

Programming Android

Programming Android

Zigurd Mednieks, Laird Dornin, G. Blake Meike,
and Masumi Nakamura

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Programming Android
by Zigurd Mednieks, Laird Dornin, G. Blake Meike, and Masumi Nakamura

Copyright © 2011 Zigurd Mednieks, Laird Dornin, G. Blake Meike, and Masumi Nakamura. All rights
reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Brian Jepson
Production Editor: Adam Zaremba
Copyeditor: Audrey Doyle
Technical Editors: Vijay S. Yellapragada and Johan

van der Hoeven
Proofreader: Sada Preisch

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

Printing History:
July 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Android, the image of a pine grosbeak, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-38969-7

[LSI]

1310671393

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . xiii

Part I. Tools and Basics

1. Your Toolkit . 3
Installing the Android SDK and Prerequisites 3

The Java Development Kit (JDK) 4
The Eclipse Integrated Development Environment (IDE) 5
The Android SDK 7
Adding Build Targets to the SDK 8
The Android Development Toolkit (ADT) Plug-in for Eclipse 9

Test Drive: Confirm That Your Installation Works 12
Making an Android Project 12
Making an Android Virtual Device (AVD) 16
Running a Program on an AVD 19
Running a Program on an Android Device 20
Troubleshooting SDK Problems: No Build Targets 21

Components of the SDK 21
The Android Debug Bridge (adb) 21
The Dalvik Debug Monitor Server (DDMS) 21
Components of the ADT Eclipse Plug-in 23
Android Virtual Devices 25
Other SDK Tools 26

Keeping Up-to-Date 28
Keeping the Android SDK Up-to-Date 28
Keeping Eclipse and the ADT Plug-in Up-to-Date 29
Keeping the JDK Up-to-Date 29

Example Code 30
SDK Example Code 30
Example Code from This Book 30

On Reading Code 32

v

2. Java for Android . 33
Android Is Reshaping Client-Side Java 33
The Java Type System 34

Primitive Types 34
Objects and Classes 35
Object Creation 35
The Object Class and Its Methods 37
Objects, Inheritance, and Polymorphism 39
Final and Static Declarations 41
Abstract Classes 45
Interfaces 46
Exceptions 48
The Java Collections Framework 52
Garbage Collection 55

Scope 56
Java Packages 56
Access Modifiers and Encapsulation 57

Idioms of Java Programming 59
Type Safety in Java 59
Using Anonymous Classes 62
Modular Programming in Java 65
Basic Multithreaded Concurrent Programming in Java 68
Synchronization and Thread Safety 68
Thread Control with wait() and notify() Methods 71
Synchronization and Data Structures 73

3. The Ingredients of an Android Application . 75
Traditional Programming Models Compared to Android 75
Activities, Intents, and Tasks 77
Other Android Components 78

Service 79
Content Providers 79
BroadcastReceiver 82

Static Application Resources and Context 82
Application Manifests 83
A Typical Source Tree 84
Initialization Parameters in AndroidManifest.xml 84

Resources 87
The Android Application Runtime Environment 88

The Dalvik VM 89
Zygote: Forking a New Process 89
Sandboxing: Processes and Users 89

Component Life Cycles 90

vi | Table of Contents

The Activity Life Cycle 90
Packaging an Android Application: The .apk File 92
On Porting Software to Android 93

4. Getting Your Application into Users’ Hands . 95
Application Signing 95

Public Key Encryption and Cryptographic Signing 95
How Signatures Protect Software Users, Publishers, and
Secure Communications 97
Signing an Application 98

Placing an Application for Distribution in the Android Market 105
Becoming an Official Android Developer 106
Uploading Applications in the Market 106
Getting Paid 107

Google Maps API Keys 108
Specifying API-Level Compatibility 109
Compatibility with Many Kinds of Screens 109

Testing for Screen Size Compatibility 110
Resource Qualifiers and Screen Sizes 110

5. Eclipse for Android Software Development . 111
Eclipse Concepts and Terminology 112

Plug-ins 112
Workspaces 113
Java Environments 114
Projects 115
Builders and Artifacts 115
Extensions 115
Associations 117

Eclipse Views and Perspectives 117
The Package Explorer View 118
The Task List View 118
The Outline View 119
The Problems View 120

Java Coding in Eclipse 120
Editing Java Code and Code Completion 120
Refactoring 121

Eclipse and Android 122
Preventing Bugs and Keeping Your Code Clean 122

Static Analyzers 123
Applying Static Analysis to Android Code 127
Limitations of Static Analysis 130

Eclipse Idiosyncrasies and Alternatives 130

Table of Contents | vii

6. Effective Java for Android . 133
The Android Framework 133

The Android Libraries 133
Extending Android 135

Organizing Java Source 140
Concurrency in Android 142

AsyncTask and the UI Thread 143
Threads in an Android Process 154

Serialization 156
Java Serialization 157
Parcelable 159
Classes That Support Serialization 162
Serialization and the Application Life Cycle 163

Part II. About the Android Framework

7. Building a View . 167
Android GUI Architecture 167

The Model 167
The View 168
The Controller 169
Putting It Together 169

Assembling a Graphical Interface 171
Wiring Up the Controller 176

Listening to the Model 178
Listening for Touch Events 183
Listening for Key Events 186
Alternative Ways to Handle Events 187
Advanced Wiring: Focus and Threading 189

The Menu 193

8. Fragments and Multiplatform Support . 197
Creating a Fragment 198
Fragment Life Cycle 201
The Fragment Manager 202
Fragment Transactions 203
The Compatibility Package 208

9. Drawing 2D and 3D Graphics . 211
Rolling Your Own Widgets 211

Layout 212
Canvas Drawing 217

viii | Table of Contents

Drawables 228
Bitmaps 232

Bling 234
Shadows, Gradients, and Filters 237
Animation 238
OpenGL Graphics 243

10. Handling and Persisting Data . 247
Relational Database Overview 247
SQLite 248
The SQL Language 248

SQL Data Definition Commands 249
SQL Data Manipulation Commands 252
Additional Database Concepts 254
Database Transactions 255
Example Database Manipulation Using sqlite3 255

SQL and the Database-Centric Data Model for Android Applications 258
The Android Database Classes 259
Database Design for Android Applications 260

Basic Structure of the SimpleVideoDbHelper Class 261
Using the Database API: MJAndroid 264

Android and Social Networking 264
The Source Folder (src) 265
Loading and Starting the Application 267
Database Queries and Reading Data from the Database 267
Modifying the Database 271

Part III. A Skeleton Application for Android

11. A Framework for a Well-Behaved Application . 279
Visualizing Life Cycles 280

Visualizing the Activity Life Cycle 280
Visualizing the Fragment Life Cycle 292
The Activity Class and Well-Behaved Applications 295

The Activity Life Cycle and the User Experience 296
Life Cycle Methods of the Application Class 296
A Flowing and Intuitive User Experience Across Activities 299

Multitasking in a Small-Screen Environment 299
Tasks and Applications 299
Specifying Launch and Task Behavior 300

Table of Contents | ix

12. Using Content Providers . 305
Understanding Content Providers 306

Implementing a Content Provider 307
Browsing Video with Finch 308

Defining a Provider Public API 309
Defining the CONTENT_URI 310
Creating the Column Names 312
Declaring Column Specification Strings 312

Writing and Integrating a Content Provider 314
Common Content Provider Tasks 314

File Management and Binary Data 316
Android MVC and Content Observation 318
A Complete Content Provider: The SimpleFinchVideoContentProvider
Code 319

The SimpleFinchVideoContentProvider Class and Instance Variables 319
Implementing the onCreate Method 321
Implementing the getType Method 322
Implementing the Provider API 322
Determining How Often to Notify Observers 327

Declaring Your Content Provider 327

13. Exploring Content Providers . 329
Developing RESTful Android Applications 330
A “Network MVC” 331
Summary of Benefits 333
Code Example: Dynamically Listing and Caching YouTube
Video Content 334
Structure of the Source Code for the Finch YouTube Video Example 335
Stepping Through the Search Application 336
Step 1: Our UI Collects User Input 337
Step 2: Our Controller Listens for Events 337
Step 3: The Controller Queries the Content Provider with a managedQuery
on the Content Provider/Model 338
Step 4: Implementing the RESTful Request 338

Constants and Initialization 338
Creating the Database 339
A Networked Query Method 339
insert and ResponseHandlers 352
File Management: Storing Thumbnails 353

x | Table of Contents

Part IV. Advanced Topics

14. Multimedia . 359
Audio and Video 359
Playing Audio and Video 360

Audio Playback 361
Video Playback 363

Recording Audio and Video 364
Audio Recording 365
Video Recording 368

Stored Media Content 369

15. Location and Mapping . 371
Location-Based Services 372
Mapping 373
The Google Maps Activity 373
The MapView and MapActivity 374
Working with MapViews 375
MapView and MyLocationOverlay Initialization 375
Pausing and Resuming a MapActivity 378
Controlling the Map with Menu Buttons 379
Controlling the Map with the Keypad 381
Location Without Maps 382

The Manifest and Layout Files 382
Connecting to a Location Provider and Getting Location Updates 383
Updating the Emulated Location 386

16. Sensors, NFC, Speech, Gestures, and Accessibility . 391
Sensors 391

Position 393
Other Sensors 395

Near Field Communication (NFC) 396
Reading a Tag 396
Writing to a Tag 403
P2P Mode 405

Gesture Input 406
Accessibility 407

17. Communication, Identity, Sync, and Social Media . 411
Account Contacts 411
Authentication and Synchronization 414

Authentication 415

Table of Contents | xi

Synchronization 422
Bluetooth 429

The Bluetooth Protocol Stack 429
Bluez: The Linux Bluetooth Implementation 431
Using Bluetooth in Android Applications 431

18. The Android Native Development Kit (NDK) . 445
Native Methods and JNI Calls 446

Conventions on the Native Method Side 446
Conventions on the Java Side 447

The Android NDK 448
Setting Up the NDK Environment 448
Compiling with the NDK 448
JNI, NDK, and SDK: A Sample App 449

Android-Provided Native Libraries 451
Building Your Own Custom Library Modules 453
Native Activities 456

Index . 463

xii | Table of Contents

Preface

The purpose of this book is to enable you to create well-engineered Android applica-
tions that go beyond the scope of small example applications.

This book is for people coming to Android programming from a variety of backgrounds.
If you have been programming iPhone or Mac OS applications in Objective-C, you will
find coverage of Android tools and Java language features relevant to Android pro-
gramming that will help you bring your knowledge of mobile application development
to Android. If you are an experienced Java coder, you will find coverage of Android
application architecture that will enable you to use your Java expertise in this newly
vibrant world of client Java application development. In short, this is a book for people
with some relevant experience in object-oriented languages, mobile applications, REST
applications, and similar disciplines who want to go further than an introductory book
or online tutorials will take them.

How This Book Is Organized
We want to get you off to a fast start. The chapters in the first part of this book will
step you through using the SDK tools so that you can access example code in this book
and in the SDK, even as you expand your knowledge of SDK tools, Java, and database
design. The tools and basics covered in the first part might be familiar enough to you
that you would want to skip to Part II where we build foundational knowledge for
developing larger Android applications.

The central part of this book is an example of an application that uses web services to
deliver information to the user—something many applications have at their core. We
present an application architecture, and a novel approach to using Android’s frame-
work classes that enables you to do this particularly efficiently. You will be able to use
this application as a framework for creating your own applications, and as a tool for
learning about Android programming.

In the final part of this book, we explore Android APIs in specific application areas:
multimedia, location, sensors, and communication, among others, in order to equip
you to program applications in your specific area of interest.

xiii

By the time you reach the end of this book, we want you to have gained knowledge
beyond reference material and a walk-through of examples. We want you to have a
point of view on how to make great Android applications.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming Android by Zigurd

xiv | Preface

Mednieks, Laird Dornin, G. Blake Meike, and Masumi Nakamura. Copyright 2011
O’Reilly Media, Inc., 978-1-449-38969-7.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search more than 7,500 technology and creative reference books and vid-
eos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9781449389697

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Preface | xv

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/9781449389697
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The authors have adapted portions of this book from their previously released title,
Android Application Development (O’Reilly).

Drafts of this book were released on the O’Reilly Open Feedback Publishing System
(OFPS) in order to get your feedback on whether and how we are meeting the goals for
this book. We are very grateful for the readers who participated in OFPS, and we owe
them much in correcting our errors and improving our writing. Open review of drafts
will be part of future editions, and we welcome your views on every aspect of this book.

xvi | Preface

http://www.youtube.com/oreillymedia
http://oreilly.com/catalog/9780470344712/

PART I

Tools and Basics

Part I shows you how to install and use your tools, what you need to know about Java
to write good Android code, and how to design and use SQL databases, which are
central to the Android application model, persistence system, and implementation of
key design patterns in Android programs.

CHAPTER 1

Your Toolkit

This chapter shows you how to install the Android software development kit (SDK)
and all the related software you’re likely to need. By the end, you’ll be able to run a
simple “Hello World” program on an emulator. Windows, Mac OS X, and Linux sys-
tems can all be used for Android application development. We will load the software,
introduce you to the tools in the SDK, and point you to sources of example code.

Throughout this book, and especially in this chapter, we refer to instructions available
on various websites for installing and updating the tools you will use for creating An-
droid programs. The most important place to find information and links to tools is the
Android Developers site:

http://developer.android.com

Our focus is on guiding you through installation, with explanations that will help you
understand how the parts of Android and its developer tools fit together, even as the
details of each part change.

The links cited in this book may change over time. Descriptions and updated links are
posted on this book’s website. You can find a link to the website on this book’s catalog
page. You may find it convenient to have the book’s website open as you read so that
you can click through links on the site rather than entering the URLs printed in this
book.

Installing the Android SDK and Prerequisites
Successfully installing the Android SDK requires two other software systems that are
not part of the Android SDK: the Java Development Kit (JDK) and the Eclipse integrated
development environment (IDE). These two systems are not delivered as part of the
Android SDK because you may be using them for purposes outside of Android software
development, or because they may already be installed on your system, and redundant
installations of these systems can cause version clashes.

3

http://developer.android.com
http://oreilly.com/catalog/0636920010364
http://oreilly.com/catalog/0636920010364

The Android SDK is compatible with a range of recent releases of the JDK and the
Eclipse IDE. Installing the current release of each of these tools will usually be the right
choice. The exact requirements are specified on the System Requirements page of the
Android Developers site: http://developer.android.com/sdk/requirements.html.

One can use IDEs other than Eclipse in Android software development, and informa-
tion on using other IDEs is provided in the Android documentation at http://developer
.android.com/guide/developing/other-ide.html. We chose Eclipse as the IDE covered in
this book because Eclipse supports the greatest number of Android SDK tools and other
plug-ins, and Eclipse is the most widely used Java IDE, but IntelliJ IDEA is an alternative
many Java coders prefer.

The Java Development Kit (JDK)
If your system has an up-to-date JDK installed, you won’t need to install it again. The
JDK provides tools, such as the Java compiler, used by IDEs and SDKs for developing
Java programs. The JDK also contains a Java Runtime Environment (JRE), which en-
ables Java programs, such as Eclipse, to run on your system.

If you are using a Macintosh running a version of Mac OS X supported by the Android
SDK, the JDK is already installed.

If you are using Ubuntu Linux, you can install the JDK using the package manager,
through the following command:

sudo apt-get install sun-java6-jdk

If this command reports that the JDK package is not available, you may
need to enable the “partner” repositories using the Synaptic Package
Manager utility in the System→Administration menu. The “partner” re-
positories are listed on the Other Software tab after you choose Set-
tings→Repositories.

This is one of the very few places in this chapter where you will see a version number,
and it appears here only because it can’t be avoided. The version number of the JDK is
in the package name. But, as with all other software mentioned in this chapter, you
should refer to up-to-date online documentation to determine the version you will need.

If you are a Windows user, or you need to install the JDK from Oracle’s site for some
other reason, you can find the JDK at http://www.oracle.com/technetwork/java/javase/
downloads/index.html.

4 | Chapter 1: Your Toolkit

http://developer.android.com/sdk/requirements.html
http://developer.android.com/guide/developing/other-ide.html
http://developer.android.com/guide/developing/other-ide.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

The Downloads page will automatically detect your system and offer to download the
correct version. The installer you download is an executable file. Run the executable
installer file to install the JDK.

To confirm that the JDK is installed correctly, issue this command from the command
line (Terminal on Linux and Mac; Command Prompt on Windows):

javac -version

If the javac command is not in your PATH, you may need to add the
bin directory in the JDK to your path manually.

It should display the version number corresponding to the version of the JDK you
installed. If you installed revision 20 of the Java 6 JDK, the command would display:

javac 1.6.0_20

Depending on the current version of the JDK available when you read this, version
numbers may differ from what you see here.

If it is unclear which JRE you are running, or if you think you have the
wrong JRE running on a Debian-derived Linux system, such as Ubuntu,
you can use the following command to display the available JREs and
select the right one:

sudo update-alternatives --config java

The Eclipse Integrated Development Environment (IDE)
Eclipse is a general-purpose technology platform. It has been applied to a variety of
uses in creating IDEs for multiple languages and in creating customized IDEs for many
specialized SDKs, as well as to uses outside of software development tools, such as
providing a Rich Client Platform (RCP) for Lotus Notes and a few other applications.

Eclipse is usually used as an IDE for writing, testing, and debugging software, especially
Java software. There are also several derivative IDEs and SDKs for various kinds of Java
software development based on Eclipse. In this case, you will take a widely used Eclipse
package and add a plug-in to it to make it usable for Android software development.
Let’s get that Eclipse package and install it.

Eclipse can be downloaded from http://www.eclipse.org/downloads.

You will see a selection of the most commonly used Eclipse packages on this page. An
Eclipse “package” is a ready-made collection of Eclipse modules that make Eclipse
better suited for certain kinds of software development. Usually, Eclipse users start
with one of the Eclipse packages available for download on this page and customize it
with plug-ins, which is what you will do when you add the Android Development Tools

Installing the Android SDK and Prerequisites | 5

http://www.eclipse.org/downloads

(ADT) plug-in to your Eclipse installation. The System Requirements article on the
Android Developers site lists three choices of Eclipse packages as a basis for an Eclipse
installation for Android software development:

• Eclipse Classic (for Eclipse 3.5 or later)

• Eclipse IDE for Java Developers

• Eclipse for RCP/Plug-in Developers

Any of these will work, though unless you are also developing Eclipse plug-ins, choos-
ing either Classic or the Java Developers package (EE or Standard) makes the most
sense. The authors of this book started with the Java EE Developers package (“EE”
stands for Enterprise Edition), and screenshots of Eclipse used in this book reflect that
choice.

The Eclipse download site will automatically determine the available system-specific
downloads for your system, though you may have to choose between 32 and 64 bits to
match your operating system. The file you download is an archive. To install Eclipse,
open the archive and copy the eclipse folder to your home folder. The executable file
for launching Eclipse on your system will be found in the folder you just extracted from
the archive.

We really mean it about installing Eclipse in your home folder (or an-
other folder you own), especially if you have multiple user accounts on
your system. Do not use your system’s package manager. Your Eclipse
installation is one of a wide range of possible groupings of Eclipse plug-
ins. In addition, you will probably further customize your installation
of Eclipse. And Eclipse plug-ins and updates are managed separately
from other software in your system.

For these reasons, it is very difficult to successfully install and use Eclipse
as a command available to all users on your system, even if your system
can do this from its package manager. To successfully complete an in-
stallation as it is described here, you must install Eclipse in a folder
managed by one user, and launch it from this location.

If you are using Ubuntu or another Linux distribution, you should not install Eclipse
from your distribution’s repositories, and if it is currently installed this way, you must
remove it and install Eclipse as described here. The presence of an “eclipse” package
in the Ubuntu repositories is an inheritance from the Debian repositories on which
Ubuntu is based. It is not a widely used approach to installing and using Eclipse, be-
cause most of the time, your distribution’s repositories will have older versions of
Eclipse.

6 | Chapter 1: Your Toolkit

To confirm that Eclipse is correctly installed and that you have a JRE that supports
Eclipse, launch the executable file in the Eclipse folder. You may want to make a short-
cut to this executable file to launch Eclipse more conveniently. You should see the
Welcome screen shown in Figure 1-1.

Eclipse is implemented in Java and requires a JRE. The JDK you previously installed
provides a JRE. If Eclipse does not run, you should check that the JDK is correctly
installed.

Figure 1-1. Welcome screen that you see the first time you run Eclipse

The Android SDK
With the JDK and Eclipse installed, you have the prerequisites for the Android SDK,
and are ready to install the SDK. The Android SDK is a collection of files: libraries,
executables, scripts, documentation, and so forth. Installing the SDK means down-
loading the version of the SDK for your platform and putting the SDK files into a folder
in your home directory.

To install the SDK, download the SDK package that corresponds to your system from
http://developer.android.com/sdk/index.html.

The download is an archive. Open the archive and extract the folder in the archive to
your home folder.

Installing the Android SDK and Prerequisites | 7

http://developer.android.com/sdk/index.html

If you are using a 64-bit version of Linux, you may need to install the
ia32-libs package.

To check whether you need this package, try running the adb command
(~/android-sdk-linux_*/platform-tools/adb). If your system reports
that adb cannot be found (despite being right there in the platform-
tools directory) it likely means that the current version of adb, and pos-
sibly other tools, will not run without the ia32-libs package installed.
The command to install the ia32-libs package is:

sudo apt-get install ia32-libs

The SDK contains one or two folders for tools: one named tools and, starting in version
8 of the SDK, another called platform-tools. These folders need to be on your path,
which is a list of folders your system searches for executable files when you invoke an
executable from the command line. On Macintosh and Linux systems, setting the
PATH environment variable is done in the .profile (Ubuntu) or .bash_profile (Mac OS X)
file in your home directory. Add a line to that file that sets the PATH environment variable
to include the tools directory in the SDK (individual entries in the list are separated by
colons). For example, you could use the following line (but replace both instances of
~/android-sdk-ARCH with the full path to your Android SDK install):

export PATH=$PATH:~/android-sdk-ARCH/tools:~/android-sdk-ARCH/platform-tools

On Windows systems, click Start→right-click Computer, and choose Properties. Then
click Advanced System Settings, and click the Environment Variables button. Double-
click the path system variable, and add the path to the folders by going to the end of
this variable’s value (do not change anything that’s already there!) and adding the two
paths to the end, separated by semicolons with no space before them. For example:

;C:\android-sdk-windows\tools;C:\android-sdk-windows\platform-tools

After you’ve edited your path on Windows, Mac, or Linux, close and reopen any Com-
mand Prompts or Terminals to pick up the new PATH setting (on Ubuntu, you may need
to log out and log in unless your Terminal program is configured as a login shell).

Adding Build Targets to the SDK
Before you can build an Android application, or even create a project that would try to
build an Android application, you must install one or more build targets. To do this,
you will use the SDK and AVD Manager. This tool enables you to install packages in
the SDK that will support multiple versions of the Android OS and multiple API levels.

Once the ADT plug-in is installed in Eclipse, which we describe in the next section, the
SDK and AVD Manager can be invoked from within Eclipse. It can also be invoked
from the command line, which is how we will do it here. To invoke the SDK and AVD
Manager from the command line, issue this command:

android

8 | Chapter 1: Your Toolkit

The screenshot in Figure 1-2 shows the SDK and AVD Manager, with all the available
SDK versions selected for installation.

Figure 1-2. The SDK and AVD Manager, which enables installation of Android API levels

The packages labeled “SDK platform” support building applications compatible with
different Android API levels. You should install, at a minimum, the most recent (highest
numbered) version, but installing all the available API levels, and all the Google API
add-on packages, is a good choice if you might someday want to build applications
that run on older Android versions. You should also install, at a minimum, the most
recent versions of the example applications package. You must also install the Android
SDK Platform-Tools package.

The Android Development Toolkit (ADT) Plug-in for Eclipse
Now that you have the SDK files installed, along with Eclipse and the JDK, there is one
more critical part to install: the Android Developer Toolkit (ADT) plug-in. The ADT
plug-in adds Android-specific functionality to Eclipse.

Software in the plug-in enables Eclipse to build Android applications, launch the An-
droid emulator, connect to debugging services on the emulator, edit Android XML files,
edit and compile Android Interface Definition Language (AIDL) files, create Android
application packages (.apk files), and perform other Android-specific tasks.

Installing the Android SDK and Prerequisites | 9

Using the Install New Software Wizard to download and install the ADT plug-in

You start the Install New Software Wizard by selecting Help→Install New Software
(Figure 1-3). To install the ADT plug-in, type this URL into the Work With field and
press Return or Enter: https://dl-ssl.google.com/android/eclipse/ (see Figure 1-4).

Figure 1-3. The Eclipse Add Site dialog

More information on installing the ADT plug-in using the Install New
Software Wizard can be found on the Android Developers site, at http:
//developer.android.com/sdk/eclipse-adt.html#downloading.

Eclipse documentation on this wizard can be found on the Eclipse doc-
umentation site, at http://help.eclipse.org/galileo/index.jsp?topic=/org
.eclipse.platform.doc.user/tasks/tasks-124.htm.

Once you have added the URL to the list of sites for acquiring new plug-ins, you will
see an entry called Developer Tools listed in the Available Software list.

Select the Developer Tools item by clicking on the checkbox next to it, and click on
the Next button. The next screen will ask you to accept the license for this software.
After you accept and click Finish, the ADT will be installed. You will have to restart
Eclipse to complete the installation.

10 | Chapter 1: Your Toolkit

http://developer.android.com/sdk/eclipse-adt.html#downloading
http://developer.android.com/sdk/eclipse-adt.html#downloading
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.platform.doc.user/tasks/tasks-124.htm
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.platform.doc.user/tasks/tasks-124.htm

Configuring the ADT plug-in

One more step, and you are done installing. Once you have installed the ADT plug-in,
you will need to configure it. Installing the plug-in means that various parts of Eclipse
now contain Android software development-specific dialogs, menu commands, and
other tools, including the dialog you will now use to configure the ADT plug-in. Start
the Preferences dialog using the Window→Preferences (Linux and Windows) or
Eclipse→Preferences (Mac) menu option. Click the item labeled Android in the left pane
of the Preferences dialog.

The first time you visit this section of the preferences, you’ll see a dialog
asking if you want to send some usage statistics to Google. Make your
choice and click Proceed.

A dialog with the Android settings is displayed next. In this dialog, a text entry field
labeled “SDK location” appears near the top. You must enter the path to where you
put the SDK, or you can use the file browser to select the directory, as shown in Fig-
ure 1-5. Click Apply. Note that the build targets you installed, as described in “Adding
Build Targets to the SDK” on page 8, are listed here as well.

Figure 1-4. The Eclipse Install New Software dialog with the Android Hierarch Viewer plug-in shown
as available

Installing the Android SDK and Prerequisites | 11

Your Android SDK installation is now complete.

Test Drive: Confirm That Your Installation Works
If you have followed the steps in this chapter, and the online instructions referred to
here, your installation of the Android SDK is now complete. To confirm that everything
you installed so far works, let’s create a simple Android application.

Making an Android Project
The first step in creating a simple Android application is to create an Android project.
Eclipse organizes your work into “projects,” and by designating your project as an

Figure 1-5. Configuring the SDK location into the Eclipse ADT plug-in using the Android Preferences
dialog

12 | Chapter 1: Your Toolkit

Android project, you tell Eclipse that the ADT plug-in and other Android tools are
going to be used in conjunction with this project.

Reference information and detailed online instructions for creating an
Android project can be found at http://developer.android.com/guide/de
veloping/eclipse-adt.html.

Start your new project with the File→New→Android Project menu command. Locate
the Android Project option in the New Project dialog (it should be under a section
named Android). Click Next, and the New Project dialog appears as shown in Fig-
ure 1-6.

To create your Android project, you will provide the following information:

Project name
This is the name of the project (not the application) that appears in Eclipse. Type
TestProject, as shown in Figure 1-6.

Workspace
A workspace is a folder containing a set of Eclipse projects. In creating a new
project, you have the choice of creating the project in your current workspace, or
specifying a different location in the filesystem for your project. Unless you need
to put this project in a specific location, use the defaults (“Create new project in
workspace” and “Use default location”).

Target name
The Android system images you installed in the SDK are shown in the build target
list. You can pick one of these system images, and the corresponding vendor, plat-
form (Android OS version number), and API level as the target for which your
application is built. The platform and API level are the most important parameters
here: they govern the Android platform library that your application will be com-
piled with, and the API level supported—APIs with a higher API level than the one
you select will not be available to your program. For now, pick the most recent
Android OS version and API level you have installed.

Application name
This is the application name the user will see. Type Test Application.

Package name
The package name creates a Java package namespace that uniquely identifies pack-
ages in your application, and must also uniquely identify your whole Android ap-
plication among all other installed applications. It consists of a unique domain
name—the application publisher’s domain name—plus a name specific to the ap-
plication. Not all package namespaces are unique in Java, but the conventions used
for Android applications make namespace conflicts less likely. In our example we
used com.oreilly.testapp, but you can put something appropriate for your domain

Test Drive: Confirm That Your Installation Works | 13

http://developer.android.com/guide/developing/eclipse-adt.html
http://developer.android.com/guide/developing/eclipse-adt.html

Figure 1-6. The New Android Project dialog

14 | Chapter 1: Your Toolkit

here (you can also use com.example.testapp, since example.com is a domain name
reserved for examples such as this one).

Activity
An activity is a unit of interactive user interface in an Android application, usually
corresponding to a group of user interface objects occupying the entire screen.
Optionally, when you create a project you can have a skeleton activity created for
you. If you are creating a visual application (in contrast with a service, which can
be “headless”—without a visual UI), this is a convenient way to create the activity
the application will start with. In this example, you should create an activity called
TestActivity.

Minimum SDK version
The field labeled Min SDK Version should contain an integer corresponding to the
minimum SDK version required by your application, and is used to initialize the
uses-sdk attribute in the application’s manifest, which is a file that stores applica-
tion attributes. See “The Android Manifest Editor” on page 24. In most cases,
this should be the same as the API level of the build target you selected, which is
displayed in the rightmost column of the list of build targets, as shown in Figure 1-6.

Click Finish (not Next) to create your Android project, and you will see it listed in the
left pane of the Eclipse IDE as shown in Figure 1-7.

Figure 1-7. The Package Explorer view, showing the files, and their components, that are part of the
project

Test Drive: Confirm That Your Installation Works | 15

If you expand the view of the project hierarchy by clicking the “+” (Windows) or tri-
angle (Mac and Linux) next to the project name, you will see the various parts of an
Android project. Expand the src folder and you will see a Java package with the name
you entered in the wizard. Expand that package and you will see the Activity class
created for you by the wizard. Double-click that, and you will see the Java code of your
first Android program:

package com.oreilly.demo.pa.ch01.testapp;

import android.app.Activity;
import android.os.Bundle;
import com.oreilly.demo.pa.ch01.R;

public class TestActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

If you’ve been following along and see the same thing on your computer, your SDK
installation is probably working correctly. But let’s make sure, and explore the SDK
just a bit further, by running your first program in an emulator and on an Android
device if you have one handy.

Making an Android Virtual Device (AVD)
The Android SDK provides an emulator, which emulates a device with an ARM CPU
running an Android operating system (OS), for running Android programs on your PC.
An Android Virtual Device (AVD) is a set of parameters for this emulator that configures
it to use a particular system image—that is, a particular version of the Android operating
system—and to set other parameters that govern screen size, memory size, and other
emulated hardware characteristics. Detailed documentation on AVDs is available at
http://developer.android.com/guide/developing/tools/avd.html, and detailed documen-
tation on the emulator is found here: http://developer.android.com/guide/developing/
tools/emulator.html.

Because we are just validating that your SDK installation works, we won’t go into depth
on AVDs, much less details of the emulator, just yet. Here, we will use the Android
SDK and AVD Manager (see Figure 1-8) to set up an AVD for the purpose of running
the program we just created with the New Android Project Wizard.

16 | Chapter 1: Your Toolkit

http://developer.android.com/guide/developing/tools/avd.html
http://developer.android.com/guide/developing/tools/emulator.html
http://developer.android.com/guide/developing/tools/emulator.html

Figure 1-8. The SDK and AVD Manager

You will need to create an AVD with a system image that is no less recent than the
target specified for the project you created. Click the New button. You will now see
the Create New Android Virtual Device (AVD) dialog, shown in Figure 1-9, where you
specify the parameters of your new AVD.

This screen enables you to set the parameters of your new AVD:

Name
This is the name of the AVD. You can use any name for an AVD, but a name that
indicates which system image it uses is helpful.

Target
The Target parameter sets which system image will be used in this AVD. It should
be the same as, or more recent than, the target you selected as the build target for
your first Android project.

SD Card
Some applications require an SD card that extends storage beyond the flash mem-
ory built into an Android device. Unless you plan to put a lot of data in SD card
storage (media files, for example) for applications you are developing, you can
create a small virtual SD card of, say, 100 MB in size, even though most phones
are equipped with SD cards holding several gigabytes.

Test Drive: Confirm That Your Installation Works | 17

Skin
The “skin” of an AVD mainly sets the screen size. You won’t need to change the
default for the purpose of verifying that your SDK installation works, but a variety
of emulators with different screen sizes is useful to check that your layouts work
across different devices.

Hardware
The Hardware field of an AVD configuration enables you to set parameters indi-
cating which optional hardware is present. You won’t need to change the defaults
for this project.

Fill in the Name, Target, and SD Card fields, and create a new AVD by clicking the
Create AVD button. If you have not created an AVD with a system image that matches
or is more recent than the target you specified for an Android project, you won’t be
able to run your program.

Figure 1-9. Creating a new AVD

18 | Chapter 1: Your Toolkit

Running a Program on an AVD
Now that you have a project that builds an application, and an AVD with a system
image compatible with the application’s build target and API level requirements, you
can run your application and confirm that the SDK produced, and is able to run, an
Android application.

To run your application, right-click on the project you created and, in the context menu
that pops up, select Run As→Android Application.

If the AVD you created is compatible with the application you created, the AVD will
start, the Android OS will boot on the AVD, and your application will start. You should
see your application running in the AVD, similarly to what is shown in Figure 1-10.

Figure 1-10. The application you just created, running in an AVD

If you have more than one compatible AVD configured, the Android Device Chooser
dialog will appear and ask you to select among the AVDs that are already running, or
among the Android devices attached to your system, if any, or to pick an AVD to start.
Figure 1-11 shows the Android Device Chooser displaying one AVD that is running,
and one that can be launched.

Test Drive: Confirm That Your Installation Works | 19

Running a Program on an Android Device
You can also run the program you just created on most Android devices.

You will need to connect your device to your PC with a USB cable, and, if needed,
install a driver, or set permissions to access the device when connected via USB.

System-specific instructions for Windows, along with the needed driver, are available
at http://developer.android.com/sdk/win-usb.html.

If you are running Linux, you will need to create a “rules” file for your Android device.

If you are running Mac OS X, no configuration is required.

Detailed reference information on USB debugging is here: http://developer.android.com/
guide/developing/device.html.

You will also need to turn on USB debugging in your Android device. In most cases,
you will start the Settings application, select Applications and then Development, and
then you will see an option to turn USB debugging on or off.

If an AVD is configured or is running, the Android Device Chooser will appear, dis-
playing both the Android device you have connected and the AVD.

Select the device, and the Android application will be loaded and run on the device.

Figure 1-11. The Android Device Chooser

20 | Chapter 1: Your Toolkit

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/guide/developing/device.html
http://developer.android.com/guide/developing/device.html

Troubleshooting SDK Problems: No Build Targets
If you are unable to make a new project or import an example project from the SDK,
you may have missed installing build targets into your SDK. Reread the instructions in
“Adding Build Targets to the SDK” on page 8 and make sure the Android pane in the
Preferences dialog lists build targets as installed in your SDK, as shown in Figure 1-5.

Components of the SDK
The Android SDK is made of mostly off-the-shelf components, plus some purpose-built
components. In many cases, configurations, plug-ins, and extensions adapt these com-
ponents to Android. The Android SDK is a study in the efficient development of a
modern and complete SDK. Google took this approach in order to bring Android to
market quickly. You will see this for yourself as you explore the components of the
Android SDK. Eclipse, the Java language, QEMU, and other preexisting platforms,
tools, and technologies comprise some of the most important parts of the Android SDK.

In creating the simple program that confirms that your SDK installation is correct, you
have already used many of the components of the SDK. Here we will identify and
describe the components of the SDK involved in creating your program, and other parts
you have yet to use.

The Android Debug Bridge (adb)
adb is a program that enables you to control both emulators and devices, and to run a
shell in order to execute commands in the environment of an emulator or device. adb
is especially handy for installing and removing programs from an emulator or device.
Documentation on adb can be found at http://developer.android.com/guide/developing/
tools/adb.html.

The Dalvik Debug Monitor Server (DDMS)
The Dalvik Debug Monitor Server (DDMS) is a traffic director between the single port
that Eclipse (and other Java debuggers) looks for to connect to a Java Virtual Machine
(JVM) and the several ports that exist for each Android device or virtual device, and
for each instance of the Dalvik virtual machine (VM) on each device. The DDMS also
provides a collection of functionality that is accessible through a standalone user in-
terface or through an interface embedded in Eclipse via the ADT plug-in.

When you invoke the DDMS from the command line, you will see something similar
to the window shown in Figure 1-12.

Components of the SDK | 21

http://developer.android.com/guide/developing/tools/adb.html
http://developer.android.com/guide/developing/tools/adb.html

Figure 1-12. The Dalvik Debug Monitor running standalone

The DDMS’s user interface provides access to the following:

A list of devices and virtual devices, and the VMs running on those devices
In the upper-left pane of the DDMS window, you will see listed the Android devices
you have connected to your PC, plus any AVDs you have running. Listed under
each device or virtual device are the tasks running in Dalvik VMs.

VM information
Selecting one of the Dalvik VMs running on a device or virtual device causes in-
formation about that VM to be displayed in the upper-right pane.

Thread information
Information for threads within each process is accessed through the “Threads” tab
in the upper-right pane of the DDMS window.

Filesystem explorer
You can explore the filesystem on a device or virtual device using the DDMS file-
system explorer, accessible through the “File explorer” menu item in the Devices
menu. It displays the file hierarchy in a window similar to the one shown in Fig-
ure 1-13.

22 | Chapter 1: Your Toolkit

Simulating phone calls
The Emulator Control tab in the upper-right pane of the DDMS window enables
you to “fake” a phone call or text message in an emulator.

Screen capture
The “Screen capture” command in the Device menu fetches an image of the current
screen from the selected Android device or virtual device.

Logging
The bottom pane of the DDMS window displays log output from processes on the
selected device or virtual device. You can filter the log output by selecting a filter
from among the buttons on the toolbar above the logging pane.

Dumping state for devices, apps, and the mobile radio
A set of commands in the Device menu enables you to command the device or
virtual device to dump state for the whole device, an app, or the mobile radio.

Detailed documentation on the DDMS is available at http://developer.android.com/
guide/developing/tools/ddms.html.

Components of the ADT Eclipse Plug-in
Eclipse enables you to create specific project types, including several kinds of Java
projects. The ADT plug-in adds the ability to make and use Android projects. When
you make a new Android project, the ADT plug-in creates the project file hierarchy and
all the required files for the minimal Android project to be correctly built. For Android
projects, the ADT plug-in enables Eclipse to apply components of the ADT plug-in to
editing, building, running, and debugging that project.

Figure 1-13. The DDMS file system explorer

Components of the SDK | 23

http://developer.android.com/guide/developing/tools/ddms.html
http://developer.android.com/guide/developing/tools/ddms.html

In some cases, components of the SDK can be used with Eclipse or in a standalone
mode. But, in most of the Android application development cases covered in this book,
the way these components are used in or with Eclipse will be the most relevant.

The ADT plug-in has numerous separate components, and, despite the connotations
of a “plug-in” as a modest enhancement, it’s a substantial amount of software. Here
we will describe each significant part of the ADT plug-in that you will encounter in
using Eclipse for developing Android software.

The Android Layout Editor

Layouts for user interfaces in Android applications can be specified in XML. The ADT
plug-in adds a visual editor that helps you to compose and preview Android layouts.
When you open a layout file, the ADT plug-in automatically starts this editor to view
and edit the file. Tabs along the bottom of the editing pane enable you to switch between
the visual editor and an XML editor.

In earlier versions of the Android SDK, the Android Layout Editor was too limited to
be of much use. Now, though, you should consider using visual editing of Android
layouts as a preferred way of creating layouts. Automating the specification of layouts
makes it more likely that your layouts will work on the widest range of Android devices.

The Android Manifest Editor

In Android projects, a manifest file is included with the project’s software and resources
when the project is built. This file tells the Android system how to install and use the
software in the archive that contains the built project. The manifest file is in XML, and
the ADT plug-in provides a specialized XML editor to edit the manifest.

Other components of the ADT Eclipse plug-in, such as the application builders, can
also modify the manifest.

XML editors for other Android XML files

Other Android XML files that hold information such as specifications for menus, or
resources such as strings, or that organize graphical assets of an application, have spe-
cialized editors that are opened when you open these files.

Building Android apps

Eclipse projects are usually built automatically. That means you will normally not en-
counter a separate step for turning the source code and resources for a project into a
deployable result. Android requires Android-specific steps to build a file you can deploy
to an Android emulator or device, and the ADT plug-in provides the software that
executes these steps. For Android projects, the result of building the project is
an .apk file. You can find this file for the test project created earlier in this chapter in
the bin subfolder of the project’s file hierarchy in your Eclipse workspace.

24 | Chapter 1: Your Toolkit

The Android-specific builders provided in the ADT plug-in enable you to use Java as
the language for creating Android software while running that software on a Dalvik
VM that processes its own bytecodes.

Running and debugging Android apps

When you run or debug an Android project from within Eclipse, the .apk file for that
project is deployed and started on an AVD or Android device, using the ADB and DDMS
to communicate with the AVD or device and the Dalvik runtime environment that runs
the project’s code. The ADT plug-in adds the components that enable Eclipse to do this.

The DDMS

In “The Dalvik Debug Monitor Server (DDMS)” on page 21 we described the Dalvik
Debug Monitor and how to invoke the DDMS user interface from the command line.
The DDMS user interface is also available from within Eclipse. You can access it by
using the Window→Open Perspective→DDMS command in the Eclipse menu. You can
also access each view that makes up the DDMS perspective separately by using the
Window→Show View menu and selecting, for example, the LogCat view.

Android Virtual Devices
AVDs are made up of QEMU-based emulators that emulate the hardware of an Android
device, plus Android system images, which consist of Android software built to run on
the emulated hardware. AVDs are configured by the SDK and AVD Manager, which
sets parameters such as the size of emulated storage devices and screen dimensions,
and which enables you to specify which Android system image will be used with which
emulated device.

AVDs enable you to test your software on a broader range of system characteristics
than you are likely to be able to acquire and test on physical devices. Because QEMU-
based hardware emulators, system images, and the parameters of AVDs are all inter-
changeable parts, you can even test devices and system images before hardware is
available to run them.

QEMU

QEMU is the basis of AVDs. But QEMU is a very general tool that is used in a wide
range of emulation systems outside the Android SDK. While you will configure QEMU
indirectly, through the SDK and AVD Manager, you may someday need to tweak em-
ulation in ways unsupported by the SDK tools, or you may be curious about the capa-
bilities and limitations of QEMU. Luckily, QEMU has a large and vibrant developer
and user community, which you can find at http://www.qemu.org.

Components of the SDK | 25

http://www.qemu.org

The SDK and AVD Manager

QEMU is a general-purpose emulator system. The Android SDK provides controls over
the configuration of QEMU that make sense for creating emulators that run Android
system images. The SDK and AVD Manager provides a user interface for you to control
QEMU-based Android virtual devices.

Other SDK Tools
In addition to the major tools you are likely to use in the normal course of most devel-
opment projects, there are several other tools in the SDK, and those that are used or
invoked directly by developers are described here. Still more components of the SDK
are listed in the Tools Overview article in the Android documentation found at http://
developer.android.com/guide/developing/tools/index.html.

Hierarchy Viewer

The Hierarchy Viewer displays and enables analysis of the view hierarchy of the current
activity of a selected Android device. This enables you to see and diagnose problems
with your view hierarchies as your application is running, or to examine the view hi-
erarchies of other applications to see how they are designed. It also lets you examine a
magnified view of the screen with alignment guides that help identify problems with
layouts. Detailed information on the Hierarchy Viewer is available at http://developer
.android.com/guide/developing/tools/hierarchy-viewer.html.

Layoutopt

Layoutopt is a static analyzer that operates on XML layout files and can diagnose some
problems with Android layouts. Detailed information on Layoutopt is available at http:
//developer.android.com/guide/developing/tools/layoutopt.html.

Monkey

Monkey is a test automation tool that runs in your emulator or device. You invoke this
tool using another tool in the SDK: adb. Adb enables you to start a shell on an emulator
or device, and Monkey is invoked from a shell, like this:

adb shell monkey --wait-dbg -p your.package.name 500

This invocation of Monkey sends 500 random events to the specified application
(specified by the package name) after waiting for a debugger to be attached. Detailed
information on Monkey can be found at http://developer.android.com/guide/developing/
tools/monkey.html.

26 | Chapter 1: Your Toolkit

http://developer.android.com/guide/developing/tools/index.html
http://developer.android.com/guide/developing/tools/index.html
http://developer.android.com/guide/developing/tools/hierarchy-viewer.html
http://developer.android.com/guide/developing/tools/hierarchy-viewer.html
http://developer.android.com/guide/developing/tools/layoutopt.html
http://developer.android.com/guide/developing/tools/layoutopt.html
http://developer.android.com/guide/developing/tools/monkey.html
http://developer.android.com/guide/developing/tools/monkey.html

sqlite3

Android uses SQLite as the database system for many system databases and provides
APIs for applications to make use of SQLite, which is convenient for data storage and
presentation. SQLite also has a command-line interface, and the sqlite3 command
enables developers to dump database schemas and perform other operations on An-
droid databases.

These databases are, of course, in an Android device, or they are contained in an AVD,
and therefore the sqlite3 command is available in the adb shell. Detailed directions
for how to access the sqlite3 command line from inside the adb shell are available at
http://developer.android.com/guide/developing/tools/adb.html#shellcommands. We in-
troduce sqlite3 in “Example Database Manipulation Using sqlite3” on page 255.

keytool

keytool generates encryption keys, and is used by the ADT plug-in to create temporary
debug keys with which it signs code for the purpose of debugging. In most cases, you
will use this tool to create a signing certificate for releasing your applications, as de-
scribed in “Creating a self-signed certificate” on page 99.

Zipalign

Zipalign enables optimized access to data for production releases of Android applica-
tions. This optimization must be performed after an application is signed for release,
because the signature affects byte alignment. Detailed information on Zipalign is avail-
able at http://developer.android.com/guide/developing/tools/zipalign.html.

Draw9patch

A 9 patch is a special kind of Android resource, composed of nine images, and useful
when you want, for example, buttons that can grow larger without changing the radius
of their corners. Draw9patch is a specialized drawing program for creating and pre-
viewing these types of resources. Details on draw9patch are available at http://developer
.android.com/guide/developing/tools/draw9patch.html.

android

The command named android can be used to invoke the SDK and AVD Manager from
the command line, as we described in the SDK installation instructions in “The Android
SDK” on page 7. It can also be used to create an Android project from the command
line. Used in this way, it causes all the project folders, the manifest, the build properties,
and the ant script for building the project to be generated. Details on this use of the
android command can be found at http://developer.android.com/guide/developing/other
-ide.html#CreatingAProject.

Components of the SDK | 27

http://developer.android.com/guide/developing/tools/adb.html#shellcommands
http://developer.android.com/guide/developing/tools/zipalign.html
http://developer.android.com/guide/developing/tools/draw9patch.html
http://developer.android.com/guide/developing/tools/draw9patch.html
http://developer.android.com/guide/developing/other-ide.html#CreatingAProject
http://developer.android.com/guide/developing/other-ide.html#CreatingAProject

Keeping Up-to-Date
The JDK, Eclipse, and the Android SDK each come from separate suppliers. The tools
you use to develop Android software can change at a rapid pace. That is why, in this
book, and especially in this chapter, we refer you to the Android Developers site for
information on the latest compatible versions of your tools. Keeping your tools up-to-
date and compatible is a task you are likely to have to perform even as you learn how
to develop Android software.

Windows, Mac OS X, and Linux all have system update mechanisms that keep your
software up-to-date. But one consequence of the way the Android SDK is put together
is that you will need to keep separate software systems up-to-date through separate
mechanisms.

Keeping the Android SDK Up-to-Date
The Android SDK isn’t part of your desktop OS, nor is it part of the Eclipse plug-in,
and therefore the contents of the SDK folder are not updated by the OS or Eclipse. The
SDK has its own update mechanism, which has a user interface in the SDK and AVD
Manager. As shown in Figure 1-14, select Installed Packages in the left pane to show a
list of SDK components installed on your system. Click on the Update All button to
start the update process, which will show you a list of available updates.

Figure 1-14. Updating the SDK with the SDK and AVD Manager

Usually, you will want to install all available updates.

28 | Chapter 1: Your Toolkit

Keeping Eclipse and the ADT Plug-in Up-to-Date
While the SDK has to be updated outside of both your operating system and Eclipse,
the ADT plug-in, and all other components of Eclipse, are updated using Eclipse’s own
update management system. To update all the components you have in your Eclipse
environment, including the ADT plug-in, use the “Check for Updates” command in
the Help menu. This will cause the available updates to be displayed, as shown in
Figure 1-15.

Figure 1-15. Updating Eclipse components and the ADT plug-in

Normally, you will want to use the Select All button to install all available updates. The
updates you see listed on your system depend on what Eclipse modules you have in-
stalled and whether your Eclipse has been updated recently.

Keeping the JDK Up-to-Date
You won’t be updating Java as much as the SDK, ADT plug-in, and other Eclipse plug-
ins. Even if Java 7 has not been released by the time you read this, it is likely to happen
soon enough to matter to Android developers. Before choosing to update the JDK, first
check the System Requirements page of the Android Developers site at http://developer
.android.com/sdk/requirements.html.

Keeping Up-to-Date | 29

http://developer.android.com/sdk/requirements.html
http://developer.android.com/sdk/requirements.html

If an update is needed and you are using a Mac or Linux system, check the available
updates for your system to see if a new version of the JDK is included. If the JDK was
installed on your system by the vendor, or if you installed it from your Linux distribu-
tion’s repositories, updates will be available through the updates mechanism on your
system.

Example Code
Having installed the Android SDK and tested that it works, you are ready to explore.
Even if you are unfamiliar with the Android Framework classes and are new to Java,
exploring some example code now will give you further confidence in your SDK in-
stallation, before you move on to other parts of this book.

SDK Example Code
The most convenient sample code comes with the SDK. You can create a new project
based on the SDK samples, as shown in Figure 1-16. The sample you select appears in
the left pane of the Eclipse window, where you can browse the files comprising the
sample and run it to see what it does. If you are familiar with using IDEs to debug code,
you may want to set some breakpoints in the sample code to see when methods get
executed.

In the dialog pictured in Figure 1-16, you must pick a build target before
you pick a sample. Samples are organized by API level, and if you have
not picked a build target, the drop-down list will be empty.

Each sample application that comes with the SDK corresponds to an article on the
Android Developers site. More information about each sample can be found there. All
of the samples are listed on the documentation page at http://developer.android.com/
resources/samples/index.html.

There are more than a dozen applications, one of which—the API demos application—
is a sprawling exploration of most of the Android APIs. Creating a few projects based
on these code samples will give you familiarity with how these programs work, and will
help you understand what you will read in the upcoming chapters of this book, even
if you don’t fully understand what you are looking at yet.

Example Code from This Book
Example code from this book can be downloaded from the book’s website at http://
oreilly.com/catalog/0636920010364.

30 | Chapter 1: Your Toolkit

http://developer.android.com/resources/samples/index.html
http://developer.android.com/resources/samples/index.html
http://oreilly.com/catalog/0636920010364
http://oreilly.com/catalog/0636920010364

Figure 1-16. Creating a new project using example code from the SDK

Example Code | 31

On Reading Code
Good coders read a lot of code. The example code provided by the authors of this book
is intended to be both an example of good Java coding and an example of how to use
capabilities of the Android platform.

Some examples you will read fall short of what you will need for creating the best
possible extensible and maintainable commercial software. Many example applications
make choices that make sense if the coder’s goal is to create an example in a single Java
class. In many cases, Android applications are overgrown versions of example code,
and they end up unreadable and unmaintainable. But that does not mean you should
avoid reading examples that are more expedient than a large application should be.

The next chapter will explore the Java language, with the goal of giving you the ability
to evaluate example code with good engineering and design practices in mind. We want
you to be able to take examples and make them better, and to apply the ideas in ex-
amples to code you engineer to create high-quality products.

32 | Chapter 1: Your Toolkit

CHAPTER 2

Java for Android

We don’t teach you Java in this book, but in this chapter we’ll help you understand
the special use of Java within Android. Many people can benefit from this chapter:
students who have learned some Java but haven’t yet stumbled over the real-life pro-
gramming dilemmas it presents, programmers from other mobile environments who
have used other versions of Java but need to relearn some aspects of the language in
the context of Android programming, and Java programmers in general who are new
to Android’s particular conventions and requirements.

If you find this chapter too fast-paced, pick up an introductory book on Java. If you
follow along all right but a particular concept described in this chapter remains unclear
to you, you might refer to the Java tutorial at http://download.oracle.com/docs/cd/
E17409_01/javase/tutorial/index.html.

Android Is Reshaping Client-Side Java
Android is already the most widely used way of creating interactive clients using the
Java language. Although there have been several other user interface class libraries for
Java (AWT, SWT, Swing, J2ME Canvas, etc.), none of them have been as widely ac-
cepted as Android. For any Java programmer, the Android UI is worth learning just to
understand what the future of Java UIs might look like.

The Android toolkit doesn’t gratuitously bend Java in unfamiliar directions. The mobile
environment is simply different. There is a much wider variety of display sizes and
shapes; there is no mouse (though there might be a touch screen); text input might be
triple-tap; and so on. There are also likely to be many more peripheral devices: motion
sensors, GPS units, cameras, multiple radios, and more. Finally, there is the ever-
present concern about power. While Moore’s law affects processors and memory (dou-
bling their power approximately every two years), no such law affects battery life. When
processors were slow, developers used to be concerned about CPU speed and efficiency.
Mobile developers, on the other hand, need to be concerned about energy efficiency.

33

http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/index.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/index.html

This chapter provides a refresher for generic Java; Android-specific libraries are dis-
cussed in detail in Chapter 3.

The Java Type System
There are two distinct, fundamental types in the Java language: objects and primitives.
Java provides type safety by enforcing static typing, which requires that every variable
must be declared with its type before it is used. For example, a variable named i declared
as type int (a primitive 32-bit integer) looks like this:

int i;

This mechanism stands in contrast to nonstatically typed languages where variables
are only optionally declared. Though explicit type declarations are more verbose, they
enable the compiler to prevent a wide range of programming errors—accidental vari-
able creation resulting from misspelled variable names, calls to nonexistent methods,
and so on—from ever making it into running code. Details of the Java Type System can
be found in the Java Language Specification.

Primitive Types
Java primitive types are not objects and do not support the operations associated with
objects described later in this chapter. You can modify a primitive type only with a
limited number of predefined operators: “+”, “-”, “&”, “|”, “=”, and so on. The Java
primitive types are:

boolean
The values true or false

byte
An 8-bit 2’s-complement integer

short
A 16-bit 2’s-complement integer

int
A 32-bit 2’s-complement integer

long
A 64-bit 2’s-complement integer

char
A 16-bit unsigned integer representing a UTF-16 code unit

float
A 32-bit IEEE 754 floating-point number

double
A 64-bit IEEE 754 floating-point number

34 | Chapter 2: Java for Android

http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html

Objects and Classes
Java is an object-oriented language and focuses not on its primitives but on objects—
combinations of data, and procedures for operating on that data. A class defines the
fields (data) and methods (procedures) that comprise an object. In Java, this definition
—the template from which objects are constructed—is, itself, a particular kind of ob-
ject, a Class. In Java, classes form the basis of a type system that allows developers to
describe arbitrarily complex objects with complex, specialized state and behavior.

In Java, as in most object-oriented languages, types may inherit from other types. A
class that inherits from another is said to subtype or to be a subclass of its parent. The
parent class, in turn, may be called the supertype or superclass. A class that has several
different subclasses may be called the base type for those subclasses.

Both methods and fields have global scope within the class and may be visible from
outside the object through a reference to an instance of the class.

Here is the definition of a very, very simple class with one field, ctr, and one method,
incr:

public class Trivial {
 /** a field: its scope is the entire class */
 private long ctr;

 /** Modify the field. */
 public void incr() { ctr++; }
}

Object Creation
A new object, an instance of some class, is created by using the new keyword:

Trivial trivial = new Trivial();

On the left side of the assignment operator “=”, this statement defines a variable, named
trivial. The variable has a type, Trivial, so only objects of type Trivial can be assigned
to it. The right side of the assignment allocates memory for a new instance of the
Trivial class and initializes the instance. The assignment operator assigns a reference
to the newly created object to the variable.

It may surprise you to know that the definition of ctr, in Trivial, is perfectly safe despite
the fact that it is not explicitly initialized. Java guarantees that it will be initialized to
have the value 0. Java guarantees that all fields are automatically initialized at object
creation: boolean is initialized to false, numeric primitive types to 0, and all object types
(including Strings) to null.

This applies only to object fields. Local variables must be initialized
before they are referenced!

The Java Type System | 35

You can take greater control over the initialization of an object by adding a construc-
tor to its class definition. A constructor definition looks like a method except that it
doesn’t specify a return type. Its name must be exactly the name of the class that it
constructs:

public class LessTrivial {
 /** a field: its scope is the entire class */
 private long ctr;

 /** Constructor: initialize the fields */
 public LessTrivial(long initCtr) { ctr = initCtr; }

 /** Modify the field. */
 public void incr() { ctr++; }
}

In fact, every class in Java has a constructor. The Java compiler automatically creates
a constructor with no arguments, if no other constructor is specified. Further, if a con-
structor does not explicitly call some superclass constructor, the Java compiler will
automatically add an implicit call to the superclass no-arg constructor as the very first
statement. The definition of Trivial given earlier (which specifies no explicit construc-
tor), actually has a constructor that looks like this:

public Trivial() { super(); }

Since the LessTrivial class explicitly defines a constructor, Java does not implicitly add
a default. That means that trying to create a LessTrivial object, with no arguments,
will cause an error:

LessTrivial fail = new LessTrivial(); // ERROR!!
LessTrivial ok = new LessTrivial(18); // ... works

There are two concepts that it is important to keep separate: no-arg constructor and
default constructor. A default constructor is the constructor that Java adds to your class,
implicitly, if you don’t define any other constructors. It happens to be a no-arg con-
structor. A no-arg constructor, on the other hand, is simply a constructor with no
parameters. There is no requirement that a class have a no-arg constructor. There is no
obligation to define one, unless you have a specific need for it.

One particular case in which no-arg constructors are necessary deserves
special attention. Some libraries need the ability to create new objects,
generically, on your behalf. The JUnit framework, for instance, needs
to be able to create new test cases, regardless of what they test. Libraries
that marshal and unmarshal code to a persistent store or a network
connection also need this capability. Since it would be pretty hard for
these libraries to figure out, at runtime, the exact calling protocol for
your particular object, they typically require a no-arg constructor.

If a class has more than one constructor, it is wise to cascade them, to make sure only
a single copy of the code actually initializes the instance and that all other constructors

36 | Chapter 2: Java for Android

call it. For instance, as a convenience, we might add a no-arg constructor to the
LessTrivial class, to accommodate a common case:

public class LessTrivial {
 /** a field: its scope is the entire class */
 private long ctr;

 /** Constructor: init counter to 0 */
 public LessTrivial() { this(0); }

 /** Constructor: initialize the fields */
 public LessTrivial(long initCtr) { ctr = initCtr; }

 /** Modify the field. */
 public void incr() { ctr++; }
}

Cascading methods is the standard Java idiom for defaulting the values of some argu-
ments. All the code that actually initializes an object is in a single, complete method
or constructor and all other methods or constructors simply call it. It is a particularly
good idea to use this idiom with constructors that must make explicit calls to a
superconstructor.

Constructors should be simple and should do no more work than is necessary to put
an object into a consistent initial state. One can imagine, for instance, a design for an
object that represents a database or network connection. It might create the connection,
initialize it, and verify connectivity, all in the constructor. While this might seem en-
tirely reasonable, in practice it creates code that is insufficiently modular and difficult
to debug and modify. In a better design, the constructor simply initializes the connec-
tion state as closed and leaves it to an explicit open method to set up the network.

The Object Class and Its Methods
The Java class Object—java.lang.Object—is the root ancestor of every class. Every
Java object is an Object. If the definition of a class does not explicitly specify a super-
class, it is a direct subclass of Object. The Object class defines the default implemen-
tations for several key behaviors that are common to every object. Unless they are
overridden by the subclass, the behaviors are inherited directly from Object.

The methods wait, notify, and notifyAll in the Object class are part of Java’s concur-
rency support. They are discussed in “Thread Control with wait() and notify() Meth-
ods” on page 71.

The toString method is the way an object creates a string representation of itself. One
interesting use of toString is string concatenation: any object can be concatenated to
a string. This example demonstrates two ways to print the same message: they both
execute identically. In both, a new instance of the Foo class is created, its toString
method is invoked, and the result is concatenated with a literal string. The result is then
printed:

The Java Type System | 37

System.out.println(
 "This is a new foo: " + new Foo());
System.out.println(
 "This is a new foo: ".concat((new Foo()).toString()));

The Object implementation of toString returns a not-very-useful string that is based
on the location of the object in the heap. Overriding toString in your code is a good
first step toward making it easier to debug.

The clone and finalize methods are historical leftovers. The Java runtime will call the
finalize method only if it is overridden in a subclass. If a class explicitly defines
finalize, though, it is called for an object of the class just before that object is garbage-
collected. Not only does Java not guarantee when this might happen, it actually can’t
guarantee that it will happen at all. In addition, a call to finalize can resurrect an object!
This is tricky: objects are garbage-collected when there are no live references to them.
An implementation of finalize, however, could easily create a new live reference, for
instance, by adding the object being finalized to some kind of list! Because of this, the
existence of a finalize method precludes the defining class from many kinds of opti-
mization. There is little to gain and lots to lose in attempting to use finalize.

The clone method creates objects, bypassing their constructors. Although clone is
defined on Object, calling it on an object will cause an exception unless the object
implements the Cloneable interface. The clone method is an optimization that can be
useful when object creation has a significant cost. While clever uses of clone may be
necessary in specific cases, a copy constructor—one which takes an existing instance
as its only argument—is much more straightforward and, in most cases, has negligible
cost.

The last two Object methods, hashCode and equals, are the methods by which a caller
can tell whether one object is “the same as” another.

The definition of the equals method in the API documentation for the Object class
stipulates the contract to which every implementation of equals must adhere. A correct
implementation of the equals method has the following attributes, and the associated
statements must always be true:

reflexive
x.equals(x)

symmetric
x.equals(y) == y.equals(x)

transitive
(x.equals(y) && y.equals(z)) == x.equals(z)

consistent
If x.equals(y) is true at any point in the life of a program, it is always true, provided
x and y do not change.

38 | Chapter 2: Java for Android

Getting this right is subtle and can be surprisingly difficult. A common error—one that
violates reflexivity—is defining a new class that is sometimes equal to an existing class.
Suppose your program uses an existing library that defines the class EnglishWeekdays.
Suppose, now, that you define a class FrenchWeekdays. There is an obvious temptation
to define an equals method for FrenchWeekdays that returns true when it compares one
of the EnglishWeekdays to its French equivalent. Don’t do it! The existing English class
has no awareness of your new class and so will never recognize instances of your class
as being equal. You’ve broken reflexivity!

hashCode and equals should be considered a pair: if you override either, you should
override both. Many library routines treat hashCode as an optimized rough guess as to
whether two objects are equal or not. These libraries first compare the hash codes of
the two objects. If the two codes are different, they assume there is no need to do any
more expensive comparisons because the objects are definitely different. The point of
hash code computation, then, is to compute something very quickly that is a good
proxy for the equals method. Visiting every cell in a large array, in order to compute a
hash code, is probably no faster than doing the actual comparison. At the other extreme,
it would be very fast to return 0, always, from a hash code computation. It just wouldn’t
be very helpful.

Objects, Inheritance, and Polymorphism
Java supports polymorphism, one of the key concepts in object-oriented programming.
A language is said to be polymorphic if objects of a single type can have different be-
havior. This happens when subtypes of a given class can be assigned to a variable of
the base class type. An example will make this much clearer.

Subtypes in Java are declared through use of the extends keyword. Here is an example
of inheritance in Java:

public class Car {
 public void drive() {
 System.out.println("Going down the road!");
 }
}

public class Ragtop extends Car {
 // override the parent's definition.
 public void drive() {
 System.out.println("Top down!");

 // optionally use a superclass method
 super.drive();

 System.out.println("Got the radio on!");
 }
}

The Java Type System | 39

Ragtop is a subtype of Car. We noted previously that Car is, in turn, a subclass of Object.
Ragtop changes the definition of Car’s drive method. It is said to override drive. Car
and Ragtop are both of type Car (they are not both of type Ragtop!) and have different
behaviors for the method drive.

We can now demonstrate polymorphic behavior:

Car auto = new Car();
auto.drive();
auto = new Ragtop();
auto.drive();

This code fragment will compile without error (despite the assignment of a Ragtop to
a variable whose type is Car). It will also run without error and would produce the
following output:

Going down the road!
Top down!
Going down the road!
Got the radio on!

The variable auto holds, at different times in its life, references to two different objects
of type Car. One of those objects, in addition to being of type Car, is also of subtype
Ragtop. The exact behavior of the statement auto.drive() depends on whether the
variable currently contains a reference to the former or the latter. This is polymorphic
behavior.

Like many other object-oriented languages, Java supports type casting to allow coercion
of the declared type of a variable to be any of the types with which the variable is
polymorphic:

Ragtop funCar;

Car auto = new Car();
funCar = (Ragtop) auto; //ERROR! auto is a Car, not a Ragtop!
auto.drive();

auto = new Ragtop();
Ragtop funCar = (Ragtop) auto; //Works! auto is a Ragtop
auto.drive();

While occasionally necessary, excessive use of casting is an indication that the code is
missing the point. Obviously, by the rules of polymorphism, all variables could be
declared to be of type Object, and then cast as necessary. To do that, however, is to
abandon the value of static typing.

Java limits a method’s arguments (its actual parameters) to objects of types that are
polymorphic with its formal parameters. Similarly, methods return values that are
polymorphic with the declared return type. For instance, continuing our automotive
example, the following code fragment will compile and run without error:

40 | Chapter 2: Java for Android

public class JoyRide {
 private Car myCar;

 public void park(Car auto) {
 myCar = auto;
 }

 public Car whatsInTheGarage() {
 return myCar;
 }

 public void letsGo() {
 park(new Ragtop());
 whatsInTheGarage().drive();
 }
}

The method park is declared to take an object of type Car as its only parameter. In the
method letsGo, however, it is called with an object of type Ragtop, a subtype of type
Car. Similarly, the variable myCar is assigned a value of type Ragtop, and the method
whatsInTheGarage returns it. The object is a Ragtop: if you call its drive method, it will
tell you about its top and its radio. On the other hand, since it is also a Car, it can be
used anywhere that one would use a Car. This subtype replacement capability is a key
example of the power of polymorphism and how it works with type safety. Even at
compile time, it is clear whether an object is compatible with its use, or not. Type safety
enables the compiler to find errors, early, that might be much more difficult to find
were they permitted to occur at runtime.

Final and Static Declarations
There are 11 modifier keywords that can be applied to a declaration in Java. These
modifiers change the behavior of the declared object, sometimes in important ways.
The earlier examples used a couple of them, public and private, without explanation:
they are among the several modifiers that control scope and visibility. We’ll revisit them
in a minute. In this section, we consider two other modifiers that are essential to a
complete understanding of the Java type system: final and static.

A final declaration is one that cannot be changed. Classes, methods, fields, parameters,
and local variables can all be final.

When applied to a class, final means that any attempt to define a subclass will cause
an error. The class String, for instance, is final because strings must be immutable
(i.e., you can’t change the content of one after you create it). If you think about it for
a while, you will see that this can be guaranteed only if String cannot be subtyped. If
it were possible to subtype the String class, a devious library could create a subclass of
String, DeadlyString, pass an instance to your code, and change its value from “fred”
to “‘; DROP TABLE contacts;” (an attempt to inject rogue SQL into your system that

The Java Type System | 41

might wipe out parts of your database) immediately after your code had validated its
contents!

When applied to a method, final means that the method cannot be overridden in a
subclass. Developers use final methods to design for inheritance, when the supertype
needs to make a highly implementation-dependent behavior available to a subclass and
cannot allow that behavior to be changed. A framework that implemented a generic
cache might define a base class CacheableObject, for instance, which the programmer
using the framework subtypes for each new cacheable object type. In order to maintain
the integrity of the framework, however, CacheableObject might need to compute a
cache key that was consistent across all object types. In this case, it might declare its
computeCacheKey method final.

When applied to a variable—a field, a parameter, or a local variable—final means that
the value of the variable, once assigned, may not change. This restriction is enforced
by the compiler: it is not enough that the value does not change, the compiler must be
able to prove that it cannot change. For a field, this means that the value must be
assigned either as part of the declaration or in every constructor. Failure to initialize a
final field at its declaration or in the constructor—or an attempt to assign to it any-
where else—will cause an error.

For parameters, final means that, within the method, the parameter value always has
the value passed in the call. An attempt to assign to a final parameter will cause an
error. Of course, since the parameter value is most likely to be a reference to some kind
of object, it is possible that the object might change. The application of the keyword
final to a parameter simply means that the parameter cannot be assigned.

In Java, parameters are passed by value: the method arguments are new
copies of the values that were passed at the call. On the other hand, most
things in Java are references to objects and Java only copies the refer-
ence, not the whole object! References are passed by value!

A final variable may be assigned no more than once. Since using a variable without
initializing it is also an error, in Java, a final variable must be assigned exactly once.
The assignment may take place anywhere in the enclosing block, prior to use.

A static declaration belongs to the class in which it is described, not to an instance of
that class. The opposite of static is dynamic. Any entity that is not declared static is
implicitly dynamic. This example illustrates:

public class QuietStatic {
 public static int classMember;
 public int instanceMember;
}

public class StaticClient {
 public void test() {
 QuietStatic.classMember++;

42 | Chapter 2: Java for Android

 QuietStatic.instanceMember++; // ERROR!!

 QuietStatic ex = new QuietStatic();
 ex.classMember++; // WARNING!
 ex.instanceMember++;
 }
}

In this example, QuietStatic is the name of a class, and ex is a reference to an instance
of that class. The static member classMember is an attribute of the class; you can refer
to it simply by qualifying it with the class name. On the other hand, instanceMember is
a member of an instance of the class. An attempt to refer to it through the class reference
causes an error. That makes sense. There are many different variables called instance
Member, one belonging to each instance of QuietStatic. If you don’t explicitly specify
which one you are talking about, there’s no way for Java to figure it out.

As the second pair of statements demonstrates, Java does actually allow references to
class (static) variables through instance references. It is misleading, though, and con-
sidered a bad practice. Most compilers and IDEs will generate warnings if you do it.

The implications of static versus dynamic declarations can be subtle. It is easiest to
understand the distinction for fields. Again, while there is exactly one copy of a static
definition, there is one copy per instance of a dynamic definition. Static class members
allow you to maintain information that is held in common by all members of a class.
Here’s some example code:

public class LoudStatic {
 private static int classMember;
 private int instanceMember;

 public void incr() {
 classMember++;
 instanceMember++;
 }

 @Override public String toString() {
 return "classMember: " + classMember
 + ", instanceMember: " + instanceMember;
 }

 public static void main(String[] args) {
 LoudStatic ex1 = new LoudStatic();
 LoudStatic ex2 = new LoudStatic();
 ex1.incr();
 ex2.incr();
 System.out.println(ex1);
 System.out.println(ex2);
 }
}

and its output:

classMember: 2, instanceMember: 1
classMember: 2, instanceMember: 1

The Java Type System | 43

The initial value of the variable classMember in the preceding example is 0. It is incre-
mented by each of the two different instances. Both instances now see a new value, 2.
The value of the variable instanceMember also starts at 0, in each instance. On the other
hand, though, each instance increments its own copy and sees the value of its own
variable, 1.

Static class and method definitions are similar in that, in both cases, a static object is
visible using its qualified name, while a dynamic object is visible only through an in-
stance reference. Beyond that, however, the differences are trickier.

One significant difference in behavior between statically and dynamically declared
methods is that statically declared methods cannot be overridden in a subclass. The
following, for instance, fails to compile:

public class Star {
 public static void twinkle() { }
}

public class Arcturus extends Star {
 public void twinkle() { } // ERROR!!
}

public class Rigel {
 // this one works
 public void twinkle() { Star.twinkle(); }
}

There is very little reason to use static methods in Java. In early implementations of
Java, dynamic method dispatch was significantly slower than static dispatch. Devel-
opers used to prefer static methods in order to “optimize” their code. In Android’s just-
in-time-compiled Dalvik environment, there is no need for this kind of optimization
anymore. Excessive use of static methods is usually an indicator of bad architecture.

The difference between statically and dynamically declared classes is the subtlest. Most
of the classes that comprise an application are static. A typical class is declared and
defined at the top level—outside any enclosing block. Implicitly, all such declarations
are static. Most other declarations, on the other hand, take place within the enclosing
block of some class and are, by default, dynamic. Whereas most fields are dynamic by
default and require a modifier to be static, most classes are static.

A block is the code between two curly braces: { and }. Anything—var-
iables, types, methods, and so on—defined within the block is visible
within the block and within lexically nested blocks. Except within the
special block defining a class, things defined within a block are not visi-
ble outside the block.

This is, actually, entirely consistent. According to our description of static—something
that belongs to the class, not to an instance of that class—top-level declarations should

44 | Chapter 2: Java for Android

be static (they belong to no class). When declared within an enclosing block, however—
for example, inside the definition of a top-level class—a class definition is also dynamic
by default. In order to create a dynamically declared class, just define it inside another
class.

This brings us to the difference between a static and a dynamic class. A dynamic class
has access to instance members of the enclosing class (since it belongs to the instance).
A static class does not. Here’s some code to demonstrate:

public class Outer {
 public int x;

 public class InnerOne {
 public int fn() { return x; }
 }

 public static class InnerTube {
 public int fn() {
 return x; // ERROR!!!
 }
 }
}

public class OuterTest {
 public void test() {
 new Outer.InnerOne(); // ERROR!!!
 new Outer.InnerTube();
 }
}

A moment’s reflection will clarify what is happening here. The field x is a member of
an instance of the class Outer. In other words, there are lots of variables named x, one
for each runtime instance of Outer. The class InnerTube is a part of the class Outer, but
not of any instances of Outer. It has no way of identifying an x. The class InnerOne, on
the other hand, because it is dynamic, belongs to an instance of Outer. You might think
of a separate class InnerOne for each instance of Outer (though this is not, actually, how
it is implemented). Consequently, InnerOne has access to the members of the instance
of Outer to which it belongs.

OuterTest demonstrates that, as with fields, we can use the static inner definition (in
this case, create an instance of the class) simply by using its qualified name. The dy-
namic definition is useful, however, only in the context of an instance.

Abstract Classes
Java permits a class declaration to entirely omit the implementation of one or more
methods by declaring the class and unimplemented methods to be abstract:

public abstract class TemplatedService {

 public final void service() {

The Java Type System | 45

 // subclasses prepare in their own ways
 prepareService();
 // ... but they all run the same service
 runService()
 }

 public abstract void prepareService();

 private final void runService() {
 // implementation of the service ...
 }
}

public class ConcreteService extends TemplatedService {
 void prepareService() {
 // set up for the service
 }
}

An abstract class cannot be instantiated. Subtypes of an abstract class must either pro-
vide definitions for all the abstract methods in the superclass or must, themselves, be
declared abstract.

As hinted in the example, abstract classes are useful in implementing the common
template pattern, which provides a reusable piece of code that allows customization at
specific points during its execution. The reusable pieces are implemented as an abstract
class. Subtypes customize the template by implementing the abstract methods.

For more information on abstract classes, see the Java tutorial at http://download.oracle
.com/javase/tutorial/java/IandI/abstract.html.

Interfaces
Other languages (e.g., C++, Python, and Perl) permit a capability known as multiple
implementation inheritance, whereby an object can inherit implementations of meth-
ods from more than one parent class. Such inheritance hierarchies can get pretty com-
plicated and behave in unexpected ways (such as inheriting two field variables with the
same name from two different superclasses). Java’s developers chose to trade the power
of multiple inheritance for simplicity. Unlike the mentioned languages, in Java a class
may extend only a single superclass.

Instead of multiple implementation inheritance, however, Java provides the ability for
a class to inherit from several types, using the concept of an interface. Interfaces provide
a way to define a type without defining its implementation. You can think of interfaces
as abstract classes with all abstract methods. There is no limit on the number of inter-
faces that a class may implement.

Here’s an example of a Java interface and a class that implements it:

public interface Growable {
 // declare the signature but not the implementation

46 | Chapter 2: Java for Android

http://download.oracle.com/javase/tutorial/java/IandI/abstract.html
http://download.oracle.com/javase/tutorial/java/IandI/abstract.html

 void grow(Fertilizer food, Water water);
}

public interface Eatable {
 // another signature with no implementation
 void munch();
}

/**
 * An implementing class must implement all interface methods
 */
public class Beans implements Growable, Eatable {

 @Override
 public void grow(Fertilizer food, Water water) {
 // ...
 }

 @Override
 public void munch() {
 // ...
 }
}

Again, interfaces provide a way to define a type distinct from the implementation of
that type. This kind of separation is common even in everyday life. If you and a colleague
are trying to mix mojitos, you might well divide tasks so that she goes to get the mint.
When you start muddling things in the bottom of the glass, it is irrelevant whether she
drove to the store to buy the mint or went out to the backyard and picked it from a
shrub. What’s important is that you have mint.

As another example of the power of interfaces, consider a program that needs to display
a list of contacts, sorted by email address. As you would certainly expect, the Android
runtime libraries contain generic routines to sort objects. Because they are generic,
however, these routines have no intrinsic idea of what ordering means for the instances
of any particular class. In order to use the library sorting routines, a class needs a way
to define its own ordering. Classes do this in Java using the interface Comparable.

Objects of type Comparable implement the method compareTo. One object accepts an-
other, similar object as an argument and returns an integer that indicates whether the
argument object is greater than, equal to, or less than the target. The library routines
can sort anything that is Comparable. A program’s Contact type need only be Compara
ble and implement compareTo to allow contacts to be sorted:

public class Contact implements Comparable<Contact> {
 // ... other fields
 private String email;

 public Contact(
 // other params...
 String emailAddress)
 {

The Java Type System | 47

 // ... init other fields from corresponding params
 email = emailAddress;
 }

 public int compareTo(Contact c) {
 return email.compareTo(c.email);
 }
}

public class ContactView {
 // ...

 private List<Contact> getContactsSortedByEmail(
 List<Contact> contacts)
 {
 // getting the sorted list of contacts
 // is completely trivial
 return Collections.sort(contacts);
 }

 // ...
}

Internally, the Collections.sort routine knows only that contacts is a list of things of
type Comparable. It invokes the class’s compareTo method to decide how to order them.

As this example demonstrates, interfaces enable the developer to reuse generic routines
that can sort any list of objects that implement Comparable. Beyond this simple example,
Java interfaces enable a diverse set of programming patterns that are well described in
other sources. We frequently and highly recommend the excellent Effective Java by
Joshua Bloch (Prentice Hall).

Exceptions
The Java language uses exceptions as a convenient way to handle unusual conditions.
Frequently these conditions are errors.

Code trying to parse a web page, for instance, cannot continue if it cannot read the
page from the network. Certainly, it is possible to check the results of the attempt to
read and proceed only if that attempt succeeds, as shown in this example:

public void getPage(URL url) {
 String smallPage = readPageFromNet(url);
 if (null != smallPage) {
 Document dom = parsePage(smallPage);
 if (null != dom) {
 NodeList actions = getActions(dom);
 if (null != action) {
 // process the action here...
 }
 }
 }
}

48 | Chapter 2: Java for Android

Exceptions make this more elegant and robust:

public void getPage(URL url)
 throws NetworkException, ParseException, ActionNotFoundException
{
 String smallPage = readPageFromNet(url);
 Document dom = parsePage(smallPage);
 NodeList actions = getActions(dom);
 // process the action here...
}

public String readPageFromNet(URL url) throws NetworkException {
// ...
public Document parsePage(String xml) throws ParseException {
// ...
public NodeList getActions(Document doc) throws ActionNotFoundException {
// ...

In this version of the code, each method called from getPage uses an exception to im-
mediately short-circuit all further processing if something goes wrong. The methods
are said to throw exceptions. For instance, the getActions method might look some-
thing like this:

public NodeList getActions(Document dom)
 throws ActionNotFoundException
{
 Object actions = xPathFactory.newXPath().compile("//node/@action")
 .evaluate(dom, XPathConstants.NODESET);
 if (null == actions) {
 throw new ActionNotFoundException("Action not found");
 }
 return (NodeList) actions;
}

When the throw statement is executed, processing is immediately interrupted and re-
sumes at the nearest catch block. Here’s an example of a try-catch block:

for (int i = 0; i < MAX_RETRIES; i++) {
 try {
 getPage(theUrl);
 break;
 }
 catch (NetworkException e) {
 Log.d("ActionDecoder", "network error: " + e);
 }
}

This code retries network failures. Note that it is not even in the same method,
readPageFromNet, that threw the NetworkException. When we say that processing re-
sumes at the “nearest” try-catch block, we’re talking about an interesting way that Java
delegates responsibility for exceptions.

The Java Type System | 49

If there is no try-catch block surrounding the throw statement within the method, a
thrown exception makes it seem as though the method returns immediately. No further
statements are executed and no value is returned. In the previous example, for instance,
none of the code following the attempt to get the page from the network needs to
concern itself with the possibility that the precondition—a page was read—was
not met. The method is said to have been terminated abruptly and, in the example,
control returns to getActions. Since getActions does not contain a try-catch block ei-
ther, it is terminated abruptly too. Control is passed back (up the stack) to the caller.

In the example, when a NetworkException is thrown, control returns to the first state-
ment inside the example catch block, the call to log the network error. The exception
is said to have been caught at the first catch statement whose argument type is the same
type, or a supertype, of the thrown exception. Processing resumes at the first statement
in the catch block and continues normally afterward.

In the example, a network error while attempting to read a page from the network will
cause both ReadPageFromNet and getPage to terminate abruptly. After the catch block
logs the failure, the for loop will retry getting the page, up to MAX_RETRIES times.

It is useful to have a clear understanding of the root of the Java exception class tree,
shown in Figure 2-1.

Figure 2-1. Exception base classes

All exceptions are subclasses of Throwable. There is almost never any reason to make
reference to Throwable in your code. Think of it as just an abstract base class with two

50 | Chapter 2: Java for Android

subclasses: Error and Exception. Error and its subclasses are reserved for problems with
the Dalvik runtime environment itself. While you can write code that appears to catch
an Error (or a Throwable), you cannot, in fact, catch them. An obvious example of this,
for instance, is the dreaded OOME, the OutOfMemoryException error. When the Dalvik
system is out of memory, it may not be able to complete execution of even a single
opcode! Writing tricky code that attempts to catch an OOME and then to release some
block of preallocated memory might work—or it might not. Code that tries to catch
Throwable or Error is absolutely whistling in the wind.

Java requires the signature of a method to include the exceptions that it throws. In the
previous example, getPage declares that it throws three exceptions, because it uses three
methods, each of which throws one. Methods that call getPage must, in turn, declare
all three of the exceptions that getPage throws, along with any others thrown by any
other methods that it calls.

As you can imagine, this can become onerous for methods far up the call tree. A top-
level method might have to declare tens of different kinds of exceptions, just because
it calls methods that throw them. This problem can be mitigated by creating an ex-
ception tree that is congruent to the application tree. Remember that a method needs
only to declare supertypes for all the exceptions it throws. If you create a base class
named MyApplicationException and then subclass it to create MyNetworkException and
MyUIException for the networking and UI subsystems, respectively, your top-layer code
need only handle MyApplicationException.

Really, though, this is only a partial solution. Suppose networking code somewhere
way down in the bowels of your application fails, for instance, to open a network con-
nection. As the exception bubbles up through retries and alternatives, at some point it
loses any significance except to indicate that “something went wrong.” A specific da-
tabase exception, for instance, means nothing to code that is trying to prepopulate a
phone number. Adding the exception to a method signature, at that point, is really just
a nuisance: you might as well simply declare that all your methods throw Exception.

RuntimeException is a special subclass of Exception. Subclasses of RuntimeException are
called unchecked exceptions and do not have to be declared. This code, for instance,
will compile without error:

public void ThrowsRuntimeException() {
 throw new RuntimeException();
}

There is considerable debate in the Java community about when to use and when not
to use unchecked exceptions. Obviously, you could use only unchecked exceptions in
your application and never declare any exception in any of your method signatures.
Some schools of Java programming even recommend this. Using checked exceptions,
however, gives you the chance to use the compiler to verify your code and is very much
in the spirit of static typing. Experience and taste will be your guide.

The Java Type System | 51

The Java Collections Framework
The Java Collections Framework is one of Java’s most powerful and convenient tools.
It provides objects that represent collections of objects: lists, sets, and maps. The in-
terfaces and implementations that comprise the library are all to be found in the
java.util package.

There are a few legacy classes in java.util that are historic relics and are not truly part
of the framework. It’s best to remember and avoid them. They are Vector, Hashtable,
Enumeration, and Dictionary.

Collection interface types

Each of the five main types of object in the Collections Library is represented by an
interface:

Collection
This is the root type for all of the objects in the Collection Library. A Collection
is a group of objects, not necessarily ordered, not necessarily addressable, possibly
containing duplicates. You can add and remove things from it, get its size, and
iterate over it (more on iteration in a moment).

List
A List is an ordered collection. There is a mapping between the integers 0 and
length–1 and the objects in the list. A List may contain duplicates. You can do
anything to a List that you can do to a Collection. In addition, though, you can
map an element to its index and an index to an element with the get and indexOf
methods. You can also change the element at a specific index with the add(index,
e) method. The iterator for a List returns the elements in order.

Set
A Set is an unordered collection that does not contain duplicates. You can do
anything to a Set that you can do to a Collection. Attempting to add an element
to a Set that already contains it, though, does not change the size of the Set.

Map
A Map is like a list except that instead of mapping integers to objects it maps a set
of key objects to a collection of value objects. You can add and remove key-value
pairs from the Map, get its size, and iterate over it, just like any other collection.
Examples of maps might include mapping words to their definitions, dates to
events, or URLs to cached content.

Iterator
An Iterator returns the elements of the collection from which it is derived, each
exactly once, in response to calls to its next method. It is the preferred means for
processing all the elements of a collection. Instead of:

52 | Chapter 2: Java for Android

for (int i = 0; i < list.size(); i++) {
 String s = list.get(i)
 // ...
}

the following is preferred:

for (Iterator<String> i = list.iterator(); i.hasNext();) {
 String s = i.next();
 // ...
}

In fact, the latter may be abbreviated, simply, as:

for (String s: list) {
 // ...
}

Collection implementation types

These interface types have multiple implementations, each appropriate to its own use
case. Among the most common of these are the following:

ArrayList
An ArrayList is a list that is backed by an array. It is quick to index but slow to
change size.

LinkedList
A LinkedList is a list that can change size quickly but is slower to index.

HashSet
A HashSet is a set that is implemented as a hash. add, remove, contains, and size all
execute in constant time, assuming a well-behaved hash. A HashSet may contain
(no more than one) null.

HashMap
A HashMap is an implementation of the Map interface that uses a hash table as its
index. add, remove, contains, and size all execute in constant time, assuming a well-
behaved hash. It may contain a (single) null key, but any number of values may
be null.

TreeMap
A TreeMap is an ordered Map: objects in the map are sorted according to their natural
order if they implement the Comparable interface, or according to a Comparator
passed to the TreeMap constructor if they do not.

Idiomatic users of Java prefer to use declarations of interface types instead of declara-
tions of implementation types, whenever possible. This is a general rule, but it is easiest
to understand here in the context of the collection framework.

The Java Type System | 53

Consider a method that returns a new list of strings that is just like the list of strings
passed as its second parameter, but in which each element is prefixed with the string
passed as the first parameter. It might look like this:

public ArrayList<String> prefixList(
 String prefix,
 ArrayList<String> strs)
{
 ArrayList<String> ret
 = new ArrayList<String>(strs.size());
 for (String s: strs) { ret.add(prefix + s); }
 return ret;
}

There’s a problem with this implementation, though: it won’t work on just any list! It
will only work on an ArrayList. If, at some point, the code that calls this method needs
to be changed from using an ArrayList to a LinkedList, it can no longer use the method.
There’s no good reason for that, at all.

A better implementation might look like this:

public List<String> prefix(
 String prefix,
 List<String> strs)
{
 List<String> ret = new ArrayList<String>(strs.size());
 for (String s: strs) { ret.add(prefix + s); }
 return ret;
}

This version is more adaptable because it doesn’t bind the method to a particular
implementation of the list. The method depends only on the fact that the parameter
implements a certain interface. It doesn’t care how. By using the interface type as a
parameter it requires exactly what it needs to do its job—no more, no less.

In fact, this could probably be further improved if its parameter and return type were
Collection.

Java generics

Generics in Java are a large and fairly complex topic. Entire books have been written
on the subject. This section introduces them in their most common setting, the Col-
lections Library, but will not attempt to discuss them in detail.

Before the introduction of generics in Java, it wasn’t possible to statically type the
contents of a container. One frequently saw code that looked like this:

public List makeList() {
 // ...
}

public void useList(List l) {
 Thing t = (Thing) l.get(0);
 // ...

54 | Chapter 2: Java for Android

}

// ...
useList(makeList());

The problem is obvious: useList has no guarantee that makeList created a list of
Thing. The compiler cannot verify that the cast in useList will work, and the code might
explode at runtime.

Generics solve this problem—at the cost of some significant complexity. The syntax
for a generic declaration was introduced, without comment, previously. Here’s a ver-
sion of the example, with the generics added:

public List<Thing> makeList() {
 // ...
}

public void useList(List<Thing> l) {
 Thing t = l.get(0);
 // ...
}

// ...
useList(makeList());

The type of the objects in a container is specified in the angle brackets (<>) that are
part of the container type. Notice that the cast is no longer necessary in useList because
the compiler can now tell that the parameter l is a list of Thing.

Generic type descriptions can get pretty verbose. Declarations like this are not
uncommon:

Map<UUID, Map<String, Thing>> cache
 = new HashMap<UUID, Map<String, Thing>>();

Garbage Collection
Java is a garbage-collected language. That means your code does not manage memory.
Instead, your code creates new objects, allocating memory, and then simply stops using
those objects when it no longer needs them. The Dalvik runtime will delete them and
compress memory, as appropriate.

In the not-so-distant past, developers had to worry about long and unpredictable pe-
riods of unresponsiveness in their applications when the garbage collector suspended
all application processing to recover memory. Many developers, both those that used
Java in its early days and those that used J2ME more recently, will remember the tricks,
hacks, and unwritten rules necessary to avoid the long pauses and memory fragmen-
tation caused by early garbage collectors. Garbage collection technology has come a
long way since those days. Dalvik emphatically does not have these problems. Creating
new objects has essentially no overhead. Only the most demandingly responsive of
UIs—perhaps some games—will ever need to worry about garbage collection pauses.

The Java Type System | 55

Scope
Scope determines where variables, methods, and other symbols are visible in a program.
Outside of a symbol’s scope, the symbol is not visible at all and cannot be used. We’ll
go over the major aspects of scope in this section, starting with the highest level.

Java Packages
Java packages provide a mechanism for grouping related types together in a universally
unique namespace. Such grouping prevents identifiers within the package namespace
from colliding with those created and used by other developers in other namespaces.

A typical Java program is made up of code from a forest of packages. The standard Java
Runtime Environment supplies packages like java.lang and java.util. In addition, the
program may depend on other common libraries like those in the org.apache tree. By
convention, application code—code you create—goes into a package whose name is
created by reversing your domain name and appending the name of the program. Thus,
if your domain name is androidhero.com, the root of your package tree will be
com.androidhero and you will put your code into packages like
com.androidhero.awesomeprogram and com.androidhero.geohottness.service. A typical
package layout for an Android application might have a package for persistence, a
package for the UI, and a package for application logic or controller code.

In addition to providing a unique namespace, packages have implications on member
(field and method) visibility for objects in the same package. Classes in the same pack-
age may be able to see each other’s internals in ways that are not available to classes
outside the package. We’ll return to this topic in a moment.

To declare a class as part of a package, use the package keyword at the top of the file
containing your class definition:

package your.qualifieddomainname.functionalgrouping

Don’t be tempted to shortcut your package name! As surely as a quick, temporary
implementation lasts for years, so the choice of a package name that is not guaranteed
unique will come back to haunt you.

Some larger projects use completely different top-level domains to separate public API
packages from the packages that implement those APIs. For example, the Android API
uses the top-level package, android, and implementation classes generally reside in the
package, com.android. Sun’s Java source code follows a similar scheme. Public APIs
reside in the java package, but the implementation code resides in the package sun. In
either case, an application that imports an implementation package is clearly doing
something fast and loose, depending on something that is not part of the public API.

While it is possible to add code to existing packages, it is usually considered bad form
to do so. In general, in addition to being a namespace, a package is usually a single
source tree, at least up as far as the reversed domain name. It is only convention, but

56 | Chapter 2: Java for Android

Java developers usually expect that when they look at the source for the package
com.brashandroid.coolapp.ui, they will see all the source for the UI for CoolApp. Most
will be surprised if they have to find another source tree somewhere with, for instance,
page two of the UI.

The Android application framework also has the concept of a Package.
It is different, and we’ll consider it in Chapter 3. Don’t confuse it with
Java package names.

For more information on Java packages, see the Java tutorial at http://download.oracle
.com/javase/tutorial/java/package/packages.html.

Access Modifiers and Encapsulation
We hinted earlier that members of a class have special visibility rules. Definitions in
most Java blocks are lexically scoped: they are visible only within the block and its
nested blocks. The definitions in a class, however, may be visible outside the block.
Java supports publishing top-level members of a class—its methods and fields—to code
in other classes, through the use of access modifiers. Access modifiers are keywords that
modify the visibility of the declarations to which they are applied.

There are three access-modifying keywords in the Java language: public, protected,
and private. Together they support four levels of access. While access modifiers affect
the visibility of a declaration from outside the class containing it, within the class,
normal block scoping rules apply, regardless of access modification.

The private access modifier is the most restrictive. A declaration with private access
is not visible outside the block that contains it. This is the safest kind of declaration
because it guarantees that there are no references to the declaration, except within the
containing class. The more private declarations there are in a class, the safer the class
is.

The next most restrictive level of access is default or package access. Declarations that
are not modified by any of the three access modifiers have default access and are visible
only from other classes in the same package. Default access can be a very handy way
to create state shared between objects, similar to the use of the friend declaration in
C++.

The protected access modifier permits all the access rights that were permitted by de-
fault access but, in addition, allows access from within any subtype. Any class that
extends a class with protected declarations has access to those declarations.

Finally, public access, the weakest of the modifiers, allows access from anywhere.

Scope | 57

http://download.oracle.com/javase/tutorial/java/package/packages.html
http://download.oracle.com/javase/tutorial/java/package/packages.html

Here’s an example that will make this more concrete. There are four classes in
two different packages here, all of which refer to fields declared in one of the classes,
Accessible:

package over.here;

public class Accessible {
 private String localAccess;
 String packageAccess;
 protected String subtypeAccess;
 public String allAccess;

 public void test() {
 // all of the assignments below work:
 // the fields are declared in an enclosing
 // block and are therefore visible.
 localAccess = "success!!";
 packageAccess = "success!!";
 subtypeAccess = "success!!";
 allAccess = "success!!";
 }
}

package over.here;
import over.here.Accessible;

// this class is in the same package as Accessible
public class AccessibleFriend {

 public void test() {
 Accessible target = new Accessible();

 // private members are not visible
 // outside the declaring class
 target.localAccess = "fail!!"; // ERROR!!

 // default access visible within package
 target.packageAccess = "success!!";

 // protected access is superset of default
 target.subtypeAccess = "success!!";

 // visible everywhere
 target.allAccess = "success!!";
 }
}

package over.there;
import over.here.Accessible;

// a subtype of Accessible
// in a different package
public class AccessibleChild extends Accessible {

58 | Chapter 2: Java for Android

 // the visible fields from Accessible appear
 // as if declared in a surrounding block
 public void test() {
 localAccess = "fail!!"; // ERROR!!
 packageAccess = "fail!!"; // ERROR!!

 // protected declarations are
 // visible from subtypes
 subtypeAccess = "success!!";

 // visible everywhere
 allAccess = "success!!";
 }
}

package over.there;
import over.here.Accessible;

// a class completely unrelated to Accessible
public class AccessibleStranger {

 public void test() {
 Accessible target = new Accessible();
 target.localAccess = "fail!!"; // ERROR!!
 target.packageAccess = "fail!!"; // ERROR!!
 target.subtypeAccess = "success!!"; // ERROR!!

 // visible everywhere
 target.allAccess = "success!!";
 }
}

Idioms of Java Programming
Somewhere between getting the specifics of a programming language syntax right and
good pattern-oriented design (which is language-agnostic), is idiomatic use of a lan-
guage. An idiomatic programmer uses consistent code to express similar ideas and, by
doing so, produces programs that are easy to understand, make optimal use of the
runtime environment, and avoid the “gotchas” that exist in any language syntax.

Type Safety in Java
A primary design goal for the Java language was programming safety. Much of the
frequently maligned verbosity and inflexibility of Java, which is not present in languages
such as Ruby, Python, and Objective-C, is there to make sure a compiler can guarantee
that entire classes of errors will never occur at runtime.

Idioms of Java Programming | 59

Java’s static typing has proven to be valuable well beyond its own compiler. The ability
for a machine to parse and recognize the semantics of Java code was a major force in
the development of powerful tools like FindBugs and IDE refactoring tools.

Many developers argue that, especially with modern coding tools, these constraints are
a small price to pay for being able to find problems immediately that might otherwise
manifest themselves only when the code is actually deployed. Of course, there is also
a huge community of developers who argue that they save so much time coding in a
dynamic language that they can write extensive unit and integration tests and still come
out ahead.

