.

When you create a compound control you define the layout, appearance, and interaction of the Views
it contains. You create compound controls by extending a ViewGroup (usually a layout). To create a
new compound control choose the layout class that’s most suitable for positioning the child controls,
and extend it as shown in Listing 4-6.

LISTING 4-6: Creating a compound control

public class MyCompoundView extends LinearLayout {
public MyCompoundView(Context context) {
super(context);

}

Creating New Views ❘ 97

public MyCompoundView(Context context, AttributeSet attrs) {
super(context, attrs);

}
}

As with Activities, the preferred way to design compound View layouts is using an external resource.
Listing 4-7 shows the XML layout definition for a simple compound control consisting of an Edit Text
View and a clear text Button to clear it.

LISTING 4-7: A compound View layout resource

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<EditText

android:id="@+id/editText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

/>
<Button

android:id="@+id/clearButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Clear"

/>
</LinearLayout>

To use this layout for your new View, override the View’s constructor to inflate the layout resource
using the inflate method from the LayoutInflate system service. The inflate method takes the
layout resource and returns the inflated View.

For circumstances such as this, in which the returned View should be the class you’re creating, you can
pass in the parent View and attach the result to it automatically, as shown in Listing 4-8.

Listing 4-8 shows the ClearableEditText class. Within the constructor it inflates the layout resource
created earlier and gets references to each of the Views it contains. It also makes a call to hookupButton

that will be used to hook up the clear text functionality when the button is pressed.

LISTING 4-8: Constructing a compound View

public class ClearableEditText extends LinearLayout {

EditText editText;
Button clearButton;

public ClearableEditText(Context context) {
super(context);

// Inflate the view from the layout resource.
continues

98 ❘ CHAPTER 4 CREATING USER INTERFACES

LISTING 4-8 (continued)

String infService = Context.LAYOUT_INFLATER_SERVICE;
LayoutInflater li;
li = (LayoutInflater)getContext().getSystemService(infService);
li.inflate(R.layout.clearable_edit_text, this, true);

// Get references to the child controls.
editText = (EditText)findViewById(R.id.editText);
clearButton = (Button)findViewById(R.id.clearButton);

// Hook up the functionality
hookupButton();

}
}

If you’d prefer to construct your layout in code, you can do so just as you would for an Activity.
Listing 4-9 shows the ClearableEditText constructor overridden to create the same UI defined in the
XML used in Listing 4-8.

LISTING 4-9: Creating a compound View layout in code

public ClearableEditText(Context context) {
super(context);

// Set orientation of layout to vertical
setOrientation(LinearLayout.VERTICAL);

// Create the child controls.
editText = new EditText(getContext());
clearButton = new Button(getContext());
clearButton.setText("Clear");

// Lay them out in the compound control.
int lHeight = LayoutParams.WRAP_CONTENT;
int lWidth = LayoutParams.FILL_PARENT;

addView(editText, new LinearLayout.LayoutParams(lWidth, lHeight));
addView(clearButton, new LinearLayout.LayoutParams(lWidth, lHeight));

// Hook up the functionality
hookupButton();

}

Once the View layout has been constructed you can hook up the event handlers for each child control
to provide the functionality you need. In this next snippet the hookupButton method is filled in to clear
the Edit Text when the Button is pressed.

private void hookupButton() {
clearButton.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v) {

editText.setText("");
}

});
}

Creating New Views ❘ 99

Creating Custom Views
Creating completely new Views gives you the power to fundamentally shape the way your applica-
tions look and feel. By creating your own controls you can create user interfaces that are uniquely
suited to your users’ needs. To create new controls from a blank canvas you extend either the View or
SurfaceView classes.

The View class provides a Canvas object with a series of draw methods and Paint classes. Use them to
create a visual interface with bitmaps and raster graphics. You can then override user events like screen
touches or key presses to provide interactivity. In situations in which extremely rapid repaints and 3D
graphics aren’t required, the View base class offers a powerful lightweight solution.

The SurfaceView class provides a Surface object that supports drawing from a background thread
and using openGL for 3D graphics. This is an excellent option for graphics-heavy controls that
are frequently updated or that display complex graphical information, particularly games and
3D visualizations.

This chapter introduces 2D controls based on the View class. To learn more about the SurfaceView

class and some of the more advanced Canvas paint features available in Android, see Chapter 15.

Creating a New Visual Interface
The base View class presents a distinctly empty 100-pixel-by-100-pixel square. To change the size of the
control and display a more compelling visual interface, you need to override the onMeasure and onDraw

methods.

Within onMeasure the new View will calculate the height and width it will occupy given a set of bound-
ary conditions. The onDraw method is where you draw on the Canvas.

Listing 4-10 shows the skeleton code for a new View class, which will be examined and developed
further in the following sections.

LISTING 4-10: Creating a new View class

public class MyView extends View {

// Constructor required for in-code creation
public MyView(Context context) {

super(context);
}

// Constructor required for inflation from resource file
public MyView (Context context, AttributeSet ats, int defaultStyle) {

super(context, ats, defaultStyle);
}

//Constructor required for inflation from resource file
public MyView (Context context, AttributeSet attrs) {

super(context, attrs);
}

continues

100 ❘ CHAPTER 4 CREATING USER INTERFACES

LISTING 4-10 (continued)

@Override
protected void onMeasure(int wMeasureSpec, int hMeasureSpec) {
int measuredHeight = measureHeight(hMeasureSpec);
int measuredWidth = measureWidth(wMeasureSpec);

// MUST make this call to setMeasuredDimension
// or you will cause a runtime exception when
// the control is laid out.
setMeasuredDimension(measuredHeight, measuredWidth);

}

private int measureHeight(int measureSpec) {
int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);

[... Calculate the view height ...]

return specSize;
}

private int measureWidth(int measureSpec) {
int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);

[... Calculate the view width ...]

return specSize;
}

@Override
protected void onDraw(Canvas canvas) {
[... Draw your visual interface ...]

}
}

Note that the onMeasure method calls setMeasuredDimension; you must always call
this method within your overridden onMeasure method or your control will throw
an exception when the parent container attempts to lay it out.

Drawing Your Control
The onDraw method is where the magic happens. If you’re creating a new widget from scratch, it’s
because you want to create a completely new visual interface. The Canvas parameter in the onDraw

method is the surface you’ll use to bring your imagination to life.

Android provides a variety of tools to help draw your design on the Canvas using various Paint objects.
The Canvas class includes helper methods for drawing primitive 2D objects including circles, lines,

Creating New Views ❘ 101

rectangles, text, and Drawables (images). It also supports transformations that let you rotate, translate
(move), and scale (resize) the Canvas while you draw on it.

When these tools are used in combination with Drawables and the Paint class (which offer a variety of
customizable fills and pens), the complexity and detail that your control can render are limited only by
the size of the screen and the power of the processor rendering it.

One of the most important techniques for writing efficient code in Android is to
avoid the repetitive creation and destruction of objects. Any object created in your
onDraw method will be created and destroyed every time the screen refreshes.
Improve efficiency by making as many of these objects (particularly instances of
Paint and Drawable) class-scoped and by moving their creation into the
constructor.

Listing 4-11 shows how to override the onDraw method to display a simple text string in the center of
the control.

LISTING 4-11: Drawing a custom View

@Override
protected void onDraw(Canvas canvas) {
// Get the size of the control based on the last call to onMeasure.
int height = getMeasuredHeight();
int width = getMeasuredWidth();

// Find the center
int px = width/2;
int py = height/2;

// Create the new paint brushes.
// NOTE: For efficiency this should be done in
// the views’s constructor
Paint mTextPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mTextPaint.setColor(Color.WHITE);

// Define the string.
String displayText = "Hello World!";

// Measure the width of the text string.
float textWidth = mTextPaint.measureText(displayText);

// Draw the text string in the center of the control.
canvas.drawText(displayText, px-textWidth/2, py, mTextPaint);

}

So that we don’t diverge too far from the current topic, a more detailed look at the techniques available
for drawing more complex visuals is included in Chapter 15.

102 ❘ CHAPTER 4 CREATING USER INTERFACES

Android does not currently support vector graphics. As a result, changes to any
element of your Canvas require that the entire Canvas be repainted; modifying the
color of a brush will not change your View’s display until the control is invalidated
and redrawn. Alternatively, you can use OpenGL to render graphics. For more
details, see the discussion on SurfaceView in Chapter 15.

Sizing Your Control
Unless you conveniently require a control that always occupies a space 100 pixels square, you will also
need to override onMeasure.

The onMeasure method is called when the control’s parent is laying out its child controls. It asks the
question ‘‘How much space will you use?’’ and passes in two parameters: widthMeasureSpec and
heightMeasureSpec. They specify the space available for the control and some metadata describing
that space.

Rather than return a result, you pass the View’s height and width into the setMeasuredDimension

method.

Listing 4-12 shows how to override onMeasure. Note the calls to local method stubs calculateHeight
and calculateWidth. They’ll be used to decode the widthHeightSpec and heightMeasureSpec values
and calculate the preferred height and width values.

LISTING 4-12: Determining View dimensions

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {

int measuredHeight = measureHeight(heightMeasureSpec);
int measuredWidth = measureWidth(widthMeasureSpec);

setMeasuredDimension(measuredHeight, measuredWidth);
}

private int measureHeight(int measureSpec) {
// Return measured widget height.

}

private int measureWidth(int measureSpec) {
// Return measured widget width.

}

The boundary parameters, widthMeasureSpec and heightMeasureSpec, are passed in as integers for
efficiency reasons. Before they can be used, they first need to be decoded using the static getMode and
getSize methods from the MeasureSpec class.

int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);

Creating New Views ❘ 103

Depending on the mode value, the size represents either the maximum space available for the control
(in the case of AT_MOST), or the exact size that your control will occupy (for EXACTLY). In the case of
UNSPECIFIED, your control does not have any reference for what the size represents.

By marking a measurement size as EXACT, the parent is insisting that the View will be placed into an
area of the exact size specified. The AT_MOST mode says the parent is asking what size the View would
like to occupy, given an upper boundary. In many cases the value you return will be the same.

In either case, you should treat these limits as absolute. In some circumstances it may still be appropriate
to return a measurement outside these limits, in which case you can let the parent choose how to deal
with the oversized View, using techniques such as clipping and scrolling.

Listing 4-13 shows a typical implementation for handling View measurement.

LISTING 4-13: A typical View measurement implementation

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
int measuredHeight = measureHeight(heightMeasureSpec);
int measuredWidth = measureWidth(widthMeasureSpec);

setMeasuredDimension(measuredHeight, measuredWidth);
}

private int measureHeight(int measureSpec) {
int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);

// Default size if no limits are specified.
int result = 500;

if (specMode == MeasureSpec.AT_MOST) {
// Calculate the ideal size of your
// control within this maximum size.
// If your control fills the available
// space return the outer bound.
result = specSize;

} else if (specMode == MeasureSpec.EXACTLY) {
// If your control can fit within these bounds return that value.
result = specSize;

}
return result;

}

private int measureWidth(int measureSpec) {
int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);

// Default size if no limits are specified.
int result = 500;

if (specMode == MeasureSpec.AT_MOST) {
continues

104 ❘ CHAPTER 4 CREATING USER INTERFACES

LISTING 4-13 (continued)

// Calculate the ideal size of your control
// within this maximum size.
// If your control fills the available space
// return the outer bound.
result = specSize;

} else if (specMode == MeasureSpec.EXACTLY) {
// If your control can fit within these bounds return that value.
result = specSize;

}
return result;

}

Handling User Interaction Events
In order for your new View to be interactive, it will need to respond to user events like key presses,
screen touches, and button clicks. Android exposes several virtual event handlers, listed here, that let
you react to user input:

➤ onKeyDown Called when any device key is pressed; includes the D-pad, keyboard, hang-up,
call, back, and camera buttons

➤ onKeyUp Called when a user releases a pressed key

➤ onTrackballEvent Called when the device’s trackball is moved

➤ onTouchEvent Called when the touchscreen is pressed or released, or when it detects
movement

Listing 4-14 shows a skeleton class that overrides each of the user interaction handlers in a View.

LISTING 4-14: Input event handling for Views

@Override
public boolean onKeyDown(int keyCode, KeyEvent keyEvent) {
// Return true if the event was handled.
return true;

}

@Override
public boolean onKeyUp(int keyCode, KeyEvent keyEvent) {
// Return true if the event was handled.
return true;

}

@Override
public boolean onTrackballEvent(MotionEvent event) {
// Get the type of action this event represents
int actionPerformed = event.getAction();
// Return true if the event was handled.
return true;

}

Creating New Views ❘ 105

@Override
public boolean onTouchEvent(MotionEvent event) {
// Get the type of action this event represents
int actionPerformed = event.getAction();
// Return true if the event was handled.
return true;

}

Further details on using each of these event handlers, including greater detail on the parameters received
by each method and support for multitouch events, are available in Chapter 15.

Creating a Compass View Example
In the following example you’ll create a new Compass View by extending the View class. This View will
display a traditional compass rose to indicate a heading/orientation. When complete, it should appear
as in Figure 4-2.

FIGURE 4-2

A compass is an example of a UI control that requires a radically different visual display from the Text
Views and Buttons available in the SDK toolbox, making it an excellent candidate for building from
scratch.

In Chapter 14 you’ll use this Compass View and the device’s built-in accelerometer
to display the user’s current bearing. Then in Chapter 15 you will learn some
advanced techniques for Canvas drawing that will let you dramatically improve its
appearance.

106 ❘ CHAPTER 4 CREATING USER INTERFACES

. 1. Create a new Compass project that will contain your new Compass View, and create an Activ-
ity to display it. Now create a new CompassView class that extends View. Create constructors
that will allow the View to be instantiated either in code or through inflation from a resource
layout. Add a new initCompassView method that will be used to initialize the control and call
it from each constructor.

package com.paad.compass;

import android.content.Context;
import android.graphics.*;
import android.graphics.drawable.*;
import android.view.*;
import android.util.AttributeSet;
import android.content.res.Resources;

public class CompassView extends View {
public CompassView(Context context) {
super(context);
initCompassView();

}

public CompassView(Context context, AttributeSet attrs) {
super(context, attrs);
initCompassView();

}

public CompassView(Context context,
AttributeSet ats,
int defaultStyle) {

super(context, ats, defaultStyle);
initCompassView();

}

protected void initCompassView() {
setFocusable(true);

}
}

2. The compass control should always be a perfect circle that takes up as much of the canvas as
this restriction allows. Override the onMeasure method to calculate the length of the shortest
side, and use setMeasuredDimension to set the height and width using this value.

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
// The compass is a circle that fills as much space as possible.
// Set the measured dimensions by figuring out the shortest boundary,
// height or width.
int measuredWidth = measure(widthMeasureSpec);
int measuredHeight = measure(heightMeasureSpec);

int d = Math.min(measuredWidth, measuredHeight);

setMeasuredDimension(d, d);
}

Creating New Views ❘ 107

private int measure(int measureSpec) {
int result = 0;

// Decode the measurement specifications.
int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);

if (specMode == MeasureSpec.UNSPECIFIED) {
// Return a default size of 200 if no bounds are specified.
result = 200;

} else {
// As you want to fill the available space
// always return the full available bounds.
result = specSize;

}
return result;

}

3. Create two new resource files that store the colors and text strings you’ll use to draw the
compass.

3.1. Create the text string resource res/values/strings.xml.
<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="app_name">Compass</string>
<string name="cardinal_north">N</string>
<string name="cardinal_east">E</string>
<string name="cardinal_south">S</string>
<string name="cardinal_west">W</string>

</resources>

3.2. Create the color resource res/values/colors.xml.
<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="background_color">#F555</color>
<color name="marker_color">#AFFF</color>
<color name="text_color">#AFFF</color>

</resources>

4. Now return to the CompassView class. Add a new property to store the displayed bearing, and
create get and set methods for it.

private float bearing;

public void setBearing(float _bearing) {
bearing = _bearing;

}
public float getBearing() {
return bearing;

}

5. Next, return to the initCompassView method and get references to each resource created in
Step 3. Store the string values as instance variables, and use the color values to create new
class-scoped Paint objects. You’ll use these objects in the next step to draw the compass
face.

108 ❘ CHAPTER 4 CREATING USER INTERFACES

private Paint markerPaint;
private Paint textPaint;
private Paint circlePaint;
private String northString;
private String eastString;
private String southString;
private String westString;
private int textHeight;

protected void initCompassView() {
setFocusable(true);

circlePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
circlePaint.setColor(r.getColor(R.color.background_color));
circlePaint.setStrokeWidth(1);
circlePaint.setStyle(Paint.Style.FILL_AND_STROKE);

Resources r = this.getResources();
northString = r.getString(R.string.cardinal_north);
eastString = r.getString(R.string.cardinal_east);
southString = r.getString(R.string.cardinal_south);
westString = r.getString(R.string.cardinal_west);

textPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
textPaint.setColor(r.getColor(R.color.text_color));

textHeight = (int)textPaint.measureText("yY");

markerPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
markerPaint.setColor(r.getColor(R.color.marker_color));

}

6. The final step is drawing the compass face using the String and Paint objects you created in
Step 5. The following code snippet is presented with only limited commentary. You can find
more detail about drawing on the Canvas and using advanced Paint effects in Chapter 15.

6.1. Start by overriding the onDraw method in the CompassView class.
@Override
protected void onDraw(Canvas canvas) {

6.2. Find the center of the control, and store the length of the smallest side as the com-
pass’s radius.

int px = getMeasuredWidth() / 2;
int py = getMeasuredHeight() /2 ;

int radius = Math.min(px, py);

6.3. Draw the outer boundary, and color the background of the compass face using the
drawCircle method. Use the circlePaint object you created in Step 5.

// Draw the background
canvas.drawCircle(px, py, radius, circlePaint);

6.4. This compass displays the current heading by rotating the face so that the current
direction is always at the top of the device. To achieve this, rotate the canvas in the
opposite direction to the current heading.

Creating New Views ❘ 109

// Rotate our perspective so that the ‘top’ is
// facing the current bearing.
canvas.save();
canvas.rotate(-bearing, px, py);

6.5. All that’s left is to draw the markings. Rotate the canvas through a full rotation,
drawing markings every 15 degrees and the abbreviated direction string every 45
degrees.

int textWidth = (int)textPaint.measureText("W");
int cardinalX = px-textWidth/2;
int cardinalY = py-radius+textHeight;

// Draw the marker every 15 degrees and text every 45.
for (int i = 0; i < 24; i++) {

// Draw a marker.
canvas.drawLine(px, py-radius, px, py-radius+10, markerPaint);

canvas.save();
canvas.translate(0, textHeight);

// Draw the cardinal points
if (i % 6 == 0) {
String dirString = "";
switch (i) {

case(0) : {
dirString = northString;
int arrowY = 2*textHeight;
canvas.drawLine(px, arrowY, px-5, 3*textHeight,

markerPaint);
canvas.drawLine(px, arrowY, px+5, 3*textHeight,

markerPaint);
break;

}
case(6) : dirString = eastString; break;
case(12) : dirString = southString; break;
case(18) : dirString = westString; break;

}
canvas.drawText(dirString, cardinalX, cardinalY, textPaint);

}

else if (i % 3 == 0) {
// Draw the text every alternate 45deg
String angle = String.valueOf(i*15);
float angleTextWidth = textPaint.measureText(angle);

int angleTextX = (int)(px-angleTextWidth/2);
int angleTextY = py-radius+textHeight;
canvas.drawText(angle, angleTextX, angleTextY, textPaint);

}
canvas.restore();

canvas.rotate(15, px, py);
}
canvas.restore();

}

110 ❘ CHAPTER 4 CREATING USER INTERFACES

7. To view the compass, modify the main.xml layout resource and replace the TextView refer-
ence with your new CompassView. This process is explained in more detail in the next section.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<com.paad.compass.CompassView
android:id="@+id/compassView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"

/>
</LinearLayout>

8. Run the Activity, and you should see the CompassView displayed. See Chapter 14 to learn how
to bind the CompassView to the device’s compass.

All code snippets in this example are part of the Chapter 4 Compass project, available for download at Wrox.com.

Using Custom Controls
Having created your own custom Views, you can use them within code and layouts as you would
any other View. Listing 4-15 shows you how to override the onCreate method in order to add the
CompassView, created in the preceding example, to an Activity.

LISTING 4-15: Using a custom View

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
CompassView cv = new CompassView(this);
setContentView(cv);
cv.setBearing(45);

}

To use the same control within a layout resource, specify the fully qualified class name when you create
a new node in the layout definition, as shown in the following XML snippet.

<com.paad.compass.CompassView
android:id="@+id/compassView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"

/>

You can inflate the layout and get a reference to the CompassView as usual, using the following code:

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
CompassView cv = (CompassView)this.findViewById(R.id.compassView);
cv.setBearing(45);

}

Drawable Resources ❘ 111

DRAWABLE RESOURCES

In Chapter 3 you were introduced to the resources framework and shown how to externalize your
application resources and include alternative assets for different hardware platforms.

In this section you will be introduced to several new types of Drawables resources — including shapes
and transformative and composite Drawables — and be shown how to use these resources to create
user interfaces that are independent of screen size and resolution.

All of these resources can be defined and manipulated in code, but in this section we will focus on how
to create these Drawables using XML.

The resources framework, described in Chapter 3, which can be used to define
alternative resources for different hardware devices, can be used for all the XML
Drawables described in this section.

Shapes, Colors, and Gradients
Android includes a number of simple Drawable resource types that can be defined entirely in XML.
These include the ColorDrawable, ShapeDrawable, and GradientDrawable classes. These resources
are stored in the res/drawable folder, and can then be identified in code by their lowercase XML
filenames.

If these Drawables are defined in XML, and you specify their attributes using density-independent
pixels, the run time will smoothly scale them. Like vector graphics, these Drawables can be scaled
dynamically to display correctly and without scaling artifacts regardless of screen size, resolution, or
pixel density. The notable exceptions to this rule are Gradient Drawables, which require a gradient
radius defined in pixels.

As you will see later in this chapter, you can use these Drawables in combination with transformative
Drawables and composite Drawables. Together, they can result in dynamic, scalable UI elements that
require fewer resources and will appear crisp on any screen.

Color Drawable
A ColorDrawable, the simplest of the XML-defined Drawables, lets you specify an image asset based
on a single solid color. Color Drawables are defined as XML files using the <color> tag in the Drawable
resources folder. Listing 4-16 shows the XML for a solid red Color Drawable.

LISTING 4-16: A solid red Drawable resource

<color xmlns:android="http://schemas.android.com/apk/res/android"
android:color="#FF0000"

/>

Shape Drawable
Shape Drawable resources let you define simple primitive shapes by defining their dimensions, back-
ground, and stroke/outline using the <shape> tag.

112 ❘ CHAPTER 4 CREATING USER INTERFACES

Each shape consists of a type (specified via the shape attribute), attributes that define the dimensions of
that shape, and subnodes to specify padding, stroke (or outline), and background color values.

Android currently supports the following shape types as values for the shape attribute:

➤ oval A simple oval shape.

➤ rectangle Also supports a <corners> subnode that uses a radius attribute to create a
rounded rectangle.

FIGURE 4-3

.
➤ ring Supports the innerRadius and thickness

attributes to let you specify, respectively, the inner
radius of the ring shape and its thickness. Alter-
natively, you can use innerRadiusRatio and/or
thicknessRatio to define the ring’s inner radius
and thickness as a proportion of its width (where
an inner radius of a quarter of the width would use
the value 4).

Use the <stroke> subnode to specify an outline for your shapes
using width and color attributes.

You can also include a <padding> node to offset the position-
ing of your shape on the canvas.

More usefully, you can include a subnode to specify the back-
ground color. The simplest case involves using the <solid>

node, including the color attribute, to define a solid back-
ground color.

The following section describes the GradientDrawable class
and how to specify a gradient fill for your Shape Drawables.

Listing 4-17 shows a rectangular Shape Drawable with a solid
fill, rounded edges, 10dp outline, and 10dp of padding around
each edge. The result is shown in Figure 4-3.

LISTING 4-17: A solid red Drawable resource

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">
<solid

android:color="#f0600000"/>
<stroke

android:width="10dp"
android:color="#00FF00"/>

<corners
android:radius="15dp" />

<padding
android:left="10dp"
android:top="10dp"

Drawable Resources ❘ 113

android:right="10dp"
android:bottom="10dp"

/>
</shape>

Gradient Drawable
A GradientDrawable lets you design complex gradient fills. Each gradient defines a smooth transition

between two or three colors in a linear, radial, or sweep pattern.

Gradient Drawables are defined using the <gradient> tag as a subnode within a Shape Drawable defi-
nition (such as those defined above).

Each Gradient Drawable requires at least a startColor and endColor attribute and supports on
optional middleColor. Using the type attribute you can define your gradient as one of the following:

➤ linear The default gradient type, it displays a straight color transition from startColor to
endColor at an angle defined by the angle attribute.

➤ radial Draws a circular gradient from startColor to endColor from the outer edge of the
shape to the center. It requires a gradientRadius attribute that specifies the radius of the
gradient transition in pixels. It also optionally supports centerX and centerY to offset the
location of the center of the gradient.

Because the gradient radius is defined in pixels it will not be dynamically scaled for different
pixel densities. To minimize banding, you may need to specify different gradient radius values
for different screen resolutions.

➤ sweep Draws a sweep gradient that transitions from startColor to endColor along the
outer edge of the parent shape (typically a ring).

Listing 4-18 shows the XML for a linear gradient within a rectangle, a radial gradient within an oval,
and a sweep gradient within a ring, as shown in Figure 4-4.

LISTING 4-18: Linear, Radial, and Sweep Gradient definitions

<!-- Rectangle with Linear Gradient -->
<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle"
android:useLevel="false">
<gradient

android:startColor="#ffffff"
android:endColor="#ffffff"
android:centerColor="#000000"
android:useLevel="false"
android:type="linear"
android:angle="45"

/>
</shape>

continues

114 ❘ CHAPTER 4 CREATING USER INTERFACES

LISTING 4-18 (continued)

<!-- Oval with Radial Gradient -->
<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="oval"
android:useLevel="false">
<gradient
android:type="radial"
android:startColor="#ffffff"
android:endColor="#ffffff"
android:centerColor="#000000"
android:useLevel="false"
android:gradientRadius="300"

/>
</shape>

<!-- Ring with Sweep Gradient -->
<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="ring"
android:useLevel="false"
android:innerRadiusRatio="3"
android:thicknessRatio="8">
<gradient
android:startColor="#ffffff"
android:endColor="#ffffff"
android:centerColor="#000000"
android:useLevel="false"
android:type="sweep"

/>
</shape>

Composite Drawables

FIGURE 4-4

Use composite Drawables to combine and manipulate other
Drawable resources.

Any Drawable resource can be used within the following com-
posite resource definitions, including bitmaps, shapes, and
colors. Similarly, these new Drawables can be used within
each other and assigned to Views in the same way as all other
Drawable assets.

Transformative Drawables
You can scale and rotate existing Drawable resources using
the aptly named ScaleDrawable and RotateDrawable classes.
These transformative Drawables are particularly useful for
creating progress bars or animating Views.

Drawable Resources ❘ 115

➤ ScaleDrawable Within the <scale> tag, use the scaleHeight and scaleWidth attributes to
define the target height and width relative to the bounding box of the original Drawable. Use
the scaleGravity attribute to control the anchor point for the scaled image.

➤ RotateDrawable Within the <rotate> tag, use fromDegrees and toDegrees to define the
start and end rotation angle around a pivot point. Define the pivot using the pivotX and
pivotY attributes, specifying a percentage of the Drawable’s width and height, respectively,
using nn% notation.

To apply the scaling and rotation at run time, use the setLevel method on the View object hosting the
Drawable to move between the start and finish values (0 to 10,000).

When moving through levels, level 0 represents the start angle (or smallest scale result). Level 10, 000
represents the end of the transformation (the finish angle or highest scaling).

Listing 4-19 shows Scale and Rotate Drawable XML definitions, while Listing 4-20 demonstrates how
to manipulate them in code after they have been assigned to an Image View.

LISTING 4-19: Resource files for a Rotate Drawable and Scale Drawable

<!-- Rotation Drawable Resource -->
<?xml version="1.0" encoding="utf-8"?>
<rotate xmlns:android="http://schemas.android.com/apk/res/android"
android:drawable="@drawable/icon"
android:fromDegrees="0"
android:toDegrees="90"
android:pivotX="50%"
android:pivotY="50%"

/>

<!-- Scale Drawable Resource -->
<?xml version="1.0" encoding="utf-8"?>
<rotate xmlns:android="http://schemas.android.com/apk/res/android"
android:drawable="@drawable/icon"
android:scaleHeight="100%"
android:scaleWidth="100%"

/>

LISTING 4-20: Applying rotation and scale Drawable transformations in code

ImageView rotatingImage = (ImageView)findViewById(R.id.RotatingImageView);
ImageView scalingImage = (ImageView)findViewById(R.id.ScalingImageView);

// Rotate the image 50% of the way to its final orientation.
rotatingImage.setImageLevel(5000);

// Scale the image to 50% of its final size.
scalingImage.setImageLevel(5000);

116 ❘ CHAPTER 4 CREATING USER INTERFACES

Layer Drawable
A LayerDrawable lets you composite several Drawable resources on top of one another. If you define an
array of partially transparent Drawables you can stack them on top of one another to create complex
combinations of dynamic shapes and transformations.

Similarly, you can use Layer Drawables as the source for the transformative Drawable resources
described in the preceding section, or the State List and Level List Drawables that follow.

Listing 4-21 shows a Layer Drawable. These are defined via the <layer-list> node tag; within that tag
use the drawable attribute in each <item> subnode to define the Drawables to composite.

Each Drawable will be stacked in index order, with the first item in the array at the bottom of the stack.

LISTING 4-21: A Layer Drawable resource XML definition

<?xml version="1.0" encoding="utf-8"?>
<layer-list xmlns:android="http://schemas.android.com/apk/res/android">

<item android:drawable="@drawable/bottomimage"/>
<item android:drawable="@drawable/image2"/>
<item android:drawable="@drawable/image3"/>
<item android:drawable="@drawable/topimage"/>

</layer-list>

State List Drawables
A State List Drawable is a composite resource that enables you to specify a different Drawable to
display based on the state of the View to which it has been assigned.

Most native Android Views use State List Drawables, including the image used on Buttons and the
background used for standard List View items.

To define a State List Drawable, create an XML file that specifies an alternative Drawable resource for
each selection state required, as shown in Listing 4-22.

LISTING 4-22: State List Drawable

<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:state_window_focused="false"

android:drawable="@drawable/widget_bg_normal"/>
<item android:state_pressed="true"

android:drawable="@drawable/widget_bg_pressed"/>
<item android:state_focused="true"

android:drawable="@drawable/widget_bg_selected"/>
<item android:drawable="@drawable/widget_bg_normal"/>

</selector>

Level List Drawables
Using a Level List Drawable you can effectively overlay several Drawable resources, specifying an
integer index value for each layer, as shown in Listing 4-23.

Resolution and Density Independence ❘ 117

LISTING 4-23: Level List Drawable resource

<level-list xmlns:android="http://schemas.android.com/apk/res/android">
<item android:maxLevel="0" android:drawable="@drawable/earthquake_0"/>
<item android:maxLevel="1" android:drawable="@drawable/earthquake_1"/>
<item android:maxLevel="2" android:drawable="@drawable/earthquake_2"/>
<item android:maxLevel="4" android:drawable="@drawable/earthquake_4"/>
<item android:maxLevel="6" android:drawable="@drawable/earthquake_6"/>
<item android:maxLevel="8" android:drawable="@drawable/earthquake_8"/>
<item android:maxLevel="10" android:drawable="@drawable/earthquake_10"/>

</level-list>

To select which image to display in code call setImageLevel on the View displaying the Level List
Drawable resource, passing in the index of the Drawable you wish to display.

imageView.setImageLevel(5);

The View will display the image corresponding to the index with an equal or greater value to the one
specified. Level List Drawables are particularly useful when creating Widget layouts.

NinePatch Drawable
NinePatch (or stretchable) images are PNG files that mark the parts of an image that can be stretched.
NinePatch images must be properly defined PNG files that end in .9.png. The resource identifier for
NinePatches is the file name without the trailing .9.png.

A NinePatch is a variation of a PNG image that uses a one-pixel border to define the area of the image
that can be stretched if the image is enlarged. To create a NinePatch, draw single-pixel black lines that
represent stretchable areas along the left and top borders of your image. The unmarked sections won’t
be resized, and the relative size of each of the marked sections will remain the same as the image size
changes.

NinePatches are a powerful tool for creating images for the backgrounds of Views
or Activities that may have a variable size. For example, Android uses NinePatches
to create button borders.

RESOLUTION AND DENSITY INDEPENDENCE

With the first four Android handsets all featuring 3.2’’ HVGA screens, it was easy for developers to
become complacent when designing their user interfaces. For almost a year after the release of the first
Android handset, there was only one screen size and pixel density to design for.

The end of 2009 and start of 2010 heralded an explosion in the number of devices running Android,
and with a larger variety of handsets came variation in screen sizes and pixel densities.

It’s important to create your UIs knowing that your apps will be running on a broad variety of screen
resolutions (including HVGA, QVGA, and two flavors of WVGA — 800x480 and 854x480). Similarly,

118 ❘ CHAPTER 4 CREATING USER INTERFACES

the physical screen sizes have begun to vary beyond 3.2 inches to include the 3.7-inch Nexus One and
Motorola Droid, and the 4-inch Sony Ericsson Xperia X10.

With the floodgates now open, you should expect your applications to be running on an even greater
variety of hardware — potentially including tablets, netbooks, and consumer electronics.

The following sections will begin by describing the range of screens you need to consider, and how
to support them, before summarizing some of the best practices for ensuring your applications are
resolution- and density-independent. Finally, you’ll learn how to test your applications against a variety
of screen hardware without spending a fortune on phones.

The Resource Framework and Resolution Independence
The Android framework provides a number of techniques to enable you to optimize your UI for a
variety of screen sizes and pixel densities.

This section describes the resource directory qualifiers you can use to store alternative assets and layouts
for different screen configurations, and the manifest elements you can use to limit the screen sizes your
application supports.

Resource Qualifiers for Screen Size and Pixel Density
In Chapter 3 you were introduced to the Android resource framework. Using this framework you
can create a parallel directory structure to store external resources for different host hardware
configurations.

This section summarizes the folder-name qualifiers you can use to include alternative resources for
different screen sizes, pixel densities, and aspect ratios.

➤ Screen size The size of the screen relative to a ‘‘standard’’ smartphone (such as the G1 or
Droid).

➤ small A screen smaller than the standard 3.2’’

➤ medium Typical smartphone screen size

➤ large A screen significantly larger than that of a typical smartphone, such as the
screen of a tablet or netbook

➤ Pixel density Refers to the density of pixels on the display. Typically measured in dots per
inch (dpi), this is calculated as a function of the physical screen size and resolution.

➤ ldpi Used to store low-density resources for screens with pixel density in the
range of 100 to 140dpi

➤ mdpi Used for medium-density screens with 140 to 180dpi

➤ hdpi Used for high-density screens featuring 190 to 250dpi

➤ nodpi Used for resources that must not be scaled regardless of the host screen’s
density

➤ Aspect ratio The screen’s aspect ratio is the ratio of its height to its width.

Resolution and Density Independence ❘ 119

➤ long Used for screens that are significantly wider in landscape mode than those of
standard smartphones (such as the G1)

➤ notlong Used for screens with a typical smartphone aspect ratio

Each of these qualifiers is independent and can be used independently, or in combination with each
other, as shown in Listing 4-24.

Note that these qualifiers can also be used with the other resource folder qualifiers described in
Chapter 3.

LISTING 4-24: Sample screen-based resource directory qualifiers

res/layout-small-long/ // Layouts for small, long screens.
res/layout-large/ // Layouts for large screens.
res/drawable-hdpi/ // Drawables for high density screens.

Specifying Supported Screen Sizes
For some applications it may not be possible to optimize your UI to support all possible screen sizes.
You can use the <supports-screens> manifest element to specify which screens your application can
be run on, as shown in Listing 4-25.

LISTING 4-25: Manifest element supporting normal and large screen sizes

<supports-screens
android:smallScreens="false"
android:normalScreens="true"
android:largeScreens="true"
android:anyDensity="true"

/>

In this context a small screen is any display with resolution smaller than HVGA. A large screen is
significantly larger than a smartphone (such as a tablet), while normal screens encompass the majority
of smartphone handsets.

The anyDensity attribute controls how your application will be scaled when displayed on devices of
varying pixel density. If you have taken varying pixel density into account in your UI (and you should
have) set this to true.

A false value will force Android to use compatibility scaling to attempt to scale your application UI
correctly. This will generally result in a UI with degraded image assets that show scaling artifacts.

Applications built with an SDK of API level 4 or higher will default all of these values to true.

Best Practices for Resolution Independence
The variety of Android hardware available provides both an exciting opportunity and a potential
hazard for application developers.

120 ❘ CHAPTER 4 CREATING USER INTERFACES

This section summarizes some of the most common techniques for creating applications that will run
effectively on any screen platform.

The most important thing to remember is never make assumptions regarding the screen your applica-
tion will be running on. Create your layouts and assets for classes of screens (small, normal, and large
size with low, medium, and high density) rather than particular screen dimensions or resolutions.
By assuming your application will need to be scaled slightly on every device, you can ensure that when
it is scaled the UI does not suffer.

The Android Developer site includes some excellent tips for supporting multiple
screen types. The section on ‘‘Strategies for Legacy Apps’’ is particularly useful for
developers with existing applications looking to support new screen sizes and
resolutions. You can find this documentation here: http://developer.android
.com/guide/practices/screens_support.html#strategies

Relative Layouts and Density-Independent Pixels
Wherever possible you should avoid using hard-coded pixel values. This applies to layouts, Drawables
and font sizes.

In particular you should avoid the Absolute Layout class, which depends on the specification of pixel-
based coordinates for each child View. Instead, use an alternative Layout manager that describes the
child Views relative to each other or the screen edges. For most complex UIs the Relative Layout is
likely to be the best solution.

Within your layouts you should also avoid specifying View, Drawable, and font sizes using pixel values.
Instead, define the height and width of Views using wrap_content or fill_parent where appropriate,
and density-independent pixels (dp) or scale-independent pixels (sp) as required for View and font sizes,
respectively.

Density- and scale-independent pixels are means of specifying screen dimensions
that will scale to appear the same on hardware using different pixel densities. One
density-independent pixel (dp) is equivalent to one pixel on a 160dpi screen. A line
specified as 2dp wide will appear as 3 pixels on a display with 240dpi.

Using Scalable Graphics Assets
Earlier in this chapter you were introduced to a number of Drawable resources, most of which can be
defined in XML and all of which can be scaled smoothly by the run time, regardless of the screen size
or pixel density.

Where possible, use the following Drawable resources rather than fixed bitmap assets:

➤ NinePatches

➤ Shape Drawables

➤ Gradient Drawables

Resolution and Density Independence ❘ 121

➤ Composite and transformative Drawables such as:

➤ Rotate and Scale Drawables

➤ LevelListDrawables

➤ StateListDrawables

Remember when defining these assets to use density-independent pixels (dp).

Using scalable assets has the advantage of generic support for arbitrary screen sizes and resolutions,
with the framework dynamically scaling your assets to produce the best possible image quality.

Provide Optimized Resources for Different Screens
When using Drawable resources that cannot be dynamically scaled well, you should create and include
image assets optimized for each pixel density category (low, medium, and high). Application icons are
an excellent example of a resource that should be optimized for different pixel densities.

Using the resource framework described earlier in the chapter (and in Chapter 3), you can create anno-
tated Drawable directories to store image assets for each supported density, as shown in the following
list:

➤ res/drawable-ldpi

➤ res/drawable-mdpi

➤ res/drawable-hdpi

By creating assets optimized for the pixel density of the host platform you ensure that your UI will be
crisp and clear and devoid of artifacts like aliasing and lost pixels — typical side effects of scaling.

Similarly, you should consider creating alternative layout definitions for different screen sizes. A layout
optimized for a typical smartphone screen may crop important information on a small device, or appear
too sparse when displayed on a large device such as a tablet.

Use the resource framework to annotate the layout resource folder to create specialized layouts for
small, normal, and large screens, as shown in the following list:

➤ res/layout-small

➤ res/layout-normal

➤ res/layout-large

Testing, Testing, Testing
With dozens of Android devices of varying screen sizes and pixel densities now available, it’s impracti-
cal (and in some cases impossible) to physically test your application on every device.

Android Virtual Devices are ideal platforms for testing your application with a number of different
screen configurations. Virtual devices also have the advantage of letting you configure alternative plat-
form releases (1.6, 2.0, 2.1, etc.) and hardware configurations (such as keyboards or trackballs).

You learned how to create and use Android Virtual Devices in Chapter 2, so this section will focus on
how best to create virtual devices that are representative of different screens.

122 ❘ CHAPTER 4 CREATING USER INTERFACES

Emulator Skins
The simplest way to test your application UI is to use the built-in skins. Each skin emulates a known
device configuration with a resolution, pixel density, and physical screen size.

As of Android 2.1, the following built-in skins were available for testing:

➤ QVGA 320×240, 120dpi, 3.3′′

➤ WQVGA432 432×240, 120dpi, 3.9′′

➤ HVGA 480×320, 160dpi, 3.6′′

➤ WVGA800 800×480, 240dpi, 3.9′′

➤ WVGA854 854×480, 240dpi, 4.1′′

Testing for Custom Resolutions and Screen Sizes
One of the advantages of using an AVD to evaluate devices is the ability to define arbitrary screen
resolutions and pixel densities.

Figure 4-5 shows a new AVD for a 1024×768 device with a pixel density of 240dpi.

FIGURE 4-5

Creating and Using Menus ❘ 123

FIGURE 4-6

When you start a new AVD you will be presented with the Launch
Options dialog shown in Figure 4-6. If you check the ‘‘Scale dis-
play to real size’’ checkbox and specify a screen size for your virtual
device, as well as the dpi of your development monitor, the emula-
tor will scale to approximate the physical size and pixel density you
specified.

This lets you evaluate your UI against a variety of screen sizes and
pixel densities as well as resolutions and skins. This is an ideal way
to see how your application will appear on a small, high-resolution
phone or a large, low resolution tablet.

CREATING AND USING MENUS

Menus offer a way to expose application functions without sacrificing valuable screen space. Each
Activity can specify its own menu that’s displayed when the device’s menu button is pressed.

Android also supports context menus that can be assigned to any View. Context menus are normally
triggered when a user holds the middle D-pad button, depresses the trackball, or long-presses the touch-
screen for around three seconds when the View has focus.

Activity and context menus support submenus, checkboxes, radio buttons, shortcut keys, and icons.

Introducing the Android Menu System
If you’ve ever tried to navigate a mobile phone menu system using a stylus or trackball, you know that
traditional menu systems are awkward to use on mobile devices.

To improve the usability of application menus, Android features a three-stage menu system optimized
for small screens:

FIGURE 4-7

.
➤ The icon menu This compact menu (shown in

Figure 4-7) appears along the bottom of the screen
when the menu button is pressed. It displays the icons
and text for a limited number of Menu Items (typically
six). By convention, menu icons are grayscale images
in an embossed style, though this may vary on different
devices.

. This icon menu does not display checkboxes, radio buttons, or the shortcut keys for Menu
Items, so it’s generally good practice not to depend on checkboxes or radio buttons in icon
Menu Items, as they will not be visible.

If the Activity menu contains more than the maximum number of visible Menu Items, a More
Menu Item is displayed. When selected, it displays the expanded menu. Pressing the back but-
ton closes the icon menu.

124 ❘ CHAPTER 4 CREATING USER INTERFACES

FIGURE 4-8

.
➤ The expanded menu The expanded menu is triggered when a

user selects the More Menu Item from the icon menu. The
expanded menu (shown in Figure 4-8) displays a scrollable list of
only the Menu Items that weren’t visible in the icon menu. This
menu displays full text, shortcut keys, and checkboxes/radio
buttons.

It does not, however, display icons. Pressing back from the expanded
menu returns you to the icon menu.

You cannot force Android to display the expanded menu instead of the icon menu.
As a result, special care must be taken with Menu Items that feature checkboxes or
radio buttons. The maximum number of icon Menu Items can vary by device, so
it’s good practice to ensure that their state information is also indicated by an icon
or a change in text.

FIGURE 4-9

.
➤ Submenus The traditional expanding hierarchi-

cal tree can be awkward to navigate using a mouse,
so it’s no surprise that this metaphor is particularly
ill-suited for use on mobile devices. The Android
alternative is to display each submenu in a floating
window.

For example, when a user selects a submenu such as
the creatively labeled Submenu shown in Figure 4-8,
its items are displayed in a floating menu dialog box,
as shown in Figure 4-9.

Note that the name of the submenu is shown in the
header bar and that each Menu Item is displayed
with its full text, checkbox (if any), and shortcut key.
Since Android does not support nested submenus,
you can’t add a submenu to a submenu (trying will
result in an exception).

As with the extended menu, icons are not displayed
in the submenu, so it’s good practice to avoid assign-
ing icons to submenu items.

Pressing the back button closes the floating win-
dow without your having to navigate back to the
extended or icon menus.

Defining an Activity Menu
To define a menu for an Activity, override its onCreateOptionsMenu handler. This method is triggered
the first time an Activity’s menu is displayed.

Creating and Using Menus ❘ 125

The onCreateOptionsMenu receives a Menu object as a parameter. You can store a reference to, and
continue to use, the Menu reference elsewhere in your code until the next time onCreateOptionsMenu is
called.

You should always call through to the superclass implementation, as it automatically includes addi-
tional system menu options where appropriate.

Use the add method on the Menu object to populate your menu. For each new Menu Item, you must
specify the following:

➤ A group value to separate Menu Items for batch processing and ordering.

➤ A unique identifier for each Menu Item. For efficiency reasons, Menu Item selections are
generally handled by the onOptionsItemSelected event handler, so this unique identifier is
important for determining which Menu Item was pressed. It is convention to declare each
menu ID as a private static variable within the Activity class. You can use the Menu.FIRST

static constant and simply increment that value for each subsequent item.

➤ An order value that defines the order in which the Menu Items are displayed.

➤ The Menu Item display text, either as a character string or as a string resource.

When you have finished populating the Menu return true.

Listing 4-26 shows how to add a single Menu Item to an Activity Menu.

LISTING 4-26: Adding a Menu Item

static final private int MENU_ITEM = Menu.FIRST;

@Override
public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu(menu);

// Group ID
int groupId = 0;
// Unique menu item identifier. Used for event handling.
int menuItemId = MENU_ITEM;
// The order position of the item
int menuItemOrder = Menu.NONE;
// Text to be displayed for this menu item.
int menuItemText = R.string.menu_item;

// Create the menu item and keep a reference to it.
MenuItem menuItem = menu.add(groupId, menuItemId,

menuItemOrder, menuItemText);

return true;
}

Like the Menu object, each MenuItem returned by add is valid until the next call to onCreateOptionsMenu.
Rather than maintaining a reference to each item, you can find a particular Menu Item by passing its
ID in to the Menu’s findItem method.

126 ❘ CHAPTER 4 CREATING USER INTERFACES

Menu Item Options
Android supports most of the traditional Menu Item options you’re probably familiar with, including
icons, shortcuts, checkboxes, and radio buttons, as listed here:

➤ Checkboxes and radio buttons Checkboxes and radio buttons on Menu Items are visible in
expanded menus and submenus, as shown in Figure 4-9. To set a Menu Item as a checkbox,
use the setCheckable method. The state of that checkbox is controlled via setChecked.

A radio button group is a group of items displaying circular buttons, in which only one item
can be selected at any given time. Checking one of these items will automatically uncheck any
checked item in the same group.

To create a radio button group, assign the same group identifier to each item and then call
Menu.setGroupCheckable, passing in that group identifier and setting the exclusive parameter
to true.

Checkboxes are not visible in the icon menu, so Menu Items that feature checkboxes should
be reserved for submenus and items that appear only in the expanded menu. The following
code snippet shows how to add a checkbox and a group of three radio buttons.

// Create a new check box item.
menu.add(0, CHECKBOX_ITEM, Menu.NONE, "CheckBox").setCheckable(true);

// Create a radio button group.
menu.add(RB_GROUP, RADIOBUTTON_1, Menu.NONE, "Radiobutton 1");
menu.add(RB_GROUP, RADIOBUTTON_2, Menu.NONE, "Radiobutton 2");
menu.add(RB_GROUP, RADIOBUTTON_3, Menu.NONE,

"Radiobutton 3").setChecked(true);
menu.setGroupCheckable(RB_GROUP, true, true);

➤ Shortcut keys You can specify a keyboard shortcut for a Menu Item using the setShortcut
method. Each call to setShortcut requires two shortcut keys, one for use with the numeric
keypad and a second to support a full keyboard. Neither key is case-sensitive.

// Add a shortcut to this menu item, ‘0’ if using the numeric keypad
// or ‘b’ if using the full keyboard.
menuItem.setShortcut(’0’, ‘b’);

➤ Condensed titles The icon menu does not display shortcuts or checkboxes, so it’s often nec-
essary to modify its display text to indicate its state. The setTitleCondensed method lets you
specify text to be displayed only in the icon menu.

menuItem.setTitleCondensed("Short Title");

➤ Icons The icon property is a Drawable resource identifier for an icon to be used in the Menu
Item. Icons are displayed only in the icon menu; they are not visible in the extended menu
or submenus. You can specify any Drawable resource as a menu icon, though by convention
menu icons are generally grayscale and use an embossed style.

menuItem.setIcon(R.drawable.menu_item_icon);

➤ Menu item click listener An event handler that will execute when the Menu Item is selected.
For efficiency, the use of such an event handler is discouraged; instead, Menu Item selections
should be handled by the onOptionsItemSelected handler, as shown later in this section.

Creating and Using Menus ❘ 127

menuItem.setOnMenuItemClickListener(new OnMenuItemClickListener() {
public boolean onMenuItemClick(MenuItem _menuItem) {
[... execute click handling, return true if handled ...]
return true;

}
});

➤ Intents An Intent assigned to a Menu Item is triggered when the clicking of a Menu Item
isn’t handled by either a MenuItemClickListener or the Activity’s onOptionsItemSelected
handler. When the Intent is triggered Android will execute startActivity, passing in the
specified Intent.

menuItem.setIntent(new Intent(this, MyOtherActivity.class));

Dynamically Updating Menu Items
By overriding your Activity’s onPrepareOptionsMenu method you can modify a Menu based on an
application’s current state immediately before the Menu is displayed. This lets you dynamically dis-
able/enable Menu Items, set visibility, and modify text.

To modify Menu Items dynamically you can either find a reference to them in the onCreateOptionsMenu
method when they’re created, or you can use the findItem method on the Menu object, as shown in
Listing 4-27, where onPrepareOptionsMenu is overridden.

LISTING 4-27: Dynamic menu modification

@Override
public boolean onPrepareOptionsMenu(Menu menu) {
super.onPrepareOptionsMenu(menu);

MenuItem menuItem = menu.findItem(MENU_ITEM);

[... modify menu items ...]

return true;
}

Handling Menu Selections
Android handles all of an Activity’s Menu Item selections using a single event handler, the
onOptionsItemSelected method. The Menu Item selected is passed in to this method as the MenuItem

parameter.

To react to the menu selection, compare the item.getItemId value to the Menu Item identifiers you
used when populating the Menu, and react accordingly, as shown in Listing 4-28.

LISTING 4-28: Handling Menu Item selections

public boolean onOptionsItemSelected(MenuItem item) {
super.onOptionsItemSelected(item);

continues

128 ❘ CHAPTER 4 CREATING USER INTERFACES

LISTING 4-28 (continued)

// Find which menu item has been selected
switch (item.getItemId()) {

// Check for each known menu item
case (MENU_ITEM):

[... Perform menu handler actions ...]
return true;

}

// Return false if you have not handled the menu item.
return false;

}

Submenus and Context Menus
Context menus use the same floating window as the submenus shown in Figure 4-9. While their appear-
ance is the same, the two menu types are populated differently.

Creating Submenus
Submenus are displayed as regular Menu Items that, when selected, reveal more items. Traditionally,
submenus are displayed in a hierarchical tree layout. Android uses a different approach to simplify
menu navigation for small-screen devices. Rather than a tree structure, selecting a submenu presents a
single floating window that displays all of its Menu Items.

You can add submenus using the addSubMenu method. It supports the same parameters as the add

method used to add normal Menu Items, enabling you to specify a group, unique identifier, and text
string for each submenu. You can also use the setHeaderIcon and setIcon methods to specify an icon
to display in the submenu’s header bar or icon menu, respectively.

The Menu Items within a submenu support the same options as those assigned to the icon or extended
menus. However, unlike traditional systems, Android does not support nested submenus.

The following code snippet shows an extract from an implementation of the onCreateMenuOptions

code that adds a submenu to the main menu, sets the header icon, and then adds a submenu Menu
Item:

SubMenu sub = menu.addSubMenu(0, 0, Menu.NONE, "Submenu");
sub.setHeaderIcon(R.drawable.icon);
sub.setIcon(R.drawable.icon);

MenuItem submenuItem = sub.add(0, 0, Menu.NONE, "Submenu Item");

Using Context Menus
Context Menus are contextualized by the currently focused View and are triggered by the user’s press-
ing the trackball, middle D-pad button, or a View for around three seconds.

You define and populate Context Menus much as you define and populate Activity Menus. There are
two options available for creating Context Menus for a particular View.

Creating and Using Menus ❘ 129

Creating Context Menus
One option is to create a generic ContextMenu object for a View class by overriding a View’s
onCreateContextMenu handler, as shown here:

@Override
public void onCreateContextMenu(ContextMenu menu) {

super.onCreateContextMenu(menu);
menu.add("ContextMenuItem1");

}

The Context Menu created here will be available within any Activity that includes this View class.

The more common alternative is to create Activity-specific Context Menus by overriding the
Activity’s onCreateContextMenu method, and registering the Views that should use it using the
registerForContextMenu as shown in Listing 4-29.

LISTING 4-29: Assigning a Context Menu to a View

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

EditText view = new EditText(this);
setContentView(view);

registerForContextMenu(view);
}

Once a View has been registered, the onCreateContextMenu handler will be triggered the first time a
Context Menu should be displayed for that View.

Override onCreateContextMenu and check which View has triggered the menu creation in order to
populate the Context Menu parameter with the appropriate Menu Items, as shown in this extension to
Listing 4-29.

@Override
public void onCreateContextMenu(ContextMenu menu, View v,

ContextMenu.ContextMenuInfo menuInfo) {
super.onCreateContextMenu(menu, v, menuInfo);

menu.setHeaderTitle("Context Menu");
menu.add(0, menu.FIRST, Menu.NONE,

"Item 1").setIcon(R.drawable.menu_item);
menu.add(0, menu.FIRST+1, Menu.NONE, "Item 2").setCheckable(true);
menu.add(0, menu.FIRST+2, Menu.NONE, "Item 3").setShortcut(’3’, ‘3’);
SubMenu sub = menu.addSubMenu("Submenu");
sub.add("Submenu Item");

}

As shown in the preceding code, the ContextMenu class supports the same add method as the Menu class,
so you can populate a Context Menu in the same way that you populate Activity menus — using the
add method. This includes using the add method to add submenus to your Context Menus. Note that

130 ❘ CHAPTER 4 CREATING USER INTERFACES

icons will never be displayed. You can, however, specify the title and icon to display in the Context
Menu’s header bar.

Android also supports late runtime population of Context Menus via Intent Filters. This mechanism
lets you populate a Context Menu by specifying the kind of data presented by the current View, and
asking other Android applications if they support any actions for it.

The most common example of this mechanism is the cut/copy/paste Menu Items available on Edit Text
controls. Using Intent Filters to populate Context Menus is covered in detail in the next chapter.

Handling Context Menu Selections
Context Menu Item selections are handled much the same as Activity Menu selection. You can attach
an Intent or Menu Item Click Listener directly to each Menu Item, or use the preferred technique of
overriding the onContextItemSelected method on the Activity.

This event handler is triggered whenever a Context Menu Item is selected.

@Override
public boolean onContextItemSelected(MenuItem item) {

super.onContextItemSelected(item);

[... Handle menu item selection ...]

return false;
}

Defining Menus in XML
Android lets you define your Menu hierarchies as XML resources.

As with layouts and other resources, this gives you the ability to create different Menus for alternative
hardware configurations, languages, or locations. For example, you may wish to move some onscreen
options to your menu for small displays.

Menu resources are created as XML files in the res/menu folder of your resources directory. Each menu
hierarchy must be created as a separate file, for which the lowercase file name becomes the resource
identifier.

Create your Menu hierarchy using the <menu> tag as the root node and a series of <item> tags to specify
each Menu Item. Each item node supports attributes to specify the Menu Item properties, including the
text, icon, shortcut, and checkbox options.

To create a submenu, simply place a new <menu> tag as a subnode within an <item>.

Listing 4-30 shows how to create the Menu hierarchy described in Listing 4-29 as an XML resource.

LISTING 4-30: Defining a menu in XML

<menu xmlns:android="http://schemas.android.com/apk/res/android"
android:name="Context Menu">
<item

android:id="@+id/item01"

Creating and Using Menus ❘ 131

android:icon="@drawable/menu_item"
android:title="Item 1">

</item>
<item

android:id="@+id/item02"
android:checkable="true"
android:title="Item 2">

</item>
<item

android:id="@+id/item03"
android:numericShortcut="3"
android:alphabeticShortcut="3"
android:title="Item 3">

</item>
<item

android:id="@+id/item04"
android:title="Submenu">
<menu>
<item

android:id="@+id/item05"
android:title="Submenu Item">

</item>
</menu>

</item>
</menu>

To use your Menu resource, use the MenuInflator class within your onCreateOptionsMenu or
onCreateContextMenu event handlers, as shown in Listing 4-31.

LISTING 4-31: Inflating an XML menu resource

public void onCreateContextMenu(ContextMenu menu, View v,
ContextMenu.ContextMenuInfo menuInfo) {

super.onCreateContextMenu(menu, v, menuInfo);
MenuInflater inflater = getMenuInflater();
inflater.inflate(R.menu.my_menu, menu);
menu.setHeaderTitle("Context Menu");

}

To-Do List Example Continued
In the following example you’ll be adding some simple menu functions to the to-do list application you
started in Chapter 2 and continued to improve earlier in this chapter.

You will add the ability to remove to-do items using Context and Activity Menus, and improve the use
of screen space by displaying the text entry box only when adding a new item.

1. Start by importing the packages you need to support Menu functionality into the ToDoList

Activity class.

import android.view.Menu;
import android.view.MenuItem;

132 ❘ CHAPTER 4 CREATING USER INTERFACES

import android.view.ContextMenu;
import android.widget.AdapterView;

2. Then add private static final variables that define the unique IDs for each Menu Item.

static final private int ADD_NEW_TODO = Menu.FIRST;
static final private int REMOVE_TODO = Menu.FIRST + 1;

3. Now override the onCreateOptionsMenu method to add two new Menu Items, one to add
and the other to remove a to-do item. Specify the appropriate text, and assign icon resources
and shortcut keys for each item.

@Override
public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu(menu);

// Create and add new menu items.
MenuItem itemAdd = menu.add(0, ADD_NEW_TODO, Menu.NONE,

R.string.add_new);
MenuItem itemRem = menu.add(0, REMOVE_TODO, Menu.NONE,

R.string.remove);

FIGURE 4-10

// Assign icons
itemAdd.setIcon(R.drawable.add_new_item);
itemRem.setIcon(R.drawable.remove_item);

// Allocate shortcuts to each of them.
itemAdd.setShortcut(’0’, ‘a’);
itemRem.setShortcut(’1’, ‘r’);

return true;
}

. If you run the Activity, pressing the hardware
menu button will display the menu as shown in
Figure 4-10.

. 4. Having populated the Activity Menu, create a Con-
text Menu. First, modify onCreate to register the
List View to use a Context Menu. Then override
onCreateContextMenu to populate the Context
Menu with a remove item.

@Override
public void onCreate(Bundle savedInstanceState) {

[... existing onCreate method ...]

registerForContextMenu(myListView);
}

@Override
public void onCreateContextMenu(ContextMenu menu,

View v,

Creating and Using Menus ❘ 133

ContextMenu.ContextMenuInfo menuInfo) {
super.onCreateContextMenu(menu, v, menuInfo);

menu.setHeaderTitle("Selected To Do Item");
menu.add(0, REMOVE_TODO, Menu.NONE, R.string.remove);

}

5. Now modify the appearance of the Menu based on the application context. Override the
onPrepareOptionsMenu method; the Menu Item should be customized to show Cancel rather
than Delete if you are currently adding a new to-do item.

private boolean addingNew = false;

@Override
public boolean onPrepareOptionsMenu(Menu menu) {
super.onPrepareOptionsMenu(menu);

int idx = myListView.getSelectedItemPosition();

String removeTitle = getString(addingNew ?
R.string.cancel : R.string.remove);

MenuItem removeItem = menu.findItem(REMOVE_TODO);
removeItem.setTitle(removeTitle);
removeItem.setVisible(addingNew || idx > -1);

return true;
}

6. For the code in Step 5 to work you need to increase the scope of the todoListItems and
ListView control beyond the onCreate method. Do the same thing for the ArrayAdapter and
EditText to support the add and remove actions when they’re implemented later.

private ArrayList<String> todoItems;
private ListView myListView;
private EditText myEditText;
private ArrayAdapter<String> aa;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

// Get references to UI widgets
myListView = (ListView)findViewById(R.id.myListView);
myEditText = (EditText)findViewById(R.id.myEditText);

todoItems = new ArrayList<String>();
int resID = R.layout.todolist_item;
aa = new ArrayAdapter<String>(this, resID, todoItems);
myListView.setAdapter(aa);

myEditText.setOnKeyListener(new OnKeyListener() {
public boolean onKey(View v, int keyCode, KeyEvent event) {

if (event.getAction() == KeyEvent.ACTION_DOWN)

134 ❘ CHAPTER 4 CREATING USER INTERFACES

if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER)
{

todoItems.add(0, myEditText.getText().toString());
myEditText.setText("");
aa.notifyDataSetChanged();
return true;

}
return false;

}
});

registerForContextMenu(myListView);
}

7. Next you need to handle Menu Item clicks. Override the onOptionsItemSelected and
onContextItemSelected methods to execute stubs that handle the new Menu Items.

7.1. Start by overriding onOptionsItemSelected to handle the Activity Menu selections.
For the remove Menu Item you can use the getSelectedItemPosition method on
the List View to find the currently highlighted item.

@Override
public boolean onOptionsItemSelected(MenuItem item) {
super.onOptionsItemSelected(item);

int index = myListView.getSelectedItemPosition();

switch (item.getItemId()) {
case (REMOVE_TODO): {
if (addingNew) {

cancelAdd();
}
else {

removeItem(index);
}
return true;

}
case (ADD_NEW_TODO): {
addNewItem();
return true;

}
}

return false;
}

7.2. Next, override onContextItemSelected to handle Context Menu Item selec-
tions. Note that you are using the AdapterView-specific implementation of
ContextMenuInfo. This includes a reference to the View that triggered the Context
Menu and the index of the data it’s displaying from the underlying Adapter.
Use the latter as the index of the item to remove.

@Override
public boolean onContextItemSelected(MenuItem item) {
super.onContextItemSelected(item);

Creating and Using Menus ❘ 135

switch (item.getItemId()) {
case (REMOVE_TODO): {
AdapterView.AdapterContextMenuInfo menuInfo;
menuInfo =(AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
int index = menuInfo.position;

removeItem(index);
return true;

}
}
return false;

}

7.3. Create the stubs called in the Menu Item selection handlers you created earlier.
private void cancelAdd() {
}

private void addNewItem() {
}

private void removeItem(int _index) {
}

8. Now implement each of the stubs to provide the new functionality.

private void cancelAdd() {
addingNew = false;
myEditText.setVisibility(View.GONE);

}

private void addNewItem() {
addingNew = true;
myEditText.setVisibility(View.VISIBLE);
myEditText.requestFocus();

}

private void removeItem(int _index) {
todoItems.remove(_index);
aa.notifyDataSetChanged();

}

9. You need to hide the text entry box after you’ve added a new to-do item. In the onCreate

method modify the onKeyListener to call the cancelAdd function after adding a new item.

myEditText.setOnKeyListener(new OnKeyListener() {
public boolean onKey(View v, int keyCode, KeyEvent event) {
if (event.getAction() == KeyEvent.ACTION_DOWN)

if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER)
{
todoItems.add(0, myEditText.getText().toString());
myEditText.setText("");
aa.notifyDataSetChanged();
cancelAdd();
return true;

}

136 ❘ CHAPTER 4 CREATING USER INTERFACES

return false;
}

});

10. Finally, to ensure a consistent UI, modify the main.xml layout to hide the text entry box until
the user chooses to add a new item.

<EditText
android:id="@+id/myEditText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text=""
android:visibility="gone"

/>

All code snippets in this example are part of the Chapter 4 Todo List 2 project, available for download at Wrox.com.

Running the application should now let you trigger the Activity Menu to add or remove items from the
list, and a Context Menu on each item should offer the option of removing it.

SUMMARY

You now know the basics of creating intuitive user interfaces for Android applications. You learned
about Views and layouts and were introduced to the Android menu system.

You learned to create Activity screens by positioning Views using layout managers that can be created
in code or as resource files. You learned how to extend, group, and create new View-based controls to
provide a customized appearance and behavior for your applications.

In this chapter, you:

➤ Were introduced to some of the controls and widgets available as part of the Android SDK.

➤ Learned how to use your custom Views within Activities.

➤ Discovered how to create dynamic Drawable resources in XML.

➤ Learned how to create UIs that are resolution- and pixel-density-independent.

➤ Discovered how to create and use Activity Menus and Context Menus.

➤ Extended the to-do list example to support custom Views and menu-based functions.

➤ Created a new Compass View control from scratch.

Now that we’ve covered the fundamentals of Android UI design, the next chapter focuses on binding
application components using Intents, Broadcast Receivers, and Adapters. You will learn how to start
new Activities and broadcast and consume requests for action. Chapter 5 also introduces Internet
connectivity and looks at the Dialog class.

5
Intents, Broadcast Receivers,
Adapters, and the Internet

WHAT’S IN THIS CHAPTER?

➤ An introduction to Intents

➤ Starting new Activities and sub-Activities using implicit and explicit
Intents

➤ Intent filters and intent resolution

➤ Using linkify

➤ Intents, broadcast actions and Broadcast Receivers

➤ Using Adapters to bind data to Views

➤ Using the Internet in Android

➤ How to create and use Dialogs

At first glance the subjects of this chapter might appear to have little in common; in practice
they represent the glue that binds applications and their components.

Mobile applications on most platforms run in their own sandboxes. They’re isolated from each
other, and have strict limitations applied to their interaction with hardware and native compo-
nents. Android applications are also sandboxed but they can use Intents, Broadcast Receivers,
Adapters, Content Providers, and the Internet to interact through those boundaries.

In this chapter you’ll look at Intents. Intents are probably the most unique, and important,
concept in Android development. You’ll learnhow to use Intents to broadcast data between
applications and application components, and start Activities or Services, both explicitly and
using late runtime binding.

Using implicit Intents you’ll learn how to request that an action be performed on a piece of data,
letting Android determine which application components can best service that request.

138 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

Broadcast Intents are used to announce events system-wide. You’ll learn how to transmit these broad-
casts, and receive them using Broadcast Receivers.

You’ll examine Adapters and learn how to use them to bind your presentation layer to data sources,
before examining dialog boxes.

Having looked at the mechanisms for transmitting and consuming local data, you’ll be introduced to
Android’s Internet connectivity model and some of the Java techniques for parsing Internet data feeds.

An earthquake-monitoring example will then demonstrate how to tie all these features together. The
earthquake monitor will form the basis of an ongoing example that you’ll improve and extend in later
chapters.

INTRODUCING INTENTS

Intents are used as a message-passing mechanism that works both within your application, and between
applications. Intents can be used to:

➤ Declare your intention that an Activity or Service be started to perform an action, usually
with (or on) a particular piece of data

➤ Broadcast that an event (or action) has occurred

➤ Explicitly start a particular Service or Activity

You can use Intents to support interaction among any of the application components installed on an
Android device, no matter which application they’re a part of. This turns your device from a platform
containing a collection of independent components into a single interconnected system.

One of the most common uses for Intents is to start new Activities, either explicitly (by specifying the
class to load) or implicitly (by requesting that an action be performed on a piece of data). In the latter
case the action need not be performed by an Activity within the calling application.

Intents can also be used to broadcast messages across the system. Any application can register Broad-
cast Receivers to listen for, and react to, these broadcast Intents. This lets you create event-driven
applications based on internal, system, or third-party-application events.

Android broadcasts Intents to announce system events, like changes in Internet connection status or
battery charge levels. The native Android applications, such as the phone dialer and SMS manager,
simply register components that listen for specific broadcast Intents — such as ‘‘incoming phone call’’
or ‘‘SMS message received’’ — and react accordingly.

Using Intents to propagate actions — even within the same application — is a fundamental Android
design principle. It encourages the decoupling of components, to allow the seamless replacement of
application elements. It also provides the basis of a simple model for extending an application’s func-
tionality.

Using Intents to Launch Activities
The most common use of Intents is to bind your application components. Intents are used to start, and
transition between, Activities.

Introducing Intents ❘ 139

The instructions given in this section refer to starting new Activities, but the same
details also apply to Services. Details on starting (and creating) Services are
available in Chapter 9.

To open an Activity, call startActivity, passing in an Intent as shown in the following snippet:

startActivity(myIntent);

The Intent can either explicitly specify the Activity class to open, or include an action that an Activity
must perform. In the latter case the run time will choose an Activity dynamically using a process known
as Intent resolution.

The startActivity method finds and starts the single Activity that best matches your Intent.

When you use startActivity your application won’t receive any notification when the newly launched
Activity finishes. To track feedback from the opened screen use the startActivityForResult method
described in more detail in the next section.

Explicitly Starting New Activities
You learned in Chapter 2 that applications consist of a number of interrelated screens — Activities —
that must be included in the application manifest. To connect them you may want to explicitly specify
an Activity to open.

To explicitly select an Activity class to start, create a new Intent, specifying the current application
Context and Activity class to launch. Pass this Intent in to startActivity as shown in Listing 5-1.

LISTING 5-1: Explicitly starting an Activity

Intent intent = new Intent(MyActivity.this, MyOtherActivity.class);
startActivity(intent);

After startActivity is called, the new Activity (in this example MyOtherActivity) will be created and
become visible and active, moving to the top of the Activity stack.

Calling finish on the new Activity, or pressing the hardware back button, will close it and remove it
from the stack. Alternatively, developers can navigate to the previous Activity, or yet another Activity,
by calling startActivity.

Implicit Intents and Late Runtime Binding
An implicit Intent is a mechanism that lets anonymous application components service action requests.
That means you can ask the system to launch an Activity that can perform a given action without
knowing which application, or Activity, will do so.

When constructing a new implicit Intent to use with startActivity, you nominate an action to perform
and, optionally, supply the URI of the data to perform that action on. You can also send additional data
to the target Activity by adding extras to the Intent.

140 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

When you use this Intent to start an Activity, Android will — at run time — resolve it into the Activity
class best suited to performing the required action on the type of data specified. This means you can cre-
ate projects that use functionality from other applications, without knowing exactly which application
you’re borrowing functionality from ahead of time.

For example, to let users make calls from your application you could implement a new dialer, or you
could use an implicit Intent that requests the action (dialing) be performed on a phone number (repre-
sented as a URI), as shown in Listing 5-2.

LISTING 5-2: Implicitly starting an Activity

if (somethingWeird && itDontLookGood) {
Intent intent = new Intent(Intent.ACTION_DIAL, Uri.parse("tel:555-2368"));
startActivity(intent);

}

Android resolves this Intent and starts an Activity that provides the dial action on a telephone
number — in this case the dialer Activity.

In circumstances where multiple Activities are capable of performing a given action, the user is pre-
sented with a choice. The full process of Intent resolution is described later in this chapter.

Various native applications provide Activities to handle actions performed on specific data. Third-party
applications, including your own, can be registered to support new actions, or to provide an alternative
provider of native actions. You’ll be introduced to some of the native actions, and how to register your
own Activities to support them, later in this chapter.

Returning Results from Activities
An Activity started via startActivity is independent of its parent and will not provide any feedback
when it closes.

Alternatively, you can start an Activity as a sub-Activity that’s inherently connected to its parent. A sub-
Activity triggers an event handler within its parent Activity when it closes. Sub-Activities are perfect for
situations in which one Activity is providing data input (such as a user’s selecting an item from a list)
for another.

Sub-Activities are really just Activities opened in a different way. As such they must be registered in
the application manifest — in fact any manifest-registered Activity can be opened as a sub-Activity
including system or third-party application Activities.

Launching Sub-Activities
The startActivityForResult method works much like startActivity, but with one important differ-
ence. As well as the explicit or implicit Intent used to determine which Activity to launch, you also pass
in a request code. This value will later be used to uniquely identify the sub-Activity that has returned a
result.

The skeleton code for launching a sub-Activity is shown in Listing 5-3.

Introducing Intents ❘ 141

LISTING 5-3: Starting an Activity for a result

private static final int SHOW_SUBACTIVITY = 1;

Intent intent = new Intent(this, MyOtherActivity.class);
startActivityForResult(intent, SHOW_SUBACTIVITY);

Like regular Activities, sub-Activities can be started implicitly or explicitly. Listing 5-4 uses an implicit
Intent to launch a new sub-Activity to pick a contact.

LISTING 5-4: Implicitly starting an Activity for a result

private static final int PICK_CONTACT_SUBACTIVITY = 2;

Uri uri = Uri.parse("content://contacts/people");
Intent intent = new Intent(Intent.ACTION_PICK, uri);
startActivityForResult(intent, PICK_CONTACT_SUBACTIVITY);

Returning Results
When your sub-Activity is ready to return, call setResult before finish to return a result to the calling
Activity.

The setResult method takes two parameters: the result code and the result itself, represented as an
Intent.

The result code is the ‘‘result’’ of running the sub-Activity — generally eitherActivity.RESULT_OK or
Activity.RESULT_CANCELED. In some circumstances you’ll want to use your own response codes to
handle application specific choices; setResult supports any integer value.

The Intent returned as a result often includes a URI to a piece of content (such as the selected contact,
phone number, or media file) and a collection of extras used to return additional information.

Listing 5-5 is taken from a sub-Activity’sonCreate method, and shows how an OK and Cancel button
might return different results to the calling Activity.

LISTING 5-5: Creating new Shared Preferences

Button okButton = (Button) findViewById(R.id.ok_button);
okButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {

Uri data = Uri.parse("content://horses/" + selected_horse_id);

Intent result = new Intent(null, data);
result.putExtra(IS_INPUT_CORRECT, inputCorrect);
result.putExtra(SELECTED_PISTOL, selectedPistol);

continues

142 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

LISTING 5-5 (continued)

setResult(RESULT_OK, result);
finish();

}
});

Button cancelButton = (Button) findViewById(R.id.cancel_button);
cancelButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {
setResult(RESULT_CANCELED, null);
finish();

}
});

If the Activity is closed by the user pressing the hardware back key, or finish is called without a prior
call to setResult, the result code will be set to RESULT_CANCELED and the result Intent set to null.

Handling Sub-Activity Results
When a sub-Activity closes, the onActivityResult event handler is fired within the calling Activity.
Override this method to handle the results returned by sub-Activities.

The onActivityResult handler receives a number of parameters:

➤ Request code The request code that was used to launch the returning sub-Activity.

➤ Result code The result code set by the sub-Activity to indicate its result. It can be any integer
value, but typically will be either Activity.RESULT_OK or Activity.RESULT_CANCELED.

If the sub-Activity closes abnormally, or doesn’t specify a result code before it
closes, the result code is Activity.RESULT_CANCELED.

➤ Data An Intent used to package returned data. Depending on the purpose of the sub-
Activity, it may include a URI that represents a selected piece of content. Alternatively, or
additionally, the sub-Activity can return extra information as primitive values using the
Intent extras Bundle.

The skeleton code for implementing the onActivityResult event handler within an Activity is shown
in Listing 5-6.

LISTING 5-6: Implementing an On Activity Result Handler

private static final int SHOW_SUB_ACTIVITY_ONE = 1;
private static final int SHOW_SUB_ACTIVITY_TWO = 2;

@Override
public void onActivityResult(int requestCode,

Introducing Intents ❘ 143

int resultCode,
Intent data) {

super.onActivityResult(requestCode, resultCode, data);

switch(requestCode) {
case (SHOW_SUB_ACTIVITY_ONE) : {
if (resultCode == Activity.RESULT_OK) {

Uri horse = data.getData();
boolean inputCorrect = data.getBooleanExtra(IS_INPUT_CORRECT, false);
String selectedPistol = data.getStringExtra(SELECTED_PISTOL);

}
break;

}
case (SHOW_SUB_ACTIVITY_TWO) : {
if (resultCode == Activity.RESULT_OK) {

// TODO: Handle OK click.
}
break;

}
}

}

Native Android Actions
Native Android applications also use Intents to launch Activities and sub-Activities.

The following non-comprehensive list shows some of the native actions available as static string con-
stants in the Intent class. When creating implicit Intents you can use these actions, called Activity
Intents, to start Activities and sub-Activities within your own applications.

Later you will be introduced to Intent Filters and you’ll learn how to register your
own Activities as handlers for these actions.

➤ ACTION_ANSWER Opens an Activity that handles incoming calls. Currently this is handled by
the native in-call screen.

➤ ACTION_CALL Brings up a phone dialer and immediately initiates a call using the number
supplied in the Intent URI. Generally it’s considered better form to useACTION_DIAL if
possible.

➤ ACTION_DELETE Starts an Activity that lets you delete the data specified at the Intent’s data
URI.

➤ ACTION_DIAL Brings up a dialer application with the number to dial pre-populated from
the Intent URI. By default this is handled by the native Android phone dialer. The dialer can
normalize most number schemas: for example, tel:555-1234 and tel:(212) 555 1212 are
both valid numbers.

➤ ACTION_EDIT Requests an Activity that can edit the data at the specified Intent URI.

144 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

➤ ACTION_INSERT Opens an Activity capable of inserting new items into the Cursor specified
in the Intent URI. When called as a sub-Activity it should return a URI to the newly inserted
item.

➤ ACTION_PICK Launches a sub-Activity that lets you pick an item from the Content Provider
specified by the Intent URI. When closed it should return a URI to the item that was
picked. The Activity launched depends on the data being picked: for example, passing
content://contacts/people will invoke the native contacts list.

➤ ACTION_SEARCH Launches the Activity used for performing a search. Supply the search term
as a string in the Intent’s extras using theSearchManager.QUERY key.

➤ ACTION_SENDTO Launches an Activity to send a message to the contact specified by the Intent
URI.

➤ ACTION_SEND Launches an Activity that sends the data specified in the Intent. The recipient
contact needs to be selected by the resolved Activity. Use setType to set the MIME type of the
transmitted data.

The data itself should be stored as an extra by means of the key EXTRA_TEXT or EXTRA_STREAM,
depending on the type. In the case of e-mail, the native Android applications will also
accept extras via the EXTRA_EMAIL, EXTRA_CC, EXTRA_BCC, and EXTRA_SUBJECT keys. Use the
ACTION_SEND action only to send data to a remote recipient (not another application on the
device).

➤ ACTION_VIEW The most common generic action. View asks that the data supplied in the
Intent’s URI be viewed in the most reasonable manner. Different applications will handle
view requests depending on the URI schema of the data supplied. Natively http: addresses
will open in the browser, tel: addresses will open the dialer to call the number, geo:
addresses will be displayed in the Google Maps application, and contact content will be
displayed in the contact manager.

➤ ACTION_WEB_SEARCH Opens an Activity that performs a web search based on the text sup-
plied in the Intent URI (typically the browser).

As well as these Activity actions, Android includes a large number of broadcast
actions used to create Intents that are broadcast to announce system events. These
broadcast actions are described later in this chapter.

Using Intent Filters to Service Implicit Intents
If an Intent is a request for an action to be performed on a set of data, how does Android know which
application (and component) to use to service the request?

Intent Filters are used to register Activities, Services, and Broadcast Receivers as being capable of
performing an action on a particular kind of data. Intent Filters are also used to register Broadcast
Receivers as being interested in Intents broadcasting a given action or event.

Using Intent Filters, application components announce that they can respond to action requests from
any application installed on the device.

Introducing Intents ❘ 145

To register an application component as a potential Intent handler, add an intent-filter tag to the
component’s manifest node using the following tags (and associated attributes) within the Intent Filter
node:

➤ action Uses the android:name attribute to specify the name of the action being serviced.
Each Intent Filter must have one (and only one) action tag. Actions should be unique strings
that are self-describing. Best practice is to use a naming system based on the Java package
naming conventions.

➤ category Uses the android:name attribute to specify under which circumstances the action
should be serviced. Each Intent Filter tag can include multiple category tags. You can specify
your own categories or use the standard values provided by Android and listed here:

➤ ALTERNATIVE This category specifies that this action should be available as an
alternative to the default action performed on an item of this data type. For
example, where the default action for a contact is to view it, the alternative could
be to edit it.

➤ SELECTED_ALTERNATIVE Similar to the ALTERNATIVE category, but where that cat-
egory will always resolve to a single action using the Intent resolution described
below, SELECTED_ALTERNATIVE is used when a list of possibilities is required. As
you’ll see later in this chapter, one of the uses of Intent Filters is to help populate
Context Menus dynamically using actions.

➤ BROWSABLE Specifies an action available from within the browser. When an Intent
is fired from within the browser it will always include the browsable category. If
you want your application to respond to actions triggered within the browser (e.g.,
intercepting links to a particular web site), you must include the browsable cate-
gory.

➤ DEFAULT Set this to make a component the default action for the data type speci-
fied in the Intent Filter. This is also necessary for Activities that are launched using
an explicit Intent.

➤ GADGET By setting the gadget category you specify that this Activity can run
embedded inside another Activity.

➤ HOME By setting an Intent Filter category as home without specifying an action,
you are presenting it as an alternative to the native home screen.

➤ LAUNCHER Using this category makes an Activity appear in the application
launcher.

➤ data The data tag lets you specify which data types your component can act on; you can
include several data tags as appropriate. You can use any combination of the following
attributes to specify the data your component supports:

➤ android:host Specifies a valid hostname (e.g., google.com).

➤ android:mimetype Lets you specify the type of data your component is capable
of handling. For example, <type android:value="vnd.android.cursor.dir/*"/>
would match any Android cursor.

➤ android:path Specifies valid ‘‘path’’ values for the URI (e.g.,/transport/boats/).

146 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

➤ android:port Specifies valid ports for the specified host.

➤ android:scheme Requires a particular scheme (e.g., content or http).

Listing 5-7 shows an Intent Filter for an Activity that can perform the SHOW_DAMAGE action as either a
primary or an alternative action (you’ll create earthquake content in the next chapter).

LISTING 5-7: Registering an Activity as an Intent Receiver

<activity android:name=".EarthquakeDamageViewer" android:label="View Damage">
<intent-filter>
<action android:name="com.paad.earthquake.intent.action.SHOW_DAMAGE"></action>
<category android:name="android.intent.category.DEFAULT"/>
<category android:name="android.intent.category.ALTERNATIVE_SELECTED"/>
<data android:mimeType="vnd.earthquake.cursor.item/*"/>

</intent-filter>
</activity>

How Android Resolves Intent Filters
When you use startActivity, the implicit Intent passed in usually resolves to a single Activity. If there
are multiple Activities capable of performing the given action on the specified data, the user will be
presented with a list of alternatives.

The process of deciding which Activity to start is called Intent resolution. The aim of Intent resolution
is to find the best Intent Filter match possible by means of the following process:

1. Android puts together a list of all the Intent Filters available from the installed packages.

2. Intent Filters that do not match the action or category associated with the Intent being
resolved are removed from the list.

2.1. Action matches are made if the Intent Filter either includes the specified action or
has no action specified. An Intent Filter will fail the action match check only if it has
one or more actions defined, and none of them matches the action specified by the
Intent.

2.2. Category matching is stricter. Intent Filters must include all the categories defined
in the resolving Intent. An Intent Filter with no categories specified matches only
Intents with no categories.

3. Finally, each part of the Intent’s data URI is compared to the Intent Filter’sdata tag. If the
Intent Filter specifies a scheme, host/authority, path, or MIME type these values are com-
pared to the Intent’s URI. Any mismatch will remove the Intent Filter from the list. Specifying
no data values in an Intent Filter will result in a match with all Intent data values.

3.1. The MIME type is the data type of the data being matched. When matching data
types you can use wildcards to match subtypes (e.g., earthquakes/*). If the Intent
Filter specifies a data type it must match the Intent; specifying no data types results
in a match with all of them.

3.2. The scheme is the ‘‘protocol’’ part of the URI — for example,http:, mailto:, or
tel:.

Introducing Intents ❘ 147

3.3. The hostname or data authority is the section of the URI between the scheme and
the path (e.g., www.google.com). For a hostname to match, the Intent Filter’s scheme
must also pass.

3.4. The data path is what comes after the authority (e.g., /ig). A path can match only if
the scheme and hostname parts of the data tag also match.

4. When you implicitly start an Activity, if more than one component is resolved from this pro-
cess all the matching possibilities are offered to the user.

Native Android application components are part of the Intent resolution process in exactly the same
way as third-party applications. They do not have a higher priority, and can be completely replaced
with new Activities that declare Intent Filters that service the same actions.

Finding and Using the Launch Intent Within an Activity
When an application component is started through an implicit Intent, it needs to find the action it’s to
perform and the data to perform it on.

Call the getIntent method — usually from within the onCreate method — to extract the Intent used
to start a component, as in Listing 5-8.

LISTING 5-8: Finding the launch Intent in a sub-Activity

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

Intent intent = getIntent();
}

Use the getData and getAction methods to find the data and action associated with the Intent. Use the
type-safe get<type>Extra methods to extract additional information stored in its extras Bundle.

String action = intent.getAction();
Uri data = intent.getData();

Passing on Responsibility
Use the startNextMatchingActivity method to pass responsibility for action handling to the next best
matching application component, as shown in Listing 5-9.

LISTING 5-9: Passing on Intent Receiver Handling

Intent intent = getIntent();
if (isDuringBreak)
startNextMatchingActivity(intent);

This lets you add additional conditions to your components that restrict their use beyond the ability of
the Intent Filter–based Intent resolution process.

148 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

In some cases your component may wish to perform some processing, or offer the user a choice, before
passing the Intent on to an alternative component.

Select a Contact Example
In this example you’ll create a new Activity that servicesACTION_PICK for contact data. It displays each
of the contacts in the contacts database and lets the user select one, before closing and returning the
selected contact’s URI to the calling Activity.

It’s worth noting that this example is somewhat contrived. Android already
supplies an Intent Filter for picking a contact from a list that can be invoked by
means of the content://contacts/people/ URI in an implicit Intent. The purpose
of this exercise is to demonstrate the form, even if this particular implementation
isn’t particularly useful.

1. Create a new ContactPicker project that includes a ContactPicker Activity:

package com.paad.contactpicker;

import android.app.Activity;
import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.Contacts.People;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ListView;
import android.widget.SimpleCursorAdapter;
import android.widget.AdapterView.OnItemClickListener;

public class ContactPicker extends Activity {
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

}
}

2. Modify the main.xml layout resource to include a single ListView control. This control will
be used to display the contacts.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<ListView android:id="@+id/contactListView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

Introducing Intents ❘ 149

/>
</LinearLayout>

3. Create a new listitemlayout.xml layout resource that includes a single TextView. This will be
used to display each contact in the List View.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView
android:id="@+id/itemTextView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:padding="10px"
android:textSize="16px"
android:textColor="#FFF"

/>
</LinearLayout>

4. Return to the ContactPicker Activity. Override the onCreate method and extract the data
path from the calling Intent:

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

Intent intent = getIntent();
String dataPath = intent.getData().toString();

.4.1. Create a new data URI for the people stored in the contact list, and bind it to the
List View using a SimpleCursorArrayAdapter:

The SimpleCursorArrayAdapter lets you assign Cursor data, used by Content
Providers, to Views. It’s used here without further comment but is examined in
detail later in this chapter.

final Uri data = Uri.parse(dataPath + "people/");
final Cursor c = managedQuery(data, null, null, null);

String[] from = new String[] {People.NAME};
int[] to = new int[] { R.id.itemTextView };

SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
R.layout.listitemlayout,
c,
from,
to);

ListView lv = (ListView)findViewById(R.id.contactListView);
lv.setAdapter(adapter);

150 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

4.2. Add an onItemClickListener to the List View. Selecting a contact from the list
should return a path to the item to the calling Activity.

lv.setOnItemClickListener(new OnItemClickListener() {
@Override
public void onItemClick(AdapterView<?> parent, View view, int pos,

long id) {
// Move the cursor to the selected item
c.moveToPosition(pos);
// Extract the row id.
int rowId = c.getInt(c.getColumnIndexOrThrow("_id"));
// Construct the result URI.
Uri outURI = Uri.parse(data.toString() + rowId);
Intent outData = new Intent();
outData.setData(outURI);
setResult(Activity.RESULT_OK, outData);
finish();

}
});

4.3. Close off the onCreate method:
}

5. Modify the application manifest and replace the intent-filter tag of the Activity to add
support for the ACTION_PICK action on contact data:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.paad.contactpicker">
<application android:icon="@drawable/icon">

<activity android:name="ContactPicker" android:label="@string/app_name">
<intent-filter>

<action android:name="android.intent.action.PICK"></action>
<category android:name="android.intent.category.DEFAULT"></category>
<data android:path="contacts" android:scheme="content"></data>

</intent-filter>
</activity>

</application>
</manifest>

6. This completes the sub-Activity. To test it, create a new test harness ContentPickerTester
Activity. Create a new layout resource — contentpickertester.xml — that includes a
TextView to display the selected contact and a Button to start the sub-Activity:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView
android:id="@+id/selected_contact_textview"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

/>
<Button

Introducing Intents ❘ 151

android:id="@+id/pick_contact_button"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Pick Contact"

/>
</LinearLayout>

7. Override the onCreate method of the ContentPickerTester to add a click listener to the
Button so that it implicitly starts a new sub-Activity by specifying the ACTION_PICK and the
contact database URI (content://contacts/):

package com.paad.contactpicker;

import android.app.Activity;
import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.Contacts.People;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class ContentPickerTester extends Activity {

public static final int PICK_CONTACT = 1;

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.contentpickertester);

Button button = (Button)findViewById(R.id.pick_contact_button);

button.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View _view) {

Intent intent = new Intent(Intent.ACTION_PICK,
Uri.parse("content://contacts/"));

startActivityForResult(intent, PICK_CONTACT);
}

});
}

}

8. When the sub-Activity returns, use the result to populate the Text View with the selected
contact’s name:

@Override
public void onActivityResult(int reqCode, int resCode, Intent data) {
super.onActivityResult(reqCode, resCode, data);

switch(reqCode) {
case (PICK_CONTACT) : {

152 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

if (resCode == Activity.RESULT_OK) {
Uri contactData = data.getData();
Cursor c = managedQuery(contactData, null, null, null);
c.moveToFirst();
String name = c.getString(c.getColumnIndexOrThrow(People.NAME));
TextView tv = (TextView)findViewById(R.id.selected_contact_textview);
tv.setText(name);

}
break;

}
}

}

9. With your test harness complete, simply add it to your application manifest. You’ll also need
to add a READ_CONTACTS permission within a uses-permission tag, to allow the application
to access the contacts database.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.paad.contactpicker">
<application android:icon="@drawable/icon">

<activity android:name=".ContactPicker" android:label="@string/app_name">
<intent-filter>

<action android:name="android.intent.action.PICK"></action>
<category android:name="android.intent.category.DEFAULT"></category>
<data android:path="contacts" android:scheme="content"></data>

</intent-filter>
</activity>
<activity android:name=".ContentPickerTester"

android:label="Contact Picker Test">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
<uses-permission android:name="android.permission.READ_CONTACTS"/>

</manifest>

All code snippets in this example are part of the Chapter 5 Contact Picker project, available for download at Wrox.com.

When your Activity is running, press the button. The contact picker Activity should be shown as in
Figure 5-1.

Once you select a contact, the parent Activity should return to the foreground with the selected contact
name displayed, as shown in Figure 5-2.

Using Intent Filters for Plug-Ins and Extensibility
You’ve now learned how to create implicit Intents to launch Activities, but that’s only half the story.
Android also lets future packages provide new functionality for existing applications, using Intent
Filters to populate menus dynamically at run time.

Introducing Intents ❘ 153

FIGURE 5-1

This provides a plug-in model for your Activities that lets
them take advantage of future functionality, provided
through application components you haven’t yet con-
ceived of, without your having to modify or recompile your
projects.

The addIntentOptions method available from the Menu

class lets you specify an Intent that describes the data acted
upon by the Menu. Android resolves this Intent and returns
every action specified in Intent Filters that match the
specified data. A new Menu Item is created for each, with
the text populated from the matching Intent Filters’
labels.

The elegance of this concept is best explained by example.
If the data your Activity displays is a list of places, the
Menu Items available might include View and ‘‘Show
directions to.’’ Jump a few years ahead and you’ve created
an application that interfaces with your car, allowing your
phone to handle driving. Thanks to the runtime menu
generation, when a new Intent Filter — with a DRIVE_CAR

action — is included within the new Activity’s node,
Android will automagically add this action as a new Menu
Item in your earlier application.

Runtime menu population provides the ability to retrofit
functionality when you create new components capable
of performing actions on a given type of data. Many of
Android’s native applications use this functionality, giv-
ing you the ability to provide additional actions to native
Activities.

Supplying Anonymous Actions to Applications

FIGURE 5-2

To use this mechanism to make your Activity’s actions avail-
able anonymously for existing applications, publish them
using intent-filter tags within their manifest nodes.

The Intent Filter describes the action it performs and the
data upon which it can be performed. The latter will be used
during the Intent resolution process to determine when this
action should be available. The category tag must be either
ALTERNATIVE or SELECTED_ALTERNATIVE or both. The text
used for the Menu Items is specified by the android:label

attribute.

Listing 5-10 shows an example of an Intent Filter used to
advertise an Activity’s ability to nuke moon-bases from
orbit.

154 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

LISTING 5-10: Advertising-supported Activity actions

<activity android:name=".NostromoController">
<intent-filter
android:label="Nuke From Orbit">
<action android:name="com.pad.nostromo.NUKE_FROM_ORBIT" />
<data android:mimeType="vnd.moonbase.cursor.item/*"/>
<category android:name="android.intent.category.ALTERNATIVE" />
<category android:name="android.intent.category.SELECTED_ALTERNATIVE" />

</intent-filter>
</activity>

The Content Provider and other code needed for this example to run aren’t provided; in the following
sections you’ll see how to write the code that adds this action dynamically to another Activity’s Menu.

Incorporating Anonymous Actions in Your Activity’s Menu
To add Menu Items to your Menus dynamically at run time, use the addIntentOptions method on the
Menu object in question: pass in an Intent that specifies the data for which you want to provide actions.
Generally this will be handled within your Activities’onCreateOptionsMenu or onCreateContextMenu
handlers.

The Intent you create will be used to resolve components with Intent Filters that supply actions for
the data you specify. The Intent is being used to find actions, so don’t assign it one; it should spec-
ify only the data to perform actions on. You should also specify the category of the action, either
CATEGORY_ALTERNATIVE or CATEGORY_SELECTED_ALTERNATIVE.

The skeleton code for creating an Intent for menu-action resolution is shown here:

Intent intent = new Intent();
intent.setData(MyProvider.CONTENT_URI);
intent.addCategory(Intent.CATEGORY_ALTERNATIVE);

Pass this Intent in to addIntentOptions on the Menu you wish to populate, as well as any option flags,
the name of the calling class, the menu group to use, and the menu ID values. You can also specify an
array of Intents you’d like to use to create additional menu items.

Listing 5-11 gives an idea of how to dynamically populate an Activity menu that would include the
‘‘moon-base nuker’’ action from Listing 5-10.