Whatever your position in this discussion, it makes a lot of sense to make the best
possible use of your tools. Java’s static binding absolutely is a constraint. On the other
hand, Java is a pretty good statically bound language. It is a lousy dynamic language.
It is actually possible to do fairly dynamic things with Java by using its reflection and
introspection APIs and doing a lot of type casting. Doing so, except in very limited
circumstances, is using the language and its runtime environment to cross-purposes.
Your program is likely to run very slowly, and the Android tool chain won’t be able to
make heads or tails of it. Perhaps most important, if there are bugs in this seldom-used
part of the platform, you’ll be the first to find them. We suggest embracing Java’s static
nature—at least until there is a good, dynamic alternative—and taking every possible
advantage of it.

Encapsulation

Developers limit the visibility of object members in order to create encapsulation. En-
capsulation is the idea that an object should never reveal details about itself that it does
not intend to support. To return to the mojito-making example, recall that, when it
comes time to make the cocktail, you don’t care at all how your colleague got the
necessary mint. Suppose, though, that you had said to her, “Can you get the mint? And,
oh, by the way, while you are out there, could you water the rosebush?” It is no longer
true that you don’t care how your colleague produces mint. You now depend on the
exact way that she does it.

In the same way, the interface (sometimes abbreviated as API) of an object consists of
the methods and types that are accessible from calling code. By careful encapsulation,
a developer keeps implementation details of an object hidden from code that uses it.
Such control and protection produce programs that are more flexible and allow the
developer of an object to change object implementation over time without causing
ripple-effect changes in calling code.

Getters and setters

A simple, but common, form of encapsulation in Java involves the use of getter and
setter methods. Consider a naive definition of a Contact class:

60 | Chapter 2: Java for Android

public class Contact {
 public String name;
 public int age;
 public String email;
}

This definition makes it necessary for external objects to access the fields of the class
directly. For example:

Contact c = new Contact();
c.name = "Alice";
c.age = 13;
c.email = "alice@mymail.com";

It will take only a tiny amount of use in the real world to discover that contacts actually
have several email addresses. Unfortunately, adding a multiple-address feature to the
naive implementation requires updating every single reference to Contact.email, in the
entire program.

In contrast, consider the following class:

class Contact {
 private int age;
 private String name;
 private String email;

 Contact(int age, String name, String email) {
 this.age = age;
 this.name = name;
 this.email = email;
 }

 public int getAge() {
 return age;
 }

 public String getName() {
 return name;
 }

 public String getEmail() {
 return address;
 }
}

Use of the private access modifier prevents direct access to the fields of this version of
the Contact class. Use of public getter methods provides the developer with the op-
portunity to change how the Contact object returns the name, age, or email address of
the Contact. For example, the email address could be stored by itself, as in the preceding
code or concatenated from a username and a hostname if that happened to be more
convenient for a given application. Internally, the age could be held as an int or as an
Integer. The class can be extended to support multiple email addresses without any
change to any client.

Idioms of Java Programming | 61

Java does allow direct reference to fields and does not, like some languages, automat-
ically wrap references to the fields in getters and setters. In order to preserve encapsu-
lation, you must define each and every access method yourself. Most IDEs provide code
generation features that will do this quickly and accurately.

Wrapper getter and setter methods provide future flexibility, whereas direct field access
means that all code that uses a field will have to change if the type of that field changes,
or if it goes away. Getter and setter methods represent a simple form of object encap-
sulation. An excellent rule of thumb recommends that all fields be either private or
final. Well-written Java programs use this and other, more sophisticated forms of
encapsulation in order to preserve adaptability in more complex programs.

Using Anonymous Classes
Developers who have experience working with UI development will be familiar with
the concept of a callback: your code needs to be notified when something in the UI
changes. Perhaps a button is pushed and your model needs to make a corresponding
change in state. Perhaps new data has arrived from the network and it needs to be
displayed. You need a way to add a block of code to a framework, for later execution
on your behalf.

Although the Java language does provide an idiom for passing blocks of code, it is
slightly awkward because neither code blocks nor methods are first-class objects in the
language. There is no way, in the language, to obtain a reference to either.

You can have a reference to an instance of a class. In Java, instead of passing blocks or
functions, you pass an entire class that defines the code you need as one of its methods.
A service that provides a callback API will define its protocol using an interface. The
service client defines an implementation of this interface and passes it to the framework.

Consider, for instance, the Android mechanism for implementing the response to a
user keypress. The Android View class defines an interface, OnKeyListener, which, in
turn, defines an onKey method. If your code passes an implementation of
OnKeyListener to a View, its onKey method will be called each time the View processes a
new key event.

The code might look something like this:

public class MyDataModel {
 // Callback class
 private class KeyHandler implements View.OnKeyListener {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 handleKey(v, keyCode, event)
 }
 }

 /** @param view the view we model */
 public MyDataModel(View view) { view.setOnKeyListener(new KeyHandler()) }

62 | Chapter 2: Java for Android

 /** Handle a key event */
 void handleKey(View v, int keyCode, KeyEvent event) {
 // key handling code goes here...
 }
}

When a new MyDataModel is created, it is informed about the view to which it is attached
by an argument to the constructor. The constructor creates a new instance of the trivial
callback class, KeyHandler, and installs it in the view. Any subsequent key events will
be relayed to the model instance’s handleKey method.

While this certainly gets the job done, it can get pretty ugly, especially if your model
class needs to handle multiple kinds of events from multiple views! After a while, all
those type definitions clutter up the top of your program. The definitions can be a long
way from their use and, if you think about it, they really serve no purpose at all.

Java provides a way to simplify this somewhat, using an anonymous class. Here is a
code fragment similar to the one shown earlier, except that it is implemented using an
anonymous class:

public class MyDataModel {
 /** @param view the view we model */
 public MyDataModel(View view) {
 view.setOnKeyListener(
 // this is an anonymous class!!
 new View.OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 handleKey(v, keyCode, event)
 } });
 }

 /** Handle a key event */
 void handleKey(View v, int keyCode, KeyEvent event) {
 // key handling code goes here...
 }
}

While it might take a minute to parse, this code is almost identical to the previous
example. It passes a newly created instance of a subtype of View.OnKeyListener as an
argument in the call to view.setOnKeyListener. In this example, though, the argument
to the call to view.setOnKeyListener is special syntax that defines a new subclass of the
interface View.OnKeyListener and instantiates it in a single statement. The new instance
is an instance of a class that has no name: it is anonymous. Its definition exists only in
the statement that instantiates it.

Anonymous classes are a very handy tool and are the Java idiom for expressing many
kinds of code blocks. Objects created using an anonymous class are first-class objects
of the language and can be used anywhere any other object of the same type would be
legal. For instance, they can be assigned:

public class MyDataModel {
 /** @param view the view we model */

Idioms of Java Programming | 63

 public MyDataModel(View view1, View view2) {
 // get a reference to the anonymous class
 View.OnKeyListener keyHdlr = new View.OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 handleKey(v, keyCode, event)
 } };

 // use the class to relay for two views
 view1.setOnKeyListener(keyHdlr);
 view2.setOnKeyListener(keyHdlr);
 }

 /** Handle a key event */
 void handleKey(View v, int keyCode, KeyEvent event) {
 // key handling code goes here...
 }
}

You might wonder why the anonymous class in this example delegates its actual im-
plementation (the handleKey method) to the containing class. There’s certainly no rule
that constrains the content of the anonymous class: it absolutely could contain the
complete implementation. On the other hand, good, idiomatic taste suggests putting
the code that changes an object’s state into the object class. If the implementation is in
the containing class, it can be used from other methods and callbacks. The anonymous
class is simply a relay and that is all it should do.

Java does have some fairly strong constraints concerning the use of the variables that
are in scope—anything defined in any surrounding block—within an anonymous class.
In particular, an anonymous class can only refer to a variable inherited from the sur-
rounding scope if that variable is declared final. For example, the following code frag-
ment will not compile:

/** Create a key handler that matches the passed key */
public View.OnKeyListener curry(int keyToMatch) {
 return new View.OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 if (keyToMatch == keyCode) { foundMatch(); } // ERROR!!
 } };
}

The remedy is to make the argument to curry final. Making it final, of course, means
that it cannot be changed in the anonymous class. But there is an easy, idiomatic way
around that:

/** Create a key handler that increments and matches the passed key */
public View.OnKeyListener curry(final int keyToMatch) {
 return new View.OnKeyListener() {
 private int matchTarget = keyToMatch;
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 matchTarget++;
 if (matchTarget == keyCode) { foundMatch(); }
 } };
}

64 | Chapter 2: Java for Android

Modular Programming in Java
While class extension in Java offers developers significant flexibility in being able to
redefine aspects of objects as they are used in different contexts, it actually takes a
reasonable amount of experience to make judicious use of classes and interfaces. Ide-
ally, developers aim to create sections of code that are tolerant of change over time and
that can be reused in as many different contexts as possible, in multiple applications
or perhaps even as libraries. Programming in this way can reduce bugs and the appli-
cation’s time to market. Modular programming, encapsulation, and separation of
concerns are all key strategies for maximizing code reuse and stability.

A fundamental design consideration in object-oriented development concerns the de-
cision to delegate or inherit as a means of reusing preexisting code. The following series
of examples contains different object hierarchies for representing automotive vehicles
that might be used in a car gaming application. Each example presents a different ap-
proach to modularity.

A developer starts by creating a vehicle class that contains all vehicle logic and all logic
for each different type of engine, as follows:

// Naive code!
public class MonolithicVehicle {
 private int vehicleType;

 // fields for an electric engine
 // fields for a gas engine
 // fields for a hybrid engine
 // fields for a steam engine

 public MonolithicVehicle(int vehicleType) {
 vehicleType = vehicleType;
 }

 // other methods for implementing vehicles and engine types.

 void start() {
 // code for an electric engine
 // code for a gas engine
 // code for a hybrid engine
 // code for a steam engine
 }
}

This is naive code. While it may be functional, it mixes together unrelated bits of im-
plementation (e.g., all types of vehicle engines) and will be hard to extend. For instance,
consider modifying the implementation to accommodate a new engine type (nuclear).
The code for each kind of car engine has unrestricted access to the code for every other
engine. A bug in one engine implementation might end up causing a bug in another,
unrelated engine. A change in one might result in an unexpected change to another.
And, of course, a car that has an electric engine must drag along representations of all
existing engine types. Future developers working on the monolithic vehicle must

Idioms of Java Programming | 65

understand all the complex interactions in order to modify the code. This just doesn’t
scale.

How might we improve on this implementation? An obvious idea is to use subclassing.
We might use the class hierarchy shown in the following code to implement different
types of automotive vehicles, each tightly bound to its engine type:

public abstract class TightlyBoundVehicle {
 // has no engine field

 // each subclass must override this method to
 // implement its own way of starting the vehicle
 protected abstract void startEngine();

 public final void start() { startEngine(); }
}

public class ElectricVehicle extends TightlyBoundVehicle {
 protected void startEngine() {
 // implementation for engine start electric
 }

public class GasVehicle extends TightlyBoundVehicle {
 protected void startEngine() {
 // implementation for engine start gas
 }
}

public void anInstantiatingMethod() {
 TightlyBoundVehicle vehicle = new ElectricVehicle();
 TightlyBoundVehicle vehicle = new GasVehicle();
 TightlyBoundVehicle vehicle = new HybridVehicle();
 TightlyBoundVehicle vehicle = new SteamVehicle();
}

This is clearly an improvement. The code for each engine type is now encapsulated
within its own class and cannot interfere with any others. You can extend individual
types of vehicles without affecting any other type. In many circumstances, this is an
ideal implementation.

On the other hand, what happens when you want to convert your tightly bound gas
vehicle to biodiesel? In this implementation, cars and engines are the same object. They
cannot be separated. If the real-world situation that you are modeling requires you to
consider the objects separately, your architecture will have to be more loosely coupled:

interface Engine {
 void start();
}

class GasEngine implements Engine {
 void start() {
 // spark plugs ignite gas
 }
}

66 | Chapter 2: Java for Android

class ElectricEngine implements Engine {
 void start() {
 // run power to battery
 }
}

class DelegatingVehicle {
 // has an engine field
 private Engine mEngine;

 public DelegatingVehicle(Engine engine) {
 mEngine = engine;
 }

 public void start() {
 // delegating vehicle can use a gas or electric engine
 mEngine.start();
 }
}

void anInstantiatingMethod() {
 // new vehicle types are easily created by just
 // plugging in different kinds of engines.
 DelegatingVehicle electricVehicle =
 new DelegatingVehicle(new ElectricEngine());
 DelegatingVehicle gasVehicle = new DelegatingVehicle(new GasEngine());
 //DelegatingVehicle hybridVehicle = new DelegatingVehicle(new HybridEngine());
 //DelegatingVehicle steamVehicle = new DelegatingVehicle(new SteamEngine());
}

In this architecture, the vehicle class delegates all engine-related behaviors to an engine
object that it owns. This is sometimes called has-a, as opposed to the previous, sub-
classed example, called is-a. It can be even more flexible because it separates the
knowledge of how an engine actually works from the car that contains it. Each vehicle
delegates to a loosely coupled engine type and has no idea how that engine implements
its behavior. The earlier example makes use of a reusable DelegatingVehicle class that
does not change at all when it is given a new kind of engine. A vehicle can use any
implementation of the Engine interface. In addition, it’s possible to create different types
of vehicle—SUV, compact, or luxury, for instance—that each make use of any of the
different types of Engine.

Using delegation minimizes the interdependence between the two objects and maxi-
mizes the flexibility to change them later. By preferring delegation over inheritance, a
developer makes it easier to extend and improve the code. By using interfaces to define
the contract between an object and its delegates, a developer guarantees that the del-
egates will have the expected behavior.

Idioms of Java Programming | 67

Basic Multithreaded Concurrent Programming in Java
The Java language supports concurrent threads of execution. Statements in different
threads are executed in program order, but there is no ordering relationship between
the statements in different threads. The basic unit of concurrent execution in Java is
encapsulated in the class java.lang.Thread. The recommended method of spawning a
thread uses an implementation of the interface java.lang.Runnable, as demonstrated
in the following example:

// program that interleaves messages from two threads
public class ConcurrentTask implements Runnable {
 public void run() {
 while (true) {
 System.out.println("Message from spawned thread");
 }
 }
}

public void spawnThread() {
 (new Thread(new ConcurrentTask())).start();

 while (true) {
 System.out.println("Message from main thread");
 }
}

In the preceding example, the method spawnThread creates a new thread, passing a new
instance of ConcurrentTask to the thread’s constructor. The method then calls start on
the new thread. When the start method of the thread is called, the underlying virtual
machine (VM) will create a new concurrent thread of execution, which will, in turn,
call the run method of the passed Runnable, executing it in parallel with the spawning
thread. At this point, the VM is running two independent processes: order of execution
and timing in one thread are unrelated to order and timing in the other.

The class Thread is not final. It is possible to define a new, concurrent task by sub-
classing Thread and overriding its run method. There is no advantage to that approach,
however. In fact, using a Runnable is more adaptable. Because Runnable is an interface,
the Runnable that you pass in to the Thread constructor may extend some other, useful
class.

Synchronization and Thread Safety
When two or more running threads have access to the same set of variables, it’s possible
for the threads to modify those variables in a way that can produce data corruption and
break the logic in one or more of those threads. These kinds of unintended concurrent
access bugs are called thread safety violations. They are difficult to reproduce, difficult
to find, and difficult to test.

68 | Chapter 2: Java for Android

Java does not explicitly enforce restrictions on access to variables by multiple threads.
Instead, the primary mechanism Java provides to support thread safety is the
synchronized keyword. This keyword serializes access to the block it controls and, more
important, synchronizes visible state between two threads. It is very easy to forget,
when trying to reason about concurrency in Java, that synchronization controls both
access and visibility. Consider the following program:

// This code is seriously broken!!!
public class BrokenVisibility {
 public static boolean shouldStop;

 public static void main(String[] args) {
 new Thread(
 new Runnable() {
 @Override public void run() {
 // this code runs in the spawned thread
 final long stopTime
 = System.currentTimeMillis() + 1000;
 for (;;) {
 shouldStop
 = System.currentTimeMillis() > stopTime;
 }
 }
 }
).start();

 // this runs in the main thread
 for (;;) {
 if (shouldStop) { System.exit(0); }
 }
 }
}

One might think, “Well, there’s no need to synchronize the variable shouldStop. Sure,
the main thread and the spawned thread might collide when accessing it. So what? The
spawned thread will, after one second, always set it to true. Boolean writes are atomic.
If the main thread doesn’t see it as true this time, surely it will see it as true the next
time.” This reasoning is dangerously flawed. It does not take into account optimizing
compilers and caching processors! In fact, this program may well never terminate. The
two threads might very easily each use their own copy of shouldStop, existing only in
some local processor hardware cache. Since there is no synchronization between the
two threads, the cache copy might never be published so that the spawned thread’s
value is visible from the main thread.

There is a simple rule for avoiding thread safety violations in Java: when two different
threads access the same mutable state (variable) all access to that state must be per-
formed holding a single lock.

Some developers may violate this rule, after reasoning about the behavior of shared
state in their program, in an attempt to optimize code. Since many of the devices on
which the Android platform is currently implemented cannot actually provide

Idioms of Java Programming | 69

concurrent execution (instead, a single processor is shared, serially, across the threads),
it is possible that these programs will appear to run correctly. However, when, inevi-
tably, mobile devices have processors with multiple cores and large, multilayered
processor caches, incorrect programs are likely to fail with bugs that are serious, inter-
mittent, and extremely hard to find.

When implementing concurrent processes in Java, the best approach is to turn to the
powerful java.util.concurrent libraries. Here you will find nearly any concurrent
structure you might require, optimally implemented and well tested. In Java, there is
seldom more reason for a developer to use the low-level concurrency constructs than
there is for him to implement his own version of a doubly linked list.

The synchronized keyword can be used in three contexts: to create a block, on a dy-
namic method, or on a static method. When used to define a block, the keyword takes
as an argument a reference to an object to be used as a semaphore. Primitive types
cannot be used as semaphores, but any object can.

When used as a modifier on a dynamic method, the keyword behaves as though the
contents of the method were wrapped in a synchronized block that used the instance
itself as the lock. The following example demonstrates this:

class SynchronizationExample {

 public synchronized void aSynchronizedMethod() {
 // a thread executing this method holds
 // the lock on "this". Any other thread attempting
 // to use this or any other method synchronized on
 // "this" will be queued until this thread
 // releases the lock
 }

 public void equivalentSynchronization() {
 synchronized (this) {
 // this is exactly equivalent to using the
 // synchronized keyword in the method def.
 }
 }

 private Object lock = new Object();

 public void containsSynchronizedBlock() {
 synchronized (lock) {
 // A thread executing this method holds
 // the lock on "lock", not "this".
 // Threads attempting to seize "this"
 // may succeed. Only those attempting to
 // seize "lock" will be blocked
 }
 }

This is very convenient but must be used with caution. A complex class that has mul-
tiple high-use methods and synchronizes them in this way may be setting itself up for

70 | Chapter 2: Java for Android

lock contention. If several external threads are attempting to access unrelated pieces of
data simultaneously, it is best to protect those pieces of data with separate locks.

If the synchronized keyword is used on a static method, it is as though the contents of
the method were wrapped in a block synchronized on the object’s class. All static
synchronized methods for all instances of a given class will contend for the single lock
on the class object itself.

Finally, it is worth noting that object locks in Java are reentrant. The following code is
perfectly safe and does not cause a deadlock:

class SafeSeizure {
 private Object lock = new Object();

 public void method1() {
 synchronized (lock) {
 // do stuff
 method2();
 }
 }

 public void method2() {
 synchronized (lock) {
 // do stuff
 }
 }
}

Thread Control with wait() and notify() Methods
The class java.lang.Object defines the methods wait() and notify() as part of the lock
protocol that is part of every object. Since all classes in Java extend Object, all object
instances support these methods for controlling the lock associated with the instance.

A complete discussion of Java’s low-level concurrency tools is well beyond the scope
of this book. Interested developers should turn to Brian Goetz’s excellent Java Con-
currency in Practice (Addison-Wesley Professional). This example, however, illustrates
the essential element necessary to allow two threads to cooperate. One thread pauses
while the other completes a task that it requires:

/**
 * Task that slowly fills a list and notifies the
 * lock on "this" when finished. Filling the
 * list is thread safe.
 */
public class FillListTask implements Runnable {
 private final int size;
 private List<String> strings;

 public FillListTask(int size) {
 this.size = size;
 }

Idioms of Java Programming | 71

 public synchronized boolean isFinished() {
 return null != strings;
 }

 public synchronized List<String> getList() {
 return strings;
 }

 @Override
 public void run() {
 List<String> strs = new ArrayList<String>(size);
 try {
 for (int i = 0; i < size; i++) {
 Thread.sleep(2000);
 strs.add("element " + String.valueOf(i));
 }

 synchronized (this) {
 strings = strs;
 this.notifyAll();
 }
 }
 catch (InterruptedException e) {
 // catch interrupted exception outside loop,
 // since interrupted exception is a sign that
 // the thread should quit.
 }
 }

 /**
 * Waits for the fill list task to complete
 */
 public static void main(String[] args)
 throws InterruptedException
 {
 FillListTask task = new FillListTask(7);

 new Thread(task).start();

 // The call to wait() releases the lock
 // on task and suspends the thread until
 // it receives a notification
 synchronized (task) {
 while (!task.isFinished()) {
 task.wait();
 }
 }

 System.out.println("Array full: " + task.getList());
 }
}

In fact, most developers will never use low-level tools like wait and notify, turning
instead to the java.util.concurrent package for higher-level tools.

72 | Chapter 2: Java for Android

Synchronization and Data Structures
Android supports the feature-rich Java Collections Library from Standard Edition Java.
If you peruse the library, you’ll find that there are two versions of most kinds of col-
lections: List and Vector, HashMap and Hashtable, and so on. Java introduced an entirely
new collections framework in version 1.3. The new framework completely replaces the
old collections. To maintain backward compatibility, however, the old versions were
not deprecated.

The new collections should be preferred over their legacy counterparts. They have a
more uniform API, there are better tools to support them, and so on. Perhaps most
important, however, the legacy collections are all synchronized. That might sound like
a great idea but, as the following example shows, it is not necessarily sufficient:

public class SharedListTask implements Runnable {
 private final Vector<String> list;

 public SharedListTask(Vector<String> l) {
 this.list = l;
 }

 @Override
 public void run() {
 // the size of the list is obtained early
 int s = list.size();

 while (true) {
 for (int i = 0; i < s; i++) {
 // throws IndexOutOfBoundsException!!
 // when the list is size 3, and s is 4.
 System.out.println(list.get(i));
 }
 }
 }

 public static void main(String[] args) {
 Vector<String> list = new Vector<String>();
 list.add("one");
 list.add("two");
 list.add("three");
 list.add("four");

 new Thread(new SharedListTask(list)).start();

 try { Thread.sleep(2000); }
 catch (InterruptedException e) { /* ignore */ }

 // the data structure is fully synchronized,
 // but that only protects the individual methods!
 list.remove("three");
 }
}

Idioms of Java Programming | 73

Even though every use of the Vector is fully synchronized and each call to one of its
methods is guaranteed to be atomic, this program breaks. The complete synchroniza-
tion of the Vector is not sufficient, of course, because the code makes a copy of its size
and uses it even while another thread changes that size.

Because simply synchronizing the methods of a collection object itself is so often in-
sufficient, the collections in the new framework are not synchronized at all. If the code
handling the collection is going to have to synchronize anyway, synchronizing the col-
lection itself is redundant and wasteful.

74 | Chapter 2: Java for Android

CHAPTER 3

The Ingredients of an Android
Application

Based on the foundation laid in the last chapter for writing robust Java code, this chapter
introduces the major high-level concepts involved in programming for the Android
platform.

Traditional Programming Models Compared to Android
When starting applications, operating systems traditionally use a single entry point,
often called main, which might parse some command-line arguments and then proceed
to execute a loop that would read user input and produce output. The OS would load
the program code into a process and then start executing it. Conceptually, this kind of
process would look something like Figure 3-1.

Figure 3-1. A simple application in a process

75

With programs written in Java, it gets a little more complex: a Java virtual machine
(VM) in a process loads bytecode to instantiate Java classes as the program uses them.
This process looks something like Figure 3-2. If you use a rich graphical user interface
system like Swing, you might start a UI system and then write callbacks to your code
that process events.

Figure 3-2. A Java application, running in a Java virtual machine, in a process

Android introduces a richer and more complex approach by supporting multiple ap-
plication entry points. Android programs should expect the system to start them in
different places, depending on where the user is coming from and what she wants to
do next. Instead of a hierarchy of places, your program is a cooperating group of com-
ponents that may be started from outside the normal flow of your application. For
example, a component to scan a bar code provides a discrete function that many ap-
plications can integrate into their UI flow. Instead of relying on the user to directly start
each application, the components themselves invoke one another to perform interac-
tions on behalf of the user.

76 | Chapter 3: The Ingredients of an Android Application

Activities, Intents, and Tasks
An Android activity is both a unit of user interaction—typically filling the whole
screen of an Android mobile device—and a unit of execution. When you make an
interactive Android program, you start by subclassing the Activity class. Activities
provide the reusable, interchangeable parts of the flow of UI components across An-
droid applications.

How, then does one activity invoke another, and pass information about what the user
wants to do? The unit of communication is the Intent class. An Intent represents an
abstract description of a function that one activity requires another activity to perform,
such as taking a picture. Intents form the basis of a system of loose coupling that allows
activities to launch one another. When an application dispatches an intent, it’s possible
that several different activities might be registered to provide the desired operation.

You have already "written" the code for an activity in the test application you created
to verify that your Android SDK is correctly installed. Let’s take a look at that code
again:

public class TestActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

When the system starts this activity it calls the constructor for TestActivity, a subclass
of Activity, and then calls its onCreate method. This causes the view hierarchy descri-
bed in the main.xml file to load and display. The onCreate method kicks off the life
cycle of the Activity, which Chapter 11 covers in detail.

The Activity class is one of the most important classes in the Android system, pro-
moting apps' modularity and allowing functionality to be shared. An Activity interacts
with the Android runtime to implement key aspects of the application life cycle. Each
activity can also be independently configured, through a Context class.

Each activity in an Android application is largely separate from other activities. The
code that implements one activity does not directly call methods in the code that im-
plements another activity. Other elements in the Android framework—such the
Intent already mentioned—are used to manage communication instead. Thus, you are
discouraged from keeping references to Activity objects. The Android Runtime Envi-
ronment, which creates and manages activities and other application components, of-
ten reclaims the memory they use in order to restrict individual tasks to relatively small
amounts of memory. You will find ad hoc attempts to manage activity memory to be
largely counterproductive.

Activities, Intents, and Tasks | 77

We use the word activity to refer to instances of the Activity class, much
the way that object is used to refer to instances of classes.

Instead of a user interface flow control based on method calls, applications describe an
Intent that they want to execute and ask the system to find one that matches. The
Android Home screen application starts your program using these descriptions, and
each app can then do the same using its own choice of intents. Android Developers call
the resultant flow a “task”: a chain of activities that often span more than one appli-
cation, and, indeed, more than one process. Figure 3-3 shows a task spanning three
applications and multiple activities (Table 3-1 gives an example). The chain of activities
comprising this task spans three separate processes and heaps, and can exist inde-
pendently of other tasks that may have started other instances of the same Activity
subclasses.

Table 3-1. Examples of a single task, made up of activities across applications

App Activity User’s next action

Messaging View list of messages User taps on a message in the list

Messaging View a message User taps Menu→View Contact

Contacts View a contact User taps Call Mobile

Phone Call the contact's mobile number

Figure 3-3. Activities in a single task, spanning multiple applications

Other Android Components
Three other components in Android contribute to applications: services, content pro-
viders, and broadcast receivers. The Service class supports background functions. The
ContentProvider class provides access to a data store for multiple applications, and the
Broadcast Receiver allows multiple parties to listen for intents broadcast by
applications.

You will find that, compared to its components, the application itself is a
relatively unimportant unit. Well-designed applications “dissolve” into the Android

78 | Chapter 3: The Ingredients of an Android Application

environment, where they can start activities in other applications to borrow their func-
tions, and provide or augment their own functionality through the use of supporting
Android components. You can think of Android's content providers and intents as a
secondary API that you should learn to use in order to take advantage of Android's
strongest features and integrate seamlessly with the Android platform.

Service
The Android Service class is for background tasks that may be active but not visible
on the screen. A music-playing application would likely be implemented as a service in
order to continue to play music while a user might be viewing web pages. Services also
allow applications to share functions through long-term connections. This practice is
reminiscent of Internet services such as FTP and HTTP, which wait until a request from
a client triggers them. The Android platform avoids reclaiming service resources, so
once a service starts, it is likely to be available unless memory gets extremely
constrained.

Like Activity, the Service class offers methods that control its life cycle, such as stop-
ping and restarting the service.

Content Providers
Content provider components are roughly analogous to a RESTful web service: you
find them using a URI, and the operations of a ContentProvider subclass parallel
RESTful web operations such as putting and getting data. A special URI starting with
the content://, which is recognized across the local device, gives you access to the
content provider data. To use a ContentProvider, you specify a URI and how to act on
referenced data. Here is a list of content provider operations, which provide the well-
known quartet of basic data handling activities: create (insert), read (query), update,
and delete:

Insert
The insert method of the ContentProvider class is analogous to the REST POST
operation. It inserts new records into the database.

Query
The query method of the ContentProvider class is analogous to the REST GET op-
eration. It returns a set of records in a specialized collection class called Cursor.

Update
The update method of the ContentProvider class is analogous to the REST UPDATE
operation. It replaces records in the database with updated records.

Delete
The delete method of the ContentProvider class is analogous to the REST DELETE
operation. It removes matching records from the database.

Other Android Components | 79

REST stands for “Representational State Transfer.” It isn’t a formal
protocol the way that HTTP is. It is more of a conceptual framework
for using HTTP as a basis for easy access to data. While REST imple-
mentations may differ, they all strive for simplicity. Android’s content
provider API formalizes REST-like operations into an API and is de-
signed in the spirit of REST’s simplicity. You can find more information
on REST on Wikipedia: http://en.wikipedia.org/wiki/REST.

Content provider components are the heart of the Android content model: by providing
a ContentProvider, your application can share data with other applications and manage
the data model of an application. A companion class, ContentResolver, enables other
components in an Android system to find content providers. You will find content
providers throughout the platform, used both in the operating system and in applica-
tions from other developers. Notably, the core Android applications make use of con-
tent providers that can provide quick and sophisticated functions for new Android
applications, including providers for Browser, Calendar, Contacts, Call Log, Media,
and Settings.

Content providers are unique among the IPC systems found on other platforms, such
as CORBA, RMI, and DCOM, which focus on remote procedure calls. Content pro-
viders operate both as a persistence mechanism and as a form of interprocess commu-
nication. Instead of just enabling interprocess method calls, content providers allow
developers to efficiently share entire SQL databases across processes: instead of sharing
just objects, content providers manage entire SQL tables.

Using a content provider

Due to its importance in Android, we provide a brief introduction here to writing a
client that uses a content provider. This example, which uses one of the most important
content providers—the Contacts database—should give you a somewhat more groun-
ded understanding of how a content provider can fit into your application. The
ContentProvider class provides the central content provider API, which you can subtype
to manipulate specific types of data. Activities access specific content provider instances
using the ContentResolver class and associated URLs as follows:

// code from an activity method
ContentProviderClient client = getContentResolver().
 acquireContentProviderClient("content://contacts/people");
ContentProvider provider = client.getLocalContentProvider();

Using a content provider involves calling its data operations with REST-style URIs
defined by the UriMatcher class. UriMatcher provides a simple string matching utility
for REST-based URLs, with support for wild-carding strings. Content provider URLs
always take the following form:

content://authority/path/id

80 | Chapter 3: The Ingredients of an Android Application

http://en.wikipedia.org/wiki/REST

where authority is the Java package of the content provider namespace (often the Java
namespace of the content provider implementation). Here are some example content
provider URIs:

// references a person
content://contacts/people/25

// this URI designates the phone numbers of the person whose ID is "25"
content://contacts/people/25/phones

When a developer calls the query method on a content provider, the call will return a
Cursor object that implements the android.database.Cursor interface. This interface
lets you retrieve one result (like a row from a database) at a time using an index that is
automatically updated as you retrieve each result. Developers familiar with JDBC can
compare this to java.sql.ResultSet. In most cases, Cursor objects represent the results
of queries on SQLite tables. Developers can access cursor fields using the indexes of
the underlying SQLite table. Here is an example of iterating an Android cursor and
accessing its fields:

// code from an activity method
Cursor contactsCursor =
 managedQuery(ContactsContract.Contacts.CONTENT_URI,
 null, null, null, null);

if (contactsCursor.moveToFirst()) {
 int idx = contactsCursor.getColumnIndex(Contacts.People.DISPLAY_NAME);

 do { name = contactsCursor.getString(idx); }
 while (contactsCursor.moveToNext());
}

Note here that whenever a client uses a cursor from a provider, it’s critical to close the
cursor when the client is’s done with it. Failure to do so will result in a serious memory
leak that can crash your application. Android provides two ways to ensure that provider
cursors get closed when not in use:

• The activity calls Cursor.close directly.

• The activity calls managedQuery to query content providers, or calls startManaging
Cursor(Cursor c). Both of these calls rely on the system to watch cursor references
to know when a given reference has no more active clients. When reference counts
indicate that all clients have finished, the system will itself call Cursor.close.

We’ll spend more time covering data and content providers in detail in Chapters 12
and 13.

Content providers and the Internet

Together with the Activity component of an Android application, content providers
provide the necessary parts of a Model-View-Controller (MVC) architecture. In addi-
tion to supporting REST-like operations, they support the observer pattern that

Other Android Components | 81

supports MVC. The ContentResolver class provides a notifyChange method that broad-
casts a change in the database to Cursor objects that have registered content observers
using the registerContentObserver method.

You may be thinking, “That’s nice, but the data I’m interested in is out there on the
Internet.” As it happens, Android provides plenty of tools to make accessing that data
simple. You have probably used some applications that access Internet-based data us-
ing Android’s network classes. Unfortunately, you can often recognize these applica-
tions because they take a noticeable amount of time to access and retrieve data from
some server on the Internet. They might even show a progress indicator while you wait.

Wouldn’t it be nicer if you could harness the power of content providers to cache data
locally, and the power of Android’s database-centric MVC architecture support to
make fresh data appear on the user’s screen as it arrives? That’s what Chapter 13 is
about. There you will learn how to combine user interfaces, content providers and
related classes, Android’s network APIs, and MVC support in Android to create a REST
client that takes advantage of the similarity of the content provider architecture to REST
to free the user from staring at a progress indicator while your application fetches data.

BroadcastReceiver
The BroadcastReceiver class implements another variant of Android’s high-level inter-
process communication mechanism using Intent objects. BroadcastReceiver has a
simpler life cycle, than the other components we've covered. A broadcast receiver re-
ceives the action of Intent objects, similarly to an Activity, but does not have its own
user interface. A typical use for a broadcast receiver might be to receive an alarm that
causes an app to become active at a particular time. The system can broadcast an intent
to multiple receivers.

Static Application Resources and Context
Applications may need to store significant amounts of data to control their runtime
behavior. Some of this data describes the application environment: the app name, the
intents it registers, the permissions it needs and so on. This data is stored in a file called
the manifest. Other data might be images to display or simple text strings, indicating
what background color or font to use. These data are called resources. Together, all
this information forms the context of the application, and Android provides access to
it through the Context class. Both Activity and Service extend the Context class, which
means that all activities and services have access to Context data through the this
pointer. In subsequent sections, we will describe how to use a Context object to access
application resources at runtime.

82 | Chapter 3: The Ingredients of an Android Application

Application Manifests
Android requires applications to explicitly describe their contents in an XML file called
AndroidManifest.xml. Here, applications declare the presence of content providers,
services, required permissions, and other elements. The application context makes this
data available to the Android runtime. The manifest file organizes an Android appli-
cation into a well-defined structure that is shared by all applications and enables the
Android operating system to load and execute them in a managed environment. The
structure encompasses a common directory layout and common file types in those
directories.

As we’ve seen, the four components of Android applications—Activity, Service,
ContentProvider, and BroadcastReceiver—provide the foundation of Android appli-
cation development (see Figure 3-4). To make use of any of them, an application must
include corresponding declarations in its AndroidManifest.xml file.

Figure 3-4. The four kinds of Android components

The Application Class
There is a “fifth Beatle” of Android components: the Application class. But many
Android applications do not subclass Application. Because, in most cases, subclassing
Application is unnecessary, the Android project wizard doesn’t create one
automatically.

Static Application Resources and Context | 83

A Typical Source Tree
The source code for Android applications almost always makes use of the following
directory hierarchy:

AndroidManifest.xml
res/

 layout/
 ... contains application layout files ...
 drawable/
 ...contains images, patches, drawable xml ...
 raw/
 ... contains data files that can be loaded as streams ...
 values/
 ... contains xml files that contain string, number values used in code ...
src/
 java/package/directories/

We’ll see in a minute how the res directory is particularly important for making appli-
cation data accessible using a Context object.

Initialization Parameters in AndroidManifest.xml
The following code shows the Android manifest from our test application that we
introduced in Chapter 1. The test application does not do anything beyond demon-
strating the basic layout of an Android application. This manifest file contains basic
elements that we have discussed:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.oreilly.demo.pa.ch01.testapp"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.CALL_PHONE" />
 <uses-permission android:name="android.permission.ACCESS_MOCK_LOCATION" />
 <uses-permission android:name="android.permission.INTERNET" />

 <application android:icon="@drawable/icon"
 android:label="@string/app_name"
 android:debuggable="true">

 <activity android:name=".TestActivity"
 android:label="Test Activity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 <provider android:name=".TestProvider"
 android:authorities= "com.oreilly.demo.pa.ch11.video.FinchVideo"

84 | Chapter 3: The Ingredients of an Android Application

 />

 <service android:name=".TestService"
 android:label="Test Service"/>

 <receiver
 android:name=".TestBroadcastReceiver"
 android:label="Test Broadcast Receiver"/>
 </application>
 <uses-sdk android:minSdkVersion="7" />
</manifest>

Like all good XML files, line 1 has the standard declaration of the version of XML and
the character encoding used. We then define a few parameters and declare needed
permissions for the whole application. The following list describes the tags we have
used:

manifest

package="com.oreilly.demo.pa.ch01.testapp"
The default package where modules in the application can be found.

android:versionCode
An arbitrary integer denoting versions of the application. Every application
should include a version code, and it should always increase for each version
released to customers. This lets other programs (like the Android Market, in-
stallers, and launchers) easily figure out which version of an application is later
than another. The filename of your .apk file should include this same version
number so that it is obvious which version is contained in it.

android:versionName
A string intended to be more like the version numbers you usually see for
applications, such as 1.0.3. This is the version identifier that will be displayed
to a user (either by your application or by another application). The naming
convention is up to you, but in general, the idea is to use a scheme like m.n.o
(for as many numbers as you want to use), to identify successive levels of
change to the application.

uses-permission android:name=...
Four declarations in the TestApp manifest declare that the application intends
to use features of Android that require explicit permission from the user of the
device running the application. The permission is requested when the appli-
cation is installed. From then on, Android remembers that the user said it was
OK (or not) to run this application and allow access to the secure features.
Many permissions are already defined in Android, and all are described in the
Android documentation (search for android.Manifest.permission). What’s
more, you can define your own permissions and use them to restrict other
applications’ access to functions in your application, unless the user grants the
other application that permission. We have requested the following commonly
used permissions as an example:

Static Application Resources and Context | 85

ACCESS_FINE_LOCATION
Required to obtain location information from a GPS sensor

CALL_PHONE
Allows a phone call on behalf of the user

ACCESS_MOCK_LOCATION
Allows us to get fake location information when we’re running under the
emulator

INTERNET
Allows us to open Internet connections to retrieve data

application

label
Provides a human-readable application label.

icon="@drawable/icon"
The filename for a PNG file that contains the icon you’d like to use for your
application. In this case, we’re telling the Android SDK to look for the icon file
in the drawable subdirectory of the res (resources) directory under TestApp.
Android will use this icon for your application in the Android Desktop.

activity
Turning our attention to the definition of TestActivity, we first define a few
attributes. The most important are:

android:name
The name of the class for the Activity. The full name of the activity includes
the package name (which in this application is com.oreilly.demo.pa.ch01
.testapp), but since this file is always used in the context of the package’s
namespace, we don’t need to include the leading package names: we strip the
name down to just .TestActivity. Actually, even the leading period is optional.

android:label
The label that we want to appear at the top of the Android screen when the
activity is on the screen. We’ve defined this in strings.xml to match our
application.

intent-filter
Here we declare an intent filter that tells Android when this Activity should
be run. When an app asks Android to fulfill an Intent, the runtime looks
among the available activities and services to find something that can service
it. We set two attributes:

action
This tells Android how to launch this application once the runtime has
decided this is the application to run. Android looks for an activity that
declares itself ready to resolve the MAIN action. Any application that is going
to be launched by the Launcher needs to have exactly one activity or serv-
ice that makes this assertion.

86 | Chapter 3: The Ingredients of an Android Application

category
The Intent resolver in Android uses this attribute to further qualify the
Intent that it’s looking for. In this case, the qualification is that we’d like
this Activity to be displayed in the User menu so that the user can select
it to start this application. Specifying the LAUNCHER category accomplishes
this. You can have a perfectly valid application without this attribute—
you just won’t be able to launch it from the Android desktop. Normally,
again, you’ll have exactly one LAUNCHER per application, and it will appear
in the same intent filter as the opening Activity of your application.

provider
Enables the declaration of a content provider. name specifies the name of the pro-
vider class and authorities specifies the URI authorities that the content provider
should handle. A URI authority provides the domain section of a content provider
URI and enables the Android content resolution system to locate a provider that
should handle a particular type of URI. We’ll provide more detail on how clients
use content providers a bit later in the chapter. We’ve declared a provider with the
name TestProvider.

service
Enables the app to declare that it supports a given service, where name specifies the
service class and label provides a human-readable label for the service. We’ve
declared a service with the name .TestService.

receiver
Provides a way to declare an app’s support for a broadcast receiver. name again
specifies the receiving class and label provides a human-readable label for the
receiver. We’ve declared a receiver with the name TestBroadcastReceiver.

Resources
Android applications place images, icons, and user interface layout files into a directory
named res. The res directory usually will contain at least four subdirectories, as follows:

layout
Contains Android user interface XML files, described in Chapter 7.

drawable
Contains drawing artifacts such as the application icon noted in the previous
section.

raw
Holds files that may be read as streams during the execution of an application. Raw
files are a great way to provide debug information to a running application without
having to access the network to retrieve data.

Resources | 87

values
Contains values that the application will read during its execution, or static data
an application will use for such purposes as internationalization of UI strings.

Applications access resources in these directories using the method Context.getResour
ces() and the R class.

To access the data in the res directory, a traditional Java developer might think about
writing code to build relative resource file paths and then using the file API to open the
resources. After loading resource bytes, the application developer might expect to parse
an application-specific format to finally get access to the same items every app needs:
images, strings, and data files. Anticipating each application’s need to load similar
information, Android instead includes a utility that integrates with Eclipse, makes re-
sources easily accessible to program logic, and standardizes program resources.

Eclipse and the Android SDK work together to create a directory called gen, which
contains a class always named R, which resides in the Java application package named
in the Android manifest. The R class file contains fields that uniquely identify all re-
sources in the application package structure. A developer calls the
Context.getResources method to obtain an instance of android.content.res.Resour
ces that directly contains application resources. (Methods in the Context class can be
called directly because Activity—and Service as well—extend Context.) Developers
then call methods of the Resources object to obtain resources of the desired type as
follows:

// code inside an Activity method
String helloWorld = this.getResources().getString(R.string.hello_world);
int anInt = this.getResources().getInteger(R.integer.an_int);

You will see that the R class is ubiquitous in Android, enabling easy access to resources
such as the components in UI layout files.

The Android Application Runtime Environment
Android’s unique application component architecture is, in part, a product of the way
Android implements a multiprocessing environment. In order to make that environ-
ment suitable for multiple applications from multiple vendors with a minimal require-
ment to trust each vendor, Android executes multiple instances of the Dalvik VM, one
for each task. In “Component Life Cycles” on page 90, and in later chapters, we will
explore how component life cycles enable Android to enhance the way garbage col-
lection works within application heaps, and how it enables a memory recovery strategy
across multiple heaps.

As a result of this simple and reliable approach to multiprocessing, Android must ef-
ficiently divide memory into multiple heaps. Each heap should be relatively small so
that many applications can fit in memory at the same time. Within each heap, the
component life cycle enables components not in use—especially currently inactive user

88 | Chapter 3: The Ingredients of an Android Application

interface components—to be garbage-collected when heap space is tight, and then
restored when needed. This, in turn, motivates a database-centric approach to data
models where most data is inherently persistent at all times, something you will read a
lot more about throughout this book, and especially in Chapter 11.

The Dalvik VM
Android’s approach to multiprocessing, using multiple processes and multiple instan-
ces of a VM, requires that each instance of the VM be space-efficient. This is achieved
partly through the component life cycle, which enables objects to be garbage-collected
and recreated, and partly by the VM itself. Android uses the Dalvik VM to run a
bytecode system developed specifically for Android, called dex. Dex bytecodes are ap-
proximately twice as space-efficient as Java bytecodes, inherently halving the memory
overhead of Java classes for each process. Android systems also use copy-on-write
memory to share heap memory among multiple instances of the same Dalvik
executable.

Zygote: Forking a New Process
It would also be inefficient for each new process to load all the necessary base classes
each time it started a new instance of the VM. Since Android puts each application in
a separate process, it can take advantage of the fork operation in the underlying Linux
operating system to spawn new processes from a template process that is in the optimal
state for launching a new VM instance. This template process is called Zygote. It is an
instance of the Dalvik VM that contains a set of preloaded classes that, along with the
rest of the state of the Zygote process, are duplicated into copies of Zygote created by
forking.

Sandboxing: Processes and Users
Android security relies heavily on security restrictions at the level of the Linux operating
system, specifically on process and user-level boundaries. Since Android is designed
for personal devices—that is, devices that are owned and used by one person—Android
makes an interesting use Linux’s inherent multi-user support: Android creates a new
user for each application vendor. This means each application runs with different user
privileges (except for those signed by the same vendor). Files owned by one application
are, by default, inaccessible by other applications.

The equivalent behavior on Windows would be as though you were running your word
processor as your own user, and your web browser as a coworker’s user. You would
have to log out and then switch users to see either the word processor or the web
browser, but you would not be able to see both at once. Android allows a single logged-
in phone user to see multiple applications that are running as different Linux-level users.

The Android Application Runtime Environment | 89

The net effect is increased security as a result of each application running in its own
“silo.”

Desktop operating systems have typically not taken application sandboxing to this
extent—once an application is installed, it is trusted with all of a user’s data. Android’s
designers envisioned a world of numerous small applications from numerous vendors
who cannot all be vetted for trustworthiness. Hence applications don’t have direct
access to other applications’ data.

A complete description of Android security can be found in the Android documentation
at http://developer.android.com/guide/topics/security/security.html.

Component Life Cycles
Earlier we mentioned life cycles for components. For instance, onCreate starts an ap-
plication.Component life cycles have two purposes: they facilitate efficient use of each
application’s memory, or heap space, and they enable the state of entire processes to
be preserved and restored so that the Android system can run more applications than
can fit in memory.

The Activity Life Cycle
The most complex component life cycle is the activity life cycle. Here we will diagram
it and take a look at how these state transitions are handled in code. In Figure 3-5, you
see the states and state transitions in the activity life cycle. The key elements of handling
life cycle state transitions are selecting which life cycle callbacks you need to implement,
and knowing when they are called.

Figure 3-5. Activity life cycle states

90 | Chapter 3: The Ingredients of an Android Application

http://developer.android.com/guide/topics/security/security.html

In Chapter 11, we will revisit this topic in detail. For now, let’s look at two methods of
the Activity class. The runtime calls the first to warn your application to save its state.
It calls the second to allow a new Activity instance to restore the state of one that has
been destroyed. The method implementations in the following code snippets are taken
from Chapter 11, where you can see the full program listing, including the member
variables to which the code refers:

@Override
protected void onSaveInstanceState(Bundle outState) {
 // Save instance-specific state
 outState.putString("answer", state);
 super.onSaveInstanceState(outState);
 Log.i(TAG, "onSaveInstanceState");
}

The runtime calls onSaveInstanceState method when it determines that it might have
to destroy the activity, but wants to be able to restore it later. That’s an important
distinction from other life cycle methods that are called on state transitions. If, for
example, an activity is explicitly ending, there is no need to restore state, even though
it will pass through the paused state, and have its onPause method called. As the previous
code snippet shows, the work you need to do in your onSaveInstanceState method is
to save any state that will let the user continue using the application later, hopefully
not even aware that it might have been destroyed and restored since the previous use:

@Override
 protected void onRestoreInstanceState(Bundle savedState) {
 super.onRestoreInstanceState(savedState);
 // Restore state; we know savedState is not null
 String answer = savedState.getString("answer");
 // ...
 Log.i(TAG, "onRestoreInstanceState"
 + (null == savedState ? "" : RESTORE) + " " + answer);
 }

The onRestoreInstanceState method is called when an activity that was destroyed is
being recreated. A new instance of your application’s Activity is therefore running.
The data you stored in the previous instance of the activity, through onSaveInstanceS
tate, is passed to the new instance via the onRestoreInstanceState method.

You might think that, with such a complex life cycle and stringent requirements to
adhere to heap utilization limitations, the Android activity life cycle would be readily
apparent in Android application code, and that you will spend a lot of time and effort
catering to activity life cycle requirements. Yet this is not the case.

In a lot of Android code, especially in small examples, very few life cycle callbacks are
implemented. That is because the Activity parent class handles life cycle callbacks, the
View class, and the children of the View class, and also saves their state, as shown in
Figure 3-6. This means that in many situations the Android View classes provide all the
necessary user interface functionality, and that Android applications do not need to
explicitly handle most life cycle callbacks.

Component Life Cycles | 91

This is essentially good, because it makes Android programming a lot more convenient.
All of what you see diagrammed in Figure 3-6 happens without you writing any code.
But it has a bad side too, because it leads programmers down the path of ignoring the
activity life cycle until they have coded themselves into a buggy mess. This is why we
emphasize understanding life cycles here, and why, in Chapter 11, we show how to
handle all life cycle callbacks and log them. Starting with complete awareness of the
activity life cycle is probably the most important thing you can do to prevent bugs that
are difficult to diagnose.

Packaging an Android Application: The .apk File
Android provides an application called apkbuilder for generating installable Android
application files, which have the extension .apk. An .apk file is in ZIP file format, just
like many other Java-oriented application formats, and contains the application man-
ifest, compiled application classes, and application resources. Android provides the
utility aapt for packaging the files that make up an .apk file, but developers typically
prefer to allow their development environment to use this utility to build their appli-
cations for them. Most users simply rely on their IDE to build their .apk.

Once a developer has created an .apk file, he can choose to make it available for in-
stallation onto a device in one of several ways:

• Using the adb interface directory, or more commonly by using an IDE

• Using an SD card

Figure 3-6. Saving the state of the user interface

92 | Chapter 3: The Ingredients of an Android Application

• Making the file available on a web server

• Uploading the file to the Android Market, and then selecting Install

On Porting Software to Android
In this chapter, you learned that Android has an application architecture radically dif-
ferent from the typical desktop application architecture and even quite different from
most other systems on small devices, including the iOS operating system used in the
iPhone, iPod Touch, and iPad. If you attempt to port software by subverting the An-
droid application architecture and force-fitting a conventional application architecture
into an Android application, in order to facilitate a method-by-method transliteration
from Objective-C, C++, or C#, odds are the effort will come to grief.

If you want to port existing software to Android, first take it apart: the data model, the
user interface, and major noninteractive modules and libraries should be ported or
reimplemented in the Android application model depending on how they fit. Android
does have similarities to other modern managed application runtime environments and
language systems. Once you understand Android in greater depth, you will be equipped
to see architectural analogies with other platforms and make better implementation
choices when porting.

On Porting Software to Android | 93

CHAPTER 4

Getting Your Application into
Users’ Hands

This chapter covers everything it takes to get your application into users’ hands. Earlier
in this book, we told you everything you needed to get started reading example code
and creating simple programs. Here, we complete the picture, with all the other oper-
ations you need to perform to widely distribute your applications, sell them (if that is
your aim), and subsequently get paid by Google, which operates the Android Market.

You may not be ready to put your application into the Android Market, but keeping
this process in mind will shape the way you design and implement your application.
Commerce has considerations that are distinct from most other aspects of software
development, including identifying yourself to the Android Market and to your cus-
tomers, obtaining permission to use certain APIs, protecting your identity, and pre-
paring your app to be run on a variety of hardware as well as being updated over time.

Application Signing
Application signing, or code signing, enables Android devices, the Android Market,
and alternative means of distribution to know which applications originate with the
owner of a signing certificate, and to be certain the code has not been modified since
it was signed.

Public Key Encryption and Cryptographic Signing
Public key cryptography depends on this mathematical principle: it is easy to multiply
large prime numbers together, but it is extremely difficult to factor the product of large
primes. The multiplication might take milliseconds, while factoring would take hun-
dreds to millions of years and would require an astronomically large computer.

This asymmetry between multiplication and factoring means that a key made with the
product of two large prime numbers can be made public. The knowledge that enables

95

encrypted messages to be decrypted is the pair of large primes that are part of the private
key. That means that documents encrypted with the public key are secure, and only
the possessor of the private key can decrypt them.

Signing, which is what we will do to Android applications, depends on related prop-
erties of public key encryption.

The steps to sign a document are:

1. Compute a unique number—a hash—from the document. This is also known as
a message digest.

2. “Encrypt” the message digest with the signer’s private key. This is the signature.

Voilà! You now have a number—a signature—that is tied to the document by the
hashing algorithm, and tied to the signer’s private key.

The steps to verify a signed document are:

1. Compute a unique number—a hash—from the document.

2. “Decrypt” the signature using the public key, which should also result in the same
number as the hash.

Now you know some interesting facts: the document—in our case, an application—
came from the person with the private key corresponding to the public key you used
in the verification. And you know that the document was not altered; otherwise, the
hash decrypted from the signature would not be the same as the one computed from
the document.

Verifying a signature also verifies that the signature was not copied to a different docu-
ment. Signatures are unalterably tied to the document from which they were created.

You may have noticed we put the words encrypt and decrypt in quotes
when we said the message digest, or hash, is encrypted. This is because
it’s not encryption in the way you normally use a public-private key
system—to keep prying eyes away from a message by encrypting it with
the public key so that only the person with the private key can read the
message.

Here, “encrypt” just means “compute a number.” You are not hiding
information when you “encrypt” a hash or message digest with a signer’s
private key. The reason you use the words encrypt and decrypt is that
you get the same hash or message digest when you decrypt with the
public key.

Anyone with the public key and a published algorithm can “decrypt”—
which is the point in verification: to see that you got the same hash the
sender signed, which also proves that the sender is in possession of a
private key corresponding to the public key, and proves that the docu-
ment is what the sender signed.

96 | Chapter 4: Getting Your Application into Users’ Hands

Because verification can be computed using a public key, your Android system—and
any other interested party—can verify that an application was signed with a particular
key and that it was not modified since it was signed.

More generally, any electronic document—any set of bits—can be cryptographically
signed, and cryptographic signatures, or “digital signatures,” can be used to sign docu-
ments in a way that can legally substitute for a person’s handwritten signature.

How Signatures Protect Software Users, Publishers, and
Secure Communications
As a user of computer software, you may already have been thinking, “It would be nice
to know where my software comes from and that it has not been modified en route to
my device.” Signed applications enable you to have this confidence. This is a form of
confidence based on cryptographic signatures similar to one you already use. When
you browse the Web you already rely on cryptographic signatures to trust that the
ecommerce site you are communicating with is authentic, and not a rogue impostor
set up to take your money and run. In the case of ecommerce, the client verifies a
signature of the server’s certificate using a public key from a certificate authority. Your
browser comes with keys from several certificate authorities used for this purpose.

The role of the certificate authority is to consolidate the number of parties you need to
trust: you trust your browser vendor to use only keys from reputable certificate au-
thorities, and ecommerce vendors obtain certificates from authorities browser vendors
trust. The certificate authorities have a responsibility to verify that the people claiming
to be, for example, Amazon.com are, in fact, Amazon.com. Now, when your browser
initiates a secure session with Amazon.com, you know two things: your data is secured
from eavesdropping by encryption that only the ecommerce vendor’s server can de-
crypt, and you are reasonably sure that the server you are connecting to is using a
certificate issued by a certificate authority to the company you want to communicate
with, because the certificate authority has taken steps to assure itself that it issues cer-
tificates to known parties.

Self-signed certificates for Android software

In signing Android software, the signing certificate does not have to come from a cer-
tificate authority. It can be created by the software publisher—in this case, you. Unlike
ecommerce transactions, where you have the additional requirement that you want to
ensure that each and every connection your browser makes is to the authentic Ama-
zon.com, perhaps through a link of unknown provenance, the act of using software
does not depend as critically on knowing the identity of the signing party.

For organizations considering using a signature issued by a certificate authority, the
Google documentation explicitly mentions that there is no need to have your

Application Signing | 97

application signed using a certificate authority, and that self-certification is the informal
standard for Android applications.

In addition to initially verifying application developer identity, digital signatures on
Android are also used during application upgrades to ensure that an application up-
grade should be permitted to access files created by an earlier version of the application,
and that the upgrading application is not actually a malicious application trying to steal
user data.

As long as you are confident that updates to the software come from the same party
you obtained the software from in the first place, you can be reasonably sure the pro-
grams you are using are safe, and that the publisher of that software is known to the
distributor of the software, which is the Android Market.

In addition to the assurance of updates from the original publisher, Android applica-
tions are sandboxed and require permissions, as described at http://developer.android
.com/guide/topics/security/security.html, to access functionality that could compromise
your data or cause chargeable events on your mobile service.

Signing an Application
The concepts behind cryptographic signing are subtle and complex. But the complexity
is managed by the SDK tools. When you compile and run Android code on a device or
on an emulator, you are running signed code.

Debug certificates

If you have been following the examples in this book and have created an Android
project and run it in an emulator or device, you may have noticed you didn’t need to
create a certificate and that your application is installable on an Android handset, de-
spite the fact that all Android code must be signed. This convenience is achieved
through the use of an automatically created debug certificate. Let’s take a look at the
debug certificate.

Look in the android folder in your home folder. There you will find a file named de-
bug.keystore. Using the keytool command, you can find out what is inside this file:

keytool -list -keystore debug.keystore

When you are prompted for a password, enter android. You will see output that looks
like this:

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

androiddebugkey, May 13, 2010, PrivateKeyEntry,
Certificate fingerprint (MD5): 95:04:04:F4:51:0B:98:46:14:74:58:15:D3:CA:73:CE

98 | Chapter 4: Getting Your Application into Users’ Hands

http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html

The keystore type and provider indicate the keystore is a Java keystore, compatible with
the Java Cryptography Architecture and Java classes that enable Android to use code
signing and other cryptography tools. More information on the Java Cryptography
Architecture is available at http://download.oracle.com/javase/6/docs/technotes/tools/so
laris/keytool.html.

The keytool command is part of the JDK, and is described briefly in “key-
tool” on page 27 and in greater detail at http://developer.android.com/guide/publishing/
app-signing.html#cert. Detailed documentation on keytool can also be found at http:
//download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html.

The last line produced by the list option in keytool is a certificate fingerprint. This is
a unique number generated from a key. You will see one way in which this number is
used in “Google Maps API Keys” on page 108, where you will use it to get an API key.

This certificate expires in a short enough interval that it cannot be used to distribute
Android software other than for testing. Do not mistake the convenience of using a
debug certificate for signing software as an indication that you can do without a signing
certificate for distributing your applications!

Creating a self-signed certificate

Ready to sign some code for release? First, create a private key using the keytool com-
mand thusly:

keytool -genkey -v -keystore my-release-key.keystore -alias alias_name \
 -keyalg RSA -keysize 2048 -validity 50000

The \ character indicates a line break, and is valid for multiline com-
mands on Unix and Mac OS X. However, you will need to type this all
on one line without the \ on Windows.

You can substitute a name of your choice for my-release-key and an alias of your choice
for alias_name. The -keysize and -validity parameters should remain as shown in the
preceding code.

As shown in the following code, keytool will ask you for a password for the keystore,
which you will need to remember when accessing it, and a series of questions about
you, your organizational structure, and your location. keytool generates a private
key, usable as a signing certificate with a valid life span of about 150 years, and puts it
in the file named my-release_key.keystore:

example-user@default-hostname:~$ keytool -genkey -v \
 -keystore example-release-key.keystore -alias example_alias_name \
 -keyalg RSA -keysize 2048 -validity 50000
Enter keystore password:
Re-enter new password:
What is your first and last name?

Application Signing | 99

http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://developer.android.com/guide/publishing/app-signing.html#cert
http://developer.android.com/guide/publishing/app-signing.html#cert
http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

 [Unknown]: Example Examplenik
What is the name of your organizational unit?
 [Unknown]: Example
What is the name of your organization?
 [Unknown]: Example
What is the name of your City or Locality?
 [Unknown]: Example
What is the name of your State or Province?
 [Unknown]: Massachusetts
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=Example Examplenik, OU=Example, O=Example, L=Example, ST=Massachusetts,
 C=US correct?
 [no]: yes

Generating 2,048 bit RSA key pair and self-signed certificate (SHA1withRSA) with a
 validity of 50,000 days for: CN=Example Examplenik, OU=Example, O=Example,
 L=Example, ST=Massachusetts, C=US
Enter key password for <example_alias_name>
 (RETURN if same as keystore password):
Re-enter new password:
[Storing example-release-key.keystore]

You now have a valid key in a keystore.

Don’t lose it!

While cryptographic digital signatures are, in many ways, more reliable and secure than
a handwritten signature, there is one way in which they differ: you can lose your ability
to sign a document digitally.

If you lose your signing certificate, you lose your identity to Android devices and the
Android Market. This means that, despite the fact that you compile and release the
same code as before, you cannot use these newly compiled applications to update ap-
plications in the field, since neither Android devices nor the Android Market will rec-
ognize you as the same publisher.

Keep multiple backup copies of your signing certificate on multiple types of media,
including paper, in multiple locations. And keep those backups secure. If your signing
certificate is used by people other than you, they can replace your programs on your
customers’ Android devices.

Detailed recommendations from the Android Developers site regarding securing your
signing certificate are available at http://developer.android.com/guide/publishing/app
-signing.html#secure-key.

Conversely, your cryptographic signature is your signature solely be-
cause it is in your possession. Up to the time you want to publish an
Android application and continue to be identified as the publisher, you
can generate, use, and discard signatures as much as you like. Don’t be
afraid to experiment and learn!

100 | Chapter 4: Getting Your Application into Users’ Hands

http://developer.android.com/guide/publishing/app-signing.html#secure-key
http://developer.android.com/guide/publishing/app-signing.html#secure-key

Using a self-signed certificate to sign an application

Now it’s time to sign an application. In Eclipse, select the project of the application
you want to sign for release, and select the File→Export command. “Why the ‘export’
command?” you may ask. After all, if you want to give someone your app to try out,
you can just give her a copy of the .apk file in the bin directory of the project file hier-
archy. It is as arbitrary as it seems: the “export” dialog is a grab bag of functionality,
and it was a convenient place to put a procedure that isn’t quite the same as “deploying.”

In this example we use the TestActivity project, but you can use any application—your
own, or any project from the examples in this book.

You will be presented with a list of options for exporting, organized into folders. Select
the Android folder and select Export Android Application (as shown in Figure 4-1),
and click on the Next button.

Figure 4-1. “Exporting” an Android application

Application Signing | 101

First, you will see if your application has any errors in configuration that might prevent
it from being ready to publish, such as having the debuggable attribute set to true in
the manifest. If your app is ready to go, you will see the dialog in Figure 4-2, which
displays no errors.

Figure 4-2. An Android application that has no problems preventing signing and publishing

Subsequent dialog boxes in this multistep sequence focus on signing. The information
requested mirrors the information you entered to create your release key in “Creating
a self-signed certificate” on page 99.

102 | Chapter 4: Getting Your Application into Users’ Hands

Next, you will select your keystore, as shown in Figure 4-3. The keystore is the file
holding your key.

Figure 4-3. Selecting the keystore

Once you have entered the name of the keystore and the password, click Next and
proceed to the next step: selecting the alias of the key, and entering the password for
the alias, as shown in Figure 4-4.

Application Signing | 103

Figure 4-4. Selecting the key alias

If you followed the steps in “Creating a self-signed certificate” on page 99, you have
only one key, with one alias, in your keystore. Enter the password and click Next. The
next step is to specify the destination .apk file and pass some checks to determine if
anything else might be wrong with your app. If everything is in order, you will see a
screen resembling that shown in Figure 4-5.

When you click Finish you will get a signed .apk file in the specified location.

104 | Chapter 4: Getting Your Application into Users’ Hands

Figure 4-5. Selecting the destination, and final checks

Placing an Application for Distribution in the Android Market
Putting an application on the Android Market is remarkably easy. The only prerequisite
is that you have a Google account such as a Gmail account. A $25 credit card transaction
and some information about yourself are all you need to start uploading applications
to the Android Market. Charging for applications and getting paid takes only slightly
more information and effort—you don’t even need a website or a corporate entity.
(Consulting a lawyer before selling products is a good idea. A lawyer may suggest setting
up a corporation and other ways to protect your personal assets from liabilities resulting
from commercial activities.)

Placing an Application for Distribution in the Android Market | 105

Becoming an Official Android Developer
The Android Market site is where you become an official Android developer. You can
sign up at http://market.android.com/publish/signup.

This site will ask you for identifying information, and will ask you to pay a $25 fee using
Google Checkout. This transaction confirms that you have a method of payment, such
as a credit card, accepted by Google Checkout. Once you are signed up as a developer,
you can use your Google account to log in to the Android Market site.

At this point, Google has reasonable assurance that you are who you say you are: a
financial transaction linked to some entity that can pay off a credit card bill. This,
combined with the fact that your applications are signed, means Google is also confi-
dent that the key you created to sign your applications is in the possession of the person
who created the Android Market account for the purpose of uploading applications to
the Android Market. If you turn out to be a spammer or a source of badware, you will
be shut down, and you will need to find another identity with which to create another
Google Checkout account and Android Market account.

Uploading Applications in the Market
The page https://market.android.com/publish/Home#AppEditorPlace is where you up-
load applications. On it, you will see the latest requirements, and options, for providing
information about your application. The page has upload buttons for the applica-
tion’s .apk file, plus screenshots, videos, and similar content, most of which is optional.
When you have an application you would like to leave up on the Market for others to
download, you should read the descriptions of the kinds of promotional and explan-
atory material you can upload, and make use of them. For now, let’s get our app up
with the minimum requirements met.

The first thing to do is to upload an .apk file. To try it out, you can use the .apk file you
created if you followed along in “Using a self-signed certificate to sign an applica-
tion” on page 101. Don’t worry that this is not your application, and that it is just an
example. You can publish it and then unpublish it right away, as you will see from the
instructions in the rest of this section.

Most required information is either part of your profile as an Android developer, or
part of the application manifest. As of this writing, the required uploads are two
screenshots and an icon image. You will find usable images in the doc folder of the
example project. If these requirements change—and the Android Market has changed
substantially since it was first introduced—you will find out if you have skipped any
required fields or uploads when you click the Publish button at the bottom of the page.
Anything you missed will be highlighted, and you can go back and fill in fields or
perform uploads as needed to make your application ready for publication.

Click the Publish button.

106 | Chapter 4: Getting Your Application into Users’ Hands

http://market.android.com/publish/signup
https://market.android.com/publish/Home#AppEditorPlace

Congratulations, you have published an Android application. If you go back to https:
//market.android.com/publish/Home, you will see from the listing of applications that
you have one published application (if you have not previously published an applica-
tion). If you go to https://market.android.com and search for, say, your name, the search
function should find the application you just published and list it the way a potential
customer might see it if he were to find it in the Android Market. From there, you can
click through to the application’s page in the Android Market.

Now you can go back to the “Home” page where your application is listed and select
it by clicking on the link in the listing. This takes you to a page where the information
you entered when you published your app is displayed in such a way that you can
modify it and update the application’s listing. You can also unpublish your application
from this page, using the Unpublish button at the bottom of the page. Whew! You
thought you might start getting customer support inquiries!

An application that has been unpublished is not removed from the market system. It
is still listed among your applications, but is not made available for download. You can
reverse your decision to unpublish at any time by using the Publish button.

Getting Paid
Google Checkout is the payment mechanism for the Android Market. That is, the An-
droid Market provides a streamlined way to sign up as a Google Checkout merchant.

If you elect to be a publisher of paid applications, you will be directed to a page where
you can create a “merchant account.” This may sound a bit intimidating, but Google
has made it easy to get paid. You don’t need to form a corporation or get a business
bank account.

You should consult a lawyer about forming a corporate entity for your
business and you should segregate your business finances from your
personal accounts.

The process of getting a merchant account amounts to entering some more information
—most importantly your tax ID, which can be your Social Security number—so that
income from your sales can be reported.

Getting paid involves linking a bank account to your Google Checkout merchant ac-
count. Payments to Google Checkout for sales of your app will be deposited in your
bank account. A full description of terms of service, payment terms, and similar infor-
mation can be found in the sellers’ section of the Google Checkout site, at http://check
out.google.com/support/sell/bin/answer.py?hl=en&answer=113730.

Placing an Application for Distribution in the Android Market | 107

https://market.android.com/publish/Home
https://market.android.com/publish/Home
https://market.android.com
http://checkout.google.com/support/sell/bin/answer.py?hl=en&answer=113730
http://checkout.google.com/support/sell/bin/answer.py?hl=en&answer=113730

Google Maps API Keys
A Google Maps API key, combined with the keys you use for signing applications,
identifies you to Google and enables Google to enforce the terms of service for Google
Maps. Google Maps relies on information Google collects and buys at significant ex-
pense, and must be protected from misappropriation and other misuse.

If you have been developing an application using the Google Maps API, you will have
obtained an API key linked to the debug signature for your application. You can’t use
this API key when you ship your application. The Google Maps API, and the require-
ments for using it, are described in Chapter 15.

When you ship your application, you will need a Google Maps API key linked to the
signing key you used for distributing your application. That is, you will need a
new API key that is made using an MD5 fingerprint of your signing key. Using the
keytool command’s list option, you can get the MD5 fingerprint of your signing key
thusly:

keytool -list -keystore my-release-key.keystore

You will get this key the same way you got the API key for use with your debug signature,
by visiting the Android Maps API Key Signup page at http://code.google.com/android/
maps-api-signup.html and using the MD5 fingerprint of your signing key in the form,
as shown in Figure 4-6.

Figure 4-6. Getting a Google Maps API key

When you click the Generate API Key button, you will get a web page showing the API
key generated from your signing certificate’s fingerprint, as shown in Figure 4-7.

You really have to create your self-signing certificate and Google Maps
API keys yourself. You cannot copy them from the screenshots here,
you cannot use keys from example code you download, and you cannot
use debug keys when releasing a product.

108 | Chapter 4: Getting Your Application into Users’ Hands

http://code.google.com/android/maps-api-signup.html
http://code.google.com/android/maps-api-signup.html

Figure 4-7. The Android Maps API key generated from your self-signing certificate

Specifying API-Level Compatibility
At any one time, multiple versions of Android can be available, and not all the pro-
spective users of your application will have the most recent version. By specifying ap-
plication compatibility in the manifest, you can control which Android systems can
install your application, preventing its use in systems that are incompatible with the
APIs you are using.

In the example in “Making an Android Project” on page 12, the same API level is
specified for the build target as for the Min SDK Version field. This means the program
will only run on systems with the specified API level or higher.

Since you can detect the API level at runtime, there may be cases where you want to
ship one application for systems with a lower API level than you use, and to test for the
API level and only use methods and classes of higher API levels if they are available. In
these cases, you would specify a higher build target API level than the Min SDK Version.

Compatibility with Many Kinds of Screens
Android was built to accommodate multiple screen sizes and changes in screen orien-
tation. The best way to accommodate screen size differences among Android devices
is to enable your layouts to be as flexible as possible. The images your application uses

Compatibility with Many Kinds of Screens | 109

may not look optimal in very large or unusually small configurations, but it is possible
to specify layouts that are usable at screen sizes ranging from the smallest screen of
moderate resolution up to a 1920 × 1080 HD display.

In other words, don’t start by designing multiple layouts and multiple graphical assets
for different screen sizes. Start by accommodating a wide range of screen sizes well
enough for your application to remain usable.

Testing for Screen Size Compatibility
Testing is key to ensuring screen compatibility. The SDK and AVD Manager provides
configurations for a range of screen sizes that cover all the smartphones on which An-
droid runs. As described in “Making an Android Virtual Device (AVD)” on page 16,
you can specify preset and custom screen sizes when creating an Android virtual device.

Resource Qualifiers and Screen Sizes
Once you have layouts that can handle the majority of cases, you may want to improve
the way your application looks on specific displays. You may need to use separate
layouts in cases where you want to take advantage of greater screen real estate other
than by just spreading a layout across the screen (a separate preview pane, for example).
In these cases, or in cases of specialized apps that might be used for unusually small
displays, you can design layouts for specific situations using resource qualifiers.

Resource qualifiers are a set of naming rules for resource directories that enable you to
provide alternative resources for the conditions specified by the qualifier, such as high
or low, pixel density, language, country, and certain hardware resource availability.
The full range of resource qualifiers is described at http://developer.android.com/guide/
topics/resources/providing-resources.html#AlternativeResources.

110 | Chapter 4: Getting Your Application into Users’ Hands

http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

CHAPTER 5

Eclipse for Android
Software Development

Eclipse is a controversial topic. It is a great open source success story, it is the most
widely used Java Integrated Development Environment (IDE), it is powerful, and it is
the center of the largest ecosystem of add-ons and derivative products available for
software development. These are the reasons Eclipse was chosen as the development
target for plug-ins that customize it for Android software development. But Eclipse has
been criticized for being unfriendly and difficult to learn.

Eclipse isn’t like most GUI software that takes pains to protect the user from invoking
operations that cannot succeed. Eclipse’s developers favor modularity and power over
smoothing the sharp edges. For example, one of the first things you may have noticed
in running an example program is that Eclipse offers to do things with your Android
program that don’t make much sense, like running it on a server, or as an applet, as
shown in Figure 5-1.

Figure 5-1. Running Eclipse as an applet, a task that is bound to fail

We are not here to criticize Eclipse, nor rationalize on its behalf. But we will explain
why Eclipse does things like this. We will explain how Eclipse components fit together

111

and work together. We will familiarize you with what you are looking at when you
launch Eclipse and start coding. With this knowledge you will be better equipped to
make effective use of Eclipse and less likely to find it frustrating.

Documentation for Eclipse is available at http://www.eclipse.org/documentation.

Eclipse Concepts and Terminology
Eclipse has its own nomenclature, behind which are the concepts that are key to un-
derstanding it. These concepts developed over a very long product life span, originating
with VisualAge—a software development tool written in the SmallTalk language in the
mid-1980s. The current implementation of Eclipse is written in the Java language, based
on a framework called Equinox, which implements a specification for modular Java
software systems called OSGi. OSGi is a way of specifying, in a manifest, the life cycle
and dependencies of dynamically loaded modules, called bundles. That is, Eclipse is a
collection of modules in a framework. When modules are added or removed, if they
have dependencies on other modules, those dependencies will be satisfied automati-
cally, if possible.

Further information on the Equinox OSGi implementation, including a detailed ex-
planation of what happens when Eclipse starts up, is available at http://eclipse.org/equi
nox/documents/quickstart.php.

Plug-ins
When you set up your Android software development tools, you added plug-ins to
Eclipse: the Android Development Tools (ADT) plug-ins. Plug-ins are OSGi bundles.

The Android SDK adds two plug-ins to Eclipse. You can find them by showing the
Plug-ins view, by selecting Window→Show View→Other... and expanding the “Plug-
in development” item. Then select Plug-ins from the list of views. You will see the list
shown in Figure 5-2.

Note that in this chapter and in other places in this book, Eclipse view
screenshots are shown in “detached” mode—in a separate window—
so that we do not need to trim the surrounding views and toolbars out
of screenshots. The way a view appears on your screen depends on the
Eclipse perspective you are using and the other views in that perspective.
Right-clicking on a view title pops up a menu with options for how to
display the view, including the Detached option.

Plug-ins are listed alphabetically, so, near the top of the list you will see the two plug-
ins required for working with the Android SDK: com.android.ide.eclipse.adt and
com.android.ide.eclipse.ddms. Keep the Plug-ins view open. Later in this chapter we

112 | Chapter 5: Eclipse for Android Software Development

http://www.eclipse.org/documentation
http://eclipse.org/equinox/documents/quickstart.php
http://eclipse.org/equinox/documents/quickstart.php

will look at some information about those plug-ins to see how they modify the Eclipse
environment. You can also look at this list of plug-ins and see that Eclipse is, in fact,
made of plug-ins, all the way down to the Equinox OSGi implementation.

Workspaces
Eclipse keeps a lot of state, and workspaces are where it is kept. When you first run
Eclipse, it will ask if you want to create a workspace. Thereafter, when you start Eclipse,
it picks up right where you left off, with all the projects, files, and views as you left
them, by reading its previous state from a workspace. Eclipse implements workspaces
using directories.

Every project belongs to a workspace. By default, new projects are directories created
inside the workspace directory. Even if you create a project from source that is not in
the workspace directory, most of the meta information about that project is kept in the
workspace.

Figure 5-2. A list of all the plug-ins in an Eclipse environment

Eclipse Concepts and Terminology | 113

Workspaces are independent. Settings that you set up in one workspace stay in that
workspace. You can use multiple workspaces to separate projects that target different
platforms, and that may use markedly different environments—for example, Rails
projects and Android projects. You can use multiple workspaces to run more than one
instance of Eclipse. Suppose you have Eclipse-based tools for some web application
framework that are not compatible with the version of Eclipse you are using for Android
development. By using a separate workspace for Android development, you can main-
tain separate state and even run both Eclipse versions at the same time.

Java Environments
Three distinct Java environments are used in Java software development in Eclipse.

Eclipse’s Java Runtime Environment

The first environment is that in which Eclipse itself is running. In “The Eclipse Inte-
grated Development Environment (IDE)” on page 5 we covered installing Java devel-
opment tools and runtime environments, if your system does not already have one
installed. If you need to use a different Java runtime for Eclipse, you can configure this
choice in your eclipse.ini file in the folder where Eclipse is installed. If Eclipse is running
out of memory, for instance, this is the environment you will want to adjust.

The Java compiler

The second environment is used to compile your code. Eclipse comes with its own
incremental Java compiler. In addition to producing the compiled Java .class files, it
creates the error messages displayed in the Java editor and produces the typing infor-
mation Eclipse uses for suggestions, autocompletion, and so on. This environment is
configured using the Java→Compiler node in the Preferences pane, but you can override
the defaults for a specific project from the project’s preferences.

In addition, this environment contains a description of the libraries against which the
application is compiled. If you look at the Preferences→Build Path for an Android ap-
plication, you will find that there is no Java runtime included in the list of libraries on
which the project depends. Instead, an Android project depends on a version of the
Android libraries. Because the Android tools are bolted onto Eclipse, though, you can’t
directly change the Android library version from the Build Path pane. If you need to do
that, you’ll have to open the Android preferences pane.

The application runtime

The third environment is the one in which your application runs—in this case, one of
the Android emulators. In setting up your development environment—either when you
installed the SDK or when you set up the ADT plug-in—you set up one or more Android
Virtual Devices (AVDs). When you create a new Android project you associate it with
one of the AVDs. The plug-in uses the appropriate profile to set up both the compilation

114 | Chapter 5: Eclipse for Android Software Development

environment and the emulator used for running the application, reducing the chance
for a mismatch between the runtime environment: an application compiled against the
Android 2.2 libraries may not run on a 1.5 platform.

Projects
For software developers, Eclipse projects correspond to programs they are developing.
For Android software developers, they correspond to Android applications. Within
Eclipse, projects are how Eclipse plug-ins know which software to operate on: when
you create an Android project, the project data includes information that Eclipse uses
to select code from various plug-ins to perform various operations. The ADT plug-ins
are invoked to help create a project with the right set of files and directory structure for
an Android application. When you work on the files in an Android project, the right
editors are used when you open XML files such as layouts and the manifest. When you
modify files in a project, the right builders are called to build the application.

Builders and Artifacts
The Eclipse framework defines the concept of a “builder,” used to generate project
artifacts from their sources. Artifacts are files built from source files. The Android
Eclipse plug-in defines several new builders that create .dex files from .class files, create
Java constants that identify resources specified in XML, create .apk files, and perform
other Android-specific operations that are part of turning code into an installable pack-
age. Eclipse will regenerate the installable application whenever you make changes.
You should always be able to run it or debug it.

The transformation of .class files, which are the output of the Java compiler, to .dex
files, which are bytecode interpreted by the Dalvik virtual machine (VM), is a neat trick:
it enables you to program in Java, using the very highly developed editing and refac-
toring tools, as well as numerous other tools created to enhance the productivity and
reliability of Java coding.

Extensions
Extensions are all the places where a plug-in extends Eclipse functionality. You won’t
manipulate or change extensions as an Android software developer, but while we have
that Plug-ins view open, let’s take a brief look at some of the extensions the Android
plug-ins add. This will give you a more concrete idea of the relationship of the ADT
plug-ins and the rest of the Eclipse system. In the Plug-ins view, as shown in Fig-
ure 5-2, double-click on the plug-in named com.android.ide.eclipse.adt and you will
see an Extensions view, listing the extensions in the plug-in, as shown in Figure 5-3.

For example, you can select each extension named org.eclipse.core.resources
.builders and, on the right side of the Extensions view, it will show you the extension
names: Android Resource Manager, Android Pre Compiler, and Android Package

Eclipse Concepts and Terminology | 115

Builder. These are the extensions needed to process Android resources; precompile
AIDL (Android Interface Definition Language), which is described in Chapter 6, into
Java code; and turn .class files, which are created using the Java builder, into .dex files
as well as build the .apk file, which can be deployed to an Android device or AVD.

If you expand the org.eclipse.ui.editors item, you will see a list of the editors the
ADT plug-in adds to the Eclipse system: the Android Manifest Editor, Android Re-
source Editor, Android Layout Editor, Android Menu Editor, and Android XML Re-
sources Editor. There are many other extensions in this list, and this should give you
an idea of the amount of code that is required to turn Eclipse into a tool for Android
software development. The ones we’ve explored here are enough to reveal some of the
most important aspects: how Android programs get built, and what is added to the

Figure 5-3. A list of extensions in the ADT plug-in

116 | Chapter 5: Eclipse for Android Software Development

Eclipse environment to help you edit Android-specific files—including the XML files
that comprise the manifest, layouts, and other resources.

If you explore the other ADT plug-in similarly, you will see how Dalvik Debug Monitor
Service (DDMS) features are added to Eclipse.

Associations
Associations are how files within a project are associated with, among other things, the
editors that operate on them. For example, Java files within an Android project are
edited with the Java editor, the same as any Java project, but XML files are edited with
an Android-specific XML editor, which could be the Android Manifest Editor or the
Android Resource Editor. These editors know how to edit specific structures in these
files, but they fall short in other areas, such as general-purpose structure editing with
the Outline view. If you wanted to open an Android XML file with an XML editor other
than the one the association for the file calls for, you can override associations with the
Open With command in the context menu for a source file, which pops up when you
right-click on the file in the Package Explorer view.

The Open With command shows you a choice of editors that are likely to work on the
file you selected. If you select the Other... option, you will see a list of all editors in your
Eclipse configuration and be offered the option of opening the selected file with an
external program.

Eclipse Views and Perspectives
In addition to understanding the way the ADT plug-ins modify Eclipse, some familiarity
with Eclipse’s system of views and perspectives will help you recognize what you are
looking at when you use Eclipse in Android software development. An Eclipse view is
a part of the Eclipse window that displays information of a certain type, or in a certain
way: a list of projects and project files, a list of errors in code, a hierarchical view of
entities in a class, and so on. A perspective is an arrangement of views designed for a
particular purpose, such as editing Java, or debugging.

If your Eclipse environment does not result in the same set of views shown in the
examples here or listed among the main views, don’t be alarmed. Different sets of plug-
ins can result in different behavior, including the set of default views in some perspec-
tives. The most important perspectives for Java coding are the Package Explorer, Editor,
and Outline views, and those should be present in your Eclipse environment.

When you first start Eclipse (after you get past the Welcome screen) but before you
have created any projects, you should see something similar to Figure 5-4.

The workspace pictured here is a little more cramped than what you will probably
experience. Most coders use larger screens in order to see the information in the views
surrounding the editor that goes in the middle of an Eclipse perspective, and leave

Eclipse Views and Perspectives | 117

enough room to see an adequate amount of code. We left these perspectives at the
default minimum size in order to fit the screenshots on the page.

A typical Java editing perspective in Eclipse looks like the one in Figure 5-5, with views
for exploring the contents of projects, a list of tasks, the output of builders and other
operations, and so on. You can see that some changes from the default set of views
were made in creating an Android project and editing a Java source file in an Android
project. Let’s take a look at the views that are displayed by default here.

The Package Explorer View
Eclipse is more than just an editor with a lot of chrome around the editing window.
Most of the views displayed around the editor in an Eclipse perspective have the goal
of speeding navigation in the project and in the project’s files. The Package Explorer
view will often be your starting point when editing source files and running and de-
bugging your projects.

The Task List View
The Task List view lists tasks that you may have created using the New Task command
in the view’s toolbar, or by turning an item in the Problems view into a task. You can

Figure 5-4. An empty workspace, with the ADT plug-in configured

118 | Chapter 5: Eclipse for Android Software Development

link the task list with a source code repository or bug tracker in order to share it with
other people working on a project with you. Curiously, the Task List view does not list
the TODO items many coders use to insert task reminders into code. These are parsed by
the Java editor and are marked with icons in the left margin. There may be something
about the implementation of the plug-ins that implement these features that makes it
difficult to present all tasks in one place.

The Outline View
A program is both its source code—which is usually ordinary text—and the structure
into which it is parsed, which consists, in the case of Java, of fields and methods. The
Outline view shows the structure of a Java class, and enables you to operate on that
structure with many of the same commands you would apply to the selection in an
Editor view. The Java editor relies on knowing the underlying structure, too. But the
Outline view enables you to see that structure explicitly laid out in a hierarchy, with
icons that indicate type and scope information to the left of the name of each item in
this structured view. More information on the Outline view is available at http://help
.eclipse.org/helios/topic/org.eclipse.jdt.doc.user/reference/views/ref-view-outline.htm.

Figure 5-5. The Java editing perspective with an Android project, and an Android source file in the
Java editor

Eclipse Views and Perspectives | 119

http://help.eclipse.org/helios/topic/org.eclipse.jdt.doc.user/reference/views/ref-view-outline.htm
http://help.eclipse.org/helios/topic/org.eclipse.jdt.doc.user/reference/views/ref-view-outline.htm

The Problems View
The Eclipse concept of “builders” generalizes the idea of compiling source files into
objects or, more generally in Eclipse parlance, artifacts. Problems are what prevent this
from happening smoothly. Problems can be compiler errors, or any other error from a
builder. Sometimes problems prevent a builder from completing an artifact, and some-
times they are warnings that do not prevent an artifact from being generated. The
Problems view displays problems and enables fast navigation to them. Right-click on
a problem to see the context menu: if you want to fix the problem right away, the Go
To command opens the file and navigates to the line associated with the problem. If it
is a warning that should eventually be fixed, you can track the problem by using the
New Task From Marker… command. Double-clicking on a problem also navigates to
the source of the problem.

Java Coding in Eclipse
If you are new to Java and Eclipse, your first concern will be getting things right. But
soon enough, your primary concern will be making coding fast and easy. Of all pro-
gramming languages, Java has likely had the most effort applied to boosting program-
mer productivity through tools like Eclipse. For this reason, the story of Java coding in
Eclipse is a story driven by the desire for the highest possible level of productivity.
Productivity has three key aspects: creating new code efficiently, finding code you need
to read or modify, and making changes to code that affect more than just the line of
code you are editing.

Editing Java Code and Code Completion
The central productivity feature for editing Java code in any Java-oriented IDE is code
completion or, in Eclipse parlance, “content assist.” Nearly anywhere in a Java source
file you can press the keyboard shortcut Ctrl-space bar to display a pop up that “pro-
poses” to complete what you are currently doing. For example, if you know there is a
method to find something, but you forgot exactly how that goes, type fi and press Ctrl-
space bar. You will then see something similar to Figure 5-6.

In this case, content assist is offering to insert the signature of a method, with a pa-
rameter list for you to fill in. You can see that the method findViewById is listed, and
you can select this choice in order to avoid having to type the whole method name and
argument list.

Had you pressed Ctrl-space bar before having typed anything, all the constants and
methods of the class would have been offered as possible completions by content assist.

120 | Chapter 5: Eclipse for Android Software Development

Refactoring
Java is statically typed, which requires every object and every reference to be explicitly
declared before it is used. This can make Java look bureaucratic and inelegant, and
make it seem as though coding in Java is needlessly wordy. IDEs like Eclipse compen-
sate for the verbosity of Java syntax by providing code completion and other speed-ups
for coders. There is one aspect of coding productivity that works far better in statically
typed languages: refactoring.

Refactoring means making changes that preserve program behavior. That is, refactoring
does not change what the program does. It changes how the program is organized.
Ensuring that behavior does not change while code is reorganized enables powerful
transformations: even renaming a reference or type name can be perilous if you have
to do it with text substitution. But with refactoring, you are assured that all and only
the right names are modified.

Two factors greatly improve the kinds of refactorings that can be performed: the lan-
guage should be statically typed, and the IDE should have a compiled model of the
program. By “model of the program,” we mean a data structure that represents com-
piled code, such that all the types and references in the program can be found within
their scope. By knowing exact types, and the exact scope of a type or reference, the IDE
can locate every use of that type or reference without any ambiguity.

Figure 5-6. Offering a completion in the content assist pop up

Java Coding in Eclipse | 121

Refactoring is the prime example of how languages can no longer be compared only by
syntax, aesthetics, and expressive power. Conservatively designed languages like Java
can be both as safe as possible and highly productive in the context of the typical set
of tools a coder has at her fingertips.

Eclipse and Android
The ADT plug-in adds several Android-specific tools to the Eclipse workbench. Most
of these tools can be found in the Android perspective (Window→Open Perspec-
tive→Other..., select DDMS). Each tool is a separate Eclipse view (Window→Show
View→Other..., select DDMS), though, and can be added to any other perspective, as
convenience and screen real estate dictate. Here are a few of the most useful:

LogCat
Displays the device logs in a scrolling pane. You can adjust filtering so that only
the logs you are interested in are visible, or so that you can see everything down to
the garbage collections and library loading.

File Explorer
Displays the file explorer.

Heap
Displays the heap.

Threads
Displays threads.

Pixel Perfect
Displays the Pixel Perfect view.

Layout View
Displays the layout view.

avdmgr
Displays the Android SDK and AVD Manager.

Preventing Bugs and Keeping Your Code Clean
You can think of Eclipse as a specialized operating system: it is made up of thousands
of files, has its own filesystem, and runs a web server. Eclipse is open and very exten-
sible. Plug-ins—the Eclipse analog of an operating system’s applications—are relatively
easy to write, and the Eclipse ecosystem has many more extensions than any one Eclipse
user could ever install and use. Because Android code is written in Java, you can apply
all kinds of plug-ins to Android software development.

Here we will explore an often very valuable category of Eclipse extensions: static ana-
lyzers, or source code analyzers.

122 | Chapter 5: Eclipse for Android Software Development

Static Analyzers
An informal definition of static analysis is that it picks up where compiler warnings
leave off. In Eclipse, compiler warnings are, in general, very good. While a good com-
piler can provide you with warning messages that are helpful in catching potential
runtime problems, it isn’t a compiler’s job to go hunting for hidden problems. Static
analyzers cover that territory.

Static analyzers are called “static” because the analysis is performed on code that isn’t
running. While the compiler performs some functions that might come under the
heading of static analysis—and the Java compiler in Eclipse does a very good job of
cleaning up after the detritus of programming, such as variables and methods that are
not used—static analyzers are more ambitious. Static analyzers attempt to find bugs,
rather than just loose ends.

The three static analysis tools covered here are the three most widely used in Java
software development, and they include a range of applicability and approaches to the
problem of static analysis. All three of these tools are also open source projects, and all
three are examples of the kinds of Eclipse plug-ins you might seek out and add to your
Eclipse environment to enhance productivity in creating Android applications. You
may not stick with using all three, but installing all three is a good place to start ex-
ploring static analysis.

FindBugs

We will start exploring static analyzers by installing and using FindBugs. You can find
documentation, as well as the source code for FindBugs, at http://findbugs.sourceforge
.net. We will go into the installation process in some detail because it is similar to the
installation process for most kinds of Eclipse plug-ins. To install FindBugs, you must
first add the FindBugs repository to Eclipse’s list of sites from which to install packages.
You do this by using the Help→Install New Software Menu command, and clicking the
Add… button in the Install dialog. This opens the Add Repository dialog that allows
you to add the FindBugs repository located at http://findbugs.cs.umd.edu/eclipse, as
shown in Figure 5-7.

Figure 5-7. Adding a repository for the purpose of adding a plug-in to your Eclipse environment

Preventing Bugs and Keeping Your Code Clean | 123

http://findbugs.sourceforge.net
http://findbugs.sourceforge.net
http://findbugs.cs.umd.edu/eclipse

The next step in installing FindBugs is to select the package from the repository, as
shown in Figure 5-8. In this case, there is only one package to select.

Figure 5-8. Selecting the only available package in the FindBugs repository

Once the package has been selected, you can advance to the next dialog, which shows
the list of packages to be installed. In this case, there’s only one, as shown in Figure 5-9.

124 | Chapter 5: Eclipse for Android Software Development

Figure 5-9. Reviewing that you have selected the only available package in the FindBugs repository

And there’s more: the next dialog in the installation sequence enables you to read and
accept, or not accept, the license agreement that accompanies this package, as shown
in Figure 5-10.

Preventing Bugs and Keeping Your Code Clean | 125

Figure 5-10. Accepting the FindBugs license agreement

There may be one more hurdle to cross in installing this Eclipse plug-in. Since the
package is not signed, you get a security warning, as shown in Figure 5-11.

Figure 5-11. The security warning displayed when installing unsigned packages

126 | Chapter 5: Eclipse for Android Software Development

And finally, you are prompted to restart Eclipse, as show in Figure 5-12.

Figure 5-12. Restarting Eclipse after installing FindBugs

Applying Static Analysis to Android Code
FindBugs has a menu command, a perspective, and some views you will find useful in
finding bugs. To start FindBugs, use the menu command in the context menu of a
project, as shown in Figure 5-13.

Figure 5-13. Invoking FindBugs

Preventing Bugs and Keeping Your Code Clean | 127

Once you have run FindBugs, you can change to the FindBugs perspective, as shown
in Figure 5-14. The FindBugs perspective includes views that display a hierarchical list
of potential problems FindBugs has found, organized by type of problem; an Editor
view that includes markers for the problems; and, if you open the properties for a
problem, a detailed explanation of the problem, including an explanation of why Find-
Bugs can raise “false positives.”

Figure 5-14. The FindBugs perspective

In this case, we will take a look at the “Null check of a value previously dereferenced”
problem, as shown in the Bug Explorer view in Figure 5-15.

128 | Chapter 5: Eclipse for Android Software Development

Figure 5-15. The FindBugs Bug Explorer

Verifying that a field has a non-null value field after already having dereferenced isn’t
syntactically incorrect Java, but it is almost certainly either useless or an outright error.
In the following code, you can see that the field savedState is used with the assumption
that it is never null, but a null check occurs in the logging call:

protected void onRestoreInstanceState(Bundle savedState) {
 super.onRestoreInstanceState(savedState);
 // Restore state; we know savedState is not null
 String answer = savedState.getString("answer");
 // This is a gratuitous test, remove it
 Object oldTaskObject = getLastNonConfigurationInstance();
 if (null != oldTaskObject) {
 int oldtask = ((Integer) oldTaskObject).intValue();
 int currentTask = getTaskId();
 // Task should not change across a configuration change
 assert oldtask == currentTask;
 }
 Log.i(TAG, "onRestoreInstanceState"
 + (null == savedState ? "" : RESTORE) + " " + answer);
}

In fact, savedState should be null-checked before it is used, because the value of saved
State is not specified to be non-null. We will change the assignment that did not null-
test savedState to the following:

String answer = null != savedState ? savedState.getString("answer") : "";

Running FindBugs again confirms that this change eliminates the possible problem.

This is a good example of the kind of bug static analysis can find. It is outside the realm
of compiler warnings because there are cases where this is exactly what the programmer
intended, but a simple inference enables a static analyzer to suggest that this might be
a bug, and it very often is a bug.

Preventing Bugs and Keeping Your Code Clean | 129

Limitations of Static Analysis
Static analyzers suffer from detecting false positives, because of the approaches they
take to finding weaknesses in code. This is one thing that differentiates static analysis
from compiler warnings. It would be considered a bug if a compiler error message
indicated a problem that wasn’t really a problem.

One of the weaker aspects of static analyzers is in finding code where coding conven-
tions have not been observed. For example, the “Class names should start with an upper
case letter” warning, shown in Figure 5-15, was provoked by autogenerated code, which
coders should not have to inspect unless they suspect bugs in the code generator.

Highly experienced coders often question the usefulness of static analyzers, since their
code contains relatively few problems that static analyzers can catch, and therefore the
results have a higher proportion of false positives. It is an accepted fact that static
analysis of code written by highly experienced coders finds only a fraction of the bugs
in that code, and that it is no substitute for module tests and good debugging skills.
However, if you are a relative newcomer to Java as well as to Android, you may find
static analyzers are a very useful adjunct to compiler warnings.

Eclipse Idiosyncrasies and Alternatives
Now that you know that the Android SDK has many capabilities built on Eclipse, and
how the Eclipse plug-in and extension architecture enables Android tools to “hook”
so many aspects of an IDE’s functionality, you may be wondering why it offers to run
your Android application on a server, or as an applet. It is particularly troubling to have
a tool that is supposed to enhance your productivity lay a red herring across your path
in this way, since Eclipse expects you to find the right commands in a set of excep-
tionally lengthy menus.

Go ahead, see what happens: pick any Android project in your Eclipse workspace, right-
click on the project name, and select Run As→Java Applet. You will see the dialog shown
in Figure 5-16.

Figure 5-16. Dialog shown when the selection does not contain an applet

130 | Chapter 5: Eclipse for Android Software Development

No harm done, but it is appalling: Eclipse, plus whatever plug-ins are in play at that
moment, should know not to offer you an action that fails, guaranteed, 100% of the
time. Eclipse is a bad example: don’t treat the users of your Android programs this way!
If the selection does not contain an applet, don’t offer the user a command to run the
selection as an applet. This is a fundamental precept of graphical user interfaces and
foundational to the idea of generic operations on a selection: once the user has selected
something, the program should know all the valid operations on that selection and
present only valid operations. A good interface—especially a big, complex interface—
should encourage safe exploration,

Why does Eclipse fail to be a good GUI application in such seemingly trivial ways? Such
failure is baffling in light of the impressive power and ease of use of Eclipse refactoring
and other features. There is no one fault to point to. Our conjecture is that the fine-
grained modularity of Eclipse, which results in an explosion of extension interfaces,
causes this combination of powerful features and niggling annoyances. At best, plug-
in authors are faced with too many interfaces to hook in order to accomplish a highly
polished user experience. At worst, Eclipse’s architecture may make it practically im-
possible to do the right thing in some cases. This is why some people seek alternatives.

Eclipse Idiosyncrasies and Alternatives | 131

CHAPTER 6

Effective Java for Android

In Chapter 2, we discussed the idiomatic use of Java. In this chapter, we’ll expand that
idea to lay out Java idioms pertinent to the Android platform.

The Android Framework
Twenty years ago, an application probably ran from the command line and the bulk of
its code was unique program logic. These days, though, applications need very complex
support for interactive UIs, network management, call handling, and so on. The sup-
port logic is the same for all applications. The Android Framework addresses this in a
way that has become fairly common as application environments have become in-
creasingly complex: the skeleton application, or application template.

When you built the simple demo application that verified your Android SDK installa-
tion, back in Chapter 1, you created a complete running application. It was able to
make network requests and display on and handle input from the screen. It could
handle incoming calls and, although there was no way to use it, check your location.
You hadn’t yet supplied anything for the application to do. That is the skeleton
application.

Within the Android Framework, a developer’s task is not so much to build a complete
program as it is to implement specific behaviors and then inject them into the skeleton
at the correct extension points. The motto of MacApp, one of the original skeleton
application frameworks, was: “Don’t call us, we’ll call you.” If creating Android ap-
plications is largely about understanding how to extend the framework, it makes sense
to consider some generic best practices for making those extensions.

The Android Libraries
Android introduces several new packages that, together with a handful of package trees
from the forest of traditional Java (J2SE) packages, make up the API for the Android
Runtime Environment. Let’s take a minute to see what’s in this combined API:

133

android and dalvik
These package trees contain the entire Android-specific portion of the Android
Runtime Environment. These libraries are the subject of much of this book, as they
contain the Android GUI and text handling libraries (named android.graphics,
android.view, android.widget, and android.text), as well as the application frame-
work libraries called android.app, android.content, and android.database. They
also contain several other key, mobile-oriented frameworks such as android.tel
ephony and android.webkit. A fluent Android programmer will have to be very
familiar with at least the first few of these packages. To navigate the Android doc-
umentation from a package tree perspective, you can start at the top of the Android
developer documentation, at http://developer.android.com/reference/packages
.html.

java
This package contains the implementations of the core Java runtime libraries. The
java.lang package contains the definition of the class Object, the base class for all
Java objects. java also contains the util package, which contains the Java Collec-
tions framework: Array, Lists, Map, Set, and Iterator and their implementations.
The Java Collections Library provides a well-designed set of data structures for the
Java language—they relieve you of the need to write your own linked lists.

As mentioned in Chapter 2, the util package contains collections from two dif-
ferent lineages. Some originate from Java 1.1 and some from a more recent, re-
engineered idea of collections. The 1.1 collections (e.g., Vector and Hashtable) are
fully synchronized and are less consistent in their interfaces. The newer versions,
(e.g., HashMap and ArrayList) are not synchronized, are more consistent, and are
preferred.

In order to maintain compatibility with the Java language, the Android library also
contains implementations of some legacy classes that you should avoid altogether.
The Collections framework, for instance, contains the Dictionary class, which has
been explicitly deprecated. The Enumeration interface has been superseded by
Iterator, and TimerTask has been replaced by ScheduledThreadPoolExecutor from
the Concurrency framework. The Android reference documentation does a good
job of identifying these legacy types.

java also contains base types for several other frequently used objects such as
Currency, Date, TimeZone, and UUID, as well as basic frameworks for I/O and net-
working, concurrency, and security.

The awt and rmi packages are absent in the Android version of the java package
hierarchy. The awt package has been replaced by Android GUI libraries. Remote
messaging has no single replacement, but internal ServiceProviders using
Parcelables, described in “Serialization” on page 156, provide similar
functionality.

134 | Chapter 6: Effective Java for Android

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html

javax
This package is very similar to the java package. It contains parts of the Java lan-
guage that are officially optional. These are libraries whose behavior is fully defined
but that are not required as part of a complete implementation of the Java language.
Since the Android Runtime Environment doesn’t include some of the parts that
are required, the distinction exists in Android only to keep the Android packages
looking as much like the Java packages as possible. Both package trees contain
implementations of libraries described as part of the Java language.

The most important thing to be found in javax is the XML framework. There are
both SAX and DOM parsers, an implementation of XPath, and an implementation
of XSLT.

In addition, the javax package contains some important security extensions and
the OpenGL API. A seasoned Java developer will notice that the Android Runtime
Environment implementation of the javax packages is missing several important
sections, notably those that have to do with UI and media. javax.swing,
javax.sound, and other similar sections are all missing. There are Android-specific
packages that replace them.

org.apache.http
This package tree contains the standard Apache implementation of an HTTP client
and server, HttpCore. This package provides everything you need to communicate
using HTTP, including classes that represent messages, headers, connections, re-
quests, and responses.

The Apache HttpCore project can be found on the Web at http://hc.apache.org/
httpcomponents-core/index.html.

org.w3c.dom, org.xml.sax, org.xmlpull, and org.json
These packages are the public API definitions for some common data formats:
XML, XML Pull, and JSON.

Extending Android
Now that you have a basic road map to the Android Framework, the obvious question
is: “How do I use it to build my application?” How do you extend the framework—
which we’ve characterized as very complex, but a zombie—to turn it into a useful
application?

As you would expect, this question has several answers. The Android libraries are or-
ganized to allow applications to obtain access into the framework at various levels.

Overrides and callbacks

The simplest and easiest to implement—and a coder’s first choice for adding new be-
haviors to the framework—should be the callback. The basic idea of a callback, a
pattern quite common in the Android libraries, was already illustrated in Chapter 2.

The Android Framework | 135

http://hc.apache.org/httpcomponents-core/index.html
http://hc.apache.org/httpcomponents-core/index.html
http://www.w3.org/standards/xml/
http://www.xmlpull.org/index.shtml
http://www.json.org/

To create a callback extension point, a class defines two things. First it defines a Java
interface (typically with a name ending in “Handler”, “Callback”, or “Listener”) that
describes, but does not implement, the callback action. It also defines a setter method
that takes, as an argument, an object implementing the interface.

Consider an application that needs a way to use text input from a user. Text entry,
editing, and display, of course, require a large and complex set of user interface classes.
An application need not concern itself with most of that, however. Instead, it adds a
library widget—say, an EditText—to its layout (layouts and widgets are described in
“Assembling a Graphical Interface” on page 171). The framework handles instantiat-
ing the widget, displaying it on the screen, updating its contents when the user types,
and so on. In fact, it does everything except the part your application actually cares
about: handing the content text to the application code. That is done with a callback.

The Android documentation shows that the EditText object defines the method
addTextChangedListener that takes, as an argument, a TextWatcher object. The
TextWatcher defines methods that are invoked when the EditText widget’s content text
changes. The sample application code might look like this:

public class MyModel {
 public MyModel(TextView textBox) {
 textBox.addTextChangedListener(
 new TextWatcher() {
 public void afterTextChanged(Editable s) {
 handleTextChange(s);
 }
 public void beforeTextChanged(
 CharSequence s,
 int start,
 int count,
 int after)
 { }
 public void onTextChanged(
 CharSequence s,
 int start,
 int count,
 int after)
 { }
 });
 }

 void handleTextChange(Editable s) {
 // do something with s, the changed text.
 }
}

MyModel might be the heart of your application. It is going to take the text that the user
types in and do something useful with it. When it is created, it is passed a TextBox, from
which it will get the text that the user types. By now, you are an old hand at parsing
code like this: in its constructor, MyModel creates a new anonymous implementation of
the interface TextWatcher. It implements the three methods that the interface requires.

136 | Chapter 6: Effective Java for Android

Two of them, onTextChanged and beforeTextChanged, do nothing. The third, though,
afterTextChanged, calls the MyModel method handleTextChange.

This all works very nicely. Perhaps the two required methods that this particular ap-
plication doesn’t happen to use, beforeTextChanged and onTextChanged, clutter things
a bit. Aside from that, though, the code separates concerns beautifully. MyModel has no
idea how a TextView displays text, where it appears on the screen, or how it gets the
text that it contains. The tiny relay class, an anonymous instance of TextWatcher, simply
passes the changed text between the view and MyModel. MyModel, the model implemen-
tation, is concerned only with what happens when the text changes.

This process, attaching the UI to its behaviors, is often called wiring up. Although it is
quite powerful, it is also quite restrictive. The client code—the code that registers to
receive the callback—cannot change the behavior of the caller. Neither does the client
receive any state information beyond the parameters passed in the call. The interface
type—TextWatcher in this case—represents an explicit contract between the callback
provider and the client.

Actually, there is one thing that a callback client can do that will affect the calling
service: it can refuse to return. Client code should treat the callback as a notification
only and not attempt to do any lengthy inline processing. If there is any significant work
to be done—more than a few hundred instructions or any calls to slow services such
as the filesystem or the network—they should be queued up for later execution, prob-
ably on another thread. We’ll discuss how to do this, in depth, in “AsyncTask and the
UI Thread” on page 143.

By the same token, a service that attempts to support multiple callback clients may find
itself starved for CPU resources, even if all the clients are relatively well behaved. While
addTextChangedListener supports the subscription of multiple clients, many of the
callbacks in the Android library support only one. With these callbacks (setOnKey
Listener, for instance) setting a new client for a particular callback on a particular object
replaces any previous client. The previously registered client will no longer receive any
callback notifications. In fact, it won’t even be notified that it is no longer the client.
The newly registered client will, thenceforward, receive all notifications. This restric-
tion in the code reflects the very real constraint that a callback cannot actually support
an unlimited number of clients. If your code must fan notifications out to multiple
recipients, you will have to implement a way of doing it so that it is safe in the context
of your application.

The callback pattern appears throughout the Android libraries. Because the idiom is
familiar to all Android developers, it makes a lot of sense to design your own application
code this way too. Whenever one class might need notifications of changes in another—
especially if the association changes dynamically, at runtime—consider implementing
the relationship as a callback. If the relationship is not dynamic, consider using
dependency injection—a constructor parameter and a final field—to make the required
relationship permanent.

The Android Framework | 137

Using polymorphism and composition

In Android development, as in other object-oriented environments, polymorphism and
composition are compelling tools for extending the environment. By design, the pre-
vious example demonstrates both. Let’s pause for a second to reinforce the concepts
and restate their value as design goals.

The anonymous instance of TextWatcher that is passed to addTextChangedListener as a
callback object uses composition to implement its behavior. The instance does not,
itself, implement any behavior. Instead, it delegates to the handleTextChange method
in MyModel, preferring has-a implementation to is-a. This keeps concerns clear and sep-
arate. If MyModel is ever extended, for example, to use text that comes from another
source, the new source will also use handleTextChange. It won’t be necessary to track
down code in several anonymous classes.

The example also demonstrates the use of polymorphism. The instance passed in to
the addTextChangedListener method is strongly and statically typed. It is an anonymous
subtype of TextWatcher. Its particular implementation—in this case, delegation to the
handleTextChange in MyModel—is nearly certain to be unlike any other implementation
of that interface. Since it is an implementation of the TextWatcher interface, though, it
is statically typed, no matter how it does its job. The compiler can guarantee that the
addTextChangedListener in EditText is passed only objects that are, at least, intended
to do the right job. The implementation might have bugs, but at least addTextChanged
Listener will never be passed, say, an object intended to respond to network events.
That is what polymorphism is all about.

It is worth mentioning one particular antipattern in this context, because it is so com-
mon. Many developers find anonymous classes to be a verbose and clumsy way of
essentially passing a pointer to a function. In order to avoid using them, they skip the
messenger object altogether, like this:

// !!! Anti-pattern warning
public class MyModel implements TextWatcher {
 public MyModel(TextView textBox) {
 textBox.addTextChangedListener(this);
 }

 public void afterTextChanged(Editable s) {
 handleTextChange(s);
 }

 public void beforeTextChanged(
 CharSequence s,
 int start,
 int count,
 int after)
 { }

 public void onTextChanged(
 CharSequence s,
 int start,

138 | Chapter 6: Effective Java for Android

 int count,
 int after)
 { }

 void handleTextChange(Editable s) {
 // do something with s, the changed text.
 }
}

Sometimes this approach makes sense. If the callback client, MyModel in this case, is
small, simple, and used in only one or two contexts, this code is clear and to the point.

On the other hand, if (as the name MyModel suggests) the class will be used broadly and
in a wide variety of circumstances, eliminating the messenger classes breaks encapsu-
lation and limits extension. Obviously, it’s going to be messy to extend this implemen-
tation to handle input from a second TextBox that requires different behavior.

Nearly as bad, though, is something called interface pollution, which happens when
this idea is taken to an extreme. It looks like this:

// !!! Anti-pattern ALERT!
public class MyModel
 implements TextWatcher, OnKeyListener, View.OnTouchListener,
 OnFocusChangeListener, Button.OnClickListener
{
 //
}

Code like this is seductively elegant, in a certain way, and fairly common. Unfortu-
nately, though, MyModel is now very tightly coupled to every one of the events it handles.

As usual, there are no hard and fast rules about interface pollution. There is, as already
noted, lots of working code that looks just like this. Still, smaller interfaces are less
fragile and easier to change. When an object’s interface expands beyond good taste,
consider using composition to split it up into manageable pieces.

Extending Android classes

While callbacks provide a clear, well-defined means of extending class behavior, there
are circumstances in which they do not provide sufficient flexibility. An obvious prob-
lem with the callback pattern is that sometimes your code needs to seize control at some
point not foreseen by the library designers. If the service doesn’t define a callback, you’ll
need some other way to inject your code into the flow of control. One solution is to
create a subclass.

Some classes in the Android library were specifically designed to be subclassed (e.g.,
the BaseAdapter class from android.widgets, and AsyncTask, described shortly). In gen-
eral, however, subclassing is not something that a designer should do lightly.

A subclass can completely replace the behavior of any nonfinal method in its superclass
and, thus, completely violate the class architectural contract. Nothing in the Java typing
system will prevent a subclass of TextBox, for example, from overriding the addText

The Android Framework | 139

ChangedListener method so that it ignores its argument and does not notify callback
clients of changes in text box content. (You might imagine, for example, an imple-
mentation of a “safe” text box that does not reveal its content.)

Such a violation of contract—and it isn’t always easy to recognize the details of the
contract—can give rise to two classes of bugs, both quite difficult to find. The first and
more obvious problem occurs when a developer uses a rogue subclass like the safe text
box, described earlier.

Suppose a developer constructs a view containing several widgets and uses the add
TextChangedListener method on each to register for its callbacks. During testing,
though, he discovers that some widgets aren’t working as expected. He examines his
code for hours before it occurs to him that “it’s as though that method isn’t doing
anything!” Suddenly, dawn breaks and he looks at the source for the widget to confirm
that it has broken the class semantic contract. Grrr!

More insidious than this, though, is that the Android Framework itself might change
between releases of the SDK. Perhaps the implementation of the addTextChanged
Listener method changes. Maybe code in some other part of the Android Framework
starts to call addTextChangedListener, expecting normal behavior. Suddenly, because
the subclass overrides the method, the entire application fails in spectacular ways!

You can minimize the danger of this kind of problem by calling superimplementation
for an overridden method, like this:

public void addTextChangedListener(TextWatcher watcher) {
 // your code here...
 super.addTextChangedListener(watcher)
 // more of your code here...
}

This guarantees that your implementation augments but does not replace existing be-
havior, even as, over time, the superclass implementation changes. There is a coding
rule, enforced in some developer communities, called “Design for Extension.” The rule
mandates that all methods be either abstract or final. While this may seem draconian,
consider that an overriding method, by definition, breaks the object’s semantic contract
unless it at least calls the superimplementation.

Organizing Java Source
Chapter 1 introduced the basics of the Android SDK. Chapter 5 narrowed the focus
with a closer look at one of the most common tools for Android development, the
Eclipse IDE. Let’s move one step closer and look at the organization of code within a
project.

To reiterate, a project, as introduced in “Projects” on page 115, is a workspace devoted
to producing a single deployable artifact. In the wider world of Java, that artifact might
be no more than a library (a .jar file that cannot be run by itself but that implements

140 | Chapter 6: Effective Java for Android

some specific functionality). It might, on the other hand, be a deployable web appli-
cation or a double-clickable desktop application.

In the Android space, the artifact is most likely to be a single runnable service: a
ContentProvider, a Service, or an Activity. A content provider that is used by a single
activity certainly might start its life as a part of the activity project. As soon as a second
activity needs to use it, though, it is time to consider refactoring it into its own project.

Traditionally, the Java compiler expects directory trees to hold the source (.java) files
that it parses and the binary (.class) files that it produces as output. While it’s not
necessary, it’s much easier to manage a project if those trees have different roots, com-
monly directories named src and bin, respectively.

In an Android project, there are two other important directory trees, res and gen. The
first of these, res, contains definitions for static resources: colors, constant strings, lay-
outs, and so on. Android tools preprocess these definitions, and turn them into highly
optimized representations and the Java source through which application code refers
to them. The autogenerated code, along with code created for AIDL objects (see “AIDL
and Remote Procedure Calls” on page 158), is put into the gen directory. The compiler
compiles the code from both directories to produce the contents of bin. The full struc-
ture of a project was described in detail in Chapter 3.

When you add your project to a revision control system like Git, Sub-
version, or Perforce, be sure to exclude the bin and gen directories!

Your application source code goes in the src directory. As noted in Chapter 2, you
should put all your code into a package whose name is derived from the domain name
of the owner of the code. Suppose, for instance, that you are a developer at large, doing
business as awesome-android.net. You are under contract to develop a weather-
prediction application for voracious-carrier.com. You will probably choose to put all
your code into the package com.voraciouscarrier.weatherprediction, or possibly
com.voracious_carrier.weather_prediction. Although the character “-” is perfectly le-
gal in a DNS domain name, it is not legal in a Java package name. The UI for this
ambitious application might go in com.voraciouscarrier.weatherprediction.ui and
the model in com.voraciouscarrier.weatherprediction.futureweather.

If you look inside the src directory in your project, you will see that it contains a single
directory, com. com in turn contains the directory voraciouscarrier, and so on. The
source directory tree mirrors the package tree. The Java compiler expects this organi-
zation and may be unable to compile your code if it is violated.

Eventually, when the FutureWeather content provider becomes valuable on its own,
you’ll want to factor it out into a new project with a package namespace that is not
restricted by the name of the application in which it was originally created. Doing this

Organizing Java Source | 141

by hand is a nightmare. You have to create a new directory structure, correctly place
the files within that structure, correct the package names that are at the head of each
source file, and, finally, correct any references to things that have moved.

Eclipse refactoring tools are your best friend. With just a few clicks you can create a
new project for the now standalone subtree, cut and paste the content provider code
into it, and then rename the packages as appropriate. Eclipse will fix most things, in-
cluding the changed references.

It’s worth a reminder that shortcutting package names—using a package named just
weatherprediction, for instance—is a bad idea. Even if you are pretty sure the code you
are creating will never be used outside its current context, you may want to use exter-
nally produced code in that context. Don’t set yourself up for a name collision.

Concurrency in Android
As mentioned in Chapter 2, writing correct concurrent programs can be very difficult.
The Android libraries provide some convenient tools to make concurrency both easier
and safer.

When discussing concurrent programs, developers get into the habit of talking as
though writing code with multiple threads actually causes those threads to execute at
the same time—as though threading actually makes the program run faster. Of course,
it isn’t quite that simple. Unless there are multiple processors to execute the threads,
a program that needs to perform multiple, unrelated, compute-bound tasks will com-
plete those tasks no more quickly if they are implemented as separate threads than it
will if they are on the same thread. In fact, on a single processor, the concurrent version
may actually run somewhat more slowly because of the overhead due to context
switching.

Multithreaded Java applications were around for a long time before most people could
afford machines with more than one processor on which to run them. In the Android
world, multithreading is an essential tool, even though the majority of devices will
probably have only a single CPU for another year or so. So what is the point of con-
currency if not to make a program run faster?

If you’ve been programming for any length of time at all, you probably don’t even think
about how absolutely essential it is that the statements in your code are executed in a
rigid sequential order. The execution of any given statement must, unconditionally,
happen before the execution of the next statement. Threads are no more than an explicit
way of relaxing this constraint. They are the abstraction that developers use to make it
possible to write code that is still ordered, logical, and easy to read, even when tasks
embodied by the code are not related by ordering.

Executing independent threads concurrently doesn’t introduce any intrinsic complex-
ity when the threads are completely independent (e.g., if one is running on your com-

142 | Chapter 6: Effective Java for Android

puter and the other is running on mine). When two concurrent processes need to
collaborate, however, they have to rendezvous. For instance, data from the network
might have to be displayed on the screen or user input pushed to a data store. Arranging
the rendezvous, especially in the context of code optimizers, pipelined processors, and
multilayered memory cache, can be quite complex. This can become painfully apparent
when a program that has run, apparently without problem, on a single processor, sud-
denly fails in strange and difficult-to-debug ways when run in a multiprocessor
environment.

The rendezvous process, making data or state from one thread visible to another, is
usually called publishing a reference. Whenever one thread stores state in a way that
makes it visible from another thread, it is said to be publishing a reference to that state.
As mentioned in Chapter 2, the only way that a reference can be published safely is if
all threads that refer to the data synchronize on the same object during use. Anything
else is incorrect and unsafe.

AsyncTask and the UI Thread
If you’ve worked with any modern GUI framework, the Android UI will look entirely
familiar. It is event-driven, built on a library of nestable components, and, most relevant
here, single-threaded. Designers discovered years ago that, because a GUI must respond
to asynchronous events from multiple sources, it is nearly impossible to avoid deadlock
if the UI is multithreaded. Instead, a single thread owns both the input (touch screen,
keypad, etc.) and output devices (display, etc.) and executes requests from each, se-
quentially, usually in the order they were received.

While the UI runs on a single thread, nearly any nontrivial Android application will be
multithreaded. The UI must, for instance, respond to the user and animate the display
regardless of whether the code that retrieves data from the network is currently
processing incoming data. The UI must be quick and responsive and cannot, funda-
mentally, be ordered with respect to other, long-running processes. The long-running
processes must be run asynchronously.

One convenient tool for implementing an asynchronous task in the Android system is,
in fact, called AsyncTask. It completely hides many of the details of the threads used to
run the task.

Let’s consider a very simplistic application that initializes a game engine, displaying
some interstitial graphic while the content loads. Figure 6-1 shows a very basic example
of such an application. When you push the button, it initializes the game level and then
displays a welcome message in a text box.

Concurrency in Android | 143

Figure 6-1. Simple application to initialize a game

Here is the boilerplate code for the application. All that is missing is the code that
actually initializes the game and updates the text box:

/** AsyncTaskDemo */
public class AsyncTaskDemo extends Activity {

 int mInFlight;

 /** @see android.app.Activity#onCreate(android.os.Bundle) */
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setContentView(R.layout.asyncdemo);

 final View root = findViewById(R.id.root);
 final Drawable bg = root.getBackground();

 final TextView msg = ((TextView) findViewById(R.id.msg));

 final Game game = Game.newGame();

 ((Button) findViewById(R.id.start)).setOnClickListener(
 new View.OnClickListener() {
 @Override public void onClick(View v) {
 // !!! initialize the game here!
 } });
}

144 | Chapter 6: Effective Java for Android

Now, let’s suppose, for this example, that we simply want to display an animated
background (the crawling dots in Figure 6-1) while the user waits for the game to ini-
tialize. Here’s a sketch of the necessary code:

/**
 * Synchronous request to remote service
 * DO NOT USE!!
 */
void initGame(
 View root,
 Drawable bg,
 Game game,
 TextView resp,
 String level)
{
 // if the animation hasn't been started yet,
 // do so now
 if (0 >= mInFlight++) {
 root.setBackgroundResource(R.anim.dots);
 ((AnimationDrawable) root.getBackground()).start();
 }

 // initialize the game and get the welcome message
 String msg = game.initialize(level);

 // if this is the last running initialization
 // remove and clean up the animation
 if (0 >= --mInFlight) {
 ((AnimationDrawable) root.getBackground()).stop();
 root.setBackgroundDrawable(bg);
 }

 resp.setText(msg);
}

This is pretty straightforward. The user might mash the start button, so there might be
multiple initializations in flight. If the interstitial background is not already showing,
show it and remember that there is one more game starting up. Next, make the slow
call to the game engine initializer. Once the game completes its initialization, clean up.
If this is the last game to complete initialization, clear the interstitial animation. Finally,
display the greeting message in the text box.

While this code is very nearly what is needed to make the example application work
as specified, it breaks down in one very important way: it blocks the UI thread for the
entire duration of the call to game.initialize. That has all sorts of unpleasant effects.

The most apparent of these is that the background animation won’t work. Even though
the logic for setting up and running the animation is very nearly correct, the code
specifies quite clearly that nothing else can happen in the UI until the call to the remote
service is complete.

It gets worse. The Android Framework actually monitors application UI threads to
prevent broken or malicious programs from hanging a device. If an application takes

Concurrency in Android | 145

too long to respond to input, the framework will suspend it, alert the user that there is
a problem, and offer her a chance to force it to close. If you build and run this example
application, with initGame implemented as shown in the example (try it; it’s actually
somewhat instructive), the first time you click the Send Request button the UI will
freeze. If you click a couple more times, you will see an alert similar to the one shown
in Figure 6-2.

Figure 6-2. Unresponsive application

AsyncTask to the rescue! Android provides this class as a relatively safe, powerful, and
easy-to-use way to run background tasks correctly. Here is a reimplementation of
initGame as an AsyncTask:

private final class AsyncInitGame
 extends AsyncTask<String, Void, String>
{
 private final View root;
 private final Game game;
 private final TextView message;
 private final Drawable bg;

 public AsyncInitGame(
 View root,
 Drawable bg,
 Game game,
 TextView msg)
 {
 this.root = root;
 this.bg = bg;
 this.game = game;
 this.message = msg;

146 | Chapter 6: Effective Java for Android

 }

 // runs on the UI thread
 @Override protected void onPreExecute() {
 if (0 >= mInFlight++) {
 root.setBackgroundResource(R.anim.dots);
 ((AnimationDrawable) root.getBackground()).start();
 }
 }

 // runs on the UI thread
 @Override protected void onPostExecute(String msg) {
 if (0 >= --mInFlight) {
 ((AnimationDrawable) root.getBackground()).stop();
 root.setBackgroundDrawable(bg);
 }

 message.setText(msg);
 }

 // runs on a background thread
 @Override protected String doInBackground(String... args) {
 return ((1 != args.length) || (null == args[0]))
 ? null
 : game.initialize(args[0]);
 }
}

This code is nearly identical to the first example. It has been divided into three methods
that execute nearly the same code, in the same order, as in initGame.

This AsyncTask is created on the UI thread. When the UI thread invokes the task’s
execute method, first the onPreExecute method is called on the UI thread. This allows
the task to initialize itself and its environment—in this case, installing the background
animation. Next the AsyncTask creates a new background thread to run the doInBack
ground method concurrently. When, eventually, doInBackground completes, the back-
ground thread is deleted and the onPostExecute method is invoked, once again in the
UI thread.

Assuming that this implementation of an AsyncTask is correct, the click listener need
only create an instance and invoke it, like this:

((Button) findViewById(R.id.start)).setOnClickListener(
 new View.OnClickListener() {
 @Override public void onClick(View v) {
 new AsyncInitGame(
 root,
 bg,
 game,
 msg)
 .execute("basic");
 } });

In fact, AsyncInitGame is complete, correct, and reliable. Let’s examine it in more detail.

Concurrency in Android | 147

First, notice that the base class AsyncTask is abstract. The only way to use it is to create
a subclass specialized to perform some specific job (an is-a relationship, not a has-a
relationship). Typically, the subclass will be simple, anonymous, and define only a few
methods. A regard for good style and separation of concerns, analogous to the issues
mentioned in Chapter 2, suggests keeping the subclass small and delegating imple-
mentation to the classes that own the UI and the asynchronous task, respectively. In
the example, for instance, doInBackground is simply a proxy to the Game class.

In general, an AsyncTask takes a set of parameters and returns a result. Because the
parameters have to be passed between threads and the result returned between threads,
some handshaking is necessary to ensure thread safety. An AsyncTask is invoked by
calling its execute method with some parameters. Those parameters are eventually
passed on, by the AsyncTask mechanism, to the doInBackground method, when it runs
on a background thread. In turn, doInBackground produces a result. The AsyncTask
mechanism returns that result by passing it as the argument to doPostExecute, run in
the same thread as the original execute. Figure 6-3 shows the data flow.

Figure 6-3. Data flow in AsyncTask

In addition to making this data flow thread-safe, AsyncTask also makes it type-safe.
AsyncTask is a classic example of a type-safe template pattern. The abstract base class
(AsyncTask) uses Java generics to allow implementations to specify the types of the task
parameters and result.

When defining a concrete subclass of AsyncTask, you provide actual types for Params,
Progress, and Result, the type variables in the definition of AsyncTask. The first and last
of these type variables (Params and Result) are the types of the task parameters and the
result, respectively. We’ll get to that middle type variable in a minute.

The concrete type bound to Params is the type of the parameters to execute, and thus
the type of the parameters to doInBackground. Similarly, the concrete type bound to
Result is the type of the return value from doInBackground, and thus the type of the
parameter to onPostExecute.

148 | Chapter 6: Effective Java for Android

This is all a bit hard to parse, and the first example, AsyncInitGame, didn’t help much
because the input parameter and the result are both of the same type, String. Here are
a couple of examples in which the parameter and result types are different. They provide
a better illustration of the use of the generic type variables:

public class AsyncDBReq
 extends AsyncTask<PreparedStatement, Void, ResultSet>
{
 @Override
 protected ResultSet doInBackground(PreparedStatement... q) {
 // implementation...
 }

 @Override
 protected void onPostExecute(ResultSet result) {
 // implementation...
 }
 }

public class AsyncHttpReq
 extends AsyncTask<HttpRequest, Void, HttpResponse>
{
 @Override
 protected HttpResponse doInBackground(HttpRequest... req) {
 // implementation...
 }

 @Override
 protected void onPostExecute(HttpResponse result) {
 // implementation...
 }
 }

In the first example, the argument to the execute method of an AsyncDBReq instance will
be one or more PreparedStatement variables. The implementation of doInBackground
for an instance of AsyncDBReq will take those PreparedStatement parameters as its ar-
guments and will return a ResultSet. The instance onPostExecute method will take that
ResultSet as a parameter and use it appropriately.

Similarly, in the second example, the call to the execute method of an AsyncHttpReq
instance will take one or more HttpRequest variables. doInBackground takes those re-
quests as its parameters and returns an HttpResponse. onPostExecute handles the
HttpResponse.

Note that an instance of an AsyncTask can be run only once. Calling
execute on a task a second time will cause it to throw an Illegal
StateException. Each task invocation requires a new instance.

As much as AsyncTask simplifies concurrent processing, its contract imposes strong
constraints that cannot be verified automatically. It is absolutely essential to take great
care not to violate these constraints! Violations will cause exactly the sort of bug

Concurrency in Android | 149

described at the beginning of this section: failures that are intermittent and very difficult
to find.

The most obvious of these constraints is that the doInBackground method, since it is run
on a different thread, must make only thread-safe references to variables inherited into
its scope. Here, for example, is a mistake that is easy to make:

// ... some class

int mCount;

public void initButton1(Button button) {
 mCount = 0;
 button.setOnClickListener(
 new View.OnClickListener() {
 @SuppressWarnings("unchecked")
 @Override public void onClick(View v) {
 new AsyncTask<Void, Void, Void>() {
 @Override
 protected Void doInBackground(Void... args) {
 mCount++; // !!! NOT THREAD SAFE!
 return null;
 }
 }.execute();
 } });
}

Although there is nothing to alert you to the problem—no compiler error, no runtime
warning, probably not even an immediate failure when the bug is driven—this code is
absolutely incorrect. The variable mCount is being accessed from two different threads,
without synchronization.

In light of this, it may be a surprise to see that access to mInFlight is not synchronized
in AsyncTaskDemo. This is actually OK. The AsyncTask contract guarantees that
onPreExecute and onPostExecute will be run on the same thread, the thread from which
execute was called. Unlike mCount, mInFlight is accessed from only a single thread and
has no need for synchronization.

Probably the most pernicious way to cause the kind of concurrency problem we’ve just
warned you about is by holding a reference to a parameter. This code, for instance, is
incorrect. Can you see why?

public void initButton(
 Button button,
 final Map<String, String> vals)
{
 button.setOnClickListener(
 new View.OnClickListener() {
 @Override public void onClick(View v) {
 new AsyncTask<Map<String, String>, Void, Void>() {
 @Override
 protected Void doInBackground(
 Map<String, String>... params)

150 | Chapter 6: Effective Java for Android

 {
 // implementation, uses the params Map
 }
 }.execute(vals);
 vals.clear(); // !!! THIS IS NOT THREAD SAFE !!!
 } });
}

The problem is pretty subtle. If you noticed that the argument to initButton, vals, is
being referenced concurrently, without synchronization, you are correct! It is passed
into the AsyncTask, as the argument to execute, when the task is invoked. The
AsyncTask framework can guarantee that this reference is published correctly onto the
background thread when doInBackground is called. It cannot, however, do anything
about the reference to vals that is retained and used later, in the initButton method.
The call to vals.clear modifies state that is being used on another thread, without
synchronization. It is, therefore, not thread-safe.

The best solution to this problem is to make sure the arguments to AsyncTask are im-
mutable. If they can’t be changed—like a String, an Integer, or a POJO with only final
fields—they are thread-safe and need no further care. The only way to be certain that
a mutable object passed to an AsyncTask is thread-safe is to make sure that only the
AsyncTask holds a reference. Because the parameter vals is passed into the initButton
method in the previous example (Figure 6-1), it is completely impossible to guarantee
that there are no dangling references to it. Even removing the call to vals.clear would
not guarantee that this code was correct, because the caller of initButton might hold
a reference to the map that is eventually passed as the parameter vals. The only way to
make this code correct is to make a complete (deep) copy of the map and all the objects
it contains!

Developers familiar with the Java Collections package might argue that an alternative
to making a complete, deep copy of the map parameter would be to wrap it in an
unmodifiableMap, like this:

public void initButton(
 Button button,
 final Map<String, String> vals)
{
 button.setOnClickListener(
 new View.OnClickListener() {
 @Override public void onClick(View v) {
 new AsyncTask<Map<String, String>, Void, Void>() {
 @Override
 protected Void doInBackground(
 Map<String, String>... params)
 {
 // implementation, uses the params Map
 }
 }.execute(Collections.unmodifiableMap(vals));
 vals.clear(); // !!! STILL NOT THREAD SAFE !!!
 } });
}

Concurrency in Android | 151

Unfortunately, this is still not correct. Collections.unmodifiableMap provides an im-
mutable view of the map it wraps. It does not, however, prevent processes with access
to a reference to the original, mutable object from changing that object at any time. In
the preceding example, although the AsyncTask cannot change the map value passed
to it in the execute method, the onClickListener method still changes the map refer-
enced by vals at the same time the background thread uses it, without synchronization.
Boom!

To close this section, note that AsyncTask has one more method, not used in the ex-
ample: onProgressUpdate. It is there to allow the long-running tasks to push periodic
status safely back to the UI thread. Here is how you might use it to implement a progress
bar showing the user how much longer the game initialization process will take:

public class AsyncTaskDemoWithProgress extends Activity {

 private final class AsyncInit
 extends AsyncTask<String, Integer, String>
 implements Game.InitProgressListener
 {
 private final View root;
 private final Game game;
 private final TextView message;
 private final Drawable bg;

 public AsyncInit(
 View root,
 Drawable bg,
 Game game,
 TextView msg)
 {
 this.root = root;
 this.bg = bg;
 this.game = game;
 this.message = msg;
 }

 // runs on the UI thread
 @Override protected void onPreExecute() {
 if (0 >= mInFlight++) {
 root.setBackgroundResource(R.anim.dots);
 ((AnimationDrawable) root.getBackground()).start();
 }
 }

 // runs on the UI thread
 @Override protected void onPostExecute(String msg) {
 if (0 >= --mInFlight) {
 ((AnimationDrawable) root.getBackground()).stop();
 root.setBackgroundDrawable(bg);
 }

 message.setText(msg);
 }

152 | Chapter 6: Effective Java for Android

 // runs on its own thread
 @Override protected String doInBackground(String... args) {
 return ((1 != args.length) || (null == args[0]))
 ? null
 : game.initialize(args[0], this);
 }

 // runs on the UI thread
 @Override protected void onProgressUpdate(Integer... vals) {
 updateProgressBar(vals[0].intValue());
 }

 // runs on the UI thread
 @Override public void onInitProgress(int pctComplete) {
 publishProgress(Integer.valueOf(pctComplete));
 }
 }

 int mInFlight;
 int mComplete;

 /** @see android.app.Activity#onCreate(android.os.Bundle) */
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setContentView(R.layout.asyncdemoprogress);

 final View root = findViewById(R.id.root);
 final Drawable bg = root.getBackground();

 final TextView msg = ((TextView) findViewById(R.id.msg));

 final Game game = Game.newGame();

 ((Button) findViewById(R.id.start)).setOnClickListener(
 new View.OnClickListener() {
 @Override public void onClick(View v) {
 mComplete = 0;
 new AsyncInit(
 root,
 bg,
 game,
 msg)
 .execute("basic");
 } });
 }

 void updateProgressBar(int progress) {
 int p = progress;
 if (mComplete < p) {
 mComplete = p;
 ((ProgressBar) findViewById(R.id.progress))
 .setProgress(p);

Concurrency in Android | 153

 }
 }
}

This example presumes that game initialization takes, as an argument, a Game.Init
ProgressListener. The initialization process periodically calls the listener’s onInitPro
gress method to notify it of how much work has been completed. In this example, then,
onInitProgress will be called from beneath doInBackground in the call tree, and therefore
on the background thread. If onInitProgress were to call AsyncTaskDemoWith
Progress.updateProgressBar directly, the subsequent call to bar.setStatus would also
take place on the background thread, violating the rule that only the UI thread can
modify View objects. It would cause an exception like this:

11-30 02:42:37.471: ERROR/AndroidRuntime(162):
 android.view.ViewRoot$CalledFromWrongThreadException:
 Only the original thread that created a view hierarchy can touch its views.

In order to correctly publish the progress back to the UI thread, onInitProgress instead
calls the AsyncTask method publishProgress. The AsyncTask handles the details of
scheduling publishProgress on the UI thread so that onProgressUpdate can safely use
View methods.

Let’s leave this detailed look into the AsyncTask by summarizing some of the key points
it illustrated:

• The Android UI is single-threaded. To use it well a developer must be comfortable
with the task queue idiom.

• In order to retain UI liveness, tasks that take more than a couple of milliseconds,
or a few hundred instructions, should not be run on the UI thread.

• Concurrent programming is really tricky. It’s amazingly easy to get it wrong and
very hard to check for mistakes.

• AsyncTask is a convenient tool for running small, asynchronous tasks. Just remem-
ber that the doInBackground method runs on a different thread! It must not write
any state visible from another thread or read any state writable from another thread.
This includes its parameters.

• Immutable objects are an essential tool for passing information between concur-
rent threads.

Threads in an Android Process
Together, AsyncTask and ContentProvider form a very powerful idiom and can be adap-
ted to a wide variety of common application architectures. Nearly any MVC pattern in
which the View polls the Model can (and probably should) be implemented this way.
In an application whose architecture requires the Model to push changes to the View
or in which the Model is long-lived and continuously running, AsyncTask may not be
sufficient.

154 | Chapter 6: Effective Java for Android

Recall that cardinal rule for sharing data between threads that we introduced back in
“Synchronization and Thread Safety” on page 68. In its full generality, that rule is pretty
onerous. The investigation of AsyncTask in the preceding section, however, illustrated
one idiom that simplifies correct coordination of concurrent tasks in Android: the heavy
lifting of publishing state from one thread into another was completely hidden in the
implementation of a template class. At the same time, the discussion also reinforced
some of the pitfalls of concurrency that lie in wait to entrap the incautious coder. There
are other idioms that are safe and that can simplify specific classes of concurrent prob-
lems. One of them—a common idiom in Java programming in general—is baked into
the Android Framework. It is sometimes called thread confinement.

Suppose that a thread, the DBMinder, creates an object and modifies it over a period
of time. After it has completed its work, it must pass the object to another thread,
DBViewer, for further processing. In order to do this, using thread confinement,
DBMinder and DBViewer must share a drop point and an associated lock. The process
looks like this:

1. DBMinder seizes the lock and stores a reference to the object in the drop.

2. DBMinder destroys all its references to the object!

3. DBMinder releases the lock.

4. DBViewer seizes the lock and notices that there is an object reference in the drop.

5. DBViewer recovers the reference from the drop and then clears the drop.

6. DBViewer releases the lock.

This process works for any object regardless of whether that object is thread-safe itself.
This is because the only state that is ever shared among multiple threads is the drop
box. Both threads correctly seize a single lock before accessing it. When DBMinder is
done with an object, it passes it to DBViewer and retains no references: the state of the
passed object is never shared by multiple threads.

Thread confinement is a surprisingly powerful trick. Implementations usually make
the shared drop an ordered task queue. Multiple threads may contend for the lock, but
each holds it only long enough to enqueue a task. One or more worker threads seize
the queue to remove tasks for execution. This is a pattern that is sometimes called the
producer/consumer model. As long as a unit of work can proceed entirely in the context
of the worker thread that claims it, there is no need for further synchronization. If you
look into the implementation of AsyncTask you will discover that this is exactly how it
works.

Thread confinement is so useful that Android has baked it into its framework in the
class called Looper. When initialized as a Looper, a Java thread turns into a task queue.
It spends its entire life removing things from a local queue and executing them. Other
threads enqueue work, as described earlier, for the initialized thread to process. As long
as the enqueuing thread deletes all references to the object it enqueues, both threads
can be coded without further concern for concurrency. In addition to making it

Concurrency in Android | 155

dramatically easier to make programs that are correct, this also removes any inefficiency
that might be caused by extensive synchronization.

Perhaps this description of a task queue brings to mind a construct to which we alluded
earlier in this chapter? Android’s single-threaded, event-driven UI is, simply, a
Looper. When it launches a Context the system does some bookkeeping and then ini-
tializes the launch thread as a Looper. That thread becomes the main thread for a service
and the UI thread for an activity. In an activity, the UI framework preserves a reference
to this thread, and its task queue becomes the UI event queue: all the external drivers,
the screen, the keyboard, the call handler, and so on, enqueue actions on this queue.

The other half of Looper is Handler. A Handler, created on a Looper thread, provides a
portal to the Looper queue. When a Looper thread wishes to allow some other enqueued
thread access to its task queue, it creates a new Handler and passes it to the other thread.
There are several shortcuts that make it easier to use a Handler: View.post(Runnable),
View.postDelayed(Runnable, long), and Activity.runOnUiThread(Runnable).

There is yet another convenient and powerful paradigm in the Android toolkit for in-
terprocess communication and work sharing: the ContentProvider, which we’ll discuss
in Chapter 12. Consider whether a content provider can fit your needs before you build
your own architecture on the low-level components discussed in this section. Content
providers are flexible and extensible, and handle concurrent processing in a way that
is fast enough for all but the most time-sensitive applications.

Serialization
Serialization is converting data from a fast, efficient, internal representation to some-
thing that can be kept in a persistent store or transmitted over a network. Converting
data to its serialized form is often called marshaling it. Converting it back to its live, in-
memory representation is called deserializing or unmarshaling.

Exactly how data is serialized depends on the reason for serializing it. Data serialized
for transmission over a network, for instance, may not need to be legible in flight. Data
serialized for storage in a database, however, will be far more useful if the representation
permits SQL queries that are easy to construct and make sense. In the former case the
serialization format might be binary. In the latter it is likely to be labeled text.

The Android environment addresses four common uses for serialization:

Life cycle management
Unlike larger devices—laptop and desktop machines, for instance—Android de-
vices cannot count on being able to swap an application to a fast backing store
when that application becomes inactive. Instead, the framework provides an object
called a Bundle. When an application is suspended it writes its state into the
Bundle. When the application is re-created the Android Framework promises to
supply a copy of the same Bundle during its initialization. An application must be

156 | Chapter 6: Effective Java for Android

able to serialize anything it wants to keep across its suspension and to store the
serialized version in the Bundle.

Persistence
In addition to the immediate application state kept in a Bundle, most applications
manage some kind of persistent data store. This data store is most likely an SQLite
database wrapped in a ContentProvider. Applications must convert back and forth
between the internal representation of object data and the representations of those
same objects in the database. In larger systems, this process—called object-
relational mapping or just ORM—is supported by frameworks such as Hibernate
and iBATIS. Android’s local data store is simpler and lighter weight. It is described
in Chapter 10.

Local interprocess communication
The Android Framework promotes an architecture that breaks larger, monolithic
applications into smaller components: UIs, content providers, and services. These
components do not have access to each other’s memory space and must pass in-
formation across process boundaries as serialized messages. Android provides a
highly optimized tool for this, AIDL.

Network communication
This is the part that makes mobile devices exciting. The ability to connect to the
Internet and to use the incredible variety of services available there is what Android
is all about. Applications need to be able to handle the protocols imposed by any
external service, which includes translating internal information into queries to
those services, and retranslating the response.

The following sections describe the various classes at your disposal for achieving these
goals.

Java Serialization
Java defines a serialization framework through the Serializable marker interface and
the pair of serialization types called ObjectOutputStream and ObjectInputStream. Be-
cause Java serialization mostly just works, even experienced Java programmers may
not recognize its complexity. It is certainly outside the scope of this book. Josh Bloch
devotes nearly 10% of his seminal book Effective Java (Prentice Hall) to a discussion
of Java’s serialization framework and how to use it correctly. The chapter is worthwhile
reading as a way to understand the issues, even if you don’t expect to use Java’s
framework.

Android does support Java serialization. The Bundle type, for instance, has the pair
of methods putSerializable and getSerializable, which, respectively, add a Java
Serializable to and recover it from a Bundle. For example:

public class JSerialize extends Activity {
 public static final String APP_STATE
 = "com.oreilly.android.app.state";

Serialization | 157

 private static class AppState implements Serializable {
 // definitions, getters and setters
 // for application state parameters here.
 // ...
 }

 private AppState applicationState;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedAppState) {
 super.onCreate(savedAppState);

 applicationState = (null == savedAppState)
 ? new AppState(/* ... */)
 : (AppState) savedAppState.getSerializable(APP_STATE);

 setContentView(R.layout.main);

 // ...
 }

 /**
 * @see android.app.Activity#onSaveInstanceState(android.os.Bundle)
 */
 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putSerializable(APP_STATE, applicationState);
 }
}

In this example, the application keeps some global state information—perhaps a list
of recently used items—as a Serializable object. When a JSerialize activity is paused
so that another activity can replace it in memory, the Android Framework invokes the
JSerialize callback method onSaveInstanceState, passing a Bundle object. The call-
back method uses Bundle.putSerializable to save the state of the object into the Bun
dle. When JSerialize is resumed, the onCreate method retrieves the state from the
Bundle using getSerializable.

AIDL and Remote Procedure Calls
In order to declare an AIDL interface, you’ll need several things:

• An AIDL file that describes the API.

• For every nonsimple type used in the API, a subclass of Parcelable defining the
type, and an AIDL file naming the type as parcelable. One caution when doing
this: you must be willing to distribute the source for those classes to all clients that
serialize them.

• A service that returns an implementation of the API stub, in response to onBind.
onBind must be prepared to return the correct implementation for each intent with

158 | Chapter 6: Effective Java for Android

which it might be called. The returned instance provides the actual implementa-
tions of the API methods.

• On the client, an implementation of ServiceConnection. onServiceConnected
should cast the passed binder, using API.Stub.asInterface(binder), and save the
result as a reference to the service API. onServiceDisconnected must null the ref-
erence. It calls bindService with an Intent that the API service provides, the
ServiceConnection, and flags that control service creation.

• Binding that is asynchronous. Just because bindService returns true does not mean
that you have a reference to the service yet. You must release the thread and wait
for the invocation of onServiceConnected to use the service.

Parcelable
Although the Android Framework supports Java serialization, it is usually not the best
choice as a way to marshal program state. Android’s own internal serialization protocol,
Parcelable, is lightweight, highly optimized, and only slightly more difficult to use. It
is the best choice for local interprocess communication. For reasons that will become
apparent when we revisit Parcelable objects in “Classes That Support Serializa-
tion” on page 162, they cannot be used to store objects beyond the lifetime of an
application. They are not an appropriate choice for marshaling state to, say, a database
or a file.

Here’s a very simple object that holds some state. Let’s see what it takes to make it
“parcelable”:

public class SimpleParcelable {
 public enum State { BEGIN, MIDDLE, END; }

 private State state;
 private Date date;

 State getState() { return state; }
 void setState(State state) { this.state = state; }

 Date getDate() { return date; }
 void setDate(Date date) { this.date = date; }
}

An object must meet three requirements in order to be parcelable:

• It must implement the Parcelable interface.

• It must have a marshaler, an implementation of the interface method writeTo
Parcel.

• It must have an unmarshaler, a public static final variable named CREATOR, con-
taining a reference to an implementation of Parcelable.Creator.

Serialization | 159

The interface method writeToParcel is the marshaler. It is called for an object when it
is necessary to serialize that object to a Parcel. The marshaler’s job is to write everything
necessary to reconstruct the object state to the passed Parcel. Typically, this will mean
expressing the object state in terms of the six primitive data types: byte, double, int,
float, long, and String. Here’s the same simple object, but this time with the marshaler
added:

public class SimpleParcelable implements Parcelable {
 public enum State { BEGIN, MIDDLE, END; }

 private static final Map<State, String> marshalState;
 static {
 Map<State, String> m = new HashMap<State, String>();
 m.put(State.BEGIN, "begin");
 m.put(State.MIDDLE, "middle");
 m.put(State.END, "end");
 marshalState = Collections.unmodifiableMap(m);
 }

 private State state;
 private Date date;

 @Override
 public void writeToParcel(Parcel dest, int flags) {
 // translate the Date to a long
 dest.writeLong(
 (null == date)
 ? -1
 : date.getTime());

 dest.writeString(
 (null == state)
 ? ""
 : marshalState.get(state));
 }

 State getState() { return state; }
 void setState(State state) { this.state = state; }

 Date getDate() { return date; }
 void setDate(Date date) { this.date = date; }
}

Of course, the exact implementation of writeToParcel will depend on the contents of
the object being serialized. In this case, the SimpleParcelable object has two pieces of
state and writes both of them into the passed Parcel.

Choosing a representation for most simple data types usually won’t require anything
more than a little ingenuity. The Date in this example, for instance, is easily represented
by its time since the millennium.

Be sure, though, to think about future changes to data when picking the serialized
representation. Certainly, it would have been much easier in this example to represent

160 | Chapter 6: Effective Java for Android

state as an int whose value was obtained by calling state.ordinal. Doing so, however,
would make it much harder to maintain forward compatibility for the object. Suppose
it becomes necessary at some point to add a new state, State.INIT, before
State.BEGIN. This trivial change makes new versions of the object completely incom-
patible with earlier versions. A similar, if slightly weaker, argument applies to using
state.toString to create the marshaled representation of the state.

The mapping between an object and its representation in a Parcel is part of the par-
ticular serialization process. It is not an inherent attribute of the object. It is entirely
possible that a given object has completely different representations when serialized by
different serializers. To illustrate this principle—though it is probably overkill, given
that the type State is locally defined—the map used to marshal state is an independent
and explicitly defined member of the parcelable class.

SimpleParcelable, as shown earlier, compiles without errors. It could even be mar-
shaled to a parcel. As yet, though, there is no way to get it back out. For that, we need
the unmarshaler:

public class SimpleParcelable implements Parcelable {

 // Code elided...

 private static final Map<String, State> unmarshalState;
 static {
 Map<String, State> m = new HashMap<String, State>();
 m.put("begin", State.BEGIN);
 m.put("middle", State.MIDDLE);
 m.put("end", State.END);
 unmarshalState = Collections.unmodifiableMap(m);
 }

 // Unmarshaler
 public static final Parcelable.Creator<SimpleParcelable> CREATOR
 = new Parcelable.Creator<SimpleParcelable>() {
 public SimpleParcelable createFromParcel(Parcel src) {
 return new SimpleParcelable(
 src.readLong(),
 src.readString());
 }

 public SimpleParcelable[] newArray(int size) {
 return new SimpleParcelable[size];
 }
 };

 private State state;
 private Date date;

 public SimpleParcelable(long date, String state) {
 if (0 <= date) { this.date = new Date(date); }
 if ((null != state) && (0 < state.length())) {
 this.state = unmarshalState.get(state);
 }

Serialization | 161

 }

 // Code elided...

}

This snippet shows only the newly added unmarshaler code: the public, static final
field called CREATOR and its collaborators. The field is a reference to an implementation
of Parcelable.Creator<T>, where T is the type of the parcelable object to be unmarshaled
(in this case SimpleParcelable). It’s important to get all these things exactly right! If
CREATOR is protected instead of public, not static, or spelled “Creator”, the framework
will be unable to unmarshal the object.

The implementation of Parcelable.Creator<T> is an object with a single method,
createFromParcel, which unmarshals a single instance from the Parcel. The idiomatic
way to do this is to read each piece of state from the Parcel, in exactly the same order
as it was written in writeToParcel (again, this is important), and then to call a con-
structor with the unmarshaled state. Since the unmarshaling constructor is called from
class scope, it can be package-protected, or even private.

Classes That Support Serialization
The Parcel API is not limited to the six primitive types mentioned in the previous sec-
tion. The Android documentation gives the complete list of parcelable types, but it is
helpful to think of them as divided into four groups.

The first group, simple types, consists of null, the six primitives (int, float, etc.), and
the boxed versions of the six primitives (Integer, Float, etc.).

The next group consists of object types implementing Serializable or Parcelable.
These objects are not simple, but they know how to serialize themselves.

Another group, collection types, covers arrays, lists, maps, bundles, and sparse
arrays of the preceding two types (int[], float[], ArrayList<?>, HashMap<String, ?>,
Bundle<?>, SparseArray<?>, etc.).

Finally, there are some special cases: CharSequence and active objects (IBinder).

While all these types can be marshaled into a Parcel, there are two to avoid if possible:
Serializable and Map. As mentioned earlier, Android supports native Java serialization.
Its implementation is not nearly as efficient as the rest of Parcelable. Implementing
Serializable in an object is not an effective way to make it parcelable. Instead, objects
should implement Parcelable and add a CREATOR object and a writeToParcel method
as described in “Parcelable” on page 159. This can be a tedious task if the object hier-
archy is complex, but the performance gains are usually well worth it.

The other parcelable type to avoid is the Map. Parcel doesn’t actually support maps in
general; only those with keys that are strings. The Android-specific Bundle type provides
the same functionality—a map with string keys—but is, in addition, type-safe. Objects

162 | Chapter 6: Effective Java for Android

are added to a Bundle with methods such as putDouble and putSparseParcelableArray,
one for each parcelable type. Corresponding methods such as getDouble and get
SparseParcelableArray get the objects back out. A Bundle is just like a map except that
it can hold different types of objects for different keys in a way that is perfectly type-
safe. Using a Bundle eliminates the entire class of hard-to-find errors that arise when,
say, a serialized float is mistakenly interpreted as an int.

Type safety is also a reason to prefer the methods writeTypedArray and writeTyped
List to their untyped analogs writeArray and writeList.

Serialization and the Application Life Cycle
As mentioned earlier, an Android application may not have the luxury of virtual mem-
ory. On a small device, there is no secondary store to which a running but hidden
application can be pushed to make room for a new, visible application. Still, a good
user experience demands that when the user returns to an application, it looks the way
it did when he left it. The responsibility for preserving state across suspension falls to
the application itself. Fortunately, the Android Framework makes preserving state
straightforward.

The example in “Java Serialization” on page 157 showed the general framework mech-
anism that allows an application to preserve state across suspensions. Whenever the
application is evicted from memory, its onSaveInstanceState method is called with a
Bundle to which the application can write any necessary state. When the application is
restarted, the framework passes the same Bundle to the onCreate method so that
the application can restore its state. By sensibly caching content data in a Content
Provider and saving lightweight state (e.g., the currently visible page) to the
onSaveInstance Bundle, an application can resume, without interruption.

The framework provides one more tool for preserving application state. The View
class—the base type for everything visible on the screen—has a hook method,
onSaveInstanceState, that is called as part of the process of evicting an application from
memory. In fact, it is called from Activity.onSaveInstanceState, which is why
your application’s implementation of that method should always call super.onSave
InstanceState.

This method allows state preservation at the very finest level. An email application, for
instance, might use it to preserve the exact location of the cursor in the text of an unsent
mail message.

Serialization | 163

PART II

About the Android Framework

The Android Framework is the set of base classes that underlie Android applications
and the parts of Android system software that comprise the Android userland. Here
we organize our presentation of the Android APIs around the goal of enabling you to
implement applications that take maximum advantage of the Android system
architecture.

CHAPTER 7

Building a View

Android comes with many requirements that herald complexity in the user interface;
it’s a multiprocessing system that supports multiple concurrent applications, accepts
multiple forms of input, is highly interactive, and is flexible enough to support a wide
range of devices now and in the future. The user interface is both rich and easy to use.

This chapter provides you with the techniques for implementing a graphical interface
on Android. It explains the architecture of the Android UI toolkit, while showing you
in practical terms how to use basic interface elements such as buttons and text boxes.
It also covers event handling, using multiple threads to offload long-running tasks so
that the UI doesn’t freeze, and other topics that make user interfaces pleasant and
performant.

Android GUI Architecture
The Android environment adds yet another GUI toolkit to the Java ecosystem, joining
AWT, Swing, SWT, LWUIT, and others. If you have worked with any of these, the
Android UI framework will look familiar. Like them, it is single-threaded, event-driven,
and built on a library of nestable components.

The Android UI framework is, like other Java UI frameworks, organized around the
common Model-View-Controller pattern illustrated in Figure 7-1. It provides structure
and tools for building a Controller that handles user input (like keypresses and screen
taps) and a View that renders graphical information to the screen.

The Model
The Model is the guts of your application—what it actually does. It might be, for in-
stance, the database of music on your device and the code for playing the music. It
might be your list of contacts and the code that places phone calls or sends IMs to them.
It is the subject of a large part of the rest of this book.

167

While a particular application’s View and Controller will necessarily reflect the Model
they manipulate, a single Model might be used by several different applications. Con-
sider, for instance, an MP3 player and an application that converts MP3 files into WAV
files. For both applications, the Model includes the MP3 file format. The former ap-
plication, however, has the familiar Stop, Start, and Pause controls, and plays tunes.
The latter may not produce any sound at all. Instead, it will have controls for things
such as bit rate. The Model is all about the data.

The View
The View is the visualization of the Model. More generally, a view is the portion of the
application responsible for rendering the display, sending audio to the speakers, gen-
erating tactile feedback, and so on. The graphical portion of the Android UI framework,
described in detail in Chapter 9, is implemented as a tree of subclasses of the View class.
Graphically, each object represents a rectangular area on the screen that is completely
within the rectangular area represented by its parent in the tree. The root of this tree is
the application window.

As an example, the display in a hypothetical MP3 player might contain a component
that shows the album cover for the currently playing tune. Another View might display
the name of the currently playing song while a third contains subviews such as the Play,
Pause, and Stop buttons.

The UI framework paints the screen by walking the view tree, asking each component
to draw itself in a preorder traversal. In other words, each View draws itself and then
asks each of its children to do the same. When the whole tree has been rendered, the

Figure 7-1. Model-View-Controller concept

168 | Chapter 7: Building a View

smaller, nested components that are the leaves of the tree—and that were therefore
painted later—appear to be painted on top of the components that are nearer to the
root and that were painted first.

The Android UI framework is actually more efficient than this simplified description.
It does not paint an area of a parent View if it can be certain that some child will later
paint the same area. It would be a waste of time to paint the background underneath
an opaque object. It would also be a waste of time to repaint portions of a View that
have not changed.

The Controller
The Controller is the portion of an application that responds to external actions: a
keystroke, a screen tap, an incoming call, and so forth. It is implemented as an event
queue. Each external action is represented as a unique event in the queue. The frame-
work removes each event from the queue in order and dispatches it.

For example, when a user presses a key on her phone, the Android system generates a
KeyEvent and adds it to the event queue. Eventually, after previously enqueued events
have been processed, the KeyEvent is removed from the queue and passed as the pa-
rameter of a call to the dispatchKeyEvent method of the View that is currently selected.

Once an event is dispatched to the in-focus component, the component may take ap-
propriate action to change the internal state of the program. In an MP3 player appli-
cation, for instance, when the user taps a Play/Pause button on the screen and the event
is dispatched to that button’s object, the handler method might update the Model to
resume playing some previously selected tune.

This chapter describes the construction of the Controller for an Android application.

Putting It Together
We now have all the concepts necessary to describe the complete UI system. When an
external action occurs—when the user scrolls, drags, or presses a button; a call comes
in; or an MP3 player arrives at the end of its playlist—the Android system enqueues an
event representing the action on the event queue. Eventually, the event is dequeued—
first in, first out—and dispatched to an appropriate event handler. The handler, which
is often code you write as part of your application, responds to the event by notifying
the Model that there has been a change in state. The Model takes the appropriate action.

Nearly any change in Model state will require a corresponding change in the view. In
response to a keypress, for instance, an EditText component must show the newly typed
character at the insert point. Similarly, in a phone book application, clicking on a con-
tact will cause that contact to be highlighted and the previously highlighted contact to
have its highlighting removed.

Android GUI Architecture | 169

When the Model updates it own state it almost certainly will have to change the current
display to reflect the internal change. In order to update the display, the Model must
notify the UI framework that some portion of the display is now stale and has to be
redrawn. The redraw request is actually nothing more than another event enqueued in
the same framework event queue that held the Controller event a moment ago. The
redraw event is processed, in order, like any other UI event.

Eventually, the redraw event is removed from the queue and dispatched. The event
handler for a redraw event is the View. The tree of views is redrawn; each View is re-
sponsible, exactly, for rendering its current state at the time it is drawn.

To make this concrete, we can trace the cycle through a hypothetical MP3 player
application:

1. When the user taps the screen image of the Play/Pause button, the framework
creates a new MotionEvent containing, among other things, the screen coordinates
of the tap. The framework enqueues the new event at the end of the event queue.

2. As described in “The Controller” on page 169, when the event percolates through
the queue, the framework removes it and passes it down the view tree to the leaf
widget within whose bounding rectangle the tap occurred.

3. Because the button widget represents the Play/Pause button, the application but-
ton handling code tells the core (the model) that it should resume playing a tune.

4. The application model code starts playing the selected tune. In addition, it sends
a redraw request to the UI framework.

5. The redraw request is added to the event queue and eventually processed as de-
scribed in “The View” on page 168.

6. The screen gets redrawn with the Play button in its playing state and everything is
again in sync.

UI component objects such as buttons and text boxes actually implement both View
and Controller methods. This only makes sense. When you add a Button to your ap-
plication’s UI, you want it to appear on the screen as well as do something when the
user pushes it. Even though the two logical elements of the UI, the View and the Con-
troller, are implemented in the same object, you should take care that they do not
directly interact. Controller methods, for instance, should never directly change the
display. Leave it to the code that actually changes state to request a redraw and trust
that, later, calls to rendering methods will allow the component to reflect the new state.
Coding in this way minimizes synchronization problems and helps to keep your pro-
gram robust and bug-free.

There is one more aspect of the Android UI framework that is important to recall: it is
single-threaded. A single thread removes events from the event queue to make Con-
troller callbacks and to render the view. This is significant for several reasons.

170 | Chapter 7: Building a View

The simplest consequence of a single-threaded UI is that it is not necessary to use
synchronized blocks to coordinate state between the View and the Controller. This is
a valuable optimization.

Another advantage of a single-threaded UI is that the application is guaranteed that
each event on the event queue is processed completely and in the order in which it was
enqueued. That may seem fairly obvious, but its implications make coding the UI much
easier. When a UI component is called to handle an event, it is guaranteed that no other
UI processing will take place until it returns. That means, for instance, that a compo-
nent that requests multiple changes in the program state—each of which causes a cor-
responding request that the screen be repainted—is guaranteed that the repaint will
not start until it has completed processing, performed all its updates, and returned. In
short, UI callbacks are atomic.

The third reason to remember that only a single thread is dequeuing and dispatching
events from the UI event queue is that if your code stalls that thread for any reason,
your UI will freeze! If a component’s response to an event is simple—changing the state
of variables, creating new objects, and so on—it is perfectly correct to do that processing
on the main event thread. If, on the other hand, the handler must retrieve a response
from some distant network service or run a complex database query, the entire UI will
become unresponsive until the request completes. That definitely does not make for a
great user experience! Long-running tasks must be delegated to another thread, as
described in “Advanced Wiring: Focus and Threading” on page 189.

Assembling a Graphical Interface
The Android UI framework provides both a complete set of drawing tools with which
to build a UI, and a rich collection of prebuilt components based on these tools. As we
will see in Chapter 9, the framework graphics tools provide plenty of support for ap-
plications that need to create their own controls or to render special views. On the other
hand, many applications may work very well using only canned views from the toolkit.
In fact, the MapActivity and MyLocationOverlay classes make it possible to create ex-
tremely sophisticated applications without doing any custom drawing at all.

We’ve already used the term widget once or twice, without explicitly defining it. Recall
that the screen is rendered by a tree of components. In the Android UI framework, these
components are all subclasses of android.view.View. The views that are leaves or nearly
leaves do most of the actual drawing and are, in the context of an application UI,
commonly called widgets.

The internal nodes, sometimes called container views, are special components that can
have other components as children. In the Android UI framework, container views are
subclasses of android.view.ViewGroup, which, of course, is in turn a subclass of View.
They typically do very little drawing. Instead, they are responsible for arranging their

Assembling a Graphical Interface | 171

child views on the screen and keeping them arranged as the View changes shape, ori-
entation, and so on. Doing this can be complex.

To create complex displays, you need to assemble a tree of containers for the views you
want to use in your application. Example 7-1 shows an application with a view tree
that is three layers deep. A vertical linear layout contains two horizontal linear layouts.
Each horizontal layout, in turn, contains two widgets.

Example 7-1. A complex view tree

package com.oreilly.android.intro;

import android.app.Activity;
import android.graphics.Color;
import android.os.Bundle;
import android.view.Gravity;
import android.view.ViewGroup;
import android.widget.Button;
import android.widget.EditText;
import android.widget.LinearLayout;

public class AndroidDemo extends Activity {
 private LinearLayout root;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 LinearLayout.LayoutParams containerParams
 = new LinearLayout.LayoutParams(
 ViewGroup.LayoutParams.FILL_PARENT,
 ViewGroup.LayoutParams.WRAP_CONTENT,
 0.0F);

 LinearLayout.LayoutParams widgetParams
 = new LinearLayout.LayoutParams(
 ViewGroup.LayoutParams.FILL_PARENT,
 ViewGroup.LayoutParams.FILL_PARENT,
 1.0F);

 root = new LinearLayout(this);
 root.setOrientation(LinearLayout.VERTICAL);
 root.setBackgroundColor(Color.LTGRAY);
 root.setLayoutParams(containerParams);

 LinearLayout ll = new LinearLayout(this);
 ll.setOrientation(LinearLayout.HORIZONTAL);
 ll.setBackgroundColor(Color.GRAY);
 ll.setLayoutParams(containerParams);
 root.addView(ll);

 EditText tb = new EditText(this);
 tb.setText(R.string.defaultLeftText);

172 | Chapter 7: Building a View

 tb.setFocusable(false);
 tb.setLayoutParams(widgetParams);
 ll.addView(tb);

 tb = new EditText(this);
 tb.setText(R.string.defaultRightText);
 tb.setFocusable(false);
 tb.setLayoutParams(widgetParams);
 ll.addView(tb);

 ll = new LinearLayout(this);
 ll.setOrientation(LinearLayout.HORIZONTAL);
 ll.setBackgroundColor(Color.DKGRAY);
 ll.setLayoutParams(containerParams);
 root.addView(ll);

 Button b = new Button(this);
 b.setText(R.string.labelRed);
 b.setTextColor(Color.RED);
 b.setLayoutParams(widgetParams);
 ll.addView(b);

 b = new Button(this);
 b.setText(R.string.labelGreen);
 b.setTextColor(Color.GREEN);
 b.setLayoutParams(widgetParams);
 ll.addView(b);

 setContentView(root);
 }
}

Note that the code preserves a reference to the root of the view tree for later use.

This example uses three LinearLayout views. A LinearLayout, just as its name implies,
is a View that displays its children in a row or column, as determined by its orientation
property. The child views are displayed in the order in which they are added to the
LinearLayout (regardless of the order in which they were created), in the directions
common for Western readers: left to right and top to bottom. The button labeled
“Green”, for instance, is in the lower-right corner of this layout, because it is the second
thing added to the horizontal LinearLayout view, which was, in turn, the second thing
added to the root, vertical LinearLayout.

Figure 7-2 shows what the results might look like to the user. The seven views in the
tree are structured as shown in Figure 7-3.

The Android Framework provides a convenient capability for separating data resources
from code. This is particularly useful in building View layouts. The previous example
can be replaced with the dramatically simpler code in Example 7-2 and the XML def-
inition of the View layout in Example 7-3.

Assembling a Graphical Interface | 173

Example 7-2. A complex View using a layout resource

package com.oreilly.android.intro;

import android.app.Activity;
import android.os.Bundle;

/**
 * Android UI demo program
 */
public class AndroidDemo extends Activity {
 private LinearLayout root;

 @Override public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 root = (LinearLayout) findViewById(R.id.root);

Figure 7-2. How panels appear to the viewer

Figure 7-3. Hierarchy of panels in the View

174 | Chapter 7: Building a View

 }
}

Example 7-3. XML definition of a complex View layout resource

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/root"
 android:orientation="vertical"
 android:background="@drawable/lt_gray"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <LinearLayout
 android:orientation="horizontal"
 android:background="@drawable/gray"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <EditText
 android:id="@+id/text1"
 android:text="@string/defaultLeftText"
 android:focusable="false"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"/>

 <EditText
 android:id="@+id/text2"
 android:text="@string/defaultRightText"
 android:focusable="false"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"/>
 </LinearLayout>

 <LinearLayout
 android:orientation="horizontal"
 android:background="@drawable/dk_gray"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <Button
 android:id="@+id/button1"
 android:text="@string/labelRed"
 android:textColor="@drawable/red"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"/>

 <Button
 android:id="@+id/button2"
 android:text="@string/labelGreen"
 android:textColor="@drawable/green"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"/>

Assembling a Graphical Interface | 175

 </LinearLayout>
</LinearLayout>

This version of the code, like the first one, also preserves a reference to the root of the
view tree. It does this by tagging a widget in the XML layout (the root LinearLayout, in
this case) with an android:id tag, and then using the findViewById method from the
Activity class to recover the reference.

It is a very good idea to get into the habit of using a resource to define your view tree
layout. Doing so allows you to separate the visual layout of a View from the code that
brings it to life. You can tinker with the layout of a screen without recompiling. Most
importantly, though, you can build your UI using tools that allow you to compose
screens using a visual UI editor.

At Google I/O 2011, the Android Tools team introduced a new layout
editor that is really exciting. It can even preview animations and
developer-created views; most developers should never need to look at
XML, let alone inline code, for laying out views ever again.

Wiring Up the Controller
“Assembling a Graphical Interface” on page 171 demonstrated a View with two
buttons. Although the buttons look nice—they even become highlighted when
clicked—they aren’t very useful. Clicking them doesn’t actually do anything.

“The Controller” on page 169 described how the Android Framework translates ex-
ternal actions (screen taps, keypresses, etc.) into events that are enqueued and then
passed into the application. Example 7-4 shows how to add an event handler to one of
the buttons in the demo so that it does something when it is clicked.

Example 7-4. Wiring up a button

@Override public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 final EditText tb1 = (EditText) findViewById(R.id.text1);
 final EditText tb2 = (EditText) findViewById(R.id.text2);

 ((Button) findViewById(R.id.button2)).setOnClickListener(
 new Button.OnClickListener() {
 // mRand is a class data member
 @Override public void onClick(View arg0) {
 tb1.setText(String.valueOf(mRand.nextInt(200)));
 tb2.setText(String.valueOf(mRand.nextInt(200)));
 }
 }
);
}

176 | Chapter 7: Building a View

When run, this version of the application still looks a lot like Figure 7-2. Unlike the
earlier example, though, in this version, every time a user clicks the button labeled
“Green” the numbers in the EditText boxes change. This is illustrated in Figure 7-4.

Figure 7-4. Working button

While simply changing numbers isn’t very interesting, this small example demonstrates
the standard mechanism that an application uses to respond to UI events. It is important
to note that, appearances notwithstanding, this example does not violate the MVC
separation of concerns! In response to the call to setText, in this implementation of the
OnClickListener, the EditText object updates an internal representation of the text it
should display, and then calls its own invalidate method. It does not immediately draw
on the screen. Very few rules in programming are absolute. The admonition to separate
the Model, the View, and the Controller comes pretty close.

In the example, the instance of the Button class is wired to its behavior using a callback,
as described in “Overrides and callbacks” on page 135. Button is a subclass of View,
which defines an interface named OnClickListener and a method named setOnClick
Listener with which to register the listener. The OnClickListener interface defines a
single method, onClick. When a Button receives an event from the framework, in ad-
dition to any other processing it might do, it examines the event to see if it qualifies as
a “click.” (The button in our first example would become highlighted when pressed,
even before the listener was added.) If the event does qualify as a click, and if a click
listener has been installed, that listener’s onClick method is invoked.

The click listener is free to implement any custom behavior needed. In the example,
the custom behavior creates two random numbers between 0 and 200 and puts one
into each of the two text boxes. Instead of subclassing Button and overriding its event
processing methods, all that is necessary to extend its behavior is to register a click
listener that implements the desired behavior. Certainly a lot easier!

The click handler is especially interesting because, at the heart of the Android system—
the framework event queue—there is no such thing as a click event! Instead, View event
processing synthesizes the concept of a “click” from other events. If the device has a
touch-sensitive screen, for instance, a single tap is considered a click. If the device has
a center key in its D-pad, or an Enter key, pressing and releasing either will also register

Wiring Up the Controller | 177

as a click. View clients need not concern themselves with what exactly a click is, or how
it is generated on a particular device. They need only handle the higher-level concept,
leaving the details to the framework.

A View can have only one onClickListener. Calling setOnClickListener a second time,
on a given View, will remove the old listener and install the new one. On the other
hand, a single listener can listen to more than one View. The code in Example 7-5, for
instance, is part of another application that looks exactly like Example 7-2. In this
version, though, pushing either of the buttons will update the text box.

This capability can be very convenient in an application in which several actions pro-
duce the same behavior. Do not be tempted, though, to create a single, enormous
listener in all of your widgets! Your code will be easier to maintain and modify if it
contains multiple smaller listeners, each implementing a single, clear behavior.

Example 7-5. Listening to multiple buttons

@Override public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);

 final EditText tb1 = (EditText) findViewById(R.id.text1);
 final EditText tb2 = (EditText) findViewById(R.id.text2);

 Button.OnClickListener listener = new Button.OnClickListener() {
 @Override public void onClick(View arg0) {
 tb1.setText(String.valueOf(rand.nextInt(200)));
 tb2.setText(String.valueOf(rand.nextInt(200)));
 } };

 ((Button) findViewById(R.id.button1)).setOnClickListener(listener);
 ((Button) findViewById(R.id.button2)).setOnClickListener(listener);
}

Listening to the Model
The Android UI framework uses the handler installation pattern pervasively. Although
our earlier examples were all Button views, many other Android widgets define listeners.
The View class defines several events and listeners that are ubiquitous, and which we
will explore in further detail in a moment. Other classes, however, define other, spe-
cialized types of events and provide handlers for those events that are meaningful only
for those classes. This is a standard idiom that allows clients to customize the behavior
of a widget without having to subclass it.

This pattern is also an excellent way for your program to handle its own external,
asynchronous actions. Whether responding to a change in state on a remote server or
an update from a location-based service, your application can define its own events and
listeners to allow its clients to react.

178 | Chapter 7: Building a View

The examples so far have been elementary and have cut several corners. While they
demonstrate connecting a View and a Controller, they have not had real models (Ex-
ample 7-4 actually used a String owned by the implementation of EditText as a model).
To continue, we’re going to have to take a brief detour to build a real, usable model.

The following two classes shown in Example 7-6 comprise a Model that will support
extensions to the demo application. They provide a facility for storing a list of objects,
each of which has x and y coordinates, a color, and a size. They also provide a way to
register a listener, and an interface that the listener must implement. The common
Listener model underlies these examples, so they are fairly straightforward.

Example 7-6. The Dots model

package com.oreilly.android.intro.model;

/** A dot: the coordinates, color and size. */
public final class Dot {
 private final float x, y;
 private final int color;
 private final int diameter;

 /**
 * @param x horizontal coordinate.
 * @param y vertical coordinate.
 * @param color the color.
 * @param diameter dot diameter.
 */
 public Dot(float x, float y, int color, int diameter) {
 this.x = x;
 this.y = y;
 this.color = color;
 this.diameter = diameter;
 }

 /** @return the horizontal coordinate. */
 public float getX() { return x; }

 /** @return the vertical coordinate. */
 public float getY() { return y; }

 /** @return the color. */
 public int getColor() { return color; }

 /** @return the dot diameter. */
 public int getDiameter() { return diameter; }
}

package com.oreilly.android.intro.model;

import java.util.Collections;
import java.util.LinkedList;
import java.util.List;

Wiring Up the Controller | 179

/** A list of dots. */
public class Dots {
 /** DotChangeListener. */
 public interface DotsChangeListener {
 /** @param dots the dots that changed. */
 void onDotsChange(Dots dots);
 }

 private final LinkedList<Dot> dots = new LinkedList<Dot>();
 private final List<Dot> safeDots = Collections.unmodifiableList(dots);

 private DotsChangeListener dotsChangeListener;

 /** @param l the new change listener. */
 public void setDotsChangeListener(DotsChangeListener l) {
 dotsChangeListener = l;
 }

 /** @return the most recently added dot, or null. */
 public Dot getLastDot() {
 return (dots.size() <= 0) ? null : dots.getLast();
 }

 /** @return the list of dots. */
 public List<Dot> getDots() { return safeDots; }

 /**
 * @param x dot horizontal coordinate.
 * @param y dot vertical coordinate.
 * @param color dot color.
 * @param diameter dot size.
 */
 public void addDot(float x, float y, int color, int diameter) {
 dots.add(new Dot(x, y, color, diameter));
 notifyListener();
 }

 /** Delete all the dots. */
 public void clearDots() {
 dots.clear();
 notifyListener();
 }

 private void notifyListener() {
 if (null != dotsChangeListener) {
 dotsChangeListener.onDotsChange(this);
 }
 }
}

In addition to using this model, the next example also introduces a library widget used
to view it, the DotView. Its job is to draw the dots represented in the model, in the correct

180 | Chapter 7: Building a View

color, at the correct coordinates. The complete source for the application is on the
website for this book.

Example 7-7 shows the new demo application, after adding the new Model and view.

Example 7-7. The Dots demo

package com.oreilly.android.intro;

import java.util.Random;

import android.app.Activity;
import android.graphics.Color;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.LinearLayout;

import com.oreilly.android.intro.model.Dot;
import com.oreilly.android.intro.model.Dots;
import com.oreilly.android.intro.view.DotView;

/** Android UI demo program */
public class TouchMe extends Activity {
 public static final int DOT_DIAMETER = 6;

 private final Random rand = new Random();

 final Dots dotModel = new Dots();

 DotView dotView;

 /** Called when the activity is first created. */
 @Override public void onCreate(Bundle state) {
 super.onCreate(state);

 dotView = new DotView(this, dotModel);

 // install the View
 setContentView(R.layout.main);
 ((LinearLayout) findViewById(R.id.root)).addView(dotView, 0);

 // wire up the Controller
 ((Button) findViewById(R.id.button1)).setOnClickListener(
 new Button.OnClickListener() {
 @Override public void onClick(View v) {
 makeDot(dots, dotView, Color.RED);
 } });
 ((Button) findViewById(R.id.button2)).setOnClickListener(
 new Button.OnClickListener() {
 @Override public void onClick(View v) {
 makeDot(dots, dotView, Color.GREEN);
 } });

Wiring Up the Controller | 181

 final EditText tb1 = (EditText) findViewById(R.id.text1);
 final EditText tb2 = (EditText) findViewById(R.id.text2);
 dots.setDotsChangeListener(new Dots.DotsChangeListener() {
 @Override public void onDotsChange(Dots d) {
 Dot d = dots.getLastDot();
 tb1.setText((null == d) ? "" : String.valueOf(d.getX()));
 tb2.setText((null == d) ? "" : String.valueOf(d.getY()));
 dotView.invalidate();
 } });
 }

 /**
 * @param dots the dots we're drawing
 * @param view the view in which we're drawing dots
 * @param color the color of the dot
 */
 void makeDot(Dots dots, DotView view, int color) {
 int pad = (DOT_DIAMETER + 2) * 2;
 dots.addDot(
 DOT_DIAMETER + (rand.nextFloat() * (view.getWidth() - pad)),
 DOT_DIAMETER + (rand.nextFloat() * (view.getHeight() - pad)),
 color,
 DOT_DIAMETER);
 }
}

Here are some of the highlights of the code:

The new DotView is added to the top of the layout obtained from the XML definition.

onClickListener callbacks are added to the “Red” and “Green” buttons. These event
handlers differ from those in the previous example only in that, here, their behavior
is proxied to the local method makeDot. This new method creates a dot (item 5).

A call to makeDot is made within onClick (to take place when the button is clicked).

The most substantial change to the example, this is where the Model is wired to the
View, using a callback to install a dotsChangeListener. When the Model changes,
this new listener is called. It installs the x and y coordinates of the last dot into the
left and right text boxes, respectively, and requests that the DotView redraw itself (the
invalidate call).

This is the definition of makeDot. This new method creates a dot, checking to make
sure it is within the DotView’s borders, and adds it to the model. It also allows the
dot’s color to be specified as a parameter.

Figure 7-5 shows what the application looks like when run.

182 | Chapter 7: Building a View

Figure 7-5. Running the Dots demo

Pushing the button labeled “Red” adds a new red dot to the DotView. Pushing the
“Green” button adds a green one. The text fields contain the coordinates of the last dot
added.

The basic structure of Example 7-2 is still recognizable, with some extensions.

Here is the chain of events that results from clicking, for instance, the “Green” button:

1. When the button is clicked, its onClickHandler is called.

2. This causes a call to makeDot with the color argument Color.GREEN. The makeDot
method generates random coordinates and adds a new, green Dot to the Model at
those coordinates.

3. When the Model is updated, it calls its onDotsChangeListener.

4. The listener updates the values in the text views and requests that the DotView be
redrawn.

Listening for Touch Events
Modifying the demo application to handle taps, as you have surely guessed, is just a
matter of adding a tap handler. The code in Example 7-8 extends the demo application
to place a cyan dot in the DotView at the point at which the screen is tapped. This code
would be added to the demo application (Example 7-7) at the beginning of the
onCreate function right after the call to its parent method. Notice that, because the code

Wiring Up the Controller | 183

that displays the x and y coordinates of the most recently added dot is wired only to
the model, it continues to work correctly, no matter how the View adds the dot.

Example 7-8. Touchable dots

dotView.setOnTouchListener(new View.OnTouchListener() {
 @Override public boolean onTouch(View v, MotionEvent event) {
 if (MotionEvent.ACTION_DOWN != event.getAction()) {
 return false;
 }
 dots.addDot(event.getX(), event.getY(), Color.CYAN, DOT_DIAMETER);
 return true;
 } });

The MotionEvent passed to the handler has several other properties in addition to the
location of the tap that caused it. As the example indicates, it also contains the event
type, one of DOWN, UP, MOVE, or CANCEL. A simple tap actually generates one DOWN and one
UP event. Touching and dragging generates a DOWN event, a series of MOVE events, and a
final UP event.

The gesture handling facilities provided by the MotionEvent are very interesting. The
event contains the size of the touched area and the amount of pressure applied. That
means that, on devices that support it, an application might be able to distinguish
between a tap with one finger and a tap with two fingers, or between a very light brush
and a firm push.

Efficiency is still important in the mobile world. A UI framework confronts the horns
of a dilemma when tracking and reporting touch-screen events. Reporting too few
events might make it impossible to follow motion with sufficient accuracy to do, for
instance, handwriting recognition. On the other hand, reporting too many touch sam-
ples, each in its own event, could load a system unacceptably. The Android UI frame-
work addresses this problem by bundling groups of samples together, reducing the load
while still maintaining accuracy. To see all the samples associated with an event, use
the history facility implemented with the methods getHistoricalX, getHistoricalY, and
so on.

Example 7-9 shows how to use the history facility. It extends the demo program to
track a user’s gestures when he touches the screen. The framework delivers sample
x and y coordinates to the onTouch method of an object installed as the OnTouch
Listener for the DotView. The method displays a cyan dot for each sample.

Example 7-9. Tracking motion

private static final class TrackingTouchListener
 implements View.OnTouchListener
{
 private final Dots mDots;

 TrackingTouchListener(Dots dots) { mDots = dots; }

 @Override public boolean onTouch(View v, MotionEvent evt) {

184 | Chapter 7: Building a View

 switch (evt.getAction()) {
 case MotionEvent.ACTION_DOWN:
 break;

 case MotionEvent.ACTION_MOVE:
 for (int i = 0, n = evt.getHistorySize(); i < n; i++) {
 addDot(
 mDots,
 evt.getHistoricalX(i),
 evt.getHistoricalY(i),
 evt.getHistoricalPressure(i),
 evt.getHistoricalSize(i));
 }
 break;

 default:
 return false;
 }

 addDot(
 mDots,
 evt.getX(),
 evt.getY(),
 evt.getPressure(),
 evt.getSize());

 return true;
 }

 private void addDot(Dots dots, float x, float y, float p, float s) {
 dots.addDot(
 x,
 y,
 Color.CYAN,
 (int) ((p * s * Dot.DIAMETER) + 1));
 }
}

Figure 7-6 shows what the extended version of the application might look like after a
few clicks and drags.

The implementation uses the size and pressure at a given location’s sample to determine
the diameter of the dot drawn there. Unfortunately, the Android emulator does not
emulate touch pressure and size, so all the dots have the same diameter. Size and pres-
sure values are normalized across devices, as floating-point values between 0.0 and 1.0.
It is possible, however, depending on the calibration of the screen, that either value
may actually be larger than 1.0. The emulator always reports the event pressure and
size as zero, their minimum value.

The loop that handles ACTION_MOVE events processes batched historical events. When
touch samples change more quickly than the framework can deliver them, the frame-
work bundles them into a single event. The MotionEvent method getHistorySize returns

Wiring Up the Controller | 185

the number of samples in the batch, and the various getHistory methods get the
subevent specifics.

Devices with trackballs also generate MotionEvents when the trackball is moved. These
events are similar to those generated by taps on a touch-sensitive screen, but they are
handled differently. Trackball MotionEvents are passed into the View through a call to
dispatchTrackballEvent, not to dispatchTouchEvent, which delivered taps. While
dispatchTrackballEvent does pass the event to onTrackballEvent, it does not first pass
the event to a listener! Not only are trackball-generated MotionEvents not visible through
the normal tap handling machinery but, in order to respond to them, a widget must
subclass View and override the onTrackballEvent method.

MotionEvents generated by the trackball are handled differently in yet another way. If
they are not consumed (to be defined shortly) they are converted into D-pad key events.
This makes sense when you consider that most devices have either a D-pad or a track-
ball, but not both. Without this conversion, it wouldn’t be possible to generate D-pad
events on a device with only a trackball. Of course, it also implies that an application
that handles trackball events must do so carefully, lest it break the translation.

Listening for Key Events
Handling keystroke input across multiple platforms can be very tricky. Some devices
have many more keys than others, some require triple-tapping for character input, and

Figure 7-6. Running the Dots demo for an extended time

186 | Chapter 7: Building a View

so on. This is a great example of something that should be left to the framework—
EditText or one of its subclasses—whenever possible.

To extend a widget’s KeyEvent handling, use the View method setOnKeyListener to in-
stall an OnKeyListener. The listener will be called with multiple KeyEvents for each user
keystroke, one for each action type: DOWN, UP, and MULTIPLE. The action types DOWN and
UP indicate a key was pressed or released, just as they did for the MotionEvent class. A
key action of MULTIPLE indicates that a key is being held down (autorepeating). The
KeyEvent method getRepeatCount gives the number of keystrokes that a MULTIPLE event
represents.

Example 7-10 shows a sample key handler. When added to the demo program, it causes
dots to be added to the display, at randomly chosen coordinates, when keys are pressed
and released. A magenta dot is added when the space bar is pressed and released, a
yellow dot when the Enter key is pressed and released, and a blue dot when any other
key is pressed and released.

Example 7-10. Handling keys

dotView.setFocusable(true);

dotView.setOnKeyListener(new OnKeyListener() {
 @Override public boolean onKey(View v, int keyCode, KeyEvent event) {
 if (KeyEvent.ACTION_UP != event.getAction()) {
 int color = Color.BLUE;
 switch (keyCode) {
 case KeyEvent.KEYCODE_SPACE:
 color = Color.MAGENTA;
 break;
 case KeyEvent.KEYCODE_ENTER:
 color = Color.YELLOW;
 break;
 default: ;
 }

 makeDot(dots, dotView, color);
 }

 return true;
 } });

Alternative Ways to Handle Events
You’ve probably noticed that the on... methods of all the listeners introduced thus
far—including onKey—return a boolean value. This is a pattern for listeners that allows
them to control subsequent event processing by their caller.

When a Controller event is handed to a widget, the framework code in the widget
dispatches it, depending on its type, to an appropriate method: onKeyDown, onTouch
Event, and so on. These methods, either in View or in one of its subclasses, implement
the widget’s behavior. As described earlier, though, the framework first offers the event

Wiring Up the Controller | 187

to an appropriate listener (onTouchListener, onKeyListener, etc.) if one exists. The lis-
tener’s return value determines whether the event is then dispatched to the View
methods.

If the listener returns false, the event is dispatched to the View methods as though the
handler did not exist. If, on the other hand, a listener returns true, the event is said to
have been consumed. The View aborts any further processing for it. The View methods
are never called and have no opportunity to process or respond to the event. As far as
the View methods are concerned, it is as though the event did not exist.

There are, then, three ways that an event might be processed:

No listener
The event is dispatched to the View methods for normal handling. A widget im-
plementation may, of course, override these methods.

A listener exists and returns true
Listener event handling completely replaces normal widget event handling. The
event is never dispatched to the View.

A listener exists and returns false
The event is processed by the listener and then by the View. After listener event
handling is completed the event is dispatched to the View for normal handling.

Consider, for instance, what would happen if the key listener from Example 7-10 were
added to an EditText widget. Since the onKey method always returns true, the frame-
work will abort any further KeyEvent processing as soon as the method returns. That
would prevent the EditText key handling mechanism from ever seeing the key events,
and no text would ever appear in the text box. That is probably not the intended
behavior!

If the onKey method instead returns false for some key events, the framework will
dispatch those events to the EditText widget for continued processing. The EditText
mechanism will see the events, and the associated characters will be appended to the
EditText box, as expected. Example 7-11 shows an extension of Example 7-10 that, in
addition to adding new dots to the model, also filters the characters passed to the
hypothetical EditText box. It allows numeric characters to be processed normally but
hides everything else.

Example 7-11. Extended key handling

new OnKeyListener() {
 @Override public boolean onKey(View v, int keyCode, KeyEvent event) {
 if (KeyEvent.ACTION_UP != event.getAction()) {
 int color = Color.BLUE;
 switch (keyCode) {
 case KeyEvent.KEYCODE_SPACE:
 color = Color.MAGENTA;
 break;
 case KeyEvent.KEYCODE_ENTER:
 color = Color.YELLOW;

188 | Chapter 7: Building a View

 break;
 default: ;
 }

 makeDot(dotModel, dotView, color);
 }

 return (keyCode < KeyEvent.KEYCODE_0)
 || (keyCode > KeyEvent.KEYCODE_9);
 }
}

If your application needs to implement entirely new ways of handling events—some-
thing that cannot be implemented reasonably by augmenting behavior and filtering,
using an onKeyHandler—you will have to understand and override View key event han-
dling. To sketch the process: events are dispatched to the View through the Dispatch
KeyEvent method. DispatchKeyEvent implements the behavior described previously, of-
fering the event to the onKeyHandler first, and then, if the handler returns false, to the
View methods implementing the KeyEvent.Callback interface: onKeyDown, onKeyUp, and
onKeyMultiple.

Advanced Wiring: Focus and Threading
As demonstrated in Example 7-7 and “Listening for Touch Events” on page 183,
MotionEvents are delivered to the widget whose bounding rectangle contains the coor-
dinates of the touch that generated them. It isn’t quite so obvious how to determine
which widget should receive a KeyEvent. To do this, the Android UI framework, like
most other UI frameworks, supports the concept of selection, or focus.

In order to accept focus, a widget’s focusable attribute must be set to true. This can
be done using either an XML layout attribute (the EditText views in Example 7-3 have
their focusable attribute set to false) or the setFocusable method, as shown in the first
line of Example 7-10. A user changes which View has focus using D-pad keys or by
tapping the screen when touch is supported.

When a widget is in focus, it usually renders itself with some kind of highlighting to
provide feedback that it is the current target of keystrokes. For instance, when an
EditText widget is in focus, it is drawn both highlighted and with a cursor at the text
insert position.

To receive notification when a View enters or leaves focus, install an OnFocusChangeLis
tener. Example 7-12 shows the listener needed to add a focus-related feature to the
demo program. It causes a randomly positioned black dot to be added to the DotView
automatically, at random intervals, whenever it is in focus.

Wiring Up the Controller | 189

Example 7-12. Handling focus

dotView.setOnFocusChangeListener(new OnFocusChangeListener() {
 @Override public void onFocusChange(View v, boolean hasFocus) {
 if (!hasFocus && (null != dotGenerator)) {
 dotGenerator.done();
 dotGenerator = null;
 }
 else if (hasFocus && (null == dotGenerator)) {
 dotGenerator = new DotGenerator(dots, dotView, Color.BLACK);
 new Thread(dotGenerator).start();
 }
} });

There should be few surprises in the OnFocusChangeListener. When the DotView comes
into focus, it creates the DotGenerator and spawns a thread to run it. When the widget
leaves focus, the DotGenerator is stopped, and freed. The new data member dot
Generator (whose declaration is not shown in the example) is non-null only when the
DotView is in focus. There is another important and powerful tool in the implementation
of DotGenerator, and we’ll return to it in a moment.

Focus is transferred to a particular widget by calling its View method, requestFocus.
When requestFocus is called for a new target widget, the request is passed up the tree,
parent by parent, to the tree root. The root remembers which widget is in focus and
passes subsequent key events to it, directly.

This is exactly how the UI framework changes focus to a new widget in response to D-
pad keystrokes. The framework identifies the widget that will next be in focus and calls
that widget’s requestFocus method. This causes the previously focused widget to lose
focus and the target to gain it.

The process of identifying the widget that will gain focus is complicated. To do it, the
navigation algorithm has to perform some tricky calculations that may depend on the
locations of every other widget on the screen!

Consider, for instance, what happens when the right D-pad button is pressed and the
framework attempts to transfer focus to the widget immediately to the right of the one
that is currently in focus. It is may be completely obvious which widget that is when
looking at the screen; in the view tree, however, it is not nearly so obvious. The target
widget may be at another level in the tree and several branches away. Identifying it
depends on the exact dimensions of widgets in yet other, distant parts of the tree.
Fortunately, despite the considerable complexity, the Android UI framework imple-
mentation usually just works as expected.

When it does not, there are four properties—set either by application method or by
XML attribute—that can be used to force the desired focus navigation behavior. They
are nextFocusDown, nextFocusLeft, nextFocusRight, and nextFocusUp. Setting one of
these properties with a reference to a specific widget will ensure that D-pad navigation
transfers focus directly to that widget, when navigating in the respective direction.

190 | Chapter 7: Building a View

Another complexity of the focus mechanism is the distinction that the Android UI
framework makes between D-pad focus and touch focus, for devices with touch-
sensitive screens. To understand why this is necessary, recall that, on a screen that does
not accept touch input, the only way to push a button is to focus on it, using D-pad
navigation, and then to use the center D-pad key to generate a click. On a screen that
does accept touch events, however, there is no reason, ever, to focus on a button.
Tapping the button clicks it, regardless of which widget happens to be in focus at the
time. Even on a touch-sensitive screen, however, it is still necessary to be able to focus
on a widget that accepts keystrokes—an EditText widget, for instance—in order to
identify it as the target for subsequent key events. To handle both kinds of focus cor-
rectly, you will have to look into View handling of FOCUSABLE_IN_TOUCH_MODE, and the
View methods isFocusableInTouchMode and isInTouchMode.

In an application with multiple windows, there is at least one more twist in the focus
mechanism. It is possible for a window to lose focus without notifying the currently in-
focus widget, in that window, that its focus has been lost. This makes sense when you
think about it. If the out-of-focus window is brought back to the top, the widget that
was in focus in that window will again be in focus, with no other action.

Consider entering a friend’s phone number into an address book application. Suppose
you momentarily switch back to a phone application to refresh your memory of the
last few digits of her phone number. You’d be annoyed if, on returning to the address
book, you had to again focus on the EditText box in which you’d been typing. You
expect the state to be just as you left it.

On the other hand, this behavior can have surprising side effects. In particular, the
implementation of the auto-dot feature presented in Example 7-12 continues to add
dots to the DotView even when it is hidden by another window! If a background task
should run only when a particular widget is visible, that task must be cleaned up when
the widget loses focus, when the Window loses focus, and when the Activity is paused
or stopped.

Most of the implementation of the focus mechanism is in the ViewGroup class, in meth-
ods like requestFocus and requestChildFocus. Should it be necessary to implement an
entirely new focus mechanism, you’ll need to look carefully at these methods, and
override them appropriately.