LISTING 5-11: Dynamic Menu population from advertised actions

@Override
public boolean onCreateOptionsMenu(Menu menu) {

super.onCreateOptionsMenu(menu);

// Create the intent used to resolve which actions
// should appear in the menu.
Intent intent = new Intent();
intent.setData(MoonBaseProvider.CONTENT_URI);
intent.addCategory(Intent.CATEGORY_SELECTED_ALTERNATIVE);

Introducing Intents ❘ 155

// Normal menu options to let you set a group and ID
// values for the menu items you’re adding.
int menuGroup = 0;
int menuItemId = 0;
int menuItemOrder = Menu.NONE;

// Provide the name of the component that’s calling
// the action -- generally the current Activity.
ComponentName caller = getComponentName();

// Define intents that should be added first.
Intent[] specificIntents = null;
// The menu items created from the previous Intents
// will populate this array.
MenuItem[] outSpecificItems = null;

// Set any optional flags.
int flags = Menu.FLAG_APPEND_TO_GROUP;

// Populate the menu
menu.addIntentOptions(menuGroup,

menuItemId,
menuItemOrder,
caller,
specificIntents,
intent,
flags,
outSpecificItems);

return true;
}

Introducing Linkify
Linkify is a helper class that automagically creates hyperlinks within Text View (and Text View-
derived) classes through RegEx pattern matching.

Text that matches a specified RegEx pattern will be converted into a clickable hyperlink that implicitly
fires startActivity(new Intent(Intent.ACTION_VIEW, uri)), using the matched text as the target
URI.

You can specify any string pattern you want to turn into links; for convenience, the Linkify class pro-
vides presets for common content types (like phone numbers and e-mail/web addresses), as described
in the following section.

The Native Linkify Link Types
The static Linkify.addLinks method accepts the View to linkify, and a bitmask of one or more of
the default content types supported and supplied by the Linkify class: WEB_URLS, EMAIL_ADDRESSES,
PHONE_NUMBERS, and ALL.

Listing 5-12 shows how to linkify a Text View to display web and e-mail addresses as hyperlinks. When
clicked, they will open the browser and an e-mail application respectively.

156 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

LISTING 5-12: Using Linkify in code

TextView textView = (TextView)findViewById(R.id.myTextView);
Linkify.addLinks(textView, Linkify.WEB_URLS|Linkify.EMAIL_ADDRESSES);

Most Android devices have at least two e-mail applications: Gmail and Email. In
situations in which multiple Activities are resolved as possible action consumers the
user is asked to select his or her preference.

You can also linkify Views from within a layout resource using the android:autoLink attribute. It
supports one or more (separated by |) of the following self-describing values: none, web, email, phone,
and all.

Listing 5-13 shows how to add hyperlinks for phone numbers and e-mail addresses:

LISTING 5-13: Using Linkify in XML

<TextView
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="@string/linkify_me"
android:autoLink="phone|email"

/>

Creating Custom Link Strings
To define your own linkify strings you create a new RegEx pattern to match the text you want to
display as hyperlinks.

As with the native types, you linkify the target View by calling Linkify.addLinks, but this time pass in
the new RegEx pattern. You can also pass in a prefix that will be prepended to the target URI when a
link is clicked.

Listing 5-14 shows a View being linkified to support earthquake data provided by an Android Content
Provider (that you will create in Chapter 7). Rather than include the entire schema, the linkify pattern
matches any text that starts with ‘‘quake’’ and is followed by a number. The content schema is then
prepended to the URI before the Intent is fired.

LISTING 5-14: Creating custom link strings in Linkify

int flags = Pattern.CASE_INSENSITIVE;
Pattern p = Pattern.compile("\\bquake[0-9]*\\b", flags);
Linkify.addLinks(myTextView, p,

"content://com.paad.earthquake/earthquakes/");

Introducing Intents ❘ 157

Linkify also supports TransformFilter and MatchFilter interfaces. These offer additional control over
the target URI structure and the definition of matching strings, and are used as in the following skeleton
code:

Linkify.addLinks(myTextView, pattern, prefixWith,
new MyMatchFilter(), new MyTransformFilter());

Using the Match Filter
Implement the acceptMatch method in your Match Filter to add additional conditions to RegEx pattern
matches. When a potential match is found acceptMatch is triggered, with the match start and end index
(along with the full text being searched) passed in as parameters.

Listing 5-15 shows a MatchFilter implementation that cancels any match immediately preceded by an
exclamation mark.

LISTING 5-15: Using a Linkify Match Filter

class MyMatchFilter implements MatchFilter {
public boolean acceptMatch(CharSequence s, int start, int end) {

return (start == 0 || s.charAt(start-1) != ‘!’);
}

}

Using the Transform Filter
The Transform Filter gives you more freedom to format your text strings by letting you modify the
implicit URI generated by the link text. Decoupling the link text from the target URI gives you more
freedom in how you display data strings to your users.

To use the Transform Filter, implement the transformUrl method in your Transform Filter. When
linkify finds a successful match it calls transformUrl, passing in the RegEx pattern used and the default
URI string it creates. You can modify the matched string and return the URI as a target suitable to be
‘‘viewed’’ by another Android application.

The TransformFilter implementation shown in Listing 5-16 transforms the matched text into a low-
ercase URI.

LISTING 5-16: Using a Linkify Transform Filter

class MyTransformFilter implements TransformFilter {
public String transformUrl(Matcher match, String url) {

return url.toLowerCase();
}

}

Using Intents to Broadcast Events
As a system-level message-passing mechanism, Intents are capable of sending structured messages
across process boundaries.

158 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

So far you’ve looked at using Intents to start new application components, but they can also be
used to broadcast messages anonymously between components via the sendBroadcast method. You
can implement Broadcast Receivers to listen for, and respond to, these broadcast Intents within your
applications.

Broadcast Intents are used to notify listeners of system or application events, extending the event-driven
programming model between applications.

Broadcasting Intents helps make your application more open; by broadcasting an event using an Intent
you let yourself and third-party developers react to events without having to modify your original
application. Within your applications you can listen for broadcast Intents to replace or enhance native
(or third-party) applications, or react to system changes and application events.

Android uses broadcast Intents extensively to broadcast system events like battery-charging levels,
network connections, and incoming calls.

Broadcasting Events with Intents
Broadcasting Intents is simple. Within your application, construct the Intent you want to broadcast and
use the sendBroadcast method to send it.

Set the action, data, and category of your Intent in a way that lets Broadcast Receivers accurately
determine their interest. In this scenario the Intent action string is used to identify the event being
broadcast, so it should be a unique string that identifies the event. By convention, action strings are
constructed with the same form as Java package names:

public static final String NEW_LIFEFORM_DETECTED =
"com.paad.action.NEW_LIFEFORM";

If you wish to include data within the Intent you can specify a URI using the Intent’sdata property.
You can also include extras to add additional primitive values. Considered in terms of an event-driven
paradigm, the extras equate to optional parameters passed into an event handler.

Listing 5-17 shows the basic creation of a broadcast Intent using the action defined previously, with
additional event information stored as extras.

LISTING 5-17: Broadcasting an Intent

Intent intent = new Intent(NEW_LIFEFORM_DETECTED);
intent.putExtra("lifeformName", lifeformType);
intent.putExtra("longitude", currentLongitude);
intent.putExtra("latitude", currentLatitude);
sendBroadcast(intent);

Listening for Broadcasts with Broadcast Receivers
Broadcast Receivers are used to listen for broadcast Intents. For a Broadcast Receiver to be enabled it
needs to be registered, either in code or within the application manifest. When registering a Broadcast
Receiver you must use an Intent Filter to specify which Intents it is listening for.

Introducing Intents ❘ 159

To create a new Broadcast Receiver, extend the BroadcastReceiver class and override the onReceive

event handler as shown in Listing 5-18.

LISTING 5-18: Broadcast Receiver skeleton implementation

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class MyBroadcastReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

//TODO: React to the Intent received.
}

}

The onReceive method will be executed when a broadcast Intent is received that matches the Intent
Filter used to register the Receiver. The onReceive handler must complete within five seconds or the
Force Close dialog will be displayed.

Applications with Broadcast Receivers registered in the manifest don’t have to be running when the
Intent is broadcast for the receivers to execute. They will be started automatically when a match-
ing Intent is broadcast. This is excellent for resource management as it lets you create event-driven
applications that will still respond to broadcast events even after they’ve been closed or killed.

Typically Broadcast Receivers will update content, launch Services, update Activity UI, or notify the
user using the Notification Manager. The five-second execution limit ensures that major processing
cannot, and should not, be done within the Broadcast Receiver itself.

Listing 5-19 shows how to implement a Broadcast Receiver. In the following sections you will learn
how to register it in code or in your application manifest.

LISTING 5-19: Implementing a Broadcast Receiver

public class LifeformDetectedBroadcastReceiver extends BroadcastReceiver {

public static final String BURN = "com.paad.alien.action.BURN_IT_WITH_FIRE";

@Override
public void onReceive(Context context, Intent intent) {

// Get the lifeform details from the intent.
Uri data = intent.getData();
String type = intent.getStringExtra("type");
double lat = intent.getDoubleExtra("latitude", 0);
double lng = intent.getDoubleExtra("longitude", 0);
Location loc = new Location("gps");
loc.setLatitude(lat);
loc.setLongitude(lng);

continues

160 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

LISTING 5-19 (continued)

if (type.equals("alien")) {
Intent startIntent = new Intent(BURN, data);
startIntent.putExtra("latitude", lat);
startIntent.putExtra("longitude", lng);

context.startActivity(startIntent);
}

}
}

Registering Broadcast Receivers in Your Application Manifest
To include a Broadcast Receiver in the application manifest, add a <receiver> tag within the
application node, specifying the class name of the Broadcast Receiver to register. The receiver node
needs to include an intent-filter tag that specifies the action string being listened for, as shown in
Listing 5-20.

LISTING 5-20: Registering a Broadcast Reveiver in XML

<receiver android:name=".LifeformDetectedBroadcastReceiver">
<intent-filter>
<action android:name="com.paad.action.NEW_LIFEFORM"/>

</intent-filter>
</receiver>

Broadcast Receivers registered this way are always active, and will receive broadcast Intents even when
the application has been killed or hasn’t been started.

Registering Broadcast Receivers in Code
You can also register Broadcast Receivers in code. A receiver registered programmatically will respond
to broadcast Intents only when the application component it is registered within is running.

This is typically useful when the Receiver is being used to update UI elements in an Activity. In this case
it’s good practice to un-register the Broadcast Receiver when the Activity isn’t visible (or active).

Listing 5-21 shows how to register a Broadcast Receiver in code using the IntentFilter class.

LISTING 5-21: Registering a Broadcast Receiver in code

// Create and register the broadcast receiver.
IntentFilter filter = new IntentFilter(NEW_LIFEFORM_DETECTED);
LifeformDetectedBroadcastReceiver r = new LifeformDetectedBroadcastReceiver();
registerReceiver(r, filter);

To un-register a Broadcast Receiver use the unregisterReceiver method on your application context,
passing in a Broadcast Receiver instance as follows:

unregisterReceiver(receiver);

Introducing Intents ❘ 161

Further examples can also be found in Chapter 9, where you learn to create your own background
Services and use Intents to broadcast events to your Activities.

Broadcasting Sticky and Ordered Intents
When broadcasting an Intent using sendBroadcast, your Intent will be received by all registered Broad-
cast Receivers, but you cannot control the order and they cannot propagate results.

In circumstances where the order in which the Broadcast Receivers receive the Intent is important,
or where you require the Receivers to be able to affect the Intent being broadcast, you can use the
sendOrderedBroadcast method.

sendOrderedBroadcast(intent, null);

Using this method, your Intent will be delivered to all registered Receivers in order of priority. You
can optionally assign your own Broadcast Receiver, which will then receive the Intent after it has been
handled (and potentially modified) by all the other registered Broadcast Receivers.

sendOrderedBroadcast(intent, null, myBroadcastReceiver, null,
Activity.RESULT_OK, null, null);

For efficiency reasons, some broadcasts are sticky. When you call registerReceiver specifying an
Intent Filter that matches a sticky broadcast, the return value will be the sticky broadcast Intent. To
broadcast a sticky Intent your application must have the BROADCAST_STICKY uses-permission.

sendStickyBroadcast(intent);

To remove a sticky intent call removeStickyBroadcast, passing in the sticky Intent to remove.

removeStickyBroadcast(intent);

Native Android Broadcast Actions
Android broadcasts Intents for many of the system Services. You can use these messages to add func-
tionality to your own projects based on system events such as time-zone changes, data-connection
status, incoming SMS messages, or phone calls.

The following list introduces some of the native actions exposed as constants in the Intent class; these
actions are used primarily to track device status changes.

➤ ACTION_BOOT_COMPLETED Fired once when the device has completed its startup sequence. An
application requires the RECEIVE_BOOT_COMPLETED permission to receive this broadcast.

➤ ACTION_CAMERA_BUTTON Fired when the camera button is clicked.

➤ ACTION_DATE_CHANGED and ACTION_TIME_CHANGED These actions are broadcast if the date
or time on the device is manually changed (as opposed to changing through the inexorable
progression of time).

➤ ACTION_MEDIA_BUTTON Fired when the media button is clicked.

➤ ACTION_MEDIA_EJECT If the user chooses to eject the external storage media, this event is
fired first. If your application is reading or writing to the external media storage you should
listen for this event in order to save and close any open file handles.

162 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

➤ ACTION_MEDIA_MOUNTED and ACTION_MEDIA_UNMOUNTED These two events are broadcast
whenever new external storage media are successfully added to or removed from the device.

➤ ACTION_NEW_OUTGOING_CALL Broadcast when a new outgoing call is about to be placed. Lis-
ten for this broadcast to intercept outgoing calls. The number being dialed is stored in the
EXTRA_PHONE_NUMBER extra, while the resultData in the returned Intent will be the number
actually dialed. To register a Broadcast Receiver for this action your application must declare
the PROCESS_OUTGOING_CALLS uses-permission.

➤ ACTION_SCREEN_OFF and ACTION_SCREEN_ON Broadcast when the screen turns off or on
respectively.

➤ ACTION_TIMEZONE_CHANGED This action is broadcast whenever the phone’s current
time zone changes. The Intent includes a time-zone extra that returns the ID of the new
java.util.TimeZone.

A comprehensive list of the broadcast actions used and transmitted natively by Android to notify appli-
cations of system state changes is available at http://developer.android.com/reference/android/
content/Intent.html

Android also uses broadcast Intents to announce application-specific events like incoming SMS mes-
sages. The actions and Intents associated with these events will be discussed in more detail in later
chapters when you learn more about the associated Services.

INTRODUCING PENDING INTENTS

The PendingIntent class provides a mechanism for creating Intents that can be fired by another appli-
cation at a later time.

A Pending Intent is commonly used to package an Intent that will be fired in response to a future event,
such as a widget View being clicked or a Notification being selected from the notification panel.

When used, Pending Intents execute the packaged Intent with the same permissions
and identity as if you had executed them yourself, within your own application.

As shown in Listing 5-22, the PendingIntent class offers static methods to construct Pending Intents
used to start an Activity, start a Service, or broadcast an Intent.

LISTING 5-22: Creating new Pending Intents

// Start an Activity
Intent startActivityIntent = new Intent(this, MyOtherActivity.class);
PendingIntent.getActivity(this, 0, startActivityIntent, 0);

// Broadcast an Intent
Intent broadcastIntent = new Intent(NEW_LIFEFORM_DETECTED);
PendingIntent.getBroadcast(this, 0, broadcastIntent, 0);

Introducing Adapters ❘ 163

You’ll learn more about using Pending Intents in later chapters when they’re used to support other
Services such as widgets and Notifications.

INTRODUCING ADAPTERS

Adapters are bridging classes that bind data to Views (such as List Views) used in the user interface.
The adapter is responsible for creating the child Views used to represent each item within the parent
View, and providing access to the underlying data.

Views that support Adapter binding must extend the AdapterView abstract class. It’s possible to create
your own AdapterView-derived controls and to create new Adapter classes to bind them.

Introducing Some Native Adapters
In many cases you won’t have to create your own Adapter from scratch. Android supplies a set of
Adapters that pump data into native UI controls.

Because Adapters are responsible both for supplying the data and for creating the Views that represent
each item, Adapters can radically modify the appearance and functionality of the controls they’re
bound to.

The following list highlights two of the most useful and versatile native Adapters:

➤ ArrayAdapter The Array Adapter uses generics to bind an Adapter View to an array of
objects of the specified class. By default the Array Adapter uses the toString value of each
object in the array to create and populate Text Views. Alternative constructors enable you to
use more complex layouts, or you can extend the class to use alternatives to Text Views as
shown in the next section.

➤ SimpleCursorAdapter The Simple Cursor Adapter attaches Views specified within a lay-
out to the columns of Cursors returned from Content Provider queries. You specify an XML
layout definition, and then bind each column to a View within that layout. The adapter will
create a new View for each Cursor entry and inflate the layout into it, populating each View
within the layout using the Cursor column values.

The following sections will delve into these Adapter classes in more detail. The examples provided bind
data to List Views, though the same logic will work just as well for other Adapter View classes such as
Spinners and Galleries.

Customizing the Array Adapter
By default the Array Adapter will use the toString value of the object array it is binding to populate
the Text View available within the specified layout.

In most cases you will need to customize the layout used to represent each View. To do that, you will
need to extend ArrayAdapter with a type-specific variation, overriding the getView method to assign
object properties to layout Views as shown in Listing 5-23.

The getView method is used to construct, inflate, and populate the View that will be displayed within
the parent Adapter View class (e.g., List View) which is being bound to the underlying array using this
Adapter.

164 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

The getView method receives parameters that describe the position of the item to be displayed, the
View being updated (or null), and the View Group into which this new View will be placed. A call to
getItem will return the value stored at the specified index in the underlying array.

Return the new populated View instance as a result from this method.

LISTING 5-23: Customizing the Array Adapter

public class MyArrayAdapter extends ArrayAdapter<MyClass> {

int resource;

public MyArrayAdapter(Context context,
int _resource,
List<MyClass> items) {

super(context, _resource, items);
resource = _resource;

}

@Override
public View getView(int position, View convertView, ViewGroup parent) {
LinearLayout newView;

MyClass classInstance = getItem(position);

// TODO Retrieve values to display from the
// classInstance variable.

// Inflate a new view if this is not an update.
if (convertView == null) {

newView = new LinearLayout(getContext());
String inflater = Context.LAYOUT_INFLATER_SERVICE;
LayoutInflater vi = (LayoutInflater)getContext().getSystemService(inflater);
vi.inflate(resource, newView, true);

} else {
newView = (LinearLayout)convertView;

}

// TODO Retrieve the Views to populate
// TODO Populate the Views with object property values.

return newView;
}

}

Using Adapters for Data Binding
To apply an Adapter to an AdapterView-derived class you call the View’ssetAdapter method, passing
in an Adapter instance as shown in Listing 5-24.

Introducing Adapters ❘ 165

LISTING 5-24: Creating and applying an Adapter

ArrayList<String> myStringArray = new ArrayList<String>();
ArrayAdapter<String> myAdapterInstance;

int layoutID = android.R.layout.simple_list_item_1;
myAdapterInstance = new ArrayAdapter<String>(this, layoutID , myStringArray);

myListView.setAdapter(myAdapterInstance);

This snippet shows the most simplistic case, in which the array being bound contains Strings and each
List View item is represented by a single Text View.

The first of the following examples demonstrates how to bind an array of complex objects to a List
View using a custom layout. The second shows how to use a Simple Cursor Adapter to bind a query
result to a custom layout within a List View.

Customizing the To-Do List Array Adapter
This example extends the To-Do List project, storing each item as a ToDoItem object that includes the
date each item was created.

You will extend ArrayAdapter to bind a collection of ToDoItem objects to the ListView and customize
the layout used to display each List View item.

1. Return to the To-Do List project. Create a new ToDoItem class that stores the task and its
creation date. Override the toString method to return a summary of the item data.

package com.paad.todolist;

import java.text.SimpleDateFormat;
import java.util.Date;

public class ToDoItem {

String task;
Date created;

public String getTask() {
return task;

}

public Date getCreated() {
return created;

}

public ToDoItem(String _task) {
this(_task, new Date(java.lang.System.currentTimeMillis()));

}

public ToDoItem(String _task, Date _created) {
task = _task;

166 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

created = _created;
}

@Override
public String toString() {
SimpleDateFormat sdf = new SimpleDateFormat("dd/MM/yy");
String dateString = sdf.format(created);
return "(" + dateString + ") " + task;

}
}

2. Open the ToDoList Activity and modify the ArrayList and ArrayAdapter variable types
to store ToDoItem objects rather than Strings. You’ll then need to modify theonCreate
method to update the corresponding variable initialization. You’ll also need to update the
onKeyListener handler to support the ToDoItem objects.

private ArrayList<ToDoItem> todoItems;
private ListView myListView;
private EditText myEditText;
private ArrayAdapter<ToDoItem> aa;

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

// Inflate your view
setContentView(R.layout.main);

// Get references to UI widgets
myListView = (ListView)findViewById(R.id.myListView);
myEditText = (EditText)findViewById(R.id.myEditText);

todoItems = new ArrayList<ToDoItem>();
int resID = R.layout.todolist_item;
aa = new ArrayAdapter<ToDoItem>(this, resID, todoItems);
myListView.setAdapter(aa);

myEditText.setOnKeyListener(new OnKeyListener() {
public boolean onKey(View v, int keyCode, KeyEvent event) {

if (event.getAction() == KeyEvent.ACTION_DOWN)
if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER) {

ToDoItem newItem = new ToDoItem(myEditText.getText().toString());
todoItems.add(0, newItem);
myEditText.setText("");
aa.notifyDataSetChanged();
cancelAdd();
return true;

}
return false;

}
});

registerForContextMenu(myListView);
}

Introducing Adapters ❘ 167

3. If you run the Activity it will now display each to-do item as shown in Figure 5-3.

FIGURE 5-3

4. Now you can create a custom layout to display each to-do item.

Start by modifying the custom layout you created in Chapter 4 to include a second TextView.
It will be used to show the creation date of each to-do item.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="@color/notepad_paper">
<TextView
android:id="@+id/rowDate"
android:layout_width="wrap_content"
android:layout_height="fill_parent"
android:padding="10dp"
android:scrollbars="vertical"
android:fadingEdge="vertical"
android:textColor="@color/notepad_text"
android:layout_alignParentRight="true"

/>
<TextView
android:id="@+id/row"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:padding="10dp"
android:scrollbars="vertical"
android:fadingEdge="vertical"
android:textColor="@color/notepad_text"
android:layout_alignParentLeft="@+id/rowDate"

/>
</RelativeLayout>

168 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

5. Create a new class (ToDoItemAdapter) that extends an ArrayAdapter with a ToDoItem-specific
variation. Override getView to assign the task and date properties in the ToDoItem object to
the Views in the layout you created in Step 4:

import java.text.SimpleDateFormat;
import android.content.Context;
import java.util.*;
import android.view.*;
import android.widget.*;

public class ToDoItemAdapter extends ArrayAdapter<ToDoItem> {

int resource;

public ToDoItemAdapter(Context _context,
int _resource,
List<ToDoItem> _items) {

super(_context, _resource, _items);
resource = _resource;

}

@Override
public View getView(int position, View convertView, ViewGroup parent) {
LinearLayout todoView;

ToDoItem item = getItem(position);

String taskString = item.getTask();
Date createdDate = item.getCreated();
SimpleDateFormat sdf = new SimpleDateFormat("dd/MM/yy");
String dateString = sdf.format(createdDate);

if (convertView == null) {
todoView = new LinearLayout(getContext());
String inflater = Context.LAYOUT_INFLATER_SERVICE;
LayoutInflater vi = (LayoutInflater)getContext().getSystemService(inflater);
vi.inflate(resource, todoView, true);

} else {
todoView = (LinearLayout) convertView;

}

TextView dateView = (TextView)todoView.findViewById(R.id.rowDate);
TextView taskView = (TextView)todoView.findViewById(R.id.row);

dateView.setText(dateString);
taskView.setText(taskString);

return todoView;
}

}

6. Finally, replace the ArrayAdapter declaration with a ToDoItemAdapter:

private ToDoItemAdapter aa;

Introducing Adapters ❘ 169

Within onCreate, replace the ArrayAdapter<String> instantiation with the new
ToDoItemAdapter:

aa = new ToDoItemAdapter(this, resID, todoItems);

7. If you run your Activity it should appear as shown in the screenshot in Figure 5-4.

FIGURE 5-4

All code snippets in this example are part of the Chapter 5 Todo List project, available for download at Wrox.com.

Using the Simple Cursor Adapter
The SimpleCursorAdapter lets you bind a Cursor to a List View, using a custom layout definition to
define the layout of each row/item, which is populated by a row’s column values.

Construct a Simple Cursor Adapter by passing in the current context, a layout resource, a Cursor, and
two arrays: one that contains the names of the columns to be used, and a second (equally-sized) array
that has resource IDs for the Views to use to display the contents of the corresponding columns.

Listing 5-25 shows how to construct a Simple Cursor Adapter to display contact information.

LISTING 5-25: Creating a Simple Cursor Adapter

String uriString = "content://contacts/people/";
Cursor myCursor = managedQuery(Uri.parse(uriString), null, null, null);

String[] fromColumns = new String[] {People.NUMBER, People.NAME};

int[] toLayoutIDs = new int[] { R.id.nameTextView, R.id.numberTextView};

SimpleCursorAdapter myAdapter;
myAdapter = new SimpleCursorAdapter(this,

R.layout.simplecursorlayout,
continues

170 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

LISTING 5-25 (continued)

myCursor,
fromColumns,
toLayoutIDs);

myListView.setAdapter(myAdapter);

The Simple Cursor Adapter was used earlier in this chapter in the Contact Picker example. You’ll learn
more about Content Providers and Cursors in Chapter 7, where you’ll also find more Simple Cursor
Adapter examples.

USING INTERNET RESOURCES

With Internet connectivity and a WebKit browser, you might well ask if there’s any reason to create
native Internet-based applications when you could make a web-based version instead.

There are a number of benefits to creating thick- and thin-client native applications rather than relying
on entirely web-based solutions:

➤ Bandwidth Static resources like images, layouts, and sounds can be expensive data con-
sumers on devices with limited and often expensive bandwidth restraints. By creating a native
application you can limit the bandwidth requirements to updated data only.

➤ Caching Mobile Internet access has not yet reached the point of ubiquity. With a browser-
based solution a patchy Internet connection can result in intermittent application availability.
A native application can cache data to provide as much functionality as possible without a
live connection.

➤ Native features Android devices are more than a simple platform for running a browser:
they include location-based services, Notifications, widgets, camera hardware, and
accelerometers. By creating a native application you can combine the data available online
with the hardware features available on the device to provide a richer user experience.

Modern mobile devices offer a number of alternatives for accessing the Internet. Looked at broadly,
Android provides two connection techniques for Internet connectivity. Each is offered transparently to
the application layer.

➤ Mobile Internet GPRS, EDGE, and 3G Internet access is available through carriers that
offer mobile data plans.

➤ Wi-Fi Wi-Fi receivers and mobile hotspots are becoming increasingly common.

Connecting to an Internet Resource
While the details of working with specific web services won’t be covered within this book, it’s useful to
know the general principles of connecting to the Internet, and getting an input stream from a remote
data source.

Using Internet Resources ❘ 171

Before you can access Internet resources, you need to add an INTERNET uses-permission node to your
application manifest, as shown in the following XML snippet:

<uses-permission android:name="android.permission.INTERNET"/>

Listing 5-26 shows the basic pattern for opening an Internet data stream.

LISTING 5-26: Opening a data stream

String myFeed = getString(R.string.my_feed);
try {
URL url = new URL(myFeed);

URLConnection connection = url.openConnection();
HttpURLConnection httpConnection = (HttpURLConnection)connection;

int responseCode = httpConnection.getResponseCode();
if (responseCode == HttpURLConnection.HTTP_OK) {

InputStream in = httpConnection.getInputStream();
[... Process the input stream as required ...]

}
}
catch (MalformedURLException e) { }
catch (IOException e) { }

Android includes several classes to help you handle network communications. They are available in the
java.net.* and android.net.* packages.

Later in this chapter is a fully worked example that shows how to obtain and process an Internet feed
to get a list of earthquakes felt in the last 24 hours.

Chapter 13 features more information on managing specific Internet connections, including informa-
tion on monitoring connection status and configuring Wi-Fi access point connections.

Using Internet Resources
Android offers several ways to leverage Internet resources.

At one extreme you can use a WebView to include a WebKit-based browser View within an Activity. At
the other extreme you can use client-side APIs such as Google’s GData APIs to interact directly with
server processes. Somewhere in between, you can process remote XML feeds to extract and process
data using a Java-based XML parser such as SAX or the more efficient XmlPullParser.

Detailed instructions for parsing XML and interacting with specific web services are outside the scope
of this book. That said, the Earthquake example, included later in this chapter, gives a fully worked
example of parsing an XML feed using the SAX parser.

If you’re using Internet resources in your application, remember that your users’ data connections are
dependent on the communications technology available to them. EDGE and GSM connections are
notoriously low-bandwidth, while a Wi-Fi connection may be unreliable in a mobile setting.

172 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

Optimize the user experience by limiting the quantity of data being transmitted, and ensure that your
application is robust enough to handle network outages and bandwidth limitations.

INTRODUCING DIALOGS

FIGURE 5-5

Dialog boxes are a common UI metaphor in desktop, web,
and mobile applications. They’re used to help users answer
questions, make selections, and confirm actions, and to dis-
play warning or error messages. Dialog boxes in Android
are partially transparent, floating Activities that partially
obscure the Activities that launched them.

As in Figure 5-5, they generally obscure the Activities behind
them using a blur or dim filter.

There are three ways to implement a dialog in Android: .

➤ Using the Dialog class (or its extensions) As well
as the general-purpose AlertDialog class, Android
includes a number of specialist classes that extend
Dialog. Each is designed to provide specific dialog-
box functionality. A Dialog-class-based screen is
constructed entirely within its calling Activity, so
it doesn’t need to be registered in the manifest as
its life cycle is controlled entirely by the calling
Activity.

➤ Dialog-themed Activities You can apply the
dialog theme to a regular Activity to give it the
appearance of a standard dialog box.

➤ Toasts Toasts are special non-modal transient message boxes, often used by Broadcast
Receivers and Services to notify users of events occurring in the background. You can learn
more about Toasts in Chapter 9.

Introducing the Dialog Classes
To use the base Dialog class you create a new instance and set the title and layout, using the setTitle

and setContentView methods as shown in Listing 5-27.

LISTING 5-27: Creating a new dialog using the Dialog class

Dialog d = new Dialog(MyActivity.this);

// Have the new window tint and blur the window it
// obscures.
Window window = d.getWindow();
window.setFlags(WindowManager.LayoutParams.FLAG_BLUR_BEHIND,

Introducing Dialogs ❘ 173

WindowManager.LayoutParams.FLAG_BLUR_BEHIND);

// Set the title
d.setTitle("Dialog Title");
// Inflate the layout
d.setContentView(R.layout.dialog_view);

// Find the TextView used in the layout
// and set its text value
TextView text = (TextView)d.findViewById(R.id.dialogTextView);
text.setText("This is the text in my dialog");

Once it’s configured to your liking, use theshow method to display it.

d.show();

The Alert Dialog Class
The AlertDialog class is one of the most versatile Dialog-class implementations. It offers a number of
options that let you construct screens for some of the most common dialog-box use cases, including:

➤ Presenting a message to the user offering them one to three options in the form of buttons.
This functionality is probably familiar to you if you’ve done any desktop programming for
which the buttons presented are usually a combination of OK, Cancel, Yes, and No.

➤ Offering a list of options in the form of checkboxes or radio buttons.

➤ Providing a text entry box for user input.

To construct the Alert Dialog user interface, create a new AlertDialog.Builder object as follows:

AlertDialog.Builder ad = new AlertDialog.Builder(context);

You can then assign values for the title and message to display, and optionally assign values to be used
for any buttons, selection items, and text input boxes you wish to display. That includes setting event
listeners to handle user interaction.

Listing 5-28 gives an example of a new Alert Dialog used to display a message and offer two button
options to continue. Clicking either button will close the Dialog after executing the attached Click
Listener.

LISTING 5-28: Configuring an Alert Dialog

Context context = MyActivity.this;
String title = "It is Pitch Black";
String message = "You are likely to be eaten by a grue.";
String button1String = "Go Back";
String button2String = "Move Forward";

AlertDialog.Builder ad = new AlertDialog.Builder(context);
ad.setTitle(title);
ad.setMessage(message);
ad.setPositiveButton(button1String,

continues

174 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

LISTING 5-28 (continued)

new OnClickListener() {
public void onClick(DialogInterface dialog, int arg1) {
eatenByGrue();

}
});

ad.setNegativeButton(button2String,
new OnClickListener(){

public void onClick(DialogInterface dialog, int arg1) {
// do nothing

}
});

ad.setCancelable(true);
ad.setOnCancelListener(new OnCancelListener() {

public void onCancel(DialogInterface dialog) {
eatenByGrue();

}
});

To display an Alert Dialog that you’ve created callshow:

ad.show();

A better alternative is using your Activity’sonCreateDialog and onPrepareDialog handlers to create
dialog instances that can persist state. This technique is examined later in this chapter.

Specialist Input Dialogs
One of the major uses of dialog boxes is to provide an interface for user input. Android includes several
specialist dialog boxes that encapsulate controls designed to facilitate common user-input requests.
They include the following:

➤ CharacterPickerDialog Lets users select an accented character based on a regular charac-
ter source.

➤ DatePickerDialog Lets users select a date from a DatePicker View. The constructor
includes a callback listener to alert your calling Activity when the date has been set.

➤ TimePickerDialog Similar to the Date Picker Dialog, this dialog lets users select a time from
a TimePicker View.

➤ ProgressDialog A dialog that displays a progress bar beneath a message text box. Perfect
for keeping the user informed of ongoing progress of a time-consuming operation.

Using Activities as Dialogs
Dialogs offer a simple and lightweight technique for displaying screens, but there will still be times
when you need more control over the content and life cycle of your dialog box.

The solution is to implement it as a full Activity. By creating an Activity you lose the lightweight nature
of the Dialog class, but you gain the ability to implement any screen you want and full access to the
Activity life-cycle event handlers.

Introducing Dialogs ❘ 175

The easiest way to make an Activity look like a dialog is to apply the android:style/Theme.Dialog

theme when you add it to your manifest, as shown in the following XML snippet:

<activity android:name="MyDialogActivity"
android:theme="@android:style/Theme.Dialog">

</activity>

This will cause your Activity to behave as a Dialog, floating on top of, and partially obscuring, the
Activity beneath it.

Managing and Displaying Dialogs
Rather than creating new instances of a dialog each time it’s required, Android provides the
onCreateDialog and onPrepareDialog event handlers within the Activity class to persist and manage
dialog-box instances.

By overriding the onCreateDialog handler you can specify dialogs that will be created on demand
when showDialog is used to display a specific dialog. As shown in Listing 5-29, the overridden method
includes a switch statement that lets you determine which dialog is required.

LISTING 5-29: Using the On Create Dialog event handler

static final private int TIME_DIALOG = 1;

@Override
public Dialog onCreateDialog(int id) {
switch(id) {

case (TIME_DIALOG) :
AlertDialog.Builder timeDialog = new AlertDialog.Builder(this);
timeDialog.setTitle("The Current Time Is...");
timeDialog.setMessage("Now");
return timeDialog.create();

}
return null;

}

After the initial creation, each time showDialog is called it will trigger the onPrepareDialog handler. By
overriding this method you can modify a dialog each time it is displayed. This lets you contextualize
any of the display values, as shown in Listing 5-30 that assigns the current time to the dialog created in
Listing 5-29.

LISTING 5-30: Using the On Prepare Dialog event handler

@Override
public void onPrepareDialog(int id, Dialog dialog) {
switch(id) {

case (TIME_DIALOG) :
SimpleDateFormat sdf = new SimpleDateFormat("HH:mm:ss");

continues

176 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

LISTING 5-30 (continued)

Date currentTime = new Date(java.lang.System.currentTimeMillis());
String dateString = sdf.format(currentTime);
AlertDialog timeDialog = (AlertDialog)dialog;
timeDialog.setMessage(dateString);

break;
}

}

Once you’ve overridden these methods you can display the dialogs by callingshowDialog as shown
below. Pass in the identifier for the dialog you wish to display, and Android will create (if necessary)
and prepare the dialog before displaying it.

showDialog(TIME_DIALOG);

As well as providing improved resource use, this technique lets your Activity handle the persistence of
state information within Dialogs. Any selection or data input (such as item selection and text entry)
will be persisted between displays of each Dialog instance.

CREATING AN EARTHQUAKE VIEWER

In the following example you’ll create a tool that uses a USGS earthquake feed to display a list of recent
earthquakes.

You will return to this earthquake application several times, first in Chapters 6
and 7 to save preferences and share the earthquake data with a Content Provider,
and again in Chapters 8 and 9 to add mapping support and to move the earthquake
updates into a Service.

In this example you’ll create a list-based Activitythat connects to an earthquake feed and displays the
location, magnitude, and time of the earthquakes it contains. You’ll use an Alert Dialog to provide a
details window that includes a linkified Text View with a link to the USGS web site.

1. Start by creating an Earthquake project featuring an Earthquake Activity. Modify the
main.xml layout resource to include a List View control — be sure to name it so you can
reference it from the Activity code.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<ListView
android:id="@+id/earthquakeListView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

/>
</LinearLayout>

Creating an Earthquake Viewer ❘ 177

2. Create a new public Quake class. This class will be used to store the details (date, details, loca-
tion, magnitude, and link) of each earthquake. Override the toString method to provide the
string that will be used to represent each quake in the List View.

package com.paad.earthquake;

import java.util.Date;
import java.text.SimpleDateFormat;
import android.location.Location;

public class Quake {
private Date date;
private String details;
private Location location;
private double magnitude;
private String link;

public Date getDate() { return date; }
public String getDetails() { return details; }
public Location getLocation() { return location; }
public double getMagnitude() { return magnitude; }
public String getLink() { return link; }

public Quake(Date _d, String _det, Location _loc, double _mag, String _link) {
date = _d;
details = _det;
location = _loc;
magnitude = _mag;
link = _link;

}

@Override
public String toString() {
SimpleDateFormat sdf = new SimpleDateFormat("HH.mm");
String dateString = sdf.format(date);
return dateString + ": " + magnitude + " " + details;

}

}

3. In the Earthquake Activity, override the onCreate method to store an ArrayList of Quake
objects and bind that to the ListView using an ArrayAdapter:

package com.paad.earthquake;

import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URL;
import java.net.URLConnection;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import java.util.GregorianCalendar;

178 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;
import org.xml.sax.SAXException;
import android.app.Activity;
import android.app.Dialog;
import android.location.Location;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;
import android.view.WindowManager;
import android.view.MenuItem;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.AdapterView.OnItemClickListener;

public class Earthquake extends Activity {

ListView earthquakeListView;
ArrayAdapter<Quake> aa;

ArrayList<Quake> earthquakes = new ArrayList<Quake>();

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

earthquakeListView = (ListView)this.findViewById(R.id.earthquakeListView);

int layoutID = android.R.layout.simple_list_item_1;
aa = new ArrayAdapter<Quake>(this, layoutID , earthquakes);
earthquakeListView.setAdapter(aa);

}
}

4. Next, start processing the earthquake feed. For this example the feed used is the one-day
USGS feed for earthquakes with a magnitude greater than 2.5.

Add the location of your feed as an external string resource. This lets you
potentially specify a different feed based on a user’s location.

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="app_name">Earthquake</string>
<string name="quake_feed">
http://earthquake.usgs.gov/eqcenter/catalogs/1day-M2.5.xml

</string>
</resources>

Creating an Earthquake Viewer ❘ 179

5. Before your application can access the Internet it needs to be granted permission for Internet
access. Add the uses-permission to the manifest:

<uses-permission android:name="android.permission.INTERNET"/>

6. Returning to the Earthquake Activity, create a new refreshEarthquakes method that con-
nects to and parses the earthquake feed. Extract each earthquake and parse the details to
obtain the date, magnitude, link, and location. As you finish parsing each earthquake, pass it
in to a new addNewQuake method.

The earthquake feed XML is parsed here by the SAX parser. Several alternatives
exist, including the XmlPullParser. An analysis of the alternative XML parsing
techniques (and how to use them) is beyond the scope of this book, but it’s
important to evaluate and compare the options available within your own
applications.

private void refreshEarthquakes() {
// Get the XML
URL url;
try {
String quakeFeed = getString(R.string.quake_feed);
url = new URL(quakeFeed);

URLConnection connection;
connection = url.openConnection();

HttpURLConnection httpConnection = (HttpURLConnection)connection;
int responseCode = httpConnection.getResponseCode();

if (responseCode == HttpURLConnection.HTTP_OK) {
InputStream in = httpConnection.getInputStream();

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();

// Parse the earthquake feed.
Document dom = db.parse(in);
Element docEle = dom.getDocumentElement();

// Clear the old earthquakes
earthquakes.clear();

// Get a list of each earthquake entry.
NodeList nl = docEle.getElementsByTagName("entry");
if (nl != null && nl.getLength() > 0) {
for (int i = 0 ; i < nl.getLength(); i++) {

Element entry = (Element)nl.item(i);
Element title = (Element)entry.getElementsByTagName("title").item(0);
Element g = (Element)entry.getElementsByTagName("georss:point").item(0);
Element when = (Element)entry.getElementsByTagName("updated").item(0);
Element link = (Element)entry.getElementsByTagName("link").item(0);

180 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

String details = title.getFirstChild().getNodeValue();
String hostname = "http://earthquake.usgs.gov";
String linkString = hostname + link.getAttribute("href");

String point = g.getFirstChild().getNodeValue();
String dt = when.getFirstChild().getNodeValue();
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd’T’hh:mm:ss’Z’");
Date qdate = new GregorianCalendar(0,0,0).getTime();
try {
qdate = sdf.parse(dt);

} catch (ParseException e) {
e.printStackTrace();

}

String[] location = point.split(" ");
Location l = new Location("dummyGPS");
l.setLatitude(Double.parseDouble(location[0]));
l.setLongitude(Double.parseDouble(location[1]));

String magnitudeString = details.split(" ")[1];
int end = magnitudeString.length()-1;
double magnitude = Double.parseDouble(magnitudeString.substring(0, end));

details = details.split(",")[1].trim();

Quake quake = new Quake(qdate, details, l, magnitude, linkString);

// Process a newly found earthquake
addNewQuake(quake);

}
}

}
} catch (MalformedURLException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

} catch (ParserConfigurationException e) {
e.printStackTrace();

} catch (SAXException e) {
e.printStackTrace();

}
finally {
}

}

private void addNewQuake(Quake _quake) {
// TODO: Add the earthquakes to the array list.

}

7. Update the addNewQuake method so that it takes each newly processed quake and adds it to
the earthquake Array List. It should also notify the Array Adapter that the underlying data
has changed.

private void addNewQuake(Quake _quake) {

Creating an Earthquake Viewer ❘ 181

// Add the new quake to our list of earthquakes.
earthquakes.add(_quake);

// Notify the array adapter of a change.
aa.notifyDataSetChanged();

}

8. Modify your onCreate method to call refreshEarthquakes on startup:

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

earthquakeListView = (ListView)this.findViewById(R.id.earthquakeListView);

int layoutID = android.R.layout.simple_list_item_1;
aa = new ArrayAdapter<Quake>(this, layoutID , earthquakes);
earthquakeListView.setAdapter(aa);

refreshEarthquakes();
}

The Internet lookup is currently happening on the main UI thread. This is bad
form, as the application will become unresponsive if the lookup takes longer than a
few seconds. In Chapter 9 you’ll learn how to move expensive or time-consuming
operations like this into a Service and onto a background thread.

FIGURE 5-6

. 9. If you run your project, you should see a List
View that features the earthquakes from the last
24 hours with a magnitude greater than 2.5, as
shown in the screen shot in Figure 5-6.

10. There are two more steps needed to make this a
more useful application. First, create a new Menu
Item to let users refresh the earthquake feed on
demand.

.10.1. Start by adding a new external string for
the menu option:

<string name="menu_update">
Refresh Earthquakes

</string>

10.2. Then override the Activity’sonCreate
OptionsMenu and onOptionsItem

Selected methods to display and handle
the Refresh Earthquakes Menu Item:

182 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

static final private int MENU_UPDATE = Menu.FIRST;

@Override
public boolean onCreateOptionsMenu(Menu menu) {

super.onCreateOptionsMenu(menu);

menu.add(0, MENU_UPDATE, Menu.NONE, R.string.menu_update);

return true;
}

@Override
public boolean onOptionsItemSelected(MenuItem item) {

super.onOptionsItemSelected(item);

switch (item.getItemId()) {
case (MENU_UPDATE): {

refreshEarthquakes();
return true;

}
}
return false;

}

11. Now add some interaction. Let users find more details by opening a dialog box when they
select an earthquake from the list.

11.1. Create a new quake_details.xml layout resource for the dialog box you’ll display
when an item is clicked:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:padding="10dp">
<TextView

android:id="@+id/quakeDetailsTextView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:textSize="14sp"

/>
</LinearLayout>

11.2. Then modify your onCreate method to add an ItemClickListener to the List View
that displays a dialog box whenever an earthquake item is clicked:

static final private int QUAKE_DIALOG = 1;
Quake selectedQuake;

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

earthquakeListView = (ListView)this.findViewById(R.id.earthquakeListView);

Creating an Earthquake Viewer ❘ 183

earthquakeListView.setOnItemClickListener(new OnItemClickListener() {
@Override
public void onItemClick(AdapterView _av, View _v, int _index,

long arg3) {
selectedQuake = earthquakes.get(_index);
showDialog(QUAKE_DIALOG);

}
});

int layoutID = android.R.layout.simple_list_item_1;
aa = new ArrayAdapter<Quake>(this, layoutID , earthquakes);
earthquakeListView.setAdapter(aa);

refreshEarthquakes();
}

11.3. Now override the onCreateDialog and onPrepareDialog methods to create and
populate the earthquake details dialog box:

@Override
public Dialog onCreateDialog(int id) {
switch(id) {

case (QUAKE_DIALOG) :
LayoutInflater li = LayoutInflater.from(this);
View quakeDetailsView = li.inflate(R.layout.quake_details, null);

AlertDialog.Builder quakeDialog = new AlertDialog.Builder(this);
quakeDialog.setTitle("Quake Time");
quakeDialog.setView(quakeDetailsView);
return quakeDialog.create();

}
return null;

}

@Override
public void onPrepareDialog(int id, Dialog dialog) {
switch(id) {

case (QUAKE_DIALOG) :
SimpleDateFormat sdf = new SimpleDateFormat("dd/MM/yyyy HH:mm:ss");
String dateString = sdf.format(selectedQuake.getDate());
String quakeText = "Magnitude " + selectedQuake.getMagnitude() +

"\n" + selectedQuake.getDetails() + "\n" +
selectedQuake.getLink();

AlertDialog quakeDialog = (AlertDialog)dialog;
quakeDialog.setTitle(dateString);
TextView tv = (TextView)quakeDialog.findViewById

(R.id.quakeDetailsTextView);
tv.setText(quakeText);

break;
}

}

184 ❘ CHAPTER 5 INTENTS, BROADCAST RECEIVERS, ADAPTERS, AND THE INTERNET

11.4. The final step is to linkify the dialog to make the link to the USGS a hyperlink.
Adjust the dialog box’s XML layout resource definition to include anautolink
attribute:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:padding="10dp">
<TextView

android:id="@+id/quakeDetailsTextView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:textSize="14sp"
android:autoLink="all"

/>
</LinearLayout>

All code snippets in this example are part of the Chapter 5 Earthquake project, available for download at Wrox.com.

Launch your application again. When you click a particular earthquake a dialog will appear, partially
obscuring the list, as shown in Figure 5-7.

SUMMARY

FIGURE 5-7

The focus of this chapter has been on binding your applica-
tion components.

Intents provide a versatile messaging system that lets you
pass intentions between your application and others, to per-
form actions and signal events. You learned how to use
implicit and explicit Intents to start new Activities, and how
to populate an Activity menu dynamically through runtime
resolution of Activity Intent Filters.

You were introduced to broadcast Intents, and saw how they
can be used to send messages throughout the device, particu-
larly to support an event-driven model based on system- and
application-specific events.

You learned how to use sub-Activities to pass data between
Activities, and how to use Dialogs to display information
and facilitate user input.

Adapters were introduced and used to bind underlying data
to visual components. In particular you saw how to use an
Array Adapter and Simple Cursor Adapter to bind a List
View to Array Lists and Cursors.

Summary ❘ 185

Finally, you learned the basics behind connecting to the Internet and using remote feeds as data sources
for your native client applications.

You also learned:

➤ To use linkify to add implicit Intents to Text Views at run time.

➤ Which native Android actions are available for you to extend, replace, or embrace.

➤ How to use Intent Filters to let your own Activities become handlers for completing action
requests from your own or other applications.

➤ How to listen for broadcast Intents using Broadcast Receivers.

➤ How to use an Activity as a dialog box.

In the next chapter you will learn how to persist information within your applications. Android pro-
vides a number of mechanisms for saving application data, including files, simple preferences, and
fully featured relational databases (using the SQLite database library). Chapter 6 will focus on using
Preferences and saving Activity state, while Chapter 7 will examine Content Providers and SQLite
databases.

6
Files, Saving State,
and Preferences

WHAT’S IN THIS CHAPTER?

➤ Persisting simple application data

➤ Saving Activity instance data between sessions

➤ Creating Preference Screens and managing application
preferences

➤ Saving and loading files and managing the local file system

➤ Including static files as external resources

In this chapter you’ll be introduced to two of the simplest but most versatile data persistence
techniques in Android — Shared Preferences and local files.

Saving and loading data are essential for most applications. At a minimum, an Activity should
save its user interface (UI) state each time it moves into the background. This ensures that the
same UI state is presented when the Activity returns to the foreground, even if the process has
been killed and restarted before that happens.

It’s also likely that you’ll need to save user application preferences and UI selections or data
entry. Android’s nondeterministic Activity and application lifetimes make persisting UI state
and application data between sessions particularly important. Android offers several alterna-
tives for saving application data, each optimized to fulfill a particular need.

Shared Preferences are a simple, lightweight key/value pair mechanism for saving primitive
application data, most commonly a user’s application preferences. Android also provides
access to the local file system, through both specialized methods and the normal Java.IO
classes.

188 ❘ CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

SAVING SIMPLE APPLICATION DATA

The data-persistence techniques in Android provide options for balancing speed, efficiency, and
robustness.

➤ Shared Preferences When storing UI state, user preferences, or application settings, you
want a lightweight mechanism to store a known set of values. Shared Preferences let you save
groups of key/value pairs of primitive data as named preferences.

➤ Saved Application State Activities include specialized event handlers to record the current
UI state when your application is moved to the background.

➤ Files It’s not pretty, but sometimes writing to and reading from files is the only way to go.
Android lets you create and load files on the device’s internal or external media.

There are two lightweight techniques for saving simple application data for Android
applications — Shared Preferences and a pair of event handlers used for saving Activity instance
details. Both mechanisms use a name/value pair (NVP) mechanism to store simple primitive
values.

Using the SharedPreferences class you can create named maps of key/value pairs within your
application that can be shared among application components running in the same application
context.

Shared Preferences support the primitive types Boolean, string, float, long, and integer, making them
an ideal means of quickly storing default values, class instance variables, the current UI state, and user
preferences. They are most commonly used to persist data across user sessions and to share settings
among application components.

Activities also offer the onSaveInstanceState handler. It’s designed specifically to persist UI state when
the Activity becomes eligible for termination by a resource-hungry run time.

The handler works like the Shared Preference mechanism. It offers a Bundle parameter that represents
a key/value map of primitive types that can be used to save the Activity’s instance values. This Bundle
is then made available as a parameter passed in to the onCreate and onRestoreInstanceState method
handlers.

This UI state Bundle should be used to record the values needed for an Activity to present an identical
UI when it’s displayed after an unexpected close.

CREATING AND SAVING PREFERENCES

To create or modify a Shared Preference, call getSharedPreferences on the application Context,
passing in the name of the Shared Preference to change. Shared Preferences are shared across an appli-
cation’s components, but aren’t available to other applications.

To modify a Shared Preference use the SharedPreferences.Editor class. Get the Editor object by
calling edit on the Shared Preferences object you want to change. To save edits call commit on the
Editor, as shown in Listing 6-1.

Creating a Settings Activity for the Earthquake Viewer ❘ 189

LISTING 6-1: Creating new Shared Preferences

// Retrieve an editor to modify the shared preferences.
SharedPreferences.Editor editor = mySharedPreferences.edit();

// Store new primitive types in the shared preferences object.
editor.putBoolean("isTrue", true);
editor.putFloat("lastFloat", 1f);
editor.putInt("wholeNumber", 2);
editor.putLong("aNumber", 3l);
editor.putString("textEntryValue", "Not Empty");

// Commit the changes.
editor.commit();

}

RETRIEVING SHARED PREFERENCES

Accessing Shared Preferences, like editing and saving them, is done using the getSharedPreferences

method. Pass in the name of the Shared Preference you want to access, and use the type-safe get<type>

methods to extract saved values.

Each getter takes a key and a default value (used when no value has yet been saved for that key), as
shown in the Listing 6-2.

LISTING 6-2: Retreiving saved Shared Preferences

public static String MY_PREFS = "MY_PREFS";

public void loadPreferences() {
// Get the stored preferences
int mode = Activity.MODE_PRIVATE;
SharedPreferences mySharedPreferences = getSharedPreferences(MY_PREFS, mode);

// Retrieve the saved values.
boolean isTrue = mySharedPreferences.getBoolean("isTrue", false);
float lastFloat = mySharedPreferences.getFloat("lastFloat", 0f);
int wholeNumber = mySharedPreferences.getInt("wholeNumber", 1);
long aNumber = mySharedPreferences.getLong("aNumber", 0);
String stringPreference = mySharedPreferences.getString("textEntryValue", "");

}

CREATING A SETTINGS ACTIVITY
FOR THE EARTHQUAKE VIEWER

In Chapter 5 you created an earthquake monitor that showed a list of recent earthquakes based on an
RSS feed.

In the following example you’ll build an Activity to set application preferences for this earthquake
viewer. It will let users configure settings for a more personalized experience. You’ll provide the option

190 ❘ CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

to toggle automatic updates, control the frequency of updates, and filter the minimum earthquake
magnitude displayed.

Later in this chapter you’ll replace this Activity with a standard settings screen.

1. Open the Earthquake project you created in Chapter 5.

Add new string resources for the labels displayed in the preferences screen. Also add a string
for the new Menu Item that will let users access this Activity:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="app_name">Earthquake</string>
<string name="quake_feed">
http://earthquake.usgs.gov/eqcenter/catalogs/1day-M2.5.xml

</string>
<string name="menu_update">Refresh Earthquakes</string>
<string name="auto_update_prompt">Auto Update?</string>
<string name="update_freq_prompt">Update Frequency</string>
<string name="min_quake_mag_prompt">Minimum Quake Magnitude</string>
<string name="menu_preferences">Preferences</string>

</resources>

2. Create a new preferences.xml layout resource for the Preferences Activity. Include a check-
box for indicating the ‘‘automatic update’’ toggle, and spinners to select the update rate and
magnitude filter:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/auto_update_prompt"

/>
<CheckBox android:id="@+id/checkbox_auto_update"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

/>
<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/update_freq_prompt"

/>
<Spinner android:id="@+id/spinner_update_freq"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"

/>
<TextView
android:layout_width="fill_parent"

Creating a Settings Activity for the Earthquake Viewer ❘ 191

android:layout_height="wrap_content"
android:text="@string/min_quake_mag_prompt"

/>
<Spinner android:id="@+id/spinner_quake_mag"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"

/>
<LinearLayout
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<Button android:id="@+id/okButton"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@android:string/ok"

/>
<Button android:id="@+id/cancelButton"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@android:string/cancel"

/>
</LinearLayout>

</LinearLayout>

3. Create four array resources in a new res/values/arrays.xml file. They will provide the val-
ues to use for the update frequency and minimum magnitude spinners:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="update_freq_options">
<item>Every Minute</item>
<item>5 minutes</item>
<item>10 minutes</item>
<item>15 minutes</item>
<item>Every Hour</item>

</string-array>

<array name="magnitude">
<item>3</item>
<item>5</item>
<item>6</item>
<item>7</item>
<item>8</item>

</array>

<string-array name="magnitude_options">
<item>3</item>
<item>5</item>
<item>6</item>
<item>7</item>
<item>8</item>

</string-array>

<array name="update_freq_values">
<item>1</item>

192 ❘ CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

<item>5</item>
<item>10</item>
<item>15</item>
<item>60</item>

</array>
</resources>

4. Create the Preferences Activity.

Override onCreate to inflate the layout you created in Step 2, and get references to the check-
box and both the spinner controls. Then make a call to the populateSpinners stub:

package com.paad.earthquake;

import android.app.Activity;
import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.CheckBox;
import android.widget.Spinner;

public class Preferences extends Activity {

CheckBox autoUpdate;
Spinner updateFreqSpinner;
Spinner magnitudeSpinner;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.preferences);

updateFreqSpinner = (Spinner)findViewById(R.id.spinner_update_freq);
magnitudeSpinner = (Spinner)findViewById(R.id.spinner_quake_mag);
autoUpdate = (CheckBox)findViewById(R.id.checkbox_auto_update);

populateSpinners();
}

private void populateSpinners() {
}

}

5. Fill in the populateSpinners method, using Array Adapters to bind each spinner to its corre-
sponding array:

private void populateSpinners() {
// Populate the update frequency spinner
ArrayAdapter<CharSequence> fAdapter;
fAdapter = ArrayAdapter.createFromResource(this, R.array.update_freq_options,

android.R.layout.simple_spinner_item);
int spinner_dd_item = android.R.layout.simple_spinner_dropdown_item;
fAdapter.setDropDownViewResource(spinner_dd_item);
updateFreqSpinner.setAdapter(fAdapter);

Creating a Settings Activity for the Earthquake Viewer ❘ 193

// Populate the minimum magnitude spinner
ArrayAdapter<CharSequence> mAdapter;
mAdapter = ArrayAdapter.createFromResource(this,
R.array.magnitude_options,
android.R.layout.simple_spinner_item);

mAdapter.setDropDownViewResource(spinner_dd_item);
magnitudeSpinner.setAdapter(mAdapter);

}

6. Add public static string values that you’ll use to identify the Shared Preference keys you’ll
use to store each preference value. Update the onCreate method to retrieve the named pref-
erence and call updateUIFromPreferences. The updateUIFromPreferences method uses the
get<type> methods on the Shared Preference object to retrieve each preference value and
apply it to the current UI.

Use the default application Shared Preference object to save your settings values:

public static final String PREF_AUTO_UPDATE = "PREF_AUTO_UPDATE";
public static final String PREF_MIN_MAG = "PREF_MIN_MAG";
public static final String PREF_UPDATE_FREQ = "PREF_UPDATE_FREQ";

SharedPreferences prefs;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.preferences);

updateFreqSpinner = (Spinner)findViewById(R.id.spinner_update_freq);
magnitudeSpinner = (Spinner)findViewById(R.id.spinner_quake_mag);
autoUpdate = (CheckBox)findViewById(R.id.checkbox_auto_update);

populateSpinners();

Context context = getApplicationContext();
prefs = PreferenceManager.getDefaultSharedPreferences(context);
updateUIFromPreferences();

}

private void updateUIFromPreferences() {
boolean autoUpChecked = prefs.getBoolean(PREF_AUTO_UPDATE, false);
int updateFreqIndex = prefs.getInt(PREF_UPDATE_FREQ, 2);
int minMagIndex = prefs.getInt(PREF_MIN_MAG, 0);

updateFreqSpinner.setSelection(updateFreqIndex);
magnitudeSpinner.setSelection(minMagIndex);
autoUpdate.setChecked(autoUpChecked);

}

7. Still in the onCreate method, add event handlers for the OK and Cancel buttons. Cancel
should close the Activity, while OK should call savePreferences first:

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.preferences);

194 ❘ CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

updateFreqSpinner = (Spinner)findViewById(R.id.spinner_update_freq);
magnitudeSpinner = (Spinner)findViewById(R.id.spinner_quake_mag);
autoUpdate = (CheckBox)findViewById(R.id.checkbox_auto_update);

populateSpinners();

Context context = getApplicationContext();
prefs = PreferenceManager.getDefaultSharedPreferences(context);
updateUIFromPreferences();

Button okButton = (Button) findViewById(R.id.okButton);
okButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {
savePreferences();
Preferences.this.setResult(RESULT_OK);
finish();

}
});

Button cancelButton = (Button) findViewById(R.id.cancelButton);
cancelButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {
Preferences.this.setResult(RESULT_CANCELED);
finish();

}
});

}

private void savePreferences() {
}

8. Fill in the savePreferences method to record the current preferences, based on the UI selec-
tions, to the Shared Preference object:

private void savePreferences() {
int updateIndex = updateFreqSpinner.getSelectedItemPosition();
int minMagIndex = magnitudeSpinner.getSelectedItemPosition();
boolean autoUpdateChecked = autoUpdate.isChecked();

Editor editor = prefs.edit();
editor.putBoolean(PREF_AUTO_UPDATE, autoUpdateChecked);
editor.putInt(PREF_UPDATE_FREQ, updateIndex);
editor.putInt(PREF_MIN_MAG, minMagIndex);
editor.commit();

}

9. That completes the Preferences Activity. Make it accessible in the application by adding it
to the manifest:

<activity android:name=".Preferences"
android:label="Earthquake Preferences">

</activity>

Creating a Settings Activity for the Earthquake Viewer ❘ 195

10. Now return to the Earthquake Activity, and add support for the new Shared Preferences file
and a Menu Item to display the Preferences Activity. Start by adding the new Menu Item.
Extend the onCreateOptionsMenu method to include a new item that opens the Preferences
Activity:

static final private int MENU_PREFERENCES = Menu.FIRST+1;

@Override
public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu(menu);

menu.add(0, MENU_UPDATE, Menu.NONE, R.string.menu_update);
menu.add(0, MENU_PREFERENCES, Menu.NONE, R.string.menu_preferences);

return true;
}

FIGURE 6-1

. 11. Modify the onOptionsItemSelected method to dis-
play the Preferences Activity when the new Menu
Item is selected. Create an explicit Intent and pass
it in to the startActivityForResult method. This
will launch the Preferences screen and alert the Earth-
quake class when the preferences are saved through the
onActivityResult handler:

private static final int SHOW_PREFERENCES = 1;

public boolean onOptionsItemSelected(MenuItem item){

super.onOptionsItemSelected(item);

switch (item.getItemId()) {
case (MENU_UPDATE): {

refreshEarthquakes();
return true;

}
case (MENU_PREFERENCES): {

Intent i = new Intent(this, Preferences.class);
startActivityForResult(i, SHOW_PREFERENCES);
return true;

}
}
return false;

}

12. Launch your application and select Preferences from the Activity menu. The Preferences
Activity should be displayed as shown in Figure 6-1.

13. All that’s left is to apply the preferences to the earthquake functionality. Implementing the
automatic updates will be left until Chapter 9, when you’ll learn to use Services and back-
ground threads. For now you can put the framework in place and apply the magnitude filter.

196 ❘ CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

Start by creating a new updateFromPreferences method that reads the Shared Preference
values and creates instance variables for each of them:
int minimumMagnitude = 0;
boolean autoUpdate = false;
int updateFreq = 0;

private void updateFromPreferences() {
Context context = getApplicationContext();
SharedPreferences prefs =
PreferenceManager.getDefaultSharedPreferences(context);

int minMagIndex = prefs.getInt(Preferences.PREF_MIN_MAG, 0);
if (minMagIndex < 0)
minMagIndex = 0;

int freqIndex = prefs.getInt(Preferences.PREF_UPDATE_FREQ, 0);
if (freqIndex < 0)
freqIndex = 0;

autoUpdate = prefs.getBoolean(Preferences.PREF_AUTO_UPDATE, false);

Resources r = getResources();
// Get the option values from the arrays.
int[] minMagValues = r.getIntArray(R.array.magnitude);
int[] freqValues = r.getIntArray(R.array.update_freq_values);

// Convert the values to ints.
minimumMagnitude = minMagValues[minMagIndex];
updateFreq = freqValues[freqIndex];

}

14. Apply the magnitude filter by updating the addNewQuake method to check a new earthquake’s
magnitude before adding it to the list:

private void addNewQuake(Quake _quake) {
if (_quake.getMagnitude() > minimumMagnitude) {
// Add the new quake to our list of earthquakes.
earthquakes.add(_quake);

// Notify the array adapter of a change.
aa.notifyDataSetChanged();

}
}

15. Override the onActivityResult handler to call updateFromPreferences and refresh the
earthquakes whenever the Preferences Activity saves changes:

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);

if (requestCode == SHOW_PREFERENCES)
if (resultCode == Activity.RESULT_OK) {

updateFromPreferences();

Introducing the Preference Activity and Preferences Framework ❘ 197

refreshEarthquakes();
}

}

16. Finally, call updateFromPreferences in onCreate (before the call to refreshEarthquakes) to
ensure the preferences are applied when the Activity starts:

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

earthquakeListView = (ListView)this.findViewById(R.id.earthquakeListView);

earthquakeListView.setOnItemClickListener(new OnItemClickListener() {

@Override
public void onItemClick(AdapterView _av, View _v, int _index, long arg3) {

selectedQuake = earthquakes.get(_index);
showDialog(QUAKE_DIALOG);

}
});

int layoutID = android.R.layout.simple_list_item_1;
aa = new ArrayAdapter<Quake>(this, layoutID , earthquakes);
earthquakeListView.setAdapter(aa);

updateFromPreferences();
refreshEarthquakes();

}

All code snippets in this example are part of the Chapter 6 Earthquake project, available for download at Wrox.com.

INTRODUCING THE PREFERENCE ACTIVITY
AND PREFERENCES FRAMEWORK

Android offers an XML-driven framework to create system-style preference screens for
your applications. By using this framework you can ensure that the preference Activi-
ties in your applications are consistent with those used in both native and other third-party
applications.

This has two distinct advantages:

➤ Users will be familiar with the layout and use of your application settings screen.

➤ You can integrate settings screens from other applications (including system settings such as
location settings) into your application’s settings screens.

The Preference Activity framework consists of three parts:

➤ Preference Screen Layout An XML file that defines the hierarchy displayed in your Prefer-
ence Activity. It specifies the controls to display, the values to allow, and the Shared Prefer-
ence keys to use for each UI control.

198 ❘ CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

➤ Preference Activity An extension of PreferenceActivity that will be used to host your
application preference screens.

➤ Shared Preference Change Listener An implementation of the
onSharedPreferenceChangeListener class used to listen for changes to Shared Preferences.

The Activity Preference framework is a powerful tool for creating fully customizable dynamic prefer-
ence screens. The full range of possibilities available through this framework is beyond the scope of this
book; however, the following sections will introduce it and demonstrate how to create and use each of
the components described above.

Defining a Preference Screen Layout in XML
The most important part of the Preference Activity is the XML layout. Unlike in the standard UI layout,
preference definitions are stored in the res/xml resources folder.

While conceptually they are similar to the UI layout resources described in Chapter 4, Preference Screen
layouts use a specialized set of controls designed specifically to create preference screens like those used
for system settings. These native preference controls are described in the next section.

Each preference layout is defined as a hierarchy, beginning with a single PreferenceScreen element:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen

xmlns:android="http://schemas.android.com/apk/res/android">
</PreferenceScreen>

FIGURE 6-2

You can include additional Preference Screen elements, each
of which will be represented as a selectable element that will
display a new screen if clicked.

Within each Preference Screen you can include any combi-
nation of PreferenceCategory and Preference<control>

elements. Preference Category elements, shown in the fol-
lowing snippet, are used to break each Preference Screen
into subcategories using a title bar separator:

<PreferenceCategory
android:title="My Preference Category"/>

</PreferenceCategory

Figure 6-2 shows the SIM card lock, passwords, and creden-
tial storage Preference Categories used in the ‘‘Location &
security’’ Preference Screen.

All that remains is to add the preference controls that will
be used to set the application preferences. While the specific
attributes available for each preference control vary, each of
them includes at least the following four:

➤ android:key The Shared Preference key the
selected value will be recorded against.

Introducing the Preference Activity and Preferences Framework ❘ 199

➤ android:title The text displayed to represent the preference.

➤ android:summary The longer text description displayed in a smaller font below the title text.

➤ android:defaultValue The default value that will be displayed (and selected) if no prefer-
ence value has been assigned to this preference key.

Listing 6-3 shows a sample Preference Screen that includes a Preference Category and CheckBox Pref-
erence.

LISTING 6-3: A simple Shared Preferences screen

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<PreferenceCategory

android:title="My Preference Category"/>
<CheckBoxPreference

android:key="PREF_CHECK_BOX"
android:title="Check Box Preference"
android:summary="Check Box Preference Description"
android:defaultValue="true"

/>
</PreferenceCategory>

</PreferenceScreen>

This Preference Screen will appear as shown in Figure 6-3.

Native Preference Controls

FIGURE 6-3

Android includes several preference controls to build your
Preference Screens:

➤ CheckBoxPreference A standard preference
checkbox control. Used to set preferences to true
or false.

➤ EditTextPreference Allows users to enter a
string value as a preference. Selecting the prefer-
ence text will display a text entry dialog.

➤ ListPreference The preference equivalent of a
spinner. Selecting this preference will display a dia-
log box containing a list of values from which to
select. You can specify different arrays to contain
the display text and selection values.

➤ RingtonePreference A specialized List Prefer-
ence that presents the list of available ringtones
for user selection. This is particularly useful when
you’re constructing a screen to configure notifica-
tion settings.

200 ❘ CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

Each of these preference controls can be used to construct your Preference Screen hierarchy. Alterna-
tively, you can create your own specialized preference controls by extending the Preference class (or
any of these subclasses).

You can find further details on the Android documentation at: http://developer.android.com/
reference/android/preference/Preference.html

Using Intents to Import System Preference Screens
As well as your own Preference Screens, preference hierarchies can include Preference Screens from
other applications — including system Preference Screens.

You can invoke any Activity within your Preference Screen using an Intent. If you add an Intent node
within any Preference Screen element, the system will interpret this as a request to call startActivity
using the specified action.

This is particularly useful for including links to relevant system Preference Screens within your own
application settings. The following XML snippet adds a link to the system display settings:

<PreferenceScreen
android:title="Intent preference"
android:summary="System preference imported using an intent">
<intent android:action="android.settings.DISPLAY_SETTINGS "/>

</PreferenceScreen>

The android.provider.Settings class includes a number of android.settings.* constants that can
be used to invoke the system settings screens.

To make your own Preference Screens available for invocation using this technique, simply add an
Intent Filter to the manifest entry for the host Preference Activity (described in detail in the following
section):

<activity android:name=".UserPreferences" android:label="Earthquake Preferences">
<intent-filter>

<action android:name="com.paad.myapp.ACTION_USER_PREFERENCE" />
</intent-filter>

</activity>

Introducing the Preference Activity
The PreferenceActivity class is used to host the preference hierarchy defined using the preferences
XML file. To create a new Preference Activity, extend the PreferenceActivity class as follows:

public class MyPreferenceActivity extends PreferenceActivity {
}

To inflate the preferences, override the onCreate handler and call addPreferencesFromResource, as
shown in the following snippet:

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
addPreferencesFromResource(R.xml.preferences);

}

Introducing the Preference Activity and Preferences Framework ❘ 201

Like all Activities, the Preference Activity must be included in the application manifest:

<activity android:name=".MyPreferenceActivity"
android:label="My Preferences">

</activity>

This is all that’s required for a simple Preference Activity implementation. To display the application
settings hosted in this Activity, open it by calling startActivity or startActivityForResult:

Intent i = new Intent(this, MyPreferenceActivity.class);
startActivityForResult(i, SHOW_PREFERENCES);

Finding and Using Preference Screen Shared Preferences
The Shared Preference values recorded for the options presented in a Preference Activity are stored
against the application Context. This lets any application component, including Activities, Services,
and Broadcast Receivers, access the values, as shown in the following snippet:

Context context = getApplicationContext();
SharedPreferences prefs = PreferenceManager.getDefaultSharedPreferences(context);
// TODO Retrieve values using get<type> methods.

Introducing Shared Preference Change Listeners
The onSharedPreferenceChangeListener is a useful class that can be implemented to invoke a callback
whenever a particular Shared Preference value is added, removed, or modified.

This is particularly useful for Activities and Services that use the Shared Preference framework to set
application preferences. Using this handler your application components can listen for changes to user
preferences and update their UIs or behavior as required.

Register Shared Preference Change Listeners using the Shared Preference you want to monitor. The
implementation of the Shared Preference Change Listener is shown in Listing 6-4.

LISTING 6-4: On Shared Preference Change Listener skeleton implementation

public class MyActivity extends Activity implements
OnSharedPreferenceChangeListener {

@Override
public void onCreate(Bundle SavedInstanceState) {

// Register this OnSharedPreferenceChangeListener
Context context = getApplicationContext();
SharedPreferences prefs =

PreferenceManager.getDefaultSharedPreferences(context);
prefs.registerOnSharedPreferenceChangeListener(this);

}

public void onSharedPreferenceChanged(SharedPreferences prefs, String key) {
// TODO Check the shared preference and key parameters and change UI or
// behavior as appropriate.

}
}

Prepared for ASHLEE KABAT/ email0 akabat@spam.la Order number0 56760408 This PDF is for the purchaser’s personal use in accordance with
the Wrox Terms of Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit
www.wrox.com to purchase your own copy.

202 ❘ CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

CREATING A STANDARD PREFERENCE ACTIVITY
FOR THE EARTHQUAKE VIEWER

Previously in this chapter you created a custom Activity to let users modify the application settings for
the earthquake viewer. In this example you’ll replace this custom Activity with the standard application
settings framework described in the previous section.

1. Start by creating a new XML resource folder at res/xml. Within it create a new userprefer-
ences.xml file. This file will define the settings UI for your earthquake application settings.
Use the same controls and data sources as in the previous Activity, but this time create them
using the standard application settings framework.

Be sure to use the preference keys you defined earlier.

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<CheckBoxPreference
android:key="PREF_AUTO_UPDATE"
android:title="Auto refresh"
android:summary="Select to turn on automatic updating"
android:defaultValue="true"

/>
<ListPreference
android:key="PREF_UPDATE_FREQ"
android:title="Refresh frequency"
android:summary="Frequency at which to refresh earthquake list"
android:entries="@array/update_freq_options"
android:entryValues="@array/update_freq_values"
android:dialogTitle="Refresh frequency"
android:defaultValue="60"

/>
<ListPreference
android:key="PREF_MIN_MAG"
android:title="Minimum magnitude"
android:summary="Select the minimum magnitude earthquake to report"
android:entries="@array/magnitude_options"
android:entryValues="@array/magnitude"
android:dialogTitle="Magnitude"
android:defaultValue="3"

/>
</PreferenceScreen>

2. Open the Preference Activity and modify its inheritance to extend PreferenceActivity:

public class UserPreferences extends PreferenceActivity

3. The Preference Activity will handle the controls used in the UI, so you can remove the
variables used to store the checkbox and spinner objects. You can also remove the
populateSpinners, updateUIFromPreferences, and savePreferences methods.

4. Now update onCreate. Remove all the references to the UI controls and the OK and Cancel
buttons. Instead of using these, inflate the preferences UI file you created in Step 1:

Saving Activity State ❘ 203

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
addPreferencesFromResource(R.xml.preferences);

}

5. If you run your application now, and select the
Preferences menu item, your new ‘‘native’’ settings
screen should be visible, as shown in Figure 6-4.

All code snippets in this example are part of the Chapter 6 Earth-
quake Part 2 project, available for download at Wrox.com.

SAVING ACTIVITY STATE

FIGURE 6-4

If you want to save Activity information that doesn’t need to
be shared with other components (e.g., class instance vari-
ables), you can call Activity.getPreferences() without
specifying a Shared Preferences name. Access to the returned
Shared Preferences map is restricted to the calling Activity;
each Activity supports a single unnamed Shared Preferences
object.

Listing 6-5 shows how to use the Activity’s private Shared
Preference.

LISTING 6-5: Saving Activity state

protected void saveActivityPreferences(){
// Create or retrieve the activity preference object.
SharedPreferences activityPreferences = getPreferences(Activity.MODE_PRIVATE);

// Retrieve an editor to modify the shared preferences.
SharedPreferences.Editor editor = activityPreferences.edit();

// Retrieve the View
TextView myTextView = (TextView)findViewById(R.id.myTextView);

// Store new primitive types in the shared preferences object.
editor.putString("currentTextValue", myTextView.getText().toString());

// Commit changes.
editor.commit();

}

Saving and Restoring Instance State
To save Activity instance variables, Android offers a specialized variation of Shared Preferences.

204 ❘ CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

By overriding an Activity’s onSaveInstanceState event handler, you can use its Bundle param-
eter to save UI instance values. Store values using the same get and put methods as shown for
Shared Preferences, before passing the modified Bundle into the superclass’s handler, as shown in
Listing 6-6.

LISTING 6-6: Saving Activity instance state

private static final String TEXTVIEW_STATE_KEY = "TEXTVIEW_STATE_KEY";

@Override
public void onSaveInstanceState(Bundle saveInstanceState) {

// Retrieve the View
TextView myTextView = (TextView)findViewById(R.id.myTextView);

// Save its state
saveInstanceState.putString(TEXTVIEW_STATE_KEY, myTextView.getText().toString());
super.onSaveInstanceState(saveInstanceState);

}

This handler will be triggered whenever an Activity completes its active lifecycle, but only when it’s not
being explicitly finished (with a call to finish). As a result, it’s used to ensure a consistent Activity state
between active life cycles of a single user session.

The saved Bundle is passed in to the onRestoreInstanceState and onCreate methods if the application
is forced to restart during a session. Listing 6-7 shows how to extract values from the Bundle and use
them to update the Activity instance state.

LISTING 6-7: Restoring Activity instance state

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

TextView myTextView = (TextView)findViewById(R.id.myTextView);

String text = "";
if (savedInstanceState != null && savedInstanceState.containsKey(TEXTVIEW_STATE_KEY))

text = savedInstanceState.getString(TEXTVIEW_STATE_KEY);

myTextView.setText(text);
}

It’s important to remember that onSaveInstanceState is called only when an
Activity becomes inactive, and not when it is being closed by a call to finish or by
the user’s pressing the back button.

Saving Activity State ❘ 205

Saving the To-Do List Activity State
Currently, each time the To-Do List example application is restarted, all the to-do items are lost and
any text entered into the text entry box is cleared. In this example you’ll start to save the application
state of the To-Do List application across sessions.

The instance state in the ToDoList Activity consists of three variables:

➤ Is a new item being added?

➤ What text exists in the new item entry textbox?

➤ What is the currently selected item?

Using the Activity’s default Shared Preference you can store each of these values and update the UI
when the Activity is restarted.

Later in this chapter you’ll learn how to use the SQLite database to persist the
to-do items as well. This example is a first step that shows how to ensure a seamless
experience by saving Activity instance details.

1. Start by adding static string variables to use as preference keys:

private static final String TEXT_ENTRY_KEY = "TEXT_ENTRY_KEY";
private static final String ADDING_ITEM_KEY = "ADDING_ITEM_KEY";
private static final String SELECTED_INDEX_KEY = "SELECTED_INDEX_KEY";

2. Next, override the onPause method. Get the Activity’s private Shared Preference object and
its Editor object.

Using the keys you created in Step 1, store the instance values according to whether a new
item is being added, and also store any text in the ‘‘new item’’ edit box:

@Override
protected void onPause(){
super.onPause();

// Get the activity preferences object.
SharedPreferences uiState = getPreferences(0);
// Get the preferences editor.
SharedPreferences.Editor editor = uiState.edit();

// Add the UI state preference values.
editor.putString(TEXT_ENTRY_KEY, myEditText.getText().toString());
editor.putBoolean(ADDING_ITEM_KEY, addingNew);
// Commit the preferences.
editor.commit();

}

206 ❘ CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

3. Write a restoreUIState method that applies the instance values you recorded in the pre-
vious step when the application restarts. Modify the onCreate method to add a call to the
restoreUIState method at the very end:

@Override
public void onCreate(Bundle savedInstanceState) {
[... existing onCreate logic ...]
restoreUIState();

}

private void restoreUIState() {
// Get the activity preferences object.
SharedPreferences settings = getPreferences(Activity.MODE_PRIVATE);

// Read the UI state values, specifying default values.
String text = settings.getString(TEXT_ENTRY_KEY, "");
Boolean adding = settings.getBoolean(ADDING_ITEM_KEY, false);

// Restore the UI to the previous state.
if (adding) {
addNewItem();
myEditText.setText(text);

}
}

4. Record the index of the selected item using the onSaveInstanceState/onRestoreInstance
State mechanism. It’s then saved and applied only if the application is killed without the
user’s explicit instruction:

@Override
public void onSaveInstanceState(Bundle savedInstanceState) {
savedInstanceState.putInt(SELECTED_INDEX_KEY, myListView.getSelectedItemPosition());

super.onSaveInstanceState(saveInstanceState);
}

@Override
public void onRestoreInstanceState(Bundle savedInstanceState) {
int pos = -1;

if (savedInstanceState != null)
if (savedInstanceState.containsKey(SELECTED_INDEX_KEY))

pos = savedInstanceState.getInt(SELECTED_INDEX_KEY, -1);

myListView.setSelection(pos);
}

All code snippets in this example are part of the Chapter 6 Todo List project, available for download at Wrox.com.

When you run the To-Do List application you should now see the UI state persisted across sessions.
That said, the application still won’t persist the To-Do List items — you’ll add this essential piece of
functionality in the next chapter.

Including Static Files as Resources ❘ 207

SAVING AND LOADING FILES

It’s good practice to use Shared Preferences or a database to store your application data, but there are
still times when you’ll want to use files directly rather than rely on Android’s managed mechanisms.

As well as the standard Java I/O classes and methods, Android offers openFileInput and
openFileOuput to simplify reading and writing streams from and to local files, as shown in
Listing 6-8.

LISTING 6-8: Saving and loading files

String FILE_NAME = "tempfile.tmp";

// Create a new output file stream that’s private to this application.
FileOutputStream fos = openFileOutput(FILE_NAME, Context.MODE_PRIVATE);
// Create a new file input stream.
FileInputStream fis = openFileInput(FILE_NAME);

These methods support only those files in the current application folder; specifying path separators will
cause an exception to be thrown.

If the file name you specify when creating a FileOutputStream does not exist, Android will create it for
you. The default behavior for existing files is to overwrite them; to append an existing file, specify the
mode as Context.MODE_APPEND.

By default, files created using the openFileOutput method are private to the calling application — a
different application will be denied access. The standard way to share a file between applications is
to use a Content Provider. Alternatively, you can specify either Context.MODE_WORLD_READABLE or
Context.MODE_WORLD_WRITEABLE when creating the output file, to make it available in other applica-
tions, as shown in the following snippet:

String OUTPUT_FILE = "publicCopy.txt";
FileOutputStream fos = openFileOutput(OUTPUT_FILE, Context.MODE_WORLD_WRITEABLE);

INCLUDING STATIC FILES AS RESOURCES

If your application requires external file resources, you can include them in your distribution package
by placing them in the res/raw folder of your project hierarchy.

To access these read-only file resources, call the openRawResource method from your application’s
Resource object to receive an InputStream based on the specified file. Pass in the file name (without
extension) as the variable name from the R.raw class, as shown in the following skeleton code:

Resources myResources = getResources();
InputStream myFile = myResources.openRawResource(R.raw.myfilename);

Adding raw files to your resources hierarchy is an excellent alternative for large, preexisting data
sources (such as dictionaries) for which it’s not desirable (or even possible) to convert them into
Android databases.

208 ❘ CHAPTER 6 FILES, SAVING STATE, AND PREFERENCES

Android’s resource mechanism lets you specify alternative resource files for different languages, loca-
tions, and hardware configurations. You could, for example, create an application that loads a different
dictionary resource based on the user’s language settings.

FILE MANAGEMENT TOOLS

Android supplies some basic file management tools to help you deal with the file system. Many of these
utilities are located within the standard java.io.File package.

Complete coverage of Java file management utilities is beyond the scope of this book, but Android does
supply some specialized utilities for file management that are available from the application Context.

➤ deleteFile Enables you to remove files created by the current application.

➤ fileList Returns a string array that includes all the files created by the current application.

These methods are particularly useful for cleaning up temporary files left behind if your application
crashes or is killed unexpectedly.

SUMMARY

In this chapter you learned how to persist simple data within your applications and how to manage
files and preferences.

After learning how to save the Activity instance data between sessions using the save and restore
instance state handlers, you were introduced to Shared Preferences and the system Preference Screen
framework. You used them to save instance values and user preferences that can be used across your
application components.

Along the way you also learned to:

➤ Save and load files directly to and from the underlying file system.

➤ Include static files as external project resources.

In the next chapter you will learn how to persist more complex and structured information within
your applications. As well as the techniques described in this chapter, Android provides fully featured
relational databases (using the SQLite database library) that can be shared among applications by
means of Content Providers. Both SQLite and Content Providers will be explored in the next chapter.

7
Databases and Content Providers

WHAT’S IN THIS CHAPTER?

➤ Creating databases and using SQLite

➤ Using Content Providers to share application data

➤ Querying Content Providers

➤ Using Cursors and Content Values to read and write from and to
Content Providers

➤ Database design considerations

➤ Introduction to the native Content Providers

➤ Using the Contact Content Provider

In this chapter you’ll be introduced to the SQLite library, and you’ll look at how to use Content
Providers to share and use structured data within and between applications.

SQLite offers a powerful SQL database library that provides a robust persistence layer over
which you have total control.

Content Providers offer a generic interface to any data source by decoupling the data storage
layer from the application layer.

By default, access to a database is restricted to the application that created it. Content Providers
offer a standard interface your applications can use to share data with and consume data from
other applications — including many of the native data stores.

INTRODUCING ANDROID DATABASES

Structured data persistence in Android is provided through the following mechanisms:

➤ SQLite Databases When managed, structured data is the best approach, Android offers
the SQLite relational database library. Every application can create its own databases over
which it has complete control.

210 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

➤ Content Providers Content Providers offer a generic, well-defined interface for using and
sharing data.

Introducing SQLite Databases
Using SQLite you can create independent relational databases for your applications. Use them to store
and manage complex, structured application data.

Android databases are stored in the /data/data/<package_name>/databases folder on your device (or
emulator). By default all databases are private, accessible only by the application that created them.

Database design is a big topic that deserves more thorough coverage than is possible within this book.
It is worth highlighting that standard database best practices still apply in Android. In particular, when
you’re creating databases for resource-constrained devices (such as mobile phones), it’s important to
normalize your data to reduce redundancy.

Introducing Content Providers
Content Providers provide an interface for publishing and consuming data, based around a simple URI
addressing model using the content:// schema. They let you decouple the application layer from the
data layer, making your applications data-source agnostic by hiding the underlying data source.

Shared Content Providers can be queried for results, existing records updated or deleted, and new
records added. Any application with the appropriate permissions can add, remove, or update data
from any other application — including from the native Android databases.

Many native databases are available as Content Providers, accessible by third-party applications,
including the phone’s contact manager, media store, and other native databases as described later
in this chapter.

By publishing your own data sources as Content Providers, you make it possible for you (and other
developers) to incorporate and extend your data in new applications.

INTRODUCING SQLite

SQLite is a well regarded relational database management system (RDBMS). It is:

➤ Open-source

➤ Standards-compliant

➤ Lightweight

➤ Single-tier

It has been implemented as a compact C library that’s included as part of the Android software stack.

By being implemented as a library, rather than running as a separate ongoing process, each SQLite
database is an integrated part of the application that created it. This reduces external dependencies,
minimizes latency, and simplifies transaction locking and synchronization.

SQLite has a reputation for being extremely reliable and is the database system of choice for many
consumer electronic devices, including several MP3 players, the iPhone, and the iPod Touch.

Working with SQLite Databases ❘ 211

Lightweight and powerful, SQLite differs from many conventional database engines by loosely typing
each column, meaning that column values are not required to conform to a single type. Instead, each
value is typed individually for each row. As a result, type checking isn’t necessary when assigning or
extracting values from each column within a row.

For more comprehensive coverage of SQLite, including its particular strengths and limitations, check
out the official site at http://www.sqlite.org/

CURSORS AND CONTENT VALUES

ContentValues are used to insert new rows into tables. Each Content Values object represents a single
table row as a map of column names to values.

Queries in Android are returned as Cursor objects. Rather than extracting and returning a copy of
the result values, Cursors are pointers to the result set within the underlying data. Cursors provide a
managed way of controlling your position (row) in the result set of a database query.

The Cursor class includes a number of navigation functions including, but not limited to, the following:

➤ moveToFirst Moves the cursor to the first row in the query result

➤ moveToNext Moves the cursor to the next row

➤ moveToPrevious Moves the cursor to the previous row

➤ getCount Returns the number of rows in the result set

➤ getColumnIndexOrThrow Returns the index for the column with the specified name (throw-
ing an exception if no column exists with that name)

➤ getColumnName Returns the name of the specified column index

➤ getColumnNames Returns a string array of all the column names in the current Cursor

➤ moveToPosition Moves the Cursor to the specified row

➤ getPosition Returns the current Cursor position

Android provides a convenient mechanism for simplifying the management of Cursors within your
Activities. The startManagingCursor method integrates the Cursor’s lifetime into the calling Activity’s.
When you’ve finished with the Cursor, call stopManagingCursor to do just that.

Later in this chapter you’ll learn how to query a database and how to extract specific row/column
values from the resulting Cursors.

WORKING WITH SQLite DATABASES

It’s good practice to create a helper class to simplify your database interactions.

The following section shows you how to create a database adapter class for your database. This abstrac-
tion layer encapsulates your database interactions. It will provide intuitive, strongly typed methods for
adding, removing, and updating items. A database adapter should also handle queries and expose
methods for creating, opening, and closing the database.

212 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

It can also be used as a convenient location to publish static database constants, including table and
column names.

Listing 7-1 shows the skeleton code for a standard database adapter class. It includes an extension of
the SQLiteOpenHelper class (discussed in more detail in the following section), used to simplify opening,
creating, and upgrading the database.

LISTING 7-1: Skeleton code for a standard database adapter implementation

import android.content.Context;
import android.database.*;
import android.database.sqlite.*;
import android.database.sqlite.SQLiteDatabase.CursorFactory;
import android.util.Log;

public class MyDBAdapter {
private static final String DATABASE_NAME = "myDatabase.db";
private static final String DATABASE_TABLE = "mainTable";
private static final int DATABASE_VERSION = 1;

// The index (key) column name for use in where clauses.
public static final String KEY_ID="_id";

// The name and column index of each column in your database.
public static final String KEY_NAME="name";
public static final int NAME_COLUMN = 1;
// TODO: Create public field for each column in your table.

// SQL Statement to create a new database.
private static final String DATABASE_CREATE = "create table " +

DATABASE_TABLE + " (" + KEY_ID +
" integer primary key autoincrement, " +
KEY_NAME + " text not null);";

// Variable to hold the database instance
private SQLiteDatabase db;
// Context of the application using the database.
private final Context context;
// Database open/upgrade helper
private myDbHelper dbHelper;

public MyDBAdapter(Context _context) {
context = _context;
dbHelper = new myDbHelper(context, DATABASE_NAME, null, DATABASE_VERSION);

}

public MyDBAdapter open() throws SQLException {
db = dbHelper.getWritableDatabase();
return this;

}

Working with SQLite Databases ❘ 213

public void close() {
db.close();

}

public int insertEntry(MyObject _myObject) {
// TODO: Create a new ContentValues to represent my row
// and insert it into the database.
return index;

}

public boolean removeEntry(long _rowIndex) {
return db.delete(DATABASE_TABLE, KEY_ID + "=" + _rowIndex, null) > 0;

}

public Cursor getAllEntries () {
return db.query(DATABASE_TABLE, new String[] {KEY_ID, KEY_NAME},

null, null, null, null, null);
}

public MyObject getEntry(long _rowIndex) {
// TODO: Return a cursor to a row from the database and
// use the values to populate an instance of MyObject
return objectInstance;

}

public boolean updateEntry(long _rowIndex, MyObject _myObject) {
// TODO: Create a new ContentValues based on the new object
// and use it to update a row in the database.
return true;

}

private static class myDbHelper extends SQLiteOpenHelper {

public myDbHelper(Context context, String name,
CursorFactory factory, int version) {

super(context, name, factory, version);
}

// Called when no database exists in disk and the helper class needs
// to create a new one.
@Override
public void onCreate(SQLiteDatabase _db) {
_db.execSQL(DATABASE_CREATE);

}

// Called when there is a database version mismatch meaning that the version
// of the database on disk needs to be upgraded to the current version.
@Override
public void onUpgrade(SQLiteDatabase _db, int _oldVersion, int _newVersion) {
// Log the version upgrade.
Log.w("TaskDBAdapter", "Upgrading from version " +

_oldVersion + " to " +
_newVersion + ", which will destroy all old data");

continues

214 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

LISTING 7-1 (continued)

// Upgrade the existing database to conform to the new version. Multiple
// previous versions can be handled by comparing _oldVersion and _newVersion
// values.

// The simplest case is to drop the old table and create a new one.
_db.execSQL("DROP TABLE IF EXISTS " + DATABASE_TABLE);
// Create a new one.
onCreate(_db);

}
}

}

Introducing the SQLiteOpenHelper
SQLiteOpenHelper is an abstract class used to implement the best practice pattern for creating, opening,
and upgrading databases. By implementing an SQLite Open Helper you hide the logic used to decide if
a database needs to be created or upgraded before it’s opened.

Listing 7-1 showed how to extend the SQLiteOpenHelper class by overriding the constructor, onCreate,
and onUpgrade methods to handle the creation of a new database and upgrading to a new version,
respectively.

In the previous example onUpgrade simply drops the existing table and replaces it
with the new definition. In practice, a better solution is to migrate existing data
into the new table.

To use an implementation of the helper class, create a new instance, passing in the context, database
name, and current version, and a CursorFactory (if you’re using one).

Call getReadableDatabase or getWritableDatabase to open and return a readable/writable instance of
the underlying database.

A call to getWritableDatabase can fail because of disk space or permission issues, so it’s good practice
to provide fallback to the getReadableDatabase method, as shown in Listing 7-2.

LISTING 7-2: Using the SQLiteOpenHelper to access a database

dbHelper = new myDbHelper(context, DATABASE_NAME, null, DATABASE_VERSION);

SQLiteDatabase db;
try {

db = dbHelper.getWritableDatabase();
}
catch (SQLiteException ex){

db = dbHelper.getReadableDatabase();
}

Working with SQLite Databases ❘ 215

Behind the scenes, if the database doesn’t exist the helper executes its onCreate handler. If the database
version has changed, the onUpgrade handler will fire. In either case the get<read/writ>ableDatabase

call will return the existing, newly created, or upgraded database, as appropriate.

Opening and Creating Databases without SQLiteHelper
You can create and open databases without using the SQLite Helper by using the openOrCreateData

base method from the application Context.

Setting up a database is a two-step process. First call openOrCreateDatabase to create the new database.
Then call execSQL on the resulting database instance to run the SQL commands that will create your
tables and their relationships. The general process is shown in Listing 7-3.

LISTING 7-3: Creating a new database

private static final String DATABASE_NAME = "myDatabase.db";
private static final String DATABASE_TABLE = "mainTable";

private static final String DATABASE_CREATE =
"create table " + DATABASE_TABLE + " (_id integer primary key autoincrement," +
"column_one text not null);";

SQLiteDatabase myDatabase;

private void createDatabase() {
myDatabase = openOrCreateDatabase(DATABASE_NAME, Context.MODE_PRIVATE, null);
myDatabase.execSQL(DATABASE_CREATE);

}

Android Database Design Considerations
There are several considerations specific to Android that you should keep in mind when designing your
database.

➤ Files (such as bitmaps or audio files) are not usually stored within database tables. Use a string
to store a path to the file, preferably a fully qualified URI.