Leaving the subject of focus and returning to the implementation of the newly added
auto-dot feature, Example 7-13 shows the implementation of DotGenerator.

Example 7-13. Handling threads

private final class DotGenerator implements Runnable {
 final Dots dots;
 final DotView view;
 final int color;

 private final Handler hdlr = new Handler();
 private final Runnable makeDots = new Runnable() {

Wiring Up the Controller | 191

 public void run() { makeDot(dots, view, color); }
 };

 private volatile boolean done;

 // Runs on the main thread
 DotGenerator(Dots dots, DotView view, int color) {
 this.dots = dots;
 this.view = view;
 this.color = color;
 }

 // Runs on the main thread
 public void done() { done = true; }

 // Runs on a different thread!
 public void run() {
 while (!done) {
 try { Thread.sleep(1000); }
 catch (InterruptedException e) { }
 hdlr.post(makeDots);
 }
 }
}

Here are some of the highlights of the code:

An android.os.Handler object is created.

A new thread that will run makeDot in item 4 is created.

DotGenerator is run on the main thread.

makeDot is run from the Handler created in item 1.

A naive implementation of DotGenerator would simply call makeDot directly within its
run block. Doing this wouldn’t be safe, however, unless makeDot was thread-safe—and
the Dots and DotView classes, too, for that matter. This would be tricky to get correct
and hard to maintain. In fact, the Android UI framework actually forbids access to a
View from multiple threads. Running the naive implementation would cause the ap-
plication to fail with a RuntimeException similar to this:

11-30 02:42:37.471: ERROR/AndroidRuntime(162):
 android.view.ViewRoot$CalledFromWrongThreadException:
 Only the original thread that created a view hierarchy can touch its views.

We met this problem and one solution, the Handler, in Chapter 6. To get around the
restriction, DotGenerator creates a Handler object within its constructor. A Handler ob-
ject is associated with the thread on which it is created and provides safe, concurrent
access to the canonical event queue for that thread.

Because DotGenerator creates a Handler during its own construction, the Handler is
associated with the main thread. Now DotGenerator can use the Handler to enqueue
from another thread a Runnable that calls makeDot from the UI thread. It turns out, as

192 | Chapter 7: Building a View

you might guess, that the canonical event queue to which the Handler points is exactly
the same one that is used by the UI framework. The call to makeDot is dequeued and
dispatched, like any other UI event, in its proper order. In this case, that causes its
Runnable to be run. makeDot is called from the main thread, and the UI stays single-
threaded.

It is worth reiterating that this is an essential pattern for coding with the Android UI
framework. Whenever processing that is started on behalf of the user might take more
than a few milliseconds to complete, doing that processing on the main thread might
cause the entire UI to become sluggish or, worse, to freeze for a long time. If the main
application thread does not service its event queue for a couple of seconds, the Android
OS will kill the application for being unresponsive! The Handler and AsyncTask classes
allows the programmer to avoid this danger by delegating slow or long-running tasks
to other threads so that the main thread can continue to service the UI. This example
demonstrates using a Thread with a Handler that periodically enqueues updates for the
UI.

The demo application takes a slight shortcut here. It enqueues the creation of a new
dot and its addition to the dot Model on the main thread. A more complex application
might pass a main-thread Handler to the model, on creation, and provide a way for the
UI to get a model-thread Handler from the model. The main thread would receive up-
date events enqueued for it by the model, using its main-thread Handler. The model,
running in its own thread, would use the Looper class to dequeue and dispatch incoming
messages from the UI. Before architecting anything that complex, though, you should
consider using a Service or a ContentProvider (see Chapter 13).

Passing events between the UI and long-running threads in this way dramatically re-
duces the constraints required to maintain thread safety. In particular, recall from
Chapter 6 that if an enqueuing thread retains no references to an enqueued object, or
if that object is immutable, no additional synchronization is necessary.

The Menu
The final aspect of application control we’ll cover in this chapter is the menu. Exam-
ple 7-14 shows how to implement a simple menu by overriding two Activity methods.

Example 7-14. Implementing a menu

@Override public boolean onCreateOptionsMenu(Menu menu) {
 menu.add(Menu.NONE, CLEAR_MENU_ID, Menu.NONE, "Clear");
 return true;
}

@Override public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case 1:
 dotModel.clearDots();
 return true;

The Menu | 193

 default: ;
 }

 return false;
}

When this code is added to the TouchMe class, clicking the device’s Menu key will cause
the application to present a menu, as shown in Figure 7-7.

Figure 7-7. A simple menu

Clicking the Enter key, or tapping the menu item again, will clear the dot view.

Interestingly, if you run this application, you will find that while the added menu item
works most of the time, it does not work when the DotView is in focus. Can you guess
why?

If you guessed that the problem is caused by the OnKeyListener installed in the Dot
View, you are correct! As implemented in Example 7-15, the listener swallows the menu

194 | Chapter 7: Building a View

key event by returning true when it is clicked. This prevents the standard View
processing of the menu key keystroke. In order to make the menu work, the OnKey
Listener needs a new case.

Example 7-15. Improved key handling

switch (keyCode) {
 case KeyEvent.KEYCODE_MENU:
 return false;
 // ...

The Android UI framework also supports contextual menus. A ContextMenu appears in
response to a long click in a widget that supports it. The code required to add a con-
textual menu to an application is entirely analogous to that for the options menu shown
earlier except that the respective methods are onCreateContextMenu and onContextItem
Selected. One additional call is required. In order to support contextual menus, a
widget must be assigned a View.OnCreateContextMenuListener by calling its View
method setOnCreateContextMenuListener. Fortunately, since Activity implements the
View.OnCreateContextMenuListener interface, a common idiom looks like the code
shown in Example 7-16.

Example 7-16. Installing a ContextMenuListener

findViewById(R.id.ctxtMenuView).setOnCreateContextMenuListener(this);

Simply overriding the default, empty Activity implementations of the context menu’s
listener methods will give your application a context menu.

This chapter showed how the Android Controller interface works overall, and gave you
the tools to manipulate its basic components: windows, views, and events. The fol-
lowing two chapters show you how to do your own graphics programming.

The Menu | 195

CHAPTER 8

Fragments and Multiplatform Support

Now that you have written some Android code you know that Activity, View, and the
layout and widget subclasses of View are among the most important classes in Android.
Typically, an Android user interface is built from widget views organized in layouts:
a ListView in a LinearLayout, for instance. A single hierarchy of view objects gets loaded
from a resource (or created by code) when an Activity is started. It is initialized and
displayed on the device screen.

For small screens, this is fine: users move from screen to screen to access different parts
of a program’s UI, and the Activity class (Android’s concept of a task) supports a back
stack that enables quick and intuitive traversal through the strictly tree-structured in-
terface. This changes completely, however, when the UI is spread over the surface of a
larger tablet screen. Some parts of the screen remain constant over longer durations
than others. Some parts of the screen determine the contents of other parts. A card-
stack metaphor just doesn’t cut it.

It is entirely possible to implement UIs in which some parts of the screen change in
response to activities in another part, simply by showing and hiding views. Android’s
developers decided, however, that they needed more than just convention to encourage
great large-screen UIs with a consistent feel and behavior. In order to facilitate this new
kind of interaction, they introduced a new a feature based on the Fragment class, as part
of the Android 3.0 SDK (API 11, Honeycomb).

A Fragment object is somewhere between a View and an Activity. Like a View, it can be
added to a ViewGroup or be part of a layout. It isn’t a subclass of View, however, and can
only be added to a ViewGroup using a FragmentTransaction. Like an Activity, a Frag
ment has a life cycle and implements both the ComponentCallbacks and View.OnCreate
ContextMenuListener interfaces. Unlike an Activity, though, a Fragment is not a
Context, and its life cycle is dependent on that of the Activity to which it belongs.

Fragments constitute a major change in the Android API. In order to ease transition to
the new API, Google provides a compatibility library that supports the feature in ver-
sions as far back as version 2.0 of the SDK (API 5, Éclair). We’ll have a look at backward

197

compatibility in a moment. First, though, let’s look at fragments in their native envi-
ronment, Honeycomb.

Creating a Fragment
Like any other view object, a fragment can either be part of the XML definition of a
layout, or be added to a view programmatically. In a layout, a fragment looks like this:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <fragment
 class="com.oreilly.demo.android.ch085.contactviewer.DateTime"
 android:id="@+id/date_time"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />

</LinearLayout>

An activity would use this layout in the normal way:

@Override
public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
}

This should all look pretty familiar by now. The only thing that is new is the
fragment tag in main.xml. The tag uses a class attribute to specify the fully qualified
name of a class that implements the fragment. There are a couple of constraints
on a fragment implementation class, which in this case, is
com.oreilly.demo.android.ch085.contactviewer.DateTime:

• A class with the exact name must exist and be visible from the application.

• The named class must be a subclass of Fragment.

Although it would be quite possible to verify both of these things statically, the current
Android tools do not do so. You’ll have to check both constraints by hand.

The Android Framework creates a new instance of the named class when the layout is
inflated. The implications of this can be surprising. To begin, it means the class must
have a no-args constructor. This is the constructor that Java supplies by default. The
Android Developer Documentation recommends—strongly, in fact—against defining
any constructors at all in subclasses of Fragment because a newly created Fragment object
may not be in a consistent state at creation. The documentation recommends that
fragment initialization be postponed until later in the fragment life cycle.

198 | Chapter 8: Fragments and Multiplatform Support

No matter how you use the fragment elsewhere in the application, if you use it in a
layout, the inflation process must be able to create it, without supplying any initiali-
zation parameters. As a corollary, a fragment that is created in this way must be pre-
pared to do something sensible even without initialization. A fragment, for instance,
that displays content from a passed URL must handle the case where the URL—and
therefore the content—is empty.

Here, then, is a very simple fragment:

public class DateTime extends Fragment {
 private String time;

 public void onCreate(Bundle state) {
 super.onCreate(state);

 if (null == time) {
 time = new SimpleDateFormat("d MMM yyyy HH:mm:ss")
 .format(new Date());
 }
 }

 @Override
 public View onCreateView(
 LayoutInflater inflater,
 ViewGroup container,
 Bundle b)
 {
 View view = inflater.inflate(
 R.layout.date_time,
 container,
 false); //!!! this is important

 ((TextView) view.findViewById(R.id.last_view_time))
 .setText(time);

 return view;
 }
}

This code demonstrates several essential points. First, just the existence of an
onCreate life cycle method should bring to mind the Activity class and its life cycle
methods. While the life cycle of a Fragment is not identical to that of an Activity, it
does have many of the same methods. As for an activity, a fragment’s onCreate method
is called when the fragment is initialized. This is a great place to do the initialization
that was postponed from the constructor. The example guarantees that the value of the
variable time, the thing the fragment will display, is correctly initialized.

Fragments have a few additional life cycle methods, including onCreateView, also used
in this example. The onCreateView method is called when a fragment’s view is initialized
(in contrast with onCreate, which is called when the fragment itself is initialized). Notice
that the fragment creates the view it manages by using the passed LayoutInflater to
instantiate the view shard R.layout.date_time. This simple view shard—just a pair of

Creating a Fragment | 199

TextViews in a RelativeLayout—is defined in its own file, layout/date_time.xml (not
shown here), much as was the main layout shown earlier.

Also notice (and this is a bit of a gotcha) that there is a third parameter, the Boolean
false, in that call to inflate. It is important! The inflater must have access to
container, the view that will eventually be the newly created shard’s parent. It needs
the parent view in order to handle layout correctly. Suppose, for instance, that con
tainer happens to be a RelativeLayout that specifies the position of the newly created
shard using a layout_toRightOf directive.

On the other hand, the fragment framework owns and manages the view that is returned
by the onCreateView method. The code in onCreateView must not attach the view shard
to its container, as it normally would during inflation. That third argument is the flag
that tells the inflater that the fragment framework is in control and that it must not
attach the view shard to the container.

Once the fragment’s view shard is created, its findViewById method can be used to find
other widgets nested within. The example uses it to locate the TextView that will display
the time, and to set its value from the variable time, initialized in onCreate.

When run, this application looks like Figure 8-1.

Figure 8-1. A simple fragment

200 | Chapter 8: Fragments and Multiplatform Support

Fragment Life Cycle
If you run this application, as it is described so far, and rotate the screen while it is
running, you’ll notice that the displayed date changes each time the screen is rotated.
Rotating the screen causes an application to be destroyed and re-created. This version
of the example application loses all its state each time that happens.

This is a great way to test your application. Pressing Ctrl-F11 rotates the
emulator 90 degrees. In response to this rotation, Android steps an ac-
tivity through nearly its entire life cycle. With this one key-chord, you
get coverage for most of your code!

In this trivial example application, losing state is not particularly significant. A real
application, however, must not lose state. It would be incredibly annoying if, for in-
stance, rotating your phone to landscape mode while looking at some web page caused
the browser to return to a home page.

The application can be modified to keep its state with two small changes. First, override
the DateTime fragment’s life cycle method onSaveInstanceState to preserve its state.
Second, change the onCreate method to recover the preserved state. As it did with
activities (see “The Activity Life Cycle” on page 90), the Android Framework provides
a Bundle object to the former method when it suspends the fragment. It provides the
same bundle to onCreate when reconstructing a clone of a suspended fragment.

Here are the two affected methods, changed to support state preservation:

@Override
public void onCreate(Bundle state) {
 super.onCreate(state);

 if (null != state) { time = state.getString(TAG_DATE_TIME); }

 if (null == time) {
 time = new SimpleDateFormat("d MMM yyyy HH:mm:ss")
 .format(new Date());
 }
}

@Override
public void onSaveInstanceState(Bundle state) {
 super.onSaveInstanceState(state);
 state.putString(TAG_DATE_TIME, time);
}

That’s it. Running this version of the program through its life cycle will no longer cause
it to lose its state. Notice, incidentally, that because the variable time (and, in general,
any fragment state) is initialized in the onCreate method, it cannot be declared final.
This reduces the value of using a constructor to set up the fragment state and is in

Fragment Life Cycle | 201

keeping with the recommendation that Fragment subclasses not have any explicit con-
structors at all.

The Android Developer Documentation describes the complete fragment life cycle.
One other life cycle callback method, though, deserves special notice: onPause. The
onPause method is important for the same reason that it is important in an activity. In
order for an application to play nicely in the Android environment, it should not be
doing things (using the CPU, running down the battery, etc.) when it is not visible. The
Android environment arranges to call a fragment’s onPause method whenever the frag-
ment becomes invisible. In this method, a fragment should release any resources it
might be holding, terminate any long-running processes that it has started, and so on.

The Fragment Manager
As mentioned earlier, fragments can be created programmatically as well as in layouts.
Programmatic manipulation of fragments is accomplished using an instance of the class
FragmentManager obtained from an Activity using its getFragmentManager method. The
fragment manager handles three important groups of operations: fragment tagging and
location, transactions, and the back stack. Let’s extend the example program to inves-
tigate each, in turn.

Adapting the example application to use programmatically created fragments requires
only two changes: one in the layout main.xml and the other in the SimpleFragment
activity. In the layout, the fragment element is replaced with a nearly identical
FrameLayout:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <FrameLayout
 android:id="@+id/date_time"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@color/green"
 />

</LinearLayout>

SimpleFragment will still use this layout, just as it did before. Now, though, the layout
does not automatically create a new fragment. Instead, the following code does that:

@Override
public void onCreate(Bundle state) {
 super.onCreate(state);

 setContentView(R.layout.main);

202 | Chapter 8: Fragments and Multiplatform Support

http://developer.android.com/guide/topics/fundamentals/fragments.html#Creating

 FragmentManager fragMgr = getFragmentManager();

 FragmentTransaction xact = fragMgr.beginTransaction();
 if (null == fragMgr.findFragmentByTag(FRAG1_TAG)) {
 xact.add(R.id.date_time, new DateTime(), FRAG1_TAG);
 }
 xact.commit();
}

These changes introduce no new application features. When run, this version of the
example behaves exactly as did the original, layout-based version.

The important feature in this code snippet is the use of tagging. It is entirely possible
that an activity’s onCreate will be called while it is still associated with a previously
created fragment. Simply adding a new fragment whenever onCreate is called will leak
fragments. In order to prevent that, the example code makes use of the fragment man-
ager’s tagging and location features.

The third argument to the add method is a unique tag, assigned to the fragment as it is
added to the activity. Once the tag has been created, the fragment manager method
findFragmentByTag can be used to recover the exact, single fragment that was added
with the given tag. The example checks to see if the tagged fragment already exists
before it creates a new fragment instance. If there is no such fragment, it creates it. If
the fragment already exists, no action is necessary. This guarantees that there is only a
single fragment in a given role, and prevents fragment leaking.

Tagging and location can be used for other purposes as well. Whenever an activity
needs to communicate some change of state to an attached fragment, it will probably
do so by tagging that fragment, in advance, and then using the FragmentManager to look
up the tag to obtain a reference to the fragment at the appropriate time.

Fragment Transactions
In addition to using fragment tagging, the new code also alludes to fragment transac-
tions. Let’s extend the application once again to demonstrate their value.

Before we take on transactions, though, we need to take a brief detour. We noted earlier
that the Android Developer Documentation recommends that fragment subclasses not
have explicit constructors. So, how does an external object supply initialization state
for a new fragment? The Fragment class supports two methods, setArguments and get
Arguments, that provide this capability. Respectively, they allow an external caller—
probably the fragment creator—to store a Bundle in the fragment and the fragment to
recover that bundle at some later time.

This elaborate combination of a new instance of the fragment, a Bundle, and a call to
setArguments functions very much like a constructor. It makes sense, then, to combine
them into a static factory method in the Fragment object, like this:

Fragment Transactions | 203

public static DateTime createInstance(Date time) {
 Bundle init = new Bundle();
 init.putString(
 DateTime.TAG_DATE_TIME,
 getDateTimeString(time));

 DateTime frag = new DateTime();
 frag.setArguments(init);
 return frag;
}

private static String getDateTimeString(Date time) {
 return new SimpleDateFormat("d MMM yyyy HH:mm:ss")
 .format(time);
}

Now we can use the static factory method in SimpleFragment’s onCreate method to
create a new instance of the fragment with its argument bundle correctly initialized.
This code is nearly identical to the preview version, except that it now uses DateTime’s
static factory method, and passes it an argument:

@Override
public void onCreate(Bundle state) {
 super.onCreate(state);

 setContentView(R.layout.main);

 FragmentManager fragMgr = getFragmentManager();

 FragmentTransaction xact = fragMgr.beginTransaction();
 if (null == fragMgr.findFragmentByTag(FRAG1_TAG)) {
 xact.add(
 R.id.date_time,
 DateTime.newInstance(new Date()),
 FRAG1_TAG);
 }
 xact.commit();
}

Finally, the fragment onCreate method retrieves the initialization data from the passed
argument bundle, unless there is state from a previous incarnation:

@Override
public void onCreate(Bundle state) {
 super.onCreate(state);

 if (null == state) { state = getArguments(); }

 if (null != state) { time = state.getString(TAG_DATE_TIME); }

 if (null == time) { time = getDateTimeString(new Date()); }
}

Once again, the application as modified to this point still behaves exactly as did the
original. The implementation is quite different, though, and much more flexible. In

204 | Chapter 8: Fragments and Multiplatform Support

particular, we now have a fragment that can be initialized externally and can be used
to demonstrate transactions.

The idea of a fragment transaction is, as the name implies, that all changes take place
as a single, atomic action. To demonstrate this, let’s make one final extension to the
example program: let’s add the ability to create pairs of fragments.

Here’s the new layout:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <Button
 android:id="@+id/new_fragments"
 android:layout_width="fill_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:textSize="24dp"
 android:text="@string/doit"
 />

 <FrameLayout
 android:id="@+id/date_time2"
 android:layout_width="fill_parent"
 android:layout_height="0dp"
 android:layout_weight="2"
 android:background="@color/blue"
 />

 <FrameLayout
 android:id="@+id/date_time"
 android:layout_width="fill_parent"
 android:layout_height="0dp"
 android:layout_weight="2"
 android:background="@color/green"
 />

</LinearLayout>

Here are the corresponding additions to the onCreate method in SimpleFragment:

public void onCreate(Bundle state) {
 super.onCreate(state);

 setContentView(R.layout.main);

 ((Button) findViewById(R.id.new_fragments))
 .setOnClickListener(
 new Button.OnClickListener() {
 @Override
 public void onClick(View v) { update(); }
 });

Fragment Transactions | 205

 Date time = new Date();

 FragmentManager fragMgr = getFragmentManager();

 FragmentTransaction xact = fragMgr.beginTransaction();
 if (null == fragMgr.findFragmentByTag(FRAG1_TAG)) {
 xact.add(
 R.id.date_time,
 DateTime.newInstance(time),
 FRAG1_TAG);
 }

 if (null == fragMgr.findFragmentByTag(FRAG2_TAG)) {
 xact.add(
 R.id.date_time2,
 DateTime.newInstance(time),
 FRAG2_TAG);
 }

 xact.commit();
}

Finally, the example application does something different. When run, it looks like
Figure 8-2.

Figure 8-2. Fragment transactions

206 | Chapter 8: Fragments and Multiplatform Support

Both fragments display the exact same date and time because a single value is passed
to both. Neither visiting other applications and returning to the demo nor rotating the
display will cause this application to lose its state. It’s pretty solid. So let’s give the
button an implementation. Here it is:

void update() {
 Date time = new Date();

 FragmentTransaction xact
 = getFragmentManager().beginTransaction();

 xact.replace(
 R.id.date_time,
 DateTime.newInstance(time),
 FRAG1_TAG);

 xact.replace(
 R.id.date_time2,
 DateTime.newInstance(time),
 FRAG2_TAG);

 xact.addToBackStack(null);
 xact.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_OPEN);

 xact.commit();
}

This method actually makes use of the atomicity of fragment transactions. It looks a
lot like the fragment initialization code in SimpleFragment’s onCreate method. Instead
of using the transaction to add new fragment instances, however, it replaces the current
fragments. The call to commit at the end of the method causes both of the new fragments
to become visible simultaneously. The blue and the green times will always be in sync.

A fragment created in a layout (using an XML fragment tag) must never
be replaced with a dynamically created fragment. Although is it pretty
hard to tell just by looking at them, the life cycle of one is much different
from that of the other. There’s no reason you can’t use both in your
application, but never replace one with the other. Attempting to use
setContentView, for instance, with a layout that has had a layout frag-
ment replaced with one that was programmatically created will cause
bugs that can be difficult to find and fix. A frequent symptom of this
kind of problem is an IllegalStateException with the message “Frag-
ment did not create a view.”

This brings us to the last essential feature of fragments, the back stack. If you run several
activities in sequence, you can return to them in reverse order using the back button.
This behavior also applies to fragment transactions.

If you run this application, the display will look something like Figure 8-2. When you
push the button at the top of the display, the blue and green fragments will update

Fragment Transactions | 207

simultaneously. Better yet, though, if you push the back button (the left-facing arrow
icon in the lower-right corner of the display), you will see, in reverse order, each update
you generated by pushing the Do It! button. For instance, if both fragments display the
time “5 Apr 2011 12:49:32” and you push the Do It! button, the display might be
updated so that both the blue and the green regions show the date/time as “5 Apr 2011
13:02:43”. If you now push the back button, both fragments will again display “5 Apr
2011 12:49:32”. The entire transaction—the updates of both fragments—is pushed
onto the back stack as a single event. When you push the back button, an entire trans-
action is removed, revealing the entire state from the previous transaction.

The Compatibility Package
One of the most important aspects of fragments is that, although they were introduced
in Android 3.0 and are not available in previous releases of the API, Google provides
the Android Compatibility Package (ACP) to make it possible to use the fragment fea-
ture on devices that are still using an older version of Android.

The compatibility package is not a complete win. It is not forward compatible. An
application that runs using the ACP requires the ACP, even when running on an An-
droid 3.0 system. When choosing an implementation strategy for the ACP, Google
faced a conundrum. Even if it had been possible to implement the ACP so that an
application ported transparently, without change, from Android 3.0 to Android 2.0 +
ACP, there would have been a problem. The ACP must be included as part of an ap-
plication. If the ACP defined classes with names that are identical to those in Android
3.0, an application that embedded it would, without some serious class loader trickery,
define classes that collided with their system definitions.

Instead, the ACP uses a different base package, android.support.v4, in which to define
the compatibility features. A program developed for Android 3.0 will need code changes
to use the ACP. You will need to make, at least, the following changes:

• Copy the ACP library to your project. Create a directory named lib at the top level
of your project and copy android-support-v4.jar from the Android SDK folder
extras/android/compatibility/v4/ into it.

• Add the ACP to your project build path. In Eclipse, select the library in the Package
Explorer (you may have to refresh the project to see it: press F5 or left-
click→Refresh). Once it is selected, you should be able to left-click→Build
Path→Add to Build Path.

• Change your project build target from Android 3.0 to Android 2.0.1 (Proper-
ties→Android). This will cause many errors to appear.

• Some imports that refer to android.app will have to be updated to refer to an-
droid.support.v4.app. Presuming your program had no errors before changing its
build target, you need only find broken imports and update their base package.

208 | Chapter 8: Fragments and Multiplatform Support

• All the activities in the application that use fragments must be updated to the sub-
class FragmentActivity instead of Activity.

• Change all calls to getFragmentManager into calls to getSupportFragmentManager.

• Fix any remaining errors and test your program.

The Compatibility Package | 209

CHAPTER 9

Drawing 2D and 3D Graphics

The Android menagerie of widgets and the tools for assembling them are convenient
and powerful, and cover a broad variety of needs. What happens, though, when none
of the existing widgets offer what you need? Maybe your application needs to represent
playing cards, phases of the moon, or the power diverted to the main thrusters of a
rocket ship. In that case, you’ll have to know how to roll your own.

This chapter is an overview of graphics and animation on Android. It’s directed at
programmers with some background in graphics, and goes into quite a bit of depth
about ways to twist and turn the display. You will definitely need to supplement the
chapter with Android documentation, particularly because, especially with the advent
of Honeycomb, the interfaces are still undergoing changes. But the techniques here will
help you dazzle your users.

Rolling Your Own Widgets
As mentioned earlier, widget is just a convenient term for a subclass of
android.view.View, typically a leaf node in the view tree. Internal nodes in the view tree,
though they may contain complex code, tend to have simpler user interactions. The
term widget, although informal, is useful for discussing the workhorse parts of the user
interface that have the information and the behavior users care about.

You can accomplish a lot without creating a new widget. In this book, we have already
constructed several applications consisting entirely of existing widgets or simple sub-
classes of existing widgets. The code in those applications just built trees of views, laying
them out in code or through layout resources in XML files.

The nontrivial MicroJobs application, which we’ll cover in Chapter 10, has a view that
contains a list of names corresponding to locations on a map. As additional locations
are added to the map, new name-displaying widgets are added dynamically to the list.
Even this dynamically changing layout is just a use of preexisting widgets; it is not
creating new ones. The techniques in MicroJobs are, figuratively, adding or removing
boxes from a tree like the one illustrated in Figure 7-3 of Chapter 7.

211

In contrast, this chapter shows you how to roll your own widget, which involves looking
under the View hood. TextView, Button, and DatePicker are all examples of widgets
provided by the Android UI toolkit. You can implement your own widget as a subclass
of one of these, or as a direct subclass of View.

A more complex widget—one that can nest other widgets—will have to subclass View
Group, which is itself a subclass of View. A very complex widget, perhaps used as an
interface tool implemented in several places (even by multiple applications), might be
an entire package of classes, only one of which is a descendant of View.

This chapter is about graphics, and therefore about the View part of the Model-View-
Controller (MVC) pattern. Widgets also contain Controller code, which is good design
because it keeps together all the code relevant to a behavior and its representation on
the screen. This part of this chapter discusses only the implementation of the View.
The implementation of the Controller was discussed in Chapter 7.

Concentrating on graphics, then, we can break the tasks of this chapter into two es-
sential parts: finding space on the screen and drawing in that space. The first task is
known as layout. A leaf widget can assert its space needs by defining an onMeasure
method that the Android UI framework will call at the right time. The second task,
actually rendering the widget, is handled by the widget’s onDraw method.

Layout
Most of the heavy lifting in the Android Framework layout mechanism is implemented
by container views. A container view is one that contains other views. It is an internal
node in the view tree and in the subclasses of ViewGroup. The framework toolkit provides
a variety of sophisticated container views that offer powerful and adaptable strategies
for arranging a screen. LinearLayout and RelativeLayout, to name some common ones,
are container views that are both relatively easy to use and fairly hard to reimplement
correctly. Since convenient, powerful container views already exist, you will probably
never have to implement one or the layout algorithm discussed here. Understanding
how it works, though—how the Android UI framework manages the layout process—
will help you build correct, robust widgets.

Example 9-1 shows what is perhaps the simplest working widget one could design. If
added to some Activity’s view tree, this widget will fill in the space allocated to it with
the color cyan. Not very interesting, but before we move on to create anything more
complex, let’s look carefully at how this example fulfills the two basic tasks of layout
and drawing. We’ll start with the layout process; we’ll describe drawing later in “Can-
vas Drawing” on page 217.

212 | Chapter 9: Drawing 2D and 3D Graphics

Example 9-1. A trivial widget

public class TrivialWidget extends View {

 public TrivialWidget(Context context) {
 super(context);
 setMinimumWidth(100);
 setMinimumHeight(20);
 }

 @Override
 protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 setMeasuredDimension(
 getSuggestedMinimumWidth(),
 getSuggestedMinimumHeight());
 }

 @Override
 protected void onDraw(Canvas canvas) {
 canvas.drawColor(Color.CYAN);
 }
}

Dynamic layout is necessary because the space requirements for widgets change dy-
namically. Suppose, for instance, that a widget in a GPS-enabled application displays
the name of the city in which you are currently driving. As you go from “Ely” to “Post
Mills,” the widget receives notification of the change in location. When it prepares to
redraw the city name, though, it notices that it doesn’t have enough room for the whole
name of the new town. It needs to ask the display to redraw the screen in a way that
gives it more space, if that is possible.

Layout can be a surprisingly complex task and very difficult to get right. It is probably
not very hard to make a particular leaf widget look right on a single device. It can be
very tricky, on the other hand, to get a widget that must arrange children to look right
on multiple devices, even when the dimensions of the screen change.

The layout process is initiated when the requestLayout method is invoked on some
view in the view tree. Typically, a widget calls requestLayout on itself, when it needs
more space. The method could be invoked, though, from any place in an application,
to indicate that some view in the current screen no longer has the right amount of room.

The requestLayout method causes the Android UI framework to enqueue an event on
the UI event queue. When the event is processed, in order, the framework gives every
container view an opportunity to ask each of its child widgets how much space it would
like for drawing. The process is separated into two phases: measuring child views and
then arranging them in their new positions. All views must implement the first phase,
but the second is necessary only in the implementations of container views that must
manage the layout of child views.

Rolling Your Own Widgets | 213

Measurement

The goal of the measurement phase is to provide each view with an opportunity to
dynamically request the space it would like, ideally, for drawing. The UI framework
starts the process by invoking the measure method of the view at the root of the view
tree. Starting there, each container view asks each of its children how much space it
would prefer. The call is propagated to all descendants, depth first, so that every child
gets a chance to compute its size before its parent. The parent computes its own size
based on the sizes of its children and reports that to its parent, and so on, up the tree.

In “Assembling a Graphical Interface” on page 171, for instance, the topmost Linear
Layout asks each nested LinearLayout widget for its preferred dimensions. They, in turn,
ask the Buttons or EditText views they contain for theirs. Each child reports its desired
size to its parent. The parents then add up the sizes of the children, along with any
padding they insert themselves, and report the total to the topmost LinearLayout.

Because the framework must guarantee certain behaviors for all Views during this
process, the measure method is final and cannot be overridden. Instead, measure calls
onMeasure, which widgets may override to claim their space.

The arguments to the onMeasure method describe the space the parent is willing to make
available: a width specification and a height specification, measured in pixels. The
framework assumes that no view will ever be smaller than 0 or bigger than 230 pixels
in size and, therefore, uses the high-order bits of the passed int parameter to encode
the measurement specification mode. It is as though onMeasure were actually called with
four arguments: the width specification mode, the width, the height specification mode,
and the height. Do not be tempted to do your own bit shifting to separate the pairs of
arguments! Instead, use the static methods MeasureSpec.getMode and MeasureSpec.get
Size.

The specification modes describe how the container view wants the child to interpret
the associated size. There are three of them:

MeasureSpec.EXACTLY
The calling container view has already determined the exact size of the child view.

MeasureSpec.AT_MOST
The calling container view has set a maximum size for this dimension, but the child
is free to request less.

MeasureSpec.UNSPECIFIED
The calling container view has not imposed any limits on the child; the child may
request anything it chooses.

A widget is always responsible for telling its parent in the view tree how much space it
needs. It does this by calling setMeasuredDimensions to set its height and width prop-
erties. The parent can later retrieve these properties through the methods getMeasured
Height and getMeasuredWidth. If your implementation overrides onMeasure but does not

214 | Chapter 9: Drawing 2D and 3D Graphics

call setMeasuredDimensions, the measure method will throw IllegalStateException in-
stead of completing normally.

The default implementation of onMeasure, inherited from View, calls setMeasured
Dimensions with one of two values in each direction. If the parent specifies Measure
Spec.UNSPECIFIED, the child’s setMeasuredDimensions method uses the default size of
the view: the value supplied by either getSuggestedMinimumWidth or getSuggested
MinimumHeight. If the parent specifies either of the other two modes, the default imple-
mentation uses the size that was offered by the parent. This is a very reasonable strategy
and allows a typical widget implementation to handle the measurement phase com-
pletely by simply setting the values returned by getSuggestedMinimumWidth and getSug
gestedMinimumHeight. We used that minimal strategy in Example 9-1.

Your widget may not actually get the space it requests. Consider a view that is 100
pixels wide and that has three children. It is probably obvious how the parent should
arrange its children if the sum of the pixel widths requested by the children is 100 or
less. If, however, each child requests 50 pixels, the parent container view is not going
to be able to satisfy them all.

A container view has complete control of how it arranges its children. It might, in the
circumstances just described, decide to be “fair” and allocate 33 pixels to each child.
It might, just as easily, decide to allocate 50 pixels to the leftmost child, and 25 to each
of the other two. In fact, it might decide to give one of the children the entire 100 pixels
and nothing at all to the others. Whatever its method, though, in the end the parent
determines a size and location for the bounding rectangle for each child.

Another example of a container view’s control of the space allocated to a widget comes
from the example widget in Example 9-1. It always requests the amount of space it
prefers, regardless of what it is offered (unlike the default implementation). This strat-
egy is handy to remember for widgets that will be added to toolkit containers, notably
LinearLayout, that implement gravity. Gravity is a property that some views use to
specify the alignment of their subelements. You may be surprised, the first time you
use one of these containers, to find that, by default, only the first of your custom widgets
gets drawn! You can fix this either by using the setGravity method to change the prop-
erty to Gravity.FILL, or by making your widgets insistent about the amount of space
they request.

It is also important to note that a container view may call a child’s measure method
several times during a single measurement phase. As part of its implementation of
onMeasure, a clever container view, attempting to lay out a horizontal row of widgets,
might, for instance, call each child widget’s measure method with mode
MEASURE_SPEC.UNSPECIFIED and a width of 0 to find out what size the widget would
prefer. Once it has collected the preferred widths for each of its children, it could com-
pare the sum to the actual width available (which was specified in its parent’s call to
its measure method). Now it might call each child widget’s measure method again, this
time with the mode MeasureSpec.AT_MOST and a width that is an appropriate proportion

Rolling Your Own Widgets | 215

of the space actually available. Because measure may be called multiple times, an im-
plementation of onMeasure must be idempotent and must not change the application
state.

An action is said to be “idempotent” if the effect of performing it once
is the same as the effect of performing it multiple times. For instance,
the statement x = 3 is idempotent because no matter how many times
you do it, x always ends up as 3. x = x + 1, however, is not idempotent
because the value of x depends on how many times the statement is
executed.

A container view’s implementation of onMeasure is likely to be fairly complex. View
Group, the superclass of all container views, does not supply a default implementation.
Each Android UI framework container view has its own. If you contemplate imple-
menting a container view, you might consider basing it on one of them. If, instead, you
implement measurement from scratch, you are still likely to need to call measure for
each child and should consider using the ViewGroup helper methods: measureChild,
measureChildren, and measureChildWithMargins. At the conclusion of the measurement
phase, a container view, like any other widget, must report the space it needs by calling
setMeasuredDimensions.

Arrangement

Once all the container views in the view tree have had a chance to negotiate the sizes
of each of their children, the framework begins the second phase of layout, which
consists of arranging the children. Again, unless you implement your own container
view you will probably never have to implement your own arrangement code. This
section describes the underlying process so that you can better understand how it might
affect your widgets. The default method, implemented in View, will work for typical
leaf widgets, as demonstrated by Example 9-1.

Because a view’s onMeasure method might be called several times, the framework must
use a different method to signal that the measurement phase is complete and that con-
tainer views must fix the final locations of their children. Like the measurement phase,
the arrangement phase is implemented with two methods. The framework invokes a
final method, layout, at the top of the view tree. The layout method performs pro-
cessing common to all views and then invokes onLayout, which custom widgets override
to implement their own behaviors. A custom implementation of onLayout must, at least,
calculate the bounding rectangle that it will supply to each child when it is drawn and,
in turn, invoke the layout method for each child (because that child might, in turn, be
a parent to other widgets). This process can be complex. If your widget needs to arrange
child views, you might consider basing it on an existing container, such as Linear
Layout or RelativeLayout.

216 | Chapter 9: Drawing 2D and 3D Graphics

It is worth reiterating that a widget is not guaranteed to receive the space it requests. It
must be prepared to draw itself in whatever space is actually allocated to it. If it attempts
to draw outside the space allocated to it by its parent, the drawing will be clipped by
the clip rectangle (discussed later in this chapter). To exert fine control—to exactly fill
the space allocated to it, for instance—a widget must either implement onLayout and
record the dimensions of the allocated space, or inspect the clip rectangle of the
Canvas that is the parameter to onDraw.

Canvas Drawing
Now that we’ve explored how widgets allocate the space on the screen in which they
draw themselves, we can turn to coding some widgets that actually do some drawing.

The Android UI framework handles drawing in a way that should seem familiar, now
that you’ve read about measurement and arrangement. When some part of the appli-
cation determines that the current screen drawing is stale because some state has
changed, it calls the View method invalidate. This call causes a redraw event to be
added to the event queue.

When, eventually, that event is processed, the framework calls the draw method at the
top of the view tree. This time the call is propagated preorder, each view drawing itself
before it calls its children. This means that leaf views are drawn after their parents,
which are, in turn, drawn after their parents. Views that are lower in the tree appear to
be drawn on top of those nearer the root of the tree.

The draw method calls onDraw, which each subclass overrides to implement its custom
rendering. When your widget’s onDraw method is called, it must render itself according
to the current application state and return. It turns out, by the way, that neither
View.draw nor ViewGroup.dispatchDraw (responsible for the traversal of the view tree) is
final. But override them at your peril!

In order to prevent extra painting, the Android UI framework maintains some state
information about the view, called the clip rectangle. A key concept in the framework,
the clip rectangle is part of the state that is passed in calls to a component’s graphical
rendering methods. It has a location and size that can be retrieved and adjusted through
methods on the canvas. It acts like a stencil through which a component does all its
drawing: the component can only draw on the portions of the canvas visible through
the clip rectangle. By correctly setting the size, shape, and location of the clip rectangle
aperture, the framework can prevent a component from drawing outside its boundaries
or redrawing regions that are already correctly drawn.

Before proceeding to the specifics of drawing, let’s again put the discussion in the con-
text of Android’s single-threaded MVC design pattern. There are two essential rules:

• Drawing code should be inside the onDraw method. Your widget should draw itself
completely, reflecting the program state, when onDraw is invoked.

Rolling Your Own Widgets | 217

• A widget should draw itself as quickly as possible when onDraw is invoked. The
middle of the call to onDraw is no time to run a complex database query or to
determine the status of some distant networked service. All the state you need to
draw should be cached and ready for use, at drawing time. Long-running tasks
should use a separate thread and one of the mechanisms described in “Advanced
Wiring: Focus and Threading” on page 189. Model state information cached in
the view is sometimes called the view model.

The Android UI framework uses four main classes in drawing. If you are going to im-
plement custom widgets and do your own drawing you will want to become very fa-
miliar with them:

Canvas (a subclass of android.graphics.Canvas)
The canvas has no clear analog in real-life materials. You might think of it as a
complex easel that can orient, bend, and even crumple the paper on which you are
drawing, in interesting ways. It maintains the clip rectangle, the stencil through
which you paint. It can also scale drawings as they are drawn, like a photographic
enlarger. It can even perform other transformations for which material analogs are
more difficult to find: mapping colors and drawing text along paths.

Paint (a subclass of android.graphics.Paint)
This is the medium with which you will draw. It controls the color, transparency,
and brush size for objects painted on the canvas. It also controls font, size, and
style when drawing text.

Bitmap (a subclass of android.graphics.Bitmap)
This is the paper you are drawing on. It holds the actual pixels that you draw.

Drawable (likely a subclass of android.graphics.drawable.Drawable)
This is the thing you want to draw: a rectangle or image. Although not all the things
that you draw are Drawables (text, for instance, is not), many, especially the more
complex ones, are.

Example 9-1 accomplished its drawing by using only the Canvas, passed as a parameter
to onDraw. In order to do anything more interesting, we will need, at the very least, Paint.
Paint provides control over the color and transparency (alpha) of the graphics drawn
with it. It also controls the width of the brush used for drawing. When used in con-
nection with text drawing methods, it controls the font, size, and style of the text.
Paint has many, many other capabilities, some of which are described in
“Bling” on page 234. Example 9-2, however, is enough to get you started. It sets two
of the many parameters Paint controls (color and line width) before drawing a thick
vertical line, followed by a series of horizontal lines. The alpha value (which plays the
same role as the fourth value in RGB web colors) is reduced for each green line to make
it more transparent than the previous one. Explore the class documentation for other
useful attributes.

218 | Chapter 9: Drawing 2D and 3D Graphics

Example 9-2. Using Paint

@Override
protected void onDraw(Canvas canvas) {
 canvas.drawColor(Color.WHITE);

 Paint paint = new Paint();

 canvas.drawLine(33, 0, 33, 100, paint);

 paint.setColor(Color.RED);
 paint.setStrokeWidth(10);
 canvas.drawLine(56, 0, 56, 100, paint);

 paint.setColor(Color.GREEN);
 paint.setStrokeWidth(5);

 for (int y = 30, alpha = 255; alpha > 2; alpha >>= 1, y += 10) {
 paint.setAlpha(alpha);
 canvas.drawLine(0, y, 100, y, paint);
 }
}

The graphic created by the code in the example is shown in Figure 9-1.

Figure 9-1. Output using Paint

With the addition of Paint, we are prepared to understand most of the other tools
necessary to draw a useful widget. The code in Example 9-3, for instance, is the widget
used in Example 7-7. While still not very complex, it demonstrates all the pieces of a
fully functional widget. It handles layout, uses highlighting (whether the view has the
user’s focus), and reflects the state of the model to which it is attached. The widget
draws a series of dots whose information is stored in a private array. Each dot specifies
its own x and y location as well as its diameter and color. The onDraw function resets
the color of its Paint for each, and uses the other parameters to specify the circle being
drawn by the canvas’s drawCircle method.

Example 9-3. Dot widget

package com.oreilly.android.intro.view;

import android.content.Context;

import android.graphics.Canvas;

Rolling Your Own Widgets | 219

import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Paint.Style;

import android.view.View;

import com.oreilly.android.intro.model.Dot;
import com.oreilly.android.intro.model.Dots;

public class DotView extends View {
 private final Dots dots;

 /**
 * @param context the rest of the application
 * @param dots the dots we draw
 */
 public DotView(Context context, Dots dots) {
 super(context);
 this.dots = dots;
 setMinimumWidth(180);
 setMinimumHeight(200);
 setFocusable(true);
 }

 /** @see android.view.View#onMeasure(int, int) */
 @Override
 protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 setMeasuredDimension(
 getSuggestedMinimumWidth(),
 getSuggestedMinimumHeight());
 }

 /** @see android.view.View#onDraw(android.graphics.Canvas) */
 @Override protected void onDraw(Canvas canvas) {
 canvas.drawColor(Color.WHITE);

 Paint paint = new Paint();
 paint.setStyle(Style.STROKE);
 paint.setColor(hasFocus() ? Color.BLUE : Color.GRAY);
 canvas.drawRect(0, 0, getWidth() - 1, getHeight() - 1, paint);

 paint.setStyle(Style.FILL);
 for (Dot dot : dots.getDots()) {
 paint.setColor(dot.getColor());
 canvas.drawCircle(
 dot.getX(),
 dot.getY(),
 dot.getDiameter(),
 paint);
 }
 }
}

As with Paint, we have only enough space to begin an exploration of Canvas methods.
There are two groups of functionality, however, that are worth special notice.

220 | Chapter 9: Drawing 2D and 3D Graphics

Drawing text

Among the most important Canvas methods are those used to draw text. Although some
Canvas functionality is duplicated in other places, text rendering capabilities are not. In
order to put text in your widget, you will have to use Canvas (or, of course, subclass
some other widget that uses it).

Canvas provides several methods for rendering text that give you various amounts of
flexibility over the placement of each character in the text. The methods come in pairs:
one taking a String and the other taking a char[] array. In some cases, there are addi-
tional convenience methods. For instance, the simplest way to draw text passes the x
and y coordinates where the text starts and Paint that specifies its font, color, and other
attributes (see Example 9-4).

Example 9-4. A pair of text drawing methods

public void drawText(String text, float x, float y, Paint paint)
public void drawText(char[] text, int index, int count, float x,
 float y, Paint paint)

While the first method passes text through a single String parameter, the second
method uses three parameters: an array of char, an index indicating the first character
in that array to be drawn, and the number of total characters in the text to be rendered.

If you want something fancier than a simple horizontal text, you can lay it out along a
geometric path or even place each character precisely where you want. Example 9-5
contains an onDraw method that demonstrates the use of each of the three text rendering
methods. The output is shown in Figure 9-2.

Example 9-5. Three ways of drawing text

@Override
protected void onDraw(Canvas canvas) {
 canvas.drawColor(Color.WHITE);

 Paint paint = new Paint();

 paint.setColor(Color.RED);
 canvas.drawText("Android", 25, 30, paint);

 Path path = new Path();
 path.addArc(new RectF(10, 50, 90, 200), 240, 90);
 paint.setColor(Color.CYAN);
 canvas.drawTextOnPath("Android", path, 0, 0, paint);

 float[] pos = new float[] {
 20, 80,
 29, 83,
 36, 80,
 46, 83,
 52, 80,
 62, 83,
 68, 80

Rolling Your Own Widgets | 221

 };
 paint.setColor(Color.GREEN);
 canvas.drawPosText("Android", pos, paint);
}

Figure 9-2. Output from three ways of drawing text

As you can see, the most elementary of the pairs, drawText, simply starts text at the
passed coordinates. With DrawTextOnPath, on the other hand, you can draw text along
any Path. The example path is just an arc. It could just as easily have been a line drawing
or Bezier curve.

For those occasions on which even DrawTextOnPath is insufficient, Canvas offers Draw
PosText, which lets you specify the exact position of each character in the text. Note
that the character positions are specified by alternating array elements: x1,y1,x2,y2...

Matrix transformations

The second interesting group of Canvas methods are the Matrix transformations and
their related convenience methods, rotate, scale, and skew. These methods transform
what you draw in ways that are immediately recognizable to those familiar with 3D
graphics in other environments. The methods allow a single drawing to be rendered in
ways that can make it appear as though the viewer were moving with respect to the
objects in the drawing.

The small application in Example 9-6 demonstrates the Canvas’s coordinate transfor-
mation capabilities.

Example 9-6. Using a transformation in a canvas

import android.app.Activity;

import android.content.Context;

import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;

222 | Chapter 9: Drawing 2D and 3D Graphics

import android.graphics.Rect;

import android.os.Bundle;

import android.view.View;

import android.widget.LinearLayout;

public class TranformationalActivity extends Activity {

 private interface Transformation {
 void transform(Canvas canvas);
 String describe();
 }

 private static class TransformedViewWidget extends View {
 private final Transformation transformation;

 public TransformedViewWidget(Context context, Transformation xform) {
 super(context);

 transformation = xform;

 setMinimumWidth(160);
 setMinimumHeight(105);
 }

 @Override
 protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 setMeasuredDimension(
 getSuggestedMinimumWidth(),
 getSuggestedMinimumHeight());
 }

 @Override
 protected void onDraw(Canvas canvas) {
 canvas.drawColor(Color.WHITE);

 Paint paint = new Paint();

 canvas.save();
 transformation.transform(canvas);

 paint.setTextSize(12);
 paint.setColor(Color.GREEN);
 canvas.drawText("Hello", 40, 55, paint);

 paint.setTextSize(16);
 paint.setColor(Color.RED);
 canvas.drawText("Android", 35, 65, paint);

 canvas.restore();

 paint.setColor(Color.BLACK);
 paint.setStyle(Paint.Style.STROKE);

Rolling Your Own Widgets | 223

 Rect r = canvas.getClipBounds();
 canvas.drawRect(r, paint);

 paint.setTextSize(10);
 paint.setColor(Color.BLUE);
 canvas.drawText(transformation.describe(), 5, 100, paint);
 }

}

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.transformed);

 LinearLayout v1 = (LinearLayout) findViewById(R.id.v_left);
 v1.addView(new TransformedViewWidget(
 this,
 new Transformation() {
 @Override public String describe() { return "identity"; }
 @Override public void transform(Canvas canvas) { }
 }));
 v1.addView(new TransformedViewWidget(
 this,
 new Transformation() {
 @Override public String describe() { return "rotate(-30)"; }
 @Override public void transform(Canvas canvas) {
 canvas.rotate(-30.0F);
 } }));
 v1.addView(new TransformedViewWidget(
 this,
 new Transformation() {
 @Override public String describe() { return "scale(.5,.8)"; }
 @Override public void transform(Canvas canvas) {
 canvas.scale(0.5F, .8F);
 } }));
 v1.addView(new TransformedViewWidget(
 this,
 new Transformation() {
 @Override public String describe() { return "skew(.1,.3)"; }
 @Override public void transform(Canvas canvas) {
 canvas.skew(0.1F, 0.3F);
 } }));

 LinearLayout v2 = (LinearLayout) findViewById(R.id.v_right);
 v2.addView(new TransformedViewWidget(
 this,
 new Transformation() {
 @Override public String describe() { return "translate(30,10)"; }
 @Override public void transform(Canvas canvas) {
 canvas.translate(30.0F, 10.0F);
 } }));
 v2.addView(new TransformedViewWidget(
 this,
 new Transformation() {

224 | Chapter 9: Drawing 2D and 3D Graphics

 @Override public String describe() {
 return "translate(110,-20),rotate(85)";
 }
 @Override public void transform(Canvas canvas) {
 canvas.translate(110.0F, -20.0F);
 canvas.rotate(85.0F);
 } }));
 v2.addView(new TransformedViewWidget(
 this,
 new Transformation() {
 @Override public String describe() {
 return "translate(-50,-20),scale(2,1.2)";
 }
 @Override public void transform(Canvas canvas) {
 canvas.translate(-50.0F, -20.0F);
 canvas.scale(2F, 1.2F);
 } }));
 v2.addView(new TransformedViewWidget(
 this,
 new Transformation() {
 @Override public String describe() { return "complex"; }
 @Override public void transform(Canvas canvas) {
 canvas.translate(-100.0F, -100.0F);
 canvas.scale(2.5F, 2F);
 canvas.skew(0.1F, 0.3F);
 } }));
 }
}

The results of this protracted exercise are shown in Figure 9-3.

Here are some of the highlights of the code:

This is the definition of the new widget, TransformedViewWidget.

Gets the actual transformation to perform from the second argument of the
constructor.

This is the onDraw method of TransformedViewWidget.

Pushes the current drawing state on the stack using save before performing any
transformation.

Performs the transformation passed as constructor argument 2.

Restores the old state saved in item 4, in preparation for drawing the bound box and
label.

This is the Activity’s onCreate method.

Creates the container view for the left-hand column of widgets.

These are instantiations of TransformedViewWidget, added to the left-hand column.

Creates a transformation as part of the parameter list to the constructor of
TransformedViewWidget.

Rolling Your Own Widgets | 225

Creates the container view for the right-hand column of widgets.

These are instantiations of TransformedViewWidget, added to the right-hand column.

Figure 9-3. Transformed views

This small application introduces several new ideas. In terms of views and widgets, the
application defines a single widget, TransformedViewWidget, of which it creates eight
instances. For layout, the application creates two views named v1 and v2, retrieving
their parameters from resources. Then it adds four instances of TransformedView
Widget to each LinearLayout view. This is an example of how applications combine
resource-based and dynamic views. Note that the creation of the layout views and the
constructors of the new widgets take place within the Activity’s onCreate method.

This application also makes the new widget flexible through a sophisticated division
of labor between the widget and the parent view. Several simple objects are drawn
directly within the definition of TransformedViewWidget, in its onDraw method:

• A white background

• The word Hello in 12-point green type

• The word Android in 16-point red type

• A black frame

226 | Chapter 9: Drawing 2D and 3D Graphics

• A blue label

In the middle of this, the onDraw method performs a transformation that is specified by
the caller. The application defines its own interface called Transformation, and the
constructor for TransformedViewWidget accepts a Transformation as a parameter. We’ll
see in a moment how the caller actually codes a transformation.

It’s important first to see how onDraw preserves it own text while allowing the trans-
formation. In this example, we want to make sure the frame and label are drawn last
so that they are drawn over anything else drawn by the widget, even if they might
overlap. We do not want the transformation to affect either the frame or the label.

Fortunately, the Canvas maintains an internal stack onto which we can record and
recover the translation matrix, clip rectangle, and all other elements of mutable state
in the Canvas. Taking advantage of this stack, onDraw calls Canvas.save to save its state
before the transformation, and Canvas.restore afterward to restore the saved state.

The rest of the application controls the transformation applied to each of the eight
instances of TransformedViewWidget. Each new instance of the widget is created with its
own anonymous instance of Transformation. The image in the area labeled “identity”
has no translation applied. The other seven areas are labeled with the transformations
they demonstrate.

The base methods for Canvas translation are setMatrix and concatMatrix. These two
methods allow you to build any possible transformation. The getMatrix method allows
you to recover a dynamically constructed matrix for later use. The methods introduced
in the example—translate, rotate, scale, and skew—are convenience methods that
compose specific, constrained matrices into the current Canvas state.

While it may not be obvious at first, these transformation functions can be tremen-
dously useful. They allow your application to appear to change its point of view with
respect to a 3D object! It doesn’t take too much imagination, for instance, to see the
scene in the square labeled “scale(.5,.8)” as the same as that seen in the square labeled
“identity”, but viewed from farther away. With a bit more imagination, the image in
the box labeled “skew(.1,.3)” could be the untransformed image, again, but this time
viewed from above and slightly to the side. Scaling or translating an object can make
it appear to a user as though the object has moved. Skewing and rotating can make it
appear that the object has turned.

When you consider that these transform functions apply to everything drawn on a
canvas—lines, text, and even images—their importance in applications becomes even
more apparent. A view that displays thumbnails of photos could be implemented triv-
ially, though perhaps not optimally, as a view that scales everything it displays to 10%
of its actual size. An application that displays what you see as you look to your left
while driving down the street might be implemented, in part, by scaling and skewing
a small number of images.

Rolling Your Own Widgets | 227

Drawables
A Drawable is an object that knows how to render itself on a Canvas. Because a
Drawable has complete control during rendering, even a very complex rendering process
can be encapsulated in a way that makes it fairly easy to use.

Examples 9-7 and 9-8 show the changes necessary to implement the example shown
in Figure 9-3, using a Drawable. The code that draws the red and green text has been
refactored into a HelloAndroidTextDrawable class, used in rendering by the widget’s
onDraw method.

Example 9-7. Using a TextDrawable

private static class HelloAndroidTextDrawable extends Drawable {
 private ColorFilter filter;
 private int opacity;

 public HelloAndroidTextDrawable() {}

 @Override
 public void draw(Canvas canvas) {
 Paint paint = new Paint();

 paint.setColorFilter(filter);
 paint.setAlpha(opacity);

 paint.setTextSize(12);
 paint.setColor(Color.GREEN);
 canvas.drawText("Hello", 40, 55, paint);

 paint.setTextSize(16);
 paint.setColor(Color.RED);
 canvas.drawText("Android", 35, 65, paint);
}

 @Override
 public int getOpacity() { return PixelFormat.TRANSLUCENT; }

 @Override
 public void setAlpha(int alpha) { }

 @Override
 public void setColorFilter(ColorFilter cf) { }
}

Using the new Drawable implementation requires only a few small changes to the
onDraw method from our example.

Example 9-8. Using a Drawable widget

package com.oreilly.android.intro.widget;

import android.content.Context;
import android.graphics.Canvas;

228 | Chapter 9: Drawing 2D and 3D Graphics

import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Rect;
import android.graphics.drawable.Drawable;
import android.view.View;

/**A widget that renders a drawable with a transformation */
public class TransformedViewWidget extends View {

 /** A transformation */
 public interface Transformation {
 /** @param canvas */
 void transform(Canvas canvas);
 /** @return text description of the transform. */
 String describe();
 }

 private final Transformation transformation;
 private final Drawable drawable;

 /**
 * Render the passed drawable, transformed.
 *
 * @param context app context
 * @param draw the object to be drawn, in transform
 * @param xform the transformation
 */
 public TransformedViewWidget(
 Context context,
 Drawable draw,
 Transformation xform)
 {
 super(context);

 drawable = draw;
 transformation = xform;

 setMinimumWidth(160);
 setMinimumHeight(135);
 }

 /** @see android.view.View#onMeasure(int, int) */
 @Override
 protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 setMeasuredDimension(
 getSuggestedMinimumWidth(),
 getSuggestedMinimumHeight());
 }

 /** @see android.view.View#onDraw(android.graphics.Canvas) */
 @Override
 protected void onDraw(Canvas canvas) {
 canvas.drawColor(Color.WHITE);

 canvas.save();

Rolling Your Own Widgets | 229

 transformation.transform(canvas);
 drawable.draw(canvas);
 canvas.restore();

 Paint paint = new Paint();
 paint.setColor(Color.BLACK);
 paint.setStyle(Paint.Style.STROKE);
 Rect r = canvas.getClipBounds();
 canvas.drawRect(r, paint);

 paint.setTextSize(10);
 paint.setColor(Color.BLUE);
 canvas.drawText(
 transformation.describe(),
 5,
 getMeasuredHeight() - 5,
 paint);
 }
}

This code begins to demonstrate the power of using a Drawable. This implementation
of TransformedViewWidget will transform any Drawable, no matter what it happens to
draw. It is no longer tied to rotating and scaling our original, hardcoded text. It can be
reused to transform both the text from the previous example and a photo captured
from the camera, as Figure 9-4 demonstrates. It could even be used to transform a
Drawable animation.

Figure 9-4. Transformed views with photos

230 | Chapter 9: Drawing 2D and 3D Graphics

Drawables make complex graphical techniques like 9-patches and animation tractable.
In addition, since they wrap the rendering process completely, Drawables can be nested
to decompose complex rendering into small reusable pieces.

Consider for a moment how we might extend the previous example to make each of
the six images fade to white over a period of a minute. Certainly, we might just change
the code in Example 9-8 to do the fade. A different—and very appealing—implemen-
tation involves writing one new Drawable.

The constructor of this new Drawable, which we’ll call FaderDrawable, will take as an
argument a reference to its target, the Drawable that it will fade to white. In addition, it
must have some notion of time, probably an integer—let’s call it t—that is incremented
by a timer. Whenever the draw method of FaderDrawable is called, it first calls the
draw method of its target. Next, however, it paints over exactly the same area with the
color white, using the value of t to determine the transparency (alpha value) of the
paint (as demonstrated in Example 9-2). As time passes, t gets larger, the white gets
increasingly opaque, and the target Drawable fades to white.

This hypothetical FaderDrawable demonstrates some of the important features of
Drawables. Note, first of all, that FaderDrawable is eminently reusable. It will fade just
about any Drawable. Also note that, since FaderDrawable extends Drawable, we can use
it anywhere we would have used its target, the Drawable that it fades to white. Any code
that uses a Drawable in its rendering process can use a FaderDrawable, without change.

Of course, a FaderDrawable could, itself, be wrapped. In fact, it is possible to achieve
very complex effects, simply by building a chain of Drawable wrappers. The Android
toolkit provides Drawable wrappers that support this strategy, including ClipDrawable,
RotateDrawable, and ScaleDrawable.

At this point, you may be mentally redesigning your entire UI in terms of Drawables.
While they are a powerful tool, they are not a panacea. There are several issues to keep
in mind when considering the use of Drawables.

You may well have noticed that they share a lot of the functionality of the View class:
location, dimensions, visibility, and so on. It’s not always easy to decide when a View
should draw directly on the Canvas, when it should delegate to a subview, and when it
should delegate to one or more Drawable objects. There is even a DrawableContainer
class that allows the grouping of several child Drawables within a parent. It is possible
to build trees of Drawables that parallel the trees of Views we’ve been using so far. In
dealing with the Android UI framework, you just have to accept that there is more than
one way to scale a cat.

One difference between the two choices is that Drawables do not implement the View
measure/layout protocol, which, you’ll recall, allows a container view to negotiate the
layout of its components in response to changing view size. When a renderable object
needs to add, remove, or lay out internal components, it’s a pretty good indication that
it should be a full-fledged View instead of a Drawable.

Rolling Your Own Widgets | 231

A second issue to consider is that, because Drawables completely wrap the drawing
process, they are not drawn like String or Rect objects. There are, for instance, no
Canvas methods that will render a Drawable at specific coordinates. You may find your-
self deliberating over whether, in order to render a certain image twice, a View.onDraw
method should use two different, immutable Drawables or a single Drawable twice, re-
setting its coordinates.

Perhaps most important, though, is a more generic problem. The reason the idea of a
chain of Drawables works is that the Drawable interface contains no information about
the internal implementation of the Drawable. When your code is passed a Drawable,
there is no way for it to know whether it is something that will render a simple image
or a complex chain of effects that rotates, flashes, and bounces. Clearly this can be a
big advantage. It can also be a problem, though.

Quite a bit of the drawing process is stateful. You set up Paint and then draw with it.
You set up Canvas clip regions and transformations and then draw through them. When
cooperating in a chain, Drawables must be very careful, if they change state, that those
changes never collide. The problem is that, when constructing a Drawable chain, the
possibility of collision cannot, by definition (they are all just Drawables), be explicit in
the object’s type. A seemingly small change might have an effect that is not desirable
and is difficult to debug.

To illustrate, consider two Drawable wrapper classes, one that is meant to shrink its
contents and another that is meant to rotate them by 90 degrees. If either is implemen-
ted by setting the transformation matrix to a specific value, composing the two may
not have the desired effect. Worse, it might work perfectly if A wraps B, but not if B
wraps A! Careful documentation of how a Drawable is implemented is essential.

Bitmaps
The Bitmap is the last member of the four essentials for drawing: something to draw (a
String, Rect, etc.), a Paint with which to draw, a Canvas on which to draw, and the
Bitmap to hold the bits. Most of the time, you don’t have to deal directly with a
Bitmap, because the Canvas provided as an argument to the onDraw method already has
one behind it. There are circumstances, though, under which you may want to use a
Bitmap directly.

A common use for a Bitmap is to cache a drawing that may be time-consuming to draw
but unlikely to change frequently. Consider, for example, a drawing program that al-
lows the user to draw in multiple layers. The layers act as transparent overlays on a
base image, and the user turns them off and on at will. It might be very expensive to
actually draw each individual layer every time onDraw gets called. Instead, it might be
faster to render the entire drawing upon first appearance, with all visible layers, and
then redraw the single layer that needs changing only when the user makes a visible
change to it.

232 | Chapter 9: Drawing 2D and 3D Graphics

The implementation of such an application might look something like Example 9-9.

Example 9-9. Bitmap caching

private class CachingWidget extends View {
 private Bitmap cache;

 public CachingWidget(Context context) {
 super(context);
 setMinimumWidth(200);
 setMinimumHeight(200);
 }

 public void invalidateCache() {
 cache = null;
 invalidate();
 }

 @Override
 protected void onDraw(Canvas canvas) {
 if (null == cache) {
 cache = Bitmap.createBitmap(
 getMeasuredWidth(),
 getMeasuredHeight(),
 Bitmap.Config.ARGB_8888);

 drawCachedBitmap(new Canvas(cache));
 }

 canvas.drawBitmap(cache, 0, 0, new Paint());
 }

 // ... definition of drawCachedBitmap

}

This widget normally just copies the cached Bitmap, cache, to the Canvas passed to
onDraw. Only if the cache is marked stale, by calling invalidateCache, will drawCached
Bitmap be called to actually render the widget.

The most common way to encounter a Bitmap is as the programmatic representation
of a graphics resource. Resources.getDrawable returns a BitmapDrawable when the re-
source is an image.

Combining these two ideas, caching an image and wrapping it in a Drawable, opens yet
another interesting window. It means anything that can be drawn can also be post-
processed! An application that used all the techniques demonstrated in this chapter
could allow a user to draw furniture in a room (creating a bitmap) and then to walk
around it (using the matrix transforms).

Rolling Your Own Widgets | 233

With Honeycomb, there have been substantial changes in Android’s
rendering architecture. These changes take advantage of the increasing
power of GPUs and create a whole new set of rules for optimizing the
way your UI is drawn. Consider View.setLayerType before creating new
bitmaps.

Bling
The Android UI framework is a lot more than just an intelligent, well-put-together GUI
toolkit. When it takes off its glasses and shakes out its hair, it can be downright sexy!
The tools mentioned here certainly do not make an exhaustive catalog. They might get
you started, though, on the path to making your application Filthy Rich.

Several of the techniques discussed in this section are close to the edges
of the Android landscape. As such, they are less well established than
the classes we discussed earlier in the chapter: the documentation is not
as thorough, some of the features are clearly in transition, and you may
even find bugs. If you run into problems, the Google Group “Android
Developers” is an invaluable resource. Questions about a particular as-
pect of the toolkit have sometimes been answered by the very person
responsible for implementing that aspect.

Be careful about checking the dates on solutions you find by searching
the Web. Some of these features are changing rapidly. Code that worked
as recently as six months ago may not work now. A corollary, of course,
is that any application that gets wide distribution is likely to be run on
platforms that have differing implementations of the features discussed
here. By using these techniques, you may limit the lifetime of your ap-
plication, and the number of devices that it will support.

The rest of this section considers a single application, much like the one used in Ex-
ample 9-6: a couple of LinearLayouts that contain multiple instances of a single widget,
each demonstrating a different graphics effect. Example 9-10 provides the key parts of
the widget, with code discussed previously, elided for brevity. The widget simply draws
a few graphical objects and defines an interface through which various graphics effects
can be applied to the rendering.

Example 9-10. Effects widget

public class EffectsWidget extends View {

 /** The effect to apply to the drawing */
 public interface PaintEffect { void setEffect(Paint paint); }

 // ...

 // PaintWidget's widget rendering method
 protected void onDraw(Canvas canvas) {

234 | Chapter 9: Drawing 2D and 3D Graphics

 Paint paint = new Paint();
 paint.setAntiAlias(true);

 effect.setEffect(paint);
 paint.setColor(Color.DKGRAY);

 paint.setStrokeWidth(5);
 canvas.drawLine(10, 10, 140, 20, paint);

 paint.setTextSize(26);
 canvas.drawText("Android", 40, 50, paint);

 paint = new Paint();
 paint.setColor(Color.BLACK);
 canvas.drawText(String.valueOf(id), 2.0F, 12.0F, paint);
 paint.setStyle(Paint.Style.STROKE);
 paint.setStrokeWidth(2);
 canvas.drawRect(canvas.getClipBounds(), paint);
 }
}

The application that uses this widget (Example 9-11) should also feel familiar. It creates
several copies of the EffectsWidget, each with its own effect. There are two special
widgets. The bottom widget in the left-hand column uses OpenGL animation. In the
right column the bottom widget is empty, but the one above it shows a button with an
animated background.

Example 9-11. Effects application

private void buildView() {
 setContentView(R.layout.main);

 LinearLayout view = (LinearLayout) findViewById(R.id.v_left);
 view.addView(new EffectsWidget(
 this,
 1,
 new EffectsWidget.PaintEffect() {
 @Override public void setEffect(Paint paint) {
 paint.setShadowLayer(1, 3, 4, Color.BLUE);
 } }));
 view.addView(new EffectsWidget(
 this,
 3,
 new EffectsWidget.PaintEffect() {
 @Override public void setEffect(Paint paint) {
 paint.setShader(
 new LinearGradient(
 0.0F,
 0.0F,
 160.0F,
 80.0F,
 new int[] { Color.BLACK, Color.RED, Color.YELLOW },
 null,
 Shader.TileMode.REPEAT));

Bling | 235

 } }));
 view.addView(new EffectsWidget(
 this,
 5,
 new EffectsWidget.PaintEffect() {
 @Override public void setEffect(Paint paint) {
 paint.setMaskFilter(
 new BlurMaskFilter(2, BlurMaskFilter.Blur.NORMAL));
 } }));

 // Not an EffectsWidget: this is the OpenGL Animation widget.
 glWidget = new GLDemoWidget(this);
 view.addView(glWidget);

 view = (LinearLayout) findViewById(R.id.v_right);
 view.addView(new EffectsWidget(
 this,
 2,
 new EffectsWidget.PaintEffect() {
 @Override public void setEffect(Paint paint) {
 paint.setShadowLayer(3, -8, 7, Color.GREEN);
 } }));
 view.addView(new EffectsWidget(
 this,
 4,
 new EffectsWidget.PaintEffect() {
 @Override public void setEffect(Paint paint) {
 paint.setShader(
 new LinearGradient(
 0.0F,
 40.0F,
 15.0F,
 40.0F,
 Color.BLUE,
 Color.GREEN,
 Shader.TileMode.MIRROR));
 } }));

 // A widget with an animated background
 View w = new EffectsWidget(
 this,
 6,
 new EffectsWidget.PaintEffect() {
 @Override public void setEffect(Paint paint) { }
 });
 view.addView(w);
 w.setBackgroundResource(R.drawable.throbber);

 w.setOnClickListener(new OnClickListener() {
 @Override public void onClick(View v) {
 ((AnimationDrawable) v.getBackground()).start();
 } });
}

236 | Chapter 9: Drawing 2D and 3D Graphics

Figure 9-5 shows what the code looks like when run. Widgets 6 and 7 are animated.
Widget 6 has a background that pulses red when clicked, and the green checkerboard
moves from left to right across widget 7. Widget 8 is unused.

Figure 9-5. Graphics effects

Shadows, Gradients, and Filters
PathEffect, MaskFilter, ColorFilter, Shader, and ShadowLayer are all attributes of
Paint. Anything drawn with Paint can be drawn under the influence of one or more
of these transformations. The top five widgets in Figure 9-5 give examples of several of
these effects.

Widgets 1 and 2 demonstrate shadows. Shadows are currently controlled by the set
ShadowLayer method. The arguments, a blur radius and x and y displacements, control
the apparent distance and position of the light source that creates the shadow with
respect to the shadowed object.

The second row of widgets demonstrates Shaders. The Android toolkit contains several
prebuilt shaders. Widgets 3 and 4 demonstrate one of them, the LinearGradient shader.
A gradient is a regular transition between colors that can be used, for instance, to give
a page background a bit more life without resorting to expensive bitmap resources.

A LinearGradient is specified with a vector that determines the direction and rate of
the color transition, an array of colors through which to transition, and a mode. The
final argument, the mode, determines what happens when a single complete transition
through the gradient is insufficient to cover the entire painted object. For instance, in
widget 4, the transition is only 15 pixels long, whereas the drawing is more than 100

Bling | 237

pixels wide. Using the mode Shader.TileMode.Mirror causes the transition to repeat,
alternating direction across the drawing. In the example, the gradient transitions from
blue to green, in 15 pixels, then from green to blue in the next 15, and so on, across
the canvas.

Animation
The Android UI toolkit offers several different animation tools. Transition
animations—which the Google documentation calls tweened animations—are sub-
classes of android.view.animation.Animation: RotateAnimation, TranslateAnimation,
ScaleAnimation, and so on. These animations are used as transitions between pairs of
views. A second type of animation, subclasses of android.graphics.drawable
.AnimationDrawable.AnimationDrawable, can be put into the background of any widget
to provide a wide variety of effects. Finally, there is a full-on animation class on top of
a SurfaceView that gives you complete control to do your own seat-of-the-pants
animation.

Because both of the first two types of animation, transition and background, are sup-
ported by View, either can be used in nearly any widget.

Transition animation

A transition animation is started by calling the View method startAnimation with an
instance of Animation (or, of course, your own subclass). Once installed, the animation
runs to completion: transition animations have no pause state.

The heart of the animation is its applyTransformation method. This method is called
to produce successive frames of the animation. Example 9-12 shows the implementa-
tion of one transformation. As you can see, it does not actually generate entire graphical
frames for the animation. Instead, it generates successive transformations to be applied
to a single image being animated. You will recall, from “Matrix transforma-
tions” on page 222, that matrix transformations can be used to make an object appear
to move. Transition animations depend on exactly this trick.

Example 9-12. Transition animation

@Override
protected void applyTransformation(float t, Transformation xf) {
 Matrix xform = xf.getMatrix();

 float z = ((dir > 0) ? 0.0f : -Z_MAX) - (dir * t * Z_MAX);
 camera.save();
 camera.rotateZ(t * 360);
 camera.translate(0.0F, 0.0F, z);
 camera.getMatrix(xform);
 camera.restore();

 xform.preTranslate(-xCenter, -yCenter);

238 | Chapter 9: Drawing 2D and 3D Graphics

 xform.postTranslate(xCenter, yCenter);
}

This particular implementation makes its target appear to spin in the screen plane (the
rotate method call) and, at the same time, to shrink into the distance (the translate
method call). The matrix that will be applied to the target image is obtained from the
Transformation object passed in that call.

This implementation uses camera, an instance of the utility class Camera. This Camera
class—not to be confused with the camera in the phone—is a utility that makes it
possible to record rendering state. It is used here to compose the rotation and transla-
tion transformations into a single matrix, which is then stored as the animation
transformation.

The first parameter to applyTransformation, named t, is effectively the frame number.
It is passed as a floating-point number between 0.0 and 1.0, and might also be under-
stood as the percent of the animation that is complete. This example uses t to increase
the apparent distance, along the z-axis (a line perpendicular to the plane of the screen),
of the image being animated, and to set the proportion of one complete rotation through
which the image has passed. As t increases, the animated image appears to rotate fur-
ther and further counterclockwise and to move farther and farther away, along the z-
axis, into the distance.

The preTranslate and postTranslate operations are necessary in order to translate the
image around its center. By default, matrix operations transform their target around
the origin (upper-left corner). If we did not perform these bracketing translations, the
target image would appear to rotate around its upper-left corner. preTranslate effec-
tively moves the origin to the center of the animation target for the translation, and
postTranslate causes the default to be restored after the translation.

If you consider what a transition animation must do, you’ll realize that it is actually
likely to compose two animations: the previous screen must be animated out and the
next one animated in. Example 9-12 supports this using the remaining, unexplained
variable, dir. Its value is either 1 or –1, and controls whether the animated image seems
to shrink into the distance or grow into the foreground. We need only find a way to
compose a shrinking and a growing animation.

This is done using the familiar Listener pattern. The Animation class defines a listener
named Animation.AnimationListener. Any instance of Animation that has a non-null
listener calls that listener once when it starts, once when it stops, and once for each
iteration in between. A listener that notices when the shrinking animation completes
and spawns a new growing animation will create exactly the effect we desire. Exam-
ple 9-13 shows the rest of the implementation of the animation.

Bling | 239

Example 9-13. Transition animation composition

public void runAnimation() {
 animateOnce(new AccelerateInterpolator(), this);
}

@Override
public void onAnimationEnd(Animation animation) {
 root.post(new Runnable() {
 public void run() {
 curView.setVisibility(View.GONE);
 nextView.setVisibility(View.VISIBLE);
 nextView.requestFocus();
 new RotationTransitionAnimation(-1, root, nextView, null)
 .animateOnce(new DecelerateInterpolator(), null);
 } });
}

void animateOnce(
 Interpolator interpolator,
 Animation.AnimationListener listener)
{
 setDuration(700);
 setInterpolator(interpolator);
 setAnimationListener(listener);
 root.startAnimation(this);
}

The runAnimation method starts the transition. The overridden AnimationListener
method, onAnimationEnd, spawns the second half. Called when the target image appears
to be far in the distance, it hides the image being animated out (the curView) and replaces
it with the newly visible image, nextView. It then creates a new animation that, running
in reverse, spins and grows the new image into the foreground.

The Interpolator class represents a nifty attention to detail. The values for t, passed
to applyTransformation, need not be linearly distributed over time. In this implemen-
tation the animation appears to speed up as it recedes, and then to slow again as
the new image advances. This is accomplished by using the two interpolators,
AccelerateInterpolator for the first half of the animation and DecelerateInterpola
tor for the second. Without the interpolator, the difference between successive values
of t, passed to applyTransformation, would be constant. This would make the anima-
tion appear to have a constant speed. The AccelerateInterpolator converts those
equally spaced values of t into values that are close together at the beginning of the
animation and much farther apart toward the end. This makes the animation appear
to speed up. DecelerateInterpolator has exactly the opposite effect. Android also pro-
vides a CycleInterpolator and LinearInterpolator for use as appropriate.

Animation composition is actually built into the toolkit, using the (perhaps confusingly
named) AnimationSet class. This class provides a convenient way to specify a list—
fortunately not a set: it is ordered and may refer to a given animation more than
once—of animations to be played, in order. In addition, the toolkit provides several

240 | Chapter 9: Drawing 2D and 3D Graphics

standard transitions: AlphaAnimation, RotateAnimation, ScaleAnimation, and
TranslateAnimation. Certainly, there is no need for these transitional animations to be
symmetric, as they are in the previous example. A new image might alpha-fade in as
the old one shrinks into a corner, or slide up from the bottom as the old one fades out.
The possibilities are endless.

Background animation

Frame-by-frame animation, as it is called in the Google documentation, is completely
straightforward: a set of frames, played in order at regular intervals. This kind of ani-
mation is implemented by subclasses of AnimationDrawable.

As subclasses of Drawable, AnimationDrawable objects can be used in any context that
any other Drawable is used. The mechanism that animates them, however, is not a part
of the Drawable itself. In order to animate, an AnimationDrawable relies on an external
service provider—an implementation of the Drawable.Callback interface—to animate
it.

The View class implements this interface and can be used to animate an AnimationDraw
able. Unfortunately, it will supply animation services only to the one Drawable object
that is installed as its background.

The good news, however, is that this is probably sufficient. A background animation
has access to the entire widget canvas. Everything it draws will appear to be behind
anything drawn by the View.onDraw method, so it would be hard to use it to implement
full-fledged sprites. Still, with clever use of the DrawableContainer class (which allows
you to animate several different animations simultaneously), and because the back-
ground can be changed at any time, it is possible to accomplish quite a bit without
resorting to implementing your own animation framework.

An AnimationDrawable in a view background is entirely sufficient to do anything from,
say, indicating that some long-running activity is taking place—maybe winged packets
flying across the screen from a phone to a tower—to simply making the background
to a button pulse.

The pulsing button example in widget 6 is illustrative and surprisingly easy to imple-
ment. Examples 9-14 and 9-15 show all you need. The animation is defined as a re-
source, and code applies it to the button. You can set a Drawable as a background using
either setBackgroundDrawable or setBackgroundResource.

Example 9-14. Frame-by-frame animation (resource)

<animation-list
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false">
 <item android:drawable="@drawable/throbber_f0" android:duration="70" />
 <item android:drawable="@drawable/throbber_f1" android:duration="70" />
 <item android:drawable="@drawable/throbber_f2" android:duration="70" />
 <item android:drawable="@drawable/throbber_f3" android:duration="70" />

Bling | 241

 <item android:drawable="@drawable/throbber_f4" android:duration="70" />
 <item android:drawable="@drawable/throbber_f5" android:duration="70" />
 <item android:drawable="@drawable/throbber_f6" android:duration="70" />
</animation-list>

Example 9-15. Frame-by-frame animation (code)

// w is a button that will "throb"
button.setBackgroundResource(R.drawable.throbber);

button.setOnClickListener(new OnClickListener() {
 @Override public void onClick(View v) {
 AnimationDrawable animation
 = (AnimationDrawable) v.getBackground();
 if (animation.isRunning()) { animation.stop(); }
 else { animation.start(); }
 // button action.
 } });

There are a couple gotchas here, though. First of all, there does not appear to be any
way to start a background animation from an Activity.onCreate method: ((Animation
Drawable) view.getBackground()).start() won’t do it. If your application’s back-
ground should be animated whenever it is visible, you’ll have to use trickery to start it.
The example implementation uses an onClick handler to start the animation. There are
suggestions on the Web that the animation can also be started successfully from a
thread that pauses briefly before calling AnimationDrawable.start.

Also, if you have worked with other UI frameworks, especially mobile UI frameworks,
you may be accustomed to painting the view background in the first couple of lines of
the onDraw method (or equivalent). If you do that here, you will paint over your ani-
mation! It is, in general, a good idea to get into the habit of using setBackground to
control the View background, whether it is a solid color, a gradient, an image, or an
animation.

Specifying a DrawableAnimation by resource is very flexible. You can specify a list of
drawable resources—any images you like—that comprise the animation. If your ani-
mation needs to be dynamic, AnimationDrawable is a straightforward recipe for creating
a dynamic drawable that can be animated in the background of a View.

Surface view animation

Full-on animation requires a SurfaceView. The SurfaceView provides a node in the view
tree—and, therefore, space on the display—on which any process at all can draw. After
you lay out and size the SurfaceView node, it receives clicks and updates, just like any
other widget. Instead of drawing, however, it simply reserves space on the screen, pre-
venting other widgets from affecting any of the pixels within its frame.

Drawing on a SurfaceView requires implementing the SurfaceHolder.Callback inter-
face. The two methods surfaceCreated and surfaceDestroyed inform the implementor

242 | Chapter 9: Drawing 2D and 3D Graphics

that the drawing surface is available for drawing, and that it has become unavailable,
respectively. The argument to both calls is an instance of yet a third class, Surface
Holder. In the interval between these two calls, a drawing routine can call the Surface
View methods lockCanvas and unlockCanvasAndPost to edit the pixels there.

If this seems complex, even alongside some of the elaborate animation discussed pre-
viously—well, it is. As usual, concurrency increases the likelihood of nasty, hard-to-
find bugs. The client of a SurfaceView must be sure, not only that access to any state
shared across threads is properly synchronized, but also that it never touches the
SurfaceView, Surface, or Canvas except in the interval between the calls to surface
Created and surfaceDestroyed. The toolkit could, clearly, benefit from a more complete
framework support for SurfaceView animation.

If you are considering SurfaceView animation, you are probably also considering
OpenGL graphics. As we’ll see, an extension is available for OpenGL animation on a
SurfaceView. It will turn up in a somewhat out-of-the-way place, though.

OpenGL Graphics
The Android platform supports OpenGL graphics in roughly the same way that a silk
hat supports rabbits. While this is certainly among the most exciting technologies in
Android, it is definitely at the edge of the map. It also appears that, just before the final
beta release, the interface underwent major changes. Much of the code and many of
the suggestions found on the Web are obsolete and no longer work.

The API V1_r2 release is an implementation of OpenGL ES 1.0 and much of ES 1.1. It
is essentially a domain-specific language embedded in Java. Someone who has been
doing gaming UIs for a while is likely to be much more comfortable developing Android
OpenGL programs than a Java programmer, even a Java UI expert.

Before discussing the OpenGL graphics library itself, we should take a minute to con-
sider exactly how pixels drawn with OpenGL appear on the display. Thus far, this
chapter has discussed the intricate View framework that Android uses to organize and
represent objects on the screen. OpenGL is a language in which an application describes
an entire scene that will be rendered by an engine that is not only outside the JVM, but
probably running on another processor altogether (the Graphics Processing Unit, or
GPU). Coordinating the two processors’ views of the screen is tricky.

The SurfaceView, discussed earlier, is nearly sufficient. Its purpose is to create a surface
on which a thread other than the UI graphics thread can draw. The tool we’d like is an
extension of SurfaceView that has a bit more support for concurrency combined with
support for OpenGL.

It turns out that there is exactly such a tool. All the demo applications in the Android
SDK distribution that do OpenGL animation depend on the utility class GLSurface
View. Since the demo applications, written by the creators of Android, use this class,
considering it for your applications seems advisable.

Bling | 243

GLSurfaceView defines an interface, GLSurfaceView.Renderer, which dramatically sim-
plifies the otherwise overwhelming complexity of using OpenGL and GLSurfaceView.
GLSurfaceView calls the getConfigSpec rendering method to get its OpenGL configura-
tion information. Two other methods, sizeChanged and surfaceCreated, are called by
the GLSurfaceView to inform the renderer that its size has changed or that it should
prepare to draw, respectively. Finally, drawFrame, the heart of the interface, is called to
render a new OpenGL frame.

Example 9-16 shows the important methods from the implementation of an OpenGL
renderer.

Example 9-16. Frame-by-frame animation with OpenGL

// ... some state set up in the constructor

@Override
public void surfaceCreated(GL10 gl) {
 // set up the surface
 gl.glDisable(GL10.GL_DITHER);

 gl.glHint(
 GL10.GL_PERSPECTIVE_CORRECTION_HINT,
 GL10.GL_FASTEST);

 gl.glClearColor(0.4f, 0.2f, 0.2f, 0.5f);
 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glEnable(GL10.GL_DEPTH_TEST);

 // fetch the checker-board
 initImage(gl);
}

@Override
public void drawFrame(GL10 gl) {
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

 GLU.gluLookAt(gl, 0, 0, -5, 0f, 0f, 0f, 0f, 1.0f, 0.0f);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 // apply the checker-board to the shape
 gl.glActiveTexture(GL10.GL_TEXTURE0);

 gl.glTexEnvx(
 GL10.GL_TEXTURE_ENV,
 GL10.GL_TEXTURE_ENV_MODE,
 GL10.GL_MODULATE);
 gl.glTexParameterx(
 GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_WRAP_S,

244 | Chapter 9: Drawing 2D and 3D Graphics

 GL10.GL_REPEAT);
 gl.glTexParameterx(
 GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_WRAP_T,
 GL10.GL_REPEAT);

 // animation
 int t = (int) (SystemClock.uptimeMillis() % (10 * 1000L));
 gl.glTranslatef(6.0f - (0.0013f * t), 0, 0);

 // draw
 gl.glFrontFace(GL10.GL_CCW);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuf);
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuf);
 gl.glDrawElements(
 GL10.GL_TRIANGLE_STRIP,
 5,
 GL10.GL_UNSIGNED_SHORT, indexBuf);
}

private void initImage(GL10 gl) {
 int[] textures = new int[1];
 gl.glGenTextures(1, textures, 0);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);

 gl.glTexParameterf(
 GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_MIN_FILTER,
 GL10.GL_NEAREST);
 gl.glTexParameterf(
 GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_MAG_FILTER,
 GL10.GL_LINEAR);
 gl.glTexParameterf(
 GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_WRAP_S,
 GL10.GL_CLAMP_TO_EDGE);
 gl.glTexParameterf(
 GL10.GL_TEXTURE_2D,
 GL10.GL_TEXTURE_WRAP_T,
 GL10.GL_CLAMP_TO_EDGE);
 gl.glTexEnvf(
 GL10.GL_TEXTURE_ENV,
 GL10.GL_TEXTURE_ENV_MODE,
 GL10.GL_REPLACE);

 InputStream in
 = context.getResources().openRawResource(R.drawable.cb);
 Bitmap image;
 try { image = BitmapFactory.decodeStream(in); }
 finally {
 try { in.close(); } catch(IOException e) { }
 }

Bling | 245

 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, image, 0);

 image.recycle();
}

The method surfaceCreated prepares the scene. It sets several OpenGL attributes that
need to be initialized only when the widget gets a new drawing surface. In addition, it
calls initImage, which reads in a bitmap resource and stores it as a 2D texture. When,
finally, drawFrame is called, everything is ready for drawing. The texture is applied to a
plane, whose vertices were set up in vertexBuf by the constructor; the animation phase
is chosen; and the scene is redrawn.

It appears that, with the Honeycomb release, OpenGL has been fully
integrated into Android graphics. According to the documentation,
Honeycomb not only supports OpenGL 2.0, but also uses it as the basis
for rendering View objects.

246 | Chapter 9: Drawing 2D and 3D Graphics

CHAPTER 10

Handling and Persisting Data

To accomplish many of the activities offered by modern mobile phones, such as track-
ing contacts, events, and tasks, a mobile operating system and its applications must be
adept at storing and keeping track of large quantities of data. This data is usually struc-
tured in rows and columns, like a spreadsheet or a very simple database. Beyond a
traditional application’s requirements for storing data, the Android application life
cycle demands rapid and consistent persistence of data for it to survive the volatility of
the mobile environment, where devices can suddenly lose power or the Android oper-
ating system can arbitrarily decide to remove your application from memory.

Android provides the light-weight but powerful SQLite relational database engine for
persisting data. Furthermore, as described in Chapter 3, the content provider feature
lets applications expose their data to other applications.

In this chapter, we provide a simple SQL tutorial so that you can learn to work with
Android SQLite persistence. We also walk you through an interesting application—
MJAndroid—that provides a real-world look at how to manipulate a database in An-
droid. Later, in Chapter 15, we’ll reference the same example to demonstrate the use
of the mapping API in Android. Chapter 12 will show you how to implement a content
provider.

Relational Database Overview
A relational database provides an efficient, structured, and generic system for managing
persistent information. With a database, applications use structured queries to modify
information in persistent two-dimensional matrices called tables (or in the original the-
oretical papers, relations). Developers write queries in a high-level language called the
Standard Query Language, or more commonly, SQL. SQL is the common language for
relational database management systems (RDBMSs) that have been a popular tool for
data management since the late 1970s. SQL became an industry-wide standard when
it was adopted by NIST in 1986 and ISO in 1987. It is used for everything from terabyte
Oracle and SQL Server installations to, as we shall see, storing email on your phone.

247

Database tables are a natural fit for data that includes many instances of the same kind
of thing—a typical occurrence in software development. For example, a contact list has
many contacts, all of which potentially have the same type of information (i.e., address,
phone number, etc.). Each “row” of data in a table stores information about a different
person, while each “column” stores a specific attribute of each person: names in one
column, address in another column, and home phone number in a third. When some-
one is related to multiple things (such as multiple addresses), relational databases have
ways of handling that too, but we won't go into such detail in this chapter.

SQLite
Android uses the SQLite database engine, a self-contained, transactional database en-
gine that requires no separate server process. Many applications and environments
beyond Android make use of it, and a large open source community actively develops
SQLite. In contrast to desktop-oriented or enterprise databases, which provide a ple-
thora of features related to fault tolerance and concurrent access to data, SQLite ag-
gressively strips out features that are not absolutely necessary in order to achieve a small
footprint. For example, many database systems use static typing, but SQLite does not
store database type information. Instead, it pushes the responsibility of keeping type
information into high-level languages, such as Java, that map database structures into
high-level types.

SQLite is not a Google project, although Google has contributed to it. SQLite has an
international team of software developers who are dedicated to enhancing the soft-
ware’s capabilities and reliability. Reliability is a key feature of SQLite. More than half
of the code in the project is devoted to testing the library. The library is designed to
handle many kinds of system failures, such as low memory, disk errors, and power
failures. The database should never be left in an unrecoverable state, as this would be
a showstopper on a mobile phone where critical data is often stored in a database.
Fortunately, the SQLite database is not susceptible to easy corruption—if it were, an
inopportune battery failure could turn a mobile phone into an expensive paperweight.

The SQLite project provides comprehensive and detailed documentation at http://www
.sqlite.org/docs.html.

The SQL Language
Writing Android applications usually requires a basic ability to program in the SQL
language, although higher-level classes are provided for the most common data-related
activities. This chapter provides a beginner’s introduction to SQLite. Although this is
not a book about SQL, we will provide you with enough detail about Android-oriented
SQL to let you implement data persistence in a wide variety of Android applications.
For more comprehensive information pertaining to the SQLite language, see http://
www.sqlite.org/lang.html. We’ll use simple SQL commands to explain the SQLite

248 | Chapter 10: Handling and Persisting Data

http://www.sqlite.org/docs.html
http://www.sqlite.org/docs.html
http://www.sqlite.org/lang.html
http://www.sqlite.org/lang.html

language, and along the way, we’ll demonstrate how to use the sqlite3 command to
see the effects those queries have on the tables they modify. You may also find the
W3Schools tutorial useful: http://www.w3schools.com/sql/sql_intro.asp.

With SQLite, the database is a simple file in the Android filesystem, which could reside
in flash or external card memory, but you will find that most applications’ databases
reside in a directory called /data/data/com.example.yourAppPackage/databases. You can
issue the ls command in the adb shell to list the databases that Android has created
for you in that directory.

The database takes care of persistence—that is, it updates the SQLite file in the way
specified by each SQL statement issued by an application. In the following text, we
describe SQLite commands as they are used inside the sqlite3 command-line utility.
Later we will show ways to achieve the same effects using the Android API. Although
command-line SQL will not be part of the application you ship, it can certainly help to
debug applications as you’re developing them. You will find that writing database code
in Android is usually an iterative process of writing Java code to manipulate tables, and
then peeking at created data using the command line.

SQL Data Definition Commands
Statements in the SQL language fall into two distinct categories: those used to create
and modify tables—the locations where data is stored—and those used to create, read,
update, and delete the data in those tables. In this section we’ll look at the former, the
data definition commands:

CREATE TABLE
Developers start working with SQL by creating a table to store data. The CREATE
TABLE command creates a new table in an SQLite database. It specifies a name,
which must be unique among the tables in the database, and various columns to
hold the data. Each column has a unique name within the table and a type (the
types are defined by SQL, such as a date or text string). The column may also specify
other attributes, such as whether values have to be unique, whether there is a de-
fault value when a row is inserted without specifying a value, and whether NULL is
allowed in the column.

A table is similar to a spreadsheet. Returning to the example of a contact database,
each row in the table contains the information for one contact. The columns in the
table are the various bits of information you collect about each individual contact:
first name, last name, birthday, and so on. We provide several examples in this
chapter that will help you to begin using our job database.

The tables created by SQL CREATE TABLE statements and the attrib-
utes they contain are called a database schema.

The SQL Language | 249

http://www.w3schools.com/sql/sql_intro.asp
http://www.sqlite.org/lang_createtable.html

DROP TABLE
This removes a table added with the CREATE TABLE statement. It takes the name of
the table to be deleted. On completion, any data that was stored in the table may
not be retrieved.

Here is some SQL code that will create and then delete a simple table for storing
contacts:

CREATE TABLE contacts (
 first_name TEXT,
 last_name TEXT,
 phone_number TEXT,
 height_in_meters REAL);

DROP TABLE contacts;

When entering commands through sqlite3, you must terminate each command with a
semicolon.

You may change the database schema after you create tables (which you may want to
do to add a column or change the default value of a column) by entering the ALTER
TABLE command.

SQLite types

You must specify a type for each column that you create in all tables that you define,
as discussed in “SQL Data Definition Commands” on page 249. SQLite supports the
following data types:

TEXT
A text string, stored using the database encoding (UTF-8, UTF-16BE, or
UTF-16LE). You will find that the TEXT type is the most common.

REAL
A floating-point value, stored as an 8-byte IEEE floating-point number.

BLOB
Arbitrary binary data, stored exactly as if it was input. You can use the BLOB data
type to store any kind of variable-length data, such as an executable file, or a
downloaded image. Generally, blobs can add a large performance overhead to a
mobile database and you should usually avoid using them. In Chapter 13, we
present an alternate scheme to store images downloaded from the Internet.

INTEGER
A signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes depending on the magnitude of
the value.

Specific information regarding SQLite types is available at http://www.sqlite.org/data
type3.html.

250 | Chapter 10: Handling and Persisting Data

http://www.sqlite.org/lang_droptable.html
http://www.sqlite.org/datatype3.html
http://www.sqlite.org/datatype3.html

Database constraints

Database constraints mark a column with particular attributes. Some constraints en-
force data-oriented limitations, such as requiring all values in a column to be unique
(e.g., a column containing Social Security numbers). Other constraints exhibit more
functional uses. Relational constraints, PRIMARY KEY and FOREIGN KEY, form the basis of
intertable relationships.

Most tables should have a particular column that uniquely identifies each given row.
Designated in SQL as a PRIMARY KEY, this column tends to be used only as an identifier
for each row and (unlike a Social Security number) has no meaning to the rest of the
world. Thus, you do not need to specify values for the column. Instead, you can let
SQLite assign incrementing integer values as new rows are added. Other databases
typically require you to specially mark the column as autoincrementing to achieve this
result. SQLite also offers an explicit AUTOINCREMENT constraint, but autoincrements pri-
mary keys by default. The incrementing values in the column take on a role similar to
an opaque object pointer in a high-level language such as Java or C: other database
tables and code in a high-level language can use the column to reference that particular
row.

When database rows have a unique primary key, it is possible to start thinking about
dependencies between tables. For example, a table used as an employee database could
define an integer column called employer_id that would contain the primary key values
of rows in a different table called employers. If you perform a query and select one or
more rows from the employers table, you can use grab their IDs and to look up em-
ployees in an employees table through the table's employer_id column. This allows a
program to find the employees of a given employer. The two tables (stripped down to
a few columns relevant to this example) might look like this:

CREATE TABLE employers (
 _id INTEGER PRIMARY KEY,
 company_name TEXT);

CREATE TABLE employees (
 name TEXT,
 annual_salary REAL NOT NULL CHECK (annual_salary > 0),
 employer_id REFERENCES employers(_id));

The idea of a table referring to another table’s primary key has formal support in SQL
as the FOREIGN KEY column constraint, which enforces the validity of cross-table refer-
ences. This constraint tells the database that integers in a column with a foreign key
constraint must refer to valid primary keys of database rows in another table. Thus, if
you insert a row into the employees table with an employer_id for a row that does not
exist in the employers table, many flavors of SQL will raise a constraint violation. This
may help you to avoid orphaned references, also known as enforcement of foreign keys.
However, the foreign key constraint in SQLite is optional, and is turned off in Android.
As of Android 2.2, you cannot rely on a foreign key constraint to catch incorrect foreign

The SQL Language | 251

key references, so you will need to take care when creating database schemas that use
foreign keys.

There are several other constraints with less far-reaching effects:

UNIQUE
Forces the value of the given column to be different from the values in that column
in all existing rows, whenever a row is inserted or updated. Any insert or update
operation that attempts to insert a duplicate value will result in an SQLite con-
straint violation.