➤ While not strictly a requirement, it’s strongly recommended that all tables include an auto-
increment key field as a unique index field for each row. If you plan to share your table using
a Content Provider, a unique ID field is mandatory.

Querying a Database
Each database query is returned as a Cursor. This lets Android manage resources more efficiently by
retrieving and releasing row and column values on demand.

To execute a query on a database use the query method, passing in:

➤ An optional Boolean that specifies if the result set should contain only unique values.

➤ The name of the table to query.

216 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

➤ A projection, as an array of strings, that lists the columns to include in the result set.

➤ A ‘‘where’’ clause that defines the rows to be returned. You can include ? wildcards that will
be replaced by the values passed in through the selection argument parameter.

➤ An array of selection argument strings that will replace the ?’s in the where clause.

➤ A ‘‘group by’’ clause that defines how the resulting rows will be grouped.

➤ A ‘‘having’’ filter that defines which row groups to include if you specified a group by clause.

➤ A string that describes the order of the returned rows.

➤ An optional string that defines a limit for the number of returned rows.

Listing 7-4 shows snippets for returning some, and all, of the rows in a particular table.

LISTING 7-4: Querying a database

// Return all rows for columns one and three, no duplicates
String[] result_columns = new String[] {KEY_ID, KEY_COL1, KEY_COL3};

Cursor allRows = myDatabase.query(true, DATABASE_TABLE, result_columns,
null, null, null, null, null, null);

// Return all columns for rows where column 3 equals a set value
// and the rows are ordered by column 5.
String where = KEY_COL3 + "=" + requiredValue;
String order = KEY_COL5;
Cursor myResult = myDatabase.query(DATABASE_TABLE, null, where,

null, null, null, order);

Extracting Results from a Cursor
To extract values from a result Cursor, first use the moveTo<location> methods described earlier to
position the cursor at the correct row of the result Cursor.

Then use the type safe get<type> methods (passing in a column index) to return the value stored at the
current row for the specified column, as shown in the following snippet.

String columnValue = myResult.getString(columnIndex);

Database implementations should publish static constants that provide the column
names and/or indexes using easily recognizable variable names based on the column
names. These static constants are generally exposed within the database adapter.

Listing 7-5 shows how to iterate over a result Cursor, extracting and summing a column of float values.

Working with SQLite Databases ❘ 217

LISTING 7-5: Extracting values from a Cursor

int GOLD_HOARDED_COLUMN = 2;
Cursor myGold = myDatabase.query("GoldHoards", null, null, null, null, null, null);
float totalHoard = 0f;

// Make sure there is at least one row.
if (myGold.moveToFirst()) {
// Iterate over each cursor.
do {

float hoard = myGold.getFloat(GOLD_HOARDED_COLUMN);
totalHoard += hoard;

} while(myGold.moveToNext());
}

float averageHoard = totalHoard / myGold.getCount();

Because SQLite database columns are loosely typed, you can cast individual values into valid types as
required. For example, values stored as floats can be read back as strings.

Adding, Updating, and Removing Rows
The SQLiteDatabase class exposes insert, delete, and update methods that encapsulate the SQL state-
ments required to perform these actions. Additionally, the execSQL method lets you execute any valid
SQL on your database tables should you want to execute these (or any other) operations manually.

Any time you modify the underlying database values, you should call refreshQuery on each Cursor
that has a view on the affected table.

Inserting New Rows
To create a new row, construct a ContentValues object and use its put methods to provide a value for
each column. Insert the new row by passing the Content Values object into the insert method called
on the target database — along with the table name — as shown in Listing 7-6.

LISTING 7-6: Inserting new rows into a database

// Create a new row of values to insert.
ContentValues newValues = new ContentValues();

// Assign values for each row.
newValues.put(COLUMN_NAME, newValue);
[... Repeat for each column ...]

// Insert the row into your table
myDatabase.insert(DATABASE_TABLE, null, newValues);

218 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

Updating a Row
Updating rows is also done with Content Values.

Create a new ContentValues object, using the put methods to assign new values to each column you
want to update. Call update on the database, passing in the table name, the updated Content Values
object, and a where clause that specifies the row(s) to update as shown in Listing 7-7.

LISTING 7-7: Updating a database row

// Define the updated row content.
ContentValues updatedValues = new ContentValues();

// Assign values for each row.
newValues.put(COLUMN_NAME, newValue);
[... Repeat for each column ...]

String where = KEY_ID + "=" + rowId;

// Update the row with the specified index with the new values.
myDatabase.update(DATABASE_TABLE, newValues, where, null);

Deleting Rows
To delete a row simply call delete on a database, specifying the table name and a where clause that
returns the rows you want to delete as shown in Listing 7-8.

LISTING 7-8: Deleting a database row

myDatabase.delete(DATABASE_TABLE, KEY_ID + "=" + rowId, null);

Saving Your To-Do List
In Chapter 6 you enhanced the To-Do List example to persist the Activity’s UI state across sessions.
That was only half the job; in the following example you’ll create a database to save the to-do items.

1. Start by creating a new ToDoDBAdapter class. It will be used to manage your database inter-
actions. Create private variables to store the SQLiteDatabase object and the Context of the
calling application. Add a constructor that takes an application Context, and create static
class variables for the name and version of the database, as well as a name for the to-do item
table.

package com.paad.todolist;

import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteException;

Working with SQLite Databases ❘ 219

import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;

public class ToDoDBAdapter {
private static final String DATABASE_NAME = "todoList.db";
private static final String DATABASE_TABLE = "todoItems";
private static final int DATABASE_VERSION = 1;

private SQLiteDatabase db;
private final Context context;

public ToDoDBAdapter(Context _context) {
this.context = _context;

}
}

2. Create public convenience variables that define the column names: this will make it easier to
find the correct columns when extracting values from query result Cursors.

public static final String KEY_ID = "_id";
public static final String KEY_TASK = "task";
public static final String KEY_CREATION_DATE = "creation_date";

3. Create a new taskDBOpenHelper class within the ToDoDBAdapter that extends SQLiteOpen-
Helper. It will be used to simplify version management of your database. Within it, overwrite
the onCreate and onUpgrade methods to handle the database creation and upgrade logic.

private static class toDoDBOpenHelper extends SQLiteOpenHelper {

public toDoDBOpenHelper(Context context, String name,
CursorFactory factory, int version) {

super(context, name, factory, version);
}

// SQL Statement to create a new database.
private static final String DATABASE_CREATE = "create table " +
DATABASE_TABLE + " (" + KEY_ID + " integer primary key autoincrement, " +
KEY_TASK + " text not null, " + KEY_CREATION_DATE + " long);";

@Override
public void onCreate(SQLiteDatabase _db) {
_db.execSQL(DATABASE_CREATE);

}

@Override
public void onUpgrade(SQLiteDatabase _db, int _oldVersion, int _newVersion) {
Log.w("TaskDBAdapter", "Upgrading from version " +

_oldVersion + " to " +
_newVersion + ", which will destroy all old data");

// Drop the old table.
_db.execSQL("DROP TABLE IF EXISTS " + DATABASE_TABLE);
// Create a new one.
onCreate(_db);

}
}

220 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

4. Within the ToDoDBAdapter class, add a private variable to store an instance of the
toDoDBOpenHelper class you just created, and assign it within the constructor.

private toDoDBOpenHelper dbHelper;

public ToDoDBAdapter(Context _context) {
this.context = _context;
dbHelper = new toDoDBOpenHelper(context, DATABASE_NAME,

null, DATABASE_VERSION);
}

5. Still in the adapter class, create open and close methods that encapsulate the open and close
logic for your database. Start with a close method that simply calls close on the database
object.

public void close() {
db.close();

}

6. The open method should use the toDoDBOpenHelper class. Call getWritableDatabase to let
the helper handle database creation and version checking. Wrap the call to try to provide a
readable database if a writable instance can’t be opened.

public void open() throws SQLiteException {
try {
db = dbHelper.getWritableDatabase();

} catch (SQLiteException ex) {
db = dbHelper.getReadableDatabase();

}
}

7. Add strongly typed methods for adding, removing, and updating items.

// Insert a new task
public long insertTask(ToDoItem _task) {
// Create a new row of values to insert.
ContentValues newTaskValues = new ContentValues();
// Assign values for each row.
newTaskValues.put(KEY_TASK, _task.getTask());
newTaskValues.put(KEY_CREATION_DATE, _task.getCreated().getTime());
// Insert the row.
return db.insert(DATABASE_TABLE, null, newTaskValues);

}

// Remove a task based on its index
public boolean removeTask(long _rowIndex) {
return db.delete(DATABASE_TABLE, KEY_ID + "=" + _rowIndex, null) > 0;

}

// Update a task
public boolean updateTask(long _rowIndex, String _task) {
ContentValues newValue = new ContentValues();
newValue.put(KEY_TASK, _task);
return db.update(DATABASE_TABLE, newValue, KEY_ID + "=" + _rowIndex, null) > 0;

}

Working with SQLite Databases ❘ 221

8. Now add helper methods to handle queries. Write three methods — one to return all the
items, another to return a particular row as a Cursor, and finally one that returns a strongly
typed ToDoItem.

public Cursor getAllToDoItemsCursor() {
return db.query(DATABASE_TABLE,

new String[] { KEY_ID, KEY_TASK, KEY_CREATION_DATE},
null, null, null, null, null);

}

public Cursor setCursorToToDoItem(long _rowIndex) throws SQLException {
Cursor result = db.query(true, DATABASE_TABLE,

new String[] {KEY_ID, KEY_TASK},
KEY_ID + "=" + _rowIndex, null, null, null,
null, null);

if ((result.getCount() == 0) || !result.moveToFirst()) {
throw new SQLException("No to do items found for row: " + _rowIndex);

}
return result;

}

public ToDoItem getToDoItem(long _rowIndex) throws SQLException {
Cursor cursor = db.query(true, DATABASE_TABLE,

new String[] {KEY_ID, KEY_TASK},
KEY_ID + "=" + _rowIndex, null, null, null,
null, null);

if ((cursor.getCount() == 0) || !cursor.moveToFirst()) {
throw new SQLException("No to do item found for row: " + _rowIndex);

}

String task = cursor.getString(TASK_COLUMN);
long created = cursor.getLong(CREATION_DATE_COLUMN);

ToDoItem result = new ToDoItem(task, new Date(created));
return result;

}

9. That completes the database helper class. Return the ToDoList Activity and update it to
persist the to-do list array. Start by updating the Activity’s onCreate method to create an
instance of the toDoDBAdapter and open a connection to the database. Also include a call to
the populateTodoList method stub.

ToDoDBAdapter toDoDBAdapter;

public void onCreate(Bundle icicle) {
[... existing onCreate logic ...]

toDoDBAdapter = new ToDoDBAdapter(this);

// Open or create the database
toDoDBAdapter.open();

populateTodoList();
}

private void populateTodoList() { }

222 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

10. Create a new instance variable to store a Cursor over all the to-do items in the database.
Update the populateTodoList method to use the toDoDBAdapter instance to query the
database, and call startManagingCursor to let the Activity manage the Cursor. It should
also make a call to updateArray, a method that will be used to repopulate the to-do list array
using the Cursor.

Cursor toDoListCursor;

private void populateTodoList() {
// Get all the todo list items from the database.
toDoListCursor = toDoDBAdapter. getAllToDoItemsCursor();
startManagingCursor(toDoListCursor);

// Update the array.
updateArray();

}

private void updateArray() { }

11. Now implement the updateArray method to update the current to-do list array. Call requery
on the result Cursor to ensure it’s fully up to date, then clear the array and iterate over the
result set. When the update is complete call notifyDataSetChanged on the Array Adapter.

private void updateArray() {
toDoListCursor.requery();

todoItems.clear();

if (toDoListCursor.moveToFirst())
do {

String task = toDoListCursor.getString(ToDoDBAdapter.TASK_COLUMN);
long created = toDoListCursor.getLong(ToDoDBAdapter.CREATION_DATE_COLUMN);

ToDoItem newItem = new ToDoItem(task, new Date(created));
todoItems.add(0, newItem);

} while(toDoListCursor.moveToNext());

aa.notifyDataSetChanged();
}

12. To join the pieces together, modify the OnKeyListener assigned to the text entry box
in the onCreate method, and update the removeItem method. Both should now use the
toDoDBAdapter to add and remove items from the database rather than modifying the to-do
list array directly.

12.1. Start with the OnKeyListener, insert the new item into the database, and refresh
the array.
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

myListView = (ListView)findViewById(R.id.myListView);
myEditText = (EditText)findViewById(R.id.myEditText);

Working with SQLite Databases ❘ 223

todoItems = new ArrayList<ToDoItem>();
int resID = R.layout.todolist_item;
aa = new ToDoItemAdapter(this, resID, todoItems);
myListView.setAdapter(aa);

myEditText.setOnKeyListener(new OnKeyListener() {
public boolean onKey(View v, int keyCode, KeyEvent event) {
if (event.getAction() == KeyEvent.ACTION_DOWN)

if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER) {
ToDoItem newItem = new ToDoItem(myEditText.getText().toString());
toDoDBAdapter.insertTask(newItem);
updateArray();
myEditText.setText("");
aa.notifyDataSetChanged();
cancelAdd();
return true;

}
return false;

}
});

registerForContextMenu(myListView);
restoreUIState();

toDoDBAdapter = new ToDoDBAdapter(this);

// Open or create the database
toDoDBAdapter.open();

populateTodoList();
}

12.2. Then modify the removeItem method to remove the item from the database and
refresh the array list.
private void removeItem(int _index) {
// Items are added to the listview in reverse order, so invert the index.
toDoDBAdapter.removeTask(todoItems.size()-_index);
updateArray();

}

13. As a final step, override the onDestroy method of your activity to close your database
connection.

@Override
public void onDestroy() {
super.onDestroy();

// Close the database
toDoDBAdapter.close();

}

All code snippets in this example are part of the Chapter 7 Todo List project, available for download at Wrox.com.

224 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

Your to-do items will now be saved between sessions. As a further enhancement you could change the
Array Adapter to a Simple Cursor Adapter and have the List View update dynamically with changes to
the database.

Because you’re using a private database your tasks are not available to other applications. To provide
access to your tasks in other applications, expose them using a Content Provider. You’ll do exactly
that next.

CREATING A NEW CONTENT PROVIDER

To create a new Content Provider, extend the abstract ContentProvider class. Override the onCreate

method to create (and initialize) the underlying data source you’re planning to publish with this
provider. Sample skeleton code for a new Content Provider is shown in Listing 7-9.

LISTING 7-9: Creating a new Content Provider

import android.content.*;
import android.database.Cursor;
import android.net.Uri;
import android.database.SQLException;

public class MyProvider extends ContentProvider {

@Override
public boolean onCreate() {
// TODO Construct the underlying database.
return true;

}
}

You should expose a public static CONTENT_URI property that returns the full URI of this provider. A
Content Provider URI must be unique to the provider, so it’s good practice to base the URI path on
your package name. The general form for defining a Content Provider’s URI is:

content://com.<CompanyName>.provider.<ApplicationName>/<DataPath>

For example:

content://com.paad.provider.myapp/elements

Content URIs can represent either of two forms. The previous URI represents a request for all values of
that type (in this case all elements).

A trailing /<rownumber>, as shown in the following code, represents a request for a single record
(in this case the fifth element).

content://com.paad.provider.myapp/elements/5

It’s good practice to support access to your provider for both of these forms.

The simplest way to do this is to use a UriMatcher. Create and configure a Uri Matcher to parse
URIs and determine their forms. This is particularly useful when you’re processing Content Resolver
requests. Listing 7-10 shows the skeleton code for this pattern.

Creating a New Content Provider ❘ 225

LISTING 7-10: Using the UriMatcher to handle single or multiple query requests

public class MyProvider extends ContentProvider {

private static final String myURI = "content://com.paad.provider.myapp/items";
public static final Uri CONTENT_URI = Uri.parse(myURI);

@Override
public boolean onCreate() {

// TODO: Construct the underlying database.
return true;

}

// Create the constants used to differentiate between the different URI
// requests.
private static final int ALLROWS = 1;
private static final int SINGLE_ROW = 2;

private static final UriMatcher uriMatcher;

// Populate the UriMatcher object, where a URI ending in ‘items’ will
// correspond to a request for all items, and ‘items/[rowID]’
// represents a single row.
static {

uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
uriMatcher.addURI("com.paad.provider.myApp", "items", ALLROWS);
uriMatcher.addURI("com.paad.provider.myApp", "items/#", SINGLE_ROW);

}
}

You can use the same technique to expose alternative URIs for different subsets of data, or different
tables within your database, using the same Content Provider.

It’s also good practice to expose the name of each of the columns available in your provider, to simplify
extracting data from a query-result Cursor.

Exposing Access to the Data Source
Expose queries and transactions on your Content Provider by implementing the delete, insert,
update, and query methods.

These methods are the interface used by the Content Resolver to access the underlying data. They allow
applications to share data across application boundaries without having to publish different interfaces
for each data source.

The most common scenario is to use a Content Provider to expose a private SQLite database, but
within these methods you can access any source of data (including files or application instance
variables).

Listing 7-11 shows the skeleton code for implementing queries and transactions within a Content
Provider. Notice that the UriMatcher object is used to refine the transaction and query requests.

226 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

LISTING 7-11: Implementing queries and transactions within a Content Provider

@Override
public Cursor query(Uri uri,

String[] projection,
String selection,
String[] selectionArgs,
String sort) {

// If this is a row query, limit the result set to the passed in row.
switch (uriMatcher.match(uri)) {
case SINGLE_ROW :

// TODO: Modify selection based on row id, where:
// rowNumber = uri.getPathSegments().get(1));

}
return null;

}

@Override
public Uri insert(Uri _uri, ContentValues _initialValues) {

long rowID = [... Add a new item ...]

// Return a URI to the newly added item.
if (rowID > 0) {
return ContentUris.withAppendedId(CONTENT_URI, rowID);

}
throw new SQLException("Failed to add new item into " + _uri);

}

@Override
public int delete(Uri uri, String where, String[] whereArgs) {

switch (uriMatcher.match(uri)) {
case ALLROWS:
case SINGLE_ROW:
default: throw new IllegalArgumentException("Unsupported URI:" + uri);

}
}

@Override
public int update(Uri uri, ContentValues values, String where, String[]
whereArgs) {

switch (uriMatcher.match(uri)) {
case ALLROWS:
case SINGLE_ROW:
default: throw new IllegalArgumentException("Unsupported URI:" + uri);

}
}

The final step in creating a Content Provider is defining the MIME type that identifies the data the
provider returns.

Using Content Providers ❘ 227

Override the getType method to return a String that uniquely describes your data type. The type
returned should include two forms, one for a single entry and another for all the entries, following
these forms:

➤ Single item vnd.<companyname>.cursor.item/<contenttype>

➤ All items vnd.<companyName>.cursor.dir/<contenttype>

Listing 7-12 shows how to override the getType method to return the correct MIME type based on the
URI passed in.

LISTING 7-12: Returning a Content Provider MIME type

@Override
public String getType(Uri _uri) {
switch (uriMatcher.match(_uri)) {

case ALLROWS: return "vnd.paad.cursor.dir/myprovidercontent";
case SINGLE_ROW: return "vnd.paad.cursor.item/myprovidercontent";
default: throw new IllegalArgumentException("Unsupported URI: " + _uri);

}
}

Registering Your Provider
Once you have completed your Content Provider, it must be added to the application manifest.

Use the authorities tag to specify its base URI, as shown in the following XML snippet.

<provider android:name="MyProvider"
android:authorities="com.paad.provider.myapp"/>

USING CONTENT PROVIDERS

The following sections introduce the ContentResolver class, and how to use it to query and transact
with a Content Provider.

Introducing Content Resolvers
Each application Context includes a ContentResolver instance, accessible using the
getContentResolver method.

ContentResolver cr = getContentResolver();

The Content Resolver includes a number of methods to modify and query Content Providers. Each
method accepts a URI that specifies the Content Provider to interact with.

A Content Provider’s URI is its authority as defined by its manifest node. An authority URI is an arbi-
trary string, so most Content Providers include a public CONTENT_URI property to publish that authority.

228 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

Content Providers usually expose two forms of URI, one for requests against all data, and another that
specifies only a single row. The form for the latter appends /<rowID> to the general CONTENT_URI.

Querying for Content
Content Provider queries take a form very similar to that of database queries. Query results are returned
as Cursors over a result set, like databases, in the same way as described previously in this chapter.

You can extract values from the result Cursor using the same techniques described within the database
section on ‘‘Extracting Results from a Cursor.’’

Using the query method on the ContentResolver object, pass in:

➤ The URI of the Content Provider data you want to query.

➤ A projection that lists the columns you want to include in the result set.

➤ A where clause that defines the rows to be returned. You can include ? wildcards that will be
replaced by the values passed into the selection argument parameter.

➤ An array of selection argument strings that will replace the ?s in the where clause.

➤ A string that describes the order of the returned rows.

Listing 7-13 shows how to use a Content Resolver to apply a query to a Content Provider:

LISTING 7-13: Querying a Content Provider with a Content Resolver

ContentResolver cr = getContentResolver();
// Return all rows
Cursor allRows = cr.query(MyProvider.CONTENT_URI, null, null, null, null);
// Return all columns for rows where column 3 equals a set value
// and the rows are ordered by column 5.
String where = KEY_COL3 + "=" + requiredValue;
String order = KEY_COL5;
Cursor someRows = cr.query(MyProvider.CONTENT_URI,

null, where, null, order);

You’ll see more examples of querying for content later in this chapter when the native Android Content
Providers are introduced.

Adding, Updating, and Deleting Content
To perform transactions on Content Providers, use the delete, update, and insert methods on the
ContentResolver object.

Inserts
The Content Resolver offers two methods for inserting new records into your Content Provider —
insert and bulkInsert. Both methods accept the URI of the item-type you’re adding; where the former
takes a single new ContentValues object, the latter takes an array.

Using Content Providers ❘ 229

The simple insert method will return a URI to the newly added record, while bulkInsert returns the
number of successfully added rows.

Listing 7-14 shows how to use the insert and bulkInsert methods.

LISTING 7-14: Inserting new rows into a Content Provider

// Get the Content Resolver
ContentResolver cr = getContentResolver();

// Create a new row of values to insert.
ContentValues newValues = new ContentValues();

// Assign values for each row.
newValues.put(COLUMN_NAME, newValue);
[... Repeat for each column ...]

Uri myRowUri = cr.insert(MyProvider.CONTENT_URI, newValues);

// Create a new row of values to insert.
ContentValues[] valueArray = new ContentValues[5];

// TODO: Create an array of new rows
int count = cr.bulkInsert(MyProvider.CONTENT_URI, valueArray);

Deletes
To delete a single record, call delete on the Content Resolver, passing in the URI of the row you want
to remove. Alternatively, you can specify a where clause to remove multiple rows. Both techniques are
shown in Listing 7-15.

LISTING 7-15: Deleting records from a Content Provider

ContentResolver cr = getContentResolver();

// Remove a specific row.
cr.delete(myRowUri, null, null);
// Remove the first five rows.
String where = "_id < 5";
cr.delete(MyProvider.CONTENT_URI, where, null);

Updates
Content Provider row updates are made with the Content Resolver update method. The update method
takes the URI of the target Content Provider, a ContentValues object that maps column names to
updated values, and a where clause that indicates which rows to update.

When the update is executed, every row matched by the where clause is updated using the specified
Content Values, and the number of successful updates is returned as shown in Listing 7-16.

230 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

LISTING 7-16: Updating records in a Content Provider

// Create a new row of values to insert.
ContentValues newValues = new ContentValues();

// Create a replacement map, specifying which columns you want to
// update, and what values to assign to each of them.
newValues.put(COLUMN_NAME, newValue);

// Apply to the first 5 rows.
String where = "_id < 5";

getContentResolver().update(MyProvider.CONTENT_URI, newValues, where, null);

Accessing Files in Content Providers
Content Providers represent files as fully qualified URIs rather than as raw file blobs. To insert a
file into a Content Provider, or access a saved file, use the Content Resolvers openOutputStream or
openInputStream methods respectively. The process for storing a file is shown in Listing 7-17.

LISTING 7-17: Adding files to Content Providers

// Insert a new row into your provider, returning its unique URI.
Uri uri = getContentResolver().insert(MyProvider.CONTENT_URI, newValues);

try {
// Open an output stream using the new row’s URI.
OutputStream outStream = getContentResolver().openOutputStream(uri);
// Compress your bitmap and save it into your provider.
sourceBitmap.compress(Bitmap.CompressFormat.JPEG, 50, outStream);

}
catch (FileNotFoundException e) { }

CREATING AND USING AN EARTHQUAKE CONTENT PROVIDER

Having created an application that features a list of earthquakes, you have an excellent opportunity to
share this information with other applications.

By exposing this data through a Content Provider you make it possible for yourself, and others, to
create new applications based on earthquake data without having to duplicate network traffic and the
associated XML parsing.

Creating the Content Provider

1. First open the Earthquake project and create a new EarthquakeProvider class that extends
ContentProvider. Include stubs to override the onCreate, getType, query, insert, delete,
and update methods.

Creating and Using an Earthquake Content Provider ❘ 231

package com.paad.earthquake;

import android.content.*;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;
import android.net.Uri;
import android.text.TextUtils;
import android.util.Log;

public class EarthquakeProvider extends ContentProvider {

@Override
public boolean onCreate() {
}

@Override
public String getType(Uri url) {
}

@Override
public Cursor query(Uri url, String[] projection, String selection,

String[] selectionArgs, String sort) {
}

@Override
public Uri insert(Uri _url, ContentValues _initialValues) {
}

@Override
public int delete(Uri url, String where, String[] whereArgs) {
}

@Override
public int update(Uri url, ContentValues values,

String where, String[]wArgs) {
}

}

2. Publish the URI for this provider. This URI will be used to access this Content Provider from
within other application components via the ContentResolver.

public static final Uri CONTENT_URI =
Uri.parse("content://com.paad.provider.earthquake/earthquakes");

3. Create the database that will be used to store the earthquakes. Within the EarthquakeProvider
create a new SQLiteDatabase instance and expose public variables that describe the column
names and indexes. Include an extension of SQLiteOpenHelper to manage database creation
and version control.

// The underlying database
private SQLiteDatabase earthquakeDB;

232 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

private static final String TAG = "EarthquakeProvider";
private static final String DATABASE_NAME = "earthquakes.db";
private static final int DATABASE_VERSION = 1;
private static final String EARTHQUAKE_TABLE = "earthquakes";

// Column Names
public static final String KEY_ID = "_id";
public static final String KEY_DATE = "date";
public static final String KEY_DETAILS = "details";
public static final String KEY_LOCATION_LAT = "latitude";
public static final String KEY_LOCATION_LNG = "longitude";
public static final String KEY_MAGNITUDE = "magnitude";
public static final String KEY_LINK = "link";

// Column indexes
public static final int DATE_COLUMN = 1;
public static final int DETAILS_COLUMN = 2;
public static final int LONGITUDE_COLUMN = 3;
public static final int LATITUDE_COLUMN = 4;
public static final int MAGNITUDE_COLUMN = 5;
public static final int LINK_COLUMN = 6;

// Helper class for opening, creating, and managing database version control
private static class earthquakeDatabaseHelper extends SQLiteOpenHelper {
private static final String DATABASE_CREATE =
"create table " + EARTHQUAKE_TABLE + " ("
+ KEY_ID + " integer primary key autoincrement, "
+ KEY_DATE + " INTEGER, "
+ KEY_DETAILS + " TEXT, "
+ KEY_LOCATION_LAT + " FLOAT, "
+ KEY_LOCATION_LNG + " FLOAT, "
+ KEY_MAGNITUDE + " FLOAT), "
+ KEY_LINK + " TEXT);";

public earthquakeDatabaseHelper(Context context, String name,
CursorFactory factory, int version) {

super(context, name, factory, version);
}

@Override
public void onCreate(SQLiteDatabase db) {
db.execSQL(DATABASE_CREATE);

}

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
Log.w(TAG, "Upgrading database from version " + oldVersion + " to "

+ newVersion + ", which will destroy all old data");

db.execSQL("DROP TABLE IF EXISTS " + EARTHQUAKE_TABLE);
onCreate(db);

}
}

4. Create a UriMatcher to handle requests using different URIs. Include support for queries
and transactions over the entire dataset (QUAKES) and a single record matching a quake index
value (QUAKE_ID).

Creating and Using an Earthquake Content Provider ❘ 233

// Create the constants used to differentiate between the different URI
// requests.
private static final int QUAKES = 1;
private static final int QUAKE_ID = 2;

private static final UriMatcher uriMatcher;

// Allocate the UriMatcher object, where a URI ending in ‘earthquakes’ will
// correspond to a request for all earthquakes, and ‘earthquakes’ with a
trailing ‘/[rowID]’ will represent a single earthquake row.
static {
uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
uriMatcher.addURI("com.paad.provider.Earthquake", "earthquakes", QUAKES);
uriMatcher.addURI("com.paad.provider.Earthquake", "earthquakes/#", QUAKE_ID);

}

5. Override the getType method to return a string for each of the URI structures supported.

@Override
public String getType(Uri uri) {
switch (uriMatcher.match(uri)) {
case QUAKES: return "vnd.android.cursor.dir/vnd.paad.earthquake";
case QUAKE_ID: return "vnd.android.cursor.item/vnd.paad.earthquake";
default: throw new IllegalArgumentException("Unsupported URI: " + uri);

}
}

6. Override the provider’s onCreate handler to create a new instance of the database helper
class, and open a connection to the database.

@Override
public boolean onCreate() {
Context context = getContext();

earthquakeDatabaseHelper dbHelper = new earthquakeDatabaseHelper(context,
DATABASE_NAME, null, DATABASE_VERSION);

earthquakeDB = dbHelper.getWritableDatabase();
return (earthquakeDB == null) ? false : true;

}

7. Implement the query and transaction stubs. Start with the query method, which should
decode the request being made based on the URI (either all content or a single row), and
apply the selection, projection, and sort-order criteria parameters to the database before
returning a result Cursor.

@Override
public Cursor query(Uri uri,

String[] projection,
String selection,
String[] selectionArgs,
String sort) {

SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

qb.setTables(EARTHQUAKE_TABLE);

234 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

// If this is a row query, limit the result set to the passed in row.
switch (uriMatcher.match(uri)) {
case QUAKE_ID: qb.appendWhere(KEY_ID + "=" + uri.getPathSegments().get(1));

break;
default : break;

}

// If no sort order is specified sort by date / time
String orderBy;
if (TextUtils.isEmpty(sort)) {
orderBy = KEY_DATE;

} else {
orderBy = sort;

}

// Apply the query to the underlying database.
Cursor c = qb.query(earthquakeDB,

projection,
selection, selectionArgs,
null, null,
orderBy);

// Register the contexts ContentResolver to be notified if
// the cursor result set changes.
c.setNotificationUri(getContext().getContentResolver(), uri);

// Return a cursor to the query result.
return c;

}

8. Now implement methods for inserting, deleting, and updating content. In this case the
process is an exercise in mapping Content Provider transaction requests to their database
equivalents.

@Override
public Uri insert(Uri _uri, ContentValues _initialValues) {
// Insert the new row, will return the row number if
// successful.
long rowID = earthquakeDB.insert(EARTHQUAKE_TABLE, "quake", _initialValues);

// Return a URI to the newly inserted row on success.
if (rowID > 0) {
Uri uri = ContentUris.withAppendedId(CONTENT_URI, rowID);
getContext().getContentResolver().notifyChange(uri, null);
return uri;

}
throw new SQLException("Failed to insert row into " + _uri);

}

@Override
public int delete(Uri uri, String where, String[] whereArgs) {
int count;

Creating and Using an Earthquake Content Provider ❘ 235

switch (uriMatcher.match(uri)) {
case QUAKES:

count = earthquakeDB.delete(EARTHQUAKE_TABLE, where, whereArgs);
break;

case QUAKE_ID:
String segment = uri.getPathSegments().get(1);
count = earthquakeDB.delete(EARTHQUAKE_TABLE, KEY_ID + "="

+ segment
+ (!TextUtils.isEmpty(where) ? " AND ("
+ where + ‘)’ : ""), whereArgs);

break;

default: throw new IllegalArgumentException("Unsupported URI: " + uri);
}

getContext().getContentResolver().notifyChange(uri, null);
return count;

}

@Override
public int update(Uri uri, ContentValues values, String where, String[]
whereArgs) {
int count;
switch (uriMatcher.match(uri)) {
case QUAKES: count = earthquakeDB.update(EARTHQUAKE_TABLE, values,

where, whereArgs);
break;

case QUAKE_ID: String segment = uri.getPathSegments().get(1);
count = earthquakeDB.update(EARTHQUAKE_TABLE, values, KEY_ID

+ "=" + segment
+ (!TextUtils.isEmpty(where) ? " AND ("
+ where + ‘)’ : ""), whereArgs);

break;

default: throw new IllegalArgumentException("Unknown URI " + uri);
}

getContext().getContentResolver().notifyChange(uri, null);
return count;

}

9. With the Content Provider complete, register it in the manifest by creating a new <provider>

node within the application tag.

<provider android:name=".EarthquakeProvider"
android:authorities="com.paad.provider.earthquake" />

All code snippets in this example are part of the Chapter 7 Todo List 2 project, available for download at Wrox.com.

236 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

Using the Provider
You can now update the Earthquake Activity to use the Earthquake Provider to store quakes and use
them to populate the List View.

1. Within the Earthquake Activity, update the addNewQuake method. It should use the applica-
tion’s Content Resolver to insert each new Earthquake into the provider. Move the existing
array control logic into a separate addQuakeToArray method.

private void addNewQuake(Quake _quake) {
ContentResolver cr = getContentResolver();
// Construct a where clause to make sure we don’t already have this
// earthquake in the provider.
String w = EarthquakeProvider.KEY_DATE + " = " + _quake.getDate().getTime();

// If the earthquake is new, insert it into the provider.
if (cr.query(EarthquakeProvider.CONTENT_URI, null, w, null, null).getCount()==0){
ContentValues values = new ContentValues();

values.put(EarthquakeProvider.KEY_DATE, _quake.getDate().getTime());
values.put(EarthquakeProvider.KEY_DETAILS, _quake.getDetails());

double lat = _quake.getLocation().getLatitude();
double lng = _quake.getLocation().getLongitude();
values.put(EarthquakeProvider.KEY_LOCATION_LAT, lat);
values.put(EarthquakeProvider.KEY_LOCATION_LNG, lng);
values.put(EarthquakeProvider.KEY_LINK, _quake.getLink());
values.put(EarthquakeProvider.KEY_MAGNITUDE, _quake.getMagnitude());

cr.insert(EarthquakeProvider.CONTENT_URI, values);
earthquakes.add(_quake);

addQuakeToArray(_quake);
}

}

private void addQuakeToArray(Quake _quake) {
if (_quake.getMagnitude() > minimumMagnitude) {
// Add the new quake to our list of earthquakes.
earthquakes.add(_quake);

// Notify the array adapter of a change.
aa.notifyDataSetChanged();

}
}

2. Create a new loadQuakesFromProvider method that loads all the earthquakes from the
Earthquake Provider, and inserts them into the Array List using the addQuakeToArray

method created in Step 1.

private void loadQuakesFromProvider() {
// Clear the existing earthquake array
earthquakes.clear();

ContentResolver cr = getContentResolver();

Creating and Using an Earthquake Content Provider ❘ 237

// Return all the saved earthquakes
Cursor c = cr.query(EarthquakeProvider.CONTENT_URI, null, null, null, null);

if (c.moveToFirst())
{

do {
// Extract the quake details.
Long datems = c.getLong(EarthquakeProvider.DATE_COLUMN);
String details = c.getString(EarthquakeProvider.DETAILS_COLUMN);
Float lat = c.getFloat(EarthquakeProvider.LATITUDE_COLUMN);
Float lng = c.getFloat(EarthquakeProvider.LONGITUDE_COLUMN);
Double mag = c.getDouble(EarthquakeProvider.MAGNITUDE_COLUMN);
String link = c.getString(EarthquakeProvider.LINK_COLUMN);

Location location = new Location("dummy");
location.setLongitude(lng);
location.setLatitude(lat);

Date date = new Date(datems);

Quake q = new Quake(date, details, location, mag, link);
addQuakeToArray(q);

} while(c.moveToNext());
}

}

3. Call loadQuakesFromProvider from onCreate to initialize the earthquake List View
at start-up.

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

earthquakeListView = (ListView)this.findViewById(R.id.earthquakeListView);

earthquakeListView.setOnItemClickListener(new OnItemClickListener() {

@Override
public void onItemClick(AdapterView _av, View _v, int _index, long arg3) {

selectedQuake = earthquakes.get(_index);
showDialog(QUAKE_DIALOG);

}
});

int layoutID = android.R.layout.simple_list_item_1;
aa = new ArrayAdapter<Quake>(this, layoutID , earthquakes);
earthquakeListView.setAdapter(aa);

loadQuakesFromProvider();

updateFromPreferences();
refreshEarthquakes();

}

238 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

4. Finally, make a change to the refreshEarthquakes method so that it loads the saved
earthquakes from the provider after clearing the array, but before adding any new quakes
received.

private void refreshEarthquakes() {
[... exiting refreshEarthquakes method ...]

// Clear the old earthquakes
earthquakes.clear();
loadQuakesFromProvider();

[... exiting refreshEarthquakes method ...]
}

All code snippets in this example are part of the Chapter 7 Todo List 3 project, available for download at Wrox.com.

NATIVE ANDROID CONTENT PROVIDERS

Android exposes several native databases using Content Providers.

You can access these Content Providers directly using the techniques described earlier in this chapter.
Alternatively, the android.provider package includes classes that can simplify access to many of the
most useful providers, including:

➤ Browser Use the browser Content Provider to read or modify bookmarks, browser history,
or web searches.

➤ CallLog View or update the call history, including both incoming and outgoing calls,
together with missed calls and call details like caller ID and call durations.

➤ ContactsContract Use the Contacts Contract provider to retrieve, modify, or store your
contacts’ details. This Content Provider replaces the Contact Content Provider.

➤ MediaStore The Media Store provides centralized, managed access to the multimedia on
your device, including audio, video, and images. You can store your own multimedia within
the media store and make it globally available, as shown in Chapter 11.

➤ Settings You can access the device’s preferences using the Settings provider.
You can view most system settings and modify some of them. More usefully, the
android.provider.Settings class includes a collection of Intent actions that can be used to
open the appropriate settings screen to let users modify their own settings.

➤ UserDictionary Access (or add to) the user defined words added to the dictionary for use in
IME predictive text input.

You should use these native Content Providers wherever possible to ensure your application integrates
seamlessly with other native and third-party applications.

While a detailed description of how to use each of these helpers is beyond the scope of this chapter, the
following sections describe how to use the Media Store and Contacts Contract Content Provider.

Native Android Content Providers ❘ 239

Using the Media Store Provider
The Android Media Store is a managed repository of audio, video, and image files.

Whenever you add a new multimedia file to the file system, it should also be added to the Media Store.
This will expose it to other applications, including the default media player. Chapter 11 shows you
how to use the Content Scanner to add new media to the Media Store.

To access media from the Media Store, query the image, video, or audio Content Providers using
the techniques described earlier within this chapter. The MediaStore class includes Audio, Video, and
Images subclasses, which in turn contain subclasses that are used to provide the column names and
content URIs for each media provider.

The Media Store segregates media kept on the internal and external volumes of the host device. Each
of the Media Store subclasses provides a URI for either the internally or externally stored media using
the forms:

➤ MediaStore.<mediatype>.Media.EXTERNAL_CONTENT_URI

➤ MediaStore.<mediatype>.Media.INTERNAL_CONTENT_URI

Listing 7-18 shows a simple code snippet used to find the song title and album name for each piece of
audio stored on the external volume.

LISTING 7-18: Accessing the Media Store Content Provider

// Get a cursor over every piece of audio on the external volume.
Cursor cursor =
getContentResolver().query(MediaStore.Audio.Media.EXTERNAL_CONTENT_URI,

null, null, null, null);

// Let the activity manage the cursor lifecycle.
startManagingCursor(cursor);

// Use the convenience properties to get the index of the columns
int albumIdx = cursor.getColumnIndexOrThrow(MediaStore.Audio.Media.ALBUM);
int titleIdx = cursor. getColumnIndexOrThrow(MediaStore.Audio.Media.TITLE);

String[] result = new String[cursor.getCount()];
if (cursor.moveToFirst())
do {

// Extract the song title.
String title = cursor.getString(titleIdx);
// Extract the album name.
String album = cursor.getString(albumIdx);

result[cursor.getPosition()] = title + " (" + album + ")";
} while(cursor.moveToNext());

In Chapter 11 you’ll learn how to play audio and video resources stored in the Media Store by specify-
ing the URI of a particular multi media item.

240 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

Using the Contacts Provider
Access to the contact manager is particularly useful on a communications device. Android does the
right thing by exposing all the information available from the contacts database to any application
granted the READ_CONTACTS permission.

Android 2.0 (API level 5) introduced the ContactsContract class, which superceded the Contacts class
that had previously been used to store and manage the contacts stored on the device.

The new contact Content Provider extends the scope of contacts management in Android by providing
an extensible database of contact-related information. This allows users to specify multiple sources for
their contact information. More importantly for us, it allows developers to arbitrarily extend the data
stored against each contact, or even become an alternative provider for contacts and contact details.

Introducing the Contacts Contract Content Provider
The Contacts Contract Content Provider is an extensible database of contact-related information.

Rather than using a single well-defined table of contact detail columns, the Contacts Contract provider
uses a three-tier data model to store data, associate it with a contact, and aggregate it to a single person
using the following ContactsContract subclasses:

➤ Data In the underlying table, each row defines a set of personal data (e.g., phone numbers,
e-mail addresses, etc.), separated by MIME type. While there is a predefined set of common
column names for each personal data-type (available, along with the appropriate MIME
types from subclasses within ContactsContract.CommonDataKinds), this table can be used
to store any value.

Importantly, the kind of data stored in a particular row is determined by the MIME type
specified for that row. A series of generic columns is used to store up to 15 different pieces
of data varying by data type.

When adding new data to the Data table, you specify a Raw Contact to which a set of data
will be associated.

➤ RawContacts From Android 2.0 onwards, users can specify multiple contact accounts (e.g.,
Gmail, Facebook, etc.). Each row in the Raw Contacts table defines an account to which a set
of Data values is associated.

➤ Contacts The Contacts table aggregates rows from Raw Contacts that all describe the same
person.

Typically you will use the Data table to add, delete, or modify data stored against an existing contact
account, the Raw Contacts table to create and manage accounts, and both the Contact and Data tables
to query the database and extract contact details.

Reading Contact Details
You can use the Content Resolver to query any of the three Contact Contracts tables described above
using the CONTENT_URI static constant available from each class. Each class includes a number of static
properties that describe the column names included in the underlying tables.

Native Android Content Providers ❘ 241

In order to access any contact details you need to include the READ_CONTACTS uses-permission in your
application manifest:

<uses-permission android:name="android.permission.READ_CONTACTS"/>

Listing 7-19 queries the Contacts table for a Cursor to every person in the address book, creating an
array of strings that holds each contact’s name and unique ID.

LISTING 7-19: Accessing the contact Content Provider

// Get a cursor over every aggregated contact.
Cursor cursor =
getContentResolver().query(ContactsContract.Contacts.CONTENT_URI,

null, null, null, null);

// Let the activity manage the cursor lifecycle.
startManagingCursor(cursor);

// Use the convenience properties to get the index of the columns
int nameIdx =
cursor.getColumnIndexOrThrow(ContactsContract.Contacts.DISPLAY_NAME);
int idIdx = cursor. getColumnIndexOrThrow(ContactsContract.Contacts._ID);

String[] result = new String[cursor.getCount()];
if (cursor.moveToFirst())
do {

// Extract the name.
String name = cursor.getString(nameIdx);
// Extract the phone number.
String id = cursor.getString(idIdx);

result[cursor.getPosition()] = name + " (" + id + ")";
} while(cursor.moveToNext());

stopManagingCursor(cursor);

The ContactsContract.Data Content Provider is used to store all the contact details — such as
addresses, phone numbers, and e-mail addresses — making it the best approach when searching for
one of these details.

The Data table is also used for finding details for a given contact. In most cases, you will likely be
querying for contact details based on a full or partial contact name.

To simplify this lookup, Android provides the ContactsContract.Contacts.CONTENT_FILTER_URI

query URI. Append the full or partial name to lookup as an additional path segment to the URI. To
extract the associated contact details, find the _ID value from the returned Cursor and use it to create a
query on the Data table.

The content of each column with a row in the Data table depends on the MIME type specified for
that row. As a result, any query on the Data table must filter the rows by MIME-type in order to
meaningfully extract data.

242 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

Listing 7-20 shows how to use the contact-detail column names available in the CommonDataKinds

subclasses to extract the display name and mobile phone number from the Data table for a particular
contact.

LISTING 7-20: Finding contact details after finding a contact

// Find a contact using a partial name match
Uri lookupUri =
Uri.withAppendedPath(ContactsContract.Contacts.CONTENT_FILTER_URI, "kristy");

Cursor idCursor = getContentResolver().query(lookupUri, null, null, null,
null);

String id = null;
if (idCursor.moveToFirst()) {

int idIdx = idCursor.getColumnIndexOrThrow(ContactsContract.Contacts._ID);
id = idCursor.getString(idIdx);

}
idCursor.close();

if (id != null) {
// Return all the contact details of type PHONE for the contact we found
String where = ContactsContract.Data.CONTACT_ID + " = " + id + " AND " +

ContactsContract.Data.MIMETYPE + " = ‘" +
ContactsContract.CommonDataKinds.Phone.CONTENT_ITEM_TYPE +
"’";

Cursor dataCursor =
getContentResolver().query(ContactsContract.Data.CONTENT_URI,
null, where, null, null);

// Use the convenience properties to get the index of the columns
int nameIdx =

dataCursor.getColumnIndexOrThrow(ContactsContract.Data.DISPLAY_NAME);
int phoneIdx =

dataCursor.getColumnIndexOrThrow(ContactsContract.CommonDataKinds.Phone.NUMBER)
;

String[] result = new String[dataCursor.getCount()];
if (dataCursor.moveToFirst())
do {

// Extract the name.
String name = dataCursor.getString(nameIdx);
// Extract the phone number.
String number = dataCursor.getString(phoneIdx);

result[dataCursor.getPosition()] = name + " (" + number + ")";
} while(dataCursor.moveToNext());

dataCursor.close();
}

Native Android Content Providers ❘ 243

The Contacts sub-class also offers a phone number lookup URI to help find a contact associated with
a particular phone number. This query is highly optimized to return fast results for incoming caller-ID
notification.

Use ContactsContract.PhoneLookup.CONTENT_FILTER_URI, appending the number to find as an addi-
tional path segment, as shown in Listing 7-21.

LISTING 7-21: Performing a caller-ID lookup

String incomingNumber = "5551234";

Uri lookupUri =
Uri.withAppendedPath(ContactsContract.PhoneLookup.CONTENT_FILTER_URI,

incomingNumber);

Cursor idCursor = getContentResolver().query(lookupUri, null, null, null,
null);

if (idCursor.moveToFirst()) {
int nameIdx =

idCursor.getColumnIndexOrThrow(ContactsContract.Contacts.DISPLAY_NAME);
String caller = idCursor.getString(nameIdx);
Toast.makeText(getApplicationContext(), caller, Toast.LENGTH_LONG).show();

}
idCursor.close();

In addition to the static contact details described above, the ContactsContract.StatusUpdates table
contains social status updates and instant messenger availability. Using this table you can look up or
modify the status, and presence, of any contact who has an associated social networking and/or instant
messaging account.

Modifying and Augmenting Contact Details
As well as querying the contacts database, you can use these Content Providers to modify, delete, or
insert contact records after adding the WRITE_CONTACTS uses-permission to your application manifest.

The extensible nature of the Contacts Contract provider allows you to add arbitrary Data table rows to
any account stored as a Raw Contact. In practice it is poor form to extend a third-party account with
custom data as it will be unable to synchronize your custom data with its online server.

Better practice is to create your own syncing contact adapter that will be aggregated with the other
third-party account details.

The process for creating your own syncing contact account adapter is beyond the scope of this book.
However, in general terms, by creating a record in the Raw Contacts provider it’s possible for you to
create a contacts account type for your own custom data.

You can add new records into the contacts Data provider that are associated with your custom contact
account. Once added, your custom contact data will be aggregated with the details provided by native
and other third-party contact information adapters and made available when developers query the
Contacts Content Provider as described in the previous section.

244 ❘ CHAPTER 7 DATABASES AND CONTENT PROVIDERS

SUMMARY

In this chapter you learned how to add a robust persistence layer to your applications and access native
and third-party Content Providers.

Android provides a fully featured SQLite RDBMS to all applications. This small, efficient, and
robust database library lets you create relational databases to persist application data. Using
Content Providers, you learned how to share private data, particularly databases, across application
boundaries.

All database and Content Provider queries are returned as Cursors; you learned how to perform queries
and extract data from the resulting Cursor objects.

Along the way you also learned to:

➤ Create new SQLite databases

➤ Interact with databases to insert, update, and delete rows

➤ Use the native Content Providers included with Android to access and manage native data
like media and contacts

Now that you have a solid foundation in the fundamentals of Android development, the remainder of
this book will investigate some of the more interesting optional Android features.

Starting in the next chapter you’ll be introduced to the geographic APIs. Android offers a rich suite of
geographical functionality, including location-based services (such as GPS) and forward and reverse
geocoding, as well as a fully integrated Google maps implementation. Using Google maps you can
create map-based Activities that feature annotations to develop native map-mashups.

8
Maps, Geocoding, and
Location-Based Services

WHAT’S IN THIS CHAPTER?

➤ Forward and reverse geocoding

➤ Creating interactive maps with Map Views and Map Activities

➤ Creating and adding Overlays to maps

➤ Finding your location with location-based services

➤ Using proximity alerts

One of the defining features of mobile phones is their portability, so it’s not surprising that some
of the most enticing Android features are the services that let you find, contextualize, and map
physical locations.

You can create map-based Activities using Google Maps as a user interface element. You have
full access to the map, which enables you to control display settings, alter the zoom level, and
pan the display. Using Overlays you can annotate maps and handle user input to provide map-
contextualized information and functionality.

Also covered in this chapter are the location-based services (LBS), the services that let you find
the device’s current location. They include technologies like GPS and Google’s cell-based loca-
tion technology. You can specify which location-sensing technology to use explicitly by name,
or implicitly by defining a set of criteria in terms of accuracy, cost, and other requirements.

Maps and location-based services use latitude and longitude to pinpoint geographic locations,
but your users are more likely to think in terms of an address. Android provides a Geocoder that
supports forward and reverse geocoding. Using the Geocoder you can convert back and forth
between latitude/longitude values and real-world addresses.

Used together, the mapping, geocoding, and location-based services provide a powerful toolkit
for incorporating your phone’s native mobility into your mobile applications.

246 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

USING LOCATION-BASED SERVICES

Location-based services is an umbrella term used to describe the different technologies used to find a
device’s current location. The two main LBS elements are:

➤ Location Manager Provides hooks to the location-based services

➤ Location Providers Each of these represents a different location-finding technology used to
determine the device’s current location

Using the Location Manager, you can:

➤ Obtain your current location

➤ Track movement

➤ Set proximity alerts for detecting movement into and out of a specified area

➤ Find available Location Providers

CONFIGURING THE EMULATOR TO TEST LOCATION-BASED
SERVICES

Location-based services are dependent on device hardware to find the current location. When you are
developing and testing with the emulator your hardware is virtualized, and you’re likely to stay in
pretty much the same location.

To compensate, Android includes hooks that let you emulate Location Providers for testing
location-based applications. In this section you’ll learn how to mock the position of the supported GPS
provider.

If you’re planning on doing location-based application development and are using
the Android Emulator, this section will show you how to create an environment
that simulates real hardware and location changes. For the remainder of this
chapter it will be assumed that you have used the examples in this section to update
the location for the GPS_PROVIDER within the emulator, or that you are using a
physical device.

UPDATING LOCATIONS IN EMULATOR LOCATION PROVIDERS

Use the Location Controls available from the DDMS perspective in Eclipse (shown in Figure 8-1) to
push location changes directly into the emulator’s GPS Location Provider.

Figure 8-1 shows the Manual and KML tabs. Using the Manual tab you can specify particular lat-
itude/longitude pairs. Alternatively, the KML and GPX tabs let you load KML (Keyhole Markup
Language) and GPX (GPS Exchange Format) files, respectively. Once these are loaded you can jump to
particular waypoints (locations) or play back each location sequentially.

Selecting a Location Provider ❘ 247

FIGURE 8-1

Most GPS systems record track-files using GPX, while KML is used extensively
online to define geographic information. You can handwrite your own KML file or
generate one by using Google Earth to find directions between two locations.

All location changes applied using the DDMS Location Controls will be applied to the GPS receiver,
which must be enabled and active.

Note that the GPS values returned by getLastKnownLocation will not change
unless at least one application has requested location updates.

SELECTING A LOCATION PROVIDER

Depending on the device, there may be several technologies that Android can use to determine the
current location. Each technology, or Location Provider, will offer different capabilities, including
differences in power consumption, monetary cost, accuracy, and the ability to determine altitude,
speed, or heading information.

To get an instance of a specific provider, call getProvider, passing in the name:

String providerName = LocationManager.GPS_PROVIDER;
LocationProvider gpsProvider;
gpsProvider = locationManager.getProvider(providerName);

This is generally useful only for determining the abilities of a particular provider. Most Location Man-
ager methods require only a provider name to perform location-based services.

248 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Finding the Available Providers
The LocationManager class includes static string constants that return the provider name for the two
most common Location Providers:

➤ LocationManager.GPS_PROVIDER

➤ LocationManager.NETWORK_PROVIDER

To get a list of names for all the providers available on the device, call getProviders, using a Boolean
to indicate if you want all, or only the enabled, providers to be returned:

boolean enabledOnly = true;
List<String> providers = locationManager.getProviders(enabledOnly);

Finding Location Providers Using Criteria
In most scenarios it’s unlikely that you will want to explicitly choose the Location Provider to use.
More commonly, you’ll specify the requirements that a provider must meet and let Android determine
the best technology to use.

Use the Criteria class to dictate the requirements of a provider in terms of accuracy (fine or coarse),
power use (low, medium, high), financial cost, and the ability to return values for altitude, speed, and
bearing.

Listing 8-1 specifies Criteria requiring coarse accuracy, low power consumption, and no need for alti-
tude, bearing, or speed. The provider is permitted to have an associated cost.

LISTING 8-1: Specifying Location Provider Criteria

Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY_COARSE);
criteria.setPowerRequirement(Criteria.POWER_LOW);
criteria.setAltitudeRequired(false);
criteria.setBearingRequired(false);
criteria.setSpeedRequired(false);
criteria.setCostAllowed(true);

Having defined the required Criteria, you can use getBestProvider to return the best matching Loca-
tion Provider or getProviders to return all the possible matches. The following snippet demonstrates
the use of getBestProvider to return the best provider for your criteria where the Boolean lets you
restrict the result to a currently enabled provider:

String bestProvider = locationManager.getBestProvider(criteria, true);

If more than one Location Provider matches your criteria, the one with the greatest accuracy is returned.
If no Location Providers meet your requirements the criteria are loosened, in the following order, until
a provider is found:

➤ Power use

➤ Accuracy

➤ Ability to return bearing, speed, and altitude

Finding Your Location ❘ 249

The criterion for allowing a device with monetary cost is never implicitly relaxed. If no provider is
found, null is returned.

To see a list of names for all the providers that match your criteria you can use getProviders. It accepts
a Criteria object and returns a filtered String list of all available Location Providers that match them.
As with the getBestProvider call, if no matching providers are found, this call returns null.

List<String> matchingProviders = locationManager.getProviders(criteria,
false);

FINDING YOUR LOCATION

The purpose of location-based services is to find the physical location of the device.

Access to the location-based services is handled by the Location Manager system Service. To access the
Location Manager, request an instance of the LOCATION_SERVICE using the getSystemService method,
as shown in the following snippet:

String serviceString = Context.LOCATION_SERVICE;
LocationManager locationManager;
locationManager = (LocationManager)getSystemService(serviceString);

Before you can use the Location Manager you need to add one or more uses-permission tags to your
manifest to support access to the LBS hardware.

The following snippet shows the fine and coarse permissions. An application that has been granted fine
permission will have coarse permission granted implicitly.

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

The GPS provider requires fine permission, while the Network (Cell ID/Wi-Fi)
provider requires only coarse.

You can find the last location fix determined by a particular Location Provider using the
getLastKnownLocation method, passing in the name of the Location Provider. The following example
finds the last location fix taken by the GPS provider:

String provider = LocationManager.GPS_PROVIDER;
Location location = locationManager.getLastKnownLocation(provider);

Note that getLastKnownLocation does not ask the Location Provider to update the
current position. If the device has not recently updated the current position, this
value may not exist or be out of date.

The Location object returned includes all the position information available from the provider that
supplied it. This can include latitude, longitude, bearing, altitude, speed, and the time the location fix

250 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

was taken. All these properties are available via get methods on the Location object. In some instances
additional details will be included in the extras Bundle.

‘Where Am I?’ Example
The following example — Where Am I? — features a new Activity that finds the device’s current loca-
tion using the GPS Location Provider. You will expand on this example throughout the chapter as you
learn new geographic functionality.

This example assumes that you have enabled the GPS_PROVIDER Location Provider
using the techniques shown previously in this chapter, or that you’re running it on
a device that supports GPS and has that hardware enabled.

1. Create a new Where Am I? project with a WhereAmI Activity. This example uses the GPS
provider (either mock or real), so modify the manifest file to include the <uses-permission>

tags for ACCESS_FINE_LOCATION and INTERNET.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.paad.whereami">
<application
android:icon="@drawable/icon">
<activity

android:name=".WhereAmI"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
<uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION"

/>
</manifest>

2. Modify the main.xml layout resource to include an android:ID attribute for the TextView

control so that you can access it from within the Activity.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TextView
android:id="@+id/myLocationText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello"

/>

Finding Your Location ❘ 251

<uses permission
android:name="android.permission.INTERNET

/>
</LinearLayout>

3. Override the onCreate method of the WhereAmI Activity to get a reference to the Location
Manager. Call getLastKnownLocation to get the last location fix value, and pass it in to the
updateWithNewLocation method stub.

package com.paad.whereami;

import android.app.Activity;
import android.content.Context;
import android.location.Location;
import android.location.LocationManager;
import android.os.Bundle;
import android.widget.TextView;

public class WhereAmI extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

LocationManager locationManager;
String context = Context.LOCATION_SERVICE;
locationManager = (LocationManager)getSystemService(context);

String provider = LocationManager.GPS_PROVIDER;
Location location =

locationManager.getLastKnownLocation(provider);

updateWithNewLocation(location);
}

private void updateWithNewLocation(Location location) {}
}

4. Fill in the updateWithNewLocation method to display the passed-in Location in the Text
View by extracting the latitude and longitude values.

private void updateWithNewLocation(Location location) {
String latLongString;
TextView myLocationText;
myLocationText = (TextView)findViewById(R.id.myLocationText);
if (location != null) {
double lat = location.getLatitude();
double lng = location.getLongitude();
latLongString = "Lat:" + lat + "\nLong:" + lng;

} else {
latLongString = "No location found";

}
myLocationText.setText("Your Current Position is:\n" +

latLongString);
}

All code snippets in this example are part of the Chapter 8 Where Am I? project, available for download at Wrox.com.

252 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

5. When running, your Activity should look like
Figure 8-2.

Tracking Movement

FIGURE 8-2

Most location-sensitive applications will need to be reactive
to user movement. Simply polling the Location Manager will
not force it to get new updates from the Location Providers.

Use the requestLocationUpdates method to get updates whenever the current location changes, using
a LocationListener. Location Listeners also contain hooks for changes in a provider’s status and
availability.

The requestLocationUpdates method accepts either a specific Location Provider name or a set of
Criteria to determine the provider to use.

To optimize efficiency and minimize cost and power use, you can also specify the minimum time and
the minimum distance between location change updates.

Listing 8-2 shows the skeleton code for requesting regular updates based on a minimum time and
distance.

LISTING 8-2: Requesting location updates

String provider = LocationManager.GPS_PROVIDER;

int t = 5000; // milliseconds
int distance = 5; // meters

LocationListener myLocationListener = new LocationListener() {

public void onLocationChanged(Location location) {
// Update application based on new location.

}

public void onProviderDisabled(String provider){
// Update application if provider disabled.

}

public void onProviderEnabled(String provider){
// Update application if provider enabled.

}

public void onStatusChanged(String provider, int status,
Bundle extras){

// Update application if provider hardware status changed.
}

};

locationManager.requestLocationUpdates(provider, t, distance,
myLocationListener);

When the minimum time and distance values are exceeded, the attached Location Listener will execute
its onLocationChanged event.

Finding Your Location ❘ 253

You can request multiple location updates pointing to different Location Listeners
and using different minimum thresholds. A common design pattern is to create a
single listener for your application that broadcasts Intents to notify other
components of location changes. This centralizes your listeners and ensures that the
Location Provider hardware is used as efficiently as possible.

To stop location updates, call removeUpdates, as shown in the following code. Pass in the Location
Listener instance you no longer want to have triggered.

locationManager.removeUpdates(myLocationListener);

Most GPS hardware incurs significant power cost. To minimize this you should disable updates when-
ever possible in your application, especially when your application isn’t visible and location changes
are being used to update an Activity’s user interface. You can improve performance further by making
the minimum time between updates as long as possible.

Privacy is also a factor when your application tracks the user location. Ensure that your application is
using the device location data in a way that respects the user’s privacy by:

➤ Only tracking location when necessary for your application

➤ Notifying users of when you are tracking their locations, and how that location information
is being used and stored

➤ Allowing users to disable location updates, and respecting the system settings for LBS
preferences.

Updating Your Location in ‘Where Am I?’
In the following example, the Where Am I? project is enhanced to track your current location by listen-
ing for location changes. Updates are restricted to one every two seconds, and only when movement of
more than 10 meters has been detected.

Rather than explicitly selecting the GPS provider, in this example you’ll create a set of Criteria and let
Android choose the best provider available.

1. Start by opening the WhereAmI Activity in the Where Am I? project. Update the onCreate

method to find the best Location Provider that features high accuracy and draws as little
power as possible.

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

LocationManager locationManager;
String context = Context.LOCATION_SERVICE;
locationManager = (LocationManager)getSystemService(context);

Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY_FINE);

254 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

criteria.setAltitudeRequired(false);
criteria.setBearingRequired(false);
criteria.setCostAllowed(true);
criteria.setPowerRequirement(Criteria.POWER_LOW);
String provider = locationManager.getBestProvider(criteria, true);

Location location = locationManager.getLastKnownLocation(provider);
updateWithNewLocation(location);

}

2. Create a new LocationListener instance variable that fires the existing updateWithNew

Location method whenever a location change is detected.

private final LocationListener locationListener = new LocationListener() {
public void onLocationChanged(Location location) {
updateWithNewLocation(location);

}

public void onProviderDisabled(String provider){
updateWithNewLocation(null);

}

public void onProviderEnabled(String provider){ }
public void onStatusChanged(String provider, int status,

Bundle extras){ }
};

3. Return to onCreate and execute requestLocationUpdates, passing in the new Location Lis-
tener object. It should listen for location changes every two seconds but fire only when it
detects movement of more than 10 meters.

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

LocationManager locationManager;
String context = Context.LOCATION_SERVICE;
locationManager = (LocationManager)getSystemService(context);

Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY_FINE);
criteria.setAltitudeRequired(false);
criteria.setBearingRequired(false);
criteria.setCostAllowed(true);
criteria.setPowerRequirement(Criteria.POWER_LOW);
String provider = locationManager.getBestProvider(criteria, true);

Location location =
locationManager.getLastKnownLocation(provider);

updateWithNewLocation(location);

locationManager.requestLocationUpdates(provider, 2000, 10,
locationListener);

}

Using Proximity Alerts ❘ 255

If you run the application and start changing the device location, you will see the Text View update
accordingly.

All code snippets in this example are part of the Chapter 8 Where Am I? project, available for download at Wrox.com.

USING PROXIMITY ALERTS

It’s often useful to have your applications react when a user moves toward, or away from, a specific
location. Proximity alerts let your applications set triggers that are fired when a user moves within or
beyond a set distance from a geographic location.

Internally, Android may use different Location Providers depending on how close
you are to the outside edge of your target area. This allows the power use and cost
to be minimized when the alert is unlikely to be fired based on your distance from
the target area interface.

To set a proximity alert for a given coverage area, select the center point (using longitude and latitude
values), a radius around that point, and an expiry time-out for the alert. The alert will fire if the device
crosses over that boundary, both when it moves from outside to within the radius, and when it moves
from inside to beyond it.

When triggered, proximity alerts fire Intents, most commonly broadcast Intents. To specify the Intent
to fire, you use a PendingIntent, a class that wraps an Intent in a kind of method pointer, as shown in
the following code snippet:

Intent intent = new Intent(MY_ACTION);
PendingIntent pendingIntent = PendingIntent.getBroadcast(this, -1, intent, 0);

The following example sets a proximity alert that never expires and that is triggered when the device
moves within 10 meters of its target:

private static String TREASURE_PROXIMITY_ALERT = "com.paad.treasurealert";

private void setProximityAlert() {
String locService = Context.LOCATION_SERVICE;
LocationManager locationManager;
locationManager = (LocationManager)getSystemService(locService);

double lat = 73.147536;
double lng = 0.510638;
float radius = 100f; // meters
long expiration = -1; // do not expire

Intent intent = new Intent(TREASURE_PROXIMITY_ALERT);

256 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

PendingIntent proximityIntent = PendingIntent.getBroadcast(this, -1,
intent,
0);

locationManager.addProximityAlert(lat, lng, radius,
expiration,
proximityIntent);

}

When the Location Manager detects that you have crossed the radius boundary — that is, you have
moved either from outside to within or from inside to beyond the specified proximity radius — the
packaged Intent will be fired with an extra keyed as LocationManager.KEY_PROXIMITY_ENTERING set to
true or false accordingly.

To handle proximity alerts you need to create a BroadcastReceiver, such as the one shown in
Listing 8-3.

LISTING 8-3: Creating a proximity alert Broadcast Receiver

public class ProximityIntentReceiver extends BroadcastReceiver {

@Override
public void onReceive (Context context, Intent intent) {
String key = LocationManager.KEY_PROXIMITY_ENTERING;

Boolean entering = intent.getBooleanExtra(key, false);
[. . . perform proximity alert actions . . .]

}

}

To start listening for proximity alerts, register your receiver:

IntentFilter filter = new IntentFilter(TREASURE_PROXIMITY_ALERT);
registerReceiver(new ProximityIntentReceiver(), filter);

USING THE GEOCODER

Geocoding lets you translate between street addresses and longitude/latitude map coordinates. This can
give you a recognizable context for the locations and coordinates used in location-based services and
map-based Activities.

The geocoding lookups are done on the server, so your applications will require you to include an
Internet uses-permission in your manifest, as shown here:

<uses-permission android:name="android.permission.INTERNET"/>

The Geocoder class provides access to two geocoding functions:

➤ Forward geocoding Finds the latitude and longitude of an address

➤ Reverse geocoding Finds the street address for a given latitude and longitude

Using the Geocoder ❘ 257

The results from these calls are contextualized by means of a locale (used to define your usual location
and language). The following snippet shows how you set the locale when creating your Geocoder. If
you don’t specify a locale, it will assume your device’s default.

Geocoder geocoder = new Geocoder(getApplicationContext(),
Locale.getDefault());

Both geocoding functions return a list of Address objects. Each list can contain several possible results,
up to a limit you specify when making the call.

Each Address object is populated with as much detail as the Geocoder was able to resolve. This can
include the latitude, longitude, phone number, and increasingly granular address details from country
to street and house number.

Geocoder lookups are performed synchronously, so they will block the calling
thread. For slow data connections, this can lead to a Force Close dialog. In most
cases it’s good form to move these lookups into a Service or background thread, as
demonstrated in Chapter 9.

For clarity and brevity, the calls made in the code samples within this chapter are
made on the main application thread.

Reverse Geocoding
Reverse geocoding returns street addresses for physical locations, specified by latitude/longitude pairs.
It provides a recognizable context for the locations returned by location-based services.

To perform a reverse lookup, you pass the target latitude and longitude to a Geocoder’s
getFromLocation method. It will return a list of possible matching addresses. If the Geocoder could
not resolve any addresses for the specified coordinate, it will return null.

Listing 8-4 shows how to reverse-geocode your last known location.

LISTING 8-4: Reverse-geocoding your last known location

location =
locationManager.getLastKnownLocation(LocationManager.GPS_PROVIDER);

double latitude = location.getLatitude();
double longitude = location.getLongitude();
List<Address> addresses = null;

Geocoder gc = new Geocoder(this, Locale.getDefault());
try {
addresses = gc.getFromLocation(latitude, longitude, 10);

} catch (IOException e) {}

258 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

The accuracy and granularity of reverse lookups are entirely dependent on the quality of data in the
geocoding database; as a result, the quality of the results may vary widely between different countries
and locales.

Forward Geocoding
Forward geocoding (or just geocoding) determines map coordinates for a given location.

What constitutes a valid location varies depending on the locale (geographic area)
within which you’re searching. Generally, it will include regular street addresses of
varying granularity (from country to street name and number), postcodes, train sta-
tions, landmarks, and hospitals. As a general guide, valid search terms will be similar
to the addresses and locations you can enter into the Google Maps search bar.

To do a forward-geocoding lookup, call getFromLocationName on a Geocoder instance. Pass in the
location you want the coordinates for and the maximum number of results to return:

List<Address> result = geocoder.getFromLocationName(aStreetAddress, maxResults);

The returned list of Addresses can include multiple possible matches for the named location. Each
address result will include latitude and longitude and any additional address information available
for those coordinates. This is useful to confirm that the correct location was resolved, as well as for
providing location specifics in searches for landmarks.

As with reverse geocoding, if no matches are found, null will be returned. The
availability, accuracy, and granularity of geocoding results will depend entirely on
the database available for the area you’re searching.

When you’re doing forward lookups, the Locale object specified during the creation of the Geocoder
object is particularly important. The Locale provides the geographical context for interpreting your
search requests, as the same location names can exist in multiple areas. Where possible, consider select-
ing a regional Locale to help avoid place-name ambiguity.

Additionally, try to use as many address details as possible, as shown in Listing 8-5.

LISTING 8-5: Geocoding an address

Geocoder fwdGeocoder = new Geocoder(this, Locale.US);
String streetAddress = "160 Riverside Drive, New York, New York";

List<Address> locations = null;
try {

locations = fwdGeocoder.getFromLocationName(streetAddress, 10);
} catch (IOException e) {}

Using the Geocoder ❘ 259

For even more specific results, use the getFromLocationName overload, which lets you restrict your
search to within a geographical bounding box.

List<Address> locations = null;
try {

locations = fwdGeocoder.getFromLocationName(streetAddress, 10,
n, e, s, w);

} catch (IOException e) {}

This overload is particularly useful in conjunction with a Map View, as you can restrict the search to
within the visible map.

Geocoding ‘Where Am I?’
Using the Geocoder you can determine the street address at your current location. In this example you’ll
further extend the Where Am I? project to include and update the current street address whenever the
device moves.

Start by modifying the manifest to include the Internet uses-permission:

<uses-permission android:name="android.permission.INTERNET"/>

Then open the WhereAmI Activity. Modify the updateWithNewLocation method to instantiate a new
Geocoder object, and call the getFromLocation method, passing in the newly received location and
limiting the results to a single address.

Extract each line in the street address, as well as the locality, postcode, and country, and append this
information to an existing Text View string.

private void updateWithNewLocation(Location location) {
String latLongString;
TextView myLocationText;
myLocationText = (TextView)findViewById(R.id.myLocationText);

String addressString = "No address found";

if (location != null) {
double lat = location.getLatitude();
double lng = location.getLongitude();
latLongString = "Lat:" + lat + "\nLong:" + lng;

double latitude = location.getLatitude();
double longitude = location.getLongitude();
Geocoder gc = new Geocoder(this, Locale.getDefault());
try {

List<Address> addresses = gc.getFromLocation(latitude, longitude, 1);
StringBuilder sb = new StringBuilder();
if (addresses.size() > 0) {
Address address = addresses.get(0);

for (int i = 0; i < address.getMaxAddressLineIndex(); i++)
sb.append(address.getAddressLine(i)).append("\n");

sb.append(address.getLocality()).append("\n");
sb.append(address.getPostalCode()).append("\n");

260 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

sb.append(address.getCountryName());
}
addressString = sb.toString();

} catch (IOException e) {}
} else {
latLongString = "No location found";

}
myLocationText.setText("Your Current Position is:\n" +

latLongString + "\n" + addressString);
}

All code snippets in this example are part of the Chapter 8 Where Am I? project, available for download at Wrox.com.

If you run the example now, it should appear as shown in Figure 8-3.

FIGURE 8-3

CREATING MAP-BASED ACTIVITIES

The MapView provides an ideal user interface option for presenting geographical data.

One of the most intuitive ways of providing context for a physical location or address is to display it
on a map. Using a MapView, you can create Activities that feature an interactive map.

Map Views support annotation using Overlays and by pinning Views to geographical locations. Map
Views offer full programmatic control of the map display, letting you control the zoom, location, and
display modes — including the option to display satellite, street, and traffic views.

In the following sections you’ll see how to use Overlays and theMapController to create dynamic map-
based Activities. Unlike online mashups, your map Activities will run natively on the device, enabling
you to leverage its hardware and mobility to provide a more customized and personal user experience.

Introducing Map View and Map Activity
This section introduces several classes used to support Android maps:

➤ MapView is the Map View control.

➤ MapActivity is the base class you extend to create a new Activity that can include a Map
View. The MapActivity class handles the application life cycle and background service
management required for displaying maps. As a result you can use Map Views only within
MapActivity-derived Activities.

Creating Map-Based Activities ❘ 261

➤ Overlay is the class used to annotate your maps. Using Overlays, you can use a Canvas to
draw onto any number of layers that are displayed on top of a Map View.

➤ MapController is used to control the map, enabling you to set the center location and zoom
levels.

➤ MyLocationOverlay is a special Overlay that can be used to display the current position and
orientation of the device.

➤ ItemizedOverlays and OverlayItems are used together to let you create a layer of map mark-
ers, displayed using Drawables and associated text.

Getting Your Maps API Key
In order to use a Map View in your application you must first obtain an API key from the Android
developer web site at http://code.google.com/android/maps-api-signup.html.

Without an API key the Map View will not download the tiles used to display the map.

To obtain a key you need to specify the MD5 fingerprint of the certificate used to sign your application.
Generally, you will sign your application using two certificates — a default debug certificate and a pro-
duction certificate. The following sections explain how to obtain the MD5 fingerprint of each signing
certificate used for your application.

Getting Your Development/Debugging MD5 Fingerprint
If you are using Eclipse with the ADT plug-in to debug your applications, they will be signed with the
default debug certificate. To view map tiles while debugging you will need to obtain a Maps API key
registered via the MD5 fingerprint of the debug certificate.

You can find the location of your keystore in the Default Debug Keystore textbox after selecting
Windows ➪ Preferences ➪ Android ➪ build. Typically the debug keystore is stored in the following
platform-specific locations:

➤ Windows Vista \users\<username>\.android\debug.keystore

➤ Windows XP \Documents and Settings\<username>\.android\debug.keystore

➤ Linux or Mac ∼/.android/debug.keystore

Each computer you use for development will have a different debug certificate and
MD5 value. If you want to debug and develop map applications across multiple
computers you will need to generate and use multiple API keys.

To find the MD5 fingerprint of your debug certificate use the keytool command from your Java instal-
lation, as shown here:

keytool -list -alias androiddebugkey -keystore <keystore_location>.keystore
-storepass android -keypass android

262 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Getting your Production/Release MD5 Fingerprint
Before you compile and sign your application for release, you will need to obtain a map API key using
the MD5 fingerprint for your release certificate.

Find the MD5 fingerprint using the keytool command and specifying the -list parameter and the
keystore and alias you will use to sign your release application.

keytool -list -alias my-android-alias -keystore my-android-keystore

You will be prompted for your keystore and alias passwords before the MD5 fingerprint is returned.

Creating a Map-Based Activity
To use maps in your applications you need to extend MapActivity. The layout for the new class must
then include a MapView to display a Google Maps interface element. The Android maps library is not a
standard Android package; as an optional API, it must be explicitly included in the application manifest
before it can be used. Add the library to your manifest using a uses-library tag within the application
node, as shown in the following XML snippet:

<uses-library android:name="com.google.android.maps"/>

The maps package as described here is not part of the standard Android
open-source project. It is provided within the Android SDK by Google and is
available on most Android devices. However, be aware that because it is a
nonstandard package, an Android device may not feature this particular library.

Google Maps downloads the map tiles on demand; as a result, it implicitly requires permission to use
the Internet. To see map tiles in your Map View you need to add a <uses-permission> tag to your
application manifest for INTERNET, as shown here:

<uses-permission android:name="android.permission.INTERNET"/>

Once you’ve added the library and configured your permission, you’re ready to create your new map-
based Activity.

MapView controls can be used only within an Activity that extends MapActivity. Override the onCreate

method to lay out the screen that includes a MapView, and override isRouteDisplayed to return true if
the Activity will be displaying routing information (such as traffic directions).

Listing 8-6 shows the framework for creating a new map-based Activity.

LISTING 8-6: A skeleton Map Activity

import com.google.android.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;
import android.os.Bundle;

Creating Map-Based Activities ❘ 263

public class MyMapActivity extends MapActivity {
private MapView mapView;

private MapController mapController;

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.map_layout);
mapView = (MapView)findViewById(R.id.map_view);

}

@Override
protected boolean isRouteDisplayed() {

// IMPORTANT: This method must return true if your Activity
// is displaying driving directions. Otherwise return false.
return false;

}
}

The corresponding layout file used to include the MapView is shown in Listing 8-7. Note that you
need to include your map API key (as described earlier in this chapter) to use a Map View in your
application.

LISTING 8-7: A Map Activity layout resource

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<com.google.android.maps.MapView

android:id="@+id/map_view"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:enabled="true"
android:clickable="true"
android:apiKey="mymapapikey"

/>
</LinearLayout>

Figure 8-4 shows an example of a basic map-based Activity.

Android currently supports only one MapActivity and one MapView per application.

Configuring and Using Map Views
The MapView class displays the Google map; it includes several options for specifying how the map is

displayed.

264 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

FIGURE 8-4

By default the Map View will show the standard street map,
as shown in Figure 8-4. In addition, you can choose to dis-
play a satellite view, StreetView, and expected traffic, as
shown in the following code snippet:

mapView.setSatellite(true);
mapView.setStreetView(true);
mapView.setTraffic(true);

You can also query the Map View to find the current and
maximum available zoom levels, as well as the center point
and currently visible longitude and latitude span (in deci-
mal degrees). The latter (shown in the following snippet)
is particularly useful for performing geographically limited
Geocoder lookups:

int maxZoom = mapView.getMaxZoomLevel();
GeoPoint center = mapView.getMapCenter();
int latSpan = mapView.getLatitudeSpan();
int longSpan = mapView.getLongitudeSpan();

You can also optionally display the standard map zoom
controls using the setBuiltInZoomControls method.

mapView.setBuiltInZoomControls(true);

Using the Map Controller
Use the Map Controller to pan and zoom a MapView. You
can get a reference to a MapView’s controller usinggetController.

MapController mapController = myMapView.getController();

Map locations in the Android mapping classes are represented by GeoPoint objects, which contain
latitude and longitude measured in microdegrees. To convert degrees to microdegrees, multiply by 1E6
(1,000,000).

Before you can use the latitude and longitude values stored in the Location objects returned by location-
based services, you’ll need to convert them to microdegrees and store them as GeoPoints.

Double lat = 37.422006*1E6;
Double lng = -122.084095*1E6;
GeoPoint point = new GeoPoint(lat.intValue(), lng.intValue());

Re-center and zoom the Map View using the setCenter and setZoom methods available on the Map
View’sMapController.

mapController.setCenter(point);
mapController.setZoom(1);

When you are using setZoom, 1 represents the widest (or most distant) zoom and 21 the tightest (near-
est) view.

Creating Map-Based Activities ❘ 265

The actual zoom level available for a specific location depends on the resolution of Google’s maps and
imagery for that area. You can also use zoomIn and zoomOut to change the zoom level by one step.

The setCenter method will ‘‘jump’’ to a new location; to show a smooth transition, useanimateTo.

mapController.animateTo(point);

Mapping ‘Where Am I?’
In the following code example the Where Am I? project is extended again. This time you’ll add mapping
functionality by transforming it into a Map Activity. As the device location changes, the map will
automatically re-center on the new position.

1. Start by adding the <uses-permission> tag for Internet access to the application manifest.
Also import the Android maps library within the application tag.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.paad.whereami">
<application
android:icon="@drawable/icon">
<uses-library android:name="com.google.android.maps"/>
<activity

android:name=".WhereAmI"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION"/>
</manifest>

2. Change the inheritance of WhereAmI to descend from MapActivity instead of Activity.
You’ll also need to include an override for theisRouteDisplayed method. Because this
Activity won’t show routing directions, you can returnfalse.

public class WhereAmI extends MapActivity {
@Override
protected boolean isRouteDisplayed() {
return false;

}
[. . . existing Activity code . . .]

}

3. Modify the main.xml layout resource to include a MapView using the fully qualified class
name. You will need to obtain a maps API key to include within the android:apikey

attribute of the com.android.MapView node.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

266 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TextView
android:id="@+id/myLocationText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello"

/>
<com.google.android.maps.MapView
android:id="@+id/myMapView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:enabled="true"
android:clickable="true"
android:apiKey="myMapKey"

/>
</LinearLayout>

FIGURE 8-5

. 4. Running the application now should display the
original geolocation text with a MapView beneath
it, as shown in Figure 8-5.

5. Configure the Map View and store a reference to
its MapController as an instance variable. Set up
the Map View display options to show the satellite
and StreetView and zoom in for a closer look.

MapController mapController;

@Override
public void onCreate(Bundle savedInstance
State) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

// Get a reference to the MapView
MapView myMapView = (MapView)findViewById(R.id.myMapView);
// Get the Map View’s controller
mapController = myMapView.getController();

// Configure the map display options
myMapView.setSatellite(true);
myMapView.setStreetView(true);
myMapView.displayZoomControls(false);

// Zoom in
mapController.setZoom(17);

LocationManager locationManager;
String context = Context.LOCATION_SERVICE;
locationManager = (LocationManager)getSystemService(context);

Criteria criteria = new Criteria();

Creating Map-Based Activities ❘ 267

criteria.setAccuracy(Criteria.ACCURACY_FINE);
criteria.setAltitudeRequired(false);
criteria.setBearingRequired(false);
criteria.setCostAllowed(true);
criteria.setPowerRequirement(Criteria.POWER_LOW);
String provider = locationManager.getBestProvider(criteria, true);

Location location =
locationManager.getLastKnownLocation(provider);

updateWithNewLocation(location);

locationManager.requestLocationUpdates(provider, 2000, 10,
locationListener);

}

6. The final step is to modify the updateWithNewLocation method to re-center the map on the
current location using the Map Controller.

private void updateWithNewLocation(Location location) {
String latLongString;
TextView myLocationText;
myLocationText = (TextView)findViewById(R.id.myLocationText);
String addressString = "No address found";

if (location != null) {
// Update the map location.
Double geoLat = location.getLatitude()*1E6;
Double geoLng = location.getLongitude()*1E6;
GeoPoint point = new GeoPoint(geoLat.intValue(),

geoLng.intValue());

mapController.animateTo(point);

double lat = location.getLatitude();
double lng = location.getLongitude();
latLongString = "Lat:" + lat + "\nLong:" + lng;

double latitude = location.getLatitude();
double longitude = location.getLongitude();

Geocoder gc = new Geocoder(this, Locale.getDefault());
try {

List<Address> addresses = gc.getFromLocation(latitude, longitude, 1);
StringBuilder sb = new StringBuilder();
if (addresses.size() > 0) {
Address address = addresses.get(0);

for (int i = 0; i < address.getMaxAddressLineIndex(); i++)
sb.append(address.getAddressLine(i)).append("\n");

sb.append(address.getLocality()).append("\n");
sb.append(address.getPostalCode()).append("\n");
sb.append(address.getCountryName());

}

268 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

addressString = sb.toString();
} catch (IOException e) {}

} else {
latLongString = "No location found";

}
myLocationText.setText("Your Current Position is:\n" +

latLongString + "\n" + addressString);
}

All code snippets in this example are part of the Chapter 8 Where Am I? project, available for download at Wrox.com.

Creating and Using Overlays
Overlays enable you to add annotations and click handling to MapViews. Each Overlay lets you draw
2D primitives, including text, lines, images, and shapes, directly onto a canvas, which is then overlaid
onto a Map View.

You can add several Overlays onto a single map. All the Overlays assigned to a Map View are added
as layers, with newer layers potentially obscuring older ones. User clicks are passed through the stack
until they are either handled by an Overlay or registered as clicks on the Map View itself.

Creating New Overlays
Each Overlay is a canvas with a transparent background that is layered onto a Map View and used to
handle map touch events.

To add a new Overlay create a new class that extends Overlay. Override the draw method to draw the
annotations you want to add, and override onTap to react to user clicks (generally made when the user
taps an annotation added by this Overlay).

Listing 8-8 shows the framework for creating a new Overlay that can draw annotations and handle
user clicks.

LISTING 8-8: Creating a new Overlay

import android.graphics.Canvas;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;

public class MyOverlay extends Overlay {
@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
if (shadow == false) {

[. . . Draw annotations on main map layer . . .]
}
else {

[. . . Draw annotations on the shadow layer . . .]
}

}

@Override
public boolean onTap(GeoPoint point, MapView mapView) {

Creating Map-Based Activities ❘ 269

// Return true if screen tap is handled by this overlay
return false;

}
}

Introducing Projections
The canvas used to draw Overlay annotations is a standard Canvas that represents the visible display
surface. To add annotations based on physical locations, you need to convert between geographical
points and screen coordinates.

The Projection class lets you translate between latitude/longitude coordinates (stored as GeoPoints)
and x/y screen pixel coordinates (stored as Points).

A map’s Projection may change between subsequentcalls to draw, so it’s good practice to get a new
instance each time. Get a Map View’s Projection by callinggetProjection.

Projection projection = mapView.getProjection();

Use the fromPixel and toPixel methods to translate from GeoPoints to Points and vice versa.

For performance reasons, you can best use the toPixel Projection method by passing a Point object to
be populated (rather than relying on the return value), as shown in Listing 8-9.

LISTING 8-9: Using map projections

Point myPoint = new Point();
// To screen coordinates
projection.toPixels(geoPoint, myPoint);
// To GeoPoint location coordinates
projection.fromPixels(myPoint.x, myPoint.y);

Drawing on the Overlay Canvas
You handle Canvas drawing for Overlays by overriding the Overlay’sdraw handler.

The passed-in Canvas is the surface on which you draw your annotations, using the same techniques
introduced in Chapter 4 for creating custom user interfaces for Views. The Canvas object includes the
methods for drawing 2D primitives on your map (including lines, text, shapes, ellipses, images, etc.).
Use Paint objects to define the style and color.

Listing 8-10 uses a Projection to draw text and an ellipse at a given location.

LISTING 8-10: A simple Map Overlay

@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
Projection projection = mapView.getProjection();

Double lat = -31.960906*1E6;

continues

270 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

LISTING 8-10 (continued)

Double lng = 115.844822*1E6;
GeoPoint geoPoint = new GeoPoint(lat.intValue(), lng.intValue());

if (shadow == false) {
Point myPoint = new Point();
projection.toPixels(geoPoint, myPoint);

// Create and setup your paint brush
Paint paint = new Paint();
paint.setARGB(250, 255, 0, 0);
paint.setAntiAlias(true);
paint.setFakeBoldText(true);

// Create the circle
int rad = 5;
RectF oval = new RectF(myPoint.x-rad, myPoint.y-rad,

myPoint.x+rad, myPoint.y+rad);

// Draw on the canvas
canvas.drawOval(oval, paint);
canvas.drawText("Red Circle", myPoint.x+rad, myPoint.y, paint);

}
}

For more advanced drawing features see Chapter 11, where gradients, strokes, and
filters are introduced.

Handling Map Tap Events
To handle map taps (user clicks), override the onTap event handler within the Overlay extension class.

The onTap handler receives two parameters:

➤ A GeoPoint that contains the latitude/longitude of the map location tapped

➤ The MapView that was tapped to trigger this event

When you are overriding onTap, the method should return true if it has handled a particular tap and
false to let another Overlay handle it, as shown in Listing 8-11.

LISTING 8-11: Handling map-tap events

@Override
public boolean onTap(GeoPoint point, MapView mapView) {

// Perform hit test to see if this overlay is handling the click
if ([. . . perform hit test . . .]) {
[. . . execute on tap functionality . . .]
return true;

}

Creating Map-Based Activities ❘ 271

// If not handled return false
return false;

}

Adding and Removing Overlays
Each MapView contains a list of Overlays currently displayed. You can get a reference to this list by
calling getOverlays, as shown in the following snippet:

List<Overlay> overlays = mapView.getOverlays();

Adding and removing items from the list is thread-safe and synchronized, so you can modify and query
the list safely. You should still iterate over the list within a synchronization block synchronized on the
List.

To add an Overlay onto a Map View, create a new instance of the Overlay and add it to the list, as
shown in the following snippet.

List<Overlay> overlays = mapView.getOverlays();
MyOverlay myOverlay = new MyOverlay();
overlays.add(myOverlay);
mapView.postInvalidate();

The added Overlay will be displayed the next time the Map View is redrawn, so it’s usually a good
practice to call postInvalidate after you modify the list to update the changes on the map display.

Annotating ‘Where Am I?’
This final modification to ‘‘Where Am I?’’ creates and adds a new Overlay that displays a white circle
at the device’s current position.

1. Start by creating a new MyPositionOverlay Overlay class in the Where Am I? project.

package com.paad.whereami;

import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.Point;
import android.graphics.RectF;
import android.location.Location;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;
import com.google.android.maps.Projection;

public class MyPositionOverlay extends Overlay {

@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
}

@Override
public boolean onTap(GeoPoint point, MapView mapView) {

272 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

return false;
}

}

2. Create a new instance variable to store the current Location, and add setter and getter meth-
ods for it.

Location location;

public Location getLocation() {
return location;

}
public void setLocation(Location location) {
this.location = location;

}

3. Override the draw method to add a small white circle at the current location.

private final int mRadius = 5;

@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
Projection projection = mapView.getProjection();

if (shadow == false) {
// Get the current location
Double latitude = location.getLatitude()*1E6;
Double longitude = location.getLongitude()*1E6;
GeoPoint geoPoint;
geoPoint = new

GeoPoint(latitude.intValue(),longitude.intValue());

// Convert the location to screen pixels
Point point = new Point();
projection.toPixels(geoPoint, point);

RectF oval = new RectF(point.x - mRadius, point.y - mRadius,
point.x + mRadius, point.y + mRadius);

// Setup the paint
Paint paint = new Paint();
paint.setARGB(250, 255, 255, 255);
paint.setAntiAlias(true);
paint.setFakeBoldText(true);

Paint backPaint = new Paint();
backPaint.setARGB(175, 50, 50, 50);
backPaint.setAntiAlias(true);

RectF backRect = new RectF(point.x + 2 + mRadius,
point.y - 3*mRadius,
point.x + 65, point.y + mRadius);

// Draw the marker
canvas.drawOval(oval, paint);
canvas.drawRoundRect(backRect, 5, 5, backPaint);
canvas.drawText("Here I Am",

Creating Map-Based Activities ❘ 273

point.x + 2*mRadius, point.y,
paint);

}
super.draw(canvas, mapView, shadow);

}

4. Now open the WhereAmI Activity class, and add the MyPositionOverlay to the MapView.

Start by adding a new instance variable to store the MyPositionOverlay, then override
onCreate to create a new instance of the class, and add it to the MapView’s Overlay list.

MyPositionOverlay positionOverlay;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

MapView myMapView = (MapView)findViewById(R.id.myMapView);
mapController = myMapView.getController();

myMapView.setSatellite(true);
myMapView.setStreetView(true);
myMapView.displayZoomControls(false);

mapController.setZoom(17);

// Add the MyPositionOverlay
positionOverlay = new MyPositionOverlay();
List<Overlay> overlays = myMapView.getOverlays();
overlays.add(positionOverlay);

LocationManager locationManager;
String context = Context.LOCATION_SERVICE;
locationManager = (LocationManager)getSystemService(context);

Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY_FINE);
criteria.setAltitudeRequired(false);
criteria.setBearingRequired(false);
criteria.setCostAllowed(true);
criteria.setPowerRequirement(Criteria.POWER_LOW);
String provider = locationManager.getBestProvider(criteria, true);

Location location = locationManager.getLastKnownLocation(provider);

updateWithNewLocation(location);

locationManager.requestLocationUpdates(provider, 2000, 10,
locationListener);

}

5. Finally, update the updateWithNewLocation method to pass the new location to the Overlay.

private void updateWithNewLocation(Location location) {
String latLongString;
TextView myLocationText;

274 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

myLocationText = (TextView)findViewById(R.id.myLocationText);
String addressString = "No address found";

if (location != null) {
// Update my location marker
positionOverlay.setLocation(location);

// Update the map location.
Double geoLat = location.getLatitude()*1E6;
Double geoLng = location.getLongitude()*1E6;
GeoPoint point = new GeoPoint(geoLat.intValue(),

geoLng.intValue());

mapController.animateTo(point);

double lat = location.getLatitude();
double lng = location.getLongitude();
latLongString = "Lat:" + lat + "\nLong:" + lng;

double latitude = location.getLatitude();
double longitude = location.getLongitude();

Geocoder gc = new Geocoder(this, Locale.getDefault());
try {

List<Address> addresses = gc.getFromLocation(latitude,
longitude, 1);

StringBuilder sb = new StringBuilder();
if (addresses.size() > 0) {
Address address = addresses.get(0);

for (int i = 0; i < address.getMaxAddressLineIndex(); i++)
sb.append(address.getAddressLine(i)).append("\n");

sb.append(address.getLocality()).append("\n");
sb.append(address.getPostalCode()).append("\n");
sb.append(address.getCountryName());

}
addressString = sb.toString();

} catch (IOException e) {}
} else {
latLongString = "No location found";

}
myLocationText.setText("Your Current Position is:\n" +

latLongString + "\n" + addressString);
}

All code snippets in this example are part of the Chapter 8 Where Am I? project, available for download at Wrox.com.

When run, your application will display your current device location with a white circle and supporting
text, as shown in Figure 8-6.

Creating Map-Based Activities ❘ 275

It’s worth noting that this is not the preferred technique for displaying your current
location on a map. This functionality is implemented natively by Android through
the MyLocationOverlay class. If you want to display and follow your current
location, you should consider using (or extending) this class, as shown in the next
section, instead of implementing it manually as shown here.

Introducing My Location Overlay

FIGURE 8-6

The MyLocationOverlay class is a special Overlay designed
to show your current location and orientation on a MapView.

To use My Location Overlay you need to create a new
instance, passing in the application Context and target Map
View, and add it to the MapView’s Overlay list, as shown
here:

List<Overlay> overlays =
mapView.getOverlays();

MyLocationOverlay myLocationOverlay =
new MyLocationOverlay(this, mapView);

overlays.add(myLocationOverlay);

You can use My Location Overlay to display both your
current location (represented as a flashing blue marker) and
your current orientation (shown as a compass on the map
display).

The following snippet shows how to enable both the
compass and marker; in this instance the Map View’s
MapController is also passed in, allowing the Overlay to
automatically scroll the map if the marker moves
offscreen.

myLocationOverlay.enableCompass();
myLocationOverlay.enableMyLocation(mapView.getMapController());

Introducing Itemized Overlays and Overlay Items
OverlayItems are used to supply simple maker functionality to your Map Views via the
ItemizedOverlay class.

ItemizedOverlays provide a convenient shortcut for adding markers to a map, letting you assign
a marker image and associated text to a particular geographical position. The ItemizedOverlay

instance handles the drawing, placement, click handling, focus control, and layout optimization of
each OverlayItem marker for you.

276 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

To add an ItemizedOverlay marker layer to your map, start by creating a new class that extends
ItemizedOverlay<OverlayItem>, as shown in Listing 8-12.

ItemizedOverlay is a generic class that lets you create extensions based on any
OverlayItem-derived subclass.

Within the constructor you need to call through to the superclass after defining the bounds for your
default marker. You must then call populate to trigger the creation of each OverlayItem; populate
must be called whenever the data used to create the items changes.

Within the implementation, override size to return the number of markers to display and createItem

to create a new item based on the index of each marker.

LISTING 8-12: Creating a new Itemized Overlay

import android.graphics.drawable.Drawable;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.ItemizedOverlay;
import com.google.android.maps.OverlayItem;

public class MyItemizedOverlay extends ItemizedOverlay<OverlayItem> {

public MyItemizedOverlay(Drawable defaultMarker) {
super(boundCenterBottom(defaultMarker));
populate();

}

@Override
protected OverlayItem createItem(int index) {
switch (index) {

case 1:
Double lat = 37.422006*1E6;
Double lng = -122.084095*1E6;
GeoPoint point = new GeoPoint(lat.intValue(), lng.intValue());

OverlayItem oi;
oi = new OverlayItem(point, "Marker", "Marker Text");
return oi;

}
return null;

}

@Override
public int size() {
// Return the number of markers in the collection
return 1;

}
}

Creating Map-Based Activities ❘ 277

To add an ItemizedOverlay implementation to your map, create a new instance (passing in the Draw-
able marker image to use for each marker) and add it to the map’s Overlay list.

List<Overlay> overlays = mapView.getOverlays();
MyItemizedOverlay markers = new

MyItemizedOverlay(r.getDrawable(R.drawable.marker));
overlays.add(markers);

Note that the map markers placed by the Itemized Overlay use state to indicate if
they are selected. Use the StateListDrawable described in Chapter 4 to indicate
when a marker has been selected.

In Listing 8-12, the list of Overlay items is static and defined in code. More typically your Overlay items
will be a dynamic ArrayList to which you will want to add and remove items at run time.

Listing 8-13 shows the skeleton class for a dynamic Itemized Overlay implementation, backed by an
ArrayList, and supporting the addition and removal of items at run time.

LISTING 8-13: Skeleton code for a dynamic Itemized Overlay

public class MyDynamicItemizedOverlay extends ItemizedOverlay<OverlayItem>
{
private ArrayList<OverlayItem> items;

public MyDynamicItemizedOverlay(Drawable defaultMarker) {
super(boundCenterBottom(defaultMarker));
items = new ArrayList<OverlayItem>();
populate();

}

public void addNewItem(GeoPoint location, String markerText,
String snippet) {

items.add(new OverlayItem(location, markerText, snippet));
populate();

}

public void removeItem(int index) {
items.remove(index);
populate();

}

@Override
protected OverlayItem createItem(int index) {

return items.get(index);
}

continues

278 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

LISTING 8-13 (continued)

@Override
public int size() {
return items.size();

}
}

Pinning Views to the Map and Map Positions
You can pin any View-derived object to a Map View (including layouts and other View Groups),
attaching it to either a screen position or a geographical map location.

In the latter case, the View will move to follow its pinned position on the map, effectively acting as an
interactive map marker. As a more resource-intensive solution, this is usually reserved for supplying the
detail ‘‘balloons’’ often displayed on mashups to provide further detail when a marker is clicked.

You implement both pinning mechanisms by calling addView on the MapView, usually from the onCreate
or onRestore methods within the MapActivity containing it. Pass in the View you want to pin and the
layout parameters to use.

The MapView.LayoutParams parameters you pass in to addView determine how, and where, the View is
added to the map.

To add a new View to the map relative to the screen, specify a new MapView.LayoutParams, including
arguments that set the height and width of the View, the x/y screen coordinates to pin to, and the
alignment to use for positioning, as shown in Listing 8-14.

LISTING 8-14: Pinning a View to a map

int y = 10;
int x = 10;

EditText editText1 = new EditText(getApplicationContext());
editText1.setText("Screen Pinned");

MapView.LayoutParams screenLP;
screenLP = new MapView.LayoutParams(MapView.LayoutParams.WRAP_CONTENT,

MapView.LayoutParams.WRAP_CONTENT,
x, y,
MapView.LayoutParams.TOP_LEFT);

mapView.addView(editText1, screenLP);

To pin a View relative to a physical map location, pass four parameters when constructing the new
Map View LayoutParams, representing the height, width, GeoPoint to pin to, and layout alignment as
shown in Listing 8-15.

LISTING 8-15: Pinning a View to a geographical location

Double lat = 37.422134*1E6;
Double lng = -122.084069*1E6;
GeoPoint geoPoint = new GeoPoint(lat.intValue(), lng.intValue());

Mapping Earthquakes Example ❘ 279

MapView.LayoutParams geoLP;
geoLP = new MapView.LayoutParams(MapView.LayoutParams.WRAP_CONTENT,

MapView.LayoutParams.WRAP_CONTENT,
geoPoint,
MapView.LayoutParams.TOP_LEFT);

EditText editText2 = new EditText(getApplicationContext());
editText2.setText("Location Pinned");

mapView.addView(editText2, geoLP);

Panning the map will leave the first TextView stationary in the upper left corner, while the second
TextView will move to remain pinned to a particular position on the map.

To remove a View from a Map View, call removeView, passing in the View instance you wish to remove,
as shown here.

mapView.removeView(editText2);

MAPPING EARTHQUAKES EXAMPLE

The following step-by-step guide demonstrates how to build a map-based Activity for the Earthquake
project you started in Chapter 5. The new MapActivity will display a map of recent earthquakes using
techniques you learned within this chapter.

1. Create a new earthquake_map.xml layout resource that includes a MapView, being sure to
include an android:id attribute and an android:apiKey attribute that contains your Android
Maps API key.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<com.google.android.maps.MapView
android:id="@+id/map_view"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:enabled="true"
android:clickable="true"
android:apiKey="myapikey"

/>
</LinearLayout>

2. Create a new EarthquakeMap Activity that inherits from MapActivity. Use setContentView

within onCreate to inflate the earthquake_map resource you created in Step 1.

package com.paad.earthquake;

import android.os.Bundle;
import com.google.android.maps.MapActivity;

280 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

public class EarthquakeMap extends MapActivity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.earthquake_map);

}

@Override
protected boolean isRouteDisplayed() {
return false;

}
}

3. Update the application manifest to include your new EarthquakeMap Activity and import the
map library.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.paad.earthquake">
<application android:icon="@drawable/icon">
<activity

android:name=".Earthquake"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity android:name=".Preferences"

android:label="Earthquake Preferences"/>
<activity android:name=".EarthquakeMap"

android:label="View Earthquakes"/>
<provider android:name=".EarthquakeProvider"

android:authorities="com.paad.provider.earthquake" />
<uses-library android:name="com.google.android.maps"/>

</application>
<uses-permission android:name="android.permission.INTERNET"/>

</manifest>

4. Add a new menu option to the Earthquake Activity to display the EarthquakeMap Activity.

4.1. Start by adding a new string to the strings.xml resource for the menu text.
<?xml version="1.0" encoding="autf-8"?>
<resources>
<string name="app_name">Earthquake</string>
<string name="quake_feed">

http://earthquake.usgs.gov/eqcenter/catalogs/1day-M2.5.xml
</string>
<string name="menu_update">Refresh Earthquakes</string>
<string name="auto_update_prompt">Auto Update?</string>
<string name="update_freq_prompt">Update Frequency</string>
<string name="min_quake_mag_prompt">

Minimum Quake Magnitude
</string>
<string name="menu_preferences">Preferences</string>
<string name="menu_earthquake_map">Earthquake Map</string>

</resources>

Mapping Earthquakes Example ❘ 281

4.2. Then add a new menu identifier before modifying the onCreateOptionsMenu han-
dler to add the new Menu Item. It should use the text defined in Step 4.1, and when
selected it should fire an Intent to explicitly start the EarthquakeMap Activity.

static final private int MENU_EARTHQUAKE_MAP = Menu.FIRST+2;

@Override
public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu(menu);

menu.add(0, MENU_UPDATE, Menu.NONE, R.string.menu_update);
menu.add(0, MENU_PREFERENCES, Menu.NONE,

R.string.menu_preferences);
Intent startMap = new Intent(this, EarthquakeMap.class);
menu.add(0, MENU_EARTHQUAKE_MAP,

Menu.NONE,
R.string.menu_earthquake_map).setIntent(startMap);

return true;
}

5. Now create a new EarthquakeOverlay class that extends Overlay. It will draw the position
and magnitude of each earthquake on the Map View.

package com.paad.earthquake;

import java.util.ArrayList;
import android.database.Cursor;
import android.database.DataSetObserver;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.Point;
import android.graphics.RectF;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;
import com.google.android.maps.Projection;

public class EarthquakeOverlay extends Overlay {
@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
Projection projection = mapView.getProjection();

if (shadow == false) {
// TODO: Draw earthquakes

}
}

}

5.1. Add a new constructor that accepts a Cursor to the current earthquake data, and
store that Cursor as an instance variable.

Cursor earthquakes;

public EarthquakeOverlay(Cursor cursor, ContentResolver resolver) {
super();

earthquakes = cursor;
}

282 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

5.2. Create a new refreshQuakeLocations method that iterates over the results Cursor
and extracts the location of each earthquake, extracting the latitude and longitude
before storing each coordinate in a List of GeoPoints.

ArrayList<GeoPoint> quakeLocations;

private void refreshQuakeLocations() {
if (earthquakes.moveToFirst())

do {
Double lat =

earthquakes.getFloat(EarthquakeProvider.LATITUDE_COLUMN) * 1E6;
Double lng =

earthquakes.getFloat(EarthquakeProvider.LONGITUDE_COLUMN) * 1E6;

GeoPoint geoPoint = new GeoPoint(lng.intValue(),
lat.intValue());

quakeLocations.add(geoPoint);

} while(earthquakes.moveToNext());
}

5.3. Call refreshQuakeLocations from the Overlay’s constructor. Also register a
DataSetObserver on the results Cursor that refreshes the Earthquake Location list
if a change in the Earthquake Cursor is detected.

public EarthquakeOverlay(Cursor cursor) {
super();
earthquakes = cursor;

quakeLocations = new ArrayList<GeoPoint>();
refreshQuakeLocations();
earthquakes.registerDataSetObserver(new DataSetObserver() {

@Override
public void onChanged() {
refreshQuakeLocations();

}
});

}

5.4. Complete the EarthquakeOverlay by overriding the draw method to iterate over the
list of GeoPoints, drawing a marker at each earthquake location. In this example
a simple red circle is drawn, but you could easily modify it to include additional
information, such as by adjusting the size of each circle based on the magnitude of
the quake.

int rad = 5;

@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
Projection projection = mapView.getProjection();

// Create and setup your paint brush
Paint paint = new Paint();
paint.setARGB(250, 255, 0, 0);
paint.setAntiAlias(true);
paint.setFakeBoldText(true);

Mapping Earthquakes Example ❘ 283

if (shadow == false) {
for (GeoPoint point : quakeLocations) {
Point myPoint = new Point();
projection.toPixels(point, myPoint);

RectF oval = new RectF(myPoint.x-rad, myPoint.y-rad,
myPoint.x+rad, myPoint.y+rad);

canvas.drawOval(oval, paint);
}

}
}

6. Return to the EarthquakeMap class. Within the onCreate method, create a Cursor that
returns the earthquakes you want to display on the map. Use this Cursor to create a new
EarthquakeOverlay before adding the new instance to the Map View’s list of Overlays.

Cursor earthquakeCursor;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.earthquake_map);

String earthquakeURI = EarthquakeProvider.CONTENT_URI;
earthquakeCursor = getContentResolver().query(earthquakeURI,

null, null, null,
null);

MapView earthquakeMap = (MapView)findViewById(R.id.map_view);
EarthquakeOverlay eo = new EarthquakeOverlay(earthquakeCursor);
earthquakeMap.getOverlays().add(eo);

}

7. Finally, override onResume to call requery on the Earthquake result set whenever this Activ-
ity becomes visible. Also, override onPause and onDestroy to optimize use of the Cursor
resources.

@Override
public void onResume() {
earthquakeCursor.requery();
super.onResume();

}

@Override
public void onPause() {
earthquakeCursor.deactivate();
super.onPause();

}

@Override
public void onDestroy() {
earthquakeCursor.close();
super.onDestroy();

}

284 ❘ CHAPTER 8 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

8. If you run the application and select Earthquake Map from the main menu, your application
should appear as shown in Figure 8-7.

All code snippets in this example are part of the Chapter 8 Earthquake project, available for download at Wrox.com.

SUMMARY

FIGURE 8-7

Location-based services, the Geocoder, and MapViews are
available to create intuitive, location-aware applications that
feature geographical information.

This chapter introduced the Geocoder and showed how to
perform forward and reverse geocoding lookups to translate
between map coordinates and street addresses. You were
introduced to location-based services, used to find the cur-
rent geographical position of a device. You also used them
to track movement and create proximity alerts.

Then you created interactive map applications. Using Over-
lays and Views you annotated MapViews with 2D graphics,
as well as markers in the form of OverlayItems and Views
(including View Groups and layouts).

In Chapter 9 you’ll learn how to work from the background.
You’ll be introduced to the Service component and learn
how to move processing onto background threads. To inter-
act with the user while hidden from view, you’ll use Toasts
to display transient messages and the Notification Manager
to ring, vibrate, and flash the phone.

9
Working in the Background

WHAT’S IN THIS CHAPTER?

➤ Creating, starting, and stopping Services

➤ Binding Services to Activities

➤ Setting Service priority to foreground

➤ Using AsyncTasks to manage background processing

➤ Creating background threads and using Handlers to synchronize with
the GUI thread

➤ Displaying Toasts

➤ Using the Notification Manager to notify users of application events

➤ Creating insistent and ongoing Notifications

➤ Using Alarms to schedule application events

Android offers the Service class to create application components specifically to handle opera-
tions and functionality that should run invisibly, without a user interface.

Android accords Services a higher priority than inactive Activities, so they’re less likely to be
killed when the system requires resources. In fact, should the run time prematurely terminate a
Service that’s been started, it can be configured to restart as soon as sufficient resources become
available. In extreme cases, the termination of a Service — such as an interruption in music
playback — will noticeably affect the user experience, and in these cases a Service’s priority can
be raised to the equivalent of a foreground Activity.

By using Services, you can ensure that your applications continue to run and respond to events,
even when they’re not in active use.

Services run without a dedicated GUI, but, like Activities and Broadcast Receivers, they still exe-
cute in the main thread of the application’s process. To help keep your applications responsive,

286 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

you’ll learn to move time-consuming processes (like network lookups) into background threads using
the Thread and AsyncTask classes.

Android offers several techniques for applications to communicate with users without an Activity.
You’ll learn how to use Notifications and Toasts to alert and update users without interrupting the
active application.

Toasts are a transient, non-modal dialog-box mechanism used to display information to users with-
out stealing focus from the active application. You’ll learn to display Toasts from any application
component to send unobtrusive on-screen messages to your users.

Where Toasts are silent and transient, Notifications represent a more robust mechanism for alerting
users. In many cases, when the user isn’t actively using the mobile phone it sits silent and unwatched in
a pocket or on a desk until it rings, vibrates, or flashes. Should a user miss these alerts, status bar icons
are used to indicate that an event has occurred. All these attention-grabbing antics are available to your
Android application through Notifications.

Alarms provide a mechanism for firing Intents at set times, outside the control of your application life
cycle. You’ll learn to use Alarms to start Services, open Activities, or broadcast Intents based on either
the clock time or the time elapsed since device boot. An Alarm will fire even after its owner application
has been closed, and can (if required) wake a device from sleep.

INTRODUCING SERVICES

Unlike Activities, which present a rich graphical interface to users, Services run in the background —
updating your Content Providers, firing Intents, and triggering Notifications. They are the perfect
means of performing ongoing or regular processing and of handling events even when your applica-
tion’s Activities are invisible or inactive, or have been closed.

Services are started, stopped, and controlled from other application components, including other
Services, Activities, and Broadcast Receivers. If your application performs actions that don’t depend
directly on user input, Services may be the answer.

Started Services always have higher priority than inactive or invisible Activities, making them less likely
to be terminated by the run time’s resource management. The only reason Android will stop a Service
prematurely is to provide additional resources for a foreground component (usually an Activity). When
that happens, your Service will be restarted automatically when resources become available.

If your Service is interacting directly with the user (for example, by playing music) it may be necessary to
increase its priority to that of a foreground Activity. This will ensure that your Service isn’t terminated
except in extreme circumstances, but reduces the run time’s ability to manage its resources, potentially
degrading the overall user experience.

Applications that update regularly but only rarely or intermittently need user interaction are good
candidates for implementation as Services. MP3 players and sports-score monitors are examples of
applications that should continue to run and update without a visible Activity.

Further examples can be found within the software stack itself: Android implements several Services,
including the Location Manager, Media Controller, and Notification Manager.

Introducing Services ❘ 287

Creating and Controlling Services
In the following sections you’ll learn how to create a new Service, and how to start and stop it using
Intents and the startService method. Later you’ll learn how to bind a Service to an Activity to provide
a richer communications interface.

Creating a Service
To define a Service, create a new class that extends Service. You’ll need to overrideonBind and
onCreate, as shown in Listing 9-1.

LISTING 9-1: A skeleton Service class

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class MyService extends Service {

@Override
public void onCreate() {

// TODO: Actions to perform when service is created.
}

@Override
public IBinder onBind(Intent intent) {

// TODO: Replace with service binding implementation.
return null;

}
}

In most cases you’ll also want to overrideonStartCommand. This is called whenever the Service is started
with a call to startService, so it may be executed several times within a Service’s lifetime. You should
ensure that your Service accounts for this.

The onStartCommand handler replaces the onStart event that was used prior to Android 2.0. By con-
trast, it enables you to tell the system how to handle restarts if the Service is killed by the system prior
to an explicit call to stopService or stopSelf.

The following snippet extends Listing 9-1 to show the skeleton code for overriding the onStartCommand
handler. Note that it returns a value that controls how the system will respond if the Service is restarted
after being killed by the run time.

@Override
public int onStartCommand(Intent intent, int flags, int startId) {

// TODO Launch a background thread to do processing.
return Service.START_STICKY;

}

Services are launched on the main Application thread, meaning that any processing done in the
onStartCommand handler will happen on the main GUI thread. The standard pattern for implementing

288 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

a Service is to create and run a new thread from onStartCommand to perform the processing in the
background and stop the Service when it’s complete (you will be shown how to create and manage
background threads later in this chapter).

This pattern lets onStartCommand complete quickly, and lets you control the restart behavior using one
of the following Service constants:

➤ START_STICKY Describes the standard behavior, which is similar to the way in which
onStart was implemented prior to Android 2.0. If you return this value, onStartCommand will
be called any time your Service restarts after being terminated by the run time. Note that on a
restart the Intent parameter passed in to onStartCommand will be null.

This mode is typically used for Services that handle their own states, and that are explicitly
started and stopped as required (via startService and stopService). This includes Services
that play music or handle other ongoing background tasks.

➤ START_NOT_STICKY This mode is used for Services that are started to process specific actions
or commands. Typically they will use stopSelf to terminate once that command has been
completed.

Following termination by the run time, Services set to this mode will restart only if there are
pending start calls. If no startService calls have been made since the Service was terminated,
the Service will be stopped without a call being made to onStartCommand.

This mode is ideal for Services that handle specific requests, particularly regular processing
such as updates or network polling. Rather than restarting the Service during a period of
resource contention, it’s often more prudent tolet the Service stop and retry at the next sched-
uled interval.

➤ START_REDELIVER_INTENT In some circumstances you will want to ensure that the com-
mands you have requested from your Service are completed.

This mode is a combination of the first two — if the Service is terminated by the run time, it
will restart only if there are pending start calls or the process was killed prior to its calling
stopSelf.

In the latter case, a call to onStartCommand will be made, passing in the initial Intent whose
processing did not properly complete.

Note that each mode requires you to explicitly stop your Service, through stopService or stopSelf
respectively, when your processing has completed. Both of these methods are discussed in more detail
later in this chapter.

Prior to Android SDK 2.0 (SDK API level 5) the Service class triggered the onStart

event handler to let you perform actions when the Service started. Implementing
the onStart handler is now the equivalent of overriding onStartCommand and
returning the START_STICKY flag.

The restart mode you specify in your onStartCommand return value will affect the parameter values
passed in to subsequent calls.

Introducing Services ❘ 289

Initially the Intent will be the parameter you passed in to startService to start your Service. After
system-based restarts it will be either null, in the case of START_STICKY mode, or the original Intent, if
the mode is set to START_REDELIVER_INTENT.

The flag parameter can be used to discover how the Service was started. In particular you can use the
code snippet shown in Listing 9-2 to determine if either of the following cases is true:

➤ START_FLAG_REDELIVERY Indicates that the Intent parameter is a redelivery caused by the
system run time’s having terminated the Service before it was explicitly stopped by a call to
stopSelf.

➤ START_FLAG_RETRY Indicates that the Service has been restarted after an abnormal termina-
tion. Passed in when the Service was previously set to START_STICKY.

LISTING 9-2: Determining the cause of a system start

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
if ((flags & START_FLAG_RETRY) == 0) {

// TODO If it’s a restart, do something.
}
else {

// TODO Alternative background process.
}
return Service.START_STICKY;

}

Registering a Service in the Manifest
Once you’ve constructed a new Service, you have to register it in the application manifest.

Do this by including a <service> tag within the application node. Use the requires-permission

attribute to require a uses-permission for other applications to access this Service.

The following is the service tag you’d add for the skeleton Service you created earlier:

<service android:enabled="true" android:name=".MyService"/>

Self-Terminating a Service
Once your Service has completed the actions or processing it was started for, you should make a call
to stopSelf, either without a parameter to force a stop, or by passing in a startId value to insure pro-
cessing has been completed for each instance of startService called so far, as shown in the following
snippet:

stopSelf(startId);

By explicitly stopping the Service when your processing is complete, you allow the system to recover
the resources otherwise required to keep it running. Due to the high priority of Services they are not
commonly killed by the run time, so self-termination can significantly improve the resource footprint
of your application.

290 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

Starting, Controlling, and Interacting with a Service
To start a Service, call startService; you can either use an action to implicitly start a Service with the
appropriate Intent Receiver registered, or you can explicitly specify the Service using its class. If the
Service requires permissions that your application does not have, the call to startService will throw a
SecurityException.

In both cases you can pass values in to the Service’sonStart handler by adding extras to the Intent, as
shown in Listing 9-3, which demonstrates both techniques available for starting a Service.

LISTING 9-3: Starting a Service

// Implicitly start a Service
Intent myIntent = new Intent(MyService.ORDER_PIZZA);
myIntent.putExtra("TOPPING", "Margherita");
startService(myIntent);

// Explicitly start a Service
startService(new Intent(this, MyService.class));

To use this example you would need to include a MY_ACTION constant in the
MyService class and use an Intent Filter to register the Service as a provider of
MY_ACTION.

To stop a Service use stopService, passing an Intent that defines the Service to stop. Listing 9-4 first
starts and then stops a Service both explicitly and by using the component name returned from a call
to startService.

LISTING 9-4: Stopping a Service

ComponentName service = startService(new Intent(this, BaseballWatch.class));
// Stop a service using the service name.
stopService(new Intent(this, service.getClass()));
// Stop a service explicitly.
try {

Class serviceClass = Class.forName(service.getClassName());
stopService(new Intent(this, serviceClass));

} catch (ClassNotFoundException e) {}

If startService is called on a Service that’s already running, the Service’sonStartCommand handler will
be executed again. Calls to startService do not nest, so a single call to stopService will terminate it
no matter how many times startService has been called.

An Earthquake Monitoring Service Example
In this chapter you’ll modify the Earthquake example you started in Chapter 5 (and continued to
enhance in Chapters 6, 7, and 8). In this example you’ll move the earthquake updating and processing
functionality into a separate Service component.

Introducing Services ❘ 291

Later in this chapter you’ll build additional functionality within this Service,
starting by moving the network lookup and XML parsing to a background thread.
Later you’ll use Toasts and Notifications to alert users of new earthquakes.

1. Start by creating a new EarthquakeService that extends Service.

package com.paad.earthquake;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import java.util.Timer;
import java.util.TimerTask;

public class EarthquakeService extends Service {
@Override
public void onCreate() {
// TODO: Initialize variables, get references to GUI objects

}

@Override
public IBinder onBind(Intent intent) {
return null;

}
}

2. Add this new Service to the manifest by adding a new service tag within the application

node.

<service android:enabled="true" android:name=".EarthquakeService"/>

3. Move the refreshEarthquakes and addNewQuake methods out of the Earthquake Activity
and into the EarthquakeService.

You’ll need to remove the calls toaddQuakeToArray and loadQuakesFromProvider (leave
both of these methods in the Earthquake Activity because they’re still required). In the
EarthquakeService also remove all references to the earthquakes ArrayList.

private void addNewQuake(Quake _quake) {
ContentResolver cr = getContentResolver();
// Construct a where clause to make sure we don’t already have
// this earthquake in the provider.
String w = EarthquakeProvider.KEY_DATE + " = " +

_quake.getDate().getTime();

// If the earthquake is new, insert it into the provider.
Cursor c = cr.query(EarthquakeProvider.CONTENT_URI,

null, w, null, null);
if (c.getCount()==0){
ContentValues values = new ContentValues();

values.put(EarthquakeProvider.KEY_DATE,
_quake.getDate().getTime());
values.put(EarthquakeProvider.KEY_DETAILS, _quake.getDetails());

292 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

double lat = _quake.getLocation().getLatitude();
double lng = _quake.getLocation().getLongitude();
values.put(EarthquakeProvider.KEY_LOCATION_LAT, lat);
values.put(EarthquakeProvider.KEY_LOCATION_LNG, lng);
values.put(EarthquakeProvider.KEY_LINK, _quake.getLink());
values.put(EarthquakeProvider.KEY_MAGNITUDE, _quake.getMagnitude());

cr.insert(EarthquakeProvider.CONTENT_URI, values);
}
c.close();

}

private void refreshEarthquakes() {
// Get the XML
URL url;
try {
String quakeFeed = getString(R.string.quake_feed);
url = new URL(quakeFeed);

URLConnection connection;
connection = url.openConnection();

HttpURLConnection httpConnection =
(HttpURLConnection)connection;

int responseCode = httpConnection.getResponseCode();

if (responseCode == HttpURLConnection.HTTP_OK) {
InputStream in = httpConnection.getInputStream();

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();

// Parse the earthquake feed.
Document dom = db.parse(in);
Element docEle = dom.getDocumentElement();

// Get a list of each earthquake entry.
NodeList nl = docEle.getElementsByTagName("entry");
if (nl != null && nl.getLength() > 0) {
for (int i = 0 ; i < nl.getLength(); i++) {

Element entry = (Element)nl.item(i);
Element title;
title =
(Element)entry.getElementsByTagName("title").item(0);

Element g =
(Element)entry.getElementsByTagName("georss:point").item(0);

Element when =
(Element)entry.getElementsByTagName("updated").item(0);

Element link =
(Element)entry.getElementsByTagName("link").item(0);

String details = title.getFirstChild().getNodeValue();

Introducing Services ❘ 293

String hostname = "http://earthquake.usgs.gov";
String linkString = hostname + link.getAttribute("href");

String point = g.getFirstChild().getNodeValue();
String dt = when.getFirstChild().getNodeValue();
SimpleDateFormat sdf;
sdf = new SimpleDateFormat("yyyy-MM-dd’T’hh:mm:ss’Z’");
Date qdate = new GregorianCalendar(0,0,0).getTime();
try {
qdate = sdf.parse(dt);

} catch (ParseException e) {
e.printStackTrace();

}

String[] location = point.split(" ");
Location l = new Location("parsed");
l.setLatitude(Double.parseDouble(location[0]));
l.setLongitude(Double.parseDouble(location[1]));

String magnitudeString = details.split(" ")[1];
int end = magnitudeString.length()-1;
double magnitude =
Double.parseDouble(magnitudeString.substring(0, end));

details = details.split(",")[1].trim();

Quake quake = new Quake(qdate, details, l, magnitude,
linkString);

// Process a newly found earthquake
addNewQuake(quake);

}
}

}
} catch (MalformedURLException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

} catch (ParserConfigurationException e) {
e.printStackTrace();

} catch (SAXException e) {
e.printStackTrace();

}
finally {
}

}

4. Within the Earthquake Activity, create a new refreshEarthquakes method. It should explic-
itly start the EarthquakeService.

private void refreshEarthquakes() {
startService(new Intent(this, EarthquakeService.class));

}

294 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

5. Return to the EarthquakeService. Override the onStartCommand and onCreate methods to
support a new Timer that will be used to update the earthquake list. onStartCommand should
return START_STICKY because we are using a timer to trigger multiple refreshes. This is gen-
erally poor form; the Timer behavior should be moved to a background thread and triggered
by Alarms. You’ll learn how to do both of these things later in this chapter.

Use the SharedPreference object created in Chapter 6 to determine if the earthquakes should
be regularly updated.

private Timer updateTimer;
private float minimumMagnitude;

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
// Retrieve the shared preferences
SharedPreferences prefs =
getSharedPreferences(Preferences.USER_PREFERENCE,

Activity.MODE_PRIVATE);

int minMagIndex = prefs.getInt(Preferences.PREF_MIN_MAG, 0);
if (minMagIndex < 0)
minMagIndex = 0;

int freqIndex = prefs.getInt(Preferences.PREF_UPDATE_FREQ, 0);
if (freqIndex < 0)
freqIndex = 0;

boolean autoUpdate =
prefs.getBoolean(Preferences.PREF_AUTO_UPDATE, false);

Resources r = getResources();
int[] minMagValues = r.getIntArray(R.array.magnitude);
int[] freqValues = r.getIntArray(R.array.update_freq_values);

minimumMagnitude = minMagValues[minMagIndex];
int updateFreq = freqValues[freqIndex];

updateTimer.cancel();
if (autoUpdate) {
updateTimer = new Timer("earthquakeUpdates");
updateTimer.scheduleAtFixedRate(doRefresh, 0,

updateFreq*60*1000);
}
else
refreshEarthquakes();

return Service.START_STICKY;
};

private TimerTask doRefresh = new TimerTask() {
public void run() {

Introducing Services ❘ 295

refreshEarthquakes();
}

};

@Override
public void onCreate() {
updateTimer = new Timer("earthquakeUpdates");

}

6. The EarthquakeService will now update the earthquake Provider each time it is asked to
refresh, as well as on an automated schedule (if one is specified). The updates are not yet
passed back to the Earthquake Activity’s List View or the Earthquake Map Activity.

To alert those components, and any other applications interested in earthquake data, modify
the EarthquakeService to broadcast a new Intent whenever a new earthquake is added.

6.1. Modify the addNewQuake method to call a new announceNewQuake method.
public static final String NEW_EARTHQUAKE_FOUND = "New_Earthquake_Found";

private void addNewQuake(Quake _quake) {
ContentResolver cr = getContentResolver();
// Construct a where clause to make sure we don’t already have
// this earthquake in the provider.
String w = EarthquakeProvider.KEY_DATE +

" = " + _quake.getDate().getTime();

// If the earthquake is new, insert it into the provider.
Cursor c = cr.query(EarthquakeProvider.CONTENT_URI,

null, w, null, null);
if (c.getCount()==0){

ContentValues values = new ContentValues();

values.put(EarthquakeProvider.KEY_DATE, _quake.getDate().getTime());
values.put(EarthquakeProvider.KEY_DETAILS, _quake.getDetails());

double lat = _quake.getLocation().getLatitude();
double lng = _quake.getLocation().getLongitude();
values.put(EarthquakeProvider.KEY_LOCATION_LAT, lat);
values.put(EarthquakeProvider.KEY_LOCATION_LNG, lng);
values.put(EarthquakeProvider.KEY_LINK, _quake.getLink());
values.put(EarthquakeProvider.KEY_MAGNITUDE,

_quake.getMagnitude());

cr.insert(EarthquakeProvider.CONTENT_URI, values);
announceNewQuake(_quake);

}
c.close();

}

private void announceNewQuake(Quake quake) {
}

296 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

6.2. Within announceNewQuake, broadcast a new Intent whenever a new earthquake is
found.

private void announceNewQuake(Quake quake) {
Intent intent = new Intent(NEW_EARTHQUAKE_FOUND);
intent.putExtra("date", quake.getDate().getTime());
intent.putExtra("details", quake.getDetails());
intent.putExtra("longitude", quake.getLocation().getLongitude());
intent.putExtra("latitude", quake.getLocation().getLatitude());
intent.putExtra("magnitude", quake.getMagnitude());

sendBroadcast(intent);
}

7. That completes the EarthquakeService implementation. You still need to modify the two
Activity components to listen for the Service Intent broadcasts and refresh their displays
accordingly.

7.1. Within the Earthquake Activity, create a new internal EarthquakeReceiver
class that extends BroadcastReceiver. Override the onReceive method to call
loadFromProviders to update the earthquake array and refresh the list.

public class EarthquakeReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

loadQuakesFromProvider();
}

}

7.2. Override the onResume method to register the new Receiver and update the List
View contents when the Activity becomes active. Override onPause to unregister
it when the Activity moves out of the foreground.

EarthquakeReceiver receiver;

@Override
public void onResume() {
IntentFilter filter;
filter = new IntentFilter(EarthquakeService.NEW_EARTHQUAKE_FOUND);
receiver = new EarthquakeReceiver();
registerReceiver(receiver, filter);

loadQuakesFromProvider();
super.onResume();

}

@Override
public void onPause() {
unregisterReceiver(receiver);
super.onPause();

}

7.3. Do the same for the EarthquakeMap Activity, this time calling requery on the result
Cursor before invalidating the Map View whenever the Intent is received.

EarthquakeReceiver receiver;

@Override

Introducing Services ❘ 297

public void onResume() {
earthquakeCursor.requery();

IntentFilter filter;
filter = new IntentFilter(EarthquakeService.NEW_EARTHQUAKE_FOUND);
receiver = new EarthquakeReceiver();
registerReceiver(receiver, filter);

super.onResume();
}

@Override
public void onPause() {
earthquakeCursor.deactivate();
super.onPause();

}

public class EarthquakeReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

earthquakeCursor.requery();
MapView earthquakeMap = (MapView)findViewById(R.id.map_view);
earthquakeMap.invalidate();

}
}

All code snippets in this example are part of the Chapter 9 Earthquake project, available for download at Wrox.com.

Now when the Earthquake Activity is launched it will start the Earthquake Service. This Service will
then continue to run, updating the earthquake Content Provider in the background, even after the
Activity is suspended or closed.

You’ll continue to upgrade and enhance the Earthquake Service throughout the
chapter, first using Toasts and later using Notifications and Alarms.

At this stage the earthquake processing is done in a Service, but it’s still being executed on the main GUI
thread. Later in this chapter you’ll learn how tomove time-consuming operations onto background
threads to improve performance and avoid ‘‘Force Close’’ messages.

Similarly, the Service is constantly running, taking up valuable resources. Later sections will explain
how to replace the Timer with Alarms.

Binding Activities to Services
When an Activity is bound to a Service, it maintains a reference to the Service instance itself, enabling
you to make method calls on the running Service as you would on any other instantiated class.

Binding is available for Activities that would benefit from a more detailed interface with a Service. To
support binding for a Service, implement the onBind method, as shown in Listing 9-5.

298 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

LISTING 9-5: Implementing binding on a Service

private final IBinder binder = new MyBinder();

@Override
public IBinder onBind(Intent intent) {

return binder;
}

public class MyBinder extends Binder {
MyService getService() {
return MyService.this;

}
}

The connection between the Service and Activity is represented as a ServiceConnection.
You’ll need to implement a newServiceConnection, overriding the onServiceConnected and
onServiceDisconnected methods to get a reference to the Service instance once a connection has been
established, as shown in Listing 9-6.

LISTING 9-6: Binding to a Service

// Reference to the service
private MyService serviceBinder;

// Handles the connection between the service and activity
private ServiceConnection mConnection = new ServiceConnection() {

public void onServiceConnected(ComponentName className, IBinder service) {
// Called when the connection is made.
serviceBinder = ((MyService.MyBinder)service).getService();

}

public void onServiceDisconnected(ComponentName className) {
// Received when the service unexpectedly disconnects.
serviceBinder = null;

}
};

To perform the binding, call bindService, passing in an Intent (either explicit or implicit) that selects
the Service to bind to and an instance of your new ServiceConnection implementation, as shown in
this extension of Listing 9-6:

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// Bind to the service
Intent bindIntent = new Intent(MyActivity.this, MyService.class);
bindService(bindIntent, mConnection, Context.BIND_AUTO_CREATE);

}

Introducing Services ❘ 299

Once the Service has been bound, all of its public methods and properties are available through the
serviceBinder object obtained from the onServiceConnected handler.

Android applications do not (normally) share memory, but in some cases your application may want
to interact with (and bind to) Services running in different application processes.

You can communicate with a Service running in a different process using broadcast Intents or through
the extras Bundle in the Intent used to start the Service. If you need a more tightly coupled connection
you can make a Service available for binding across application boundaries using AIDL. AIDL defines
the Service’s interface in terms of OS level primitives, allowing Android to transmit objects across
process boundaries. AIDL definitions are covered in Chapter 15.

Prioritizing Background Services
As you learned in Chapter 3, Android uses a dynamic approach to manage resources that can result in
your applications, Activities, and Services being terminated by the run time with little or no warning.

When calculating which applications and application components should be killed, Android assigns
running Services the second-highest priority. Only active, foreground Activities are considered a higher
priority in terms of system resources.

In extreme cases, in which your Service is interacting directly with the user, it may be appropriate to
lift its priority to the equivalent of a foreground Activity’s. You do this by setting your Service to run
in the foreground using the startForeground method.

It is expected that Services running in the foreground will be interacting directly with the user (for
example, by playing music). Because of this, the user should always be aware of a foreground Service.
To ensure this, calls to startForeground must specify an ongoing Notification (described in more detail
later in this chapter), as shown in Listing 9-7. This notification will continue for at least as long as the
Service is running in the foreground.

By moving your Service to the foreground you effectively make it impossible for the
run time to kill in order to free resources. Having multiple unkillable Services
running simultaneously can make it extremely difficult for the system to recover
from resource-starved situations.

Use this technique only if it is necessary in order for your Service to function
properly, and even then keep the Service in the foreground only as long as
absolutely necessary.

LISTING 9-7: Moving a Service to the foreground

int NOTIFICATION_ID = 1;

Intent intent = new Intent(this, MyActivity.class);
PendingIntent pi = PendingIntent.getActivity(this, 1, intent, 0));

continues

300 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

LISTING 9-7 (continued)

Notification notification = new Notification(R.drawable.icon,
"Running in the Foreground", System.currentTimeMillis());

notification.setLatestEventInfo(this, "Title", "Text", pi);

notification.flags = notification.flags |
Notification.FLAG_ONGOING_EVENT;

startForeground(NOTIFICATION_ID, notification);

Listing 9-7 uses setLatestEventInfo to update the notification using the default status window layout.
Later in this chapter you’ll learn how to specify a custom layout for your Notification. Using this
technique you can provide more details of your ongoing Service to users.

Once your Service no longer requires foreground priority you can move it back to the background, and
optionally remove the ongoing notification using the stopForeground method, as shown in Listing 9-8.
The Notification will be canceled automatically if your Service stops or is terminated.

LISTING 9-8: Moving a Service back to the background

// Move to the background and remove the Notification
stopForeground(true);

Prior to Android 2.0 it was possible to set a Service to the foreground using the
setForeground method. This method has now been deprecated and will result in a
no-op, effectively doing nothing.

USING BACKGROUND THREADS

To ensure that your applications remain responsive, it’s good practice to move all slow, time-consuming
operations off the main application thread and onto a child thread.

All Android application components — including Activities, Services, and
Broadcast Receivers — start on the main application thread. As a result,
time-consuming processing in any component will block all other components
including Services and the visible Activity.

Android offers two alternatives for backgrounding your processing. The AsyncTask class lets you define
an operation to be performed in the background, then provides event handlers you can use to monitor
progress and post the results on the GUI thread.

Alternatively, you can implement your own Threads and use the Handler class to synchronize with the
GUI thread before updating the UI. Both techniques are described in this section.

Using Background Threads ❘ 301

Using background threads is vital for avoiding the ‘‘Force Close’’ dialog box described in Chapter 2. In
Android, Activities that don’t respond to an input event (such as a key press) within five seconds, and
Broadcast Receivers that don’t complete theironReceive handlers within 10 seconds, are considered
unresponsive.

Not only do you want to avoid this scenario, you don’t want to even get close. Use background threads
for all time-consuming processing, including file operations, network lookups, database transactions,
and complex calculations.

Using AsyncTask to Run Asynchronous Tasks
The AsyncTask class offers a simple, convenient mechanism for moving your time-consuming opera-
tions onto a background thread. It offers the convenience of event handlers synchronized with the GUI
thread to let you update Views and other UI elements to report progress or publish results when your
task is complete.

AsyncTask handles all of the thread creation, management, and synchronization, enabling you to create
an asynchronous task consisting of processing to be done in the background and a UI update to be
performed when processing is complete.

Creating a new Asynchronous Task
To create a new asynchronous task you need to extend AsyncTask, as shown in the skeleton code of
Listing 9-9. Your implementation should specify the classes used for input parameters on the execute

method, the progress-reporting values, and the result values in the following format:

AsyncTask<[Input Parameter Type], [Progress Report Type], [Result Type]>

If you don’t need or want to take input parameters, update progress, or report a final result, simply
specify Void for any or all of the types required.

LISTING 9-9: Skeleton AsyncTask implementation using a string parameter and integer
progress and result values

private class MyAsyncTask extends AsyncTask<String, Integer, Integer> {
@Override
protected void onProgressUpdate(Integer... progress) {

// [... Update progress bar, Notification, or other UI element ...]
}

@Override
protected void onPostExecute(Integer... result) {

// [... Report results via UI update, Dialog, or notification ...]
}

@Override
protected Integer doInBackground(String... parameter) {

int myProgress = 0;
continues

302 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

LISTING 9-9 (continued)

// [... Perform background processing task, update myProgress ...]
PublishProgress(myProgress)
// [... Continue performing background processing task ...]

// Return the value to be passed to onPostExecute
return result;

}
}

As shown in Listing 9-9, your subclass should implement the following event handlers:

➤ doInBackground Takes a set of parameters of the type defined in your class implementation.
This method will be executed on the background thread, so it must not attempt to interact
with UI objects.

Place your long-running code here, using the publishProgress method to allow
onProgressUpdate to post progress updates to the UI.

When your background task is complete, return the final result for the onPostExecute han-
dler to report it to the UI.

➤ onProgressUpdate Override this handler to post interim updates to the UI thread.
This handler receives the set of parameters passed in to publishProgress from within
doInBackground.

This handler is synchronized with the GUI thread when executed, so you can safely modify
UI elements.

➤ onPostExecute When doInBackground has completed, the return value from that method is
passed in to this event handler.

Use this handler to update the UI once your asynchronous task has completed. This handler
is synchronized with the GUI thread when executed, so you can safely modify UI elements.

Running an Asynchronous Task
Once you’ve implemented your asynchronous task, execute it by creating a new instance and calling
execute, as shown in Listing 9-10. You can pass in a number of parameters, each of the type specified
in your implementation.

LISTING 9-10: Executing an asynchronous task

new MyAsyncTask().execute("inputString1", "inputString2");

Each AsyncTask instance can be executed only once. If you attempt to call execute
a second time an exception will be thrown.

Using Background Threads ❘ 303

Moving the Earthquake Service to a Background Thread Using
AsyncTask

The following example shows how to move the network lookup and XML processing done in the
EarthquakeService onto a background thread using an AsyncTask.

1. Create a new AsyncTask implementation, EarthquakeLookupTask, specifying Void for the
input parameters and result variable types, and Quake for the progress reporting. Include
stubs that override doInBackground, onProgressUpdate, and onPostExecute.

private class EarthquakeLookupTask extends AsyncTask<Void, Quake,
Void> {
@Override
protected Void doInBackground(Void... params) {
return null;

}

@Override
protected void onProgressUpdate(Quake... values) {
super.onProgressUpdate(values);

}

@Override
protected void onPostExecute(Void result) {
super.onPostExecute(result);

}
}

2. Move all the existing code from the refreshEarthquakes method into the new
doInBackground handler. Add a new call to publishProgress, passing in the most
recently parsed Quake, each time a new quake is processed. When the parsing is complete,
return null.

@Override
protected Void doInBackground(Void... params) {
[... existing XML parsing ...]

// Process a newly found earthquake
addNewQuake(quake);
publishProgress(quake);

[... existing exception handling ...]

return null;
}

3. Update the now-empty refreshEarthquakes method. It should create and execute a new
EarthquakeLookupTask. First check to see if another asynchronous task has already begun.
To avoid stacking refresh requests you should begin an update only if one is not already in
progress.

304 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

EarthquakeLookupTask lastLookup = null;

private void refreshEarthquakes() {
if (lastLookup == null ||

lastLookup.getStatus().equals(AsyncTask.Status.FINISHED)) {
lastLookup = new EarthquakeLookupTask();
lastLookup.execute((Void[])null);

}
}

All code snippets in this example are part of the Chapter 9 Earthquake 2 project, available for download at Wrox.com.

Manual Thread Creation and GUI Thread Synchronization
While using AsyncTask is a useful shortcut, there are times when you will want to create and manage
your own threads to perform background processing.

In this section you will learn how to create and start new Thread objects, and how to synchronize with
the GUI thread before updating the UI.

Creating a New Thread
You can create and manage child threads using Android’sHandler class and the threading classes
available within java.lang.Thread. Listing 9-11 shows the simple skeleton code for moving processing
onto a child thread.

LISTING 9-11: Moving processing to a background Thread

// This method is called on the main GUI thread.
private void mainProcessing() {

// This moves the time consuming operation to a child thread.
Thread thread = new Thread(null, doBackgroundThreadProcessing,

"Background");
thread.start();

}

// Runnable that executes the background processing method.
private Runnable doBackgroundThreadProcessing = new Runnable() {

public void run() {
backgroundThreadProcessing();

}
};

// Method which does some processing in the background.
private void backgroundThreadProcessing() {

[... Time consuming operations ...]
}

Using the Handler for Performing GUI Operations
Whenever you’re using background threads in a GUI environment it’s important to synchronize child
threads with the main application (GUI) thread before creating or modifying graphical elements.

Using Background Threads ❘ 305

Within your application components, Notifications and Intents are always received and handled on the
GUI thread. In all other cases, operations that explicitly interact with objects created on the GUI thread
(such as Views) or that display messages (like Toasts) must be invoked on the main thread.

If you are running within an Activity, you can also use the runOnUiThread method, which lets you force
a method to execute on the same thread as the Activity UI, as shown in Listing 9-12.

LISTING 9-12: Synchronizing with the Activity’s GUI thread

runOnUiThread(new Runnable() {
public void run() {

// TODO Update a View.
}

});

In other circumstances (such as Toasts and Notifications) you can use the Handler class to post methods
onto the thread in which the Handler was created.

Using the Handler class you can post updates to the user interface from a background thread using the
Post method. Listing 9-13 shows the outline for using the Handler to update the GUI thread.

LISTING 9-13: Using a Handler to synchronize with the GUI thread

// Initialize a handler on the main thread.
private Handler handler = new Handler();

private void mainProcessing() {
Thread thread = new Thread(null, doBackgroundThreadProcessing,

"Background");
thread.start();

}

private Runnable doBackgroundThreadProcessing = new Runnable() {
public void run() {

backgroundThreadProcessing();
}

};

// Method which does some processing in the background.
private void backgroundThreadProcessing() {
[... Time consuming operations ...]
handler.post(doUpdateGUI);

}

// Runnable that executes the update GUI method.
private Runnable doUpdateGUI = new Runnable() {
public void run() {

updateGUI();
}

};
continues

306 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

LISTING 9-13 (continued)

private void updateGUI() {
[... Open a dialog or modify a GUI element ...]

}

The Handler class also lets you delay posts or execute them
at a specific time, using the postDelayed and postAtTime

methods respectively.

LET’S MAKE A TOAST

FIGURE 9-1

Toasts are transient Dialog boxes that remain visible for only
a few seconds before fading out. Toasts don’t steal focus and
are non-modal, so they don’t interrupt the active application.

Toasts are perfect for informing your users of events with-
out forcing them to open an Activity or read a Notification.
They provide an ideal mechanism for alerting users to events
occurring in background Services without interrupting fore-
ground applications.

The Toast class includes a static makeText method that
creates a standard Toast display window. Pass the appli-
cation Context, the text message to display, and the length
of time to display it (LENGTH_SHORT or LENGTH_LONG) in to the
makeText method to construct a new Toast. Once a Toast
has been created, display it by calling show, as shown in
Listing 9-14.

LISTING 9-14: Displaying a Toast

Context context = getApplicationContext();
String msg = "To health and happiness!";
int duration = Toast.LENGTH_SHORT;

Toast toast = Toast.makeText(context, msg, duration);
toast.show();

Figure 9-1 shows a Toast. It will remain on screen for around two seconds before fading out. The
application behind it remains fully responsive and interactive while the Toast is visible.

Customizing Toasts
The standard Toast text message window is often sufficient, but in many situations you’ll want to
customize its appearance and screen position. You can modify a Toast by setting its display position
and assigning it alternative Views or layouts.

Let’s Make a Toast ❘ 307

Listing 9-15 shows how to align a Toast to the bottom of the screen using the setGravity method.

LISTING 9-15: Customizing a Toast

Context context = getApplicationContext();
String msg = "To the bride and groom!";
int duration = Toast.LENGTH_SHORT;
Toast toast = Toast.makeText(context, msg, duration);
int offsetX = 0;
int offsetY = 0;

toast.setGravity(Gravity.BOTTOM, offsetX, offsetY);
toast.show();

When a text message just isn’t going to get the job done, you can specify a custom View or layout to use
a more complex, or more visual, display. Using setView on a Toast object, you can specify any View
(including a layout) to display using the transient message window mechanism.

For example, Listing 9-16 assigns a layout, containing the CompassView widget from Chapter 4 along
with a TextView, to be displayed as a Toast.

LISTING 9-16: Using Views to customize Toasts

Context context = getApplicationContext();
String msg = "Cheers!";
int duration = Toast.LENGTH_LONG;
Toast toast = Toast.makeText(context, msg, duration);
toast.setGravity(Gravity.TOP, 0, 0);

LinearLayout ll = new LinearLayout(context);
ll.setOrientation(LinearLayout.VERTICAL);

TextView myTextView = new TextView(context);
CompassView cv = new CompassView(context);

myTextView.setText(msg);

int lHeight = LinearLayout.LayoutParams.FILL_PARENT;
int lWidth = LinearLayout.LayoutParams.WRAP_CONTENT;

ll.addView(cv, new LinearLayout.LayoutParams(lHeight, lWidth));
ll.addView(myTextView, new LinearLayout.LayoutParams(lHeight, lWidth));

ll.setPadding(40, 50, 0, 50);

toast.setView(ll);
toast.show();

308 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

The resulting Toast will appear as shown in Figure 9-2.

FIGURE 9-2

Using Toasts in Worker Threads
As GUI components, Toasts must be opened on the GUI thread or risk throwing a cross-thread excep-
tion. In Listing 9-17 a Handler is used to ensure that the Toast is opened on the GUI thread.

LISTING 9-17: Opening a Toast on the GUI thread

private void mainProcessing() {
Thread thread = new Thread(null, doBackgroundThreadProcessing,

"Background");
thread.start();

}

private Runnable doBackgroundThreadProcessing = new Runnable() {
public void run() {

backgroundThreadProcessing();
}

};

private void backgroundThreadProcessing() {

Introducing Notifications ❘ 309

handler.post(doUpdateGUI);
}

// Runnable that executes the update GUI method.
private Runnable doUpdateGUI = new Runnable() {
public void run() {

Context context = getApplicationContext();
String msg = "To open mobile development!";
int duration = Toast.LENGTH_SHORT;
Toast.makeText(context, msg, duration).show();

}
};

INTRODUCING NOTIFICATIONS

Your applications can use Notifications to alert users without using an Activity. Notifications are
handled by the Notification Manager, and currently have the ability to:

➤ Create new status bar icons

➤ Display additional information (and launch an Intent) in the extended status bar window

➤ Flash the lights/LEDs

➤ Vibrate the phone

➤ Sound audible alerts (ringtones, Media Store audio)

FIGURE 9-3

Using Notifications is the preferred way for invisible applica-
tion components (Broadcast Receivers, Services, and inactive
Activities) to alert users that events have occurred that may
require attention. They are also used to indicate ongoing
background Services — particularly Services that have been
set to foreground priority.

As a user interface metaphor, Notifications are particularly
well suited to mobile devices. It’s likely that your users will
have their phones with them at all times but quite unlikely
that they will be paying attention to them, or your appli-
cation, at any given time. Generally users will have several
applications open in the background, and they won’t be
paying attention to any of them.

In this environment it’s important that your applications be
able to alert users when specific events occur that require
their attention.

Notifications can be persisted through insistent repetition,
being marked ongoing, or simply by displaying an icon
on the status bar. Status bar icons can be updated regu-
larly or expanded to show additional information using the
expanded status bar window shown in Figure 9-3.

310 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

To display the expanded status bar view, click a status bar icon and drag it toward
the bottom of the screen. To ‘‘lock’’ it in place, ensure that you release your drag
only after the window covers the entire screen. To hide it, simply drag it back
upward.

Introducing the Notification Manager
The Notification Manager is a system Service used to handle Notifications. Get a reference to it using
the getSystemService method, as shown in Listing 9-18.

LISTING 9-18: Using the Notification Manager

String svcName = Context.NOTIFICATION_SERVICE;

NotificationManager notificationManager;
notificationManager = (NotificationManager)getSystemService(svcName);

Using the Notification Manager you can trigger new Notifications, modify existing ones, or remove
those that are no longer required.

Creating Notifications
Android offers a number of ways to convey information to users using Notifications.

1. The status bar icon

2. The extended notification status drawer

3. Additional phone effects such as sound and vibration

This section will examine the first two while later in this chapter you’ll learn how to enhance Notifica-
tions using various properties on the Notification object to flash the device LEDs, vibrate the phone,
and play audio.

Creating a Notification and Configuring the Status Bar Icon
Start by creating a new Notification object, passing in the icon to display in the status bar, along with
the status bar ticker text and the time of this Notification, as shown in Listing 9-19.

LISTING 9-19: Creating a Notification

// Choose a drawable to display as the status bar icon
int icon = R.drawable.icon;
// Text to display in the status bar when the notification is launched
String tickerText = "Notification";
// The extended status bar orders notification in time order
long when = System.currentTimeMillis();

Notification notification = new Notification(icon, tickerText, when);

Introducing Notifications ❘ 311

The ticker text will scroll along the status bar when the Notification is fired.

You can also set the Notification object’snumber property to display the number of events a status bar
icon represents. Setting this value to a number greater than 1, as shown in the following line of code,
overlays the values as a small number over the status bar icon:

notification.number++;

As with all changes to a Notification, you will need to re-trigger it to apply the change. To remove the
number overlay, set the number value to 0 or -1.

Configuring the Extended Status Notification Display
You can configure the appearance of the Notification within the extended status window in two ways:

1. Use the setLatestEventInfo method to update the details displayed in the standard extended
status Notification display.

2. Set the contentView and contentIntent properties to assign a custom UI for the extended
status display using a Remote View.

The simplest technique is to use the setLatestEventInfo method to populate the default status window
layout. The standard extended status window layout shows the icon and time defined in the construc-
tor, along with a title and a details string, as shown in Figure 9-4.

FIGURE 9-4

Notifications often represent a request for action or atten-
tion, so you can specify a PendingIntent that will be fired if
a user clicks the Notification item. In most cases that Intent
should open your application and navigate to the Activity
that provides context for the notification (e.g., showing an
unread SMS or e-mail message).

Listing 9-20 uses setLatestEventInfo to set Notification values.

LISTING 9-20: Setting Notification values

Context context = getApplicationContext();
// Text to display in the extended status window
String expandedText = "Extended status text";
// Title for the expanded status
String expandedTitle = "Notification Title";
// Intent to launch an activity when the extended text is clicked
Intent intent = new Intent(this, MyActivity.class);
PendingIntent launchIntent = PendingIntent.getActivity(context, 0, intent, 0);

notification.setLatestEventInfo(context,
expandedTitle,
expandedText,
launchIntent);

It’s good form to use one Notification icon to represent multiple instances of the same event (e.g.,
receiving multiple SMS messages). To do this, update the values set by setLatestEventInfo to reflect
the most recent message (or a summary of multiple messages) and re-trigger the Notification to
update the display values.

312 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

FIGURE 9-5

If the details available in the standard extended view are
insufficient (or unsuitable) for your Notification, you can
create your own layout and assign it to your Notification
using a Remote View. Figure 9-5 shows the custom layout
defined, assigned, and modified in Listings 9-21, 9-22,
and 9-23, respectively.

Listing 9-21 defines a custom layout that includes an icon, Text View, and progress bar.

LISTING 9-21: Creating a custom layout for the Notification status window

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:padding="5dp"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<ImageView
android:id="@+id/status_icon"
android:layout_width="wrap_content"
android:layout_height="fill_parent"
android:layout_alignParentLeft="true"

/>
<RelativeLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:paddingLeft="10px"
android:layout_toRightOf="@id/status_icon">
<TextView

android:id="@+id/status_text"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:textColor="#000"
android:textSize="14sp"
android:textStyle="bold"

/>
<ProgressBar

android:id="@+id/status_progress"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_below="@id/status_text"
android:progressDrawable="@android:drawable/progress_horizontal"
android:indeterminate="false"
android:indeterminateOnly="false"

/>
</RelativeLayout>

</RelativeLayout>

To assign your custom layout to the Notification, create a new RemoteView object and assign it to the
contentView property. You will also need to assign a Pending Intent to the contentIntent property, as
shown in Listing 9-22, in which a custom content View is assigned to an ongoing Notification.

Introducing Notifications ❘ 313

LISTING 9-22: Applying a custom layout to the Notification status window

Notification notification = new Notification(R.drawable.icon,
"Custom Content",
System.currentTimeMillis());

notification.flags = notification.flags | Notification.FLAG_ONGOING_EVENT;

notification.contentView = new RemoteViews(this.getPackageName(),
R.layout.my_status_window_layout);

Intent intent = new Intent(this, MyActivity.class);
PendingIntent.getActivity(this, 0, intent, 0));
notification.contentIntent = pendingIntent;

Note that when you manually set the contentView property you must also set
the contentIntent or an exception will be thrown when the notification is
triggered.

Remote Views are a mechanism that enables you to embed and control a layout
embedded within a separate application, most commonly when creating home
screen widgets. There are strict limits on the Views you can use when creating a
layout to be used for a Remote View. These are covered in some detail in the next
chapter.

To modify the properties and appearance of the Views used in your status window layout, use the set*

methods on the Remote View object, as shown in Listing 9-23, which modifies each of the Views used
in the layout defined in Listing 9-21.

LISTING 9-23: Customizing your extended notification window layout

notification.contentView.setImageViewResource(R.id.status_icon,
R.drawable.icon);

notification.contentView.setTextViewText(R.id.status_text,
"Current Progress:");

notification.contentView.setProgressBar(R.id.status_progress,
100, 50, false);

This technique is particularly useful when used with ongoing events (such as in progress downloads or
playing media) to convey details on progress. You’ll learn more about ongoing Notifications later in
this chapter.

Triggering Notifications
To fire a Notification, pass it in to the notify method on the NotificationManager along with an
integer reference ID, as shown in Listing 9-24.

314 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

LISTING 9-24: Triggering a Notification

int notificationRef = 1;
notificationManager.notify(notificationRef, notification);

To update a Notification that’s already been fired, re-trigger it using the Notification Manager, passing
the notify method the same reference ID. You can pass in either the same Notification object or an
entirely new one. As long as the ID values are the same, the new Notification will be used to replace the
status icon and extended status window details.

You also use the reference ID to cancel Notifications by calling the cancel method on the Notification
Manager, as shown here:

notificationManager.cancel(notificationRef);

Canceling a Notification removes its status bar icon and clears it from the extended status window.

Adding Notifications and Toasts to the Earthquake Monitor
In the following example, the EarthquakeService is enhanced to trigger a Notification for each new
earthquake. As well as displaying a status bar icon, the expanded Notification view will display the
magnitude and location of the latest quake, and selecting it will open the Earthquake Activity.

1. Within the EarthquakeService, start by creating a new Notification instance variable to
store the Notification object used to control the status bar icon and extended status window
item details.

private Notification newEarthquakeNotification;
public static final int NOTIFICATION_ID = 1;

2. Extend the onCreate method to create this Notification object.

@Override
public void onCreate() {
updateTimer = new Timer("earthquakeUpdates");

int icon = R.drawable.icon;
String tickerText = "New Earthquake Detected";
long when = System.currentTimeMillis();

newEarthquakeNotification= new Notification(icon,
tickerText,
when);

}

3. Now return to the EarthquakeLookupTask implementation. Expand the onProgressUpdate

stub to trigger the Notification after each new earthquake is added to the Content Provider.
Before initiating the Notification, update the extended details using setLatestEventInfo.
Also create and display a new Toast to announce each new quake.

@Override
protected void onProgressUpdate(Quake... values) {
String svcName = Context.NOTIFICATION_SERVICE;
NotificationManager notificationManager =
(NotificationManager)getSystemService(svcName);

Introducing Notifications ❘ 315

Context context = getApplicationContext();
String expandedText = values[0].getDate().toString();
String expandedTitle = "M:" + values[0].getMagnitude() + " " +

values[0].getDetails();
Intent startActivityIntent = new Intent(EarthquakeService.this,

Earthquake.class);
PendingIntent launchIntent =
PendingIntent.getActivity(context, 0, startActivityIntent, 0);

newEarthquakeNotification.setLatestEventInfo(context,
expandedTitle,
expandedText,
launchIntent);

newEarthquakeNotification.when =
java.lang.System.currentTimeMillis();

notificationManager.notify(NOTIFICATION_ID,
newEarthquakeNotification);

Toast.makeText(context, expandedTitle, Toast.LENGTH_SHORT).show();
}

4. The final step is to clear and disable Notifications within the two Activity classes. This is done
to dismiss the status icon when the application is active.

4.1. Starting with the Earthquake Activity, modify the onCreate method to get a refer-
ence to the Notification Manager.

NotificationManager notificationManager;

@Override
public void onCreate(Bundle savedInstanceState) {
[... existing onCreate ...]

String svcName = Context.NOTIFICATION_SERVICE;
notificationManager =

(NotificationManager)getSystemService(svcName);
}

4.2. Modify the onReceive method of the EarthquakeReceiver. As this is registered only
(so it will execute only) when the Activity is active, you can safely cancel all earth-
quake Notifications here as soon as they’re triggered.

@Override
public void onReceive(Context context, Intent intent) {
loadQuakesFromProvider();

notificationManager.cancel(EarthquakeService.NOTIFICATION_ID);
}

4.3. Next, extend the onResume method to cancel the Notification when the Activity
becomes active.

@Override
public void onResume() {
notificationManager.cancel(EarthquakeService.NOTIFICATION_ID);

IntentFilter filter;
filter = new IntentFilter(EarthquakeService.NEW_EARTHQUAKE_FOUND);

316 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

receiver = new EarthquakeReceiver();
registerReceiver(receiver, filter);
super.onResume();

}

4.4. Repeat the same process with the EarthquakeMap Activity.
NotificationManager notificationManager;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.earthquake_map);

ContentResolver cr = getContentResolver();
earthquakeCursor = cr.query(EarthquakeProvider.CONTENT_URI,

null, null, null, null);

MapView earthquakeMap = (MapView)findViewById(R.id.map_view);
earthquakeMap.getOverlays().add(new

EarthquakeOverlay(earthquakeCursor));

String svcName = Context.NOTIFICATION_SERVICE;
notificationManager = (NotificationManager)getSystemService(svcName);

}

@Override
public void onResume() {
notificationManager.cancel(EarthquakeService.NOTIFICATION_ID);

earthquakeCursor.requery();

IntentFilter filter;
filter = new IntentFilter(EarthquakeService.NEW_EARTHQUAKE_FOUND);
receiver = new EarthquakeReceiver();
registerReceiver(receiver, filter);

super.onResume();
}

public class EarthquakeReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

notificationManager.cancel(EarthquakeService.NOTIFICATION_ID);

earthquakeCursor.requery();
MapView earthquakeMap = (MapView)findViewById(R.id.map_view);
earthquakeMap.invalidate();

}
}

All code snippets in this example are part of the Chapter 9 Earthquake 3 project, available for download at Wrox.com.

Advanced Notification Techniques
In the following sections you’ll learn to enhance Notifications to provide additional alerting through
hardware, particularly by making the device ring, flash, and vibrate.

Introducing Notifications ❘ 317

As each enhancement is described, you will be provided with a code snippet that can be added to the
Earthquake example to provide user feedback on the severity of each earthquake as it’s detected.

To use the Notification techniques described here without also displaying the status
bar icon, simply cancel the Notification directly after triggering it. This stops the
icon from displaying but doesn’t interrupt the other effects.

Using the Defaults
The simplest and most consistent way to add sound, light, and vibration to your Notifications is to use
the current user default settings. Using the defaults property you can combine:

➤ Notification.DEFAULT_LIGHTS

➤ Notification.DEFAULT_SOUND

➤ Notification.DEFAULT_VIBRATE

The following code snippet assigns the default sound and vibration settings to a Notification:

notification.defaults = Notification.DEFAULT_SOUND |
Notification.DEFAULT_VIBRATE;

If you want to use all the default values you can use the Notification.DEFAULT_ALL constant.

Making Sounds
Using an audio alert to notify the user of a device event (like incoming calls) is a technique that predates
the mobile, and has stood the test of time. Most native phone events, from incoming calls to new
messages and low battery, are announced by audible ringtones.

Android lets you play any audio file on the phone as a Notification by assigning a location URI to the
sound property, as shown in the following snippet:

notification.sound = ringURI;

To use your own custom audio, push the file onto your device, or include it as a raw resource, as
described in Chapter 11.

The following snippet can be added to the announceNewQuake method within the Earthquake Service
from the earlier example. It adds an audio component to the earthquake Notification, ringing the
default notification ringtone if a significant earthquake (one with a magnitude greater than 6) occurs.

if (quake.getMagnitude() > 6) {
Uri ringURI =
RingtoneManager.getDefaultUri(RingtoneManager.TYPE_NOTIFICATION);

newEarthquakeNotification.sound = ringURI;
}

Vibrating the Phone
You can use the phone’s vibration function to execute a vibration pattern specific to your Notification.
Android lets you control the pattern of a vibration; you can use vibration to convey information as well
as to get the user’s attention.

318 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

To set a vibration pattern, assign an array of longs to the Notification’svibrate property. Construct
the array so that values representing the length of time (in milliseconds) to vibrate alternate with values
representing the length of time to pause.

Before you can use vibration in your application, you need to be granted permission. Add a
uses-permission to your application to request access to the device vibration using the following code
snippet:

<uses-permission android:name="android.permission.VIBRATE"/>

The following example shows how to modify a Notification to vibrate in a repeating pattern of one
second on and one second off, for five seconds total.

long[] vibrate = new long[] { 1000, 1000, 1000, 1000, 1000 };
notification.vibrate = vibrate;

You can take advantage of this fine-grained control to pass information to your users. In the following
update to the announceNewQuake method, the phone is set to vibrate in a pattern based on the power
of the quake. Earthquakes are measured on an exponential scale, so you’ll use the same scale when
creating the vibration pattern.

For a barely perceptible magnitude 1 quake the phone will vibrate for a fraction of a second; for one
of magnitude 10, an earthquake that would split the earth in two, your users will have a head start on
the Apocalypse when their devices vibrate for a full 20 seconds. Most significant quakes fall between
3 and 7 on the Richter scale, or a more reasonable 200-millisecond-to-four-second range of vibration
duration.

double vibrateLength = 100*Math.exp(0.53*quake.getMagnitude());
long[] vibrate = new long[] {100, 100, (long)vibrateLength };
newEarthquakeNotification.vibrate = vibrate;

The current Android Emulator does not visually or audibly indicate that the device
is vibrating.

Flashing the Lights
Notifications also include properties to configure the color and flash frequency of the device’s LED.

Each device may have different limitations with regard to control over the LED.
Where the color you specify is not available, as close an approximation as possible
will be used. When using LEDs to convey information to the user keep this
limitation in mind and avoid making it the only way such information is made
available.

The ledARGB property can be used to set the LED’s color, while theledOffMS and ledOnMS properties let
you set the frequency and pattern of the flashing LED. You can turn the LED on by setting the ledOnMS

property to 1 and the ledOffMS property to 0, or turn it off by setting both properties to 0.

Introducing Notifications ❘ 319

Once you have configured the LED settings you must also add the FLAG_SHOW_LIGHTS flag to the Noti-
fication’sflags property.

The following code snippet shows how to turn on the red device LED:

notification.ledARGB = Color.RED;
notification.ledOffMS = 0;
notification.ledOnMS = 1;
notification.flags = notification.flags | Notification.FLAG_SHOW_LIGHTS;

Controlling the color and flash frequency gives you another opportunity to pass additional information
to users.

In the earthquake-monitoring example you can help your users perceive the nuances of an exponential
scale by also using the device’s LED to help convey the magnitude. In the following snippet the color of
the LED depends on the size of the quake, and the frequency of the flashing is inversely related to the
power of the quake:

int color;
if (quake.getMagnitude() < 5.4)

color = Color.GREEN;
else if (quake.getMagnitude() < 6)

color = Color.YELLOW;
else

color = Color.RED;

newEarthquakeNotification.ledARGB = color;
newEarthquakeNotification.ledOffMS = (int)vibrateLength;
newEarthquakeNotification.ledOnMS = (int)vibrateLength;
newEarthquakeNotification.flags = newEarthquakeNotification.flags |

Notification.FLAG_SHOW_LIGHTS;

The current Android Emulator does not visually illustrate the LEDs.

Ongoing and Insistent Notifications
You can configure Notifications as ongoing and/or insistent by setting the FLAG_INSISTENT and
FLAG_ONGOING_EVENT flags.

Notifications flagged as ongoing, as in the following snippet, are used to represent events that are
currently in progress (such as a download in progress or music playing in the background). An ongoing
Notification is a requirement for a foreground Service, as described earlier in this chapter.

notification.flags = notification.flags |
Notification.FLAG_ONGOING_EVENT;

Ongoing events are separated from regular Notifications within the extended Notification drawer, as
shown in Figure 9-6.

Insistent Notifications repeat their audio, vibration, and light settings continuously until canceled.
These Notifications are typically used for events that require immediate and timely attention — such as
an incoming call or the ringing of an alarm clock.

320 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

The following code snippet shows how to set a Notification
as insistent:

notification.flags = notification.flags |
Notification.FLAG_INSISTENT;

USING ALARMS

FIGURE 9-6

Alarms are an application-independent means of firing
Intents at predetermined times and intervals.

Alarms are set outside the scope of your applications, so they
can be used to trigger application events or actions even after
your application has been closed. They can be particularly
powerful in combination with Broadcast Receivers, enabling
you to set Alarms that fire broadcast Intents, start Services,
or even open Activities, without the applications’ needing to
be open or running until they’re required.

As such, Alarms are an extremely effective means of reducing
your application’s resource requirements, particularly when
running in the background, by enabling you to stop Services
and eliminate timers while maintaining the ability to perform
scheduled actions.

For example, you can use Alarms to implement an alarm
clock application, perform regular network lookups, or
schedule time-consuming or cost-bound operations at ‘‘off-
peak’’ times.

For timing operations that occur only during the lifetime of your applications,
using the Handler class in combination with Timers and Threads is a better
approach than using Alarms, as this allows Android better control over system
resources. Alarms provide a mechanism to reduce the lifetime of your applications
by moving scheduled events out of their control.

Alarms in Android remain active while the device is in sleep mode and can optionally be set to wake
the device; however, all Alarms are canceled whenever the device is rebooted.

Alarm operations are handled through the AlarmManager, a system Service accessed via
getSystemService, as shown here:

AlarmManager alarms =
(AlarmManager)getSystemService(Context.ALARM_SERVICE);

To create a new one-shot Alarm, use the set method and specify an alarm type, a trigger time, and a
Pending Intent to fire when the Alarm triggers. If the trigger time you specify for the Alarm occurs in
the past, the Alarm will be triggered immediately.

Using Alarms ❘ 321

There are four alarm types available. Your selection will determine if the time value passed in the set

method represents a specific time or an elapsed wait:

➤ RTC_WAKEUP Wake the device from sleep to fire the Pending Intent at the clock time specified.

➤ RTC Fire the Pending Intent at the time specified, but do not wake the device.

➤ ELAPSED_REALTIME Fire the Pending Intent based on the amount of time elapsed since the
device was booted, but do not wake the device. The elapsed time includes any period of time
the device was asleep. Note that the time elapsed is calculated based on when the device was
last booted.

➤ ELAPSED_REALTIME_WAKEUP After a specified length of time has passed since device boot,
wake the device from sleep and fire the Pending Intent.

The Alarm-creation process is shown in Listing 9-25.

LISTING 9-25: Creating an Alarm

int alarmType = AlarmManager.ELAPSED_REALTIME_WAKEUP;
long timeOrLengthofWait = 10000;
String ALARM_ACTION = "ALARM_ACTION";
Intent intentToFire = new Intent(ALARM_ACTION);
PendingIntent pendingIntent = PendingIntent.getBroadcast(this, 0,
intentToFire, 0);

alarms.set(alarmType, timeOrLengthofWait, pendingIntent);

When the Alarm goes off, the Pending Intent you specified will be broadcast. Setting a second Alarm
using the same Pending Intent replaces the preexisting Alarm.

To cancel an Alarm, call cancel on the Alarm Manager, passing in the Pending Intent you no longer
wish to trigger, as shown in the following snippet:

alarms.cancel(pendingIntent);

In Listing 9-26, two Alarms are set and the first one is subsequently canceled. The first is explicitly set
to a specific time and will wake up the device in order to fire. The second is set to fire 30 minutes after
the device is started, but will not wake the device if it’s sleeping.

LISTING 9-26: Setting and canceling an Alarm

AlarmManager alarms =
(AlarmManager)getSystemService(Context.ALARM_SERVICE);

String MY_RTC_ALARM = "MY_RTC_ALARM";
String ALARM_ACTION = "MY_ELAPSED_ALARM";

PendingIntent rtcIntent =
PendingIntent.getBroadcast(this, 0,

new Intent(MY_RTC_ALARM), 1);
continues

322 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

LISTING 9-26 (continued)

PendingIntent elapsedIntent =
PendingIntent.getBroadcast(this, 0,

new Intent(ALARM_ACTION), 1);

// Wakeup and fire intent in 5 hours.
Date t = new Date();
t.setTime(java.lang.System.currentTimeMillis() + 60*1000*5);
alarms.set(AlarmManager.RTC_WAKEUP, t.getTime(), rtcIntent);

// Fire intent in 30 mins if already awake.
alarms.set(AlarmManager.ELAPSED_REALTIME, 30*60*1000, elapsedIntent);

// Cancel the first alarm.
alarms.cancel(rtcIntent);

Setting Repeating Alarms
The Alarm Manager lets you set repeating alarms for situations requiring regularly scheduled events.
Repeating alarms work in exactly the same way as the one-shot alarms described earlier, but will
continue to trigger at a specified interval until canceled.

Because alarms are set outside your Application context they are perfect for scheduling regular updates
or data lookups so that they don’t require a Service to be constantly running in the background.

To set a repeating alarm, use the setRepeating or setInexactRepeating method on the Alarm Man-
ager, as shown in Listing 9-27. Both support an alarm type, an initial trigger time, and a Pending Intent
to fire when the alarm triggers (as described in the previous section).

Use setRepeating when you need fine-grained control over the exact interval of your repeating alarm.
The interval value passed in to this method lets you specify an exact interval for your alarm, down to
the millisecond.

The setInexactRepeating method is a powerful technique for reducing the battery drain associated
with waking the device on a regular schedule to perform updates. Rather than specifying an exact
interval, this method accepts one of the following Alarm Manager constants:

➤ INTERVAL_FIFTEEN_MINUTES

➤ INTERVAL_HALF_HOUR

➤ INTERVAL_HOUR

➤ INTERVAL_HALF_DAY

➤ INTERVAL_DAY

At run time Android will synchronize multiple inexact repeating alarms and trigger them simul-
taneously. This prevents each application from separately waking the device in a similar but
non-overlapping period to perform an update or poll a network data source. By synchronizing these
alarms the system is able to limit the impact of regularly repeating events on battery resources.

Using Alarms ❘ 323

LISTING 9-27: Setting repeating alarms

// Fire an intent exactly every hour if already awake.
alarms.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,

60*60*1000, 60*60*1000, elapsedIntent);

// Wakeup and fire an alarm about every hour
alarms.setInexactRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,

60*60*1000, AlarmManager.INTERVAL_DAY,
elapsedIntent);

The battery impact of setting regularly repeating alarms can be significant. It is
good practice to limit your alarm frequency to the slowest acceptable rate, wake
the device only if necessary, and use the inexact repeating alarm whenever possible.

Using Repeating Alarms to Update Earthquakes
In this final modification to the Earthquake example you’ll use Alarms to replace the Timer currently
used to schedule Earthquake network refreshes.

One of the most significant advantages of this approach is that it allows the Service to stop itself when
it has completed a refresh, freeing significant system resources.

1. Start by creating a new EarthquakeAlarmReceiver class that extends BroadcastReceiver.

package com.paad.earthquake;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class EarthquakeAlarmReceiver extends BroadcastReceiver {

}

2. Override the onReceive method to explicitly start the EarthquakeService.

@Override
public void onReceive(Context context, Intent intent) {
Intent startIntent = new Intent(context, EarthquakeService.class);
context.startService(startIntent);

}

3. Create a new public static String to define the action that will be used to trigger the Broadcast
Receiver.

public static final String ACTION_REFRESH_EARTHQUAKE_ALARM =
"com.paad.earthquake.ACTION_REFRESH_EARTHQUAKE_ALARM";

4. Add the new EarthquakeAlarmReceiver to the manifest, including an <intent-filter> tag
that listens for the action defined in Step 3.

324 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

<receiver android:name=".EarthquakeAlarmReceiver">
<intent-filter>
<action

android:name="com.paad.earthquake.ACTION_REFRESH_EARTHQUAKE_ALARM"
/>

</intent-filter>
</receiver>

5. Within the EarthquakeService, update the onCreate method to get a reference to the
AlarmManager, and create a new PendingIntent that will be fired when the Alarm goes off.
You can also remove the timerTask initialization.

AlarmManager alarms;
PendingIntent alarmIntent;

@Override
public void onCreate() {
int icon = R.drawable.icon;
String tickerText = "New Earthquake Detected";
long when = System.currentTimeMillis();

newEarthquakeNotification =
new Notification(icon, tickerText, when);

alarms = (AlarmManager)getSystemService(Context.ALARM_SERVICE);

String ALARM_ACTION;
ALARM_ACTION =
EarthquakeAlarmReceiver.ACTION_REFRESH_EARTHQUAKE_ALARM;
Intent intentToFire = new Intent(ALARM_ACTION);
alarmIntent =
PendingIntent.getBroadcast(this, 0, intentToFire, 0);

}

6. Modify the onStartCommand method to set a repeating Alarm rather than use a Timer to
schedule the refreshes (if automated updates are enabled). Setting a new Intent with the same
action will automatically cancel any previous Alarms.

Take this opportunity to modify the return result. Rather than setting the Service to sticky,
return Service.START_NOT_STICKY. In Step 7 you will stop the Service when the background
refresh is complete; the use of alarms guarantees that another refresh will occur at the spec-
ified update frequency, so there’s no need for the system to restart the Service if it is killed
mid-refresh.

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
SharedPreferences prefs =
getSharedPreferences(Preferences.USER_PREFERENCE,
Activity.MODE_PRIVATE);

int minMagIndex = prefs.getInt(Preferences.PREF_MIN_MAG, 0);
if (minMagIndex < 0)
minMagIndex = 0;

Summary ❘ 325

int freqIndex = prefs.getInt(Preferences.PREF_UPDATE_FREQ, 0);
if (freqIndex < 0)
freqIndex = 0;

boolean autoUpdate =
prefs.getBoolean(Preferences.PREF_AUTO_UPDATE, false);

Resources r = getResources();
int[] minMagValues = r.getIntArray(R.array.magnitude);
int[] freqValues = r.getIntArray(R.array.update_freq_values);

minimumMagnitude = minMagValues[minMagIndex];
int updateFreq = freqValues[freqIndex];

if (autoUpdate) {
int alarmType = AlarmManager.ELAPSED_REALTIME_WAKEUP;
long timeToRefresh = SystemClock.elapsedRealtime() +

updateFreq*60*1000;
alarms.setRepeating(alarmType, timeToRefresh,

updateFreq*60*1000, alarmIntent);
}
else
alarms.cancel(alarmIntent);

refreshEarthquakes();

return Service.START_NOT_STICKY;
};

7. In the EarthquakeLookupTask, fill in the onPostExecute stub to call stopSelf when the back-
ground refresh has completed. Because the asynchronous lookup task is called only from
within onStartCommand, and only if not already running, this ensures the Service is never pre-
maturely terminated.

@Override
protected void onPostExecute(Void result) {
stopSelf();

}

8. Remove the updateTimer instance variable and the Timer Task instance doRefresh.

All code snippets in this example are part of the Chapter 9 Earthquake 4 project, available for download at Wrox.com.

SUMMARY

Background Services are one of the most compelling reasons to develop applications on the Android
platform, but using them introduces several complexities to your applications. In this chapter you
learned how to use these invisible application components to perform processing while your applica-
tions are running in the background.

326 ❘ CHAPTER 9 WORKING IN THE BACKGROUND

You were introduced to Toasts, transient message boxes that let you display information to users
without stealing focus or interrupting their workflow.

You used the Notification Manager to send alerts to your users from within Services and Activities,
using customized LEDs, vibration patterns, and audio files to convey detailed event information. You
learned how (and when) to create ongoing Notifications and how to customize their extended status
window Layouts.

Using Alarms, you were able to schedule one-off and repeating events that broadcast Intents or started
Services.

This chapter also demonstrated how to:

➤ Bind a Service to an Activity to make use of a more detailed, structured interface than the
simple Intent extras.

➤ Ensure that your applications remain responsive by moving time-consuming processing like
network lookups onto worker threads using AsyncTask.

➤ Use handlers to synchronize child threads with the main application GUI when performing
operations using visual controls and Toasts.

In Chapter 10 you’ll learn how to integrate your application into the home screen. Starting with
creating dynamic, interactive home screen widgets you’ll move on to creating Live Folders and Live
Wallpapers. Finally you’ll be introduced to the Quick Search Box, and learn how to surface your appli-
cation’s search results to the home screen search widget.

10
Invading the Phone-Top

WHAT’S IN THIS CHAPTER?

➤ Creating home screen Widgets

➤ Implementing Live Folders

➤ Adding search to your applications

➤ Surfacing search results to the Quick Search Box

➤ Creating Live Wallpaper

Widgets, Live Folders, Live Wallpaper, and the Quick Search Box let you own a piece of the
user’s home screen, providing either a window to your application or a stand-alone source of
information directly on the home screen. They’re an exciting innovation for users and develop-
ers, providing the following:

➤ Users get instant access to interesting information without needing to open an application.

➤ Developers get an entry point to their applications directly from the home screen.

A useful widget, Live Folder, or dynamic wallpaper decreases the chance that an application
will be uninstalled, and increases the likelihood of its being used.

With such power comes responsibility. Widgets run constantly as subprocesses of the home-
screen process. You need to be particularly careful when creating widgets to ensure they remain
responsive and don’t drain system resources.

This chapter demonstrates how to create and use App Widgets, Live Folders, and Live Wallpa-
per detailing what they are, how to use them, and some techniques for incorporating interactiv-
ity into these application components.

328 ❘ CHAPTER 10 INVADING THE PHONE-TOP

FIGURE 10-1

It also describes how to integrate the Android search frame-
work into your application and surface search results to the
Quick Search Box.

INTRODUCING HOME-SCREEN
WIDGETS

Widgets, more properly AppWidgets, are visual application
components that can be added to other applications. The
most notable example is the default Android home screen,
where users can add widgets to their phone-top, though any
application you create can become an AppHost and support
third-party widgets if you desire.

Widgets enable your application to own a piece of interactive
screen real estate, and an entry point, directly on the user’s
home screen. A good App Widget provides useful, concise,
and timely information with a minimal resource cost.

Widgets can be either stand-alone applications (such as the
native clock) or compact but highly visible components of
larger applications — such as the calendar and media player
widgets.

Figure 10-1 shows four of the standard home-screen widgets
available on Android devices: the search box, power control,
news and weather, and media player.

To add a widget to the home screen, long-press a piece of empty space and select
Widgets. You will be presented with a list of available widgets. Once you’ve added
one you can move it by long-pressing it and dragging it around the screen. Remove
widgets by dragging them into the garbage can icon at the bottom of the screen.

Widgets embedded into the home screen are hosted within the home screen’s process. They will wake
the device based on their update rates to ensure each widget is up to date when it is visible. As a devel-
oper, you need to take extra care when creating your widgets to ensure that the update rate is as low as
possible, and that the code executed within the update method is lightweight.

The following sections show how to create widgets and describe some best practices for performing
updates and adding interaction.

CREATING APP WIDGETS

App Widgets are implemented as IntentReceivers. They use RemoteViews to update a view hierarchy
hosted within another application process; in most cases that host process is the home screen.

Creating App Widgets ❘ 329

To create a widget for your application you need to create three components:

1. A layout resource that defines the UI for the widget

2. An XML definition file that describes the metadata associated with the widget

3. An Intent Receiver that defines and controls the widget

You can create as many widgets as you want for a single application, or have an application that
consists of a single widget. Each widget can use the same size, layout, refresh rate, and update logic, or
they can all use different ones. In many cases it can be useful to offer multiple versions of your widgets
in different sizes.

Creating the Widget Layout
The first step in creating your widget is to design and implement its user interface.

Construct your widget’s UI as you would other visual components in Android, as described in
Chapter 4. Best practice is to define your widget layout using XML as an external layout resource, but
it’s also possible to lay out your UI programmatically within the Intent Receiver’s onCreate method.

Widget Design Guidelines
Widgets are often displayed alongside both native and third-party widgets, so it’s important that yours
conform to design standards. This is particularly important because widgets are most often used on the
home screen.

There are widget UI design guidelines for controlling both layout size and visual styling. The former
is rigidly enforced while the latter is a guide only; both are summarized in the following sections.
Additional detail can also be found on the Android Developers Widget Design Guidelines site at
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html

Widget Layout Sizes
The default Android home screen is divided into a four-by-four grid of cells, each a minimum of 74×74
device-independent pixels (dp). To select the height and width of your widget, start by calculating the
number of cells you wish to use. The total pixels required will be 74 times the cell count minus two
pixels for padding, as shown in the following formula:

Minimum size in dp = (Cell count * 74dp) - 2dp

Where your minimum dimensions don’t match the exact dimensions of the home screen cells, your
widget’s size will be rounded up to fill all the cells.

Widget dimensions are specified in the widget settings file, as described later in this chapter.

Widget Visual Styling
The visual styling of your widget, your application’s presence on the home screen, is very important.
You should ensure that its style is consistent with that of your application, as well as with those of the
other home-screen components.

It’s beyond the scope of this book to describe the widget style promoted by Google in detail, but note
the description available at the widget UI guidelines link given earlier. Google’s description includes the
image resources used to create the native Android widgets shipped with Google Experience devices.

330 ❘ CHAPTER 10 INVADING THE PHONE-TOP

App Widgets fully support transparent backgrounds and allow the use of NinePatches and partially
transparent PNG-drawable resources.

Supported Widget Views and Layouts
Because of security and performance considerations there are several restrictions on the layouts and
Views available to you when you’re constructing your widget UI.

In general, the following Views are unavailable for App Widget layouts and will result in a null pointer
error (NPE) if used:

➤ All custom Views

➤ Descendents of the allowed Views

➤ EditText

Currently, the layouts available are limited to:

➤ FrameLayout

➤ LinearLayout

➤ RelativeLayout

The Views they contain are restricted to:

➤ AnalogClock

➤ Button

➤ Chronometer

➤ ImageButton

➤ ImageView

➤ ProgressBar

➤ TextView

The Text Views and Image Views are particularly useful. Later in this chapter you’ll see how to use the
Image View in conjunction with the SelectionStateDrawable resource to create interactive widgets
with little or no code.

Listing 10-1 shows a sample layout resource used to define the UI of an App Widget.

LISTING 10-1: App Widget XML layout resource

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:padding="10sp">

Creating App Widgets ❘ 331

<ImageView
android:id="@+id/widget_image"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/icon"

/>
<TextView

android:id="@+id/widget_text"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="Text Goes Here"

/>
</LinearLayout>

Defining Your Widget Settings
Widget definition resources are stored as XML in the res/xml folder of your project. The
appwidget-provider tag lets you describe the widget metadata that defines the size, layout, and update
rate for your widget using the following attributes:

➤ initialLayout The layout resource to use in constructing the widget’s user interface.

➤ minWidth / minHeight Respectively, the minimum width and minimum height of the wid-
get, as described in the previous section.

➤ label The title used by your widget in the widget-picker.

➤ updatePeriodMillis The minimum period between widget updates in milliseconds.
Android will wake the device to update your widget at this rate, so you should specify at least
an hour. Ideally your widget shouldn’t use this update technique more than once or twice
daily. More details on this and other update techniques are provided later in this chapter.

➤ configure You can optionally specify a fully qualified Activity to be launched when your
widget is added to the home screen. This Activity can be used to specify widget settings and
user preferences. Using a configuration Activity is described later in this chapter.

Listing 10-2 shows the widget resource file for a two-cell-by-two-cell widget that updates once every
hour and uses the layout resource defined in the previous section.

LISTING 10-2: App Widget Provider definition

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider
xmlns:android="http://schemas.android.com/apk/res/android"
android:initialLayout="@layout/my_widget_layout"
android:minWidth="146dp"
android:minHeight="146dp"
android:label="My App Widget"
android:updatePeriodMillis="3600000"

/>

332 ❘ CHAPTER 10 INVADING THE PHONE-TOP

Creating Your Widget Intent Receiver and Adding It
to the Application Manifest

Widgets are implemented as Intent Receivers with Intent Filters that catch broadcast Intents, which
request widget updates using the AppWidget.ACTION_APPWIDGET_UPDATE, DELETED, ENABLED, and
DISABLED actions. You can create your widget by extending the IntentReceiver class directly and
interpreting those broadcast Intents by overriding the onReceive method.

The AppWidgetProvider class provides a simplified alternative by encapsulating the Intent processing
and presenting you with event handlers for the update, delete, enable, and disable events.

Listing 10-3 shows a simple widget implementation that extends AppWidgetProvider and overrides the
onUpdate method:

LISTING 10-3: App Widget implementation

import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.content.Context;

public class MyAppWidget extends AppWidgetProvider {
@Override
public void onUpdate(Context context,

AppWidgetManager appWidgetManager,
int[] appWidgetIds) {

// TODO Update the Widget UI.
}

}

Widgets are added to the application manifest much like other Intent Receivers. However, to spec-
ify an Intent Receiver as an App Widget you need to add two additional tags to its manifest node
(Listing 10-4).

➤ An Intent Filter for the android.appwidget.action.APPWIDGET_UPDATE action

➤ A reference to the metadata XML resource that describes your widget

LISTING 10-4: App Widget manifest node

<receiver android:name=".MyAppWidget" android:label="My App Widget">
<intent-filter>
<action android:name="android.appwidget.action.APPWIDGET_UPDATE" />

</intent-filter>
<meta-data
android:name="android.appwidget.provider"
android:resource="@xml/my_app_widget_info"

/>
</receiver>

Creating App Widgets ❘ 333

Introducing Remote Views and the App Widget Manager
The RemoteViews class is used to describe and manipulate a View hierarchy that’s hosted within another
application process. This lets you change a property, or run a method, on a View running as part of
another application.

For example, the Views within App Widgets are hosted within a separate process (generally the home
screen), so Remote Views can be used to modify the widget UI from the Intent Receiver running within
your application.

The AppWidgetManager is used to update App Widgets and provide details related to them.

Using Remote Views with the App Widget Manager, you can modify the appearance of the Views
supported by the App Widget framework. Among other things, you can change the visibility, text, or
image values, and add click listeners.

This section describes how to create new Remote Views from within and without the onUpdate method
of an App Widget Provider. It also demonstrates how to use Remote Views to update widget UI and
add interactivity to your widgets.

Creating Remote Views and Using the App Widget Manager to Apply Them
To create a new Remote Views object you must pass the name of the calling application package, and
the layout resource you plan to manipulate, into the constructor, as shown in Listing 10-5. Later in
this section you’ll learn how to use this Remote Views object to update the Views and layout of your
widget.

LISTING 10-5: Using Remote Views

RemoteViews views = new RemoteViews(context.getPackageName(),
R.layout.my_remote_layout);

To use Remote Views on widgets, call the static getInstance method to return an instance of the App
Widget Manager and use it to find identifiers for each instance of a particular widget class, as in this
continuation of Listing 10-5:

// Get the App Widget Manager.
AppWidgetManager appWidgetManager = AppWidgetManager.getInstance(context);
// Retrieve the identifiers for each instance of your chosen widget.
ComponentName thisWidget = new ComponentName(context, MyAppWidget.class);
int[] appWidgetIds = appWidgetManager.getAppWidgetIds(thisWidget);

When you’ve finished making changes to a Remote Views object, apply those modifications to one or
more widgets by calling the updateAppWidget method on the App Widget Manager, passing in either
an individual widget ID or an array of identifiers:

appWidgetManager.updateAppWidget(appWidgetIds, views);

334 ❘ CHAPTER 10 INVADING THE PHONE-TOP

The standard pattern used to update widget UI is to iterate over the widget ID array as shown in
Listing 10-6. This enables you to apply different UI values to each widget based on its configuration
settings or UI requirements.

LISTING 10-6: A standard pattern for updating Widget UI

final int N = appWidgetIds.length;
// Iterate through each widget, creating a RemoteViews object and
// applying the modified RemoteViews to each widget.
for (int i = 0; i < N; i++) {

int appWidgetId = appWidgetIds[i];
// Create a Remove View
RemoteViews views = new RemoteViews(context.getPackageName(),

R.layout.my_widget_layout);

// TODO Update the widget UI using the views object.

// Notify the App Widget Manager to update the widget using
// the modified remote view.
appWidgetManager.updateAppWidget(appWidgetId, views);

}

Using a Remote View within the App Widget Provider’s onUpdate Handler
The App Widget Provider simplifies your widget interactions by passing the App Widget Manager, and
an array of matching App Widget IDs, as parameters into the onUpdate handler.

You can then follow the same pattern as shown above, without the need to obtain a reference
to the App Widget Manager or find the identifier values for the affected widgets first as shown in
Listing 10-7.

LISTING 10-7: Using a Remote View within the App Widget Provider’s onUpdate Handler

@Override
public void onUpdate(Context context,

AppWidgetManager appWidgetManager,
int[] appWidgetIds) {

final int N = appWidgetIds.length;
for (int i = 0; i < N; i++) {
int appWidgetId = appWidgetIds[i];
// Create a Remove View
RemoteViews views = new RemoteViews(context.getPackageName(),

R.layout.my_widget_layout);
// TODO Update the UI.

// Notify the App Widget Manager to update the widget using
// the modified remote view.
appWidgetManager.updateAppWidget(appWidgetId, views);

}
}

Creating App Widgets ❘ 335

Using Remote Views to Modify UI
Remote Views expose a variety of methods designed to provide access to the properties and methods
available on Views in order for you to change their appearance.

The most versatile of these is a series of methods that lets you execute a target method name on a
remotely hosted View. These methods support the passing of single-value parameters. Supported
method signatures include a parameter for each primitive type, including Boolean, integer, and float,
plus strings, bitmaps, and URI parameters.