NOT NULL
Requires a value in the column; NULL cannot be assigned. Note that a primary key
is both UNIQUE and NOT NULL.

CHECK
Takes a Boolean-valued expression and requires that the expression return true for
any value inserted in the column. An example is the CHECK (annual_salary > 0),
attribute shown earlier in the employees table.

SQL Data Manipulation Commands
Once you have defined tables using data definition commands, you can then insert your
data and query the database. The following data manipulation commands are the most
commonly used SQL statements:

SELECT
This statement provides the main tool for querying the database. The result of this
statement is zero or more rows of data, where each row has a fixed number of
columns. You can think of the SELECT statement as producing a new table with only
the rows and columns that you choose in the statement. The SELECT statement is
the most complicated command in the SQL language, and supports a broad num-
ber of ways to build relationships between data across one or more database tables.
Clauses for SQL’s SELECT command, which are all supported by the Android API,
include the following:

• FROM, which specifies the tables from which data will be pulled to fulfill the query.

• WHERE, which specifies conditions that selected rows in the tables must match to
be returned by the query.

• GROUP BY, which orders results in clusters according to column name.

• HAVING, which further limits results by evaluating groups against expressions.
You might remove groups from your query that do not have a minimum number
of elements.

• ORDER BY, which sets the sort order of query results by specifying a column name
that will define the sort, and a function (e.g., ASC for ascending, DSC for de-
scending) that will sort the rows by elements in the specified column.

252 | Chapter 10: Handling and Persisting Data

• LIMIT, which limits the number of rows in a query to the specified value (e.g.,
five rows).

Here are a few examples of SELECT statements:

SELECT * FROM contacts;

SELECT first_name, height_in_meters
 FROM contacts
 WHERE last_name = "Smith";

SELECT employees.name, employers.name
 FROM employees, employers
 WHERE employee.employer_id = employer._id
 ORDER BY employer.company_name ASC;

The first statement retrieves all the rows in the contacts table, because no WHERE
clause filters results. All columns (indicated by the asterisk, *) of the rows are re-
turned. The second statement gets the names and heights of the members of the
Smith family. The last statement prints a list of employees and their employers,
sorted by company name.

For more information, see http://www.sqlite.org/lang_select.html.

INSERT
This statement adds a new data row to a specified database table along with a set
of specified values of the proper SQLite type for each column (e.g., 5 for an
integer). The insert may specify a list of columns affected by the insert, which may
be less than the number of columns in the table. If you don’t specify values for all
columns, SQLite will fill in a default value for each unspecified column, if you
defined one for that column in your CREATE TABLE statement. If you don’t provide
a default, SQLite uses a default of NULL.

Here are a few examples of INSERT statements:

INSERT INTO contacts(first_name)
 VALUES("Thomas");

INSERT INTO employers VALUES(1, "Acme Balloons");
INSERT INTO employees VALUES("Wile E. Coyote", 100000.000, 1);

The first adds a new row to the contacts for someone whose first name is Thomas
and whose last name, phone number, and height are unknown (NULL). The second
adds Acme Balloons as a new employer, and the third adds Wile E. Coyote as an
employee there.

For more information, see http://www.sqlite.org/lang_insert.html.

UPDATE
This statement modifies some rows in a given table with new values. Each assign-
ment specifies a table name and a given function that should provide a new value
for the column. Like SELECT, you can specify a WHERE clause that will identify the
rows that should be updated during an invocation of the UPDATE command. Like

The SQL Language | 253

http://www.sqlite.org/lang_select.html
http://www.sqlite.org/lang_insert.html

INSERT, you can also specify a list of columns to be updated during command ex-
ecution. The list of columns works in the same manner as it does with INSERT. The
WHERE clause is critical; if it matches no rows, the UPDATE command will have no
effect, but if the clause is omitted, the statement will affect every row in the table.

Here are a few examples of UPDATE statements:

UPDATE contacts
 SET height_in_meters = 10, last_name = "Jones"

UPDATE employees
 SET annual_salary = 200000.00
 WHERE employer_id = (
 SELECT _id
 FROM employers
 WHERE company_name = "Acme Balloons");

The first claims that all your friends are giants with the last name Jones. The second
is a more complex query. It gives a substantial raise to all the employees of Acme
Balloons.

For more information, see http://www.sqlite.org/lang_update.html.

Additional Database Concepts
You now know enough simple SQL to be able to start working with databases in An-
droid. As the applications you write grow in sophistication, you are likely to make use
of the following SQL constructs that we won’t cover in detail in this book:

Inner join
An inner join selects data across two or more tables where data is related by a
foreign key. This type of query is useful for assembling objects that need to be
distributed across one or more tables. The employee/employer example earlier
demonstrated an inner join. As we’ve noted, since Android does not enforce foreign
keys, you can get into trouble here if a key for a join does not exist as a valid cross-
table reference—that is, a foreign key column actually points to a primary key of
a row in another table that actually exists.

Compound query
SQLite supports complex database manipulations through combinations of state-
ments. One of the update examples shown earlier was a compound query with a
SELECT embedded in an UPDATE.

Triggers
A database trigger allows a developer to write SQL statements that will receive a
callback when particular database conditions occur.

For detailed information on these topics, we suggest you consult a book on SQL, such
as Learning SQL by Alan Beaulieu or SQL Pocket Guide by Jonathan Gennick, both
published by O’Reilly.

254 | Chapter 10: Handling and Persisting Data

http://www.sqlite.org/lang_update.html
http://oreilly.com/catalog/9780596520847
http://oreilly.com/catalog/0636920013471

Database Transactions
Database transactions make sequences of SQL statements atomic: either all statements
succeed or none of them have any effect on the database. This can be important, for
instance, if your app encounters an unfortunate occurrence such as a system crash. A
transaction will guarantee that if the device fails partway through a given sequence of
operations, none of the operations will affect the database. In database jargon, SQLite
transactions support the widely recited ACID transaction properties: http://en.wikipe
dia.org/wiki/ACID.

With SQLite, every database operation that modifies a database runs in its own data-
base transaction, which means a developer can be assured that all values of an insert
will be written if the statement succeeds at all. You can also explicitly start and end a
transaction so that it encompasses multiple statements. For a given transaction, SQLite
does not modify the database until all statements in the transaction have completed
successfully.

Given the volatility of the Android mobile environment, we recommend that in addition
to meeting the needs for consistency in your app, you also make liberal use of trans-
actions to support fault tolerance in your application.

Example Database Manipulation Using sqlite3
Now that you understand the basics of SQL as it pertains to SQLite, let’s have a look
at a simple database for storing video metadata using the sqlite3 command-line tool
and the Android debug shell, which you can start by using the adb command. Using
the command line will allow us to view database changes right away, and will provide
some simple examples of how to work with this useful database debugging tool. SQLite
has more information on sqlite3 at http://www.sqlite.org/sqlite.html. Note that it is likely
easiest at first to run this example using the Android emulator, since you will need root
access in order to run it on a device.

We’ll get the example started by initializing the database:

$ adb shell
cd /data/data/
mkdir com.oreilly.demo.pa.ch10.sql
cd com.oreilly.demo.pa.ch10.sql
mkdir databases
cd databases
#
sqlite3 simple_video.db
SQLite version 3.6.22
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite>

The SQL Language | 255

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID
http://www.sqlite.org/sqlite.html

Note that developers should not create these directories by hand, as we
have done in this example, since Android will create them during in-
stallation of an application. Directory creation is merely useful for this
particular example because we do not yet have an application in which
the directories would have been automatically created.

The sqlite3 command line accepts two kinds of commands: legal SQL, and single-word
commands that begin with a period (.). You can see the first (and probably most im-
portant!) of these in the introduction message: .help. Try it out, just to get an idea of
the options available to you:

sqlite> .help
.bail ON|OFF Stop after hitting an error. Default OFF
.databases List names and files of attached databases
.dump ?TABLE? ... Dump the database in a SQL text format
.echo ON|OFF Turn command echo on or off
.exit Exit this program
.explain ON|OFF Turn output mode suitable for EXPLAIN on or off.
.header(s) ON|OFF Turn display of headers on or off
.help Show this message
.import FILE TABLE Import data from FILE into TABLE
.indices TABLE Show names of all indices on TABLE
.load FILE ?ENTRY? Load an extension library
.mode MODE ?TABLE? Set output mode where MODE is one of:
 csv Comma-separated values
 column Left-aligned columns. (See .width)
 html HTML <table> code
 insert SQL insert statements for TABLE
 line One value per line
 list Values delimited by .separator string
 tabs Tab-separated values
 tcl TCL list elements
.nullvalue STRING Print STRING in place of NULL values
.output FILENAME Send output to FILENAME
.output stdout Send output to the screen
.prompt MAIN CONTINUE Replace the standard prompts
.quit Exit this program
.read FILENAME Execute SQL in FILENAME
.schema ?TABLE? Show the CREATE statements
.separator STRING Change separator used by output mode and .import
.show Show the current values for various settings
.tables ?PATTERN? List names of tables matching a LIKE pattern
.timeout MS Try opening locked tables for MS milliseconds
.timer ON|OFF Turn the CPU timer measurement on or off
.width NUM NUM ... Set column widths for "column" mode

There’s another important command in this list: .exit. Remember it! It’s how you get
out of here. Alternatively, you can quit with the Ctrl-D keystroke.

Another important thing to remember is that every SQL command needs to be termi-
nated with a semicolon. If you see something like this:

256 | Chapter 10: Handling and Persisting Data

sqlite> select * from video
...>

it just means SQLite thinks you’ve started to enter SQL, and it is waiting for the ; at
the end. Note that the . commands do not need to be terminated by a semicolon.

We’ve used ls as an example of a command a user might have absent-
mindedly typed if he forgot he was using sqlite3. ls is not actually a
sqlite3 command; if you type ; after ls, sqlite will complain with an
error, and then you can enter correct dot commands or sql statements.

Most of the “dot” commands aren’t very interesting at this point, because this database
is still empty. So let’s add some data:

sqlite> create table video (
 ...> _id integer primary key,
 ...> title text,
 ...> description text,
 ...> url text);

These lines create a new table called video. The types of the columns are integer and
text. The table contains a primary key called _id. This particular column name is not
chosen accidentally. Android requires the use of this exact name in order for the table
to work with its cursor system.

We can see the newly created tables using the “dot” command .table:

sqlite> .table
video
sqlite>

Next we’ll go through a few different queries that illustrate the SQL concepts we in-
troduced earlier, and that an application based on these tables. First, let’s insert some
data into our new tables so that our queries return some example results:

INSERT INTO video (_id, title, url)
 VALUES(1, "Epic Fail Car", "http://www.youtube.com/watch?v=01ynapTnYVkeGE");
INSERT INTO video (_id, title, url)
 VALUES(2, "Epic Fail Bicycle", "http://www.youtube.com/watch?v=7n7apTnYVkeGE");
INSERT INTO video (_id, title, url)
 VALUES(3, "Epic Fail Wagon", "http://www.youtube.com/watch?v=m0iGn2c47LA");
INSERT INTO video (_id, title, url)
 VALUES(4, "Epic Fail Sidewalk", "http://www.youtube.com/watch?v=m0iGn2cNcNo");
INSERT INTO video (_id, title, url)
 VALUES(5, "Epic Fail Motorcycle",
 "http://www.youtube.com/watch?v=7n7apBB8qkeGE");

Be careful to balance your quotes. If you enter a single quote, sqlite3 will prompt you
forever, until it gets the match.

In this example, we did not enter values for all the columns in the table. The contents
of the parentheses after the INTO phrase in the statement list the columns into which

The SQL Language | 257

the statement will put data. The parentheses after the VALUES phrase contain the values
themselves, in the same order.

Now suppose you want to find the names of all the videos that have the word fragment
cycle in them. Use a SELECT query:

sqlite> SELECT title FROM video WHERE title LIKE "%cycle%";
Epic Fail Bicycle
Epic Fail Motorcycle

Sqlite3 prints the rows one to a line. In the example, we capitalized SQL reserved words
to help keep syntax clear. It is not necessary to do so. They can be uppercase, lowercase,
or mixed case.

The example also shows the rudimentary pattern matching available in SQL. The key-
word LIKE, combined with the wildcard percent sign character (%), allows you to match
parts of strings.

Suppose now that we’d like all the videos, with their URLs, sorted in reverse alpha-
betical order by title:

sqlite> SELECT title, url FROM video ORDER BY title DESC;
Epic Fail Wagon|http://www.youtube.com/watch?v=m0iGn2c47LA
Epic Fail Sidewalk|http://www.youtube.com/watch?v=m0iGn2cNcNo
Epic Fail Motorcycle|http://www.youtube.com/watch?v=7n7apBB8qkeGE
Epic Fail Car|http://www.youtube.com/watch?v=01ynapTnYVkeGE
Epic Fail Bicycle|http://www.youtube.com/watch?v=7n7apTnYVkeGE

You can see that sqlite3 uses the pipe character (|) to separate the values in different
columns.

We didn’t add descriptions for our videos. Let’s add just one, now:

sqlite> UPDATE video SET description="Crash!" WHERE title LIKE "%Car";
sqlite> UPDATE video SET description="Trip!" WHERE title LIKE '%Sidewalk%';
sqlite> SELECT title, description FROM video WHERE NOT description IS NULL;
Epic Fail Car|Crash!
Epic Fail Sidewalk|Trip!

Finally, let’s delete a record using its ID:

sqlite> DELETE FROM video WHERE _id = 1;
sqlite> SELECT _id, description FROM videos;
2|Epic Fail Bicycle
3|Epic Fail Wagon
4|Epic Fail Sidewalk
5|Epic Fail Motorcycle

SQL and the Database-Centric Data Model for Android
Applications
Now that you have some basic SQL programming knowledge, we can start thinking
about how to put it to use in an Android application. Our goal is to create robust

258 | Chapter 10: Handling and Persisting Data

applications based on the popular Model-View-Controller (MVC) pattern that under-
lies well-written UI programs, specifically in a way that works well for Android. Wiki-
pedia has background information on MVC at http://en.wikipedia.org/wiki/Model_view
_controller.

One fundamental difference between mobile phone apps and desktop apps is how they
handle persistence. Traditional desktop-based applications—word processors, text
editors, drawing programs, presentation programs, and so on—often use a document-
centric form of the MVC pattern. They open a document, read it into memory, and
turn it into objects in memory that form the data model. Such programs will make views
for the data model, process user input through their controller, and then modify the
data model (Figure 10-1). The key consequence of this design is that you explicitly open
and save documents in order to make the data model persist between program invo-
cations. We’ve seen how user interface components work in Android. Next we’ll
explore the Android APIs for database manipulation, which will prepare you to im-
plement an application data model that works in a new way.

Figure 10-1. Document-centric applications, which implement a data model with in-memory objects

Robust use of Android combines data models and user interface elements in a different
manner. Apps run on mobile devices with limited memory, which can run out of battery
power at unpredictable and possibly inopportune times. Small mobile devices also
place a premium on reducing the interactive burden on the user: reminding a user he
ought to save a document when he is trying to answer a phone call is not a good user
experience. The whole concept of a document is absent in Android. The user should
always have the right data at hand and be confident her data is safe.

To make it easy to store and use application data incrementally, item by item, and
always have it in persistent memory without explicitly saving the whole data model,
Android provides support in its database, view, and activity classes for database-centric
data (Figure 10-2). We’ll explain how to use Android database classes to implement
this kind of model.

The Android Database Classes
This section introduces the Java classes that give you access to the SQLite functions
described earlier in the chapter, with the data-centric model we just described in mind:

The Android Database Classes | 259

http://en.wikipedia.org/wiki/Model_view_controller
http://en.wikipedia.org/wiki/Model_view_controller

SQLiteDatabase
Android’s Java interface to its relational database, SQLite. It supports an SQL
implementation rich enough for anything you’re likely to need in a mobile appli-
cation, including a cursor facility.

Cursor
A container for the results of a database query that supports an MVC-style obser-
vation system. Cursors are similar to JDBC result sets and are the return value of
a database query in Android. A cursor can represent many objects without requir-
ing an instance for each one. With a cursor, you can move to the start of query
results and access each row one at a time as needed. To access cursor data, you call
methods named as Cursor.getAs*(int columnNumber) (e.g., getAsString). The val-
ues the cursor will return depend on the current cursor index, which you can
increment by calling Cursor.moveToNext, or decrement by calling Cursor.moveTo
Previous, as needed. You can think of the current index of the cursor as a pointer
to a result object.

Cursors are at the heart of the basis for Android MVC, which we will cover in detail
in Chapter 12.

SQLiteOpenHelper
Provides a life cycle framework for creating and upgrading your application data-
base. It’s quite helpful to use this class to assist with the critical task of transitioning
the data from one version of an application to a possible new set of database tables
in a new version of an application.

SQLiteQueryBuilder
Provides a high-level abstraction for creating SQLite queries for use in Android
applications. Using this class can simplify the task of writing a query since it saves
you from having to fiddle with SQL syntax yourself.

Database Design for Android Applications
In the next section, we’ll examine some code from Chapter 12 that deals with persistent
storage of video-related metadata information: title, description, and video URL. This
code resides inside an Android content provider, which we feel is an appropriate loca-

Figure 10-2. Android support for a data model that mostly resides in a database

260 | Chapter 10: Handling and Persisting Data

tion for database code. Without explaining much about content providers, we’ll discuss
how to write a database for one. Chapter 12 explains in detail how to write a content
provider. The following code will help us illustrate how to create and use an SQLite
database in Android. This application will use roughly the same database that we just
examined using the sqlite3 command-line tool. This time, though, we’ll be writing
code that uses the Android API to manipulate the data.

Basic Structure of the SimpleVideoDbHelper Class
In our example, the SimpleFinchVideoContentProvider.java file encapsulates all the
SQL logic necessary to work with the simple_video database in Android. Applications
that need access to the persistent data in this database interact with the provider and
the cursors it supplies, as we’ll explain in Chapter 12. Clients are completely insulated
from the details of how the data is actually stored. This is good programming practice
and should be emulated in all your Android applications that use databases.

For now, since we are focusing on how to use databases in Android, it’s sufficient to
know that SimpleVideoDbHelper is the model of the database in the provider: everything
specific to the implementation of the database—its name, the names of its columns,
the definitions of its tables—takes effect in this class. For a large, complex database, of
course, the helper class may be much more complex and be composed of several
components.

SimpleVideoDbHelper inherits from the abstract SQLiteOpenHelper class, and therefore
must override the onCreate and onUpgrade methods. The onCreate method is automat-
ically called when the application starts for the first time. Its job is to create the database.
When new versions of the application ship, it may be necessary to update the database,
perhaps adding tables, adding columns, or even changing the schema entirely. When
this is necessary, the task falls to the onUpgrade method, which is called whenever the
DATABASE_VERSION in the call to the constructor is different from the one stored with the
database. When you ship a new version of a database, you must increment the version
number:

public static final String VIDEO_TABLE_NAME = "video";

public static final String DATABASE_NAME = SIMPLE_VIDEO + ".db";
private static int DATABASE_VERSION = 2;

public static final int ID_COLUMN = 0;
public static final int TITLE_COLUMN = 1;
public static final int DESCRIPTION_COLUMN = 2;
public static final int TIMESTAMP_COLUMN = 3;
public static final int QUERY_TEXT_COLUMN = 4;
public static final int MEDIA_ID_COLUMN = 5;

private static class SimpleVideoDbHelper extends SQLiteOpenHelper {
 private SimpleVideoDbHelper(Context context, String name,
 SQLiteDatabase.CursorFactory factory)
 {

Database Design for Android Applications | 261

 super(context, name, factory, DATABASE_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase sqLiteDatabase) {
 createTable(sqLiteDatabase);
 }

 private void createTable(SQLiteDatabase sqLiteDatabase) {
 String qs = "CREATE TABLE " + VIDEO_TABLE_NAME + " (" +
 FinchVideo.SimpleVideos._ID +
 " INTEGER PRIMARY KEY AUTOINCREMENT, " +
 FinchVideo.SimpleVideos.TITLE_NAME + " TEXT, " +
 FinchVideo.SimpleVideos.DESCRIPTION_NAME + " TEXT, " +
 FinchVideo.SimpleVideos.URI_NAME + " TEXT);";
 sqLiteDatabase.execSQL(qs);
 }

 @Override
 public void onUpgrade(SQLiteDatabase sqLiteDatabase,
 int oldv, int newv)
 {
 sqLiteDatabase.execSQL("DROP TABLE IF EXISTS " +
 VIDEO_TABLE_NAME + ";");
 createTable(sqLiteDatabase);
 }
}

The general elements associated with SimpleVideoDbHelper code are:

Constants
The SimpleVideoDbHelper class defines two important constants:

DATABASE_NAME
This holds the filename of the database, simple_video.db in this case.
This names the actual SQLite database file. Recall that we mentioned this file
resides in the following path, and that Android will take care to create the
database file for you: /data/data/com.oreilly.demo.pa.finchvideo/databases/sim-
ple_video.db.

DATABASE_VERSION
This defines the database version, which you choose arbitrarily and increment
whenever you change the database schema. If the version of the database on
the machine is less than DATABASE_VERSION, the system runs your onUpgrade
method to upgrade the database to the current level.

VIDEO_TABLE_NAME
This is the name of the only table in our simple database.

*_NAME
These are the names of the columns in the database. As mentioned earlier, it
is essential to define a column named _id and use it as the primary key, for any
table that you will access through a cursor.

262 | Chapter 10: Handling and Persisting Data

Constructor
The constructor for the database in this provider, SimpleVideoDbHelper, uses the
super function to call its parent’s constructor. The parent does most of the work
of creating the database object.

onCreate
When an Android application attempts to read or write data to a database that
does not exist, the framework executes the onCreate method. The onCreate method
in the YouTubeDbHelper class shows one way to create the database. If initializing
the database required a substantial amount of SQL code, it might be preferable to
keep the code in the strings.xml resource file. This might make the Java code much
more readable. But it also forces a developer modifying the code to look in two
separate files to see what’s really going on. Of course, if a program has a simple
database, it might be easier to just write the SQL in Java, as we have done in
SimpleVideoDbHelper, or if you use a query builder, there may be no SQL at all.

If you intend to load your SQL from a String resource, you must
take care of a change to the string mentioned only briefly in the
Android documentation: escape all single quotes and double
quotes with a backslash (changing " to \" and ' to \') within a
resource string, or enclose the entire string in either single or double
quotes. You should also turn off formatting in the string, using the
formatted="false" attribute. For example:

<string name="sql_query" formatted="false">
 SELECT * FROM videos WHERE name LIKE \"%cycle%\"
</string>

The onCreate method doesn’t actually have to create the database. It is passed a
brand-new, empty database and must completely initialize it. In SimpleVideoDb
Helper, this is a simple task and is accomplished with the call to createVideosTable.

onUpdate
The onUpdate method for SimpleVideoContentProvider is very simple: it deletes the
database. When the provider tries to use it later, Android will call the onCreate
method because it does not exist. While such a crude approach might be acceptable
in this extremely simple case, a provider intended only as a cache for network data,
it would certainly not be acceptable for, say, a database of contacts! Your customers
won’t be very happy if they have to rekey their information each time they upgrade
software versions. So our onUpdate method won’t work very well in real life. In
general, the onUpdate method will have to recognize all previous versions of data-
bases used by an application and have a data-safe strategy for converting those
databases to the most recent format. A larger application would have several up-
grade scripts, one for each version that might be out in the wild. The application
would then execute each upgrade script in turn until the database was completely
up-to-date.

Database Design for Android Applications | 263

createVideosTable
We created this function to encapsulate the SQL code that creates our table.

Using the Database API: MJAndroid
In this section, we present a more advanced example application, called MJAndroid,
that demonstrates the use of a small database for a hypothetical job-searching appli-
cation. In this chapter, we explore the data persistence aspects of this program. In
Chapter 15, we take a look at how the application integrates mapping features to show
job query results on a map. First we’ll explain the application in a bit more detail.

Android and Social Networking
One of the great promises of Android mobile phones is their ability to run applications
that enhance opportunities for social networking among users. This promise echoes
the reality of the Internet—the first generation of Internet applications were about user
access to information, and many of those applications have been very popular. The
second wave of Internet applications were about connecting users to one another. Ap-
plications such as Facebook, YouTube, and many others enhance our ability to connect
with people of similar interests, and allow the application users to provide some or all
of the content that makes the application what it is. Android has the potential to take
that concept and add a new dimension—mobility. It’s expected that a whole new gen-
eration of applications will be built for users of mobile devices: social networking ap-
plications that are easy to use while walking down the street, applications that are aware
of the user’s location, applications that allow the easy sharing of content-rich infor-
mation like pictures and videos, etc. MJAndroid provides a concrete example of how
Android can address this growing niche.

In the case of the MJAndroid MicroJobs application, the user is trying to locate a tem-
porary job in her geographic vicinity, where she can work for a few hours to earn some
extra money. The premise is that employers looking for temporary help have entered
available jobs, descriptions, hours, and offered wages in a web-based database that is
accessible from Android mobile phones. People looking for a few hours’ work can use
the MicroJobs application to access that database, look for jobs in their immediate area,
communicate with friends about potential employers and potential jobs, and call the
employer directly if they are interested in the position. For our purposes here, we won’t
create an online service, we’ll just have some canned data on the phone. The application
has a number of features that extend that central idea in ways that are unique to mobile
handsets:

Mapping
The Android mobile phone environment provides support for dynamic, interactive
maps, and we’re going to take full advantage of its capabilities. In “The MapView
and MapActivity” on page 374 you’ll see that with very little code, we’ll be able

264 | Chapter 10: Handling and Persisting Data

to show dynamic maps of our local neighborhood, getting location updates from
the internal GPS to automatically scroll the map as we move. We’ll be able to scroll
the map in two directions, zoom in and out, and even switch to satellite views.

Finding friends and events
Again in Chapter 15, we’ll see a graphic overlay on the map that will show us where
jobs are located in the area, and will allow us to get more information about a job
by just touching its symbol on the map. We will access Android’s contact manager
application to get address information for our friends (telephone numbers, instant
messaging addresses, etc.), and the MicroJobs database to get more information
about posted jobs.

Instant messaging
When we find friends we want to chat with, we will be able to contact them via
instant messages, by trading SMS messages with our friends’ mobile phones.

Talking with friends or employers
If IMing is too slow or cumbersome, we’ll be able to easily place a cellular call to
our friends, or call the employer offering a job.

Browsing the Web
Most employers have an associated website that provides more detailed informa-
tion. We’ll be able to select an employer off a list or off the map and quickly zero
in on their website to find out, for example, what the place looks like.

This is a fun application that could easily be developed further into a full-blown service,
but our intent in this book is to show you just how easy it is to develop and combine
these powerful capabilities in your own application. Like all the code in this book, the
complete code is available for download. Although it’s not absolutely required in order
to understand the material in the book, you are strongly encouraged to download the
source to your own computer. That way you’ll have it readily available for reference,
and it will be easy to cut sections of code and paste them into your own applications
as you move on. For now, we’ll use the MJAndroid example to provide a “close to real
world” example to dig into the Android database API.

Figure 10-3 shows the screen displayed by MJAndroid when you first run it. It’s a map
of your local area, overlaid with a few buttons and pins.

The Source Folder (src)
The package name for MJAndroid is com.microjobsinc.mjandroid. Eclipse lays out the
equivalent directory structure, just as it would for any Java project, and shows you the
whole thing when you open the src folders. In addition to these package folders there
is a folder named for the package that contains all the Java files for the project. These
include the following files:

Using the Database API: MJAndroid | 265

MicroJobs.java
The main source file for the application—the activity that starts first, displays the
map that is the centerpiece of the application, and calls other activities or services
as necessary to implement different features in the user interface.

MicroJobsDatabase.java
A database helper that provides easy access to the local MJAndroid database. This
is where all the employer, user, and job information is stored, using SQLite.

AddJob.java and EditJob.java
Part of the database portion of MJAndroid. They provide screens that the user can
use to add or edit job entries in the database.

MicroJobsDetail.java
The Activity that displays all the detail information about a particular job
opportunity.

MicroJobsEmpDetail.java
The Activity that displays information about an employer, including name, ad-
dress, reputation, email address, phone number, and so forth.

Figure 10-3. MJAndroid opening screenshot

266 | Chapter 10: Handling and Persisting Data

MicroJobsList.java
The Activity that displays a list of jobs (as opposed to the map view in Micro-
Jobs.java). It shows a simple list of employers and jobs, and allows the user to sort
the list by either field, as well as to call up specifics about the job or employer by
touching the name on the list.

Loading and Starting the Application
Running MJAndroid from the SDK is complicated by the fact that the application uses
a MapView. Android requires a special Maps API key whenever you use a MapView, and
the key is tied to your particular development machine. We learned in “Application
Signing” on page 95 about the requirements for signing and starting your application,
and since this application relies on the maps API, you will need to have set up your API
key for the example to work properly. To start MJAndroid, just open and run the eclipse
project for this chapter, as you have done for other chapters.

Database Queries and Reading Data from the Database
There are many ways to read data from an SQL database, but they all come down to a
basic sequence of operations:

1. Create a SQL statement that describes the data you need to retrieve.

2. Execute that statement against the database.

3. Map the resultant SQL data into data structures that the language you’re working
in can understand.

This process can be very complex in the case of object-relational mapping software, or
relatively simple but labor-intensive when writing the queries directly into your appli-
cation. Object relational mapping (ORM, at http://en.wikipedia.org/wiki/Object_rela
tional_mapping) tools shield your code from the complexities of database programming
and object mapping by moving that complexity out of your immediate field of vision.
Your code may be more robust in the face of database changes, but at the cost of
complex ORM setup and maintenance. Currently, it’s not typical to use an ORM in an
Android application.

The simple approach of writing queries directly into your application works well only
for very small projects that will not change much over time. Applications directly con-
taining database code have some added risk of fragility, because when the database
schema changes, any code that references the schema must be examined and potentially
rewritten.

A common middle-ground approach is to sequester all the database logic into a set of
objects whose sole purpose is to translate application requests into database requests
and deliver the results back to the application. This is the approach we have taken with
the MJAndroid application; all the database code is contained in the single class Micro

Using the Database API: MJAndroid | 267

http://en.wikipedia.org/wiki/Object_relational_mapping
http://en.wikipedia.org/wiki/Object_relational_mapping

JobsDatabase, which also extends SQLiteOpenHelper. But with SimpleFinchVideoCon
tentProvider the database is simple enough that we don’t bother to use external strings.

When not used with a content provider, Android gives us the ability to customize
cursors, and we use that ability to further reduce code dependencies by hiding all the
information about each specific database operation inside a custom cursor. The inter-
face to the caller in the getJobs method of MicroJobsDatabase appears first in the code
that follows. The method’s job is to return a JobsCursor filled with jobs from the da-
tabase. The user can choose (through the single parameter passed to the getJobs
method) to sort jobs by either the title column or the employer_name column:

public class MicroJobsDatabase extends SQLiteOpenHelper {
...
 /** Return a sorted JobsCursor
 * @param sortBy the sort criteria
 */
 public JobsCursor getJobs(JobsCursor.SortBy sortBy) {
 String sql = JobsCursor.QUERY + sortBy.toString();
 SQLiteDatabase d = getReadableDatabase();
 JobsCursor c = (JobsCursor) d.rawQueryWithFactory(
 new JobsCursor.Factory(),
 sql,
 null,
 null);
 c.moveToFirst();
 return c;
 }
...
 public static class JobsCursor extends SQLiteCursor{
 public static enum SortBy{
 title,
 employer_name
 }
 private static final String QUERY =
 "SELECT jobs._id, title, employer_name, latitude, longitude, status "+
 "FROM jobs, employers "+
 "WHERE jobs.employer_id = employers._id "+
 "ORDER BY ";
 private JobsCursor(SQLiteDatabase db, SQLiteCursorDriver driver,
 String editTable, SQLiteQuery query) {
 super(db, driver, editTable, query);
 }
 private static class Factory implements SQLiteDatabase.CursorFactory{
 @Override
 public Cursor newCursor(SQLiteDatabase db,
 SQLiteCursorDriver driver, String editTable,
 SQLiteQuery query) {
 return new JobsCursor(db, driver, editTable, query);
 }
 }
 public long getColJobsId(){
 return getLong(getColumnIndexOrThrow("jobs._id"));
 }
 public String getColTitle(){

268 | Chapter 10: Handling and Persisting Data

 return getString(getColumnIndexOrThrow("title"));
 }
 public String getColEmployerName(){
 return getString(getColumnIndexOrThrow("employer_name"));
 }
 public long getColLatitude(){
 return getLong(getColumnIndexOrThrow("latitude"));
 }
 public long getColLongitude(){
 return getLong(getColumnIndexOrThrow("longitude"));
 }
 public long getColStatus(){
 return getLong(getColumnIndexOrThrow("status"));
 }
 }

Here are some of the highlights of the code:

Function that fashions a query based on the user’s requested sort column (the
sortBy parameter) and returns results as a cursor.

Creates the query string. Most of the string is static (the QUERY variable), but this line
tacks on the sort column. Even though QUERY is private, it is still available to the
enclosing class. This is because the getJobs method and the JobsCursor class are
both within the MicroJobsDatabase class, which makes JobsCursor’s private data
members available to the getJobs method.

To get the text for the sort column, we just run toString on the enumerated param-
eter passed by the caller. We could have defined an associative array, which would
give us more flexibility in naming variables, but this solution is simpler. Additionally,
the names of the columns pop up quite nicely using your IDE’s autocompletion.

Retrieves a handle to the database.

Creates the JobsCursor cursor using the SQLiteDatabase object’s rawQueryWith
Factory method. This method lets us pass a factory method that Android will use
to create the exact type of cursor we need. If we had used the simpler rawQuery
method, we would get back a generic Cursor lacking the special features of
JobsCursor.

As a convenience to the caller, moves to the first row in the result. This way the
cursor is returned ready to use. A common mistake is to forget the moveToFirst call
and then pull your hair out trying to figure out why the Cursor object is throwing
exceptions.

The cursor is the return value.

Class that creates the cursor returned by getJobs.

Simple way to provide alternate sort criteria: store the names of columns in an
enum. This type is used in item 2.

Using the Database API: MJAndroid | 269

Constructor for the customized cursor. The final argument is the query passed by
the caller.

Factory class to create the cursor, embedded in the JobsCursor class.

Creates the cursor from the query passed by the caller.

Returns the cursor to the enclosing JobsCursor class.

Convenience functions that extract particular columns from the row under the cur-
sor. For instance, getColTitle returns the value of the title column in the row
currently referenced by the cursor. This separates the database implementation from
the calling code and makes that code easier to read.

While subclassing a cursor is a nice trick for using a database within a
single application, it won’t work with the content provider API, since
Android does not have a way for cursor subclasses to be shared across
processes. Additionally, the MJAndroid application is a contrived ex-
ample to demonstrate using a database: we present an application with
a more robust architecture that you might see in a production applica-
tion in Chapter 13.

A sample use of the database follows. The code gets a cursor, sorted by title, through
a call to getJobs. It then iterates through the jobs:

MicroJobsDatabase db = new MicroJobsDatabase(this);
JobsCursor cursor = db.getJobs(JobsCursor.SortBy.title);

for (int rowNum = 0; rowNum < cursor.getCount(); rowNum++) {
 cursor.moveToPosition(rowNum);
 doSomethingWith(cursor.getColTitle());
}

Here are some of the highlights of the code:

Creates a MicroJobsDatabase object. The argument, this, represents the context as
discussed previously.

Creates the JobsCursor cursor, referring to the SortBy enumeration discussed earlier.

Uses generic Cursor methods to iterate through the cursor.

Still within the loop, invokes one of the custom accessor methods provided by
JobsCursor to “do something” chosen by the user with the value of each row’s title
column.

Using the query method

While it’s helpful for applications that execute nontrivial database operations to isolate
their SQL statements as shown previously, it’s also convenient for applications with
simple database operations, such as our SimpleFinchVideoContentProvider, to make

270 | Chapter 10: Handling and Persisting Data

use of the method SQLiteDatabase.query, as shown in the following video-related
example:

videoCursor = mDb.query(VIDEO_TABLE_NAME, projection,
 where, whereArgs,
 null, null, sortOrder);

As with SQLiteDatabase.rawQueryWithFactory shown previously, the return value of the
query method is a Cursor object. Here, we assign this cursor to the previously defined
videoCursor variable.

The query method runs a SELECT on a given table name, in this case the constant
VIDEO_TABLE_NAME. The method takes two parameters. First, a projection that names
the columns that should only show up in the query—other column values will not show
up in the cursor results. Many applications work just fine passing null for the projec-
tion, which will cause all column values to show up in the resultant cursor. Next, the
where argument contains a SQL where clause, without the WHERE keyword. The where
argument can also contain a number of '?' strings that will be replaced with the values
of whereArgs. We’ll discuss in more detail how these two values bind together when we
discuss the execSQL method.

Modifying the Database
Android Cursors are great when you want to read data from the database, but the class
android.database.Cursor does not provide methods for creating, updating, or deleting
data. The SQLiteDatabase class provides two basic APIs that you can use for both read-
ing and writing:

• A set of four methods called simply insert, query, update, and delete

• A more general execSQL method that takes any single SQL statement that does not
return data and runs it against the database

We recommend using the first set of calls when your operations fit its capabilities. We’ll
show you both ways to use the MJAndroid operations.

Inserting data into the database

The SQL INSERT statement is used whenever you want to insert data into an SQL
database. The INSERT statement maps to the “create” operation of the CRUD
methodology.

In the MJAndroid application, the user can add jobs to the list by clicking on the Add
Job menu item when looking at the Jobs list. The user can then fill out a form to input
the employer, job title, and description. After the user clicks on the Add Job button on
the form, the following line of code is executed:

db.addJob(employer.id, txtTitle.getText().toString(),
 txtDescription.getText().toString());

Using the Database API: MJAndroid | 271

This code calls the addJob function, passing in the employer ID, the job title, and the
job description. The addJob function does the actual work of writing the job out to the
database.

The following example demonstrates use of the insert method:

/**
 * Add a new job to the database. The job will have a status of open.
 * @param employer_id The employer offering the job
 * @param title The job title
 * @param description The job description
 */
public void addJob(long employer_id, String title, String description) {
 ContentValues map = new ContentValues();
 map.put("employer_id", employer_id);
 map.put("title", title);
 map.put("description", description);
 try{
 getWritableDatabase().insert("jobs", null, map);
 } catch (SQLException e) {
 Log.e("Error writing new job", e.toString());
 }
}

Here are some of the highlights of the code:

The ContentValues object is a map of column names to column values. Internally,
it’s implemented as a HashMap<String,Object>. However, unlike a simple HashMap,
ContentValues is strongly typed. You can specify the data type of each value stored
in a ContentValues container. When you pull values back out, ContentValues will
automatically convert values to the requested type if possible.

The second parameter to the insert method is nullColumnHack. It’s used only as a
default value when the third parameter, the map, is null and therefore the row would
otherwise be completely empty.

This solution works at a lower level than the insert solution. It
creates SQL and passes it to the library to execute. Although you could hardcode every
statement, including the data passed by the user, this section shows a preferable method
that employs bind parameters.

A bind parameter is a question mark that holds a place in an SQL statement, usually
for a paramater passed by the user such as a value in a WHERE clause. After creating an
SQL statement with bind parameters, you can reuse it repeatedly, setting the actual
value of the bind parameters before executing it each time:

/**
 * Add a new job to the database. The job will have a status of open.
 * @param employer_id The employer offering the job
 * @param title The job title
 * @param description The job description
 */
public void addJob(long employer_id, String title, String description){

Using the insert method.

Using the execSQL method.

272 | Chapter 10: Handling and Persisting Data

 String sql =
 "INSERT INTO jobs " +
 "(_id, employer_id, title, description, start_time, end_time, status) " +
 "VALUES " +
 "(NULL, ?, ?, ?, 0, 0, 3)";
 Object[] bindArgs = new Object[]{employer_id, title, description};
 try{
 getWritableDatabase().execSQL(sql, bindArgs);
 } catch (SQLException e) {
 Log.e("Error writing new job", e.toString());
 }
}

Here are some of the highlights of the code:

Builds an SQL query template named sql that contains bindable parameters that
will be filled in with user data. The bindable parameters are marked by question
marks in the string. Next, we build an object array named bindArgs that contains
one object per element in our SQL template. There are three question marks in the
template, so there must be three elements in the object array.

Executes the SQL command by passing the SQL template string and the bind argu-
ments to execSQL.

Using an SQL template and bind arguments is much preferred over building up the
SQL statement, complete with parameters, into a String or StringBuilder. By using a
template with parameters, you protect your application from SQL injection attacks.
These attacks occur when a malicious user enters information into a form that is de-
liberately meant to modify the database in a way that was not intended by the developer.
Intruders normally do this by ending the current SQL command prematurely, using
SQL syntax characters, and then adding new SQL commands directly in the form field.
The template-plus-parameters approach also protects you from more run-of-the-mill
errors, such as invalid characters in the parameters. It also leads to cleaner code as it
avoids long sequences of manually appended strings by automatically replacing ques-
tion marks.

Updating data already in the database

The MicroJobs application enables the user to edit a job by clicking on the job in the
Jobs list and choosing the Edit Job menu item. The user can then modify the strings
for employer, job title, and description in the editJob form. After the user clicks on the
Update button on the form, the following line of code is executed:

db.editJob((long)job_id, employer.id, txtTitle.getText().toString(),
 txtDescription.getText().toString());

This code calls the editJob method, passing the job ID and the three items the user can
change: employer ID, job title, and job description. The editJob method does the actual
work of modifying the job in the database.

The following example demonstrates use of the update method:Using the update method.

Using the Database API: MJAndroid | 273

/**
 * Update a job in the database.
 * @param job_id The job id of the existing job
 * @param employer_id The employer offering the job
 * @param title The job title
 * @param description The job description
 */
public void editJob(long job_id, long employer_id, String title, String description)
{
 ContentValues map = new ContentValues();
 map.put("employer_id", employer_id);
 map.put("title", title);
 map.put("description", description);
 String[] whereArgs = new String[]{Long.toString(job_id)};
 try{
 getWritableDatabase().update("jobs", map, "_id=?", whereArgs);
 } catch (SQLException e) {
 Log.e("Error writing new job", e.toString());
 }
}

Here are some of the highlights of the code:

The first parameter to update is the name of the table to manipulate. The second is
the map of column names to new values. The third is a small snippet of SQL. In this
case, it’s an SQL template with one parameter. The parameter is marked with a
question mark, and is filled out with the contents of the fourth argument.

The following example demonstrates use of the execSQL
method:

/**
 * Update a job in the database.
 * @param job_id The job id of the existing job
 * @param employer_id The employer offering the job
 * @param title The job title
 * @param description The job description
 */
public void editJob(long job_id, long employer_id, String title, String description)
{
 String sql =
 "UPDATE jobs " +
 "SET employer_id = ?, "+
 " title = ?, "+
 " description = ? "+
 "WHERE _id = ? ";
 Object[] bindArgs = new Object[]{employer_id, title, description, job_id};
 try{
 getWritableDatabase().execSQL(sql, bindArgs);
 } catch (SQLException e) {
 Log.e("Error writing new job", e.toString());
 }
}

Using the execSQL method.

274 | Chapter 10: Handling and Persisting Data

For this example application, we show the simplest possible function. This makes it
easy to understand in a book, but is not enough for a real application. In a real appli-
cation you would want to check input strings for invalid characters, verify that the job
exists before trying to update it, verify that the employer_id value is valid before using
it, do a better job of catching errors, and so on. You would also probably authenticate
the user for any application that is shared by multiple people.

Deleting data in the database

The MicroJobs application enables the user to delete a job as well as create and change
it. From the main application interface, the user clicks on the List Jobs button to get a
list of jobs and then clicks on a particular job to see the job detail. At this level, the user
can click on the “Delete this job” menu item to delete the job. The application asks the
user whether he really wants to delete the job. When the user hits the Delete button in
response, the following line of code in the MicroJobsDetail.java file is executed:

db.deleteJob(job_id);

This code calls the deleteJob method of the MicroJobsDatabase class, passing it the job
ID to delete. The code is similar to the functions we’ve already seen and lacks the same
real-world features.

The following example demonstrates use of the delete method:

/**
 * Delete a job from the database.
 * @param job_id The job id of the job to delete
 */
public void deleteJob(long job_id) {
 String[] whereArgs = new String[]{Long.toString(job_id)};
 try{
 getWritableDatabase().delete("jobs", "_id=?", whereArgs);
 } catch (SQLException e) {
 Log.e("Error deleteing job", e.toString());
 }
}

The following example demonstrates use of the execSQL
method:

/**
 * Delete a job from the database.
 * @param job_id The job id of the job to delete
 */
public void deleteJob(long job_id) {
 String sql = String.format(
 "DELETE FROM jobs " +
 "WHERE _id = '%d' ",
 job_id);
 try{
 getWritableDatabase().execSQL(sql);
 } catch (SQLException e) {
 Log.e("Error deleteing job", e.toString());

Using the delete method.

Using the execSQL method.

Using the Database API: MJAndroid | 275

 }
}

276 | Chapter 10: Handling and Persisting Data

PART III

A Skeleton Application
for Android

The first two parts of this book describe an approach to key architectural issues in
Android applications. The skeleton applications described in Part III embody this ap-
proach. You can use the code as a starting point for your own applications.

CHAPTER 11

A Framework for a
Well-Behaved Application

In this chapter and the next, we introduce framework or “skeleton” applications that
exemplify many of the design and implementation approaches presented in this book,
especially in Chapter 3 where we introduced the components of an application.

The framework application in this chapter can be used as a starting point for your own
applications. We recommend this approach to creating applications over starting from
scratch, or from smaller examples that do not implement all the aspects of the
Activity object and process life cycle.

The approach we take in this chapter enables you to visualize and understand the
component life cycle before you know you need it. Retrofitting life cycle handling to
an application that was written without understanding life cycles, or with the expect-
ation that life cycle handling won’t be needed, is one of the easiest ways to create an
Android application that fails unexpectedly, in ways that are hard to reproduce con-
sistently, and that has persistent bugs that can remain undiscovered across multiple
attempts to eradicate them. In other words, it’s best to learn this before it bites you in
the ass.

While this chapter isn’t about user interfaces, you should keep in mind that the Android
user interface classes were designed with both the constraints of the Android architec-
ture and the capabilities of the Android system in mind. Implementations of user in-
terface and life cycle handling go hand in hand. Correctly handling the life cycles of an
application, the process that contains the application, the Activity objects that contain
the UI of the application, and the Fragment objects that might be contained in an
Activity instance are key to a good user experience.

To get the application framework code as you read it here, you can download an
archive from the Examples link on the book’s website, http://oreilly.com/catalog/
0636920010364, which may include more features and corrections of errata.

279

http://oreilly.com/catalog/0636920010364
http://oreilly.com/catalog/0636920010364

Visualizing Life Cycles
Earlier in this book, and in the Android developer documentation, you saw aspects of
component life cycles diagrammed and read about how life cycles work. The problem
with these descriptions is that component life cycles are dynamic, and a state diagram
is a static picture. Moreover, component and process life cycle transitions are driven
by memory management: when you run out, things start to happen in component life
cycles to recover memory. Memory allocation, garbage collection, and the way Android
enables memory recovery to span processes are inherently not as deterministic as run-
ning a block of code, and are configuration-dependent. Here, by instrumenting and
running code, we will see application life cycles as they happen, and enable you to
experiment with them in a running program.

Visualizing the Activity Life Cycle
We will make the Activity component life cycle more visible to you by running an
instrumented program and observing the behavior of the Activity life cycle methods
using the LogCat view in Eclipse. The following code is a listing of the Activity subclass
with the life cycle methods implemented, and logging calls in each method. The
callouts in the code refer to a method-by-method explanation of life cycle handling in
“Life cycle methods of the Activity class” on page 288. Take a look at this listing to
see what kind of information will be logged:

package com.oreilly.demo.pa.ch10.finchlifecycle;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;

public class FinchLifecycle extends Activity {

 // Make strings for logging
 private final String TAG = this.getClass().getSimpleName();
 private final String RESTORE = ", can restore state";

 // The string "fortytwo" is used as an example of state
 private final String state = "fortytwo";

 @Override
 public void onCreate(Bundle savedState) {
 super.onCreate(savedState);
 setContentView(R.layout.main);
 String answer = null;
 // savedState could be null
 if (null != savedState) {
 answer = savedState.getString("answer");
 }
 Log.i(TAG, "onCreate"

280 | Chapter 11: A Framework for a Well-Behaved Application

 + (null == savedState ? "" : (RESTORE + " " + answer)));
 }

 @Override
 protected void onRestart() {
 super.onRestart();
 // Notification that the activity will be started
 Log.i(TAG, "onRestart");
 }

 @Override
 protected void onStart() {

 super.onStart();
 // Notification that the activity is starting
 Log.i(TAG, "onStart");
 }

 @Override
 protected void onResume() {

 super.onResume();
 // Notification that the activity will interact with the user
 Log.i(TAG, "onResume");
 }

 protected void onPause() {

 super.onPause();
 // Notification that the activity will stop interacting with the user
 Log.i(TAG, "onPause" + (isFinishing() ? " Finishing" : ""));
 }

 @Override
 protected void onStop() {

 super.onStop();
 // Notification that the activity is no longer visible
 Log.i(TAG, "onStop");
 }

 @Override
 protected void onDestroy() {

 super.onDestroy();
 // Notification that the activity will be destroyed
 Log.i(TAG,
 "onDestroy "
 // Log which, if any, configuration changed
 + Integer.toString(getChangingConfigurations(), 16));
 }

 // //
 // Called during the life cycle, when instance state should be saved/restored
 // //

Visualizing Life Cycles | 281

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 // Save instance-specific state
 outState.putString("answer", state);
 super.onSaveInstanceState(outState);
 Log.i(TAG, "onSaveInstanceState");

 }

 @Override
 public Object onRetainNonConfigurationInstance() {

 Log.i(TAG, "onRetainNonConfigurationInstance");
 return new Integer(getTaskId());
 }

 @Override
 protected void onRestoreInstanceState(Bundle savedState) {
 super.onRestoreInstanceState(savedState);
 // Restore state; we know savedState is not null
 String answer = null != savedState ? savedState.getString("answer") : "";
 Object oldTaskObject = getLastNonConfigurationInstance();
 if (null != oldTaskObject) {
 int oldtask = ((Integer) oldTaskObject).intValue();
 int currentTask = getTaskId();
 // Task should not change across a configuration change
 assert oldtask == currentTask;
 }
 Log.i(TAG, "onRestoreInstanceState"
 + (null == savedState ? "" : RESTORE) + " " + answer);
 }

 // //
 // These are the minor life cycle methods, you probably won't need these
 // //

 @Override
 protected void onPostCreate(Bundle savedState) {

 super.onPostCreate(savedState);
 String answer = null;
 // savedState could be null
 if (null != savedState) {
 answer = savedState.getString("answer");
 }
 Log.i(TAG, "onPostCreate"
 + (null == savedState ? "" : (RESTORE + " " + answer)));

 }

 @Override
 protected void onPostResume() {

 super.onPostResume();

282 | Chapter 11: A Framework for a Well-Behaved Application

 Log.i(TAG, "onPostResume");
 }

 @Override
 protected void onUserLeaveHint() {

 super.onUserLeaveHint();
 Log.i(TAG, "onUserLeaveHint");
 }

}

When you are ready to run the application, first show the LogCat view by selecting
Window→Show View→Other… and expanding the Android folder in the Show View
dialog. Then select LogCat, as shown in Figure 11-1.

Figure 11-1. Selecting the LogCat view from the list shown

Now run the application in an emulator, or on a physical device. Since the example in
this chapter has been built with both the Fragment API in Android API level 11, cor-
responding to Android version 3.0 “Honeycomb,” and the version of the Fragment
class in the Android Compatibility Package, you can use either code base to run the
example.

Visualizing Life Cycles | 283

You will start to see logging information in the LogCat view in Eclipse. To see only the
logging information from the code in the previous listing, you can filter the logging
information. Click the green plus sign in the toolbar of the logging window to bring up
a dialog for defining a logging filter, as shown in Figure 11-2.

In this case, you will want to filter the log based on the tag we use in the Finch
Lifecycle class, which happens to be the name of the class: “FinchLifecycle”. We name
the filter “activity-lifecycle”, as shown in Figure 11-2.

Figure 11-2. Making a filter that will show only log data tagging with “FinchLifecycle”

Now, when you run the program, you will see only the logging output for the activity
life cycle methods in the tab labeled “activity-lifecycle” in the LogCat view, as shown
in Figure 11-4. If you want to see all the logging information, the Log tab will show an
unfiltered log.

When you run the program, you will see, if you use an emulator running Android 3.0,
something like the screenshot in Figure 11-3.

We use Android 3.0 here because this chapter includes coverage of life cycles and the
Fragment class.

If you want to run the example on a device or emulator that predates
Android 3.0, you can use the “backported” version of the example that
makes use of the Android Compatibility Package, which enables the use
of Fragment and other Android API level 11 classes in Android versions
back to API level 4, corresponding to Android 1.6.

284 | Chapter 11: A Framework for a Well-Behaved Application

Figure 11-3. The example code of this chapter running in an Android 3.0 emulator

The first thing you will see in the “activity-lifecycle” tab of the LogCat view is the set
of log messages in Figure 11-4.

In order to generate interesting logging information, you can start other applications
and go back and forth, using the application switcher or the Launcher to return to the
Finch application. Start enough other applications, and on returning to the Finch ap-
plication, you will see that the process ID, or PID, has changed, but the application
appears to be in the same state as you left it. This is because state was restored for this
activity, and all other components of the application, from the saved state. The log
information shown in the screenshot in Figure 11-5 shows just such a transition.

If you find there is no output in the LogCat view, switch to the DDMS
perspective (using the Window menu) and click on the device, or em-
ulator, you are using in the Devices view.

Visualizing Life Cycles | 285

By starting other applications that need memory, you have triggered some of the strat-
egies Android uses to recover memory. Of course, since Android applications run in a
virtual machine similar to a Java virtual machine, the first thing that happens is garbage
collection, where the memory taken up by unused, unreferenced instances of objects
is recovered. Android adds another strategy to garbage collection: activity components
that are not visible to the user can have their state saved, and then they are “destroyed,”
which really just means the system deletes its references to those components and they
can then be garbage-collected. Android has yet another strategy for memory recovery:
by telling all the components in an application to save their state, whole processes can
be deleted and their memory recovered. This is how Android enables a form of “garbage
collection” that spans multiple processes.

Figure 11-4. Logging output showing a new process and activity state being restored

286 | Chapter 11: A Framework for a Well-Behaved Application

Memory recovery and life cycles

The life of an Android activity seems perilous and fleeting. An activity’s process can be
killed or the Activity object destroyed, seemingly at the system’s whim. On top of that,
you don’t even get a guarantee that all your life cycle method overrides will get called
when the process is killed.

A good basis for understanding life cycles in Android is to focus on what happens when
an Activity instance is destroyed, and when a process is killed:

Destroying an activity
An activity is destroyed and the onDestroy method is called when Android wants
to discard this instance of the Activity class. “Discard” means that the Android
system will set its references to the Activity instance to null. And that means that,

Figure 11-5. Logging output showing a new process and activity state being restored

Visualizing Life Cycles | 287

unless your code is holding a reference to this Activity, the Activity will, by and
by, get garbage-collected. The word destroy is confusing to some—it implies ac-
tively wiping out something.

After the onDestroy method is called, you can be sure that this instance of your
subclass of Activity will not be used again. But this does not necessarily mean that
your application, or the process it is running in, is going to stop running. In fact,
a new instance of the same Activity subclass could be instantiated and called. For
example, this happens almost immediately after a configuration change (changing
the screen orientation, for example) causes the previously used Activity object to
be destroyed so that resource loading can start afresh for the new configuration.

Killing a process
When an Android system starts running out of memory, it finds processes to kill.
Typically, Android applications run in separate processes, so garbage collection in
one process can’t reach all the memory in an Android system. That means that in
low-memory conditions, Android finds processes that do not have components
that are in use and kills them. In extremis, Android will also kill processes that do
have components that are being used. For simple applications, their process be-
comes a candidate for being killed after onPause has been called. That is, all the
other Activity life cycle methods that can be called after onPause have no guarantee
they will be called if the Android system needs to acquire some free memory by
killing a process.

In both of these cases, your application is likely to need to save some state that exists
temporarily in the user interface of an application: various inputs the user entered that
have not yet been processed, the state of some visual indicator that is not part of the
data model, and so on. This is why each component of your application, and especially
each activity, will need to override some life cycle methods.

Life cycle methods of the Activity class

Now that we know when and why the life cycle methods are called in general, let’s look
at the individual methods in the previous program listing and see what they do:

The onCreate method is called after an Activity instance has been created. This is
where most applications perform most of their initialization: reading in the layouts
and creating View instances, binding to data, and so on. Note that, if this Activity
instance has not been destroyed, nor the process killed, this is not called again. It is
called only if a new instance of an Activity class is created. The argument to this
method is a Bundle object that contains saved application state. If there is no saved
state, the value of this argument is null.

The onRestart method is called only if an activity has been stopped. “Stopped”
means the activity is not in the foreground, interacting with the user. This method
is called before the onStart method.

288 | Chapter 11: A Framework for a Well-Behaved Application

The onStart method is called when the Activity object and its views become visible
to the user.

The onResume method is called when the Activity object and its views become in-
teractive with the user.

The onPause method is called when a different Activity instance is going to be visible
and the current Activity has stopped interacting with the user.

The onStop method is called when an activity is no longer visible to, or interacting
with, the user.

The onDestroy method is called when an Activity instance is going to be destroyed—
no longer used. Before this method is called, the activity has already stopped inter-
acting with the user and is no longer visible on the screen. If this method is being
called as the result of a call to finish, a call to isFinishing will return true.

Saving and restoring instance state

Memory recovery and the component life cycle is why your Activity subclasses need
to save state. Here is how and when they should do it:

The Bundle class exists to hold serialized data in the form of key-value pairs. The data
can be primitive types, or it can be any type that implements the Parcelable interface
(see “Parcelable” on page 159). You can find out more about Bundle on the Android
Developers site, at http://developer.android.com/reference/android/os/Bundle.html. In
saving Activity instance state, you will use the “put” methods of the Bundle class.

In the call to onCreate, and in the call to onRestoreInstanceState, a Bundle object is
passed to the method. It contains data that a previous instance of the same Activity
class put there in order to store it across instantiations. That is, if an Activity instance
has state, apart from what is persisted in a data model, it can be saved and restored
across multiple instances of that Activity class. To the user, it looks like she has picked
up right where she left off, but she may be looking at an entirely new instance of an
Activity class, possibly in an entirely new process.

You may have noticed that the onPause life cycle method does not provide a Bundle
object for storing state. So when is state stored? There are separate methods in the
Activity class for saving state, and for being notified that state is being restored:

This is where an application gets a chance to save instance state. Instance state
should be state that is not persisted with an application’s data model, such as the
state of an indicator or other state that is only part of the Activity object. This
method has an implementation in the parent class: it calls the onSaveInstance
State method of each View object in this instance of Activity, which has the result
of saving the state of these View objects, and this is often the only state you need to
store this way. Data that your subclass needs to store is saved using the “put” meth-
ods of the Bundle class.

Visualizing Life Cycles | 289

http://developer.android.com/reference/android/os/Bundle.html

The onRestoreInstanceState method is called when there is instance state to be re-
stored. If this method is called, it is called after onStart and before onPostCreate,
which is a minor life cycle method described in “Minor life cycle methods of the
Activity class” on page 291.

Configuration changes and the activity life cycle

Previously, we covered how you can provoke the Android system into killing the proc-
ess that your activity, and every other component of your application, is running in by
launching enough applications that some processes are killed. The logs you would see,
and the one in the screenshot in Figure 11-5, show that the process ID changes, and
that a new instance of the Activity subclass that defines how this application interacts
with the user is created. This new instance reloads all the resources for this activity,
and if there were any application data to be loaded, that would be loaded anew, too.
The net effect is that the user proceeds as though nothing has happened: the new in-
stance looks like the old one because it has the same state.

There is another way to force Android to use a new Activity instance: change the
configuration of the system. The most common configuration change applications en-
counter is a change in screen orientation. But there are many dimensions to what counts
as a new configuration: changes in whether a hard keyboard is accessible or not, changes
in locale, changes in font size, and more. The common factor in all changes to config-
uration is that they can require resources to be reloaded, usually because they need
layouts to be recalculated.

The easiest way to make sure every resource used in an activity is loaded anew in light
of the new configuration is for the current instance of the activity to be discarded, and
a new instance created, so that it reloads all resources. To cause this to occur while
running the application in an emulator, press the 9 key on the numeric keypad. This
changes the screen orientation in the emulator. In the log, you will see something like
what is in the screenshot in Figure 11-6. You will see in the log that the onDestroy
method is called since the Activity instance is discarded as part of changing configu-
rations, not when the system, running low on memory, kills the process. You will also
notice that across new instances of the Activity object the process ID stays the same—
the system has no need to recover the memory the application is using.

This approach may seem profligate: a new instance of the Activity? What for? Why
can’t I preserve this instance? Isn’t that going to be slow? In most cases, however, the
resources loaded by an activity when it starts constitute most of the state of that
Activity instance. In many cases, the largest amount of computation that takes place
in an activity happens when it reads the XML file and calculates layouts. And, in most
cases, a configuration change such as screen orientation or locale change requires nearly
every resource to have its layout recalculated. So, turning a configuration change into
what amounts to a restart of an activity is inevitable, as is the amount of processing
that goes into that restart.

290 | Chapter 11: A Framework for a Well-Behaved Application

Keep in mind that the only thing going on when Android “destroys” an activity is that
the reference to the activity is discarded, eventually to be garbage-collected. Every time
the user moves from one activity to a new activity, all the computation that goes into
creating that new activity is performed. Doing the same when a configuration change
occurs is not an extraordinary amount of work for the system.

Minor life cycle methods of the Activity class

Several additional methods, other than the main life cycle methods used in the Android
documentation to describe the activity life cycle, are also called as an activity moves
through its life cycle:

The onPostCreate method is called after onRestoreInstanceState is called. It may be
useful if your application requires that state be restored in two stages. It is passed a
Bundle object containing instance state.

The onPostResume method is called after onResume, when the Activity instance should
be visible and is interacting with the user.

The onUserLeaveHint method is called if an activity is going to stop being visible and
interacting with the user due to the user’s actions—for example, pressing the back
or home hard keys. This is a convenient place to clear alerts and dialogs.

Figure 11-6. The PID remaining unchanged when the onDestroy method is called

Visualizing Life Cycles | 291

You can see in the program listing in Figure 11-6 that we have implemented overrides
of these methods in order to log when they are called. These methods exist for cases
where, for example, you need an additional stage for restoring instance state.

However, if you really need to preserve some data across configuration changes, and
it isn’t part of the state that gets stored in the Bundle object between instances, and it
isn’t part of the data model that would get saved, you can use the onRetainNonConfi
gurationInstance method to “stash” a reference to an object. This reference can then
be requested by a new Activity instance using the getLastNonConfigurationInstance
method:

The onRetainNonConfigurationInstance method is called after onStop, which means
there is no guarantee it will be called, nor even, if it is called, that the reference
returned will be preserved and provided to the subsequent Activity instance. The
getLastNonConfigurationInstance() method can be called in the onCreate method,
or subsequently when restoring activity state.

To illustrate the use of these methods, we return an object containing the task ID of
the activity when onRetainNonConfigurationInstance is called, and when onRestore
InstanceState(Bundle) is called, we check it to see that the task ID has not changed.
This confirms that, even if the instance of the component or even of the whole process
is different to the user, it’s the same task.

The most commonly cited use case for using these methods is to store the results of a
web query: you could redo the query, but the latency of a query to a web server might
be a few seconds. So, while the data can be re-created if the system cannot preserve it
for the new Activity object instance to retrieve, there is a significant upside to caching
it. However, in this book we show you, in Chapter 13, how to interpose a local database
as a cache in RESTful applications, reducing the need for this kind of optimization.

Visualizing the Fragment Life Cycle
If you are developing for Android 3.0 “Honeycomb,” API level 11 or later, the Fragment
API is available. If, however, you prefer to develop for a pre-Honeycomb version of
Android and would like to use Fragment objects in your user interface, you can use the
Android Compatibility Package, as described in Chapter 8. The example code for this
chapter is provided in two forms: one that is set up to work with API level 11 as the
target API, and one that can be targeted to API levels as low as API level 4, corresponding
to Android 1.6. You will find the following Fragment code identical except for the pack-
age declaration for the Fragment class, and you will find it behaves identically with
respect to the Fragment life cycle.

This code, like the Activity class presented earlier, instruments the life cycle callbacks
so that they can be observed as the program runs:

292 | Chapter 11: A Framework for a Well-Behaved Application

package com.oreilly.demo.pa.ch10.finchlifecycle;

import android.app.Activity;
import android.app.Fragment;
import android.os.Bundle;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class TestFragment extends Fragment {

 // get a label for our log entries
 private final String TAG = this.getClass().getSimpleName();

 public TestFragment() {

 }

 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);
 Log.i(TAG, "onAttach");
 }

 @Override
 public void onCreate(Bundle saved) {
 super.onCreate(saved);
 if (null != saved) {
 // Restore state here
 }
 Log.i(TAG, "onCreate");
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle saved) {
 View v = inflater.inflate(R.layout.fragment_content, container, false);
 Log.i(TAG, "onCreateView");
 return v;
 }

 @Override
 public void onActivityCreated(Bundle saved) {
 super.onActivityCreated(saved);
 Log.i(TAG, "onActivityCreated");
 }

 @Override
 public void onStart() {
 super.onStart();
 Log.i(TAG, "onStart");
 }

 @Override

Visualizing the Fragment Life Cycle | 293

 public void onResume() {
 super.onResume();
 Log.i(TAG, "onResume");
 }

 @Override
 public void onPause() {
 super.onPause();
 Log.i(TAG, "onPause");
 }

 @Override
 public void onStop() {
 super.onStop();
 Log.i(TAG, "onStop");
 }

 // //
 // Called during the life cycle, when instance state should be saved/restored
 // //

 @Override
 public void onSaveInstanceState(Bundle toSave) {
 super.onSaveInstanceState(toSave);
 Log.i(TAG, "onSaveinstanceState");
 }
 }

As you did with the LogCat filter for finding the log entries that show Activity compo-
nent callbacks, you will set up a filter for Fragment callbacks.

If you repeat the steps you took—starting other applications until you see in the LogCat
window that the Fragment life cycle methods are being called—you will see that each
Fragment instance in an Activity instance behaves like the enclosing Activity with
respect to the Views it contains. Similar life cycle transitions and states are called.

Let’s take a look at each method that gets called, now that we know when they are
called:

The onAttach method is called when the Fragment instance is associated with an
Activity instance. This does not mean the Activity is fully initialized.

The onCreate method is called when the Fragment instance is being created, or re-
created. If it is being re-created after the Fragment or the containing Activity com-
ponent has been destroyed, the bundle argument will be non-null if any state had
been saved.

The onCreateView method is called when the Fragment instance should create the
View object hierarchy it contains. Fragment has an unusual role in an Activity: it
behaves somewhat like a ViewGroup, but it isn’t part of the View class hierarchy. You
can think of it as enabling the Activity to contain multiple sets of View instances. In
our example, we load an extremely simple layout containing a TextView.

294 | Chapter 11: A Framework for a Well-Behaved Application

The onActivityCreated method is called when the Activity containing the
Fragment instance has been created, and the View objects contained by the Frag
ment have been created. At this point, it is safe to search for View objects by their ID,
for example.

The onStart method is called when the Fragment becomes visible, in a very similar
way to the Activity method onStart.

The onResume method is called when the Fragment becomes visible, and is running.

The onPause method also is called under the same conditions as an Activity
instance’s onPause method when the Fragment is about to be taken out of the
foreground.

The onStop method is called when the Fragment is about to stop running.

The onSaveInstanceState method is called when it is necessary to save instance state
so that if the instance is destroyed (really, just dereferenced) any class-specific state
that needs to be stored can be stored in the Bundle object passed to this call.

Fragment objects are not components. You can think of them as a way of breaking up
an Activity object into multiple objects contained within an Activity, each with its
own View hierarchy that behaves like it is inside an Activity.

The Activity Class and Well-Behaved Applications
Understanding application life cycles is key to implementing well-behaved applica-
tions, and it is also key to understanding misbehaving applications. Lagging perform-
ance, excessive resource use, and unexpected user interface behavior can often be
diagnosed by observing the application’s life cycle. Life cycle is difficult to understand
just by looking at code or the documentation page for the Activity class. To enable
you to observe life cycle as it is happening, we will put logging calls into our imple-
mentations of Android life cycle methods, run the programs, and observe how life cycle
works in a running program. In using this framework, you can leave these logging calls
in your application’s code as you develop it because applications often come to need
logging in these methods to diagnose problems.

Most of the methods called on changes in life cycle are implemented on a per-
component basis, and some on a per-process basis. Each type of component—Serv
ice, BroadcastReceiver, ContentProvider, and Activity—has its own life cycle. Life
cycles of components other than Activity are covered in Chapter 3. Most life cycles
are simpler than the Activity life cycle. This is because the Activity class interacts with
the user, and when an Activity is no longer a visible part of the user interface, it is likely
that the memory occupied by resources associated with that Activity instance could
be scavenged if needed. Managing memory occupied by resources related to compo-
nents is one of the principal purposes of component life cycles.

The Activity Class and Well-Behaved Applications | 295

The Activity Life Cycle and the User Experience
In fact, if your application is well designed for the mobile environment in general, it
will need less code in application life cycle management:

• If the data used by an activity is always up-to-date and in a database, you will not
have to explicitly store it in the code in an application life cycle method.

• If your user interface has minimal state, you won’t have to save much, if any, state
in an activity life cycle method.

These seem like stringent constraints, but in mobile and other appliance-like devices,
they are not. The battery on a mobile phone can die at any time, and the less an appli-
cation’s data model and state are held in memory, the less the user will lose when the
device shuts off unexpectedly. A mobile user may be interrupted by a phone call and
the user will never get a chance to return to an application to perform operations that
save data. Mobile applications are not intended to work like typical interactive appli-
cations on personal computers, with documents on filesystems that become in-memory
data models, to be explicitly saved, or else the data is lost.

In this chapter and the next, you will see that application life cycle, the data model and
other aspects of application architecture, and the user experience are all intertwined,
and that the path of least resistance, and least implementation in life cycle methods,
leads to application implementations that are robust, are easy to use, are good citizens
of the Android environment, and perform well. If you treat a battery failure the same
as the user no longer using an activity or the same as the system killing an activity to
claw back memory and other system resources, you will simplify your implementation
and unburden the user. Explicit actions such as “save” and “quit” should be avoided
in the mobile user experience, and in the implementation of well-behaved applications.

Life Cycle Methods of the Application Class
The life cycle methods of the Application class are, and should be, infrequently used
in simple applications. And they should be used with restraint even in complex appli-
cations. Is is easy to bloat Application class overrides with data that hangs around in
memory across multiple activities. This defeats Android’s ability to manage resources
on a per-component basis. For example, if you move the reference to some data from
an Activity object to the Application object, all you have done is extend the system’s
chase for resources in a low-memory situation to the application life cycle, and you
must manage this data separately from the activity life cycle.

Here, we implement the life cycle methods of the Application class to show their place
in the Android application life cycle, and because logging information from these
methods may be useful:

package com.finchframework.finch;

296 | Chapter 11: A Framework for a Well-Behaved Application

import android.app.Application;
import android.content.res.Configuration;
import android.util.Log;

/**
 * @author zigurd
 *
 * This the framework's Application subclass. This illustrates what
 * you may need to do in an Application subclass.
 *
 * To get this class instantiated, you must refer to it in the
 * application tag of the manifest.
 */
public class FinchApplication extends Application {
 private final String TAG = this.getClass().getSimpleName();

 @Override
 public void onCreate() {
 // First, call the parent class
 super.onCreate();

 // This is a good place to put code that must manage global data across
 // multiple activities, but it's better to keep most things in a
 // database, rather than in memory
 Log.i(TAG, "onCreate");
 }

 @Override
 public void onTerminate() {
 Log.i(TAG, "onTerminate");

 }

 @Override
 public void onLowMemory() {
 // In-memory caches should be thrown overboard here
 Log.i(TAG, "onLowMemory");
 }

 @Override
 public void onConfigurationChanged(Configuration newConfig) {
 Log.i(TAG, "onConfigurationChanged");
 if (Log.isLoggable(TAG, Log.VERBOSE)) {
 Log.v(TAG, newConfig.toString());
 }

 }

}

Earlier we mentioned that many applications can do without subclassing
Application. Because of this, the New Android Project Wizard does not create an
Application subclass, nor does it add a reference to it in the manifest. Like the initial
object that gets started when an interactive application starts, the Application subclass

Life Cycle Methods of the Application Class | 297

you create gets instantiated by the Android system as part of launching an application.
In much the same way as Android handles Activity subclasses, it knows which class
to make an instance of, and uses the android:name property of the application tag in
the manifest. The easiest way to get this right is by using the Application tab of the
manifest editor. The first field on that editing tab is labeled Name (see Figure 11-7).
Clicking the Browse button next to that field shows the Application subclasses in your
application.

Figure 11-7. The Name field on the Application tab of the manifest editor, where you enter the name
of the Application subclass you have defined

As with the Activity class’s life cycle methods, it is most revealing to know when life
cycle methods get called. You can, of course, find this out by debugging an application

298 | Chapter 11: A Framework for a Well-Behaved Application

and setting breakpoints in each method, but often the most informative information is
found by looking at long-running applications’ behavior, and filtering a log by the tags
used in the Activity and Application subclasses, to get an idea of when life cycle meth-
ods have been called.

Two of the most interesting callbacks to track in the Application class are onLowMe
mory and onTerminate, which will tell you when, obviously enough, the system thinks
it is in a low-memory condition and when your application terminates. The second
situation is usually not obvious because most Android applications do not need to
explicitly exit, since Android’s memory management, in concert with component life
cycles, is enough to sweep out unused code if it was correctly implemented with respect
to life cycle and memory management.

A Flowing and Intuitive User Experience Across Activities
After the basics of the life cycle of an activity, navigation and flow from one activity to
another is the next most fundamental aspect of the architecture of Android applica-
tions, and it goes hand in hand with life cycle. In a mobile device with a small screen,
an intuitive flow among multiple screens is key to maximizing the visual information
the user can access and use. When applications are correctly implemented and maxi-
mally cooperative, a user may navigate among several activities, each of which is im-
plemented in a separate application, and think he has used only one application.

Multitasking in a Small-Screen Environment
Keeping track of multiple tasks—multiple programs, documents, and so forth—in a
personal computer’s user interface is something so commonplace that you may not
think much about how it is accomplished. Multiple documents, overlapping windows,
and a mouse pointer are all ingredients of a user interface paradigm called the “desktop
metaphor.” Your personal computer screen is a metaphor for a real desk, with over-
lapping documents on it. Move a document to the top by selecting it with the pointer,
and it becomes the document you are working on.

On a small screen, the entire screen is devoted to a single task, and the concept of a
task, and task switching, is inherently less visual. In mobile user interfaces, a back
stack—a stack of activities you can go back to—is often a central concept. In Android,
the back stack is called the “activity stack.”

Tasks and Applications
If an activity is the basic unit of Android user interaction, a “task” is the next-larger
grouping. In Android, the word task does not denote an executable object such as a
process or application; instead, it refers to a single activity stack with, potentially, mul-
tiple activities from multiple applications in it. Those activities can be implemented in

A Flowing and Intuitive User Experience Across Activities | 299

multiple separate applications, as shown in Figure 3-3 in Chapter 3. As the user interacts
with the system, sometimes one activity will, by way of an Intent object, ask the system
to find an activity that matches the intent’s specifications. If that activity is in another
application, it usually becomes part of the task the user began when she launched an
application from the Launcher or Home screen shortcut.

When the user launches what she thinks of as an application, she also starts the “root
activity” of a task. This becomes concrete to the user through Android’s methods of
task switching: after an application has been launched, pressing an application icon in
the Home activity, or the Recent Tasks switcher that pops up when you long-press the
Home button, returns to an already-started task (in most cases).

Tasks are not processes. In fact, the process for the current activity of a task may have
been killed, but it will be restarted, and a new instance of the Activity object instan-
tiated, and its state restored, when the user switches to that task. The user doesn’t have
to concern herself with how memory is managed. The Android system will restore
processes and activities in a task as the user needs them.

Android provides developers with rich control over the behavior of tasks. Used cor-
rectly, your control over task behavior will reinforce the Android concept of tasks and
make the user feel as though the back button always does what she expects. If it’s used
incorrectly or in poor taste, the user may find herself asking, “How did I get here?”

Specifying Launch and Task Behavior
Tasks are not represented by a class in the Android APIs, and you won’t be controlling
task objects with method calls. Task behavior is set by parameters in an application’s
manifest. Task behavior can also be modified as part of creating and using an intent.
As you will see from the explanation of how task behavior is controlled, activity life
cycle and task behavior are intertwined.

Launch mode

An activity’s launch mode is an attribute set in the activity tag in an application’s
manifest. This attribute affects task behavior and, indirectly, life cycle.

The android:launchMode attribute has four valid values, which are mutually exclusive:

"standard"
The "standard" launch mode is the default. With this value of the android:launch
Mode attribute, an activity can be launched multiple times, with multiple instances
of this Activity class existing at the same time. These instances may belong to
multiple tasks, usually the task that owns the component that called startActiv
ity() to cause the activity to be launched. The diagram in Figure 11-8 shows mul-
tiple instances of an activity at the top of a task.

300 | Chapter 11: A Framework for a Well-Behaved Application

"singleTop"
The "singleTop" launch mode differs from "standard" in that, if an instance of an
activity with this value of the android:launchMode attribute already exists, and is in
the task that would own the activity to be launched, and is at the top of the activity
stack, the existing activity gets the Intent object via the onNewIntent() method,
rather than a new activity being started. The diagram in Figure 11-9 shows a single
instance of a "singleTop" activity at the top of a task.

Figure 11-9. The singleTop launch mode, which causes the intent to be processed by the top activity
if it matches the intent

"singleTask"
The "singleTask" launch mode specifies that the activity to be launched is the root
of a new task, unless an instance of this activity already exists, in which case the
behavior is like "singleTop", and the Intent object associated with launching this
activity is processed through a call to onNewIntent().

"singleInstance"
The "singleInstance" launch mode specifies that the activity to be launched is the
root of a new task, and it specifies that any activity launched by this activity is also
in a new task, ensuring that this activity is the one and only activity in its task.

Task affinity

The android:taskAffinity attribute can be set to be the same as the value of an
android:name attribute of an activity. If it is not set, the default value is the name of the
package specified in the <manifest> tag.

Figure 11-8. The standard launch mode, which creates a new activity

A Flowing and Intuitive User Experience Across Activities | 301

Task affinity is used to put an activity in a specific task. That is, if you do not want the
default behavior in Android, where new activities become part of the task that started
those activities, task affinity enables you to override that behavior and specify the de-
sired task, which usually is a task associated with the application that implements this
activity.

Other activity attributes affecting task behavior

Other attributes that modify task behavior include the android:noHistory attribute. If
this attribute is set to true the activity is not placed on the activity stack when the user
navigates away from it. This is useful for activities such as log in screens that should
not be revisited, except when authentication is actually required.

The android:process attribute can be set to the name of a process in which the activity
should run, instead of the process created for the first component to run in an appli-
cation. This attribute is notable mainly because it does not affect task behavior: even
though the activity is running in a different process, it is grouped into a task as though
it ran in the same process from which it was launched.

The android:finishOnTaskLaunch attribute causes any other instance of this activity to
be finished when a new instance is launched. Using this attribute ensures that these
kinds of activities are never stacked, and appear only once among all activities in all
tasks.

The android:alwaysRetainTaskState attribute tells the Android system, if it is set to
true, that the stack of activities above a root activity should never be cleared. By default,
the system can clear the activity stack above a root activity after an interval in which
the task has not been used.

Modifying task behavior with intent flags

Most task behavior is determined by attributes in the activity tag of the manifest. The
exception to this is in a set of flags that can be set in an Intent object.

There is a surprisingly large number of ways to modify task behavior in intent flags.
Some are obviously useful, but some are just perplexing, in an area of functionality that
is perplexing enough as it is:

FLAG_ACTIVITY_BROUGHT_TO_FRONT
This flag is used by the system to implement the behavior to be used when an
Activity has the singleTask or singleInstance launch mode attribute specified.

FLAG_ACTIVITY_CLEAR_TASK
This flag indicates the tasks to be cleared before the new activity starts. This means
the new activity is the new root activity of the task.

FLAG_ACTIVITY_CLEAR_TOP
This flag has the effect of putting the activity the Intent object matches on top of
the activity stack, if it is in the activity stack of the current task, by finishing all

302 | Chapter 11: A Framework for a Well-Behaved Application

activities on top of the one the Intent object matches. The activity that ends up at
the top of the activity stack is itself finished and re-created, unless it is capable of
receiving a new intent via the onNewIntent() method.

FLAG_ACTIVITY_CLEAR_WHEN_TASK_RESET
This flag indicates that the activity being launched is the activity that should be on
top of the activity stack if the task is reset. “Reset” means the top of the activity
stack is cleared. This is done after some time has passed.

FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS
The activity started with this flag is not saved on the activity stack.

FLAG_ACTIVITY_FORWARD_RESULT
This flag means the new activity can provide a result to the activity that launched
the current activity. In other words, “Here, you answer this.”

FLAG_ACTIVITY_LAUNCHED_FROM_HISTORY
This flag means the new activity was launched from the “recents” menu to replace
an instance that had been destroyed.

FLAG_ACTIVITY_MULTIPLE_TASK
This flag means the new activity can be the root of multiple tasks, and if used with
FLAG_ACTIVITY_NEW_TASK, in fact creates multiple tasks. This can be confusing to
the user, since the Android system does not provide the user with a way to distin-
guish among multiple tasks with the same root activity.

FLAG_ACTIVITY_NEW_TASK
This flag means the new activity is the root of a new task, unless FLAG_ACTIVITY_
MULTIPLE_TASK is also set, in which case multiple tasks with the same root activity
are created and the aforementioned cautions apply.

FLAG_ACTIVITY_NO_ANIMATION
This flag suppresses transition animation.

FLAG_ACTIVITY_NO_HISTORY
The new activity is not on the back stack. It is the same as the noHistory attribute.

FLAG_ACTIVITY_NO_USER_ACTION
This flag suppresses the onUserLeaveHint callback for the current activity. Assum-
ing this callback is used to clear alerts, the alerts will stay up. This is useful for
activity transitions the user did not initiate, such as displaying an incoming call or
message.

FLAG_ACTIVITY_PREVIOUS_IS_TOP
This flag means the new activity will not be treated as the top of the activity stack,
and the previous top activity will be treated as the top for the purposes of deciding
whether the intent should be delivered to the top activity, or whether a new activity
should be created. There is no known use case for this flag.

FLAG_ACTIVITY_REORDER_TO_FRONT
If the activity is already running, it will be raised to the top of the activity stack and
made visible.

A Flowing and Intuitive User Experience Across Activities | 303

Some of these flags have been added since API level 1, and are ignored in earlier APIs.

Some of these flags have the effect of overriding task behavior set in the manifest. Some
flags affect other behavior, such as transition animations. And in some cases, a flag in
an Intent object is the only way to modify task behavior.

Use all of these with caution. Unexpected task behavior can destroy the user’s sense of
place in the Android UI.

304 | Chapter 11: A Framework for a Well-Behaved Application

CHAPTER 12

Using Content Providers

When Android applications share data, they rely on the content provider API to expose
data within their database. For example, the Android contact content provider allows
an unlimited number of applications to reuse contact persistence on the Android plat-
form. By simply invoking this content provider, an application can integrate access to
a user’s contacts stored locally and synchronized with the Google cloud. Applications
can read and write data in content providers without having to provide their own da-
tabase manipulation code. In this way, content providers provide a powerful feature
that allows developers to easily create applications with sophisticated data
management—in many cases, applications will end up writing very little data persis-
tence code of their own.

The content provider API enables client applications to query the OS for relevant data
using a Uniform Resource Identifier (URI), similar to the way a browser requests in-
formation from the Internet. For a given URI query, a client does not know which
application will provide the data; it simply presents the OS with a URI and leaves it to
the platform to start the appropriate application to provide the result. The platform
also provides a permission that allows clients to limit access to content provider data.

The content provider API enables full create, read, update, and delete access to shared
content. This means applications can use URI-oriented requests to:

• Create new records

• Retrieve one, all, or a limited set of records

• Update records

• Delete records

This chapter shows you how to write your own content provider by examining the
inner workings of an example content provider, SimpleFinchVideoContentProvider, in-
cluded within the Finch source tree. All file references are contained in the source di-
rectory for this chapter. Thus, when the AndroidManifest.xml file is referenced in this
section, the $(FinchVideo)/AndroidManifest.xml file is assumed. We’ll use this code to
describe how to create a content provider by implementing each method required by

305

the main content provider API, the class ContentProvider. We will also explain how to
integrate a SQLite database into that content provider. We’ll describe how to imple-
ment the basic function of a content provider, which is to provide a mapping between
URIs that reference data and database rows. You will see how a content provider en-
capsulates data persistence functions and enables your application to share data across
processes when you declare your provider in AndroidManifest.xml. We will show you
how to hook content provider data into Android UI components, thus completing the
MVC architecture that we have led up to so far in this book. Finally, we will build a
data viewing activity that automatically refreshes its display in response to changes in
data.

Throughout this chapter, we make the assumption that local content
provider storage uses a SQLite database. Given the content provider
query, insert, update, and delete API methods, it’s actually a bit of a
stretch to think about mapping it to anything else, even though, in
theory, the API can store and retrieve data using any backend, such as
a flat file, that could support the required operations.

We follow this introduction in the next chapter by showing you how to extend and
enhance the very concept of a content provider. In the process, you will learn to leverage
the content provider API to enable integration of RESTful network services into An-
droid. This simple architecture will prevent many common mobile programming er-
rors, even though it only relies on basic Android components. You will see that this
approach leads logically into a mobile application architecture that adds significant
robustness and performance improvements to Android applications.

We will walk through a video listing application that provides a simplified illustration
of this architecture. This application will follow the suggested approach by loading,
parsing, and caching YouTube video content entries from the RESTful web service at
http://gdata.youtube.com. We’ll simply be using gData as an example of a RESTful serv-
ice that we can integrate into an Android content provider. The application UI will use
content providers to dynamically display video entries as they are loaded and parsed
from the network. You will be able to apply this approach to integrate the large number
of web services available on the Internet into your Android-based application. Inci-
dentally, the gData URI provides a pretty neat demo from Google and worth checking
out in its own right.

Understanding Content Providers
Content providers encapsulate data management so that other parts of an application,
such as the view and controller, do not need to participate in persisting application
data. Saying this in a different way: content providers persist application data because
the view and controller should not handle it. Specialized software layers that do not

306 | Chapter 12: Using Content Providers

http://gdata.youtube.com

attempt to perform tasks of other layers are the hallmark of well-crafted code. Bugs and
unneeded complexity arise when software layers perform tasks that are beyond their
scope. Thus, a UI should consist only of well-laid-out UI components fine-tuned to
collect events from their end user. A well-written application controller will contain
only the domain logic of the mobile application. And in connection with this chapter,
simplifications arise when both types of code can outsource data persistence to a logical
third party: content providers. Recalling the discussion from “SQL and the Database-
Centric Data Model for Android Applications” on page 258, content providers are well
suited to implementing the nondocument-centric data model.

With the assistance of a content provider, applications do not need to open their own
SQLite tables, since that detail will take place behind the content provider interface in
tables owned by the content provider. In the past, to share data, mobile applications
might have had to store it in files in the local filesystem with an application-defined
configuration format. Instead, with Android, applications can often rely solely on con-
tent provider storage.

Before digging into the SimpleFinchVideoContentProvider, we’ll provide an overview of
the simple finch video application and provide background on content provider im-
plementation tasks.

Implementing a Content Provider
To take advantage of this design structure, you will need to write your own content
provider, which involves completing the following tasks:

• Create a content provider public API for client consumption by:

— Defining the CONTENT_URI for your content provider

— Creating column names for communication with clients

— Declaring public static String objects that clients use to specify columns

— Defining MIME types for any new data types

• Implement your content provider. This requires the following:

— Extending the main content provider API, the ContentProvider class, to create
a custom content provider implementation

— Setting up a provider URI

— Creating a SQLite database and associated cursors to store content provider data

— Using cursors to make data available to clients while supporting dynamic data
updates

— Defining the process by which binary data is returned to the client

— Implementing the basic query, insert, update, and delete data methods of a
Cursor to return to the client

• Update the AndroidManifest.xml file to declare your <provider>.

Understanding Content Providers | 307

When we have finished discussing the implementation of a basic content provider, we
will describe tasks related to using content providers to develop the more advanced
network architecture that we have mentioned.

Browsing Video with Finch
The Finch video viewer enables users to list video-related metadata. We have included
two versions of a video listing application, and two versions of underlying content
providers. The first version, presented in this chapter, is a simple video listing appli-
cation that uses SimpleFinchVideoContentProvider, which is designed to teach you to
implement your first content provider. A second version of the app, presented in the
next chapter, uses a slightly more complex content provider that adds the ability to pull
content from the online YouTube video search service. This second version of the app
has the ability to cache results and the ability to show video thumbnails.

Now we will explore the first app in detail. This simple application has one activity:
SimpleFinchVideoActivity, which allows a user to create and list his own video meta-
data (e.g., video title, description, URI, and ID), as shown in Figure 12-1.

Figure 12-1. An activity for our simple video provider that lets users enter their own video “metadata”

To use this application, simply enter appropriate data for a “video” entry, and then
press the Insert button. The list underneath the text fields uses Android MVC to au-
tomatically refresh its view of data.

308 | Chapter 12: Using Content Providers

The simple video database

To store the data you enter into this application, the SimpleFinchVideoContentPro
vider class creates its database with the following SQL statement:

CREATE TABLE video (_id INTEGER PRIMARY KEY, title TEXT, decription TEXT, uri TEXT);

The _id column is required for use with the Android cursor system. It provides the
unique identity of a row in a cursor as well as the identity of an object in the database.
As such, you need to define this column with the SQL attributes INTEGER PRIMARY KEY
AUTOINCREMENT to make certain its value is unique.

The title and description columns store video title and description data, respectively.
The uri column contains a media URI that could be used to play a video entry in an
actual working version of this application.

Structure of the simple version of the code

This section briefly examines relevant files within the simple Finch video application:

AndroidManifest.xml
We’ve created a manifest for a simple video content provider application that will
contain a reference to our activity SimpleFinchVideoActivity as well as our content
provider SimpleFinchVideoContentProvider.

$(FinchVideo)/src/com/oreilly/demo/pa/finchvideo/FinchVideo.java
The FinchVideo class contains the AUTHORITY attribute (discussed later) and the
SimpleVideo class that defines the names of the content provider columns. Neither
the FinchVideo class nor the SimpleVideo class contains any executable code.

$(FinchVideo)/src/com/oreilly/demo/pa/finchvideo/provider/SimpleFinchVideoContent-
Provider.java

The SimpleFinchVideoContentProvider class is the content provider for the simple
video database. It handles URI requests as appropriate for the simple video appli-
cation. This file is the subject of the first half of this chapter.

$(FinchVideo)/src/com/oreilly/demo/pa/finchvideo/SimpleFinchVideoActivity.java
The SimpleFinchVideoActivity class is an activity that allows the user to view a list
of videos.

Defining a Provider Public API
Though we saw in Chapter 3 how clients use content providers, we provide more in-
formation here for content provider authors to fully implement the provider public API.
For clients to use your content provider, you will need to create a public API class that
contains a set of constants that clients use to access column fields of Cursor objects
returned by your provider’s query method. This class will also define the content pro-
vider authority URI that provides the foundation of the whole provider URI

Defining a Provider Public API | 309

communication scheme. Our class, FinchVideo.SimpleVideos, provides the API to our
SimpleFinchVideo.

First we’ll explain the class in pieces, providing background on its fields, and then we’ll
show a full listing.

Defining the CONTENT_URI
For a client application to query content provider data, it needs to pass a URI that
identifies relevant data to one of the Android content resolver’s data access methods.
These methods, query, insert, update, and delete, mirror the methods found on a
content resolver that we define in “Writing and Integrating a Content Pro-
vider” on page 314. On receiving such an invocation, the content resolver will use an
authority string to match the incoming URI with the CONTENT_URI of each content pro-
vider it knows about to find the right provider for the client. Thus, the CONTENT_URI
defines the type of URIs your content provider can process.

A CONTENT_URI consists of these parts:

content://
A prefix that tells the Android Framework that it must find a content provider to
resolve the URI.

The authority
This string uniquely identifies the content provider and consists of up to two
sections: the organizational section and the provider identifier section. The organ-
izational section uniquely identifies the organization that created the content pro-
vider. The provider identifier section identifies a particular content provider that
the organization created. For content providers that are built into Android, the
organizational section is omitted. For instance, the built-in “media” authority that
returns one or more images does not have the organizational section of the au-
thority. However, any content providers that are created by developers outside of
Google’s Android team must define both sections of the content provider.
Thus, the simple Finch video example application’s authority is
com.oreilly.demo.pa.finchvideo.SimpleFinchVideo. The organizational section is
com.oreilly.demo.pa.finchvideo, and the provider identifier section is
SimpleFinchVideo. The Google documentation suggests that the best solution for
picking the authority section of your CONTENT_URI is to use the fully qualified class
name of the class implementing the content provider.

The authority section uniquely identifies the particular content provider that An-
droid will call to respond to queries that it handles.

The path
The content provider can interpret the rest of the URI however it wants, but it must
adhere to some requirements:

310 | Chapter 12: Using Content Providers

• If the content provider can return multiple data types, the URI must be con-
structed so that some part of the path specifies the type of data to return.

For instance, the built-in “contacts” content provider provides many different
types of data: people, phones, contact methods, and so on. The contacts content
provider uses strings in the URI to differentiate which type of data the user is
requesting. Thus, to request a specific person, the URI will be something like
this:

content://contacts/people/1

To request a specific phone number, the URI could be something like this:

content://contacts/people/1/phone/3

In the first case, the MIME data type returned will be vnd.android.cursor.item/
person, whereas in the second case, it will be vnd.android.cursor.item/phone.

• The content provider must be capable of returning either one item or a set of
item identifiers. The content provider will return a single item when an item
identifier appears in the final portion of the URI. Looking back at our previous
example, the URI content://contacts/people/1/phone/3 returned a single phone
number of type vnd.android.cursor.item/phone. If the URI had instead been
content://contacts/people/1/phone, the application would instead return a list of
all the phone numbers for the person having the person identifier number 1,
and the MIME type of the data returned would be vnd.android.cursor.dir/
phone.

As mentioned earlier, content providers can interpret the path portions of the URIs
to suit their needs. This means the path portion can use items in the path to filter
data to return to the caller. For instance, the built-in “media” content provider can
return either internal or external data depending on whether the URI contains the
word internal or external in the path.

The full CONTENT_URI for the simple Finch video is content://com.oreilly.demo.pa.finch-
video.SimpleFinchVideo/video.

The CONTENT_URI must be of type public static final Uri. It is defined in the Finch
Video class of our simple video application. In our public API class we start by extending
the class BaseColumns, and then define a string named AUTHORITY:

public final class FinchVideo.SimpleVideos extends BaseColumns {
 public static final String SIMPLE_AUTHORITY =
 "com.oreilly.demo.pa.finchvideo.FinchVideo";

Then we define the CONTENT_URI itself:

public static final class FinchVideo.SimpleVideos implements BaseColumns {
 public static final Uri CONTENT_URI =
 Uri.parse("content://" + AUTHORITY + "/video");

Put more simply, defining this URI just involves picking an authority string that should
use a Java package used by your application as the organizational identifier—a public

Defining a Provider Public API | 311

API package is likely a better candidate here than an implementation package, as we
discussed in “Java Packages” on page 56. The content provider identifier is just the
name of your content provider class. The provider URI for our simple Finch video
provider looks as follows:

"content://" + FinchVideo.FinchVideoContentProvider.SIMPLE_AUTHORITY + "/" +
 FinchVideo.SimpleVideos.VIDEO

Creating the Column Names
Content providers exchange data with their clients in much the same way a SQL da-
tabase exchanges data with database applications: using cursors full of rows and col-
umns of data. A content provider must define the column names it supports just as
database applications must define the columns they support. When the content pro-
vider uses a SQLite database as its data store, the obvious solution is to give the content
provider columns with the same name as the database columns, and that’s just what
SimpleFinchVideoContentProvider does. Because of this, no mapping is necessary be-
tween the SimpleFinchVideoContentProvider columns and the underlying database
columns.

Not all applications make all of their data available to content provider
clients, and some more complex applications may want to make deriv-
ative views available to content provider clients. The projection map
described in “The SimpleFinchVideoContentProvider Class and In-
stance Variables” on page 319 is available to handle these complexities.

Declaring Column Specification Strings
The SimpleFinchVideoProvider columns are defined in the FinchVideo.SimpleVideos
class discussed in this section. Every content provider must define an _id column to
hold the record number of each row. The value of each _id must be unique within the
content provider; it is the number that a client will append to the content provider’s
vnd.android.cursor.item URI when attempting to query for a single record.

When the content provider is backed by a SQLite database, as is the case for
SimpleFinchVideoProvider, the _id should have the type INTEGER PRIMARY KEY AUTO
INCREMENT. This way, the rows will have a unique _id number and _id numbers will not
be reused, even when rows are deleted. This helps support referential integrity by en-
suring that each new row has an _id that has never been used before. If row _ids are
reused, there is a chance that cached URIs could point to the wrong data.