Listing 10-8 shows examples of some of the method signatures supported.

LISTING 10-8: Using a Remote View to modify App Widget UI

// Set the image level for an ImageView.
views.setInt(R.id.widget_image_view, "setImageLevel", 2);
// Show the cursor of a TextView.
views.setBoolean(R.id.widget_text_view, "setCursorVisible", true);
// Assign a bitmap to an ImageButton.
views.setBitmap(R.id.widget_image_button, "setImageBitmap", myBitmap);

Remote Views also include a set of View-specific methods to set values applicable to a particular View
class, including Text Views, Image Views, Progress Bars, and Chronometers.

Listing 10-9 shows examples of some of these specialist methods:

LISTING 10-9: Modifying View properties within an App Widget Remote View

// Update a Text View
views.setTextViewText(R.id.widget_text_view, "Updated Text");
views.setTextColor(R.id.widget_text_view, Color.BLUE);
// Update an Image View
views.setImageViewBitmap(R.id.widget_image_view, myBitmap);
// Update a Progress Bar
views.setProgressBar(R.id.widget_progressbar, 100, 50, false);
// Update a Chronometer
views.setChronometer(.id.widget_chronometer,
SystemClock.elapsedRealtime(), null, true);

You can also set the visibility of any View hosted within Remote Views by calling setViewVisibility,
as shown here:

views.setViewVisibility(R.id.widget_text_view, View.VISIBLE);

As described in the previous section, once you’ve made changes to a Remote Views object you must use
the App Widget Manager to apply those changes to a particular widget, as shown here:

appWidgetManager.updateAppWidget(appWidgetId, views);

Making Your Widgets Interactive
You can also add interactivity to your widgets using Remote Views, but reactions to user input are
tightly restricted.

336 ❘ CHAPTER 10 INVADING THE PHONE-TOP

Because they run within the home-screen process, the widgets themselves inherit its permissions. As a
result of these security implications widget interactivity is carefully controlled.

Widget interaction is generally limited to two possibilities:

➤ Adding a click listener to one or more views within the layout

➤ Changing the UI based on selection changes

It’s notable that there is no supported technique for entering text directly into an App Widget.

If you need text input from your widget, best practice is to add a click listener that displays an Activity
to accept the user data when a portion of the widget is clicked.

One popular alternative is to use Image Views designed to look like Edit Text
controls. By means of Selection State Drawables they can appear to gain focus.
When the Image View is clicked, a partially transparent Activity is launched to
accept the user input.

Using a Click Listener
The most powerful technique for adding interactivity to your widget is through the use of the
setOnClickPendingIntent method on a Remote Views object.

This lets you specify a Pending Intent that will be fired when the user clicks on the specified widget
View. Pending Intents (described in more detail in Chapter 5) can contain Intents used to start Activities
or Services or broadcast Intents.

Listing 10-10 demonstrates a broadcast Intent assigned to a Text View element within a widget
layout:

LISTING 10-10: Adding a Click Listener to an App Widget

Intent intent = new Intent("com.paad.ACTION_WIDGET_CLICK");
PendingIntent pendingIntent = PendingIntent.getBroadcast(this, 0, intent, 0);
views.setOnClickPendingIntent(R.id.my_text_view, pendingIntent);

Using this technique you can add click handlers to one or more of the Views used within your widget,
which means you can add support for multiple actions.

For example, the standard media player widget assigns different broadcast Intents to several buttons,
providing playback control through the play, pause, and next buttons.

Changing Image Views Based on Selection Focus
Image Views are one of the most flexible types of View available for your widget UI, providing support
for some basic user interactivity within your widgets.

Creating App Widgets ❘ 337

Using a SelectionStateDrawable resource (described in Chapter 3) you can create a Drawable resource
that displays a different image based on the selection state of the View it is assigned to. By using a
Selection State Drawable in your widget design, you can create a dynamic UI that highlights the user
selection as he or she navigates though the widget’s controls.

The XML snippet in Listing 10-11 shows a sample Selection State Drawable resource.

LISTING 10-11: A Selection State Drawable resource for an App Widget

<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:state_window_focused="false"

android:drawable="@drawable/widget_bg_normal"/>
<item android:state_focused="true"

android:drawable="@drawable/widget_bg_selected"/>
<item android:state_pressed="true"

android:drawable="@drawable/widget_bg_pressed"/>
<item android:drawable="@drawable/widget_bg_normal"/>

</selector>

The Drawable resources referenced should be stored, along with the selection state xml file, in the
application’s res/drawable folder. You can then use the Selection State Drawable directly as the source
for an Image View, or as the background image for any widget View.

Refreshing Your Widgets
Widgets are most commonly displayed on the home screen, so it’s important that they’re always kept
relevant and up to date. It’s just as important to balance that relevance with your widget’s impact on
system resources — particularly battery life.

The following sections describe several techniques for managing your widget refresh intervals.

Using the Minimum Update Rate
The simplest, but potentially most resource-intensive, technique is to set the minimum update rate for
a widget in the XML definition file, as shown in Listing 10-12, where the widget is updated once every
hour:

LISTING 10-12: Setting the App Widget minimum update rate

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider
xmlns:android="http://schemas.android.com/apk/res/android"
android:initialLayout="@layout/my_widget_layout"
android:minWidth="146dp"
android:minHeight="146dp"
android:label="My App Widget"
android:updatePeriodMillis="3600000"

/>

338 ❘ CHAPTER 10 INVADING THE PHONE-TOP

Setting this value will cause the device to broadcast an Intent requesting an update of your widget at
the rate specified.

The host device will wake up to complete these updates, meaning they are
completed even when the device is on standby. This has the potential to be a
significant resource drain, so it’s very important to consider the implications of
your update rate.

This technique should be used to define the absolute minimum rate at which your widget must be
updated to remain useful. Generally the minimum expected update rate should be at least an hour,
ideally not more than once or twice a day.

If your device requires more frequent updates, consider using one of the techniques described in the
following sections to dynamically perform updates using either an event/Intent-driven model or a more
efficient scheduled model using Alarms.

Listening for Intents
As widgets are implemented as Intent Receivers you can trigger updates and UI refreshes by registering
Intent Filters for additional actions.

This is a dynamic approach to refreshing your widget that uses a more efficient event model rather than
the potentially battery-draining method of specifying a short minimum refresh rate.

The XML snippet in Listing 10-13 assigns a new Intent Filter to the manifest entry of the widget defined
earlier:

LISTING 10-13: Listening for Intent broacasts within App Widgets

<receiver android:name=".MyAppWidget" android:label="My App Widget">
<intent-filter>
<action android:name="android.appwidget.action.APPWIDGET_UPDATE" />

</intent-filter>
<intent-filter>
<action android:name="com.paad.chapter9.FORCE_WIDGET_UPDATE" />

</intent-filter>
<meta-data
android:name="android.appwidget.provider"
android:resource="@xml/my_app_widget_info"

/>
</receiver>

By updating the widget’s onReceive method handler as shown in Listing 10-14, you can listen for this
new Intent and use it to update your widget.

Creating App Widgets ❘ 339

LISTING 10-14: Updating App Widgets based on broadcast Intents

public static String FORCE_WIDGET_UPDATE =
"com.paad.chapter9.FORCE_WIDGET_UPDATE";

@Override
public void onReceive(Context context, Intent intent) {
super.onReceive(context, intent);

if (FORCE_WIDGET_UPDATE.equals(intent.getAction())) {
// TODO Update widget UI.

}
}

To trigger an update of your widget at any point in your application, you can broadcast an Intent using
this action:

context.sendBroadcast(new Intent(FORCE_WIDGET_UPDATE));

This technique is particularly useful for reacting to system, user, or application events — like a data
refresh, or a user action such as clicking buttons on the widget itself. You can also register for system
event broadcasts such as changes to network connectivity, battery level, or screen brightness.

Using Alarms
Alarms provide a middle-ground alternative to the polling and Intent-based techniques described so
far.

Alarms, covered in detail in Chapter 9, provide a flexible way to schedule regular events within your
application. Using alarms you can poll at regular intervals, using an Intent to trigger your updates.

Using Alarms to refresh your widgets is similar to using the Intent-driven model described earlier. Add
a new Intent Filter to the manifest entry for your widget and override its onReceive method to identify
the Intent that triggered it. Within your application, use the Alarm Manager to create an Alarm that
fires an Intent with the registered action.

Alarms have an advantage over the minimum refresh rate, thanks to their flexibility.

Like the widgets’ refresh rate, Alarms also have the ability to wake the device when they fire — making
it equally important to take care to minimize battery use.

Alternatively, by using the RTC or ELAPSED_REALTIME modes when constructing your alarm, you
can configure it to trigger after a minimum interval has elapsed, but only after the device has
awakened:

alarmManager.setRepeating(AlarmManager.ELAPSED_REALTIME,
AlarmManager.INTERVAL_HOUR,
AlarmManager.INTERVAL_HOUR,
pi);

340 ❘ CHAPTER 10 INVADING THE PHONE-TOP

Using this technique will ensure your widget is up to date when visible, without draining the battery
unnecessarily to update the widget when the screen is off.

If your widget does need to be updated even when the device is on standby, you can optimize this
process with the inexact repeating option, shown here:

String alarmService = Context.ALARM_SERVICE;
AlarmManager alarmManager = (AlarmManager)getSystemService(alarmService);

Intent intent = new Intent(MyAppWidget.FORCE_WIDGET_UPDATE);
PendingIntent pi = PendingIntent.getBroadcast(this,

0,
intent,
0);

alarmManager.setInexactRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
AlarmManager.INTERVAL_HALF_DAY,
AlarmManager.INTERVAL_HALF_DAY,
pi);

As described in Chapter 9, the inexact repeating Alarm will optimize the alarm triggers by phase-
shifting all the alarms scheduled to occur at similar times. This ensures the device is only awakened
once, rather than several times within a few minutes.

Creating and Using a Widget Configuration Activity
In some cases an App Widget will be significantly more useful if the user is given the opportunity to
customize the data it displays and how the data is displayed. This is particularly important given that
multiple instances of the same widget can be added to the home screen.

An App Widget configuration Activity is an Activity that is launched immediately when a widget is
added to the home screen. It can be any Activity within your application, provided it has an Intent
Filter for the APPWIDGET_CONFIGURE action, as shown here:

<activity android:name=". MyWidgetConfigurationActivity">
<intent-filter>
<action android:name="android.apwidget.action.APPWIDGET_CONFIGURE"/>

</intent-filter>
</activity>

It must also return a result Intent that includes an extra that describes the App Widget ID of the wid-
get it is configuring using the EXTRA_APPWIDGET_ID constant. This extra is included in the Intent that
launches the Activity.

Intent result = new Intent();
result.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);
setResult(RESULT_OK, result);
finish();

Creating an Earthquake Widget ❘ 341

To assign a completed configuration Activity to a widget you must add it to the widget settings file us-
ing the configure tag. The activity must be specified by its fully qualified package name, as shown here:

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider

xmlns:android="http://schemas.android.com/apk/res/android"
android:initialLayout="@layout/my_widget_layout"
android:minWidth="146dp"
android:minHeight="146dp"
android:label="My App Widget"
android:updatePeriodMillis="3600000"
android:configure="com.paad.chapter9.MyWidgetConfigurationActivity"

/>

CREATING AN EARTHQUAKE WIDGET

FIGURE 10-2

The following instructions show you how to create a new
home-screen widget to display details for the latest earth-
quake detected. The UI for this widget is simple to the point
of being inane; this is a side effect of keeping the example
as concise as possible. Note that it does not conform to the
widget style guidelines.

Once completed and added to the home screen, your widget
will appear as in Figure 10-2.

Using a combination of the update techniques described
above, this widget listens for broadcast Intents that an-
nounce an update has been performed and sets the minimum
update rate to ensure it is updated once per day regardless.

The following code extends the Earthquake application last
seen in Chapter 8:

1. Start by creating the layout for the widget UI as an
XML resource. Use a Linear Layout to configure
Text Views that display the quake magnitude and
location:

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#F111"
android:padding="5sp">
<TextView
android:id="@+id/widget_magnitude"
android:layout_width="wrap_content"

342 ❘ CHAPTER 10 INVADING THE PHONE-TOP

android:layout_height="fill_parent"
android:textSize="24sp"
android:padding="3dp"

/>
<TextView
android:id="@+id/widget_details"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:textSize="14sp"
android:padding="3dp"

/>
</LinearLayout>

2. Create a stub for a new EarthquakeWidget class that extends AppWidgetProvider. You’ll
return to this class to update your widget with the latest quake details.

package com.paad.earthquake;

import android.widget.RemoteViews;
import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.database.Cursor;

public class EarthquakeWidget extends AppWidgetProvider {
}

3. Create a new widget definition file, quake_widget_info.xml, and place it in the res/xml
folder. Set the minimum update rate to 24 hours and set the widget dimensions to two cells
wide and one cell high — 146dp×74dp. Use the widget layout you created in Step 1 for the
initial layout.

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider
xmlns:android="http://schemas.android.com/apk/res/android"
android:initialLayout="@layout/quake_widget"
android:minWidth="146dp"
android:minHeight="74dp"
android:label="Last Earthquake"
android:updatePeriodMillis="86400000"

/>

4. Add your widget to the application manifest, including a reference to the widget definition
resource you created in Step 3, and registering an Intent Filter for the App Widget update
action.

<receiver android:name="EarthquakeWidget" android:label="Last Earthquake">
<intent-filter>
<action android:name="android.appwidget.action.APPWIDGET_UPDATE" />

</intent-filter>

Creating an Earthquake Widget ❘ 343

<meta-data
android:name="android.appwidget.provider"
android:resource="@xml/earthquake_widget_info"

/>
</receiver>

Your widget is now configured and will be available to add to the home screen. You now
need to update the EarthquakeWidget class from Step 2 to update the widget to display the
details of the latest quake.

5. Start by creating two new updateQuake methods within the Earthquake Widget class:

5.1. The first should take an App Widget Manager and an array of widget IDs as well as
the context. Later you’ll extend this second stub to update the widget appearance
using Remote Views.

public void updateQuake(Context context,
AppWidgetManager appWidgetManager,
int[] appWidgetIds) {

}

5.2. The second method stub should take only the context, using that to obtain an
instance of the AppWidgetManager. Then use the App Widget Manager to find the
widget IDs of the active Earthquake widgets, passing both into the method you
created in Step 5.1.

public void updateQuake(Context context) {
ComponentName thisWidget = new ComponentName(context,

EarthquakeWidget.class);
AppWidgetManager appWidgetManager =

AppWidgetManager.getInstance(context);
int[] appWidgetIds = appWidgetManager.getAppWidgetIds(thisWidget);
updateQuake(context, appWidgetManager, appWidgetIds);

}

5.3. Within the updateQuake stub from Step 5.1, use the Earthquake Content Provider
created in Chapter 6 to retrieve the newest quake and extract its magnitude and
location:

public void updateQuake(Context context,
AppWidgetManager appWidgetManager,
int[] appWidgetIds) {

Cursor lastEarthquake;
ContentResolver cr = context.getContentResolver();
lastEarthquake = cr.query(EarthquakeProvider.CONTENT_URI,

null, null, null, null);

String magnitude = "--";
String details = "-- None --";

if (lastEarthquake != null) {
try {
if (lastEarthquake.moveToFirst()) {

344 ❘ CHAPTER 10 INVADING THE PHONE-TOP

magnitude =
lastEarthquake.getString(EarthquakeProvider.MAGNITUDE_COLUMN);

details =
lastEarthquake.getString(EarthquakeProvider.DETAILS_COLUMN);

}
}
finally {
lastEarthquake.close();

}
}

}

5.4. Create a new RemoteViews object to set the text displayed by the widget’s Text View
elements to show the magnitude and location of the last quake:

public void updateQuake(Context context,
AppWidgetManager appWidgetManager,
int[] appWidgetIds) {

Cursor lastEarthquake;
ContentResolver cr = context.getContentResolver();
lastEarthquake = cr.query(EarthquakeProvider.CONTENT_URI,

null, null, null, null);

String magnitude = "--";
String details = "-- None --";

if (lastEarthquake != null) {
try {
if (lastEarthquake.moveToFirst()) {

magnitude =
lastEarthquake.getString(EarthquakeProvider.MAGNITUDE_COLUMN);

details =
lastEarthquake.getString(EarthquakeProvider.DETAILS_COLUMN);

}
}
finally {
lastEarthquake.close();

}
}

final int N = appWidgetIds.length;
for (int i = 0; i < N; i++) {

int appWidgetId = appWidgetIds[i];
RemoteViews views = new RemoteViews(context.getPackageName(),

R.layout.quake_widget);
views.setTextViewText(R.id.widget_magnitude, magnitude);
views.setTextViewText(R.id.widget_details, details);
appWidgetManager.updateAppWidget(appWidgetId, views);

}
}

Creating an Earthquake Widget ❘ 345

6. Override the onUpdate handler to call updateQuake:

@Override
public void onUpdate(Context context,

AppWidgetManager appWidgetManager,
int[] appWidgetIds) {

updateQuake(context, appWidgetManager, appWidgetIds);
}

Your widget is now ready to be used, and will update with new earthquake details when
added to the home screen and once every 24 hours thereafter.

7. Now enhance the widget to update whenever the Earthquake Service you created in
Chapter 8 has refreshed the earthquake database:

7.1. Start by updating the doRefreshEarthquakes method in the EarthquakeService to
broadcast an Intent when it has completed.

public static String QUAKES_REFRESHED =
"com.paad.earthquake.QUAKES_REFRESHED";

public void doRefreshEarthquakes() {
[... Existing doRefreshEarthquakes code ...]
sendBroadcast(new Intent(QUAKES_REFRESHED));

}

7.2. Override the onReceive method in the EarthquakeWidget class, but be sure to call
through to the superclass to ensure that the standard widget event handlers are still
triggered:

@Override
public void onReceive(Context context, Intent intent){
super.onReceive(context, intent);

}

7.3. Add a check for the QUAKES_REFRESHED action you broadcast in Step 7.1, and call
updateQuakes when it’s received:

@Override
public void onReceive(Context context, Intent intent){
super.onReceive(context, intent);

if (intent.getAction().equals(EarthquakeService.QUAKES_REFRESHED))
updateQuake(context);

}

7.4. Finally, add an Intent Filter for this Intent action to the widget’s manifest entry:

<receiver android:name="EarthquakeWidget" android:label="Last
Earthquake">
<intent-filter>

<action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
</intent-filter>
<intent-filter>

346 ❘ CHAPTER 10 INVADING THE PHONE-TOP

<action android:name="com.paad.earthquake.QUAKES_REFRESHED" />
</intent-filter>
<meta-data

android:name="android.appwidget.provider"
android:resource="@xml/earthquake_widget_info"

/>
</receiver>

Your widget will now update once per day,
and every time the Earthquake Service
performs a lookup.

To enhance the Earthquake Widget, con-
sider how you could use Layered Drawables
within an Image View to indicate the mag-
nitude of the earthquake being shown.
Figure 10-3 shows one possibility.

INTRODUCING LIVE FOLDERS

FIGURE 10-3

Live Folders are a unique and powerful means by which your
applications can expose data from their Content Providers
directly on the home screen. They provide dynamic shortcuts
to information stored in your application.

When added, a Live Folder is represented on the home screen
as a shortcut icon. Selecting the icon will open the Live
Folder, as shown in Figure 10-4. This figure shows a Live
Folder open on an Android home screen, in this case the
starred contacts list.

To add a Live Folder to the home screen, long-press a piece of empty space and
select Folders. You will be presented with a list of available Live Folders; click one
to select and add. Once it is added, click to open the Live Folder, and long-press to
move the shortcut.

Creating Live Folders
Live Folders are a combination of two things: a Content Provider that returns the data required to
populate a Live Folder in a standard format, and an Activity that returns an Intent used to generate the
Live Folder.

To create a new Live Folder you need to define:

➤ An Activity responsible for creating and configuring the Live Folder by generating and return-
ing a specially formatted Intent

➤ A Content Provider that provides the items to be displayed using the correct column names

Each Live Folder item can display up to three pieces of information: an icon, a title, and a description.

Introducing Live Folders ❘ 347

Live Folder Content Providers

FIGURE 10-4

Any Content Provider can provide the data displayed within
a Live Folder. Live Folders use a standard set of column
names:

➤ LiveFolders._ID A unique identifier used to
indicate which item was selected if a user clicks
the Live Folder list.

➤ LiveFolders.NAME The primary text, displayed
in a large font. This is the only required column.

➤ LiveFolders.DESCRIPTION A longer descriptive
field in a smaller font, displayed beneath the name
column.

➤ LiveFolders.IMAGE An image displayed at the
left of each item.

When displayed, a Live Folder will use these column names
to extract data from your Content Provider for display.

Rather than renaming your Content Provider to suit the
requirements of Live Folders, you should apply a projec-
tion that maps the required column names to columns
used within your existing Content Provider, as shown in
Listing 10-15.

LISTING 10-15: Creating a projection to support a Live Folder

final HashMap<String, String> liveFolderProjection =
new HashMap<String, String>();

liveFolderProjection.put(LiveFolders._ID,
KEY_ID + " AS " +
LiveFolders._ID);

liveFolderProjection.put(LiveFolders.NAME,
KEY_NAME_COLUMN + " AS " +
LiveFolders.NAME);

liveFolderProjection.put(LiveFolders.DESCRIPTION,
KEY_DESCRIPTION_COLUMN + " AS " +
LiveFolders.DESCRIPTION);

liveFolderProjection.put(LiveFolders.IMAGE,
KEY_IMAGE_COLUMN + " AS " +
LiveFolders.IMAGE);

SQLiteQueryBuilder qb = new SQLiteQueryBuilder();
qb.setTables(MY_TABLES);
qb.setProjectionMap(LIVE_FOLDER_PROJECTION);

Only the ID and name columns are required; the image and description columns can be used or left
unmapped as required.

348 ❘ CHAPTER 10 INVADING THE PHONE-TOP

Live Folder Activity
The Live Folder itself is created with an Intent returned as a result from an Activity. The Intent’s data
property indicates the URI of the Content Provider supplying the data (with the appropriate projection
applied), while a series of extras are used to configure settings such as the display mode, icon, and folder
name.

Listing 10-16 shows the overridden onCreate method of an Activity used to create a Live Folder.

The Live Folder definition Intent is constructed and set as the Activity result, before the Activity is
closed with a call to finish.

LISTING 10-16: Live Folder creation Activity

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
String action = getIntent().getAction();
if (LiveFolders.ACTION_CREATE_LIVE_FOLDER.equals(action)) {
Intent intent = new Intent();
intent.setData(EarthquakeProvider.LIVE_FOLDER_URI);
intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_BASE_INTENT,

new Intent(Intent.ACTION_VIEW,
EarthquakeProvider.CONTENT_URI));

intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_DISPLAY_MODE,
LiveFolders.DISPLAY_MODE_LIST);

intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_ICON,
Intent.ShortcutIconResource.fromContext(context,

R.drawable.icon));
intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_NAME, "Earthquakes");
setResult(RESULT_OK, createLiveFolderIntent(this));

}
else
setResult(RESULT_CANCELED);

finish();
}

As well as the standard configuration values you can add a
LiveFolders.EXTRA_LIVE_FOLDER_BASE_INTENT extra to specify a base Intent to fire when a Live Folder
item is selected.

When an item is chosen the Live Folder will call showActivity, passing in an Intent that has the data
parameter set to the Live Folder’s base URI with the selected item’s _id value appended.

When adding your Live Folder Activity to the application manifest you need to include an Intent Filter
for the CREATE_LIVE_FOLDER action, as shown in Listing 10-17.

LISTING 10-17: Adding the Live Folder Intent Filter

<activity android:name=".MyLiveFolder "
android:label="My Live Folder">

<intent-filter>
<action android:name="android.intent.action.CREATE_LIVE_FOLDER"/>

</intent-filter>
</activity>

Introducing Live Folders ❘ 349

Creating an Earthquake Live Folder
In the following example you’ll extend the Earthquake application again, this time to include a Live
Folder that displays the magnitude and location of each quake.

1. Start by modifying the EarthquakeProvider class. Create a new static URI definition that will
be used to return the Live Folder items.

public static final Uri LIVE_FOLDER_URI =
Uri.parse("content://com.paad.provider.earthquake/live_folder");

2. Modify the uriMatcher object and getType method to check for this new URI request.

private static final int LIVE_FOLDER = 3;

static {
uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
uriMatcher.addURI("com.paad.provider.Earthquake", "earthquakes", QUAKES);
uriMatcher.addURI("com.paad.provider.Earthquake", "earthquakes/#", QUAKE_ID);
uriMatcher.addURI("com.paad.provider.Earthquake", "live_folder", LIVE_FOLDER);
}

@Override
public String getType(Uri uri) {
switch (uriMatcher.match(uri)) {
case QUAKES|LIVE_FOLDER :

return "vnd.android.cursor.dir/vnd.paad.earthquake";
case QUAKE_ID: return "vnd.android.cursor.item/vnd.paad.earthquake";
default: throw new IllegalArgumentException("Unsupported URI: " + uri);

}
}

3. Create a new hash map that defines a projection suitable for a Live Folder. It should
return the magnitude and location details as the description and name columns respec-
tively.

static final HashMap<String, String> LIVE_FOLDER_PROJECTION;
static {
LIVE_FOLDER_PROJECTION = new HashMap<String, String>();
LIVE_FOLDER_PROJECTION.put(LiveFolders._ID,

KEY_ID + " AS " + LiveFolders._ID);
LIVE_FOLDER_PROJECTION.put(LiveFolders.NAME,

KEY_DETAILS + " AS " + LiveFolders.NAME);
LIVE_FOLDER_PROJECTION.put(LiveFolders.DESCRIPTION,

KEY_DATE + " AS " + LiveFolders.DESCRIPTION);
}

4. Update the query method to apply the projection map from Step 4 to the returned earthquake
query for Live Folder requests.

@Override
public Cursor query(Uri uri,

String[] projection,
String selection,
String[] selectionArgs,
String sort) {

350 ❘ CHAPTER 10 INVADING THE PHONE-TOP

SQLiteQueryBuilder qb = new SQLiteQueryBuilder();
qb.setTables(EARTHQUAKE_TABLE);

switch (uriMatcher.match(uri)) {
case QUAKE_ID :

qb.appendWhere(KEY_ID + "=" + uri.getPathSegments().get(1));
break;

case LIVE_FOLDER : qb.setProjectionMap(LIVE_FOLDER_PROJECTION);
break;

default : break;
}
[... existing query method ...]

}

5. Create a new EarthquakeLiveFolders class that contains a static EarthquakeLiveFolder

Activity.

package com.paad.earthquake;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.provider.LiveFolders;

public class EarthquakeLiveFolders extends Activity {
public static class EarthquakeLiveFolder extends Activity {
}

}

6. Add a new method that builds the Intent used to create the Live Folder. It should use the
query URI you created in Step 1, set the display mode to list, and define the icon and title
string to use. Also set the base Intent Intent to the individual item query from the Earthquake
Provider:

private static Intent createLiveFolderIntent(Context context) {
Intent intent = new Intent();
intent.setData(EarthquakeProvider.LIVE_FOLDER_URI);
intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_BASE_INTENT,

new Intent(Intent.ACTION_VIEW,
EarthquakeProvider.CONTENT_URI));

intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_DISPLAY_MODE,
LiveFolders.DISPLAY_MODE_LIST);

intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_ICON,
Intent.ShortcutIconResource.fromContext(context,

R.drawable.icon));
intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_NAME, "Earthquakes");
return intent;

}

7. Override the onCreate method of the EarthquakeLiveFolder class to return the Intent
defined in Step 6:

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

Adding Search to Your Applications and the Quick Search Box ❘ 351

String action = getIntent().getAction();
if (LiveFolders.ACTION_CREATE_LIVE_FOLDER.equals(action))
setResult(RESULT_OK, createLiveFolderIntent(this));

else
setResult(RESULT_CANCELED);

finish();
}

8. Add the EarthquakeLiveFolder Activity to the application manifest, including an Intent Fil-
ter for the action android.intent.action.CREATE_LIVE_FOLDER:

<activity android:name=".EarthquakeLiveFolders$EarthquakeLiveFolder"
android:label="All Earthquakes">

<intent-filter>
<action android:name="android.intent.action.CREATE_LIVE_FOLDER"/>

</intent-filter>
</activity>

FIGURE 10-5

Figure 10-5 shows the earthquake Live Folder open on the
home screen.

You could expand this example by using the Earthquake
Map Activity to display a specific quake when it’s selected
from the list.

Start by adding an Intent Filter to the Earthquake Map
Activity that listens for View actions on earthquake
Content Provider data described by the Intent created
in Step 6. Then improve the Activity to retrieve the
location of the selected quake and center the map to that
point.

ADDING SEARCH TO YOUR
APPLICATIONS AND THE QUICK
SEARCH BOX

With applications featuring large back-end databases and
storing large volumes of data, the ability to search for infor-
mation within an application is an increasingly important
feature.

Android includes a framework to simplify searching within your Content Providers and surfacing the
results using a consistent framework. This section explains how to add search functionality to your
application using this search framework.

Adding Search to Your Application
Most Android devices feature a hardware search key. Using this framework you can expose your
application-specific search functionality whenever a user presses the search button. The search box
will dynamically display search results as the user types a query.

352 ❘ CHAPTER 10 INVADING THE PHONE-TOP

Creating a Search Activity
To enable application search, you must create an Activity that will be used to initiate and display the
search.

The first step is to create a new searchable metadata XML resource in the res/xml folder. This file,
shown in Listing 10-18, specifies the authority of the Content Provider you will be performing the
search on, and the action to fire if a suggested search result is clicked.

LISTING 10-18: Defining application search metadata

<searchable xmlns:android="http://schemas.android.com/apk/res/android"
android:label="@string/app_name"
android:searchSuggestAuthority="myauthority"
android:searchSuggestIntentAction="android.intent.action.VIEW">

</searchable>

Next, you will need to create an Activity that will be used to display the search results. In many
cases this will be a simple List View-based Activity, but it can use any user interface you require.
As shown in Listing 10-19, include a <meta-data> tag that includes a name attribute that specifies
android.app.searchable and a resource attribute that specifies the XML resource you created in
Listing 10-18.

You must also include an Intent Filter registered for the android.intent.action.SEARCH action and
the DEFAULT category.

LISTING 10-19: Registering a search results Activity

<activity android:name=".EarthquakeSearch" android:label="Earthquake Search">
<intent-filter>
<action android:name="android.intent.action.SEARCH" />
<category android:name="android.intent.category.DEFAULT" />

</intent-filter>
<meta-data
android:name="android.app.searchable"
android:resource="@xml/searchable"

/>
</activity>

The search query that caused this search result Activity to be displayed will be returned within the
calling Intent using the SearchMananger.USER_QUERY extra as shown in the following:

String searchTerm = getIntent().getStringExtra(SearchManager.USER_QUERY);

It’s good practice to use the same search results form for your entire application. To set an Activity as
the default search results provider for an application you need to add a new <meta-data> tag to the
<application> manifest node as shown in Listing 10-20.

Set the name attribute to android.app.default_searchable and specify your search Activity using the
value attribute.

Adding Search to Your Applications and the Quick Search Box ❘ 353

LISTING 10-20: Setting a default search result Activity for an application

<meta-data
android:name="android.app.default_searchable"
android:value=".EarthquakeSearch"

/>

Responding to Search Queries from a Content Provider
The search Activity described in the previous section can be used to initiate a search and display the
results for an application. In order for it to have data to display you need to create (or modify) a Con-
tent Provider to handle search queries and return results.

To support the Android search framework you need to support specific query path URI values. Listing
10-21 shows a URI Matcher that compares a requested URI to the known search query path values.

LISTING 10-21: Detecting search requests in Content Providers

private static int SEARCH = 1;

static {
uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
uriMatcher.addURI("com.paad.provider.earthquake", "earthquakes", QUAKES);
uriMatcher.addURI("com.paad.provider.earthquake", "earthquakes/#", QUAKE_ID);
uriMatcher.addURI("com.paad.provider.earthquake",

SearchManager.SUGGEST_URI_PATH_QUERY, SEARCH);
uriMatcher.addURI("com.paad.provider.earthquake",

SearchManager.SUGGEST_URI_PATH_QUERY + "/*", SEARCH);
uriMatcher.addURI("com.paad.provider.earthquake",

SearchManager.SUGGEST_URI_PATH_SHORTCUT, SEARCH);
uriMatcher.addURI("com.paad.provider.earthquake",

SearchManager.SUGGEST_URI_PATH_SHORTCUT + "/*", SEARCH);
}

Use a similar URI Matcher pattern within your Content Provider to return the appropriate
MIME type for search queries as shown in Listing 10-22. Search results should be returned as
SearchManager.SUGGEST_MIME_TYPE in order to support live search suggestions.

LISTING 10-22: Returning the correct MIME type for search results

@Override
public String getType(Uri uri) {
switch (uriMatcher.match(uri)) {

case QUAKES : return "vnd.android.cursor.dir/vnd.paad.earthquake";
case QUAKE_ID: return "vnd.android.cursor.item/vnd.paad.earthquake";
case SEARCH : return SearchManager.SUGGEST_MIME_TYPE;
default: throw new IllegalArgumentException("Unsupported URI: " + uri);

}
}

354 ❘ CHAPTER 10 INVADING THE PHONE-TOP

The URI Matcher can also be used within the query method. If an incoming search query is detected,
find the search term by examining the last segment of the query URI.

uri.getPathSegments().get(1);

To return search results that can be displayed using the Android search framework you will need to
create and apply a projection that assigns your column names to those supplied and supported by
the Search Manager. The Search Manager class includes a number of static constants of the form
SUGGEST_COLUMN_* that can be used in the projection.

There are two required columns, SUGGEST_COLUMN_TEXT_1 which displays the search result text and id_,
which indicates the unique row ID.

Listing 10-23 shows the skeleton code for creating and applying a projection within a query that returns
a Cursor suitable for search results.

LISTING 10-23: Returning search results from a query

private static final HashMap<String, String> SEARCH_PROJECTION_MAP;
static {

SEARCH_PROJECTION_MAP = new HashMap<String, String>();
SEARCH_PROJECTION_MAP.put(SearchManager.SUGGEST_COLUMN_TEXT_1,

KEY_SEARCH_COLUMN + " AS " +
SearchManager.SUGGEST_COLUMN_TEXT_1);

SEARCH_PROJECTION_MAP.put("_id", KEY_ID + " AS " + "_id");
}

@Override
public Cursor query(Uri uri, String[] projection, String selection, String[]

selectionArgs, String sort) {
SQLiteQueryBuilder qb = new SQLiteQueryBuilder();
qb.setTables(MY_TABLE);

switch (uriMatcher.match(uri)) {
case SINGLE_ID:

qb.appendWhere(KEY_ID + "=" + uri.getPathSegments().get(1));
break;

case SEARCH : qb.appendWhere(KEY_SEARCH_COLUMN + " LIKE \"%" +
uri.getPathSegments().get(1) + "%\"");

qb.setProjectionMap(SEARCH_PROJECTION_MAP);
break;

default : break;
}

Cursor c = qb.query(MyDB,
projection,
selection, selectionArgs,
null, null, orderBy);

return c;
}

Adding Search to Your Applications and the Quick Search Box ❘ 355

Surfacing Search Results to the Quick Search Box
Android 1.6 (API Level 4) introduced the ability to serve your application search results through the
universal Quick Search Box widget.

The Quick Search Box is positioned prominently on the home screen, and the user can launch it at any
time by pressing the hardware search key. By surfacing search results from your application through
this mechanism you provide users with an additional access point to your application through live
search results.

To serve your search results to the Quick Search Box, you must first implement search functionality
within your application as described in the previous section.

To make your results available globally, modify the searchable.xml file that describes the application
search metadata and add two new attributes as shown in Listing 10-24:

➤ searchSettingsDescription Used to describe your search results in the Settings menu.

➤ includeInGlobalSearch Set this to true to surface these results to the quick search box.

LISTING 10-24: Adding your search result to the Quick Search Box

<searchable xmlns:android="http://schemas.android.com/apk/res/android"
android:label="@string/app_name"
android:searchSettingsDescription="@string/app_name"
android:includeInGlobalSearch="true"
android:searchSuggestAuthority="com.paad.provider.earthquake"
android:searchSuggestIntentAction="android.intent.action.VIEW">

</searchable>

Note that your search results will not automatically be surfaced directly to the Quick Search Box. To
avoid the possibility of misuse, adding new search providers requires users to opt-in.

To add new Quick Search Box search providers, use the system settings. Navigate to Settings ➪ Search
➪ Searchable Items and tick the check boxes alongside each provider you wish to enable.

Because result surfacing in the Quick Search Box is strictly opt-in, you should
consider notifying your users that this additional functionality is available.

Adding Search to the Earthquake Example
In the following example you’ll add search functionality to the Earthquake project, and make sure
results are available from the home-screen Quick Search Box.

1. Start by adding two new string resources to the strings.xml file in the res/values folder. One
will be the name used to identify the earthquake search results; the other will be a description
of what they represent.

<string name="search_label">Earthquakes</string>
<string name="search_description">Earthquake locations</string>

356 ❘ CHAPTER 10 INVADING THE PHONE-TOP

2. Next, create a new XML resources folder, res/xml. Create a new searchable.xml file which
will define the metadata for your Earthquake search results provider. Specify the strings from
Step 1 as the label and description values. Specify the Earthquake Content Provider’s author-
ity and set the includeInGlobalSearch attribute to true.

<searchable xmlns:android="http://schemas.android.com/apk/res/android"
android:label="@string/app_name"
android:searchSettingsDescription="@string/app_name"
android:includeInGlobalSearch="true"
android:searchSuggestAuthority="com.paad.provider.earthquake"
android:searchSuggestIntentAction="android.intent.action.VIEW">

</searchable>

3. Open the Earthquake Content Provider. Start by adding a new SEARCH_URI static constant
that you can use to execute a search within the application.

public static final Uri SEARCH_URI =
Uri.parse("content://com.paad.provider.earthquake/" +

SearchManager.SUGGEST_URI_PATH_QUERY);

4. Now create a new Projection that will be used to supply search results.

private static final HashMap<String, String> SEARCH_PROJECTION_MAP;
static {
SEARCH_PROJECTION_MAP = new HashMap<String, String>();
SEARCH_PROJECTION_MAP.put(SearchManager.SUGGEST_COLUMN_TEXT_1, KEY_DETAILS +
" AS " + SearchManager.SUGGEST_COLUMN_TEXT_1);

SEARCH_PROJECTION_MAP.put("_id", KEY_ID +
" AS " + "_id");

}

5. Now modify the UriMatcher to include search queries.

private static int SEARCH = 3;

static {
uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
uriMatcher.addURI("com.paad.provider.earthquake", "earthquakes", QUAKES);
uriMatcher.addURI("com.paad.provider.earthquake", "earthquakes/#", QUAKE_ID);
uriMatcher.addURI("com.paad.provider.earthquake",
SearchManager.SUGGEST_URI_PATH_QUERY, SEARCH);

uriMatcher.addURI("com.paad.provider.earthquake",
SearchManager.SUGGEST_URI_PATH_QUERY + "/*", SEARCH);

uriMatcher.addURI("com.paad.provider.earthquake",
SearchManager.SUGGEST_URI_PATH_SHORTCUT, SEARCH);

uriMatcher.addURI("com.paad.provider.earthquake",
SearchManager.SUGGEST_URI_PATH_SHORTCUT + "/*", SEARCH);

}

6. Modify the getType method to return the appropriate MIME type for search results.

@Override
public String getType(Uri uri) {
switch (uriMatcher.match(uri)) {

Adding Search to Your Applications and the Quick Search Box ❘ 357

case QUAKES : return "vnd.android.cursor.dir/vnd.paad.earthquake";
case QUAKE_ID: return "vnd.android.cursor.item/vnd.paad.earthquake";
case SEARCH : return SearchManager.SUGGEST_MIME_TYPE;
default: throw new IllegalArgumentException("Unsupported URI: " + uri);

}
}

7. The final change to the Content Provider is to modify the query method to apply the search
term and return the result query using the Projection you created in Step 4. This will allow
the Quick Search Box search suggestions, and your search Activity, to display the results.

@Override
public Cursor query(Uri uri, String[] projection, String selection, String[]

selectionArgs, String sort) {
SQLiteQueryBuilder qb = new SQLiteQueryBuilder();
qb.setTables(EARTHQUAKE_TABLE);

// If this is a row query, limit the result set to the passed in row.
switch (uriMatcher.match(uri)) {
case QUAKE_ID: qb.appendWhere(KEY_ID + "=" + uri.getPathSegments().get(1));

break;
case SEARCH : qb.appendWhere(KEY_DETAILS + " LIKE \"%" +

uri.getPathSegments().get(1) + "%\"");
qb.setProjectionMap(SEARCH_PROJECTION_MAP);
break;

default : break;
}

[... existing query method ...]
}

8. Now create a new Activity that will be used to display the search results. For these purposes,
create a simple EarthquakeSearch Activity that extends ListActivity. EarthquakeSearch
will only be displayed as a result of a search query, so extract the user query from the search
Intent that launched the application and use it to query the Earthquake Content Provider.
Create a Simple Cursor Adapter to bind the search results cursor to the Activity’s List View.

import android.app.ListActivity;
import android.app.SearchManager;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.widget.SimpleCursorAdapter;

public class EarthquakeSearch extends ListActivity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

String searchTerm = getIntent().getStringExtra(SearchManager.USER_QUERY);
String searchQuery = Uri.withAppendedPath(EarthquakeProvider.SEARCH_URI,

searchTerm);

358 ❘ CHAPTER 10 INVADING THE PHONE-TOP

Cursor c = getContentResolver().query(searchQuery, null, null, null, null);
startManagingCursor(c);

String[] from = new String[] {SearchManager.SUGGEST_COLUMN_TEXT_1};
int[] to = new int[] {android.R.id.text1};
SimpleCursorAdapter searchResults = new SimpleCursorAdapter(this,

android.R.layout.simple_list_item_1, c, from, to);
setListAdapter(searchResults);

}
}

9. Open the application Manifest and add the new EarthquakeSearch Activity. Make sure you
add an Intent Filter for the SEARCH action in the DEFAULT category. You will also need to add
a <meta-data> tag that specifies the searchable XML resource you created in Step 2.

<activity android:name=".EarthquakeSearch" android:label="Earthquake Search">
<intent-filter>
<action android:name="android.intent.action.SEARCH" />
<category android:name="android.intent.category.DEFAULT" />

</intent-filter>
<meta-data
android:name="android.app.searchable"
android:resource="@xml/searchable"

/>
</activity>

10. The final step is to add a new <meta-data> tag to the <application> node in the manifest
that describes the EarthquakeSearch Activity as the default search provider for the applica-
tion.

<application android:icon="@drawable/icon">
<meta-data
android:name="android.app.default_searchable"
android:value=".EarthquakeSearch"

/>
[... existing application node ...]

</application>

All code snippets in this example are part of the Chapter 10 Earthquake project, available for download at Wrox.com.

If you run this application, pressing the hardware search key in any of the Activities will provide a
search box that returns suggestions and search results as you type. To have your results available in the
home screen Quick Search Box, you will need to go to Settings ➪ Search ➪ Searchable Items and tick
the ‘‘Earthquake’’ item.

CREATING LIVE WALLPAPER

Live Wallpaper is a new way to add an application component to the home screen introduced in
Android 2.1 (API level 7). Live Wallpaper lets you create dynamic, interactive home-screen back-
grounds, providing you with an exciting new alternative for displaying information to your users
directly on the home screen.

Creating Live Wallpaper ❘ 359

Live Wallpaper uses a Surface to render a dynamic display and listens for screen touch events to let
users interact with the display.

To create a new Live Wallpaper you need three components:

➤ A Live Wallpaper XML resource

➤ A Wallpaper Service implementation

➤ A Wallpaper Engine implementation (returned through the Wallpaper Service)

Creating a Live Wallpaper Definition Resource
The Live Wallpaper resource definition is an XML file stored in the res/xml folder. Use attributes within
the <wallpaper> tag to define the author name, wallpaper description, and thumbnail to display in the
Live Wallpaper gallery at run time. You can also use the settingsActivity tag to specify an Activity
to launch to configure the wallpaper’s settings.

Listing 10-25 shows a sample Live Wallpaper resource.

LISTING 10-25: Sample Live Wallpaper resource definition

<wallpaper xmlns:android="http://schemas.android.com/apk/res/android"
android:author="@string/author"
android:description="@string/description"
android:thumbnail="@drawable/wallpapericon"

/>

Note that you must use references to existing string resources for the author and description attribute
values. String literals are not valid.

Creating a Wallpaper Service
Extend the WallpaperService class to create a wrapper Service that instantiates a Wallpaper Service
Engine class.

All the drawing and interaction for Live Wallpaper is handled in the Wallpaper Service Engine class
described later in this chapter. Override the onCreateEngine handler to return a new instance of your
custom Wallpaper Service Engine as shown in Listing 10-26.

LISTING 10-26: A Live Wallpaper Service

public class MyWallpaperService extends WallpaperService {
@Override
public Engine onCreateEngine() {

return new MyWallpaperServiceEngine();
}

}

Once you’ve created it, add your Live Wallpaper Service to your application manifest using
the <service> tag. A Live Wallpaper must also include an Intent Filter to listen for the

360 ❘ CHAPTER 10 INVADING THE PHONE-TOP

android.service.wallpaper.WallpaperService action, and a <meta-data> node that specifies
the android.service.wallpaper as the name attribute, and associates it with the resource file described
in the previous section using a resource attribute.

Your Live Wallpaper Service must also require the android.permission.BIND_WALLPAPER permission
using the android.permission attribute. Listing 10-27 shows how to add the Live Wallpaper from
Listing 10-26 to the manifest.

LISTING 10-27: Adding a Live Wallpaper Service to the manifest

<service android:name=".MyWallpaperService"
android.permission="android.permission.BIND_WALLPAPER">
<intent-filter>
<action android:name="android.service.wallpaper.WallpaperService" />

</intent-filter>
<meta-data
android:name="android.service.wallpaper"
android:resource="@xml/wallpaper"

/>
</service>

Creating a Wallpaper Service Engine
The WallpaperService.Engine class is where you create the Live Wallpaper itself.

The Wallpaper Service Engine encapsulates a Surface which is used to display the wallpaper and handle
touch events. A Surface is a specialized drawing canvas that supports updates from background threads,
making it ideal for creating smooth, dynamic, and interactive graphics. Both the Surface View, and
handling touch events, are covered in more detail in Chapter 15.

To implement your own Wallpaper Service engine, extend the WallpaperService.Engine class. Before
you can start drawing on the Surface, you must wait for it to complete initialization, indicated by the
onSurfaceCreated event handler.

The Wallpaper Service Engine also includes an onTouchEvent callback to provide user-interactivity
with the wallpaper, and the onOffsetsChanged handler to notify you that the parent Activity (usually
the home screen) has been offset (panned).

Listing 10-28 shows the skeleton code for a Wallpaper Service Engine implementation. Refer to Chapter
15 for more details on how to draw on a Surface and use the onTouchEvent handler and Motion Events.

LISTING 10-28: Wallpaper Service Engine skeleton code

public class MyWallpaperServiceEngine extends WallpaperService.Engine {
@Override
public void onCreate(SurfaceHolder surfaceHolder) {
super.onCreate(surfaceHolder);
// TODO Handle initialization.

}

Summary ❘ 361

@Override
public void onOffsetsChanged(float xOffset, float yOffset,

float xOffsetStep, float yOffsetStep,
int xPixelOffset, int yPixelOffset) {

super.onOffsetsChanged(xOffset, yOffset, xOffsetStep, yOffsetStep,
xPixelOffset, yPixelOffset);

// TODO Handle homescreen offset events.
}

@Override
public void onTouchEvent(MotionEvent event) {

super.onTouchEvent(event);
// TODO Handle touch and motion events.

}

@Override
public void onSurfaceCreated(SurfaceHolder holder) {

super.onSurfaceCreated(holder);
// TODO Surface has been created, run the Thread that will
// update the display.

}
}

SUMMARY

In this chapter you learned how to create App Widgets and Live Folders for your application.

In particular you saw how to do the following:

➤ Implement widgets and add them to your applications.

➤ Control the update rate of your widgets by setting the minimum refresh rate or using Intents
and Alarms.

➤ Update the UI of your widgets using Remote Views.

➤ Add interactivity to your widgets.

➤ Create and register a Live Folder for your application’s Content Provider.

➤ Add a projection to your Content Provider to provide a Live Folder schema.

➤ Create and use Live Wallpaper.

➤ Add search to your application and surface search results to the Quick Search Box.

In the following chapter you will explore the audiovisual APIs available in Android. You’ll take a look
at multimedia playback and recording using the microphone and camera.

11
Audio, Video, and Using the
Camera

WHAT’S IN THIS CHAPTER?

➤ Playing audio and video with the Media Player

➤ Packaging audio as an application resource

➤ Using the Video View for video playback

➤ Recording audio and video with the Media Recorder

➤ Recording video and taking pictures using Intents

➤ Previewing recorded video and displaying live camera streams

➤ Taking pictures and controlling the camera

➤ Reading and modifying image EXIF data

➤ Adding media to the Media Store

➤ Manipulating raw audio

➤ Using speech recognition

The only modern technology that can compete with mobile phones for ubiquity is the portable
digital media player. As a result, the multimedia capabilities of mobile devices are a significant
consideration for many consumers.

Android’s open platform and provider-agnostic philosophy ensures that it offers a multimedia
API capable of playing and recording a wide range of image, audio, and video formats, both
locally and streamed.

The Camera API and OpenCORE multimedia platform expose these capabilities to your appli-
cations, providing comprehensive multimedia functionality.

364 ❘ CHAPTER 11 AUDIO, VIDEO, AND USING THE CAMERA

In this chapter you’ll learn how to play and record multimedia content including audio, video, and still
images, as well as use the camera to capture images and preview and record live video.

You’ll also learn how to manipulate raw audio files using the Audio Track and Audio Record classes,
add newly recorded media files to the Media Store, and make use of speech recognition to add voice
input to your applications.

PLAYING AUDIO AND VIDEO

Android includes a comprehensive Media Player to simplify the playback of audio and video. This
section describes how to use it to control and manipulate media playback within your applications.

Android 2.1 (API level 7) supports the following multimedia formats for playback as part of the base
framework. Note that some devices may support playback of additional file formats:

Audio

➤ AAC LC/LTP

➤ HE-AACv1 (AAC+)

➤ HE-AACv2 (Enhanced AAC+)

➤ AMR-NB

➤ AMR-WB

➤ MP3

➤ MIDI

➤ Ogg Vorbis

➤ PCM / WAVE

Video

➤ H.263

➤ H.264 AVC

➤ MPEG-4 SP

Introducing the Media Player
Multimedia playback in Android is handled by the MediaPlayer class. You can play media stored in
application resources, local files, Content Providers, or streamed from a network URL. In each case,
the file format and type of multimedia being played is abstracted from you as a developer.

The Media Player’s management of audio and video files and streams is handled as a state machine. In
the most simplistic terms, transitions through the state machine can be described as follows:

➤ Initialize the Media Player with media to play.

➤ Prepare the Media Player for playback.

Playing Audio and Video ❘ 365

➤ Start the playback.

➤ Pause or stop the playback prior to its completing.

➤ Playback complete.

A more detailed and thorough description of the Media Player state machine is provided at the
Android developer site at http://developer.android.com/reference/android/media/MediaPlayer
.html#StateDiagram

To play a media resource you need to create a new MediaPlayer instance, initialize it with a media
source, and prepare it for playback.

The following section describes how to initialize and prepare the Media Player. After that, you’ll learn
to control the playback to start, pause, stop, or seek the prepared media.

In each case, once you’ve finished playback, callrelease on your Media Player object to free the asso-
ciated resources:

mediaPlayer.release();

Android supports a limited number of simultaneous Media Player objects; not releasing them can cause
runtime exceptions when the system runs out of resources.

Preparing Audio for Playback
There are a number of ways you can play audio content through the Media Player. You can include
it as an application resource, play it from local files or Content Providers, or stream it from a remote
URL.

Packaging Audio as an Application Resource
You can include audio files in your application package by adding them to the res/raw folder of your
resources hierarchy.

Raw resources are not compressed or manipulated in any way when packaged into your application,
making them an ideal way to store pre-compressed files such as audio content.

To access a raw resource simply use the lowercase filename without an extension, as shown in
Listing 11-1.

Initializing Audio Content for Playback
To play back audio content using the Media Player, you need to create a new Media Player object and
set the data source of the audio in question.

To play back audio using the Media Player, you can use the static create method, passing in the appli-
cation Context and one of the following (as shown in Listing 11-1):

➤ A resource identifier

➤ A URI to a local file using the file:// schema

➤ A URI to an online audio resource as a URL

➤ A URI to a local Content Provider row

366 ❘ CHAPTER 11 AUDIO, VIDEO, AND USING THE CAMERA

Note that the Media Player object returned by the create methods have already had prepare called.
It’s important that you do not call it again.

LISTING 11-1: Initializing audio content for playback

Context appContext = getApplicationContext();

MediaPlayer resourcePlayer = MediaPlayer.create(appContext,
R.raw.my_audio);

MediaPlayer filePlayer = MediaPlayer.create(appContext,
Uri.parse("file:///sdcard/localfile.mp3"));

MediaPlayer urlPlayer = MediaPlayer.create(appContext,
Uri.parse("http://site.com/audio/audio.mp3"));

MediaPlayer contentPlayer = MediaPlayer.create(appContext,
Settings.System.DEFAULT_RINGTONE_URI);

Alternatively, you can use the setDataSource method on an existing Media Player instance. This
method accepts a file path, Content Provider URI, streaming media URL path, or File Descriptor.

When using the setDataSource method it is vital that you call prepare on the Media Player before you
begin playback, as shown in Listing 11-2.

LISTING 11-2: Using setDataSource and prepare to initialize audio playback

MediaPlayer mediaPlayer = new MediaPlayer();
mediaPlayer.setDataSource("/sdcard/test.3gp");
mediaPlayer.prepare();

If you’re passing a URL to an online media file, the file must be capable of
progressive download using the RTSP or HTTP protocols.

Preparing for Video Playback
Playback of video content is slightly more involved than audio. To show a video, you must specify a
display surface on which to show it. The following sections describe two alternatives for the playback
of video content.

The first, using the Video View control, encapsulates the creation of a display surface and allocation
and preparation of video content within a Media Player.

The second technique allows you to specify your own display surface and manipulate the underlying
Media Player instance directly.

Playing Audio and Video ❘ 367

Playing Video Using the Video View
The simplest way to play back video is to use the VideoView control. The Video View includes a Surface
on which the video is displayed and encapsulates and manages a Media Player to manage the video
playback.

The Video View supports the playback of local or streaming video as supported by the Media Player
component.

Video Views conveniently encapsulate the initialization of the Media Player. To assign a video to play,
simply call setVideoPath or setVideoUri to specify the path to a local file, or the URI of a Content
Provider or remote video stream:

streamingVideoView.setVideoUri("http://www.mysite.com/videos/myvideo.3gp");
localVideoView.setVideoPath("/sdcard/test2.3gp");

Once initialized, you can control playback using the start, stopPlayback, pause, and seekTo methods.
The Video View also includes the setKeepScreenOn method to apply a screen Wake Lock that will
prevent the screen from being dimmed while playback is in progress.

Listing 11-3 shows the simple skeleton code used to assign a video to a Video View and control play-
back.

LISTING 11-3: Video playback using a Video View

VideoView videoView = (VideoView)findViewById(R.id.surface);
videoView.setKeepScreenOn(true);
videoView.setVideoPath("/sdcard/test2.3gp");
if (videoView.canSeekForward())
videoView.seekTo(videoView.getDuration()/2);

videoView.start();
[. . . do something . . .]
videoView.stopPlayback();

Setting up a Surface for Video Playback
The first step to using the Media Player to view video content is to prepare a Surface onto which the
video will be displayed. The Media Player requires a SurfaceHolder object for displaying video content,
assigned using the setDisplay method.

If you do not assign a Surface Holder for your Media Player the video component
will not be shown.

To include a Surface Holder in your UI layout you use the SurfaceView control as shown in the sample
layout XML in Listing 11-4.

368 ❘ CHAPTER 11 AUDIO, VIDEO, AND USING THE CAMERA

LISTING 11-4: Sample layout including a Surface View

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<SurfaceView
android:id="@+id/surface"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center">

</SurfaceView>
</LinearLayout>

The Surface View is a wrapper around the Surface Holder object, which in turn is a wrapper around
the Surface that is used to support visual updates from background threads.

The Surface View will be examined in more detail in Chapter 15, but Listing 11-5 shows the skeleton
code used to initialize a Surface View within your Activity, and assign it as a display target for your
Media Player.

Note that you must implement the SurfaceHolder.Callback interface. Surface Holders are created
asynchronously, so you must wait until the surfaceCreated handler has been fired before assigning the
returned Surface Holder object to the Media Player.

LISTING 11-5: Initializing and assigning a Surface View to a Media Player

public class MyActivity extends Activity implements SurfaceHolder.Callback
{
private MediaPlayer mediaPlayer;

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
mediaPlayer = new MediaPlayer();

SurfaceView surface = (SurfaceView)findViewById(R.id.surface);
SurfaceHolder holder = surface.getHolder();
holder.addCallback(this);
holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
holder.setFixedSize(400, 300);

}

public void surfaceCreated(SurfaceHolder holder) {
try {

mediaPlayer.setDisplay(holder);
} catch (IllegalArgumentException e) {

Log.d("MEDIA_PLAYER", e.getMessage());

Playing Audio and Video ❘ 369

} catch (IllegalStateException e) {
Log.d("MEDIA_PLAYER", e.getMessage());

} catch (IOException e) {
Log.d("MEDIA_PLAYER", e.getMessage());

}
}

public void surfaceDestroyed(SurfaceHolder holder) {
mediaPlayer.release();

}

public void surfaceChanged(SurfaceHolder holder,
int format, int width, int height) { }

}

Initializing Video Content for Playback
Once you have created and assigned the Surface Holder to your Media Player, use the setDataSource

method to specify the path, URL, or Content Provider URI of the video resource to play.

As with audio playback, if you’re passing a URL to an online media file, the file must be capable of
progressive download using the RTSP or HTTP protocols.

Once you’ve selected your media source, callprepare to initialize the Media Player in preparation for
playback as shown in Listing 11-6.

LISTING 11-6: Initializing video for playback using the Media Player

public void surfaceCreated(SurfaceHolder holder) {
try {

mediaPlayer.setDisplay(holder);
mediaPlayer.setDataSource("/sdcard/test2.3gp");
mediaPlayer.prepare();
mediaPlayer.start();

} catch (IllegalArgumentException e) {
Log.d("MEDIA_PLAYER", e.getMessage());

} catch (IllegalStateException e) {
Log.d("MEDIA_PLAYER", e.getMessage());

} catch (IOException e) {
Log.d("MEDIA_PLAYER", e.getMessage());

}
}

Unlike audio resources, Android doesn’t yet support the playback of video
resources included in the application package. Similarly, you cannot use the create

static methods as shortcuts to creating your Media Player objects, nor can you use
a URI to point to a local file using the file:// schema.

370 ❘ CHAPTER 11 AUDIO, VIDEO, AND USING THE CAMERA

Controlling Playback
Once a Media Player is prepared, call start to begin playback of the associated media:

mediaPlayer.start();

Use the stop and pause methods to stop or pause playback.

The Media Player also provides the getDuration method to find the length of the media being played,
and getCurrentPosition to find the playback position. Use seekTo to jump to a specific position in the
media as shown in Listing 11-7.

LISTING 11-7: Controlling playback

mediaPlayer.start();

int pos = mediaPlayer.getCurrentPosition();
int duration = mediaPlayer.getDuration();

mediaPlayer.seekTo(pos + (duration-pos)/10);

[. . . wait for a duration . . .]

mediaPlayer.stop();

Managing Media Playback Output
The Media Player provides methods to control the volume of the output, manage the screen lock during
playback, and set the looping status.

It is not currently possible to play audio into a phone conversation; the Media Player always plays
audio using the standard output device — the speaker or connected Bluetooth headset.

Use the isLooping and setLooping methods to specify if the media being played should loop when it
completes.

if (!mediaPlayer.isLooping())
mediaPlayer.setLooping(true);

To enable a Wake Lock that will keep the screen on during video playback use the setScreenOnWhile

Playing method. This is preferred to setting manual Wake Lock as it doesn’t require an additional
permission. Wake Locks are described in more detail in Chapter 15.

mediaPlayer.setScreenOnWhilePlaying(true);

You can control the volume for each channel during playback using the setVolume method. It takes
a scalar float value between 0 and 1 for both the left and right channels (where 0 is silent and 1 is
maximum volume).

mediaPlayer.setVolume(1f, 0.5f);

Recording Audio and Video ❘ 371

When playing video resources, you can use getFrame to take a Bitmap screen grab
of video media at the specified frame.

RECORDING AUDIO AND VIDEO

Android offers two alternatives for recording audio and video within your application.

The simplest technique is to use Intents to launch the video camera app. This option lets you specify the
output location and video recording quality, while letting the native video recording application handle
the user experience and error handling.

In cases where you want to replace the native app, or simply need more fine-grained control over the
video capture UI or recording settings, you can use the Media Recorder class.

Using Intents to Record Video
The easiest way to initiate video recording is using the ACTION_VIDEO_CAPTURE Media Store static con-
stant in an Intent passed to startActivityForResult.

startActivityForResult(new Intent(MediaStore.ACTION_VIDEO_CAPTURE),
RECORD_VIDEO);

This will launch the native video camera Activity, allowing users to start, stop, review, and retake their
video, and preventing you from having to rewrite the entire video camera application.

The video capture action supports two optional extras, available as static constants from the
MediaStore class:

➤ EXTRA_OUTPUT By default, the video recorded by the video capture action will be stored in
the default Media Store. If you want to record it elsewhere, you can specify an alternative
URI using this extra.

➤ EXTRA_VIDEO_QUALITY The video record action allows you to specify an image quality using
an integer value. There are currently two possible values: 0 for low (MMS) quality videos or
1 for high (full resolution) videos. By default, the high resolution mode will be used.

Listing 11-8 shows how to use the video capture action to record a new video in high quality to either
a specified URI or the default media store.

LISTING 11-8: Recording video using an Intent

private static int RECORD_VIDEO = 1;
private static int HIGH_VIDEO_QUALITY = 1;
private static int MMS_VIDEO_QUALITY = 0;

continues

372 ❘ CHAPTER 11 AUDIO, VIDEO, AND USING THE CAMERA

LISTING 11-8 (continued)

private void recordVideo(Uri outputpath) {
Intent intent = new Intent(MediaStore.ACTION_VIDEO_CAPTURE);

if (outputpath != null)
intent.putExtra(MediaStore.EXTRA_OUTPUT, output);

intent.putExtra(MediaStore.EXTRA_VIDEO_QUALITY, HIGH_VIDEO_QUALITY);

startActivityForResult(intent, RECORD_VIDEO);
}

@Override
protected void onActivityResult(int requestCode,

int resultCode, Intent data) {
if (requestCode == RECORD_VIDEO) {
Uri recordedVideo = data.getData();
// TODO Do something with the recorded video

}
}

Using the Media Recorder
Multimedia recording is handled by the aptly named MediaRecorder class. You can use it to record
audio and/or video files that can be used in your own applications, or added to the Media Store.

To record audio or video, create a new Media Recorder object.

MediaRecorder mediaRecorder = new MediaRecorder();

Before you can record any media in Android, your application needs the RECORD_AUDIO and /
or RECORD_VIDEO permissions. Add uses-permission tags for each of them, as required, in your
application manifest.

<uses-permission android:name="android.permission.RECORD_AUDIO"/>
<uses-permission android:name="android.permission.RECORD_VIDEO"/>

The Media Recorder lets you specify the audio and video source, the output file format, and the audio
and video encoders to use when recording your file.

Much like the Media Player, the Media Recorder manages recording as a state machine. That means
that the order in which you configure and manage the Media Recorder is important.

In the simplest terms, the transitions through the state machine can be described as follows:

➤ Create a new Media Recorder.

➤ Assign it the input sources to record from.

➤ Define the output format.

➤ Specify the audio and video encoder, frame rate, and output size.

➤ Select an output file.

➤ Prepare for recording.

Recording Audio and Video ❘ 373

➤ Record.

➤ End recording.

A more detailed and thorough description of the Media Recorder state machine is provided at the
Android developer site at http://developer.android.com/reference/android/media/MediaRecorder
.html

Once you’ve finished recording your media, callrelease on your Media Recorder object to free the
associated resources.

mediaRecorder.release();

Configuring and Controlling Video Recording
As described in the state model above, before recording you must specify the input sources, output
format, audio and video encoder, and an output file — in that order.

The setAudioSource and setVideoSource methods let you specify a MediaRecorder.AudioSource or
MediaRecorder.VideoSource static constant that define the audio and video source, respectively.

Once you’ve selected your input sources, select the output format using thesetOutputFormat method
to specify a MediaRecorder.OutputFormat constant.

Use the set[audio/video]Encoder methods to specify an audio or video encoder constant from the
MediaRecorder.[Audio/Video]Encoder class. Take this opportunity to set the frame rate or video
output size if desired.

Finally, assign a file to store the recorded media using the setOutputFile method before calling
prepare.

Listing 11-9 shows how to configure a Media Recorder to record audio and video from the microphone
and camera using the default format and encoder to a file on the SD card.

LISTING 11-9: Configuring the Media Recorder

MediaRecorder mediaRecorder = new MediaRecorder();

// Configure the input sources
mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);
mediaRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);

// Set the output format
mediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.DEFAULT);

// Specify the audio and video encoding
mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.DEFAULT);
mediaRecorder.setVideoEncoder(MediaRecorder.VideoEncoder.DEFAULT);

// Specify the output file
mediaRecorder.setOutputFile("/sdcard/myoutputfile.mp4");

// Prepare to record
mediaRecorder.prepare();

374 ❘ CHAPTER 11 AUDIO, VIDEO, AND USING THE CAMERA

To begin recording, call the start method, as shown in this extension to Listing 11-9.

mediaRecorder.start();

The setOutputFile method must be called before prepare and after
setOutputFormat or it will throw an Illegal State Exception.

When you’re finished, callstop to end the playback, followed by release to free the Media Recorder
resources.

mediaRecorder.stop();
mediaRecorder.release();

Previewing Video Recording
When recording video, it’s generally consideredgood practice to display a preview of the incoming
video feed in real time. Using the setPreviewDisplay method, you can assign a Surface to display the
video stream in real-time.

This works in much the same way as described earlier in this chapter when playing video using the
Media Player.

Start by creating a new Activity that includes a SurfaceView control as part of the UI, and which
implements the SurfaceHolder.Callback interface.

Once the Surface Holder has been created, assign it to the Media Recorder using the
setPreviewDisplay method as shown in Listing 11-10.

The live video preview stream will begin displaying as soon as you make a call to prepare.

LISTING 11-10: Previewing video recording

public class MyActivity extends Activity implements SurfaceHolder.Callback
{
private MediaRecorder mediaRecorder;

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

SurfaceView surface = (SurfaceView)findViewById(R.id.surface);
SurfaceHolder holder = surface.getHolder();
holder.addCallback(this);
holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
holder.setFixedSize(400, 300);

}

Using the Camera and Taking Pictures ❘ 375

public void surfaceCreated(SurfaceHolder holder) {
if (mediaRecorder == null) {
try {

mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);
mediaRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);

mediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.DEFAULT);

mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.DEFAULT);
mediaRecorder.setVideoEncoder(MediaRecorder.VideoEncoder.DEFAULT);
mediaRecorder.setOutputFile("/sdcard/myoutputfile.mp4");

mediaRecorder.setPreviewDisplay(holder.getSurface());
mediaRecorder.prepare();

} catch (IllegalArgumentException e) {
Log.d("MEDIA_PLAYER", e.getMessage());

} catch (IllegalStateException e) {
Log.d("MEDIA_PLAYER", e.getMessage());

} catch (IOException e) {
Log.d("MEDIA_PLAYER", e.getMessage());

}
}

}

public void surfaceDestroyed(SurfaceHolder holder) {
mediaRecorder.release();

}

public void surfaceChanged(SurfaceHolder holder,
int format, int width, int height) { }

}

USING THE CAMERA AND TAKING PICTURES

The popularity of digital cameras (particularly within phone handsets) has caused their prices to drop
just as their size has shrunk dramatically. It’s now becoming difficult to even find a mobile phone
without a camera, and Android devices are certainly no exception.

The G1 was released in 2008 with a 3.2-megapixel camera. Today several devices feature 5-megapixel
cameras, with one model sporting an 8.1-megapixel sensor.

The following sections will demonstrate the mechanisms you can use to control the camera and take
photos within your applications.

Using Intents to Take Pictures
The easiest way to take a picture using the device camera is using the ACTION_IMAGE_CAPTURE Media
Store static constant in an Intent passed to startActivityForResult.

startActivityForResult(new Intent(MediaStore.ACTION_IMAGE_CAPTURE),
TAKE_PICTURE);

376 ❘ CHAPTER 11 AUDIO, VIDEO, AND USING THE CAMERA

This will launch the camera Activity, allowing users to modify the image settings manually, and pre-
venting you from having to rewrite the entire camera application.

The image capture action supports two modes, thumbnail and full image.

➤ Thumbnail By default, the picture taken by the image capture action will return a thumb-
nail Bitmap in the data extra within the Intent parameter returned in onActivityResult.
As shown in Listing 11-11, call getParcelableExtra specifying the extra name data on the
Intent parameter to return the thumbnail as a Bitmap.

➤ Full image If you specify an output URI using a MediaStore.EXTRA_OUTPUT extra in the
launch Intent, the full-size image taken by the camera will be saved to the specified location.
In this case no thumbnail will be returned in the Activity result callback and the result Intent
data will be null.

Listing 11-11 shows how to use the image capture action to capture either a thumbnail or full image
using an Intent.

LISTING 11-11: Taking a picture using an Intent

private static int TAKE_PICTURE = 1;
private Uri outputFileUri;

private void getThumbailPicture() {
Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
startActivityForResult(intent, TAKE_PICTURE);

}

private void saveFullImage() {
Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
File file = new File(Environment.getExternalStorageDirectory(),

"test.jpg");
outputFileUri = Uri.fromFile(file);
intent.putExtra(MediaStore.EXTRA_OUTPUT, outputFileUri);
startActivityForResult(intent, TAKE_PICTURE);

}

@Override
protected void onActivityResult(int requestCode,

int resultCode, Intent data) {
if (requestCode == TAKE_PICTURE) {

Uri imageUri = null;

// Check if the result includes a thumbnail Bitmap
if (data != null) {

if (data.hasExtra("data")) {
Bitmap thumbnail = data.getParcelableExtra("data");
// TODO Do something with the thumbnail

}
}
else {

Using the Camera and Taking Pictures ❘ 377

// TODO Do something with the full image stored
// in outputFileUri

}
}

}

Once you have taken the picture, you can either add it to the Media Store as shown later in this chapter,
or process it for use within your application before removing it.

Controlling the Camera and Taking Pictures
To access the camera hardware directly, you need to add the CAMERA permission to your application
manifest.

<uses-permission android:name="android.permission.CAMERA"/>

Use the Camera class to adjust camera settings, specify image preferences, and take pictures.

To access the Camera Service, use the static open method on the Camera class. When your application
has finished with the Camera, remember to relinquish your hold on it by calling release, as shown in
the simple pattern shown in the Listing 11-12.

LISTING 11-12: Using the Camera

Camera camera = Camera.open();
[. . . Do things with the camera . . .]
camera.release();

The Camera.open method will turn on and initialize the Camera. At this point it is
ready for you to modify settings, configure the preview surface, and take pictures,
as shown in the following sections.

Controlling and Monitoring Camera Settings and Image Options
The camera settings are stored using a Camera.Parameters object, accessible by calling the
getParameters method on the Camera object.

In order to modify the camera settings, use the set* methods on the Parameters object before calling
the Camera’ssetParameters method and passing in the modified Parameters object.

LISTING 11-13: Reading and modifying camera settings

Camera.Parameters parameters = camera.getParameters();
[. . . make changes . . .]
camera.setParameters(parameters);

378 ❘ CHAPTER 11 AUDIO, VIDEO, AND USING THE CAMERA

Android 2.0 (API level 5) introduced a wide range of Camera Parameters, each with a setter and getter
including:

➤ [get/set]SceneMode Takes or returns a SCENE_MODE_* static string constant from the Cam-
era Parameters class. Each scene mode describes a particular scene type (party, beach, sunset,
etc.).

➤ [get/set]FlashMode Takes or returns a FLASH_MODE_* static string constant. Lets you spec-
ify the flash mode as on, off, red-eye reduction, or flashlight mode.

➤ [get/set]WhiteBalance Takes or returns a WHITE_BALANCE_* static string constant to
describe the white balance of the scene being photographed.

➤ [get/set]ColorEffect Takes or returns a EFFECT_* static string constant to modify how
the image is presented. Available color effects include sepia tone or black and white.

➤ [get/set]FocusMode Takes or returns a FOCUS_MODE_* static string constant to specify how
the camera autofocus should attempt to focus the camera.

Most of the parameters described above are useful primarily if you are replacing
the native camera application. That said, they can also be useful for customizing
the way the camera preview is displayed, allowing you to customize the live camera
stream for augmented reality applications.

Camera Parameters can also be used to read or specify size, quality, and format parameters for
the image, thumbnail, and camera preview. The following list explains how to set some of these
values:

➤ JPEG and thumbnail quality Use the setJpegQuality and setJpegThumbnailQuality meth-
ods, passing in an integer value between 0 and 100, where 100 is the best quality.

➤ Image, preview, and thumbnail size Use setPictureSize, setPreviewSize,
setJpegThumbnailSize to specify a height and width for the image, preview, and
thumbnail respectively.

➤ Image and preview pixel format Use setPictureFormat and setPreviewFormat to set the
image format using a static constant from the PixelFormat class.

➤ Preview frame rate Use setPreviewFrameRate to specify the preview frame rate in fps
(frames per second).

Each device may potentially support a different subset of these parameter values. The Camera Param-
eters class also includes a range of getSupported* methods to find valid options to display to the user,
or confirm that a desired parameter value is supported before assigning the value in code, as shown in
Listing 11-14.

Checking for supported parameter values is particularly important when selecting valid preview or
image sizes as each device’s camera will potentially support a different subset.

Using the Camera and Taking Pictures ❘ 379

LISTING 11-14: Confirming supported camera settings

Camera.Parameters parameters = camera.getParameters();
List<String> colorEffects = parameters.getSupportedColorEffects();
if (colorEffects.contains(Camera.Parameters.EFFECT_SEPIA))
parameters.setColorEffect(Camera.Parameters.EFFECT_SEPIA);

camera.setParameters(parameters);

Monitoring Auto Focus
If the host Camera supports auto focus, and it is enabled, you can monitor the success of the auto focus
operation by adding an AutoFocusCallback to the Camera object.

Listing 11-15 shows how to create and assign a simple Auto Focus Callback to a Camera object. The
onAutoFocus event handler receives a Camera parameter when auto focus status has changed, and a
success Boolean parameter indicating if the auto focus has been achieved.

LISTING 11-15: Monitoring auto focus

camera.autoFocus(new AutoFocusCallback() {
public void onAutoFocus(boolean success, Camera camera) {

// TODO Do something on Auto-Focus success
}

});

Using the Camera Preview
Access to the camera’s streaming video means that you can incorporate live video into your applica-
tions.

Some of the most exciting Android applications use this functionality as the basis for implementing
augmented reality (the process of overlaying dynamic contextual data — such as details for landmarks
or points of interest — on top of a live camera feed).

Much like the Media Player and Media Recorder classes, the camera preview is displayed onto a
SurfaceHolder. To view the live camera stream within your application, you must include a Surface
View within your UI. Implement a SurfaceHolder.Callback to listen for the construction of a valid
surface, before passing it in to the setPreviewDisplay method of your Camera object.

A call to startPreview will begin the streaming and stopPreview will end it, as shown in Listing 11-16.

LISTING 11-16: Previewing real-time camera stream

public class MyActivity extends Activity implements SurfaceHolder.Callback {
private Camera camera;

@Override
public void onCreate(Bundle savedInstanceState) {

continues

380 ❘ CHAPTER 11 AUDIO, VIDEO, AND USING THE CAMERA

LISTING 11-16 (continued)

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

SurfaceView surface = (SurfaceView)findViewById(R.id.surface);
SurfaceHolder holder = surface.getHolder();
holder.addCallback(this);
holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
holder.setFixedSize(400, 300);

}

public void surfaceCreated(SurfaceHolder holder) {
if (mediaRecorder == null) {

try {
camera = camera.open();
camera.setPreviewDisplay(holder);
camera.startPreview();
[. . . Draw on the Surface . . .]

} catch (IOException e) {
Log.d("CAMERA", e.getMessage());

}
}

}

public void surfaceDestroyed(SurfaceHolder holder) {
camera.stopPreview();
camera.release();

}
}

You’ll learn more about Surfaces in Chapter 15, although the Android SDK includes an excellent
example of using a SurfaceView to display the camera preview in real time.

You can also assign a PreviewCallback to be fired for each preview frame, allowing you to manipulate
or display each preview frame individually.

Call the setPreviewCallback method on the Camera object, passing in a new PreviewCallback imple-
mentation overriding the onPreviewFrame method as shown in Listing 11-17.

LISTING 11-17: Assigning a preview frame callback

camera.setPreviewCallback(new PreviewCallback() {
public void onPreviewFrame(byte[] _data, Camera _camera) {
// TODO Do something with the preview image.
}

});

Each frame will be received by the onPreviewFrame event with the image passed in through the byte
array.

Using the Camera and Taking Pictures ❘ 381

Taking a Picture
Take a picture by calling takePicture on a Camera object and passing in a ShutterCallback and two
PictureCallback implementations (one for the RAW and one for JPEG-encoded images).

Each picture callback will receive a byte array representing the image in the appropriate format, while
the shutter callback is triggered immediately after the shutter is closed.

Listing 11-18 shows the skeleton code for taking a picture and saving the JPEG image to the SD card.

LISTING 11-18: Taking a picture

private void takePicture() {
camera.takePicture(shutterCallback, rawCallback, jpegCallback);

}

ShutterCallback shutterCallback = new ShutterCallback() {
public void onShutter() {

// TODO Do something when the shutter closes.
}

};

PictureCallback rawCallback = new PictureCallback() {
public void onPictureTaken(byte[] data, Camera camera) {

// TODO Do something with the image RAW data.
}

};

PictureCallback jpegCallback = new PictureCallback() {
public void onPictureTaken(byte[] data, Camera camera) {

// Save the image JPEG data to the SD card
FileOutputStream outStream = null;
try {

outStream = new FileOutputStream("/sdcard/test.jpg");
outStream.write(data);
outStream.close();

} catch (FileNotFoundException e) {
Log.d("CAMERA", e.getMessage());

} catch (IOException e) {
Log.d("CAMERA", e.getMessage());

}
}

};

Reading and Writing JPEG EXIF Image Details
The ExifInterface class provides mechanisms for you to read and modify the EXIF (Exchangeable
Image File Format) data stored within a JPEG file. Create a new ExifInterface instance by passing the
full filename in to the constructor.

ExifInterface exif = new ExifInterface(filename);

382 ❘ CHAPTER 11 AUDIO, VIDEO, AND USING THE CAMERA

EXIF data is used to store a wide range of metadata on photographs, including date and time, camera
settings (such as make and model), and image settings (such as aperture and shutter speed), as well as
image descriptions and locations.

To read an EXIF attribute, call getAttribute on the ExifInterface object, passing in the name of
the attribute to read. The Exifinterface class includes a number of static TAG_* constants that can be
used to access common EXIF metadata. To modify an EXIF attribute, use setAttribute, passing in the
name of the attribute to read and the value to set it to.

Listing 11-19 shows how to read the location coordinates and camera model from a file stored on the
SD card, before modifying the camera manufacturer details.

LISTING 11-19: Reading and modifying EXIF data

File file = new File(Environment.getExternalStorageDirectory(),
"test.jpg");

try {
ExifInterface exif = new ExifInterface(file.getCanonicalPath());
// Read the camera model and location attributes
String model = exif.getAttribute(ExifInterface.TAG_MODEL);
float[] latLng = new float[2];
exif.getLatLong(latLng);
// Set the camera make
exif.setAttribute(ExifInterface.TAG_MAKE, "My Phone");

} catch (IOException e) {
Log.d("EXIF", e.getMessage());

}

ADDING NEW MEDIA TO THE MEDIA STORE

By default, media files created by your application will be unavailable to other applications. As a result,
it’s good practice to insert it into the Media Store to make it available to other applications.

Android provides two alternatives for inserting media into the Media Store, either using the Media
Scanner to interpret your file and insert it automatically, or manually inserting a new record in the
appropriate Content Provider.

Using the Media Scanner
If you have recorded new media of any kind, the MediaScannerConnection class provides a simple way
for you to add it to the Media Store without needing to construct the full record for the Media Store
Content Provider.

Before you can use the scanFile method to initiate a content scan on your file, you must call connect
and wait for the connection to the Media Scanner to complete.

This call is asynchronous, so you will need to implement a MediaScannerConnectionClient to notify
you when the connection has been made. You can use this same class to notify you when the scan is
complete, at which point you can disconnect your Media Scanner Connection.

Adding New Media to the Media Store ❘ 383

This sounds more complex than it is. Listing 11-20 shows the skeleton code for creating a new
MediaScannerConnectionClient that defines a MediaScannerConnection which is used to add a new
file to the Media Store.

LISTING 11-20: Adding files to the Media Store using the Media Scanner

MediaScannerConnectionClient mediaScannerClient = new
MediaScannerConnectionClient() {
private MediaScannerConnection msc = null;

{
msc = new MediaScannerConnection(getApplicationContext(), this);
msc.connect();

}

public void onMediaScannerConnected() {
msc.scanFile("/sdcard/test1.jpg", null);

}

public void onScanCompleted(String path, Uri uri) {
msc.disconnect();

}
};

Inserting Media into the Media Store
Rather than relying on the Media Scanner you can add new media to the Media Store by creating a new
ContentValues object and inserting it into the appropriate Media Store Content Provider yourself.

The metadata you specify here can include the title, time stamp, and geocoding information for your
new media file, as shown in the code snippet below:

ContentValues content = new ContentValues(3);
content.put(Audio.AudioColumns.TITLE, "TheSoundandtheFury");
content.put(Audio.AudioColumns.DATE_ADDED,

System.currentTimeMillis() / 1000);
content.put(Audio.Media.MIME_TYPE, "audio/amr");

You must also specify the absolute path of the media file being added.

content.put(MediaStore.Audio.Media.DATA, "/sdcard/myoutputfile.mp4");

Get access to the application’sContentResolver, and use it to insert this new row into the Media Store
as shown in the following code snippet.

ContentResolver resolver = getContentResolver();
Uri uri = resolver.insert(MediaStore.Video.Media.EXTERNAL_CONTENT_URI,

content);

Once the media file has been inserted into the Media Store you should announce its availability using a
broadcast Intent as shown below.

sendBroadcast(new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE, uri));

384 ❘ CHAPTER 11 AUDIO, VIDEO, AND USING THE CAMERA

RAW AUDIO MANIPULATION

The AudioTrack and AudioRecord classes let you record audio directly from the audio input hardware
of the device, and stream PCM audio buffers directly to the audio hardware for playback.

Using the Audio Track streaming mode you can process incoming audio and playback in near real time,
letting you manipulate incoming or outgoing audio and perform signal processing on raw audio on the
device.

While a detailed account of raw audio processing and manipulation is beyond the scope of this book,
the following sections offer an introduction to recording and playing back raw PCM data.

Recording Sound with Audio Record
Use the AudioRecord class to record audio directly from the hardware buffers. Create a new Audio
Record object, specifying the source, frequency, channel configuration, audio encoding, and buffer size.

int bufferSize = AudioRecord.getMinBufferSize(frequency,
channelConfiguration,
audioEncoding);

AudioRecord audioRecord = new AudioRecord(MediaRecorder.AudioSource.MIC,
frequency, channelConfiguration,
audioEncoding, bufferSize);

For privacy reasons, Android requires that the RECORD_AUDIO manifest permission be included in your
manifest.

<uses-permission android:name="android.permission.RECORD_AUDIO"/>

The frequency, audio encoding, and channel configuration values will affect the size and quality of the
recorded audio. Note that none of this meta-data is associated with the recorded files.

When your Audio Record object is initialized, run the startRecording method to begin asynchronous
recording, and use the read method to add raw audio data into the recording buffer:

audioRecord.startRecording();
while (isRecording) {

[. . . populate the buffer . . .]
int bufferReadResult = audioRecord.read(buffer, 0, bufferSize);

}

Listing 11-21 records raw audio from the microphone to a file stored on the SD card. The next section
will show you how to use an Audio Track to play this audio.

LISTING 11-21: Recording raw audio with Audio Record

int frequency = 11025;
int channelConfiguration = AudioFormat.CHANNEL_CONFIGURATION_MONO;
int audioEncoding = AudioFormat.ENCODING_PCM_16BIT;
File file = new File(Environment.getExternalStorageDirectory(), "raw.pcm");

Raw Audio Manipulation ❘ 385

// Create the new file.
try {
file.createNewFile();

} catch (IOException e) {}

try {
OutputStream os = new FileOutputStream(file);
BufferedOutputStream bos = new BufferedOutputStream(os);
DataOutputStream dos = new DataOutputStream(bos);

int bufferSize = AudioRecord.getMinBufferSize(frequency,
channelConfiguration,
audioEncoding);

short[] buffer = new short[bufferSize];

// Create a new AudioRecord object to record the audio.
AudioRecord audioRecord = new AudioRecord(MediaRecorder.AudioSource.MIC,

frequency,
channelConfiguration,
audioEncoding, bufferSize);

audioRecord.startRecording();

while (isRecording) {
int bufferReadResult = audioRecord.read(buffer, 0, bufferSize);
for (int i = 0; i < bufferReadResult; i++)
dos.writeShort(buffer[i]);

}

audioRecord.stop();
dos.close();

} catch (Throwable t) {}

Playing Sound with Audio Track
Use the AudioTrack class to play raw audio directly into the hardware buffers. Create a new Audio
Track object, specifying the streaming mode, frequency, channel configuration, and the audio encoding
type and length of the audio to play back.

AudioTrack audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,
frequency,
channelConfiguration,
audioEncoding,
audioLength,
AudioTrack.MODE_STREAM);

Because this is raw audio, there is no meta-data associated with the recorded files, so it’s important to
correctly set the audio data properties to the same values as those used when recording the file.

When your Audio Track is initialized, run the play method to begin asynchronous playback, and use
the write method to add raw audio data into the playback buffer.

audioTrack.play();
audioTrack.write(audio, 0, audioLength);

386 ❘ CHAPTER 11 AUDIO, VIDEO, AND USING THE CAMERA

You can write audio into the Audio Track buffer either before play has been called or after. In the
former case, playback will commence as soon as play is called, while in the latter playback will begin
as soon as you write data to the Audio Track buffer.

Listing 11-22 plays back the raw audio recorded in Listing 11-21, but does so at double speed by
halving the expected frequency of the audio file.

LISTING 11-22: Playing raw audio with Audio Track

int frequency = 11025/2;
int channelConfiguration = AudioFormat.CHANNEL_CONFIGURATION_MONO;
int audioEncoding = AudioFormat.ENCODING_PCM_16BIT;
File file = new File(Environment.getExternalStorageDirectory(), "raw.pcm");

// Short array to store audio track (16 bit so 2 bytes per short)
int audioLength = (int)(file.length()/2);
short[] audio = new short[audioLength];

try {
InputStream is = new FileInputStream(file);
BufferedInputStream bis = new BufferedInputStream(is);
DataInputStream dis = new DataInputStream(bis);

int i = 0;
while (dis.available() > 0) {
audio[audioLength] = dis.readShort();
i++;

}

// Close the input streams.
dis.close();

// Create and play a new AudioTrack object
AudioTrack audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,

frequency,
channelConfiguration,
audioEncoding,
audioLength,
AudioTrack.MODE_STREAM);

audioTrack.play();
audioTrack.write(audio, 0, audioLength);

} catch (Throwable t) {}

SPEECH RECOGNITION

Since Android 1.5 (API level 3), Android has supported voice input and speech recognition using the
RecognizerIntent class.

This API lets you accept voice input into your application using the standard voice input dialog shown
in Figure 11-1.

Speech Recognition ❘ 387

FIGURE 11-1

Voice recognition is initiated by calling startNewActivity

ForResult, and passing in an Intent specifying the
RecognizerIntent.ACTION_RECOGNIZE_SPEECH action
constant.

The launch Intent must include the RecognizerIntent

.EXTRA_LANGUAGE_MODEL extra to specify the lan-
guage model used to parse the input audio. This
can be either LANGUAGE_MODEL_FREE_FORM or
LANGUAGE_MODEL_WEB_SEARCH; both are available as
static constants from the RecognizerIntent class.

You can also specify a number of optional extras to control
the language, potential result count, and display prompt
using the following Recognizer Intent constants:

➤ EXTRA_PROMPT Specify a string that will be displayed
in the voice input dialog (shown in Figure 11-1) to
prompt the user to speak.

➤ EXTRA_MAXRESULTS Use an integer value to limit
the number of potential recognition results returned.

➤ EXTRA_LANGUAGE Specify a language constant from
the Locale class to specify an input language other
than the device default. You can find the current
default by calling the static getDefault method on
the Locale class.

The engine that handles the speech recognition may not be capable of
understanding spoken input from all the languages available from the Locale class.

Not all devices will include support for speech recognition. In such cases it is
generally possible to download the voice recognition library from the Android
Market.

Listing 11-23 shows how to initiate voice recognition in English, returning one result, and using a
custom prompt.

LISTING 11-23: Initiating a speech recognition request

Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH)
// Specify free form input
intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,

RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);
intent.putExtra(RecognizerIntent.EXTRA_PROMPT,

continues

388 ❘ CHAPTER 11 AUDIO, VIDEO, AND USING THE CAMERA

LISTING 11-23 (continued)

"or forever hold your peace");
intent.putExtra(RecognizerIntent.EXTRA_MAX_RESULTS, 1);
intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE, Locale.ENGLISH);
startActivityForResult(intent, VOICE_RECOGNITION);

When the user has completed his or her voice input, the resulting audio will be analyzed and processed
by the speech recognition engine. The results will then be returned through the onActivityResult

handler as an Array List of strings in the EXTRA_RESULTS extra as shown in Listing 11-24.

Each string returned in the Array List represents a potential match for the spoken input.

LISTING 11-24: Finding the results of a speech recognition request

@Override
protected void onActivityResult(int requestCode,

int resultCode,
Intent data) {

if (requestCode == VOICE VOICE_RECOGNITION && resultCode == RESULT_OK) {
ArrayList<String> results;
results = data.getStringArrayListExtra(RecognizerIntent.EXTRA_RESULTS);
// TODO Do something with the recognized voice strings

}
super.onActivityResult(requestCode, resultCode, data);

}

SUMMARY

In this chapter you learned how to play, record, and capture multimedia within your application.

Beginning with the Media Player, you learned how to play back audio and video from local files, appli-
cation resources, and online streaming sites. You were introduced to the Video View and learned how
to create and use Surface Views to play back video content, provide video recording preview, and
display a live camera feed.

You learned how to use Intents to leverage the native applications to record video and take pictures,
as well as use the Media Recorder and Camera classes to implement your own still and moving image
capture solutions.

You were also shown how to read and modify Exif image data, add new media to the Media Store, and
manipulate raw audio.

Finally, you were introduced to the voice and speech recognition libraries, and learned how to use them
to add voice input to your applications.

In the next chapter you’ll explore the low-level communication APIs available on the Android platform.

You’ll learn to use Android’s telephony APIs to monitor mobile connectivity, calls, and SMS activity.
You’ll also learn to use the telephony and SMS APIs to initiate outgoing calls and send and receive SMS
messages from within your application.

12
Telephony and SMS

WHAT’S IN THIS CHAPTER?

➤ Initiating phone calls

➤ Reading the phone, network, data connectivity, and SIM states

➤ Monitoring changes to the phone, network, data connectivity, and
SIM states

➤ Using Intents to send SMS and MMS messages

➤ Using the SMS Manager to send SMS Messages

➤ Handling incoming SMS messages

In this chapter, you’ll learn to use Android’s telephony APIs to monitor mobile voice and data
connections as well as incoming and outgoing calls, and to send and receive SMS (short messag-
ing service) messages.

You’ll take a look at the communication hardware by examining the telephony package for
monitoring phone state and phone calls, as well as initiating calls and monitoring incoming call
details.

Android also offers full access to SMS functionality, letting you send and receive SMS messages
from within your applications. Using the Android APIs, you can create your own SMS client
application to replace the native clients available as part of the software stack. Alternatively,
you can incorporate the messaging functionality within your own applications to create social
applications using SMS as the transport layer.

At the end of this chapter, you’ll use the SMS Manager in a detailed project that involves creat-
ing an emergency SMS responder. In emergency situations, the responder will let users quickly,
or automatically, respond to people asking after their safety.

390 ❘ CHAPTER 12 TELEPHONY AND SMS

TELEPHONY

The Android telephony APIs let your applications access the underlying telephone hardware stack,
making it possible to create your own dialer — or integrate call handling and phone state monitoring
into your applications.

Because of security concerns, the current Android SDK does not allow you to
create your own ‘‘in call’’ Activity — the screen that is displayed when an incoming
call is received or an outgoing call has been placed.

The following sections focus on how to monitor and control phone, service, and cell events in your
applications to augment and manage the native phone-handling functionality. If you wish, you can use
the same techniques to implement a replacement dialer application.

Launching the Dialer to Initiate Phone Calls
Best practice is to use Intents to launch a dialer application to initiate new phone calls. Use an Intent
action to start a dialer activity; you should specify the number to dial using the tel: schema as the data
component of the Intent.

Use the Intent.ACTION_DIAL Activity action to launch a dialer rather than dial the number immediately.
This action starts a dialer Activity, passing in the specified number but allowing the dialer application
to manage the call initialization (the default dialer asks the user to explicitly initiate the call). This
action doesn’t require any permissions and is the standard way applications should initiate calls.

Listing 12-1 shows the basic technique for dialing a number.

LISTING 12-1: Dialing a number

Intent intent = new Intent(Intent.ACTION_DIAL, Uri.parse("tel:1234567"));
startActivity(intent);

By using an Intent to announce your intention to dial a number, your application can remain decoupled
from the dialer implementation used to initiate the call. For example, if you were to replace the existing
dialer with a hybrid that allows IP-based telephony, using Intents to dial a number from your other
applications would let you leverage this new dialer functionality.

Replacing the Native Dialer
Replacing the native dialer application involves two steps:

1. Intercepting Intents that are currently serviced by the native dialer.

2. Initiating, and optionally managing, outgoing calls.

Telephony ❘ 391

The native dialer application currently responds to Intent actions corresponding to a user’s pressing the
hardware call button, asking to view data using the tel: schema, or making a request to dial a number
using the tel: schema.

To intercept these requests include <intent-filter> tags on your new Activity that listens for the
following actions:

➤ Intent.ACTION_CALL_BUTTON This action is broadcast when the device’s hardware call but-
ton is pressed. Create an Intent Filter listening for this action as a default action.

➤ Intent.ACTION_DIAL The Intent action described in the previous section, this Intent is used
by applications which want to launch the dialer to make a phone call. The Intent Filter used
to capture this action should be both default and browsable (to support dial requests from the
browser), and must specify the tel: schema to replace existing dialer functionality (though it
can support additional schemes).

➤ Intent.ACTION_VIEW The view action is used by applications wanting to view a piece of
data. Ensure that the Intent Filter specifies the tel: schema to allow your new Activity to be
used to view telephone numbers.

The following manifest snippet shows an Activity with Intent Filters that will capture each of these
actions.

<activity
android:name=".MyDialerActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.CALL_BUTTON" />
<category android:name="android.intent.category.DEFAULT" />

</intent-filter>
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<action android:name="android.intent.action.DIAL" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="tel" />

</intent-filter>
</activity>

Once your application has been started, it is up to you to allow users to enter or modify the number to
call and initiate the outgoing call.

The simplest technique is to use the existing telephony stack. In this case you can use the
Intent.ACTION_CALL action to initiate a call using the standard in-call Activity and letting the system
handle the dialing, connection, and voice handling. Your application must have the CALL_PHONE

uses-permission to broadcast this action.

Alternatively, you can completely replace the outgoing telephony stack by implementing your own dial-
ing and voice handling framework. This is the perfect alternative if you are implementing a VOIP (voice
over IP) application. Note that the implementation of an alternative telephony platform is beyond the
scope of this book.

Note also that you can intercept these Intents to modify or block outgoing calls as an alternative to
completely replacing the dialer screen.

392 ❘ CHAPTER 12 TELEPHONY AND SMS

Accessing Phone and Network Properties and Status
Access to the telephony APIs is managed by the Telephony Manager, accessible using the
getSystemService method as shown in Listing 12-2.

LISTING 12-2: Accessing the Telephony Manager

String srvcName = Context.TELEPHONY_SERVICE;
TelephonyManager telephonyManager = (TelephonyManager)getSystemService(srvcName);

The Telephony Manager provides direct access to many of the phone properties, including device,
network, SIM, and data state details.

Reading Phone Device Details
Using the Telephony Manager you can obtain the phone type (GSM or CDMA), unique ID (IMEI or
MEID), software version, and number. Note that, except for the phone type, reading each of these
properties requires that the READ_PHONE_STATE uses-permission be included in the application
manifest.

<uses-permission android:name="android.permission.READ_PHONE_STATE"/>

Listing 12-3 shows how to extract each of these details.

LISTING 12-3: Reading phone details

int phoneType = telephonyManager.getPhoneType();
switch (phoneType) {

case (TelephonyManager.PHONE_TYPE_CDMA): break;
case (TelephonyManager.PHONE_TYPE_GSM) : break;
case (TelephonyManager.PHONE_TYPE_NONE): break;
default: break;

}

// -- These require READ_PHONE_STATE uses-permission --
// Read the IMEI for GSM or MEID for CDMA
String deviceId = telephonyManager.getDeviceId();
// Read the software version on the phone (note -- not the SDK version)
String softwareVersion = telephonyManager.getDeviceSoftwareVersion();
// Get the phone’s number
String phoneNumber = telephonyManager.getLine1Number();

Reading Data Connection and Transfer State
Using the getDataState and getDataActivity methods you can find the current data connection state
and transfer activity respectively as shown in Listing 12-4.

Generally it will be more useful to detect changes in the data connection or transfer status. You’ll learn
how to monitor both later in this chapter.

Telephony ❘ 393

LISTING 12-4: Reading phone data connection and transfer state

int dataActivity = telephonyManager.getDataActivity();
int dataState = telephonyManager.getDataState();

switch (dataActivity) {
case TelephonyManager.DATA_ACTIVITY_IN : break;
case TelephonyManager.DATA_ACTIVITY_OUT : break;
case TelephonyManager.DATA_ACTIVITY_INOUT : break;
case TelephonyManager.DATA_ACTIVITY_NONE : break;

}

switch (dataState) {
case TelephonyManager.DATA_CONNECTED : break;
case TelephonyManager.DATA_CONNECTING : break;
case TelephonyManager.DATA_DISCONNECTED : break;
case TelephonyManager.DATA_SUSPENDED : break;

}

Reading Network Details
When you are connected to a network, you can use the Telephony Manager to read the mobile country
and network code (MCC+MNC), the country ISO code, and the type of network you’re connected to.
These commands will only work when you are connected to a mobile network, and can be unreliable if
it is a CDMA network. Use the getPhoneType method as described above to determine which network
type you are connected to.

Listing 12-5 shows how to extract the network details, as well as showing a list of the network connec-
tion types currently supported.

LISTING 12-5: Reading network details

// Get connected network country ISO code
String networkCountry = telephonyManager.getNetworkCountryIso();
// Get the connected network operator ID (MCC + MNC)
String networkOperatorId = telephonyManager.getNetworkOperator();
// Get the connected network operator name
String networkName = telephonyManager.getNetworkOperatorName();
// Get the type of network you are connected to
int networkType = telephonyManager.getNetworkType();
switch (networkType) {
case (TelephonyManager.NETWORK_TYPE_1xRTT) : [. . . do something . . .]

break;
case (TelephonyManager.NETWORK_TYPE_CDMA) : [. . . do something . . .]

break;
case (TelephonyManager.NETWORK_TYPE_EDGE) : [. . . do something . . .]

break;
case (TelephonyManager.NETWORK_TYPE_EVDO_0) : [. . . do something . . .]

break;
continues

394 ❘ CHAPTER 12 TELEPHONY AND SMS

LISTING 12-5 (continued)

case (TelephonyManager.NETWORK_TYPE_EVDO_A) : [. . . do something . . .]
break;

case (TelephonyManager.NETWORK_TYPE_GPRS) : [. . . do something . . .]
break;

case (TelephonyManager.NETWORK_TYPE_HSDPA) : [. . . do something . . .]
break;

case (TelephonyManager.NETWORK_TYPE_HSPA) : [. . . do something . . .]
break;

case (TelephonyManager.NETWORK_TYPE_HSUPA) : [. . . do something . . .]
break;

case (TelephonyManager.NETWORK_TYPE_UMTS) : [. . . do something . . .]
break;

case (TelephonyManager.NETWORK_TYPE_UNKNOWN) : [. . . do something . . .]
break;

default: break;
}

Reading SIM Details
If your application is running on a GSM device it will have a SIM. You can query the SIM details from
the Telephony Manager to obtain the ISO country code, operator name, and operator MCC (mobile
country code) and MNC (mobile network code) for the SIM installed in the current device. These
details can be useful if you need to provide specialized functionality for a particular carrier.

You can also obtain the serial number for the current SIM if you include the READ_PHONE_STATE uses-
permission in your application manifest.

Before you can use any of these methods you must ensure that the SIM is in a ready state. You can
determine this using the getSimState method as shown in Listing 12-6.

LISTING 12-6: Reading SIM details

int simState = telephonyManager.getSimState();
switch (simState) {
case (TelephonyManager.SIM_STATE_ABSENT): break;
case (TelephonyManager.SIM_STATE_NETWORK_LOCKED): break;
case (TelephonyManager.SIM_STATE_PIN_REQUIRED): break;
case (TelephonyManager.SIM_STATE_PUK_REQUIRED): break;
case (TelephonyManager.SIM_STATE_UNKNOWN): break;
case (TelephonyManager.SIM_STATE_READY): {

// Get the SIM country ISO code
String simCountry = telephonyManager.getSimCountryIso();
// Get the operator code of the active SIM (MCC + MNC)
String simOperatorCode = telephonyManager.getSimOperator();
// Get the name of the SIM operator
String simOperatorName = telephonyManager.getSimOperatorName();
// -- Requires READ_PHONE_STATE uses-permission --
// Get the SIM’s serial number
String simSerial = telephonyManager.getSimSerialNumber();

Telephony ❘ 395

break;
}
default: break;

}

Monitoring Changes in Phone State, Phone Activity, and Data
Connections

The Android telephony API lets you monitor phone state, retrieve incoming phone numbers, and
observe changes to data connections, signal strength, and network connectivity.

In order to monitor and manage phone state, your application must specify the READ_PHONE_STATE

uses-permission in its manifest using the following XML code snippet:

<uses-permission android:name="android.permission.READ_PHONE_STATE"/>

Changes to the phone state are monitored using the PhoneStateListener class. Extend the Phone State
Listener to listen for, and respond to, phone state change events including call state (ringing, off hook,
etc.), cell location changes, voice-mail and call-forwarding status, phone service changes, and changes
in mobile signal strength.

To react to phone state change events, create a new Phone State Listener implementation, and override
the event handlers of the events you want to react to. Each handler receives parameters that indicate
the new phone state, such as the current cell location, call state, or signal strength.

Listing 12-7 highlights the available state change handlers in a skeleton Phone State Listener implemen-
tation.

LISTING 12-7: Phone State Listener skeleton class

PhoneStateListener phoneStateListener = new PhoneStateListener() {
public void onCallForwardingIndicatorChanged(boolean cfi) {}
public void onCallStateChanged(int state, String incomingNumber) {}
public void onCellLocationChanged(CellLocation location) {}
public void onDataActivity(int direction) {}
public void onDataConnectionStateChanged(int state) {}
public void onMessageWaitingIndicatorChanged(boolean mwi) {}
public void onServiceStateChanged(ServiceState serviceState) {}
public void onSignalStrengthChanged(int asu) {}

};

Once you’ve created your own Phone State Listener, register it with the Telephony Manager using a
bitmask to indicate the events you want to listen for, as shown in Listing 12-8.

LISTING 12-8: Registering a Phone State Listener

telephonyManager.listen(phoneStateListener,
PhoneStateListener.LISTEN_CALL_FORWARDING_INDICATOR|

continues

396 ❘ CHAPTER 12 TELEPHONY AND SMS

LISTING 12-8 (continued)

PhoneStateListener.LISTEN_CALL_STATE |
PhoneStateListener.LISTEN_CELL_LOCATION |
PhoneStateListener.LISTEN_DATA_ACTIVITY |
PhoneStateListener.LISTEN_DATA_CONNECTION_STATE |
PhoneStateListener.LISTEN_MESSAGE_WAITING_INDICATOR |
PhoneStateListener.LISTEN_SERVICE_STATE |
PhoneStateListener.LISTEN_SIGNAL_STRENGTH);

To unregister a listener, call listen and pass in PhoneStateListener.LISTEN_NONE as the bit field
parameter, as shown below:

telephonyManager.listen(phoneStateListener,
PhoneStateListener.LISTEN_NONE);

Monitoring Incoming Phone Calls
One of the most popular reasons for monitoring phone state is to detect, and react to, incoming phone
calls.

To do so, override the onCallStateChanged method in a Phone State Listener implementation, and
register it as shown in Listing 12-9 to receive notifications when the call state changes.

LISTING 12-9: Monitoring phone calls

PhoneStateListener callStateListener = new PhoneStateListener() {
public void onCallStateChanged(int state, String incomingNumber) {
// TODO React to incoming call.

}
};

telephonyManager.listen(callStateListener,
PhoneStateListener.LISTEN_CALL_STATE);

The onCallStateChanged handler receives the phone number associated with incoming calls, and the
state parameter represents the current call state as one of the following three values:

➤ TelephonyManager.CALL_STATE_IDLE When the phone is neither ringing nor in a call

➤ TelephonyManager.CALL_STATE_RINGING When the phone is ringing

➤ TelephonyManager.CALL_STATE_OFFHOOK When the phone is currently in a call

Tracking Cell Location Changes
You can get notifications whenever the current cell location changes by overriding
onCellLocationChanged on a Phone State Listener implementation. Before you can register to
listen for cell location changes, you need to add the ACCESS_COARSE_LOCATION permission to your
application manifest.

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

The onCellLocationChanged handler receives a CellLocation object that includes methods for extract-
ing the cell ID (getCid) and the current LAC (getLac).

Telephony ❘ 397

Listing 12-10 shows how to implement a Phone State Listener to monitor cell location changes, dis-
playing a Toast that includes the new location’s cell ID.

LISTING 12-10: Tracking cell changes

PhoneStateListener cellLocationListener = new PhoneStateListener() {
public void onCellLocationChanged(CellLocation location) {

GsmCellLocation gsmLocation = (GsmCellLocation)location;
Toast.makeText(getApplicationContext(),

String.valueOf(gsmLocation.getCid()),
Toast.LENGTH_LONG).show();

}
};
telephonyManager.listen(cellLocationListener,

PhoneStateListener.LISTEN_CELL_LOCATION);

Tracking Service Changes
The onServiceStateChanged handler tracks the service details for the device’s cell service. Use the
ServiceState parameter to find details of the current service state.

The getState method on the Service State object returns the current service state as one of the following
ServiceState constants:

➤ STATE_IN_SERVICE Normal phone service is available.

➤ STATE_EMERGENCY_ONLY Phone service is available but only for emergency calls.

➤ STATE_OUT_OF_SERVICE No cell phone service is currently available.

➤ STATE_POWER_OFF The phone radio is turned off (usually when airplane mode is enabled).

A series of getOperator* methods is available to retrieve details on the operator supplying the cell
phone service, while getRoaming tells you if the device is currently using a roaming profile.

Listing 12-11 shows how to register for service state changes and displays a Toast showing the operator
name of the current phone service.

LISTING 12-11: Monitoring service state changes

PhoneStateListener serviceStateListener = new PhoneStateListener() {
public void onServiceStateChanged(ServiceState serviceState) {

if (serviceState.getState() == ServiceState.STATE_IN_SERVICE) {
String toastText = serviceState.getOperatorAlphaLong();
Toast.makeText(getApplicationContext(), toastText, Toast.LENGTH_SHORT);

}
}

};

telephonyManager.listen(serviceStateListener,
PhoneStateListener.LISTEN_SERVICE_STATE);

398 ❘ CHAPTER 12 TELEPHONY AND SMS

Monitoring Data Connectivity and Activity
As well as voice and service details, you can also use a Phone State Listener to monitor changes in
mobile data connectivity and mobile data transfer.

The Phone State Listener includes two event handlers for monitoring the device data connection. Over-
ride onDataActivity to track data transfer activity, and onDataConnectionStateChanged to request
notifications for data connection state changes.

Listing 12-12 shows both handlers overridden, with switch statements demonstrating each of the pos-
sible values for the state and data-flow direction parameters passed in to each event.

LISTING 12-12: Monitoring data connections and transfers

PhoneStateListener dataStateListener = new PhoneStateListener() {
public void onDataActivity(int direction) {
switch (direction) {

case TelephonyManager.DATA_ACTIVITY_IN : break;
case TelephonyManager.DATA_ACTIVITY_OUT : break;
case TelephonyManager.DATA_ACTIVITY_INOUT : break;
case TelephonyManager.DATA_ACTIVITY_NONE : break;

}
}

public void onDataConnectionStateChanged(int state) {
switch (state) {

case TelephonyManager.DATA_CONNECTED : break;
case TelephonyManager.DATA_CONNECTING : break;
case TelephonyManager.DATA_DISCONNECTED : break;
case TelephonyManager.DATA_SUSPENDED : break;

}
}

};

telephonyManager.listen(dataStateListener,
PhoneStateListener.LISTEN_DATA_ACTIVITY |
PhoneStateListener.LISTEN_DATA_CONNECTION_STATE);

INTRODUCING SMS AND MMS

If you own a mobile phone that’s less than two decades old, chances are you’re familiar with SMS
messaging. SMS (short messaging service) is now one of the most-used features on mobile phones, with
many people favoring it over making phone calls.

SMS technology is designed to send short text messages between mobile phones. It provides support for
sending both text messages (designed to be read by people) and data messages (meant to be consumed
by applications). More recently MMS (multimedia messaging service) messages have allowed users to
send and receive messages that include multimedia attachments such as photos, videos, and audio.

Because SMS and MMS are mature mobile technologies, there’s a lot of information out there that
describes the technical details of how an SMS or MMS message is constructed and transmitted over

Introducing SMS and MMS ❘ 399

the air. Rather than rehash that information here, the following sections focus on the practicalities of
sending and receiving text, data, and multimedia messages from within Android applications.

Using SMS and MMS in Your Application
Android provides full SMS functionality from within your applications through the SMSManager. Using
the SMS Manager, you can replace the native SMS application to send text messages, react to incoming
texts, or use SMS as a data transport layer.

At this time, the Android API does not include simple support for creating MMS messages from within
your applications, though you can use the SEND and SEND_TO actions in Intents to send both SMS and
MMS messages using a messaging application installed on the device.

This chapter will demonstrate how to use both the SMS Manager and Intents to send messages from
within your applications.

SMS message delivery is not timely. Compared to using an IP or socket-based transport, using SMS to
pass data messages between applications is slow, possibly expensive, and can suffer from high latency.
As a result SMS is not really suitable for anything that requires real-time responsiveness.

That said, the widespread adoption and resiliency of SMS networks make it a particularly good
tool for delivering content to non-Android users and reducing the dependency on third-party
servers.

Sending SMS and MMS from Your Application Using Intents and
the Native Client

In many circumstances you may find it easier to pass on the responsibility for sending SMS and MMS
messages to another application, rather than implementing a full SMS client within your app.

To do so, call startActivity using an Intent with the Intent.ACTION_SENDTO action. Specify a target
number using sms: schema notation as the Intent data. Include the message you want to send within
the Intent payload using an sms_body extra, as shown in Listing 12-13.

LISTING 12-13: Sending an SMS message using Intents

Intent smsIntent = new Intent(Intent.ACTION_SENDTO,
Uri.parse("sms:55512345"));

smsIntent.putExtra("sms_body", "Press send to send me");
startActivity(smsIntent);

You can also attach files (effectively creating an MMS message) to your messages. Add an
Intent.EXTRA_STREAM with the URI of the resource to attach, and set the Intent type to the mime-type
of the attached resource.

Note that the native MMS application doesn’t include an Intent Receiver for ACTION_SENDTO with a
type set. Instead, you will need to use ACTION_SEND and include the target phone number as an address

extra, as shown in Listing 12-14.

400 ❘ CHAPTER 12 TELEPHONY AND SMS

LISTING 12-14: Sending an MMS message with an attached image

// Get the URI of a piece of media to attach.
Uri attached_Uri = Uri.parse("content://media/external/images/media/1");

// Create a new MMS intent
Intent mmsIntent = new Intent(Intent.ACTION_SEND, attached_Uri);
mmsIntent.putExtra("sms_body", "Please see the attached image");
mmsIntent.putExtra("address", "07912355432");
mmsIntent.putExtra(Intent.EXTRA_STREAM, attached_Uri);
mmsIntent.setType("image/png");
startActivity(mmsIntent);

When running the MMS example shown in Listing 12-14, users are likely to be
prompted to select one of a number of applications capable of fulfilling the send
request, including the Gmail, e-mail, and SMS applications.

Sending SMS Messages Manually
SMS messaging in Android is handled by the SmsManager. You can get a reference to the SMS Manager
using the static method SmsManager.getDefault, as shown in the following snippet.

SmsManager smsManager = SmsManager.getDefault();

Prior to Android 1.6 (SDK level 4) the SmsManager and SmsMessage classes were
provided by the android.telephony.gsm package. These have now been deprecated
and the SMS classes moved to android.telephony to ensure generic support for
GSM and CDMA devices.

To send SMS messages, your applications must specify the SEND_SMS uses-permission. To request this
permission, add it to the manifest as shown below:

<uses-permission android:name="android.permission.SEND_SMS"/>

Sending Text Messages
To send a text message, use sendTextMessage from the SMS Manager, passing in the address (phone
number) of your recipient and the text message you want to send, as shown in Listing 12-15.

LISTING 12-15: Sending an SMS message

String sendTo = "5551234";
String myMessage = "Android supports programmatic SMS messaging!";

smsManager.sendTextMessage(sendTo, null, myMessage, null, null);

Introducing SMS and MMS ❘ 401

The second parameter can be used to specify the SMS service center to use; if you enter null as shown
in Listing 12-15 the default service center will be used for your carrier.

The final two parameters let you specify Intents to track the transmission and successful delivery of
your messages.

To react to these Intents, create and register Broadcast Receivers as shown in the next section.

The Android debugging bridge supports sending SMS messages among multiple
emulator instances. To send an SMS from one emulator to another, specify the port
number of the target emulator as the ‘‘to’’ address when sending a new message.

Android will automatically route your message to the target emulator instance,
where it’ll be handled as a normal SMS.

Tracking and Confirming SMS Message Delivery
To track the transmission and delivery success of your outgoing SMS messages, implement and register
Broadcast Receivers that listen for the actions you specify when creating the Pending Intents you pass
in to the sendTextMessage method.

The first Pending Intent parameter, sentIntent, is fired when the message either is successfully sent
or fails to send. The result code for the Broadcast Receiver that receives this Intent will be one of the
following:

➤ Activity.RESULT_OK To indicate a successful transmission

➤ SmsManager.RESULT_ERROR_GENERIC_FAILURE To indicate a nonspecific failure

➤ SmsManager.RESULT_ERROR_RADIO_OFF When the phone radio is turned off

➤ SmsManager.RESULT_ERROR_NULL_PDU To indicate a PDU (protocol description unit) failure

The second Pending Intent parameter, deliveryIntent, is fired only after the destination recipient
receives your SMS message.

Listing 12-16 shows a typical pattern for sending an SMS and monitoring the success of its transmission
and delivery.

LISTING 12-16: SMS delivery monitoring pattern

String SENT_SMS_ACTION = "SENT_SMS_ACTION";
String DELIVERED_SMS_ACTION = "DELIVERED_SMS_ACTION";

// Create the sentIntent parameter
Intent sentIntent = new Intent(SENT_SMS_ACTION);
PendingIntent sentPI = PendingIntent.getBroadcast(getApplicationContext(),

0,
continues

402 ❘ CHAPTER 12 TELEPHONY AND SMS

LISTING 12-16 (continued)

sentIntent,
0);

// Create the deliveryIntent parameter
Intent deliveryIntent = new Intent(DELIVERED_SMS_ACTION);
PendingIntent deliverPI =

PendingIntent.getBroadcast(getApplicationContext(),
0,
deliveryIntent,
0);

// Register the Broadcast Receivers
registerReceiver(new BroadcastReceiver() {

@Override
public void onReceive(Context _context, Intent _intent)
{
switch (getResultCode()) {

case Activity.RESULT_OK:
[. . . send success actions . . .]; break;

case SmsManager.RESULT_ERROR_GENERIC_FAILURE:
[. . . generic failure actions . . .]; break;

case SmsManager.RESULT_ERROR_RADIO_OFF:
[. . . radio off failure actions . . .]; break;

case SmsManager.RESULT_ERROR_NULL_PDU:
[. . . null PDU failure actions . . .]; break;

}
}

},
new IntentFilter(SENT_SMS_ACTION));

registerReceiver(new BroadcastReceiver() {
@Override
public void onReceive(Context _context, Intent _intent)
{
[. . . SMS delivered actions . . .]

}
},
new IntentFilter(DELIVERED_SMS_ACTION));

// Send the message
smsManager.sendTextMessage(sendTo, null, myMessage, sentPI, deliverPI);

Conforming to the Maximum SMS Message Size
SMS text messages are normally limited to 160 characters, so longer messages need to be broken into a
series of smaller parts. The SMS Manager includes the divideMessage method, which accepts a string as
an input and breaks it into an Array List of messages, wherein each is less than the maximum allowable
size.

You can then use the sendMultipartTextMessage method on the SMS Manager to transmit the array
of messages, as shown in Listing 12-17.

Introducing SMS and MMS ❘ 403

The sentIntent and deliveryIntent parameters in the sendMultipartTextMessage method are Array
Lists that can be used to specify different Pending Intents to fire for each message part.

LISTING 12-17: Sending long messages in multiple parts

ArrayList<String> messageArray = smsManager.divideMessage(myMessage);
ArrayList<PendingIntent> sentIntents = new ArrayList<PendingIntent>();
for (int i = 0; i < messageArray.size(); i++)
sentIntents.add(sentPI);

smsManager.sendMultipartTextMessage(sendTo,
null,
messageArray,
sentIntents, null);

Sending Data Messages
You can send binary data via SMS using the sendDataMessage method on an SMS Manager. The
sendDataMessage method works much like sendTextMessage, but includes additional parameters for
the destination port and an array of bytes that constitutes the data you want to send.

Listing 12-18 shows the basic structure of sending a data message.

LISTING 12-18: Sending SMS data messages

Intent sentIntent = new Intent(SENT_SMS_ACTION);
PendingIntent sentPI = PendingIntent.getBroadcast(getApplicationContext(),

0, sentIntent, 0);

short destinationPort = 80;
byte[] data = [. . . your data . . .];
smsManager.sendDataMessage(sendTo, null, destinationPort,

data, sentPI, null);

Listening for Incoming SMS Messages
When a new SMS message is received by the device, a new broadcast Intent is fired with the
android.provider.Telephony.SMS_RECEIVED action. Note that this is a string literal, the SDK
currently doesn’t include a reference to this string, so you must specify it explicitly when using it in
your applications.

The SMS received action string is hidden (therefore unsupported). As such it is
subject to change at any future platform release. As always, be very cautious when
using unsupported platform features as they are subject to change in future
platform releases.

404 ❘ CHAPTER 12 TELEPHONY AND SMS

For an application to listen for SMS Intent broadcasts, it needs to specify the RECEIVE_SMS manifest
permission. Request this permission by adding a <uses-permission> tag to the application manifest, as
shown in the following snippet:

<uses-permission
android:name="android.permission.RECEIVE_SMS"

/>

The SMS broadcast Intent includes the incoming SMS details. To extract the array of SmsMessage
objects packaged within the SMS broadcast Intent bundle, use the pdu extras key to extract an array of
SMS PDUs (protocol description units — used to encapsulate an SMS message and its metadata), each
of which represents an SMS message. To convert each PDU byte array into an SMS Message object,
call SmsMessage.createFromPdu, passing in each byte array as shown in Listing 12-19.

LISTING 12-19: Extracting SMS messages from Incoming SMS Intent broadcasts

Bundle bundle = intent.getExtras();
if (bundle != null) {

Object[] pdus = (Object[]) bundle.get("pdus");
SmsMessage[] messages = new SmsMessage[pdus.length];
for (int i = 0; i < pdus.length; i++)
messages[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);

}

Each SmsMessage contains the SMS message details, including the originating address (phone number),
time stamp, and the message body.

Listing 12-20 shows a Broadcast Receiver implementation whose onReceive handler checks incoming
SMS texts that start with the string @echo, and then sends the same text back to the number that
sent it.

LISTING 12-20: Listening for incoming SMS messages

public class IncomingSMSReceiver extends BroadcastReceiver {
private static final String queryString = "@echo";
private static final String SMS_RECEIVED =

"android.provider.Telephony.SMS_RECEIVED";

public void onReceive(Context _context, Intent _intent) {
if (_intent.getAction().equals(SMS_RECEIVED)) {

SmsManager sms = SmsManager.getDefault();

Bundle bundle = _intent.getExtras();
if (bundle != null) {
Object[] pdus = (Object[]) bundle.get("pdus");
SmsMessage[] messages = new SmsMessage[pdus.length];
for (int i = 0; i < pdus.length; i++)

messages[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);

for (SmsMessage message : messages) {
String msg = message.getMessageBody();

Introducing SMS and MMS ❘ 405

String to = message.getOriginatingAddress();

if (msg.toLowerCase().startsWith(queryString)) {
String out = msg.substring(queryString.length());
sms.sendTextMessage(to, null, out, null, null);

}
}

}
}

}
}

To listen for incoming messages, register the Broadcast Receiver from Listing 12-20 using an Intent
Filter that listens for the android.provider.Telephony.SMS_RECEIVED action String, as shown in
Listing 12-21.

LISTING 12-21: Registering an SMS listener receiver

final String SMS_RECEIVED = "android.provider.Telephony.SMS_RECEIVED";
IntentFilter filter = new IntentFilter(SMS_RECEIVED);
BroadcastReceiver receiver = new IncomingSMSReceiver();
registerReceiver(receiver, filter);

Simulating Incoming SMS Messages in the Emulator
There are two techniques available for simulating incoming SMS messages in the emulator. The first
was described previously in this section; you can send an SMS message from one emulator to another
by using its port number as its phone number.

Alternatively, you can use the Android debug tools introduced in Chapter 2 to simulate incoming SMS
messages from arbitrary numbers, as shown in Figure 12-1.

FIGURE 12-1

406 ❘ CHAPTER 12 TELEPHONY AND SMS

Handling Data SMS Messages
Data messages are received in the same way as normal SMS text messages and are extracted in the same
way as shown in the preceding section.

To extract the data transmitted within a data SMS, use the getUserData method, as shown in the
following snippet.

byte[] data = msg.getUserData();

The getUserData method returns a byte array of the data included in the message.

Emergency Responder SMS Example
In this example, you’ll create an SMS application that turns an Android phone into an emergency
response beacon.

Once finished, the next time you’re in unfortunate proximity to an alien invasion or find yourself in a
robot-uprising scenario, you can set your phone to automatically respond to your friends’ and family
members’ pleas for a status update with a friendly message (or a desperate cry for help).

To make things easier for your would-be saviors, you’ll use location-based services to tell your rescuers
exactly where to find you. The robustness of SMS network infrastructure makes SMS an excellent
option for applications like this for which reliability and accessibility are critical.

1. Start by creating a new EmergencyResponder project that features an EmergencyResponder

Activity.

package com.paad.emergencyresponder;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Locale;
import java.util.concurrent.locks.ReentrantLock;
import java.util.List;
import android.app.Activity;
import android.app.PendingIntent;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;

import android.content.BroadcastReceiver;
import android.content.SharedPreferences;
import android.location.Address;
import android.location.Geocoder;
import android.location.Location;
import android.location.LocationManager;

import android.os.Bundle;
import android.telephony.SmsManager;
import android.telephony.SmsMessage;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.ArrayAdapter;

Introducing SMS and MMS ❘ 407

import android.widget.Button;
import android.widget.CheckBox;
import android.widget.ListView;

public class EmergencyResponder extends Activity {

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

2. Add permissions for finding your location as well as sending and receiving incoming SMS
messages to the project manifest.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.paad.emergencyresponder">
<application
android:icon="@drawable/icon"
android:label="@string/app_name">
<activity

android:name=".EmergencyResponder"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
<uses-permission android:name="android.permission.RECEIVE_SMS"/>
<uses-permission android:name="android.permission.SEND_SMS"/>
<uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION"

/>
</manifest>

3. Modify the main.xml layout resource. Include a ListView to display the list of people
requesting a status update, and a series of buttons for sending response SMS messages. Use
external resource references to fill in the button text; you’ll create them in Step 4.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TextView
android:id="@+id/labelRequestList"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="These people want to know if you’re ok"
android:layout_alignParentTop="true"

/>
<LinearLayout
android:id="@+id/buttonLayout"

408 ❘ CHAPTER 12 TELEPHONY AND SMS

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:padding="5px"
android:layout_alignParentBottom="true">
<CheckBox

android:id="@+id/checkboxSendLocation"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Include Location in Reply"/>

<Button
android:id="@+id/okButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/respondAllClearButtonText"/>

<Button
android:id="@+id/notOkButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/respondMaydayButtonText"/>

<Button
android:id="@+id/autoResponder"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Setup Auto Responder"/>

</LinearLayout>
<ListView
android:id="@+id/myListView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_below="@id/labelRequestList"
android:layout_above="@id/buttonLayout"/>

</RelativeLayout>

4. Update the external strings.xml resource to include the text for each button and default
response messages to use when responding, including ‘‘I’m safe’’ or ‘‘I’m in danger’’
messages. You should also define the incoming message text to use when your phone detects
requests for status responses.

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="app_name">Emergency Responder</string>
<string name="respondAllClearButtonText">I am Safe and Well
</string>
<string name="respondMaydayButtonText">MAYDAY! MAYDAY! MAYDAY!
</string>
<string name="respondAllClearText">I am safe and well. Worry not!
</string>
<string name="respondMaydayText">Tell my mother I love her.
</string>
<string name="querystring">are you ok?</string>

</resources>

Introducing SMS and MMS ❘ 409

FIGURE 12-2

. 5. At this point, the GUI will be complete, so start-
ing the application should show you the screen in
Figure 12-2.

6. Create a new Array List of Strings within the
EmergencyResponder Activity to store the phone
numbers of the incoming requests for your sta-
tus. Bind the Array List to the List View, using
an Array Adapter in the Activity’s onCreate
method, and create a new ReentrantLock

object to ensure thread safe handling of the
Array List.

Take the opportunity to get a reference to the
checkbox and to add Click Listeners for each of
the response buttons. Each button should call the
respond method, while the Setup Auto Respon-
der button should call the startAutoResponder

stub.

ReentrantLock lock;
CheckBox locationCheckBox;
ArrayList<String> requesters;
ArrayAdapter<String> aa;

@Override
public void onCreate(Bundle savedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

lock = new ReentrantLock();
requesters = new ArrayList<String>();
wireUpControls();

}

private void wireUpControls() {
locationCheckBox = (CheckBox)findViewById(R.id.checkboxSendLocation);
ListView myListView = (ListView)findViewById(R.id.myListView);

int layoutID = android.R.layout.simple_list_item_1;
aa = new ArrayAdapter<String>(this, layoutID, requesters);
myListView.setAdapter(aa);

Button okButton = (Button)findViewById(R.id.okButton);
okButton.setOnClickListener(new OnClickListener() {
public void onClick(View arg0) {

respond(true, locationCheckBox.isChecked());
}

});

Button notOkButton = (Button)findViewById(R.id.notOkButton);
notOkButton.setOnClickListener(new OnClickListener() {
public void onClick(View arg0) {

410 ❘ CHAPTER 12 TELEPHONY AND SMS

respond(false, locationCheckBox.isChecked());
}

});

Button autoResponderButton =
(Button)findViewById(R.id.autoResponder);

autoResponderButton.setOnClickListener(new OnClickListener() {
public void onClick(View arg0) {

startAutoResponder();
}

});
}

public void respond(boolean _ok, boolean _includeLocation) {}
private void startAutoResponder() {}

. 7. Next, implement a Broadcast Receiver that will listen for incoming SMS messages.

7.1. Start by creating a new static string variable to store the incoming SMS message
intent action.

public static final String SMS_RECEIVED =
"android.provider.Telephony.SMS_RECEIVED";

7.2. Then create a new Broadcast Receiver as a variable in the EmergencyResponder

Activity. The receiver should listen for incoming SMS messages and call the
requestReceived method when it sees SMS messages containing the ‘‘are you safe’’
String you defined as an external resource in Step 4.

BroadcastReceiver emergencyResponseRequestReceiver =
new BroadcastReceiver() {

@Override
public void onReceive(Context _context, Intent _intent) {
if (_intent.getAction().equals(SMS_RECEIVED)) {

String queryString = getString(R.string.querystring);

Bundle bundle = _intent.getExtras();
if (bundle != null) {
Object[] pdus = (Object[]) bundle.get("pdus");
SmsMessage[] messages = new SmsMessage[pdus.length];
for (int i = 0; i < pdus.length; i++)

messages[i] =
SmsMessage.createFromPdu((byte[]) pdus[i]);

for (SmsMessage message : messages) {
if (message.getMessageBody().toLowerCase().contains

(queryString))
requestReceived(message.getOriginatingAddress());

}
}

}
}

};

public void requestReceived(String _from) {}

Introducing SMS and MMS ❘ 411

8. Update the onCreate method of the Emergency Responder Activity to register the Broadcast
Receiver created in Step 7.

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

lock = new ReentrantLock();
requesters = new ArrayList<String>();
wireUpControls();

IntentFilter filter = new IntentFilter(SMS_RECEIVED);
registerReceiver(emergencyResponseRequestReceiver, filter);

}

FIGURE 12-3

. 9. Update the requestReceived method stub so
that it adds the originating number of each status
request’s SMS to the ‘‘requesters’’ Array List.

public void requestReceived(String _from) {
if (!requesters.contains(_from)) {
lock.lock();
requesters.add(_from);
aa.notifyDataSetChanged();
lock.unlock();

}
}

10. The Emergency Responder Activity should now
be listening for status request SMS messages and
adding them to the List View as they arrive. Start
the application and send SMS messages to the
device or emulator on which it’s running. Once
they’ve arrived they should be displayed as shown
in Figure 12-3.

11. Now update the Activity to let users respond to
these status requests.

Start by completing the respond method stub you
created in Step 6. It should iterate over the Array
List of status requesters and send a new SMS mes-
sage to each. The SMS message text should be
based on the response strings you defined as resources in Step 4. Fire the SMS using an over-
loaded respond method that you’ll complete in the next step.

public void respond(boolean _ok, boolean _includeLocation) {
String okString = getString(R.string.respondAllClearText);
String notOkString = getString(R.string.respondMaydayText);

412 ❘ CHAPTER 12 TELEPHONY AND SMS

String outString = _ok ? okString : notOkString;

ArrayList<String> requestersCopy =
(ArrayList<String>)requesters.clone();

for (String to : requestersCopy)
respond(to, outString, _includeLocation);

}

private void respond(String _to, String _response,
boolean _includeLocation) {}

. 12. Update the respond method that handles the sending of each response SMS.

Start by removing each potential recipient from the ‘‘requesters’’ Array List before sending
the SMS. If you are responding with your current location, use the Location Manager to find
it before sending a second SMS with your current position as raw longitude/latitude points
and a geocoded address.

public void respond(String _to, String _response,
boolean _includeLocation) {

// Remove the target from the list of people we
// need to respond to.
lock.lock();
requesters.remove(_to);
aa.notifyDataSetChanged();
lock.unlock();

SmsManager sms = SmsManager.getDefault();

// Send the message
sms.sendTextMessage(_to, null, _response, null, null);

StringBuilder sb = new StringBuilder();

// Find the current location and send it
// as SMS messages if required.
if (_includeLocation) {
String ls = Context.LOCATION_SERVICE;
LocationManager lm = (LocationManager)getSystemService(ls);
Location l =

lm.getLastKnownLocation(LocationManager.GPS_PROVIDER);

sb.append("I’m @:\n");
sb.append(l.toString() + "\n");

List<Address> addresses;
Geocoder g = new Geocoder(getApplicationContext(),

Locale.getDefault());
try {

addresses = g.getFromLocation(l.getLatitude(),
l.getLongitude(), 1);

if (addresses != null) {

Introducing SMS and MMS ❘ 413

Address currentAddress = addresses.get(0);
if (currentAddress.getMaxAddressLineIndex() > 0) {

for (int i = 0;
i < currentAddress.getMaxAddressLineIndex();
i++)

{
sb.append(currentAddress.getAddressLine(i));
sb.append("\n");

}
}
else {

if (currentAddress.getPostalCode() != null)
sb.append(currentAddress.getPostalCode());

}
}

} catch (IOException e) {}

ArrayList<String> locationMsgs =
sms.divideMessage(sb.toString());

for (String locationMsg : locationMsgs)
sms.sendTextMessage(_to, null, locationMsg, null, null);

}
}

13. In emergencies, it’s important that messages get through. Improve the robustness of the appli-
cation by including auto-retry functionality. Monitor the success of your SMS transmissions
so that you can rebroadcast a message if it doesn’t successfully send.

13.1. Start by creating a new public static String in the Emergency Responder Activity to
be used as a local ‘‘SMS Sent’’ action.

public static final String SENT_SMS =
"com.paad.emergencyresponder.SMS_SENT";

13.2. Update the respond method to include a new PendingIntent that broadcasts the
action created in the previous step when the SMS transmission has completed. The
packaged Intent should include the intended recipient’s number as an extra.

public void respond(String _to, String _response,
boolean _includeLocation) {

// Remove the target from the list of people we
// need to respond to.
lock.lock();
requesters.remove(_to);
aa.notifyDataSetChanged();
lock.unlock();

SmsManager sms = SmsManager.getDefault();

Intent intent = new Intent(SENT_SMS);
intent.putExtra("recipient", _to);

PendingIntent sent =
PendingIntent.getBroadcast(getApplicationContext(),

0, intent, 0);

414 ❘ CHAPTER 12 TELEPHONY AND SMS

// Send the message
sms.sendTextMessage(_to, null, _response, sent, null);

StringBuilder sb = new StringBuilder();

if (_includeLocation) {
[. . . existing respond method that finds the location . . .]
ArrayList<String> locationMsgs =
sms.divideMessage(sb.toString());

for (String locationMsg : locationMsgs)
sms.sendTextMessage(_to, null, locationMsg, sentIntent, null);

}
}

13.3. Then implement a new Broadcast Receiver to listen for this broadcast Intent. Over-
ride its onReceive handler to confirm that the SMS was successfully delivered; if it
wasn’t, then put the intended recipient back onto the requester Array List.

private BroadcastReceiver attemptedDeliveryReceiver = new
BroadcastReceiver() {
@Override
public void onReceive(Context _context, Intent _intent) {

if (_intent.getAction().equals(SENT_SMS)) {
if (getResultCode() != Activity.RESULT_OK) {

String recipient = _intent.getStringExtra("recipient");
requestReceived(recipient);

}
}

}
};

13.4. Finally, register the new Broadcast Receiver by extending the onCreate method of
the Emergency Responder Activity.

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

lock = new ReentrantLock();
requesters = new ArrayList<String>();
wireUpControls();

IntentFilter filter = new IntentFilter(SMS_RECEIVED);
registerReceiver(emergencyResponseRequestReceiver, filter);

IntentFilter attemptedDeliveryfilter = new IntentFilter(SENT_SMS);
registerReceiver(attemptedDeliveryReceiver,

attemptedDeliveryfilter);
}

All code snippets in this example are part of the Chapter 12 Emergency Responder project, available for download at Wrox.com.

Introducing SMS and MMS ❘ 415

This example has been simplified to focus on the SMS-based functionality it is attempting to demon-
strate. Keen-eyed observers should have noticed at least two areas where it could be improved:

1. The Broadcast Receiver created and registered in Steps 7 and 8 would be better registered
within the manifest to allow the application to respond to incoming SMS messages even
when it isn’t running.

2. The parsing of the incoming SMS messages performed by the Broadcast Receiver in Steps
7 and 9 should be moved into a Service, and executed on a background thread. Similarly,
Step 13, sending the response SMS messages, would be better executed on a background
thread within a Service.

The implementation of these improvements is left as an exercise for the reader based on the techniques
you learned in Chapter 9.

Automating the Emergency Responder
In the following example, you’ll fill in the code behind the Setup Auto Responder button added in the
previous example, to let the Emergency Responder automatically respond to status update requests.

1. Start by creating a new autoresponder.xml layout resource that will be used to lay out the
automatic response configuration window. Include an EditText for entering a status message
to send, a Spinner for choosing the auto-response expiry time, and a CheckBox to let users
decide whether they want to include their location in the automated responses.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Respond With"/>

<EditText
android:id="@+id/responseText"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>

<CheckBox
android:id="@+id/checkboxLocation"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Transmit Location"/>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Auto Respond For"/>

<Spinner
android:id="@+id/spinnerRespondFor"
android:layout_width="fill_parent"

416 ❘ CHAPTER 12 TELEPHONY AND SMS

android:layout_height="wrap_content"
android:drawSelectorOnTop="true"/>

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<Button

android:id="@+id/okButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Enable"/>

<Button
android:id="@+id/cancelButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Disable"/>

</LinearLayout>
</LinearLayout>

2. Update the application’s string.xml resource to define a name for an application
SharedPreference and strings to use for each of its keys.

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="app_name">Emergency Responder</string>
<string name="respondAllClearButtonText">I am Safe and Well
</string>
<string name="respondMaydayButtonText">MAYDAY! MAYDAY! MAYDAY!
</string>
<string name="respondAllClearText">I am safe and well. Worry not!
</string>
<string name="respondMaydayText">Tell my mother I love her.
</string>
<string name="querystring">"are you ok?"</string>

<string
name="user_preferences">com.paad.emergencyresponder.preferences

</string>
<string name="includeLocationPref">PREF_INCLUDE_LOC</string>
<string name="responseTextPref">PREF_RESPONSE_TEXT</string>
<string name="autoRespondPref">PREF_AUTO_RESPOND</string>
<string name="respondForPref">PREF_RESPOND_FOR</string>

</resources>

3. Then create a new arrays.xml resource, and create arrays to use for populating the Spinner.

<resources>
<string-array name="respondForDisplayItems">
<item>- Disabled -</item>
<item>Next 5 minutes</item>
<item>Next 15 minutes</item>
<item>Next 30 minutes</item>
<item>Next hour</item>
<item>Next 2 hours</item>

Introducing SMS and MMS ❘ 417

<item>Next 8 hours</item>
</string-array>

<array name="respondForValues">
<item>0</item>
<item>5</item>
<item>15</item>
<item>30</item>
<item>60</item>
<item>120</item>
<item>480</item>

</array>
</resources>

4. Now create a new AutoResponder Activity, populating it with the layout you created in
Step 1.

package com.paad.emergencyresponder;

import android.app.Activity;
import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.res.Resources;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.content.BroadcastReceiver;
import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.CheckBox;
import android.widget.EditText;
import android.widget.Spinner;

public class AutoResponder extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.autoresponder);

}
}

5. Update onCreate further to get references to each of the controls in the layout and
wire up the Spinner using the arrays defined in Step 3. Create two new stub methods,
savePreferences and updateUIFromPreferences, that will be updated to save the auto-
responder settings to a named SharedPreference and apply the saved SharedPreferences to
the current UI, respectively.

Spinner respondForSpinner;
CheckBox locationCheckbox;
EditText responseTextBox;

418 ❘ CHAPTER 12 TELEPHONY AND SMS

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.autoresponder);

5.1. Start by getting references to each View.
respondForSpinner = (Spinner)findViewById(R.id.spinnerRespondFor);
locationCheckbox = (CheckBox)findViewById(R.id.checkboxLocation);
responseTextBox = (EditText)findViewById(R.id.responseText);

5.2. Populate the Spinner to let users select the auto-responder expiry time.
ArrayAdapter<CharSequence> adapter =

ArrayAdapter.createFromResource(this,
R.array.respondForDisplayItems,
android.R.layout.simple_spinner_item);

adapter.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

respondForSpinner.setAdapter(adapter);

5.3. Now wire up the OK and Cancel buttons to let users save or cancel setting changes.
Button okButton = (Button) findViewById(R.id.okButton);
okButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {
savePreferences();
setResult(RESULT_OK, null);
finish();

}
});

Button cancelButton = (Button) findViewById(R.id.cancelButton);
cancelButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {
respondForSpinner.setSelection(-1);
savePreferences();
setResult(RESULT_CANCELED, null);
finish();

}
});

5.4. Finally, make sure that when the Activity starts, it updates the GUI to represent the
current settings.

// Load the saved preferences and update the UI
updateUIFromPreferences();

5.5. Close off the onCreate method, and add the updateUIFromPreferences and
savePreferences stubs.

}

private void updateUIFromPreferences() {}
private void savePreferences() {}

6. Next, complete the two stub methods from Step 5. Start with updateUIFromPreferences; it
should read the current saved AutoResponder preferences and apply them to the UI.

Introducing SMS and MMS ❘ 419

private void updateUIFromPreferences() {
// Get the saves settings
String preferenceName = getString(R.string.user_preferences);
SharedPreferences sp = getSharedPreferences(preferenceName, 0);

String autoResponsePref = getString(R.string.autoRespondPref);
String responseTextPref = getString(R.string.responseTextPref);
String autoLocPref = getString(R.string.includeLocationPref);
String respondForPref = getString(R.string.respondForPref);

boolean autoRespond = sp.getBoolean(autoResponsePref, false);
String respondText = sp.getString(responseTextPref, "");
boolean includeLoc = sp.getBoolean(includeLocPref, false);
int respondForIndex = sp.getInt(respondForPref, 0);

// Apply the saved settings to the UI
if (autoRespond)
respondForSpinner.setSelection(respondForIndex);

else
respondForSpinner.setSelection(0);

locationCheckbox.setChecked(includeLoc);
responseTextBox.setText(respondText);

}

7. Complete the savePreferences stub to save the current UI settings to a Shared Preferences
file.

private void savePreferences() {
// Get the current settings from the UI
boolean autoRespond =
respondForSpinner.getSelectedItemPosition() > 0;

int respondForIndex = respondForSpinner.getSelectedItemPosition();
boolean includeLoc = locationCheckbox.isChecked();
String respondText = responseTextBox.getText().toString();

// Save them to the Shared Preference file
String preferenceName = getString(R.string.user_preferences);
SharedPreferences sp = getSharedPreferences(preferenceName, 0);

Editor editor = sp.edit();
editor.putBoolean(getString(R.string.autoRespondPref),

autoRespond);
editor.putString(getString(R.string.responseTextPref),

respondText);
editor.putBoolean(getString(R.string.includeLocationPref),

includeLoc);
editor.putInt(getString(R.string.respondForPref),respondForIndex);
editor.commit();

// Set the alarm to turn off the autoresponder
setAlarm(respondForIndex);

}

private void setAlarm(int respondForIndex) {}

420 ❘ CHAPTER 12 TELEPHONY AND SMS

8. The setAlarm stub from Step 7 is used to create a new Alarm that fires an Intent that should
result in the AutoResponder’s being disabled.

You’ll need to create a new Alarm object and a BroadcastReceiver that listens for it before
disabling the auto-responder accordingly.

8.1. Start by creating the action String that will represent the Alarm Intent.
public static final String alarmAction =
"com.paad.emergencyresponder.AUTO_RESPONSE_EXPIRED";

8.2. Then create a new Broadcast Receiver instance that listens for an Intent that
includes the action specified in Step 8.1. When this Intent is received, it should
modify the auto-responder settings to disable the automatic response.

private BroadcastReceiver stopAutoResponderReceiver = new
BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {

if (intent.getAction().equals(alarmAction)) {
String preferenceName = getString(R.string.user_preferences);
SharedPreferences sp = getSharedPreferences(preferenceName,0);

Editor editor = sp.edit();
editor.putBoolean(getString(R.string.autoRespondPref), false);
editor.commit();

}
}

};

8.3. Finally, complete the setAlarm method. It should cancel the existing alarm if the
auto-responder is turned off; otherwise, it should update the alarm with the latest
expiry time.

PendingIntent intentToFire;

private void setAlarm(int respondForIndex) {
// Create the alarm and register the alarm intent receiver.

AlarmManager alarms =
(AlarmManager)getSystemService(ALARM_SERVICE);

if (intentToFire == null) {
Intent intent = new Intent(alarmAction);
intentToFire =
PendingIntent.getBroadcast(getApplicationContext(),

0,intent,0);

IntentFilter filter = new IntentFilter(alarmAction);

registerReceiver(stopAutoResponderReceiver, filter);
}

if (respondForIndex < 1)
// If "disabled" is selected, cancel the alarm.
alarms.cancel(intentToFire);

Introducing SMS and MMS ❘ 421

else {
// Otherwise find the length of time represented
// by the selection and and set the alarm to
// trigger after that time has passed.
Resources r = getResources();
int[] respondForValues =
r.getIntArray(R.array.respondForValues);

int respondFor = respondForValues [respondForIndex];

long t = System.currentTimeMillis();
t = t + respondFor*1000*60;

// Set the alarm.
alarms.set(AlarmManager.RTC_WAKEUP, t, intentToFire);

}
}

9. That completes the AutoResponder, but before you can use it, you’ll need to add it to your
application manifest.

<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="com.paad.emergencyresponder">
<application
android:icon="@drawable/icon"
android:label="@string/app_name">
<activity

android:name=".EmergencyResponder"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<activity

android:name=".AutoResponder"
android:label="Auto Responder Setup"/>

</application>
<uses-permission android:name="android.permission.ACCESS_GPS"/>
<uses-permission

android:name="android.permission.ACCESS_LOCATION"/>
<uses-permission android:name="android.permission.RECEIVE_SMS"/>
<uses-permission android:name="android.permission.SEND_SMS"/>

</manifest>

10. To enable the auto-responder, return to the Emergency Responder Activity and update the
startAutoResponder method stub that you created in the previous example. It should open
the AutoResponder Activity you just created.

private void startAutoResponder() {
startActivityForResult(new Intent(EmergencyResponder.this,

AutoResponder.class), 0);
}

422 ❘ CHAPTER 12 TELEPHONY AND SMS

. 11. If you start your project, you should now be able to bring up the Auto Responder Setup win-
dow to set the auto-response settings. It should appear as shown in Figure 12-4.

FIGURE 12-4

12. The final step is to update the requestReceived method in the Emergency Responder
Activity to check if the auto-responder has been enabled.

If it has, the requestReceived method should automatically execute the respond method,
using the message and location settings defined in the application’s Shared Preferences.

public void requestReceived(String _from) {
if (!requesters.contains(_from)) {
lock.lock();
requesters.add(_from);
aa.notifyDataSetChanged();
lock.unlock();

// Check for auto-responder
String preferenceName = getString(R.string.user_preferences);
SharedPreferences prefs = getSharedPreferences(preferenceName,

0);

Summary ❘ 423

String autoRespondPref = getString(R.string.autoRespondPref)
boolean autoRespond = prefs.getBoolean(autoRespondPref, false);

if (autoRespond) {
String responseTextPref =
getString(R.string.responseTextPref);

String includeLocationPref =
getString(R.string.includeLocationPref);

String respondText = prefs.getString(responseTextPref, "");
boolean includeLoc = prefs.getBoolean(includeLocationPref,

false);

respond(_from, respondText, includeLoc);
}

}
}

All code snippets in this example are part of the Chapter 12 Emergency Responder 2 project, available for download at Wrox.com.

You should now have a fully functional interactive and automated emergency responder.

SUMMARY

The telephony stack is one of the fundamental technologies available on mobile phones. While not
all Android devices will necessarily provide telephony APIs, those that do are particularly versatile
platforms for person-to-person communication.

Using the telephony APIs you learned how to initiate calls directly and through the dialer. You also
discovered how to read and monitor phone, network, data, and SIM states.

Android lets you use SMS to create applications that exchange data between devices and send and
receive text messages for your users.

You also learned how to use Intents to allow the SMS applications already available on the phone to
send SMS and MMS messages on your behalf.

Chapter 13 explores access to other device communication technologies. You’ll investigate network
management using Wi-Fi and explore the functionality available through the Bluetooth APIs.

13
Bluetooth, Networks, and Wi-Fi

WHAT’S IN THIS CHAPTER?

➤ Managing Bluetooth devices

➤ Discovering remote Bluetooth devices

➤ Managing discovery mode

➤ Communicating over Bluetooth

➤ Monitoring Internet connectivity

➤ Obeying user preferences for background data transfer

➤ Monitoring Wi-Fi and network details

➤ Configuring networks and Wi-Fi configurations

➤ Scanning for Wi-Fi access points

In this chapter you’ll continue to explore Android’s low-level communications APIs by examin-
ing the Bluetooth, network, and Wi-Fi packages.

Android offers APIs to manage and monitor your Bluetooth device settings, to control discov-
erability, to discover nearby Bluetooth devices, and to use Bluetooth as a proximity-based peer-
to-peer transport layer for your applications.

A full network and Wi-Fi package is also available. Using these APIs you can scan for hotspots,
create and modify Wi-Fi configuration settings, monitor your Internet connectivity, and control
and monitor Internet settings and preferences.

USING BLUETOOTH

In this section you’ll learn how to interact with the local Bluetooth device and communicate
with remote devices on nearby phones.

426 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

Using Bluetooth you can search for, and connect to, other devices within range. By initiating a com-
munications link using Bluetooth Sockets you can then transmit and receive streams of data between
devices from within your applications.

The Bluetooth libraries have been available in Android only since Android version
2.0 (SDK API level 5). It’s also important to remember that not all Android devices
will necessarily include Bluetooth hardware.

Bluetooth is a communications protocol designed for short-range, low-bandwidth peer-to-peer com-
munications. As of Android 2.1, only encrypted communication is supported, meaning you can only
form connections between paired devices. In Android, Bluetooth devices and connections are handled
by the following classes:

➤ BluetoothAdapter The Bluetooth Adapter represents the local Bluetooth device — that is,
the Android device on which your application is running.

➤ BluetoothDevice Each remote device with which you wish to communicate is represented
as a BluetoothDevice.

➤ BluetoothSocket Call createRfcommSocketToServiceRecord on a remote Bluetooth Device
object to create a Bluetooth Socket that will let you make a connection request to the remote
device, and then initiate communications.

➤ BluetoothServerSocket By creating a Bluetooth Server Socket (using the
listenUsingRfcommWithServiceRecord method) on your local Bluetooth Adapter, you can
listen for incoming connection requests from Bluetooth Sockets on remote devices.

Accessing the Local Bluetooth Device Adapter
The local Bluetooth device is controlled via the BluetoothAdapter class.

To access the default Bluetooth adapter on the host device call getDefaultAdapter, as shown in List-
ing 13-1. It is possible that some Android devices will feature multiple Bluetooth adapters, though it is
currently only possible to access the default device.

LISTING 13-1: Accessing the default Bluetooth Adapter

BluetoothAdapter bluetooth = BluetoothAdapter.getDefaultAdapter();

To read any of the local Bluetooth Adapter properties, initiate discovery, or find bonded devices you
will need to include the BLUETOOTH manifest permission. In order to modify any of the local device
properties the BLUETOOTH_ADMIN uses-permission is also required.

<uses-permission android:name="android.permission.BLUETOOTH"/>
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>

Using Bluetooth ❘ 427

Managing Bluetooth Properties and State
The Bluetooth Adapter offers methods for reading and setting properties of the local Bluetooth
hardware.

The Bluetooth Adapter properties can be read and changed only if the Bluetooth
adapter is currently turned on (that is, if its device state is enabled). If the device is
off, these methods will return null.

If the Bluetooth Adapter is turned on, and you have included the BLUETOOTH permission in your man-
ifest, you can access the Bluetooth Adapter’s friendly name (an arbitrary string that users can set and
then use to identify a particular device) and hardware address, as shown in Listing 13-2.

Use the isEnabled method, as shown in Listing 13-2, to confirm the device is enabled before accessing
these properties.

LISTING 13-2: Reading Bluetooth Adapter properties

BluetoothAdapter bluetooth = BluetoothAdapter.getDefaultAdapter();

String toastText;
if (bluetooth.isEnabled()) {
String address = bluetooth.getAddress();
String name = bluetooth.getName();
toastText = name + " : " + address;

}
else
toastText = "Bluetooth is not enabled";

Toast.makeText(this, toastText, Toast.LENGTH_LONG).show();

If you also have the BLUETOOTH_ADMIN permission you can change the friendly name of the Bluetooth
Adapter using the setName method:

bluetooth.setName("Blackfang");

To find a more detailed description of the current Bluetooth Adapter state, use the getState method,
which will return one of the following BluetoothAdapter constants:

➤ STATE_TURNING_ON

➤ STATE_ON

➤ STATE_TURNING_OFF

➤ STATE_OFF

By default the Bluetooth adapter will be turned off. In order to conserve battery life and optimize
security, most users will keep Bluetooth disabled unless it’s in use.

428 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

To enable the Bluetooth Adapter you can start a system sub-Activity using the ACTION_REQUEST_ENABLE

Bluetooth Adapter static constant as a startActivityForResult action string:

String enableBT = BluetoothAdapter.ACTION_REQUEST_ENABLE;
startActivityForResult(new Intent(enableBT), 0);

The sub-Activity is shown in Figure 13-1. It prompts the user to turn on Bluetooth and asks for con-
firmation. If the user agrees, the sub-Activity will close and return to the calling Activity once the
Bluetooth Adapter has turned on (or has encountered an error). If the user selects no, the sub-Activity
will close and return immediately. Use the result code parameter returned in the onActivityResult

handler to determine the success of this operation.

FIGURE 13-1

It is also possible to turn the Bluetooth Adapter on and off directly, using the
enable and disable methods, if you include the BLUETOOTH_ADMIN permission in
your manifest.

Note that this should be done only when absolutely necessary and that the user
should always be notified if you are manually changing the Bluetooth Adapter
status on the user’s behalf. In most cases you should use the Intent mechanism
described earlier.

Using Bluetooth ❘ 429

Enabling and disabling the Bluetooth Adapter are somewhat time-consuming, asynchronous opera-
tions. Rather than polling the Bluetooth Adapter, your application should register a Broadcast Receiver
that listens for ACTION_STATE_CHANGED. The broadcast Intent will include two extras, EXTRA_STATE
and EXTRA_PREVIOUS_STATE, which indicate the current and previous Bluetooth Adapter states,
respectively.

Listing 13-3 shows how to use an Intent to prompt the user to enable Bluetooth and a Broadcast
Receiver to track changes in the Bluetooth Adapter status.

LISTING 13-3: Enabling Bluetooth and tracking the adapter state

BluetoothAdapter bluetooth = BluetoothAdapter.getDefaultAdapter();

BroadcastReceiver bluetoothState = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {

String prevStateExtra = BluetoothAdapter.EXTRA_PREVIOUS_STATE;
String stateExtra = BluetoothAdapter.EXTRA_STATE;
int state = intent.getIntExtra(stateExtra, −1);
int previousState = intent.getIntExtra(prevStateExtra, −1);

String tt = "";
switch (state) {

case (BluetoothAdapter.STATE_TURNING_ON) : {
tt = "Bluetooth turning on"; break;

}
case (BluetoothAdapter.STATE_ON) : {
tt = "Bluetooth on";
unregisterReceiver(this);
break;

}
case (BluetoothAdapter.STATE_TURNING_OFF) : {
tt = "Bluetooth turning off"; break;

}
case (BluetoothAdapter.STATE_OFF) : {
tt = "Bluetooth off"; break;

}
default: break;

}

Toast.makeText(this, tt, Toast.LENGTH_LONG).show();
}

};

if (!bluetooth.isEnabled()) {
String actionStateChanged = BluetoothAdapter.ACTION_STATE_CHANGED;
String actionRequestEnable = BluetoothAdapter.ACTION_REQUEST_ENABLE;
registerReceiver(bluetoothState,

new IntentFilter(actionStateChanged));
startActivityForResult(new Intent(actionRequestEnable), 0);

}

430 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

Being Discoverable and Remote Device Discovery
The process of two devices finding each other in order to connect is called discovery. Before you can
establish a Bluetooth Socket for communications, the local Bluetooth Adapter must bond with the
remote device. Before two devices can bond and connect, they first need to discover each other.

While the Bluetooth protocol supports ad-hoc connections for data transfer, this
mechanism is not currently available in Android. Android Bluetooth
communication is currently supported only between bonded devices.

Managing Device Discoverability

FIGURE 13-2

In order for remote Android Devices to find your local Blue-
tooth Adapter during a discovery scan, you need to ensure
that it is discoverable.

The Bluetooth Adapter’s discoverability is indicated by its
scan mode. You can find the adapter’s scan mode by calling
getScanMode on the BluetoothAdapter object. It will return
one of the following BluetoothAdapter constants: .

➤ SCAN_MODE_CONNECTABLE_DISCOVERABLE Inquiry
scan and page scan are both enabled, meaning
that the device is discoverable from any Bluetooth
device performing a discovery scan.

➤ SCAN_MODE_CONNECTABLE Page Scan is enabled
but inquiry scan is not. This means that devices
that have previously connected and bonded to the
local device can find it during discovery, but new
devices can’t.

➤ SCAN_MODE_NONE Discoverability is turned off.
No remote devices can find the local adapter dur-
ing discovery.

For privacy reasons, Android devices will default to
having discoverability disabled. To turn on discovery you
need to obtain explicit permission from the user; you do this by starting a new Activity using the
ACTION_REQUEST_DISCOVERABLE action:

String aDiscoverable = BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE;
startActivityForResult(new Intent(aDiscoverable),

DISCOVERY_REQUEST);

By default discoverability will be enabled for two minutes. You can modify this setting by adding an
EXTRA_DISCOVERABLE_DURATION extra to the launch Intent, specifying the number of seconds you want
discoverability to last.

When the Intent is broadcast the user will be prompted by the dialog shown in Figure 13-2 to turn
discoverability on for the specified duration.

Using Bluetooth ❘ 431

To learn if the user has allowed or rejected your discovery request, override the onActivityResult

handler, as shown in Listing 13-4. The returned resultCode parameter indicates the duration of dis-
coverability, or a negative number if the user has rejected your request.

LISTING 13-4: Monitoring discoverability modes

@Override
protected void onActivityResult(int requestCode,

int resultCode, Intent data) {
if (requestCode == DISCOVERY_REQUEST) {

boolean isDiscoverable = resultCode > 0;
int discoverableDuration = resultCode;

}
}

Alternatively you can monitor changes in discoverability by receiving the ACTION_SCAN_MODE_CHANGED

broadcast action, as shown in Listing 13-5. The broadcast Intent includes the current and previous scan
modes as extras.

LISTING 13-5: Monitoring discoverability modes

registerReceiver(new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {

String prevScanMode = BluetoothAdapter.EXTRA_PREVIOUS_SCAN_MODE;
String scanMode = BluetoothAdapter.EXTRA_SCAN_MODE;
int scanMode = intent.getIntExtra(scanMode, −1);

int prevMode = intent.getIntExtra(prevScanMode, −1);
}

},
new IntentFilter(BluetoothAdapter.ACTION_SCAN_MODE_CHANGED));

Discovering Remote Devices
In this section you’ll now learn how to initiate discovery from your local adapter to find discoverable
devices nearby.

The discovery process can take some time to complete (up to 12 seconds). During
this time, performance of your Bluetooth Adapter communications will be
seriously degraded. Use the techniques in this section to check and monitor the
discovery status of the Bluetooth Adapter, and avoid doing high-bandwidth
operations (including connecting to a new remote Bluetooth Device) while
discovery is in progress.

You can check to see if the local Bluetooth Adapter is already performing a discovery scan using the
isDiscovering method.

432 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

To initiate the discovery process call startDiscovery on the Bluetooth Adapter. To cancel a discovery
in progress call cancelDiscovery.

bluetooth.startDiscovery();
bluetooth.cancelDiscovery();

The discovery process is asynchronous. Android uses broadcast Intents to notify you of the start and
end of discovery as well as remote devices discovered during the scan.

You can monitor changes in the discovery process by creating Broadcast Receivers to listen for the
ACTION_DISCOVERY_STARTED and ACTION_DISCOVERY_FINISHED broadcast Intents, as shown in
Listing 13-6.

LISTING 13-6: Monitoring discovery

BroadcastReceiver discoveryMonitor = new BroadcastReceiver() {

String dStarted = BluetoothAdapter.ACTION_DISCOVERY_STARTED;
String dFinished = BluetoothAdapter.ACTION_DISCOVERY_FINISHED;

@Override
public void onReceive(Context context, Intent intent) {
if (dStarted.equals(intent.getAction())) {

// Discovery has started.
Toast.makeText(getApplicationContext(),

"Discovery Started . . . ", Toast.LENGTH_SHORT).show();
}
else if (dFinished.equals(intent.getAction())) {

// Discovery has completed.
Toast.makeText(getApplicationContext(),

"Discovery Completed . . . ", Toast.LENGTH_SHORT).show();
}

}
};
registerReceiver(discoveryMonitor,

new IntentFilter(dStarted));
registerReceiver(discoveryMonitor,

new IntentFilter(dFinished));

Discovered Bluetooth Devices are returned via broadcast Intents by means of the ACTION_FOUND broad-
cast action.

As shown in Listing 13-7, each broadcast Intent includes the name of the remote device in an extra
indexed as BluetoothDevice.EXTRA_NAME, and an immutable representation of the remote Bluetooth
device as a BluetoothDevice parcelable object stored under the BluetoothDevice.EXTRA_DEVICE extra.

LISTING 13-7: Discovering remote Bluetooth Devices

BroadcastReceiver discoveryResult = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {

String remoteDeviceName =
intent.getStringExtra(BluetoothDevice.EXTRA_NAME);

Using Bluetooth ❘ 433

BluetoothDevice remoteDevice;
remoteDevice = intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

Toast.makeText(getApplicationContext(),
"Discovered: " + remoteDeviceName,
Toast.LENGTH_SHORT).show();

// TODO Do something with the remote Bluetooth Device.
}

};
registerReceiver(discoveryResult,

new IntentFilter(BluetoothDevice.ACTION_FOUND));

if (!bluetooth.isDiscovering())
bluetooth.startDiscovery();

The BluetoothDevice object returned through the discovery broadcast represents the remote Bluetooth
Device discovered. In the following sections it will be used to create a connection, bond, and ultimately
transfer data between the local Bluetooth Adapter and the remote Bluetooth Device.

Bluetooth Communications
The Bluetooth communications APIs are wrappers around RFCOMM, the Bluetooth radio frequency
communications protocol. RFCOMM supports RS232 serial communication over the Logical Link
Control and Adaptation Protocol (L2CAP) layer.

In practice, this alphabet soup provides a mechanism for opening communication sockets between two
paired Bluetooth devices.

Before your application can communicate between devices they must be paired
(bonded). At the time of writing (Android API level 7) there is no way to manually
initiate pairing between the local Bluetooth Adapter and a remote Bluetooth
Device.

If two devices are to be paired the user will need to explicitly allow this, either
through the Bluetooth Settings screen or when prompted by your application when
you attempt to connect a Bluetooth Socket between two unpaired devices.

You can establish an RFCOMM communication channel for bidirectional communications using the
following classes.

➤ BluetoothServerSocket Used to establish a listening socket for initiating a link between
devices. To establish a handshake, one device acts as a server to listen for, and accept, incom-
ing connection requests.

➤ BluetoothSocket Used in creating a new client socket to connect to a listening Bluetooth
Server Socket, and returned by the Server Socket once a connection is established. Once the
connection is made, Bluetooth Sockets are used on both the server and client sides to transfer
data streams.

434 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

When creating an application that uses Bluetooth as a peer-to-peer transport layer, you’ll need to
implement both a Bluetooth Server Socket to listen for connections and a Bluetooth Socket to initiate a
new channel and handle communications.

Once connected, the Socket Server returns a Bluetooth Socket that’s subsequently used by the server
device to send and receive data. This server-side Bluetooth Socket is used in exactly the same way
as the client socket. The designations of server and client are relevant only to how the connection is
established. They don’t affect how data flows once that connection is made.

Opening a Bluetooth Server Socket Listener

FIGURE 13-3

A Bluetooth Server Socket is used to listen for incoming
Bluetooth Socket connection requests from remote Bluetooth
Devices. In order for two Bluetooth devices to be connected,
one must act as a server (listening for and accepting incoming
requests) and the other as a client (initiating the request to
connect to the server).

Once the two are connected, the communications between
the server and host device are handled through a Bluetooth
Socket at both ends.

To listen for incoming connection requests call the
listenUsingRfcommWithServiceRecord method on your
Bluetooth Adapter, passing in both a string ‘‘name’’ to iden-
tify your server and a UUID (universally unique identifier).
This will return a BluetoothServerSocket object. Note that
the client Bluetooth Socket that connects to this listener will
need to know the UUID in order to connect.

To start listening for connections call accept on this Server
Socket, optionally passing in a timeout duration. The Server
Socket will now block until a remote Bluetooth Socket client
with a matching UUID attempts to connect. If a connection
request is made from a remote device that is not yet paired
with the local adapter, the user will be prompted to accept a
pairing request before the accept call returns. This prompt is
made via a notification, as shown in Figure 13-3.

If an incoming connection request is successful, accept will return a Bluetooth Socket connected to the
client device. You can use this socket to transfer data, as shown later in this section.

Note that accept is a blocking operation, so it’s best practice to listen for incoming
connection requests on a background thread rather than block the UI thread until a
connection has been made.

It’s also important to note that your Bluetooth Adapter must be discoverable for remote Blue-
tooth Devices to connect to it. Listing 13-8 shows some typical skeleton code that uses the
ACTION_REQUEST_DISCOVERABLE broadcast to request that the device be made discoverable, before
listening for incoming connection requests for the returned discoverability duration.

Using Bluetooth ❘ 435

LISTING 13-8: Listening for Bluetooth Socket connection requests

startActivityForResult(new
Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE),

DISCOVERY_REQUEST);

@Override
protected void onActivityResult(int requestCode,

int resultCode, Intent data) {
if (requestCode == DISCOVERY_REQUEST) {

boolean isDiscoverable = resultCode > 0;
int discoverableDuration = resultCode;
if (isDiscoverable) {

UUID uuid = UUID.fromString("a60f35f0-b93a-11de-8a39-08002009c666");
String name = "bluetoothserver";

final BluetoothServerSocket btserver =
bluetooth.listenUsingRfcommWithServiceRecord(name, uuid);

Thread acceptThread = new Thread(new Runnable() {
public void run() {

try {
// Block until client connection established.
BluetoothSocket serverSocket = btserver.accept();
// TODO Transfer data using the server socket

} catch (IOException e) {
Log.d("BLUETOOTH", e.getMessage());

}
}

});
acceptThread.start();

}
}

}

Selecting Remote Bluetooth Devices for Communications
The BluetoothSocket class is used on the client device to initiate a communications channel from
within your application to a listening Bluetooth Server Socket.

You create client-side Bluetooth Sockets by calling createRfcommSocketToServiceRecord on a
BluetoothDevice object. That object represents the target remote server device. It should have a
Bluetooth Server Socket listening for connection requests (as described in the previous section).

There are a number of ways to obtain a reference to a remote Bluetooth Device, and some important
caveats regarding the devices with which you can create a communications link.

Bluetooth Device Connection Requirements
In order for a Bluetooth Socket to establish a connection to a remote Bluetooth Device, the following
conditions must be true:

➤ The remote device must be discoverable.

➤ The remote device must accept connections using a Bluetooth Server Socket.

➤ The local and remote devices must be paired (or bonded). If the devices are not paired, the
user will be prompted to pair them when you initiate the connection request.

436 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

Finding a Bluetooth Device to Connect To
Each Bluetooth Device object represents a remote device. These objects are used to obtain remote
device properties and to initiate Bluetooth Socket connections. There are several ways for you to obtain
a BluetoothDevice object in code.

In each case you should check to ensure that the device you intend to connect to is discoverable, and
(optionally) determine whether you are bonded to it. If you can’t discover the remote device, you should
prompt the user to enable discoverability on it.

You learned one technique for finding discoverable Bluetooth Devices earlier in this section using the
startDiscovery method and monitoring ACTION_FOUND broadcasts. You learned that each received
broadcast includes a BluetoothDevice.EXTRA_DEVICE extra that contains the discovered Bluetooth
Device.

You can also use the getRemoteDevice method on your local Bluetooth Adapter, specifying the hard-
ware address of the remote Bluetooth Device you want to connect to.

BluetoothDevice device = bluetooth.getRemoteDevice("01:23:77:35:2F:AA");

To find the set of currently paired devices call getBondedDevices on the local Bluetooth Adapter. You
can query the returned set to find out if a target Bluetooth Device is paired with the local adapter.

Set<BluetoothDevice> bondedDevices = bluetooth.getBondedDevices();
if (bondedDevices.contains(remoteDevice))

// TODO Target device is bonded / paired with the local device.

Listing 13-9 shows a typical implementation pattern that checks a given Bluetooth Device for discover-
ability and pairing.

LISTING 13-9: Checking remote devices for discoverability and pairing

final BluetoothDevice device =
bluetooth.getRemoteDevice("01:23:77:35:2F:AA");
final Set<BluetoothDevice> bondedDevices = bluetooth.getBondedDevices();

BroadcastReceiver discoveryResult = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {

BluetoothDevice remoteDevice =
intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

if ((remoteDevice.equals(device) &&
(bondedDevices.contains(remoteDevice)) {

// TODO Target device is paired and discoverable
}

};
registerReceiver(discoveryResult,

new IntentFilter(BluetoothDevice.ACTION_FOUND));

Using Bluetooth ❘ 437

if (!bluetooth.isDiscovering())
bluetooth.startDiscovery();

Opening a Client Bluetooth Socket Connection

FIGURE 13-4

To initiate a communications channel to a remote device,
create a Bluetooth Socket from the BluetoothDevice object
that represents it.

To create a new connection call createRfcommSocket
ToServiceRecord on the Bluetooth Device to connect to,
passing in the UUID of the Bluetooth Server Socket accepting
requests.

If you attempt to connect to a Bluetooth Device that has
not yet been paired (bonded) with the host device, you will
be prompted to accept the pairing before the connect call
completes, as shown in Figure 13-4.

The user must accept the pairing request on both the host
and remote devices for the connection to be
established.

The returned Bluetooth Socket can then be used to
initiate the connection with a call to connect, as shown in
Listing 13-10.

Note that connect is a blocking operation, so it’s best practice to initiate
connection requests on a background thread rather than block the UI thread until a
connection has been made.

LISTING 13-10: Connecting to a remote Bluetooth server

Try{
BluetoothDevice device = bluetooth.getRemoteDevice("00:23:76:35:2F:AA");
BluetoothSocket clientSocket =

device.createRfcommSocketToServiceRecord(uuid);
clientSocket.connect();
// TODO Transfer data using the Bluetooth Socket

} catch (IOException e) {
Log.d("BLUETOOTH", e.getMessage());

}

438 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

Transmitting Data Using Bluetooth Sockets
Once a connection has been established, you will have a Bluetooth Socket on both the client and the
server devices. From this point onward there is no significant distinction between them: you can send
and receive data using the Bluetooth Socket on both devices.

Data transfer across Bluetooth Sockets is handled via standard Java InputStream and OutputStream

objects, which you can obtain from a Bluetooth Socket using the appropriately named getInputStream

and getOutputStream methods, respectively.

Listing 13-11 shows two simple skeleton methods, the first used to send a string to a remote device
using an Output Stream, and the second to listen for incoming strings using an Input Stream. The same
technique can be used to transfer any streamable data.

LISTING 13-11: Sending and receiving strings using Bluetooth Sockets

private void sendMessage(String message){
OutputStream outStream;
try {
outStream = socket.getOutputStream();

// Add a stop character.
byte[] byteArray = (message + " ").getBytes();
byteArray[byteArray.length − 1] = 0;

outStream.write(byteArray);
} catch (IOException e) { }

}

private String listenForMessage()
String result = "";
int bufferSize = 1024;
byte[] buffer = new byte[bufferSize];

try {
InputStream instream = socket.getInputStream();
int bytesRead = −1;

while (true) {
bytesRead = instream.read(buffer);
if (bytesRead != −1) {
while ((bytesRead == bufferSize) && (buffer[bufferSize-1] != 0)){

message = message + new String(buffer, 0, bytesRead);
bytesRead = instream.read(buffer);

}
message = message + new String(buffer, 0, bytesRead − 1);
return result;

}
}

Using Bluetooth ❘ 439

} catch (IOException e) {}

return result;
}

Bluetooth Data Transfer Example
The following example uses the Android Bluetooth APIs to construct a simple peer-to-peer messaging
system that works between two paired Bluetooth devices.

Unfortunately the Android emulator can’t currently be used to test Bluetooth functionality. In order to
test this application you will need to have two physical devices.

1. Start by creating a new BluetoothTexting project featuring a BluetoothTexting Activity.
Modify the manifest to include BLUETOOTH and BLUETOOTH_ADMIN permissions.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.paad.chapter13_bluetoothtexting"
android:versionCode="1"
android:versionName="1.0">
<application
android:icon="@drawable/icon"
android:label="@string/app_name">
<activity

android:name=".BluetoothTexting"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
<uses-sdk android:minSdkVersion="5" />
<uses-permission android:name="android.permission.BLUETOOTH"/>
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>

</manifest>

2. Modify the main.xml layout resource. It should contain a ListView that will display the dis-
covered Bluetooth devices above two buttons — one to start the Server Socket listener, and
another to initiate a connection to a listening server.

Also include Text View and Edit Text controls to use for reading and writing messages across
the connection.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

440 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

<EditText
android:id="@+id/text_message"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:enabled="false"

/>
<Button
android:id="@+id/button_search"
android:text="Search for listener"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_above="@id/text_message"

/>
<Button
android:id="@+id/button_listen"
android:text="Listen for connection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_above="@id/button_search"

/>
<ListView
android:id="@+id/list_discovered"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_above="@id/button_listen"
android:layout_alignParentTop="true"

/>
<TextView
android:id="@+id/text_messages"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_above="@id/button_listen"
android:layout_alignParentTop="true"
android:visibility="gone"

/>
</RelativeLayout>

3. Override the onCreate method of the BluetoothTexting Activity. Make calls to a collection
of stub methods that will be used to access the Bluetooth device and wire up the UI controls.

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.ArrayList;
import java.util.UUID;
import android.app.Activity;
import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothDevice;
import android.bluetooth.BluetoothServerSocket;
import android.bluetooth.BluetoothSocket;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;

Using Bluetooth ❘ 441

import android.os.AsyncTask;
import android.os.Bundle;
import android.os.Handler;
import android.util.Log;
import android.view.KeyEvent;
import android.view.View;
import android.view.View.OnClickListener;
import android.view.View.OnKeyListener;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.AdapterView.OnItemClickListener;

public class BluetoothTexting extends Activity {

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

// Get the Bluetooth Adapter
configureBluetooth();

// Setup the ListView of discovered devices
setupListView();

// Setup search button
setupSearchButton();

// Setup listen button
setupListenButton();

}

private void configureBluetooth() {}
private void setupListenButton() {}
private void setupListView() {}
private void setupSearchButton() {}

}

4. Fill in the configureBluetooth stub to get access to the local Bluetooth Adapter and store
it in a field variable. Take this opportunity to create a field variable for a Bluetooth Socket.
This will be used to store either the server or client communications socket once a channel
has been established. You should also define a UUID to identify your application when con-
nections are being established.

private BluetoothAdapter bluetooth;
private BluetoothSocket socket;
private UUID uuid = UUID.fromString("a60f35f0-b93a-11de-8a39-08002009c666");

private void configureBluetooth() {
bluetooth = BluetoothAdapter.getDefaultAdapter();

}

442 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

5. Create a new switchUI method. It will be called once a connection is established to enable
the Views used for reading and writing messages.

private void switchUI() {
final TextView messageText = (TextView)findViewById(R.id.text_messages);
final EditText textEntry = (EditText)findViewById(R.id.text_message);

messageText.setVisibility(View.VISIBLE);
list.setVisibility(View.GONE);
textEntry.setEnabled(true);

}

6. Create the server listener by filling in the setupListenButton stub. The Listen button should
prompt the user to enable discovery. When the discovery window returns, open a Bluetooth
Server Socket to listen for connection requests for the discovery duration. Once a connection
has been made, make a call to the switchUI method you created in Step 5.

private static int DISCOVERY_REQUEST = 1;

private void setupListenButton() {
Button listenButton = (Button)findViewById(R.id.button_listen);
listenButton.setOnClickListener(new OnClickListener() {
public void onClick(View view) {

intent disc;
disc = new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);
startActivityForResult(disc, DISCOVERY_REQUEST);

}
});

}

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent
data) {
if (requestCode == DISCOVERY_REQUEST) {
boolean isDiscoverable = resultCode > 0;
if (isDiscoverable) {

String name = "bluetoothserver";
try {
final BluetoothServerSocket btserver =

bluetooth.listenUsingRfcommWithServiceRecord(name, uuid);

AsyncTask<Integer, Void, BluetoothSocket> acceptThread =
new AsyncTask<Integer, Void, BluetoothSocket>() {

@Override
protected BluetoothSocket doInBackground(Integer . . . params) {
try {

socket = btserver.accept(params[0]*1000);
return socket;

} catch (IOException e) {
Log.d("BLUETOOTH", e.getMessage());

}

Using Bluetooth ❘ 443

return null;
}
@Override
protected void onPostExecute(BluetoothSocket result) {
if (result != null)

switchUI();
}

};
acceptThread.execute(resultCode);

} catch (IOException e) {
Log.d("BLUETOOTH", e.getMessage());

}
}

}
}

7. Now create the client-side connection code. By performing discovery and displaying each
of the possible devices, this code will provide a means for the client device to search for the
listening server.

7.1. Start by creating a field variable to store an Array List of discovered Bluetooth
Devices.

private ArrayList<BluetoothDevice> foundDevices;

7.2. Fill in the setupListView stub. Create a new Array Adapter that binds the List View
to the found devices array.

private ArrayAdapter<BluetoothDevice> aa;
private ListView list;

private void setupListView() {
aa = new ArrayAdapter<BluetoothDevice>(this,

android.R.layout.simple_list_item_1,
foundDevices);

list = (ListView)findViewById(R.id.list_discovered);
list.setAdapter(aa);

}

7.3. Create a new Broadcast Receiver that listens for Bluetooth Device discovery broad-
casts, adds each discovered device to the array of found devices created in Step 7-1,
and notifies the Array Adapter created in Step 7-2.

BroadcastReceiver discoveryResult = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {

BluetoothDevice remoteDevice;
remoteDevice = intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);
if (bluetooth.getBondedDevices().contains(remoteDevice)) {
foundDevices.add(remoteDevice);
aa.notifyDataSetChanged();

}
}

};

444 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

7.4. Complete the setupSearchButton stub to register the Broadcast Receiver from the
previous step and initiate a discovery session.

private void setupSearchButton() {
Button searchButton = (Button)findViewById(R.id.button_search);

searchButton.setOnClickListener(new OnClickListener() {
public void onClick(View view) {
registerReceiver(discoveryResult,

new IntentFilter(BluetoothDevice.ACTION_FOUND));

if (!bluetooth.isDiscovering()) {
foundDevices.clear();
bluetooth.startDiscovery();

}
}

});
}

8. The final step to completing the connection-handling code is to extend the setupListView

method from Step 7b. Extend this method to include an onItemClickListener that will
attempt to asynchronously initiate a client-side connection with the selected remote
Bluetooth Device. If it is successful, keep a reference to the socket it creates and make a call
to the switchUI method created in Step 5.

private void setupListView() {
aa = new ArrayAdapter<BluetoothDevice>(this,

android.R.layout.simple_list_item_1,
foundDevices);

list = (ListView)findViewById(R.id.list_discovered);
list.setAdapter(aa);

list.setOnItemClickListener(new OnItemClickListener() {
public void onItemClick(AdapterView<?> arg0, View view,

int index, long arg3) {
AsyncTask<Integer, Void, Void> connectTask =
new AsyncTask<Integer, Void, Void>() {

@Override
protected Void doInBackground(Integer . . . params) {
try {

BluetoothDevice device = foundDevices.get(params[0]);
socket = device.createRfcommSocketToServiceRecord(uuid);
socket.connect();

} catch (IOException e) {
Log.d("BLUETOOTH_CLIENT", e.getMessage());

}
return null;

}

@Override
protected void onPostExecute(Void result) {

Using Bluetooth ❘ 445

FIGURE 13-5

.

switchViews();
}

};
connectTask.execute(index);

}
});

}

. 9. If you run the application on two devices, you
can click the ‘‘Listen for connection’’ button on
one device, and the ‘‘Search for listener’’ button
on the other. The List View should then be popu-
lated with all the bonded devices within range, as
shown in Figure 13-5.

If you select the other Android device running this
application from that list, a connection will be
established between the two devices. The follow-
ing steps will use this communications channel to
send simple text messages between the devices.

10. Start by extending the switchUI method. Add a
new key listener to the text-entry Edit Text to lis-
ten for a D-pad click. When one is detected, read
its contents and send them across the Bluetooth
communications socket.

private void switchUI() {
final TextView messageText = (TextView)findViewById(R.id.text_messages);
final EditText textEntry = (EditText)findViewById(R.id.text_message);

messageText.setVisibility(View.VISIBLE);
list.setVisibility(View.GONE);
textEntry.setEnabled(true);

textEntry.setOnKeyListener(new OnKeyListener() {
public boolean onKey(View view, int keyCode, KeyEvent keyEvent) {

if ((keyEvent.getAction() == KeyEvent.ACTION_DOWN) &&
(keyCode == KeyEvent.KEYCODE_DPAD_CENTER)) {

sendMessage(socket, textEntry.getText().toString());
textEntry.setText("");
return true;

}
return false;

}
});

}

private void sendMessage(BluetoothSocket socket, String msg) {

446 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

OutputStream outStream;
try {
outStream = socket.getOutputStream();
byte[] byteString = (msg + " ").getBytes();
stringAsBytes[byteString.length − 1] = 0;
outStream.write(byteString);

} catch (IOException e) {
Log.d("BLUETOOTH_COMMS", e.getMessage());

}
}

11. In order to receive messages you will need to create an asynchronous listener that monitors
the Bluetooth Socket for incoming messages.

11.1. Start by creating a new MessagePoster class that implements Runnable. It should
accept two parameters, a Text View and a message string. The received message
should be inserted into the Text View parameter. This class will be used to post
incoming messages to the UI from a background thread.

private class MessagePoster implements Runnable {
private TextView textView;
private String message;

public MessagePoster(TextView textView, String message) {
this.textView = textView;
this.message = message;

}

public void run() {
textView.setText(message);

}
}

11.2. Now create a new BluetoothSocketListener that implements Runnable. It should
take a Bluetooth Socket to listen to, a Text View to post incoming messages to, and
a Handler to synchronize when posting updates.

When a new message is received, use the MessagePoster Runnable you created in
the previous step to post the new message in the Text View.

private class BluetoothSocketListener implements Runnable {

private BluetoothSocket socket;
private TextView textView;
private Handler handler;

public BluetoothSocketListener(BluetoothSocket socket,
Handler handler, TextView textView) {

this.socket = socket;
this.textView = textView;
this.handler = handler;

}

Using Bluetooth ❘ 447

public void run() {
int bufferSize = 1024;
byte[] buffer = new byte[bufferSize];
try {
InputStream instream = socket.getInputStream();
int bytesRead = −1;
String message = "";
while (true) {

message = "";
bytesRead = instream.read(buffer);
if (bytesRead != −1) {
while ((bytesRead==bufferSize)&&(buffer[bufferSize-1] != 0)) {

message = message + new String(buffer, 0, bytesRead);
bytesRead = instream.read(buffer);

}
message = message + new String(buffer, 0, bytesRead − 1);

handler.post(new MessagePoster(textView, message));

socket.getInputStream();
}

}
} catch (IOException e) {
Log.d("BLUETOOTH_COMMS", e.getMessage());

}
}

}

11.3. Finally, make one more addition to the swichUI method, this time creating and
starting the new BluetoothSocketListener you created in the previous step.

private Handler handler = new Handler();

private void switchUI() {
final TextView messageText = (TextView)findViewById(R.id.text_messages);
final EditText textEntry = (EditText)findViewById(R.id.text_message);

messageText.setVisibility(View.VISIBLE);
list.setVisibility(View.GONE);
textEntry.setEnabled(true);

textEntry.setOnKeyListener(new OnKeyListener() {
public boolean onKey(View view, int keyCode, KeyEvent keyEvent) {
if ((keyEvent.getAction() == KeyEvent.ACTION_DOWN) &&

(keyCode == KeyEvent.KEYCODE_DPAD_CENTER)) {
sendMessage(socket, textEntry.getText().toString());
textEntry.setText("");
return true;

}
return false;

}
});

448 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

BluetoothSocketListener bsl = new BluetoothSocketListener(socket,
handler, messageText);

Thread messageListener = new Thread(bsr);
messageListener.start();

}

All code snippets in this example are part of the Chapter 13 Bluetooth Texting project, available for download at Wrox.com.

If you run the application now, you should be able to configure one device to listen for a connection,
use a second device to connect to it — and then, once connected, send simple text messages between
the devices.

Note that this example has been kept as simple as possible to highlight the Bluetooth functional-
ity being described. A better implementation would move all the connection state and logic code
into a Service, as well as unregistering Broadcast Receivers once discovery and pairing had been
completed.

MANAGING NETWORK CONNECTIVITY

The incredible growth of Internet services and the ubiquity of mobile devices have made mobile Internet
access an increasingly prevalent feature on mobile phones.

With the speed, reliability, and cost of Internet connectivity dependent on the network technology
being used (Wi-Fi, GPRS, 3G), letting your applications know and manage these connections can help
to ensure they run efficiently and responsively.

Android broadcasts Intents that describe changes in network connectivity and offers APIs that provide
control over network settings and connections.

Just as importantly, users can specify their connectivity preferences — particularly in the case of allow-
ing background data transfers.

Android networking is principally handled via the ConnectivityManager, a Service that lets you moni-
tor the connectivity state, set your preferred network connection, and manage connectivity failover.

Later you’ll learn how to use the WifiManager to monitor and control the device’s Wi-Fi connectivity
specifically. The Wi-Fi Manager lets you create new Wi-Fi configurations, monitor and modify the
existing Wi-Fi network settings, manage the active connection, and perform access point scans.

Introducing the Connectivity Manager
The ConnectivityManager represents the Network Connectivity Service. It’s used to monitor the state
of network connections, configure failover settings, and control the network radios.

To access the Connectivity Manager, use getSystemService, passing in Context.CONNECTIVITY_

SERVICE as the service name, as shown in Listing 13-12.

LISTING 13-12: Accessing the Connectivity Manager

String service =
Context.CONNECTIVITY_SERVICE;ConnectivityManager connectivity =

(ConnectivityManager)getSystemService(service);

Managing Network Connectivity ❘ 449

To use the Connectivity Manager, your application needs read and write network state access permis-
sions. Add each to your manifest, as shown here:

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission android:name="android.permission.CHANGE_NETWORK_STATE"/>

Reading User Preferences for Background Data Transfer
One of the most important pieces of information available via the Connectivity Manager is the user’s
preference for background data transfers.

Users can elect to enable or disable background data transfers through the Settings ➪ Accounts & sync
settings ➪ Background data setting, as shown in Figure 13-6.

FIGURE 13-6

This value is enforced at the application level, meaning that you are responsible for reading the value
and adhering to the user’s preference for allowing background data transfers.

To obtain the background data setting, call the getBackgroundDataSetting method on the Connectiv-
ity Manager object:

boolean backgroundEnabled = connectivity.getBackgroundDataSetting();

If the background data setting is disabled, your application should transfer data only when it is active
and in the foreground. By turning this value off, the user explicitly requests that your application not
transfer data when it is not visible and in the foreground.

450 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

If your application requires background data transfer to function, it’s best practice to notify users of
this requirement and offer to take them to the settings page to alter their preference.

If the user does change the background data preference, the system will send a broadcast Intent with
the ConnectivityManager.ACTION_BACKGROUND_DATA_SETTING_CHANGED action.

To monitor changes in the background data setting, create and register a new Broadcast Receiver that
listens for this broadcast Intent, as shown in Listing 13-13.

LISTING 13-13: Accessing the Connectivity Manager

registerReceiver(
new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {

// Do something when the background data setting changes.
},

new IntentFilter(ConnectivityManager.ACTION_BACKGROUND_DATA_SETTING_CHANGED));

While your applications are not forced to obey the user’s preference for background
data transfers, not doing so is likely to earn vocal criticism from users who installed
your application and were rewarded with a significant mobile data bill.

Monitoring Network Details
The Connectivity Manager provides a high-level view of the available network connections. Using the
getActiveNetworkInfo or getNetworkInfo methods, as shown in Listing 13-14, returns NetworkInfo
objects that include details on the currently active network or on an inactive network of the type
specified.

Use the returned NetworkInfo details to find the connection status, network type, and detailed state
information of the returned network.

LISTING 13-14: Accessing network information

// Get the active network information.
NetworkInfo activeNetwork = connectivity.getActiveNetworkInfo();
int networkType = networkInfo.getType();
switch (networkType) {

case (ConnectivityManager.TYPE_MOBILE) : break;
case (ConnectivityManager.TYPE_WIFI) : break;
default: break;

}

// Get the mobile network information.
int network = ConnectivityManager.TYPE_MOBILE;
NetworkInfo mobileNetwork = connectivity.getNetworkInfo(network);

Managing Network Connectivity ❘ 451

NetworkInfo.State state = mobileNetwork.getState();
NetworkInfo.DetailedState detailedState = mobileNetwork.getDetailedState();

Finding and Configuring Network Preferences and Controlling
Hardware Radios

The Connectivity Manager can also be used to control network hardware and configure failover
preferences.

Android will attempt to connect to the preferred network whenever an authorized application
requests an Internet connection. You can find the current, and set the preferred, network using the
getNetworkPreference and setNetworkPreference methods, respectively, as shown in the following
code snippet:

int networkPreference = connectivity.getNetworkPreference();
connectivity.setNetworkPreference(NetworkPreference.PREFER_WIFI);

If the preferred connection is unavailable, or connectivity on this network is lost, Android will auto-
matically attempt to connect to the secondary network.

You can control the availability of the network types using the setRadio method. This method lets you
set the state of the radio associated with a particular network (Wi-Fi, mobile, etc.). For example, in the
following code snippet the Wi-Fi radio is turned off and the mobile radio is turned on:

connectivity.setRadio(NetworkType.WIFI, false);
connectivity.setRadio(NetworkType.MOBILE, true);

Monitoring Network Connectivity
One of the most useful functions of the Connectivity Manager is to notify applications of changes in
network connectivity.

To monitor network connectivity create your own Broadcast Receiver implementation that listens for
ConnectivityManager.CONNECTIVITY_ACTION broadcast Intents. Such Intents include several extras that
provide additional details on the change to the connectivity state. You can access each extra using one
of the static constants available from the ConnectivityManager class:

➤ EXTRA_IS_FAILOVER A Boolean that returns true if the current connection is the result of a
failover from a preferred network.