Here is a complete program listing of the simple Finch video provider API, the class
FinchVideo.SimpleVideos. Note that we have only included constants that serve the
purposes we have outlined. We take care not to define content provider implementation
constants here, since they will not be useful to a client and might tie clients to using a
particular implementation of a content provider. We strive to achieve good software

312 | Chapter 12: Using Content Providers

design and ensure that our software layers remain separable where clients should not
have direct compilation dependencies on content provider implementation classes. The
complete listing of the public API of the finch video provider API follows:

/**
 * Simple Videos columns
 */
public class FinchVideo {
 public static final class SimpleVideos implements BaseColumns {
 // This class cannot be instantiated
 private SimpleVideos() {}

 // uri references all videos
 public static final Uri VIDEOS_URI = Uri.parse("content://" +
 SIMPLE_AUTHORITY + "/" + SimpleVideos.VIDEO);

 /**
 * The content:// style URL for this table
 */
 public static final Uri CONTENT_URI = VIDEOS_URI;

 /**
 * The MIME type of {@link #CONTENT_URI} providing a directory of notes.
 */
 public static final String CONTENT_TYPE =
 "vnd.android.cursor.dir/vnd.finch.video";

 /**
 * The MIME type of a {@link #CONTENT_URI} sub-directory of a single
 * video.
 */
 public static final String CONTENT_VIDEO_TYPE =
 "vnd.android.cursor.item/vnd.finch.video";

 /**
 * The video itself
 * <P>Type: TEXT</P>
 */
 public static final String VIDEO = "video";

 /**
 * Column name for the title of the video
 * <P>Type: TEXT</P>
 */
 public static final String TITLE = "title";

 /**
 * Column name for the description of the video.
 */
 public static final String DESCRIPTION = "description";

 /**
 * Column name for the media uri
 */

Defining a Provider Public API | 313

 public static final String URI = "uri";

 /**
 * Unique identifier for an element of media
 */
 public static final String MEDIA_ID = "media_id";
 }

...
// The API for FinchVideo.Videos is also defined in this class.
}

Here are some of the highlights of the code:

We use the VIDEOS_URI to define the value for our CONTENT_URI. The videos URI
contains that content URI as described.

This is the MIME type of the video entries that our provider will store. In “Imple-
menting the getType Method” on page 322 we explain how our content provider
uses this type.

These are the names of the columns that clients can use to access values in Cursor
objects that our provider creates.

Writing and Integrating a Content Provider
Now that we’ve examined the general structure of the simple video list application, and
provided a way for clients to access our content provider, it’s time to look at how the
application both implements and consumes the SimpleFinchVideoContentProvider.

Common Content Provider Tasks
In the following sections, we provide a high-level guide to tasks associated with writing
a content provider. We then provide an introduction to Android MVC and finish with
an explanation of the SimpleFinchVideoContentProvider code.

Extending ContentProvider

Applications extend the ContentProvider class to handle URIs that refer to a particular
type of data, such as MMS messages, pictures, videos, and so forth. For example, for
a content provider class that handled videos, the ContentProvider.insert method
would insert data that described a video into a SQLite table with columns appropriate
for that information, such as a title, description, and similar information.

Start writing your content provider by implementing the following two methods:

314 | Chapter 12: Using Content Providers

onCreate
This method provides a hook to allow your content provider to initialize itself. Any
code you want to run just once, such as making a database connection, should
reside in this method.

String getType(Uri uri)
This method, given a URI, returns the MIME type of the data that this content
provider provides at the given URI. The URI comes from the client application
interested in accessing the data.

You’ll continue to implement by overriding the main content provider data access
methods:

insert(Uri uri, ContentValues values)
This method is called when the client code needs to insert data into the database
your content provider is serving. Normally, the implementation for this method
will either directly or indirectly result in a database insert operation.

Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder)

This method is called whenever a client wishes to read data from the content pro-
vider’s database. Normally, here, you retrieve data using an SQL SELECT statement
and return a cursor containing the requested data. Developers call this method
indirectly using Activity’s managedQuery method, or call startManagingQuery on the
return values from this method. If your activity fails to “manage” the returned
cursor, or fails to close the cursor, your application will contain a serious memory
leak that will result in poor performance and, likely, crashes.

update(Uri uri, ContentValues values, String selection, String[] selectionArgs)
This method is called when a client wishes to update one or more rows in the
content provider’s database. It translates to an SQL UPDATE statement.

delete(Uri uri, String selection, String[] selectionArgs)
This method is called when a client wishes to delete one or more rows in the content
provider’s database. It translates to an SQL DELETE statement.

These four methods each perform an action on data referenced by a given URI param-
eter. A typical implementation of each of these methods starts with matching the in-
coming URI argument to a particular type of data. For example, a content provider
implementation needs to figure out whether a given URI refers to a specific video, or
to a group of videos. After a provider matches the URl, appropriate SQL operations
follow. Each method then returns a value that either contains referenced data, describes
affected data, or refers to the number of elements that were affected by the operation.
For example, a query for a specific video would return a cursor that contained a single
video element, if the given URI referenced a single element present in a local table.

Matching URIs to table data is an integral part of the job of a content provider. While
you might not think it would be that hard to parse a content provider URI yourself,

Writing and Integrating a Content Provider | 315

Android provides a nice utility for doing that job for you, which is convenient, but more
importantly, helps developers to standardize on the format of provider URIs that we
have discussed. The URIMatcher class supports mapping from URIs containing author-
ity, path, and ID strings to application-defined constants usable with case statements
that handle particular subtypes of URIs. From there, the provider can decide what SQL
operations to use to manage actual table rows. A typical content provider will create a
static instance of URIMatcher and populate it using a static initializer that calls URI
Matcher.addURI to establish the first-level mapping used later in content provider data
methods. Our simple video content provider does this in “The SimpleFinchVideoCon-
tentProvider Class and Instance Variables” on page 319.

File Management and Binary Data
Content providers often need to manage large chunks of binary data, such as a bitmap
or music clip. Storage of large datafiles should influence the design of an application,
and will likely have significant performance implications. A content provider can serve
files through content provider URIs in a way that encapsulates the location of actual
physical files so that clients can be agnostic about that information. Clients use content
provider URIs to access files without knowing where the files actually reside. This layer
of indirection enables a content provider to manage these files in a way that makes the
most sense for the content provider data without having that information leak into the
client—which could end up causing code changes in a client if the content provider
needed to make a change in the way the physical files are stored. Generally, it’s much
easier to change just the provider than all of its potential clients. Clients should not
need to know that a set of provider media files might reside in flash memory, on the
SD card, or entirely on the network, so long as the provider makes the files accessible
from a set of content provider URIs that the client understands. The client will just use
the method ContentResolver.openInputStream for a given URI and then read data from
the resultant stream.

Additionally, when sharing large amounts of data between applications, since an An-
droid application should not read or write files that another application has created, a
content provider must be used to access the relevant bytes. Therefore, when the first
content provider returns a pointer to a file, that pointer must be in the form of a
content:// URI instead of a Unix filename. The use of a content:// URI causes the file
to be opened and read under the permissions of the content provider that owns the file,
not the client application (which should not have access rights to the file).

It’s also important to consider that filesystem I/O is much faster and more versatile
than dealing with SQLite blobs, and it’s better to use the Unix filesystem to directly
store binary data. Additionally, there’s no advantage to putting binary data in a data-
base, since you can’t search on it!

To implement this approach in your app, the Android SDK documentation suggests
one strategy where a content provider persists data to a file and stores a content:// URI

316 | Chapter 12: Using Content Providers

in the database that points to the file, as shown in Figure 12-2. Client applications will
pass the URI in this field to ContentProvider.openStream to retrieve the byte stream
from the file it specifies.

Figure 12-2. Android MVC’s typical use of cursors and content providers

In detail, to implement the file approach, instead of creating a hypothetical user table
like this:

CREATE TABLE user (_id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT, password
 TEXT, picture BLOB);

the documentation suggests two tables that look like this:

CREATE TABLE user (_id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT, password
 TEXT, picture TEXT);
CREATE TABLE userPicture (_id INTEGER PRIMARY KEY AUTOINCREMENT,
 _data TEXT);

The picture column of the user table will store a content:// URI that points to a row
in the userPicture table. The _data column of the userPicture table will point to a real
file on the Android filesystem.

If the path to the file were stored directly in the user table, clients would get a path but
be unable to open the file, because it’s owned by the application serving up the content
provider and the clients don’t have permission to read it. In the solution shown here,
however, access is controlled by a ContentResolver class we’ll examine later.

The ContentResolver class looks for a column named _data when processing requests.
If the file specified in that column is found, the provider’s openOutputStream method
opens the file and returns a java.io.OutputStream to the client. This is the same object
that would be returned if the client were able to open the file directly. The
ContentResolver class is part of the same application as the content provider, and
therefore is able to open the file when the client cannot.

Later in this chapter, we will demonstrate a content provider that uses the content
provider file management facility to store thumbnail images.

File Management and Binary Data | 317

Android MVC and Content Observation
It’s important to relate a bigger picture of how MVC works with content providers in
Android. Additionally, a more detailed discussion of MVC in Android will lead us into
“A “Network MVC”” on page 331.

In order to understand the power of the content provider framework, we need to discuss
how cursor update events drive dynamic updates of Android UIs. We think it will help
to highlight the often-overlooked communications pathways in the traditional MVC
programming pattern, where the following occurs: the View delivers user input events
to the Controller; the Controller makes modifications to the Model, and the Model
sends update events to the View and to any other observer that registers interest in the
Model; the View renders the contents of the Model, usually without directly engaging
in application logic, and ideally, just simply iterates over the data in the Model.

In Android, the MVC pattern works as shown in Figure 12-3, where explicitly:

• The Model consists of a content provider and the cursors it returns from its
query method, as well as the data it holds in its SQLite tables.

• Content providers should be written to send notification events whenever they
change data by calling ContentResolver.notifyChange. Since the provider has sole
access to modify the data, it will always know when data changes.

• Notifications are delivered to a UI component, often a ListView, through obser-
vation of Cursor objects that are bound to content provider URIs. Cursor update
messages fire from the Model to the View in response to the provider’s invocation
of notifyChange. The View and Controller correspond to Android activities and
their views, and to the classes that listen to the events they generate. Specifically,
the system delivers ContentObserver.onChange messages to instances of
ContentObserver registered using Cursor.registerContentObserver. The Android
classes automatically register for cursor changes whenever a developer calls a
method such as ListView.setAdapter(ListAdapter). The list view has an internal
content observer, and the list adapter will register with the Cursor object.

To think about how this notification works in practice, suppose an activity were to call
ContentResolver.delete. As we’ll see shortly, the corresponding content provider
would first delete a row from its database, and then notify the content resolver URI
corresponding to that row. Any listening cursors embedded in any view will be notified
simply that data has changed; the views will, in turn, get the update event and then
repaint themselves to reflect the new state. The views paint whatever state resides in
their display area; if that happened to include the deleted element, it will disappear
from the UI. The Cursor objects act as a proxy object between cursor consumers and
the content provider system. Events flow from the provider, through the cursor, and
into the View system. The degree of automation in this chain of events results in sig-
nificant convenience for developers who need to perform only the minimum amount
of work to put it into action. Additionally, programs don’t have to explicitly poll to

318 | Chapter 12: Using Content Providers

keep their rendering of the model up-to-date since the model tells the view when state
changes.

A Complete Content Provider: The
SimpleFinchVideoContentProvider Code
Now that you understand the important tasks associated with writing a content
provider and Android MVC—the communication system for Android content
providers—let’s see how to build your own content provider. The SimpleFinchVideo
ContentProvider class extends ContentProvider as shown here:

public class SimpleFinchVideoContentProvider extends ContentProvider {

The SimpleFinchVideoContentProvider Class and Instance Variables
As usual, it’s best to understand the major class and instance variables used by a method
before examining how the method works. The member variables we need to understand
for SimpleFinchVideoContentProvider are:

private static final String DATABASE_NAME = "simple_video.db";
private static final int DATABASE_VERSION = 2;
private static final String VIDEO_TABLE_NAME = "video";
private DatabaseHelper mOpenHelper;

DATABASE_NAME
The name of the database file on the device. For the simple Finch video, the
full path to the file is /data/data/com.oreilly.demo.pa.finchvideo/databases/sim-
ple_video.db.

Figure 12-3. Typical use of cursors and content providers in the Android MVC

A Complete Content Provider: The SimpleFinchVideoContentProvider Code | 319

DATABASE_VERSION
The version of the database that is compatible with this code. If this number is
higher than the database version of the database itself, the application calls the
DatabaseHelper.onUpdate method.

VIDEO_TABLE_NAME
The name of the video table within the simple_video database.

mOpenHelper
The database helper instance variable that is initialized during onCreate. It provides
access to the database for the insert, query, update, and delete methods.

sUriMatcher
A static initialization block that performs initializations of static variables that can’t
be performed as simple one-liners. For example, our simple video content provider
begins by establishing a content provider URI mapping in a static initialization of
a UriMatcher as follows:

private static UriMatcher sUriMatcher;

private static final int VIDEOS = 1;
private static final int VIDEO_ID = 2;

static {
 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 sUriMatcher.addURI(AUTHORITY, FinchVideo.SimpleVideos.VIDEO_NAME, VIDEOS);
 // use of the hash character indicates matching of an id
 sUriMatcher.addURI(AUTHORITY,
 FinchVideo.SimpleVideos.VIDEO_NAME + "/#", VIDEO_ID);
...
// more initialization to follow

The UriMatcher class provides the basis of the convenience utilities that Android
provides for mapping content provider URIs. To use an instance of it, you populate
it with mappings from a URI string such as “videos” to a constant field. Our map-
pings work as follows: the application first provides an argument, Uri
Matcher.NO_MATCH, to the constructor of the provider UriMatcher to define the value
that indicates when a URI does not match any URI. The application then adds
mappings for multiple videos to VIDEOS, and then a mapping for a specific video to
VIDEO_ID. With all provider URIs mapped to an integer value the provider can
perform a switch operation to jump to the appropriate handling code for multiple
and single videos.

This mapping causes a URI such as content://com.oreilly.demo.pa.finch
video.SimpleFinchVideo/video to map to the constant VIDEOS, meaning all videos.
A URI for a single video, such as content://oreilly.demo.pa.finchvideo.Simple
FinchVideo/video/7, will map to the constant VIDEO_ID for a single video. The hash
mark at the end of the URI matcher binding is a wildcard for a URI ending with
any integer number.

320 | Chapter 12: Using Content Providers

sVideosProjectionMap
The projection map used by the query method. This HashMap maps the content
provider’s column names to database column names. A projection map is not re-
quired, but when used it must list all column names that might be returned by the
query. In SimpleFinchVideoContentProvider, the content provider column names
and the database column names are identical, so the sVideosProjectionMap is not
required. But we provide it as an example for applications that might need it. In
the following code, we create our example projection mapping:

// example projection map, not actually used in this application
sVideosProjectionMap = new HashMap<String, String>();
sVideosProjectionMap.put(FinchVideo.Videos._ID,
 FinchVideo.Videos._ID);
sVideosProjectionMap.put(FinchVideo.Videos.TITLE,
 FinchVideo.Videos.TITLE);
sVideosProjectionMap.put(FinchVideo.Videos.VIDEO,
 FinchVideo.Videos.VIDEO);
sVideosProjectionMap.put(FinchVideo.Videos.DESCRIPTION,
 FinchVideo.Videos.DESCRIPTION);

Implementing the onCreate Method
During initialization of the simple Finch video content provider, we create the video’s
SQLite data store as follows:

private static class DatabaseHelper extends SQLiteOpenHelper {
 public void onCreate(SQLiteDatabase sqLiteDatabase) {
 createTable(sqLiteDatabase);
 }

 // create table method may also be called from onUpgrade
 private void createTable(SQLiteDatabase sqLiteDatabase) {
 String qs = "CREATE TABLE " + VIDEO_TABLE_NAME + " (" +
 FinchVideo.SimpleVideos._ID + " INTEGER PRIMARY KEY, " +
 FinchVideo.SimpleVideos.TITLE_NAME + " TEXT, " +
 FinchVideo.SimpleVideos.DESCRIPTION_NAME + " TEXT, " +
 FinchVideo.SimpleVideos.URI_NAME + " TEXT);";
 sqLiteDatabase.execSQL(qs);
 }
}

When creating SQLite tables to support content provider operations, developers are
required to provide a field with a primary key called _id. While it’s not immediately
clear that this field is required, unless you read the Android developer docs in detail,
the Android content management system actually does enforce the presence of the
_id field in the cursors that are returned by the query method. _id is used in query
matching with the # special character in content provider URLs. For example, a URL
such as content://contacts/people/25 would map to a data row in a contacts table with
_id 25. The requirement is really just to use a specific name for a table primary key.

A Complete Content Provider: The SimpleFinchVideoContentProvider Code | 321

Implementing the getType Method
Next, we implement the getType method to determine MIME types of arbitrary URIs
passed from the client. As you can see in the following code, we provide URI matching
for VIDEOS, and VIDEO_ID to MIME types we defined in our public API:

public String getType(Uri uri) {
 switch (sUriMatcher.match(uri)) {
 case VIDEOS:
 return FinchVideo.SimpleVideos.CONTENT_TYPE;

 case VIDEO_ID:
 return FinchVideo.SimpleVideos.CONTENT_VIDEO_TYPE;

 default:
 throw new IllegalArgumentException("Unknown video type: " + uri);
 }
}

Implementing the Provider API
A content provider implementation must override the data methods of the
ContentProvider base class: insert, query, update, and delete. For the simple video
application, these methods are defined by the SimpleFinchVideoContentProvider class.

The query method

After matching the incoming URI, our content provider query method performs a cor-
responding select on a readable database, by delegating to SQLiteDatabase.query, and
then returns the results in the form of a database Cursor object. The cursor will contain
all database rows described by the URI argument. After we’ve made the query, the
Android content provider mechanism automatically supports the use of cursor instan-
ces across processes, which permits our provider query method to simply return the
cursor as a normal return value to make it available to clients that might reside in
another process.

The query method also supports the parameters uri, projection, selection,
selectionArgs, and sortOrder, which are used in the same manner as the arguments to
SQLiteDatabase.query that we saw in Chapter 10. Just as with any SQL SELECT, param-
eters to the query method enable our provider clients to select only specific videos that
match the query parameters. In addition to passing a URI, a client calling the simple
video content provider could also pass an additional where clause with where arguments.
For example, these arguments would enable a developer to query for videos from a
particular author.

322 | Chapter 12: Using Content Providers

As we’ve seen, MVC in Android relies on cursors and the data they
contain, as well as framework-based delivery of content observer update
messages. Since clients in different processes share Cursor objects, a
content provider implementation must take care not to close a cursor
that it has served from its query method. If a cursor is closed in this
manner, clients will not see exceptions thrown; instead, the cursor will
always act like it is empty, and it will no longer receive update events—
it’s up to the activity to properly manage the returned cursors.

When the database query completes, our provider then calls Cursor.setNotificatio
nUri to set the URI that the provider infrastructure will use to decide which provider
update events get delivered to the newly created cursor. This URI becomes the point
of interaction between clients that observe data referenced by that URI and the content
provider that notifies that URI. This simple method call drives the content provider
update messages that we discussed in “Android MVC and Content Observa-
tion” on page 318.

Here, we provide the code for our simple content provider’s query method, which per-
forms URI matching, queries the database, and then returns the cursor:

@Override
public Cursor query(Uri uri, String[] projection, String where,
 String[] whereArgs, String sortOrder)
{
 // If no sort order is specified use the default
 String orderBy;
 if (TextUtils.isEmpty(sortOrder)) {
 orderBy = FinchVideo.SimpleVideos.DEFAULT_SORT_ORDER;
 } else {
 orderBy = sortOrder;
 }

 int match = sUriMatcher.match(uri);

 Cursor c;

 switch (match) {
 case VIDEOS:
 // query the database for all videos
 c = mDb.query(VIDEO_TABLE_NAME, projection,
 where, whereArgs,
 null, null, sortOrder);

 c.setNotificationUri(
 getContext().getContentResolver(),
 FinchVideo.SimpleVideos.CONTENT_URI);
 break;
 case VIDEO_ID:
 // query the database for a specific video
 long videoID = ContentUris.parseId(uri);
 c = mDb.query(VIDEO_TABLE_NAME, projection,

A Complete Content Provider: The SimpleFinchVideoContentProvider Code | 323

 FinchVideo.Videos._ID + " = " + videoID +
 (!TextUtils.isEmpty(where) ?
 " AND (" + where + ')' : ""),
 whereArgs, null, null, sortOrder);
 c.setNotificationUri(
 getContext().getContentResolver(),
 FinchVideo.SimpleVideos.CONTENT_URI);
 break;
 default:
 throw new IllegalArgumentException("unsupported uri: " + uri);
 }

 return c;
}

Here are some of the highlights of the code:

This matches the URI using our prebuilt URI matcher.

Setting the notification URI to FinchVideo.SimpleVideos.CONTENT_URI causes the
cursor to receive all content resolver notification events for data referenced by that
URI. In this case, the cursor will receive all events related to all videos, since that is
what FinchVideo.SimpleVideos.CONTENT_URI references.

The cursor is returned directly. As mentioned, the Android content provider system
provides support for sharing any data in the cursor across processes. Interprocess
data sharing happens “for free” as part of the content provider system; you can just
return the cursor and it will become available to activities in different processes.

The insert method

Let’s move on to the insert method , which receives values from a client, validates
them, and then adds a new row to the database containing those values. The values are
passed to the ContentProvider class in a ContentValues object:

@Override
public Uri insert(Uri uri, ContentValues initialValues) {

 // Validate the requested uri
 if (sUriMatcher.match(uri) != VIDEOS) {
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 ContentValues values;
 if (initialValues != null) {
 values = new ContentValues(initialValues);
 } else {
 values = new ContentValues();
 }

 verifyValues(values);

 // insert the initialValues into a new database row
 SQLiteDatabase db = mOpenDbHelper.getWritableDatabase();

324 | Chapter 12: Using Content Providers

 long rowId = db.insert(VIDEO_TABLE_NAME,
 FinchVideo.SimpleVideos.VIDEO_NAME, values);
 if (rowId > 0) {
 Uri videoURi =
 ContentUris.withAppendedId(
 FinchVideo.SimpleVideos.CONTENT_URI, rowId);
 getContext().getContentResolver().
 notifyChange(videoURi, null);
 return videoURi;
 }

 throw new SQLException("Failed to insert row into " + uri);
}

The insert method will also match the incoming URI, perform a corresponding data-
base insert operation, and then return a URI that references the new database row.
Since the SQLiteDatabase.insert method returns the database row ID of the newly
inserted row, which is also its value for the _id field, the content provider can easily
put together the right URI by appending the rowID variable to the content provider
authority defined in the content provider public API that we discussed in Chapter 3.

Here are some of the highlights of the code:

We use Android’s utilities for manipulating content provider URIs—specifically, the
method ContentUris.withAppendedId to append the rowId as the ID of the returned
insertion URI. Clients can turn around and query the content provider using this
same URI to select a cursor containing the data values for the inserted row.

Here the content provider notifies a URI that will cause a content update event to
be fired and delivered to observing cursors. Note that the provider’s invocation of
notify is the only reason an event will be sent to content observers.

The update method

The update method operates in the same manner as insert, but instead calls update on
the appropriate database to change database rows that the URI references. The
update method returns the number of rows affected by the update operation:

@Override
public int update(Uri uri, ContentValues values, String where,
 String[] whereArgs)
{
 // the call to notify the uri after deletion is explicit
 getContext().getContentResolver().notifyChange(uri, null);

 SQLiteDatabase db = mOpenDbHelper.getWritableDatabase();
 int affected;
 switch (sUriMatcher.match(uri)) {
 case VIDEOS:
 affected = db.update(VIDEO_TABLE_NAME, values,
 where, whereArgs);
 break;

A Complete Content Provider: The SimpleFinchVideoContentProvider Code | 325

 case VIDEO_ID:
 String videoId = uri.getPathSegments().get(1);
 affected = db.update(VIDEO_TABLE_NAME, values,
 FinchVideo.SimpleVideos._ID + "=" + videoId
 + (!TextUtils.isEmpty(where) ?
 " AND (" + where + ')' : ""),
 whereArgs);
 break;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 getContext().getContentResolver().notifyChange(uri, null);
 return affected;
}

The delete method

The delete method is similar to update, but will delete rows referenced by the given
URI. Like update, delete returns the number of rows affected by the delete operation:

@Override
public int delete(Uri uri, String where, String[] whereArgs) {
 int match = sUriMatcher.match(uri);
 int affected;

 switch (match) {
 case VIDEOS:
 affected = mDb.delete(VIDEO_TABLE_NAME,
 (!TextUtils.isEmpty(where) ?
 " AND (" + where + ')' : ""),
 whereArgs);
 break;
 case VIDEO_ID:
 long videoId = ContentUris.parseId(uri);
 affected = mDb.delete(VIDEO_TABLE_NAME,
 FinchVideo.SimpleVideos._ID + "=" + videoId
 + (!TextUtils.isEmpty(where) ?
 " AND (" + where + ')' : ""),
 whereArgs);

 // the call to notify the uri after deletion is explicit
 getContext().getContentResolver().
 notifyChange(uri, null);

 break;
 default:
 throw new IllegalArgumentException("unknown video element: " +
 uri);
 }

 return affected;
}

326 | Chapter 12: Using Content Providers

Note that the preceding descriptions relate only to our simple implementation of a
content provider; more involved scenarios could involve joining across tables for a
query or cascaded deletes for deleting a given data item. The content provider is free
to pick its own scheme for data management using the Android SQLite API so long as
it does not break the content provider client API.

Determining How Often to Notify Observers
As we’ve seen from our listing of the content provider data management operations,
notification does not happen for free in the Android content management system: an
insert into a SQLite table does not automatically set up a database trigger that fires
notification on behalf of a content provider. It’s up to the developer of the provider to
implement a scheme that determines the appropriate time to send notifications and
decides which URIs to send when content provider data changes. Usually content pro-
viders in Android send notifications immediately for all URIs that have changed during
a particular data operation.

When designing a notification scheme, a developer should consider the following trade-
off: fine-grained notification results in more precise change updates that can reduce
load on the user interface system. If a list is told a single element has changed, it can
decide to repaint only that element if it happens to be visible. But fine-grained notifi-
cation also has the drawback that more events get pushed through the system. The UI
will likely repaint more times since it will be getting more individual notification events.
Coarse-grained notification runs fewer events through the system, but running fewer
events often means that the UI will have to repaint more of itself on receiving notifica-
tion. For example, a list could receive a single event directing it to update all elements
when only three individual elements had actually changed. We suggest keeping this
trade-off in mind when picking a notification scheme. For example, you might consider
waiting until you finish reading a large number of events and then firing a single “ev-
erything changed” event, rather than sending an update for each event.

Often, content providers simply notify clients of whatever URIs were involved when
data changes.

Declaring Your Content Provider
In “Using a content provider” on page 80 we saw how clients access and use a content
provider. Now that we have our own simple content provider, all that is left is to make
it available to clients by adding the following line of XML to your AndroidManifest.xml:

<provider android:name=".provider.SimpleFinchVideoContentProvider"
 android:authorities="oreilly.demo.pa.finchvideo.SimpleFinchVideo"/>

After you have built your application, its .apk file contains the provider implementation
classes, and its manifest file contains a line similar to the line of XML we just added,

Declaring Your Content Provider | 327

all application code on the Android platform will be able to access it, assuming it has
requested and been granted permission to do so, as described in Chapter 3.

Having completed the task of creating your own simple content provider in this chapter,
it’s time to look into some novel content provider patterns, which we’ll do in
Chapter 13.

328 | Chapter 12: Using Content Providers

CHAPTER 13

Exploring Content Providers

In Chapter 7, we saw that user interfaces that need to interact with remote services face
interesting challenges, such as not tying up the UI thread with long-running tasks. We
also noted in Chapter 3 that the Android content provider API shares symmetry with
REST-style web services. Content provider data operations map straight onto REST
data operations, and now we’ll show you how to translate content provider URIs to
request network data. We suggest taking advantage of this symmetry by writing content
providers to operate as an asynchronous buffer between the domain or unique aspects
of your application, and the network requests that acquire the data on which your
application operates. Writing your application in this way will simplify your applica-
tion, and will solve common UI and network programming errors encountered in An-
droid and other types of Java programming.

Historically, Java UI programmers, both enterprise and mobile, have written mobile
and desktop-based applications in a rather brittle way, and sometimes did run network
requests directly on the UI thread, often without caching data obtained from those
requests. In most applications, showing anything in a UI would require accessing the
network every time a user requested the display of data. Believe it or not, Unix work-
stations from the 1980s and 1990s would frequently lock up when access to remotely
mounted filesystems became unavailable. If applications had used a local dynamic
caching scheme, they would have been able to continue running for the duration in
which the file server was absent, and then synchronize when it returned. Developers
needed to pay conscious attention, but often did not, to make certain that their appli-
cations accessed and stored network data correctly.

The trend continued in J2ME, where developers could cache network state in the ane-
mic record management system known as RMS. This library did not support a query
language, or an MVC notification system. J2ME developers would need to spawn their
own plain Java threads to make network requests, but in many cases did not, which
led to brittle applications. If web browsers were to load network data on the UI thread,
you would often see them completely freeze to the point where the operating system
would have to kill the browser to get rid of it—whenever the network would hang, the
UI thread would lock up. Pages and all the images they referenced would always have

329

to be downloaded at every viewing, making for a very slow experience—assuming one
of the requests did not hang the whole application. The takeaway from these anecdotes
is that traditionally, operating systems have left the loading and caching of network
data up to the application, providing little direct library support to help developers
implement these tasks correctly.

To resolve these problems, you could use a completely asynchronous interface to han-
dle network interaction and data storage. With such an approach, developers would
not have to think about when it was OK to request data from the network—it would
always be safe to use such an API, on or off the UI thread. Such considerations become
significantly more important in a mobile environment, where intermittent network
connectivity increases the likelihood of a hang in incorrectly written code.

We suggest using the content provider API as an asynchronous model of the network,
and as a cache of network state so that your application View and Controller do not
need their own mechanisms for opening connections or accessing a database. It’s easy
to map the provider API onto the API of existing REST-based web services—the pro-
vider simply sits in between the application, forwarding requests to the network and
caching results as needed. In this chapter, we will show you how this approach can
simplify your application, and we will explain more general benefits of the technique,
including how it introduces some of the more positive characteristics of web and AJAX
programming to Android applications. For more information on AJAX programming,
go to http://en.wikipedia.org/wiki/Ajax_(programming).

Developing RESTful Android Applications
We are not the only ones who see the benefits of this approach. At the Google I/O
conference in May 2010, Virgil Dobjanschi of Google presented a talk that outlined the
following three patterns for using content providers to integrate RESTful web services
into Android applications:

Activity→Service→ContentProvider
This pattern involves an activity contacting a service to access application data,
which in turn delegates to a content provider to access that data. In this scenario,
the activity invokes an asynchronous method on a service that performs asynchro-
nous RESTful invocations.

Activity→ContentProvider→Service
An activity contacts a content provider, which in turn delegates to a service to
asynchronously load data. This approach allows the activity to use the convenience
of the content provider API to interact with data. The content provider invokes
methods on the asynchronous service implementation to invoke a RESTful request.
This approach capitalizes on the convenient symmetry between the content pro-
vider API and RESTful use of HTTP.

330 | Chapter 13: Exploring Content Providers

http://en.wikipedia.org/wiki/Ajax_(programming)

Activity→ContentProvider→SyncAdapter
Android sync adapters provide a framework for synchronizing user data between
a device and the cloud. Google Contacts uses a sync adapter. In this scenario, an
activity uses the content provider API to access data synchronized by a sync
adapter.

In this chapter, we’ll explore the second pattern in detail with our second Finch video
example; this strategy will yield a number of important benefits for your applications.
Due to the elegance with which this approach integrates network operations into An-
droid MVC, we’ve given it the moniker “Network MVC.”

A future edition of Programming Android may address the other two approaches, as
well as document more details of this Google presentation. After you finish reading this
chapter, we suggest that you view Google’s talk.

A “Network MVC”
We like to think of the second pattern as a networked form of MVC, where the content
provider itself pulls data from the network and then pumps it into the regular Android
MVC. We’ll view the content provider as a model of network state—the provider can
fulfill data requests with local state, or can retrieve data from the network. With this
approach, the Controller and View code should not directly create network requests
to access and manage application data. Instead, your application View and Controller
should use the ContentResolver API to make data queries through a content provider,
which alone should asynchronously load network resources and store the results in a
local data cache. Additionally, the provider should always respond quickly to a request
by initially avoiding a network invocation that might be needed to fulfill the request by
using whatever data is already available in the local database. Executing the request in
this manner ensures that the UI thread is blocked for no longer than absolutely neces-
sary, and that the UI has some data to display as soon as possible, thus improving
overall snappiness and user satisfaction when using the UI. Here is the provider se-
quence for querying data, in more detail:

1. The provider matches the incoming URI and queries local database contents for
items that previously matched the query.

2. Our provider always attempts to obtain the latest state for the query and subse-
quently spawns an asynchronous REST request to load content from the network.
You could make this behavior configurable based on the request.

3. The provider returns the cursor from the initial local query to the client.

4. The asynchronous loading thread should decide if data in the provider cache needs
to be refreshed; if it does, the provider loads and parses data from the network.

5. When content arrives from the network, the provider directly inserts each new data
item into the database and then notifies clients of the URIs for the new data. Since
the insertion is already happening inside the content provider, there is no need to

A “Network MVC” | 331

http://www.google.com/events/io/2010/sessions/developing-RESTful-android-apps.html

call ContentResolver.insert. Clients holding existing cursors that contain an older
version of data can call Cursor.requery to refresh their data.

With this sequence, the View and Controller eventually get updated with network data,
but only the content provider creates the network request. We view a request for a
resource that does not currently exist in the provider’s data set as a request to load the
resource—the network request that loads data into the cache is a side effect of the
activity provider query.

Figure 13-1 illustrates the operations taking place inside the content provider during
execution of operations in the sequence.

Figure 13-1. Network provider caching content on behalf of the client

For each query, this sequence uses a single Cursor object created by a provider and then
returned to the view. Only the provider has the requirement to notify the UI when data
changes. The View and Controller do not have to collect data, and do not have to update
the model. When data is available, the content provider notifies the cursor for the query.
The role of data management is encapsulated inside the content provider, which sim-
plifies the code in the View and Controller. The provider client requests data and re-
ceives a cursor quickly; the cursor is notified when network data arrives. It’s critical to
recall that notification depends on database and Cursor objects remaining open as long
as content provider clients are using them. Closed cursors and databases will result in
client views showing no results, which can make it difficult to know if a component
such as a list is empty because its cursor was closed erroneously, or if a given query
actually had no results.

332 | Chapter 13: Exploring Content Providers

Summary of Benefits
It’s worth summarizing the benefits of the Network MVC approach:

• Increased perceived performance overall, and increased actual performance from
caching, are among the main benefits of this pattern. Mobile programming often
performs like the Web would with no caching system.

• Storing data in memory is not a good idea, since you do not know when Android
will remove your activity from memory. This pattern emphasizes storing data in
the content provider as quickly as possible.

• Most potential UI thread-safety violations cannot happen. Android View compo-
nents have already been written to dynamically update to reflect current cursor
contents. If the size of the data in the model shrinks, ListView will make sure to
reduce the number of times it iterates over the cursor. Other component systems,
for readers familiar with J2SE Swing, would leave this type of task up to the de-
veloper, which would leave open the possibility that the list component might
iterate beyond the bounds of its model on deletion of data elements.

• This approach leverages the cursor management system and the user interface’s
built-in capabilities for dynamic updates in response to content observation events.
User interface developers don’t need to write their own polling and update systems;
they just rely on content observation and the content provider interface.

• Like with any correct request for network resources, it’s not possible for the UI
thread to hang on the network.

• Delivery of network events happens without requiring the presence of a user in-
terface. Even if a particular activity is not present when a network event arrives,
the content provider will still be around to handle it. When the user loads the
activity, a query will reveal the event that arrived in the background. The absence
of an active UI activity will not result in events simply getting dropped.

• Elements of the application are encapsulated and have a special purpose, since, as
we’ve mentioned, the content provider handles all network and SQLite interac-
tions. The View and Controller just use a provider as a generic system for data
management.

• It’s easier to write applications since it’s difficult to use the API incorrectly—just
make content provider calls and the system handles the REST (pun intended).

• Finally, in a book on mobile programming, it’s easy to focus on device issues, but
if clients end up relying on their cache, and referring to the network only when
absolutely necessary, they will end up significantly reducing the network load on
systems that serve data to devices. This pattern provides a significant benefit for
servers as well as clients.

Summary of Benefits | 333

Our Approach in Context
To be clear, we are suggesting that applications should write content providers to access
and store network data wherever possible. While this might seem like an onerous bur-
den at first, consider that web browsers also use an asynchronous mechanism for load-
ing URI referenced content. For readers familiar with basic web programming, the
default Android API may be more flexible and extensive than that found in AJAX, but
AJAX has long had a foolproof architecture. Modern browsers load URI data using
asynchronous I/O mechanisms (see http://en.wikipedia.org/wiki/Asynchronous_io),
which prevents most opportunities for a browser user interface to hang. While it may
not seem like the browser is doing much when a given URI fails to load, the UI thread
itself is never in danger of blocking due to a network connection becoming unrespon-
sive. If the UI thread were to hang, the whole browser would stop working. It would
not even be able to tell you that it was hung—especially since many browsers are entirely
single-threaded. Instead, browsers are able to provide you with the opportunity to halt
any given page load request, and then load another page that will hopefully be more
responsive. Going further, all modern browsers make use of a persistent web cache,
and we are simply suggesting that Android applications should also have a similar
construct.

Beyond the pattern we are describing, Google provides specific documentation for im-
proving application responsiveness, and reducing the likelihood of “Application Not
Responding” notifications, at http://developer.android.com/guide/practices/design/re
sponsiveness.html.

Code Example: Dynamically Listing and Caching YouTube
Video Content
To demonstrate the prescribed architecture, we present the Finch video listing appli-
cation that allows a user to perform a mobile video search using the RESTful API, at
http://gdata.youtube.com. Our example code is written with an eye toward intermittent
connectivity in a mobile environment. The application preserves user data so that it
will remain usable even when the network cannot be reached—even if that means our
application can only display older, locally cached results when that happens.

When a user runs a query, the application attempts to retrieve the latest YouTube
results for that query. If the application successfully loads new results, it will flush
results that are older than one week. If the application were to blindly drop old results
before running an update query, it might end up with no results to view, which would
render the app useless until network access returned. The screen in Figure 13-2 shows
a query for the keyword “dogs”. Pressing Enter in the search box or hitting the refresh
button spawns a new query.

334 | Chapter 13: Exploring Content Providers

http://en.wikipedia.org/wiki/Asynchronous_io
http://developer.android.com/guide/practices/design/responsiveness.html
http://developer.android.com/guide/practices/design/responsiveness.html
http://gdata.youtube.com

Figure 13-2. Finch video SampleApplication

Our application includes a caching content provider that queries the YouTube API to
access YouTube video metadata. Query results are cached in a SQLite table called
video, as part of the content provider query method. The provider makes use of the
Finch framework for invoking asynchronous REST requests. The UI consists of an
activity as shown in Figure 13-2, a list with a search query box, and a refresh button.
The list dynamically refreshes on content provider data notification. Whenever the user
enters a search query and then presses Enter, the activity invokes the query request on
the FinchVideoContentProvider with the appropriate URI query. We’ll now explore the
details of this example.

Structure of the Source Code for the Finch YouTube
Video Example
This section briefly examines relevant Java source within the Finch YouTube video
application that is unique to the simple version of our video listing application. To start,
the files reside in two different directories: that of the Finch video application directory
for Chapter 12, and that of the Finch Framework library on which Chapter 12 has a
dependency. The source files that make up our YouTube application include:

Structure of the Source Code for the Finch YouTube Video Example | 335

Chapter 12 files in $(FinchVideo)/src/

$(FinchVideo)/src/com/oreilly/demo/pa/finchvideo/FinchVideo.java
The FinchVideo class contains the Videos class, which serves the same function
as FinchVideo.SimpleVideos did in the simple video app. The FinchVideo.Vid
eos class defines several more constants in addition to the names of the content
provider columns that our simple version defined for the YouTube application.
Neither the FinchVideo class nor the Videos class contain any executable code.

$(FinchVideo)/src/com/oreilly/demo/pa/finchvideo/provider/FinchVideoContent-
Provider.java

This is the main content provider that serves YouTube metadata and carries
out asynchronous RESTful requests on the YouTube GData API.

$(FinchVideo)/lib-src/com/oreilly/demo/pa/finchvideo/provider/YouTubeHandler
.java

This parses responses from the YouTube GData API and inserts data entries
as they arrive.

Finch framework source code in $(FinchFramework)/lib-src

$(FinchFramework)/lib-src/com/finchframework/finch/rest/RESTfulContent
Provider.java

This contains a simple framework for invoking RESTful HTTP requests from
within an Android content provider. FinchVideoContentProvider extends this
class to reuse behavior for asynchronously managing HTTP requests.

$(FinchFramework)/lib-src/com/finchframework/finch/rest/FileHandler.java
$(FinchFramework)/lib-src/com/finchframework/finch/rest/FileHandlerFactory
.java

These are simple frameworks for downloading URI content to a file-based
cache. They handle the response when the app requests thumbnail URIs.

$(FinchFramework)/lib-src/com/finchframework/finch/rest/ResponseHandler.java
This provides a simple abstraction layer for handling downloaded HTTP con-
tent from the YouTube API. YouTubeHandler extends this class.

$(FinchFramework)/lib-src/com/finchframework/finch/rest/UriRequestTask.java
This is a runnnable object specialized to download HTTP content. It uses the
Apache HTTP client framework.

Stepping Through the Search Application
In Figure 13-3, we depict the steps involved as our content provider services search
requests from the View and Controller using a REST-style network request. The content
provider has the opportunity to cache network results in SQLite tables before notifying
observers listening to URIs associated with the relevant data. Requests should move
asynchronously between components. The View and Controller should not directly or
synchronously invoke their own network requests.

336 | Chapter 13: Exploring Content Providers

Figure 13-3. The sequence of events that implement a client request for content provider data

The rest of this chapter steps through our second Finch video example to implement
this pattern in an Android application. We recommend keeping Figure 13-3 and its
steps in mind as we move forward. Note that the steps do not always appear in order
as we describe the code to you, but we’ll note the steps in bold without having to break
from the flow of the code.

Step 1: Our UI Collects User Input
Our UI in Figure 13-2 uses a simple EditText to collect search keywords.

Step 2: Our Controller Listens for Events
Our FinchVideoActivity registers a text listener, our “Controller,” that receives an event
when the user presses the Enter key:

class FinchVideoActivity {
...
mSearchText.setOnEditorActionListener(
 new EditText.OnEditorActionListener() {
 public boolean onEditorAction(TextView textView,
 int actionId,
 KeyEvent keyEvent)
 {
...
 query();
...

Step 2: Our Controller Listens for Events | 337

 }
);

Step 3: The Controller Queries the Content Provider with a
managedQuery on the Content Provider/Model
The controller then invokes the activity’s query method in response to user text input
(for a search):

// inside FinchVideoActivity

...

// sends the query to the finch video content provider
private void query() {
 if (!mSearchText.searchEmpty()) {
 String queryString =
 FinchVideo.Videos.QUERY_PARAM_NAME + "=" +
 Uri.encode(mSearchText.getText().toString());
 Uri queryUri =
 Uri.parse(FinchVideo.Videos.CONTENT_URI + "?" +
 queryString);
 Cursor c = managedQuery(queryUri, null, null, null, null);
 mAdapter.changeCursor(c);
 }
}

Step 4: Implementing the RESTful Request
Step 4 is quite a bit more involved than the other components of the sequence so far.
We’ll need to walk through our RESTful FinchVideoContentProvider as we did for
SimpleFinchVideoContentProvider. To start, FinchVideoContentProvider extends our
utility called RESTfulContentProvider which in turn extends ContentProvider:

FinchVideoContentProvider extend RESTfulContentProvider {

RESTfulContentProvider provides asynchronous REST operations in a way that allows
the Finch provider to plug in custom request-response handler components. We’ll ex-
plain this in more detail shortly, when we discuss our enhanced query method.

Constants and Initialization
FinchVideoContentProvider initialization is pretty close to the simple video content
provider. As with the simple version, we set up a URI matcher. Our only extra task is
to add support for matching specific thumbnails. We don’t add support for matching
multiple thumbnails, since our viewer activity does not need that support—it only
needs to load individual thumbnails:

338 | Chapter 13: Exploring Content Providers

sUriMatcher.addURI(FinchVideo.AUTHORITY,
 FinchVideo.Videos.THUMB + "/#", THUMB_ID);

Creating the Database
We create the Finch video database with Java code that executes the following SQL:

CREATE TABLE video (_ID INTEGER PRIMARY KEY AUTOINCREMENT,
 title TEXT, description TEXT, thumb_url TEXT,
 thumb_width TEXT, thumb_height TEXT, timestamp TEXT,
 query_text TEXT, media_id TEXT UNIQUE);

Note that we’ve added the ability to store the following attributes beyond the simple
version of our database:

thumb_url, thumb_width, thumb_height
This is the URL, width, and height associated with a given video thumbnail.

timestamp
When we insert a new video record, we stamp it with the current time.

query_text
We store the query text, or query keywords, in the database with each result for
that query.

media_id
This is a unique value for each video response that we receive from the GData API.
We don’t allow two video entries to have the same media_id.

A Networked Query Method
Here’s what we’ve been leading up to: the implementation of the FinchYouTubePro
vider query method calls out to the network to satisfy a query request for
YouTube data. It does this by calling a method of its superclass,
RESTfulContentProvider.asyncQueryRequest(String queryTag, String queryUri).
Here queryTag is a unique string that allows us to reject duplicate requests when ap-
propriate, and queryUri is the complete URI that we need to asynchronously download.
Specifically, we invoke requests on the following URI after we have appended URLEn
coder.encoded query parameters obtained from our application’s search text input
field:

/** URI for querying video, expects appended keywords. */
private static final String QUERY_URI =
 "http://gdata.youtube.com/feeds/api/videos?" +
 "max-results=15&format=1&q=";

Step 4: Implementing the RESTful Request | 339

You can learn how to create a GData YouTube URI that meets the needs
of your application quite easily. Google has created a beta (what else?)
utility located at http://gdata.youtube.com. If you visit this page in your
browser, it will show you a web UI consisting of a plethora of options
that you can customize to create a URI like the one shown in the previous
code listing. We have used the UI to select up to 15 results, and have
selected the use of a mobile video format.

Our networked query method does the usual URI match, and then adds the
following tasks, which represent “Step 4: Implementing the RESTful Request” from
our sequence:

/**
 * Content provider query method that converts its parameters into a YouTube
 * RESTful search query.
 *
 * @param uri a reference to the query for videos, the query string can
 * contain, "q='key_words'". The keywords are sent to the google YouTube
 * API where they are used to search the YouTube video database.
 * @param projection
 * @param where not used in this provider.
 * @param whereArgs not used in this provider.
 * @param sortOrder not used in this provider.
 * @return a cursor containing the results of a YouTube search query.
 */
@Override
public Cursor query(Uri uri, String[] projection, String where,
 String[] whereArgs, String sortOrder)
{
 Cursor queryCursor;

 int match = sUriMatcher.match(uri);
 switch (match) {
 case VIDEOS:
 // the query is passed out of band of other information passed
 // to this method -- it's not an argument.
 String queryText = uri.
 getQueryParameter(FinchVideo.Videos.QUERY_PARAM_NAME);

 if (queryText == null) {
 // A null cursor is an acceptable argument to the method,
 // CursorAdapter.changeCursor(Cursor c), which interprets
 // the value by canceling all adapter state so that the
 // component for which the cursor is adapting data will
 // display no content.
 return null;
 }

 String select = FinchVideo.Videos.QUERY_TEXT_NAME +
 " = '" + queryText + "'";

 // quickly return already matching data
 queryCursor =

340 | Chapter 13: Exploring Content Providers

http://gdata.youtube.com

 mDb.query(VIDEOS_TABLE_NAME, projection,
 select,
 whereArgs,
 null,
 null, sortOrder);

 // make the cursor observe the requested query
 queryCursor.setNotificationUri(
 getContext().getContentResolver(), uri);

 /*
 * Always try to update results with the latest data from the
 * network.
 *
 * Spawning an asynchronous load task thread guarantees that
 * the load has no chance to block any content provider method,
 * and therefore no chance to block the UI thread.
 *
 * While the request loads, we return the cursor with existing
 * data to the client.
 *
 * If the existing cursor is empty, the UI will render no
 * content until it receives URI notification.
 *
 * Content updates that arrive when the asynchronous network
 * request completes will appear in the already returned cursor,
 * since that cursor query will match that of
 * newly arrived items.
 */
 if (!"".equals(queryText)) {
 asyncQueryRequest(queryText, QUERY_URI + encode(queryText));
 }
 break;
 case VIDEO_ID:
 case THUMB_VIDEO_ID:
 long videoID = ContentUris.parseId(uri);
 queryCursor =
 mDb.query(VIDEOS_TABLE_NAME, projection,
 FinchVideo.Videos._ID + " = " + videoID,
 whereArgs, null, null, null);
 queryCursor.setNotificationUri(
 getContext().getContentResolver(), uri);
 break;
 case THUMB_ID:
 String uriString = uri.toString();
 int lastSlash = uriString.lastIndexOf("/");
 String mediaID = uriString.substring(lastSlash + 1);

 queryCursor =
 mDb.query(VIDEOS_TABLE_NAME, projection,
 FinchVideo.Videos.MEDIA_ID_NAME + " = " +
 mediaID,
 whereArgs, null, null, null);
 queryCursor.setNotificationUri(
 getContext().getContentResolver(), uri);

Step 4: Implementing the RESTful Request | 341

 break;

 default:
 throw new IllegalArgumentException("unsupported uri: " +
 QUERY_URI);
 }

 return queryCursor;
}

Extract a query parameter out of the incoming URI. We need to send this parameter
in the URI itself and not with the other arguments to the query method, since they
have different functions in the query method and could not be used to hold query
keywords.

Check first for data already in the local database that matches the query keywords.

Set the notification URI so that cursors returned from the query method will receive
update events whenever the provider changes data they are observing. This action
sets up Step 6 of our sequence, which will enable the view to update when the pro-
vider fires notification events when it changes data, as it will when data returns from
a given request. Once notification arrives, Step 7 occurs when the UI repaints. Note
that Steps 6 and 7 are out of order in our description, but it’s appropriate to talk
about those stages here since they relate to the notification URI and the query.

Spawn an asynchronous query to download the given query URI. The method
asyncQueryRequest encapsulates the creation of a new thread to service each request.
Note that this is Step 5 in our diagram; the asynchronous request will spawn a thread
to actually initiate network communication and the YouTube service will return a
response.

RESTfulContentProvider: A REST helper

Now we’ll look into the behaviors that FinchVideoProvider inherits from RESTful
ContentProvider in order to execute RESTful requests. To start we’ll consider the be-
havior of a given YouTube request: as we’ve seen, query requests run asynchronously
from the main thread. A RESTful provider needs to handle a few special cases: if a user
searches for “Funny Cats” while another request for the same keywords is in progress,
our provider will drop the second request. On the other hand, if a user searches for
“dogs” and then “cats” before “dogs” finishes, our provider allows “dogs” to run in
parallel to “cats”, since the user might search again for “dogs” and then obtain the
benefit of cached results in which she had shown some interest.

RESTfulContentProvider enables a subclass to asynchronously spawn requests and,
when request data arrives, supports custom handling of the response using a simple
plug-in interface called ResponseHandler. Subclasses should override the abstract
method, RESTfulContentProvider.newResponseHandler, to return handlers specialized
to parse response data requested by their host provider. Each handler will override the
method ResponseHandler.handleResponse(HttpResponse) to provide custom handling

342 | Chapter 13: Exploring Content Providers

for HttpEntitys contained in passed HttpResponse objects. For example, our provider
uses YouTubeHandler to parse a YouTube RSS feed, inserting database video rows for
each entry it reads. More detail on this in a bit...

Additionally, the class RESTfulContentProvider enables a subclass to easily make asyn-
chronous requests and reject duplicate requests. RESTfulContentProvider tracks each
request with a unique tag that enables a subclass to drop duplicate queries. Our Finch
VideoContentProvider uses the user’s query keywords as the request tag since they
uniquely identify a given search request.

Our FinchVideoContentProvider overrides newResponseHandler as follows:

/**
 * Provides a handler that can parse YouTube GData RSS content.
 *
 * @param requestTag unique tag identifying this request.
 * @return a YouTubeHandler object.
 */
@Override
protected ResponseHandler newResponseHandler(String requestTag) {
 return new YouTubeHandler(this, requestTag);
}

Now we’ll discuss the implementation of RESTfulContentProvider to explain the
operations it provides to subclasses. The class UriRequestTask provides a runnable for
asynchronously executing REST requests. RESTfulContentProvider uses a map,
mRequestsInProgress, keyed by a string to guarantee uniqueness of requests:

/**
 * Encapsulates functions for asynchronous RESTful requests so that subclass
 * content providers can use them for initiating requests while still using
 * custom methods for interpreting REST-based content such as RSS, ATOM,
 * JSON, etc.
 */
public abstract class RESTfulContentProvider extends ContentProvider {
 protected FileHandlerFactory mFileHandlerFactory;
 private Map<String, UriRequestTask> mRequestsInProgress =
 new HashMap<String, UriRequestTask>();

 public RESTfulContentProvider(FileHandlerFactory fileHandlerFactory) {
 mFileHandlerFactory = fileHandlerFactory;
 }

 public abstract Uri insert(Uri uri, ContentValues cv, SQLiteDatabase db);

 private UriRequestTask getRequestTask(String queryText) {
 return mRequestsInProgress.get(queryText);
 }

 /**
 * Allows the subclass to define the database used by a response handler.
 *
 * @return database passed to response handler.
 */

Step 4: Implementing the RESTful Request | 343

 public abstract SQLiteDatabase getDatabase();

 public void requestComplete(String mQueryText) {
 synchronized (mRequestsInProgress) {
 mRequestsInProgress.remove(mQueryText);
 }
 }

 /**
 * Abstract method that allows a subclass to define the type of handler
 * that should be used to parse the response of a given request.
 *
 * @param requestTag unique tag identifying this request.
 * @return The response handler created by a subclass used to parse the
 * request response.
 */
 protected abstract ResponseHandler newResponseHandler(String requestTag);

 UriRequestTask newQueryTask(String requestTag, String url) {
 UriRequestTask requestTask;

 final HttpGet get = new HttpGet(url);
 ResponseHandler handler = newResponseHandler(requestTag);
 requestTask = new UriRequestTask(requestTag, this, get,
 handler, getContext());

 mRequestsInProgress.put(requestTag, requestTask);
 return requestTask;
 }

 /**
 * Creates a new worker thread to carry out a RESTful network invocation.
 *
 * @param queryTag unique tag that identifies this request.
 *
 * @param queryUri the complete URI that should be accessed by this request.
 */
 public void asyncQueryRequest(String queryTag, String queryUri) {
 synchronized (mRequestsInProgress) {
 UriRequestTask requestTask = getRequestTask(queryTag);
 if (requestTask == null) {
 requestTask = newQueryTask(queryTag, queryUri);
 Thread t = new Thread(requestTask);
 // allows other requests to run in parallel.
 t.start();
 }
 }
 }
...
}

The method getRequestTask uses mRequestsInProgress to access any identical re-
quests in progress, which allows the asyncQueryRequest to block duplicate requests
with a simple if statement.

344 | Chapter 13: Exploring Content Providers

When a request completes after the ResponseHandler.handleResponse method re-
turns, RESTfulContentProvider removes the task from mRequestsInProgress.

newQueryTask creates instances of UriRequestTask that are instances of Runnable that
will, in turn, open an HTTP connection, and then call handleResponse on the ap-
propriate handler.

Finally, our code has a unique request, creates a task to run it, and then wraps the
task in a thread for asynchronous execution.

While RESTfulContentProvider contains the guts of the reusable task system, for com-
pleteness we’ll show you the other components in our framework.

UriRequestTask encapsulates the asynchronous aspects of handling a
REST request. It’s a simple class that has fields that enable it to execute a RESTful
GET inside its run method. Such an action would be part of Step 4, “Implementing the
RESTful Request,” of our sequence. As discussed, once it has the response from the
request, it passes it to an invocation of ResponseHandler.handleResponse. We expect
the handleResponse method to insert database entries as needed, which we’ll see in
YouTubeHandler:

/**
 * Provides a runnable that uses an HttpClient to asynchronously load a given
 * URI. After the network content is loaded, the task delegates handling of the
 * request to a ResponseHandler specialized to handle the given content.
 */
public class UriRequestTask implements Runnable {
 private HttpUriRequest mRequest;
 private ResponseHandler mHandler;

 protected Context mAppContext;

 private RESTfulContentProvider mSiteProvider;
 private String mRequestTag;

 private int mRawResponse = -1;
// private int mRawResponse = R.raw.map_src;

 public UriRequestTask(HttpUriRequest request,
 ResponseHandler handler, Context appContext)
 {
 this(null, null, request, handler, appContext);
 }

 public UriRequestTask(String requestTag,
 RESTfulContentProvider siteProvider,
 HttpUriRequest request,
 ResponseHandler handler, Context appContext)
 {
 mRequestTag = requestTag;
 mSiteProvider = siteProvider;
 mRequest = request;
 mHandler = handler;

UriRequestTask.

Step 4: Implementing the RESTful Request | 345

 mAppContext = appContext;
 }

 public void setRawResponse(int rawResponse) {
 mRawResponse = rawResponse;
 }

 /**
 * Carries out the request on the complete URI as indicated by the protocol,
 * host, and port contained in the configuration, and the URI supplied to
 * the constructor.
 */
 public void run() {
 HttpResponse response;

 try {
 response = execute(mRequest);
 mHandler.handleResponse(response, getUri());
 } catch (IOException e) {
 Log.w(Finch.LOG_TAG, "exception processing asynch request", e);
 } finally {
 if (mSiteProvider != null) {
 mSiteProvider.requestComplete(mRequestTag);
 }
 }
 }

 private HttpResponse execute(HttpUriRequest mRequest) throws IOException {
 if (mRawResponse >= 0) {
 return new RawResponse(mAppContext, mRawResponse);
 } else {
 HttpClient client = new DefaultHttpClient();
 return client.execute(mRequest);
 }
 }

 public Uri getUri() {
 return Uri.parse(mRequest.getURI().toString());
 }
}

As required by the abstract method, RESTfulContentProvider.newRes
ponseHandler, we’ve seen that our FinchVideoContentProvider returns YouTubeHandler
to handle YouTube RSS feeds. YouTubeHandler uses a memory saving XML Pull parser
to parse incoming data, iterating through requested XML RSS data. YouTubeHandler
contains some complexity, but generally, it’s just matching XML tags as needed to
create a ContentValues object that it can insert into the FinchVideoContentProvider’s
database. Part of Step 5 occurs when the handler inserts the parsed result into the
provider database:

/**
 * Parses YouTube Entity data and inserts it into the finch video content
 * provider.
 */

YouTubeHandler.

346 | Chapter 13: Exploring Content Providers

public class YouTubeHandler implements ResponseHandler {
 public static final String MEDIA = "media";
 public static final String GROUP = "group";
 public static final String DESCRIPTION = "description";
 public static final String THUMBNAIL = "thumbnail";
 public static final String TITLE = "title";
 public static final String CONTENT = "content";

 public static final String WIDTH = "width";
 public static final String HEIGHT = "height";

 public static final String YT = "yt";
 public static final String DURATION = "duration";
 public static final String FORMAT = "format";

 public static final String URI = "uri";
 public static final String THUMB_URI = "thumb_uri";

 public static final String MOBILE_FORMAT = "1";

 public static final String ENTRY = "entry";
 public static final String ID = "id";

 private static final String FLUSH_TIME = "5 minutes";

 private RESTfulContentProvider mFinchVideoProvider;

 private String mQueryText;
 private boolean isEntry;

 public YouTubeHandler(RESTfulContentProvider restfulProvider,
 String queryText)
 {
 mFinchVideoProvider = restfulProvider;
 mQueryText = queryText;
 }

 /*
 * Handles the response from the YouTube GData server, which is in the form
 * of an RSS feed containing references to YouTube videos.
 */
 public void handleResponse(HttpResponse response, Uri uri)
 throws IOException
 {
 try {
 int newCount = parseYoutubeEntity(response.getEntity());

 // only flush old state now that new state has arrived
 if (newCount > 0) {
 deleteOld();
 }

 } catch (IOException e) {
 // use the exception to avoid clearing old state, if we cannot
 // get new state. This way we leave the application with some

Step 4: Implementing the RESTful Request | 347

 // data to work with in absence of network connectivity.

 // we could retry the request for data in the hope that the network
 // might return.
 }
 }

 private void deleteOld() {
 // delete any old elements, not just ones that match the current query.

 Cursor old = null;

 try {
 SQLiteDatabase db = mFinchVideoProvider.getDatabase();
 old = db.query(FinchVideo.Videos.VIDEO, null,
 "video." + FinchVideo.Videos.TIMESTAMP +
 " < strftime('%s', 'now', '-" + FLUSH_TIME + "')",
 null, null, null, null);
 int c = old.getCount();
 if (old.getCount() > 0) {
 StringBuffer sb = new StringBuffer();
 boolean next;
 if (old.moveToNext()) {
 do {
 String ID = old.getString(FinchVideo.ID_COLUMN);
 sb.append(FinchVideo.Videos._ID);
 sb.append(" = ");
 sb.append(ID);

 // get rid of associated cached thumb files
 mFinchVideoProvider.deleteFile(ID);

 next = old.moveToNext();
 if (next) {
 sb.append(" OR ");
 }
 } while (next);
 }
 String where = sb.toString();

 db.delete(FinchVideo.Videos.VIDEO, where, null);

 Log.d(Finch.LOG_TAG, "flushed old query results: " + c);
 }
 } finally {
 if (old != null) {
 old.close();
 }
 }
 }

 private int parseYoutubeEntity(HttpEntity entity) throws IOException {
 InputStream youTubeContent = entity.getContent();
 InputStreamReader inputReader = new InputStreamReader(youTubeContent);

348 | Chapter 13: Exploring Content Providers

 int inserted = 0;

 try {
 XmlPullParserFactory factory = XmlPullParserFactory.newInstance();
 factory.setNamespaceAware(false);
 XmlPullParser xpp = factory.newPullParser();

 xpp.setInput(inputReader);

 int eventType = xpp.getEventType();
 String startName = null;
 ContentValues mediaEntry = null;

 // iterative pull parsing is a useful way to extract data from
 // streams, since we don't have to hold the DOM model in memory
 // during the parsing step.

 while (eventType != XmlPullParser.END_DOCUMENT) {
 if (eventType == XmlPullParser.START_DOCUMENT) {
 } else if (eventType == XmlPullParser.END_DOCUMENT) {
 } else if (eventType == XmlPullParser.START_TAG) {
 startName = xpp.getName();

 if ((startName != null)) {

 if ((ENTRY).equals(startName)) {
 mediaEntry = new ContentValues();
 mediaEntry.put(FinchVideo.Videos.QUERY_TEXT_NAME,
 mQueryText);
 }

 if ((MEDIA + ":" + CONTENT).equals(startName)) {
 int c = xpp.getAttributeCount();
 String mediaUri = null;
 boolean isMobileFormat = false;

 for (int i = 0; i < c; i++) {
 String attrName = xpp.getAttributeName(i);
 String attrValue = xpp.getAttributeValue(i);

 if ((attrName != null) &&
 URI.equals(attrName))
 {
 mediaUri = attrValue;
 }

 if ((attrName != null) && (YT + ":" + FORMAT).
 equals(MOBILE_FORMAT))
 {
 isMobileFormat = true;
 }
 }

 if (isMobileFormat && (mediaUri != null)) {
 mediaEntry.put(URI, mediaUri);

Step 4: Implementing the RESTful Request | 349

 }
 }

 if ((MEDIA + ":" + THUMBNAIL).equals(startName)) {
 int c = xpp.getAttributeCount();
 for (int i = 0; i < c; i++) {
 String attrName = xpp.getAttributeName(i);
 String attrValue = xpp.getAttributeValue(i);

 if (attrName != null) {
 if ("url".equals(attrName)) {
 mediaEntry.put(
 FinchVideo.Videos.
 THUMB_URI_NAME,
 attrValue);
 } else if (WIDTH.equals(attrName))
 {
 mediaEntry.put(
 FinchVideo.Videos.
 THUMB_WIDTH_NAME,
 attrValue);
 } else if (HEIGHT.equals(attrName))
 {
 mediaEntry.put(
 FinchVideo.Videos.
 THUMB_HEIGHT_NAME,
 attrValue);
 }
 }
 }
 }

 if (ENTRY.equals(startName)) {
 isEntry = true;
 }
 }
 } else if(eventType == XmlPullParser.END_TAG) {
 String endName = xpp.getName();

 if (endName != null) {
 if (ENTRY.equals(endName)) {
 isEntry = false;
 } else if (endName.equals(MEDIA + ":" + GROUP)) {
 // insert the complete media group
 inserted++;

 // Directly invoke insert on the finch video
 // provider, without using content resolver. We
 // would not want the content provider to sync this
 // data back to itself.
 SQLiteDatabase db =
 mFinchVideoProvider.getDatabase();

 String mediaID = (String) mediaEntry.get(
 FinchVideo.Videos.MEDIA_ID_NAME);

350 | Chapter 13: Exploring Content Providers

 // insert thumb uri
 String thumbContentUri =
 FinchVideo.Videos.THUMB_URI + "/" + mediaID;
 mediaEntry.put(FinchVideo.Videos.
 THUMB_CONTENT_URI_NAME,
 thumbContentUri);

 String cacheFileName =
 mFinchVideoProvider.getCacheName(mediaID);
 mediaEntry.put(FinchVideo.Videos._DATA,
 cacheFileName);

 Uri providerUri = mFinchVideoProvider.
 insert(FinchVideo.Videos.CONTENT_URI,
 mediaEntry, db);
 if (providerUri != null) {
 String thumbUri = (String) mediaEntry.
 get(FinchVideo.Videos.THUMB_URI_NAME);

 // We might consider lazily downloading the
 // image so that it was only downloaded on
 // viewing. Downloading more aggressively
 // could also improve performance.

 mFinchVideoProvider.
 cacheUri2File(String.valueOf(ID),
 thumbUrl);
 }
 }
 }

 } else if (eventType == XmlPullParser.TEXT) {
 // newline can turn into an extra text event
 String text = xpp.getText();
 if (text != null) {
 text = text.trim();
 if ((startName != null) && (!"".equals(text))){
 if (ID.equals(startName) && isEntry) {
 int lastSlash = text.lastIndexOf("/");
 String entryId =
 text.substring(lastSlash + 1);
 mediaEntry.put(FinchVideo.Videos.MEDIA_ID_NAME,
 entryId);
 } else if ((MEDIA + ":" + TITLE).
 equals(startName)) {
 mediaEntry.put(TITLE, text);
 } else if ((MEDIA + ":" +
 DESCRIPTION).equals(startName))
 {
 mediaEntry.put(DESCRIPTION, text);
 }
 }
 }
 }

Step 4: Implementing the RESTful Request | 351

 eventType = xpp.next();
 }

 // an alternate notification scheme might be to notify only after
 // all entries have been inserted.

 } catch (XmlPullParserException e) {
 Log.d(Ch11.LOG_TAG,
 "could not parse video feed", e);
 } catch (IOException e) {
 Log.d(Ch11.LOG_TAG,
 "could not process video stream", e);
 }

 return inserted;
 }
}

Our handler implements handleResponse by parsing a YouTube HTTP entity in its
method, parseYoutubeEntity, which inserts new video data. The handler then deletes
old video data by querying for elements that are older than a timeout period, and
then deleting the rows of data in that query.

The handler has finished parsing a media element, and uses its containing content
provider to insert its newly parsed ContentValues object. Note that this is Step 5,
“Response handler inserts elements into local cache,” in our sequence.

The provider initiates its own asynchronous request after it inserts a new media entry
to also download thumbnail content. We’ll explain more about this feature of our
provider shortly.

insert and ResponseHandlers
Going into Step 5 in a bit more detail, our Finch video provider implements insert in
much the same way as our simple video provider. Also, as we’ve seen in our application,
video insertion happens as a side effect of the query method. It’s worth pointing out
that our insert method is broken into two pieces. We intend that content provider
clients call the first form and that response handlers call the second form, shown in the
following code. The first form delegates to the second. We break up insert because
the response handler is part of the content provider and does not need to route through
the content resolver to itself:

@Override
public Uri insert(Uri uri, ContentValues initialValues) {
 // Validate the requested uri
 if (sUriMatcher.match(uri) != VIDEOS) {
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 ContentValues values;
 if (initialValues != null) {

352 | Chapter 13: Exploring Content Providers

 values = new ContentValues(initialValues);
 } else {
 values = new ContentValues();
 }

 SQLiteDatabase db = getDatabase();
 return insert(uri, initialValues, db);
}

YouTubeHandler uses the following method to directly insert rows into the simple video
database. Note that we don’t insert the media if the database already contains a video
entry with the same mediaID as the one we are inserting. In this way, we avoid duplicate
video entries, which could occur when integrating new data with older, but not expired,
data:

public Uri insert(Uri uri, ContentValues values, SQLiteDatabase db) {
 verifyValues(values);

 // Validate the requested uri
 int m = sUriMatcher.match(uri);
 if (m != VIDEOS) {
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 // insert the values into a new database row
 String mediaID = (String) values.get(FinchVideo.Videos.MEDIA_ID);

 Long rowID = mediaExists(db, mediaID);
 if (rowID == null) {
 long time = System.currentTimeMillis();
 values.put(FinchVideo.Videos.TIMESTAMP, time);
 long rowId = db.insert(VIDEOS_TABLE_NAME,
 FinchVideo.Videos.VIDEO, values);
 if (rowId >= 0) {
 Uri insertUri =
 ContentUris.withAppendedId(
 FinchVideo.Videos.CONTENT_URI, rowId);
 mContentResolver.notifyChange(insertUri, null);
 return insertUri;
 } else {
 throw new IllegalStateException("could not insert " +
 "content values: " + values);
 }
 }

 return ContentUris.withAppendedId(FinchVideo.Videos.CONTENT_URI, rowID);
}

File Management: Storing Thumbnails
Now that we’ve explained how our RESTful provider framework operates, we’ll end
the chapter with an explanation of how the provider handles thumbnails.

Step 4: Implementing the RESTful Request | 353

Earlier we described the ContentResolver.openInputStream method as a way for content
providers to serve files to clients. In our Finch video example, we use this feature to
serve thumbnail images. Storing images as files allows us to avoid use of database blobs
and their performance overhead, and allows us to only download images when a client
requests them. For a content provider to serve files, it must override the method
ContentProvider.openFile, which opens a file descriptor to the file being served. The
content resolver takes care of creating an input stream from the file descriptor. The
simplest implementation of this method will call openFileHelper to activate the con-
venience utility that allows the ContentResolver to read the _data variable to load the
file it references. If your provider does not override this method at all, you will see an
exception generated that has a message as follows: No files supported by provider
at Our simple implementation only allows read-only access, as shown in the fol-
lowing code:

/**
 * Provides read-only access to files that have been downloaded and stored
 * in the provider cache. Specifically, in this provider, clients can
 * access the files of downloaded thumbnail images.
 */
@Override
public ParcelFileDescriptor openFile(Uri uri, String mode)
 throws FileNotFoundException
{
 // only support read-only files
 if (!"r".equals(mode.toLowerCase())) {
 throw new FileNotFoundException("Unsupported mode, " +
 mode + ", for uri: " + uri);
 }

 return openFileHelper(uri, mode);
}

Finally, we use a FileHandler implementation of ResponseHandler to download image
data from YouTube thumbnail URLs corresponding to each media entry. Our File
HandlerFactory allows us to manage cache files stored in a specified cache directory.
We allow the factory to decide where to store the files:

/**
 * Creates instances of FileHandler objects that use a common cache directory.
 * The cache directory is set in the constructor to the file handler factory.
 */
public class FileHandlerFactory {
 private String mCacheDir;

 public FileHandlerFactory(String cacheDir) {
 mCacheDir = cacheDir;
 init();
 }

 private void init() {
 File cacheDir = new File(mCacheDir);
 if (!cacheDir.exists()) {

354 | Chapter 13: Exploring Content Providers

 cacheDir.mkdir();
 }
 }

 public FileHandler newFileHandler(String id) {
 return new FileHandler(mCacheDir, id);
 }

 // not really used since ContentResolver uses _data field.
 public File getFile(String ID) {
 String cachePath = getFileName(ID);

 File cacheFile = new File(cachePath);
 if (cacheFile.exists()) {
 return cacheFile;
 }
 return null;
 }

 public void delete(String ID) {
 String cachePath = mCacheDir + "/" + ID;

 File cacheFile = new File(cachePath);
 if (cacheFile.exists()) {
 cacheFile.delete();
 }
 }

 public String getFileName(String ID) {
 return mCacheDir + "/" + ID;
 }
}

/**
 * Writes data from URLs into a local file cache that can be referenced by a
 * database ID.
 */
public class FileHandler implements ResponseHandler {
 private String mId;
 private String mCacheDir;

 public FileHandler(String cacheDir, String id) {
 mCacheDir = cacheDir;
 mId = id;
 }

 public
 String getFileName(String ID) {
 return mCacheDir + "/" + ID;
 }

 public void handleResponse(HttpResponse response, Uri uri)
 throws IOException
 {
 InputStream urlStream = response.getEntity().getContent();

Step 4: Implementing the RESTful Request | 355

 FileOutputStream fout =
 new FileOutputStream(getFileName(mId));
 byte[] bytes = new byte[256];
 int r = 0;
 do {
 r = urlStream.read(bytes);
 if (r >= 0) {
 fout.write(bytes, 0, r);
 }
 } while (r >= 0);

 urlStream.close();
 fout.close();
 }
}

356 | Chapter 13: Exploring Content Providers

PART IV

Advanced Topics

In Part IV we cover Android APIs that are important to many applications, but that are
not part of the core Android Framework and that not every application is likely to make
use of.

CHAPTER 14

Multimedia

In today’s world of converging technologies, the mobile phone is used for a variety of
tasks beyond simple voice calls. Multimedia capabilities, or the playing and recording
of audio and video, is one such significant task that many users find to be of great value.
Take a quick look around and you will find people using the phone as a means to enjoy
a variety of programs as well as share self-recorded media among friends. Android
provides the APIs to easily access this capability as well as embed multimedia and its
manipulation directly within an application.

Audio and Video
Android supports playback of most popular audio and video formats. It also lets you
record some formats. Recordings are stored in files, and can optionally be put in a
persistent media store. The MediaStore is the content provider within Android that
enables the storing and sharing of media data such as images, video, and audio. Once
placed within this content provider, metadata associated with the media files becomes
available for other applications to use.

As of this writing, most Android devices currently on the market support the following
audio and video formats. Note that device makers can add support for other formats
not listed here:

Audio

AAC LC/LTP *
HE-AACv1 (AAC+)
HE-AACv2 (enhanced AAC+)
AMR-NB *
AMR-WB *
MP3
MIDI
Ogg Vorbis
PCM/WAVE

359

Video

H.263 *
H.264 AVC
MPEG-4 SP

The asterisk (*) indicates the formats for which encoding is available. For all others,
only decoding is possible.

Check the Developers site at http://developer.android.com/guide/appendix/media-for
mats.html for further details and changes.

Playing Audio and Video
Android provides a standard means to play audio or video: the MediaPlayer class. For
audio content, you can also play back raw data, which is useful in sophisticated appli-
cations where you generate the audio dynamically.

A MediaPlayer goes through several states during its life cycle:

Idle
The MediaPlayer is instantiated.

Initialized
The media source is set.

Preparing
The MediaPlayer is preparing the media source for playback.

Prepared
The MediaPlayer is prepared for playback.

Started
Playback is in progress.

Paused
Playback has been paused.

Playback complete
Playback of source is done (the playback can be started again).

Stopped
The MediaPlayer is no longer prepared to play the source.

End
The MediaPlayer is no more, and all associated resources are released.

360 | Chapter 14: Multimedia

http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/guide/appendix/media-formats.html

For details on these states, view the state diagram provided on the Developers site at
http://developer.android.com/reference/android/media/MediaPlayer.html#StateDia
gram. To get started with MediaPlayer, it’s useful at this point to view it as a series of
steps in your application:

1. Create a MediaPlayer instance through the create() method (idle state).

2. Initialize the MediaPlayer with the media source to play (initialized state).

3. Prepare the MediaPlayer for playback through the prepare() method (preparing
and prepared states).

4. Play the MediaPlayer through the start() method (started state).

5. During playback, if desired, you can pause, stop, or replay the MediaPlayer (started,
paused, playback complete, and stopped states).

6. Once playback is finished, make sure to release the MediaPlayer’s associated re-
sources by calling release() (end state).

The following sections provide more detail.

Audio Playback
Audio can be played through two methods, MediaPlayer and AudioTrack. MediaPlayer
is the standard, simple way to do playback. Its data must be in a file or be stream-based.
AudioTrack, in contrast, provides direct access to raw audio in memory.

MediaPlayer audio playback

When you first start using the MediaPlayer, you should determine whether a file placed
within the application’s resources is to be used. If so, MediaPlayer has a convenient
static method that will set up the data source and prepare the player:

MediaPlayer mediaplayer = MediaPlayer.create(this, R.raw.example);

If you are not using an application resource, such as referencing an audio file residing
on the filesystem (SD card and the like) or on a website (e.g., http://SomeServer/Some
AudioFile.mp3), you’ll have to manually set up and call your data source. You can take
the data from a URI through a call to:

setDataSource(context, uri)

The context in the first argument is a means for the MediaPlayer to access the resources
of the application itself, and thus be able to resolve the URI. Either the application or
activities context will do.

The alternative is to specify an absolute file path through:

setDataSource(path)

API version 9 lets you attach some auxiliary effects (such as reverb) to the player. Set
any effects you want while setting the data source, before calling prepare():

Playing Audio and Video | 361

http://developer.android.com/reference/android/media/MediaPlayer.html#StateDiagram
http://developer.android.com/reference/android/media/MediaPlayer.html#StateDiagram

 MediaPlayer mediaplayer = new MediaPlayer();

 // Uri mediaReference = "http://someUriToaMediaFile.mp3";
 // mediaplayer.setDataSource(this, mediaReference);

 // use absolute path
 mediaplayer.setDataSource("/sdcard/somefile.mp3");

 // prepare mediaplayer
 mediaplayer.prepare();

Once the MediaPlayer is prepared, you can play it:

 mediaplayer.start();

During play, the player can be paused or stopped. When in the paused state, it may be
unpaused simply by calling start() again. Once the MediaPlayer is stopped, you can’t
start it again without resetting it through the reset() method, reinitializing it with the
data source as shown earlier, and issuing prepare(). However, look at the following:

mediaplayer.pause(); // pausing
mediaplayer.start(); // going from pause to play

mediaplayer.stop(); // stopping

...

// to be able to play again reset must be called
mediaplayer.reset();
// now the media player must be reinitialized to play again

While the MediaPlayer is playing, you can track its current position in the file through
getCurrentPosition(). This returns the amount of time played through in the file, in
millisecond units:

 mediaplayer.getCurrentPosition();

Once the MediaPlayer is no longer needed, make sure to release it so that the resources
are cleaned up and made available for the system:

 mediaplayer.release();

AudioTrack audio playback

AudioTrack provides a much more direct method of playing audio. The following ex-
ample shows the parameters required to set up an AudioTrack:

File mediafile = new File(mediaFilePath);
short[] audio = new short[(int) (mediafile.length()/2)];

// read in file and fill up audio[]

AudioTrack audiotrack = new AudioTrack(
 // stream type
 AudioManager.STREAM_MUSIC,
 // frequency

362 | Chapter 14: Multimedia

 11025,
 // channel config—mono, stereo, etc.
 AudioFormat.CHANNEL_CONFIGURATION_MONO,
 // audio encoding
 AudioFormat.ENCODING_PCM_16BIT,
 // length
 audio.length,
 // mode
 AudioTrack.MODE_STREAM
);

The AudioTrack method provides the type of audio stream (music, ringtone, alarm,
voice call, etc.), the sample rate in Hertz (44100, 22050, 11025), the audio configuration
(mono or stereo), the audio format/encoding, the length of the audio in number of
bytes, and the mode (static or stream). Android’s AudioTrack, once configured, will
automatically know how to interface with the hardware on the device, thus providing
a painless experience.

To play the audio, issue the play() method and write the data out to the hardware:

// start playing state
audiotrack.play();

// write audio to hardware
audiotrack.write(audio, 0, audio.length);

To pause the track, utilize the pause() method:

// pause
audiotrack.pause();

To stop playing the track, set it to the stopped state. If you don’t need the track anymore,
release it. Otherwise, to replay the audio, you must reinitialize it:

// stop
audiotrack.stop();

// release all resources
audiotrack.release();

Video Playback
Video playback, unlike audio playback, can use only the MediaPlayer. There is no video
equivalent to AudioTrack. Video uses the MediaPlayer similarly to audio files, but you
must additionally specify a view (called a surface) on which the video can be displayed.
Android offers a convenient control that includes its own surface: the VideoView view.
An example of its use follows. It includes the addition of an optional controller that
lets the user control the playback through a simple interface that includes buttons to
start, stop, and pause the playback, as well as a seek bar to skip forward or back within
the video’s playback progress:

Playing Audio and Video | 363

// create the view (in this case it is already included in the layout resource)
VideoView videoview = (VideoView) findViewById(R.id.videoview);
videoview.setKeepScreenOn(true);

// used if streaming
if (videouri != null) videoview.setVideoURI(videouri);
// absolute path if it is a file
else videoview.setVideoPath(videopath);

// let's add a media control so we can control the playback
mediacontroller = new MediaController(this);
mediacontroller.setAnchorView(videoview);
videoview.setMediaController(mediacontroller);
if (videoview.canSeekForward())
 videoview.seekTo(videoview.getDuration()/2);

// start the playback
videoview.start();

Recording Audio and Video
The standard class that supports recording is the MediaRecorder. Much like the Media
Player, it passes through various states during its life cycle. The states are as follows
(for more details, view the state diagram provided by the Developers site, at http://
developer.android.com/reference/android/media/MediaRecorder.html):

Initialize
The MediaRecorder class is instantiated.

Initialized
The MediaRecorder is ready to be used.

DataSource configured
The media source (where the output will be placed) is configured.

Prepared
The MediaRecorder is prepared to record.

Recording
Recording is underway.

Released
All resources are released.

To utilize the MediaRecorder, some permissions may need to be set in the manifest:

• To enable video recording, enable RECORD_VIDEO and the CAMERA:

<uses-permission android:name="android.permission.RECORD_VIDEO"/>
<uses-permission android:name="android.permission.CAMERA"/>

• To record audio, enable RECORD_AUDIO:

<uses-permission android:name="android.permission.RECORD_AUDIO"/>

364 | Chapter 14: Multimedia

http://developer.android.com/reference/android/media/MediaRecorder.html
http://developer.android.com/reference/android/media/MediaRecorder.html

Audio Recording
There are three methods to record audio. The MediaRecorder is the standard method;
using an Intent is the simplest method; and the AudioRecorder can be used to record
directly from hardware buffers.

MediaRecorder audio recording

First, initialize the MediaRecorder. Then set the data source information (the audio input
source, the output format, the encoding type, where the file is to be recorded to, etc.).
Starting with version 8, you can set the bit rate and sampling rate. Once all this is done,
call the prepare() method:

// initialize the MediaRecorder
MediaRecorder mediarecorder = new MediaRecorder();

// configure the data source
 // the source of the audio input
 mediarecorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 // output format
 mediarecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
 // encoding
 mediarecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 // use absolute path to file where output is stored
 mediarecorder.setOutputFile("/sdcard/audiorecordexample.3gpp");

 // prepare to record
 mediarecorder.prepare();

Then when the recoding needs to start, call the start() method:

mediarecorder.start();

When the recording needs to be stopped, call the stop() method. If you want to con-
tinue recording after this, call reset() to force the MediaRecorder back to the idle state.
Then reconfigure the data source to prepare the MediaRecorder again:

mediarecorder.stop();
...
mediarecorder.reset();

Once the MediaRecorder is no longer needed, make sure to release it:

mediarecorder.release();

The following example is a convenient little app that uses the code we developed to
provide a “record” button for the user. When the button is clicked, the record method
executes with the file path already referenced. A “stop” button is then made visible and
the “record” button becomes invisible. When the “stop” button is clicked, the stop
Record method is called and the “record” button comes back:

Recording Audio and Video | 365

public class AudioRecorder extends Activity {
 private MediaRecorder mediarecorder;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.audiorecorderlayout);

 ImageButton recordbutton = (ImageButton) findViewById(R.id.record);
 recordbutton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 record("/sdcard/audiorecordexample.3gpp");
 }
 });

 ImageButton stopbutton = (ImageButton) findViewById(R.id.stop);
 stopbutton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 stopRecord();
 }
 });
 }

 private void record(String filePath) {
 try {
 File mediafile = new File(filePath);
 if(mediafile.exists()) {
 mediafile.delete();
 }
 mediafile = null;

 // record button goes away
 ImageButton button = (ImageButton) findViewById(R.id.record);
 button.setVisibility(View.GONE);
 // stop button shows up
 ImageButton stopbutton = (ImageButton) findViewById(R.id.stop);
 stopbutton.setVisibility(View.VISIBLE);

 // set up media recorder
 if(mediarecorder == null) mediarecorder = new MediaRecorder();
 mediarecorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 mediarecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
 mediarecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 mediarecorder.setOutputFile(filePath);

 // prepare media recorder
 mediarecorder.prepare();
 // start media recorder
 mediarecorder.start();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

366 | Chapter 14: Multimedia

 private void stopRecord() {
 // stop media recorder
 mediarecorder.stop();
 // reset media recorder
 mediarecorder.reset();

 // record button shows up
 ImageButton button = (ImageButton) findViewById(R.id.record);
 button.setVisibility(View.VISIBLE);
 // stop button goes away
 ImageButton stopbutton = (ImageButton) findViewById(R.id.stop);
 stopbutton.setVisibility(View.GONE);
 }
}

Intent audio recording

Recording via Intent is the easiest of the methods. Just construct the Media
Store.Audio.Media.RECORD_SOUND_ACTION intent, and start it using the startActivity
ForResult() from within the Activity. This will launch the default audio recorder that
is provided in most Android devices and proceeds to record some audio:

Intent intent = new Intent(MediaStore.Audio.Media.RECORD_SOUND_ACTION);
startActivityForResult(intent, 1); // intent and requestCode of 1

Once the recording is complete and the audio recorder finishes, your Activity that
originated the call to startActivityForResult() will be brought back to the fore. When
that occurs, your Activity’s onActivityResult() method will be triggered with the
requestCode you provided (in this case, 1), a result code (OK or error), and an intent
carrying the URI referencing the recorded audio file:

protected void onActivityResult(int requestCode, int resultCode, Intent intent) {
 // is it our requestCode?
 if (requestCode == 1) {
 // is the resultCode OK?
 if (resultCode == RESULT_OK) {
 // lets get the uri
 Uri audioUri = intent.getData();
 // lets play the uri or do something with it.
 playAudio(audioUri);
 }
 }
}

AudioRecorder audio recording

In parallel with AudioTrack, AudioRecorder provides a much more direct recording
experience:

short[] buffer = new short[10000];

recorder = new AudioRecord(// source to record from
 MediaRecorder.AudioSource.MIC,
 // frequency

Recording Audio and Video | 367

 11025,
 // channel config—mono, stereo, etc.
 AudioFormat.CHANNEL_CONFIGURATION_MONO,
 // audio encoding
 AudioFormat.ENCODING_PCM_16BIT,
 // buffer size
 buffer.length
);

The AudioRecord method provides the type of source to record audio from (Mic, Cam-
corder [mic facing the same direction as the camera], or VoiceCall), the sample rate in
Hertz (44100, 22050, or 11025), the audio configuration (mono or stereo), the audio
format/encoding, and the length of the buffer in number of bytes. Note that the size of
this buffer determines how long an AudioRecord can record before “over-running” data
that has not been read yet. Data should be read from the audio hardware in chunks of
sizes less than the total recording buffer size. Android’s AudioRecord, once configured,
will automatically know how to interface with the hardware on the device, thus pro-
viding a painless experience.

To start recording, set the AudioRecord’s state to the Record state and read data repeat-
edly from the hardware buffer:

recorder.startRecording();
while(recordablestate) {
 try {
 // read in up to buffer size
 int readBytes = recorder.read(buffer, 0, buffer.length);

 // do something with the bytes that are read
 } catch (Exception t) {
 recordablestate = false;
 }
}

To stop recording, set the AudioRecord’s state to Stop. If you no longer wish to record,
do not forget to release all resources associated with the recording. Otherwise, you may
call startRecording() to start recording again:

 // stop recording
recorder.stop();

 // release recording resources
recorder.release();

Video Recording
You can record video in two ways: by using the MediaRecorder or by using an Intent.
Raw recording is not supported, as it is for audio.

368 | Chapter 14: Multimedia

MediaRecorder video recording

The process for recording video with the MediaRecorder is much the same as that for
recording audio: initialize the MediaRecorder, prepare the data source, and start the
MediaRecorder. You can offer the user a preview window so that he can preview the
video being captured, by providing a surface as shown earlier for playing back video.
Generally, a VideoView is used:

// initialize
MediaRecorder mediarecorder = new MediaRecorder();

// set data source
mediarecorder.setAudioSource(MediaRecorder.AudioSource.MIC);
mediarecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);
mediarecorder.setOutputFormat(MediaRecorder.OutputFormat.DEFAULT);
mediarecorder.setAudioEncoder(MediaRecorder.AudioEncoder.DEFAULT);
mediarecorder.setVideoEncoder(MediaRecorder.VideoEncoder.DEFAULT);
mediarecorder.setOutputFile("/sdcard/someexamplevideo.mp4");

// provide a surface to show the preview in. in this case a VideoView is used
videoview = (VideoView) findViewById(R.id.videosurface);
SurfaceHolder holder = videoview.getHolder();
mediarecorder.setPreviewDisplay(holder.getSurface());

// prepare
mediarecorder.prepare();

// start recording
mediarecorder.start();

Intent video recording

Intent-based video recording is like using an intent to record audio. The intent to use
is MediaStore.ACTION_VIDEO_CAPTURE, and the resultant data is the URI of the video file.

Stored Media Content
Even when media is saved to a file (as in the case of recording), the media file is not
immediately available to other applications. To make the file available, you must insert
it into the MediaStore. The MediaStore is a content provider dedicated to the storage
and retrieval of media data (images, video, audio) with the device. To store a reference
to the file, create a ContentValues object and insert it into the appropriate MediaStore
content provider. The following example inserts an audio file with appropriate meta-
data, such as title and artist:

// generate ContentValues and add appropriate metadata values

ContentValues content = new ContentValues();

// VERY IMPORTANT! Must reference the absolute path of the data.
content.put(MediaStore.MediaColumns.DATA, "/sdcard/AudioExample.3gpp");

Stored Media Content | 369

content.put(MediaStore.MediaColumns.TITLE, "AudioRecordExample");
content.put(MediaStore.MediaColumns.MIME_TYPE, "audio/amr");
content.put(MediaStore.Audio.Media.ARTIST, "Me");
content.put(MediaStore.Audio.Media.IS_MUSIC, true);

// get the Content Resolver
ContentResolver resolve = getContentResolver();

// insert into the content resolver
Uri uri = resolve.insert(MediaStore.Audio.Media.EXTERNAL_CONTENT_URI, content);

// announce to everyone that cares that it was inserted
sendBroadcast(new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE, uri));

370 | Chapter 14: Multimedia

CHAPTER 15

Location and Mapping

Ever since mobile phones started to incorporate standalone GPS receivers, developers
have foreseen a new era of location-based applications. Location awareness enables a
new generation of mobile applications. If your application is looking up restaurants,
it’s clearly advantageous if you can restrict your search to the area around you. It’s even
better if you can see a map of the restaurants’ locations, and perhaps be able to
look up driving or walking directions. If you’re looking for a temporary job, as in the
MJAndroid application highlighted in “Using the Database API: MJAn-
droid” on page 264, it’s definitely a benefit to be able to graphically view job
opportunities on a map.

Navigation is really just the first generation of location-based services (LBS). Applica-
tions that enable users either to opt in to allow sharing of their location with friends,
such as Google Latitude, or to attach importance to geographic sites, such as Four-
square, have begun to arrive in a big way. The world of LBS is really taking off, and as
we’ll see, Google’s Android provides powerful features that greatly simplify develop-
ment of this type of application.

In economic terms, location-based applications are a major factor in mobile telephony,
making up a significant portion of the revenue from mobile applications, and growing
fast. Because they are based on the ability of the mobile network to locate devices and
the relationship of mobility and location, location-based applications are as funda-
mental to mobile telephony as communication.

Applications often combine location awareness with search: Where are my contacts?
Where are services or products I’m looking for? Where are people with common
interests?

In this chapter, we’ll explore how the MJAndroid application uses Android to address
some of these questions.

371

Location-Based Services
Mobile phones use several related methods, alone and in combination, to determine
where they are:

Cell ID
Whether you’re actually talking on the phone or not, as long as it’s powered up,
your mobile phone carries on a constant conversation with nearby cell towers. It
has to do this to be able to respond when someone calls you, so every few seconds
it “pings” the cell tower it was using last to tell it that it’s still in range and to note
network parameters such as the current time, the current signal strength (uplink
and downlink), and so on.

If you happen to be moving, your phone may initiate a handover to another cell
tower, all in the background and without you having to intervene. Each cell tower
worldwide has a unique identifier called, appropriately enough, its Cell ID, and
each tower knows its latitude and longitude, so it’s easy enough for a mobile phone
to know approximately where you are located by noting the current Cell ID’s geo-
graphic location. Cell network sizes vary depending on the expected traffic in an
area, but in the United States their radius ranges from a half mile (cities) to five
miles or more (wide-open spaces).

Triangulation
Most of the time your mobile phone is in range of more than one cell tower. In 2G
and later mobile technologies, the cell tower has the ability to tell what direction
your signal is coming from. If there are two or three towers that can see your phone,
together they can triangulate on your phone’s location. With some operators, your
phone then has the ability to query the network to find out where it’s been located.
This sounds a little backward, but it can be very accurate, and it doesn’t depend
on any extra hardware on the mobile phone.

GPS
The satellite-based Global Positioning System is ubiquitous these days, found in
car navigation units, handheld navigators, and mobile phones. The good news is
that, using GPS, your mobile phone can determine its location very accurately,
including its altitude if that’s important for some particular application. There are
several downsides to GPS, but it is gaining popularity nonetheless. The downsides
are:

Increased cost
GPS radios and processors are fairly inexpensive, but still, an increase of even
$10 in the bill-of-materials cost of a mobile phone is considerable.

Reduced battery life
There have been great strides in reducing the power required by GPS radios
and processors, but they still suck battery power. Most phones that include
GPS also have a feature that lets the user turn it on and off. If your application
depends on GPS accuracy, it’s good to remember that your application might

372 | Chapter 15: Location and Mapping

have to check to see whether the GPS device is turned on, and notify the user
if it isn’t.

Unreliable availability
Nothing “always works,” but GPS in particular depends on your mobile device
being able to see the satellites currently overhead. If you’re in the basement of
a high-rise building, surrounded by steel-reinforced concrete, you probably
aren’t going to be able to use GPS.

It’s reasonable to expect that all Android phones will include one or all of these location
finding methods. Most recent Android phones, in particular, can use them all. So now
we’ll proceed to techniques for using the location capabilities.

Mapping
Google is most famous for its search engine, but not far behind that comes the acclaim
of Google Maps. When creating Android, the folks at Google could easily see the po-
tential in LBS and how well that fit with their mapping expertise. Most LBS applications
end up displaying a map. Meanwhile, Google already had the technology to display
and update interactive maps, and the business processes in place to allow others to use
those maps and add features for their own websites. It still required a significant leap
to make that mapping technology available to application developers for mobile
phones, but Google has certainly answered the challenge in Android.

The Google Maps Activity
One of the applications that comes with Android is the Google Maps application itself.
If it’s appropriate, you can start Google Maps from your application the same way you
start any other Activity:

1. Create an Intent (new Intent(String action, Uri uri)) that says you need to
display a map. The parameters are:

• An action, for which you must specify ACTION_VIEW.

• A Uri, for which you should specify one of the following URI schemes, substi-
tuting your data:

— geo:latitude, longitude

— geo: latitude , longitude ?z= zoom

— geo:0,0?q my_street_address

— geo:0,0?q business_near_city

2. Call startActivity(Intent intent), using the intent you just created.

An example that creates a map is:

The Google Maps Activity | 373

Intent intent = new Intent(ACTION_VIEW, "geo:37.422006,-122.084095");
startActivity(intent);

This is certainly easy, and it gets you all the power of Google Maps, but you can’t really
integrate the map into your application this way. Google Maps is an application unto
itself, and there’s no way for you to change anything about the user interface or add
overlay graphics to the map to point out whatever is of interest to your users. Android
provides more flexible packages to add that power.

The MapView and MapActivity
Chapter 10’s MJAndroid sample application needs to add overlays that show the lo-
cations for jobs in the area. So, instead of using the Google Maps application, we will
use a MapView, which we can overlay with graphics as needed. You can have only one
MapView per Activity, and that activity has to extend MapActivity. As you’ll see, that’s
a small price to pay for the powerful geographic functions that MapView adds to your
application.

There are a couple of unique prerequisites for using MapViews, and we touched on both
of them when we looked at the initialization of MJAndroid in Chapter 10:

Include the MapViews library
The MapView is not included in the default Android libraries. Instead, you need to
specify in AndroidManifest.xml that you are using this additional library:

<application android:icon="@drawable/icon2">
 <uses-library android:name="com.google.android.maps" />

You can’t put the uses-library line just anywhere in AndroidManifest.xml; it needs
to be within the <application> tag and outside the <activity> tag definitions.

Sign your application and obtain a Maps API key from Google
When you use a MapView in your application, you are using actual Google Maps
data to draw the map. For legal reasons, Google needs to track who is using its
map data. Google doesn’t care what your application does with the data, but you
need to register with Google for an API key and agree to appropriate Terms of
Service. This tells Google your application is using mapping data, and whether you
are also using the routing data that is available from Google Maps. “Application
Signing” on page 95 covered the processes of signing your application and getting
an API key.

Remember that programs using a MapView must be signed. To make it
easy for you to try out the MJAndroid example from this book, we’ve
included an .apk file as described in “Application Signing” on page 95.
If you change the code or do any coding of your own, get your own key,
which is also described in “Application Signing” on page 95.

374 | Chapter 15: Location and Mapping

Working with MapViews
The MapView encapsulates a lot of very complex mapping software and is available for
you to use in your Android applications—for free. Here are some of the things you can
do with a MapView, with only a little programming on your part:

• Show a street map of any area in the world, with up-to-date mapping information
courtesy of Google.

• Change the map view to show:

Street view
Photographs taken at street level for many areas in North America.

Satellite view
An aerial, photographic view of the area.

Traffic view
Real-time traffic information superimposed on the map or satellite views.

• Move the map under program control.

• Plot your own graphics in overlays on top of the map.

• Respond to user touch events on the map.

MapView and MyLocationOverlay Initialization
The map in MicroJobs has two modes:

• At startup, and when we select Current Location from the Spinner, we want to
display a map of our current location, and we want that map to track us as we move
around. For this map, we will use the MyLocationOverlay class.

• When we select a specific location from the Spinner, we want to display a map of
that location, turn off location updates, and not track movement.