➤ EXTRA_NO_CONNECTIVITY A Boolean that returns true if the device is not connected to any
network.

➤ EXTRA_REASON If the associated broadcast represents a connection failure, this string value
includes a description of why the connection attempt failed.

➤ EXTRA_NETWORK_INFO Returns a NetworkInfo object containing more fine-grained details
about the network associated with the current connectivity event.

➤ EXTRA_OTHER_NETWORK_INFO After a network disconnection this value will return a
NetworkInfo object populated with the details for the possible failover network connection.

➤ EXTRA_EXTRA_INFO Contains additional network-specific extra connection details.

452 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

MANAGING YOUR WI-FI

The WifiManager represents the Android Wi-Fi Connectivity Service. It can be used to configure
Wi-Fi network connections, manage the current Wi-Fi connection, scan for access points, and monitor
changes in Wi-Fi connectivity.

As with the Connectivity Manager, you access the Wi-Fi Manager using the getSystemService method,
passing in the Context.WIFI_SERVICE constant, as shown in Listing 13-15.

LISTING 13-15: Accessing the Wi-Fi Manager

String service = Context.WIFI_SERVICE;
WifiManager wifi = (WifiManager)getSystemService(service);

To use the Wi-Fi Manager your application must have uses-permissions for accessing and changing
the Wi-Fi state included in its manifest.

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>
<uses-permission android:name="android.permission.CHANGE_WIFI_STATE"/>

You can use the Wi-Fi Manager to enable or disable your Wi-Fi hardware using the setWifiEnabled

method, or request the current Wi-Fi state using the getWifiState or isWifiEnabled methods, as
shown in Listing 13-16.

LISTING 13-16: Monitoring and changing Wi-Fi state

if (!wifi.isWifiEnabled())
if (wifi.getWifiState() != WifiManager.WIFI_STATE_ENABLING)
wifi.setWifiEnabled(true);

The following sections begin with tracking the current Wi-Fi connection status and monitoring changes
in signal strength. Later you’ll also learn how to scan for and connect to specific access points.

These functions are likely to be sufficient for most application developers, but the WifiManager does
also provide low-level access to the Wi-Fi network configurations. You have full control over each
Wi-Fi configuration setting, which enables you to completely replace the native Wi-Fi management
application if required. Later in this section you’ll get a brief introduction to the APIs used to create,
delete, and modify network configurations.

Monitoring Wi-Fi Connectivity
The Wi-Fi Manager broadcasts Intents whenever the connectivity status of the Wi-Fi network changes,
using an action from one of the following constants defined in the WifiManager class:

➤ WIFI_STATE_CHANGED_ACTION Indicates that the Wi-Fi hardware status has changed, moving
between enabling, enabled, disabling, disabled, and unknown. It includes two extra values
keyed on EXTRA_WIFI_STATE and EXTRA_PREVIOUS_STATE that provide the new and previous
Wi-Fi states, respectively.

Managing Your Wi-Fi ❘ 453

➤ SUPPLICANT_CONNECTION_CHANGE_ACTION This Intent is broadcast whenever the connection
state with the active supplicant (access point) changes. It is fired when a new connection is
established or an existing connection is lost, using the EXTRA_NEW_STATE Boolean extra, which
returns true in the former case.

➤ NETWORK_STATE_CHANGED_ACTION Fired whenever the Wi-Fi connectivity state changes. This
Intent includes two extras — the first EXTRA_NETWORK_INFO includes a NetworkInfo object
that details the current network state, while the second EXTRA_BSSID includes the BSSID of
the access point you’re connected to.

➤ RSSI_CHANGED_ACTION You can monitor the current signal strength of the connected
Wi-Fi network by listening for the RSSI_CHANGED_ACTION Intent. This Broadcast Intent
includes an integer extra, EXTRA_NEW_RSSI, that holds the current signal strength. To use
this signal strength you should use the calculateSignalLevel static method on the Wi-Fi
Manager to convert it to an integer value on a scale you specify.

Monitoring Active Connection Details
Once an active network connection has been established, use the getConnectionInfo method on the
Wi-Fi Manager to find information on the active connection’s status. The returned WifiInfo object
includes the SSID, BSSID, Mac address, and IP address of the current access point, as well as the current
link speed and signal strength.

Listing 13-17 queries the active Wi-Fi connection.

LISTING 13-17: Querying the active network connection

WifiInfo info = wifi.getConnectionInfo();
if (info.getBSSID() != null) {
int strength = WifiManager.calculateSignalLevel(info.getRssi(), 5);
int speed = info.getLinkSpeed();
String units = WifiInfo.LINK_SPEED_UNITS;
String ssid = info.getSSID();

String cSummary = String.format("Connected to %s at %s%s. Strength %s/5",
ssid, speed, units, strength);

}

Scanning for Hotspots
You can also use the Wi-Fi Manager to conduct access point scans using the startScan method.

An Intent with the SCAN_RESULTS_AVAILABLE_ACTION action will be broadcast to asynchronously
announce that the scan is complete and results are available.

Call getScanResults to get those results as a list of ScanResult objects.

Each Scan Result includes the details retrieved for each access point detected, including link speed,
signal strength, SSID, and the authentication techniques supported.

Listing 13-18 shows how to initiate a scan for access points that displays a Toast indicating the total
number of access points found and the name of the access point with the strongest signal.

454 ❘ CHAPTER 13 BLUETOOTH, NETWORKS, AND WI-FI

LISTING 13-18: Querying the active network connection

// Register a broadcast receiver that listens for scan results.
registerReceiver(new BroadcastReceiver() {

@Override
public void onReceive(Context context, Intent intent) {
List<ScanResult> results = wifi.getScanResults();
ScanResult bestSignal = null;
for (ScanResult result : results) {

if (bestSignal == null ||
WifiManager.compareSignalLevel(bestSignal.level,result.level)<0)

bestSignal = result;
}

String toastText = String.format("%s networks found. %s is
the strongest.",
results.size(), bestSignal.SSID);

Toast.makeText(getApplicationContext(), toastText, Toast.LENGTH_LONG);
}

}, new IntentFilter(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));

// Initiate a scan.
wifi.startScan();

Managing Wi-Fi Configurations
You can use the Wi-Fi Manager to manage the configured network settings and control which networks
to connect to. Once connected, you can interrogate the active network connection to get additional
details of its configuration and settings.

Get a list of the current network configurations using getConfiguredNetworks. The list of
WifiConfiguration objects returned includes the network ID, SSID, and other details for each
configuration.

To use a particular network configuration, use the enableNetwork method, passing in the network ID
to use and specifying true for the disableAllOthers parameter, as shown in Listing 13-19.

LISTING 13-19: Activating a network connection

// Get a list of available configurations
List<WifiConfiguration> configurations = wifi.getConfiguredNetworks();
// Get the network ID for the first one.
if (configurations.size() > 0) {

int netID = configurations.get(0).networkId;
// Enable that network.
boolean disableAllOthers = true;
wifi.enableNetwork(netID, disableAllOtherstrue);

}

Summary ❘ 455

Creating Wi-Fi Network Configurations
To connect to a Wi-Fi network you need to create and register a configuration. Normally, your users
would do this using the native Wi-Fi configuration settings, but there’s no reason you can’t expose the
same functionality within your own applications, or for that matter replace the native Wi-Fi configura-
tion Activity entirely.

Network configurations are stored as WifiConfiguration objects. The following is a non-exhaustive
list of some of the public fields available for each Wi-Fi configuration:

➤ BSSID The BSSID for an access point

➤ SSID The SSID for a particular network

➤ networkId A unique identifier used to identify this network configuration on the current
device

➤ priority The network configuration’s priority to use when ordering the list of potential
access points to connect to

➤ status The current status of this network connection, which will be one of the follow-
ing: WifiConfiguration.Status.ENABLED, WifiConfiguration.Status.DISABLED, or
WifiConfiguration.Status.CURRENT

The configuration object also contains the supported authentication techniques, as well as the keys used
previously to authenticate with this access point.

The addNetwork method lets you specify a new configuration to add to the current list; similarly,
updateNetwork lets you update a network configuration by passing in a WifiConfiguration that’s
sparsely populated with a network ID and the values you want to change.

You can also use removeNetwork, passing in a network ID, to remove a configuration.

To persist any changes made to the network configurations, you must call saveConfiguration.

SUMMARY

In this chapter you learned how to monitor and control some of the low-level communication hardware
services available on Android devices.

The chapter included an introduction to Bluetooth management and communications mechanisms, a
look at how to monitor and control Internet and network connectivity settings, and an introduction to
the Wi-Fi manager — used to monitor and control the device’s Wi-Fi connectivity and configurations.

In the next chapter you’ll learn how to interact with the Sensor Manager to provide your applications
access to the physical world. You will learn how to access the hardware sensors — particularly the
compass and accelerometer — and how to monitor and interpret these sensors’ values.

14
Sensors

WHAT’S IN THIS CHAPTER?

➤ Using the Sensor Manager

➤ The available sensor-types

➤ Monitoring sensors and interpreting sensor values

➤ Using the compass, accelerometer, and orientation sensors

➤ Remapping your orientation reference frame

➤ Controlling device vibration

Modern mobile phones are much more than simple communications devices with a connection
to the Internet. With microphones, cameras, accelerometers, compasses, temperature gauges,
and brightness detectors, smartphones have become extra-sensory devices, able to augment your
own perceptions.

Later chapters will explore use of the camera and microphone; in this chapter you will explore
the environmental sensors potentially available on Android devices.

Sensors that detect physical and environmental properties offer an exciting innovation for
enhancing the user experience of mobile applications. The incorporation of electronic com-
passes, gravity sensors, brightness gauges, and proximity sensors in modern devices provides an
array of new possibilities for interacting with devices, such as augmented reality and physical
movement-based input.

In this chapter you’ll be introduced to the sensors available in Android and how to use the Sen-
sor Manager to monitor them. You’ll take a closer look at the accelerometer and orientation
sensors and use them to determine changes in the device orientation and acceleration. This is
particularly useful for creating motion-based user interfaces, letting you add new dimensions to
your location-based applications.

You’ll also learn how to control device vibration to use force feedback in your applications.

458 ❘ CHAPTER 14 SENSORS

USING SENSORS AND THE SENSOR MANAGER

The Sensor Manager is used to manage the sensor hardware available on Android devices. Use
getSystemService to return a reference to the Sensor Manager Service, as shown in the following
snippet:

String service_name = Context.SENSOR_SERVICE;
SensorManager sensorManager = (SensorManager)getSystemService(service_name);

Introducing Sensors
Like location-based Services, Android abstracts the sensor implementations of each device. The Sensor

class is used to describe the properties of each hardware sensor, including its type, name, manufacturer,
and details on its accuracy and range.

The Sensor class includes a set of constants used to describe what type of hardware sensor is being
represented by a Sensor object. These constants take the form of Sensor.TYPE_<TYPE>. The follow-
ing section describes each supported sensor-type, after which you’ll learn how to find and use those
sensors.

Supported Android Sensors
The following is a list of the sensor-types currently available; note that the hardware on the host device
determines which of these sensors are actually available to your application.

➤ Sensor.TYPE_ACCELEROMETER A three-axis accelerometer sensor that returns the current
acceleration along three axes in m/s2. The accelerometer is explored in greater detail later
in this chapter.

➤ Sensor.TYPE_GYROSCOPE A gyroscopic sensor that returns the current device orientation on
three axes in degrees.

➤ Sensor.TYPE_LIGHT An ambient light sensor that returns a single value describing the ambi-
ent illumination in lux. A light sensor is commonly used to dynamically control the screen
brightness.

➤ Sensor.TYPE_MAGNETIC_FIELD A magnetic field sensor that finds the current magnetic field
in microteslas along three axes.

➤ Sensor.TYPE_ORIENTATION An orientation sensor that returns the device orientation on
three axes in degrees. The orientation sensor is explored in greater detail later in this chapter.

➤ Sensor.TYPE_PRESSURE A pressure sensor that returns a single value, the current pressure
exerted on the device in kilopascals.

➤ Sensor.TYPE_PROXIMITY A proximity sensor that indicates the distance between the device
and the target object in meters. How a target object is selected, and the distances supported,
will depend on the hardware implementation of the proximity detector. A typical use for the
proximity sensor is to detect when the device is being held up against the user’s ear and to
automatically adjust screen brightness or initiate a voice command.

Using Sensors and the Sensor Manager ❘ 459

➤ Sensor.TYPE_TEMPERATURE A thermometer that returns temperature in degrees Celsius. The
temperature returned may be the ambient room temperature, device battery temperature, or
remote sensor temperature, depending on the hardware implementation.

Finding Sensors
An Android device can include multiple implementations of a particular sensor-type. To find the default
Sensor implementation for a particular type use the Sensor Manager’s getDefaultSensor method,
passing in the sensor-type required from the constants described in the previous section.

The following snippet returns the default gyroscope. If no default Sensor exists for the given type, the
method returns null.

Sensor defaultGyroscope = sensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);

Alternatively, use getSensorList to return a list of all the available Sensors of a given type, as shown
in the following code, which returns all the available pressure sensor objects:

List<Sensor> pressureSensors = sensorManager.getSensorList(Sensor.TYPE_PRESSURE);

To find every Sensor available on the host platform use getSensorList, passing in Sensor.TYPE_ALL,
as shown here:

List<Sensor> allSensors = sensorManager.getSensorList(Sensor.TYPE_ALL);

This technique lets you determine which Sensors, and sensor-types, are available on the host platform.

Using Sensors
Listing 14-1 shows the standard pattern for monitoring hardware sensor results. Later sections will
take a closer look at orientation and acceleration Sensor implementations in particular.

Implement a SensorEventListener. Use the onSensorChanged method to monitor Sensor values and
onAccuracyChanged to react to changes in a Sensor’s accuracy.

LISTING 14-1: Sensor Event Listener skeleton code

final SensorEventListener mySensorEventListener = new SensorEventListener() {
public void onSensorChanged(SensorEvent sensorEvent) {

// TODO Monitor Sensor changes.
}

public void onAccuracyChanged(Sensor sensor, int accuracy) {
// TODO React to a change in Sensor accuracy.

}
};

The SensorEvent parameter in the onSensorChanged method includes four properties used to describe
a Sensor event:

➤ sensor The Sensor object that triggered the event.

➤ accuracy The accuracy of the Sensor when the event occurred (low, medium, high, or unre-
liable, as described in the next list).

460 ❘ CHAPTER 14 SENSORS

➤ values A float array that contains the new value(s) detected. The next section explains the
values returned for each sensor-type.

➤ timestamp The time (in nanoseconds) at which the Sensor event occurred.

You can monitor changes in the accuracy of a Sensor separately, using the onAccuracyChanged method.
In both handlers the accuracy value represents feedback from the monitored Sensor’s accuracy, using
one of the following constants:

➤ SensorManager.SENSOR_STATUS_ACCURACY_LOW Indicates that the Sensor is reporting with
low accuracy and needs to be calibrated

➤ SensorManager.SENSOR_STATUS_ACCURACY_MEDIUM Indicates that the Sensor data is of aver-
age accuracy, and that calibration might improve the readings

➤ SensorManager.SENSOR_STATUS_ACCURACY_HIGH Indicates that the Sensor is reporting with
the highest possible accuracy

➤ SensorManager.SENSOR_STATUS_UNRELIABLE Indicates that the Sensor data is unreliable,
meaning that either calibration is required or readings are not currently possible

To receive Sensor events, register your Sensor Event Listener with the Sensor Manager. Specify the
Sensor object to observe, and the rate at which you want to receive updates. The following example
registers a Sensor Event Listener for the default proximity Sensor at the normal update rate:

Sensor sensor = sensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY);
sensorManager.registerListener(mySensorEventListener,

sensor,
SensorManager.SENSOR_DELAY_NORMAL);

The Sensor Manager includes the following constants (shown in descending order of responsiveness) to
let you select a suitable update rate:

➤ SensorManager.SENSOR_DELAY_FASTEST Specifies the fastest possible Sensor update rate

➤ SensorManager.SENSOR_DELAY_GAME Selects an update rate suitable for use in controlling
games

➤ SensorManager.SENSOR_DELAY_NORMAL Specifies the default update rate

➤ SensorManager.SENSOR_DELAY_UI Specifies a rate suitable for updating UI features

The rate you select is not binding; the Sensor Manager may return results faster or slower than you
specify, though it will tend to be faster. To minimize the associated resource cost of using the Sensor in
your application you should try to select the slowest suitable rate.

It’s also important to unregister your Sensor Event Listeners when your application no longer needs to
receive updates:

sensorManager.unregisterListener(mySensorEventListener);

It’s good practice to register and unregister your Sensor Event Listener in the onResume and onPause

methods of your Activities to ensure they’re being used only when the Activity is active.

Interpreting Sensor Values ❘ 461

INTERPRETING SENSOR VALUES

The length and composition of the values returned in the onSensorChanged event vary depending on
the Sensor being monitored.

The details are summarized in Table 14-1. Further details on the use of the accelerometer, orientation,
and magnetic field Sensors can be found in the following sections.

The Android documentation describes the values returned by each sensor-type with
some additional commentary at http://developer.android.com/reference/
android/hardware/Sensor.html

TABLE 14-1: Sensor Return Values

SENSOR-TYPE VALUE COUNT VALUE COMPOSITION COMMENTARY

TYPE_ACCELEROMETER 3 value[0] : Lateral
value[1] : Longitudinal
value[2] : Vertical

Acceleration along three
axes in m/s2. The Sensor
Manager includes a set of
gravity constants of the form
SensorManager.GRAVITY_*

TYPE_GYROSCOPE 3 value[0] : Azimuth
value[1] : Pitch
value[2] : Roll

Device orientation in degrees
along three axes.

TYPE_ LIGHT 1 value[0] : Illumination Measured in lux. The Sensor
Manager includes a set of con-
stants representing different
standard illuminations of the
form SensorManager.LIGHT_*

TYPE_MAGNETIC_FIELD 3 value[0] : Lateral
value[1] : Longitudinal
value[2] : Vertical

Ambient magnetic field mea-
sured in microteslas (μT).

TYPE_ORIENTATION 3 value[0] : Azimuth
value[1] : Roll
value[2] : Pitch

Device orientation in degrees
along three axes.

TYPE_PRESSURE 1 value[0] : Pressure Measured in kilopascals (KP).

TYPE_PROXIMITY 1 value[0] : Distance Measured in meters.

TYPE_TEMPERATURE 1 value[0] : Temperature Measured in degrees Celsius.

462 ❘ CHAPTER 14 SENSORS

USING THE COMPASS, ACCELEROMETER,
AND ORIENTATION SENSORS

Using movement and orientation within applications is possible thanks to the inclusion of orientation
and accelerometer sensors in many modern devices.

In recent years these sensors have become increasingly common, having found their way into game
controllers like the Nintendo Wii and mobile smartphone handsets like the Apple iPhone, Palm Pre,
and many Android devices.

Accelerometers and compasses are used to provide functionality based on device direction, orientation,
and movement. A recent trend is to use this functionality to provide input mechanisms other than the
traditional touchscreen, trackball, and keyboard.

The availability of compass and accelerometer Sensors depends on the hardware on which your appli-
cation runs. When available, they are exposed through the Sensor Manager, allowing you to do the
following:

➤ Determine the current device orientation

➤ Monitor and track changes in orientation

➤ Know which direction the user is facing

➤ Monitor acceleration — changes in movement rate — in any direction: vertically, laterally, or
longitudinally

This opens some intriguing possibilities for your applications. By monitoring orientation, direction,
and movement, you can:

➤ Use the compass and accelerometer to determine your speed and direction. Use these with a
map, camera, and location-based services to create augmented reality interfaces that overlay
location-based data over the real-time camera feed.

➤ Create user interfaces that adjust dynamically to suit the orientation of your device. Android
already alters the native screen orientation when the device is rotated from portrait to land-
scape or vice versa.

➤ Monitor for rapid acceleration to detect if a device has been dropped or thrown.

➤ Measure movement or vibration. For example you could create an application that lets you
lock your device; if any movement is detected while it’s locked it could send an alert SMS that
includes the current location.

➤ Create user interface controls that use physical gestures and movement as input.

You should always check for the availability of any required Sensors and make sure your applications
fail gracefully if they are missing.

Introducing Accelerometers
Accelerometers, as their name suggests, are used to measure acceleration. They are also sometimes
referred to as gravity sensors.

Using the Compass, Accelerometer, and Orientation Sensors ❘ 463

Accelerometers are also known as gravity sensors because of their inability to
differentiate between acceleration caused by movement and gravity. As a result, an
accelerometer detecting acceleration on the z-axis (up/down) will read -9.8m/s2

when it’s at rest (this value is available as the SensorManager.STANDARD_GRAVITY

constant).

Acceleration is defined as the rate of change of velocity, so accelerometers measure how quickly the
speed of the device is changing in a given direction. Using an accelerometer you can detect movement
and, more usefully, the rate of change of the speed of that movement.

It’s important to note that accelerometers do not measure velocity, so you can’t
measure speed directly based on a single accelerometer reading. Instead you need to
measure changes in acceleration over time.

Generally you’ll be interested in acceleration changes relative to a rest state, or rapid movement (signi-
fied by rapid changes in acceleration) such as gestures used for user input. In the former case you’ll often
need to calibrate the device to calculate the initial orientation and acceleration to take those effects into
account for future results.

Detecting Acceleration Changes Z
vertical

X
lateral

Y
longitudinal

FIGURE 14-1

Acceleration can be measured along three directional axes: left-
right (lateral), forward-backward (longitudinal), and up-down
(vertical). The Sensor Manager reports accelerometer Sensor
changes along all three axes.

The values passed in through the values property of the Sen-
sor Event Listener’s Sensor Event parameter represent lateral,
longitudinal, and vertical acceleration, in that order.

Figure 14-1 illustrates the mapping of the three directional accel-
eration axes in relation to the device at rest. The Sensor Manager
considers the device ‘‘at rest’’ when it is sitting face up on a flat
surface in portrait orientation.

➤ x-axis (lateral) Sideways (left or right) acceleration, for which positive values represent
movement toward the right side of the device, and negative values indicate movement to the
left. For example, positive x-axis acceleration would be detected on a device flat on its back,
facing up, and in portrait orientation being moved along a surface to your right.

➤ y-axis (longitudinal) Forward or backward acceleration, for which forward acceleration is
represented by a positive value. In the same configuration as described for lateral movement,
you would create positive longitudinal acceleration by moving the device in the direction of
the top of the device.

464 ❘ CHAPTER 14 SENSORS

➤ z-axis (vertical) Upward or downward acceleration, for which positive represents upward
movement such as the device being lifted. While at rest the vertical accelerometer will register
-9.8m/s2 as a result of gravity.

As described earlier, you monitor changes in acceleration using a Sensor Event Listener. Register an
implementation of SensorEventListener with the Sensor Manager, using a Sensor object of type
Sensor.TYPE_ACCELEROMETER to request accelerometer updates. Listing 14-2 registers the default
accelerometer using the normal update rate.

LISTING 14-2: Listening to changes to the default accelerometer

SensorManager sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
int sensorType = Sensor.TYPE_ACCELEROMETER;
sm.registerListener(mySensorEventListener,

sm.getDefaultSensor(sensorType),
SensorManager.SENSOR_DELAY_NORMAL);

Your Sensor Listener should implement the onSensorChanged method that will be fired when accelera-
tion in any direction is measured.

The onSensorChanged method receives a SensorEvent that includes a float array containing the accel-
eration measured along all three axes. Based on a rest state of the device sitting flat on its back in
portrait orientation, the first element represents lateral, the second longitudinal, and the final vertical
acceleration, as shown in the following extension to Listing 14-2.

final SensorEventListener mySensorEventListener = new SensorEventListener() {
public void onSensorChanged(SensorEvent sensorEvent) {
if (sensorEvent.sensor.getType() == Sensor.TYPE_ACCELEROMETER) {

float xAxis_lateralA = sensorEvent.values[0];
float yAxis_longitudinalA = sensorEvent.values[1];
float zAxis_verticalA = sensorEvent.values[2];
// TODO apply the acceleration changes to your application.

}
}

};

Creating a G-Forceometer
You can create a simple tool to measure g-force by summing the acceleration in all three directions and
comparing it to the value in free fall. In the following example you’ll create a simple device to measure
g-force using the accelerometers to determine the current force being exerted on the device.

Thanks to gravity the force exerted on the device at rest is 9.8m/s2 toward the center of
the Earth. In this example you’ll negate the force of gravity by accounting for it using the
SensorManager.STANDARD_GRAVITY constant.

1. Start by creating a new Forceometer project with a Forceometer Activity. Modify the
main.xml layout resource to display two centered lines of large, bold text that will be used to
display the current g-force and maximum observed g-force:

Using the Compass, Accelerometer, and Orientation Sensors ❘ 465

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TextView android:id="@+id/acceleration"
android:gravity="center"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:textStyle="bold"
android:textSize="32sp"
android:text="CENTER"
android:editable="false"
android:singleLine="true"
android:layout_margin="10px"/>

/>
<TextView android:id="@+id/maxAcceleration"
android:gravity="center"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:textStyle="bold"
android:textSize="40sp"
android:text="CENTER"
android:editable="false"
android:singleLine="true"
android:layout_margin="10px"/>

/>
</LinearLayout>

2. Within the Forceometer Activity, create instance variables to store references to both
TextView Views and the SensorManager. Also create variables to record the last and
maximum detected acceleration values:

SensorManager sensorManager;
TextView accelerationTextView;
TextView maxAccelerationTextView;
float currentAcceleration = 0;
float maxAcceleration = 0;

3. Create a new SensorEventListener implementation that sums the acceleration detected
along each axis and negates the acceleration caused by gravity. It should update the current
and maximum acceleration whenever a change in acceleration is detected:

private final SensorEventListener sensorEventListener = new SensorEventListener() {
double calibration = SensorManager.STANDARD_GRAVITY;

public void onAccuracyChanged(Sensor sensor, int accuracy) { }

public void onSensorChanged(SensorEvent event) {
double x = event.values[0];
double y = event.values[1];
double z = event.values[2];

double a = Math.round(Math.sqrt(Math.pow(x, 2) +
Math.pow(y, 2) +

466 ❘ CHAPTER 14 SENSORS

Math.pow(z, 2)));
currentAcceleration = Math.abs((float)(a-calibration));

if (currentAcceleration > maxAcceleration)
maxAcceleration = currentAcceleration;

}
};

4. Update the onCreate method to register your new Listener for accelerometer updates using
the SensorManager. Take the opportunity to get a reference to the two Text Views:

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

accelerationTextView = (TextView)findViewById(R.id.acceleration);
maxAccelerationTextView = (TextView)findViewById(R.id.maxAcceleration);
sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);

Sensor accelerometer = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
sensorManager.registerListener(sensorEventListener,

accelerometer,
SensorManager.SENSOR_DELAY_FASTEST);

}

5. The accelerometers can be very sensitive, so updating the Text Views for every detected accel-
eration change can be very expensive. Instead, create a new updateGUI method that synchro-
nizes with the GUI thread based on a Timer before updating the Text Views:

private void updateGUI() {
runOnUiThread(new Runnable() {
public void run() {

String currentG = currentAcceleration/SensorManager.STANDARD_GRAVITY
+ "Gs";

accelerationTextView.setText(currentG);
accelerationTextView.invalidate();
String maxG = maxAcceleration/SensorManager.STANDARD_GRAVITY + "Gs";
maxAccelerationTextView.setText(maxG);
maxAccelerationTextView.invalidate();

}
});

};

6. Finally, update the onCreate method to start a timer that’s used to update the GUI every
100ms:

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
accelerationTextView = (TextView)findViewById(R.id.acceleration);
maxAccelerationTextView = (TextView)findViewById(R.id.maxAcceleration);
sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);

Using the Compass, Accelerometer, and Orientation Sensors ❘ 467

Sensor accelerometer =
sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

sensorManager.registerListener(sensorEventListener,
accelerometer,
SensorManager.SENSOR_DELAY_FASTEST);

Timer updateTimer = new Timer("gForceUpdate");
updateTimer.scheduleAtFixedRate(new TimerTask() {
public void run() {

updateGUI();
}

}, 0, 100);
}

All code snippets in this example are part of the Chapter 14 G-Forceometer project, available for download at Wrox.com.

Once you’re finished you’ll want to test this out. Ideally you can do that in an F16 while Maverick
performs high-g maneuvers over the Atlantic. That’s been known to end badly, so failing that you can
experiment with running or driving in the safety of your neighborhood.

Given that keeping constant watch on your handset while driving, cycling, or flying is also likely to end
poorly, you might consider some further enhancements before you take it out for a spin.

Consider incorporating vibration or media player functionality to shake or beep with an intensity
proportional to your current force, or simply log changes as they happen for later review.

Determining Your Orientation
The orientation Sensor is a combination of the magnetic field Sensors, which function as an electronic
compass, and accelerometers, which determine the pitch and roll.

If you’ve done a bit of trigonometry you’ve got the skills required to calculate the device orientation
based on the accelerometer and magnetic field values along all three axes. If you enjoyed trig as much
as I did you’ll be happy to learn that Android does these calculations for you.

X
heading

Y
pitch

Z
roll

FIGURE 14-2

In fact, Android provides two alternatives for determining the
device orientation. You can query the orientation Sensor directly
or derive the orientation using the accelerometers and magnetic
field Sensors. The latter option is slower, but offers the advan-
tages of increased accuracy and the ability to modify the reference
frame when determining your orientation. The following sections
demonstrate both techniques.

Using the standard reference frame, the device orientation is
reported along three dimensions, as illustrated in Figure 14-2.
As when using the accelerometers, the device is considered at rest
faceup on a flat surface.

➤ x-axis (azimuth) The azimuth (also heading or yaw) is
the direction the device is facing around the x-axis, where
0/360 degrees is north, 90 east, 180 south, and 270 west.

468 ❘ CHAPTER 14 SENSORS

➤ y-axis (pitch) Pitch represents the angle of the device around the y-axis. The tilt angle
returned shows 0 when the device is flat on its back, -90 when it is standing upright (top of
device pointing at the ceiling), 90 when it’s upside down, and 180/-180 when it’s facedown.

➤ z-axis (roll) The roll represents the device’s sideways tilt between -90 and 90 degrees on
the z-axis. Zero is the device flat on its back, -90 is the screen facing left, and 90 is the screen
facing right.

Determining Orientation Using the Orientation Sensor
The simplest way to monitor device orientation is by using a dedicated orientation Sensor. Create
and register a Sensor Event Listener with the Sensor Manager, using the default orientation Sensor, as
shown in Listing 14-3.

LISTING 14-3: Determining orientation using the orientation Sensor

SensorManager sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
int sensorType = Sensor.TYPE_ORIENTATION;
sm.registerListener(myOrientationListener,

sm.getDefaultSensor(sensorType),
SensorManager.SENSOR_DELAY_NORMAL);

When the device orientation changes, the onSensorChanged method in your SensorEventListener

implementation is fired. The SensorEvent parameter includes a values float array that provides the
device’s orientation along three axes.

The first element of the values array is the azimuth (heading), the second pitch, and the third roll.

final SensorEventListener myOrientationListener = new SensorEventListener() {
public void onSensorChanged(SensorEvent sensorEvent) {
if (sensorEvent.sensor.getType() == Sensor.TYPE_ORIENTATION) {

float headingAngle = sensorEvent.values[0];
float pitchAngle = sensorEvent.values[1];
float rollAngle = sensorEvent.values[2];

// TODO Apply the orientation changes to your application.
}

}

public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

Calculating Orientation Using the Accelerometer and Magnetic Field Sensors
The best approach for finding the device orientation is to calculate it from the accelerometer and mag-
netic field Sensor results directly.

This technique enables you to change the orientation reference frame to remap the x-, y-, and z-axes to
suit the device orientation you expect during use.

This approach uses both the accelerometer and magnetic field Sensors, so you need to create and register
two Sensor Event Listeners. Within the onSensorChanged methods for each Sensor Event Listener,
record the values array property received in two separate field variables, as shown in Listing 14-4.

Using the Compass, Accelerometer, and Orientation Sensors ❘ 469

LISTING 14-4: Finding orientation using the accelerometer and magnetic field Sensors

float[] accelerometerValues;
float[] magneticFieldValues;

final SensorEventListener myAccelerometerListener = new SensorEventListener() {
public void onSensorChanged(SensorEvent sensorEvent) {

if (sensorEvent.sensor.getType() == Sensor.TYPE_ACCELEROMETER)
accelerometerValues = sensorEvent.values;

}

public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

final SensorEventListener myMagneticFieldListener = new SensorEventListener() {
public void onSensorChanged(SensorEvent sensorEvent) {

if (sensorEvent.sensor.getType() == Sensor.TYPE_MAGNETIC_FIELD)
magneticFieldValues = sensorEvent.values;

}

public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

Register both with the Sensor Manager, as shown in the following code extending Listing 14-4; this
snippet uses the default hardware and UI update rate for both Sensors:

SensorManager sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
Sensor aSensor = sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
Sensor mfSensor = sm.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

sm.registerListener(myAccelerometerListener,
aSensor,
SensorManager.SENSOR_DELAY_UI);

sm.registerListener(myMagneticFieldListener,
mfSensor,
SensorManager.SENSOR_DELAY_UI);

To calculate the current orientation from these Sensor values you use the getRotationMatrix and
getOrientation methods from the Sensor Manager, as follows. Note that getOrientation returns
radians rather than degrees.

float[] values = new float[3];
float[] R = new float[9];
SensorManager.getRotationMatrix(R, null,

accelerometerValues,
magneticFieldValues);

SensorManager.getOrientation(R, values);

// Convert from radians to degrees.
values[0] = (float) Math.toDegrees(values[0]);
values[1] = (float) Math.toDegrees(values[1]);
values[2] = (float) Math.toDegrees(values[2]);

470 ❘ CHAPTER 14 SENSORS

Remapping the Orientation Reference Frame
To measure device orientation using a reference frame other than the default described earlier, use the
remapCoordinateSystem method from the Sensor Manager.

Earlier in this chapter the standard reference frame was described as the device being faceup on a flat
surface. This method lets you remap the coordinate system used to calculate your orientation, for
example by specifying the device to be at rest when mounted vertically.

X
heading

Y
roll

Z
pitch

FIGURE 14-3

The remapCoordinateSystem method accepts four parameters:

➤ The initial rotation matrix, found using getRotationMatrix,

as described earlier

➤ A variable used to store the output (transformed) rotation
matrix

➤ The remapped x-axis

➤ The remapped y-axis

Two final parameters are used to specify the new reference frame. The
values used specify the new x- and y-axes relative to the default frame.
The Sensor Manager provides a set of constants to let you specify the
axis values: AXIS_X, AXIS_Y, AXIS_Z, AXIS_MINUS_X, AXIS_MINUS_Y, and
AXIS_MINUS_Z.

Listing 14-5 shows how to remap the reference frame so that a device is
at rest when mounted vertically — held in portrait mode with its screen
facing the user — as shown in Figure 14-3.

LISTING 14-5: Remapping the orientation reference frame

SensorManager.getRotationMatrix(R, null, aValues, mValues);

float[] outR = new float[9];
SensorManager.remapCoordinateSystem(R,

SensorManager.AXIS_X,
SensorManager.AXIS_Z,
outR);

SensorManager.getOrientation(outR, values);

// Convert from radians to degrees.
values[0] = (float) Math.toDegrees(values[0]);
values[1] = (float) Math.toDegrees(values[1]);
values[2] = (float) Math.toDegrees(values[2]);

Creating a Compass and Artificial Horizon
In Chapter 4 you created a simple CompassView to experiment with owner-drawn controls. In this
example you’ll extend the functionality of the Compass View to display the device pitch and roll,
before using it to display the device orientation.

Using the Compass, Accelerometer, and Orientation Sensors ❘ 471

1. Open the Compass project you created in Chapter 4. You will be making changes to the
CompassView as well as the Compass Activity used to display it. To ensure that the view and
controller remain as decoupled as possible, the CompassView won’t be linked to the Sensors
directly; instead it will be updated by the Activity. Start by adding field variables and get/set
methods for pitch and roll to the CompassView.

float pitch = 0;
float roll = 0;

public float getPitch() {
return pitch;

}
public void setPitch(float pitch) {
this.pitch = pitch;

}

public float getRoll() {
return roll;

}
public void setRoll(float roll) {
this.roll = roll;

}

2. Update the onDraw method to include two circles that will be used to indicate the pitch and
roll values.

@Override
protected void onDraw(Canvas canvas) {

[... Existing onDraw method ...]

2.1. Create a new circle that’s half filled and rotates in line with the sideways tilt (roll).

RectF rollOval = new RectF((mMeasuredWidth/3)-mMeasuredWidth/7,
(mMeasuredHeight/2)-mMeasuredWidth/7,
(mMeasuredWidth/3)+mMeasuredWidth/7,
(mMeasuredHeight/2)+mMeasuredWidth/7
);

markerPaint.setStyle(Paint.Style.STROKE);
canvas.drawOval(rollOval, markerPaint);
markerPaint.setStyle(Paint.Style.FILL);
canvas.save();
canvas.rotate(roll, mMeasuredWidth/3, mMeasuredHeight/2);
canvas.drawArc(rollOval, 0, 180, false, markerPaint);

canvas.restore();

2.2. Create a new circle that starts half filled and varies between full and empty based on
the forward angle (pitch):

RectF pitchOval = new RectF((2*mMeasuredWidth/3)-mMeasuredWidth/7,
(mMeasuredHeight/2)-mMeasuredWidth/7,
(2*mMeasuredWidth/3)+mMeasuredWidth/7,
(mMeasuredHeight/2)+mMeasuredWidth/7

);

472 ❘ CHAPTER 14 SENSORS

markerPaint.setStyle(Paint.Style.STROKE);
canvas.drawOval(pitchOval, markerPaint);
markerPaint.setStyle(Paint.Style.FILL);
canvas.drawArc(pitchOval, 0-pitch/2, 180+(pitch), false, markerPaint);
markerPaint.setStyle(Paint.Style.STROKE);

}

FIGURE 14-4

. 3. That completes the changes to the CompassView.
If you run the application now it should appear as
shown in Figure 14-4.

4. Now update the Compass Activity. Use the Sen-
sor Manager to listen for orientation changes
using the magnetic field and accelerometer Sen-
sors. Start by adding local field variables to store
the last magnetic field and accelerometer val-
ues, as well as references to the CompassView and
SensorManager.

float[] aValues = new float[3];
float[] mValues = new float[3];
CompassView compassView;
SensorManager sensorManager;

5. Create a new updateOrientation method that
uses new heading, pitch, and roll values to update
the CompassView.

private void updateOrientation(float[] values) {
if (compassView!= null) {
compassView.setBearing(values[0]);
compassView.setPitch(values[1]);
compassView.setRoll(-values[2]);
compassView.invalidate();

}
}

6. Update the onCreate method to get references to the CompassView and SensorManager, and
initialize the heading, pitch, and roll.
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

compassView = (CompassView)this.findViewById(R.id.compassView);
sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
updateOrientation(new float[] {0, 0, 0});

}

Using the Compass, Accelerometer, and Orientation Sensors ❘ 473

7. Create a new calculateOrientation method to evaluate the device orientation using the last
recorded accelerometer and magnetic field values.

private float[] calculateOrientation() {
float[] values = new float[3];
float[] R = new float[9];

SensorManager.getRotationMatrix(R, null, aValues, mValues);
SensorManager.getOrientation(R, values);

// Convert from Radians to Degrees.
values[0] = (float) Math.toDegrees(values[0]);
values[1] = (float) Math.toDegrees(values[1]);
values[2] = (float) Math.toDegrees(values[2]);

return values;
}

8. Implement a SensorEventListener as a field variable. Within onSensorChanged it should
check for the calling Sensor’s type and update the last accelerometer or magnetic field values
as appropriate before making a call to updateOrientation using the calculateOrientation
method.

private final SensorEventListener sensorEventListener = new SensorEventListener() {

public void onSensorChanged(SensorEvent event) {
if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER)

aValues = event.values;
if (event.sensor.getType() == Sensor.TYPE_MAGNETIC_FIELD)

mValues = event.values;

updateOrientation(calculateOrientation());
}

public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

9. Now override onResume and onStop to register and unregister the SensorEventListener

when the Activity becomes visible and hidden, respectively.

@Override
protected void onResume()
{
super.onResume();

Sensor accelerometer = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
Sensor magField = sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

sensorManager.registerListener(sensorEventListener,
accelerometer,
SensorManager.SENSOR_DELAY_FASTEST);

sensorManager.registerListener(sensorEventListener,

474 ❘ CHAPTER 14 SENSORS

magField,
SensorManager.SENSOR_DELAY_FASTEST);

}

@Override
protected void onStop()
{
sensorManager.unregisterListener(sensorEventListener);
super.onStop();

}

If you run the application now you should see the three face dials update dynamically when
the orientation of the device changes.

10. An artificial horizon is more useful if it’s mounted vertically. Modify the reference frame of
the artificial horizon to match this orientation by updating calculateOrientation to remap
the coordinate system.

private float[] calculateOrientation() {
float[] values = new float[3];
float[] R = new float[9];
float[] outR = new float[9];

SensorManager.getRotationMatrix(R, null, aValues, mValues);
SensorManager.remapCoordinateSystem(R,

SensorManager.AXIS_X,
SensorManager.AXIS_Z,
outR);

SensorManager.getOrientation(outR, values);

// Convert from Radians to Degrees.
values[0] = (float) Math.toDegrees(values[0]);
values[1] = (float) Math.toDegrees(values[1]);
values[2] = (float) Math.toDegrees(values[2]);

return values;
}

All code snippets in this example are part of the Chapter 14 Artificial Horizon project, available for download at Wrox.com.

CONTROLLING DEVICE VIBRATION

In Chapter 9 you learned how to create Notifications that can use vibration to enrich event feedback.
In some circumstances you may want to vibrate the device independently of Notifications. Vibrating
the device is an excellent way to provide haptic user feedback, and is particularly popular as a feedback
mechanism for games.

To control device vibration, your applications needs the VIBRATE permission. Add this to your applica-
tion manifest using the following XML snippet:

<uses-permission android:name="android.permission.VIBRATE"/>

Summary ❘ 475

Device vibration is controlled through the Vibrator Service, accessible via the getSystemService

method, as shown in Listing 14-6.

LISTING 14-6: Controlling device vibration

String vibratorService = Context.VIBRATOR_SERVICE;
Vibrator vibrator = (Vibrator)getSystemService(vibratorService);

Call vibrate to start device vibration; you can pass in either a vibration duration or a pattern of alter-
nating vibration/pause sequences along with an optional index parameter that will repeat the pattern
starting at the index specified. Both techniques are demonstrated in the following extension to List-
ing 14-6:

long[] pattern = {1000, 2000, 4000, 8000, 16000 };
vibrator.vibrate(pattern, 0); // Execute vibration pattern.
vibrator.vibrate(1000); // Vibrate for 1 second.

To cancel vibration call cancel; exiting your application will automatically cancel any vibration it has
initiated.

SUMMARY

In this chapter you learned how to use the Sensor Manager to let your application respond to the
physical environment. You were introduced to the Sensors available on the Android platform and
learned how to listen for Sensor Events using the Sensor Event Listener and how to interpret those
results.

Then you took a more detailed look at the accelerometer, orientation, and magnetic field detection
hardware, using these Sensors to determine the device’s orientation and acceleration. In the process
you created a g-forceometer and an artificial horizon.

You also learned:

➤ Which Sensors are available to Android applications

➤ How to remap the reference frame when determining a device’s orientation

➤ The composition and meaning of the Sensor Event values returned by each sensor

➤ How to use device vibration to provide physical feedback for application events

In the final chapter, you’ll be introduced to some of the advanced Android features. You’ll learn more
about security, how to use AIDL to facilitate interprocess communication, and using Wake Locks.
You’ll be introduced to Android’s TTS library and learn about Android’s User Interface and graph-
ics capabilities by exploring animations and advanced Canvas drawing techniques. Finally, you’ll be
introduced to the SurfaceView and touch-screen input functionality.

15
Advanced Android Development

WHAT’S IN THIS CHAPTER?

➤ Android security using Permissions

➤ Using Wake Locks

➤ The Text to Speech libraries

➤ Interprocess communication (IPC) using AIDL and Parcelables

➤ Creating frame-by-frame and tweened animations

➤ Advanced Canvas drawing

➤ Using the Surface View

➤ Listening for key presses, screen touches, and trackball movement

In this chapter, you’ll be returning to some of the possibilities touched on in previous chapters
and exploring some of the topics that deserve more attention.

In the first seven chapters, you learned the fundamentals of creating mobile applications for
Android devices. In Chapters 8 through 14, you were introduced to some of the more power-
ful and some optional APIs, including location-based services, maps, Bluetooth, and hardware
monitoring and control.

This chapter starts by taking a closer look at security, in particular, how Permissions work and
how to use them to secure your own applications.

Next you’ll examine Wake Locks and the text to speech libraries before looking at the Android
Interface Definition Language (AIDL). You’ll use AIDL to create rich application interfaces that
support full object-based interprocess communication (IPC) between Android applications run-
ning in different processes.

You’ll then take a closer look at the rich toolkit available for creating user interfaces for your
Activities. Starting with animations, you’ll learn how to apply tweened animations to Views and
View Groups, and construct frame-by-frame cell-based animations.

478 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

Next is an in-depth examination of the possibilities available with Android’s raster graphics engine.
You’ll be introduced to the drawing primitives available before learning some of the more advanced
possibilities available with Paint. Using transparency, creating gradient Shaders, and incorporating
bitmap brushes are then covered, before you are introduced to mask and color filters, as well as Path
Effects and the possibilities of using different transfer modes.

You’ll then delve a little deeper into the design and execution of more complex user interface Views,
learning how to create three-dimensional and high frame-rate interactive controls using the Surface
View, and how to use the touch screen, trackball, and device keys to create intuitive input possibilities
for your UIs.

PARANOID ANDROID

Much of Android’s security is native to the underlying Linux kernel. Resources are sandboxed to their
owner applications, making them inaccessible from others. Android provides broadcast Intents, Ser-
vices, and Content Providers to let you relax these strict process boundaries, using the permission
mechanism to maintain application-level security.

You’ve already used the permission system to request access to native system services — notably
the location-based services and contacts Content Provider — for your applications using the
<uses-permission> manifest tag.

The following sections provide a more detailed look at the security available. For a comprehensive
view, the Android documentation provides an excellent resource that describes the security features in
depth at developer.android.com/guide/topics/security/security.html

Linux Kernel Security
Each Android package has a unique Linux user ID assigned to it during installation. This has the effect
of sandboxing the process and the resources it creates, so that it can’t affect (or be affected by) other
applications.

Because of this kernel-level security, you need to take additional steps to communicate between appli-
cations. Enter Content Providers, broadcast Intents, and AIDL interfaces. Each of these mechanisms
opens a tunnel through which information can flow between applications. Android permissions act as
border guards at either end to control the traffic allowed through.

Introducing Permissions
Permissions are an application-level security mechanism that lets you restrict access to application
components. Permissions are used to prevent malicious applications from corrupting data, gaining
access to sensitive information, or making excessive (or unauthorized) use of hardware resources or
external communication channels.

As you’ve learned in earlier chapters, many of Android’s native components have permission require-
ments. The native permission strings used by native Android Activities and Services can be found as
static constants in the android.Manifest.permission class.

To use permission-protected components, you need to add <uses-permission> tags to application
manifests, specifying the permission string that each application requires.

Paranoid Android ❘ 479

When an application package is installed, the permissions requested in its manifest are analyzed and
granted (or denied) by checks with trusted authorities and user feedback.

Unlike many existing mobile platforms, all Android permission checks are done at installation. Once
an application is installed, the user will not be prompted to reevaluate those permissions.

Declaring and Enforcing Permissions
Before you can assign a permission to an application component, you need to define it within your
manifest using the <permission> tag as shown in the Listing 15-1.

LISTING 15-1: Declaring a new permission

<permission
android:name="com.paad.DETONATE_DEVICE"
android:protectionLevel="dangerous"
android:label="Self Destruct"
android:description="@string/detonate_description">

</permission>

Within the permission tag, you can specify the level of access that the permission will permit (normal,
dangerous, signature, signatureOrSystem), a label, and an external resource containing the descrip-
tion that explains the risks of granting this permission.

To include permission requirements for your own application components, use the permission

attribute in the application manifest. Permission constraints can be enforced throughout your
application, most usefully at application interface boundaries, for example:

➤ Activities Add a permission to limit the ability of other applications to launch an Activity.

➤ Broadcast Receivers Control which applications can send broadcast Intents to your
Receiver.

➤ Content Providers Limit read access and write operations on Content Providers.

➤ Services Limit the ability of other applications to start, or bind to, a Service.

In each case, you can add a permission attribute to the application component in the manifest, specify-
ing a required permission string to access each component. Listing 15-2 shows a manifest excerpt that
requires the permission defined in Listing 15-1 to start an Activity.

LISTING 15-2: Enforcing a permission requirement for an Activity

<activity
android:name=".MyActivity"
android:label="@string/app_name"
android:permission="com.paad.DETONATE_DEVICE">

</activity>

Content Providers let you set readPermission and writePermission attributes to offer a more granular
control over read/write access.

480 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

Enforcing Permissions for Broadcast Intents
As well as requiring permissions for Intents to be received by your Broadcast Receivers, you can also
attach a permission requirement to each Intent you broadcast.

When calling sendIntent, you can supply a permission string required by Broadcast Receivers before
they can receive the Intent. This process is shown here:

sendBroadcast(myIntent, REQUIRED_PERMISSION);

USING WAKE LOCKS

In order to prolong battery life, over time Android devices will first dim, then turn off the screen,
before turning off the CPU. WakeLocks are a Power Manager system Service feature, available to your
applications to control the power state of the host device.

Wake Locks can be used to keep the CPU running, prevent the screen from dimming, prevent the screen
from turning off, and prevent the keyboard backlight from turning off.

Creating and holding Wake Locks can have a dramatic influence on the battery
drain associated with your application. It’s good practice to use Wake Locks only
when strictly necessary, for as short a time as needed, and to release them as soon
as possible.

Screen Wake Locks are typically used to prevent the screen from dimming during applications that are
likely to involve little user interaction while users observe the screen (e.g., playing videos).

CPU Wake Locks are used to prevent the device from going to sleep until an action is performed.
This is most commonly the case for Services started within Intent Receivers, which may receive Intents
while the device is asleep. It’s worth noting that in this case the system will hold a CPU Wake Lock
throughout the onReceive handler of the Broadcast Receiver.

If you start a Service, or broadcast an Intent within the onReceive handler of a
Broadcast Receiver, it is possible that the Wake Lock it holds will be released
before your Service has started. To ensure the Service is executed you will need to
put a separate Wake Lock policy in place.

To create a Wake Lock, call newWakeLock on the Power Manager, specifying one of the following Wake
Lock types:

➤ FULL_WAKE_LOCK Keeps the screen at full brightness, the keyboard backlight illuminated,
and the CPU running.

➤ SCREEN_BRIGHT_WAKE_LOCK Keeps the screen at full brightness, and the CPU running.

Introducing Android Text to Speech ❘ 481

➤ SCREEN_DIM_WAKE_LOCK Keeps the screen on (but lets it dim) and the CPU running.

➤ PARTIAL_WAKE_LOCK Keeps the CPU running.

PowerManager pm = (PowerManager)getSystemService(Context.POWER_SERVICE);
WakeLock wakeLock = pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,

"MyWakeLock");

Once you have created it, acquire the Wake Lock by calling acquire. You can optionally specify a
timeout to ensure the maximum duration the Wake Lock will be held for. When the action for which
you’re holding the Wake Lock completes, call release to let the system manage the power state.

Listing 15-3 shows the typical use pattern for creating, acquiring, and releasing a Wake Lock.

LISTING 15-3: Using a Wake Lock

PowerManager pm = (PowerManager)getSystemService(Context.POWER_SERVICE);
WakeLock wakeLock = pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,

"MyWakeLock");
wakeLock.acquire();
[... Do things requiring the CPU stay active ...]
wakeLock.release();

INTRODUCING ANDROID TEXT TO SPEECH

Android 1.6 (SDK API level 4) introduced the text to speech (TTS) engine. You can use this API to
produce speech synthesis from within your applications, allowing them to ‘‘talk’’ to your users.

Due to storage space constraints on some Android devices, the language packs are not always prein-
stalled on each device. Before using the TTS engine, it’s good practice to confirm the language packs
are installed.

Start a new Activity for a result using the ACTION_CHECK_TTS_DATA action from the TextToSpeech.

Engine class to check for the TTS libraries.

Intent intent = new Intent(TextToSpeech.Engine.ACTION_CHECK_TTS_DATA);
startActivityForResult(intent, TTS_DATA_CHECK);

The onActivityResult handler will receive CHECK_VOICE_DATA_PASS if the voice data has been installed
successfully.

If the voice data is not currently available, start a new Activity using the ACTION_INSTALL_TTS_DATA

action from the TTS Engine class to initiate its installation.

Once you’ve confirmed the voice data is available, you need to create and initialize a new TextToSpeech

instance. Note that you cannot use the new Text To Speech object until initialization is complete. Pass
an OnInitListener into the constructor (as shown in Listing 15-4) that will be fired when the TTS
engine has been initialized.

482 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

LISTING 15-4: Initializing Text to Speech

boolean ttsIsInit = false;
TextToSpeech tts = null;

tts = new TextToSpeech(this, new OnInitListener() {
public void onInit(int status) {

if (status == TextToSpeech.SUCCESS) {
ttsIsInit = true;
// TODO Speak!

}
}
});

When Text To Speech has been initialized you can use the speak method to synthesize voice using the
default device audio output.

tts.speak("Hello, Android", TextToSpeech.QUEUE_ADD, null);

The speak method lets you specify a parameter to either add the new voice output to the existing queue,
or flush the queue and start speaking straight away.

You can affect the way the voice output sounds using the setPitch and setSpeechRate methods. Each
accepts a float parameter that modifies the pitch and speed, respectively, of the voice output.

More importantly, you can change the pronunciation of your voice output using the setLanguage

method. This method takes a Locale value to specify the country and language of the text being spoken.
This will affect the way the text is spoken to ensure the correct language and pronunciation models are
used.

When you have finished speaking, use stop to halt voice output and shutdown to free the TTS resources.

Listing 15-5 determines whether the TTS voice library is installed, initializes a new TTS engine, and
uses it to speak in UK English.

LISTING 15-5: Using Text to Speech

private static int TTS_DATA_CHECK = 1;

private TextToSpeech tts = null;
private boolean ttsIsInit = false;

private void initTextToSpeech() {
Intent intent = new Intent(Engine.ACTION_CHECK_TTS_DATA);
startActivityForResult(intent, TTS_DATA_CHECK);

}

protected void onActivityResult(int requestCode,
int resultCode, Intent data) {

if (requestCode == TTS_DATA_CHECK) {
if (resultCode == Engine.CHECK_VOICE_DATA_PASS) {

Using AIDL to Support IPC for Services ❘ 483

tts = new TextToSpeech(this, new OnInitListener() {
public void onInit(int status) {

if (status == TextToSpeech.SUCCESS) {
ttsIsInit = true;
if (tts.isLanguageAvailable(Locale.UK) >= 0)

tts.setLanguage(Locale.UK);
tts.setPitch(0.8f);
tts.setSpeechRate(1.1f);
speak();

}
}

});
} else {
Intent installVoice = new Intent(Engine.ACTION_INSTALL_TTS_DATA);
startActivity(installIntent);

}
}

}

private void speak() {
if (tts != null && ttsIsInit) {

tts.speak("Hello, Android", TextToSpeech.QUEUE_ADD, null);
}

}

@Override
public void onDestroy() {
if (tts != null) {

tts.stop();
tts.shutdown();

}
super.onDestroy();

}

USING AIDL TO SUPPORT IPC FOR SERVICES

One of the more interesting possibilities of Services is the idea of running independent background
processes to supply processing, data lookup, or other useful functionality to multiple independent
applications.

In Chapter 9, you learned how to create Services for your applications. Here, you’ll learn how to use
the Android Interface Definition Language (AIDL) to support rich interprocess communication (IPC)
between Services and application components. This will give your Services the ability to support multi-
ple applications across process boundaries.

To pass objects between processes, you need to deconstruct them into OS-level primitives that the
underlying operating system can then marshal across application boundaries.

AIDL is used to simplify the code that lets your processes exchange objects. It’s similar to interfaces
like COM or Corba in that it lets you create public methods within your Services that can accept and
return object parameters and return values between processes.

484 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

Implementing an AIDL Interface
AIDL supports the following data types:

➤ Java language primitives (int, boolean, float, char, etc.).

➤ String and CharSequence values.

➤ List (including generic) objects, where each element is a supported type. The receiving class
will always receive the List object instantiated as an ArrayList.

➤ Map (not including generic) objects, when every key and element is of a supported type. The
receiving class will always receive the Map object instantiated as a HashMap.

➤ AIDL-generated interfaces (covered later). An import statement is always needed for these.

➤ Classes that implement the Parcelable interface (covered next). An import statement is
always needed for these.

The following sections demonstrate how to make your application classes AIDL-compatible by imple-
menting the Parcelable interface, before creating an AIDL interface definition and implementing it
within your Service.

Passing Class Objects as Parcelables
For non-native objects to be passed between processes, they must implement the Parcelable interface.
This lets you decompose your objects into primitive types stored within a Parcel that can be marshaled
across process boundaries.

Implement the writeToParcel method to decompose your class object, then implement the public static
Creator field (which implements a new Parcelable.Creator class), which will create a new object
based on an incoming Parcel.

Listing 15-6 shows a basic example of using the Parcelable interface for the Quake class you’ve been
using in the ongoing Earthquake example.

LISTING 15-6: Making the Quake class a Parcelable

package com.paad.earthquake;

import java.util.Date;
import android.location.Location;
import android.os.Parcel;
import android.os.Parcelable;

public class Quake implements Parcelable {
private Date date;
private String details;
private Location location;
private double magnitude;
private String link;

Using AIDL to Support IPC for Services ❘ 485

public Date getDate() { return date; }
public String getDetails() { return details; }
public Location getLocation() { return location; }
public double getMagnitude() { return magnitude; }
public String getLink() { return link; }

public Quake(Date _d, String _det, Location _loc,
double _mag, String _link) {

date = _d;
details = _det;
location = _loc;
magnitude = _mag;
link = _link;

}

@Override
public String toString(){

SimpleDateFormat sdf = new SimpleDateFormat("HH.mm");
String dateString = sdf.format(date);
return dateString + ":" + magnitude + " " + details;

}

private Quake(Parcel in) {
date.setTime(in.readLong());
details = in.readString();
magnitude = in.readDouble();
Location location = new Location("generated");
location.setLatitude(in.readDouble());
location.setLongitude(in.readDouble());
link= in.readString();

}

public void writeToParcel(Parcel out, int flags) {
out.writeLong(date.getTime());
out.writeString(details);
out.writeDouble(magnitude);
out.writeDouble(location.getLatitude());
out.writeDouble(location.getLongitude());
out.writeString(link);

}

public static final Parcelable.Creator<Quake> CREATOR =
new Parcelable.Creator<Quake>() {
public Quake createFromParcel(Parcel in) {

return new Quake(in);
}

public Quake[] newArray(int size) {
return new Quake[size];

}
};

public int describeContents() {
return 0;

}
}

486 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

Now that you’ve got a Parcelable class, you need to create an AIDL definition to make it available when
defining your Service’s AIDL interface.

Listing 15-7 shows the contents of the Quake.aidl file you need to create for the Quake Parcelable
defined in the preceding listing.

LISTING 15-7: The Quake class AIDL definition

package com.paad.earthquake;

parcelable Quake;

Remember that when you’re passing class objects between processes, the client process must understand
the definition of the object being passed.

Creating the AIDL Service Definition
In this section, you will be defining a new AIDL interface definition for a Service you’d like to use across
processes.

Start by creating a new .aidl file within your project. This will define the methods and fields to include
in an interface that your Service will implement.

The syntax for creating AIDL definitions is similar to that used for standard Java interface definitions.

Start by specifying a fully qualified package name, then import all the packages required. Unlike nor-
mal Java interfaces, AIDL definitions need to import packages for any class or interface that isn’t a
native Java type even if it’s defined in the same project.

Define a new interface, adding the properties and methods you want to make available.

Methods can take zero or more parameters and return void or a supported type. If you define a method
that takes one or more parameters, you need to use a directional tag to indicate if the parameter is a
value or reference type using the in, out, and inout keywords.

Where possible, you should limit the direction of each parameter, as marshaling
parameters is an expensive operation.

Listing 15-8 shows a basic AIDL definition in the IEarthquakeService.aidl file.

LISTING 15-8: An Earthquake Service AIDL Interface definition

package com.paad.earthquake;

import com.paad.earthquake.Quake;

interface IEarthquakeService {

Using AIDL to Support IPC for Services ❘ 487

List<Quake> getEarthquakes();

void refreshEarthquakes();
}

Implementing and Exposing the IPC Interface
If you’re using the ADT plug-in, saving the AIDL file will automatically code-generate a Java Interface

file. This interface will include an inner Stub class that implements the interface as an abstract class.

Have your Service extend the Stub and implement the functionality required. Typically, you’ll do this
using a private field variable within the Service whose functionality you’ll be exposing.

Listing 15-9 shows an implementation of the IEarthquakeService AIDL definition created
in Listing 15-8.

LISTING 15-9: Implementing the AIDL Interface definition within a Service

IBinder myEarthquakeServiceStub = new IEarthquakeService.Stub() {
public void refreshEarthquakes() throws RemoteException {

EarthquakeService.this.refreshEarthquakes();
}

public List<Quake> getEarthquakes() throws RemoteException {
ArrayList<Quake> result = new ArrayList<Quake>();

ContentResolver cr = EarthquakeService.this.getContentResolver();
Cursor c = cr.query(EarthquakeProvider.CONTENT_URI,

null, null, null, null);
if (c.moveToFirst())

do {
Double lat = c.getDouble(EarthquakeProvider.LATITUDE_COLUMN);
Double lng = c.getDouble(EarthquakeProvider.LONGITUDE_COLUMN);
Location location = new Location("dummy");
location.setLatitude(lat);
location.setLongitude(lng);

String details = c.getString(EarthquakeProvider.DETAILS_COLUMN);
String link = c.getString(EarthquakeProvider.LINK_COLUMN);

double magnitude =
c.getDouble(EarthquakeProvider.MAGNITUDE_COLUMN);

long datems = c.getLong(EarthquakeProvider.DATE_COLUMN);
Date date = new Date(datems);

result.add(new Quake(date, details, location, magnitude, link));
} while(c.moveToNext());

return result;
}

};

488 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

When implementing these methods, be aware of the following:

➤ All exceptions will remain local to the implementing process; they will not be propagated to
the calling application.

➤ All IPC calls are synchronous. If you know that the process is likely to be time-consuming,
you should consider wrapping the synchronous call in an asynchronous wrapper or moving
the processing on the receiver side onto a background thread.

With the functionality implemented, you need to expose this interface to client applications. Expose the
IPC-enabled Service interface by overriding the onBind method within your Service implementation to
return an instance of the interface.

Listing 15-10 demonstrates the onBind implementation for the EarthquakeService.

LISTING 15-10: Exposing an AIDL Interface implementation to Service clients

@Override
public IBinder onBind(Intent intent) {

return myEarthquakeServiceStub;
}

To use the IPC Service from within an Activity, you must bind it as shown in Listing 15-11, taken from
the Earthquake Activity.

LISTING 15-11: Using an IPC Service method

IEarthquakeService earthquakeService = null;

private void bindService() {
bindService(new Intent(IEarthquakeService.class.getName()),

serviceConnection, Context.BIND_AUTO_CREATE);
}

private ServiceConnection serviceConnection = new ServiceConnection() {
public void onServiceConnected(ComponentName className,

IBinder service) {
earthquakeService = IEarthquakeService.Stub.asInterface(service);

}

public void onServiceDisconnected(ComponentName className) {
earthquakeService = null;

}
};

USING INTERNET SERVICES

Software as a service, or cloud computing, is becoming increasingly popular as companies try to reduce
the cost overheads associated with installation, upgrades, and maintenance of deployed software. The
result is a range of rich Internet services with which you can build thin mobile applications that enrich
online services with the personalization available from your mobile.

Building Rich User Interfaces ❘ 489

The idea of using a middle tier to reduce client-side load is not a novel one, and happily there are many
Internet-based options to supply your applications with the level of service you need.

The sheer volume of Internet services available makes it impossible to list them all here (let alone look
at them in any detail), but the following list shows some of the more mature and interesting Internet
services currently available.

➤ Google’s gData Services As well as the native Google applications, Google offers web APIs
for access to their calendar, spreadsheet, Blogger, and Picasaweb platforms. These APIs col-
lectively make use of Google’s standardized gData framework, a form of read/write XML
data communication.

➤ Yahoo! Pipes Yahoo! Pipes offers a graphical web-based approach to XML feed manipu-
lation. Using pipes, you can filter, aggregate, analyze, and otherwise manipulate XML feeds
and output them in a variety of formats to be consumed by your applications.

➤ Google App Engine Using the Google App Engine, you can create cloud-hosted web services
that shift complex processing away from your mobile client. Doing so reduces the load on
your system resources but comes at the price of Internet-connection dependency.

➤ Amazon Web Services Amazon offers a range of cloud-based services, including a rich API
for accessing its media database of books, CDs, and DVDs. Amazon also offers a distributed
storage solution (S3) and Elastic Compute Cloud (EC2).

BUILDING RICH USER INTERFACES

Mobile phone user interfaces have improved dramatically in recent years, thanks not least of all to the
iPhone’s innovative take on mobile UI.

In this section, you’ll learn how to use more advanced UI visual effects like Shaders, translucency,
animations, touch screens with multiple touch, and OpenGL to add a level of polish to your Activities
and Views.

Working with Animations
In Chapter 3, you learned how to define animations as external resources. Now, you get the opportunity
to put them to use.

Android offers two kinds of animation:

➤ Frame-by-Frame Animations Traditional cell-based animations in which a different Draw-
able is displayed in each frame. Frame-by-frame animations are displayed within a View,
using its Canvas as a projection screen.

➤ Tweened Animations Tweened animations are applied to Views, letting you define a series
of changes in position, size, rotation, and opacity that animate the View contents.

Both animation types are restricted to the original bounds of the View they’re
applied to. Rotations, translations, and scaling transformations that extend beyond
the original boundaries of the View will result in the contents being clipped.

490 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

Introducing Tweened Animations
Tweened animations offer a simple way to provide depth, movement, or feedback to your users at a
minimal resource cost.

Using animations to apply a set of orientation, scale, position, and opacity changes is much less
resource-intensive than manually redrawing the Canvas to achieve similar effects, not to mention far
simpler to implement.

Tweened animations are commonly used to:

➤ Transition between Activities.

➤ Transition between layouts within an Activity.

➤ Transition between different content displayed within the same View.

➤ Provide user feedback such as:

➤ Indicating progress.

➤ ‘‘Shaking’’ an input box to indicate an incorrect or invalid data entry.

Creating Tweened Animations
Tweened animations are created using the Animation class. The following list explains the animation
types available.

➤ AlphaAnimation Lets you animate a change in the View’s transparency (opacity or alpha
blending).

➤ RotateAnimation Lets you spin the selected View canvas in the XY plane.

➤ ScaleAnimation Allows you to zoom in to or out from the selected View.

➤ TranslateAnimation Lets you move the selected View around the screen (although it will
only be drawn within its original bounds).

Android offers the AnimationSet class to group and configure animations to be run as a set. You can
define the start time and duration of each animation used within a set to control the timing and order
of the animation sequence.

It’s important to set the start offset and duration for each child animation, or they
will all start and complete at the same time.

Listings 15-12 and 15-13 demonstrate how to create the same animation sequence in code or as an
external resource.

LISTING 15-12: Creating a tweened animation in code

// Create the AnimationSet
AnimationSet myAnimation = new AnimationSet(true);

Building Rich User Interfaces ❘ 491

// Create a rotate animation.
RotateAnimation rotate = new RotateAnimation(0, 360,
RotateAnimation.RELATIVE_TO_SELF, 0.5f,
RotateAnimation.RELATIVE_TO_SELF, 0.5f);

rotate.setFillAfter(true);
rotate.setDuration(1000);

// Create a scale animation
ScaleAnimation scale = new ScaleAnimation(1, 0,

1, 0,
ScaleAnimation.RELATIVE_TO_SELF,
0.5f,
ScaleAnimation.RELATIVE_TO_SELF,
0.5f);

scale.setFillAfter(true);
scale.setDuration(500);
scale.setStartOffset(500);

// Create an alpha animation
AlphaAnimation alpha = new AlphaAnimation(1, 0);
scale.setFillAfter(true);
scale.setDuration(500);
scale.setStartOffset(500);

// Add each animation to the set
myAnimation.addAnimation(rotate);
myAnimation.addAnimation(scale);
myAnimation.addAnimation(alpha);

The code snippet in Listing 15-12 above implements the same animation sequence shown in the XML
snippet in Listing 15-13 below.

LISTING 15-13: Defining a tweened animation in XML

<?xml version="1.0" encoding="utf-8"?>
<set
xmlns:android="http://schemas.android.com/apk/res/android"
android:shareInterpolator="true">
<rotate

android:fromDegrees="0"
android:toDegrees="360"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="0"
android:duration="1000" />

<scale
android:fromXScale="1.0"
android:toXScale="0.0"
android:fromYScale="1.0"
android:toYScale="0.0"
android:pivotX="50%"

continues

492 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

LISTING 15-13 (continued)

android:pivotY="50%"
android:startOffset="500"
android:duration="500" />

<alpha
android:fromAlpha="1.0"
android:toAlpha="0.0"
android:startOffset="500"
android:duration="500" />

</set>

As you can see, it’s generally both easier and more intuitive to create your animation sequences using
an external animation resource.

Applying Tweened Animations
Animations can be applied to any View by calling its startAnimation method and passing in the Ani-
mation or Animation Set to apply.

Animation sequences will run once and then stop, unless you modify this behavior using the
setRepeatMode and setRepeatCount methods on the Animation or Animation Set. You can force an
animation to loop or repeat in reverse by setting the repeat mode of RESTART or REVERSE respectively.
Setting the repeat count controls the number of times the animation will repeat.

Listing 15-14 shows an Animation that repeats indefinitely.

LISTING 15-14: Applying an Animation that loops continuously

myAnimation.setRepeatMode(Animation.RESTART);
myAnimation.setRepeatCount(Animation.INFINITE);
myView.startAnimation(myAnimation);

Using Animation Listeners
The AnimationListener lets you create an event handler that’s fired when an animation begins or ends.
This lets you perform actions before or after an animation has completed, such as changing the View
contents or chaining multiple animations.

Call setAnimationListener on an Animation object, and pass in a new implementation of
AnimationListener, overriding onAnimationEnd, onAnimationStart, and onAnimationRepeat as
required.

Listing 15-15 shows the basic implementation of an Animation Listener.

LISTING 15-15: Creating an Animation Listener

myAnimation.setAnimationListener(new AnimationListener() {
public void onAnimationEnd(Animation _animation) {
// TODO Do something after animation is complete.
}

Building Rich User Interfaces ❘ 493

public void onAnimationRepeat(Animation _animation) {
// TODO Do something when the animation repeats.

}

public void onAnimationStart(Animation _animation) {
// TODO Do something when the animation starts.

}
});

Animated Sliding User Interface Example
In this example, you’ll create a new Activity that uses an Animation to smoothly change the content of
the user interface based on the direction pressed on the D-pad.

1. Start by creating a new ContentSlider project featuring a ContentSlider Activity.

package com.paad.contentslider;

import android.app.Activity;
import android.view.KeyEvent;
import android.os.Bundle;
import android.view.animation.Animation;
import android.view.animation.Animation.AnimationListener;
import android.view.animation.AnimationUtils;
import android.widget.TextView;

public class ContentSlider extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

2. Next, modify the main.xml layout resource. It should contain a single TextView with the text
bold, centered, and relatively large.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TextView
android:id="@+id/myTextView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:gravity="center"
android:textStyle="bold"
android:textSize="30sp"
android:text="CENTER"
android:editable="false"
android:singleLine="true"
android:layout_margin="10dp"

/>
</LinearLayout>

494 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

3. Then create a series of animations that slide the current View out-of, and the next View into,
the frame for each direction: left, right, up, and down. Each animation should have its own
file.

3.1. Create slide_bottom_in.xml.
<set xmlns:android="http://schemas.android.com/apk/res/android"

android:interpolator="@android:anim/accelerate_interpolator">
<translate

android:fromYDelta="-100%p"
android:toYDelta="0"
android:duration="700"

/>
</set>

3.2. Create slide_bottom_out.xml.
<set xmlns:android="http://schemas.android.com/apk/res/android"

android:interpolator="@android:anim/accelerate_interpolator">
<translate

android:fromYDelta="0"
android:toYDelta="100%p"
android:duration="700"

/>
</set>

3.3. Create slide_top_in.xml.
<set xmlns:android="http://schemas.android.com/apk/res/android"

android:interpolator="@android:anim/accelerate_interpolator">
<translate

android:fromYDelta="100%p"
android:toYDelta="0"
android:duration="700"

/>
</set>

3.4. Create slide_top_out.xml.
<set xmlns:android="http://schemas.android.com/apk/res/android"

android:interpolator="@android:anim/accelerate_interpolator">
<translate

android:fromYDelta="0"
android:toYDelta="-100%p"
android:duration="700"

/>
</set>

3.5. Create slide_left_in.xml.
<set xmlns:android="http://schemas.android.com/apk/res/android"

android:interpolator="@android:anim/accelerate_interpolator">
<translate

android:fromXDelta="100%p"
android:toXDelta="0"
android:duration="700"

/>
</set>

Building Rich User Interfaces ❘ 495

3.6. Create slide_left_out.xml.
<set xmlns:android="http://schemas.android.com/apk/res/android"

android:interpolator="@android:anim/accelerate_interpolator">
<translate

android:fromXDelta="0"
android:toXDelta="-100%p"
android:duration="700"

/>
</set>

3.7. Create slide_right_in.xml.
<set xmlns:android="http://schemas.android.com/apk/res/android"

android:interpolator="@android:anim/accelerate_interpolator">
<translate

android:fromXDelta="-100%p"
android:toXDelta="0"
android:duration="700"

/>
</set>

3.8. Create slide_right_out.xml.
<set xmlns:android="http://schemas.android.com/apk/res/android"

android:interpolator="@android:anim/accelerate_interpolator">
<translate

android:fromXDelta="0"
android:toXDelta="100%p"
android:duration="700"

/>
</set>

4. Return to the ContentSlider Activity and get references to the Text View and each of the
animations you created in Step 3.

Animation slideInLeft;
Animation slideOutLeft;
Animation slideInRight;
Animation slideOutRight;
Animation slideInTop;
Animation slideOutTop;
Animation slideInBottom;
Animation slideOutBottom;
TextView myTextView;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

slideInLeft = AnimationUtils.loadAnimation(this,
R.anim.slide_left_in);

slideOutLeft = AnimationUtils.loadAnimation(this,
R.anim.slide_left_out);

slideInRight = AnimationUtils.loadAnimation(this,
R.anim.slide_right_in);

496 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

slideOutRight = AnimationUtils.loadAnimation(this,
R.anim.slide_right_out);

slideInTop = AnimationUtils.loadAnimation(this,
R.anim.slide_top_in);

slideOutTop = AnimationUtils.loadAnimation(this,
R.anim.slide_top_out);

slideInBottom = AnimationUtils.loadAnimation(this,
R.anim.slide_bottom_in);

slideOutBottom = AnimationUtils.loadAnimation(this,
R.anim.slide_bottom_out);

myTextView = (TextView)findViewById(R.id.myTextView);
}

Each screen transition consists of two animations chained together: sliding out the old text
before sliding in the new text. Rather than create multiple Views, you can change the value
of the View once it’s ‘‘off screen’’ before sliding it back in from the opposite side.

5. Create a new method that applies a slide-out animation and waits for it to complete before
modifying the text and initiating the slide-in animation.

private void applyAnimation(Animation _out,
Animation _in,
String _newText) {

final String text = _newText;
final Animation in = _in;

// Ensure the text stays out of screen when the slide-out
// animation has completed.
_out.setFillAfter(true);

// Create a listener to wait for the slide-out
// animation to complete.
_out.setAnimationListener(new AnimationListener() {
public void onAnimationEnd(Animation _animation) {

// Change the text
myTextView.setText(text);
// Slide it back in to view
myTextView.startAnimation(in);

}

public void onAnimationRepeat(Animation _animation) {}
public void onAnimationStart(Animation _animation) {}

});

// Apply the slide-out animation
myTextView.startAnimation(_out);

}

6. The text displayed can represent nine positions. To keep track of the current location, create
an enum for each position and an instance variable to track it.

TextPosition textPosition = TextPosition.Center;
enum TextPosition { UpperLeft, Top, UpperRight,

Left, Center, Right,
LowerLeft, Bottom, LowerRight };

Building Rich User Interfaces ❘ 497

7. Create a new method movePosition that takes the current position, and the direction to
move, and calculates the new position. It should then execute the appropriate animation
sequence created in Step 5.

private void movePosition(TextPosition _current,
TextPosition _directionPressed) {

Animation in;
Animation out;
TextPosition newPosition;

if (_directionPressed == TextPosition.Left){
in = slideInLeft;
out = slideOutLeft;

}
else if (_directionPressed == TextPosition.Right){
in = slideInRight;
out = slideOutRight;

}
else if (_directionPressed == TextPosition.Top){
in = slideInTop;
out = slideOutTop;

}
else {
in = slideInBottom;
out = slideOutBottom;

}

int newPosValue = _current.ordinal();
int currentValue = _current.ordinal();

// To simulate the effect of ‘tilting’ the device moving in one
// direction should make text for the opposite direction appear.
// Ie. Tilting right should make left appear.
if (_directionPressed == TextPosition.Bottom)
newPosValue = currentValue - 3;

else if (_directionPressed == TextPosition.Top)
newPosValue = currentValue + 3;

else if (_directionPressed == TextPosition.Right) {
if (currentValue % 3 != 0)

newPosValue = currentValue - 1;
}
else if (_directionPressed == TextPosition.Left) {
if ((currentValue+1) % 3 != 0)

newPosValue = currentValue + 1;
}

if (newPosValue != currentValue &&
newPosValue > -1 &&
newPosValue < 9){
newPosition = TextPosition.values()[newPosValue];

applyAnimation(in, out, newPosition.toString());
textPosition = newPosition;

}
}

498 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

8. Wire up the D-pad by overriding the Activity’s onKeyDown handler to listen for key presses
and trigger movePosition accordingly.

@Override
public boolean onKeyDown(int _keyCode, KeyEvent _event) {
if (super.onKeyDown(_keyCode, _event))
return true;

if (_event.getAction() == KeyEvent.ACTION_DOWN){
switch (_keyCode) {

case (KeyEvent.KEYCODE_DPAD_LEFT):
movePosition(textPosition, TextPosition.Left); return true;

case (KeyEvent.KEYCODE_DPAD_RIGHT):
movePosition(textPosition, TextPosition.Right); return true;

case (KeyEvent.KEYCODE_DPAD_UP):
movePosition(textPosition, TextPosition.Top); return true;

case (KeyEvent.KEYCODE_DPAD_DOWN):
movePosition(textPosition, TextPosition.Bottom);
return true;

}
}
return false;

}

All code snippets in this example are part of the Chapter 15 Animated Slider project, available for download at Wrox.com.

Running the application now will show a screen displaying ‘‘Center’’; pressing any of the four directions
will slide out this text and display the appropriate new position.

As an extra step, you could wire up the accelerometer sensor rather than relying on
pressing the D-pad.

Animating Layouts and View Groups
A LayoutAnimation is used to animate View Groups, applying a single Animation (or Animation Set)
to each child View in a predetermined sequence.

Use a LayoutAnimationController to specify an Animation (or Animation Set) that’s applied to each
child View in a View Group. Each View it contains will have the same animation applied, but you can
use the Layout Animation Controller to specify the order and start time for each View.

Android includes two LayoutAnimationController classes.

➤ LayoutAnimationController Lets you select the start offset of each View (in milliseconds)
and the order (forward, reverse, and random) to apply the animation to each child View.

➤ GridLayoutAnimationController Is a derived class that lets you assign the animation
sequence of the child Views using grid row and column references.

Building Rich User Interfaces ❘ 499

Creating Layout Animations
To create a new Layout Animation, start by defining the Animation to apply to each child View. Then
create a new LayoutAnimation, either in code or as an external animation resource, that references the
animation to apply and defines the order and timing in which to apply it.

Listing 15-16 show the definition of a simple Animation stored as popin.xml in the res/anim folder, and
a Layout Animation definition stored as popinlayout.xml.

The Layout Animation applies a simple ‘‘pop-in’’ animation randomly to each child View of any View
Group it’s assigned to.

LISTING 15-16: Creating a Layout Animation

res/anim/popin.xml

<set xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="@android:anim/accelerate_interpolator">

<scale
android:fromXScale="0.0" android:toXScale="1.0"
android:fromYScale="0.0" android:toYScale="1.0"
android:pivotX="50%"
android:pivotY="50%"
android:duration="400"

/>
</set>

res/anim/popinlayout.xml

<layoutAnimation
xmlns:android="http://schemas.android.com/apk/res/android"
android:delay="0.5"
android:animationOrder="random"
android:animation="@anim/popin"

/>

Using Layout Animations
Once you’ve defined a Layout Animation, you can apply it to a View Group either in code or in the
layout XML resource. In XML this is done using the android:layoutAnimation tag in the layout
definition:

android:layoutAnimation="@anim/popinlayout"

To set a Layout Animation in code, call setLayoutAnimation on the View Group, passing in a reference
to the LayoutAnimation object you want to apply.

In each case, the Layout Animation will execute once, when the View Group is first laid out. You can
force it to execute again by calling scheduleLayoutAnimation on the ViewGroup object. The animation
will then be executed the next time the View Group is laid out.

Layout Animations also support Animation Listeners.

500 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

In Listing 15-17, a View Group’s animation is re-run with a listener attached to trigger additional
actions once it’s complete.

LISTING 15-17: Applying a Layout Animation and Animation Listener

aViewGroup.setLayoutAnimationListener(new AnimationListener() {
public void onAnimationEnd(Animation _animation) {
// TODO: Actions on animation complete.

}
public void onAnimationRepeat(Animation _animation) {}
public void onAnimationStart(Animation _animation) {}

});

aViewGroup.scheduleLayoutAnimation();

Creating and Using Frame-by-Frame Animations
Frame-by-frame animations are akin to traditional cel-based cartoons in which an image is chosen for
each frame. Where tweened animations use the target View to supply the content of the animation,
frame-by-frame animations let you specify a series of Drawable objects that are used as the background
to a View.

The AnimationDrawable class is used to create a new frame-by-frame animation presented as a
Drawable resource. You can define your Animation Drawable resource as an external resource in your
project’s res/drawable folder using XML.

Use the <animation-list> tag to group a collection of <item> nodes, each of which uses a drawable

attribute to define an image to display, and a duration attribute to specify the time (in milliseconds) to
display it.

Listing 15-18 shows how to create a simple animation that displays a rocket taking off (rocket images
not included). The file is stored as res/drawable/animated_rocket.xml.

LISTING 15-18: Creating a frame-by-frame animation in XML

<animation-list
xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="false">
<item android:drawable="@drawable/rocket1" android:duration="500" />
<item android:drawable="@drawable/rocket2" android:duration="500" />
<item android:drawable="@drawable/rocket3" android:duration="500" />

</animation-list>

To display your animation, set it as the background to a View using the setBackgroundResource

method.

ImageView image = (ImageView)findViewById(R.id.my_animation_frame);
image.setBackgroundResource(R.drawable.animated_rocket);

Alternatively, use the setBackgroundDrawable to use a Drawable instance instead of a resource refer-
ence. Run the animation calling its start method.

Building Rich User Interfaces ❘ 501

AnimationDrawable animation = (AnimationDrawable)image.getBackground();
animation.start();

Advanced Canvas Drawing
You were introduced to the Canvas class in Chapter 4, where you learned how to create your own
Views. The Canvas was also used in Chapter 8 to annotate Overlays for MapViews.

The concept of the canvas is a common metaphor used in graphics programming and generally consists
of three basic drawing components:

➤ Canvas Supplies the draw methods that paint drawing primitives onto the underlying
bitmap.

➤ Paint Also referred to as a ‘‘brush,’’ Paint lets you specify how a primitive is drawn on the
bitmap.

➤ Bitmap Is the surface being drawn on.

Most of the advanced techniques described in this chapter involve variations and modifications to the
Paint object that let you add depth and texture to otherwise flat raster drawings.

The Android drawing API supports translucency, gradient fills, rounded rectangles, and anti-aliasing.
Unfortunately, owing to resource limitations, it does not yet support vector graphics; instead, it uses
traditional raster-style repaints.

The result of this raster approach is improved efficiency, but changing a Paint object will not affect
primitives that have already been drawn; it will affect only new elements.

If you’ve got a Windows development background, the two-dimensional (2D)
drawing capabilities of Android are roughly equivalent to those available in GDI+.

What Can You Draw?
The Canvas class wraps up the bitmap that’s used as a surface for your artistic endeavors; it also exposes
the draw* methods used to implement your designs.

Without going into detail about each of the draw methods, the following list provides a taste of the
primitives available:

➤ drawARGB/drawRGB/drawColor Fill the canvas with a single color.

➤ drawArc Draws an arc between two angles within an area bounded by a rectangle.

➤ drawBitmap Draws a bitmap on the Canvas. You can alter the appearance of the target
bitmap by specifying a target size or using a matrix to transform it.

➤ drawBitmapMesh Draws a bitmap using a mesh that lets you manipulate the appearance of
the target by moving points within it.

➤ drawCircle Draws a circle of a specified radius centered on a given point.

502 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

➤ drawLine(s) Draws a line (or series of lines) between two points.

➤ drawOval Draws an oval bounded by the rectangle specified.

➤ drawPaint Fills the entire Canvas with the specified Paint.

➤ drawPath Draws the specified Path. A Path object is often used to hold a collection of draw-
ing primitives within a single object.

➤ drawPicture Draws a Picture object within the specified rectangle.

➤ drawPosText Draws a text string specifying the offset of each character.

➤ drawRect Draws a rectangle.

➤ drawRoundRect Draws a rectangle with rounded edges.

➤ drawText Draws a text string on the Canvas. The text font, size, color, and rendering prop-
erties are all set in the Paint object used to render the text.

➤ drawTextOnPath Draws text that follows along a specified path.

➤ drawVertices Draws a series of tri-patches specified as a series of vertex points.

Each of these drawing methods lets you specify a Paint object to render it. In the following sections,
you’ll learn how to create and modify Paint objects to get the most out of your drawing.

Getting the Most from Your Paint
The Paint class represents a paint brush and palette. It lets you choose how to render the primitives
you draw onto the Canvas using the draw methods described in the previous section. By modifying the
Paint object, you can control the color, style, font, and special effects used when drawing.

Most simply, setColor lets you select the color of a Paint while the style of a Paint object (controlled
using setStyle) lets you decide if you want to draw only the outline of a drawing object (STROKE), just
the filled portion (FILL), or both (STROKE_AND_FILL).

Beyond these simple controls, the Paint class also supports transparency and can also be modified with
a variety of Shaders, filters, and effects to provide a rich palette of complex paints and brushes.

The Android SDK includes several excellent projects that demonstrate most of the features available in
the Paint class. They are available in the graphics subfolder of the API demos at:

[sdk root folder]\samples\ApiDemos\src\com\android\samples\graphics

In the following sections, you’ll learn what some of these features are and how to use them. These
sections outline what can be achieved (such as gradients and edge embossing) without exhaustively
listing all possible alternatives.

Using Translucency
All colors in Android include an opacity component (alpha channel).

You define an alpha value for a color when you create it using the argb or parseColor methods:

Building Rich User Interfaces ❘ 503

// Make color red and 50% transparent
int opacity = 127;
int intColor = Color.argb(opacity, 255, 0, 0);
int parsedColor = Color.parseColor("#7FFF0000");

Alternatively, you can set the opacity of an existing Paint object using the setAlpha method:

// Make color 50% transparent
int opacity = 127;
myPaint.setAlpha(opacity);

Creating a paint color that’s not 100 percent opaque means that any primitive drawn with it will be
partially transparent — making whatever is drawn beneath it partially visible.

You can use transparency effects in any class or method that uses colors including Paint colors, Shaders,
and Mask Filters.

Introducing Shaders
Extensions of the Shader class let you create Paints that fill drawn objects with more than a single solid
color.

The most common use of Shaders is to define gradient fills; gradients are an excellent way to add depth
and texture to 2D drawings. Android includes three gradient Shaders as well as a Bitmap Shader and a
Compose Shader.

Trying to describe painting techniques seems inherently futile, so have a look at Figure 15-1 to
get an idea of how each of the Shaders works. Represented from left to right are LinearGradient,
RadialGradient, and SweepGradient.

Not included in the image in Figure 15-1 is the ComposeShader, which lets you
create a composite of multiple Shaders and the BitmapShader that lets you create a
paint brush based on a bitmap image.

FIGURE 15-1

504 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

To use a Shader when drawing, apply it to a Paint using the setShader method:

Paint shaderPaint = new Paint();
shaderPaint.setShader(myLinearGradient);

Anything you draw with this Paint will be filled with the Shader you specified rather than the paint
color.

Defining Gradient Shaders
As shown in the previous section, using gradient Shaders lets you fill drawings with an interpolated
color range; you can define the gradient in two ways. The first is a simple transition between two
colors, as shown in the LinearGradientShader in the Listing 15-19.

LISTING 15-19: Creating a Linear Gradient Shader

int colorFrom = Color.BLACK;
int colorTo = Color.WHITE;

LinearGradient linearGradientShader = new LinearGradient(x1, y1, x2, y2,
colorFrom,
colorTo,
TileMode.CLAMP);

The second alternative is to specify a more complex series of colors distributed at set proportions, as
shown in Listing 15-20.

LISTING 15-20: Creating a Radial Gradient Shader

int[] gradientColors = new int[3];
gradientColors[0] = Color.GREEN;
gradientColors[1] = Color.YELLOW;
gradientColors[2] = Color.RED;

float[] gradientPositions = new float[3];
gradientPositions[0] = 0.0f;
gradientPositions[1] = 0.5f;
gradientPositions[2] = 1.0f;

RadialGradient radialGradientShader = new RadialGradient(centerX, centerY,
radius,
gradientColors,
gradientPositions,
TileMode.CLAMP);

Each of the gradient Shaders (linear, radial, and sweep) lets you define the gradient fill using either of
these techniques.

Using Shader Tile Modes
The brush sizes of the gradient Shaders are defined using explicit bounding rectangles or center points
and radius lengths; the Bitmap Shader implies a brush size through its bitmap size.

Building Rich User Interfaces ❘ 505

If the area defined by your Shader brush is smaller than the area being filled, the TileMode determines
how the remaining area will be covered.

➤ CLAMP Uses the edge colors of the Shader to fill the extra space

➤ MIRROR Flips the Shader image horizontally and vertically so that each image seams with the
last

➤ REPEAT Repeats the Shader image horizontally and vertically, but doesn’t flip it

Using Mask Filters
The MaskFilter classes let you assign edge effects to your Paint.

Extensions to MaskFilter apply transformations to the alpha-channel of a Paint along its outer edge.
Android includes the following Mask Filters:

➤ BlurMaskFilter Specifies a blur style and radius to feather the edges of your Paint

➤ EmbossMaskFilter Specifies the direction of the light source and ambient light level to add
an embossing effect

To apply a Mask Filter, use the setMaskFilter method, passing in a MaskFilter object. Listing 15-21
applies an EmbossMaskFilter to an existing Paint.

LISTING 15-21: Applying an Emboss Mask Filter to a Paint

// Set the direction of the light source
float[] direction = new float[]{ 1, 1, 1 };
// Set the ambient light level
float light = 0.4f;
// Choose a level of specularity to apply
float specular = 6;
// Apply a level of blur to apply to the mask
float blur = 3.5f;
EmbossMaskFilter emboss = new EmbossMaskFilter(direction, light,

specular, blur);

// Apply the mask
myPaint.setMaskFilter(emboss);

The FingerPaint API demo included in the SDK is an excellent example of how to use MaskFilters. It
demonstrates the effect of both the emboss and blur filters.

Using Color Filters
Where Mask Filters are transformations of the alpha-channel of a Paint, a ColorFilter applies a trans-
formation to each of the RGB channels. All ColorFilter-derived classes ignore the alpha-channel when
performing their transformations.

Android includes three Color Filters:

➤ ColorMatrixColorFilter Lets you specify a 4 x 5 ColorMatrix to apply to a Paint. Color
Matrixes are commonly used to perform image processing programmatically and are useful
as they support chaining transformations using matrix multiplication.

506 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

➤ LightingColorFilter Multiplies the RGB channels by the first color before adding the sec-
ond. The result of each transformation will be clamped between 0 and 255.

➤ PorterDuffColorFilter Lets you use any one of the 16 Porter-Duff rules for digital image
compositing to apply a specified color to the Paint.

Apply ColorFilters using the setColorFilter method:

myPaint.setColorFilter(new LightingColorFilter(Color.BLUE, Color.RED));

There is an excellent example of using a Color Filter and Color Matrixes in the ColorMatrixSample

API example.

Using Path Effects
The effects so far have affected the way the Paint fills a drawing; Path Effects are used to control how
its outline (or stroke) is drawn.

Path Effects are particularly useful for drawing Path primitives, but they can be applied to any Paint to
affect the way the stroke is drawn.

Using Path Effects, you can change the appearance of a shape’s corners and control the appearance of
the outline. Android includes several Path Effects including:

➤ CornerPathEffect Lets you smooth sharp corners in the shape of a primitive by replacing
them with rounded corners.

➤ DashPathEffect Rather than drawing a solid outline, you can use the DashPathEffect

to create an outline of broken lines (dashes/dots). You can specify any repeating pattern of
solid/empty line segments.

➤ DiscretePathEffect Similar to the DashPathEffect, but with added randomness. Speci-
fies the length of each segment and a degree of deviation from the original path to use when
drawing it.

➤ PathDashPathEffect This effect lets you define a new shape (path) to use as a stamp to out-
line the original path.

The following effects let you combine multiple Path Effects to a single Paint.

➤ SumPathEffect Adds two effects to a path in sequence, such that each effect is applied to the
original path and the two results are combined.

➤ ComposePathEffect Applies first one effect and then applies the second effect to the result
of the first.

Path Effects that modify the shape of the object being drawn will change the area of the affected shape.
This ensures that any fill effects being applied to the same shape are drawn within the new bounds.

Path Effects are applied to Paint objects using the setPathEffect method.

borderPaint.setPathEffect(new CornerPathEffect(5));

The Path Effects API sample gives an excellent guide to how to apply each of these effects.

Building Rich User Interfaces ❘ 507

Changing the Xfermode
Change a Paint’s Xfermode to affect the way it paints new colors on top of what’s already on the
Canvas.

Under normal circumstances, painting on top of an existing drawing will layer the new shape on top. If
the new Paint is fully opaque, it will totally obscure the paint underneath; if it’s partially transparent, it
will tint the colors underneath.

The following Xfermode subclasses let you change this behavior:

➤ AvoidXfermode Specifies a color and tolerance to force your Paint to avoid drawing over (or
only draw over) it.

➤ PixelXorXfermode Applies a simple pixel XOR operation when covering existing colors.

➤ PorterDuffXfermode This is a very powerful transfer mode with which you can use any of
the 16 Porter-Duff rules for image composition to control how the paint interacts with the
existing canvas image.

To apply transfer modes, use the setXferMode method:

AvoidXfermode avoid = new AvoidXfermode(Color.BLUE, 10,
AvoidXfermode.Mode.AVOID);

borderPen.setXfermode(avoid);

Improving Paint Quality with Anti-Aliasing
When you create a new Paint object, you can pass in several flags that affect the way the Paint will be
rendered. One of the most interesting is the ANTI_ALIAS_FLAG, which ensures that diagonal lines drawn
with this paint are anti-aliased to give a smooth appearance (at the cost of performance).

Anti-aliasing is particularly important when drawing text, as anti-aliased text can be significantly easier
to read. To create even smoother text effects, you can apply the SUBPIXEL_TEXT_FLAG, which will apply
subpixel anti-aliasing.

You can also set both of these flags manually using the setSubpixelText and setAntiAlias methods:

myPaint.setSubpixelText(true);
myPaint.setAntiAlias(true);

Canvas Drawing Best Practice
2D owner-draw operations tend to be expensive in terms of processor use; inefficient drawing rou-
tines can block the GUI thread and have a detrimental effect on application responsiveness. This is
particularly true in a resource-constrained environment with a single, limited processor.

You need to be aware of the resource drain and CPU-cycle cost of your onDraw methods, to ensure you
don’t end up with an attractive application that’s completely unresponsive.

A lot of techniques exist to help minimize the resource drain associated with owner-drawn con-
trols. Rather than focus on general principles, I’ll describe some Android specific considerations for

508 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

ensuring that you can create activities that look good and remain interactive (note that this list is not
exhaustive):

➤ Consider size and orientation When you’re designing your Views and Overlays, be sure
to consider (and test!) how they will look at different resolutions, pixel densities, and sizes.

➤ Create static objects once Object creation and garbage collection are particularly expensive.
Where possible, create drawing objects like Paint objects, Paths, and Shaders once, rather
than recreating them each time the View is invalidated.

➤ Remember onDraw is expensive Performing the onDraw method is an expensive process that
forces Android to perform several image composition and bitmap construction operations.
Many of the following points suggest ways to modify the appearance of your Canvas without
having to redraw it:

➤ Use Canvas transforms Use Canvas transforms like rotate and translate to
simplify complex relational positioning of elements on your canvas. For example,
rather than positioning and rotating each text element around a clock face, simply
rotate the canvas 22.5 degrees, and draw the text in the same place.

➤ Use Animations Consider using Animations to perform pre-set transformations
of your View rather than manually redrawing it. Scale, rotation, and translation
Animations can be performed on any View within an Activity and provide a
resource-efficient way to provide zoom, rotate, or shake effects.

➤ Consider using Bitmaps, 9 Patches, and
Drawable resources If your Views feature
static backgrounds, you should consider
using a Drawable like a bitmap, scalable
NinePatch, or static XML Drawable rather
than dynamically creating it.

Advanced Compass Face Example

FIGURE 15-2

In Chapter 4, you created a simple compass UI. In
Chapter 14 you returned to it, extending it to display the
pitch and roll using the accelerometer hardware.

The UI of the View used in those examples was kept
simple to keep the code in those chapters as clear as
possible.

In the following example, you’ll make some significant
changes to the Compass View’s onDraw method to change it
from a simple, flat compass into a dynamic artificial horizon,
as shown in Figure 15-2.

As the previous image is limited to black and white,
you’ll need to create the control in order to see the full
effect.

Building Rich User Interfaces ❘ 509

1. Start by modifying the colors.xml resource file to include color values for the border gradi-
ent, the glass compass shading, the sky, and the ground. Also update the colors used for the
border and the face markings.

<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="text_color">#FFFF</color>
<color name="background_color">#F000</color>
<color name="marker_color">#FFFF</color>
<color name="shadow_color">#7AAA</color>
<color name="outer_border">#FF444444</color>
<color name="inner_border_one">#FF323232</color>
<color name="inner_border_two">#FF414141</color>
<color name="inner_border">#FFFFFFFF</color>
<color name="horizon_sky_from">#FFA52A2A</color>
<color name="horizon_sky_to">#FFFFC125</color>
<color name="horizon_ground_from">#FF5F9EA0</color>
<color name="horizon_ground_to">#FF00008B</color>

</resources>

2. The Paint and Shader objects used for the sky and ground in the artificial horizon are created
based on the size of the current View, so they’re not static like the Paint objects you created
in Chapter 4. Instead of creating Paint objects, construct the gradient arrays and colors they
use.

int[] borderGradientColors;
float[] borderGradientPositions;

int[] glassGradientColors;
float[] glassGradientPositions;

int skyHorizonColorFrom;
int skyHorizonColorTo;
int groundHorizonColorFrom;
int groundHorizonColorTo;

3. Update the Compass View’s initCompassView method to initialize the variables created
in Step 2 using the resources from Step 1. The existing method code can be left largely
intact, with some changes to the textPaint, circlePaint, and markerPaint variables, as
highlighted in the following code:

protected void initCompassView() {
setFocusable(true);
// Get external resources
Resources r = this.getResources();

circlePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
circlePaint.setColor(R.color.background_color);
circlePaint.setStrokeWidth(1);
circlePaint.setStyle(Paint.Style.STROKE);

northString = r.getString(R.string.cardinal_north);
eastString = r.getString(R.string.cardinal_east);
southString = r.getString(R.string.cardinal_south);

510 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

westString = r.getString(R.string.cardinal_west);

textPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
textPaint.setColor(r.getColor(R.color.text_color));
textPaint.setFakeBoldText(true);
textPaint.setSubpixelText(true);
textPaint.setTextAlign(Align.LEFT);

textHeight = (int)textPaint.measureText("yY");

markerPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
markerPaint.setColor(r.getColor(R.color.marker_color));
markerPaint.setAlpha(200);
markerPaint.setStrokeWidth(1);
markerPaint.setStyle(Paint.Style.STROKE);
markerPaint.setShadowLayer(2, 1, 1, r.getColor(R.color.shadow_color));

3.1. Create the color and position arrays that will be used by a radial Shader to paint the
outer border.

borderGradientColors = new int[4];
borderGradientPositions = new float[4];

borderGradientColors[3] = r.getColor(R.color.outer_border);
borderGradientColors[2] = r.getColor(R.color.inner_border_one);
borderGradientColors[1] = r.getColor(R.color.inner_border_two);
borderGradientColors[0] = r.getColor(R.color.inner_border);
borderGradientPositions[3] = 0.0f;
borderGradientPositions[2] = 1-0.03f;
borderGradientPositions[1] = 1-0.06f;
borderGradientPositions[0] = 1.0f;

3.2. Now create the radial gradient color and position arrays that will be used to create
the semitransparent ‘‘glass dome’’ that sits on top of the View to give it the illusion
of depth.

glassGradientColors = new int[5];
glassGradientPositions = new float[5];

int glassColor = 245;
glassGradientColors[4] = Color.argb(65, glassColor,

glassColor, glassColor);
glassGradientColors[3] = Color.argb(100, glassColor,

glassColor, glassColor);
glassGradientColors[2] = Color.argb(50, glassColor,

glassColor, glassColor);
glassGradientColors[1] = Color.argb(0, glassColor,

glassColor, glassColor);
glassGradientColors[0] = Color.argb(0, glassColor,

glassColor, glassColor);
glassGradientPositions[4] = 1-0.0f;
glassGradientPositions[3] = 1-0.06f;
glassGradientPositions[2] = 1-0.10f;
glassGradientPositions[1] = 1-0.20f;
glassGradientPositions[0] = 1-1.0f;

Building Rich User Interfaces ❘ 511

3.3. Finally, get the colors you’ll use to create the linear gradients that will represent the
sky and the ground in the artificial horizon.

skyHorizonColorFrom = r.getColor(R.color.horizon_sky_from);
skyHorizonColorTo = r.getColor(R.color.horizon_sky_to);

groundHorizonColorFrom = r.getColor(R.color.horizon_ground_from);
groundHorizonColorTo = r.getColor(R.color.horizon_ground_to);

}

4. Before you start drawing the face, create a new enum that stores each of the cardinal direc-
tions.

private enum CompassDirection { N, NNE, NE, ENE,
E, ESE, SE, SSE,
S, SSW, SW, WSW,
W, WNW, NW, NNW }

Now you need to completely replace the existing onDraw method. You’ll start by figuring out some
size-based values including the center of the View, the radius of the circular control, and the rectangles
that will enclose the outer (heading) and inner (tilt and roll) face elements.

@Override
protected void onDraw(Canvas canvas) {

1. Calculate the width of the outer (heading) ring based on the size of the font used to draw the
heading values.

float ringWidth = textHeight + 4;

2. Then calculate the height and width of the View, and use those values to establish the radius
of the inner and outer face dials, as well as create the bounding boxes for each face.

int height = getMeasuredHeight();
int width =getMeasuredWidth();

int px = width/2;
int py = height/2;
Point center = new Point(px, py);

int radius = Math.min(px, py)-2;

RectF boundingBox = new RectF(center.x - radius,
center.y - radius,
center.x + radius,
center.y + radius);

RectF innerBoundingBox = new RectF(center.x - radius + ringWidth,
center.y - radius + ringWidth,
center.x + radius - ringWidth,
center.y + radius - ringWidth);

float innerRadius = innerBoundingBox.height()/2;

3. With the dimensions of the View established, it’s time to start drawing the faces.

512 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

Start from the bottom layer at the outside, and work your way in and up, starting with the
outer face (heading). Create a new RadialGradient Shader using the colors and positions
you defined in Step 3.2 of the previous code sample, and assign that Shader to a new Paint
before using it to draw a circle.

RadialGradient borderGradient = new RadialGradient(px, py, radius,
borderGradientColors, borderGradientPositions, TileMode.CLAMP);

Paint pgb = new Paint();
pgb.setShader(borderGradient);

Path outerRingPath = new Path();
outerRingPath.addOval(boundingBox, Direction.CW);

canvas.drawPath(outerRingPath, pgb);

4. Next you need to draw the artificial horizon. You do this by dividing the circular face into
two sections, one representing the sky and the other the ground. The proportion of each
section depends on the current pitch.

Start by creating the Shader and Paint objects that will be used to draw the sky and earth.

LinearGradient skyShader = new LinearGradient(center.x,
innerBoundingBox.top, center.x, innerBoundingBox.bottom,
skyHorizonColorFrom, skyHorizonColorTo, TileMode.CLAMP);

Paint skyPaint = new Paint();
skyPaint.setShader(skyShader);

LinearGradient groundShader = new LinearGradient(center.x,
innerBoundingBox.top, center.x, innerBoundingBox.bottom,
groundHorizonColorFrom, groundHorizonColorTo, TileMode.CLAMP);

Paint groundPaint = new Paint();
groundPaint.setShader(groundShader);

5. Now normalize the pitch and roll values to clamp them within ±90 degrees and ±180
degrees, respectively.

float tiltDegree = pitch;
while (tiltDegree > 90 || tiltDegree < -90)
{
if (tiltDegree > 90) tiltDegree = -90 + (tiltDegree - 90);
if (tiltDegree < -90) tiltDegree = 90 - (tiltDegree + 90);

}

float rollDegree = roll;
while (rollDegree > 180 || rollDegree < -180)
{
if (rollDegree > 180) rollDegree = -180 + (rollDegree - 180);
if (rollDegree < -180) rollDegree = 180 - (rollDegree + 180);

}

6. Create paths that will fill each segment of the circle (ground and sky). The proportion of each
segment should be related to the clamped pitch.

Building Rich User Interfaces ❘ 513

Path skyPath = new Path();
skyPath.addArc(innerBoundingBox,

-tiltDegree,
(180 + (2 * tiltDegree)));

7. Spin the canvas around the center in the opposite direction to the current roll, and draw the
sky and ground paths using the Paints you created in Step 4.

canvas.rotate(-rollDegree, px, py);
canvas.drawOval(innerBoundingBox, groundPaint);
canvas.drawPath(skyPath, skyPaint);
canvas.drawPath(skyPath, markerPaint);

8. Next is the face marking. Start by calculating the start and end points for the horizontal hori-
zon markings.

int markWidth = radius / 3;
int startX = center.x - markWidth;
int endX = center.x + markWidth;

9. To make the horizon values easier to read, you should ensure that the pitch scale always
starts at the current value. The following code calculates the position of the interface between
the ground and sky on the horizon face:

double h = innerRadius*Math.cos(Math.toRadians(90-tiltDegree));
double justTiltY = center.y - h;

10. Find the number of pixels representing each degree of tilt.

float pxPerDegree = (innerBoundingBox.height()/2)/45f;

11. Now iterate over 180 degrees, centered on the current tilt value, to give a sliding scale of pos-
sible pitch.

for (int i = 90; i >= -90; i -= 10)
{
double ypos = justTiltY + i*pxPerDegree;

// Only display the scale within the inner face.
if ((ypos < (innerBoundingBox.top + textHeight)) ||

(ypos > innerBoundingBox.bottom - textHeight))
continue;

// Draw a line and the tilt angle for each scale increment.
canvas.drawLine(startX, (float)ypos,

endX, (float)ypos,
markerPaint);

int displayPos = (int)(tiltDegree - i);
String displayString = String.valueOf(displayPos);
float stringSizeWidth = textPaint.measureText(displayString);
canvas.drawText(displayString,

(int)(center.x-stringSizeWidth/2),
(int)(ypos)+1,
textPaint);

}

514 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

12. Now draw a thicker line at the earth/sky interface. Change the stroke thickness of the
markerPaint object before drawing the line (then set it back to the previous value).

markerPaint.setStrokeWidth(2);
canvas.drawLine(center.x - radius / 2,

(float)justTiltY,
center.x + radius / 2,
(float)justTiltY,
markerPaint);

markerPaint.setStrokeWidth(1);

13. To make it easier to read the exact roll, you should draw an arrow and display a text string
that shows the value.

Create a new Path, and use the moveTo/lineTo methods to construct an open arrow that
points straight up. Draw the path and a text string that shows the current roll.

// Draw the arrow
Path rollArrow = new Path();
rollArrow.moveTo(center.x - 3, (int)innerBoundingBox.top + 14);
rollArrow.lineTo(center.x, (int)innerBoundingBox.top + 10);
rollArrow.moveTo(center.x + 3, innerBoundingBox.top + 14);
rollArrow.lineTo(center.x, innerBoundingBox.top + 10);
canvas.drawPath(rollArrow, markerPaint);
// Draw the string
String rollText = String.valueOf(rollDegree);
double rollTextWidth = textPaint.measureText(rollText);
canvas.drawText(rollText,

(float)(center.x - rollTextWidth / 2),
innerBoundingBox.top + textHeight + 2,
textPaint);

14. Spin the canvas back to upright so that you can draw the rest of the face markings.

canvas.restore();

15. Draw the roll dial markings by rotating the canvas 10 degrees at a time to draw either a mark
or a value. When you’ve completed the face, restore the canvas to its upright position.

canvas.save();
canvas.rotate(180, center.x, center.y);
for (int i = -180; i < 180; i += 10)
{
// Show a numeric value every 30 degrees
if (i % 30 == 0) {
String rollString = String.valueOf(i*-1);
float rollStringWidth = textPaint.measureText(rollString);
PointF rollStringCenter =

new PointF(center.x-rollStringWidth/2,
innerBoundingBox.top+1+textHeight);

canvas.drawText(rollString,
rollStringCenter.x, rollStringCenter.y,
textPaint);

}
// Otherwise draw a marker line

Building Rich User Interfaces ❘ 515

else {
canvas.drawLine(center.x, (int)innerBoundingBox.top,

center.x, (int)innerBoundingBox.top + 5,
markerPaint);

}

canvas.rotate(10, center.x, center.y);
}
canvas.restore();

16. The final step in creating the face is drawing the heading markers around the outside edge.

canvas.save();
canvas.rotate(-1*(bearing), px, py);

double increment = 22.5;

for (double i = 0; i < 360; i += increment) {
CompassDirection cd = CompassDirection.values()

[(int)(i / 22.5)];
String headString = cd.toString();

float headStringWidth = textPaint.measureText(headString);
PointF headStringCenter =
new PointF(center.x - headStringWidth / 2,

boundingBox.top + 1 + textHeight);

if (i % increment == 0)
canvas.drawText(headString,

headStringCenter.x, headStringCenter.y,
textPaint);

else
canvas.drawLine(center.x, (int)boundingBox.top,

center.x, (int)boundingBox.top + 3,
markerPaint);

canvas.rotate((int)increment, center.x, center.y);
}
canvas.restore();

17. With the face complete, you get to add some finishing touches.

Start by adding a ‘‘glass dome’’ over the top to give the illusion of a watch face. Using the
radial gradient array you constructed earlier, create a new Shader and Paint object. Use them
to draw a circle over the inner face that makes it look like it’s covered in glass.

RadialGradient glassShader =
new RadialGradient(px, py, (int)innerRadius,

glassGradientColors,
glassGradientPositions,
TileMode.CLAMP);

Paint glassPaint = new Paint();
glassPaint.setShader(glassShader);

canvas.drawOval(innerBoundingBox, glassPaint);

516 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

18. All that’s left is to draw two more circles as clean borders for the inner and outer face bound-
aries. Then restore the canvas to upright, and finish the onDraw method.

// Draw the outer ring
canvas.drawOval(boundingBox, circlePaint);

// Draw the inner ring
circlePaint.setStrokeWidth(2);
canvas.drawOval(innerBoundingBox, circlePaint);

canvas.restore();
}

All code snippets in this example are part of the Chapter 15 Artificial Horizon project, available for download at Wrox.com.

Bringing Map Overlays to Life
In Chapter 8, you learned how to use Overlays to add annotation layers to Map Views. The Canvas
used for annotating Map View Overlays is the same class as the one used to draw new View controls.
As a result, all of the advanced features described so far in this section can be used to enhance map
Overlays.

That means you can use any of the draw methods, transparency, Shaders, Color Masks, and Filter
Effects to create rich Overlays using the Android graphics framework.

Touch-screen interaction in Map Views is handled individually by each of its Overlays. To handle map
taps within an Overlay, override the onTap event.

Listing 15-22 shows an onTap implementation that receives the map coordinates of the tap and the
MapView on which the tap occurred.

LISTING 15-22: Handling Map View Overlay touch events

@Override
public boolean onTap(GeoPoint point, MapView map) {

// Get the projection to convert to and from screen coordinates
Projection projection = map.getProjection();

// Return true if we handled this onTap()
return [... hit test passed ...];

}

The MapView can be used to obtain the Projection of the map when it was tapped. By using it in conjunc-
tion with the GeoPoint parameter, you can determine the position on screen of the real-world longitude
and latitude pressed.

The onTap method of an Overlay derived class should return true if it has handled the tap (and false

otherwise). If none of the Overlays assigned to a Map View return true, the tap event will be handled
by the Map View itself, or failing that, by the Activity.

Building Rich User Interfaces ❘ 517

Introducing the Surface View
Under normal circumstances, your applications’ Views are all drawn on the same GUI thread. This
main application thread is also used for all user interaction (such as button clicks or text entry).

In Chapter 9, you learned how to move blocking processes onto background threads. Unfortunately,
you can’t do this with the onDraw method of a View, as modifying a GUI element from a background
thread is explicitly disallowed.

When you need to update the View’s UI rapidly, or the rendering code blocks the GUI thread for
too long, the SurfaceView class is the answer. A Surface View wraps a Surface object rather than a
Canvas. This is important because Surfaces can be drawn on from background threads. This is particu-
larly useful for resource-intensive operations, or where rapid updates or high frame rates are required,
such as when using 3D graphics, creating games, or previewing the camera in real time (as shown in
Chapter 11).

The ability to draw independently of the GUI thread comes at the price of additional memory con-
sumption, so while it’s a useful — sometimes necessary — way to create custom Views, Surface Views
should be used with caution.

When Should You Use a Surface View?
A Surface View can be used in exactly the same way as any View-derived class. You can apply anima-
tions and place them in layouts as you would any other View.

The Surface encapsulated by the Surface View supports drawing, using most of the standard Canvas
methods described previously in this chapter, and also supports the full OpenGL ES library.

Using OpenGL, you can draw any supported 2D or 3D object onto the Surface, relying on hardware
acceleration (where available) to significantly improve performance compared to simulating the same
effects on a 2D canvas.

Surface Views are particularly useful for displaying dynamic 3D images, such as those featured in
interactive games that provide immersive experiences. They’re also the best choice for displaying real-
time camera previews.

Creating a New Surface View
To create a new Surface View, create a new class that extends SurfaceView and implements
SurfaceHolder.Callback.

The SurfaceHolder callback notifies the View when the underlying Surface is created, destroyed, or
modified. It passes a reference to the SurfaceHolder object that contains a valid Surface.

A typical Surface View design pattern includes a Thread-derived class that accepts a reference to the
current SurfaceHolder and independently updates it.

Listing 15-23 shows a Surface View implementation for drawing using a Canvas. A new Thread-derived
class is created within the Surface View control, and all UI updates are handled within this new class.

518 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

LISTING 15-23: Surface View skeleton implementation
import android.content.Context;
import android.graphics.Canvas;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

public class MySurfaceView extends SurfaceView implements
SurfaceHolder.Callback {

private SurfaceHolder holder;
private MySurfaceViewThread mySurfaceViewThread;
private boolean hasSurface;

MySurfaceView(Context context) {
super(context);
init();

}

private void init() {
// Create a new SurfaceHolder and assign this class as its callback.
holder = getHolder();
holder.addCallback(this);
hasSurface = false;

}

public void resume() {
// Create and start the graphics update thread.
if (mySurfaceViewThread == null) {

mySurfaceViewThread = new MySurfaceViewThread();

if (hasSurface == true)
mySurfaceViewThread.start();

}
}

public void pause() {
// Kill the graphics update thread
if (mySurfaceViewThread != null) {

mySurfaceViewThread.requestExitAndWait();
mySurfaceViewThread = null;

}
}

public void surfaceCreated(SurfaceHolder holder) {
hasSurface = true;
if (mySurfaceViewThread != null)

mySurfaceViewThread.start();
}

public void surfaceDestroyed(SurfaceHolder holder) {
hasSurface = false;
pause();

}

Building Rich User Interfaces ❘ 519

public void surfaceChanged(SurfaceHolder holder, int format,
int w, int h) {

if (mySurfaceViewThread != null)
mySurfaceViewThread.onWindowResize(w, h);

}

class MySurfaceViewThread extends Thread {
private boolean done;

MySurfaceViewThread() {
super();
done = false;

}

@Override
public void run() {

SurfaceHolder surfaceHolder = holder;

// Repeat the drawing loop until the thread is stopped.
while (!done) {
// Lock the surface and return the canvas to draw onto.
Canvas canvas = surfaceHolder.lockCanvas();
// TODO: Draw on the canvas!
// Unlock the canvas and render the current image.
surfaceHolder.unlockCanvasAndPost(canvas);

}
}

public void requestExitAndWait() {
// Mark this thread as complete and combine into
// the main application thread.
done = true;
try {
join();

} catch (InterruptedException ex) { }
}

public void onWindowResize(int w, int h) {
// Deal with a change in the available surface size.

}
}

}

Creating 3D Controls with a Surface View
Android includes full support for the OpenGL ES 3D rendering framework including support for hard-
ware acceleration on devices that offer it. The SurfaceView provides a Surface onto which you can
render your OpenGL scenes.

OpenGL is commonly used in desktop applications to provide dynamic 3D interfaces and animations.
Resource-constrained devices don’t have the capacity for polygon handling that’s available on desktop
PCs and gaming devices that feature dedicated 3D graphics processors. Within your applications,

520 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

consider the load your 3D Surface View will be placing on your processor, and attempt to keep the
total number of polygons being displayed, and the rate at which they’re updated, as low as possible.

Creating a Doom clone for Android is well out of the scope of this book, so I’ll leave it to you to test
the limits of what’s possible in a mobile 3D user interface. Check out the GLSurfaceView API demo
example included in the SDK distribution to see an example of the OpenGL ES framework in action.

Creating Interactive Controls
Anyone who’s used a mobile phone will be painfully aware of the challenges associated with designing
intuitive user interfaces for mobile devices. Touch screens have been available on mobiles for many
years, but it’s only recently that touch-enabled interfaces have been designed to be used by fingers
rather than styluses.

Full physical keyboards have also become common, with the compact size of the slide-out or flip-out
keyboard introducing its own challenges.

As an open framework, Android is expected to be available on a wide variety of devices featuring
many different permutations of input technologies including touch screens, D-pads, trackballs, and
keyboards.

The challenge for you as a developer is to create intuitive user interfaces that make the most of whatever
input hardware is available, while introducing as few hardware dependencies as possible.

The techniques described in this section show how to listen for (and react to) user input from key
presses, trackball events, and touch-screen taps using the following event handlers in Views and Activ-
ities:

➤ onKeyDown Called when any hardware key is pressed

➤ onKeyUp Called when any hardware key is released

➤ onTrackballEvent Triggered by movement on the trackball

➤ onTouchEvent The touch-screen event handler, triggered when the touch screen is touched,
released, or dragged

Using the Touch Screen
Mobile touch screens have existed since the days of the Apple Newton and the Palm Pilot, although
their usability has had mixed reviews. Recently this technology has enjoyed a popular resurgence, with
devices like the Nintendo DS and the Apple iPhone using touch screens in innovative ways.

Modern mobiles are all about finger input — a design principle that assumes users will be using their
fingers rather than a specialized stylus to touch the screen.

Finger-based touch makes interaction less precise and is often based more on movement than sim-
ple contact. Android’s native applications make extensive use of finger-based touchscreen interfaces,
including the use of dragging motions to scroll through lists or perform actions.

To create a View or Activity that uses touch-screen interaction, override the onTouchEvent handler.

Building Rich User Interfaces ❘ 521

@Override
public boolean onTouchEvent(MotionEvent event) {

return super.onTouchEvent(event);
}

Return true if you have handled the screen press; otherwise, return false to pass events through a
stack of Views and Activities until the touch has been successfully handled.

Processing Single and Multiple Touch Events
The onTouchEvent handler is fired when the user touches the screen, once each time the position
changes, and again when the contact ends. Android 2.0 (API level 5) introduced platform support for
processing an arbitrary number of simultaneous touch events. Each touch event is allocated a separate
pointer identifier that is referenced in the Motion Event parameter.

Not all touch-screen hardware reports multiple simultaneous screen presses. In
cases where the hardware does not support multiple touches, the platform will
return a single touch event.

Call getAction on the MotionEvent parameter to find the event type that triggered the handler.
For either a single touch device, or the first touch event on a multitouch device, you can use the
ACTION_UP/DOWN/MOVE/CANCEL/OUTSIDE constants to find the event type as shown in Listing 15-24.

LISTING 15-24: Handling single (or first) touch events

@Override
public boolean onTouchEvent(MotionEvent event) {
int action = event.getAction();
switch (action) {

case (MotionEvent.ACTION_DOWN) : // Touch screen pressed
break;

case (MotionEvent.ACTION_UP) : // Touch screen touch ended
break;

case (MotionEvent.ACTION_MOVE) : // Contact has moved across screen
break;

case (MotionEvent.ACTION_CANCEL) : // Touch event cancelled
break;

case (MotionEvent.ACTION_OUTSIDE): // Movement has occurred outside the
// bounds of the screen element
// being monitored
break;

}
return super.onTouchEvent(event);

}

To track touch events from multiple pointers, you need to apply the MotionEvent.ACTION_MASK

and MotionEvent.ACTION_POINTER_ID_MASK to find the touch event (either ACTION_POINTER_DOWN or

522 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

ACTION_POINTER_UP) and the pointer ID that triggered it, respectively. Call getPointerCount to find if
this is a multiple-touch event as shown in Listing 15-25.

LISTING 15-25: Handling multiple-touch events

@Override
public boolean onTouchEvent(MotionEvent event) {

int action = event.getAction();

if (event.getPointerCount() > 1) {
int actionPointerId = action & MotionEvent.ACTION_POINTER_ID_MASK;
int actionEvent = action & MotionEvent.ACTION_MASK;
// Do something with the pointer ID and event.

}
return super.onTouchEvent(event);

}

The Motion Event also includes the coordinates of the current screen contact. You can access these
coordinates using the getX and getY methods. These methods return the coordinate relative to the
responding View or Activity.

In the case of multiple-touch events, each Motion Event includes the current position of each pointer.
To find the position of a given pointer, pass its index into the getX or getY methods. Note that its index
is not equivalent to the pointer ID. To find the index for a given pointer use the findPointerIndex

method, passing in the pointer ID whose index you need as shown in Listing 15-26.

LISTING 15-26: Finding screen touch coordinates

int xPos = -1;
int yPos = -1;

if (event.getPointerCount() > 1) {
int actionPointerId = action & MotionEvent.ACTION_POINTER_ID_MASK;
int actionEvent = action & MotionEvent.ACTION_MASK;

int pointerIndex = findPointerIndex(actionPointerId);
xPos = (int)event.getX(pointerIndex);
yPos = (int)event.getY(pointerIndex);

}
else {

// Single touch event.
xPos = (int)event.getX();
yPos = (int)event.getY();

}

The Motion Event parameter also includes the pressure being applied to the screen using getPressure,
a method that returns a value usually between 0 (no pressure) and 1 (normal pressure).

Depending on the calibration of the hardware, it may be possible to return values
greater than 1.

Building Rich User Interfaces ❘ 523

Finally, you can also determine the normalized size of the current contact area using the getSize

method. This method returns a value between 0 and 1, where 0 suggests a very precise measurement
and 1 indicates a possible ‘‘fat touch’’ event in which the user may not have intended to press
anything.

Tracking Movement
Whenever the current touch contact position, pressure, or size changes, a new onTouchEvent is triggered
with an ACTION_MOVE action.

As well as the fields described previously, the Motion Event parameter can include historical values.
This history represents all the movement events that have occurred between the previously handled
onTouchEvent and this one, allowing Android to buffer rapid movement changes to provide fine-grained
capture of movement data.

You can find the size of the history by calling getHistorySize, which returns the number of movement
positions available for the current event. You can then obtain the times, pressures, sizes, and positions
of each of the historical events, using a series of getHistorical* methods and passing in the position
index, as shown in Listing 15-27. Note that as with the getX and getY methods described earlier, you
can pass in a pointer index value to track historical touch events for multiple cursors.

LISTING 15-27: Finding historical touch event values

int historySize = event.getHistorySize();
long time = event.getHistoricalEventTime(i);

if (event.getPointerCount() > 1) {
int actionPointerId = action & MotionEvent.ACTION_POINTER_ID_MASK;
int pointerIndex = findPointerIndex(actionPointerId);
for (int i = 0; i < historySize; i++) {

float pressure = event.getHistoricalPressure(pointerIndex, i);
float x = event.getHistoricalX(pointerIndex, i);
float y = event.getHistoricalY(pointerIndex, i);
float size = event.getHistoricalSize(pointerIndex, i);
// TODO: Do something with each point

}
}
else {
for (int i = 0; i < historySize; i++) {

float pressure = event.getHistoricalPressure(i);
float x = event.getHistoricalX(i);
float y = event.getHistoricalY(i);
float size = event.getHistoricalSize(i);
// TODO: Do something with each point

}
}

The normal pattern used for handling movement events is to process each of the historical events first,
followed by the current Motion Event values, as shown in Listing 15-28.

524 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

LISTING 15-28: Handling touch screen movement events

@Override
public boolean onTouchEvent(MotionEvent event) {

int action = event.getAction();

switch (action) {
case (MotionEvent.ACTION_MOVE)
{

int historySize = event.getHistorySize();
for (int i = 0; i < historySize; i++) {
float x = event.getHistoricalX(i);
float y = event.getHistoricalY(i);
processMovement(x, y);

}

float x = event.getX();
float y = event.getY();
processMovement(x, y);

return true;
}

}

return super.onTouchEvent(event);
}

private void processMovement(float _x, float _y) {
// Todo: Do something on movement.

}

Using an On Touch Listener
You can listen for touch events without subclassing an existing View by attaching an OnTouchListener

to any View object, using the setOnTouchListener method. Listing 15-29 demonstrates how to assign
a new OnTouchListener implementation to an existing View within an Activity.

LISTING 15-29: Assigning an On Touch Listener to an existing View

myView.setOnTouchListener(new OnTouchListener() {
public boolean onTouch(View _view, MotionEvent _event) {
// TODO Respond to motion events
return false;

}
});

Using the Device Keys, Buttons, and D-Pad
Button and key-press events for all hardware keys are handled by the onKeyDown and onKeyUp handlers
of the active Activity or the focused View. This includes keyboard keys, D-pad, volume, back, dial, and

Building Rich User Interfaces ❘ 525

hang-up buttons. The only exception is the home key, which is reserved to ensure that users can never
get locked within an application.

To have your View or Activity react to button presses, override the onKeyUp and onKeyDown event
handlers as shown in Listing 15-30.

LISTING 15-30: Handling key press events

@Override
public boolean onKeyDown(int _keyCode, KeyEvent _event) {
// Perform on key pressed handling, return true if handled
return false;

}

@Override
public boolean onKeyUp(int _keyCode, KeyEvent _event) {
// Perform on key released handling, return true if handled
return false;

}

The keyCode parameter contains the value of the key being pressed; compare it to the static key code
values available from the KeyEvent class to perform key-specific processing.

The KeyEvent parameter also includes the isAltPressed, isShiftPressed, and isSymPressed methods
to determine if the function, shift, and symbol/alt keys are also being held. The static isModifierKey

method accepts the keyCode and determines if this key event was triggered by the user pressing one of
these modifier keys.

Using the On Key Listener
To respond to key presses within existing Views in your Activities, implement an OnKeyListener,
and assign it to a View using the setOnKeyListener method. Rather than implementing a separate
method for key-press and key-release events, the OnKeyListener uses a single onKey event, as shown in
Listing 15-31.

LISTING 15-31: Implementing an On Key Listener within an Activity

myView.setOnKeyListener(new OnKeyListener() {
public boolean onKey(View v, int keyCode, KeyEvent event)
{

// TODO Process key press event, return true if handled
return false;

}
});

Use the keyCode parameter to find the key pressed. The KeyEvent parameter is used to determine if the
key has been pressed or released, where ACTION_DOWN represents a key press, and ACTION_UP signals its
release.

526 ❘ CHAPTER 15 ADVANCED ANDROID DEVELOPMENT

Using the Trackball
Many mobile devices offer a trackball as a useful alternative (or addition) to the touch screen and
D-pad. Trackball events are handled by overriding the onTrackballEvent method in your View or
Activity.

Like touch events, trackball movement is included in a MotionEvent parameter. In this case, the
MotionEvent contains the relative movement of the trackball since the last trackball event, normalized
so that 1 represents the equivalent movement caused by the user pressing the D-pad key.

Vertical change can be obtained using the getY method, and horizontal scrolling is available through
the getX method, as shown in Listing 15-32.

LISTING 15-32: Using the On Trackball Event Listener

@Override
public boolean onTrackballEvent(MotionEvent _event) {

float vertical = _event.getY();
float horizontal = _event.getX();
// TODO Process trackball movement.
return false;

}

SUMMARY

This final chapter has served as a catch-all for some of the more complex Android features that were
glossed over in earlier chapters.

You learned more about Android’s security mechanisms, in particular, examining the permissions
mechanism used to control access to Content Providers, Services, Activities, Broadcast Receivers, and
broadcast Intents.

You explored the possibilities of interprocess communication using the Android Interface Definition
Language to create rich interfaces between application components.

Much of the last part of the chapter focused on the Canvas class, as some of the more complex features
available in the 2D drawing library were exposed. This part of the chapter included an examination of
the drawing primitives available and a closer look at the possibilities of the Paint class.

You learned to use transparency and create gradient Shaders before looking at Mask Filters, Color
Filters, and Path Effects. You also learned how to use hardware acceleration on 2D canvas-based
Views, as well as some Canvas drawing best-practice techniques.

You were then introduced to the SurfaceView — a graphical control that lets you render graphics onto
a surface from a background thread. This led to an introduction of rendering 3D graphics using the
OpenGL ES framework and using the Surface View to provide live camera previews.

Finally, you learned the details for providing interactivity within your Activities and View by listening
for and interpreting touch screen, trackball, and key press events.

Summary ❘ 527

You also investigated:

➤ How to use Wake Locks to prevent the host device from going into standby mode.

➤ Using the Text To Speech engine to add voice output to your applications.

➤ Some of the possibilities of using the Internet as a data source, or processing middle tier, to
keep your applications lightweight and information-rich.

➤ How to animate Views and View Groups using tweened animations.

➤ How to create frame-by-frame animations.

➤ Which drawing primitives you can use to draw on a canvas.

➤ How to get the most out of the Paint object using translucency, Shaders, Mask Filters, Color
Filters, and Path Effects.

➤ Some of the best-practice techniques for drawing on the canvas.

➤ How to apply hardware acceleration to 2D graphics drawing.

INDEX

A
AAPT. See Android Asset Packing Tool
accelerometers, 6, 458, 461, 462–467
accept, 434
acceptMatch, 157
ACCESS_COARSE_LOCATION, 396
accuracy, 460
acquire, 481
action, 145
ACTION_ANSWER, 143
ACTION_BOOT_COMPLETED, 161
ACTION_CALL, 143
ACTION_CAMERA_BUTTON, 161
ACTION_DATE_CHANGED, 161
ACTION_DELETE, 143
ACTION_DIAL, 143
ACTION_DISCOVERY_FINISHED, 431
ACTION_DISCOVERY_STARTED, 431
ACTION_DOWN, 525
ACTION_EDIT, 143
ACTION_FOUND, 436
ACTION_IMAGE_CAPTURE, 375
ACTION_INSERT, 144
ACTION_MEDIA_BUTTON, 161
ACTION_MEDIA_EJECT, 161
ACTION_MEDIA_MOUNTED, 162
ACTION_MEDIA_UNMOUNTED, 162
ACTION_MOVE, 523
ACTION_NEW_OUTGOING_CALL, 162
ACTION_PICK, 144, 148
ACTION_REQUEST_DISCOVERABLE, 430, 434
ACTION_SCAN_MODE_CHANGED, 431
ACTION_SCREEN_OFF, 162
ACTION_SCREEN_ON, 162
ACTION_SEARCH, 144
ACTION_SEND, 144, 399
ACTION_SENDTO, 144, 399
ACTION_STATE_CHANGED, 428
ACTION_TIME_CHANGED, 161
ACTION_TIMEZONE_CHANGED, 162
ACTION_UP, 525
ACTION_VIDEO_CAPTURE, 371
ACTION_VIEW, 144
ACTION_WEB_SEARCH, 144
active lifetime, 83
active processes, 59
active state, 79

Activities, 49–84, 86
active lifetime, 83
classes, 83–84
dialogs, 174–175
explicit Intent, 139
full lifetime, 82
implicit Intents, 139–140
Intents, 138–144
life cycle, 78–83
Live Folders, 348
menus, 124–125
permissions, 479
saving and restoring, 203–204
Services, 297–299
stacks, 78–79
states, 79–80
visible lifetime, 83
Widgets, 340–341

Activity, 24, 50, 76–84
onCreate, 26

activity, 54
<activity>, 54, 78
Activity Intents, 143
‘‘Activity is not responding,’’36
Activity Manager, 15, 36
activityCreator, 44
Activity.getPreferences(), 203
Activity.RESULT_CANCELED, 141–142
Activity.RESULT_OK, 141–142, 401
Adapters, 163–170
AdapterView, 134, 164
ADB. See Android Debug Bridge
addIntentOptions, 154
addNetwork, 455
add_new, 70
address, 399
addSubMenu, 128
addView, 90
MapView, 278

ADT. See Android Developer Tool
AIDL. See Android Interface Definition Language
.aidl, 486
Alarm, 420
Alarm Manager, 322
AlarmManager, 320
Alarms, 286, 320–325

repeating, 322–323
Widgets, 339–340

529

AlertDialog – BLUETOOTH

Alert Dialog, 173–174
AlertDialog, 172, 173–174
ALL, 155
alpha, 64–65
ALTERNATIVE, 145, 153
Amazon Web Services, 489
AnalogClock, 330
?android:, 70
Android Asset Packing Tool (AAPT), 43
Android Debug Bridge (ADB), 44, 47–48

SMS, 401
Android Developer Tool (ADT), 19
Android Emulator. See Emulator
Android Interface Definition Language (AIDL), 483–488

IPC, 487–488
Services, 486–487

Android Open Source Project (AOSP), 5
Android Project Wizard, 20
Android Virtual Device Manager, 12, 17
Android Virtual Devices (AVD), 43, 44–45
android:apikey, 265, 279
android.app.searchable, 352
android:autoLink, 156
android:config Changes, 73
android:defaultValue, 199
android:host, 145
android:ID, 250
android:key, 198
android:label, 153
android:mimetype, 145
android:name, 54, 145
android.net.*, 171
android:path, 145
android:permission, 56
android:port, 146
android.provider.Settings, 200, 238
android.provider.Telephony.SMS_RECEIVED, 403, 405
android:scheme, 146
android.settings.*, 200
android:summary, 199
android.telephony.gsm, 400
android:title, 199
AnimationDrawable, 500
<animation-list>, 500
AnimationListener, 492
AnimationResources, 68
animations, 64–66

UI, 489–516
anonymous actions

applications, 153–154
Menu Item, 154–155

anti-aliasing, 507
ANTI_ALIASING_FLAG, 507
anyDensity, 54
AOSP. See Android Open Source Project
API key, 261–262
.apk, 20, 26, 43
App Engine, 489
App Widget(s), 328–341
EditText, 330
IntentReceivers, 328
Remote Views, 333
RemoteViews, 328
Selection State Drawable, 337
XML, 330–331

App Widget Provider, 333
AppHost, 328
Apple iPhone, 3–4
Application, 74–76
application, 54, 160

<service>, 289
uses-library, 262
<uses-permission>, 265

<application>, 54, 352
application(s), 49–84

anonymous actions, 153–154
framework, 14
layer, 14
life cycle, 57–58
priority, 58–59
process states, 58–59

Application Attributes, 56
application manifest, 51–56
Application Nodes, 56
APPWIDGET_CONFIGURE, 340
AppWidgetProvider, 332
appwidget-provider, 331
AppWidgets, 328–346
Array Adapter, 163–164, 192
Array List, 388
ArrayAdapter, 133, 163–164, 177
ListView, 42

ArrayAdapters, 38
ArrayList, 42, 177
aspect ratio, 118
asynchronous tasks, 301–302
AsyncTask, 286, 300, 301–302
AT_MOST, 103
audio, 364–375

playback, 365–366
recording, 371–375

Audio Track, 385–386
play, 386

AudioRecord, 384–386
AudioTrack, 384–386
auto focus, Camera, 379
AutoFocusCallback, 379
autolink, 184
AutoResponder, 415–422
Available Packages, 46
AVD. See Android Virtual Devices
AvoidXfermode, 507

B
background applications, 29–30
background services, 7, 11, 59
background threads, 300–306

Force Close error, 301
bandwidth, 170
bindService, 298
Bitmap, 501
Bitmap Shader, 504
bitmaps, 63
BitmapShader, 503
Bluetooth, 6, 425–448

communications, 433–439
discovery, 430–433
security, 37

BLUETOOTH, 427

530

BluetoothAdapter – contentIntent

Bluetooth Adapter, 426–427
getBondedDevices, 436

Bluetooth Device, 435–437
Broadcast Receivers, 443
onItemClickListener, 444

Bluetooth Server Socket, 434–435
Bluetooth Sockets, 426, 433, 438
BluetoothAdapter, 426–427, 430
BluetoothDevice, 426, 432–433, 435–437
BluetoothDevice.EXTRA_NAME, 432
BluetoothServerSocket, 426, 433
BluetoothSocket, 426, 433
BluetoothSocketListener, 446, 447
BlurMaskFilter, 505
Broadcast Receivers, 50–51, 83

Bluetooth Device, 443
Connectivity Manager, 451
Intent, 157–162
permissions, 479
proximity alerts, 256
SMS, 404, 414
text messages, 401

BroadcastReceiver, 256, 420
BROADCAST_STICKY, 161
BROWSABLE, 145
Browser, 238
BSSID, 455
BSSID, 455
bulkInsert, 228–229
Bundle, 188, 204
Bundle, 188
Button, 88, 330
TextView, 92

C
C, 2
C++, 2
cache, 33, 170
calculateHeight, 102
calculateOrientation, 473
calculateWidth, 102
CallLog, 238
CALL_PHONE, 391
Camera, 375–382

auto focus, 379
Intent, 376–377
previewing, 379–381
release, 377
startActivityForResult, 375
takePicture, 381

CAMERA, 377
Camera, 377
Camera Parameters, 378
Camera.Parameters, 377
cancel, 70, 314
cancelAdd, 135
cancelDiscovery, 431
Canvas, 100, 269, 501
capacity limitations, 31–32
category, 145
CATEGORY_ALTERNATIVE, 154
CATEGORY_SELECTED_ALTERNATIVE, 154
CDMA, 392
CellLocation, 396

centerX, 113
centerY, 113
CharacterPickerDialog, 174
CharSequence, 484
CheckBox, 88, 415
checkboxes, 126
CheckBoxPreference, 199
child thread, 300
Chronometer, 330
circlePaint, 108
CLAMP, 505
.class, 44
ClearableEditText, 97–98
click listener, 126–127, 336
cloud computing, 488
color, 112
<color>, 61–62, 111
Color Filters, 505–506
ColorDrawable, 111
ColorFilter, 505–506
ColorMatrixColorFilter, 505
colors, 61–62
com.android.MapView, 265
commit, 188
CommonDataKinds, 242
compass, 6
Compass View, 105–110, 470–474
CompassView, 107, 109–110, 470–474
onCreate, 472
Toasts, 307

ComposePathEffect, 506
ComposeShader, 503
composite Drawables, 114–117
compound controls, 96–98
condensed titles, 126
Configuration, 73
Configure, 331
configureBluetooth, 441
connect, 437
Connectivity Manager, 448–451
ConnectivityManager, 448–451
ContactPicker, 148–149
Contacts, 240
Contacts Contract, 240–243
ContactsContract, 238, 240
ContactsContract.Contacts.CONTENT_FILTER_URI, 241
ContactsContract.Data, 241
ContactsContract.PhoneLookup.CONTENT_FILTER_URI, 243
ContactsContract.StatusUpdates, 243
content://, 210
Content Providers, 8, 11, 15, 50, 209–244

Live Folders, 346–347
Media Player, 365
native, 238–243
permissions, 479
<provider>, 235
search, 353–354
tables, 215

Content Resolver, 224, 227–230
Contact Contracts, 240

Content Values, 211
content://contacts/people, 148
contentIntent, 311
contentView, 313
Pending Intent, 312

531

ContentPickerTest – execSQl

ContentPickerTest, 150
ContentPickerTester, 151
ContentProvider, 224
ContentResolver, 231, 383
query, 228

ContentSlider, 493
CONTENT_URI, 224, 227
Content_URI, 240
ContentValues, 211

Media Store, 383
put, 218

contentView, 311, 313
Context Menus, 128–130
ContextMenu, 129
ContextMenuInfo, 134
Context.MODE_APPEND, 207
Context.MODE_WORLD_READABLE, 207
Context.Mode_WORLD_WRITEABLE, 207
controls, 86

custom, 110
core libraries, 13
CornerPathEffect, 506
<corners>, 111–112
costs, 33–34
create, Media Player, 365–366, 369
createItem, 276
CREATE_LIVE_FOLDER, 348
createRfcommSocketToServiceRecord, 435, 437
Criteria, 248
Cursor, 169, 211

databases, 215
CursorFactory, 214
Cursors, 211
moveTo<location>, 215–216

D
Dalvik, 12, 13
Dalvik Debug Monitoring Service (DDMS), 17, 20, 43, 47
DashPathEffect, 506
Data, 240
data, 145
data authority, 147
data messages, 403
databases, 209–244
Cursor, 215
files, 215
query, 215–216

/data/data/<package_name>/databases, 210
DatePickerDialog, 174
DDMS. See Dalvik Debug Monitoring Service
debuggable, 54
debugging, 26
DEFAULT, 145, 352
Default Debug Keystore, 261
defaults, 317
delete

Content Providers, 225
Content Resolvers, 229
SQLiteDatabase, 218

deleteFile, 208
deliveryIntent, 401, 403
density independence, 117–123
.dex, 20, 26, 44
Dialog, 172–173

dialogs, 172–176
Activities, 174–175

<dimen>, 62
dimensions, 62
direction, 398
discovery, Bluetooth, 430–433
DiscretePathEffect, 506
divideMessage, 402
doInBackground, 302
dp, 62
draw, 269
drawable, 27
Drawables, 63, 111–117
Drawables, 101
drawArc, 501
drawARGB/drawRGB/drawColor, 501
drawBitmap, 501
drawBitmapMesh, 501
drawCircle, 108, 501
drawLine(s), 502
drawOval, 502
drawPaint, 502
drawPath, 502
drawPicture, 502
drawPosText, 502
drawRect, 502
drawRoundRect, 502
drawText, 502
drawTextOnPath, 502
drawVertices, 502
Droid, 117
duration, 64
Dx, 44

E
@echo, 404
eclipse, 20
Eclipse IDE, 13, 19–23, 246
EDGE, 6
MediaScannerConnectionClient, 382–383
EditText, 41, 88, 133, 415

App Widget, 330
onKeyListener, 42

EditTextPreference, 199
EFFECT_*, 378
efficiency, 31
ELAPSED_REALTIME, 321, 339
ELAPSED_REALTIME_WAKEUP, 321
EMAIL_ADDRESSES, 155
EmbossMaskFilter, 505
Emergency Responder, 406–422

automating, 415–422
EmergencyResponder, 406–422
empty processes, 59
Emulator, 12, 43, 46–47

LBS, 246–247
SMS, 405
speed, 33
vibrate, 317

endColor, 113
enum, 496
EXACTLY, 103
Exchangeable Image File Format (EXIF), 381–382
execSQl, 215

532

execute – getResources

execute, 301
AsyncTask, 302

EXIF. See Exchangeable Image File Format
ExifInterface, 381–382
ExpandableListActivity, 84
expanded menu, 123–126
Experience, Google, 329
explicit Intents, 139
extended status window, 311–313
extensibility, 152–155
externalizing resources, 59–74
EXTRA_APPWIDGET_ID, 340
EXTRA_BCC, 144
EXTRA_BSSID, 452
EXTRA_CC, 144
EXTRA_DISCOVERABLE_DURATION, 430
EXTRA_EMAIL, 144
EXTRA_EXTRA_INFO, 451
EXTRA_IS_FAILOVER, 451
EXTRA_LANGUAGE, 387
extraLocation, 256
EXTRA_MAXRESULTS, 387
EXTRA_NETWORK_INFO, 451
EXTRA_NO_CONNECTIVITY, 451
EXTRA_OTHER_NETWORK_INFO, 451
EXTRA_OUTPUT, 371
EXTRA_PHONE_NUMBER, 162
EXTRA_PREVIOUS_STATE, 428
EXTRA_PROMPT, 387
EXTRA_REASON, 451
EXTRA_RESULTS, 388
EXTRA_STATE, 428
EXTRA_STREAM, 144
EXTRA_SUBJECT, 144
EXTRA_TEXT, 144
EXTRA_VIDEO_QUALITY, 371

F
file://, 365
fileList, 208
files, 207–208

databases, 215
static, 207–208

FILL, 502
fillAfter, 65
fillBefore, 65
fill_parent, 90, 120
findItem, 125, 127
findViewById, 28, 41, 87
FingerPaint, 505
finish, 141, 142

Live Folders, 348
flag, 289
FLAG_INSISTENT, 319
FLAG_ONGOING_EVENT, 319
FLAG_SHOW_LIGHTS, 318
flash memory, 31
FLASH_MODE_*, 378
FOCUS_MODE_*, 378
fontScale, 73
Force Close error, 36

background threads, 301
Geocoder, 257

foreground applications, 29

Services, 299–300
forward geocoding, 258–259
frame-by-frame animations, 66, 489, 500–501
FrameLayout, 89, 330
friendly name, 427
fromDegrees, 114
full images, 376
full lifetime, 82
FULL_WAKE_LOCK, 480

G
GADGET, 145
Gallery, 89
Gallery Layout, 89
gData, 489
Geocoder, 7, 256–260

Force Close error, 257
null, 258

Geocoder, 256–257
GeoPoint, 264, 516

map taps, 270
getAction, 147, 521
getActiveNetworkInfo, 450
getAttribute, 382
getBestProvider, 248
getBondedDevices, 436
getColumnIndexOrThrow, 211
getColumnName, 211
getColumnNames, 211
getConfiguredNetworks, 454
getContentResolver, 227
getCount, 211
getCurrentPosition, 370
getData, 147
getDataActivity, 392
getDataState, 392
getDefault, 387
getDefaultSensor, 459
getDrawable, 68
getFrame, 371
getFromLocation, 257
getFromLocationName, 258–259
getHistorical*, 523
getHistorySize, 523
getInputStream, 438
getIntent, 147
getItem, 164
getLastKnownLocation, 247, 249
updateWithNewLocation, 251

getMode, 102
getNetworkInfo, 450
getNetworkPreference, 450
getOperator*, 397
getOutputStream, 438
getParameters, 377
getPhoneType, 393
getPointerCount, 522
getPosition, 211
getProjection, 269
getProvider, 247
getProviders, 248
getReadableDatabase, 214
get<read/writ>ableDatabase, 215
getResources, 68

533

getRoaming – Intent_ACTION_DIAL

getRoaming, 397
getScanMode, 430
getScanResult, 453
getSelectedItemPosition, 134
[get/set]ColorEffect, 378
[get/set]FlashMode, 378
[get/set]FocusMode, 378
[get/set]SceneMode, 378
[get/set]WhiteBalance, 378
getSharedPreferences, 188, 189
getSimState, 394–395
getSize, 102
getString, 69
getSupported*, 378
getSystemService, 249, 320

Sensor Manager, 458
Vibrator, 475
Wi-FI, 451

getType, 227, 233
get<type>, 189, 193, 215–216
getUserData, 406
getView, 163–164
getWifiState, 452
getWritableDatabase, 214, 220
getX, 522, 523, 526
getY, 522, 523
GIF, 63
glEsVersion, 53
Gmail, 5
Google

App Engine, 489
Experience, 329
gData, 489
Maps, 5, 7, 11, 245–284
Talk, 5

GPS, 6
cache, 33

GPS Exchange Format (GPX), 246–247
GPS_PROVIDER, 246
GPX. See GPS Exchange Format
<gradient>, 113
GradientDrawable, 111, 113
gradientRadius, 113
graphics, 6, 8
gravity sensors. See accelerometers
GridLayoutAnimationController, 498
GSM, 6, 392

SIM, 394
GUI threads, 304–306
gyroscopes, 458, 461

H
Handler, 304
Post, 305
postAtTime, 306
postDelayed, 306
Threads, 300, 320
Timers, 320

hardware, resources, 71–72
HCI. See human computer interaction
heightMeasureSpec, 102
hello, 70
Hello World, 24, 26–29
HOME, 145

hookupButton, 97–98
hotspots, Wi-Fi, 453–454
HTC, 8–9

Sense UI, 5
HTML5, 6
HTTP, 369
human computer interaction (HCI), 86
HVGA, 32, 117

skins, 122

I
icon menu, 123
icons, 126
IM. See instant messaging
Image Views, 336–337
ImageButton, 330
ImageView, 330
IMEI, 392
implicit Intents

Activities, 139–140
Intent Filters, 144–152
startActivity, 146

import, 484
in, 62
inactive state, 79
includeInGlobalSearch, 355
incoming phone calls, 396
inflate, 66, 97
initCompassView, 107
initialLayout, 331
innerRadius, 112
innerRadiusRatio, 112
InputStream, 207, 438
insert

Content Providers, 225
Content Resolvers, 228–229
SQLiteDatabase, 217

insistent Notifications, 319–320
instance state, saving and restoring, 203–204
instant messaging (IM), 37
instrumentation, 56
Intent(s), 8, 11, 50, 138–162

Activities, 138–144
Broadcast Receivers, 157–162
Camera, 376–377
Menu Item, 127
onStart, 290
Preference Screens, 200
video, 371–372

Intent Filter
extensibility, 152–155
implicit Intents, 144–152
plug-ins, 152–155
search, 352
telephony, 391
Widgets, 332, 338–339

Intent Receiver, 29–30
onCreate, 329
Widgets, 332, 338–339

Intent resolution, 146–147
Intent.ACTION_CALL, 391
Intent.ACTION_CALL_BUTTON, 391
Intent.ACTION_DIAL, 391
Intent_ACTION_DIAL, 390

534

Intent.ACTION_VIEW – ListViews

Intent.ACTION_VIEW, 391
Intent.EXTRA_STREAM, 399
IntentFilter, 160
intent-filter, 150, 153, 160
<intent-filter>, 55, 78, 391
IntentReceivers, 328
interactivity, Widgets, 335–337
INTERAL_HOUR, 322
interface, 486
intermittent applications, 29, 30
Internet

resources, 170–172
security, 37

INTERNET, 171, 262
Internet services, 488–489
interpolator, 65
interprocess communication, 7–8, 11
INTERVAL_DAY, 322
INTERVAL_FIFTEEN_MINUTES, 322
INTERVAL_HALF_DAY, 322
INTERVAL_HALF_HOUR, 322
IPC

AIDL, 487–488
message passing, 6

iPhone, 3–4
isAltPressed, 525
isLooping, 370
isModifierKey, 525
isRouteDisplayed, 262, 265
isShiftPleased, 525
isSymPressed, 525
isWifiEnabled, 452
item, 62, 130
<item>, 116, 500
ItemClickListener, 182
item.getitemId, 127
ItemizedOverlay, 275–276
itemizedOverlay<OverlayItem>, 276
ItemizedOverlays, 261, 275–278

J
Java
.class, 44
ME, 3, 14–15
MIDlets, 2–3
VM, 49

Java Development Kit (JDK), 18
Java runtime environment (JRE), 18
java.io.File, 208
java.lang.Thread, 304
java.net.*, 171
java.util.TimeZone, 162
JDK. See Java Development Kit
JPEG, 378, 381–382
JPG, 8, 63
JRE. See Java runtime environment

K
keyboard, 73
Keyboard Availability, 72
Keyboard Input Type, 72
keyboardHidden, 73

keyCode, 525
Keyhole Markup Language (KML), 246–247
KeyListeners, 38
KML. See Keyhole Markup Language

L
label, 331
Language and Region, 71
LANGUAGE_MODEL_FREE_FORM, 387
LANGUAGE_MODEL_WEB_SEARCH, 387
languages, 71–72
largeScreens, 54
latency, 32–33
launch configuration, 24–26
launch Intent, 147
LAUNCHER, 78, 145
Layer Drawables, 115–116
LayerDrawable, 115–116
<layer-list>, 116
layout, 27
Layout Animations, 498–500
Layout Managers, 89
LayoutAnimation, 498–500
LayoutAnimationController, 498
LayoutInflate, 97
layoutOpt, 44
LayoutParameters, 90
LayoutParams, 278
layouts, 28–29, 63–64, 89–91

nesting, 91
Views, 91
Widgets, 329–331
XML, 89–90

LBS. See location-based services
L2CAP. See Logical Link Control and Adaptation Protocol
LED, 318–319
ledARGB, 318
LENGTH_LONG, 306
LENGTH_SHORT, 306
Level List Drawables, 116–117
LevelListDrawables, 63
libc, 13
libraries, 13, 16
licensing, 6
LightingColorFilter, 506
lights

Notifications, 318–319
sensor, 458, 461

linear, 113
LinearGradient, 503–504
LinearLayout, 41, 87, 89, 90–91, 330
Linkify, 155–157
Linkify.addLinks, 155
Linux kernel, 3, 13, 18, 478
Linux Phone Standards Forum (LiPS), 3
LiPS. See Linux Phone Standards Forum
List, 484
ListActivity, 84
listen, 396
listenUsingRfcommWithServiceRecord, 426
ListPreference, 199
ListView, 41, 87, 88, 133, 177
ArrayAdapter, 42

ListViews, 38

535

LiveFolders – moveToPrevious

Live Folders, 6, 8, 11, 346–351
Activities, 348
Content Providers, 346–347
finish, 348
onCreate, 348

Live Wallpaper, 6, 8, 11, 358–361
LiveFolders._ID, 347
LiveFolders.Image, 347
LiveFolders.NAME, 347
Locale, 387
locale, 73
localization, 6
Location Listeners, 253
Location Manager, 246, 249, 412
Location Providers, 246, 247–249
location tracking, 252–253

privacy, 253
location-based services, 7
location-based services (LBS), 245–284

Emulator, 246–247
LocationListener, 252, 254
LocationManager, 248
LocationManager.GPS_PROVIDER, 248
LocationManager.NETWORK_PROVIDER, 248
LOCATION_SERVICE, 249
Logical Link Control and Adaptation Protocol (L2CAP), 433
looping, 370

M
Mac OS X, 18
magnetic field, 458, 461
MAIN, 78
main application thread, 300
main.xml, 28
makeText, 306
Manager.KEY_PROXIMITY_ENTERING, 256
<manifest>, 51–52
Manifest Editor, 56–57
Map, 484
Map Controller, 267
map taps, 270–271
Map View, 259, 260–279

API key, 261–262
Overlay, 516
View, 278–279

MapActivity, 84, 260–263, 278
MapController, 260, 266
Maps, Google, 5, 7, 11, 245–284
MapView, 260–279
addView, 278
map taps, 270
onCreate, 262
Overlay, 268–275
Projection, 516
TextView, 279
zoom, 264–265

MapView.LayoutParms, 278
Mask Filters, 505
MaskFilter, 505
Match Filter, 157
MatchFilter, 157
maxSDKVersion, 52
MCC. See Mobile Country Code
MD5, 261–262

ME. See Mobile Edition
MeasureSpec, 102
media libraries, 6
Media Player, 364–365

Content Providers, 365
create, 365–366, 369
playback, 370–371
prepare, 366
release, 365
setDataSource, 366
Surface View, 368–369

Media Player, 364
Media Recorder, 372–375
Media Scanner, 382–383
Media Store, 239, 372, 382–383
MediaPlayer, 364–365
MediaRecorder, 372
MediaScanerConnection, 382–383
MediaStore, 238, 239, 371
MEID, 392
memory, 8–9

flash, 31
runtime, 57
smartphones, 36

<menu>, 130
menu(s), 66–67, 123–136

Activities, 124–125
XML, 130–131

Menu, findItem, 125, 127
Menu Item

anonymous actions, 154–155
click listener, 126–127
Intent, 127
options, 125–127
selections, 127–128
updating, 127

MenuInflator, 66
MenuItemClickListener, 127
MessagePoster, 446
<meta-data>, 352, 360
middleColor, 113
MIDlets, Java, 2–3
minHeight, 331
minimum update rate, Widgets, 337–338
minSDKVersion, 52
minWidth, 331
MIRROR, 505
MkSDCard, 44
mm, 62
MMS. See multimedia messaging service
MNC. See Mobile Network Code
Mobile Country Code (MCC), 71, 394
mobile device development, 30–38
Mobile Edition (ME), 3, 14–15
Mobile Internet, 170
Mobile Network Code (MNC), 71, 394
MotionEvent, 521, 526
MotoBlur, 5
Motorola, 5, 8–9, 117
movePosition, 497, 498
moveToFirst, 211
moveTo<location>, 215–216
moveToNext, 211
moveToPosition, 211
moveToPrevious, 211

536

multimedia – onTrackballEvent

multimedia, 6
multimedia messaging service (MMS), 398–422
My Location Overlay, 275
MY_ACTION, 290
MyLocationOverlay, 261, 271–275

N
name, 352
native applications, 143–144
Native Development Kit (NDK), 15
native dialer, 390–391
native features, 170
navigation, 73
NDK. See Native Development Kit
nesting, 91
.NET Commmon Language Runtime, 49
Network Connectivity Service, 448–451
networkId, 455
NetworkInfo, 450
networks, 448–451
NETWORK_STATE_CHANGED_ACTION, 452
newWakeLock, 480
NinePatch, 63, 117, 330
normalScreens, 54
Notification(s), 8, 51, 286, 309–320
cancel, 314
defaults, 317
extended status window, 311–313
insistent, 319–320
lights, 318–319
number, 311
sound, 317
status bar, 310
vibrate, 317–318

Notification Manager, 15, 310
NotificationManager, 313–314
notify, 313
notifyDataSetChanged, 222
NPE. See null pointer error
null

Geocoder, 258
Location Providers, 249
onStartCommand, 288

null pointer error (NPE), 330
number, 311

O
OEMs, 5
off-peak, 33
OHA. See Open Handset Alliance
OMA. See Open Mobile Alliance
onAccuracyChanged, 459
onActivityResult, 142, 195, 196, 388

Bluetooth discovery, 431
onAnimationEnd, 492
onAnimationRepeat, 492
onAnimationStart, 492
onBind, 287, 297
onCallStateChanged, 396
onCellLocation, 396
onConfigurationChanged, 73–74, 75
onContextItemSelected, 130, 134
onCreate, 41, 75, 82, 132, 135, 150, 193, 214, 233

Activity, 26
ArrayList, 42
Bundle, 204
CompassView, 472
ContentProvider, 224
getIntent, 147
Intent Receiver, 329
ItemClickListener, 182
Live Folders, 348
MapActivity, 278
MapView, 262
requestLocationUpdates, 254
SensorManager, 472
Service, 287
setContentView, 27
updateFromPreferences, 197

onCreateContextMenu, 129, 132
onCreateDialog, 174, 175, 183
onCreateMenu Options, 128
onCreateOptionsMenu, 66, 124, 127, 132, 195
onDataActivity, 398
onDataConnectionStateChanged, 398
onDestroy, 82, 223, 283
onDraw, 92, 100–101, 108, 471
OnInitListener, 481
onItemClickListener, 150, 444
onKey, 525
onKeyDown, 104, 498, 520, 524–525
OnKeyListener, 222, 525
onKeyListener, 42, 135
onKeyUp, 104, 520, 524–525
online support, 13
onLocationChanged, 252
onLowMemory, 75
onMeasure, 99, 100, 102, 106
onOffsetsChanged, 360
onOptionsItemSelected, 125, 126–127,

134, 195
onPause, 83, 205, 283
onPostExecute, 302
onPrepareDialog, 174, 175–176, 183
onPrepareOptionsMenu, 127, 133
onPreviewFrame, 380
onProgressUpdate, 302
onReceive, 159, 332, 338–339, 404, 414
onRestart, 83
onRestore, 278
onRestoreInstanceState, 83, 188, 204
onResume, 83, 283, 473
onSaveInstanceState, 82, 83, 188, 204
onSensorChanged, 459, 461, 464
onServiceConnected, 298, 299
onServiceDisconnected, 298
onServiceStateChanged, 397
onSharedPreferenceChangeListener,

201
onStart, 83, 287, 290
onStartCommand, 287–288
onStop, 83, 473
onSurfaceCreated, 360
onTap, 268, 270, 516
onTerminate, 75
onTouchEvent, 104, 360, 520, 521
onTouchListener, 524
onTrackballEvent, 104, 520, 526

537

onUpdate – RECORD_AUDIO

onUpdate
App Widget Provider, 333
Remote Views, 334

onUpgrade, 214
Open Handset Alliance (OHA), 4, 9–12
Open Mobile Alliance (OMA), 3
open source, 4
openFileInput, 207
openFileOutput, 207
OpenGL, 4, 53, 519–520
openOrCreateDatabase, 215
openRawResource, 207
orientation, 73
orientation sensor, 458, 461, 467–470
OutputStream, 438
oval, 112
Overlay
Canvas, 269
draw, 269
Map Views, 516
MapView, 268–275
StateListDrawable, 276

Overlay, 260
OverlayItem, 275, 276
OverlayItems, 261, 275–278

P
package, 51
<padding>, 112
Paint, 100–101, 107–108, 269, 501, 502–507
Palm Pre, 3
Parcelable, 484–487
PARTIAL_WAKE_LOCK, 481
Path Effects, 506
PathDashPathEffect, 506
pause, 367
paused state, 79
peer-to-peer transfer, 6
Pending Intent, 162–163, 311
PendingIntent, 162–163, 255, 311
respond, 413

permission, 55, 479
<permission>, 479
permissions, 478–480
Phone State Listener, 395–396
PHONE_NUMBERS, 155
PhoneStateListener, 395
PhoneStateListener.LISTEN_NONE, 396
PictureCallback, 381
Pipes, Yahoo!, 489
pivotX, 115
pivotY, 115
pixel density, 118–119

Relative Layout, 120
PixelXorXfermode, 507
play, 386
playback

audio, 365–366
Media Player, 370–371
video, 366–370

playback, 370
plug-ins, Intent Filters, 152–155
PNG, 63, 330
Points, 269
populate, 276
populateSpinners, 192

PorterDuffColorFilter, 506
PorterDuffXfermode, 507
Post, 305
postAtTime, 306
postDelayed, 306
postInvalidate, 271
Power Manager, 480
Preference Activity, 197–201
Preference Screens, 198–200
PreferenceActivity, 200
PreferenceCategory, 198
Preference<control>, 198
Preferences, 190, 194, 196
PreferenceScreen, 198
prepare, 366
pressure sensor, 458, 461
PreviewCallback, 380
PreviewFrame, 380
priority, 455
privacy, location tracking, 253
process states, 58–59
PROCESS_OUTGOING_CALLS, 162
ProgressBar, 330
ProgressDialog, 174
Projection, 269
MapView, 516

provider, 55
<provider>, 235
proximity alerts, 255–256
proximity sensors, 458, 461
pt, 62
put, 218
px, 62

Q
Qualcomm, 8–9
query, 233

Content Providers, 225
ContentResolver, 228
databases, 215–216
URI Matcher, 354

quick search, 11
Quick Search Box, 355
QuickContactBadge, 88
QVGA, 32, 117, 122

R
radial, 113
RadialGradient, 503–504
radio buttons, 126
RadioButton, 88
radius, 111
Raw Contacts, 240
RawContacts, 240
R.drawable, 67
read, 384
READ_CONTACTS, 152, 241
readPermission, 479
READ_PHONE_STATE, 392, 395
RECEIVE_BOOT_COMPLETED, 161
receiver, 55
<receiver>, 160
RECEIVE_SMS, 404
RecognizerIntent, 386–388
RECORD_AUDIO, 372

538

recording – search

recording, 371–375
RECORD_VIDEO, 372
rectangle, 112
ReentrantLock, 409
RegEx, 157
registerForContextMenu, 129
registerReceiver, 161
Relative Layout, 89, 120
RelativeLayout, 89, 330
release

Camera, 377
Media Player, 365
Media Recorder, 374

remapCoordinateSystem, 470
Remote Views

App Widgets, 333
onUpdate, 334
UI, 335

RemoteView, 312
RemoteViews

App Widgets, 328
View, 333

remove, 70
removeItem, 222–223
removeNetwork, 455
removeUpdates, 253
removeView, 279
REPEAT, 505
repeating Alarms, 322–323
reqFiveWayNav, 52
reqHardKeyboard, 52
reqKeyboardType, 52
reqNavigation, 52
reqTouchScreen, 53
requery, 283
request code, 140

sub-Activity, 142
requestLocationUpdates, 252, 254
requestReceived, 410–411, 422
requires-permission, 289
res, 71
res/, 60
res/anim, 64
res/drawable, 63, 66, 70
res/drawable-hdpi, 121
res/drawable-ldpi, 121
res/drawable-mdpi, 121
res/layout, 87
res/layout-large, 121
res/layout-normal, 121
res/layout-small, 121
resolution

independence, 117–123
testing, 122–123

Resource, 207
resource, 352
resource(s)
@, 68–69
hardware, 71–72
languages, 71–72
referencing, 68–69

Resource Manager, 15
Resources, 68
resources in code, 67–68
respond, 409, 411–412
PendingIntent, 413

res/raw, 207

RESTART, 492
restoreUIState, 206
result code, 142
RESULT_CANCELED, 142
res/values, 60, 70–71
res/xml, 198
REVERSE, 492
reverse geocoding, 257–258
RFCOMM, 433
ring, 112
RingtonePreference, 199
roaming, 397
rotate, 64–65
<rotate>, 114
RotateDrawable, 114–115
/<rownumber>, 224
RS232, 433
RSSI_CHANGED_ACTION, 452
R.string, 67
RTC, 339
RTC_WAKEUP, 321
RTSP, 369
Rubin, Andy, 4
Runnable, 446
runOnUiThread, 305
runtime, 13

configuration changes, 72–74
memory, 57

S
S60, 3
sample code, 13
Saved Application State, 188
savePreferences, 193, 194, 417
saving state, 187
SAX, 171
scale, 64–65
<scale>, 114
ScaleDrawable, 114–115
scaleHeight, 114
scaleWidth, 114
scanFile, 382
SCAN_MODE_CONNECTABLE, 430
SCAN_MODE_CONNECTABLE_DISCOVERABLE, 430
SCAN_MODE_NONE, 430
SCAN_RESULTS_AVAILABLE_ACTION, 453
SCENE_MODE_*, 378
scheduleLayoutAnimation, 499
Screen Orientation, 72
Screen Pixel Density, 72
screen size, 71, 118–119

testing, 122–123
Screen Width/Length, 72
SCREEN_BRIGHT_WAKE_LOCK, 480
SCREEN_DIM_WAKE_LOCK, 481
SDK, 5–6, 52, 85, 87, 262, 390

installation, 19
SDK Manager, 45–46
seamless, 37–38
search, 351–354

<application>, 352
Content Provider, 353–354
Intent Filter, 352
name, 352
Quick Search Box, 355
value, 352

539

SearchManager – Shared Preference Change Listener

Search Manager, 354
searchSettingsDescription, 355
security, 37, 478–480
SecurityException, 290
seekTo, 367, 370
SELECTED_ALTERNATIVE, 145, 153
Selection State Drawables, 335–337
SelectionStateDrawable, 336–337
SEND, 399
sendBroadcast, 158, 161
sendDataMessage, 403
sendIntent, 480
sendMultipartTextMessage, 402, 403
sendOrderedBroadcast, 161
SEND_SMS, 400
sendTextMessage, 400–401
SEND_TO, 399
Sense UI, 5
sensor(s), 457–475
Sensor Manager, 457–475
SensorEventListener, 459, 464, 473
SensorManager, 472
SensorManager.SENSOR_DELAY_GAME, 460
SensorManager.SENSOR_DELAY_NORMAL, 460
SensorManager.SENSOR_DELAY_UI, 460
SensorManager.SENSOR_STATUS_ACCURACY_HIGH, 460
SensorManager.SENSOR_STATUS_ACCURACY_LOW, 460
SensorManager.SENSOR_STATUS_ACCURACY_MEDIUM, 460
SensorManager.SENSOR_STATUS_UNRELIABLE, 460
SensorManger.SENSOR_DELAY_FASTEST, 460
Sensor.TYPE_ACCELEROMETER, 458
Sensor.TYPE_GYROSCOPE, 458
Sensor.TYPE_LIGHT, 458
Sensor.TYPE_MAGNETIC_FIELD, 458
Sensor.TYPE_ORIENTATION, 458
Sensor.TYPE_PRESSSURE, 458
Sensor.TYPE_PROXIMITY, 458
Sensor.TYPE_TEMPERATURE, 459
sentIntent, 403
Service, 285–326
service, 55
<service>, 289, 360
serviceBinder, 299
ServiceConnection, 298
Services, 50, 285–326

Activities, 297–299
AIDL, 486–487
flag, 289
foreground applications, 299–300
permissions, 479
requires-permission, 289

ServiceState, 397
set, 64
set*, 377
setAdapter, 164
setAlarm, 420
setAnimationListener, 492
setAttribute, 382
setAudioSource, 373
set[audio/video]Encoder, 373
setBackgroundDrawable, 500
setBackgroundResource, 500
setBuiltInZoomControls, 264
setCenter, 264–265
setCheckable, 126

setChecked, 126
setColor, 502
setColorFilter, 506
setContentView, 41, 63, 67, 77, 87–88, 172
onCreate, 27

setDataSource, 366, 369
setDisplay, 367
setGravity, 307
setHeaderIcon, 128
setIcon, 128
setImageLevel, 117
setInexactRepeating, 322
setJpegQuality, 378
setJpegThumbnailQuality, 378
setJpegThumbnailSize, 378
setKeepScreenOn, 367
setLatestEventInfo, 311
setLayoutParams, 90
setLevel, 115
setLooping, 370
setMeasuredDimension, 100, 102, 106
setNetworkPreference, 450
setOnClickPendingIntent, 336
setOnKeyListener, 525
setOnTouchListener, 524
setOutputFile, 373
setOutputFormat, 373
setParameters, 377
setPictureFormat, 378
setPictureSize, 378
setPitch, 484
setPreviewCallback, 380
setPreviewDisplay, 374
setPreviewFormat, 378
setPreviewFrameRate, 378
setPreviewSize, 378
setRepeatCount, 492
setRepeating, 322
setRepeatMode, 492
setResult, 142
setScreenOnWhilePlaying, 370
setShader, 504
setShortcut, 126
setSpeechRate, 484
setStyle, 502
Settings, 238
settingsActivity, 359
setTitle, 172
Setup Auto Responder, 415
setupListenButton, 442
setupListView, 444
setupSearchButton, 444
setVideoPath, 367
setVideoSource, 373
setVideoUri, 367
setView, 307
setViewVisibility, 335
setVolume, 370
setZoom, 264
Shader, 503–504
Shaders, 503–505
<shape>, 111
ShapeDrawable, 111–112
shared data, 7–8, 11
Shared Preference Change Listener, 201

540

SharedPreferences – surfaceCreated

Shared Preferences, 187, 188–189
Preference Activity, 201

SharedPreferences, 188, 294, 416
SharedPreferences.Editor, 188
short messaging service (SMS), 5, 398–422

ADB, 401
Broadcast Receivers, 404, 414
EmergencyResponder, 406–422
Emulator, 405
Location Manager, 412
maximum size, 402–403
security, 37
startActivity, 399
<uses-permission>, 404

shortcut keys, 126
showActivity, 348
SHOW_DAMAGE, 146
showDialog, 175–176
ShutterCallback, 381
SIM, 394–395
Simple Cursor Adapter, 169–170
SimpleCursorAdapter, 163, 169–170
SimpleCursorArrayAdapter, 149
size, 276
skins, testing, 121–122
small screens, 32
smallScreens, 54
smartphones, 9–10, 36
SMS. See short messaging service
SMS Manager, 400
SmsManager, 400
SmsManager.RESULT_ERROR_GENERIC_FAILURE, 401
SmsManager.RESULT_ERROR_NULL_PDU, 401
SmsManager.RESULT_ERROR_RADIO_OFF, 401
SmsMessage, 404
software stack, 13–14
<solid>, 112
Sony Ericsson, 5, 117
sound, 317
sp, 62
speech recognition, 386–388
speed, 32–33
Spinner, 88, 415
SQLite, 4, 7, 44, 209–214
SQLiteDatabase, 231
delete, 218
insert, 217
update, 218

SQLLiteOpenHelper, 214–215, 231
SSID, 453, 455
SSID, 455
SSL, 13
start

Media Recorder, 374
playback, 370

startActivity, 139, 140, 200
implicit Intents, 146
MMS, 399
SMS, 399

startActivityForResult, 139, 140, 195
Camera, 375

startAnimation, 492
startAutoResponder, 409
startColor, 113
startDiscovery, 436

started service processes, 59
START_FLAG_REDELIVERY, 289
START_FLAG_Retry, 289
startForeground, 299
startManagingCursor, 211, 222
startNewActivityForResult, 387
startNextMatchingActivity, 147
START_NOT_STICKY, 288
startOffset, 64, 65
startRecording, 384
START_REDELIVER_INTENT, 288
startService, 287, 290
START_STICKY, 288
State List Drawables, 116
STATE_EMERGENCY_ONLY, 397
STATE_IN_SERVICE, 397
StateListDrawable, 276
StateListDrawables, 63
STATE_OFF, 428
STATE_ON, 427
STATE_OUT_OF_SERVICE, 397
STATE_POWER_OFF, 397
STATE_TURNING_OFF, 428
STATE_TURNING_ON, 427
static files, 207–208
status, 455
status bar, 310
stop, 367, 374
stopForeground, 300
stopManagingCursor, 211
stopped state, 79
stopPlayback, 367
stopSelf, 287, 288, 289
stopService, 287, 290
StreetView, 266
String, 108, 484
<string>, 61
String.format, 61
strings, 61
Linkify, 156–157

STROKE, 502
<stroke>, 112
STROKE_AND_FILL, 502
<style>, 62–63
styles, 62–63

themes, 70
sub-Activities, 140–143
submenus, 124, 128
SUBPIXEL_TEXT_FLAG, 507
SUGGEST_COLUMN, 354
SUGGEST_COLUMN_TEXT_1, 354
SumPathEffect, 506
SUPPLICANT_CONNECTION_CHANGE_ACTION, 452
supports-screens, 53
<supports-screens>, 119
Surface

Live Wallpaper, 359
video playback, 367–369
Video View, 367

Surface, 374
Surface Holder, 367–368
Surface View, 517–520

3D, 519–520
Media Player, 368–369

surfaceCreated, 368

541

SurfaceHolder – uses-permission

SurfaceHolder, 367, 517
SurfaceHolder.Callback, 374, 517
SurfaceView, 102, 374, 517–520

OpenGL, 519–520
sweep, 113
SweepGradient, 503
switchUI, 442, 444–445
BluetoothSocketListener, 447

T
TabActivity, 84
Table Layout, 89
Tablelayout, 89
tables, Content Providers, 215
TAG_*, 382
takePicture, 381
Talk, Google, 5
targetSDKVersion, 52
tel:, 391
telephony, 390–398

Intent Filter, 391
Telephony Manager, 392
TelephonyManager.CALL_STATE_IDLE, 396
TelephonyManager.CALL_STATE_OFFHOOK, 396
TelephonyManager.CALL_STATE_RINGING, 396
temperature sensor, 459, 461
testing

resolution, 122–123
screen size, 122–123
skins, 121–122

text messages, 400–401
Text To Speech (TTS), 481–483
TextView, 77, 87, 88, 92–93, 110
android:ID, 250
animations, 493
Button, 92
ContentPickerTest, 150
Linkify, 155–156
MapView, 279
Toasts, 307
Widgets, 330

themes, 62–63
styles, 70

thickness, 112
thicknessRatio, 112
Thread, 286
Threads, Handler, 300, 320
3D, Surface View, 519–520
3G, 6
thumbnails, 376
TileMode, 504–505
TimePickerDialog, 174
Timers, Handler, 320
timestamp, 460
T-Mobile, 8–9
Toast, 306
Toasts, 286, 306–309
CompassView, 307
TextView, 307
Wi-Fi, 453
worker threads, 308

toDegrees, 114
toPixel, 269
toString, 163, 177

touch screens, 520–523
touchscreen, 73
Touchscreen Type, 72
Traceview, 44
trackballs, 526
Transform Filter, 157
transformative Drawables, 114–115
TransformFilter, 157
transformUrl, 157
translate, 64–65
translucency, 502–503
TTS. See Text To Speech
tweened animations, 64–66, 489–492
type, 399
TYPE_ACCELEROMETER, 461
TYPE_GYROSCOPE, 461
TYPE_LIGHT, 461
TYPE_MAGNETIC FIELD, 461
TYPE_ORIENTATION, 461
TYPE_PRESSURE, 461
TYPE_PROXIMITY, 461
TYPE_TEMPERATURE, 461

U
UI. See user interfaces
UI Navigation Type, 72
UIQ, 3
universally unique identifier (UUID), 434
unregisterReceiver, 160
UNSPECIFIED, 103
update

Content Providers, 225
Content Resolvers, 229–230
SQLiteDatabase, 218

updateAppWidget, 334
updateArray, 222
updateFromPreferences, 195, 196
onCreate, 197

updateNetwork, 455
updateOrientation, 472, 473
updatePeriodMillis, 331
updates, 33
updateUIFromPreferences, 193, 417
updateWithNewLocation
getLastKnownLocation, 251
LocationListener, 254
Map Controller, 267

URI Matcher, 224, 354
UriMatcher, 225, 232
user experience (UX), 86
user interaction events, 104–105
user interfaces (UI), 85–136, 489–526

animations, 489–516
Remote Views, 335
saving state, 187
Widgets, 329

userDictionary, 238
uses-configuration, 52
uses-feature, 53
<uses-features>, 56
uses-library, 262
uses-permission, 55, 152, 179
INTERNET, 171
Location Manager, 249

542

<uses-permission> – zoomOut

Media Recorder, 372
vibrate, 318

<uses-permission>

application, 265
INTERNET, 262
SMS, 404

uses-permissions, 451
uses-sdk, 52
<uses-sdk>, 56
UX. See user experience

V
value, 352
values, 27, 60–62, 460
versionCode, 51
versionName, 51
VIBRATE, 474
vibrate, 475

Emulator, 318
Notification, 317–318
uses-permission, 317

vibration
controlling, 474–475
Notification, 317–318

Vibrator, 475
video, 364–375

Intent, 371–372
playback, 366–370
previewing, 374–375
recording, 371–375

Video View, 366–367
VideoView, 367
View(s), 15, 27

animation, 494–495
custom, 99–110
layouts, 91
Map View, 278–279
RemoteViews, 333

View Groups, 77, 85, 86
ViewFlipper, 88
ViewGroup, 86
scheduleLayoutAnimation, 499

views, 86–89
virtual machine (VM), 13–15

Java, 49
Virtual Machine Manager, 26
visible lifetime, 83
visible processes, 59
VM. See virtual machine
voice over IP (VOIP), 391
VOIP. See voice over IP

W
Wake Locks, 370, 480–481
acquire, 481

WakeLocks, 480–481
<wallpaper>, 359
Wallpaper Search Engine, 360–361
Wallpaper Service, 359–360
WallpaperService, 359–360
WallpaperService.Engine, 360
Web Services, Amazon, 489

WebKit, 4
WEB_URLS, 155
WHITE_BALANCE_*, 378
Widgets, 6, 8, 11, 29, 30, 51, 86, 88–89, 328–346

Activities, 340–341
Alarms, 339–340
click listener, 336
Intent Filter, 332, 338–339
Intent Receiver, 332, 338–339
interactivity, 335–337
layouts, 329–331
minimum update rate, 337–338
NinePatch, 330
PNG, 330
refreshing, 337–340
settings, 331
UI, 329

widthMeasureSpec, 102
Wi-Fi, 6, 170, 451–455

hotspots, 453–454
Toasts, 453

Wi-Fi Connectivity Service, 451–455
Wi-Fi Manager, 451–455
uses-permissions, 451

WifiConfiguration, 454–455
WifiManager, 451–455
WIFI_STATE_CHANGED_ACTION, 452
Window Manager, 36
Windows, 18
Windows Mobile, 3
worker threads, 308
WQVGA432, skins, 122
wrap_content, 90, 120
WRITE_CONTACTS, 243
writePermission, 479
WVGA, 32, 117

skins, 122

X
Xfermode, 507
XML

App Widget, 330–331
Drawables, 110–111
layouts, 89–90
Linkify, 156
Live Wallpaper, 359
menus, 130–131

.xml, 66
xmlns:android, 51
XMLPullParser, 171, 179
Xperia X10, 117

Y
Yahoo! Pipes, 489
YouTube, 5

Z
zoom, MapView, 264–265
zoomIn, 265
zoomOut, 265

543

Related Wrox Books
Beginning iPhone SDK Programming with Objective-C
ISBN: 9780470500972
Learning to develop iPhone applications doesn’t need to be an overwhelming undertaking. This book provides an easy-to-follow,
example-driven introduction to the fundamentals of the Apple iPhone SDK and offers you a clear understanding of how things
are done when programming iPhone applications with Objective-C. When you reach the end of the book, you will be prepared to
confidently tackle your next iPhone programming challenge.

Ivor Horton’s Beginning Java 2: JDK 5 Edition
ISBN: 978-0-7645-6874-9
This comprehensive introduction to Java programming — written by the leading author of computer programming language
tutorials — shows readers how to build real-world Java applications using the Java SDK (software development kit).

Safari and WebKit Development for iPhone OS 3.0
ISBN: 9780470549667
With the unparalleled success of iPhone and iPod touch, iPhone OS 3.0 has emerged as a compelling platform for which vast
numbers of web developers are designing and building web-based mobile applications. This book explores the Safari and WebKit
development platform that is built into iPhone OS 3.0 and takes you through the process of creating an iPhone web application
from the ground up. You’ll learn how to use existing open source frameworks to speed up your development time, imitate qualities
of built-in Apple apps, cache data locally and even run in offline mode, and more. Whether you’re eager to build new web applications
for iPhone OS 3.0 or optimize existing web sites for this platform, you have everything you need to do so within this book.

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Prepared for ASHLEE KABAT/ email0 akabat@spam.la Order number0 56760408 This PDF is for the purchaser’s personal use in accordance with
the Wrox Terms of Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit
www.wrox.com to purchase your own copy.

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Written by an Android authority, this up-to-date resource shows you
how to leverage the features of Android 2 to enhance existing
products or create innovative new ones. Serving as a hands-on guide
to building mobile apps using Android, the book walks you through
a series of sample projects that introduces you to Android’s new features
and techniques. Using the explanations and examples included in
these pages, you’ll acquire the foundation needed to write compelling
mobile applications that use Android, along with the flexibility to
quickly adapt to future enhancements.

Professional Android 2 Application Development:

• Reviews Android as a development platform and best practices
for mobile development

• Provides an in-depth look at the Android application components

• Details creating layouts and Views to produce compelling resolution
independent user interfaces

• Examines Intents and Content Providers for sharing data

• Introduces techniques for creating map-based applications and using
location-based services such as GPS

• Looks at how to create and use background Services, Notifications,
and Alarms

• Demonstrates how to create interactive homescreen components

• Explores the Bluetooth, telephony, and networking APIs

• Examines using hardware, including the camera and sensors such
as the compass and accelerometers

Reto Meier is a software developer who has been involved in Android since the
initial release in 2007. He is an Android Developer Advocate at Google.

Wrox Professional guides are planned and written by working programmers
to meet the real-world needs of programmers, developers, and IT professionals.
Focused and relevant, they address the issues technology professionals face every
day. They provide examples, practical solutions, and expert education in new
technologies, all designed to help programmers do a better job.

Programming / Mobile & Wireless / Android

Build unique mobile applications
with the latest Android SDK

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

 $44.99 USA
 $53.99 CAN

Meier

A
ndroid

™ 2 A
pplication D

evelopm
ent

Reto Meier

Professional

Android™ 2
Application Development

Professional

www.wrox.com

	Professional Android 2 Application Development
	ABOUT THE AUTHOR
	ABOUT THE TECHNICAL EDITOR
	CREDITS
	ACKNOWLEDGMENTS
	CONTENTS
	INTRODUCTION
	WHOM THIS BOOK IS FOR
	WHAT THIS BOOK COVERS
	HOW THIS BOOK IS STRUCTURED
	WHAT YOU NEED TO USE THIS BOOK
	CONVENTIONS
	SOURCE CODE
	ERRATA
	P2P.WROX.COM

	Chapter 1: Hello, Android
	A LITTLE BACKGROUND
	WHAT IT ISN’T
	ANDROID: AN OPEN PLATFORM FOR MOBILE DEVELOPMENT
	NATIVE ANDROID APPLICATIONS
	ANDROID SDK FEATURES
	INTRODUCING THE OPEN HANDSET ALLIANCE
	WHAT DOES ANDROID RUN ON?
	WHY DEVELOP FOR MOBILE?
	WHY DEVELOP FOR ANDROID?
	INTRODUCING THE DEVELOPMENT FRAMEWORK
	SUMMARY

	Chapter 2: Getting Started
	DEVELOPING FOR ANDROID
	DEVELOPING FOR MOBILE DEVICES
	TO-DO LIST EXAMPLE
	ANDROID DEVELOPMENT TOOLS
	SUMMARY

	Chapter 3: Creating Applications and Activities
	WHAT MAKES AN ANDROID APPLICATION?
	INTRODUCING THE APPLICATION MANIFEST
	USING THE MANIFEST EDITOR
	THE ANDROID APPLICATION LIFE CYCLE
	UNDERSTANDING APPLICATION PRIORITY AND PROCESS STATES
	EXTERNALIZING RESOURCES
	INTRODUCING THE ANDROID APPLICATION CLASS
	A CLOSER LOOK AT ANDROID ACTIVITIES
	SUMMARY

	Chapter 4: Creating User Interfaces
	FUNDAMENTAL ANDROID UI DESIGN
	INTRODUCING VIEWS
	INTRODUCING LAYOUTS
	CREATING NEW VIEWS
	DRAWABLE RESOURCES
	RESOLUTION AND DENSITY INDEPENDENCE
	CREATING AND USING MENUS
	SUMMARY

	Chapter 5: Intents, Broadcast Receivers, Adapters, and the Internet
	INTRODUCING INTENTS
	INTRODUCING PENDING INTENTS
	INTRODUCING ADAPTERS
	USING INTERNET RESOURCES
	INTRODUCING DIALOGS
	CREATING AN EARTHQUAKE VIEWER
	SUMMARY

	Chapter 6: Files, Saving State, and Preferences
	SAVING SIMPLE APPLICATION DATA
	CREATING AND SAVING PREFERENCES
	RETRIEVING SHARED PREFERENCES
	CREATING A SETTINGS ACTIVITY FOR THE EARTHQUAKE VIEWER
	INTRODUCING THE PREFERENCE ACTIVITY AND PREFERENCES FRAMEWORK
	CREATING A STANDARD PREFERENCE ACTIVITY FOR THE EARTHQUAKE VIEWER
	SAVING ACTIVITY STATE
	SAVING AND LOADING FILES
	INCLUDING STATIC FILES AS RESOURCES
	FILE MANAGEMENT TOOLS
	SUMMARY

	Chapter 7: Databases and Content Providers
	INTRODUCING ANDROID DATABASES
	INTRODUCING SQLite
	CURSORS AND CONTENT VALUES
	WORKING WITH SQLite DATABASES
	CREATING A NEW CONTENT PROVIDER
	USING CONTENT PROVIDERS
	CREATING AND USING AN EARTHQUAKE CONTENT PROVIDER
	NATIVE ANDROID CONTENT PROVIDERS
	SUMMARY

	Chapter 8: Geocoding, and Location-Based Services
	USING LOCATION-BASED SERVICES
	CONFIGURING THE EMULATOR TO TEST LOCATION-BASED SERVICES
	UPDATING LOCATIONS IN EMULATOR LOCATION PROVIDERS
	SELECTING A LOCATION PROVIDER
	FINDING YOUR LOCATION
	USING PROXIMITY ALERTS
	USING THE GEOCODER
	CREATING MAP-BASED ACTIVITIES
	MAPPING EARTHQUAKES EXAMPLE
	SUMMARY

	Chapter 9: Working in the Background
	INTRODUCING SERVICES
	USING BACKGROUND THREADS
	LET’S MAKE A TOAST
	INTRODUCING NOTIFICATIONS
	USING ALARMS
	SUMMARY

	Chapter 10: Invading the Phone-Top
	INTRODUCING HOME-SCREEN WIDGETS
	CREATING APP WIDGETS
	CREATING AN EARTHQUAKE WIDGET
	INTRODUCING LIVE FOLDERS
	ADDING SEARCH TO YOUR APPLICATIONS AND THE QUICK SEARCH BOX
	CREATING LIVE WALLPAPER
	SUMMARY

	Chapter 11: Audio, Video, and Using the Camera
	PLAYING AUDIO AND VIDEO
	RECORDING AUDIO AND VIDEO
	USING THE CAMERA AND TAKING PICTURES
	ADDING NEW MEDIA TO THE MEDIA STORE
	RAW AUDIO MANIPULATION
	SPEECH RECOGNITION
	SUMMARY

	Chapter 12: Telephony and SMS
	TELEPHONY
	INTRODUCING SMS AND MMS
	SUMMARY

	Chapter 13: Bluetooth, Networks, and Wi-Fi
	USING BLUETOOTH
	MANAGING NETWORK CONNECTIVITY
	MANAGING YOUR WI-FI
	SUMMARY

	Chapter 14: Sensors
	USING SENSORS AND THE SENSOR MANAGER
	INTERPRETING SENSOR VALUES
	USING THE COMPASS, ACCELEROMETER, AND ORIENTATION SENSORS
	CONTROLLING DEVICE VIBRATION
	SUMMARY

	Chapter 15: Advanced Android Development
	PARANOID ANDROID
	USING WAKE LOCKS
	INTRODUCING ANDROID TEXT TO SPEECH
	USING AIDL TO SUPPORT IPC FOR SERVICES
	USING INTERNET SERVICES
	BUILDING RICH USER INTERFACES
	SUMMARY

	INDEX