Let’s look at the code in MicroJobs.java that initializes the MapView and the My
LocationOverlay that tracks our current location:

@Override
 public void onCreate(Bundle savedInstanceState) {

...

 mvMap = (MapView) findViewById(R.id.mapmain);

 // get the map controller
 final MapController mc = mvMap.getController();

 mMyLocationOverlay = new MyLocationOverlay(this, mvMap);
 mMyLocationOverlay.runOnFirstFix(
 new Runnable() {
 public void run() {

MapView and MyLocationOverlay Initialization | 375

 mc.animateTo(mMyLocationOverlay.getMyLocation());
 mc.setZoom(16);
 }
 });

 Drawable marker = getResources().getDrawable(R.drawable.android_tiny_image);
 marker.setBounds(0, 0, marker.getIntrinsicWidth(), marker.getIntrinsicHeight());
 mvMap.getOverlays().add(new MJJobsOverlay(marker));

 mvMap.setClickable(true);
 mvMap.setEnabled(true);
 mvMap.setSatellite(false);
 mvMap.setTraffic(false);
 mvMap.setStreetView(false);

 // start out with a general zoom
 mc.setZoom(16);
...
 /**
 * Required method to indicate whether we display routes
 */
 @Override
 protected boolean isRouteDisplayed() { return false; }

Here are some of the highlights of the code:

We first find the MapView in the main.xml layout file the same way we find any other
view, and assign it to the variable mvMap, of type MapView, so that we can refer to it
when we need to.

We also get a handle on the MapController associated with MapView. We’ll use that
to pan (animate) the map, zoom in, zoom out, change views, and so on.

To use MyLocationOverlay, we create a new instance, giving it the highly creative
name mMyLocationOverlay.

The first thing we do with mMyLocationOverlay is define a method that Android will
call when we receive our first location fix from the location provider.

This runOnFirstFix method moves the map to the current location (given by
mMyLocationOverlay.getMyLocation()), and zooms to a reasonable level for us to see
nearby job prospects.

Next we identify a marker that we’ve decided to use on mMyLocationOverlay to mark
available jobs. We use an image that’s stored in our res/drawable directory, called
android_tiny_image. It’s a picture of a little Android robot. We define the bounds
of the Drawable, and add the marker overlay to the list of overlays for the MapView
mvMap.

Now we’d like to set some initial attributes for mvMap, described later in this section.
We’ll allow the user to change most of these through menu buttons.

376 | Chapter 15: Location and Mapping

Then, following a belt-and-suspenders philosophy, just in case there isn’t a location
provider to trigger runOnFirstFix, we’ll set the zoom level again here.

Finally, MapView requires us to override the isRouteDisplayed() method to indicate
whether we are displaying route information on our map. We are not, so we return
false.

MyLocationOverlay encapsulates a wealth of location and mapping code. In our single
call to the constructor we:

• Ask Android to figure out what location providers are available in our environment
(GPS, Cell ID, triangulation).

• Connect to the “best” of those location providers.

• Ask the location provider to provide us with periodic location updates as our
handset moves.

• Link to routines that will automatically move our map as needed to track any
changes in location.

MyLocationOverlay also allows us to place a compass rose on the MapView and have that
updated as well, but we won’t be using that in MJAndroid.

The map attributes set by the code are:

setClickable
We want users to be able to tap on a job to cause MJAndroid to display more detail
about that job, so we set this to true.

setEnabled
This method is actually inherited from android.view.View. Google doesn’t tell us
exactly what this means in the case of a MapView, but presumably it enables the
standard map functions—zooming, panning, and so on.

setSatellite
Setting this flag adds a satellite view from the composite map, whereas clearing the
flag removes the view. To start with, we don’t want the satellite information on
the map.

setTraffic
Similarly, setting or clearing this flag adds or removes current traffic information
from the map, respectively. Again, we don’t want to start with traffic information
on the map.

setStreetView
We don’t want street views right now either, although we’ll let the user enable
them later.

MapView and MyLocationOverlay Initialization | 377

Zooming in Android Maps
Android maps come equipped with support for zooming in and out. The “i” key zooms
in on the map, whereas the “o” key zooms out. Maps can also zoom in and out under
program control, through the MapController.

Several methods are defined for zooming, all using the MapController. Android defines
21 zoom levels for maps. At zoom level 1, the equator of the Earth is 256 pixels long.
Every step up in zoom level multiplies that by 2. Google warns that the higher-resolution
maps are not available worldwide. All the zoom methods clamp the zoom level to the
range 1 through 21 if you ask it to go beyond those limits.

The methods that control zoom, along with their parameters, are:

zoomIn
Zooms in one level.

zoomOut
Zooms out one level.

setZoom(int zoomlevel)
Zooms to the given level, restricting it to the range 1 to 21.

zoomInFixing(int xpixel, int ypixel), zoomOutFixing(int xpixel, int ypixel)
Zoom in one level, but keep the given point fixed on the screen. Normally when
you zoom in and out, the center of the screen is the only point that stays fixed.
These routines let you pick any point on the map to be the fixed point.

zoomToSpan(int latSpanE6, int longSpanE6)
Attempts to zoom so that the given span is displayed on the map. What it actually
does is select the zoom level that is the closest match for the span requested. The
latitude and longitude span parameters are expressed as integers with a value
106 times the actual value in degrees. For instance, a latitude/longitude span of 2.5
degrees by 1.0 degrees would be expressed as zoomToSpan(2500000, 1000000).

Pausing and Resuming a MapActivity
For a minute, let’s focus on map activities and note a way we can help save battery
power. The good news is that Android makes this pretty easy.

In a mobile environment, battery life is everything, and if we’re not the application that
is currently being displayed, we want to do everything we can to minimize the power
we consume. Recall from the discussion of the Android life cycle (“Visualizing Life
Cycles” on page 280) that when an Activity (such as MicroJobs) starts another
Activity (such as MicroJobsList), the new Activity takes over the screen, and the call-
ing Activity gets pushed onto a stack of activities that are waiting to run. At that time,
Android calls the onPause routine in the calling Activity so that it can prepare itself to
go into hibernation. At this point, in MicroJobs.java (or just about any MapActivity that
uses location updates), we want to turn off location updates. Doing so will at least save

378 | Chapter 15: Location and Mapping

the cycles devoted to doing the update, and may allow the handset to save even more
power by putting the location provider in a quiescent state that uses less power.

When the called Activity (in our case, MicroJobsList) exits and the calling Activity is
popped off the stack and takes control of the screen, the framework calls the onResume
method in the calling Activity. In a MapActivity, we want to turn on location updates
again when this method is invoked.

In MicroJobs, the onPause and onResume methods are straightforward:

/**
 * @see com.google.android.maps.MapActivity#onPause()
 */
@Override
public void onPause() {
 super.onPause();
 mMyLocationOverlay.disableMyLocation();
}

/**
 * @see com.google.android.maps.MapActivity#onResume()
 */
@Override
public void onResume() {
 super.onResume();
 mMyLocationOverlay.enableMyLocation();
}

Note that if we’d had a compass rose as part of our MyLocationOverlay, we would have
to disable and enable it as well. Otherwise, the system would be wasting cycles and
battery updating the direction of the compass rose, even though it wasn’t visible
on-screen.

Controlling the Map with Menu Buttons
We want to give the user the ability to turn on satellite, traffic, and street views of the
map. In addition, we’ll throw in a few menu buttons to enable zooming and another
way to get to the Jobs list.

Android has a sophisticated set of menu capabilities that includes three types of menus
(options, context, and submenus), each with its own capabilities, icon menu buttons,
and other advanced features. We just use text-based menu buttons. We need to do two
things:

1. Create the menu of buttons that will be displayed.

2. Catch the menu events and invoke appropriate actions.

The following code creates the menu in MicroJobs.java:

/**
 * Set up menus for this page
 *

Controlling the Map with Menu Buttons | 379

 * @see android.app.Activity#onCreateOptionsMenu(android.view.Menu)
 */
@Override
public boolean onCreateOptionsMenu(Menu menu) {
 boolean supRetVal = super.onCreateOptionsMenu(menu);
 menu.add(Menu.NONE, 0, Menu.NONE, getString(R.string.map_menu_zoom_in));
 menu.add(Menu.NONE, 1, Menu.NONE, getString(R.string.map_menu_zoom_out));
 menu.add(Menu.NONE, 2, Menu.NONE, getString(R.string.map_menu_set_satellite));
 menu.add(Menu.NONE, 3, Menu.NONE, getString(R.string.map_menu_set_map));
 menu.add(Menu.NONE, 4, Menu.NONE, getString(R.string.map_menu_set_traffic));
 menu.add(Menu.NONE, 5, Menu.NONE, getString(R.string.map_menu_show_list));
 return supRetVal;
}

We create menu buttons by overriding the onCreateOptionsMenu method, where we are
passed a menu parameter for the Activity’s menu. After dutifully allowing the super-
class a chance to do what it needs to do, we simply add items (buttons) to the menu
using menu.add. The version of menu.add that we’ve chosen takes four parameters:

int groupid
Android allows you to group menu items so that you can quickly change the whole
menu at once. We don’t have a need for that in MicroJobs, so Menu.NONE says we
don’t need it.

int itemid
We need a unique identifier for this menu item so that we can tell later whether it
was picked.

int order
The itemid we defined in the second parameter does not imply order. If we cared
about the order in which the items were presented, we’d do that with this param-
eter. Since we don’t care, we use Menu.NONE again.

int titleRes
This is the ID of the string resource we want to use for the button title. Note that
this is an Integer, not a String, so the menu strings need to be predefined in
string.xml, under the res directory. Recall that Android takes care of compiling the
strings in res/strings.xml into a .java file (R.java) that assigns an integer to each
string. The getString method retrieves that integer for you (despite the name, the
method returns an integer and not a string).

To catch the menu events, we override the onOptionsItemSelected method:

/**
 * @see android.app.Activity#onOptionsItemSelected(android.view.MenuItem)
 */
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case 0:
 // Zoom in
 zoomIn();
 return true;

380 | Chapter 15: Location and Mapping

 case 1:
 // Zoom out
 zoomOut();
 return true;
 case 2:
 // Toggle satellite views
 mvMap.setSatellite(!mvMap.isSatellite());
 return true;
 case 3:
 // Toggle street views
 mvMap.setStreetView(!mvMap.isStreetView());
 return true;
 case 4:
 // Toggle traffic views
 mvMap.setTraffic(!mvMap.isTraffic());
 return true;
 case 5:
 // Show the job list activity
 startActivity(new Intent(MicroJobs.this, MicroJobsList.class));
 return true;
 }
 return false;
 }

We use the MenuItem parameter, and the switch has a case for each button that we
defined for the menu. We’ve already seen code similar to that contained in each case.

Controlling the Map with the Keypad
Some users might prefer to control the map through the keypad (generally one “click,”
versus two “clicks” to cause a menu event). Enabling this behavior also demonstrates
how to respond to KeyPad events in general, so we’ve added some code to zoom in,
zoom out, and back out of the current activity:

/**
 * @see android.app.Activity#onKeyDown(int, android.view.KeyEvent)
 */
@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
 switch (keyCode) {
 case KeyEvent.KEYCODE_DPAD_UP: // zoom in
 zoomIn();
 return true;
 case KeyEvent.KEYCODE_DPAD_DOWN: // zoom out
 zoomOut();
 return true;
 case KeyEvent.KEYCODE_BACK: // go back (meaning exit the app)
 finish();
 return true;
 default:
 return false;
 }
}

Controlling the Map with the Keypad | 381

To catch key-down events, we simply override onKeyDown and provide a switch for the
different keys that are of interest. In addition to the keycodes you would expect
(KEYCODE_A, ...KEYCODE_Z; and things like KEYCODE_SPACE, KEYCODE_SHIFT_LEFT, and
KEYCODE_SHIFT_RIGHT), Android includes keycodes that may or may not appear on any
particular device (KEYCODE_CAMERA and KEYCODE_VOLUME_UP). A complete set of keycodes
can be found at http://code.google.com/android/reference/android/view/KeyEvent.html.

Location Without Maps
What if your activity needs to access location information, but it doesn’t include a
MapView? When you use a MapView, Android makes everything very easy with My
LocationOverlay, but if you don’t need a map it still isn’t that hard to get location
information. The code in this section is not part of MJAndroid, but it shows how you
obtain location information independent of MapView.

Let’s look at a very simple, one-activity application that displays the current location
in a TextView.

The Manifest and Layout Files
An appropriate AndroidManifest.xml file follows. We created this file using the Android
SDK and the Android Manifest Editor that comes as part of it. The only change we
needed to make with the editor was to add the uses-permission tag for android
.permission.ACCESS_FINE_LOCATION (in the next-to-last line of the file). We always need
this permission in order to get location information from a GPS location provider:

<?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.microjobsinc.dloc"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".Main"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION">
 </uses-permission>
 </manifest>

We’ll use a very simple layout file with four TextViews: one label and one text box each
for latitude and longitude:

<?xml version="1.0" encoding="utf-8"?>
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

382 | Chapter 15: Location and Mapping

http://code.google.com/android/reference/android/view/KeyEvent.html

 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/lblLatitude"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Latitude:"
 />
 <TextView
 android:id="@+id/tvLatitude"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <TextView
 android:id="@+id/lblLongitude"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Longitude:"
 />
 <TextView
 android:id="@+id/tvLongitude"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </LinearLayout>

Connecting to a Location Provider and Getting Location Updates
Let’s start with an activity that just connects with the GPS LocationProvider and gets
and displays our current location (no updates):

package com.oreilly.demo.pa.microJobs;

import android.app.Activity;
import android.content.Context;
import android.location.Location;
import android.location.LocationManager;
import android.os.Bundle;
import android.widget.TextView;

public class Main extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // find the TextViews
 TextView tvLatitude = (TextView)findViewById(R.id.tvLatitude);
 TextView tvLongitude = (TextView)findViewById(R.id.tvLongitude);

 // get handle for LocationManager
 LocationManager lm = (LocationManager)

Location Without Maps | 383

 getSystemService(Context.LOCATION_SERVICE);

 // connect to the GPS location service
 Location loc = lm.getLastKnownLocation("gps");

 // fill in the TextViews
 tvLatitude.setText(Double.toString(loc.getLatitude()));
 tvLongitude.setText(Double.toString(loc.getLongitude()));
 }
}

The procedure is pretty straightforward. Here are some of the highlights of the code:

Connects to the LocationManager using getSystemService(Context.LOCATION_
SERVICE).

Asks the LocationManager where we are using getLastKnownLocation("provider").

Gets the latitude and longitude from the Location returned and uses it as needed.

But we also want to get periodic location updates from the LocationManager so that we
can track our location as we move about. For that we need to add a listener routine and
ask the LocationManager to call it when it has an update.

Location updates from the LocationManager are accessible to an application through a
DispLocListener class, so we will create an instance of this class in the onCreate method
of our main activity. We are required to override a number of methods in DispLoc
Listener to meet the LocationListener interface definition, but we don’t need them for
this application, so we’ll leave the definitions empty. The full implementation follows:

package com.oreilly.demo.pa.MicroJobs;

import android.app.Activity;
import android.content.Context;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.Bundle;
import android.widget.TextView;

public class Main extends Activity {
 private LocationManager lm;
 private LocationListener locListenD;
 public TextView tvLatitude;
 public TextView tvLongitude;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // find the TextViews
 tvLatitude = (TextView)findViewById(R.id.tvLatitude);
 tvLongitude = (TextView)findViewById(R.id.tvLongitude);

384 | Chapter 15: Location and Mapping

 // get handle for LocationManager
 LocationManager lm =
 (LocationManager) getSystemService(Context.LOCATION_SERVICE);

 // connect to the GPS location service
 Location loc = lm.getLastKnownLocation("gps");

 // fill in the TextViews
 tvLatitude.setText(Double.toString(loc.getLatitude()));
 tvLongitude.setText(Double.toString(loc.getLongitude()));

 // ask the Location Manager to send us location updates
 locListenD = new DispLocListener();
 lm.requestLocationUpdates("gps", 30000L, 10.0f, locListenD);
 }

 private class DispLocListener implements LocationListener {

 @Override
 public void onLocationChanged(Location location) {
 // update TextViews
 tvLatitude.setText(Double.toString(location.getLatitude()));
 tvLongitude.setText(Double.toString(location.getLongitude()));
 }

 @Override
 public void onProviderDisabled(String provider) {
 }

 @Override
 public void onProviderEnabled(String provider) {
 }

 @Override
 public void onStatusChanged(String provider, int status, Bundle extras) {
 }
 }
}

Our onCreate method creates an instance of DispLocListener and requests that the
LocationManager update it as needed using requestLocationUpdates. This method takes
four parameters:

String provider
Which location provider to use. We assume GPS is available in this case.

long minTime
Minimum update time, in milliseconds. The LocationManager will wait at least this
long between updates. Here’s an opportunity to tune your application for battery
life: more frequent updates mean more battery usage.

Location Without Maps | 385

float minDistance
Minimum distance, in meters, required to trigger an update. The Location
Manager will update us only if we’ve moved at least this far since the last update.

LocationListener listener
The name of the listener method to call when there is an update. This is the
DispLocListener instance we just created.

Finally, we want to add the onPause and onResume code to turn location updates off
when we’re not actually displaying on the user’s screen, and turn them back on when
we are:

/**
 * Turn off location updates if we're paused
 */
@Override
public void onPause() {
 super.onPause();
 lm.removeUpdates(locListenD);
}

/**
 * Resume location updates when we're resumed
 */
@Override
public void onResume() {
 super.onResume();
 lm.requestLocationUpdates("gps", 30000L, 10.0f, locListenD);
}

Updating the Emulated Location
While developing and debugging an application like the one shown in the preceding
section, you’re normally running on the emulator. It would be nice (maybe even es-
sential) to be able to update the current location that the emulator uses as it’s running
your code. Such a mock location provider can get very fancy, but Android provides
some built-in ways of updating the emulated location:

• The geo program built into the Android shell

• One-time updates via DDMS

• Tracks that are sequentially updated via DDMS

We’ll look at each of these.

Using geo to update location

The geo utility is built into the Android image that runs on the emulator. It has a number
of capabilities, two of which are useful here:

386 | Chapter 15: Location and Mapping

geo fix
You can use the geo fix command to send a location to Android by telneting to
the console of the emulated Android. The LocationProvider will then use this as
the current location:

telnet localhost 5554
Android Console: type 'help' for a list of commands
OK
geo fix -122.842232 38.411908 0
OK

geo fix takes three parameters:

longitude
Specified in decimal

latitude
Also specified in decimal

altitude
Specified in meters

Using DDMS to update location

In Chapter 1, we discussed the Dalvik Debug Monitor Service (DDMS). Here we will
discuss two features of this tool related to location updates. The Emulator Control pane
of the DDMS screen provides several ways of controlling the running emulator. After
switching to the DDMS perspective (click on DDMS in the upper right of the Eclipse
window) you should see the Emulator Control pane in the middle left of the DDMS
window (Figure 15-1). You will probably have to scroll down in that pane to see the
controls related to Location Controls.

Figure 15-1. DDMS Emulator Control pane

Location Without Maps | 387

To send a one-time update of a location to the emulator, just enter the longitude and
latitude in the appropriate boxes and click Send.

If you click on either the GPX or KML tab, you will be able to load a GPX or KML file
that describes a path, as shown in Figure 15-2. Here we’ve already loaded the file
OR.kml, which is included on the website for this book. It traces a path near O’Reilly
headquarters in Sebastopol, California.

Figure 15-2. DDMS emulator with KML location updates

You can create GPX tracks with many GPS navigation software tools, and KML tracks
with Google Earth or many other navigation programs. The OR.kml file was generated
by plotting a series of Google Earth placemarks and concatenating them together into
a single file. Here’s an excerpt of OR.kml:

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<Document>
 <name>OR1.kml</name>
 <StyleMap id="msn_ylw-pushpin">
 <Pair>
 <key>normal</key>
 <styleUrl>#sn_ylw-pushpin</styleUrl>
 </Pair>
 <Pair>
 <key>highlight</key>
 <styleUrl>#sh_ylw-pushpin</styleUrl>
 </Pair>
 </StyleMap>
 <Style id="sh_ylw-pushpin">
 <IconStyle>
 <scale>1.3</scale>
 <Icon>
 <href>http://maps.google.com/mapfiles/kml/pushpin/ylw-pushpin.png</href>
 </Icon>

388 | Chapter 15: Location and Mapping

 <hotSpot x="20" y="2" xunits="pixels" yunits="pixels"/>
 </IconStyle>
 <ListStyle>
 </ListStyle>
 </Style>
 <Style id="sn_ylw-pushpin">
 <IconStyle>
 <scale>1.1</scale>
 <Icon>
 <href>http://maps.google.com/mapfiles/kml/pushpin/ylw-pushpin.png</href>
 </Icon>
 <hotSpot x="20" y="2" xunits="pixels" yunits="pixels"/>
 </IconStyle>
 <ListStyle>
 </ListStyle>
 </Style>
 <Placemark>
 <name>OR1</name>
 <LookAt>
 <longitude>-122.7583711698369</longitude>
 <latitude>38.38922415809942</latitude>
 <altitude>0</altitude>
 <range>14591.7166300043</range>
 <tilt>0</tilt>
 <heading>0.04087372005871314</heading>
 <altitudeMode>relativeToGround</altitudeMode>
 </LookAt>
 <styleUrl>#msn_ylw-pushpin</styleUrl>
 <Point>
 <coordinates>-122.8239277647483,38.40273084940345,0</coordinates>
 </Point>
 </Placemark>
 <Placemark>
 <name>OR2</name>
 <LookAt>
 <longitude>-122.7677364592949</longitude>
 <latitude>38.3819544049429</latitude>
 <altitude>0</altitude>
 <range>11881.3330990845</range>
 <tilt>0</tilt>
 <heading>-8.006283077460853e-010</heading>
 <altitudeMode>relativeToGround</altitudeMode>
 </LookAt>
 <styleUrl>#msn_ylw-pushpin</styleUrl>
 <Point>
 <coordinates>-122.8064486052584,38.40786910573772,0</coordinates>
 </Point>
 </Placemark>
 <Placemark>
 <name>OR3</name>
 <LookAt>
 <longitude>-122.7677364592949</longitude>
 <latitude>38.3819544049429</latitude>
 <altitude>0</altitude>
 <range>11881.3330990845</range>

Location Without Maps | 389

 <tilt>0</tilt>
 <heading>-8.006283077460853e-010</heading>
 <altitudeMode>relativeToGround</altitudeMode>
 </LookAt>
 <styleUrl>#msn_ylw-pushpin</styleUrl>
 <Point>
 <coordinates>-122.7911077944045,38.41500788727795,0</coordinates>
 </Point>
 </Placemark>
 ...

390 | Chapter 15: Location and Mapping

CHAPTER 16

Sensors, NFC, Speech, Gestures,
and Accessibility

Thanks to advances in technology, both the environment and the user can interact with
devices in a variety of ways, from external sensors that can detect when a device has
changed orientation within an environment, to touch-screen adaptations that enable
complex gestures to trigger an event within the device. Android provides APIs that
enable the developer to access these sensors and the user to interact with these devices
in a variety of ways. In this chapter, we will explore some of these APIs—sensors, NFC
(Near Field Communication), the Gesture libraries, and accessibility.

Sensors
The modern smartphone provides more than just the ability to send and receive com-
munication in various forms. The addition of external sensors that can report infor-
mation about the environment the phone is in has made the phone more powerful and
useful for the user as well as the developer. Starting with Android 1.5 (API level 3), a
standard set of sensors are available. The physical sensors include, but are not limited
to, accelerometers that measure acceleration along various axes, gyroscopes that meas-
ure rotational change around some axes, magnetic field sensors that sense the strength
of magnetic fields along a set of axes, a light sensor that measures the amount of ambient
light, a proximity sensor that measures external objects’ proximity to the device, tem-
perature sensors that measure ambient temperature, and pressure sensors that act as a
barometer. The direct measured value of each sensor is considered a raw measurement,
and thus the associative sensor is a “raw sensor.” With some of the sensors, the meas-
urements can be combined or collected and calculations can be made over the collected
measurements to show a more complex measurement. For example, by integrating the
gyroscope’s measurements of rotational change over time you can measure the rota-
tional vector. This sort of complex measurement is often derived from a composite
sensor.

391

To access a sensor or set of sensors, Android provides a convenient system service called
the SensorManager. This can be accessed via the getSystemService() method of the
Context with the argument of Context.SENSOR_SERVICE. With the SensorManager you
then can get a specific sensor via the getDefaultSensor() method.

However, a composite sensor may sometimes be returned, so if you wish to get access
to the raw sensor and its associated data, you should use getSensorList():

 SensorManager mngr =
 (SensorManager) context.getSystemService(Context.SENSOR_SERVICE);
 // getting the default accelerometer
 Sensor accel = mngr.getDefaultSensor (Sensor.TYPE_ACCELEROMETER);
 // getting the raw accelerometer
 List<Sensor> list = mngr.getSensorList(Sensor.TYPE_ACCELEROMETER);

Once you get a sensor or set of sensors, you can actually enable them and start getting
their data by registering a listener against the sensors. Data should begin to come in at
the rate you give as an argument. This rate can be SENSOR_DELAY_NORMAL,
SENSOR_DELAY_UI (a rate appropriate for basic UI interaction), SENSOR_DELAY_GAME (a high
rate that many games would find sufficient), SENSOR_DELAY_FASTEST (“give it to me as
fast as you can”), or a specified delay between events in units of milliseconds:

 SensorEventListener listener = new SensorEventListener() {
 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) { }

 @Override
 public void onSensorChanged(SensorEvent event) { }
 };

 // registering a listener
 mngr.registerListener(listener, sensor, SensorManager.SENSOR_DELAY_UI);

The two methods in a SensorEventListener—onAccuracyChanged() and onSensor
Changed()—are called when data from the sensor in question is available. onAccuracy
Changed() is called whenever a change to the degree of error or accuracy with the sensor
occurs. The onSensorChanged() method is perhaps the more interesting method, in that
the data the sensor is measuring is passed to it wrapped in a SensorEvent object.

It is incredibly important to unregister the listener and thus disable the sensor when
you no longer need it (e.g., when an activity is paused); otherwise, the device will
continue to use resources and drain power. The system will not take care of this for
you even when the screen is turned off:

 mngr.unregisterListener(listener);

While the sensor is on, SensorEvent is passed to the listener via the onSensor
Changed() method. It is in this SensorEvent’s values that each sensor type differs.

392 | Chapter 16: Sensors, NFC, Speech, Gestures, and Accessibility

Position
The phone’s coordinate system is based on the screen and default orientation of the
phone. The x-, y-, and z-axes are as shown in Figure 16-1 and work as follows:

x-axis
Horizontal, with positive values to the right and negative values to the left

y-axis
Vertical, with positive values upward and negative values downward

z-axis
Positive values coming out of the screen toward the front and negative values be-
hind the screen (the z zero point rests on the screen)

When the user moves the phone, the axes follow the phone’s movement and do not
swap places.

Figure 16-1. Phone coordinate system

The accuracy and variance of the various sensors depend on the quality of hardware.
In many cases, significant levels of jitter/noise will need to be eliminated (through the
use of low-pass filters, for example). The type of filter and its construction is up to the
developer to design and create.

Sensors | 393

Accelerometer

The accelerometer measures the acceleration applied to the device and returns values
along the three axes (value[0] for the x-axis, value[1] for the y-axis, and value[2] for the
z-axis). The values are in SI units (m/s2). It is important to note that the force of gravity
is not eliminated from the values returned. Thus, when the device is sitting on a table
(say, face up) value[2] will read 9.81 m/s2.

Since it became a fairly common need to eliminate or determine the force of gravity
along the various axes, Android 2.3 (API level 9) also supports a linear acceleration
sensor and a gravity sensor, discussed later in this chapter.

Gyroscope

The gyroscope measures the angular speed or rate of rotation around the three axes.
All values are in radians/second. Rotation is positive in the counterclockwise direction.
That is, an observer looking at the device screen normally—located at 0, 0, 100 in device
coordinates—would report positive rotation if the device appeared to be rotating coun-
terclockwise. Since this is angular speed, to calculate an angle you must integrate the
values over a period of time:

 private static final float NS2S = 1.0f / 1000000000.0f;
 private float timestamp;
 private float[] angle;

 @Override
 public void onSensorChanged(SensorEvent event) {
 float gyrox = event.values[0];
 float gyroy = event.values[1];
 float gyroz = event.values[2];

 // here we integrate over time to figure out the rotational angle around each axis
 if (timestamp != 0) {
 final float dT = (event.timestamp - timestamp) * NS2S;
 angle[0] += gyrox * dT;
 angle[1] += gyroy * dT;
 angle[2] += gyroz * dT;
 }

 timestamp = event.timestamp;
 }

Since this is a common problem set, Android 2.3 (API level 9) supports a rotation vector
sensor, which we discuss in the following section.

Rotation vector

The rotation vector, in Android 2.3 and later versions, represents the orientation of the
device as a combination of an angle and an axis, in which the device has rotated through
an angle Θ around an axis <x, y, z>. Even though this can be calculated via the

394 | Chapter 16: Sensors, NFC, Speech, Gestures, and Accessibility

gyroscope, many developers ended up doing this often enough that Google provided
the rotation vector to help simplify the use case.

The three elements of the rotation vector are <x*sin(Θ/2), y*sin(Θ/2), and z*sin(Θ/2)>,
such that the magnitude of the rotation vector is equal to sin(Θ/2) and the direction of
the rotation vector is equal to the direction of the axis of rotation. The three elements
of the rotation vector are equal to the last three components of a unit quaternion
<cos(Θ/2), x*sin(Θ/2), y*sin(Θ/2), and z*sin(Θ/2)>. Elements of the rotation vector are
unitless.

Linear acceleration

Another sensor type is supported by Android 2.3 (API level 9) to simplify a common
calculation with the use of the accelerometer. The value sent is a three-dimensional
vector indicating acceleration along each device axis, not including gravity. This means
the values are the result of linear acceleration on each axis minus the effects of gravity
along that axis. This makes it easier to filter out gravity’s constant effects for those of
us using the phone while on Earth. All values have units of m/s2.

Gravity

The values resulting from this sensor make up a three-dimensional vector indicating
the direction and magnitude of gravity. This too is an Android 2.3 (API level 9) sensor
that provides a common calculation. Units are m/s2.

Other Sensors
Android also supports the following sensors:

Light
This sensor provides a single-valued array (value[0]) that represents the ambient
light level in SI lux units (lx).

Magnetic
This sensor measures the ambient magnetic fields in microteslas (μT) along the x-,
y-, and z-axes.

Pressure
Not many devices provide this sensor. Those that do will provide the values in
kilopascals (kPa).

Proximity
This sensor measures a single-valued array (value[0]) representing distance meas-
ured in centimeters (cm) to the sensor. In some cases, the proximity sensor may
provide only a “near” (0) versus “far” (1) binary measurement. In that case, a dis-
tance equal to or greater than the sensor’s getMaximumRange() value will return “far”
and anything less than that will return “near.”

Sensors | 395

Temperature
This is another sensor that not many devices provide. The values will be in
centigrade (C).

Near Field Communication (NFC)
Near Field Communication is a short-range (up to 20 cm), high-frequency, wireless
communication technology. It is a standard that extends the Radio Frequency Identi-
fication (RFID) standard by combining the interface of a smartcard and a reader into
a single device. This standard is primarily built for mobile phone use, and thus is
attracting a lot of attention among vendors that are interested in contactless data trans-
mission (such as credit card sales). The standard enables NFC to be used in three spe-
cific ways:

Card emulation
The device is a contactless card (and thus can be read by other readers).

Reader mode
The device can read RFID tags.

P2P mode
Two devices can communicate back and forth and exchange data.

In Android 2.3 (API level 9), Google introduced the Reader Mode NFC functionality.
Starting in Android 2.3.3 (API level 10), the ability to write data to an NFC tag and
exchange data via P2P mode is also available.

NFC tags consist of data encoded in NFC Data Exchange Format (NDEF), a message
format specified by the NFC Forum Type 2 Specification. Each NDEF message consists
of one or more NDEF records. The official technical specification for NFC can be found
at http://www.nfc-forum.org/. To develop and test an NFC reading application it is
highly suggested that you get an NFC-compliant device (such as the Nexus S, at http:
//www.google.com/phone/detail/nexus-s) and an NFC-compliant tag.

To use NFC functionality in your application, you need to declare the following per-
mission in your manifest:

 <uses-permission android:name="android.permission.NFC" />

To restrict the installation of the application to devices that can use NFC, add the
following to your manifest as well:

 <uses-feature android:name="android.hardware.nfc" />

Reading a Tag
Reader mode is for receiving notices when an RFID/NFC tag is scanned. In Android
2.3 (API level 9), the only means to do this is to create an Activity that listens for the
android.nfc.action.TAG_DISCOVERED intent, which is broadcast when a tag is read.

396 | Chapter 16: Sensors, NFC, Speech, Gestures, and Accessibility

http://www.nfc-forum.org/
http://www.google.com/phone/detail/nexus-s
http://www.google.com/phone/detail/nexus-s

Android 2.3.3 (API level 10) offers a more comprehensive means to receive this notice,
following the process shown in Figure 16-2.

Figure 16-2. NFC tag flow in Android 2.3.3 (API level 10)

In Android 2.3.3 (API level 10) and later, when an NFC tag is discovered the tag object
(a Parcelable) is placed into an Intent as an EXTRA_TAG. The system then begins to follow

Near Field Communication (NFC) | 397

a logic flow to determine the best Activity to which to send the intent. This is designed
to give a high probability of dispatching a tag to the correct activity without showing
the user an activity chooser dialog (i.e., in a transparent manner), and thus prevent the
connection between the tag and the device from being broken by unneeded user inter-
action. The first thing that is checked is whether there is an Activity in the foreground
that has called the enableForegroundDispatch() method. If so, the intent is passed to
the Activity and things stop there. If not, the system inspects the first NdefRecord in
the first NdefMessage of the tag’s data. If the NdefRecord is URI, Smart Poster, or MIME
data, the system then checks for an Activity registered for the ACTION_NDEF_
DISCOVERED intent (android.nfc.action.NDEF_DISCOVERED) with that type of data. If this
exists, the Activity that matches (the narrower the match, the better) receives the intent
and things stop there. If this is not the case, the system seeks an Activity that is regis-
tered for ACTION_TECH_DISCOVERED and that matches the specific set of technologies of
the tag (again, the narrower the match, the better). If there is a match, the intent is
passed to that Activity and everything is settled. However, should no Activity exist
that passes the prior checks, the intent is finally passed as an ACTION_TAG_DISCOVERED
action, much as Android 2.3 (API level 9) handles the tag.

To set up a foreground Activity to be the first to receive the tag, you must retrieve the
NFC device adapter and call enableForegroundDispatch with the Activity’s context
reference. The actual NFC device adapter is represented by the NfcAdapter class. To
retrieve the actual adapter of the device, issue getDefaultAdapter() in Android 2.3 (API
level 9) or getDefaultAdapter(context) in Android 2.3.3 (API level 10):

 NfcAdapter adapter = NfcAdapter.getDefaultAdapter();

 // --- for API 10 only
 // NfcAdapter adapter = NfcAdapter.getDefaultAdapter(context);

 if(adapter != null) {
 // true if enabled, false if not
 boolean enabled = adapter.isEnabled();
 }

Once the NFC device adapter is retrieved, construct a PendingIntent and pass it to the
enableForegroundDispatch() method. This method must be called from the main thread
and only when the Activity is in the foreground (after onResume() has been called):

 PendingIntent intent =
 PendingIntent.getActivity(this, 0,
 new Intent(this, getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP),
 0);

 NfcAdapter.getDefaultAdapter(this).enableForegroundDispatch(this, intent,
 null, null);

It is extremely important that when the Activity leaves the foreground (when
onPause() is called) you call the disableForegroundDispatch() method:

 @Override
 protected void onPause() {

398 | Chapter 16: Sensors, NFC, Speech, Gestures, and Accessibility

 super.onPause();
 if(NfcAdapter.getDefaultAdapter(this) != null)
 NfcAdapter.getDefaultAdapter(this).disableForegroundDispatch(this);
 }
 }

In the case of registering an Activity for ACTION_NDEF_DISCOVERED, the Activity must
have android.nfc.action.NDEF_DISCOVERED as an intent-filter and any specific data
filters in the manifest file:

 <activity android:name=".NFC233">
 <!-- listen for android.nfc.action.NDEF_DISCOVERED -->
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>
 <data android:mimeType="text/*" />
 </intent-filter>
 </activity>

This goes for the TECH_DISCOVERED case as well (the following example also includes a
metadata resource describing the specific technology that resides in the NFC tag that
we are narrowing in on, such as NDEF content):

 <activity android:name=".NFC233">
 <intent-filter>
 <action android:name="android.nfc.action.TECH_DISCOVERED" />
 </intent-filter>

 <meta-data android:name="android.nfc.action.TECH_DISCOVERED"
 android:resource="@xml/nfcfilter"
 />
 </activity>

 <?xml version="1.0" encoding="utf-8"?>
 <!-- capture anything using NfcF or with NDEF payloads-->
 <resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">
 <tech-list>
 <tech>android.nfc.tech.NfcF</tech>
 </tech-list>

 <tech-list>
 <tech>android.nfc.tech.NfcA</tech>
 <tech>android.nfc.tech.MifareClassic</tech>
 <tech>android.nfc.tech.Ndef</tech>
 </tech-list>
 </resources>

An example of registering for the ACTION_TAG_DISCOVERED intent would be written in the
manifest file like this:

 <!-- this will show up as a dialog when the nfc tag is scanned -->
 <activity android:name=".NFC" android:theme="@android:style/Theme.Dialog">
 <intent-filter>
 <action android:name="android.nfc.action.TAG_DISCOVERED"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 </activity>

Near Field Communication (NFC) | 399

When a tag is read, the system broadcasts an intent with the payload as the associated
data. In Android 2.3.3 (API level 10), a Tag object is also included as an EXTRA_TAG. This
Tag object provides a means to retrieve the specific TagTechnology and to perform ad-
vanced operations (such as I/O). Be aware that Arrays passed to and returned by this
class are not cloned, so be careful not to modify them:

 Tag tag = (Tag) intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);

In Android 2.3 (API level 9) and later, the ID of the tag is wrapped within the intent
and keyed with the term “android.nfc.extra.ID” (NfcAdapter.EXTRA_ID) as a byte array:

 byte[] byte_id = intent.getByteArrayExtra(NfcAdapter.EXTRA_ID);

This data is packaged up as an array of Parcelable objects (NdefMessage) keyed with
the term “android.nfc.extra.NDEF_MESSAGES” (NfcAdapter.EXTRA_NDEF_MESSAGES):

 Parcelable[] msgs =
 intent.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);
 NdefMessage[] nmsgs = new NdefMessage[msgs.length];
 for(int i=0;i<msgs.length;i++) {
 nmsgs[i] = (NdefMessage) msgs[i];
 }

Within each NdefMessage is an array of NdefRecord. This record will always include a 3-
bit TNF (type name format), the type of record, a unique ID, and the payload. For
specifics look at the NdefRecord doc (http://developer.android.com/reference/android/
nfc/NdefRecord.html). Currently there are several known types, of which we cover the
four most common: TEXT, URI, SMART_POSTER, and ABSOLUTE_URI:

 // enum of types we are interested in
 private static enum NFCType {
 UNKNOWN, TEXT, URI, SMART_POSTER, ABSOLUTE_URI
 }

 private NFCType getTagType(final NdefMessage msg) {
 if(msg == null) return null;
 // we are only grabbing the first recognizable item

 for (NdefRecord record : msg.getRecords()) {
 if(record.getTnf() == NdefRecord.TNF_WELL_KNOWN) {
 if(Arrays.equals(record.getType(), NdefRecord.RTD_TEXT)) {
 return NFCType.TEXT;
 }
 if(Arrays.equals(record.getType(), NdefRecord.RTD_URI)) {
 return NFCType.URI;
 }
 if(Arrays.equals(record.getType(), NdefRecord.RTD_SMART_POSTER)) {
 return NFCType.SMART_POSTER;
 }
 } else if(record.getTnf() == NdefRecord.TNF_ABSOLUTE_URI) {
 return NFCType.ABSOLUTE_URI;
 }
 }
 return null;
 }

400 | Chapter 16: Sensors, NFC, Speech, Gestures, and Accessibility

http://developer.android.com/reference/android/nfc/NdefRecord.html
http://developer.android.com/reference/android/nfc/NdefRecord.html

To read the payload of an NdefRecord.RTD_TEXT type, the first byte of the payload will
define the status, and thus the encoding type of the text payload:

 /*
 * the First Byte of the payload contains the "Status Byte Encodings" field,
 * per the NFC Forum "Text Record Type Definition" section 3.2.1.
 *
 * Bit_7 is the Text Encoding Field.
 * * if Bit_7 == 0 the the text is encoded in UTF-8
 * * else if Bit_7 == 1 then the text is encoded in UTF16
 * Bit_6 is currently always 0 (reserved for future use)
 * Bits 5 to 0 are the length of the IANA language code.
 */
 private String getText(final byte[] payload) {
 if(payload == null) return null;
 try {
 String textEncoding = ((payload[0] & 0200) == 0) ? "UTF-8" : "UTF-16";
 int languageCodeLength = payload[0] & 0077;
 return new String(payload, languageCodeLength + 1,
 payload.length - languageCodeLength - 1, textEncoding);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }

When reading in the payload of a standard URI (NdefRecord.RTD_URI) type, the first
byte of the payload defines the URI’s prefix:

 /**
 * NFC Forum "URI Record Type Definition"
 *
 * Conversion of prefix based on section 3.2.2 of the NFC Forum URI Record
 * Type Definition document.
 */
 private String convertUriPrefix(final byte prefix) {
 if(prefix == (byte) 0x00) return "";
 else if(prefix == (byte) 0x01) return "http://www.";
 else if(prefix == (byte) 0x02) return "https://www.";
 else if(prefix == (byte) 0x03) return "http://";
 else if(prefix == (byte) 0x04) return "https://";
 else if(prefix == (byte) 0x05) return "tel:";
 else if(prefix == (byte) 0x06) return "mailto:";
 else if(prefix == (byte) 0x07) return "ftp://anonymous:anonymous@";
 else if(prefix == (byte) 0x08) return "ftp://ftp.";
 else if(prefix == (byte) 0x09) return "ftps://";
 else if(prefix == (byte) 0x0A) return "sftp://";
 else if(prefix == (byte) 0x0B) return "smb://";
 else if(prefix == (byte) 0x0C) return "nfs://";
 else if(prefix == (byte) 0x0D) return "ftp://";
 else if(prefix == (byte) 0x0E) return "dav://";
 else if(prefix == (byte) 0x0F) return "news:";
 else if(prefix == (byte) 0x10) return "telnet://";
 else if(prefix == (byte) 0x11) return "imap:";
 else if(prefix == (byte) 0x12) return "rtsp://";
 else if(prefix == (byte) 0x13) return "urn:";

Near Field Communication (NFC) | 401

 else if(prefix == (byte) 0x14) return "pop:";
 else if(prefix == (byte) 0x15) return "sip:";
 else if(prefix == (byte) 0x16) return "sips:";
 else if(prefix == (byte) 0x17) return "tftp:";
 else if(prefix == (byte) 0x18) return "btspp://";
 else if(prefix == (byte) 0x19) return "btl2cap://";
 else if(prefix == (byte) 0x1A) return "btgoep://";
 else if(prefix == (byte) 0x1B) return "tcpobex://";
 else if(prefix == (byte) 0x1C) return "irdaobex://";
 else if(prefix == (byte) 0x1D) return "file://";
 else if(prefix == (byte) 0x1E) return "urn:epc:id:";
 else if(prefix == (byte) 0x1F) return "urn:epc:tag:";
 else if(prefix == (byte) 0x20) return "urn:epc:pat:";
 else if(prefix == (byte) 0x21) return "urn:epc:raw:";
 else if(prefix == (byte) 0x22) return "urn:epc:";
 else if(prefix == (byte) 0x23) return "urn:nfc:";
 return null;
 }

In the case of an absolute URI (NdefRecord.TNF_ABSOLUTE_URI) type, the whole payload
is encoded in UTF-8 and makes up the URI:

 if(record.getTnf() == NdefRecord.TNF_ABSOLUTE_URI) {
 String uri = new String(record.getPayload(), Charset.forName("UTF-8");
 }

The special Smart Poster (NdefRecord.RTD_SMART_POSTER) type consists of multiple sub-
records of text or URI (or absolute URI) data:

 private void getTagData(final NdefMessage msg) {
 if(Arrays.equals(record.getType(), NdefRecord.RTD_SMART_POSTER)) {
 try {
 // break out the subrecords
 NdefMessage subrecords = new NdefMessage(record.getPayload());
 // get the subrecords
 String fulldata = getSubRecordData(subrecords);
 System.out.println("SmartPoster: "+fulldata);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 // method to get subrecord data
 private String getSubRecordData(final NdefRecord[] records) {
 if(records == null || records.length < 1) return null;
 String data = "";
 for(NdefRecord record : records) {
 if(record.getTnf() == NdefRecord.TNF_WELL_KNOWN) {
 if(Arrays.equals(record.getType(), NdefRecord.RTD_TEXT)) {
 data += getText(record.getPayload()) + "\n";
 }
 if(Arrays.equals(record.getType(), NdefRecord.RTD_URI)) {
 data += getURI(record.getPayload()) + "\n";
 } else {
 data += "OTHER KNOWN DATA\n";

402 | Chapter 16: Sensors, NFC, Speech, Gestures, and Accessibility

 }
 } else if(record.getTnf() == NdefRecord.TNF_ABSOLUTE_URI) {
 data += getAbsoluteURI(record.getPayload()) + "\n";
 } else data += "OTHER UNKNOWN DATA\n";
 }
 return data;
 }

Writing to a Tag
As of Android 2.3.3 (API level 10), the ability to write data to a tag is available. To do
this, the Tag object must be used to get the appropriate TagTechnology within the tag.
NFC tags are based on a number of independently developed technologies and offer a
wide range of capabilities. The TagTechnology implementations provide access to these
different technologies and capabilities. In this case, the NDEF technology is needed to
retrieve and modify the NdefRecords and NdefMessages in the tag:

 // get the tag from the Intent
 Tag mytag = (Tag) intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);

 // get the Ndef (TagTechnology) from the tag
 Ndef ndefref = Ndef.get(mytag);

Note the following requirements when performing I/O operations with a Tag
Technology:

• connect() must be called before using any other I/O operation.

• I/O operations may block, and should never be called on the main application
thread.

• Only one TagTechnology can be connected at a time. Other calls to connect() will
return an IOException.

• close() must be called after completing I/O operations with a TagTechnology, and
it will cancel all other blocked I/O operations on other threads (including
connect()) with an IOException.

Therefore, to write data to a tag, a connect() is called from within a thread that is
separate from that of the main thread. Once this is done, isConnected() should be
checked to verify that the connection has been established. If the connection is estab-
lished, writeNdefMessage() with a constructed NdefMessage (containing at least one
NdefRecord) may be called. Once the data is written, close() is called to cleanly termi-
nate the process.

The full code to write a text record to a tag using its NDEF TagTechnology reference is
as follows:

 // pass in the Ndef TagTechnology reference and the text we wish to encode

 private void writeTag(final Ndef ndefref, final String text) {
 if(ndefref == null || text == null || !ndefref.isWritable()) {
 return;

Near Field Communication (NFC) | 403

 }

 (new Thread() {
 public void run() {
 try {
 Message.obtain(mgsToaster, 0,
 "Tag writing attempt started").sendToTarget();
 int count = 0;
 if(!ndefref.isConnected()) {
 ndefref.connect();
 }
 while(!ndefref.isConnected()) {
 if(count > 6000) {
 throw new Exception("Unable to connect to tag");
 }
 count++;
 sleep(10);
 }
 ndefref.writeNdefMessage(msg);
 Message.obtain(mgsToaster, 0,
 "Tag write successful!").sendToTarget();
 } catch (Exception t) {
 t.printStackTrace();
 Message.obtain(mgsToaster, 0,
 "Tag writing failed! - "+t.getMessage()).sendToTarget();
 } finally {
 // ignore close failure...
 try { ndefref.close(); }
 catch (IOException e) { }
 }
 }
 }).start();
 }

 // create a new NdefRecord
 private NdefRecord newTextRecord(String text) {
 byte[] langBytes = Locale.ENGLISH.
 getLanguage().
 getBytes(Charset.forName("US-ASCII"));

 byte[] textBytes = text.getBytes(Charset.forName("UTF-8"));

 char status = (char) (langBytes.length);

 byte[] data = new byte[1 + langBytes.length + textBytes.length];
 data[0] = (byte) status;
 System.arraycopy(langBytes, 0, data, 1, langBytes.length);
 System.arraycopy(textBytes, 0, data, 1 + langBytes.length, textBytes.length);

 return new NdefRecord(NdefRecord.TNF_WELL_KNOWN,
 NdefRecord.RTD_TEXT,
 new byte[0],
 data);
 }

404 | Chapter 16: Sensors, NFC, Speech, Gestures, and Accessibility

P2P Mode
P2P mode is enabled in Android 2.3.3 (API level 10) when one device is set up to
transmit data over NFC to another device that can receive NFC data. The sending
device may also receive data from the receiving device, and thus peer-to-peer (P2P)
communication occurs. To do this, the enableForegroundNdefPush() method in the
NfcAdapter class is used. This enables the Activity to transmit an NdefMessage, when
it is in the foreground, to another NFC device that supports the “com.android.npp”
NDEF push protocol. The enableForegroundNdefPush() method must be called from
the main thread (such as in onResume()):

 @Override
 public void onResume() {
 super.onResume();

 NdefRecord[] rec = new NdefRecord[1];
 rec[0] = newTextRecord("NFC Foreground Push Message");
 NdefMessage msg = new NdefMessage(rec);

 NfcAdapter.getDefaultAdapter(this).enableForegroundNdefPush(this, msg);
 }

 // create a new NdefRecord
 private NdefRecord newTextRecord(String text) {
 byte[] langBytes = Locale.ENGLISH.
 getLanguage().
 getBytes(Charset.forName("US-ASCII"));

 byte[] textBytes = text.getBytes(Charset.forName("UTF-8"));

 char status = (char) (langBytes.length);

 byte[] data = new byte[1 + langBytes.length + textBytes.length];
 data[0] = (byte) status;
 System.arraycopy(langBytes, 0, data, 1, langBytes.length);
 System.arraycopy(textBytes, 0, data, 1 + langBytes.length, textBytes.length);

 return new NdefRecord(NdefRecord.TNF_WELL_KNOWN,
 NdefRecord.RTD_TEXT,
 new byte[0],
 data);
 }

While enableForegroundNdefPush() is active, standard tag dispatch is disabled. Only
the foreground activity may receive tag-discovered dispatches via
enableForegroundDispatch().

It is important that when the Activity is no longer in the foreground (onPause())
disableForegroundNdefPush() is called:

 @Override
 protected void onPause() {
 super.onPause();

Near Field Communication (NFC) | 405

 if(NfcAdapter.getDefaultAdapter(this) != null) {
 NfcAdapter.getDefaultAdapter(this).disableForegroundNdefPush(this);
 }
 }

Gesture Input
In the world of touch-screen devices, the use of complex gestures (such as multiple
swipes of the finger in different directions on the screen) is a great way to make inter-
actions both fun and easy to do. Starting with Android 1.6 (API level 4), a gestures API
is available for use. Within this API, the easiest way to add gesture input capability to
an app is to use android.gesture.GestureOverlayView:

 <!-- an example usage of GestureOverlayView in a layout xml -->

 <android.gesture.GestureOverlayView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/gestures"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gestureStrokeType="multiple"
 android:eventsInterceptionEnabled="true">
 </<android.gesture.GestureOverlayView>

GestureOverlayView is a specialized FrameLayout that you can place over other widgets
or that can contain other widgets. It can capture strokes on the touch screen as well as
display a colored line (the default is yellow) representing the stroke path. A
GestureOverlayView.OnGesturePerformedListener interface is provided to enable the
ability to react to a gesture that has been performed:

 GestureOverlayView gestures = (GestureOverlayView) findViewById(R.id.gestures);
 gestures.addOnGesturePerformedListener(
 new GestureOverlayView.OnGesturePerformedListener() {
 @Override
 public void onGesturePerformed(GestureOverlayView overlay, Gesture gesture) {
 // do nothing for now
 }
 });

Once the gesture is performed, you can see if it is recognized within the Gesture library.
The Gesture library can be read in via various means using the GestureLibraries class’s
static methods. Once the library is loaded (loading a GestureStore), the performed
gesture can be passed to it and then analyzed using the recognize method. This method
returns a list of Predictions, each holding a score and name, with the score indicating
the closeness to the named gesture within the library:

 final GestureLibrary library = GestureLibraries.fromFile("/Some/File/Path");
 library.load(); // load library

 GestureOverlayView gestures = (GestureOverlayView) findViewById(R.id.gestures);
 gestures.addOnGesturePerformedListener(
 new GestureOverlayView.OnGesturePerformedListener() {

406 | Chapter 16: Sensors, NFC, Speech, Gestures, and Accessibility

 @Override
 public void onGesturePerformed(GestureOverlayView overlay, Gesture gesture) {
 // do the recognize
 ArrayList<Prediction> predictions = library.recognize(gesture);
 if (predictions.size() > 0) {
 for(Prediction prediction: predictions) {
 // the score is high enough that we know it's a hit
 if (prediction.score > 1.0) {
 // let's show a toast telling us what the gesture is named
 Toast.makeText(this,
 prediction.name, Toast.LENGTH_SHORT).show();
 }
 }
 }
 }
 });

The basic anatomy of a Gesture consists of multiple GestureStroke objects, and each
GestureStroke object is made up of GesturePoint objects. The GesturePoint is made up
of x and y spatial coordinates and a single timestamp indicating when the point was
generated. When a Gesture is stored in a GestureStore (within a GestureLibrary) it is
keyed with a name (String).

Adding a Gesture to a GestureLibrary is pretty straightforward. You provide a name to
associate the gesture, as well as the Gesture object, and then save it to the library. Note
that a library must be read from an external file source (such as the SD card or private
file) for the library to be modifiable and, thus, a gesture store. A library read from a raw
resource is read-only (use of GestureLibraries.fromRawResource(context, resId)):

 public void saveGesture(String name, Gesture gesture) {
 library.addGesture(name, gesture);
 library.save();
 }

Accessibility
Starting with Android 1.6 (API level 4), an accessibility API designed to make Android
apps more widely usable by blind and low-vision users is available. The core of the
accessibility API is the AccessibilityService, an abstract class that is run in the
background.

This use of the AccessibilityService ultimately means you are extending it, and thus
it is a service and must be declared within the manifest. Not only must the declaration
be made, but this type of service also has a specific intent it must handle (android.
accessibilityservice.AccessibilityService):

<service android:name=".Accessibility">
 <intent-filter>
 <action android:name="android.accessibilityservice.AccessibilityService" />

Accessibility | 407

 </intent-filter>
</service>

When creating an AccessibilityService class you must declare the feedback and event
types. You do this by generating an AccessibilityServiceInfo object, setting the vari-
ous variables, and then passing it to the setServiceInfo() method. Please note that the
system will pick up this information only after it has bound to the class/object:

 AccessibilityServiceInfo info = new AccessibilityServiceInfo();
 info.eventTypes = AccessibilityEvent.TYPES_ALL_MASK;
 // timeout (ms) after the most recent event of a given type before notification
 info.notificationTimeout = 50;
 info.feedbackType = AccessibilityServiceInfo.FEEDBACK_GENERIC |
 AccessibilityServiceInfo.FEEDBACK_AUDIBLE |
 AccessibilityServiceInfo.FEEDBACK_HAPTIC |
 AccessibilityServiceInfo.FEEDBACK_SPOKEN |
 AccessibilityServiceInfo.FEEDBACK_VISUAL;
 info.packageNames = new String[1];
 // only handle this package
 info.packageNames[0] = getPackageName();
 setServiceInfo(info);

Once the service has started and the system has bound to it, events will be received and
passed to the onAccessibilityEvent() method:

 @Override
 public void onAccessibilityEvent(AccessibilityEvent event) {
 // here we check to see if it was a 'click' event
 if(event.getEventType() == AccessibilityEvent.TYPE_VIEW_CLICKED) {
 // do something with the click event
 }
 }

At this point, you have various options to react to the event. Usually the Vibrator Service
is used to provide a haptic response along with sound or speech. The Vibrator is a
system-level service that is retrieved via the context getSystemService() method. Once
the Vibrator object is retrieved, a pattern of vibrations can be applied when reacting to
an event:

 // get Vibrator
 Vibrator vibrate = (Vibrator) getSystemService(Service.VIBRATOR_SERVICE);
 // pattern to vibrate with
 long[] pattern = new long[] { 0L, 100L };
 // vibrate
 vibrate.vibrate(pattern, -1);

Android provides a TextToSpeech engine that you can use to provide speech. To use
this you instantiate an android.speech.tts.TextToSpeech class, which initializes the
TextToSpeech engine. Once initialized, speech can be produced by calling the speak
method on the class. A variety of methods and options can be called, such as setting
locale, pitch, or speech speed. Be sure to call the shutdown method when the TextTo
Speech instance is no longer needed so that its resources can be recovered:

408 | Chapter 16: Sensors, NFC, Speech, Gestures, and Accessibility

 TextToSpeech tts = new TextToSpeech(thisContext, new TextToSpeech.OnInitListener() {
 @Override
 public void onInit(int status) {
 // notification when the TextToSpeech Engine has been initialized
 }
);

 // say 'click'
 tts.speak("Click", 2, null);
 // no longer needed and thus we shut down and release the resources
 tts.shutdown();

For more accessibility-related resources check out the Eyes-Free open source project
(http://code.google.com/p/eyes-free).

Accessibility | 409

http://code.google.com/p/eyes-free

CHAPTER 17

Communication, Identity, Sync, and
Social Media

One of the primary data types that is stored and used (and reused) in Android is contact
data. This consists of the various pieces of information associated with a contact—
name, phone number, email, and so on. In Android 2.0 (API level 5), contact data was
significantly expanded (allowing access to multiple accounts and support for aggrega-
tion of similar contacts). In earlier chapters we covered the use of content providers
and Android database classes, so we will not cover that preliminary material in this
chapter. Instead, we will focus on the use of the ContactsContract content provider.

Account Contacts
To access the account contacts the following permissions must be provided in the
manifest:

 <uses-permission android:name="android.permission.GET_ACCOUNTS" />
 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <uses-permission android:name="android.permission.WRITE_CONTACTS" />

Within an Activity, we can use the managedQuery method to query the Contacts
Contract.Contacts data and return a Cursor for our use:

 private Cursor getContacts() {
 Uri uri = ContactsContract.Contacts.CONTENT_URI;

 String[] projection = new String[] {
 ContactsContract.Contacts._ID,
 ContactsContract.Contacts.LOOKUP_KEY,
 ContactsContract.Contacts.DISPLAY_NAME
 };

 String selection = null;
 String[] selectionArgs = null;
 String sortOrder = ContactsContract.Contacts.DISPLAY_NAME +
 " COLLATE LOCALIZED ASC";

411

 return managedQuery(uri, projection, selection, selectionArgs, sortOrder);
 }

For complete information on the columns and constants available in the Contacts
Contract.Contacts class, refer to the developer documentation at http://developer.an
droid.com/reference/android/provider/ContactsContract.Contacts.html.

Once we have the Cursor, we can load it within a SimpleCursorAdapter and have it
display the specific data fields we want, in this case the “display name” of the contact:

 String[] fields = new String[] {
 ContactsContract.Data.DISPLAY_NAME
 };
 SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
 R.layout.contact,
 cursor,
 fields,
 new int[] {R.id.name});
 // get the listview
 ListView contactlist = (ListView) findViewById(R.id.contactlist);
 // set the adapter and let it render
 contactlist.setAdapter(adapter);

Here is the layout that contains the ListView (referenced as R.id.contactlist):

 <?xml version="1.0" encoding="utf-8"?>
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#fff"
 >
 <ListView android:id="@+id/contactlist"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </LinearLayout>

Here is the contact layout (referenced as R.layout.contact) used for the SimpleCursor
Adapter:

 <?xml version="1.0" encoding="utf-8"?>

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="#fff"
 >
 <TextView android:id="@+id/name"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textColor="#000"
 android:textSize="25sp"
 android:padding="5dp"

412 | Chapter 17: Communication, Identity, Sync, and Social Media

http://developer.android.com/reference/android/provider/ContactsContract.Contacts.html
http://developer.android.com/reference/android/provider/ContactsContract.Contacts.html

 />
 </LinearLayout>

Here we delete a contact by providing the Cursor and the position within the Cursor to
delete:

 private void deleteContact(Cursor cursor, int position) {
 cursor.moveToPosition(position);
 long id = cursor.getLong(0);
 String lookupkey = cursor.getString(1);
 Uri uri = ContactsContract.Contacts.getLookupUri(id, lookupkey);

 String[] selectionArgs = null;
 String where = null;
 ContentResolver cr = getContentResolver();
 cr.delete(uri, where, selectionArgs);
 }

To add a contact in this example we construct a collection of ContentProvider
Operations and batch-apply them. Note that we first insert the new contact and then
add the phone information should it be available (as it is in this case). In order to do
the inserts, we generate an insert-specific ContentProviderOperation by creating a
ContentProviderOperation.Builder with the SimpleCursorContentProviderOperation
.newInsert() method and then building with the build() method:

 String accountNameWeWant = "SpecialAccount";

 String phone = "8885551234";
 String name = "Bob";

 String accountname = null;
 String accounttype = null;

 Account[] accounts = AccountManager.get(this).getAccounts();

 // find the account we want. if we don't find it we use 'null' - the default
 for(Account account : accounts) {
 if(account.equals(accountNameWeWant)) {
 accountname = account.name;
 accounttype = account.type;
 break;
 }
 }

 ArrayList<ContentProviderOperation> ops =
 new ArrayList<ContentProviderOperation>();

 ops.add(ContentProviderOperation.newInsert
 (ContactsContract.RawContacts.CONTENT_URI)
 .withValue(ContactsContract.RawContacts.ACCOUNT_TYPE, accountname)
 .withValue(ContactsContract.RawContacts.ACCOUNT_NAME, accounttype)
 .build());

 // create the new contact
 ops.add(

Account Contacts | 413

 ContentProviderOperation.newInsert(ContactsContract.Data.CONTENT_URI)
 .withValueBackReference(ContactsContract.Data.RAW_CONTACT_ID, 0)
 .withValue(ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.StructuredName.CONTENT_ITEM_TYPE)
 .withValue(ContactsContract.CommonDataKinds.StructuredName.DISPLAY_NAME,
 name)
 .build());

 // if there is a phone num we add it
 if(phone.getText() != null
 && phone.getText().toString().trim().length() > 0) {
 ops.add(ContentProviderOperation.newInsert
 (ContactsContract.Data.CONTENT_URI)
 .withValueBackReference(ContactsContract.Data.RAW_CONTACT_ID, 0)
 .withValue(ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.Phone.CONTENT_ITEM_TYPE)
 .withValue(ContactsContract.CommonDataKinds.Phone.NUMBER,
 phone)
 .withValue(ContactsContract.CommonDataKinds.Phone.TYPE,
 ContactsContract.CommonDataKinds.Phone.TYPE_HOME)
 .build());
 }

 try {
 getContentResolver().applyBatch(ContactsContract.AUTHORITY, ops);
 } catch (Exception e) {
 e.printStackTrace();
 }

Authentication and Synchronization
Starting with Android 2.0 (API level 5), it is possible to write custom sync providers to
integrate with system contacts, calendars, and so forth. Synchronizing with a remote
service at this time is unfortunately a precarious endeavor, as any misstep at particular
points can literally cause the Android system to crash and reboot (with very little in-
dication as to what was done incorrectly). Hopefully, as Android evolves, synchronizing
will become easier and less tricky. For now, the process consists of two parts—
authentication (Account Authenticator) and synchronization (Sync Provider).

Before diving into the details of the two parts, we would like to note that the examples
we provide here have two components—a server side and the Android client side. The
server side that we use is a basic web service that accepts specific GET requests and
responds back with a JSON-formatted response. The relevant GET URI as well as the
example response are provided within each section. The source that comes with this
book includes the full server-side source for completeness.

The other thing to note is that in the example we provide, we choose to sync with the
account contacts. This is not the only thing that you can sync up. You can sync up with
any content provider you have access to, or even to application-specific stored data.

414 | Chapter 17: Communication, Identity, Sync, and Social Media

Authentication
To get the client to authenticate with a remote server using the Android Account Au-
thenticator system, three pieces must be put into place:

• A service that is triggered by the android.accounts.AccountAuthenticator intent
and that, in its onBind method, returns a subclass of AbstractAccountAuthenticator

• An activity that prompts the user to enter her credentials

• An XML file describing how your account should look when displayed to the user

Let’s address the service first. In the manifest we need android.permission.
AUTHENTICATE_ACCOUNTS to be enabled:

 <uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS" />

Then the service needs to be described in the manifest. Note that the
android.accounts.AccountAuthenticator intent is included within the intent-filter
descriptor. The manifest also describes a resource for the AccountAuthenticator:

 <service android:name=".sync.authsync.AuthenticationService">
 <intent-filter>
 <action android:name="android.accounts.AccountAuthenticator" />
 </intent-filter>
 <meta-data android:name="android.accounts.AccountAuthenticator"
 android:resource="@xml/authenticator" />
 </service>

The resource we indicated in the manifest follows. In particular, it describes the
accountType that will distinguish this authenticator from other authenticators using the
account’s definition. Be very careful with this XML document (e.g., do not directly
assign a string to the android:label or have a missing drawable indicated), as Android
will crash and burn the moment you attempt to add a new account (from within the
Account & Sync settings):

 <?xml version="1.0" encoding="utf-8"?>

 <account-authenticator xmlns:android="http://schemas.android.com/apk/res/android"
 android:accountType="com.oreilly.demo.pa.ch17.sync"
 android:icon="@drawable/icon"
 android:smallIcon="@drawable/icon"
 android:label="@string/authlabel"
 />

Now that the service is described within the manifest, we can turn to the service itself.
Note that the onBind() method returns an Authenticator class. This class extends the
AbstractAccountAuthenticator class:

 package com.oreilly.demo.pa.ch17.sync.authsync;

 import android.app.Service;
 import android.content.Intent;
 import android.os.IBinder;

Authentication and Synchronization | 415

 public class AuthenticationService extends Service {
 private static final Object lock = new Object();
 private Authenticator auth;

 @Override
 public void onCreate() {
 synchronized (lock) {
 if (auth == null) {
 auth = new Authenticator(this);
 }
 }
 }

 @Override
 public IBinder onBind(Intent intent) {
 return auth.getIBinder();
 }
 }

Before we get to the full source of the Authenticator class, there is a method within the
AbstractAccountAuthenticator that is important—addAccount(). This method ulti-
mately is called when the button indicating our custom account is selected from the
Add Account screen. A LoginActivity (our custom Activity, which will ask the user
to sign in) is described within the Intent that is placed within the Bundle that is returned.
The AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE key included in the intent is
vital, as it includes the AccountAuthenticatorResponse object that is needed to ship back
the account keys once the user has successfully certified against the remote service:

public class Authenticator extends AbstractAccountAuthenticator {

 public Bundle addAccount(AccountAuthenticatorResponse response,
 String accountType, String authTokenType,
 String[] requiredFeatures, Bundle options) {

 Intent intent = new Intent(context, LoginActivity.class);
 intent.putExtra(AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE, response);
 Bundle bundle = new Bundle();
 bundle.putParcelable(AccountManager.KEY_INTENT, intent);
 return bundle;
 }

}

Now for the full Authenticator activity that extends the AbstractAccountAuthenticator:

package com.oreilly.demo.pa.ch17.sync.authsync;

import com.oreilly.demo.pa.ch17.sync.LoginActivity;
import android.accounts.AbstractAccountAuthenticator;
import android.accounts.Account;
import android.accounts.AccountAuthenticatorResponse;
import android.accounts.AccountManager;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;

416 | Chapter 17: Communication, Identity, Sync, and Social Media

public class Authenticator extends AbstractAccountAuthenticator {
 public static final String AUTHTOKEN_TYPE
 = "com.oreilly.demo.pa.ch17.sync";
 public static final String ACCOUNT_TYPE
 = "com.oreilly.demo.pa.ch17.sync";

 private final Context context;

 public Authenticator(Context context) {
 super(context);
 this.context = context;
 }

 @Override
 public Bundle addAccount(AccountAuthenticatorResponse response,
 String accountType, String authTokenType,
 String[] requiredFeatures, Bundle options) {

 Intent intent = new Intent(context, LoginActivity.class);
 intent.putExtra(AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE, response);
 Bundle bundle = new Bundle();
 bundle.putParcelable(AccountManager.KEY_INTENT, intent);
 return bundle;
 }

 @Override
 public Bundle confirmCredentials(AccountAuthenticatorResponse response,
 Account account, Bundle options) {
 return null;
 }

 @Override
 public Bundle editProperties(AccountAuthenticatorResponse response,
 String accountType) {

 return null;
 }

 @Override
 public Bundle getAuthToken(AccountAuthenticatorResponse response,
 Account account, String authTokenType, Bundle loginOptions) {

 return null;
 }

 @Override
 public String getAuthTokenLabel(String authTokenType) {
 return null;
 }

 @Override
 public Bundle hasFeatures(AccountAuthenticatorResponse response,
 Account account, String[] features) {
 return null;

Authentication and Synchronization | 417

 }

 @Override
 public Bundle updateCredentials(AccountAuthenticatorResponse response,
 Account account, String authTokenType, Bundle loginOptions) {
 return null;
 }

}

For this exercise, the remote server has a login API call (accessed via an HTTP URI)
that takes the username and password as variables. Should the login succeed, the re-
sponse comes back with a JSON string containing a token:

uri: http://<serverBaseUrl>:<port>/login?username=<name>&password=<pass>

response: { "token" : "someAuthenticationToken" }

The LoginActivity that requests the user to input the username and password for the
account then proceeds to contact the remote server. Once the expected JSON string is
returned, the handleLoginResponse() method is called and passes the relevant infor-
mation about the account back to the AccountManager:

package com.oreilly.demo.pa.ch17.sync;

import org.json.JSONObject;

import com.oreilly.demo.pa.ch17.R;
import com.oreilly.demo.pa.ch17.sync.authsync.Authenticator;
import android.accounts.Account;
import android.accounts.AccountAuthenticatorActivity;
import android.accounts.AccountManager;
import android.app.Dialog;
import android.app.ProgressDialog;
import android.content.ContentResolver;
import android.content.Intent;
import android.os.Bundle;
import android.os.Handler;
import android.os.Message;
import android.provider.ContactsContract;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.EditText;
import android.widget.Toast;

public class LoginActivity extends AccountAuthenticatorActivity {
 public static final String PARAM_AUTHTOKEN_TYPE = "authtokenType";
 public static final String PARAM_USERNAME = "username";
 public static final String PARAM_PASSWORD = "password";

 private String username;
 private String password;

 @Override
 public void onCreate(Bundle savedInstanceState) {

418 | Chapter 17: Communication, Identity, Sync, and Social Media

 super.onCreate(savedInstanceState);
 getVars();
 setupView();
 }

 @Override
 protected Dialog onCreateDialog(int id) {
 final ProgressDialog dialog = new ProgressDialog(this);
 dialog.setMessage("Attemping to login");
 dialog.setIndeterminate(true);
 dialog.setCancelable(false);
 return dialog;
 }

 private void getVars() {
 username = getIntent().getStringExtra(PARAM_USERNAME);
 }

 private void setupView() {
 setContentView(R.layout.login);

 findViewById(R.id.login).setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 login();
 }
 });

 if(username != null) {
 ((EditText) findViewById(R.id.username)).setText(username);
 }
 }

 private void login() {
 if(((EditText) findViewById(R.id.username)).getText() == null ||
 ((EditText) findViewById(R.id.username)).getText().toString().
 trim().length()
 < 1) {
 Toast.makeText(this, "Please enter a Username",
 Toast.LENGTH_SHORT).show();
 return;
 }
 if(((EditText) findViewById(R.id.password)).getText() == null ||
 ((EditText) findViewById(R.id.password)).getText().toString().
 trim().length()
 < 1) {
 Toast.makeText(this, "Please enter a Password",
 Toast.LENGTH_SHORT).show();
 return;
 }

 username = ((EditText) findViewById(R.id.username)).getText().toString();
 password = ((EditText) findViewById(R.id.password)).getText().toString();

 showDialog(0);

Authentication and Synchronization | 419

 Handler loginHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 if(msg.what == NetworkUtil.ERR) {
 dismissDialog(0);
 Toast.makeText(LoginActivity.this, "Login Failed: "+
 msg.obj, Toast.LENGTH_SHORT).show();
 } else if(msg.what == NetworkUtil.OK) {
 handleLoginResponse((JSONObject) msg.obj);
 }
 }
 };

 NetworkUtil.login(getString(R.string.baseurl),
 username, password, loginHandler);
 }

 private void handleLoginResponse(JSONObject resp) {
 dismissDialog(0);

 final Account account = new Account(username, Authenticator.ACCOUNT_TYPE);

 if (getIntent().getStringExtra(PARAM_USERNAME) == null) {
 AccountManager.get(this).addAccountExplicitly(account, password, null);
 ContentResolver.setSyncAutomatically(account,
 ContactsContract.AUTHORITY, true);
 } else {
 AccountManager.get(this).setPassword(account, password);
 }

 Intent intent = new Intent();
 intent.putExtra(AccountManager.KEY_ACCOUNT_NAME, username);
 intent.putExtra(AccountManager.KEY_ACCOUNT_TYPE,
 Authenticator.ACCOUNT_TYPE);
 if (resp.has("token")) {
 intent.putExtra(AccountManager.KEY_AUTHTOKEN, resp.optString("token"));
 }
 setAccountAuthenticatorResult(intent.getExtras());
 setResult(RESULT_OK, intent);
 finish();
 }
}

The LoginActivity’s layout XML is:

<?xml version="1.0" encoding="utf-8" ?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:background="#fff">
 <ScrollView
 android:layout_width="fill_parent"
 android:layout_height="0dip"

420 | Chapter 17: Communication, Identity, Sync, and Social Media

 android:layout_weight="1">
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:orientation="vertical"
 android:paddingTop="5dip"
 android:paddingBottom="13dip"
 android:paddingLeft="20dip"
 android:paddingRight="20dip">
 <EditText
 android:id="@+id/username"
 android:singleLine="true"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:minWidth="250dip"
 android:scrollHorizontally="true"
 android:capitalize="none"
 android:hint="Username"
 android:autoText="false" />
 <EditText
 android:id="@+id/password"
 android:singleLine="true"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:minWidth="250dip"
 android:scrollHorizontally="true"
 android:capitalize="none"
 android:autoText="false"
 android:password="true"
 android:hint="Password"
 android:inputType="textPassword" />
 </LinearLayout>
 </ScrollView>
 <FrameLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:background="#fff"
 android:minHeight="54dip"
 android:paddingTop="4dip"
 android:paddingLeft="2dip"
 android:paddingRight="2dip">
 <Button
 android:id="@+id/login"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:minWidth="100dip"
 android:text="Login" />
 </FrameLayout>
</LinearLayout>

At this point, the account is established and is ready to be used to synchronize data.

Authentication and Synchronization | 421

Synchronization
To synchronize an account’s data we once again are dealing with three pieces—a service
that is registered to listen for an android.content.SyncAdapter intent and that returns
an AbstractThreadedSyncAdapter extended class on the onBind() method, an XML de-
scriptor describing the structure of the data that is to be viewed and synced, and a class
extending the AbstractThreadedSyncAdapter that handles the actual sync.

For our example, we wish to sync up contact information for the account that we
described in the preceding section. Do note that contact information is not the only
information you can sync up. You can sync up with any content provider you have
access to, or even to application-specific stored data.

The following permissions are indicated in the manifest:

 <uses-permission android:name="android.permission.GET_ACCOUNTS" />
 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <uses-permission android:name="android.permission.WRITE_CONTACTS" />
 <uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS" />
 <uses-permission android:name="android.permission.USE_CREDENTIALS" />
 <uses-permission android:name="android.permission.MANAGE_ACCOUNTS" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.WRITE_SETTINGS" />
 <uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" />
 <uses-permission android:name="android.permission.READ_SYNC_STATS" />
 <uses-permission android:name="android.permission.READ_SYNC_SETTINGS" />
 <uses-permission android:name="android.permission.WRITE_SYNC_SETTINGS" />

Now we describe the service we intend to use. Note that the android.content.Sync
Adapter intent is included and both a structure for the contact data and the
SyncAdapter are described:

 <service android:name=".sync.authsync.SyncService">
 <intent-filter>
 <action android:name="android.content.SyncAdapter" />
 </intent-filter>
 <meta-data android:name="android.content.SyncAdapter"
 android:resource="@xml/syncadapter" />
 <meta-data android:name="android.provider.CONTACTS_STRUCTURE"
 android:resource="@xml/contacts" />
 </service>

In the sync-adapter XML resource, note the accountType descriptor. The content we
intend to work with is the Android contacts data:

 <?xml version="1.0" encoding="utf-8"?>

 <sync-adapter xmlns:android="http://schemas.android.com/apk/res/android"
 android:contentAuthority="com.android.contacts"
 android:accountType="com.oreilly.demo.pa.ch17.sync"
 />

Here is the contacts descriptor XML. Note the names of the various columns we
described:

422 | Chapter 17: Communication, Identity, Sync, and Social Media

 <?xml version="1.0" encoding="utf-8"?>
 <ContactsSource xmlns:android="http://schemas.android.com/apk/res/android">

 <ContactsDataKind
 android:mimeType=
 "vnd.android.cursor.item/vnd.com.oreilly.demo.pa.ch17.sync.profile"
 android:icon="@drawable/icon"
 android:summaryColumn="data2"
 android:detailColumn="data3"
 android:detailSocialSummary="true" />

 </ContactsSource>

The SyncService we created returns the SyncAdapter class. This is our custom class that
extends AbstractThreadedSyncAdapter:

package com.oreilly.demo.pa.ch17.sync.authsync;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class SyncService extends Service {
 private static final Object lock = new Object();
 private static SyncAdapter adapter = null;

 @Override
 public void onCreate() {
 synchronized (lock) {
 if (adapter == null) {
 adapter = new SyncAdapter(getApplicationContext(), true);
 }
 }
 }

 @Override
 public void onDestroy() {
 adapter = null;
 }

 @Override
 public IBinder onBind(Intent intent) {
 return adapter.getSyncAdapterBinder();
 }
 }

Continuing with this exercise, we create a getfriends method on the remote server side.
This takes the token that was passed back and stored by the successful login coded up
in the previous section, and a time indicating the last time the call was made (if it is the
first time, 0 is passed). The response is another JSON string describing the friends (with
ID, name, and phone), the time the call was made (in Unix time on the server), and a
history describing additions and deletions of friends for this account. In the history,
the type field is 0 to add and 1 to delete. The who field is the ID of the friend, and the
time shows when the operation occurred:

Authentication and Synchronization | 423

uri: http://<serverBaseUrl>:<port>/getfriends?token=<token>&time=<lasttime>

response:

{
 "time" : 1295817666232,
 "history" : [
 {
 "time" : 1295817655342,
 "type" : 0,
 "who" : 1
 }
],
 "friend" : [
 {
 "id" : 1,
 "name" : "Mary",
 "phone" : "8285552334"
 }
]
}

The AbstractThreadedSyncAdapter class, extending SyncAdapter, follows:

public class SyncAdapter extends AbstractThreadedSyncAdapter {
 private final Context context;

 private static long lastsynctime = 0;

 public SyncAdapter(Context context, boolean autoInitialize) {
 super(context, autoInitialize);
 this.context = context;
 }

 @Override
 public void onPerformSync(Account account, Bundle extras, String authority,
 ContentProviderClient provider, SyncResult syncResult) {
 String authtoken = null;
 try {
 authtoken = AccountManager.get(context).blockingGetAuthToken(account,
 Authenticator.AUTHTOKEN_TYPE, true);

 ListFriends friendsdata =
 ListFriends.fromJSON(
 NetworkUtil.getFriends(context.getString(R.string.baseurl),
 authtoken, lastsynctime, null));

 lastsynctime = friendsdata.time;

 sync(account, friendsdata);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 private void sync(Account account, ListFriends data) {

424 | Chapter 17: Communication, Identity, Sync, and Social Media

 // MAGIC HAPPENS
 }
}

The full SyncAdapter class follows, with the various actions that occur when the sync
method receives data. The various additions and deletions of the contact information
are included. (Contact and ContentProvider operations are covered in previous chapters
and sections.)

package com.oreilly.demo.pa.ch17.sync.authsync;

import java.util.ArrayList;

import android.accounts.Account;
import android.accounts.AccountManager;
import android.content.AbstractThreadedSyncAdapter;
import android.content.ContentProviderClient;
import android.content.ContentProviderOperation;
import android.content.ContentUris;
import android.content.Context;
import android.content.SyncResult;
import android.database.Cursor;
import android.os.Bundle;
import android.provider.ContactsContract;
import android.provider.ContactsContract.RawContacts;

import com.oreilly.demo.pa.ch17.R;
import com.oreilly.demo.pa.ch17.sync.NetworkUtil;
import com.oreilly.demo.pa.ch17.sync.dataobjects.Change;
import com.oreilly.demo.pa.ch17.sync.dataobjects.ListFriends;
import com.oreilly.demo.pa.ch17.sync.dataobjects.User;

public class SyncAdapter extends AbstractThreadedSyncAdapter {
 private final Context context;

 private static long lastsynctime = 0;

 public SyncAdapter(Context context, boolean autoInitialize) {
 super(context, autoInitialize);
 this.context = context;
 }

 @Override
 public void onPerformSync(Account account, Bundle extras, String authority,
 ContentProviderClient provider, SyncResult syncResult) {
 String authtoken = null;
 try {
 // get accounttoken. this eventually calls our Authenticator
 // getAuthToken()
 authtoken = AccountManager.get(context).blockingGetAuthToken(account,
 Authenticator.AUTHTOKEN_TYPE, true);

 ListFriends friendsdata =
 ListFriends.fromJSON(
 NetworkUtil.getFriends(context.getString(R.string.baseurl),

Authentication and Synchronization | 425

 authtoken, lastsynctime, null));

 lastsynctime = friendsdata.time;

 sync(account, friendsdata);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 // where the magic happens
 private void sync(Account account, ListFriends data) {
 User self = new User();
 self.username = account.name;

 ArrayList<ContentProviderOperation> ops =
 new ArrayList<ContentProviderOperation>();

 // cycle through the history to find the deletes
 if(data.history != null && !data.history.isEmpty()) {
 for(Change change : data.history) {
 if(change.type == Change.ChangeType.DELETE) {
 ContentProviderOperation op = delete(account, change.who);
 if(op != null) ops.add(op);
 }
 }
 }

 // cycle through the friends to find ones we do not already have and add them
 if(data.friends != null && !data.friends.isEmpty()) {
 for(User f : data.friends) {
 ArrayList<ContentProviderOperation> op = add(account, f);
 if(op != null) ops.addAll(op);
 }
 }

 if(!ops.isEmpty()) {
 try {
 context.getContentResolver().applyBatch(ContactsContract.AUTHORITY,
 ops);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 // adding a contact. note we are storing the id referenced in the response
 // from the server in the SYNC1 field - this way we can find it with this
 // server based id
 private ArrayList<ContentProviderOperation> add(Account account, User f) {
 long rawid = lookupRawContact(f.id);

 if(rawid != 0) return null;
 ArrayList<ContentProviderOperation> ops =
 new ArrayList<ContentProviderOperation>();

426 | Chapter 17: Communication, Identity, Sync, and Social Media

 ops.add(ContentProviderOperation.newInsert(
 ContactsContract.RawContacts.CONTENT_URI)
 .withValue(RawContacts.SOURCE_ID, 0)
 .withValue(RawContacts.SYNC1, f.id)
 .withValue(ContactsContract.RawContacts.ACCOUNT_TYPE,
 Authenticator.ACCOUNT_TYPE)
 .withValue(ContactsContract.RawContacts.ACCOUNT_NAME,
 account.name)
 .build());

 if(f.name != null && f.name.trim().length() > 0) {
 ops.add(ContentProviderOperation.newInsert(
 ContactsContract.Data.CONTENT_URI)
 .withValueBackReference(ContactsContract.Data.RAW_CONTACT_ID,
 0)
 .withValue(ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.StructuredName.CONTENT_ITEM_TYPE)
 .withValue(ContactsContract.CommonDataKinds.
 StructuredName.DISPLAY_NAME, f.name)
 .build());
 }

 if(f.phone != null && f.phone.trim().length() > 0) {
 ops.add(ContentProviderOperation.newInsert
 (ContactsContract.Data.CONTENT_URI)
 .withValueBackReference(ContactsContract.Data.RAW_CONTACT_ID, 0)
 .withValue(ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.Phone.CONTENT_ITEM_TYPE)
 .withValue(ContactsContract.CommonDataKinds.Phone.NUMBER, f.phone)
 .withValue(ContactsContract.CommonDataKinds.Phone.TYPE,
 ContactsContract.CommonDataKinds.Phone.TYPE_HOME)
 .build());
 }

 ops.add(ContentProviderOperation.newInsert(ContactsContract.Data.CONTENT_URI)
 .withValueBackReference(ContactsContract.Data.RAW_CONTACT_ID, 0)
 .withValue(ContactsContract.Data.MIMETYPE,
 "vnd.android.cursor.item/vnd.com.oreilly.demo.pa.ch17.sync.profile")
 .withValue(ContactsContract.Data.DATA2, "Ch15 Profile")
 .withValue(ContactsContract.Data.DATA3, "View profile")
 .build()
);
 return ops;
 }

 // delete contact via the server based id
 private ContentProviderOperation delete(Account account, long id) {
 long rawid = lookupRawContact(id);
 if(rawid == 0) return null;
 return ContentProviderOperation.newDelete(
 ContentUris.withAppendedId(
 ContactsContract.RawContacts.CONTENT_URI,
 rawid))
 .build();
 }

Authentication and Synchronization | 427

 // look up the actual raw id via the id we have stored in the SYNC1 field
 private long lookupRawContact(long id) {
 long rawid = 0;
 Cursor c = context.getContentResolver().query(
 RawContacts.CONTENT_URI, new String[] {RawContacts._ID},
 RawContacts.ACCOUNT_TYPE + "='" +
 Authenticator.ACCOUNT_TYPE + "' AND "+
 RawContacts.SYNC1 + "=?",
 new String[] {String.valueOf(id)},
 null);
 try {
 if(c.moveToFirst()) {
 rawid = c.getLong(0);
 }
 } finally {
 if (c != null) {
 c.close();
 c = null;
 }
 }
 return rawid;
 }
}

An important detail might be missed in the previous SyncAdapter class: during the
onPerformSync() call, we attempt to get the authtoken from the AccountManager by using
the blockingGetAuthToken() method. This eventually calls the AbstractAccount
Authenticator that is associated with this account. In this case, it calls the Authentica
tor class we provided in the previous section. Within the Authenticator class, the
method getAuthToken() is called. An example follows:

 @Override
 public Bundle getAuthToken(AccountAuthenticatorResponse response, Account account,
 String authTokenType, Bundle loginOptions) {
 // check and make sure it is the right token type we want
 if (!authTokenType.equals(AUTHTOKEN_TYPE)) {
 final Bundle result = new Bundle();
 result.putString(AccountManager.KEY_ERROR_MESSAGE,
 "invalid authTokenType");
 return result;
 }
 // if we have the password, let's try and get the current
 // authtoken from the server
 String password = AccountManager.get(context).getPassword(account);
 if (password != null) {
 JSONObject json = NetworkUtil.login(context.getString(R.string.baseurl),
 account.name, password, true, null);
 if(json != null) {
 Bundle result = new Bundle();
 result.putString(AccountManager.KEY_ACCOUNT_NAME, account.name);
 result.putString(AccountManager.KEY_ACCOUNT_TYPE, ACCOUNT_TYPE);
 result.putString(AccountManager.KEY_AUTHTOKEN,
 json.optString("token"));

428 | Chapter 17: Communication, Identity, Sync, and Social Media

 return result;
 }
 }
 // if all else fails let's see about getting the user to log in
 Intent intent = new Intent(context, LoginActivity.class);
 intent.putExtra(LoginActivity.PARAM_USERNAME, account.name);
 intent.putExtra(AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE, response);
 Bundle bundle = new Bundle();
 bundle.putParcelable(AccountManager.KEY_INTENT, intent);
 return bundle;
 }

Bluetooth
Bluetooth was the nickname for King Harald of Denmark. The following article on
Sun’s developer site (http://developers.sun.com/mobility/midp/articles/bluetooth1/) con-
tains a variety of information about Bluetooth, including the possibly apocryphal as-
sertion that a runic stone erected in honor of Harald states:

Harald Christianized the Danes

Harald controlled Denmark and Norway

Harald thinks notebooks and cellular phones should communicate seamlessly

To show you how to use Android’s Bluetooth classes in your applications, we will create
a utility for connecting to and transferring data to and from Bluetooth devices. This
code is based on the BluetoothChat example in the Android SDK. It has been general-
ized to cover more applications of Bluetooth, and it has been modified to make it easier
to adapt to your purposes.

As we explore Android’s Bluetooth APIs, we will see how this code makes use of these
APIs, and how you can use the code for application-specific purposes, including as a
diagnostic tool for Bluetooth development.

First we will learn more about how Bluetooth works, and how it is implemented in
Android.

The Bluetooth Protocol Stack
This section takes a look at the standards and protocols that make up the Bluetooth
protocol stack (see Figure 17-1). These protocols and standards are what characterize
Bluetooth: the kinds of data Bluetooth is designed to move, how many devices can be
connected at the same time, latency, and so on.

Bluetooth has emerged as a separate form of networking because it is a “personal area
network,” or PAN, also referred to as a piconet. Bluetooth is designed to connect up
to eight devices and to carry data at a maximum of approximately three megabits per
second. The connected devices must be close to one another: within about 10 meters.
Bluetooth operates at very low power levels, in milliwatts. That means very small

Bluetooth | 429

http://developers.sun.com/mobility/midp/articles/bluetooth1/

batteries can last a long time: a Bluetooth headset with a tiny, lightweight battery can
last for hours of talking—about as long as the much larger battery in your mobile
handset can last, because the mobile radio signal must be able to reach a relatively
distant antenna.

The kinds of devices for which Bluetooth is useful include low and medium data-rate
devices such as keyboards, mice, tablets, printers, speakers, headphones, and headsets,
and the mobile and personal computing devices those peripheral devices may want to
talk to. Bluetooth also supports connections among PCs and mobile handsets.

Bluetooth-specific protocols and adopted protocols

One useful way of thinking about the Bluetooth protocol stack is to separate it into
Bluetooth-specific protocols and “adopted” protocols that run on top of Bluetooth.
Taken together, Bluetooth and the adopted protocols can be dauntingly complex, but
if you set aside, for a while, the fact that large, complex protocols such as OBEX and
TCP/IP run on top of Bluetooth, it’s more understandable. Therefore, we will start with
the lower layers of Bluetooth and emphasize how these layers shape how you can make
use of Bluetooth.

Another useful mental model of Bluetooth is that it replaces serial ports. This means
the lower layers of Bluetooth emulate, and enable you to manage, a virtual set of serial
cables between peripherals. This is the type of Bluetooth protocol we will be using.
This, in turn, enables us to use the simple java.io classes InputStream and Output
Stream to read and write data.

Figure 17-1. The Android Bluetooth protocol stack

430 | Chapter 17: Communication, Identity, Sync, and Social Media

Bluez: The Linux Bluetooth Implementation
A mobile handset may want to connect to all kinds of Bluetooth devices, unlike pe-
ripheral devices that need to be connectable only to a computer or handset. That means
a mobile handset wants to have a fairly complete implementation of Bluetooth and the
adopted protocols, as well as a user interface that enables the necessary interactions for
making and managing connections and for using applications that communicate over
Bluetooth.

Android uses the Bluez Bluetooth stack, which is the most commonly used Bluetooth
stack for Linux. It superseded a project called Open BT. Information on Bluez can be
found at the Bluez project site, http://www.bluez.org.

Bluez was developed at Qualcomm, and has been adopted into the Linux kernel. The
project was begun in 2001 and has been an active and well-supported project ever since.
Bluez is, therefore, a stable and compatible implementation—another reason Linux is
a good choice for handset operating systems.

Using Bluetooth in Android Applications
Using Bluetooth in Android means using classes that were designed to encapsulate the
way Bluetooth works in the Android operating system: the Bluez stack provides ways
to enumerate devices, listen for connections, and use connections; the java.io package
provides classes for reading and writing data; and the Handler and Message classes pro-
vide a way to bridge between the threads that manage Bluetooth input and output and
the user interface. Let’s take a look at the code and how these classes are used.

Compiling and running this code will give you an idea of what Android’s Bluetooth
classes can do for applications that need to build simple connections to nearby devices.

The first step in trying out this Bluetooth application is to pair your handset with a PC.
Then, you need a program that monitors what the PC has received via Bluetooth to see
that what you send from this application got to your PC. In this case we’ll use the Linux
utility hcidump.

Start the program under the debugger if you want to set some breakpoints and step
through it, especially the parts of the application that open and accept connections.
You can create the connection from your PC, using the Blueman applet in Linux, or
from the app. Once the connection is created, start hcidump in a terminal to see that
what you typed into the app is received by the PC. Use the flags shown below to show
only the content of the Bluetooth connection:

sudo hcidump -a -R

Now, what you send from your device should show up as the output of hcidump on
your PC.

Bluetooth | 431

http://www.bluez.org

Bluetooth and related I/O classes

This program relies on the BluetoothAdapter class to control the device’s Bluetooth
adapter, the BluetoothDevice class to represent the state of the connected device, and
the BluetoothSocket class to represent sockets for listening for and making connections:

package com.finchframework.bluetooth;

import android.os.Handler;
import android.os.Message;

public class BtHelperHandler extends Handler {

 public enum MessageType {
 STATE,
 READ,
 WRITE,
 DEVICE,
 NOTIFY;
 }

 public Message obtainMessage(MessageType message, int count, Object obj) {
 return obtainMessage(message.ordinal(), count, -1, obj);

 }

 public MessageType getMessageType(int ordinal) {
 return MessageType.values()[ordinal];
 }

}

The BtHelperHandler class defines some constants and provides a little bit of wrapper
code that makes message-related methods cleaner.

BtSPPHelper.java is what encapsulates our use of the Bluetooth Serial Port Protocol
(SPP):

package com.finchframework.bluetooth;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.UUID;

import com.finchframework.finch.R;

import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothDevice;
import android.bluetooth.BluetoothServerSocket;
import android.bluetooth.BluetoothSocket;
import android.content.Context;
import android.os.Bundle;
import android.os.Message;
import android.util.Log;

432 | Chapter 17: Communication, Identity, Sync, and Social Media

/**
 * Helper class that runs AsyncTask objects for communicating with a Bluetooth
 * device. This code is derived from the Bluetoothchat example, but modified in
 * several ways to increase modularity and generality: The Handler is in a
 * separate class to make it easier to drop into other components.
 *
 * Currently this only does Bluetooth SPP. This can be generalized to other
 * services.
 */
public class BtSPPHelper {
 // Debugging
 private final String TAG = getClass().getSimpleName();
 private static final boolean D = true;

 public enum State {
 NONE,
 LISTEN,
 CONNECTING,
 CONNECTED;
 }

 // Name for the SDP record when creating server socket
 private static final String NAME = "BluetoothTest";

 // Unique UUID for this application
 private static final UUID SPP_UUID =
 UUID.fromString("00001101-0000-1000-8000-00805F9B34FB");

 // Member fields
 private final BluetoothAdapter mAdapter;
 private final BtHelperHandler mHandler;
 private AcceptThread mAcceptThread;
 private ConnectThread mConnectThread;
 private ConnectedThread mConnectedThread;
 private State mState;
 private Context mContext;

 /**
 * Constructor. Prepares a new Bluetooth SPP session.
 * @param context The UI Activity Context
 * @param handler A Handler to send messages back to the UI Activity
 */
 public BtSPPHelper(Context context, BtHelperHandler handler) {
 mContext = context;
 mAdapter = BluetoothAdapter.getDefaultAdapter();
 mState = State.NONE;
 mHandler = handler;
 }

 /**
 * Set the current state of the chat connection
 * @param state The current connection state
 */
 private synchronized void setState(State state) {

Bluetooth | 433

 if (D) Log.d(TAG, "setState() " + mState + " -> " + state);
 mState = state;

 // Give the new state to the Handler so the UI Activity can update
 mHandler.obtainMessage(BtHelperHandler.MessageType.STATE,
 -1, state).sendToTarget();
 }

 /**
 * Return the current connection state.
 */
 public synchronized State getState() {
 return mState;
 }

 /**
 * Start the session. Start AcceptThread to begin a
 * session in listening (server) mode.
 *
 * Typically, call this in onResume()
 */
 public synchronized void start() {
 if (D) Log.d(TAG, "start");

 // Cancel any thread attempting to make a connection
 if (mConnectThread != null) {mConnectThread.cancel(); mConnectThread = null;}

 // Cancel any thread currently running a connection
 if (mConnectedThread != null) {
 mConnectedThread.cancel();
 mConnectedThread = null;
 }

 // Start the thread to listen on a BluetoothServerSocket
 if (mAcceptThread == null) {
 mAcceptThread = new AcceptThread();
 mAcceptThread.start();
 }
 setState(State.LISTEN);
 }

 /**
 * Start the ConnectThread to initiate a connection to a remote device.
 * @param device The BluetoothDevice to connect
 */
 public synchronized void connect(BluetoothDevice device) {
 if (D) Log.d(TAG, "connect to: " + device);

 // Cancel any thread attempting to make a connection
 if (mState == State.CONNECTING) {
 if (mConnectThread != null) {
 mConnectThread.cancel();
 mConnectThread = null;
 }
 }

434 | Chapter 17: Communication, Identity, Sync, and Social Media

 // Cancel any thread currently running a connection
 if (mConnectedThread != null) {
 mConnectedThread.cancel();
 mConnectedThread = null;
 }

 // Start the thread to connect with the given device
 mConnectThread = new ConnectThread(device);
 mConnectThread.start();
 setState(State.CONNECTING);
 }

 /**
 * Start the ConnectedThread to begin managing a Bluetooth connection
 *
 * @param socket
 * The BluetoothSocket on which the connection was made
 * @param device
 * The BluetoothDevice that has been connected
 */
 private synchronized void connected(BluetoothSocket socket,
 BluetoothDevice device) {
 if (D)
 Log.d(TAG, "connected");

 // Cancel the thread that completed the connection
 if (mConnectThread != null) {
 mConnectThread.cancel();
 mConnectThread = null;
 }

 // Cancel any thread currently running a connection
 if (mConnectedThread != null) {
 mConnectedThread.cancel();
 mConnectedThread = null;
 }

 // Cancel the accept thread because we only want to connect to one
 // device
 if (mAcceptThread != null) {
 mAcceptThread.cancel();
 mAcceptThread = null;
 }

 // Start the thread to manage the connection and perform transmissions
 mConnectedThread = new ConnectedThread(socket);
 mConnectedThread.start();

 // Send the name of the connected device back to the UI Activity
 mHandler.obtainMessage(BtHelperHandler.MessageType.DEVICE, -1,
 device.getName()).sendToTarget();
 setState(State.CONNECTED);
 }

Bluetooth | 435

 /**
 * Stop all threads
 */
 public synchronized void stop() {
 if (D) Log.d(TAG, "stop");
 if (mConnectThread != null) {
 mConnectThread.cancel();
 mConnectThread = null;
 }
 if (mConnectedThread != null) {
 mConnectedThread.cancel();
 mConnectedThread = null;
 }
 if (mAcceptThread != null) {
 mAcceptThread.cancel();
 mAcceptThread = null;
 }
 setState(State.NONE);
 }

 /**
 * Write to the ConnectedThread in an unsynchronized manner
 * @param out The bytes to write
 * @see ConnectedThread#write(byte[])
 */
 public void write(byte[] out) {
 ConnectedThread r;

 // Synchronize a copy of the ConnectedThread
 synchronized (this) {
 if (mState != State.CONNECTED) return;
 r = mConnectedThread;
 }
 // Perform the write unsynchronized
 r.write(out);
 }

 private void sendErrorMessage(int messageId) {
 setState(State.LISTEN);
 mHandler.obtainMessage(BtHelperHandler.MessageType.NOTIFY, -1,
 mContext.getResources().getString(messageId)).sendToTarget();
 }

 /**
 * This thread listens for incoming connections.
 */
 private class AcceptThread extends Thread {
 // The local server socket
 private final BluetoothServerSocket mmServerSocket;

 public AcceptThread() {
 BluetoothServerSocket tmp = null;

 // Create a new listening server socket
 try {

436 | Chapter 17: Communication, Identity, Sync, and Social Media

 tmp = mAdapter.listenUsingRfcommWithServiceRecord(NAME, SPP_UUID);
 } catch (IOException e) {
 Log.e(TAG, "listen() failed", e);
 }
 mmServerSocket = tmp;
 }

 public void run() {
 if (D) Log.d(TAG, "BEGIN mAcceptThread" + this);
 setName("AcceptThread");
 BluetoothSocket socket = null;

 // Listen to the server socket if we're not connected
 while (mState != BtSPPHelper.State.CONNECTED) {
 try {
 // This is a blocking call and will only return on a
 // successful connection or an exception
 socket = mmServerSocket.accept();
 } catch (IOException e) {
 Log.e(TAG, "accept() failed", e);
 break;
 }

 // If a connection was accepted
 if (socket != null) {
 synchronized (BtSPPHelper.this) {
 switch (mState) {
 case LISTEN:
 case CONNECTING:
 // Situation normal. Start the connected thread.
 connected(socket, socket.getRemoteDevice());
 break;
 case NONE:
 case CONNECTED:
 // Either not ready or already connected.
 // Terminate new socket.
 try {
 socket.close();
 } catch (IOException e) {
 Log.e(TAG, "Could not close unwanted socket", e);
 }
 break;
 }
 }
 }
 }
 if (D) Log.i(TAG, "END mAcceptThread");
 }

 public void cancel() {
 if (D) Log.d(TAG, "cancel " + this);
 try {
 mmServerSocket.close();
 } catch (IOException e) {
 Log.e(TAG, "close() of server failed", e);

Bluetooth | 437

 }
 }
 }

 /**
 * This thread runs while attempting to make an outgoing connection
 * with a device. It runs straight through; the connection either
 * succeeds or fails.
 */
 private class ConnectThread extends Thread {
 private final BluetoothSocket mmSocket;
 private final BluetoothDevice mmDevice;

 public ConnectThread(BluetoothDevice device) {
 mmDevice = device;
 BluetoothSocket tmp = null;

 // Get a BluetoothSocket for a connection with the
 // given BluetoothDevice
 try {
 tmp = device.createRfcommSocketToServiceRecord(SPP_UUID);
 } catch (IOException e) {
 Log.e(TAG, "create() failed", e);
 }
 mmSocket = tmp;
 }

 public void run() {
 Log.i(TAG, "BEGIN mConnectThread");
 setName("ConnectThread");

 // Always cancel discovery because it will slow down a connection
 mAdapter.cancelDiscovery();

 // Make a connection to the BluetoothSocket
 try {
 // This is a blocking call and will only return on a
 // successful connection or an exception
 mmSocket.connect();
 } catch (IOException e) {
 sendErrorMessage(R.string.bt_unable);
 // Close the socket
 try {
 mmSocket.close();
 } catch (IOException e2) {
 Log.e(TAG, "unable to close() socket during connection failure",
 e2);
 }
 // Start the service over to restart listening mode
 BtSPPHelper.this.start();
 return;
 }

 // Reset the ConnectThread because we're done
 synchronized (BtSPPHelper.this) {

438 | Chapter 17: Communication, Identity, Sync, and Social Media

 mConnectThread = null;
 }

 // Start the connected thread
 connected(mmSocket, mmDevice);
 }

 public void cancel() {
 try {
 mmSocket.close();
 } catch (IOException e) {
 Log.e(TAG, "close() of connect socket failed", e);
 }
 }
 }

 /**
 * This thread runs during a connection with a remote device.
 * It handles all incoming and outgoing transmissions.
 */
 private class ConnectedThread extends Thread {
 private final BluetoothSocket mmSocket;
 private final InputStream mmInStream;
 private final OutputStream mmOutStream;

 public ConnectedThread(BluetoothSocket socket) {
 Log.d(TAG, "create ConnectedThread");
 mmSocket = socket;
 InputStream tmpIn = null;
 OutputStream tmpOut = null;

 // Get the BluetoothSocket input and output streams
 try {
 tmpIn = socket.getInputStream();
 tmpOut = socket.getOutputStream();
 } catch (IOException e) {
 Log.e(TAG, "temp sockets not created", e);
 }

 mmInStream = tmpIn;
 mmOutStream = tmpOut;
 }

 public void run() {
 Log.i(TAG, "BEGIN mConnectedThread");
 byte[] buffer = new byte[1024];
 int bytes;

 // Keep listening to the InputStream while connected
 while (true) {
 try {
 // Read from the InputStream
 bytes = mmInStream.read(buffer);

 // Send the obtained bytes to the UI Activity

Bluetooth | 439

 mHandler.obtainMessage(BtHelperHandler.MessageType.READ,
 bytes, buffer).sendToTarget();
 } catch (IOException e) {
 Log.e(TAG, "disconnected", e);
 sendErrorMessage(R.string.bt_connection_lost);
 break;
 }
 }
 }

 /**
 * Write to the connected OutStream.
 * @param buffer The bytes to write
 */
 public void write(byte[] buffer) {
 try {
 mmOutStream.write(buffer);

 // Share the sent message back to the UI Activity
 mHandler.obtainMessage(BtHelperHandler.MessageType.WRITE, -1, buffer)
 .sendToTarget();
 } catch (IOException e) {
 Log.e(TAG, "Exception during write", e);
 }
 }

 public void cancel() {
 try {
 mmSocket.close();
 } catch (IOException e) {
 Log.e(TAG, "close() of connect socket failed", e);
 }
 }
 }
 }

The BtSPPHelper class brings the use of these classes together, and also contains the
definition of private Thread subclasses that listen for, connect, and run connections.

This is also where the java.io package meets Android Bluetooth: the Bluetooth
Socket objects contain methods that return references to InputStream and Output
Stream objects to be used to read and write data on the socket connection:

package com.finchframework.bluetooth;

import java.util.Set;

import com.finchframework.finch.R;

import android.app.Activity;
import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothDevice;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

440 | Chapter 17: Communication, Identity, Sync, and Social Media

import android.content.IntentFilter;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.Window;
import android.view.View.OnClickListener;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.AdapterView.OnItemClickListener;

/**
 * Derived from the Bluetooth Chat example, an activity that enables
 * picking a paired or discovered Bluetooth device
 */
public class DeviceListActivity extends Activity {
 // Debugging
 private static final String TAG = "DeviceListActivity";
 private static final boolean D = true;

 // Return Intent extra
 public static String EXTRA_DEVICE_ADDRESS = "device_address";

 // Member fields
 private BluetoothAdapter mBtAdapter;
 private ArrayAdapter<String> mPairedDevicesArrayAdapter;
 private ArrayAdapter<String> mNewDevicesArrayAdapter;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Set up the window
 setContentView(R.layout.device_list);

 // Set result CANCELED in case the user backs out
 setResult(Activity.RESULT_CANCELED);

 // Initialize the button to perform device discovery
 Button scanButton = (Button) findViewById(R.id.button_scan);
 scanButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 doDiscovery();
 v.setVisibility(View.GONE);
 }
 });

 // Initialize array adapters. One for already paired devices and
 // one for newly discovered devices
 mPairedDevicesArrayAdapter = new ArrayAdapter<String>(this,
 R.layout.device_name);
 mNewDevicesArrayAdapter = new ArrayAdapter<String>(this,
 R.layout.device_name);

Bluetooth | 441

 // Find and set up the ListView for paired devices
 ListView pairedListView = (ListView) findViewById(R.id.paired_devices);
 pairedListView.setAdapter(mPairedDevicesArrayAdapter);
 pairedListView.setOnItemClickListener(mDeviceClickListener);

 // Find and set up the ListView for newly discovered devices
 ListView newDevicesListView = (ListView) findViewById(R.id.new_devices);
 newDevicesListView.setAdapter(mNewDevicesArrayAdapter);
 newDevicesListView.setOnItemClickListener(mDeviceClickListener);

 // Register for broadcasts when a device is discovered
 IntentFilter filter = new IntentFilter(BluetoothDevice.ACTION_FOUND);
 this.registerReceiver(mReceiver, filter);

 // Register for broadcasts when discovery has finished
 filter = new IntentFilter(BluetoothAdapter.ACTION_DISCOVERY_FINISHED);
 this.registerReceiver(mReceiver, filter);

 // Get the local Bluetooth adapter
 mBtAdapter = BluetoothAdapter.getDefaultAdapter();

 // Get a set of currently paired devices
 Set<BluetoothDevice> pairedDevices = mBtAdapter.getBondedDevices();

 // If there are paired devices, add each one to the ArrayAdapter
 if (pairedDevices.size() > 0) {
 findViewById(R.id.title_paired_devices).setVisibility(View.VISIBLE);
 for (BluetoothDevice device : pairedDevices) {
 mPairedDevicesArrayAdapter.add(device.getName() +
 "\n" + device.getAddress());
 }
 } else {
 String noDevices =
 getResources().getText(R.string.none_paired).toString();
 mPairedDevicesArrayAdapter.add(noDevices);
 }
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();

 // Make sure we're not doing discovery anymore
 if (mBtAdapter != null) {
 mBtAdapter.cancelDiscovery();
 }

 // Unregister broadcast listeners
 this.unregisterReceiver(mReceiver);
 }

 /**
 * Start device discover with the BluetoothAdapter
 */

442 | Chapter 17: Communication, Identity, Sync, and Social Media

 private void doDiscovery() {
 if (D) Log.d(TAG, "doDiscovery()");

 // Indicate scanning in the title
 setProgressBarIndeterminateVisibility(true);
 setTitle(R.string.scanning);

 // Turn on sub-title for new devices
 findViewById(R.id.title_new_devices).setVisibility(View.VISIBLE);

 // If we're already discovering, stop it
 if (mBtAdapter.isDiscovering()) {
 mBtAdapter.cancelDiscovery();
 }

 // Request discover from BluetoothAdapter
 mBtAdapter.startDiscovery();
 }

 // The on-click listener for all devices in the ListViews
 private OnItemClickListener mDeviceClickListener = new OnItemClickListener() {
 public void onItemClick(AdapterView<?> av, View v, int arg2, long arg3) {
 // Cancel discovery because it's costly and we're about to connect
 mBtAdapter.cancelDiscovery();

 // Get the device MAC address, which is the last 17 chars in the View
 String info = ((TextView) v).getText().toString();
 String address = info.substring(info.length() - 17);

 // Create the result Intent and include the MAC address
 Intent intent = new Intent();
 intent.putExtra(EXTRA_DEVICE_ADDRESS, address);

 // Set result and finish this Activity
 setResult(Activity.RESULT_OK, intent);
 finish();
 }
 };

 // The BroadcastReceiver that listens for discovered devices and
 // changes the title when discovery is finished
 private final BroadcastReceiver mReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();

 // When discovery finds a device
 if (BluetoothDevice.ACTION_FOUND.equals(action)) {
 // Get the BluetoothDevice object from the Intent
 BluetoothDevice device =
 intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);
 // If it's already paired, skip it, because it's been listed already
 if (device.getBondState() != BluetoothDevice.BOND_BONDED) {
 mNewDevicesArrayAdapter.add(
 device.getName() + "\n" + device.getAddress());

Bluetooth | 443

 }
 // When discovery is finished, change the Activity title
 } else if (BluetoothAdapter.ACTION_DISCOVERY_FINISHED.equals(action)) {
 setProgressBarIndeterminateVisibility(false);
 setTitle(R.string.select_device);
 if (mNewDevicesArrayAdapter.getCount() == 0) {
 String noDevices =
 getResources().getText(R.string.none_found).toString();
 mNewDevicesArrayAdapter.add(noDevices);
 }
 }
 }
 };

}

The DeviceListActivity class

This activity displays a dialog that lists known devices and enables the user to request
a scan for devices. Unlike those parts of the app where Thread subclasses are used to
implement asynchronous I/O and Handler subclasses pass the results to the UI thread,
the startDiscovery method of the BluetoothAdapter class kicks off a separate thread
and communicates results using broadcast intents. A BroadcastReceiver is used here
to process those results.

The BtConsoleActivity class

The BtConsoleActivity class creates a chat-like activity for interacting with a Bluetooth
device. The menus in this activity enable connecting to a device, and the main view in
this activity is a scrolling list of data sent and received. At the bottom of the screen,
there is an EditText view for entering text to be sent to the other end of the SPP
connection.

Handler classes are used to glue the single-threaded UI to the threads that listen, con-
nect, and perform I/O on socket connections.

444 | Chapter 17: Communication, Identity, Sync, and Social Media

CHAPTER 18

The Android Native Development
Kit (NDK)

Java Native Interface (JNI) is a part of the Java standard that enables developers to write
native methods in other languages, such as C and C++, and call those methods from
Java code. This is especially useful when you want to use platform-specific features or
take advantage of hardware in the platform, such as achieving faster numerical
computation by taking advantage of FPU instruction set extensions, or letting graphics-
intensive code exploit the OpenGL API. This chapter covers JNI basics for program-
mers using the Android NDK. For further details, see the Java Native Interface
Specification.

Typical good candidates for implementation in C or C++ using the NDK are self-
contained, CPU-intensive operations that don’t allocate much memory, such as signal
processing, physics simulation, and so on. Simply recoding a random method to run
in C usually does not result in a large performance increase. When examining whether
you should develop in native code, think about your requirements and see whether the
Android SDK already provides the functionality you need. You’ll find that in most cases
the Android SDK will fulfill your needs. It is worth remembering that, although most
Android platforms are ARM right now, there are likely to be others (such as Atom) in
the future. Using NDK makes your code nonportable.

JNI is what Android uses to access code implemented in C or C++, and the Android
NDK is an optional extension to the Android SDK that supports the use of C or C++
code in Android applications. To make things as easy as possible for the Java developer,
JNI lets a native method use Java objects in the same way that Java code uses these
objects. Within the native method, Java objects can be created, inspected, and used to
perform its tasks. This same ability to inspect and use Java objects enables the native
method to use other Java objects passed to it from the Java application (and thus the
Android application).

445

http://download.oracle.com/javase/1.5.0/docs/guide/jni
http://download.oracle.com/javase/1.5.0/docs/guide/jni

Native Methods and JNI Calls
JNI created certain conventions to allow calls to methods from other languages. The
changes on the side of the native methods (essentially C or C++ libraries) are greater
than the changes required on the Java side.

Conventions on the Native Method Side
When a virtual machine (VM)—in Android’s case, Dalvik—invokes a function imple-
mented in C or C++, it passes two special parameters:

• A JNIEnv pointer, which is a kind of handle for the thread in the VM that called the
native method

• A jobject pointer, which is a reference to the calling class

These parameters are passed transparently to Java code. That is, they do not appear in
the method signature declared in the calling Java code. The Java call just explicitly
passes any other parameters needed by the called function.

A JNI function may look like this:

/* sample method where the Java call passed no parameters */
void Java_ClassName_MethodName (JNIEnv *env, jobject obj) {
 /* do something */
}

/* another sample method with two parameters passed, returning a double */
jdouble Java_ClassName_MethodName (JNIEnv* env, jobject obj,
 jdouble x, jdouble y) {
 return x + y;
}

These examples show the two parameters passed automatically to every native method,
and two parameters with types that map to Java types.

When a native method is called, it runs in the same process and the same thread as the
Java code that calls it. As we will see later in this chapter, it can allocate memory from
the Java heap to take advantage of garbage collection, or outside the Java heap to cir-
cumvent Java memory management. Variables allocated on the stack in C or C++ code
have the same semantics as in native executables in those languages. They are allocated
from the stack space for the process they run in.

JNI provides types that correspond to Java types, as shown in Table 18-1.

446 | Chapter 18: The Android Native Development Kit (NDK)

Table 18-1. Data mapping

Native type Java type Description

boolean jboolean Unsigned 8 bits

byte jbyte Signed 8 bits

char jchar Unsigned 16 bits

short jshort Signed 16 bits

int jint Signed 32 bits

long jlong Signed 64 bits

float jfloat 32 bits

double jdouble 64 bits

void void N/A

In compound types such as objects, arrays, and strings, the native code must explicitly
convert the data by calling conversion methods, which are accessible through the
JNIEnv pointer.

Conventions on the Java Side
Before native methods can be used within a Java class, the library containing native
methods must be loaded by calling System.loadLibrary. Typically, the class that needs
the native method would statically load this. Native methods accessed by a class are
declared in the class using the native keyword:

 public class ClassWithNativeMethod {

 public native double nativeMethod(); // native method

 static {
 System.loadLibrary("sample"); // load lib called 'sample'
 }

 public static void main(String[] args) {
 ClassWithNativeMethod cwnm = new ClassWithNativeMethod();

 double answer = cwnm.nativeMethod(); // call native method

 System.out.println("Answer is : "+answer);
 }
 }

Native Methods and JNI Calls | 447

The Android NDK
The Android Native Development Kit (NDK) is a companion tool to the Android SDK.
If you use the NDK to create native code, your applications are still packaged into
an .apk file and run inside a VM on the device. The fundamental Android application
model does not change.

Setting Up the NDK Environment
In order to use the NDK, you must first install and set up the SDK. The system re-
quirements for installing and using the NDK are as follows:

• Windows XP (32-bit) or Vista (32- or 64-bit) with Cygwin 1.7 or later

• Mac OS X 10.4.8 or later

• Linux (32- or 64-bit)

Necessary development tools that are not provided in the NDK are as follows:

• GNU Make 3.81 or later

• A recent version of Awk (either GNU Awk or Nawk)

First, download and install the NDK (http://developer.android.com/sdk/ndk/index
.html). Installation is simple: unzip the NDK into any directory. Here, we will refer to
that directory as ndk.

Once the NDK is downloaded and installed, you will find quite a bit of documentation
(located in the ndk/docs directory). We highly recommend that you read the documen-
tation, starting with OVERVIEW.html. Also included in the NDK are samples (located
in ndk/samples). The samples cover quite a bit more than this chapter will, so after you
have used the NDK a bit, we recommend that you go through the samples.

Compiling with the NDK
In order to develop native code with the NDK, you will need to do the following:

1. Create a jni directory within your project.

2. Place your native source in the jni directory.

3. Create an Android.mk file (and, optionally, an Application.mk file) in the jni
directory.

4. Run the ndk/ndk-build command from within the jni directory.

The optional Application.mk file describes what native modules are needed for your
application as well as specific ABI types to build against. For more details, check
APPLICATION-MK.html in the documentation. A sample Application.mk file follows:

 # Build both ARMv5TE and ARMv7-A machine code.
APP_ABI := armeabi armeabi-v7a

448 | Chapter 18: The Android Native Development Kit (NDK)

http://developer.android.com/sdk/ndk/index.html
http://developer.android.com/sdk/ndk/index.html

 # What platform to build against (android-3 (1.5) - android-9 (2.3))
APP_PLATFORM := android-9

The Android.mk file describes your source to the build system. It is really a tiny GNU
Makefile fragment that is parsed by the build system when building your app. For more
details, read the ANDROID-MK.html documentation file. A sample Android.mk
follows:

 # Must define the LOCAL_PATH and return the current dir
LOCAL_PATH := $(call my-dir)

 # Cleans various variables... making a clean build
include $(CLEAR_VARS)

 # Identify the module/library's name
LOCAL_MODULE := sample
 # Specify the source files
LOCAL_SRC_FILES := sample.c
 # Load local libraries (here we load the log library)
LOCAL_LDLIBS := -llog

 # Build the shared library defined above
include $(BUILD_SHARED_LIBRARY)

Once you have written Android.mk, and optionally Application.mk and the native
source files themselves, run ndk/ndk-build within the project directory to build your
libraries. Should the build be successful, the shared libraries will be copied into your
application’s root project directory and added to its build.

JNI, NDK, and SDK: A Sample App
To help you understand how the SDK and native source can be put together, we
provide the following sample app. It describes an activity called SampleActivityWithNa
tiveMethods. The Android manifest fragment is:

<activity android:name=".SampleActivityWithNativeMethods"
 android:label="Sample Activity With Native Methods"
 android:debuggable="true" />

The SampleActivityWithNativeMethods activity uses the following layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button
 android:id="@+id/whatami"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:paddingTop="5dp"
 android:paddingBottom="5dp"
 android:text="What CPU am I?"

The Android NDK | 449

 />
</LinearLayout>

The sample C library source has a method called whatAmI, which our Java activity will
hook to the button with the whatami ID. We also define a function named LOGINFO,
resolving to an __android_log_print call. This is how the Android log is written:

// the jni library MUST be included
#include <jni.h>
// the log lib is included
#include <android/log.h>

// usage of log
#define LOGINFO(x...) __android_log_print(ANDROID_LOG_INFO,"SampleJNI",x)

jstring Java_com_oreilly_demo_pa_ch18_SampleActivityWithNativeMethods_whatAmI(
 JNIEnv* env,jobject thisobject) {
 LOGINFO("SampleJNI","Sample Info Log Output");

 return (*env)->NewStringUTF(env, "Unknown");
}

Our Android.mk file follows. Note that it causes the log library to be loaded:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := sample
LOCAL_SRC_FILES := sample.c
LOCAL_LDLIBS := -llog

include $(BUILD_SHARED_LIBRARY)

Finally, here is the SampleActivityWithNativeMethods Java activity’s source code. The
class loads the sample library and declares the whatAmI() native method. When the
button is clicked, the whatAmI() method is called and returns "Unknown". This then
shows a Toast with the string "CPU: Unknown". If you find the output uninformative,
rest assured that we will include the CPU information in a later section:

package com.oreilly.pa.ch18;

import com.oreilly.pa.ch18.R;
import android.widget.Toast;

public class SampleActivityWithNativeMethods extends Activity {

 static {
 System.loadLibrary("sample"); // load our sample lib
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.sample);

450 | Chapter 18: The Android Native Development Kit (NDK)

 setupview();
 }

 public native String whatAmI(); // sample lib native method

 private void setupview() {
 findViewById(R.id.whatami).setOnClickListener(
 new View.OnClickListener() {

 public void onClick(View v) {
 String whatami = whatAmI();
 Toast.makeText(getBaseContext(), "CPU: "+whatami,
 Toast.LENGTH_SHORT).show();
 }
 });
 }

Android-Provided Native Libraries
The NDK comes with the following set of headers for stable native APIs:

• libc (C library) headers

• libm (math library) headers

• JNI interface headers

• libz (Zlib compression) headers

• liblog (Android logging) header

• OpenGL ES 1.1 and OpenGL ES 2.0 (3D graphics libraries) headers

• libjnigraphics (pixel buffer access) header (for Android 2.2 and later)

• A minimal set of headers for C++ support

• OpenSL ES native audio libraries

• Android native application APIs

Except for the libraries just listed, native system libraries in the Android
platform are not stable and may change in future platform versions.
Your applications should use only the stable native system libraries pro-
vided in the NDK.

Some libraries, such as libc and libm, are automatically referenced in the build and
thus need to be referenced only in the source code as includes. However, some libraries
are not automatically referenced, and thus require specific statements within the
Android.mk build file.

Here is a sample Android.mk file that imports the cpufeatures module, which will give
us the information missing from our earlier whatAmI example:

Android-Provided Native Libraries | 451

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := sample
LOCAL_SRC_FILES := sample.c
LOCAL_LDLIBS := -llog
 # Here we reference the cpufeatures module
LOCAL_STATIC_LIBRARIES := cpufeatures

include $(BUILD_SHARED_LIBRARY)

 # Here we import the cpufeatures modules
$(call import-module,cpufeatures)

The following source (extending the whatAmI function we showed in the previous sec-
tion) utilizes the cpufeatures module we have included:

// Include the cpu-features module
#include <cpu-features.h>
#include <jni.h>
#include <android/log.h>

#define LOGINFO(x...) __android_log_print(ANDROID_LOG_INFO,"SampleJNI",x)

jstring Java_com_oreilly_demo_pa_ch18_SampleActivityWithNativeMethods_whatAmI(
 JNIEnv* env, jobject thisobject) {
 LOGINFO("SampleJNI","Sample Info Log Output");

 // -- Here we use the cpufeatures -- //
 uint64_t cpu_features;

 if (android_getCpuFamily() != ANDROID_CPU_FAMILY_ARM) {
 return (*env)->NewStringUTF(env, "Not ARM");
 }

 cpu_features = android_getCpuFeatures();

 if ((cpu_features & ANDROID_CPU_ARM_FEATURE_ARMv7) != 0) {
 return (*env)->NewStringUTF(env, "ARMv7");
 } else if ((cpu_features & ANDROID_CPU_ARM_FEATURE_VFPv3) != 0) {
 return (*env)->NewStringUTF(env, "ARM w VFPv3 support");
 } else if ((cpu_features & ANDROID_CPU_ARM_FEATURE_NEON) != 0) {
 return (*env)->NewStringUTF(env, "ARM w NEON support");
 }
 // -- End cpufeatures usage -- //

 return (*env)->NewStringUTF(env, "Unknown");
}

452 | Chapter 18: The Android Native Development Kit (NDK)

Building Your Own Custom Library Modules
This section puts together several techniques shown throughout the chapter to create
and use a simple C module that uses the math library to calculate a power. We’ll start
with the Android.mk file. Notice that we need to build the library (sample_lib) and
export the includes. This library is then referenced in the sample:

LOCAL_PATH := $(call my-dir)

 # this is our sample library
include $(CLEAR_VARS)

LOCAL_MODULE := sample_lib
LOCAL_SRC_FILES := samplelib/sample_lib.c
 # we need to make sure everything knows where everything is
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)/samplelib

include $(BUILD_STATIC_LIBRARY)

 # sample uses the sample lib we created
include $(CLEAR_VARS)

LOCAL_MODULE := sample
LOCAL_SRC_FILES := sample.c
LOCAL_LDLIBS := -llog
 # We load our sample lib
LOCAL_STATIC_LIBRARIES := sample_lib

include $(BUILD_SHARED_LIBRARY)

We have a short header file, sample_lib.h:

#ifndef SAMPLE_LIB_H
#define SAMPLE_LIB_H

extern double calculatePower(double x, double y);

#endif

The source code for our function, sample_lib.c, is:

#include "sample_lib.h"
 // we include the math lib
#include "math.h"

 // we use the math lib
double calculatePower(double x, double y) {
 return pow(x, y);
}

Following is the sample.c file that glues our sample_lib library to the Java code:

 // we include the sample_lib
#include "sample_lib.h"
#include <jni.h>
#include <android/log.h>

Building Your Own Custom Library Modules | 453

#define LOGINFO(x...) __android_log_print(ANDROID_LOG_INFO,"SampleJNI",x)

jdouble
 Java_com_oreilly_demo_pa_ch18_SampleActivityWithNativeMethods_calculatePower(
 JNIEnv* env, jobject thisobject, jdouble x, jdouble y) {

 LOGINFO("Sample Info Log Output");

 // we call sample-lib's calculate method
 return calculatePower(x, y);
}

The layout the Activity will use is:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<EditText
 android:id="@+id/x"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:paddingTop="5dp"
 android:paddingBottom="5dp"
 android:textColor="#000"
 android:hint="X Value"
 />
<EditText
 android:id="@+id/y"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:paddingTop="5dp"
 android:paddingBottom="5dp"
 android:textColor="#000"
 android:hint="Y Value"
 />
 <Button
 android:id="@+id/calculate"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:paddingTop="5dp"
 android:paddingBottom="5dp"
 android:text="Calculate X^Y"
 />
</LinearLayout>

Following is the SampleActivityWithNativeMethods activity that we have modified to
use with this new library. The sample library is loaded and the calculatePower()
method is declared. When the “calculate” button is clicked, we then take the numbers
provided from the two edit text boxes (using a default of 2 if the text is missing or is

454 | Chapter 18: The Android Native Development Kit (NDK)

not a number) and pass them to the calculatePower() method. The returned double is
then popped up as part of a Toast:

package com.oreilly.pa.ch18;

import com.oreilly.pa.ch18.R;
import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import android.widget.Toast;

public class SampleActivityWithNativeMethods extends Activity {

 static {
 System.loadLibrary("sample"); // load our sample lib
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.sample);

 setupview();
 }

 // sample lib native method
 public native double calculatePower(double x, double y);

 private void setupview() {

 findViewById(R.id.calculate).setOnClickListener(
 new View.OnClickListener() {

 public void onClick(View v) {
 String answer = "";
 double x = 2;
 double y = 2;

 String sx = ((EditText) findViewById(R.id.x)).getText().toString();
 String sy = ((EditText) findViewById(R.id.y)).getText().toString();

 if(sx == null) {
 answer = "X defaults to 2\n";
 } else {
 try {
 x = Double.parseDouble(sx);
 } catch (Exception e) {
 answer = "X is not a number, defaulting to 2\n";
 x = 2;
 }
 }

 if(sy == null) {
 answer += "Y defaults to 2\n";

Building Your Own Custom Library Modules | 455

 } else {
 try {
 y = Double.parseDouble(sy);
 } catch (Exception e) {
 answer = "Y is not a number, defaulting to 2\n";
 y = 2;
 }
 }

 double z = calculatePower(x, y);

 answer += x+"^"+y+" = "+z;

 Toast.makeText(SampleActivityWithNativeMethods.this, answer,
 Toast.LENGTH_SHORT).show();
 }
 });
 }
}

Native Activities
Android 2.3 (API level 9) and Android NDK revision 5 let you write entire activities
and applications as native source by using the NativeActivity class to access the An-
droid application life cycle.

To utilize this method, the android.app.NativeActivity needs to be referenced in the
Android manifest file. Note that the application reference has a hasCode attribute. This
attribute should be set to false if there is no Java in the application (only the
NativeActivity). In this case, however, since we do have Java code, we set the value to
true:

 <!-- This .apk has Java code, so set hasCode to true which is the default. -->
 <!-- if this only had a native app (only the activity
 called 'android.app.NativeActivity') -->
 <!-- then set to false -->

 <application android:icon="@drawable/icon" android:label="@string/app_name"
 android:hasCode="true" >

 <activity android:name=".NDKApp" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <activity android:name="android.app.NativeActivity"
 android:label="SampleNativeActivity"
 android:debuggable="true" >

 <!-- here we declare what lib to reference -->
 <meta-data android:name="android.app.lib_name"

456 | Chapter 18: The Android Native Development Kit (NDK)

 android:value="sample_native_activity" />
 </activity>

 </application>

In this example, we use the android_native_app_glue.h header file instead of native_
activity.h. The native_activity.h interface is based on a set of application-provided call-
backs that will be called by the Activity’s main thread when certain events occur. This
means callbacks should not block, and thereby is constraining. The android_
native_app_glue.h file exposes a helper library with a different execution model that
provides a means for the application to implement its own main function in a different
thread. The function must be named android_main(), and is called when the application
is created and an android_app object is passed to it. This provides a means to reference
the application or activity and listen in on various life cycle events.

The following simple nativeactivity example constructs an Activity and listens in on
Motion events. The Motion events’ x and y screen coordinates are then sent to the LogCat:

#include <jni.h>
#include <android/log.h>
#include <android_native_app_glue.h>

// usage of log
#define LOGINFO(x...) __android_log_print(ANDROID_LOG_INFO,"SampleNativeActivity",x)

// handle commands
static void custom_handle_cmd(struct android_app* app, int32_t cmd) {
 switch(cmd) {
 case APP_CMD_INIT_WINDOW:
 LOGINFO("App Init Window");
 break;
 }
}

// handle input
static int32_t custom_handle_input(struct android_app* app, AInputEvent* event) {
 // we see a motion event and we log it
 if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION) {
 LOGINFO("Motion Event: x %f / y %f", AMotionEvent_getX(event, 0),
 AMotionEvent_getY(event, 0));
 return 1;
 }
 return 0;
}

// This is the function that application code must implement,
// representing the main entry to the app.
void android_main(struct android_app* state) {
 // Make sure glue isn't stripped.
 app_dummy();

 int events;
 // set up so when commands happen we call our custom handler
 state->onAppCmd = custom_handle_cmd;

Native Activities | 457

 // set up so when input happens we call our custom handler
 state->onInputEvent = custom_handle_input;

 while (1) {
 struct android_poll_source* source;

 // we block for events
 while (ALooper_pollAll(-1, NULL, &events, (void**)&source) >= 0) {

 // Process this event.
 if (source != NULL) {
 source->process(state, source);
 }

 // Check if we are exiting.
 if (state->destroyRequested != 0) {
 LOGINFO("We are exiting");
 return;
 }
 }
 }
}

This is the Android.mk file for the sample nativeactivity. Note that it loads and refers
to the android_native_app_glue module:

LOCAL_PATH := $(call my-dir)

this is our sample native activity
include $(CLEAR_VARS)

LOCAL_MODULE := sample_native_activity
LOCAL_SRC_FILES := sample_nativeactivity.c
LOCAL_LDLIBS := -llog -landroid
LOCAL_STATIC_LIBRARIES := android_native_app_glue

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)

Following is the main Java Android activity that is called when the user launches the
application. Clicking on the button launches the NativeActivity that we have provided:

package com.oreilly.pa.ch18;

import com.oreilly.pa.ch18.R;
import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class NDKApp extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

458 | Chapter 18: The Android Native Development Kit (NDK)

 findViewById(R.id.nativeactivity).setOnClickListener(
 new View.OnClickListener() {

 public void onClick(View v) {
 startActivity(new Intent(getBaseContext(),
 android.app.NativeActivity.class)); // call nativeactivity
 }

 });
 }
}

If you compile and run this example, you will note that when the native activity is
launched, the screen is blank, and if you are viewing the LogCat you will see various
log messages appear (especially when moving your finger across the screen). This,
however, is not much fun. So to spruce things up, we wish to do something with the
screen. The following example adds the use of OpenGL ES to change the screen’s color.

Here is the native source with the additional OpenGL ES material. It simply turns the
screen bright red when the activity is displayed:

#include <jni.h>
#include <android/log.h>
#include <android_native_app_glue.h>

#include <EGL/egl.h>
#include <GLES/gl.h>

// usage of log
#define LOGINFO(x...)
__android_log_print(ANDROID_LOG_INFO,"NativeWOpenGL",x)

struct eglengine {
 EGLDisplay display;
 EGLSurface surface;
 EGLContext context;
};

// initialize the egl engine
static int engine_init_display(struct android_app* app, struct eglengine* engine) {
 const EGLint attribs[] = {
 EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
 EGL_BLUE_SIZE, 8,
 EGL_GREEN_SIZE, 8,
 EGL_RED_SIZE, 8,
 EGL_NONE
 };
 EGLint w, h, dummy, format;
 EGLint numConfigs;
 EGLConfig config;
 EGLSurface surface;
 EGLContext context;

 EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);

Native Activities | 459

 eglInitialize(display, 0, 0);
 eglChooseConfig(display, attribs, &config, 1, &numConfigs);
 eglGetConfigAttrib(display, config, EGL_NATIVE_VISUAL_ID, &format);

 ANativeWindow_setBuffersGeometry(app->window, 0, 0, format);

 surface = eglCreateWindowSurface(display, config, app->window, NULL);
 context = eglCreateContext(display, config, NULL, NULL);

 if (eglMakeCurrent(display, surface, surface, context) == EGL_FALSE) {
 LOGINFO("eglMakeCurrent FAIL");
 return -1;
 }

 eglQuerySurface(display, surface, EGL_WIDTH, &w);
 eglQuerySurface(display, surface, EGL_HEIGHT, &h);

 engine->display = display;
 engine->context = context;
 engine->surface = surface;

 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);
 glEnable(GL_CULL_FACE);
 glShadeModel(GL_SMOOTH);
 glDisable(GL_DEPTH_TEST);

 return 0;
}

// draw to the screen
static void engine_color_screen(struct eglengine* engine) {
 if (engine->display == NULL) {
 return;
 }

 glClearColor(255, 0, 0, 1); // let's make the screen all red
 glClear(GL_COLOR_BUFFER_BIT);

 eglSwapBuffers(engine->display, engine->surface);
}

// when things need to be terminated
static void engine_terminate(struct eglengine* engine) {
 if (engine->display != EGL_NO_DISPLAY) {
 eglMakeCurrent(engine->display, EGL_NO_SURFACE, EGL_NO_SURFACE,
 EGL_NO_CONTEXT);
 if (engine->context != EGL_NO_CONTEXT) {
 eglDestroyContext(engine->display, engine->context);
 }
 if (engine->surface != EGL_NO_SURFACE) {
 eglDestroySurface(engine->display, engine->surface);
 }
 eglTerminate(engine->display);
 }
 engine->display = EGL_NO_DISPLAY;

460 | Chapter 18: The Android Native Development Kit (NDK)

 engine->context = EGL_NO_CONTEXT;
 engine->surface = EGL_NO_SURFACE;
}

// handle commands
static void custom_handle_cmd(struct android_app* app, int32_t cmd) {
 struct eglengine* engine = (struct eglengine*)app->userData;
 switch(cmd) {
 // things are starting up... let's initialize the engine and color the screen
 case APP_CMD_INIT_WINDOW:
 if (app->window != NULL) {
 engine_init_display(app, engine);
 engine_color_screen(engine);
 }
 break;
 case APP_CMD_TERM_WINDOW: // things are ending...let's clean up the engine
 engine_terminate(engine);
 break;
 }
}

// handle input
static int32_t custom_handle_input(struct android_app* app, AInputEvent* event) {
 // we see a motion event and we log it
 if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION) {
 LOGINFO("Motion Event: x %f / y %f", AMotionEvent_getX(event, 0),
 AMotionEvent_getY(event, 0));
 return 1;
 }
 return 0;
}

// This is the function that application code must implement,
// representing the main entry to the app.
void android_main(struct android_app* state) {
 // Make sure glue isn't stripped.
 app_dummy();

 // here we add the eglengine to the app
 struct eglengine engine;
 memset(&engine, 0, sizeof(engine));
 // set engine as userdata so we can reference
 state->userData = &engine;

 int events;
 // set up so when commands happen we call our custom handler
 state->onAppCmd = custom_handle_cmd;
 // set up so when input happens we call our custom handler
 state->onInputEvent = custom_handle_input;

 while (1) {
 struct android_poll_source* source;

 // we block for events
 while (ALooper_pollAll(-1, NULL, &events, (void**)&source) >= 0) {

Native Activities | 461

 // Process this event.
 if (source != NULL) {
 source->process(state, source);
 }

 // Check if we are exiting.
 if (state->destroyRequested != 0) {
 LOGINFO("We are exiting");
 return;
 }
 }
 }
}

The Android.mk file for the sample_native_activity_opengl activity loads the EGL and
GLESv1_CM libraries:

LOCAL_PATH := $(call my-dir)

 # this is our sample native activity with opengl
include $(CLEAR_VARS)

LOCAL_MODULE := sample_native_activity_opengl
LOCAL_SRC_FILES := sample_nativeactivity_opengl.c
 # loading the log , android, egl, gles libraries
LOCAL_LDLIBS := -llog -landroid -lEGL -lGLESv1_CM
LOCAL_STATIC_LIBRARIES := android_native_app_glue

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)

462 | Chapter 18: The Android Native Development Kit (NDK)

Index

Symbols
" (quotation marks), 257
% ([percent sign), 258
. (period), 256
; (semicolon), 250
= (assignment operator), 35
{} (curly braces), 44
| (pipe character), 258

A
abstract classes

about, 45
additional information, 46

AbstractAccountAuthenticator class
addAccount method, 416
authentication example, 415–421

AbstractThreadedSyncAdapter class
onPerformSync method, 428
synchronization example, 422–428

AccelerateInterpolator class, 240
accelerometers, 394
access modifiers

defined, 57
encapsulation and, 57
getters and setters, 61

accessibility API, 407
AccessibilityService class

about, 408
onAccessibilityEvent method, 408
setServiceInfo method, 408

AccessibilityServiceInfo class, 408
ACCESS_FINE_LOCATION permission, 382
Account Authenticator system, 415–421
account contacts

about, 411–413
authenticating, 415–421
synchronizing, 422

AccountAuthenticatorResponse class, 416
AccountManager class

blockingGetAuthToken method, 428
getAuthToken method, 428
KEY_ACCOUNT_AUTHENTICATOR_R

ESPONSE constant, 416
ACID transaction properties, 255
ACP (Android Compatibility Package), 208,

284
activity

android:alwaysRetainTaskState attribute,
302

android:finishOnTaskLaunch attribute,
302

android:launchMode attribute, 301
android:name attribute, 301
android:noHistory attribute, 302
android:process attribute, 302
android:taskAffinity attribute, 301
attributes affecting task behavior, 302
content providers and, 141
defined, 15, 77
launch mode, 300
life cycle overview, 90–92, 288
native, 456–462
task affinity, 301
user experience across, 299–304

Activity class
about, 16, 77, 197
activity life cycle, 91
configuration changes and life cycles, 290–

291

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

463

Context class and, 82
findViewById method, 176
getFragmentManager method, 202
getLastNonConfigurationInstance method,

292
getString method, 380
isFinishing method, 289
life cycle methods and, 288, 291
managedQuery method, 315, 411
manifest files and, 83
memory recovery and life cycles, 287–288
native activities and, 457
onActivityResult method, 367
onContextItemSelected method, 195
onCreate method, 225, 242, 288, 289
onCreateContextMenu method, 195
onCreateOptionsMenu method, 380
onDestroy method, 287, 289, 290
onKeyDown method, 382
onNewIntent method, 301
onOptionsItemSelected method, 380
onPause method, 91, 288, 289, 398
onPostCreate method, 290, 291
onPostResume method, 291
onRestart method, 288
onRestoreInstanceState method, 91, 289
onResume method, 289, 398
onRetainNonConfigurationInstance

method, 292
onSaveInstanceState method, 91, 289
onStart method, 289, 290
onStop method, 289
onUserLeaveHint method, 291
reading tags, 398
RESTful applications and, 330
runOnUiThread method, 156
saving/restoring instance state, 289
startActivity method, 300, 373
startActivityForResult method, 367
visualizing life cycles, 280–286
well-behaved applications and, 295–296

adb (Android Debug Bridge), 7, 21
adb command, 7
ADT Eclipse plug-in

about, 6, 9
components supported, 23–25
configuring, 11
installing, 10
keeping up-to-date, 29

tools supported, 122
AIDL (Android Interface Definition Language)

ADT plug-in support, 9
gen directory and, 141
remote procedure calls and, 158

AlphaAnimation class, 241
Android applications, 248

(see also application development; skeleton
applications)
activities and intents, 77
API support, 78
applying static analysis, 127–129
Bluetooth in, 431–444
building, 24
component life cycles, 90–92
Context class hierarchy, 82
creating Android projects, 12–16, 115
database design for, 260–264
debugging, 25
developing RESTful, 330
exporting, 101
manifest files and, 83–87
MJAndroid application example, 264–275
packaging, 92
porting software to, 93
publishing, 107
res directory, 87
running, 25
runtime environment, 88–90, 114
security considerations, 90
SimpleVideoDbHelper class example, 261–

264
SQL and, 248
traditional programming models, 75
unpublishing, 107
uploading in Android Market, 106–107

android command, 8, 27
Android Compatibility Package (ACP), 208,

284
Android Debug Bridge (adb), 7, 21
Android Developers site

about, 3
installing ADT plug-in, 10
System Requirements page, 4, 6
Tools Overview article, 26

Android Development Tools plug-in (see ADT
Eclipse plug-in)

Android Device Chooser dialog, 19
Android devices

464 | Index

audio and video formats, 359
running programs on, 20
social networking and, 264

Android Framework, 167
(see also Android GUI framework)
about, 133
Android libraries, 133–135
concurrent programming, 142–156
extending classes, 139–140
fragments, 197–209
layout mechanism, 212–217
monitoring threads, 145
organizing Java source, 140–142
overrides and callbacks, 135–137
polymorphism and composition, 138–139
serialization, 156–163
thread confinement, 155

Android GUI framework
architectural overview, 167–171
assembling, 171–176
AsyncTask and, 143–154
clip rectangle, 217
drawing classes, 218
implementing menus, 193–195
rolling your own widgets, 211–233
tools supported, 234–246
wiring up controller, 176–193

Android Interface Definition Language (see
AIDL)

Android Layout Editor, 24, 116
Android libraries, 451

(see also specific libraries)
about, 133–135
concurrent programming and, 142
extending Android, 135–140
NDK supported, 451

Android Manifest Editor, 24, 116, 382
Android Maps API Key Signup page, 108
Android Market

about, 95
becoming official Android developer, 106
getting paid, 107
losing signing certificate and, 100
placing applications in, 105–107

Android Menu Editor, 116
Android NDK (see NDK)
Android Package Builder, 116
android package tree, 134
Android Pre Compiler, 115

Android projects (see projects)
Android Resource Editor, 116
Android Resource Manager, 115
Android SDK

about, 7
adding build targets, 8
components supported, 21–27
confirming installation, 12–21
downloading package, 7
example code, 30
folders for tools, 8
installing, 3–12, 7
keeping up-to-date, 28
organizing Java source, 140–142
prerequisites, 3–12
sample application, 449–450
tools supported, 26–27
troubleshooting problems, 21

Android Virtual Device (see AVD)
Android XML Resources Editor, 116
android.app library, 134
android.content library, 134
android.database library, 134
android.graphics library, 134
android.telephony library, 134
android.text library, 134
android.view library, 134, 171
android.webkit library, 134
android.widget library, 134
android.widgets package, 139
android:alwaysRetainTaskState attribute, 302
android:finishOnTaskLaunch attribute, 302
android:launchMode attribute, 300
android:name attribute, 301
android:noHistory attribute, 302
android:process attribute, 302
android:taskAffinity attribute, 301
AndroidManifest.xml file

about, 83
declarations in, 83
initialization parameters in, 84–87

android_native_app_glue module, 458
animation

background, 241–242
frame-by-frame, 241–242
OpenGL example, 235
surface view, 242
transition, 238–241
tweened, 238

Index | 465

Animation class
about, 238
AnimationListener interface, 239
applyTransformation method, 238, 239

AnimationDrawable class
about, 238, 241
start method, 242

AnimationListener interface
about, 239
onAnimationEnd method, 240

AnimationSet class, 240
anonymous classes, 62–64
Apache HttpCore project, 135
APIs (application programming interfaces)

accessibility, 407–409
Android applications and, 78
application distribution and, 109
external sensors, 391–396
gesture input, 406–407
Near Field Communication, 396–405
SimpleFinchVideoContentProvider

example, 309–312, 322–327
.apk files

about, 25, 92
building, 116
uploading, 106

apkbuilder application, 92
Application class

about, 83
life cycle methods, 296–299

application development, 248
(see also Android applications; skeleton
applications)
additional information, 134
applying static analysis, 127–129
content assist, 120
database design, 260–264
Design for Extension coding rule, 140
graphics effects, 234–246
Java coding in Eclipse, 120–122
MJAndroid application example, 264–275
modular programming, 65–67
refactoring, 121
rolling your own widgets, 211–233
SimpleVideoDbHelper class example, 261–

264
SQL and, 248
traditional programming models, 75

application distribution

application signing, 95–104
exporting Android applications, 101
Google Maps API keys, 108
placing in Android Market, 105–107
screen compatibility and, 109
specifying API-level compatibility, 109

application programming interfaces (see APIs)
application signing

about, 95
cryptographic, 95–97
process overview, 98–104
protection and, 97–98
self-signed certificates, 97

application template (see skeleton applications)
applications (see Android applications)
ArrayList class, 53, 134
Arrays class, 134
artifacts

defined, 115
projects and, 140

assignment operator (=), 35
associations, defined, 117
asynchronous I/O mechanisms, 334
AsyncTask class

doInBackground method, 147
onClickListener method, 152
onPostExecute method, 147
onPreExecute method, 150
onProgressUpdate method, 152
publishProgress method, 154
subclassing and, 139
UI thread and, 143–154

audio
Android supported formats, 359
AudioRecorder recording, 367
AudioTrack playback, 362
Intent recording, 367
MediaPlayer playback, 361
MediaRecorder recording, 365
playback methods, 361–363
recording methods, 365–368

AudioRecorder class
audio recording, 367
startRecording method, 368

AudioTrack class
audio playback, 362
pause method, 363
play method, 363
release method, 363

466 | Index

stop method, 363
AUTHENTICATE_ACCOUNTS permission,

415
authenticating contact data, 415–421
AUTOINCREMENT constraint, 251, 312
AVD (Android Virtual Device)

about, 16, 25
additional information, 16
creating, 17–18
running programs on, 19
setting parameters, 17

avdmgr tool, 122

B
background animation, 241–242
BaseAdapter class, 139
Beaulieu, Alan, 254
bin directory, 141
binary data, 316
Bitmap class, 218, 232
BitmapDrawable class, 233
BLOB type (SQLite), 250
Bloch, Joshua, 48, 157
block, defined, 44
Bluetooth standard

about, 429
Android applications and, 431–444
Linux implementation, 431
protocol stack and, 429
SPP support, 432

BluetoothAdapter class, 432
BluetoothDevice class, 432
BluetoothSocket class, 432
Bluez Bluetooth stack, 431
boolean type, 34, 447
BroadcastReceiver class

about, 78, 82
manifest files and, 83
well-behaved applications and, 295

builders, defined, 115
Bundle class

fragment life cycle and, 201
getSerializable method, 157
putSerializable method, 157
serialization and, 157, 289

Button class
about, 170
setOnClickListener method, 177
widgets and, 212

byte type, 34, 447

C
Callback interface (Drawable), 241
Callback interface (SurfaceHolder)

about, 242
surfaceCreated method, 242
surfaceDestroyed method, 242

callbacks, defined, 135–137
Camera class

about, 239
rotate method, 239
translate method, 239

CAMERA permission, 364
Canvas class

about, 218
concatMatrix method, 227
coordinate transformation, 222
drawCircle method, 219
drawing text, 221–222
drawPosText method, 222
drawText method, 222
drawTextOnPath method, 222
getMatrix method, 227
restore method, 227
rotate method, 222, 227
save method, 227
scale method, 222, 227
setMatrix method, 227
skew method, 222, 227
translate method, 227

canvas drawing
about, 217–220
drawing text, 221–222
matrix transformations, 222–227

cascading methods, 37
Cell ID, 372
certificate authority, 97
certificate fingerprint, 99
certificates

debug, 98
self-signed, 97, 99, 101–104

char type, 34, 221, 447
CHECK constraint, 252
class attribute, 198
.class files, 114, 115
classes, 37

(see also specific classes)
about, 35

Index | 467

abstract, 45
anonymous, 62–64
extending, 139–140
final and static declarations, 41–45
object creation, 35–37
serialization support, 162

clip rectangle, 217
ClipDrawable class, 231
Cloneable interface, 38
code signing (see application signing)
Collection interface, 52
Collections Library, 52, 54
ColorFilter class, 237
com.android.ide.eclipse.adt plug-in, 112
com.android.ide.eclipse.ddms plug-in, 112
Comparable interface

about, 47
compareTo method, 47

composition, defined, 138–139
compound queries, 254
concurrent programming

Android libraries and, 142
AsyncTask and UI thread, 143–154
multi-threaded, 68, 142
threads in Android processes, 154

constructors
defined, 36
Fragment class and, 198

contact data
about, 411–413
authenticating, 415–421
synchronizing, 422

Contacts class
additional information, 412
querying, 411

ContactsContract content provider, 411–413
container views, 171, 212
content assist, 120
content providers

about, 79–80
activities and, 141
binary data, 316
building, 306–314
ContactsContract, 411–413
CONTENT_URI constant, 307, 310–312
declaring, 327
developing RESTful applications, 330
file management, 316
implementing, 307

MediaStore, 359, 369
MVC architecture and, 81, 318–319
network MVC and, 331–334
REST and, 329
SimpleFinchVideoContentProvider

example, 319–327
usage considerations, 80–81
writing/integrating, 314
YouTube video example, 334–354

content:// URI, 316
ContentObserver.onChange method, 318
ContentProvider class

about, 78, 79
delete method, 79, 310, 315, 322
extending, 307, 314–316
getType method, 315, 322
insert method, 79, 310, 314, 315, 322
manifest files and, 83
onCreate method, 315, 321
openFile method, 354
openStream method, 317
query method, 79, 310, 315, 322
RESTful applications and, 330
serialization and, 157
update method, 79, 310, 315, 322
well-behaved applications and, 295

ContentProviderOperation class
about, 413
newInsert method, 413

ContentProviderOperation.Builder class, 413
ContentResolver class

about, 80
delete method, 318
insert method, 332
notifyChange method, 82, 318
openInputStream method, 316, 354
openOutputStream method, 317
registerContentObserver method, 82

ContentUris.withAppendedId method, 325
ContentValues class

about, 272
creating, 346
stored media content, 369

Context class
about, 82
getResources method, 88
getSystemService method, 384, 392, 408

ContextMenu class, 195
contextual menus, 195

468 | Index

Controller component (MVC)
about, 169
focus and threading, 189–193
listening for key events, 186
listening for touch events, 183–186
listening to the Model, 178–183
wiring up, 176–178

cpufeatures module, 451
Create New Android Virtual Device (AVD)

dialog, 17
CREATE TABLE statement (SQL), 249
CRUD methodology, 271
Ctrl-F11, 201
Ctrl-space bar, 120
curly braces {}, 44
Currency class, 134
Cursor interface

about, 81, 260
account contacts example, 411, 413
moveToFirst method, 269
moveToNext method, 260
moveToPrevious method, 260
registerContentObserver method, 318
requery method, 332
setNotificationUri method, 323

CycleInterpolator class, 240

D
D-pads, 186, 191
Dalvik Debug Monitor Server (see DDMS)
dalvik package tree, 134
Dalvik virtual machines (VMs)

about, 21
Android runtime environment, 89
Zygote process and, 89

data structures, synchronization and, 73
data types

contact data, 411–413
Java supported, 34
JNI calls and, 447
SQLite supported, 250

database schemas
defined, 249
foreign key constraints, 252

database triggers, 254
databases (see relational databases)
Date class, 134
DatePicker class, 212
DateTime class, 198, 201, 204

DDMS (Dalvik Debug Monitor Server)
about, 21–23, 25
Emulator Control pane, 387
JNI conventions, 446
location updates, 387

debug certificate, 98
debuggable attribute, 102
debugging

Android applications, 25
Android devices, 20

DecelerateInterpolator class, 240
default constructors, 36
DELETE operation (REST), 79
DELETE statement (SQL), 315
dependency injection, 137
deserializing data, 156
Design for Extension coding rule, 140
developing applications (see application

development)
.dex files, 115
Dictionary class, 52, 134
distributing applications (see application

distribution)
double type, 34, 447
Draw9patch drawing program, 27
Drawable class

about, 218, 228–232
Callback interface, 241
usage considerations, 231
wrappers supporting, 231

drawable directory, 87
drawing graphics

animations, 238–243
Bitmap class support, 232
Canvas class support, 217–227
Drawable class support, 228–232
graphics effects examples, 234–246
layout considerations, 212–217
OpenGL support, 235, 243–246
rolling your own widgets, 211
shadows, gradients, filters, 237

DROP TABLE statement (SQL), 250
dynamic declarations, 42

E
Eclipse IDE, 6

(see also ADT Eclipse plug-in)
about, 5
additional information, 10, 112

Index | 469

concepts and terminology, 112–117
confirming installation, 7
downloading, 5
Extensions view, 115
File Explorer view, 122
Heap view, 122
idiosyncrasies and alternatives, 130–131
installing, 6
Java coding in, 120–122
JRE requirements, 7, 114
keeping up-to-date, 29
Layout view, 122
LogCat view, 122, 280–286
Outline view, 119
Package Explorer view, 117, 118
Pixel Perfect view, 122
Plug-ins view, 112, 115
Problems view, 120
SDK and AVD Manager support, 8
static analyzers, 123–130
Task List view, 118
Threads view, 122
views and perspectives, 117–120

eclipse.ini file, 114
EditText class

addTextChangedListener method, 136
handling events, 188
invalidate method, 177

encapsulation
about, 60
access modifiers and, 57
getter and setter methods, 60

encryption, public key, 95–97
Enumeration interface, 52, 134
Equinox framework, 112
event queues, 169
events

alternative ways to handle, 187
listening for key events, 186
listening for touch events, 183–186

Exception class, 51
exceptions, 48–51, 48

(see also specific exceptions)
.exit command (SQLite), 256
exporting Android applications, 101
extends keyword, 39
extensions, defined, 115–117
external sensors (see sensors)
Eyes-Free open source project, 409

F
File Explorer view (Eclipse), 122
file management, 316, 353
FileHandler class, 354
filters (drawing graphics), 237
final declarations, 41
final keyword, 42
FindBugs tool

about, 123–127
applying static analysis, 127–129
type safety in Java, 60

float type, 34, 447
focusable attribute, 189
FOREIGN KEY constraint, 251
forking processes, 89
Fragment class

about, 197
creating fragments, 198
getArguments method, 203
onActivityCreated method, 295
onAttach method, 294
onCreate method, 199, 201, 294
onCreateView method, 199, 294
onPause method, 202, 295
onResume method, 295
onSaveInstanceState method, 201, 295
onStart method, 295
onStop method, 295
setArguments method, 203
visualizing life cycles, 292–295

FragmentManager class
about, 202
findFragmentByTag method, 203

fragments
about, 197
Android Compatibility Package and, 208
creating, 198–200
life cycles of, 201–202, 292–295
manipulating, 202
transactions involving, 203–208

frame-by-frame animation, 241–242
FrameLayout class, 202, 406
framework applications (see skeleton

applications)

G
garbage collection, 55
gen directory, 141

470 | Index

generics, 54
Gennick, Jonathan, 254
geo utility, 386
Gesture class, 407
gesture input

about, 406
listening for, 183–186

GestureLibraries class
about, 406
fromRawResource method, 407

GestureLibrary class, 406
GestureOverlayView class

about, 406
OnGesturePerformedListener interface,

406
GesturePoint class, 407
GestureStore class, 406
GestureStroke class, 407
GET operation (REST), 79
getter methods, 60
Global Positioning System (GPS), 372, 382–

387
GLSurfaceView class

about, 244
Renderer interface, 244
sizeChanged method, 244
surfaceCreated method, 244

Goetz, Brian, 71
Google Checkout, 106, 107
Google Earth, 388
Google I/O conference, 330
Google Maps

about, 373
API keys, 108
MapView class and, 374
starting, 373

GPS (Global Positioning System), 372, 382–
387

GPU (Graphics Processing Unit), 243
gradients (drawing graphics), 237
Graphics Processing Unit (GPU), 243
graphics, drawing (see drawing graphics)
gravity, 395
GUI framework (see Android GUI framework)
gyroscopes, 394

H
Handler class

about, 192

Looper class and, 156
HashMap class

about, 53
Android libraries and, 134
ContentProvider class and, 321
ContentValues class and, 272

HashSet class, 53
Hashtable class, 52, 134
hcidump utility, 431
Heap view (Eclipse), 122
.help command (SQLite), 256
Hibernate framework, 157
Hierarchy Viewer tool, 26
HttpEntity interface, 343

I
ia32-libs package, 7
iBATIS framework, 157
IllegalStateException, 149, 207, 215
inheritance

interfaces and, 46
Java support, 39
Java types and, 35

inner joins, 254
InputStream class, 430
INSERT statement (SQL), 253, 271
Install New Software Wizard, 10
instance variables, 319–321
int type, 34, 447
INTEGER type (SQLite), 250, 312
IntelliJ IDEA, 4
Intent class

about, 77
android:launchMode attribute and, 301
audio recording, 367
FLAG_ACTIVITY_BROUGHT_TO_FRO

NT constant, 302
FLAG_ACTIVITY_CLEAR_TASK

constant, 302
FLAG_ACTIVITY_CLEAR_TOP constant,

302
FLAG_ACTIVITY_CLEAR_WHEN_TAS

K_RESET constant, 303
FLAG_ACTIVITY_EXCLUDE_FROM_RE

CENTS constant, 303
FLAG_ACTIVITY_FORWARD_RESULT

constant, 303
FLAG_ACTIVITY_LAUNCHED_FROM_

HISTORY constant, 303

Index | 471

FLAG_ACTIVITY_MULTIPLE_TASK
constant, 303

FLAG_ACTIVITY_NEW_TASK constant,
303

FLAG_ACTIVITY_NO_ANIMATION
constant, 303

FLAG_ACTIVITY_NO_HISTORY
constant, 303

FLAG_ACTIVITY_NO_USER_ACTION
constant, 303

FLAG_ACTIVITY_PREVIOUS_IS_TOP
constant, 303

FLAG_ACTIVITY_REORDER_TO_FRO
NT constant, 303

setting flags, 302–304
starting Google Maps, 373
video recording, 369

interfaces, 46
(see also specific interfaces)
about, 46–48
additional information, 48

Interpolator class, 240
IOException, 403
ISO (International Organization for

Standardization), 247
Iterator interface, 52, 134

J
Java Collections Framework

about, 52
collection interface types, 52
java.util package and, 134

Java Collections Library, 134
Java compiler, 114, 141
Java Cryptography Architecture, 99
Java Development Kit (see JDK)
.java files, organizing, 140–142
Java language

abstract classes, 45
additional information, 33
anonymous classes, 62–64
coding in Eclipse, 120–122
exceptions support, 48–51
final and static declarations, 41–45
garbage collection, 55
generics, 54
inheritance support, 39
interface support, 46–48
modular programming in, 65–67

multi-threaded concurrent programming,
68

Object class and its methods, 37–39
object creation, 35–37
objects and classes, 35
passing parameters by value, 42
polymorphism support, 39–41
primitive types, 34
serialization support, 157
synchronization and data structures, 73
synchronization and thread safety, 68–71
thread control, 71
type system, 34, 59–62

Java Native Interface (see JNI)
Java packages, 134

(see also specific packages)
about, 134
namespaces and, 56
scope and, 56

Java Runtime Environment (JRE)
about, 4
Eclipse requirements, 7, 114

Java Virtual Machine (JVM)
DDMS support, 21
process overview, 76

java.awt package, 134
java.io package, 430
java.lang package, 56, 134
java.rmi package, 134
java.util package, 52, 56, 134
java.util.concurrent package, 72
javac command, 5
javax package, 135
javax.sound package, 135
javax.swing package, 135
JDK (Java Development Kit)

confirming installation, 5
downloading, 4
installing, 4
keeping up-to-date, 29

JNI (Java Native Interface)
about, 445
additional information, 445
conventions for method calls, 446
sample application, 449–450

JRE (Java Runtime Environment)
about, 4
Eclipse requirements, 7, 114

JVM (Java Virtual Machine)

472 | Index

DDMS support, 21
process overview, 76

K
keycodes, KeyEvent class, 382
KeyEvent class

focus and threading, 189
getRepeatCount method, 187
handling events, 189
keycodes, 382

KeyHandler.handleKey method, 63
keystore

about, 99, 103
remembering password, 99

keystrokes
controlling map with, 381
listening for, 186

keytool command
about, 27
creating private keys, 99
list option, 98, 108

L
layout directory, 87
layout process

about, 212–213
arrangement phase, 216
measurement phase, 214–216

Layout view (Eclipse), 122
Layoutopt static analyzer, 26
LBS (location-based services)

about, 371
Cell ID, 372
GPS, 372
triangulation, 372

libraries, Android (see Android libraries)
life cycles

Activity class and, 280–292
Android components, 90–92
Application class and, 296–299
configuration changes and, 290–291
fragment, 199, 201–202
Fragment class and, 292
managing, 156
memory recovery and, 287–288
serialization and, 163
user experience and, 296
well-behaved applications and, 295–296

light sensors, 395
LIKE keyword, 258
linear acceleration, 395
LinearGradient class, 237
LinearInterpolator class, 240
LinearLayout class

about, 173, 197, 212
measurement process, 214
onMeasure method, 215
setGravity method, 215

LinkedList class, 53
Linux environment

Bluetooth implementation, 431
hcidump utility, 431
installing Android SDK, 7, 8
installing Eclipse, 6
installing JDK, 4
NDK requirements, 448
running programs on Android devices, 20
sandboxing and, 89

List interface, 52, 134
ListView class

about, 197
account contacts example, 412
notifications and, 318
setAdapter method, 318

location and mapping
about, 373
accessing without maps, 382–388
controlling with keypad, 381
controlling with menu buttons, 379–381
Google Maps, 373
location-based services, 372
MapActivity class, 374, 378
MapView class, 374–377
mobile phones and, 371
MyLocationOverlay class, 375–377
zooming in, 378

location-based services (see LBS)
LocationListener interface, 384
LocationManager class

getLastKnownLocation method, 384
requestLocationUpdates method, 385

LocationProvider class, 383–387
LogCat view (Eclipse), 122, 280–286
long type, 34, 447
Looper class, 155
ls command, 249

Index | 473

M
Macintosh environment

installing Android SDK, 8
installing JDK, 4
NDK requirements, 448
running programs on Android devices, 20

magnetic sensors, 395
manifest files

about, 24
AndroidManifest.xml, 83–87
authentication example, 415
location without maps example, 382

Map interface, 52, 134
MapActivity class

about, 374
graphical interfaces and, 171
isRouteDisplayed method, 377
onPause method, 378
onResume method, 379

MapController class
about, 376, 378
setZoom method, 378
zoomIn method, 378
zoomInFixing method, 378
zoomOut method, 378
zoomToSpan method, 378

mapping (see location and mapping)
MapView class

about, 374
initializing, 375–377
prerequisites, 374
setClickable attribute, 377
setEnabled attribute, 377
setSatellite attribute, 377
setStreetView attribute, 377
setTraffic attribute, 377
usage suggestions, 375

marshaling data, 156
MaskFilter class, 237
Matrix class

Canvas class and, 222
postTranslate method, 239
preTranslate method, 239

MeasureSpec class
AT_MOST constant, 214
EXACTLY constant, 214
getMode method, 214
getSize method, 214
UNSPECIFIED constant, 214

Media Store content provider, 359
MediaPlayer class

additional information, 361
audio playback, 361
create method, 361
getCurrentPosition method, 362
life cycle states, 360
pause method, 361
prepare method, 361
release method, 361
reset method, 362
setDataSource method, 361
start method, 361, 362
stop method, 361
video playback, 363

MediaRecorder class
audio recording, 365
life cycle states, 364
permissions supported, 364
prepare method, 365
release method, 365
reset method, 365
start method, 365
stop method, 365
video recording, 369

MediaStore content provider, 369
memory recovery and life cycles, 287–288
Menu interface

add method, 380
NONE constant, 380

MenuItem interface, 381
menus

controlling maps with, 379–381
implementing, 193–195
types of, 379

merchant accounts, 107
methods

cascading, 37
final and static declarations, 42–45
getters and setters, 60
JNI conventions, 446
throwing exceptions, 49

MJAndroid sample application
about, 264–265
controlling map with keypad, 381
controlling map with menu buttons, 379–

381
database queries, 267–271
loading and starting, 267

474 | Index

MapActivity class, 374, 378
MapView class, 374–377
modifying database, 271–275
MyLocationOverlay class, 375–377
reading data from database, 267–271
source folder, 265

Model component (MVC), 167, 178–183
Model-View-Controller architecture (see MVC

architecture)
modular programming, 65–67
Monkey test automation tool, 26
MotionEvent class

ACTION_MOVE constant, 185
creating, 170
focus and threading, 189
getHistoricalX method, 184
getHistoricalY method, 184
getHistorySize method, 185
native activities and, 457

multimedia
audio and video formats, 359
playing audio and video, 360
recording audio and video, 364–369
stored content, 369

MVC (Model-View-Controller) architecture
additional information, 258
Android GUI and, 167–171
content providers and, 81, 318–319
Controller component, 169, 176–193
essential design rules, 217
Model component, 167, 178–183
RESTful applications and, 331–334
SQL support, 258–259
threads in Android process and, 154
tying concepts together, 169–171
View component, 168, 212

MyLocationOverlay class
getMyLocation method, 376
graphical interfaces and, 171
initializing, 375–377
runOnFirstFix method, 376

N
namespaces, Java packages and, 56
Native Development Kit (see NDK)
native keyword, 447
NativeActivity class, 456–462
NDEF (NFC Data Exchange Format), 396
Ndef.writeNdefMessage method, 403

NdefMessage class, 398, 403
NdefRecord class

reading tags, 398, 400
RTD_SMART_POSTER constant, 402
RTD_TEXT constant, 401
RTD_URI constant, 401
TNF_ABSOLUTE_URI constant, 402
writing tags, 403

NDK (Native Development Kit)
about, 445, 448
building custom library modules, 453
compiling with, 448
native activities, 456–462
native libraries, 451
sample application, 449–450
setting up environment, 448

Near Field Communication (see NFC)
NetworkException, 50
New Android Project dialog, 13
New Android Project Wizard, 16
new keyword, 35
NFC (Near Field Communication)

about, 396
P2P mode, 405
reading tags, 396–402
writing tags, 403

NFC Data Exchange Format (NDEF), 396
NfcAdapter class

ACTION_NDEF_DISCOVERED constant,
398

ACTION_TAG_DISCOVERED constant,
398

ACTION_TECH_DISCOVERED constant,
398

disableForegroundDispatch method, 398,
405

enableForegroundDispatch method, 398,
405

enableForegroundNdefPush method, 405
EXTRA_ID constant, 400
EXTRA_NDEF_MESSAGES constant, 400
getDefaultAdapter method, 398

9 patch (Android resource), 27, 231
NIST (National Institute of Standards and

Technology), 247
no-arg constructors, 36
NOT NULL constraint, 252

Index | 475

O
Object class

about, 37
clone method, 38
equals method, 38
finalize method, 38
hashCode method, 38
java.lang package and, 134
notify method, 37, 71
notifyAll method, 37
toString method, 37
wait method, 37, 71

object-relational mapping (ORM), 157, 267
ObjectInputStream class, 157
ObjectOutputStream class, 157
objects

about, 35
creating, 35–37

OnClickListener.onClick method, 177
OnCreateContextMenuListener interface, 195,

197
OnFocusChangeListener interface, 189
OnGesturePerformedListener interface, 406
OnKeyListener interface

handling events, 62, 188
onKey method, 188
troubleshooting, 194

OnTouchListener interface
handling events, 188
onTouch method, 184

Open With command, 117
OpenGL

about, 243
animation example, 235
graphics support, 243–246
javax package support, 135

org.apache.http package tree, 135
org.json package, 135
org.w3c.dom package, 135
org.xml.sax package, 135
org.xmlpull package, 135
ORM (object-relational mapping), 157, 267
OSGi bundles, 112
OutOfMemoryException, 51
OutputStream class, 317, 430
overrides, defined, 135–137

P
P2P (peer-to-peer) communication, 405
packaging Android applications, 92
Paint class

about, 218
attributes of, 237
setShadowLayer method, 237

PAN (personal area network), 429
parameters

AndroidManifest.xml file, 84–87
passing by value, 42

Parcelable interface
serialization support, 159–162, 289
writeToParcel method, 159

password, remembering for keystore, 99
PATH environment variable, 5, 8
PathEffect class, 237
peer-to-peer (P2P) communication, 405
PendingIntent class, 398
percent sign (%), 258
period (.), 256
permissions

account contacts, 411
authentication, 415
GPS location providers, 382
MediaRecorder class, 364
synchronization, 422

persistence, applications and, 157, 259
personal area network (PAN), 429
phone coordinate systems

about, 393
accelerometers, 394
gravity, 395
gyroscopes, 394
linear acceleration, 395
rotation vector, 394

piconet, 429
pipe character (|), 258
Pixel Perfect view (Eclipse), 122
playback

audio methods, 361
life cycle states, 360
video methods, 363

plug-ins, 112
(see also ADT Eclipse plug-in)
defined, 112
extensions and, 115–117

polymorphism, 39–41, 138–139
porting software to Android, 93

476 | Index

POST operation (REST), 79
Prediction class, 406
Preferences dialog, 11, 21
preorder traversal, 168
pressure sensors, 395
PRIMARY KEY constraint, 251, 312
primitive types, defined, 34
private keys

creating, 99
losing, 100
as signing certificates, 99

private keyword, 57, 61
projects

about, 115, 140
additional information, 13
creating, 12–16
manifest files, 24

protected keyword, 57
proximity sensors, 395
public key encryption, 95–97
public keyword, 57, 61
publishing

Android applications, 107
references, 143

Q
QEMU, 25
queries

account contacts, 411
compound, 254
MJAndroid application example, 267–271
networked method, 339–352

quotation marks ("), 257

R
R class, 88
Radio Frequency Identification (see RFID)
raw directory, 87
RCP (Rich Client Platform), 5
RDBMSs (relational database management

systems), 247
REAL type (SQLite), 250
recording multimedia

audio methods, 365–368
life cycle states, 364
video methods, 368

RECORD_AUDIO permission, 364
RECORD_VIDEO permission, 364

refactoring, 121, 142
relational database management systems

(RDBMSs), 247
relational databases

about, 247
additional information, 254
compound queries, 254
database constraints, 251–252, 312
database manipulation example, 255–258
database transactions, 255
design for Android applications, 260–264
inner joins, 254
MJAndroid application example, 264, 267–

275
SimpleFinchVideoContentProvider

example, 309
SimpleVideoDbHelper class example, 261–

264
SQLite supported classes, 259
triggers, 254
YouTube video example, 339

RelativeLayout class, 200, 212
remote procedure calls, AIDL and, 158
Renderer interface, 244
res directory, 87, 141
resource qualifiers, 110
Resources.getDrawable method, 233
ResponseHandler interface

about, 342
handleResponse method, 345

REST (Representational State Transfer)
about, 79
additional information, 79
constants and initialization, 338
content providers and, 329
creating database, 339
DELETE operation, 79
developing Android applications, 330
file management, 353
GET operation, 79
insert and ResponseHandlers, 352–353
network MVC and, 331–334
networked query method, 339–352
POST operation, 79
UPDATE operation, 79

RFID (Radio Frequency Identification)
about, 396
reading tags, 396–402

Rich Client Platform (RCP), 5

Index | 477

RotateAnimation class, 238, 241
RotateDrawable class, 231
rotation vector, 394
Runnable interface, 192
runtime environment

about, 88–90, 114
Android libraries and, 134–135

RuntimeException, 51, 192

S
sandboxing, 89, 98
ScaleAnimation class, 238, 241
ScaleDrawable class, 231
ScheduledThreadPoolExecutor class, 134
scope

about, 56
access modifiers and encapsulation, 57
Java packages and, 56

SDK and AVD Manager
about, 8, 26
configuring AVDs, 25
creating AVDs, 16
invoking, 8, 27, 122
screen configurations, 110

search application example
controller collecting user input, 337
implementing RESTful request, 338–354
UI collecting user input, 337

security
additional information, 90
self-signed certificates and, 98

SELECT statement (SQL)
about, 252
ContentProvider class and, 315
FROM clause, 252
GROUP BY clause, 252
HAVING clause, 252
LIMIT clause, 253
ORDER BY clause, 252
WHERE clause, 252

self-signed certificates
about, 97
creating, 99
signing applications, 101–104

semicolon (;), 250
Sensor.getMaximumRange method, 395
SensorEvent class, 392
SensorEventListener interface

onAccuracyChanged method, 392

onSensorChanged method, 392
SensorManager class

about, 392
getDefaultSensor method, 392
getSensorList method, 392
SENSOR_DELAY_FASTEST constant, 392
SENSOR_DELAY_GAME constant, 392
SENSOR_DELAY_NORMAL constant,

392
SENSOR_DELAY_UI constant, 392

sensors
about, 391–392
accelerometers, 394
gravity, 395
gyroscopes, 394
light, 395
linear acceleration, 395
magnetic, 395
phone coordinate systems, 393–395
pressure, 395
proximity, 395
rotation vector, 394
temperature, 396

Serial Port Protocol (SPP), 432
Serializable interface, 157, 158, 162
serialization

application life cycle and, 163
classes supporting, 162, 289
common uses for, 156
defined, 156
Java support, 157
Parcelable interface, 159–162

Service class
about, 78, 79
Context class and, 82
manifest files and, 83
RESTful applications and, 330
well-behaved applications and, 295

Set interface, 52, 134
setClickable attribute, 377
setEnabled attribute, 377
setSatellite attribute, 377
setStreetView attribute, 377
setter methods, 60
setTraffic attribute, 377
Shader class, 237
shaders (drawing graphics), 237
ShadowLayer class, 237
shadows (drawing graphics), 237

478 | Index

short type, 34, 447
Show View dialog, 283
signing, application (see application signing)
SimpleCursorAdapter class, 412
SimpleFinchVideoContentProvider example

about, 308, 319
column names, 312
column specification strings, 312–314
creating database, 309
defining provider public API, 309–312
extending ContentProvider class, 314–316
implementing delete method, 326
implementing getType method, 322
implementing insert method, 324
implementing onCreate method, 321
implementing query method, 322–324
implementing update method, 325
instance variables and, 319–321
notifying observers, 327
source code structure, 309

SimpleVideoDbHelper class (example), 261–
264

skeleton applications
about, 133
Activity class life cycles, 280–292
Application class life cycles, 296–299
binary data, 316
building content providers, 306–314
content providers and REST, 329
declaring content providers, 327
developing RESTful, 330
file management, 316
flowing/intuitive user experience, 299–304
Fragment class life cycles, 292–295
MVC and content observation, 318–319
network MVC and, 331–334
SimpleFinchVideoContentProvider

example, 319–327
well-behaved, 295–296
writing/integrating content providers, 314
YouTube video example, 334–354

SmallTalk language, 112
social networking, 264
software development (see application

development)
SPP (Serial Port Protocol), 432
SQL (Standard Query Language)

about, 247
additional information, 249

Android applications and, 248
data definition commands, 249–252
data manipulation commands, 252–254
database constraints, 251–252
MVC model and, 258

SQLite database system
about, 248, 249
additional information, 248
compound queries, 254
data types supported, 250
database classes, 259
database constraints, 251–252, 312
database transactions, 255
persistence and, 157
sqlite3 command, 27

sqlite3 command
about, 27
balancing quotes, 257
database manipulation example, 255–258
percent sign in, 258
period in, 256
pipe character in, 258
semicolon in, 250

SQLiteDatabase class
about, 260
delete method, 271, 275
execSQL method, 271, 272, 274, 275
insert method, 271, 272, 325
query method, 270, 271, 322
rawQuery method, 269
rawQueryWithFactory method, 269, 271
update method, 271, 273

SQLiteOpenHelper class
about, 260
extending, 268
onCreate method, 261
onUpgrade method, 261

SQLiteQueryBuilder class, 260
src directory, 141
Standard Query Language (see SQL)
static analysis

about, 123–127
applying to Android code, 127–129
FindBugs tool and, 123–127
limitations of, 130

static declarations, 42
String class

Canvas class and, 221
as final declaration, 41

Index | 479

subclasses
defined, 35
programming considerations, 66, 139

superclasses, defined, 35
SurfaceHolder class

Callback interface, 242
unlockCanvasAndPost method, 243

SurfaceView class
about, 243
animation support, 238, 242

Synaptic Package Manager utility, 4
synchronization

account data, 422
data structures and, 73
thread safety and, 68–71

synchronized keyword, 68–71
System.loadLibrary method, 447

T
.table command (SQLite), 257
tables

database constraints, 251–252
defined, 247
SQL data definition commands, 249–252
SQL data manipulation commands, 252–

254
TagTechnology interface

close method, 403
connect method, 403
isConnected method, 403
reading tags, 400
writing tags, 403

tasks
applications and, 299
specifying behavior, 300–304
tracking, 299

temperature sensors, 396
TEXT type (SQLite), 250
text, drawing, 221–222
TextToSpeech class

about, 408
shutdown method, 408
speak method, 408

TextView class
location without maps example, 382–386
widgets and, 212

TextWatcher interface
afterTextChanged method, 136
beforeTextChanged method, 136

onTextChanged method, 136
Thread class, 68
thread confinement, 155
thread safety violations, 68
threads

Android GUI and, 143–154
in Android processes, 154
concurrent, 68, 142
monitoring, 145
Object class support, 71
spawning, 68
synchronization and, 68–71

Threads view (Eclipse), 122
Throwable class, 50
TimerTask class, 134
TimeZone class, 134
touch events

gesture input, 406
listening for, 183–186

trackballs, 186
transactions

database, 255
fragment, 203–208

transformations, matrix, 222–227
transition animations, 238–241
TranslateAnimation class, 238, 241
TreeMap class, 53
triangulation, 372
triggers, database, 254
troubleshooting

OnKeyListener interface, 194
SDK problems, 21

try-catch block, 49
tweened animations, 238

U
Ubuntu Linux environment

installing Eclipse, 6
installing JDK, 4

unchecked exceptions, 51
UNIQUE constraint, 252
unmarshaling data, 156
unpublishing Android applications, 107
UPDATE operation (REST), 79
UPDATE statement (SQL)

about, 253
ContentProvider class and, 315
WHERE clause, 253

480 | Index

uploading applications in Android Market,
106–107

UriMatcher class
about, 80, 316
addURI method, 316
initializing, 320
NO_MATCH constant, 320

URLEncoder.encode method, 339
USB

accessing Android devices, 20
debugging Android devices, 20

user experience
Activity life cycle and, 296
flowing and intuitive, 299–304

uses-sdk attribute, 15
UUID class, 134

V
values directory, 88
Vector class, 52, 134
Vibrator class, 408
video

Android supported formats, 359
Intent recording, 369
MediaPlayer playback, 363
MediaRecorder recording, 369
playback methods, 363
recording methods, 368

VideoView class, 363
View class, 211

(see also widgets)
about, 62
assembling GUI, 171
background animation, 241
dispatchKeyEvent method, 169
DispatchKeyEvent method, 189
dispatchTrackballEvent method, 186
draw method, 217
findViewById method, 200
getBackground method, 242
getMeasuredHeight method, 214
getMeasuredWidth method, 214
getSuggestedMinimumHeight method, 215
getSuggestedMinimumWidth method, 215
handling events, 188
invalidate method, 217
isFocusableInTouchMode method, 191
isInTouchMode method, 191
measure method, 214

OnClickListener interface, 177
OnCreateContextMenuListener interface,

195, 197
onDraw method, 232, 242
OnFocusChangeListener interface, 189
onKeyDown method, 187
OnKeyListener interface, 62, 188, 194
onLayout method, 216
onMeasure method, 214, 216
onTouchEvent method, 187
OnTouchListener interface, 184, 188
onTrackballEvent method, 186
post method, 156
postDelayed method, 156
requestFocus method, 190
requestLayout method, 213
setBackgroundDrawable method, 241
setBackgroundResource method, 241
setFocusable method, 189
setMeasuredDimensions method, 215, 216
setOnCreateContextMenuListener

method, 195
setOnKeyListener method, 187
startAnimation method, 238
widgets and, 212

View component (MVC), 168, 212
(see also drawing graphics)

view model, 218
ViewGroup class

container views and, 171
dispatchDraw method, 217
Fragment class and, 197
measureChild method, 216
measureChildren method, 216
measureChildWithMargins method, 216
requestChildFocus method, 191
requestFocus method, 191
widgets and, 212

virtual machines (see Dalvik virtual machines
(VMs))

VisualAge tool, 112
VMs (virtual machines) (see Dalvik virtual

machines (VMs))

W
whatami example, 450
widgets, 211

(see also View class)
Bitmap class, 232

Index | 481

canvas drawing, 217–227
defined, 171, 211
Drawable class, 228–232
focusable attribute, 189
fully functional example, 219
graphics effects examples, 234–246
layout process, 212–217
onDraw method, 212, 217, 219, 225, 228
onLayout method, 217
onMeasure method, 212

Windows environment
installing JDK, 4
NDK requirements, 448
running programs on Android devices, 20
sandboxing and, 89

workspaces
defined, 13, 113
depicted, 117
projects and, 140

X
XML editors, 24

Y
YouTube video example

about, 334
constants and initialization, 338
controller collecting user input, 337
creating database, 339
file management, 353
insert and ResponseHandlers, 352–353
networked query method, 339–352
structure of source code, 335
UI collecting user input, 337

Z
Zipalign tool, 27
zooming in Android maps, 378
Zygote process, 89

482 | Index

About the Authors
Zigurd Mednieks is a consultant to leading OEMs, enterprises, and entrepreneurial
ventures creating Android-based systems and software. Previously he was chief archi-
tect at D2 Technologies, a Voice over IP (VoIP) technology provider. There he led
engineering and product definition work for products that blended communication
and social media in purpose-built embedded systems and on the Android platform.

Laird Dornin is a mobile development architect with extensive experience in Java,
Android, J2ME, SavaJe, and the WebKit browser library. He was a member of the J2SE
development team at Sun Microsystems, specializing in Java RMI and Jini technology.
He is currently a senior engineer at a major wireless carrier, where he provides Android
architectural guidance and Network API support to members of the carrier’s developer
community.

G. Blake Meike is a veteran developer with wide experience building Java applications
for a range of mobile and server-side platforms.

With more than a decade of software engineering experience, Masumi Nakamura has
worked in various positions within the mobile technology arena, from building out
mobile infrastructure to founding his own mobile company. He was one of the primary
Android developers of the WHERE Android app and is now principal architect for the
Big Data and Recommendations group at WHERE, Inc. Outside of coding, he spends
his time practicing Ba Gua Zhang and caring for his two cats.

Colophon
The animal on the cover of Programming Android is a pine grosbeak (Pinicola enuclea-
tor). A member of the finch family, these largest of the so-called “winter finches” can
be found throughout the coniferous forests of the northern hemisphere: in Alaska,
Canada, Scandinavia, and Siberia. More rarely, during the winter some individuals stray
as far south as the upper Midwest and New England portions of the United States, and
on occasion even into temperate Europe.

Adult pine grosbeaks are rather distinctive looking. Both males and females have long
forked black tails and black wings with white wing bars. The remainder of a male’s
plumage is predominantly red, while females display an olive color on the head and
rump and gray on the back and underside. Conversely, colors on young pine grosbeaks
are noticeably more subdued.

Pine grosbeaks feed mostly on vegetable matter, including the buds, seeds, and fruit of
various varieties of tree, though they will also eat insects, and in fact prefer to feed such
to their young. Interestingly, breeding adults will develop pouches in the floor of its
mouth specifically designed to carry this food back to the nest.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC Ga-
ramond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSans Mono Condensed.

	Table of Contents
	Preface
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Tools and Basics
	Chapter 1. Your Toolkit
	Installing the Android SDK and Prerequisites
	The Java Development Kit (JDK)
	The Eclipse Integrated Development Environment (IDE)
	The Android SDK
	Adding Build Targets to the SDK
	The Android Development Toolkit (ADT) Plug-in for Eclipse
	Using the Install New Software Wizard to download and install the ADT plug-in
	Configuring the ADT plug-in

	Test Drive: Confirm That Your Installation Works
	Making an Android Project
	Making an Android Virtual Device (AVD)
	Running a Program on an AVD
	Running a Program on an Android Device
	Troubleshooting SDK Problems: No Build Targets

	Components of the SDK
	The Android Debug Bridge (adb)
	The Dalvik Debug Monitor Server (DDMS)
	Components of the ADT Eclipse Plug-in
	The Android Layout Editor
	The Android Manifest Editor
	XML editors for other Android XML files
	Building Android apps
	Running and debugging Android apps
	The DDMS

	Android Virtual Devices
	QEMU
	The SDK and AVD Manager

	Other SDK Tools
	Hierarchy Viewer
	Layoutopt
	Monkey
	sqlite3
	keytool
	Zipalign
	Draw9patch
	android

	Keeping Up-to-Date
	Keeping the Android SDK Up-to-Date
	Keeping Eclipse and the ADT Plug-in Up-to-Date
	Keeping the JDK Up-to-Date

	Example Code
	SDK Example Code
	Example Code from This Book

	On Reading Code

	Chapter 2. Java for Android
	Android Is Reshaping Client-Side Java
	The Java Type System
	Primitive Types
	Objects and Classes
	Object Creation
	The Object Class and Its Methods
	Objects, Inheritance, and Polymorphism
	Final and Static Declarations
	Abstract Classes
	Interfaces
	Exceptions
	The Java Collections Framework
	Collection interface types
	Collection implementation types
	Java generics

	Garbage Collection

	Scope
	Java Packages
	Access Modifiers and Encapsulation

	Idioms of Java Programming
	Type Safety in Java
	Encapsulation
	Getters and setters

	Using Anonymous Classes
	Modular Programming in Java
	Basic Multithreaded Concurrent Programming in Java
	Synchronization and Thread Safety
	Thread Control with wait() and notify() Methods
	Synchronization and Data Structures

	Chapter 3. The Ingredients of an Android Application
	Traditional Programming Models Compared to Android
	Activities, Intents, and Tasks
	Other Android Components
	Service
	Content Providers
	Using a content provider
	Content providers and the Internet

	BroadcastReceiver

	Static Application Resources and Context
	Application Manifests
	A Typical Source Tree
	Initialization Parameters in AndroidManifest.xml

	Resources
	The Android Application Runtime Environment
	The Dalvik VM
	Zygote: Forking a New Process
	Sandboxing: Processes and Users

	Component Life Cycles
	The Activity Life Cycle

	Packaging an Android Application: The .apk File
	On Porting Software to Android

	Chapter 4. Getting Your Application into Users’
 Hands
	Application Signing
	Public Key Encryption and Cryptographic Signing
	How Signatures Protect Software Users, Publishers, and Secure Communications
	Self-signed certificates for Android software

	Signing an Application
	Debug certificates
	Creating a self-signed certificate
	Don’t lose it!
	Using a self-signed certificate to sign an application

	Placing an Application for Distribution in the Android Market
	Becoming an Official Android Developer
	Uploading Applications in the Market
	Getting Paid

	Google Maps API Keys
	Specifying API-Level Compatibility
	Compatibility with Many Kinds of Screens
	Testing for Screen Size Compatibility
	Resource Qualifiers and Screen Sizes

	Chapter 5. Eclipse for Android Software
 Development
	Eclipse Concepts and Terminology
	Plug-ins
	Workspaces
	Java Environments
	Eclipse’s Java Runtime Environment
	The Java compiler
	The application runtime

	Projects
	Builders and Artifacts
	Extensions
	Associations

	Eclipse Views and Perspectives
	The Package Explorer View
	The Task List View
	The Outline View
	The Problems View

	Java Coding in Eclipse
	Editing Java Code and Code Completion
	Refactoring

	Eclipse and Android
	Preventing Bugs and Keeping Your Code Clean
	Static Analyzers
	FindBugs

	Applying Static Analysis to Android Code
	Limitations of Static Analysis

	Eclipse Idiosyncrasies and Alternatives

	Chapter 6. Effective Java for Android
	The Android Framework
	The Android Libraries
	Extending Android
	Overrides and callbacks
	Using polymorphism and composition
	Extending Android classes

	Organizing Java Source
	Concurrency in Android
	AsyncTask and the UI Thread
	Threads in an Android Process

	Serialization
	Java Serialization
	Parcelable
	Classes That Support Serialization
	Serialization and the Application Life Cycle

	Part II. About the Android Framework
	Chapter 7. Building a View
	Android GUI Architecture
	The Model
	The View
	The Controller
	Putting It Together

	Assembling a Graphical Interface
	Wiring Up the Controller
	Listening to the Model
	Listening for Touch Events
	Listening for Key Events
	Alternative Ways to Handle Events
	Advanced Wiring: Focus and Threading

	The Menu

	Chapter 8. Fragments and Multiplatform Support
	Creating a Fragment
	Fragment Life Cycle
	The Fragment Manager
	Fragment Transactions
	The Compatibility Package

	Chapter 9. Drawing 2D and 3D Graphics
	Rolling Your Own Widgets
	Layout
	Measurement
	Arrangement

	Canvas Drawing
	Drawing text
	Matrix transformations

	Drawables
	Bitmaps

	Bling
	Shadows, Gradients, and Filters
	Animation
	Transition animation
	Background animation
	Surface view animation

	OpenGL Graphics

	Chapter 10. Handling and Persisting Data
	Relational Database Overview
	SQLite
	The SQL Language
	SQL Data Definition Commands
	SQLite types
	Database constraints

	SQL Data Manipulation Commands
	Additional Database Concepts
	Database Transactions
	Example Database Manipulation Using sqlite3

	SQL and the Database-Centric Data Model for Android Applications
	The Android Database Classes
	Database Design for Android Applications
	Basic Structure of the SimpleVideoDbHelper Class

	Using the Database API: MJAndroid
	Android and Social Networking
	The Source Folder (src)
	Loading and Starting the Application
	Database Queries and Reading Data from the Database
	Using the query method

	Modifying the Database
	Inserting data into the database
	Using the insert method
	Using the execSQL method

	Updating data already in the database
	Using the update method
	Using the execSQL method

	Deleting data in the database
	Using the delete method
	Using the execSQL method

	Part III. A Skeleton Application for
 Android
	Chapter 11. A Framework for a Well-Behaved
 Application
	Visualizing Life Cycles
	Visualizing the Activity Life Cycle
	Memory recovery and life cycles
	Life cycle methods of the Activity class
	Saving and restoring instance state
	Configuration changes and the activity life cycle
	Minor life cycle methods of the Activity class

	Visualizing the Fragment Life Cycle
	The Activity Class and Well-Behaved Applications
	The Activity Life Cycle and the User Experience

	Life Cycle Methods of the Application Class
	A Flowing and Intuitive User Experience Across Activities
	Multitasking in a Small-Screen Environment
	Tasks and Applications
	Specifying Launch and Task Behavior
	Launch mode
	Task affinity
	Other activity attributes affecting task behavior
	Modifying task behavior with intent flags

	Chapter 12. Using Content Providers
	Understanding Content Providers
	Implementing a Content Provider
	Browsing Video with Finch
	The simple video database
	Structure of the simple version of the code

	Defining a Provider Public API
	Defining the CONTENT_URI
	Creating the Column Names
	Declaring Column Specification Strings

	Writing and Integrating a Content Provider
	Common Content Provider Tasks
	Extending ContentProvider

	File Management and Binary Data
	Android MVC and Content Observation
	A Complete Content Provider: The SimpleFinchVideoContentProvider Code
	The SimpleFinchVideoContentProvider Class and Instance Variables
	Implementing the onCreate Method
	Implementing the getType Method
	Implementing the Provider API
	The query method
	The insert method
	The update method
	The delete method

	Determining How Often to Notify Observers

	Declaring Your Content Provider

	Chapter 13. Exploring Content Providers
	Developing RESTful Android Applications
	A “Network MVC”
	Summary of Benefits
	Code Example: Dynamically Listing and Caching YouTube Video Content
	Structure of the Source Code for the Finch YouTube Video Example
	Stepping Through the Search Application
	Step 1: Our UI Collects User Input
	Step 2: Our Controller Listens for Events
	Step 3: The Controller Queries the Content Provider with a managedQuery on the Content Provider/Model
	Step 4: Implementing the RESTful Request
	Constants and Initialization
	Creating the Database
	A Networked Query Method
	RESTfulContentProvider: A REST helper
	UriRequestTask
	YouTubeHandler

	insert and ResponseHandlers
	File Management: Storing Thumbnails

	Part IV. Advanced Topics
	Chapter 14. Multimedia
	Audio and Video
	Playing Audio and Video
	Audio Playback
	MediaPlayer audio playback
	AudioTrack audio playback

	Video Playback

	Recording Audio and Video
	Audio Recording
	MediaRecorder audio recording
	Intent audio recording
	AudioRecorder audio recording

	Video Recording
	MediaRecorder video recording
	Intent video recording

	Stored Media Content

	Chapter 15. Location and Mapping
	Location-Based Services
	Mapping
	The Google Maps Activity
	The MapView and MapActivity
	Working with MapViews
	MapView and MyLocationOverlay Initialization
	Pausing and Resuming a MapActivity
	Controlling the Map with Menu Buttons
	Controlling the Map with the Keypad
	Location Without Maps
	The Manifest and Layout Files
	Connecting to a Location Provider and Getting Location Updates
	Updating the Emulated Location
	Using geo to update location
	Using DDMS to update location

	Chapter 16. Sensors, NFC, Speech, Gestures, and
 Accessibility
	Sensors
	Position
	Accelerometer
	Gyroscope
	Rotation vector
	Linear acceleration
	Gravity

	Other Sensors

	Near Field Communication (NFC)
	Reading a Tag
	Writing to a Tag
	P2P Mode

	Gesture Input
	Accessibility

	Chapter 17. Communication, Identity, Sync, and Social Media
	Account Contacts
	Authentication and Synchronization
	Authentication
	Synchronization

	Bluetooth
	The Bluetooth Protocol Stack
	Bluetooth-specific protocols and adopted protocols

	Bluez: The Linux Bluetooth Implementation
	Using Bluetooth in Android Applications
	Bluetooth and related I/O classes
	The DeviceListActivity class
	The BtConsoleActivity class

	Chapter 18. The Android Native Development Kit
 (NDK)
	Native Methods and JNI Calls
	Conventions on the Native Method Side
	Conventions on the Java Side

	The Android NDK
	Setting Up the NDK Environment
	Compiling with the NDK
	JNI, NDK, and SDK: A Sample App

	Android-Provided Native Libraries
	Building Your Own Custom Library Modules
	Native Activities

	Index

